Correctly notice empty sysroots in solib_find_1
[deliverable/binutils-gdb.git] / bfd / elflink.c
... / ...
CommitLineData
1/* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "bfd_stdint.h"
24#include "bfdlink.h"
25#include "libbfd.h"
26#define ARCH_SIZE 0
27#include "elf-bfd.h"
28#include "safe-ctype.h"
29#include "libiberty.h"
30#include "objalloc.h"
31
32/* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35struct elf_info_failed
36{
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39};
40
41/* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44struct elf_find_verdep_info
45{
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52};
53
54static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57asection *
58_bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61{
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96}
97
98/* Define a symbol in a dynamic linkage section. */
99
100struct elf_link_hash_entry *
101_bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105{
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136}
137
138bfd_boolean
139_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140{
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197}
198\f
199/* Create a strtab to hold the dynamic symbol names. */
200static bfd_boolean
201_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202{
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216}
217
218/* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225bfd_boolean
226_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227{
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (info->executable)
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282
283 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
284 flags | SEC_READONLY);
285 if (s == NULL)
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
289 if (s == NULL
290 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
291 return FALSE;
292
293 /* The special symbol _DYNAMIC is always set to the start of the
294 .dynamic section. We could set _DYNAMIC in a linker script, but we
295 only want to define it if we are, in fact, creating a .dynamic
296 section. We don't want to define it if there is no .dynamic
297 section, since on some ELF platforms the start up code examines it
298 to decide how to initialize the process. */
299 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
300 elf_hash_table (info)->hdynamic = h;
301 if (h == NULL)
302 return FALSE;
303
304 if (info->emit_hash)
305 {
306 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
307 flags | SEC_READONLY);
308 if (s == NULL
309 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
310 return FALSE;
311 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
312 }
313
314 if (info->emit_gnu_hash)
315 {
316 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
317 flags | SEC_READONLY);
318 if (s == NULL
319 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
320 return FALSE;
321 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
322 4 32-bit words followed by variable count of 64-bit words, then
323 variable count of 32-bit words. */
324 if (bed->s->arch_size == 64)
325 elf_section_data (s)->this_hdr.sh_entsize = 0;
326 else
327 elf_section_data (s)->this_hdr.sh_entsize = 4;
328 }
329
330 /* Let the backend create the rest of the sections. This lets the
331 backend set the right flags. The backend will normally create
332 the .got and .plt sections. */
333 if (bed->elf_backend_create_dynamic_sections == NULL
334 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
335 return FALSE;
336
337 elf_hash_table (info)->dynamic_sections_created = TRUE;
338
339 return TRUE;
340}
341
342/* Create dynamic sections when linking against a dynamic object. */
343
344bfd_boolean
345_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
346{
347 flagword flags, pltflags;
348 struct elf_link_hash_entry *h;
349 asection *s;
350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
351 struct elf_link_hash_table *htab = elf_hash_table (info);
352
353 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
354 .rel[a].bss sections. */
355 flags = bed->dynamic_sec_flags;
356
357 pltflags = flags;
358 if (bed->plt_not_loaded)
359 /* We do not clear SEC_ALLOC here because we still want the OS to
360 allocate space for the section; it's just that there's nothing
361 to read in from the object file. */
362 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
363 else
364 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
365 if (bed->plt_readonly)
366 pltflags |= SEC_READONLY;
367
368 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
369 if (s == NULL
370 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
371 return FALSE;
372 htab->splt = s;
373
374 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
375 .plt section. */
376 if (bed->want_plt_sym)
377 {
378 h = _bfd_elf_define_linkage_sym (abfd, info, s,
379 "_PROCEDURE_LINKAGE_TABLE_");
380 elf_hash_table (info)->hplt = h;
381 if (h == NULL)
382 return FALSE;
383 }
384
385 s = bfd_make_section_anyway_with_flags (abfd,
386 (bed->rela_plts_and_copies_p
387 ? ".rela.plt" : ".rel.plt"),
388 flags | SEC_READONLY);
389 if (s == NULL
390 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
391 return FALSE;
392 htab->srelplt = s;
393
394 if (! _bfd_elf_create_got_section (abfd, info))
395 return FALSE;
396
397 if (bed->want_dynbss)
398 {
399 /* The .dynbss section is a place to put symbols which are defined
400 by dynamic objects, are referenced by regular objects, and are
401 not functions. We must allocate space for them in the process
402 image and use a R_*_COPY reloc to tell the dynamic linker to
403 initialize them at run time. The linker script puts the .dynbss
404 section into the .bss section of the final image. */
405 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
406 (SEC_ALLOC | SEC_LINKER_CREATED));
407 if (s == NULL)
408 return FALSE;
409
410 /* The .rel[a].bss section holds copy relocs. This section is not
411 normally needed. We need to create it here, though, so that the
412 linker will map it to an output section. We can't just create it
413 only if we need it, because we will not know whether we need it
414 until we have seen all the input files, and the first time the
415 main linker code calls BFD after examining all the input files
416 (size_dynamic_sections) the input sections have already been
417 mapped to the output sections. If the section turns out not to
418 be needed, we can discard it later. We will never need this
419 section when generating a shared object, since they do not use
420 copy relocs. */
421 if (! info->shared)
422 {
423 s = bfd_make_section_anyway_with_flags (abfd,
424 (bed->rela_plts_and_copies_p
425 ? ".rela.bss" : ".rel.bss"),
426 flags | SEC_READONLY);
427 if (s == NULL
428 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
429 return FALSE;
430 }
431 }
432
433 return TRUE;
434}
435\f
436/* Record a new dynamic symbol. We record the dynamic symbols as we
437 read the input files, since we need to have a list of all of them
438 before we can determine the final sizes of the output sections.
439 Note that we may actually call this function even though we are not
440 going to output any dynamic symbols; in some cases we know that a
441 symbol should be in the dynamic symbol table, but only if there is
442 one. */
443
444bfd_boolean
445bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
446 struct elf_link_hash_entry *h)
447{
448 if (h->dynindx == -1)
449 {
450 struct elf_strtab_hash *dynstr;
451 char *p;
452 const char *name;
453 bfd_size_type indx;
454
455 /* XXX: The ABI draft says the linker must turn hidden and
456 internal symbols into STB_LOCAL symbols when producing the
457 DSO. However, if ld.so honors st_other in the dynamic table,
458 this would not be necessary. */
459 switch (ELF_ST_VISIBILITY (h->other))
460 {
461 case STV_INTERNAL:
462 case STV_HIDDEN:
463 if (h->root.type != bfd_link_hash_undefined
464 && h->root.type != bfd_link_hash_undefweak)
465 {
466 h->forced_local = 1;
467 if (!elf_hash_table (info)->is_relocatable_executable)
468 return TRUE;
469 }
470
471 default:
472 break;
473 }
474
475 h->dynindx = elf_hash_table (info)->dynsymcount;
476 ++elf_hash_table (info)->dynsymcount;
477
478 dynstr = elf_hash_table (info)->dynstr;
479 if (dynstr == NULL)
480 {
481 /* Create a strtab to hold the dynamic symbol names. */
482 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
483 if (dynstr == NULL)
484 return FALSE;
485 }
486
487 /* We don't put any version information in the dynamic string
488 table. */
489 name = h->root.root.string;
490 p = strchr (name, ELF_VER_CHR);
491 if (p != NULL)
492 /* We know that the p points into writable memory. In fact,
493 there are only a few symbols that have read-only names, being
494 those like _GLOBAL_OFFSET_TABLE_ that are created specially
495 by the backends. Most symbols will have names pointing into
496 an ELF string table read from a file, or to objalloc memory. */
497 *p = 0;
498
499 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
500
501 if (p != NULL)
502 *p = ELF_VER_CHR;
503
504 if (indx == (bfd_size_type) -1)
505 return FALSE;
506 h->dynstr_index = indx;
507 }
508
509 return TRUE;
510}
511\f
512/* Mark a symbol dynamic. */
513
514static void
515bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
516 struct elf_link_hash_entry *h,
517 Elf_Internal_Sym *sym)
518{
519 struct bfd_elf_dynamic_list *d = info->dynamic_list;
520
521 /* It may be called more than once on the same H. */
522 if(h->dynamic || info->relocatable)
523 return;
524
525 if ((info->dynamic_data
526 && (h->type == STT_OBJECT
527 || (sym != NULL
528 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
529 || (d != NULL
530 && h->root.type == bfd_link_hash_new
531 && (*d->match) (&d->head, NULL, h->root.root.string)))
532 h->dynamic = 1;
533}
534
535/* Record an assignment to a symbol made by a linker script. We need
536 this in case some dynamic object refers to this symbol. */
537
538bfd_boolean
539bfd_elf_record_link_assignment (bfd *output_bfd,
540 struct bfd_link_info *info,
541 const char *name,
542 bfd_boolean provide,
543 bfd_boolean hidden)
544{
545 struct elf_link_hash_entry *h, *hv;
546 struct elf_link_hash_table *htab;
547 const struct elf_backend_data *bed;
548
549 if (!is_elf_hash_table (info->hash))
550 return TRUE;
551
552 htab = elf_hash_table (info);
553 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
554 if (h == NULL)
555 return provide;
556
557 switch (h->root.type)
558 {
559 case bfd_link_hash_defined:
560 case bfd_link_hash_defweak:
561 case bfd_link_hash_common:
562 break;
563 case bfd_link_hash_undefweak:
564 case bfd_link_hash_undefined:
565 /* Since we're defining the symbol, don't let it seem to have not
566 been defined. record_dynamic_symbol and size_dynamic_sections
567 may depend on this. */
568 h->root.type = bfd_link_hash_new;
569 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
570 bfd_link_repair_undef_list (&htab->root);
571 break;
572 case bfd_link_hash_new:
573 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
574 h->non_elf = 0;
575 break;
576 case bfd_link_hash_indirect:
577 /* We had a versioned symbol in a dynamic library. We make the
578 the versioned symbol point to this one. */
579 bed = get_elf_backend_data (output_bfd);
580 hv = h;
581 while (hv->root.type == bfd_link_hash_indirect
582 || hv->root.type == bfd_link_hash_warning)
583 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
584 /* We don't need to update h->root.u since linker will set them
585 later. */
586 h->root.type = bfd_link_hash_undefined;
587 hv->root.type = bfd_link_hash_indirect;
588 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
589 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
590 break;
591 case bfd_link_hash_warning:
592 abort ();
593 break;
594 }
595
596 /* If this symbol is being provided by the linker script, and it is
597 currently defined by a dynamic object, but not by a regular
598 object, then mark it as undefined so that the generic linker will
599 force the correct value. */
600 if (provide
601 && h->def_dynamic
602 && !h->def_regular)
603 h->root.type = bfd_link_hash_undefined;
604
605 /* If this symbol is not being provided by the linker script, and it is
606 currently defined by a dynamic object, but not by a regular object,
607 then clear out any version information because the symbol will not be
608 associated with the dynamic object any more. */
609 if (!provide
610 && h->def_dynamic
611 && !h->def_regular)
612 h->verinfo.verdef = NULL;
613
614 h->def_regular = 1;
615
616 if (hidden)
617 {
618 bed = get_elf_backend_data (output_bfd);
619 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
620 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
621 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
622 }
623
624 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
625 and executables. */
626 if (!info->relocatable
627 && h->dynindx != -1
628 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
629 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
630 h->forced_local = 1;
631
632 if ((h->def_dynamic
633 || h->ref_dynamic
634 || info->shared
635 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
636 && h->dynindx == -1)
637 {
638 if (! bfd_elf_link_record_dynamic_symbol (info, h))
639 return FALSE;
640
641 /* If this is a weak defined symbol, and we know a corresponding
642 real symbol from the same dynamic object, make sure the real
643 symbol is also made into a dynamic symbol. */
644 if (h->u.weakdef != NULL
645 && h->u.weakdef->dynindx == -1)
646 {
647 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
648 return FALSE;
649 }
650 }
651
652 return TRUE;
653}
654
655/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
656 success, and 2 on a failure caused by attempting to record a symbol
657 in a discarded section, eg. a discarded link-once section symbol. */
658
659int
660bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
661 bfd *input_bfd,
662 long input_indx)
663{
664 bfd_size_type amt;
665 struct elf_link_local_dynamic_entry *entry;
666 struct elf_link_hash_table *eht;
667 struct elf_strtab_hash *dynstr;
668 unsigned long dynstr_index;
669 char *name;
670 Elf_External_Sym_Shndx eshndx;
671 char esym[sizeof (Elf64_External_Sym)];
672
673 if (! is_elf_hash_table (info->hash))
674 return 0;
675
676 /* See if the entry exists already. */
677 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
678 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
679 return 1;
680
681 amt = sizeof (*entry);
682 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
683 if (entry == NULL)
684 return 0;
685
686 /* Go find the symbol, so that we can find it's name. */
687 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
688 1, input_indx, &entry->isym, esym, &eshndx))
689 {
690 bfd_release (input_bfd, entry);
691 return 0;
692 }
693
694 if (entry->isym.st_shndx != SHN_UNDEF
695 && entry->isym.st_shndx < SHN_LORESERVE)
696 {
697 asection *s;
698
699 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
700 if (s == NULL || bfd_is_abs_section (s->output_section))
701 {
702 /* We can still bfd_release here as nothing has done another
703 bfd_alloc. We can't do this later in this function. */
704 bfd_release (input_bfd, entry);
705 return 2;
706 }
707 }
708
709 name = (bfd_elf_string_from_elf_section
710 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
711 entry->isym.st_name));
712
713 dynstr = elf_hash_table (info)->dynstr;
714 if (dynstr == NULL)
715 {
716 /* Create a strtab to hold the dynamic symbol names. */
717 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
718 if (dynstr == NULL)
719 return 0;
720 }
721
722 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
723 if (dynstr_index == (unsigned long) -1)
724 return 0;
725 entry->isym.st_name = dynstr_index;
726
727 eht = elf_hash_table (info);
728
729 entry->next = eht->dynlocal;
730 eht->dynlocal = entry;
731 entry->input_bfd = input_bfd;
732 entry->input_indx = input_indx;
733 eht->dynsymcount++;
734
735 /* Whatever binding the symbol had before, it's now local. */
736 entry->isym.st_info
737 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
738
739 /* The dynindx will be set at the end of size_dynamic_sections. */
740
741 return 1;
742}
743
744/* Return the dynindex of a local dynamic symbol. */
745
746long
747_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
748 bfd *input_bfd,
749 long input_indx)
750{
751 struct elf_link_local_dynamic_entry *e;
752
753 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
754 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
755 return e->dynindx;
756 return -1;
757}
758
759/* This function is used to renumber the dynamic symbols, if some of
760 them are removed because they are marked as local. This is called
761 via elf_link_hash_traverse. */
762
763static bfd_boolean
764elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
765 void *data)
766{
767 size_t *count = (size_t *) data;
768
769 if (h->forced_local)
770 return TRUE;
771
772 if (h->dynindx != -1)
773 h->dynindx = ++(*count);
774
775 return TRUE;
776}
777
778
779/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
780 STB_LOCAL binding. */
781
782static bfd_boolean
783elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
784 void *data)
785{
786 size_t *count = (size_t *) data;
787
788 if (!h->forced_local)
789 return TRUE;
790
791 if (h->dynindx != -1)
792 h->dynindx = ++(*count);
793
794 return TRUE;
795}
796
797/* Return true if the dynamic symbol for a given section should be
798 omitted when creating a shared library. */
799bfd_boolean
800_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
801 struct bfd_link_info *info,
802 asection *p)
803{
804 struct elf_link_hash_table *htab;
805 asection *ip;
806
807 switch (elf_section_data (p)->this_hdr.sh_type)
808 {
809 case SHT_PROGBITS:
810 case SHT_NOBITS:
811 /* If sh_type is yet undecided, assume it could be
812 SHT_PROGBITS/SHT_NOBITS. */
813 case SHT_NULL:
814 htab = elf_hash_table (info);
815 if (p == htab->tls_sec)
816 return FALSE;
817
818 if (htab->text_index_section != NULL)
819 return p != htab->text_index_section && p != htab->data_index_section;
820
821 return (htab->dynobj != NULL
822 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
823 && ip->output_section == p);
824
825 /* There shouldn't be section relative relocations
826 against any other section. */
827 default:
828 return TRUE;
829 }
830}
831
832/* Assign dynsym indices. In a shared library we generate a section
833 symbol for each output section, which come first. Next come symbols
834 which have been forced to local binding. Then all of the back-end
835 allocated local dynamic syms, followed by the rest of the global
836 symbols. */
837
838static unsigned long
839_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
840 struct bfd_link_info *info,
841 unsigned long *section_sym_count)
842{
843 unsigned long dynsymcount = 0;
844
845 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
846 {
847 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
848 asection *p;
849 for (p = output_bfd->sections; p ; p = p->next)
850 if ((p->flags & SEC_EXCLUDE) == 0
851 && (p->flags & SEC_ALLOC) != 0
852 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
853 elf_section_data (p)->dynindx = ++dynsymcount;
854 else
855 elf_section_data (p)->dynindx = 0;
856 }
857 *section_sym_count = dynsymcount;
858
859 elf_link_hash_traverse (elf_hash_table (info),
860 elf_link_renumber_local_hash_table_dynsyms,
861 &dynsymcount);
862
863 if (elf_hash_table (info)->dynlocal)
864 {
865 struct elf_link_local_dynamic_entry *p;
866 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
867 p->dynindx = ++dynsymcount;
868 }
869
870 elf_link_hash_traverse (elf_hash_table (info),
871 elf_link_renumber_hash_table_dynsyms,
872 &dynsymcount);
873
874 /* There is an unused NULL entry at the head of the table which
875 we must account for in our count. Unless there weren't any
876 symbols, which means we'll have no table at all. */
877 if (dynsymcount != 0)
878 ++dynsymcount;
879
880 elf_hash_table (info)->dynsymcount = dynsymcount;
881 return dynsymcount;
882}
883
884/* Merge st_other field. */
885
886static void
887elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
888 const Elf_Internal_Sym *isym, asection *sec,
889 bfd_boolean definition, bfd_boolean dynamic)
890{
891 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
892
893 /* If st_other has a processor-specific meaning, specific
894 code might be needed here. */
895 if (bed->elf_backend_merge_symbol_attribute)
896 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
897 dynamic);
898
899 if (!dynamic)
900 {
901 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
902 unsigned hvis = ELF_ST_VISIBILITY (h->other);
903
904 /* Keep the most constraining visibility. Leave the remainder
905 of the st_other field to elf_backend_merge_symbol_attribute. */
906 if (symvis - 1 < hvis - 1)
907 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
908 }
909 else if (definition
910 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
911 && (sec->flags & SEC_READONLY) == 0)
912 h->protected_def = 1;
913}
914
915/* This function is called when we want to merge a new symbol with an
916 existing symbol. It handles the various cases which arise when we
917 find a definition in a dynamic object, or when there is already a
918 definition in a dynamic object. The new symbol is described by
919 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
920 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
921 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
922 of an old common symbol. We set OVERRIDE if the old symbol is
923 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
924 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
925 to change. By OK to change, we mean that we shouldn't warn if the
926 type or size does change. */
927
928static bfd_boolean
929_bfd_elf_merge_symbol (bfd *abfd,
930 struct bfd_link_info *info,
931 const char *name,
932 Elf_Internal_Sym *sym,
933 asection **psec,
934 bfd_vma *pvalue,
935 struct elf_link_hash_entry **sym_hash,
936 bfd **poldbfd,
937 bfd_boolean *pold_weak,
938 unsigned int *pold_alignment,
939 bfd_boolean *skip,
940 bfd_boolean *override,
941 bfd_boolean *type_change_ok,
942 bfd_boolean *size_change_ok)
943{
944 asection *sec, *oldsec;
945 struct elf_link_hash_entry *h;
946 struct elf_link_hash_entry *hi;
947 struct elf_link_hash_entry *flip;
948 int bind;
949 bfd *oldbfd;
950 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
951 bfd_boolean newweak, oldweak, newfunc, oldfunc;
952 const struct elf_backend_data *bed;
953
954 *skip = FALSE;
955 *override = FALSE;
956
957 sec = *psec;
958 bind = ELF_ST_BIND (sym->st_info);
959
960 if (! bfd_is_und_section (sec))
961 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
962 else
963 h = ((struct elf_link_hash_entry *)
964 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
965 if (h == NULL)
966 return FALSE;
967 *sym_hash = h;
968
969 bed = get_elf_backend_data (abfd);
970
971 /* For merging, we only care about real symbols. But we need to make
972 sure that indirect symbol dynamic flags are updated. */
973 hi = h;
974 while (h->root.type == bfd_link_hash_indirect
975 || h->root.type == bfd_link_hash_warning)
976 h = (struct elf_link_hash_entry *) h->root.u.i.link;
977
978 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
979 existing symbol. */
980
981 oldbfd = NULL;
982 oldsec = NULL;
983 switch (h->root.type)
984 {
985 default:
986 break;
987
988 case bfd_link_hash_undefined:
989 case bfd_link_hash_undefweak:
990 oldbfd = h->root.u.undef.abfd;
991 break;
992
993 case bfd_link_hash_defined:
994 case bfd_link_hash_defweak:
995 oldbfd = h->root.u.def.section->owner;
996 oldsec = h->root.u.def.section;
997 break;
998
999 case bfd_link_hash_common:
1000 oldbfd = h->root.u.c.p->section->owner;
1001 oldsec = h->root.u.c.p->section;
1002 if (pold_alignment)
1003 *pold_alignment = h->root.u.c.p->alignment_power;
1004 break;
1005 }
1006 if (poldbfd && *poldbfd == NULL)
1007 *poldbfd = oldbfd;
1008
1009 /* Differentiate strong and weak symbols. */
1010 newweak = bind == STB_WEAK;
1011 oldweak = (h->root.type == bfd_link_hash_defweak
1012 || h->root.type == bfd_link_hash_undefweak);
1013 if (pold_weak)
1014 *pold_weak = oldweak;
1015
1016 /* This code is for coping with dynamic objects, and is only useful
1017 if we are doing an ELF link. */
1018 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1019 return TRUE;
1020
1021 /* We have to check it for every instance since the first few may be
1022 references and not all compilers emit symbol type for undefined
1023 symbols. */
1024 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1025
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1028
1029 newdyn = (abfd->flags & DYNAMIC) != 0;
1030
1031 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1032 syms and defined syms in dynamic libraries respectively.
1033 ref_dynamic on the other hand can be set for a symbol defined in
1034 a dynamic library, and def_dynamic may not be set; When the
1035 definition in a dynamic lib is overridden by a definition in the
1036 executable use of the symbol in the dynamic lib becomes a
1037 reference to the executable symbol. */
1038 if (newdyn)
1039 {
1040 if (bfd_is_und_section (sec))
1041 {
1042 if (bind != STB_WEAK)
1043 {
1044 h->ref_dynamic_nonweak = 1;
1045 hi->ref_dynamic_nonweak = 1;
1046 }
1047 }
1048 else
1049 {
1050 h->dynamic_def = 1;
1051 hi->dynamic_def = 1;
1052 }
1053 }
1054
1055 /* If we just created the symbol, mark it as being an ELF symbol.
1056 Other than that, there is nothing to do--there is no merge issue
1057 with a newly defined symbol--so we just return. */
1058
1059 if (h->root.type == bfd_link_hash_new)
1060 {
1061 h->non_elf = 0;
1062 return TRUE;
1063 }
1064
1065 /* In cases involving weak versioned symbols, we may wind up trying
1066 to merge a symbol with itself. Catch that here, to avoid the
1067 confusion that results if we try to override a symbol with
1068 itself. The additional tests catch cases like
1069 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1070 dynamic object, which we do want to handle here. */
1071 if (abfd == oldbfd
1072 && (newweak || oldweak)
1073 && ((abfd->flags & DYNAMIC) == 0
1074 || !h->def_regular))
1075 return TRUE;
1076
1077 olddyn = FALSE;
1078 if (oldbfd != NULL)
1079 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1080 else if (oldsec != NULL)
1081 {
1082 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1083 indices used by MIPS ELF. */
1084 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1085 }
1086
1087 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1088 respectively, appear to be a definition rather than reference. */
1089
1090 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1091
1092 olddef = (h->root.type != bfd_link_hash_undefined
1093 && h->root.type != bfd_link_hash_undefweak
1094 && h->root.type != bfd_link_hash_common);
1095
1096 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1097 respectively, appear to be a function. */
1098
1099 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1100 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1101
1102 oldfunc = (h->type != STT_NOTYPE
1103 && bed->is_function_type (h->type));
1104
1105 /* When we try to create a default indirect symbol from the dynamic
1106 definition with the default version, we skip it if its type and
1107 the type of existing regular definition mismatch. */
1108 if (pold_alignment == NULL
1109 && newdyn
1110 && newdef
1111 && !olddyn
1112 && (((olddef || h->root.type == bfd_link_hash_common)
1113 && ELF_ST_TYPE (sym->st_info) != h->type
1114 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1115 && h->type != STT_NOTYPE
1116 && !(newfunc && oldfunc))
1117 || (olddef
1118 && ((h->type == STT_GNU_IFUNC)
1119 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1120 {
1121 *skip = TRUE;
1122 return TRUE;
1123 }
1124
1125 /* Check TLS symbols. We don't check undefined symbols introduced
1126 by "ld -u" which have no type (and oldbfd NULL), and we don't
1127 check symbols from plugins because they also have no type. */
1128 if (oldbfd != NULL
1129 && (oldbfd->flags & BFD_PLUGIN) == 0
1130 && (abfd->flags & BFD_PLUGIN) == 0
1131 && ELF_ST_TYPE (sym->st_info) != h->type
1132 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1133 {
1134 bfd *ntbfd, *tbfd;
1135 bfd_boolean ntdef, tdef;
1136 asection *ntsec, *tsec;
1137
1138 if (h->type == STT_TLS)
1139 {
1140 ntbfd = abfd;
1141 ntsec = sec;
1142 ntdef = newdef;
1143 tbfd = oldbfd;
1144 tsec = oldsec;
1145 tdef = olddef;
1146 }
1147 else
1148 {
1149 ntbfd = oldbfd;
1150 ntsec = oldsec;
1151 ntdef = olddef;
1152 tbfd = abfd;
1153 tsec = sec;
1154 tdef = newdef;
1155 }
1156
1157 if (tdef && ntdef)
1158 (*_bfd_error_handler)
1159 (_("%s: TLS definition in %B section %A "
1160 "mismatches non-TLS definition in %B section %A"),
1161 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1162 else if (!tdef && !ntdef)
1163 (*_bfd_error_handler)
1164 (_("%s: TLS reference in %B "
1165 "mismatches non-TLS reference in %B"),
1166 tbfd, ntbfd, h->root.root.string);
1167 else if (tdef)
1168 (*_bfd_error_handler)
1169 (_("%s: TLS definition in %B section %A "
1170 "mismatches non-TLS reference in %B"),
1171 tbfd, tsec, ntbfd, h->root.root.string);
1172 else
1173 (*_bfd_error_handler)
1174 (_("%s: TLS reference in %B "
1175 "mismatches non-TLS definition in %B section %A"),
1176 tbfd, ntbfd, ntsec, h->root.root.string);
1177
1178 bfd_set_error (bfd_error_bad_value);
1179 return FALSE;
1180 }
1181
1182 /* If the old symbol has non-default visibility, we ignore the new
1183 definition from a dynamic object. */
1184 if (newdyn
1185 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1186 && !bfd_is_und_section (sec))
1187 {
1188 *skip = TRUE;
1189 /* Make sure this symbol is dynamic. */
1190 h->ref_dynamic = 1;
1191 hi->ref_dynamic = 1;
1192 /* A protected symbol has external availability. Make sure it is
1193 recorded as dynamic.
1194
1195 FIXME: Should we check type and size for protected symbol? */
1196 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1197 return bfd_elf_link_record_dynamic_symbol (info, h);
1198 else
1199 return TRUE;
1200 }
1201 else if (!newdyn
1202 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1203 && h->def_dynamic)
1204 {
1205 /* If the new symbol with non-default visibility comes from a
1206 relocatable file and the old definition comes from a dynamic
1207 object, we remove the old definition. */
1208 if (hi->root.type == bfd_link_hash_indirect)
1209 {
1210 /* Handle the case where the old dynamic definition is
1211 default versioned. We need to copy the symbol info from
1212 the symbol with default version to the normal one if it
1213 was referenced before. */
1214 if (h->ref_regular)
1215 {
1216 hi->root.type = h->root.type;
1217 h->root.type = bfd_link_hash_indirect;
1218 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1219
1220 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1221 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1222 {
1223 /* If the new symbol is hidden or internal, completely undo
1224 any dynamic link state. */
1225 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1226 h->forced_local = 0;
1227 h->ref_dynamic = 0;
1228 }
1229 else
1230 h->ref_dynamic = 1;
1231
1232 h->def_dynamic = 0;
1233 /* FIXME: Should we check type and size for protected symbol? */
1234 h->size = 0;
1235 h->type = 0;
1236
1237 h = hi;
1238 }
1239 else
1240 h = hi;
1241 }
1242
1243 /* If the old symbol was undefined before, then it will still be
1244 on the undefs list. If the new symbol is undefined or
1245 common, we can't make it bfd_link_hash_new here, because new
1246 undefined or common symbols will be added to the undefs list
1247 by _bfd_generic_link_add_one_symbol. Symbols may not be
1248 added twice to the undefs list. Also, if the new symbol is
1249 undefweak then we don't want to lose the strong undef. */
1250 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1251 {
1252 h->root.type = bfd_link_hash_undefined;
1253 h->root.u.undef.abfd = abfd;
1254 }
1255 else
1256 {
1257 h->root.type = bfd_link_hash_new;
1258 h->root.u.undef.abfd = NULL;
1259 }
1260
1261 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1262 {
1263 /* If the new symbol is hidden or internal, completely undo
1264 any dynamic link state. */
1265 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1266 h->forced_local = 0;
1267 h->ref_dynamic = 0;
1268 }
1269 else
1270 h->ref_dynamic = 1;
1271 h->def_dynamic = 0;
1272 /* FIXME: Should we check type and size for protected symbol? */
1273 h->size = 0;
1274 h->type = 0;
1275 return TRUE;
1276 }
1277
1278 /* If a new weak symbol definition comes from a regular file and the
1279 old symbol comes from a dynamic library, we treat the new one as
1280 strong. Similarly, an old weak symbol definition from a regular
1281 file is treated as strong when the new symbol comes from a dynamic
1282 library. Further, an old weak symbol from a dynamic library is
1283 treated as strong if the new symbol is from a dynamic library.
1284 This reflects the way glibc's ld.so works.
1285
1286 Do this before setting *type_change_ok or *size_change_ok so that
1287 we warn properly when dynamic library symbols are overridden. */
1288
1289 if (newdef && !newdyn && olddyn)
1290 newweak = FALSE;
1291 if (olddef && newdyn)
1292 oldweak = FALSE;
1293
1294 /* Allow changes between different types of function symbol. */
1295 if (newfunc && oldfunc)
1296 *type_change_ok = TRUE;
1297
1298 /* It's OK to change the type if either the existing symbol or the
1299 new symbol is weak. A type change is also OK if the old symbol
1300 is undefined and the new symbol is defined. */
1301
1302 if (oldweak
1303 || newweak
1304 || (newdef
1305 && h->root.type == bfd_link_hash_undefined))
1306 *type_change_ok = TRUE;
1307
1308 /* It's OK to change the size if either the existing symbol or the
1309 new symbol is weak, or if the old symbol is undefined. */
1310
1311 if (*type_change_ok
1312 || h->root.type == bfd_link_hash_undefined)
1313 *size_change_ok = TRUE;
1314
1315 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1316 symbol, respectively, appears to be a common symbol in a dynamic
1317 object. If a symbol appears in an uninitialized section, and is
1318 not weak, and is not a function, then it may be a common symbol
1319 which was resolved when the dynamic object was created. We want
1320 to treat such symbols specially, because they raise special
1321 considerations when setting the symbol size: if the symbol
1322 appears as a common symbol in a regular object, and the size in
1323 the regular object is larger, we must make sure that we use the
1324 larger size. This problematic case can always be avoided in C,
1325 but it must be handled correctly when using Fortran shared
1326 libraries.
1327
1328 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1329 likewise for OLDDYNCOMMON and OLDDEF.
1330
1331 Note that this test is just a heuristic, and that it is quite
1332 possible to have an uninitialized symbol in a shared object which
1333 is really a definition, rather than a common symbol. This could
1334 lead to some minor confusion when the symbol really is a common
1335 symbol in some regular object. However, I think it will be
1336 harmless. */
1337
1338 if (newdyn
1339 && newdef
1340 && !newweak
1341 && (sec->flags & SEC_ALLOC) != 0
1342 && (sec->flags & SEC_LOAD) == 0
1343 && sym->st_size > 0
1344 && !newfunc)
1345 newdyncommon = TRUE;
1346 else
1347 newdyncommon = FALSE;
1348
1349 if (olddyn
1350 && olddef
1351 && h->root.type == bfd_link_hash_defined
1352 && h->def_dynamic
1353 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1354 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1355 && h->size > 0
1356 && !oldfunc)
1357 olddyncommon = TRUE;
1358 else
1359 olddyncommon = FALSE;
1360
1361 /* We now know everything about the old and new symbols. We ask the
1362 backend to check if we can merge them. */
1363 if (bed->merge_symbol != NULL)
1364 {
1365 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1366 return FALSE;
1367 sec = *psec;
1368 }
1369
1370 /* If both the old and the new symbols look like common symbols in a
1371 dynamic object, set the size of the symbol to the larger of the
1372 two. */
1373
1374 if (olddyncommon
1375 && newdyncommon
1376 && sym->st_size != h->size)
1377 {
1378 /* Since we think we have two common symbols, issue a multiple
1379 common warning if desired. Note that we only warn if the
1380 size is different. If the size is the same, we simply let
1381 the old symbol override the new one as normally happens with
1382 symbols defined in dynamic objects. */
1383
1384 if (! ((*info->callbacks->multiple_common)
1385 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1386 return FALSE;
1387
1388 if (sym->st_size > h->size)
1389 h->size = sym->st_size;
1390
1391 *size_change_ok = TRUE;
1392 }
1393
1394 /* If we are looking at a dynamic object, and we have found a
1395 definition, we need to see if the symbol was already defined by
1396 some other object. If so, we want to use the existing
1397 definition, and we do not want to report a multiple symbol
1398 definition error; we do this by clobbering *PSEC to be
1399 bfd_und_section_ptr.
1400
1401 We treat a common symbol as a definition if the symbol in the
1402 shared library is a function, since common symbols always
1403 represent variables; this can cause confusion in principle, but
1404 any such confusion would seem to indicate an erroneous program or
1405 shared library. We also permit a common symbol in a regular
1406 object to override a weak symbol in a shared object. */
1407
1408 if (newdyn
1409 && newdef
1410 && (olddef
1411 || (h->root.type == bfd_link_hash_common
1412 && (newweak || newfunc))))
1413 {
1414 *override = TRUE;
1415 newdef = FALSE;
1416 newdyncommon = FALSE;
1417
1418 *psec = sec = bfd_und_section_ptr;
1419 *size_change_ok = TRUE;
1420
1421 /* If we get here when the old symbol is a common symbol, then
1422 we are explicitly letting it override a weak symbol or
1423 function in a dynamic object, and we don't want to warn about
1424 a type change. If the old symbol is a defined symbol, a type
1425 change warning may still be appropriate. */
1426
1427 if (h->root.type == bfd_link_hash_common)
1428 *type_change_ok = TRUE;
1429 }
1430
1431 /* Handle the special case of an old common symbol merging with a
1432 new symbol which looks like a common symbol in a shared object.
1433 We change *PSEC and *PVALUE to make the new symbol look like a
1434 common symbol, and let _bfd_generic_link_add_one_symbol do the
1435 right thing. */
1436
1437 if (newdyncommon
1438 && h->root.type == bfd_link_hash_common)
1439 {
1440 *override = TRUE;
1441 newdef = FALSE;
1442 newdyncommon = FALSE;
1443 *pvalue = sym->st_size;
1444 *psec = sec = bed->common_section (oldsec);
1445 *size_change_ok = TRUE;
1446 }
1447
1448 /* Skip weak definitions of symbols that are already defined. */
1449 if (newdef && olddef && newweak)
1450 {
1451 /* Don't skip new non-IR weak syms. */
1452 if (!(oldbfd != NULL
1453 && (oldbfd->flags & BFD_PLUGIN) != 0
1454 && (abfd->flags & BFD_PLUGIN) == 0))
1455 {
1456 newdef = FALSE;
1457 *skip = TRUE;
1458 }
1459
1460 /* Merge st_other. If the symbol already has a dynamic index,
1461 but visibility says it should not be visible, turn it into a
1462 local symbol. */
1463 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1464 if (h->dynindx != -1)
1465 switch (ELF_ST_VISIBILITY (h->other))
1466 {
1467 case STV_INTERNAL:
1468 case STV_HIDDEN:
1469 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1470 break;
1471 }
1472 }
1473
1474 /* If the old symbol is from a dynamic object, and the new symbol is
1475 a definition which is not from a dynamic object, then the new
1476 symbol overrides the old symbol. Symbols from regular files
1477 always take precedence over symbols from dynamic objects, even if
1478 they are defined after the dynamic object in the link.
1479
1480 As above, we again permit a common symbol in a regular object to
1481 override a definition in a shared object if the shared object
1482 symbol is a function or is weak. */
1483
1484 flip = NULL;
1485 if (!newdyn
1486 && (newdef
1487 || (bfd_is_com_section (sec)
1488 && (oldweak || oldfunc)))
1489 && olddyn
1490 && olddef
1491 && h->def_dynamic)
1492 {
1493 /* Change the hash table entry to undefined, and let
1494 _bfd_generic_link_add_one_symbol do the right thing with the
1495 new definition. */
1496
1497 h->root.type = bfd_link_hash_undefined;
1498 h->root.u.undef.abfd = h->root.u.def.section->owner;
1499 *size_change_ok = TRUE;
1500
1501 olddef = FALSE;
1502 olddyncommon = FALSE;
1503
1504 /* We again permit a type change when a common symbol may be
1505 overriding a function. */
1506
1507 if (bfd_is_com_section (sec))
1508 {
1509 if (oldfunc)
1510 {
1511 /* If a common symbol overrides a function, make sure
1512 that it isn't defined dynamically nor has type
1513 function. */
1514 h->def_dynamic = 0;
1515 h->type = STT_NOTYPE;
1516 }
1517 *type_change_ok = TRUE;
1518 }
1519
1520 if (hi->root.type == bfd_link_hash_indirect)
1521 flip = hi;
1522 else
1523 /* This union may have been set to be non-NULL when this symbol
1524 was seen in a dynamic object. We must force the union to be
1525 NULL, so that it is correct for a regular symbol. */
1526 h->verinfo.vertree = NULL;
1527 }
1528
1529 /* Handle the special case of a new common symbol merging with an
1530 old symbol that looks like it might be a common symbol defined in
1531 a shared object. Note that we have already handled the case in
1532 which a new common symbol should simply override the definition
1533 in the shared library. */
1534
1535 if (! newdyn
1536 && bfd_is_com_section (sec)
1537 && olddyncommon)
1538 {
1539 /* It would be best if we could set the hash table entry to a
1540 common symbol, but we don't know what to use for the section
1541 or the alignment. */
1542 if (! ((*info->callbacks->multiple_common)
1543 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1544 return FALSE;
1545
1546 /* If the presumed common symbol in the dynamic object is
1547 larger, pretend that the new symbol has its size. */
1548
1549 if (h->size > *pvalue)
1550 *pvalue = h->size;
1551
1552 /* We need to remember the alignment required by the symbol
1553 in the dynamic object. */
1554 BFD_ASSERT (pold_alignment);
1555 *pold_alignment = h->root.u.def.section->alignment_power;
1556
1557 olddef = FALSE;
1558 olddyncommon = FALSE;
1559
1560 h->root.type = bfd_link_hash_undefined;
1561 h->root.u.undef.abfd = h->root.u.def.section->owner;
1562
1563 *size_change_ok = TRUE;
1564 *type_change_ok = TRUE;
1565
1566 if (hi->root.type == bfd_link_hash_indirect)
1567 flip = hi;
1568 else
1569 h->verinfo.vertree = NULL;
1570 }
1571
1572 if (flip != NULL)
1573 {
1574 /* Handle the case where we had a versioned symbol in a dynamic
1575 library and now find a definition in a normal object. In this
1576 case, we make the versioned symbol point to the normal one. */
1577 flip->root.type = h->root.type;
1578 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1579 h->root.type = bfd_link_hash_indirect;
1580 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1581 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1582 if (h->def_dynamic)
1583 {
1584 h->def_dynamic = 0;
1585 flip->ref_dynamic = 1;
1586 }
1587 }
1588
1589 return TRUE;
1590}
1591
1592/* This function is called to create an indirect symbol from the
1593 default for the symbol with the default version if needed. The
1594 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1595 set DYNSYM if the new indirect symbol is dynamic. */
1596
1597static bfd_boolean
1598_bfd_elf_add_default_symbol (bfd *abfd,
1599 struct bfd_link_info *info,
1600 struct elf_link_hash_entry *h,
1601 const char *name,
1602 Elf_Internal_Sym *sym,
1603 asection *sec,
1604 bfd_vma value,
1605 bfd **poldbfd,
1606 bfd_boolean *dynsym)
1607{
1608 bfd_boolean type_change_ok;
1609 bfd_boolean size_change_ok;
1610 bfd_boolean skip;
1611 char *shortname;
1612 struct elf_link_hash_entry *hi;
1613 struct bfd_link_hash_entry *bh;
1614 const struct elf_backend_data *bed;
1615 bfd_boolean collect;
1616 bfd_boolean dynamic;
1617 bfd_boolean override;
1618 char *p;
1619 size_t len, shortlen;
1620 asection *tmp_sec;
1621
1622 /* If this symbol has a version, and it is the default version, we
1623 create an indirect symbol from the default name to the fully
1624 decorated name. This will cause external references which do not
1625 specify a version to be bound to this version of the symbol. */
1626 p = strchr (name, ELF_VER_CHR);
1627 if (p == NULL || p[1] != ELF_VER_CHR)
1628 return TRUE;
1629
1630 bed = get_elf_backend_data (abfd);
1631 collect = bed->collect;
1632 dynamic = (abfd->flags & DYNAMIC) != 0;
1633
1634 shortlen = p - name;
1635 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1636 if (shortname == NULL)
1637 return FALSE;
1638 memcpy (shortname, name, shortlen);
1639 shortname[shortlen] = '\0';
1640
1641 /* We are going to create a new symbol. Merge it with any existing
1642 symbol with this name. For the purposes of the merge, act as
1643 though we were defining the symbol we just defined, although we
1644 actually going to define an indirect symbol. */
1645 type_change_ok = FALSE;
1646 size_change_ok = FALSE;
1647 tmp_sec = sec;
1648 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1649 &hi, poldbfd, NULL, NULL, &skip, &override,
1650 &type_change_ok, &size_change_ok))
1651 return FALSE;
1652
1653 if (skip)
1654 goto nondefault;
1655
1656 if (! override)
1657 {
1658 bh = &hi->root;
1659 if (! (_bfd_generic_link_add_one_symbol
1660 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1661 0, name, FALSE, collect, &bh)))
1662 return FALSE;
1663 hi = (struct elf_link_hash_entry *) bh;
1664 }
1665 else
1666 {
1667 /* In this case the symbol named SHORTNAME is overriding the
1668 indirect symbol we want to add. We were planning on making
1669 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1670 is the name without a version. NAME is the fully versioned
1671 name, and it is the default version.
1672
1673 Overriding means that we already saw a definition for the
1674 symbol SHORTNAME in a regular object, and it is overriding
1675 the symbol defined in the dynamic object.
1676
1677 When this happens, we actually want to change NAME, the
1678 symbol we just added, to refer to SHORTNAME. This will cause
1679 references to NAME in the shared object to become references
1680 to SHORTNAME in the regular object. This is what we expect
1681 when we override a function in a shared object: that the
1682 references in the shared object will be mapped to the
1683 definition in the regular object. */
1684
1685 while (hi->root.type == bfd_link_hash_indirect
1686 || hi->root.type == bfd_link_hash_warning)
1687 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1688
1689 h->root.type = bfd_link_hash_indirect;
1690 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1691 if (h->def_dynamic)
1692 {
1693 h->def_dynamic = 0;
1694 hi->ref_dynamic = 1;
1695 if (hi->ref_regular
1696 || hi->def_regular)
1697 {
1698 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1699 return FALSE;
1700 }
1701 }
1702
1703 /* Now set HI to H, so that the following code will set the
1704 other fields correctly. */
1705 hi = h;
1706 }
1707
1708 /* Check if HI is a warning symbol. */
1709 if (hi->root.type == bfd_link_hash_warning)
1710 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711
1712 /* If there is a duplicate definition somewhere, then HI may not
1713 point to an indirect symbol. We will have reported an error to
1714 the user in that case. */
1715
1716 if (hi->root.type == bfd_link_hash_indirect)
1717 {
1718 struct elf_link_hash_entry *ht;
1719
1720 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1721 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1722
1723 /* A reference to the SHORTNAME symbol from a dynamic library
1724 will be satisfied by the versioned symbol at runtime. In
1725 effect, we have a reference to the versioned symbol. */
1726 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1727 hi->dynamic_def |= ht->dynamic_def;
1728
1729 /* See if the new flags lead us to realize that the symbol must
1730 be dynamic. */
1731 if (! *dynsym)
1732 {
1733 if (! dynamic)
1734 {
1735 if (! info->executable
1736 || hi->def_dynamic
1737 || hi->ref_dynamic)
1738 *dynsym = TRUE;
1739 }
1740 else
1741 {
1742 if (hi->ref_regular)
1743 *dynsym = TRUE;
1744 }
1745 }
1746 }
1747
1748 /* We also need to define an indirection from the nondefault version
1749 of the symbol. */
1750
1751nondefault:
1752 len = strlen (name);
1753 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1754 if (shortname == NULL)
1755 return FALSE;
1756 memcpy (shortname, name, shortlen);
1757 memcpy (shortname + shortlen, p + 1, len - shortlen);
1758
1759 /* Once again, merge with any existing symbol. */
1760 type_change_ok = FALSE;
1761 size_change_ok = FALSE;
1762 tmp_sec = sec;
1763 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1764 &hi, poldbfd, NULL, NULL, &skip, &override,
1765 &type_change_ok, &size_change_ok))
1766 return FALSE;
1767
1768 if (skip)
1769 return TRUE;
1770
1771 if (override)
1772 {
1773 /* Here SHORTNAME is a versioned name, so we don't expect to see
1774 the type of override we do in the case above unless it is
1775 overridden by a versioned definition. */
1776 if (hi->root.type != bfd_link_hash_defined
1777 && hi->root.type != bfd_link_hash_defweak)
1778 (*_bfd_error_handler)
1779 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1780 abfd, shortname);
1781 }
1782 else
1783 {
1784 bh = &hi->root;
1785 if (! (_bfd_generic_link_add_one_symbol
1786 (info, abfd, shortname, BSF_INDIRECT,
1787 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1788 return FALSE;
1789 hi = (struct elf_link_hash_entry *) bh;
1790
1791 /* If there is a duplicate definition somewhere, then HI may not
1792 point to an indirect symbol. We will have reported an error
1793 to the user in that case. */
1794
1795 if (hi->root.type == bfd_link_hash_indirect)
1796 {
1797 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1798 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1799 hi->dynamic_def |= h->dynamic_def;
1800
1801 /* See if the new flags lead us to realize that the symbol
1802 must be dynamic. */
1803 if (! *dynsym)
1804 {
1805 if (! dynamic)
1806 {
1807 if (! info->executable
1808 || hi->ref_dynamic)
1809 *dynsym = TRUE;
1810 }
1811 else
1812 {
1813 if (hi->ref_regular)
1814 *dynsym = TRUE;
1815 }
1816 }
1817 }
1818 }
1819
1820 return TRUE;
1821}
1822\f
1823/* This routine is used to export all defined symbols into the dynamic
1824 symbol table. It is called via elf_link_hash_traverse. */
1825
1826static bfd_boolean
1827_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1828{
1829 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1830
1831 /* Ignore indirect symbols. These are added by the versioning code. */
1832 if (h->root.type == bfd_link_hash_indirect)
1833 return TRUE;
1834
1835 /* Ignore this if we won't export it. */
1836 if (!eif->info->export_dynamic && !h->dynamic)
1837 return TRUE;
1838
1839 if (h->dynindx == -1
1840 && (h->def_regular || h->ref_regular)
1841 && ! bfd_hide_sym_by_version (eif->info->version_info,
1842 h->root.root.string))
1843 {
1844 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1845 {
1846 eif->failed = TRUE;
1847 return FALSE;
1848 }
1849 }
1850
1851 return TRUE;
1852}
1853\f
1854/* Look through the symbols which are defined in other shared
1855 libraries and referenced here. Update the list of version
1856 dependencies. This will be put into the .gnu.version_r section.
1857 This function is called via elf_link_hash_traverse. */
1858
1859static bfd_boolean
1860_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1861 void *data)
1862{
1863 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1864 Elf_Internal_Verneed *t;
1865 Elf_Internal_Vernaux *a;
1866 bfd_size_type amt;
1867
1868 /* We only care about symbols defined in shared objects with version
1869 information. */
1870 if (!h->def_dynamic
1871 || h->def_regular
1872 || h->dynindx == -1
1873 || h->verinfo.verdef == NULL
1874 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1875 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1876 return TRUE;
1877
1878 /* See if we already know about this version. */
1879 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1880 t != NULL;
1881 t = t->vn_nextref)
1882 {
1883 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1884 continue;
1885
1886 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1887 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1888 return TRUE;
1889
1890 break;
1891 }
1892
1893 /* This is a new version. Add it to tree we are building. */
1894
1895 if (t == NULL)
1896 {
1897 amt = sizeof *t;
1898 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1899 if (t == NULL)
1900 {
1901 rinfo->failed = TRUE;
1902 return FALSE;
1903 }
1904
1905 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1906 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1907 elf_tdata (rinfo->info->output_bfd)->verref = t;
1908 }
1909
1910 amt = sizeof *a;
1911 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1912 if (a == NULL)
1913 {
1914 rinfo->failed = TRUE;
1915 return FALSE;
1916 }
1917
1918 /* Note that we are copying a string pointer here, and testing it
1919 above. If bfd_elf_string_from_elf_section is ever changed to
1920 discard the string data when low in memory, this will have to be
1921 fixed. */
1922 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1923
1924 a->vna_flags = h->verinfo.verdef->vd_flags;
1925 a->vna_nextptr = t->vn_auxptr;
1926
1927 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1928 ++rinfo->vers;
1929
1930 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1931
1932 t->vn_auxptr = a;
1933
1934 return TRUE;
1935}
1936
1937/* Figure out appropriate versions for all the symbols. We may not
1938 have the version number script until we have read all of the input
1939 files, so until that point we don't know which symbols should be
1940 local. This function is called via elf_link_hash_traverse. */
1941
1942static bfd_boolean
1943_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1944{
1945 struct elf_info_failed *sinfo;
1946 struct bfd_link_info *info;
1947 const struct elf_backend_data *bed;
1948 struct elf_info_failed eif;
1949 char *p;
1950 bfd_size_type amt;
1951
1952 sinfo = (struct elf_info_failed *) data;
1953 info = sinfo->info;
1954
1955 /* Fix the symbol flags. */
1956 eif.failed = FALSE;
1957 eif.info = info;
1958 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1959 {
1960 if (eif.failed)
1961 sinfo->failed = TRUE;
1962 return FALSE;
1963 }
1964
1965 /* We only need version numbers for symbols defined in regular
1966 objects. */
1967 if (!h->def_regular)
1968 return TRUE;
1969
1970 bed = get_elf_backend_data (info->output_bfd);
1971 p = strchr (h->root.root.string, ELF_VER_CHR);
1972 if (p != NULL && h->verinfo.vertree == NULL)
1973 {
1974 struct bfd_elf_version_tree *t;
1975 bfd_boolean hidden;
1976
1977 hidden = TRUE;
1978
1979 /* There are two consecutive ELF_VER_CHR characters if this is
1980 not a hidden symbol. */
1981 ++p;
1982 if (*p == ELF_VER_CHR)
1983 {
1984 hidden = FALSE;
1985 ++p;
1986 }
1987
1988 /* If there is no version string, we can just return out. */
1989 if (*p == '\0')
1990 {
1991 if (hidden)
1992 h->hidden = 1;
1993 return TRUE;
1994 }
1995
1996 /* Look for the version. If we find it, it is no longer weak. */
1997 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1998 {
1999 if (strcmp (t->name, p) == 0)
2000 {
2001 size_t len;
2002 char *alc;
2003 struct bfd_elf_version_expr *d;
2004
2005 len = p - h->root.root.string;
2006 alc = (char *) bfd_malloc (len);
2007 if (alc == NULL)
2008 {
2009 sinfo->failed = TRUE;
2010 return FALSE;
2011 }
2012 memcpy (alc, h->root.root.string, len - 1);
2013 alc[len - 1] = '\0';
2014 if (alc[len - 2] == ELF_VER_CHR)
2015 alc[len - 2] = '\0';
2016
2017 h->verinfo.vertree = t;
2018 t->used = TRUE;
2019 d = NULL;
2020
2021 if (t->globals.list != NULL)
2022 d = (*t->match) (&t->globals, NULL, alc);
2023
2024 /* See if there is anything to force this symbol to
2025 local scope. */
2026 if (d == NULL && t->locals.list != NULL)
2027 {
2028 d = (*t->match) (&t->locals, NULL, alc);
2029 if (d != NULL
2030 && h->dynindx != -1
2031 && ! info->export_dynamic)
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2033 }
2034
2035 free (alc);
2036 break;
2037 }
2038 }
2039
2040 /* If we are building an application, we need to create a
2041 version node for this version. */
2042 if (t == NULL && info->executable)
2043 {
2044 struct bfd_elf_version_tree **pp;
2045 int version_index;
2046
2047 /* If we aren't going to export this symbol, we don't need
2048 to worry about it. */
2049 if (h->dynindx == -1)
2050 return TRUE;
2051
2052 amt = sizeof *t;
2053 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2054 if (t == NULL)
2055 {
2056 sinfo->failed = TRUE;
2057 return FALSE;
2058 }
2059
2060 t->name = p;
2061 t->name_indx = (unsigned int) -1;
2062 t->used = TRUE;
2063
2064 version_index = 1;
2065 /* Don't count anonymous version tag. */
2066 if (sinfo->info->version_info != NULL
2067 && sinfo->info->version_info->vernum == 0)
2068 version_index = 0;
2069 for (pp = &sinfo->info->version_info;
2070 *pp != NULL;
2071 pp = &(*pp)->next)
2072 ++version_index;
2073 t->vernum = version_index;
2074
2075 *pp = t;
2076
2077 h->verinfo.vertree = t;
2078 }
2079 else if (t == NULL)
2080 {
2081 /* We could not find the version for a symbol when
2082 generating a shared archive. Return an error. */
2083 (*_bfd_error_handler)
2084 (_("%B: version node not found for symbol %s"),
2085 info->output_bfd, h->root.root.string);
2086 bfd_set_error (bfd_error_bad_value);
2087 sinfo->failed = TRUE;
2088 return FALSE;
2089 }
2090
2091 if (hidden)
2092 h->hidden = 1;
2093 }
2094
2095 /* If we don't have a version for this symbol, see if we can find
2096 something. */
2097 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2098 {
2099 bfd_boolean hide;
2100
2101 h->verinfo.vertree
2102 = bfd_find_version_for_sym (sinfo->info->version_info,
2103 h->root.root.string, &hide);
2104 if (h->verinfo.vertree != NULL && hide)
2105 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2106 }
2107
2108 return TRUE;
2109}
2110\f
2111/* Read and swap the relocs from the section indicated by SHDR. This
2112 may be either a REL or a RELA section. The relocations are
2113 translated into RELA relocations and stored in INTERNAL_RELOCS,
2114 which should have already been allocated to contain enough space.
2115 The EXTERNAL_RELOCS are a buffer where the external form of the
2116 relocations should be stored.
2117
2118 Returns FALSE if something goes wrong. */
2119
2120static bfd_boolean
2121elf_link_read_relocs_from_section (bfd *abfd,
2122 asection *sec,
2123 Elf_Internal_Shdr *shdr,
2124 void *external_relocs,
2125 Elf_Internal_Rela *internal_relocs)
2126{
2127 const struct elf_backend_data *bed;
2128 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2129 const bfd_byte *erela;
2130 const bfd_byte *erelaend;
2131 Elf_Internal_Rela *irela;
2132 Elf_Internal_Shdr *symtab_hdr;
2133 size_t nsyms;
2134
2135 /* Position ourselves at the start of the section. */
2136 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2137 return FALSE;
2138
2139 /* Read the relocations. */
2140 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2141 return FALSE;
2142
2143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2144 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2145
2146 bed = get_elf_backend_data (abfd);
2147
2148 /* Convert the external relocations to the internal format. */
2149 if (shdr->sh_entsize == bed->s->sizeof_rel)
2150 swap_in = bed->s->swap_reloc_in;
2151 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2152 swap_in = bed->s->swap_reloca_in;
2153 else
2154 {
2155 bfd_set_error (bfd_error_wrong_format);
2156 return FALSE;
2157 }
2158
2159 erela = (const bfd_byte *) external_relocs;
2160 erelaend = erela + shdr->sh_size;
2161 irela = internal_relocs;
2162 while (erela < erelaend)
2163 {
2164 bfd_vma r_symndx;
2165
2166 (*swap_in) (abfd, erela, irela);
2167 r_symndx = ELF32_R_SYM (irela->r_info);
2168 if (bed->s->arch_size == 64)
2169 r_symndx >>= 24;
2170 if (nsyms > 0)
2171 {
2172 if ((size_t) r_symndx >= nsyms)
2173 {
2174 (*_bfd_error_handler)
2175 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2176 " for offset 0x%lx in section `%A'"),
2177 abfd, sec,
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182 }
2183 else if (r_symndx != STN_UNDEF)
2184 {
2185 (*_bfd_error_handler)
2186 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2187 " when the object file has no symbol table"),
2188 abfd, sec,
2189 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2190 bfd_set_error (bfd_error_bad_value);
2191 return FALSE;
2192 }
2193 irela += bed->s->int_rels_per_ext_rel;
2194 erela += shdr->sh_entsize;
2195 }
2196
2197 return TRUE;
2198}
2199
2200/* Read and swap the relocs for a section O. They may have been
2201 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2202 not NULL, they are used as buffers to read into. They are known to
2203 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2204 the return value is allocated using either malloc or bfd_alloc,
2205 according to the KEEP_MEMORY argument. If O has two relocation
2206 sections (both REL and RELA relocations), then the REL_HDR
2207 relocations will appear first in INTERNAL_RELOCS, followed by the
2208 RELA_HDR relocations. */
2209
2210Elf_Internal_Rela *
2211_bfd_elf_link_read_relocs (bfd *abfd,
2212 asection *o,
2213 void *external_relocs,
2214 Elf_Internal_Rela *internal_relocs,
2215 bfd_boolean keep_memory)
2216{
2217 void *alloc1 = NULL;
2218 Elf_Internal_Rela *alloc2 = NULL;
2219 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2220 struct bfd_elf_section_data *esdo = elf_section_data (o);
2221 Elf_Internal_Rela *internal_rela_relocs;
2222
2223 if (esdo->relocs != NULL)
2224 return esdo->relocs;
2225
2226 if (o->reloc_count == 0)
2227 return NULL;
2228
2229 if (internal_relocs == NULL)
2230 {
2231 bfd_size_type size;
2232
2233 size = o->reloc_count;
2234 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2235 if (keep_memory)
2236 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2237 else
2238 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2239 if (internal_relocs == NULL)
2240 goto error_return;
2241 }
2242
2243 if (external_relocs == NULL)
2244 {
2245 bfd_size_type size = 0;
2246
2247 if (esdo->rel.hdr)
2248 size += esdo->rel.hdr->sh_size;
2249 if (esdo->rela.hdr)
2250 size += esdo->rela.hdr->sh_size;
2251
2252 alloc1 = bfd_malloc (size);
2253 if (alloc1 == NULL)
2254 goto error_return;
2255 external_relocs = alloc1;
2256 }
2257
2258 internal_rela_relocs = internal_relocs;
2259 if (esdo->rel.hdr)
2260 {
2261 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2262 external_relocs,
2263 internal_relocs))
2264 goto error_return;
2265 external_relocs = (((bfd_byte *) external_relocs)
2266 + esdo->rel.hdr->sh_size);
2267 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2268 * bed->s->int_rels_per_ext_rel);
2269 }
2270
2271 if (esdo->rela.hdr
2272 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2273 external_relocs,
2274 internal_rela_relocs)))
2275 goto error_return;
2276
2277 /* Cache the results for next time, if we can. */
2278 if (keep_memory)
2279 esdo->relocs = internal_relocs;
2280
2281 if (alloc1 != NULL)
2282 free (alloc1);
2283
2284 /* Don't free alloc2, since if it was allocated we are passing it
2285 back (under the name of internal_relocs). */
2286
2287 return internal_relocs;
2288
2289 error_return:
2290 if (alloc1 != NULL)
2291 free (alloc1);
2292 if (alloc2 != NULL)
2293 {
2294 if (keep_memory)
2295 bfd_release (abfd, alloc2);
2296 else
2297 free (alloc2);
2298 }
2299 return NULL;
2300}
2301
2302/* Compute the size of, and allocate space for, REL_HDR which is the
2303 section header for a section containing relocations for O. */
2304
2305static bfd_boolean
2306_bfd_elf_link_size_reloc_section (bfd *abfd,
2307 struct bfd_elf_section_reloc_data *reldata)
2308{
2309 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2310
2311 /* That allows us to calculate the size of the section. */
2312 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2313
2314 /* The contents field must last into write_object_contents, so we
2315 allocate it with bfd_alloc rather than malloc. Also since we
2316 cannot be sure that the contents will actually be filled in,
2317 we zero the allocated space. */
2318 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2319 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2320 return FALSE;
2321
2322 if (reldata->hashes == NULL && reldata->count)
2323 {
2324 struct elf_link_hash_entry **p;
2325
2326 p = ((struct elf_link_hash_entry **)
2327 bfd_zmalloc (reldata->count * sizeof (*p)));
2328 if (p == NULL)
2329 return FALSE;
2330
2331 reldata->hashes = p;
2332 }
2333
2334 return TRUE;
2335}
2336
2337/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2338 originated from the section given by INPUT_REL_HDR) to the
2339 OUTPUT_BFD. */
2340
2341bfd_boolean
2342_bfd_elf_link_output_relocs (bfd *output_bfd,
2343 asection *input_section,
2344 Elf_Internal_Shdr *input_rel_hdr,
2345 Elf_Internal_Rela *internal_relocs,
2346 struct elf_link_hash_entry **rel_hash
2347 ATTRIBUTE_UNUSED)
2348{
2349 Elf_Internal_Rela *irela;
2350 Elf_Internal_Rela *irelaend;
2351 bfd_byte *erel;
2352 struct bfd_elf_section_reloc_data *output_reldata;
2353 asection *output_section;
2354 const struct elf_backend_data *bed;
2355 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2356 struct bfd_elf_section_data *esdo;
2357
2358 output_section = input_section->output_section;
2359
2360 bed = get_elf_backend_data (output_bfd);
2361 esdo = elf_section_data (output_section);
2362 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2363 {
2364 output_reldata = &esdo->rel;
2365 swap_out = bed->s->swap_reloc_out;
2366 }
2367 else if (esdo->rela.hdr
2368 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2369 {
2370 output_reldata = &esdo->rela;
2371 swap_out = bed->s->swap_reloca_out;
2372 }
2373 else
2374 {
2375 (*_bfd_error_handler)
2376 (_("%B: relocation size mismatch in %B section %A"),
2377 output_bfd, input_section->owner, input_section);
2378 bfd_set_error (bfd_error_wrong_format);
2379 return FALSE;
2380 }
2381
2382 erel = output_reldata->hdr->contents;
2383 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2384 irela = internal_relocs;
2385 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2386 * bed->s->int_rels_per_ext_rel);
2387 while (irela < irelaend)
2388 {
2389 (*swap_out) (output_bfd, irela, erel);
2390 irela += bed->s->int_rels_per_ext_rel;
2391 erel += input_rel_hdr->sh_entsize;
2392 }
2393
2394 /* Bump the counter, so that we know where to add the next set of
2395 relocations. */
2396 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2397
2398 return TRUE;
2399}
2400\f
2401/* Make weak undefined symbols in PIE dynamic. */
2402
2403bfd_boolean
2404_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2405 struct elf_link_hash_entry *h)
2406{
2407 if (info->pie
2408 && h->dynindx == -1
2409 && h->root.type == bfd_link_hash_undefweak)
2410 return bfd_elf_link_record_dynamic_symbol (info, h);
2411
2412 return TRUE;
2413}
2414
2415/* Fix up the flags for a symbol. This handles various cases which
2416 can only be fixed after all the input files are seen. This is
2417 currently called by both adjust_dynamic_symbol and
2418 assign_sym_version, which is unnecessary but perhaps more robust in
2419 the face of future changes. */
2420
2421static bfd_boolean
2422_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2423 struct elf_info_failed *eif)
2424{
2425 const struct elf_backend_data *bed;
2426
2427 /* If this symbol was mentioned in a non-ELF file, try to set
2428 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2429 permit a non-ELF file to correctly refer to a symbol defined in
2430 an ELF dynamic object. */
2431 if (h->non_elf)
2432 {
2433 while (h->root.type == bfd_link_hash_indirect)
2434 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2435
2436 if (h->root.type != bfd_link_hash_defined
2437 && h->root.type != bfd_link_hash_defweak)
2438 {
2439 h->ref_regular = 1;
2440 h->ref_regular_nonweak = 1;
2441 }
2442 else
2443 {
2444 if (h->root.u.def.section->owner != NULL
2445 && (bfd_get_flavour (h->root.u.def.section->owner)
2446 == bfd_target_elf_flavour))
2447 {
2448 h->ref_regular = 1;
2449 h->ref_regular_nonweak = 1;
2450 }
2451 else
2452 h->def_regular = 1;
2453 }
2454
2455 if (h->dynindx == -1
2456 && (h->def_dynamic
2457 || h->ref_dynamic))
2458 {
2459 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2460 {
2461 eif->failed = TRUE;
2462 return FALSE;
2463 }
2464 }
2465 }
2466 else
2467 {
2468 /* Unfortunately, NON_ELF is only correct if the symbol
2469 was first seen in a non-ELF file. Fortunately, if the symbol
2470 was first seen in an ELF file, we're probably OK unless the
2471 symbol was defined in a non-ELF file. Catch that case here.
2472 FIXME: We're still in trouble if the symbol was first seen in
2473 a dynamic object, and then later in a non-ELF regular object. */
2474 if ((h->root.type == bfd_link_hash_defined
2475 || h->root.type == bfd_link_hash_defweak)
2476 && !h->def_regular
2477 && (h->root.u.def.section->owner != NULL
2478 ? (bfd_get_flavour (h->root.u.def.section->owner)
2479 != bfd_target_elf_flavour)
2480 : (bfd_is_abs_section (h->root.u.def.section)
2481 && !h->def_dynamic)))
2482 h->def_regular = 1;
2483 }
2484
2485 /* Backend specific symbol fixup. */
2486 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2487 if (bed->elf_backend_fixup_symbol
2488 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2489 return FALSE;
2490
2491 /* If this is a final link, and the symbol was defined as a common
2492 symbol in a regular object file, and there was no definition in
2493 any dynamic object, then the linker will have allocated space for
2494 the symbol in a common section but the DEF_REGULAR
2495 flag will not have been set. */
2496 if (h->root.type == bfd_link_hash_defined
2497 && !h->def_regular
2498 && h->ref_regular
2499 && !h->def_dynamic
2500 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2501 h->def_regular = 1;
2502
2503 /* If -Bsymbolic was used (which means to bind references to global
2504 symbols to the definition within the shared object), and this
2505 symbol was defined in a regular object, then it actually doesn't
2506 need a PLT entry. Likewise, if the symbol has non-default
2507 visibility. If the symbol has hidden or internal visibility, we
2508 will force it local. */
2509 if (h->needs_plt
2510 && eif->info->shared
2511 && is_elf_hash_table (eif->info->hash)
2512 && (SYMBOLIC_BIND (eif->info, h)
2513 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2514 && h->def_regular)
2515 {
2516 bfd_boolean force_local;
2517
2518 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2519 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2520 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2521 }
2522
2523 /* If a weak undefined symbol has non-default visibility, we also
2524 hide it from the dynamic linker. */
2525 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2526 && h->root.type == bfd_link_hash_undefweak)
2527 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2528
2529 /* If this is a weak defined symbol in a dynamic object, and we know
2530 the real definition in the dynamic object, copy interesting flags
2531 over to the real definition. */
2532 if (h->u.weakdef != NULL)
2533 {
2534 /* If the real definition is defined by a regular object file,
2535 don't do anything special. See the longer description in
2536 _bfd_elf_adjust_dynamic_symbol, below. */
2537 if (h->u.weakdef->def_regular)
2538 h->u.weakdef = NULL;
2539 else
2540 {
2541 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2542
2543 while (h->root.type == bfd_link_hash_indirect)
2544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2545
2546 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2547 || h->root.type == bfd_link_hash_defweak);
2548 BFD_ASSERT (weakdef->def_dynamic);
2549 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2550 || weakdef->root.type == bfd_link_hash_defweak);
2551 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2552 }
2553 }
2554
2555 return TRUE;
2556}
2557
2558/* Make the backend pick a good value for a dynamic symbol. This is
2559 called via elf_link_hash_traverse, and also calls itself
2560 recursively. */
2561
2562static bfd_boolean
2563_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2564{
2565 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2566 bfd *dynobj;
2567 const struct elf_backend_data *bed;
2568
2569 if (! is_elf_hash_table (eif->info->hash))
2570 return FALSE;
2571
2572 /* Ignore indirect symbols. These are added by the versioning code. */
2573 if (h->root.type == bfd_link_hash_indirect)
2574 return TRUE;
2575
2576 /* Fix the symbol flags. */
2577 if (! _bfd_elf_fix_symbol_flags (h, eif))
2578 return FALSE;
2579
2580 /* If this symbol does not require a PLT entry, and it is not
2581 defined by a dynamic object, or is not referenced by a regular
2582 object, ignore it. We do have to handle a weak defined symbol,
2583 even if no regular object refers to it, if we decided to add it
2584 to the dynamic symbol table. FIXME: Do we normally need to worry
2585 about symbols which are defined by one dynamic object and
2586 referenced by another one? */
2587 if (!h->needs_plt
2588 && h->type != STT_GNU_IFUNC
2589 && (h->def_regular
2590 || !h->def_dynamic
2591 || (!h->ref_regular
2592 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2593 {
2594 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2595 return TRUE;
2596 }
2597
2598 /* If we've already adjusted this symbol, don't do it again. This
2599 can happen via a recursive call. */
2600 if (h->dynamic_adjusted)
2601 return TRUE;
2602
2603 /* Don't look at this symbol again. Note that we must set this
2604 after checking the above conditions, because we may look at a
2605 symbol once, decide not to do anything, and then get called
2606 recursively later after REF_REGULAR is set below. */
2607 h->dynamic_adjusted = 1;
2608
2609 /* If this is a weak definition, and we know a real definition, and
2610 the real symbol is not itself defined by a regular object file,
2611 then get a good value for the real definition. We handle the
2612 real symbol first, for the convenience of the backend routine.
2613
2614 Note that there is a confusing case here. If the real definition
2615 is defined by a regular object file, we don't get the real symbol
2616 from the dynamic object, but we do get the weak symbol. If the
2617 processor backend uses a COPY reloc, then if some routine in the
2618 dynamic object changes the real symbol, we will not see that
2619 change in the corresponding weak symbol. This is the way other
2620 ELF linkers work as well, and seems to be a result of the shared
2621 library model.
2622
2623 I will clarify this issue. Most SVR4 shared libraries define the
2624 variable _timezone and define timezone as a weak synonym. The
2625 tzset call changes _timezone. If you write
2626 extern int timezone;
2627 int _timezone = 5;
2628 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2629 you might expect that, since timezone is a synonym for _timezone,
2630 the same number will print both times. However, if the processor
2631 backend uses a COPY reloc, then actually timezone will be copied
2632 into your process image, and, since you define _timezone
2633 yourself, _timezone will not. Thus timezone and _timezone will
2634 wind up at different memory locations. The tzset call will set
2635 _timezone, leaving timezone unchanged. */
2636
2637 if (h->u.weakdef != NULL)
2638 {
2639 /* If we get to this point, there is an implicit reference to
2640 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2641 h->u.weakdef->ref_regular = 1;
2642
2643 /* Ensure that the backend adjust_dynamic_symbol function sees
2644 H->U.WEAKDEF before H by recursively calling ourselves. */
2645 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2646 return FALSE;
2647 }
2648
2649 /* If a symbol has no type and no size and does not require a PLT
2650 entry, then we are probably about to do the wrong thing here: we
2651 are probably going to create a COPY reloc for an empty object.
2652 This case can arise when a shared object is built with assembly
2653 code, and the assembly code fails to set the symbol type. */
2654 if (h->size == 0
2655 && h->type == STT_NOTYPE
2656 && !h->needs_plt)
2657 (*_bfd_error_handler)
2658 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2659 h->root.root.string);
2660
2661 dynobj = elf_hash_table (eif->info)->dynobj;
2662 bed = get_elf_backend_data (dynobj);
2663
2664 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2665 {
2666 eif->failed = TRUE;
2667 return FALSE;
2668 }
2669
2670 return TRUE;
2671}
2672
2673/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2674 DYNBSS. */
2675
2676bfd_boolean
2677_bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2678 struct elf_link_hash_entry *h,
2679 asection *dynbss)
2680{
2681 unsigned int power_of_two;
2682 bfd_vma mask;
2683 asection *sec = h->root.u.def.section;
2684
2685 /* The section aligment of definition is the maximum alignment
2686 requirement of symbols defined in the section. Since we don't
2687 know the symbol alignment requirement, we start with the
2688 maximum alignment and check low bits of the symbol address
2689 for the minimum alignment. */
2690 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2691 mask = ((bfd_vma) 1 << power_of_two) - 1;
2692 while ((h->root.u.def.value & mask) != 0)
2693 {
2694 mask >>= 1;
2695 --power_of_two;
2696 }
2697
2698 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2699 dynbss))
2700 {
2701 /* Adjust the section alignment if needed. */
2702 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2703 power_of_two))
2704 return FALSE;
2705 }
2706
2707 /* We make sure that the symbol will be aligned properly. */
2708 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2709
2710 /* Define the symbol as being at this point in DYNBSS. */
2711 h->root.u.def.section = dynbss;
2712 h->root.u.def.value = dynbss->size;
2713
2714 /* Increment the size of DYNBSS to make room for the symbol. */
2715 dynbss->size += h->size;
2716
2717 /* No error if extern_protected_data is true. */
2718 if (h->protected_def
2719 && (!info->extern_protected_data
2720 || (info->extern_protected_data < 0
2721 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2722 info->callbacks->einfo
2723 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2724 h->root.root.string);
2725
2726 return TRUE;
2727}
2728
2729/* Adjust all external symbols pointing into SEC_MERGE sections
2730 to reflect the object merging within the sections. */
2731
2732static bfd_boolean
2733_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2734{
2735 asection *sec;
2736
2737 if ((h->root.type == bfd_link_hash_defined
2738 || h->root.type == bfd_link_hash_defweak)
2739 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2740 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2741 {
2742 bfd *output_bfd = (bfd *) data;
2743
2744 h->root.u.def.value =
2745 _bfd_merged_section_offset (output_bfd,
2746 &h->root.u.def.section,
2747 elf_section_data (sec)->sec_info,
2748 h->root.u.def.value);
2749 }
2750
2751 return TRUE;
2752}
2753
2754/* Returns false if the symbol referred to by H should be considered
2755 to resolve local to the current module, and true if it should be
2756 considered to bind dynamically. */
2757
2758bfd_boolean
2759_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2760 struct bfd_link_info *info,
2761 bfd_boolean not_local_protected)
2762{
2763 bfd_boolean binding_stays_local_p;
2764 const struct elf_backend_data *bed;
2765 struct elf_link_hash_table *hash_table;
2766
2767 if (h == NULL)
2768 return FALSE;
2769
2770 while (h->root.type == bfd_link_hash_indirect
2771 || h->root.type == bfd_link_hash_warning)
2772 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2773
2774 /* If it was forced local, then clearly it's not dynamic. */
2775 if (h->dynindx == -1)
2776 return FALSE;
2777 if (h->forced_local)
2778 return FALSE;
2779
2780 /* Identify the cases where name binding rules say that a
2781 visible symbol resolves locally. */
2782 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2783
2784 switch (ELF_ST_VISIBILITY (h->other))
2785 {
2786 case STV_INTERNAL:
2787 case STV_HIDDEN:
2788 return FALSE;
2789
2790 case STV_PROTECTED:
2791 hash_table = elf_hash_table (info);
2792 if (!is_elf_hash_table (hash_table))
2793 return FALSE;
2794
2795 bed = get_elf_backend_data (hash_table->dynobj);
2796
2797 /* Proper resolution for function pointer equality may require
2798 that these symbols perhaps be resolved dynamically, even though
2799 we should be resolving them to the current module. */
2800 if (!not_local_protected || !bed->is_function_type (h->type))
2801 binding_stays_local_p = TRUE;
2802 break;
2803
2804 default:
2805 break;
2806 }
2807
2808 /* If it isn't defined locally, then clearly it's dynamic. */
2809 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2810 return TRUE;
2811
2812 /* Otherwise, the symbol is dynamic if binding rules don't tell
2813 us that it remains local. */
2814 return !binding_stays_local_p;
2815}
2816
2817/* Return true if the symbol referred to by H should be considered
2818 to resolve local to the current module, and false otherwise. Differs
2819 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2820 undefined symbols. The two functions are virtually identical except
2821 for the place where forced_local and dynindx == -1 are tested. If
2822 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2823 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2824 the symbol is local only for defined symbols.
2825 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2826 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2827 treatment of undefined weak symbols. For those that do not make
2828 undefined weak symbols dynamic, both functions may return false. */
2829
2830bfd_boolean
2831_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2832 struct bfd_link_info *info,
2833 bfd_boolean local_protected)
2834{
2835 const struct elf_backend_data *bed;
2836 struct elf_link_hash_table *hash_table;
2837
2838 /* If it's a local sym, of course we resolve locally. */
2839 if (h == NULL)
2840 return TRUE;
2841
2842 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2843 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2844 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2845 return TRUE;
2846
2847 /* Common symbols that become definitions don't get the DEF_REGULAR
2848 flag set, so test it first, and don't bail out. */
2849 if (ELF_COMMON_DEF_P (h))
2850 /* Do nothing. */;
2851 /* If we don't have a definition in a regular file, then we can't
2852 resolve locally. The sym is either undefined or dynamic. */
2853 else if (!h->def_regular)
2854 return FALSE;
2855
2856 /* Forced local symbols resolve locally. */
2857 if (h->forced_local)
2858 return TRUE;
2859
2860 /* As do non-dynamic symbols. */
2861 if (h->dynindx == -1)
2862 return TRUE;
2863
2864 /* At this point, we know the symbol is defined and dynamic. In an
2865 executable it must resolve locally, likewise when building symbolic
2866 shared libraries. */
2867 if (info->executable || SYMBOLIC_BIND (info, h))
2868 return TRUE;
2869
2870 /* Now deal with defined dynamic symbols in shared libraries. Ones
2871 with default visibility might not resolve locally. */
2872 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2873 return FALSE;
2874
2875 hash_table = elf_hash_table (info);
2876 if (!is_elf_hash_table (hash_table))
2877 return TRUE;
2878
2879 bed = get_elf_backend_data (hash_table->dynobj);
2880
2881 /* If extern_protected_data is false, STV_PROTECTED non-function
2882 symbols are local. */
2883 if ((!info->extern_protected_data
2884 || (info->extern_protected_data < 0
2885 && !bed->extern_protected_data))
2886 && !bed->is_function_type (h->type))
2887 return TRUE;
2888
2889 /* Function pointer equality tests may require that STV_PROTECTED
2890 symbols be treated as dynamic symbols. If the address of a
2891 function not defined in an executable is set to that function's
2892 plt entry in the executable, then the address of the function in
2893 a shared library must also be the plt entry in the executable. */
2894 return local_protected;
2895}
2896
2897/* Caches some TLS segment info, and ensures that the TLS segment vma is
2898 aligned. Returns the first TLS output section. */
2899
2900struct bfd_section *
2901_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2902{
2903 struct bfd_section *sec, *tls;
2904 unsigned int align = 0;
2905
2906 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2907 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2908 break;
2909 tls = sec;
2910
2911 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2912 if (sec->alignment_power > align)
2913 align = sec->alignment_power;
2914
2915 elf_hash_table (info)->tls_sec = tls;
2916
2917 /* Ensure the alignment of the first section is the largest alignment,
2918 so that the tls segment starts aligned. */
2919 if (tls != NULL)
2920 tls->alignment_power = align;
2921
2922 return tls;
2923}
2924
2925/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2926static bfd_boolean
2927is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2928 Elf_Internal_Sym *sym)
2929{
2930 const struct elf_backend_data *bed;
2931
2932 /* Local symbols do not count, but target specific ones might. */
2933 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2934 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2935 return FALSE;
2936
2937 bed = get_elf_backend_data (abfd);
2938 /* Function symbols do not count. */
2939 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2940 return FALSE;
2941
2942 /* If the section is undefined, then so is the symbol. */
2943 if (sym->st_shndx == SHN_UNDEF)
2944 return FALSE;
2945
2946 /* If the symbol is defined in the common section, then
2947 it is a common definition and so does not count. */
2948 if (bed->common_definition (sym))
2949 return FALSE;
2950
2951 /* If the symbol is in a target specific section then we
2952 must rely upon the backend to tell us what it is. */
2953 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2954 /* FIXME - this function is not coded yet:
2955
2956 return _bfd_is_global_symbol_definition (abfd, sym);
2957
2958 Instead for now assume that the definition is not global,
2959 Even if this is wrong, at least the linker will behave
2960 in the same way that it used to do. */
2961 return FALSE;
2962
2963 return TRUE;
2964}
2965
2966/* Search the symbol table of the archive element of the archive ABFD
2967 whose archive map contains a mention of SYMDEF, and determine if
2968 the symbol is defined in this element. */
2969static bfd_boolean
2970elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2971{
2972 Elf_Internal_Shdr * hdr;
2973 bfd_size_type symcount;
2974 bfd_size_type extsymcount;
2975 bfd_size_type extsymoff;
2976 Elf_Internal_Sym *isymbuf;
2977 Elf_Internal_Sym *isym;
2978 Elf_Internal_Sym *isymend;
2979 bfd_boolean result;
2980
2981 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2982 if (abfd == NULL)
2983 return FALSE;
2984
2985 /* Return FALSE if the object has been claimed by plugin. */
2986 if (abfd->plugin_format == bfd_plugin_yes)
2987 return FALSE;
2988
2989 if (! bfd_check_format (abfd, bfd_object))
2990 return FALSE;
2991
2992 /* Select the appropriate symbol table. */
2993 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2994 hdr = &elf_tdata (abfd)->symtab_hdr;
2995 else
2996 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2997
2998 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2999
3000 /* The sh_info field of the symtab header tells us where the
3001 external symbols start. We don't care about the local symbols. */
3002 if (elf_bad_symtab (abfd))
3003 {
3004 extsymcount = symcount;
3005 extsymoff = 0;
3006 }
3007 else
3008 {
3009 extsymcount = symcount - hdr->sh_info;
3010 extsymoff = hdr->sh_info;
3011 }
3012
3013 if (extsymcount == 0)
3014 return FALSE;
3015
3016 /* Read in the symbol table. */
3017 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3018 NULL, NULL, NULL);
3019 if (isymbuf == NULL)
3020 return FALSE;
3021
3022 /* Scan the symbol table looking for SYMDEF. */
3023 result = FALSE;
3024 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3025 {
3026 const char *name;
3027
3028 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3029 isym->st_name);
3030 if (name == NULL)
3031 break;
3032
3033 if (strcmp (name, symdef->name) == 0)
3034 {
3035 result = is_global_data_symbol_definition (abfd, isym);
3036 break;
3037 }
3038 }
3039
3040 free (isymbuf);
3041
3042 return result;
3043}
3044\f
3045/* Add an entry to the .dynamic table. */
3046
3047bfd_boolean
3048_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3049 bfd_vma tag,
3050 bfd_vma val)
3051{
3052 struct elf_link_hash_table *hash_table;
3053 const struct elf_backend_data *bed;
3054 asection *s;
3055 bfd_size_type newsize;
3056 bfd_byte *newcontents;
3057 Elf_Internal_Dyn dyn;
3058
3059 hash_table = elf_hash_table (info);
3060 if (! is_elf_hash_table (hash_table))
3061 return FALSE;
3062
3063 bed = get_elf_backend_data (hash_table->dynobj);
3064 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3065 BFD_ASSERT (s != NULL);
3066
3067 newsize = s->size + bed->s->sizeof_dyn;
3068 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3069 if (newcontents == NULL)
3070 return FALSE;
3071
3072 dyn.d_tag = tag;
3073 dyn.d_un.d_val = val;
3074 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3075
3076 s->size = newsize;
3077 s->contents = newcontents;
3078
3079 return TRUE;
3080}
3081
3082/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3083 otherwise just check whether one already exists. Returns -1 on error,
3084 1 if a DT_NEEDED tag already exists, and 0 on success. */
3085
3086static int
3087elf_add_dt_needed_tag (bfd *abfd,
3088 struct bfd_link_info *info,
3089 const char *soname,
3090 bfd_boolean do_it)
3091{
3092 struct elf_link_hash_table *hash_table;
3093 bfd_size_type strindex;
3094
3095 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3096 return -1;
3097
3098 hash_table = elf_hash_table (info);
3099 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3100 if (strindex == (bfd_size_type) -1)
3101 return -1;
3102
3103 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3104 {
3105 asection *sdyn;
3106 const struct elf_backend_data *bed;
3107 bfd_byte *extdyn;
3108
3109 bed = get_elf_backend_data (hash_table->dynobj);
3110 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3111 if (sdyn != NULL)
3112 for (extdyn = sdyn->contents;
3113 extdyn < sdyn->contents + sdyn->size;
3114 extdyn += bed->s->sizeof_dyn)
3115 {
3116 Elf_Internal_Dyn dyn;
3117
3118 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3119 if (dyn.d_tag == DT_NEEDED
3120 && dyn.d_un.d_val == strindex)
3121 {
3122 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3123 return 1;
3124 }
3125 }
3126 }
3127
3128 if (do_it)
3129 {
3130 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3131 return -1;
3132
3133 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3134 return -1;
3135 }
3136 else
3137 /* We were just checking for existence of the tag. */
3138 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3139
3140 return 0;
3141}
3142
3143static bfd_boolean
3144on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3145{
3146 for (; needed != NULL; needed = needed->next)
3147 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3148 && strcmp (soname, needed->name) == 0)
3149 return TRUE;
3150
3151 return FALSE;
3152}
3153
3154/* Sort symbol by value, section, and size. */
3155static int
3156elf_sort_symbol (const void *arg1, const void *arg2)
3157{
3158 const struct elf_link_hash_entry *h1;
3159 const struct elf_link_hash_entry *h2;
3160 bfd_signed_vma vdiff;
3161
3162 h1 = *(const struct elf_link_hash_entry **) arg1;
3163 h2 = *(const struct elf_link_hash_entry **) arg2;
3164 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3165 if (vdiff != 0)
3166 return vdiff > 0 ? 1 : -1;
3167 else
3168 {
3169 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3170 if (sdiff != 0)
3171 return sdiff > 0 ? 1 : -1;
3172 }
3173 vdiff = h1->size - h2->size;
3174 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3175}
3176
3177/* This function is used to adjust offsets into .dynstr for
3178 dynamic symbols. This is called via elf_link_hash_traverse. */
3179
3180static bfd_boolean
3181elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3182{
3183 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3184
3185 if (h->dynindx != -1)
3186 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3187 return TRUE;
3188}
3189
3190/* Assign string offsets in .dynstr, update all structures referencing
3191 them. */
3192
3193static bfd_boolean
3194elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3195{
3196 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3197 struct elf_link_local_dynamic_entry *entry;
3198 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3199 bfd *dynobj = hash_table->dynobj;
3200 asection *sdyn;
3201 bfd_size_type size;
3202 const struct elf_backend_data *bed;
3203 bfd_byte *extdyn;
3204
3205 _bfd_elf_strtab_finalize (dynstr);
3206 size = _bfd_elf_strtab_size (dynstr);
3207
3208 bed = get_elf_backend_data (dynobj);
3209 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3210 BFD_ASSERT (sdyn != NULL);
3211
3212 /* Update all .dynamic entries referencing .dynstr strings. */
3213 for (extdyn = sdyn->contents;
3214 extdyn < sdyn->contents + sdyn->size;
3215 extdyn += bed->s->sizeof_dyn)
3216 {
3217 Elf_Internal_Dyn dyn;
3218
3219 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3220 switch (dyn.d_tag)
3221 {
3222 case DT_STRSZ:
3223 dyn.d_un.d_val = size;
3224 break;
3225 case DT_NEEDED:
3226 case DT_SONAME:
3227 case DT_RPATH:
3228 case DT_RUNPATH:
3229 case DT_FILTER:
3230 case DT_AUXILIARY:
3231 case DT_AUDIT:
3232 case DT_DEPAUDIT:
3233 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3234 break;
3235 default:
3236 continue;
3237 }
3238 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3239 }
3240
3241 /* Now update local dynamic symbols. */
3242 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3243 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3244 entry->isym.st_name);
3245
3246 /* And the rest of dynamic symbols. */
3247 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3248
3249 /* Adjust version definitions. */
3250 if (elf_tdata (output_bfd)->cverdefs)
3251 {
3252 asection *s;
3253 bfd_byte *p;
3254 bfd_size_type i;
3255 Elf_Internal_Verdef def;
3256 Elf_Internal_Verdaux defaux;
3257
3258 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3259 p = s->contents;
3260 do
3261 {
3262 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3263 &def);
3264 p += sizeof (Elf_External_Verdef);
3265 if (def.vd_aux != sizeof (Elf_External_Verdef))
3266 continue;
3267 for (i = 0; i < def.vd_cnt; ++i)
3268 {
3269 _bfd_elf_swap_verdaux_in (output_bfd,
3270 (Elf_External_Verdaux *) p, &defaux);
3271 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3272 defaux.vda_name);
3273 _bfd_elf_swap_verdaux_out (output_bfd,
3274 &defaux, (Elf_External_Verdaux *) p);
3275 p += sizeof (Elf_External_Verdaux);
3276 }
3277 }
3278 while (def.vd_next);
3279 }
3280
3281 /* Adjust version references. */
3282 if (elf_tdata (output_bfd)->verref)
3283 {
3284 asection *s;
3285 bfd_byte *p;
3286 bfd_size_type i;
3287 Elf_Internal_Verneed need;
3288 Elf_Internal_Vernaux needaux;
3289
3290 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3291 p = s->contents;
3292 do
3293 {
3294 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3295 &need);
3296 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3297 _bfd_elf_swap_verneed_out (output_bfd, &need,
3298 (Elf_External_Verneed *) p);
3299 p += sizeof (Elf_External_Verneed);
3300 for (i = 0; i < need.vn_cnt; ++i)
3301 {
3302 _bfd_elf_swap_vernaux_in (output_bfd,
3303 (Elf_External_Vernaux *) p, &needaux);
3304 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3305 needaux.vna_name);
3306 _bfd_elf_swap_vernaux_out (output_bfd,
3307 &needaux,
3308 (Elf_External_Vernaux *) p);
3309 p += sizeof (Elf_External_Vernaux);
3310 }
3311 }
3312 while (need.vn_next);
3313 }
3314
3315 return TRUE;
3316}
3317\f
3318/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3319 The default is to only match when the INPUT and OUTPUT are exactly
3320 the same target. */
3321
3322bfd_boolean
3323_bfd_elf_default_relocs_compatible (const bfd_target *input,
3324 const bfd_target *output)
3325{
3326 return input == output;
3327}
3328
3329/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3330 This version is used when different targets for the same architecture
3331 are virtually identical. */
3332
3333bfd_boolean
3334_bfd_elf_relocs_compatible (const bfd_target *input,
3335 const bfd_target *output)
3336{
3337 const struct elf_backend_data *obed, *ibed;
3338
3339 if (input == output)
3340 return TRUE;
3341
3342 ibed = xvec_get_elf_backend_data (input);
3343 obed = xvec_get_elf_backend_data (output);
3344
3345 if (ibed->arch != obed->arch)
3346 return FALSE;
3347
3348 /* If both backends are using this function, deem them compatible. */
3349 return ibed->relocs_compatible == obed->relocs_compatible;
3350}
3351
3352/* Make a special call to the linker "notice" function to tell it that
3353 we are about to handle an as-needed lib, or have finished
3354 processing the lib. */
3355
3356bfd_boolean
3357_bfd_elf_notice_as_needed (bfd *ibfd,
3358 struct bfd_link_info *info,
3359 enum notice_asneeded_action act)
3360{
3361 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3362}
3363
3364/* Add symbols from an ELF object file to the linker hash table. */
3365
3366static bfd_boolean
3367elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3368{
3369 Elf_Internal_Ehdr *ehdr;
3370 Elf_Internal_Shdr *hdr;
3371 bfd_size_type symcount;
3372 bfd_size_type extsymcount;
3373 bfd_size_type extsymoff;
3374 struct elf_link_hash_entry **sym_hash;
3375 bfd_boolean dynamic;
3376 Elf_External_Versym *extversym = NULL;
3377 Elf_External_Versym *ever;
3378 struct elf_link_hash_entry *weaks;
3379 struct elf_link_hash_entry **nondeflt_vers = NULL;
3380 bfd_size_type nondeflt_vers_cnt = 0;
3381 Elf_Internal_Sym *isymbuf = NULL;
3382 Elf_Internal_Sym *isym;
3383 Elf_Internal_Sym *isymend;
3384 const struct elf_backend_data *bed;
3385 bfd_boolean add_needed;
3386 struct elf_link_hash_table *htab;
3387 bfd_size_type amt;
3388 void *alloc_mark = NULL;
3389 struct bfd_hash_entry **old_table = NULL;
3390 unsigned int old_size = 0;
3391 unsigned int old_count = 0;
3392 void *old_tab = NULL;
3393 void *old_ent;
3394 struct bfd_link_hash_entry *old_undefs = NULL;
3395 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3396 long old_dynsymcount = 0;
3397 bfd_size_type old_dynstr_size = 0;
3398 size_t tabsize = 0;
3399 asection *s;
3400 bfd_boolean just_syms;
3401
3402 htab = elf_hash_table (info);
3403 bed = get_elf_backend_data (abfd);
3404
3405 if ((abfd->flags & DYNAMIC) == 0)
3406 dynamic = FALSE;
3407 else
3408 {
3409 dynamic = TRUE;
3410
3411 /* You can't use -r against a dynamic object. Also, there's no
3412 hope of using a dynamic object which does not exactly match
3413 the format of the output file. */
3414 if (info->relocatable
3415 || !is_elf_hash_table (htab)
3416 || info->output_bfd->xvec != abfd->xvec)
3417 {
3418 if (info->relocatable)
3419 bfd_set_error (bfd_error_invalid_operation);
3420 else
3421 bfd_set_error (bfd_error_wrong_format);
3422 goto error_return;
3423 }
3424 }
3425
3426 ehdr = elf_elfheader (abfd);
3427 if (info->warn_alternate_em
3428 && bed->elf_machine_code != ehdr->e_machine
3429 && ((bed->elf_machine_alt1 != 0
3430 && ehdr->e_machine == bed->elf_machine_alt1)
3431 || (bed->elf_machine_alt2 != 0
3432 && ehdr->e_machine == bed->elf_machine_alt2)))
3433 info->callbacks->einfo
3434 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3435 ehdr->e_machine, abfd, bed->elf_machine_code);
3436
3437 /* As a GNU extension, any input sections which are named
3438 .gnu.warning.SYMBOL are treated as warning symbols for the given
3439 symbol. This differs from .gnu.warning sections, which generate
3440 warnings when they are included in an output file. */
3441 /* PR 12761: Also generate this warning when building shared libraries. */
3442 for (s = abfd->sections; s != NULL; s = s->next)
3443 {
3444 const char *name;
3445
3446 name = bfd_get_section_name (abfd, s);
3447 if (CONST_STRNEQ (name, ".gnu.warning."))
3448 {
3449 char *msg;
3450 bfd_size_type sz;
3451
3452 name += sizeof ".gnu.warning." - 1;
3453
3454 /* If this is a shared object, then look up the symbol
3455 in the hash table. If it is there, and it is already
3456 been defined, then we will not be using the entry
3457 from this shared object, so we don't need to warn.
3458 FIXME: If we see the definition in a regular object
3459 later on, we will warn, but we shouldn't. The only
3460 fix is to keep track of what warnings we are supposed
3461 to emit, and then handle them all at the end of the
3462 link. */
3463 if (dynamic)
3464 {
3465 struct elf_link_hash_entry *h;
3466
3467 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3468
3469 /* FIXME: What about bfd_link_hash_common? */
3470 if (h != NULL
3471 && (h->root.type == bfd_link_hash_defined
3472 || h->root.type == bfd_link_hash_defweak))
3473 continue;
3474 }
3475
3476 sz = s->size;
3477 msg = (char *) bfd_alloc (abfd, sz + 1);
3478 if (msg == NULL)
3479 goto error_return;
3480
3481 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3482 goto error_return;
3483
3484 msg[sz] = '\0';
3485
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info, abfd, name, BSF_WARNING, s, 0, msg,
3488 FALSE, bed->collect, NULL)))
3489 goto error_return;
3490
3491 if (!info->relocatable && info->executable)
3492 {
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
3495 s->size = 0;
3496
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s->flags |= SEC_EXCLUDE;
3500 }
3501 }
3502 }
3503
3504 just_syms = ((s = abfd->sections) != NULL
3505 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3506
3507 add_needed = TRUE;
3508 if (! dynamic)
3509 {
3510 /* If we are creating a shared library, create all the dynamic
3511 sections immediately. We need to attach them to something,
3512 so we attach them to this BFD, provided it is the right
3513 format and is not from ld --just-symbols. FIXME: If there
3514 are no input BFD's of the same format as the output, we can't
3515 make a shared library. */
3516 if (!just_syms
3517 && info->shared
3518 && is_elf_hash_table (htab)
3519 && info->output_bfd->xvec == abfd->xvec
3520 && !htab->dynamic_sections_created)
3521 {
3522 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3523 goto error_return;
3524 }
3525 }
3526 else if (!is_elf_hash_table (htab))
3527 goto error_return;
3528 else
3529 {
3530 const char *soname = NULL;
3531 char *audit = NULL;
3532 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3533 int ret;
3534
3535 /* ld --just-symbols and dynamic objects don't mix very well.
3536 ld shouldn't allow it. */
3537 if (just_syms)
3538 abort ();
3539
3540 /* If this dynamic lib was specified on the command line with
3541 --as-needed in effect, then we don't want to add a DT_NEEDED
3542 tag unless the lib is actually used. Similary for libs brought
3543 in by another lib's DT_NEEDED. When --no-add-needed is used
3544 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3545 any dynamic library in DT_NEEDED tags in the dynamic lib at
3546 all. */
3547 add_needed = (elf_dyn_lib_class (abfd)
3548 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3549 | DYN_NO_NEEDED)) == 0;
3550
3551 s = bfd_get_section_by_name (abfd, ".dynamic");
3552 if (s != NULL)
3553 {
3554 bfd_byte *dynbuf;
3555 bfd_byte *extdyn;
3556 unsigned int elfsec;
3557 unsigned long shlink;
3558
3559 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3560 {
3561error_free_dyn:
3562 free (dynbuf);
3563 goto error_return;
3564 }
3565
3566 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3567 if (elfsec == SHN_BAD)
3568 goto error_free_dyn;
3569 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3570
3571 for (extdyn = dynbuf;
3572 extdyn < dynbuf + s->size;
3573 extdyn += bed->s->sizeof_dyn)
3574 {
3575 Elf_Internal_Dyn dyn;
3576
3577 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3578 if (dyn.d_tag == DT_SONAME)
3579 {
3580 unsigned int tagv = dyn.d_un.d_val;
3581 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (soname == NULL)
3583 goto error_free_dyn;
3584 }
3585 if (dyn.d_tag == DT_NEEDED)
3586 {
3587 struct bfd_link_needed_list *n, **pn;
3588 char *fnm, *anm;
3589 unsigned int tagv = dyn.d_un.d_val;
3590
3591 amt = sizeof (struct bfd_link_needed_list);
3592 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3593 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3594 if (n == NULL || fnm == NULL)
3595 goto error_free_dyn;
3596 amt = strlen (fnm) + 1;
3597 anm = (char *) bfd_alloc (abfd, amt);
3598 if (anm == NULL)
3599 goto error_free_dyn;
3600 memcpy (anm, fnm, amt);
3601 n->name = anm;
3602 n->by = abfd;
3603 n->next = NULL;
3604 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3605 ;
3606 *pn = n;
3607 }
3608 if (dyn.d_tag == DT_RUNPATH)
3609 {
3610 struct bfd_link_needed_list *n, **pn;
3611 char *fnm, *anm;
3612 unsigned int tagv = dyn.d_un.d_val;
3613
3614 amt = sizeof (struct bfd_link_needed_list);
3615 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3616 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3617 if (n == NULL || fnm == NULL)
3618 goto error_free_dyn;
3619 amt = strlen (fnm) + 1;
3620 anm = (char *) bfd_alloc (abfd, amt);
3621 if (anm == NULL)
3622 goto error_free_dyn;
3623 memcpy (anm, fnm, amt);
3624 n->name = anm;
3625 n->by = abfd;
3626 n->next = NULL;
3627 for (pn = & runpath;
3628 *pn != NULL;
3629 pn = &(*pn)->next)
3630 ;
3631 *pn = n;
3632 }
3633 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3634 if (!runpath && dyn.d_tag == DT_RPATH)
3635 {
3636 struct bfd_link_needed_list *n, **pn;
3637 char *fnm, *anm;
3638 unsigned int tagv = dyn.d_un.d_val;
3639
3640 amt = sizeof (struct bfd_link_needed_list);
3641 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3642 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3643 if (n == NULL || fnm == NULL)
3644 goto error_free_dyn;
3645 amt = strlen (fnm) + 1;
3646 anm = (char *) bfd_alloc (abfd, amt);
3647 if (anm == NULL)
3648 goto error_free_dyn;
3649 memcpy (anm, fnm, amt);
3650 n->name = anm;
3651 n->by = abfd;
3652 n->next = NULL;
3653 for (pn = & rpath;
3654 *pn != NULL;
3655 pn = &(*pn)->next)
3656 ;
3657 *pn = n;
3658 }
3659 if (dyn.d_tag == DT_AUDIT)
3660 {
3661 unsigned int tagv = dyn.d_un.d_val;
3662 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3663 }
3664 }
3665
3666 free (dynbuf);
3667 }
3668
3669 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3670 frees all more recently bfd_alloc'd blocks as well. */
3671 if (runpath)
3672 rpath = runpath;
3673
3674 if (rpath)
3675 {
3676 struct bfd_link_needed_list **pn;
3677 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3678 ;
3679 *pn = rpath;
3680 }
3681
3682 /* We do not want to include any of the sections in a dynamic
3683 object in the output file. We hack by simply clobbering the
3684 list of sections in the BFD. This could be handled more
3685 cleanly by, say, a new section flag; the existing
3686 SEC_NEVER_LOAD flag is not the one we want, because that one
3687 still implies that the section takes up space in the output
3688 file. */
3689 bfd_section_list_clear (abfd);
3690
3691 /* Find the name to use in a DT_NEEDED entry that refers to this
3692 object. If the object has a DT_SONAME entry, we use it.
3693 Otherwise, if the generic linker stuck something in
3694 elf_dt_name, we use that. Otherwise, we just use the file
3695 name. */
3696 if (soname == NULL || *soname == '\0')
3697 {
3698 soname = elf_dt_name (abfd);
3699 if (soname == NULL || *soname == '\0')
3700 soname = bfd_get_filename (abfd);
3701 }
3702
3703 /* Save the SONAME because sometimes the linker emulation code
3704 will need to know it. */
3705 elf_dt_name (abfd) = soname;
3706
3707 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3708 if (ret < 0)
3709 goto error_return;
3710
3711 /* If we have already included this dynamic object in the
3712 link, just ignore it. There is no reason to include a
3713 particular dynamic object more than once. */
3714 if (ret > 0)
3715 return TRUE;
3716
3717 /* Save the DT_AUDIT entry for the linker emulation code. */
3718 elf_dt_audit (abfd) = audit;
3719 }
3720
3721 /* If this is a dynamic object, we always link against the .dynsym
3722 symbol table, not the .symtab symbol table. The dynamic linker
3723 will only see the .dynsym symbol table, so there is no reason to
3724 look at .symtab for a dynamic object. */
3725
3726 if (! dynamic || elf_dynsymtab (abfd) == 0)
3727 hdr = &elf_tdata (abfd)->symtab_hdr;
3728 else
3729 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3730
3731 symcount = hdr->sh_size / bed->s->sizeof_sym;
3732
3733 /* The sh_info field of the symtab header tells us where the
3734 external symbols start. We don't care about the local symbols at
3735 this point. */
3736 if (elf_bad_symtab (abfd))
3737 {
3738 extsymcount = symcount;
3739 extsymoff = 0;
3740 }
3741 else
3742 {
3743 extsymcount = symcount - hdr->sh_info;
3744 extsymoff = hdr->sh_info;
3745 }
3746
3747 sym_hash = elf_sym_hashes (abfd);
3748 if (extsymcount != 0)
3749 {
3750 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3751 NULL, NULL, NULL);
3752 if (isymbuf == NULL)
3753 goto error_return;
3754
3755 if (sym_hash == NULL)
3756 {
3757 /* We store a pointer to the hash table entry for each
3758 external symbol. */
3759 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3760 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3761 if (sym_hash == NULL)
3762 goto error_free_sym;
3763 elf_sym_hashes (abfd) = sym_hash;
3764 }
3765 }
3766
3767 if (dynamic)
3768 {
3769 /* Read in any version definitions. */
3770 if (!_bfd_elf_slurp_version_tables (abfd,
3771 info->default_imported_symver))
3772 goto error_free_sym;
3773
3774 /* Read in the symbol versions, but don't bother to convert them
3775 to internal format. */
3776 if (elf_dynversym (abfd) != 0)
3777 {
3778 Elf_Internal_Shdr *versymhdr;
3779
3780 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3781 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3782 if (extversym == NULL)
3783 goto error_free_sym;
3784 amt = versymhdr->sh_size;
3785 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3786 || bfd_bread (extversym, amt, abfd) != amt)
3787 goto error_free_vers;
3788 }
3789 }
3790
3791 /* If we are loading an as-needed shared lib, save the symbol table
3792 state before we start adding symbols. If the lib turns out
3793 to be unneeded, restore the state. */
3794 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3795 {
3796 unsigned int i;
3797 size_t entsize;
3798
3799 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3800 {
3801 struct bfd_hash_entry *p;
3802 struct elf_link_hash_entry *h;
3803
3804 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3805 {
3806 h = (struct elf_link_hash_entry *) p;
3807 entsize += htab->root.table.entsize;
3808 if (h->root.type == bfd_link_hash_warning)
3809 entsize += htab->root.table.entsize;
3810 }
3811 }
3812
3813 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3814 old_tab = bfd_malloc (tabsize + entsize);
3815 if (old_tab == NULL)
3816 goto error_free_vers;
3817
3818 /* Remember the current objalloc pointer, so that all mem for
3819 symbols added can later be reclaimed. */
3820 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3821 if (alloc_mark == NULL)
3822 goto error_free_vers;
3823
3824 /* Make a special call to the linker "notice" function to
3825 tell it that we are about to handle an as-needed lib. */
3826 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3827 goto error_free_vers;
3828
3829 /* Clone the symbol table. Remember some pointers into the
3830 symbol table, and dynamic symbol count. */
3831 old_ent = (char *) old_tab + tabsize;
3832 memcpy (old_tab, htab->root.table.table, tabsize);
3833 old_undefs = htab->root.undefs;
3834 old_undefs_tail = htab->root.undefs_tail;
3835 old_table = htab->root.table.table;
3836 old_size = htab->root.table.size;
3837 old_count = htab->root.table.count;
3838 old_dynsymcount = htab->dynsymcount;
3839 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3840
3841 for (i = 0; i < htab->root.table.size; i++)
3842 {
3843 struct bfd_hash_entry *p;
3844 struct elf_link_hash_entry *h;
3845
3846 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3847 {
3848 memcpy (old_ent, p, htab->root.table.entsize);
3849 old_ent = (char *) old_ent + htab->root.table.entsize;
3850 h = (struct elf_link_hash_entry *) p;
3851 if (h->root.type == bfd_link_hash_warning)
3852 {
3853 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3854 old_ent = (char *) old_ent + htab->root.table.entsize;
3855 }
3856 }
3857 }
3858 }
3859
3860 weaks = NULL;
3861 ever = extversym != NULL ? extversym + extsymoff : NULL;
3862 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3863 isym < isymend;
3864 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3865 {
3866 int bind;
3867 bfd_vma value;
3868 asection *sec, *new_sec;
3869 flagword flags;
3870 const char *name;
3871 struct elf_link_hash_entry *h;
3872 struct elf_link_hash_entry *hi;
3873 bfd_boolean definition;
3874 bfd_boolean size_change_ok;
3875 bfd_boolean type_change_ok;
3876 bfd_boolean new_weakdef;
3877 bfd_boolean new_weak;
3878 bfd_boolean old_weak;
3879 bfd_boolean override;
3880 bfd_boolean common;
3881 unsigned int old_alignment;
3882 bfd *old_bfd;
3883
3884 override = FALSE;
3885
3886 flags = BSF_NO_FLAGS;
3887 sec = NULL;
3888 value = isym->st_value;
3889 common = bed->common_definition (isym);
3890
3891 bind = ELF_ST_BIND (isym->st_info);
3892 switch (bind)
3893 {
3894 case STB_LOCAL:
3895 /* This should be impossible, since ELF requires that all
3896 global symbols follow all local symbols, and that sh_info
3897 point to the first global symbol. Unfortunately, Irix 5
3898 screws this up. */
3899 continue;
3900
3901 case STB_GLOBAL:
3902 if (isym->st_shndx != SHN_UNDEF && !common)
3903 flags = BSF_GLOBAL;
3904 break;
3905
3906 case STB_WEAK:
3907 flags = BSF_WEAK;
3908 break;
3909
3910 case STB_GNU_UNIQUE:
3911 flags = BSF_GNU_UNIQUE;
3912 break;
3913
3914 default:
3915 /* Leave it up to the processor backend. */
3916 break;
3917 }
3918
3919 if (isym->st_shndx == SHN_UNDEF)
3920 sec = bfd_und_section_ptr;
3921 else if (isym->st_shndx == SHN_ABS)
3922 sec = bfd_abs_section_ptr;
3923 else if (isym->st_shndx == SHN_COMMON)
3924 {
3925 sec = bfd_com_section_ptr;
3926 /* What ELF calls the size we call the value. What ELF
3927 calls the value we call the alignment. */
3928 value = isym->st_size;
3929 }
3930 else
3931 {
3932 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3933 if (sec == NULL)
3934 sec = bfd_abs_section_ptr;
3935 else if (discarded_section (sec))
3936 {
3937 /* Symbols from discarded section are undefined. We keep
3938 its visibility. */
3939 sec = bfd_und_section_ptr;
3940 isym->st_shndx = SHN_UNDEF;
3941 }
3942 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3943 value -= sec->vma;
3944 }
3945
3946 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3947 isym->st_name);
3948 if (name == NULL)
3949 goto error_free_vers;
3950
3951 if (isym->st_shndx == SHN_COMMON
3952 && (abfd->flags & BFD_PLUGIN) != 0)
3953 {
3954 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3955
3956 if (xc == NULL)
3957 {
3958 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3959 | SEC_EXCLUDE);
3960 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3961 if (xc == NULL)
3962 goto error_free_vers;
3963 }
3964 sec = xc;
3965 }
3966 else if (isym->st_shndx == SHN_COMMON
3967 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3968 && !info->relocatable)
3969 {
3970 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3971
3972 if (tcomm == NULL)
3973 {
3974 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3975 | SEC_LINKER_CREATED);
3976 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3977 if (tcomm == NULL)
3978 goto error_free_vers;
3979 }
3980 sec = tcomm;
3981 }
3982 else if (bed->elf_add_symbol_hook)
3983 {
3984 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3985 &sec, &value))
3986 goto error_free_vers;
3987
3988 /* The hook function sets the name to NULL if this symbol
3989 should be skipped for some reason. */
3990 if (name == NULL)
3991 continue;
3992 }
3993
3994 /* Sanity check that all possibilities were handled. */
3995 if (sec == NULL)
3996 {
3997 bfd_set_error (bfd_error_bad_value);
3998 goto error_free_vers;
3999 }
4000
4001 /* Silently discard TLS symbols from --just-syms. There's
4002 no way to combine a static TLS block with a new TLS block
4003 for this executable. */
4004 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4005 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4006 continue;
4007
4008 if (bfd_is_und_section (sec)
4009 || bfd_is_com_section (sec))
4010 definition = FALSE;
4011 else
4012 definition = TRUE;
4013
4014 size_change_ok = FALSE;
4015 type_change_ok = bed->type_change_ok;
4016 old_weak = FALSE;
4017 old_alignment = 0;
4018 old_bfd = NULL;
4019 new_sec = sec;
4020
4021 if (is_elf_hash_table (htab))
4022 {
4023 Elf_Internal_Versym iver;
4024 unsigned int vernum = 0;
4025 bfd_boolean skip;
4026
4027 if (ever == NULL)
4028 {
4029 if (info->default_imported_symver)
4030 /* Use the default symbol version created earlier. */
4031 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4032 else
4033 iver.vs_vers = 0;
4034 }
4035 else
4036 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4037
4038 vernum = iver.vs_vers & VERSYM_VERSION;
4039
4040 /* If this is a hidden symbol, or if it is not version
4041 1, we append the version name to the symbol name.
4042 However, we do not modify a non-hidden absolute symbol
4043 if it is not a function, because it might be the version
4044 symbol itself. FIXME: What if it isn't? */
4045 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4046 || (vernum > 1
4047 && (!bfd_is_abs_section (sec)
4048 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4049 {
4050 const char *verstr;
4051 size_t namelen, verlen, newlen;
4052 char *newname, *p;
4053
4054 if (isym->st_shndx != SHN_UNDEF)
4055 {
4056 if (vernum > elf_tdata (abfd)->cverdefs)
4057 verstr = NULL;
4058 else if (vernum > 1)
4059 verstr =
4060 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4061 else
4062 verstr = "";
4063
4064 if (verstr == NULL)
4065 {
4066 (*_bfd_error_handler)
4067 (_("%B: %s: invalid version %u (max %d)"),
4068 abfd, name, vernum,
4069 elf_tdata (abfd)->cverdefs);
4070 bfd_set_error (bfd_error_bad_value);
4071 goto error_free_vers;
4072 }
4073 }
4074 else
4075 {
4076 /* We cannot simply test for the number of
4077 entries in the VERNEED section since the
4078 numbers for the needed versions do not start
4079 at 0. */
4080 Elf_Internal_Verneed *t;
4081
4082 verstr = NULL;
4083 for (t = elf_tdata (abfd)->verref;
4084 t != NULL;
4085 t = t->vn_nextref)
4086 {
4087 Elf_Internal_Vernaux *a;
4088
4089 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4090 {
4091 if (a->vna_other == vernum)
4092 {
4093 verstr = a->vna_nodename;
4094 break;
4095 }
4096 }
4097 if (a != NULL)
4098 break;
4099 }
4100 if (verstr == NULL)
4101 {
4102 (*_bfd_error_handler)
4103 (_("%B: %s: invalid needed version %d"),
4104 abfd, name, vernum);
4105 bfd_set_error (bfd_error_bad_value);
4106 goto error_free_vers;
4107 }
4108 }
4109
4110 namelen = strlen (name);
4111 verlen = strlen (verstr);
4112 newlen = namelen + verlen + 2;
4113 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4114 && isym->st_shndx != SHN_UNDEF)
4115 ++newlen;
4116
4117 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4118 if (newname == NULL)
4119 goto error_free_vers;
4120 memcpy (newname, name, namelen);
4121 p = newname + namelen;
4122 *p++ = ELF_VER_CHR;
4123 /* If this is a defined non-hidden version symbol,
4124 we add another @ to the name. This indicates the
4125 default version of the symbol. */
4126 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4127 && isym->st_shndx != SHN_UNDEF)
4128 *p++ = ELF_VER_CHR;
4129 memcpy (p, verstr, verlen + 1);
4130
4131 name = newname;
4132 }
4133
4134 /* If this symbol has default visibility and the user has
4135 requested we not re-export it, then mark it as hidden. */
4136 if (definition
4137 && !dynamic
4138 && abfd->no_export
4139 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4140 isym->st_other = (STV_HIDDEN
4141 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4142
4143 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4144 sym_hash, &old_bfd, &old_weak,
4145 &old_alignment, &skip, &override,
4146 &type_change_ok, &size_change_ok))
4147 goto error_free_vers;
4148
4149 if (skip)
4150 continue;
4151
4152 if (override)
4153 definition = FALSE;
4154
4155 h = *sym_hash;
4156 while (h->root.type == bfd_link_hash_indirect
4157 || h->root.type == bfd_link_hash_warning)
4158 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4159
4160 if (elf_tdata (abfd)->verdef != NULL
4161 && vernum > 1
4162 && definition)
4163 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4164 }
4165
4166 if (! (_bfd_generic_link_add_one_symbol
4167 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4168 (struct bfd_link_hash_entry **) sym_hash)))
4169 goto error_free_vers;
4170
4171 h = *sym_hash;
4172 /* We need to make sure that indirect symbol dynamic flags are
4173 updated. */
4174 hi = h;
4175 while (h->root.type == bfd_link_hash_indirect
4176 || h->root.type == bfd_link_hash_warning)
4177 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4178
4179 *sym_hash = h;
4180
4181 new_weak = (flags & BSF_WEAK) != 0;
4182 new_weakdef = FALSE;
4183 if (dynamic
4184 && definition
4185 && new_weak
4186 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4187 && is_elf_hash_table (htab)
4188 && h->u.weakdef == NULL)
4189 {
4190 /* Keep a list of all weak defined non function symbols from
4191 a dynamic object, using the weakdef field. Later in this
4192 function we will set the weakdef field to the correct
4193 value. We only put non-function symbols from dynamic
4194 objects on this list, because that happens to be the only
4195 time we need to know the normal symbol corresponding to a
4196 weak symbol, and the information is time consuming to
4197 figure out. If the weakdef field is not already NULL,
4198 then this symbol was already defined by some previous
4199 dynamic object, and we will be using that previous
4200 definition anyhow. */
4201
4202 h->u.weakdef = weaks;
4203 weaks = h;
4204 new_weakdef = TRUE;
4205 }
4206
4207 /* Set the alignment of a common symbol. */
4208 if ((common || bfd_is_com_section (sec))
4209 && h->root.type == bfd_link_hash_common)
4210 {
4211 unsigned int align;
4212
4213 if (common)
4214 align = bfd_log2 (isym->st_value);
4215 else
4216 {
4217 /* The new symbol is a common symbol in a shared object.
4218 We need to get the alignment from the section. */
4219 align = new_sec->alignment_power;
4220 }
4221 if (align > old_alignment)
4222 h->root.u.c.p->alignment_power = align;
4223 else
4224 h->root.u.c.p->alignment_power = old_alignment;
4225 }
4226
4227 if (is_elf_hash_table (htab))
4228 {
4229 /* Set a flag in the hash table entry indicating the type of
4230 reference or definition we just found. A dynamic symbol
4231 is one which is referenced or defined by both a regular
4232 object and a shared object. */
4233 bfd_boolean dynsym = FALSE;
4234
4235 /* Plugin symbols aren't normal. Don't set def_regular or
4236 ref_regular for them, or make them dynamic. */
4237 if ((abfd->flags & BFD_PLUGIN) != 0)
4238 ;
4239 else if (! dynamic)
4240 {
4241 if (! definition)
4242 {
4243 h->ref_regular = 1;
4244 if (bind != STB_WEAK)
4245 h->ref_regular_nonweak = 1;
4246 }
4247 else
4248 {
4249 h->def_regular = 1;
4250 if (h->def_dynamic)
4251 {
4252 h->def_dynamic = 0;
4253 h->ref_dynamic = 1;
4254 }
4255 }
4256
4257 /* If the indirect symbol has been forced local, don't
4258 make the real symbol dynamic. */
4259 if ((h == hi || !hi->forced_local)
4260 && (! info->executable
4261 || h->def_dynamic
4262 || h->ref_dynamic))
4263 dynsym = TRUE;
4264 }
4265 else
4266 {
4267 if (! definition)
4268 {
4269 h->ref_dynamic = 1;
4270 hi->ref_dynamic = 1;
4271 }
4272 else
4273 {
4274 h->def_dynamic = 1;
4275 hi->def_dynamic = 1;
4276 }
4277
4278 /* If the indirect symbol has been forced local, don't
4279 make the real symbol dynamic. */
4280 if ((h == hi || !hi->forced_local)
4281 && (h->def_regular
4282 || h->ref_regular
4283 || (h->u.weakdef != NULL
4284 && ! new_weakdef
4285 && h->u.weakdef->dynindx != -1)))
4286 dynsym = TRUE;
4287 }
4288
4289 /* Check to see if we need to add an indirect symbol for
4290 the default name. */
4291 if (definition
4292 || (!override && h->root.type == bfd_link_hash_common))
4293 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4294 sec, value, &old_bfd, &dynsym))
4295 goto error_free_vers;
4296
4297 /* Check the alignment when a common symbol is involved. This
4298 can change when a common symbol is overridden by a normal
4299 definition or a common symbol is ignored due to the old
4300 normal definition. We need to make sure the maximum
4301 alignment is maintained. */
4302 if ((old_alignment || common)
4303 && h->root.type != bfd_link_hash_common)
4304 {
4305 unsigned int common_align;
4306 unsigned int normal_align;
4307 unsigned int symbol_align;
4308 bfd *normal_bfd;
4309 bfd *common_bfd;
4310
4311 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4312 || h->root.type == bfd_link_hash_defweak);
4313
4314 symbol_align = ffs (h->root.u.def.value) - 1;
4315 if (h->root.u.def.section->owner != NULL
4316 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4317 {
4318 normal_align = h->root.u.def.section->alignment_power;
4319 if (normal_align > symbol_align)
4320 normal_align = symbol_align;
4321 }
4322 else
4323 normal_align = symbol_align;
4324
4325 if (old_alignment)
4326 {
4327 common_align = old_alignment;
4328 common_bfd = old_bfd;
4329 normal_bfd = abfd;
4330 }
4331 else
4332 {
4333 common_align = bfd_log2 (isym->st_value);
4334 common_bfd = abfd;
4335 normal_bfd = old_bfd;
4336 }
4337
4338 if (normal_align < common_align)
4339 {
4340 /* PR binutils/2735 */
4341 if (normal_bfd == NULL)
4342 (*_bfd_error_handler)
4343 (_("Warning: alignment %u of common symbol `%s' in %B is"
4344 " greater than the alignment (%u) of its section %A"),
4345 common_bfd, h->root.u.def.section,
4346 1 << common_align, name, 1 << normal_align);
4347 else
4348 (*_bfd_error_handler)
4349 (_("Warning: alignment %u of symbol `%s' in %B"
4350 " is smaller than %u in %B"),
4351 normal_bfd, common_bfd,
4352 1 << normal_align, name, 1 << common_align);
4353 }
4354 }
4355
4356 /* Remember the symbol size if it isn't undefined. */
4357 if (isym->st_size != 0
4358 && isym->st_shndx != SHN_UNDEF
4359 && (definition || h->size == 0))
4360 {
4361 if (h->size != 0
4362 && h->size != isym->st_size
4363 && ! size_change_ok)
4364 (*_bfd_error_handler)
4365 (_("Warning: size of symbol `%s' changed"
4366 " from %lu in %B to %lu in %B"),
4367 old_bfd, abfd,
4368 name, (unsigned long) h->size,
4369 (unsigned long) isym->st_size);
4370
4371 h->size = isym->st_size;
4372 }
4373
4374 /* If this is a common symbol, then we always want H->SIZE
4375 to be the size of the common symbol. The code just above
4376 won't fix the size if a common symbol becomes larger. We
4377 don't warn about a size change here, because that is
4378 covered by --warn-common. Allow changes between different
4379 function types. */
4380 if (h->root.type == bfd_link_hash_common)
4381 h->size = h->root.u.c.size;
4382
4383 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4384 && ((definition && !new_weak)
4385 || (old_weak && h->root.type == bfd_link_hash_common)
4386 || h->type == STT_NOTYPE))
4387 {
4388 unsigned int type = ELF_ST_TYPE (isym->st_info);
4389
4390 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4391 symbol. */
4392 if (type == STT_GNU_IFUNC
4393 && (abfd->flags & DYNAMIC) != 0)
4394 type = STT_FUNC;
4395
4396 if (h->type != type)
4397 {
4398 if (h->type != STT_NOTYPE && ! type_change_ok)
4399 (*_bfd_error_handler)
4400 (_("Warning: type of symbol `%s' changed"
4401 " from %d to %d in %B"),
4402 abfd, name, h->type, type);
4403
4404 h->type = type;
4405 }
4406 }
4407
4408 /* Merge st_other field. */
4409 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4410
4411 /* We don't want to make debug symbol dynamic. */
4412 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4413 dynsym = FALSE;
4414
4415 /* Nor should we make plugin symbols dynamic. */
4416 if ((abfd->flags & BFD_PLUGIN) != 0)
4417 dynsym = FALSE;
4418
4419 if (definition)
4420 {
4421 h->target_internal = isym->st_target_internal;
4422 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4423 }
4424
4425 if (definition && !dynamic)
4426 {
4427 char *p = strchr (name, ELF_VER_CHR);
4428 if (p != NULL && p[1] != ELF_VER_CHR)
4429 {
4430 /* Queue non-default versions so that .symver x, x@FOO
4431 aliases can be checked. */
4432 if (!nondeflt_vers)
4433 {
4434 amt = ((isymend - isym + 1)
4435 * sizeof (struct elf_link_hash_entry *));
4436 nondeflt_vers
4437 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4438 if (!nondeflt_vers)
4439 goto error_free_vers;
4440 }
4441 nondeflt_vers[nondeflt_vers_cnt++] = h;
4442 }
4443 }
4444
4445 if (dynsym && h->dynindx == -1)
4446 {
4447 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4448 goto error_free_vers;
4449 if (h->u.weakdef != NULL
4450 && ! new_weakdef
4451 && h->u.weakdef->dynindx == -1)
4452 {
4453 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4454 goto error_free_vers;
4455 }
4456 }
4457 else if (dynsym && h->dynindx != -1)
4458 /* If the symbol already has a dynamic index, but
4459 visibility says it should not be visible, turn it into
4460 a local symbol. */
4461 switch (ELF_ST_VISIBILITY (h->other))
4462 {
4463 case STV_INTERNAL:
4464 case STV_HIDDEN:
4465 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4466 dynsym = FALSE;
4467 break;
4468 }
4469
4470 /* Don't add DT_NEEDED for references from the dummy bfd. */
4471 if (!add_needed
4472 && definition
4473 && ((dynsym
4474 && h->ref_regular_nonweak
4475 && (old_bfd == NULL
4476 || (old_bfd->flags & BFD_PLUGIN) == 0))
4477 || (h->ref_dynamic_nonweak
4478 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4479 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4480 {
4481 int ret;
4482 const char *soname = elf_dt_name (abfd);
4483
4484 info->callbacks->minfo ("%!", soname, old_bfd,
4485 h->root.root.string);
4486
4487 /* A symbol from a library loaded via DT_NEEDED of some
4488 other library is referenced by a regular object.
4489 Add a DT_NEEDED entry for it. Issue an error if
4490 --no-add-needed is used and the reference was not
4491 a weak one. */
4492 if (old_bfd != NULL
4493 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4494 {
4495 (*_bfd_error_handler)
4496 (_("%B: undefined reference to symbol '%s'"),
4497 old_bfd, name);
4498 bfd_set_error (bfd_error_missing_dso);
4499 goto error_free_vers;
4500 }
4501
4502 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4503 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4504
4505 add_needed = TRUE;
4506 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4507 if (ret < 0)
4508 goto error_free_vers;
4509
4510 BFD_ASSERT (ret == 0);
4511 }
4512 }
4513 }
4514
4515 if (extversym != NULL)
4516 {
4517 free (extversym);
4518 extversym = NULL;
4519 }
4520
4521 if (isymbuf != NULL)
4522 {
4523 free (isymbuf);
4524 isymbuf = NULL;
4525 }
4526
4527 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4528 {
4529 unsigned int i;
4530
4531 /* Restore the symbol table. */
4532 old_ent = (char *) old_tab + tabsize;
4533 memset (elf_sym_hashes (abfd), 0,
4534 extsymcount * sizeof (struct elf_link_hash_entry *));
4535 htab->root.table.table = old_table;
4536 htab->root.table.size = old_size;
4537 htab->root.table.count = old_count;
4538 memcpy (htab->root.table.table, old_tab, tabsize);
4539 htab->root.undefs = old_undefs;
4540 htab->root.undefs_tail = old_undefs_tail;
4541 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4542 for (i = 0; i < htab->root.table.size; i++)
4543 {
4544 struct bfd_hash_entry *p;
4545 struct elf_link_hash_entry *h;
4546 bfd_size_type size;
4547 unsigned int alignment_power;
4548
4549 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4550 {
4551 h = (struct elf_link_hash_entry *) p;
4552 if (h->root.type == bfd_link_hash_warning)
4553 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4554 if (h->dynindx >= old_dynsymcount
4555 && h->dynstr_index < old_dynstr_size)
4556 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4557
4558 /* Preserve the maximum alignment and size for common
4559 symbols even if this dynamic lib isn't on DT_NEEDED
4560 since it can still be loaded at run time by another
4561 dynamic lib. */
4562 if (h->root.type == bfd_link_hash_common)
4563 {
4564 size = h->root.u.c.size;
4565 alignment_power = h->root.u.c.p->alignment_power;
4566 }
4567 else
4568 {
4569 size = 0;
4570 alignment_power = 0;
4571 }
4572 memcpy (p, old_ent, htab->root.table.entsize);
4573 old_ent = (char *) old_ent + htab->root.table.entsize;
4574 h = (struct elf_link_hash_entry *) p;
4575 if (h->root.type == bfd_link_hash_warning)
4576 {
4577 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4578 old_ent = (char *) old_ent + htab->root.table.entsize;
4579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4580 }
4581 if (h->root.type == bfd_link_hash_common)
4582 {
4583 if (size > h->root.u.c.size)
4584 h->root.u.c.size = size;
4585 if (alignment_power > h->root.u.c.p->alignment_power)
4586 h->root.u.c.p->alignment_power = alignment_power;
4587 }
4588 }
4589 }
4590
4591 /* Make a special call to the linker "notice" function to
4592 tell it that symbols added for crefs may need to be removed. */
4593 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4594 goto error_free_vers;
4595
4596 free (old_tab);
4597 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4598 alloc_mark);
4599 if (nondeflt_vers != NULL)
4600 free (nondeflt_vers);
4601 return TRUE;
4602 }
4603
4604 if (old_tab != NULL)
4605 {
4606 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4607 goto error_free_vers;
4608 free (old_tab);
4609 old_tab = NULL;
4610 }
4611
4612 /* Now that all the symbols from this input file are created, handle
4613 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4614 if (nondeflt_vers != NULL)
4615 {
4616 bfd_size_type cnt, symidx;
4617
4618 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4619 {
4620 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4621 char *shortname, *p;
4622
4623 p = strchr (h->root.root.string, ELF_VER_CHR);
4624 if (p == NULL
4625 || (h->root.type != bfd_link_hash_defined
4626 && h->root.type != bfd_link_hash_defweak))
4627 continue;
4628
4629 amt = p - h->root.root.string;
4630 shortname = (char *) bfd_malloc (amt + 1);
4631 if (!shortname)
4632 goto error_free_vers;
4633 memcpy (shortname, h->root.root.string, amt);
4634 shortname[amt] = '\0';
4635
4636 hi = (struct elf_link_hash_entry *)
4637 bfd_link_hash_lookup (&htab->root, shortname,
4638 FALSE, FALSE, FALSE);
4639 if (hi != NULL
4640 && hi->root.type == h->root.type
4641 && hi->root.u.def.value == h->root.u.def.value
4642 && hi->root.u.def.section == h->root.u.def.section)
4643 {
4644 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4645 hi->root.type = bfd_link_hash_indirect;
4646 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4647 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4648 sym_hash = elf_sym_hashes (abfd);
4649 if (sym_hash)
4650 for (symidx = 0; symidx < extsymcount; ++symidx)
4651 if (sym_hash[symidx] == hi)
4652 {
4653 sym_hash[symidx] = h;
4654 break;
4655 }
4656 }
4657 free (shortname);
4658 }
4659 free (nondeflt_vers);
4660 nondeflt_vers = NULL;
4661 }
4662
4663 /* Now set the weakdefs field correctly for all the weak defined
4664 symbols we found. The only way to do this is to search all the
4665 symbols. Since we only need the information for non functions in
4666 dynamic objects, that's the only time we actually put anything on
4667 the list WEAKS. We need this information so that if a regular
4668 object refers to a symbol defined weakly in a dynamic object, the
4669 real symbol in the dynamic object is also put in the dynamic
4670 symbols; we also must arrange for both symbols to point to the
4671 same memory location. We could handle the general case of symbol
4672 aliasing, but a general symbol alias can only be generated in
4673 assembler code, handling it correctly would be very time
4674 consuming, and other ELF linkers don't handle general aliasing
4675 either. */
4676 if (weaks != NULL)
4677 {
4678 struct elf_link_hash_entry **hpp;
4679 struct elf_link_hash_entry **hppend;
4680 struct elf_link_hash_entry **sorted_sym_hash;
4681 struct elf_link_hash_entry *h;
4682 size_t sym_count;
4683
4684 /* Since we have to search the whole symbol list for each weak
4685 defined symbol, search time for N weak defined symbols will be
4686 O(N^2). Binary search will cut it down to O(NlogN). */
4687 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4688 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4689 if (sorted_sym_hash == NULL)
4690 goto error_return;
4691 sym_hash = sorted_sym_hash;
4692 hpp = elf_sym_hashes (abfd);
4693 hppend = hpp + extsymcount;
4694 sym_count = 0;
4695 for (; hpp < hppend; hpp++)
4696 {
4697 h = *hpp;
4698 if (h != NULL
4699 && h->root.type == bfd_link_hash_defined
4700 && !bed->is_function_type (h->type))
4701 {
4702 *sym_hash = h;
4703 sym_hash++;
4704 sym_count++;
4705 }
4706 }
4707
4708 qsort (sorted_sym_hash, sym_count,
4709 sizeof (struct elf_link_hash_entry *),
4710 elf_sort_symbol);
4711
4712 while (weaks != NULL)
4713 {
4714 struct elf_link_hash_entry *hlook;
4715 asection *slook;
4716 bfd_vma vlook;
4717 size_t i, j, idx = 0;
4718
4719 hlook = weaks;
4720 weaks = hlook->u.weakdef;
4721 hlook->u.weakdef = NULL;
4722
4723 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4724 || hlook->root.type == bfd_link_hash_defweak
4725 || hlook->root.type == bfd_link_hash_common
4726 || hlook->root.type == bfd_link_hash_indirect);
4727 slook = hlook->root.u.def.section;
4728 vlook = hlook->root.u.def.value;
4729
4730 i = 0;
4731 j = sym_count;
4732 while (i != j)
4733 {
4734 bfd_signed_vma vdiff;
4735 idx = (i + j) / 2;
4736 h = sorted_sym_hash[idx];
4737 vdiff = vlook - h->root.u.def.value;
4738 if (vdiff < 0)
4739 j = idx;
4740 else if (vdiff > 0)
4741 i = idx + 1;
4742 else
4743 {
4744 long sdiff = slook->id - h->root.u.def.section->id;
4745 if (sdiff < 0)
4746 j = idx;
4747 else if (sdiff > 0)
4748 i = idx + 1;
4749 else
4750 break;
4751 }
4752 }
4753
4754 /* We didn't find a value/section match. */
4755 if (i == j)
4756 continue;
4757
4758 /* With multiple aliases, or when the weak symbol is already
4759 strongly defined, we have multiple matching symbols and
4760 the binary search above may land on any of them. Step
4761 one past the matching symbol(s). */
4762 while (++idx != j)
4763 {
4764 h = sorted_sym_hash[idx];
4765 if (h->root.u.def.section != slook
4766 || h->root.u.def.value != vlook)
4767 break;
4768 }
4769
4770 /* Now look back over the aliases. Since we sorted by size
4771 as well as value and section, we'll choose the one with
4772 the largest size. */
4773 while (idx-- != i)
4774 {
4775 h = sorted_sym_hash[idx];
4776
4777 /* Stop if value or section doesn't match. */
4778 if (h->root.u.def.section != slook
4779 || h->root.u.def.value != vlook)
4780 break;
4781 else if (h != hlook)
4782 {
4783 hlook->u.weakdef = h;
4784
4785 /* If the weak definition is in the list of dynamic
4786 symbols, make sure the real definition is put
4787 there as well. */
4788 if (hlook->dynindx != -1 && h->dynindx == -1)
4789 {
4790 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4791 {
4792 err_free_sym_hash:
4793 free (sorted_sym_hash);
4794 goto error_return;
4795 }
4796 }
4797
4798 /* If the real definition is in the list of dynamic
4799 symbols, make sure the weak definition is put
4800 there as well. If we don't do this, then the
4801 dynamic loader might not merge the entries for the
4802 real definition and the weak definition. */
4803 if (h->dynindx != -1 && hlook->dynindx == -1)
4804 {
4805 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4806 goto err_free_sym_hash;
4807 }
4808 break;
4809 }
4810 }
4811 }
4812
4813 free (sorted_sym_hash);
4814 }
4815
4816 if (bed->check_directives
4817 && !(*bed->check_directives) (abfd, info))
4818 return FALSE;
4819
4820 /* If this object is the same format as the output object, and it is
4821 not a shared library, then let the backend look through the
4822 relocs.
4823
4824 This is required to build global offset table entries and to
4825 arrange for dynamic relocs. It is not required for the
4826 particular common case of linking non PIC code, even when linking
4827 against shared libraries, but unfortunately there is no way of
4828 knowing whether an object file has been compiled PIC or not.
4829 Looking through the relocs is not particularly time consuming.
4830 The problem is that we must either (1) keep the relocs in memory,
4831 which causes the linker to require additional runtime memory or
4832 (2) read the relocs twice from the input file, which wastes time.
4833 This would be a good case for using mmap.
4834
4835 I have no idea how to handle linking PIC code into a file of a
4836 different format. It probably can't be done. */
4837 if (! dynamic
4838 && is_elf_hash_table (htab)
4839 && bed->check_relocs != NULL
4840 && elf_object_id (abfd) == elf_hash_table_id (htab)
4841 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4842 {
4843 asection *o;
4844
4845 for (o = abfd->sections; o != NULL; o = o->next)
4846 {
4847 Elf_Internal_Rela *internal_relocs;
4848 bfd_boolean ok;
4849
4850 if ((o->flags & SEC_RELOC) == 0
4851 || o->reloc_count == 0
4852 || ((info->strip == strip_all || info->strip == strip_debugger)
4853 && (o->flags & SEC_DEBUGGING) != 0)
4854 || bfd_is_abs_section (o->output_section))
4855 continue;
4856
4857 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4858 info->keep_memory);
4859 if (internal_relocs == NULL)
4860 goto error_return;
4861
4862 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4863
4864 if (elf_section_data (o)->relocs != internal_relocs)
4865 free (internal_relocs);
4866
4867 if (! ok)
4868 goto error_return;
4869 }
4870 }
4871
4872 /* If this is a non-traditional link, try to optimize the handling
4873 of the .stab/.stabstr sections. */
4874 if (! dynamic
4875 && ! info->traditional_format
4876 && is_elf_hash_table (htab)
4877 && (info->strip != strip_all && info->strip != strip_debugger))
4878 {
4879 asection *stabstr;
4880
4881 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4882 if (stabstr != NULL)
4883 {
4884 bfd_size_type string_offset = 0;
4885 asection *stab;
4886
4887 for (stab = abfd->sections; stab; stab = stab->next)
4888 if (CONST_STRNEQ (stab->name, ".stab")
4889 && (!stab->name[5] ||
4890 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4891 && (stab->flags & SEC_MERGE) == 0
4892 && !bfd_is_abs_section (stab->output_section))
4893 {
4894 struct bfd_elf_section_data *secdata;
4895
4896 secdata = elf_section_data (stab);
4897 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4898 stabstr, &secdata->sec_info,
4899 &string_offset))
4900 goto error_return;
4901 if (secdata->sec_info)
4902 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4903 }
4904 }
4905 }
4906
4907 if (is_elf_hash_table (htab) && add_needed)
4908 {
4909 /* Add this bfd to the loaded list. */
4910 struct elf_link_loaded_list *n;
4911
4912 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4913 if (n == NULL)
4914 goto error_return;
4915 n->abfd = abfd;
4916 n->next = htab->loaded;
4917 htab->loaded = n;
4918 }
4919
4920 return TRUE;
4921
4922 error_free_vers:
4923 if (old_tab != NULL)
4924 free (old_tab);
4925 if (nondeflt_vers != NULL)
4926 free (nondeflt_vers);
4927 if (extversym != NULL)
4928 free (extversym);
4929 error_free_sym:
4930 if (isymbuf != NULL)
4931 free (isymbuf);
4932 error_return:
4933 return FALSE;
4934}
4935
4936/* Return the linker hash table entry of a symbol that might be
4937 satisfied by an archive symbol. Return -1 on error. */
4938
4939struct elf_link_hash_entry *
4940_bfd_elf_archive_symbol_lookup (bfd *abfd,
4941 struct bfd_link_info *info,
4942 const char *name)
4943{
4944 struct elf_link_hash_entry *h;
4945 char *p, *copy;
4946 size_t len, first;
4947
4948 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4949 if (h != NULL)
4950 return h;
4951
4952 /* If this is a default version (the name contains @@), look up the
4953 symbol again with only one `@' as well as without the version.
4954 The effect is that references to the symbol with and without the
4955 version will be matched by the default symbol in the archive. */
4956
4957 p = strchr (name, ELF_VER_CHR);
4958 if (p == NULL || p[1] != ELF_VER_CHR)
4959 return h;
4960
4961 /* First check with only one `@'. */
4962 len = strlen (name);
4963 copy = (char *) bfd_alloc (abfd, len);
4964 if (copy == NULL)
4965 return (struct elf_link_hash_entry *) 0 - 1;
4966
4967 first = p - name + 1;
4968 memcpy (copy, name, first);
4969 memcpy (copy + first, name + first + 1, len - first);
4970
4971 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4972 if (h == NULL)
4973 {
4974 /* We also need to check references to the symbol without the
4975 version. */
4976 copy[first - 1] = '\0';
4977 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4978 FALSE, FALSE, TRUE);
4979 }
4980
4981 bfd_release (abfd, copy);
4982 return h;
4983}
4984
4985/* Add symbols from an ELF archive file to the linker hash table. We
4986 don't use _bfd_generic_link_add_archive_symbols because we need to
4987 handle versioned symbols.
4988
4989 Fortunately, ELF archive handling is simpler than that done by
4990 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4991 oddities. In ELF, if we find a symbol in the archive map, and the
4992 symbol is currently undefined, we know that we must pull in that
4993 object file.
4994
4995 Unfortunately, we do have to make multiple passes over the symbol
4996 table until nothing further is resolved. */
4997
4998static bfd_boolean
4999elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5000{
5001 symindex c;
5002 unsigned char *included = NULL;
5003 carsym *symdefs;
5004 bfd_boolean loop;
5005 bfd_size_type amt;
5006 const struct elf_backend_data *bed;
5007 struct elf_link_hash_entry * (*archive_symbol_lookup)
5008 (bfd *, struct bfd_link_info *, const char *);
5009
5010 if (! bfd_has_map (abfd))
5011 {
5012 /* An empty archive is a special case. */
5013 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5014 return TRUE;
5015 bfd_set_error (bfd_error_no_armap);
5016 return FALSE;
5017 }
5018
5019 /* Keep track of all symbols we know to be already defined, and all
5020 files we know to be already included. This is to speed up the
5021 second and subsequent passes. */
5022 c = bfd_ardata (abfd)->symdef_count;
5023 if (c == 0)
5024 return TRUE;
5025 amt = c;
5026 amt *= sizeof (*included);
5027 included = (unsigned char *) bfd_zmalloc (amt);
5028 if (included == NULL)
5029 return FALSE;
5030
5031 symdefs = bfd_ardata (abfd)->symdefs;
5032 bed = get_elf_backend_data (abfd);
5033 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5034
5035 do
5036 {
5037 file_ptr last;
5038 symindex i;
5039 carsym *symdef;
5040 carsym *symdefend;
5041
5042 loop = FALSE;
5043 last = -1;
5044
5045 symdef = symdefs;
5046 symdefend = symdef + c;
5047 for (i = 0; symdef < symdefend; symdef++, i++)
5048 {
5049 struct elf_link_hash_entry *h;
5050 bfd *element;
5051 struct bfd_link_hash_entry *undefs_tail;
5052 symindex mark;
5053
5054 if (included[i])
5055 continue;
5056 if (symdef->file_offset == last)
5057 {
5058 included[i] = TRUE;
5059 continue;
5060 }
5061
5062 h = archive_symbol_lookup (abfd, info, symdef->name);
5063 if (h == (struct elf_link_hash_entry *) 0 - 1)
5064 goto error_return;
5065
5066 if (h == NULL)
5067 continue;
5068
5069 if (h->root.type == bfd_link_hash_common)
5070 {
5071 /* We currently have a common symbol. The archive map contains
5072 a reference to this symbol, so we may want to include it. We
5073 only want to include it however, if this archive element
5074 contains a definition of the symbol, not just another common
5075 declaration of it.
5076
5077 Unfortunately some archivers (including GNU ar) will put
5078 declarations of common symbols into their archive maps, as
5079 well as real definitions, so we cannot just go by the archive
5080 map alone. Instead we must read in the element's symbol
5081 table and check that to see what kind of symbol definition
5082 this is. */
5083 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5084 continue;
5085 }
5086 else if (h->root.type != bfd_link_hash_undefined)
5087 {
5088 if (h->root.type != bfd_link_hash_undefweak)
5089 /* Symbol must be defined. Don't check it again. */
5090 included[i] = TRUE;
5091 continue;
5092 }
5093
5094 /* We need to include this archive member. */
5095 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5096 if (element == NULL)
5097 goto error_return;
5098
5099 if (! bfd_check_format (element, bfd_object))
5100 goto error_return;
5101
5102 undefs_tail = info->hash->undefs_tail;
5103
5104 if (!(*info->callbacks
5105 ->add_archive_element) (info, element, symdef->name, &element))
5106 goto error_return;
5107 if (!bfd_link_add_symbols (element, info))
5108 goto error_return;
5109
5110 /* If there are any new undefined symbols, we need to make
5111 another pass through the archive in order to see whether
5112 they can be defined. FIXME: This isn't perfect, because
5113 common symbols wind up on undefs_tail and because an
5114 undefined symbol which is defined later on in this pass
5115 does not require another pass. This isn't a bug, but it
5116 does make the code less efficient than it could be. */
5117 if (undefs_tail != info->hash->undefs_tail)
5118 loop = TRUE;
5119
5120 /* Look backward to mark all symbols from this object file
5121 which we have already seen in this pass. */
5122 mark = i;
5123 do
5124 {
5125 included[mark] = TRUE;
5126 if (mark == 0)
5127 break;
5128 --mark;
5129 }
5130 while (symdefs[mark].file_offset == symdef->file_offset);
5131
5132 /* We mark subsequent symbols from this object file as we go
5133 on through the loop. */
5134 last = symdef->file_offset;
5135 }
5136 }
5137 while (loop);
5138
5139 free (included);
5140
5141 return TRUE;
5142
5143 error_return:
5144 if (included != NULL)
5145 free (included);
5146 return FALSE;
5147}
5148
5149/* Given an ELF BFD, add symbols to the global hash table as
5150 appropriate. */
5151
5152bfd_boolean
5153bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5154{
5155 switch (bfd_get_format (abfd))
5156 {
5157 case bfd_object:
5158 return elf_link_add_object_symbols (abfd, info);
5159 case bfd_archive:
5160 return elf_link_add_archive_symbols (abfd, info);
5161 default:
5162 bfd_set_error (bfd_error_wrong_format);
5163 return FALSE;
5164 }
5165}
5166\f
5167struct hash_codes_info
5168{
5169 unsigned long *hashcodes;
5170 bfd_boolean error;
5171};
5172
5173/* This function will be called though elf_link_hash_traverse to store
5174 all hash value of the exported symbols in an array. */
5175
5176static bfd_boolean
5177elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5178{
5179 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5180 const char *name;
5181 char *p;
5182 unsigned long ha;
5183 char *alc = NULL;
5184
5185 /* Ignore indirect symbols. These are added by the versioning code. */
5186 if (h->dynindx == -1)
5187 return TRUE;
5188
5189 name = h->root.root.string;
5190 p = strchr (name, ELF_VER_CHR);
5191 if (p != NULL)
5192 {
5193 alc = (char *) bfd_malloc (p - name + 1);
5194 if (alc == NULL)
5195 {
5196 inf->error = TRUE;
5197 return FALSE;
5198 }
5199 memcpy (alc, name, p - name);
5200 alc[p - name] = '\0';
5201 name = alc;
5202 }
5203
5204 /* Compute the hash value. */
5205 ha = bfd_elf_hash (name);
5206
5207 /* Store the found hash value in the array given as the argument. */
5208 *(inf->hashcodes)++ = ha;
5209
5210 /* And store it in the struct so that we can put it in the hash table
5211 later. */
5212 h->u.elf_hash_value = ha;
5213
5214 if (alc != NULL)
5215 free (alc);
5216
5217 return TRUE;
5218}
5219
5220struct collect_gnu_hash_codes
5221{
5222 bfd *output_bfd;
5223 const struct elf_backend_data *bed;
5224 unsigned long int nsyms;
5225 unsigned long int maskbits;
5226 unsigned long int *hashcodes;
5227 unsigned long int *hashval;
5228 unsigned long int *indx;
5229 unsigned long int *counts;
5230 bfd_vma *bitmask;
5231 bfd_byte *contents;
5232 long int min_dynindx;
5233 unsigned long int bucketcount;
5234 unsigned long int symindx;
5235 long int local_indx;
5236 long int shift1, shift2;
5237 unsigned long int mask;
5238 bfd_boolean error;
5239};
5240
5241/* This function will be called though elf_link_hash_traverse to store
5242 all hash value of the exported symbols in an array. */
5243
5244static bfd_boolean
5245elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5246{
5247 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5248 const char *name;
5249 char *p;
5250 unsigned long ha;
5251 char *alc = NULL;
5252
5253 /* Ignore indirect symbols. These are added by the versioning code. */
5254 if (h->dynindx == -1)
5255 return TRUE;
5256
5257 /* Ignore also local symbols and undefined symbols. */
5258 if (! (*s->bed->elf_hash_symbol) (h))
5259 return TRUE;
5260
5261 name = h->root.root.string;
5262 p = strchr (name, ELF_VER_CHR);
5263 if (p != NULL)
5264 {
5265 alc = (char *) bfd_malloc (p - name + 1);
5266 if (alc == NULL)
5267 {
5268 s->error = TRUE;
5269 return FALSE;
5270 }
5271 memcpy (alc, name, p - name);
5272 alc[p - name] = '\0';
5273 name = alc;
5274 }
5275
5276 /* Compute the hash value. */
5277 ha = bfd_elf_gnu_hash (name);
5278
5279 /* Store the found hash value in the array for compute_bucket_count,
5280 and also for .dynsym reordering purposes. */
5281 s->hashcodes[s->nsyms] = ha;
5282 s->hashval[h->dynindx] = ha;
5283 ++s->nsyms;
5284 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5285 s->min_dynindx = h->dynindx;
5286
5287 if (alc != NULL)
5288 free (alc);
5289
5290 return TRUE;
5291}
5292
5293/* This function will be called though elf_link_hash_traverse to do
5294 final dynaminc symbol renumbering. */
5295
5296static bfd_boolean
5297elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5298{
5299 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5300 unsigned long int bucket;
5301 unsigned long int val;
5302
5303 /* Ignore indirect symbols. */
5304 if (h->dynindx == -1)
5305 return TRUE;
5306
5307 /* Ignore also local symbols and undefined symbols. */
5308 if (! (*s->bed->elf_hash_symbol) (h))
5309 {
5310 if (h->dynindx >= s->min_dynindx)
5311 h->dynindx = s->local_indx++;
5312 return TRUE;
5313 }
5314
5315 bucket = s->hashval[h->dynindx] % s->bucketcount;
5316 val = (s->hashval[h->dynindx] >> s->shift1)
5317 & ((s->maskbits >> s->shift1) - 1);
5318 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5319 s->bitmask[val]
5320 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5321 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5322 if (s->counts[bucket] == 1)
5323 /* Last element terminates the chain. */
5324 val |= 1;
5325 bfd_put_32 (s->output_bfd, val,
5326 s->contents + (s->indx[bucket] - s->symindx) * 4);
5327 --s->counts[bucket];
5328 h->dynindx = s->indx[bucket]++;
5329 return TRUE;
5330}
5331
5332/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5333
5334bfd_boolean
5335_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5336{
5337 return !(h->forced_local
5338 || h->root.type == bfd_link_hash_undefined
5339 || h->root.type == bfd_link_hash_undefweak
5340 || ((h->root.type == bfd_link_hash_defined
5341 || h->root.type == bfd_link_hash_defweak)
5342 && h->root.u.def.section->output_section == NULL));
5343}
5344
5345/* Array used to determine the number of hash table buckets to use
5346 based on the number of symbols there are. If there are fewer than
5347 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5348 fewer than 37 we use 17 buckets, and so forth. We never use more
5349 than 32771 buckets. */
5350
5351static const size_t elf_buckets[] =
5352{
5353 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5354 16411, 32771, 0
5355};
5356
5357/* Compute bucket count for hashing table. We do not use a static set
5358 of possible tables sizes anymore. Instead we determine for all
5359 possible reasonable sizes of the table the outcome (i.e., the
5360 number of collisions etc) and choose the best solution. The
5361 weighting functions are not too simple to allow the table to grow
5362 without bounds. Instead one of the weighting factors is the size.
5363 Therefore the result is always a good payoff between few collisions
5364 (= short chain lengths) and table size. */
5365static size_t
5366compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5367 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5368 unsigned long int nsyms,
5369 int gnu_hash)
5370{
5371 size_t best_size = 0;
5372 unsigned long int i;
5373
5374 /* We have a problem here. The following code to optimize the table
5375 size requires an integer type with more the 32 bits. If
5376 BFD_HOST_U_64_BIT is set we know about such a type. */
5377#ifdef BFD_HOST_U_64_BIT
5378 if (info->optimize)
5379 {
5380 size_t minsize;
5381 size_t maxsize;
5382 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5383 bfd *dynobj = elf_hash_table (info)->dynobj;
5384 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5385 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5386 unsigned long int *counts;
5387 bfd_size_type amt;
5388 unsigned int no_improvement_count = 0;
5389
5390 /* Possible optimization parameters: if we have NSYMS symbols we say
5391 that the hashing table must at least have NSYMS/4 and at most
5392 2*NSYMS buckets. */
5393 minsize = nsyms / 4;
5394 if (minsize == 0)
5395 minsize = 1;
5396 best_size = maxsize = nsyms * 2;
5397 if (gnu_hash)
5398 {
5399 if (minsize < 2)
5400 minsize = 2;
5401 if ((best_size & 31) == 0)
5402 ++best_size;
5403 }
5404
5405 /* Create array where we count the collisions in. We must use bfd_malloc
5406 since the size could be large. */
5407 amt = maxsize;
5408 amt *= sizeof (unsigned long int);
5409 counts = (unsigned long int *) bfd_malloc (amt);
5410 if (counts == NULL)
5411 return 0;
5412
5413 /* Compute the "optimal" size for the hash table. The criteria is a
5414 minimal chain length. The minor criteria is (of course) the size
5415 of the table. */
5416 for (i = minsize; i < maxsize; ++i)
5417 {
5418 /* Walk through the array of hashcodes and count the collisions. */
5419 BFD_HOST_U_64_BIT max;
5420 unsigned long int j;
5421 unsigned long int fact;
5422
5423 if (gnu_hash && (i & 31) == 0)
5424 continue;
5425
5426 memset (counts, '\0', i * sizeof (unsigned long int));
5427
5428 /* Determine how often each hash bucket is used. */
5429 for (j = 0; j < nsyms; ++j)
5430 ++counts[hashcodes[j] % i];
5431
5432 /* For the weight function we need some information about the
5433 pagesize on the target. This is information need not be 100%
5434 accurate. Since this information is not available (so far) we
5435 define it here to a reasonable default value. If it is crucial
5436 to have a better value some day simply define this value. */
5437# ifndef BFD_TARGET_PAGESIZE
5438# define BFD_TARGET_PAGESIZE (4096)
5439# endif
5440
5441 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5442 and the chains. */
5443 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5444
5445# if 1
5446 /* Variant 1: optimize for short chains. We add the squares
5447 of all the chain lengths (which favors many small chain
5448 over a few long chains). */
5449 for (j = 0; j < i; ++j)
5450 max += counts[j] * counts[j];
5451
5452 /* This adds penalties for the overall size of the table. */
5453 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5454 max *= fact * fact;
5455# else
5456 /* Variant 2: Optimize a lot more for small table. Here we
5457 also add squares of the size but we also add penalties for
5458 empty slots (the +1 term). */
5459 for (j = 0; j < i; ++j)
5460 max += (1 + counts[j]) * (1 + counts[j]);
5461
5462 /* The overall size of the table is considered, but not as
5463 strong as in variant 1, where it is squared. */
5464 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5465 max *= fact;
5466# endif
5467
5468 /* Compare with current best results. */
5469 if (max < best_chlen)
5470 {
5471 best_chlen = max;
5472 best_size = i;
5473 no_improvement_count = 0;
5474 }
5475 /* PR 11843: Avoid futile long searches for the best bucket size
5476 when there are a large number of symbols. */
5477 else if (++no_improvement_count == 100)
5478 break;
5479 }
5480
5481 free (counts);
5482 }
5483 else
5484#endif /* defined (BFD_HOST_U_64_BIT) */
5485 {
5486 /* This is the fallback solution if no 64bit type is available or if we
5487 are not supposed to spend much time on optimizations. We select the
5488 bucket count using a fixed set of numbers. */
5489 for (i = 0; elf_buckets[i] != 0; i++)
5490 {
5491 best_size = elf_buckets[i];
5492 if (nsyms < elf_buckets[i + 1])
5493 break;
5494 }
5495 if (gnu_hash && best_size < 2)
5496 best_size = 2;
5497 }
5498
5499 return best_size;
5500}
5501
5502/* Size any SHT_GROUP section for ld -r. */
5503
5504bfd_boolean
5505_bfd_elf_size_group_sections (struct bfd_link_info *info)
5506{
5507 bfd *ibfd;
5508
5509 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5510 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5511 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5512 return FALSE;
5513 return TRUE;
5514}
5515
5516/* Set a default stack segment size. The value in INFO wins. If it
5517 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5518 undefined it is initialized. */
5519
5520bfd_boolean
5521bfd_elf_stack_segment_size (bfd *output_bfd,
5522 struct bfd_link_info *info,
5523 const char *legacy_symbol,
5524 bfd_vma default_size)
5525{
5526 struct elf_link_hash_entry *h = NULL;
5527
5528 /* Look for legacy symbol. */
5529 if (legacy_symbol)
5530 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5531 FALSE, FALSE, FALSE);
5532 if (h && (h->root.type == bfd_link_hash_defined
5533 || h->root.type == bfd_link_hash_defweak)
5534 && h->def_regular
5535 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5536 {
5537 /* The symbol has no type if specified on the command line. */
5538 h->type = STT_OBJECT;
5539 if (info->stacksize)
5540 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5541 output_bfd, legacy_symbol);
5542 else if (h->root.u.def.section != bfd_abs_section_ptr)
5543 (*_bfd_error_handler) (_("%B: %s not absolute"),
5544 output_bfd, legacy_symbol);
5545 else
5546 info->stacksize = h->root.u.def.value;
5547 }
5548
5549 if (!info->stacksize)
5550 /* If the user didn't set a size, or explicitly inhibit the
5551 size, set it now. */
5552 info->stacksize = default_size;
5553
5554 /* Provide the legacy symbol, if it is referenced. */
5555 if (h && (h->root.type == bfd_link_hash_undefined
5556 || h->root.type == bfd_link_hash_undefweak))
5557 {
5558 struct bfd_link_hash_entry *bh = NULL;
5559
5560 if (!(_bfd_generic_link_add_one_symbol
5561 (info, output_bfd, legacy_symbol,
5562 BSF_GLOBAL, bfd_abs_section_ptr,
5563 info->stacksize >= 0 ? info->stacksize : 0,
5564 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5565 return FALSE;
5566
5567 h = (struct elf_link_hash_entry *) bh;
5568 h->def_regular = 1;
5569 h->type = STT_OBJECT;
5570 }
5571
5572 return TRUE;
5573}
5574
5575/* Set up the sizes and contents of the ELF dynamic sections. This is
5576 called by the ELF linker emulation before_allocation routine. We
5577 must set the sizes of the sections before the linker sets the
5578 addresses of the various sections. */
5579
5580bfd_boolean
5581bfd_elf_size_dynamic_sections (bfd *output_bfd,
5582 const char *soname,
5583 const char *rpath,
5584 const char *filter_shlib,
5585 const char *audit,
5586 const char *depaudit,
5587 const char * const *auxiliary_filters,
5588 struct bfd_link_info *info,
5589 asection **sinterpptr)
5590{
5591 bfd_size_type soname_indx;
5592 bfd *dynobj;
5593 const struct elf_backend_data *bed;
5594 struct elf_info_failed asvinfo;
5595
5596 *sinterpptr = NULL;
5597
5598 soname_indx = (bfd_size_type) -1;
5599
5600 if (!is_elf_hash_table (info->hash))
5601 return TRUE;
5602
5603 bed = get_elf_backend_data (output_bfd);
5604
5605 /* Any syms created from now on start with -1 in
5606 got.refcount/offset and plt.refcount/offset. */
5607 elf_hash_table (info)->init_got_refcount
5608 = elf_hash_table (info)->init_got_offset;
5609 elf_hash_table (info)->init_plt_refcount
5610 = elf_hash_table (info)->init_plt_offset;
5611
5612 if (info->relocatable
5613 && !_bfd_elf_size_group_sections (info))
5614 return FALSE;
5615
5616 /* The backend may have to create some sections regardless of whether
5617 we're dynamic or not. */
5618 if (bed->elf_backend_always_size_sections
5619 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5620 return FALSE;
5621
5622 /* Determine any GNU_STACK segment requirements, after the backend
5623 has had a chance to set a default segment size. */
5624 if (info->execstack)
5625 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5626 else if (info->noexecstack)
5627 elf_stack_flags (output_bfd) = PF_R | PF_W;
5628 else
5629 {
5630 bfd *inputobj;
5631 asection *notesec = NULL;
5632 int exec = 0;
5633
5634 for (inputobj = info->input_bfds;
5635 inputobj;
5636 inputobj = inputobj->link.next)
5637 {
5638 asection *s;
5639
5640 if (inputobj->flags
5641 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5642 continue;
5643 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5644 if (s)
5645 {
5646 if (s->flags & SEC_CODE)
5647 exec = PF_X;
5648 notesec = s;
5649 }
5650 else if (bed->default_execstack)
5651 exec = PF_X;
5652 }
5653 if (notesec || info->stacksize > 0)
5654 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5655 if (notesec && exec && info->relocatable
5656 && notesec->output_section != bfd_abs_section_ptr)
5657 notesec->output_section->flags |= SEC_CODE;
5658 }
5659
5660 dynobj = elf_hash_table (info)->dynobj;
5661
5662 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5663 {
5664 struct elf_info_failed eif;
5665 struct elf_link_hash_entry *h;
5666 asection *dynstr;
5667 struct bfd_elf_version_tree *t;
5668 struct bfd_elf_version_expr *d;
5669 asection *s;
5670 bfd_boolean all_defined;
5671
5672 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5673 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5674
5675 if (soname != NULL)
5676 {
5677 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5678 soname, TRUE);
5679 if (soname_indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5681 return FALSE;
5682 }
5683
5684 if (info->symbolic)
5685 {
5686 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5687 return FALSE;
5688 info->flags |= DF_SYMBOLIC;
5689 }
5690
5691 if (rpath != NULL)
5692 {
5693 bfd_size_type indx;
5694 bfd_vma tag;
5695
5696 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5697 TRUE);
5698 if (indx == (bfd_size_type) -1)
5699 return FALSE;
5700
5701 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5702 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5703 return FALSE;
5704 }
5705
5706 if (filter_shlib != NULL)
5707 {
5708 bfd_size_type indx;
5709
5710 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5711 filter_shlib, TRUE);
5712 if (indx == (bfd_size_type) -1
5713 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5714 return FALSE;
5715 }
5716
5717 if (auxiliary_filters != NULL)
5718 {
5719 const char * const *p;
5720
5721 for (p = auxiliary_filters; *p != NULL; p++)
5722 {
5723 bfd_size_type indx;
5724
5725 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5726 *p, TRUE);
5727 if (indx == (bfd_size_type) -1
5728 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5729 return FALSE;
5730 }
5731 }
5732
5733 if (audit != NULL)
5734 {
5735 bfd_size_type indx;
5736
5737 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5738 TRUE);
5739 if (indx == (bfd_size_type) -1
5740 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5741 return FALSE;
5742 }
5743
5744 if (depaudit != NULL)
5745 {
5746 bfd_size_type indx;
5747
5748 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5749 TRUE);
5750 if (indx == (bfd_size_type) -1
5751 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5752 return FALSE;
5753 }
5754
5755 eif.info = info;
5756 eif.failed = FALSE;
5757
5758 /* If we are supposed to export all symbols into the dynamic symbol
5759 table (this is not the normal case), then do so. */
5760 if (info->export_dynamic
5761 || (info->executable && info->dynamic))
5762 {
5763 elf_link_hash_traverse (elf_hash_table (info),
5764 _bfd_elf_export_symbol,
5765 &eif);
5766 if (eif.failed)
5767 return FALSE;
5768 }
5769
5770 /* Make all global versions with definition. */
5771 for (t = info->version_info; t != NULL; t = t->next)
5772 for (d = t->globals.list; d != NULL; d = d->next)
5773 if (!d->symver && d->literal)
5774 {
5775 const char *verstr, *name;
5776 size_t namelen, verlen, newlen;
5777 char *newname, *p, leading_char;
5778 struct elf_link_hash_entry *newh;
5779
5780 leading_char = bfd_get_symbol_leading_char (output_bfd);
5781 name = d->pattern;
5782 namelen = strlen (name) + (leading_char != '\0');
5783 verstr = t->name;
5784 verlen = strlen (verstr);
5785 newlen = namelen + verlen + 3;
5786
5787 newname = (char *) bfd_malloc (newlen);
5788 if (newname == NULL)
5789 return FALSE;
5790 newname[0] = leading_char;
5791 memcpy (newname + (leading_char != '\0'), name, namelen);
5792
5793 /* Check the hidden versioned definition. */
5794 p = newname + namelen;
5795 *p++ = ELF_VER_CHR;
5796 memcpy (p, verstr, verlen + 1);
5797 newh = elf_link_hash_lookup (elf_hash_table (info),
5798 newname, FALSE, FALSE,
5799 FALSE);
5800 if (newh == NULL
5801 || (newh->root.type != bfd_link_hash_defined
5802 && newh->root.type != bfd_link_hash_defweak))
5803 {
5804 /* Check the default versioned definition. */
5805 *p++ = ELF_VER_CHR;
5806 memcpy (p, verstr, verlen + 1);
5807 newh = elf_link_hash_lookup (elf_hash_table (info),
5808 newname, FALSE, FALSE,
5809 FALSE);
5810 }
5811 free (newname);
5812
5813 /* Mark this version if there is a definition and it is
5814 not defined in a shared object. */
5815 if (newh != NULL
5816 && !newh->def_dynamic
5817 && (newh->root.type == bfd_link_hash_defined
5818 || newh->root.type == bfd_link_hash_defweak))
5819 d->symver = 1;
5820 }
5821
5822 /* Attach all the symbols to their version information. */
5823 asvinfo.info = info;
5824 asvinfo.failed = FALSE;
5825
5826 elf_link_hash_traverse (elf_hash_table (info),
5827 _bfd_elf_link_assign_sym_version,
5828 &asvinfo);
5829 if (asvinfo.failed)
5830 return FALSE;
5831
5832 if (!info->allow_undefined_version)
5833 {
5834 /* Check if all global versions have a definition. */
5835 all_defined = TRUE;
5836 for (t = info->version_info; t != NULL; t = t->next)
5837 for (d = t->globals.list; d != NULL; d = d->next)
5838 if (d->literal && !d->symver && !d->script)
5839 {
5840 (*_bfd_error_handler)
5841 (_("%s: undefined version: %s"),
5842 d->pattern, t->name);
5843 all_defined = FALSE;
5844 }
5845
5846 if (!all_defined)
5847 {
5848 bfd_set_error (bfd_error_bad_value);
5849 return FALSE;
5850 }
5851 }
5852
5853 /* Find all symbols which were defined in a dynamic object and make
5854 the backend pick a reasonable value for them. */
5855 elf_link_hash_traverse (elf_hash_table (info),
5856 _bfd_elf_adjust_dynamic_symbol,
5857 &eif);
5858 if (eif.failed)
5859 return FALSE;
5860
5861 /* Add some entries to the .dynamic section. We fill in some of the
5862 values later, in bfd_elf_final_link, but we must add the entries
5863 now so that we know the final size of the .dynamic section. */
5864
5865 /* If there are initialization and/or finalization functions to
5866 call then add the corresponding DT_INIT/DT_FINI entries. */
5867 h = (info->init_function
5868 ? elf_link_hash_lookup (elf_hash_table (info),
5869 info->init_function, FALSE,
5870 FALSE, FALSE)
5871 : NULL);
5872 if (h != NULL
5873 && (h->ref_regular
5874 || h->def_regular))
5875 {
5876 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5877 return FALSE;
5878 }
5879 h = (info->fini_function
5880 ? elf_link_hash_lookup (elf_hash_table (info),
5881 info->fini_function, FALSE,
5882 FALSE, FALSE)
5883 : NULL);
5884 if (h != NULL
5885 && (h->ref_regular
5886 || h->def_regular))
5887 {
5888 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5889 return FALSE;
5890 }
5891
5892 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5893 if (s != NULL && s->linker_has_input)
5894 {
5895 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5896 if (! info->executable)
5897 {
5898 bfd *sub;
5899 asection *o;
5900
5901 for (sub = info->input_bfds; sub != NULL;
5902 sub = sub->link.next)
5903 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5904 for (o = sub->sections; o != NULL; o = o->next)
5905 if (elf_section_data (o)->this_hdr.sh_type
5906 == SHT_PREINIT_ARRAY)
5907 {
5908 (*_bfd_error_handler)
5909 (_("%B: .preinit_array section is not allowed in DSO"),
5910 sub);
5911 break;
5912 }
5913
5914 bfd_set_error (bfd_error_nonrepresentable_section);
5915 return FALSE;
5916 }
5917
5918 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5919 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5920 return FALSE;
5921 }
5922 s = bfd_get_section_by_name (output_bfd, ".init_array");
5923 if (s != NULL && s->linker_has_input)
5924 {
5925 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5926 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5927 return FALSE;
5928 }
5929 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5930 if (s != NULL && s->linker_has_input)
5931 {
5932 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5933 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5934 return FALSE;
5935 }
5936
5937 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5938 /* If .dynstr is excluded from the link, we don't want any of
5939 these tags. Strictly, we should be checking each section
5940 individually; This quick check covers for the case where
5941 someone does a /DISCARD/ : { *(*) }. */
5942 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5943 {
5944 bfd_size_type strsize;
5945
5946 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5947 if ((info->emit_hash
5948 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5949 || (info->emit_gnu_hash
5950 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5951 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5952 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5953 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5954 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5955 bed->s->sizeof_sym))
5956 return FALSE;
5957 }
5958 }
5959
5960 /* The backend must work out the sizes of all the other dynamic
5961 sections. */
5962 if (dynobj != NULL
5963 && bed->elf_backend_size_dynamic_sections != NULL
5964 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5965 return FALSE;
5966
5967 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5968 return FALSE;
5969
5970 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5971 {
5972 unsigned long section_sym_count;
5973 struct bfd_elf_version_tree *verdefs;
5974 asection *s;
5975
5976 /* Set up the version definition section. */
5977 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5978 BFD_ASSERT (s != NULL);
5979
5980 /* We may have created additional version definitions if we are
5981 just linking a regular application. */
5982 verdefs = info->version_info;
5983
5984 /* Skip anonymous version tag. */
5985 if (verdefs != NULL && verdefs->vernum == 0)
5986 verdefs = verdefs->next;
5987
5988 if (verdefs == NULL && !info->create_default_symver)
5989 s->flags |= SEC_EXCLUDE;
5990 else
5991 {
5992 unsigned int cdefs;
5993 bfd_size_type size;
5994 struct bfd_elf_version_tree *t;
5995 bfd_byte *p;
5996 Elf_Internal_Verdef def;
5997 Elf_Internal_Verdaux defaux;
5998 struct bfd_link_hash_entry *bh;
5999 struct elf_link_hash_entry *h;
6000 const char *name;
6001
6002 cdefs = 0;
6003 size = 0;
6004
6005 /* Make space for the base version. */
6006 size += sizeof (Elf_External_Verdef);
6007 size += sizeof (Elf_External_Verdaux);
6008 ++cdefs;
6009
6010 /* Make space for the default version. */
6011 if (info->create_default_symver)
6012 {
6013 size += sizeof (Elf_External_Verdef);
6014 ++cdefs;
6015 }
6016
6017 for (t = verdefs; t != NULL; t = t->next)
6018 {
6019 struct bfd_elf_version_deps *n;
6020
6021 /* Don't emit base version twice. */
6022 if (t->vernum == 0)
6023 continue;
6024
6025 size += sizeof (Elf_External_Verdef);
6026 size += sizeof (Elf_External_Verdaux);
6027 ++cdefs;
6028
6029 for (n = t->deps; n != NULL; n = n->next)
6030 size += sizeof (Elf_External_Verdaux);
6031 }
6032
6033 s->size = size;
6034 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6035 if (s->contents == NULL && s->size != 0)
6036 return FALSE;
6037
6038 /* Fill in the version definition section. */
6039
6040 p = s->contents;
6041
6042 def.vd_version = VER_DEF_CURRENT;
6043 def.vd_flags = VER_FLG_BASE;
6044 def.vd_ndx = 1;
6045 def.vd_cnt = 1;
6046 if (info->create_default_symver)
6047 {
6048 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6049 def.vd_next = sizeof (Elf_External_Verdef);
6050 }
6051 else
6052 {
6053 def.vd_aux = sizeof (Elf_External_Verdef);
6054 def.vd_next = (sizeof (Elf_External_Verdef)
6055 + sizeof (Elf_External_Verdaux));
6056 }
6057
6058 if (soname_indx != (bfd_size_type) -1)
6059 {
6060 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6061 soname_indx);
6062 def.vd_hash = bfd_elf_hash (soname);
6063 defaux.vda_name = soname_indx;
6064 name = soname;
6065 }
6066 else
6067 {
6068 bfd_size_type indx;
6069
6070 name = lbasename (output_bfd->filename);
6071 def.vd_hash = bfd_elf_hash (name);
6072 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6073 name, FALSE);
6074 if (indx == (bfd_size_type) -1)
6075 return FALSE;
6076 defaux.vda_name = indx;
6077 }
6078 defaux.vda_next = 0;
6079
6080 _bfd_elf_swap_verdef_out (output_bfd, &def,
6081 (Elf_External_Verdef *) p);
6082 p += sizeof (Elf_External_Verdef);
6083 if (info->create_default_symver)
6084 {
6085 /* Add a symbol representing this version. */
6086 bh = NULL;
6087 if (! (_bfd_generic_link_add_one_symbol
6088 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6089 0, NULL, FALSE,
6090 get_elf_backend_data (dynobj)->collect, &bh)))
6091 return FALSE;
6092 h = (struct elf_link_hash_entry *) bh;
6093 h->non_elf = 0;
6094 h->def_regular = 1;
6095 h->type = STT_OBJECT;
6096 h->verinfo.vertree = NULL;
6097
6098 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6099 return FALSE;
6100
6101 /* Create a duplicate of the base version with the same
6102 aux block, but different flags. */
6103 def.vd_flags = 0;
6104 def.vd_ndx = 2;
6105 def.vd_aux = sizeof (Elf_External_Verdef);
6106 if (verdefs)
6107 def.vd_next = (sizeof (Elf_External_Verdef)
6108 + sizeof (Elf_External_Verdaux));
6109 else
6110 def.vd_next = 0;
6111 _bfd_elf_swap_verdef_out (output_bfd, &def,
6112 (Elf_External_Verdef *) p);
6113 p += sizeof (Elf_External_Verdef);
6114 }
6115 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6116 (Elf_External_Verdaux *) p);
6117 p += sizeof (Elf_External_Verdaux);
6118
6119 for (t = verdefs; t != NULL; t = t->next)
6120 {
6121 unsigned int cdeps;
6122 struct bfd_elf_version_deps *n;
6123
6124 /* Don't emit the base version twice. */
6125 if (t->vernum == 0)
6126 continue;
6127
6128 cdeps = 0;
6129 for (n = t->deps; n != NULL; n = n->next)
6130 ++cdeps;
6131
6132 /* Add a symbol representing this version. */
6133 bh = NULL;
6134 if (! (_bfd_generic_link_add_one_symbol
6135 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6136 0, NULL, FALSE,
6137 get_elf_backend_data (dynobj)->collect, &bh)))
6138 return FALSE;
6139 h = (struct elf_link_hash_entry *) bh;
6140 h->non_elf = 0;
6141 h->def_regular = 1;
6142 h->type = STT_OBJECT;
6143 h->verinfo.vertree = t;
6144
6145 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6146 return FALSE;
6147
6148 def.vd_version = VER_DEF_CURRENT;
6149 def.vd_flags = 0;
6150 if (t->globals.list == NULL
6151 && t->locals.list == NULL
6152 && ! t->used)
6153 def.vd_flags |= VER_FLG_WEAK;
6154 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6155 def.vd_cnt = cdeps + 1;
6156 def.vd_hash = bfd_elf_hash (t->name);
6157 def.vd_aux = sizeof (Elf_External_Verdef);
6158 def.vd_next = 0;
6159
6160 /* If a basever node is next, it *must* be the last node in
6161 the chain, otherwise Verdef construction breaks. */
6162 if (t->next != NULL && t->next->vernum == 0)
6163 BFD_ASSERT (t->next->next == NULL);
6164
6165 if (t->next != NULL && t->next->vernum != 0)
6166 def.vd_next = (sizeof (Elf_External_Verdef)
6167 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6168
6169 _bfd_elf_swap_verdef_out (output_bfd, &def,
6170 (Elf_External_Verdef *) p);
6171 p += sizeof (Elf_External_Verdef);
6172
6173 defaux.vda_name = h->dynstr_index;
6174 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6175 h->dynstr_index);
6176 defaux.vda_next = 0;
6177 if (t->deps != NULL)
6178 defaux.vda_next = sizeof (Elf_External_Verdaux);
6179 t->name_indx = defaux.vda_name;
6180
6181 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6182 (Elf_External_Verdaux *) p);
6183 p += sizeof (Elf_External_Verdaux);
6184
6185 for (n = t->deps; n != NULL; n = n->next)
6186 {
6187 if (n->version_needed == NULL)
6188 {
6189 /* This can happen if there was an error in the
6190 version script. */
6191 defaux.vda_name = 0;
6192 }
6193 else
6194 {
6195 defaux.vda_name = n->version_needed->name_indx;
6196 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6197 defaux.vda_name);
6198 }
6199 if (n->next == NULL)
6200 defaux.vda_next = 0;
6201 else
6202 defaux.vda_next = sizeof (Elf_External_Verdaux);
6203
6204 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6205 (Elf_External_Verdaux *) p);
6206 p += sizeof (Elf_External_Verdaux);
6207 }
6208 }
6209
6210 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6211 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6212 return FALSE;
6213
6214 elf_tdata (output_bfd)->cverdefs = cdefs;
6215 }
6216
6217 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6218 {
6219 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6220 return FALSE;
6221 }
6222 else if (info->flags & DF_BIND_NOW)
6223 {
6224 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6225 return FALSE;
6226 }
6227
6228 if (info->flags_1)
6229 {
6230 if (info->executable)
6231 info->flags_1 &= ~ (DF_1_INITFIRST
6232 | DF_1_NODELETE
6233 | DF_1_NOOPEN);
6234 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6235 return FALSE;
6236 }
6237
6238 /* Work out the size of the version reference section. */
6239
6240 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6241 BFD_ASSERT (s != NULL);
6242 {
6243 struct elf_find_verdep_info sinfo;
6244
6245 sinfo.info = info;
6246 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6247 if (sinfo.vers == 0)
6248 sinfo.vers = 1;
6249 sinfo.failed = FALSE;
6250
6251 elf_link_hash_traverse (elf_hash_table (info),
6252 _bfd_elf_link_find_version_dependencies,
6253 &sinfo);
6254 if (sinfo.failed)
6255 return FALSE;
6256
6257 if (elf_tdata (output_bfd)->verref == NULL)
6258 s->flags |= SEC_EXCLUDE;
6259 else
6260 {
6261 Elf_Internal_Verneed *t;
6262 unsigned int size;
6263 unsigned int crefs;
6264 bfd_byte *p;
6265
6266 /* Build the version dependency section. */
6267 size = 0;
6268 crefs = 0;
6269 for (t = elf_tdata (output_bfd)->verref;
6270 t != NULL;
6271 t = t->vn_nextref)
6272 {
6273 Elf_Internal_Vernaux *a;
6274
6275 size += sizeof (Elf_External_Verneed);
6276 ++crefs;
6277 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6278 size += sizeof (Elf_External_Vernaux);
6279 }
6280
6281 s->size = size;
6282 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6283 if (s->contents == NULL)
6284 return FALSE;
6285
6286 p = s->contents;
6287 for (t = elf_tdata (output_bfd)->verref;
6288 t != NULL;
6289 t = t->vn_nextref)
6290 {
6291 unsigned int caux;
6292 Elf_Internal_Vernaux *a;
6293 bfd_size_type indx;
6294
6295 caux = 0;
6296 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6297 ++caux;
6298
6299 t->vn_version = VER_NEED_CURRENT;
6300 t->vn_cnt = caux;
6301 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6302 elf_dt_name (t->vn_bfd) != NULL
6303 ? elf_dt_name (t->vn_bfd)
6304 : lbasename (t->vn_bfd->filename),
6305 FALSE);
6306 if (indx == (bfd_size_type) -1)
6307 return FALSE;
6308 t->vn_file = indx;
6309 t->vn_aux = sizeof (Elf_External_Verneed);
6310 if (t->vn_nextref == NULL)
6311 t->vn_next = 0;
6312 else
6313 t->vn_next = (sizeof (Elf_External_Verneed)
6314 + caux * sizeof (Elf_External_Vernaux));
6315
6316 _bfd_elf_swap_verneed_out (output_bfd, t,
6317 (Elf_External_Verneed *) p);
6318 p += sizeof (Elf_External_Verneed);
6319
6320 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6321 {
6322 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6323 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6324 a->vna_nodename, FALSE);
6325 if (indx == (bfd_size_type) -1)
6326 return FALSE;
6327 a->vna_name = indx;
6328 if (a->vna_nextptr == NULL)
6329 a->vna_next = 0;
6330 else
6331 a->vna_next = sizeof (Elf_External_Vernaux);
6332
6333 _bfd_elf_swap_vernaux_out (output_bfd, a,
6334 (Elf_External_Vernaux *) p);
6335 p += sizeof (Elf_External_Vernaux);
6336 }
6337 }
6338
6339 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6340 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6341 return FALSE;
6342
6343 elf_tdata (output_bfd)->cverrefs = crefs;
6344 }
6345 }
6346
6347 if ((elf_tdata (output_bfd)->cverrefs == 0
6348 && elf_tdata (output_bfd)->cverdefs == 0)
6349 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6350 &section_sym_count) == 0)
6351 {
6352 s = bfd_get_linker_section (dynobj, ".gnu.version");
6353 s->flags |= SEC_EXCLUDE;
6354 }
6355 }
6356 return TRUE;
6357}
6358
6359/* Find the first non-excluded output section. We'll use its
6360 section symbol for some emitted relocs. */
6361void
6362_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6363{
6364 asection *s;
6365
6366 for (s = output_bfd->sections; s != NULL; s = s->next)
6367 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6368 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6369 {
6370 elf_hash_table (info)->text_index_section = s;
6371 break;
6372 }
6373}
6374
6375/* Find two non-excluded output sections, one for code, one for data.
6376 We'll use their section symbols for some emitted relocs. */
6377void
6378_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6379{
6380 asection *s;
6381
6382 /* Data first, since setting text_index_section changes
6383 _bfd_elf_link_omit_section_dynsym. */
6384 for (s = output_bfd->sections; s != NULL; s = s->next)
6385 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6386 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6387 {
6388 elf_hash_table (info)->data_index_section = s;
6389 break;
6390 }
6391
6392 for (s = output_bfd->sections; s != NULL; s = s->next)
6393 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6394 == (SEC_ALLOC | SEC_READONLY))
6395 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6396 {
6397 elf_hash_table (info)->text_index_section = s;
6398 break;
6399 }
6400
6401 if (elf_hash_table (info)->text_index_section == NULL)
6402 elf_hash_table (info)->text_index_section
6403 = elf_hash_table (info)->data_index_section;
6404}
6405
6406bfd_boolean
6407bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6408{
6409 const struct elf_backend_data *bed;
6410
6411 if (!is_elf_hash_table (info->hash))
6412 return TRUE;
6413
6414 bed = get_elf_backend_data (output_bfd);
6415 (*bed->elf_backend_init_index_section) (output_bfd, info);
6416
6417 if (elf_hash_table (info)->dynamic_sections_created)
6418 {
6419 bfd *dynobj;
6420 asection *s;
6421 bfd_size_type dynsymcount;
6422 unsigned long section_sym_count;
6423 unsigned int dtagcount;
6424
6425 dynobj = elf_hash_table (info)->dynobj;
6426
6427 /* Assign dynsym indicies. In a shared library we generate a
6428 section symbol for each output section, which come first.
6429 Next come all of the back-end allocated local dynamic syms,
6430 followed by the rest of the global symbols. */
6431
6432 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6433 &section_sym_count);
6434
6435 /* Work out the size of the symbol version section. */
6436 s = bfd_get_linker_section (dynobj, ".gnu.version");
6437 BFD_ASSERT (s != NULL);
6438 if (dynsymcount != 0
6439 && (s->flags & SEC_EXCLUDE) == 0)
6440 {
6441 s->size = dynsymcount * sizeof (Elf_External_Versym);
6442 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6443 if (s->contents == NULL)
6444 return FALSE;
6445
6446 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6447 return FALSE;
6448 }
6449
6450 /* Set the size of the .dynsym and .hash sections. We counted
6451 the number of dynamic symbols in elf_link_add_object_symbols.
6452 We will build the contents of .dynsym and .hash when we build
6453 the final symbol table, because until then we do not know the
6454 correct value to give the symbols. We built the .dynstr
6455 section as we went along in elf_link_add_object_symbols. */
6456 s = bfd_get_linker_section (dynobj, ".dynsym");
6457 BFD_ASSERT (s != NULL);
6458 s->size = dynsymcount * bed->s->sizeof_sym;
6459
6460 if (dynsymcount != 0)
6461 {
6462 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6463 if (s->contents == NULL)
6464 return FALSE;
6465
6466 /* The first entry in .dynsym is a dummy symbol.
6467 Clear all the section syms, in case we don't output them all. */
6468 ++section_sym_count;
6469 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6470 }
6471
6472 elf_hash_table (info)->bucketcount = 0;
6473
6474 /* Compute the size of the hashing table. As a side effect this
6475 computes the hash values for all the names we export. */
6476 if (info->emit_hash)
6477 {
6478 unsigned long int *hashcodes;
6479 struct hash_codes_info hashinf;
6480 bfd_size_type amt;
6481 unsigned long int nsyms;
6482 size_t bucketcount;
6483 size_t hash_entry_size;
6484
6485 /* Compute the hash values for all exported symbols. At the same
6486 time store the values in an array so that we could use them for
6487 optimizations. */
6488 amt = dynsymcount * sizeof (unsigned long int);
6489 hashcodes = (unsigned long int *) bfd_malloc (amt);
6490 if (hashcodes == NULL)
6491 return FALSE;
6492 hashinf.hashcodes = hashcodes;
6493 hashinf.error = FALSE;
6494
6495 /* Put all hash values in HASHCODES. */
6496 elf_link_hash_traverse (elf_hash_table (info),
6497 elf_collect_hash_codes, &hashinf);
6498 if (hashinf.error)
6499 {
6500 free (hashcodes);
6501 return FALSE;
6502 }
6503
6504 nsyms = hashinf.hashcodes - hashcodes;
6505 bucketcount
6506 = compute_bucket_count (info, hashcodes, nsyms, 0);
6507 free (hashcodes);
6508
6509 if (bucketcount == 0)
6510 return FALSE;
6511
6512 elf_hash_table (info)->bucketcount = bucketcount;
6513
6514 s = bfd_get_linker_section (dynobj, ".hash");
6515 BFD_ASSERT (s != NULL);
6516 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6517 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6518 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6519 if (s->contents == NULL)
6520 return FALSE;
6521
6522 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6523 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6524 s->contents + hash_entry_size);
6525 }
6526
6527 if (info->emit_gnu_hash)
6528 {
6529 size_t i, cnt;
6530 unsigned char *contents;
6531 struct collect_gnu_hash_codes cinfo;
6532 bfd_size_type amt;
6533 size_t bucketcount;
6534
6535 memset (&cinfo, 0, sizeof (cinfo));
6536
6537 /* Compute the hash values for all exported symbols. At the same
6538 time store the values in an array so that we could use them for
6539 optimizations. */
6540 amt = dynsymcount * 2 * sizeof (unsigned long int);
6541 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6542 if (cinfo.hashcodes == NULL)
6543 return FALSE;
6544
6545 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6546 cinfo.min_dynindx = -1;
6547 cinfo.output_bfd = output_bfd;
6548 cinfo.bed = bed;
6549
6550 /* Put all hash values in HASHCODES. */
6551 elf_link_hash_traverse (elf_hash_table (info),
6552 elf_collect_gnu_hash_codes, &cinfo);
6553 if (cinfo.error)
6554 {
6555 free (cinfo.hashcodes);
6556 return FALSE;
6557 }
6558
6559 bucketcount
6560 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6561
6562 if (bucketcount == 0)
6563 {
6564 free (cinfo.hashcodes);
6565 return FALSE;
6566 }
6567
6568 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6569 BFD_ASSERT (s != NULL);
6570
6571 if (cinfo.nsyms == 0)
6572 {
6573 /* Empty .gnu.hash section is special. */
6574 BFD_ASSERT (cinfo.min_dynindx == -1);
6575 free (cinfo.hashcodes);
6576 s->size = 5 * 4 + bed->s->arch_size / 8;
6577 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6578 if (contents == NULL)
6579 return FALSE;
6580 s->contents = contents;
6581 /* 1 empty bucket. */
6582 bfd_put_32 (output_bfd, 1, contents);
6583 /* SYMIDX above the special symbol 0. */
6584 bfd_put_32 (output_bfd, 1, contents + 4);
6585 /* Just one word for bitmask. */
6586 bfd_put_32 (output_bfd, 1, contents + 8);
6587 /* Only hash fn bloom filter. */
6588 bfd_put_32 (output_bfd, 0, contents + 12);
6589 /* No hashes are valid - empty bitmask. */
6590 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6591 /* No hashes in the only bucket. */
6592 bfd_put_32 (output_bfd, 0,
6593 contents + 16 + bed->s->arch_size / 8);
6594 }
6595 else
6596 {
6597 unsigned long int maskwords, maskbitslog2, x;
6598 BFD_ASSERT (cinfo.min_dynindx != -1);
6599
6600 x = cinfo.nsyms;
6601 maskbitslog2 = 1;
6602 while ((x >>= 1) != 0)
6603 ++maskbitslog2;
6604 if (maskbitslog2 < 3)
6605 maskbitslog2 = 5;
6606 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6607 maskbitslog2 = maskbitslog2 + 3;
6608 else
6609 maskbitslog2 = maskbitslog2 + 2;
6610 if (bed->s->arch_size == 64)
6611 {
6612 if (maskbitslog2 == 5)
6613 maskbitslog2 = 6;
6614 cinfo.shift1 = 6;
6615 }
6616 else
6617 cinfo.shift1 = 5;
6618 cinfo.mask = (1 << cinfo.shift1) - 1;
6619 cinfo.shift2 = maskbitslog2;
6620 cinfo.maskbits = 1 << maskbitslog2;
6621 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6622 amt = bucketcount * sizeof (unsigned long int) * 2;
6623 amt += maskwords * sizeof (bfd_vma);
6624 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6625 if (cinfo.bitmask == NULL)
6626 {
6627 free (cinfo.hashcodes);
6628 return FALSE;
6629 }
6630
6631 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6632 cinfo.indx = cinfo.counts + bucketcount;
6633 cinfo.symindx = dynsymcount - cinfo.nsyms;
6634 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6635
6636 /* Determine how often each hash bucket is used. */
6637 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6638 for (i = 0; i < cinfo.nsyms; ++i)
6639 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6640
6641 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6642 if (cinfo.counts[i] != 0)
6643 {
6644 cinfo.indx[i] = cnt;
6645 cnt += cinfo.counts[i];
6646 }
6647 BFD_ASSERT (cnt == dynsymcount);
6648 cinfo.bucketcount = bucketcount;
6649 cinfo.local_indx = cinfo.min_dynindx;
6650
6651 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6652 s->size += cinfo.maskbits / 8;
6653 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6654 if (contents == NULL)
6655 {
6656 free (cinfo.bitmask);
6657 free (cinfo.hashcodes);
6658 return FALSE;
6659 }
6660
6661 s->contents = contents;
6662 bfd_put_32 (output_bfd, bucketcount, contents);
6663 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6664 bfd_put_32 (output_bfd, maskwords, contents + 8);
6665 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6666 contents += 16 + cinfo.maskbits / 8;
6667
6668 for (i = 0; i < bucketcount; ++i)
6669 {
6670 if (cinfo.counts[i] == 0)
6671 bfd_put_32 (output_bfd, 0, contents);
6672 else
6673 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6674 contents += 4;
6675 }
6676
6677 cinfo.contents = contents;
6678
6679 /* Renumber dynamic symbols, populate .gnu.hash section. */
6680 elf_link_hash_traverse (elf_hash_table (info),
6681 elf_renumber_gnu_hash_syms, &cinfo);
6682
6683 contents = s->contents + 16;
6684 for (i = 0; i < maskwords; ++i)
6685 {
6686 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6687 contents);
6688 contents += bed->s->arch_size / 8;
6689 }
6690
6691 free (cinfo.bitmask);
6692 free (cinfo.hashcodes);
6693 }
6694 }
6695
6696 s = bfd_get_linker_section (dynobj, ".dynstr");
6697 BFD_ASSERT (s != NULL);
6698
6699 elf_finalize_dynstr (output_bfd, info);
6700
6701 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6702
6703 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6704 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6705 return FALSE;
6706 }
6707
6708 return TRUE;
6709}
6710\f
6711/* Make sure sec_info_type is cleared if sec_info is cleared too. */
6712
6713static void
6714merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6715 asection *sec)
6716{
6717 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6718 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6719}
6720
6721/* Finish SHF_MERGE section merging. */
6722
6723bfd_boolean
6724_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6725{
6726 bfd *ibfd;
6727 asection *sec;
6728
6729 if (!is_elf_hash_table (info->hash))
6730 return FALSE;
6731
6732 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6733 if ((ibfd->flags & DYNAMIC) == 0)
6734 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6735 if ((sec->flags & SEC_MERGE) != 0
6736 && !bfd_is_abs_section (sec->output_section))
6737 {
6738 struct bfd_elf_section_data *secdata;
6739
6740 secdata = elf_section_data (sec);
6741 if (! _bfd_add_merge_section (abfd,
6742 &elf_hash_table (info)->merge_info,
6743 sec, &secdata->sec_info))
6744 return FALSE;
6745 else if (secdata->sec_info)
6746 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6747 }
6748
6749 if (elf_hash_table (info)->merge_info != NULL)
6750 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6751 merge_sections_remove_hook);
6752 return TRUE;
6753}
6754
6755/* Create an entry in an ELF linker hash table. */
6756
6757struct bfd_hash_entry *
6758_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6759 struct bfd_hash_table *table,
6760 const char *string)
6761{
6762 /* Allocate the structure if it has not already been allocated by a
6763 subclass. */
6764 if (entry == NULL)
6765 {
6766 entry = (struct bfd_hash_entry *)
6767 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6768 if (entry == NULL)
6769 return entry;
6770 }
6771
6772 /* Call the allocation method of the superclass. */
6773 entry = _bfd_link_hash_newfunc (entry, table, string);
6774 if (entry != NULL)
6775 {
6776 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6777 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6778
6779 /* Set local fields. */
6780 ret->indx = -1;
6781 ret->dynindx = -1;
6782 ret->got = htab->init_got_refcount;
6783 ret->plt = htab->init_plt_refcount;
6784 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6785 - offsetof (struct elf_link_hash_entry, size)));
6786 /* Assume that we have been called by a non-ELF symbol reader.
6787 This flag is then reset by the code which reads an ELF input
6788 file. This ensures that a symbol created by a non-ELF symbol
6789 reader will have the flag set correctly. */
6790 ret->non_elf = 1;
6791 }
6792
6793 return entry;
6794}
6795
6796/* Copy data from an indirect symbol to its direct symbol, hiding the
6797 old indirect symbol. Also used for copying flags to a weakdef. */
6798
6799void
6800_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6801 struct elf_link_hash_entry *dir,
6802 struct elf_link_hash_entry *ind)
6803{
6804 struct elf_link_hash_table *htab;
6805
6806 /* Copy down any references that we may have already seen to the
6807 symbol which just became indirect. */
6808
6809 dir->ref_dynamic |= ind->ref_dynamic;
6810 dir->ref_regular |= ind->ref_regular;
6811 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6812 dir->non_got_ref |= ind->non_got_ref;
6813 dir->needs_plt |= ind->needs_plt;
6814 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6815
6816 if (ind->root.type != bfd_link_hash_indirect)
6817 return;
6818
6819 /* Copy over the global and procedure linkage table refcount entries.
6820 These may have been already set up by a check_relocs routine. */
6821 htab = elf_hash_table (info);
6822 if (ind->got.refcount > htab->init_got_refcount.refcount)
6823 {
6824 if (dir->got.refcount < 0)
6825 dir->got.refcount = 0;
6826 dir->got.refcount += ind->got.refcount;
6827 ind->got.refcount = htab->init_got_refcount.refcount;
6828 }
6829
6830 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6831 {
6832 if (dir->plt.refcount < 0)
6833 dir->plt.refcount = 0;
6834 dir->plt.refcount += ind->plt.refcount;
6835 ind->plt.refcount = htab->init_plt_refcount.refcount;
6836 }
6837
6838 if (ind->dynindx != -1)
6839 {
6840 if (dir->dynindx != -1)
6841 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6842 dir->dynindx = ind->dynindx;
6843 dir->dynstr_index = ind->dynstr_index;
6844 ind->dynindx = -1;
6845 ind->dynstr_index = 0;
6846 }
6847}
6848
6849void
6850_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6851 struct elf_link_hash_entry *h,
6852 bfd_boolean force_local)
6853{
6854 /* STT_GNU_IFUNC symbol must go through PLT. */
6855 if (h->type != STT_GNU_IFUNC)
6856 {
6857 h->plt = elf_hash_table (info)->init_plt_offset;
6858 h->needs_plt = 0;
6859 }
6860 if (force_local)
6861 {
6862 h->forced_local = 1;
6863 if (h->dynindx != -1)
6864 {
6865 h->dynindx = -1;
6866 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6867 h->dynstr_index);
6868 }
6869 }
6870}
6871
6872/* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6873 caller. */
6874
6875bfd_boolean
6876_bfd_elf_link_hash_table_init
6877 (struct elf_link_hash_table *table,
6878 bfd *abfd,
6879 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6880 struct bfd_hash_table *,
6881 const char *),
6882 unsigned int entsize,
6883 enum elf_target_id target_id)
6884{
6885 bfd_boolean ret;
6886 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6887
6888 table->init_got_refcount.refcount = can_refcount - 1;
6889 table->init_plt_refcount.refcount = can_refcount - 1;
6890 table->init_got_offset.offset = -(bfd_vma) 1;
6891 table->init_plt_offset.offset = -(bfd_vma) 1;
6892 /* The first dynamic symbol is a dummy. */
6893 table->dynsymcount = 1;
6894
6895 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6896
6897 table->root.type = bfd_link_elf_hash_table;
6898 table->hash_table_id = target_id;
6899
6900 return ret;
6901}
6902
6903/* Create an ELF linker hash table. */
6904
6905struct bfd_link_hash_table *
6906_bfd_elf_link_hash_table_create (bfd *abfd)
6907{
6908 struct elf_link_hash_table *ret;
6909 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6910
6911 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6912 if (ret == NULL)
6913 return NULL;
6914
6915 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6916 sizeof (struct elf_link_hash_entry),
6917 GENERIC_ELF_DATA))
6918 {
6919 free (ret);
6920 return NULL;
6921 }
6922 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6923
6924 return &ret->root;
6925}
6926
6927/* Destroy an ELF linker hash table. */
6928
6929void
6930_bfd_elf_link_hash_table_free (bfd *obfd)
6931{
6932 struct elf_link_hash_table *htab;
6933
6934 htab = (struct elf_link_hash_table *) obfd->link.hash;
6935 if (htab->dynstr != NULL)
6936 _bfd_elf_strtab_free (htab->dynstr);
6937 _bfd_merge_sections_free (htab->merge_info);
6938 _bfd_generic_link_hash_table_free (obfd);
6939}
6940
6941/* This is a hook for the ELF emulation code in the generic linker to
6942 tell the backend linker what file name to use for the DT_NEEDED
6943 entry for a dynamic object. */
6944
6945void
6946bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6947{
6948 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6949 && bfd_get_format (abfd) == bfd_object)
6950 elf_dt_name (abfd) = name;
6951}
6952
6953int
6954bfd_elf_get_dyn_lib_class (bfd *abfd)
6955{
6956 int lib_class;
6957 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6958 && bfd_get_format (abfd) == bfd_object)
6959 lib_class = elf_dyn_lib_class (abfd);
6960 else
6961 lib_class = 0;
6962 return lib_class;
6963}
6964
6965void
6966bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6967{
6968 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6969 && bfd_get_format (abfd) == bfd_object)
6970 elf_dyn_lib_class (abfd) = lib_class;
6971}
6972
6973/* Get the list of DT_NEEDED entries for a link. This is a hook for
6974 the linker ELF emulation code. */
6975
6976struct bfd_link_needed_list *
6977bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6978 struct bfd_link_info *info)
6979{
6980 if (! is_elf_hash_table (info->hash))
6981 return NULL;
6982 return elf_hash_table (info)->needed;
6983}
6984
6985/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6986 hook for the linker ELF emulation code. */
6987
6988struct bfd_link_needed_list *
6989bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6990 struct bfd_link_info *info)
6991{
6992 if (! is_elf_hash_table (info->hash))
6993 return NULL;
6994 return elf_hash_table (info)->runpath;
6995}
6996
6997/* Get the name actually used for a dynamic object for a link. This
6998 is the SONAME entry if there is one. Otherwise, it is the string
6999 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7000
7001const char *
7002bfd_elf_get_dt_soname (bfd *abfd)
7003{
7004 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7005 && bfd_get_format (abfd) == bfd_object)
7006 return elf_dt_name (abfd);
7007 return NULL;
7008}
7009
7010/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7011 the ELF linker emulation code. */
7012
7013bfd_boolean
7014bfd_elf_get_bfd_needed_list (bfd *abfd,
7015 struct bfd_link_needed_list **pneeded)
7016{
7017 asection *s;
7018 bfd_byte *dynbuf = NULL;
7019 unsigned int elfsec;
7020 unsigned long shlink;
7021 bfd_byte *extdyn, *extdynend;
7022 size_t extdynsize;
7023 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7024
7025 *pneeded = NULL;
7026
7027 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7028 || bfd_get_format (abfd) != bfd_object)
7029 return TRUE;
7030
7031 s = bfd_get_section_by_name (abfd, ".dynamic");
7032 if (s == NULL || s->size == 0)
7033 return TRUE;
7034
7035 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7036 goto error_return;
7037
7038 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7039 if (elfsec == SHN_BAD)
7040 goto error_return;
7041
7042 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7043
7044 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7045 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7046
7047 extdyn = dynbuf;
7048 extdynend = extdyn + s->size;
7049 for (; extdyn < extdynend; extdyn += extdynsize)
7050 {
7051 Elf_Internal_Dyn dyn;
7052
7053 (*swap_dyn_in) (abfd, extdyn, &dyn);
7054
7055 if (dyn.d_tag == DT_NULL)
7056 break;
7057
7058 if (dyn.d_tag == DT_NEEDED)
7059 {
7060 const char *string;
7061 struct bfd_link_needed_list *l;
7062 unsigned int tagv = dyn.d_un.d_val;
7063 bfd_size_type amt;
7064
7065 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7066 if (string == NULL)
7067 goto error_return;
7068
7069 amt = sizeof *l;
7070 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7071 if (l == NULL)
7072 goto error_return;
7073
7074 l->by = abfd;
7075 l->name = string;
7076 l->next = *pneeded;
7077 *pneeded = l;
7078 }
7079 }
7080
7081 free (dynbuf);
7082
7083 return TRUE;
7084
7085 error_return:
7086 if (dynbuf != NULL)
7087 free (dynbuf);
7088 return FALSE;
7089}
7090
7091struct elf_symbuf_symbol
7092{
7093 unsigned long st_name; /* Symbol name, index in string tbl */
7094 unsigned char st_info; /* Type and binding attributes */
7095 unsigned char st_other; /* Visibilty, and target specific */
7096};
7097
7098struct elf_symbuf_head
7099{
7100 struct elf_symbuf_symbol *ssym;
7101 bfd_size_type count;
7102 unsigned int st_shndx;
7103};
7104
7105struct elf_symbol
7106{
7107 union
7108 {
7109 Elf_Internal_Sym *isym;
7110 struct elf_symbuf_symbol *ssym;
7111 } u;
7112 const char *name;
7113};
7114
7115/* Sort references to symbols by ascending section number. */
7116
7117static int
7118elf_sort_elf_symbol (const void *arg1, const void *arg2)
7119{
7120 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7121 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7122
7123 return s1->st_shndx - s2->st_shndx;
7124}
7125
7126static int
7127elf_sym_name_compare (const void *arg1, const void *arg2)
7128{
7129 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7130 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7131 return strcmp (s1->name, s2->name);
7132}
7133
7134static struct elf_symbuf_head *
7135elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7136{
7137 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7138 struct elf_symbuf_symbol *ssym;
7139 struct elf_symbuf_head *ssymbuf, *ssymhead;
7140 bfd_size_type i, shndx_count, total_size;
7141
7142 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7143 if (indbuf == NULL)
7144 return NULL;
7145
7146 for (ind = indbuf, i = 0; i < symcount; i++)
7147 if (isymbuf[i].st_shndx != SHN_UNDEF)
7148 *ind++ = &isymbuf[i];
7149 indbufend = ind;
7150
7151 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7152 elf_sort_elf_symbol);
7153
7154 shndx_count = 0;
7155 if (indbufend > indbuf)
7156 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7157 if (ind[0]->st_shndx != ind[1]->st_shndx)
7158 shndx_count++;
7159
7160 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7161 + (indbufend - indbuf) * sizeof (*ssym));
7162 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7163 if (ssymbuf == NULL)
7164 {
7165 free (indbuf);
7166 return NULL;
7167 }
7168
7169 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7170 ssymbuf->ssym = NULL;
7171 ssymbuf->count = shndx_count;
7172 ssymbuf->st_shndx = 0;
7173 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7174 {
7175 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7176 {
7177 ssymhead++;
7178 ssymhead->ssym = ssym;
7179 ssymhead->count = 0;
7180 ssymhead->st_shndx = (*ind)->st_shndx;
7181 }
7182 ssym->st_name = (*ind)->st_name;
7183 ssym->st_info = (*ind)->st_info;
7184 ssym->st_other = (*ind)->st_other;
7185 ssymhead->count++;
7186 }
7187 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7188 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7189 == total_size));
7190
7191 free (indbuf);
7192 return ssymbuf;
7193}
7194
7195/* Check if 2 sections define the same set of local and global
7196 symbols. */
7197
7198static bfd_boolean
7199bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7200 struct bfd_link_info *info)
7201{
7202 bfd *bfd1, *bfd2;
7203 const struct elf_backend_data *bed1, *bed2;
7204 Elf_Internal_Shdr *hdr1, *hdr2;
7205 bfd_size_type symcount1, symcount2;
7206 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7207 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7208 Elf_Internal_Sym *isym, *isymend;
7209 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7210 bfd_size_type count1, count2, i;
7211 unsigned int shndx1, shndx2;
7212 bfd_boolean result;
7213
7214 bfd1 = sec1->owner;
7215 bfd2 = sec2->owner;
7216
7217 /* Both sections have to be in ELF. */
7218 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7219 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7220 return FALSE;
7221
7222 if (elf_section_type (sec1) != elf_section_type (sec2))
7223 return FALSE;
7224
7225 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7226 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7227 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7228 return FALSE;
7229
7230 bed1 = get_elf_backend_data (bfd1);
7231 bed2 = get_elf_backend_data (bfd2);
7232 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7233 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7234 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7235 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7236
7237 if (symcount1 == 0 || symcount2 == 0)
7238 return FALSE;
7239
7240 result = FALSE;
7241 isymbuf1 = NULL;
7242 isymbuf2 = NULL;
7243 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7244 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7245
7246 if (ssymbuf1 == NULL)
7247 {
7248 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7249 NULL, NULL, NULL);
7250 if (isymbuf1 == NULL)
7251 goto done;
7252
7253 if (!info->reduce_memory_overheads)
7254 elf_tdata (bfd1)->symbuf = ssymbuf1
7255 = elf_create_symbuf (symcount1, isymbuf1);
7256 }
7257
7258 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7259 {
7260 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7261 NULL, NULL, NULL);
7262 if (isymbuf2 == NULL)
7263 goto done;
7264
7265 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7266 elf_tdata (bfd2)->symbuf = ssymbuf2
7267 = elf_create_symbuf (symcount2, isymbuf2);
7268 }
7269
7270 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7271 {
7272 /* Optimized faster version. */
7273 bfd_size_type lo, hi, mid;
7274 struct elf_symbol *symp;
7275 struct elf_symbuf_symbol *ssym, *ssymend;
7276
7277 lo = 0;
7278 hi = ssymbuf1->count;
7279 ssymbuf1++;
7280 count1 = 0;
7281 while (lo < hi)
7282 {
7283 mid = (lo + hi) / 2;
7284 if (shndx1 < ssymbuf1[mid].st_shndx)
7285 hi = mid;
7286 else if (shndx1 > ssymbuf1[mid].st_shndx)
7287 lo = mid + 1;
7288 else
7289 {
7290 count1 = ssymbuf1[mid].count;
7291 ssymbuf1 += mid;
7292 break;
7293 }
7294 }
7295
7296 lo = 0;
7297 hi = ssymbuf2->count;
7298 ssymbuf2++;
7299 count2 = 0;
7300 while (lo < hi)
7301 {
7302 mid = (lo + hi) / 2;
7303 if (shndx2 < ssymbuf2[mid].st_shndx)
7304 hi = mid;
7305 else if (shndx2 > ssymbuf2[mid].st_shndx)
7306 lo = mid + 1;
7307 else
7308 {
7309 count2 = ssymbuf2[mid].count;
7310 ssymbuf2 += mid;
7311 break;
7312 }
7313 }
7314
7315 if (count1 == 0 || count2 == 0 || count1 != count2)
7316 goto done;
7317
7318 symtable1
7319 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7320 symtable2
7321 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7322 if (symtable1 == NULL || symtable2 == NULL)
7323 goto done;
7324
7325 symp = symtable1;
7326 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7327 ssym < ssymend; ssym++, symp++)
7328 {
7329 symp->u.ssym = ssym;
7330 symp->name = bfd_elf_string_from_elf_section (bfd1,
7331 hdr1->sh_link,
7332 ssym->st_name);
7333 }
7334
7335 symp = symtable2;
7336 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7337 ssym < ssymend; ssym++, symp++)
7338 {
7339 symp->u.ssym = ssym;
7340 symp->name = bfd_elf_string_from_elf_section (bfd2,
7341 hdr2->sh_link,
7342 ssym->st_name);
7343 }
7344
7345 /* Sort symbol by name. */
7346 qsort (symtable1, count1, sizeof (struct elf_symbol),
7347 elf_sym_name_compare);
7348 qsort (symtable2, count1, sizeof (struct elf_symbol),
7349 elf_sym_name_compare);
7350
7351 for (i = 0; i < count1; i++)
7352 /* Two symbols must have the same binding, type and name. */
7353 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7354 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7355 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7356 goto done;
7357
7358 result = TRUE;
7359 goto done;
7360 }
7361
7362 symtable1 = (struct elf_symbol *)
7363 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7364 symtable2 = (struct elf_symbol *)
7365 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7366 if (symtable1 == NULL || symtable2 == NULL)
7367 goto done;
7368
7369 /* Count definitions in the section. */
7370 count1 = 0;
7371 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7372 if (isym->st_shndx == shndx1)
7373 symtable1[count1++].u.isym = isym;
7374
7375 count2 = 0;
7376 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7377 if (isym->st_shndx == shndx2)
7378 symtable2[count2++].u.isym = isym;
7379
7380 if (count1 == 0 || count2 == 0 || count1 != count2)
7381 goto done;
7382
7383 for (i = 0; i < count1; i++)
7384 symtable1[i].name
7385 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7386 symtable1[i].u.isym->st_name);
7387
7388 for (i = 0; i < count2; i++)
7389 symtable2[i].name
7390 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7391 symtable2[i].u.isym->st_name);
7392
7393 /* Sort symbol by name. */
7394 qsort (symtable1, count1, sizeof (struct elf_symbol),
7395 elf_sym_name_compare);
7396 qsort (symtable2, count1, sizeof (struct elf_symbol),
7397 elf_sym_name_compare);
7398
7399 for (i = 0; i < count1; i++)
7400 /* Two symbols must have the same binding, type and name. */
7401 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7402 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7403 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7404 goto done;
7405
7406 result = TRUE;
7407
7408done:
7409 if (symtable1)
7410 free (symtable1);
7411 if (symtable2)
7412 free (symtable2);
7413 if (isymbuf1)
7414 free (isymbuf1);
7415 if (isymbuf2)
7416 free (isymbuf2);
7417
7418 return result;
7419}
7420
7421/* Return TRUE if 2 section types are compatible. */
7422
7423bfd_boolean
7424_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7425 bfd *bbfd, const asection *bsec)
7426{
7427 if (asec == NULL
7428 || bsec == NULL
7429 || abfd->xvec->flavour != bfd_target_elf_flavour
7430 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7431 return TRUE;
7432
7433 return elf_section_type (asec) == elf_section_type (bsec);
7434}
7435\f
7436/* Final phase of ELF linker. */
7437
7438/* A structure we use to avoid passing large numbers of arguments. */
7439
7440struct elf_final_link_info
7441{
7442 /* General link information. */
7443 struct bfd_link_info *info;
7444 /* Output BFD. */
7445 bfd *output_bfd;
7446 /* Symbol string table. */
7447 struct bfd_strtab_hash *symstrtab;
7448 /* .dynsym section. */
7449 asection *dynsym_sec;
7450 /* .hash section. */
7451 asection *hash_sec;
7452 /* symbol version section (.gnu.version). */
7453 asection *symver_sec;
7454 /* Buffer large enough to hold contents of any section. */
7455 bfd_byte *contents;
7456 /* Buffer large enough to hold external relocs of any section. */
7457 void *external_relocs;
7458 /* Buffer large enough to hold internal relocs of any section. */
7459 Elf_Internal_Rela *internal_relocs;
7460 /* Buffer large enough to hold external local symbols of any input
7461 BFD. */
7462 bfd_byte *external_syms;
7463 /* And a buffer for symbol section indices. */
7464 Elf_External_Sym_Shndx *locsym_shndx;
7465 /* Buffer large enough to hold internal local symbols of any input
7466 BFD. */
7467 Elf_Internal_Sym *internal_syms;
7468 /* Array large enough to hold a symbol index for each local symbol
7469 of any input BFD. */
7470 long *indices;
7471 /* Array large enough to hold a section pointer for each local
7472 symbol of any input BFD. */
7473 asection **sections;
7474 /* Buffer to hold swapped out symbols. */
7475 bfd_byte *symbuf;
7476 /* And one for symbol section indices. */
7477 Elf_External_Sym_Shndx *symshndxbuf;
7478 /* Number of swapped out symbols in buffer. */
7479 size_t symbuf_count;
7480 /* Number of symbols which fit in symbuf. */
7481 size_t symbuf_size;
7482 /* And same for symshndxbuf. */
7483 size_t shndxbuf_size;
7484 /* Number of STT_FILE syms seen. */
7485 size_t filesym_count;
7486};
7487
7488/* This struct is used to pass information to elf_link_output_extsym. */
7489
7490struct elf_outext_info
7491{
7492 bfd_boolean failed;
7493 bfd_boolean localsyms;
7494 bfd_boolean file_sym_done;
7495 struct elf_final_link_info *flinfo;
7496};
7497
7498
7499/* Support for evaluating a complex relocation.
7500
7501 Complex relocations are generalized, self-describing relocations. The
7502 implementation of them consists of two parts: complex symbols, and the
7503 relocations themselves.
7504
7505 The relocations are use a reserved elf-wide relocation type code (R_RELC
7506 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7507 information (start bit, end bit, word width, etc) into the addend. This
7508 information is extracted from CGEN-generated operand tables within gas.
7509
7510 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7511 internal) representing prefix-notation expressions, including but not
7512 limited to those sorts of expressions normally encoded as addends in the
7513 addend field. The symbol mangling format is:
7514
7515 <node> := <literal>
7516 | <unary-operator> ':' <node>
7517 | <binary-operator> ':' <node> ':' <node>
7518 ;
7519
7520 <literal> := 's' <digits=N> ':' <N character symbol name>
7521 | 'S' <digits=N> ':' <N character section name>
7522 | '#' <hexdigits>
7523 ;
7524
7525 <binary-operator> := as in C
7526 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7527
7528static void
7529set_symbol_value (bfd *bfd_with_globals,
7530 Elf_Internal_Sym *isymbuf,
7531 size_t locsymcount,
7532 size_t symidx,
7533 bfd_vma val)
7534{
7535 struct elf_link_hash_entry **sym_hashes;
7536 struct elf_link_hash_entry *h;
7537 size_t extsymoff = locsymcount;
7538
7539 if (symidx < locsymcount)
7540 {
7541 Elf_Internal_Sym *sym;
7542
7543 sym = isymbuf + symidx;
7544 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7545 {
7546 /* It is a local symbol: move it to the
7547 "absolute" section and give it a value. */
7548 sym->st_shndx = SHN_ABS;
7549 sym->st_value = val;
7550 return;
7551 }
7552 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7553 extsymoff = 0;
7554 }
7555
7556 /* It is a global symbol: set its link type
7557 to "defined" and give it a value. */
7558
7559 sym_hashes = elf_sym_hashes (bfd_with_globals);
7560 h = sym_hashes [symidx - extsymoff];
7561 while (h->root.type == bfd_link_hash_indirect
7562 || h->root.type == bfd_link_hash_warning)
7563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7564 h->root.type = bfd_link_hash_defined;
7565 h->root.u.def.value = val;
7566 h->root.u.def.section = bfd_abs_section_ptr;
7567}
7568
7569static bfd_boolean
7570resolve_symbol (const char *name,
7571 bfd *input_bfd,
7572 struct elf_final_link_info *flinfo,
7573 bfd_vma *result,
7574 Elf_Internal_Sym *isymbuf,
7575 size_t locsymcount)
7576{
7577 Elf_Internal_Sym *sym;
7578 struct bfd_link_hash_entry *global_entry;
7579 const char *candidate = NULL;
7580 Elf_Internal_Shdr *symtab_hdr;
7581 size_t i;
7582
7583 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7584
7585 for (i = 0; i < locsymcount; ++ i)
7586 {
7587 sym = isymbuf + i;
7588
7589 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7590 continue;
7591
7592 candidate = bfd_elf_string_from_elf_section (input_bfd,
7593 symtab_hdr->sh_link,
7594 sym->st_name);
7595#ifdef DEBUG
7596 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7597 name, candidate, (unsigned long) sym->st_value);
7598#endif
7599 if (candidate && strcmp (candidate, name) == 0)
7600 {
7601 asection *sec = flinfo->sections [i];
7602
7603 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7604 *result += sec->output_offset + sec->output_section->vma;
7605#ifdef DEBUG
7606 printf ("Found symbol with value %8.8lx\n",
7607 (unsigned long) *result);
7608#endif
7609 return TRUE;
7610 }
7611 }
7612
7613 /* Hmm, haven't found it yet. perhaps it is a global. */
7614 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7615 FALSE, FALSE, TRUE);
7616 if (!global_entry)
7617 return FALSE;
7618
7619 if (global_entry->type == bfd_link_hash_defined
7620 || global_entry->type == bfd_link_hash_defweak)
7621 {
7622 *result = (global_entry->u.def.value
7623 + global_entry->u.def.section->output_section->vma
7624 + global_entry->u.def.section->output_offset);
7625#ifdef DEBUG
7626 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7627 global_entry->root.string, (unsigned long) *result);
7628#endif
7629 return TRUE;
7630 }
7631
7632 return FALSE;
7633}
7634
7635static bfd_boolean
7636resolve_section (const char *name,
7637 asection *sections,
7638 bfd_vma *result)
7639{
7640 asection *curr;
7641 unsigned int len;
7642
7643 for (curr = sections; curr; curr = curr->next)
7644 if (strcmp (curr->name, name) == 0)
7645 {
7646 *result = curr->vma;
7647 return TRUE;
7648 }
7649
7650 /* Hmm. still haven't found it. try pseudo-section names. */
7651 for (curr = sections; curr; curr = curr->next)
7652 {
7653 len = strlen (curr->name);
7654 if (len > strlen (name))
7655 continue;
7656
7657 if (strncmp (curr->name, name, len) == 0)
7658 {
7659 if (strncmp (".end", name + len, 4) == 0)
7660 {
7661 *result = curr->vma + curr->size;
7662 return TRUE;
7663 }
7664
7665 /* Insert more pseudo-section names here, if you like. */
7666 }
7667 }
7668
7669 return FALSE;
7670}
7671
7672static void
7673undefined_reference (const char *reftype, const char *name)
7674{
7675 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7676 reftype, name);
7677}
7678
7679static bfd_boolean
7680eval_symbol (bfd_vma *result,
7681 const char **symp,
7682 bfd *input_bfd,
7683 struct elf_final_link_info *flinfo,
7684 bfd_vma dot,
7685 Elf_Internal_Sym *isymbuf,
7686 size_t locsymcount,
7687 int signed_p)
7688{
7689 size_t len;
7690 size_t symlen;
7691 bfd_vma a;
7692 bfd_vma b;
7693 char symbuf[4096];
7694 const char *sym = *symp;
7695 const char *symend;
7696 bfd_boolean symbol_is_section = FALSE;
7697
7698 len = strlen (sym);
7699 symend = sym + len;
7700
7701 if (len < 1 || len > sizeof (symbuf))
7702 {
7703 bfd_set_error (bfd_error_invalid_operation);
7704 return FALSE;
7705 }
7706
7707 switch (* sym)
7708 {
7709 case '.':
7710 *result = dot;
7711 *symp = sym + 1;
7712 return TRUE;
7713
7714 case '#':
7715 ++sym;
7716 *result = strtoul (sym, (char **) symp, 16);
7717 return TRUE;
7718
7719 case 'S':
7720 symbol_is_section = TRUE;
7721 case 's':
7722 ++sym;
7723 symlen = strtol (sym, (char **) symp, 10);
7724 sym = *symp + 1; /* Skip the trailing ':'. */
7725
7726 if (symend < sym || symlen + 1 > sizeof (symbuf))
7727 {
7728 bfd_set_error (bfd_error_invalid_operation);
7729 return FALSE;
7730 }
7731
7732 memcpy (symbuf, sym, symlen);
7733 symbuf[symlen] = '\0';
7734 *symp = sym + symlen;
7735
7736 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7737 the symbol as a section, or vice-versa. so we're pretty liberal in our
7738 interpretation here; section means "try section first", not "must be a
7739 section", and likewise with symbol. */
7740
7741 if (symbol_is_section)
7742 {
7743 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7744 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7745 isymbuf, locsymcount))
7746 {
7747 undefined_reference ("section", symbuf);
7748 return FALSE;
7749 }
7750 }
7751 else
7752 {
7753 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7754 isymbuf, locsymcount)
7755 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7756 result))
7757 {
7758 undefined_reference ("symbol", symbuf);
7759 return FALSE;
7760 }
7761 }
7762
7763 return TRUE;
7764
7765 /* All that remains are operators. */
7766
7767#define UNARY_OP(op) \
7768 if (strncmp (sym, #op, strlen (#op)) == 0) \
7769 { \
7770 sym += strlen (#op); \
7771 if (*sym == ':') \
7772 ++sym; \
7773 *symp = sym; \
7774 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7775 isymbuf, locsymcount, signed_p)) \
7776 return FALSE; \
7777 if (signed_p) \
7778 *result = op ((bfd_signed_vma) a); \
7779 else \
7780 *result = op a; \
7781 return TRUE; \
7782 }
7783
7784#define BINARY_OP(op) \
7785 if (strncmp (sym, #op, strlen (#op)) == 0) \
7786 { \
7787 sym += strlen (#op); \
7788 if (*sym == ':') \
7789 ++sym; \
7790 *symp = sym; \
7791 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7792 isymbuf, locsymcount, signed_p)) \
7793 return FALSE; \
7794 ++*symp; \
7795 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7796 isymbuf, locsymcount, signed_p)) \
7797 return FALSE; \
7798 if (signed_p) \
7799 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7800 else \
7801 *result = a op b; \
7802 return TRUE; \
7803 }
7804
7805 default:
7806 UNARY_OP (0-);
7807 BINARY_OP (<<);
7808 BINARY_OP (>>);
7809 BINARY_OP (==);
7810 BINARY_OP (!=);
7811 BINARY_OP (<=);
7812 BINARY_OP (>=);
7813 BINARY_OP (&&);
7814 BINARY_OP (||);
7815 UNARY_OP (~);
7816 UNARY_OP (!);
7817 BINARY_OP (*);
7818 BINARY_OP (/);
7819 BINARY_OP (%);
7820 BINARY_OP (^);
7821 BINARY_OP (|);
7822 BINARY_OP (&);
7823 BINARY_OP (+);
7824 BINARY_OP (-);
7825 BINARY_OP (<);
7826 BINARY_OP (>);
7827#undef UNARY_OP
7828#undef BINARY_OP
7829 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7830 bfd_set_error (bfd_error_invalid_operation);
7831 return FALSE;
7832 }
7833}
7834
7835static void
7836put_value (bfd_vma size,
7837 unsigned long chunksz,
7838 bfd *input_bfd,
7839 bfd_vma x,
7840 bfd_byte *location)
7841{
7842 location += (size - chunksz);
7843
7844 for (; size; size -= chunksz, location -= chunksz)
7845 {
7846 switch (chunksz)
7847 {
7848 case 1:
7849 bfd_put_8 (input_bfd, x, location);
7850 x >>= 8;
7851 break;
7852 case 2:
7853 bfd_put_16 (input_bfd, x, location);
7854 x >>= 16;
7855 break;
7856 case 4:
7857 bfd_put_32 (input_bfd, x, location);
7858 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7859 x >>= 16;
7860 x >>= 16;
7861 break;
7862#ifdef BFD64
7863 case 8:
7864 bfd_put_64 (input_bfd, x, location);
7865 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7866 x >>= 32;
7867 x >>= 32;
7868 break;
7869#endif
7870 default:
7871 abort ();
7872 break;
7873 }
7874 }
7875}
7876
7877static bfd_vma
7878get_value (bfd_vma size,
7879 unsigned long chunksz,
7880 bfd *input_bfd,
7881 bfd_byte *location)
7882{
7883 int shift;
7884 bfd_vma x = 0;
7885
7886 /* Sanity checks. */
7887 BFD_ASSERT (chunksz <= sizeof (x)
7888 && size >= chunksz
7889 && chunksz != 0
7890 && (size % chunksz) == 0
7891 && input_bfd != NULL
7892 && location != NULL);
7893
7894 if (chunksz == sizeof (x))
7895 {
7896 BFD_ASSERT (size == chunksz);
7897
7898 /* Make sure that we do not perform an undefined shift operation.
7899 We know that size == chunksz so there will only be one iteration
7900 of the loop below. */
7901 shift = 0;
7902 }
7903 else
7904 shift = 8 * chunksz;
7905
7906 for (; size; size -= chunksz, location += chunksz)
7907 {
7908 switch (chunksz)
7909 {
7910 case 1:
7911 x = (x << shift) | bfd_get_8 (input_bfd, location);
7912 break;
7913 case 2:
7914 x = (x << shift) | bfd_get_16 (input_bfd, location);
7915 break;
7916 case 4:
7917 x = (x << shift) | bfd_get_32 (input_bfd, location);
7918 break;
7919#ifdef BFD64
7920 case 8:
7921 x = (x << shift) | bfd_get_64 (input_bfd, location);
7922 break;
7923#endif
7924 default:
7925 abort ();
7926 }
7927 }
7928 return x;
7929}
7930
7931static void
7932decode_complex_addend (unsigned long *start, /* in bits */
7933 unsigned long *oplen, /* in bits */
7934 unsigned long *len, /* in bits */
7935 unsigned long *wordsz, /* in bytes */
7936 unsigned long *chunksz, /* in bytes */
7937 unsigned long *lsb0_p,
7938 unsigned long *signed_p,
7939 unsigned long *trunc_p,
7940 unsigned long encoded)
7941{
7942 * start = encoded & 0x3F;
7943 * len = (encoded >> 6) & 0x3F;
7944 * oplen = (encoded >> 12) & 0x3F;
7945 * wordsz = (encoded >> 18) & 0xF;
7946 * chunksz = (encoded >> 22) & 0xF;
7947 * lsb0_p = (encoded >> 27) & 1;
7948 * signed_p = (encoded >> 28) & 1;
7949 * trunc_p = (encoded >> 29) & 1;
7950}
7951
7952bfd_reloc_status_type
7953bfd_elf_perform_complex_relocation (bfd *input_bfd,
7954 asection *input_section ATTRIBUTE_UNUSED,
7955 bfd_byte *contents,
7956 Elf_Internal_Rela *rel,
7957 bfd_vma relocation)
7958{
7959 bfd_vma shift, x, mask;
7960 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7961 bfd_reloc_status_type r;
7962
7963 /* Perform this reloc, since it is complex.
7964 (this is not to say that it necessarily refers to a complex
7965 symbol; merely that it is a self-describing CGEN based reloc.
7966 i.e. the addend has the complete reloc information (bit start, end,
7967 word size, etc) encoded within it.). */
7968
7969 decode_complex_addend (&start, &oplen, &len, &wordsz,
7970 &chunksz, &lsb0_p, &signed_p,
7971 &trunc_p, rel->r_addend);
7972
7973 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7974
7975 if (lsb0_p)
7976 shift = (start + 1) - len;
7977 else
7978 shift = (8 * wordsz) - (start + len);
7979
7980 /* FIXME: octets_per_byte. */
7981 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7982
7983#ifdef DEBUG
7984 printf ("Doing complex reloc: "
7985 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7986 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7987 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7988 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7989 oplen, (unsigned long) x, (unsigned long) mask,
7990 (unsigned long) relocation);
7991#endif
7992
7993 r = bfd_reloc_ok;
7994 if (! trunc_p)
7995 /* Now do an overflow check. */
7996 r = bfd_check_overflow ((signed_p
7997 ? complain_overflow_signed
7998 : complain_overflow_unsigned),
7999 len, 0, (8 * wordsz),
8000 relocation);
8001
8002 /* Do the deed. */
8003 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8004
8005#ifdef DEBUG
8006 printf (" relocation: %8.8lx\n"
8007 " shifted mask: %8.8lx\n"
8008 " shifted/masked reloc: %8.8lx\n"
8009 " result: %8.8lx\n",
8010 (unsigned long) relocation, (unsigned long) (mask << shift),
8011 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8012#endif
8013 /* FIXME: octets_per_byte. */
8014 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8015 return r;
8016}
8017
8018/* qsort comparison functions sorting external relocs by r_offset. */
8019
8020static int
8021cmp_ext32l_r_offset (const void *p, const void *q)
8022{
8023 union aligned32
8024 {
8025 uint32_t v;
8026 unsigned char c[4];
8027 };
8028 const union aligned32 *a
8029 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8030 const union aligned32 *b
8031 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8032
8033 uint32_t aval = ( (uint32_t) a->c[0]
8034 | (uint32_t) a->c[1] << 8
8035 | (uint32_t) a->c[2] << 16
8036 | (uint32_t) a->c[3] << 24);
8037 uint32_t bval = ( (uint32_t) b->c[0]
8038 | (uint32_t) b->c[1] << 8
8039 | (uint32_t) b->c[2] << 16
8040 | (uint32_t) b->c[3] << 24);
8041 if (aval < bval)
8042 return -1;
8043 else if (aval > bval)
8044 return 1;
8045 return 0;
8046}
8047
8048static int
8049cmp_ext32b_r_offset (const void *p, const void *q)
8050{
8051 union aligned32
8052 {
8053 uint32_t v;
8054 unsigned char c[4];
8055 };
8056 const union aligned32 *a
8057 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8058 const union aligned32 *b
8059 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8060
8061 uint32_t aval = ( (uint32_t) a->c[0] << 24
8062 | (uint32_t) a->c[1] << 16
8063 | (uint32_t) a->c[2] << 8
8064 | (uint32_t) a->c[3]);
8065 uint32_t bval = ( (uint32_t) b->c[0] << 24
8066 | (uint32_t) b->c[1] << 16
8067 | (uint32_t) b->c[2] << 8
8068 | (uint32_t) b->c[3]);
8069 if (aval < bval)
8070 return -1;
8071 else if (aval > bval)
8072 return 1;
8073 return 0;
8074}
8075
8076#ifdef BFD_HOST_64_BIT
8077static int
8078cmp_ext64l_r_offset (const void *p, const void *q)
8079{
8080 union aligned64
8081 {
8082 uint64_t v;
8083 unsigned char c[8];
8084 };
8085 const union aligned64 *a
8086 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8087 const union aligned64 *b
8088 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8089
8090 uint64_t aval = ( (uint64_t) a->c[0]
8091 | (uint64_t) a->c[1] << 8
8092 | (uint64_t) a->c[2] << 16
8093 | (uint64_t) a->c[3] << 24
8094 | (uint64_t) a->c[4] << 32
8095 | (uint64_t) a->c[5] << 40
8096 | (uint64_t) a->c[6] << 48
8097 | (uint64_t) a->c[7] << 56);
8098 uint64_t bval = ( (uint64_t) b->c[0]
8099 | (uint64_t) b->c[1] << 8
8100 | (uint64_t) b->c[2] << 16
8101 | (uint64_t) b->c[3] << 24
8102 | (uint64_t) b->c[4] << 32
8103 | (uint64_t) b->c[5] << 40
8104 | (uint64_t) b->c[6] << 48
8105 | (uint64_t) b->c[7] << 56);
8106 if (aval < bval)
8107 return -1;
8108 else if (aval > bval)
8109 return 1;
8110 return 0;
8111}
8112
8113static int
8114cmp_ext64b_r_offset (const void *p, const void *q)
8115{
8116 union aligned64
8117 {
8118 uint64_t v;
8119 unsigned char c[8];
8120 };
8121 const union aligned64 *a
8122 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8123 const union aligned64 *b
8124 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8125
8126 uint64_t aval = ( (uint64_t) a->c[0] << 56
8127 | (uint64_t) a->c[1] << 48
8128 | (uint64_t) a->c[2] << 40
8129 | (uint64_t) a->c[3] << 32
8130 | (uint64_t) a->c[4] << 24
8131 | (uint64_t) a->c[5] << 16
8132 | (uint64_t) a->c[6] << 8
8133 | (uint64_t) a->c[7]);
8134 uint64_t bval = ( (uint64_t) b->c[0] << 56
8135 | (uint64_t) b->c[1] << 48
8136 | (uint64_t) b->c[2] << 40
8137 | (uint64_t) b->c[3] << 32
8138 | (uint64_t) b->c[4] << 24
8139 | (uint64_t) b->c[5] << 16
8140 | (uint64_t) b->c[6] << 8
8141 | (uint64_t) b->c[7]);
8142 if (aval < bval)
8143 return -1;
8144 else if (aval > bval)
8145 return 1;
8146 return 0;
8147}
8148#endif
8149
8150/* When performing a relocatable link, the input relocations are
8151 preserved. But, if they reference global symbols, the indices
8152 referenced must be updated. Update all the relocations found in
8153 RELDATA. */
8154
8155static void
8156elf_link_adjust_relocs (bfd *abfd,
8157 struct bfd_elf_section_reloc_data *reldata,
8158 bfd_boolean sort)
8159{
8160 unsigned int i;
8161 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8162 bfd_byte *erela;
8163 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8164 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8165 bfd_vma r_type_mask;
8166 int r_sym_shift;
8167 unsigned int count = reldata->count;
8168 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8169
8170 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8171 {
8172 swap_in = bed->s->swap_reloc_in;
8173 swap_out = bed->s->swap_reloc_out;
8174 }
8175 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8176 {
8177 swap_in = bed->s->swap_reloca_in;
8178 swap_out = bed->s->swap_reloca_out;
8179 }
8180 else
8181 abort ();
8182
8183 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8184 abort ();
8185
8186 if (bed->s->arch_size == 32)
8187 {
8188 r_type_mask = 0xff;
8189 r_sym_shift = 8;
8190 }
8191 else
8192 {
8193 r_type_mask = 0xffffffff;
8194 r_sym_shift = 32;
8195 }
8196
8197 erela = reldata->hdr->contents;
8198 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8199 {
8200 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8201 unsigned int j;
8202
8203 if (*rel_hash == NULL)
8204 continue;
8205
8206 BFD_ASSERT ((*rel_hash)->indx >= 0);
8207
8208 (*swap_in) (abfd, erela, irela);
8209 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8210 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8211 | (irela[j].r_info & r_type_mask));
8212 (*swap_out) (abfd, irela, erela);
8213 }
8214
8215 if (sort)
8216 {
8217 int (*compare) (const void *, const void *);
8218
8219 if (bed->s->arch_size == 32)
8220 {
8221 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8222 compare = cmp_ext32l_r_offset;
8223 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8224 compare = cmp_ext32b_r_offset;
8225 else
8226 abort ();
8227 }
8228 else
8229 {
8230#ifdef BFD_HOST_64_BIT
8231 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8232 compare = cmp_ext64l_r_offset;
8233 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8234 compare = cmp_ext64b_r_offset;
8235 else
8236#endif
8237 abort ();
8238 }
8239 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8240 free (reldata->hashes);
8241 reldata->hashes = NULL;
8242 }
8243}
8244
8245struct elf_link_sort_rela
8246{
8247 union {
8248 bfd_vma offset;
8249 bfd_vma sym_mask;
8250 } u;
8251 enum elf_reloc_type_class type;
8252 /* We use this as an array of size int_rels_per_ext_rel. */
8253 Elf_Internal_Rela rela[1];
8254};
8255
8256static int
8257elf_link_sort_cmp1 (const void *A, const void *B)
8258{
8259 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8260 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8261 int relativea, relativeb;
8262
8263 relativea = a->type == reloc_class_relative;
8264 relativeb = b->type == reloc_class_relative;
8265
8266 if (relativea < relativeb)
8267 return 1;
8268 if (relativea > relativeb)
8269 return -1;
8270 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8271 return -1;
8272 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8273 return 1;
8274 if (a->rela->r_offset < b->rela->r_offset)
8275 return -1;
8276 if (a->rela->r_offset > b->rela->r_offset)
8277 return 1;
8278 return 0;
8279}
8280
8281static int
8282elf_link_sort_cmp2 (const void *A, const void *B)
8283{
8284 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8285 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8286
8287 if (a->type < b->type)
8288 return -1;
8289 if (a->type > b->type)
8290 return 1;
8291 if (a->u.offset < b->u.offset)
8292 return -1;
8293 if (a->u.offset > b->u.offset)
8294 return 1;
8295 if (a->rela->r_offset < b->rela->r_offset)
8296 return -1;
8297 if (a->rela->r_offset > b->rela->r_offset)
8298 return 1;
8299 return 0;
8300}
8301
8302static size_t
8303elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8304{
8305 asection *dynamic_relocs;
8306 asection *rela_dyn;
8307 asection *rel_dyn;
8308 bfd_size_type count, size;
8309 size_t i, ret, sort_elt, ext_size;
8310 bfd_byte *sort, *s_non_relative, *p;
8311 struct elf_link_sort_rela *sq;
8312 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8313 int i2e = bed->s->int_rels_per_ext_rel;
8314 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8315 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8316 struct bfd_link_order *lo;
8317 bfd_vma r_sym_mask;
8318 bfd_boolean use_rela;
8319
8320 /* Find a dynamic reloc section. */
8321 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8322 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8323 if (rela_dyn != NULL && rela_dyn->size > 0
8324 && rel_dyn != NULL && rel_dyn->size > 0)
8325 {
8326 bfd_boolean use_rela_initialised = FALSE;
8327
8328 /* This is just here to stop gcc from complaining.
8329 It's initialization checking code is not perfect. */
8330 use_rela = TRUE;
8331
8332 /* Both sections are present. Examine the sizes
8333 of the indirect sections to help us choose. */
8334 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8335 if (lo->type == bfd_indirect_link_order)
8336 {
8337 asection *o = lo->u.indirect.section;
8338
8339 if ((o->size % bed->s->sizeof_rela) == 0)
8340 {
8341 if ((o->size % bed->s->sizeof_rel) == 0)
8342 /* Section size is divisible by both rel and rela sizes.
8343 It is of no help to us. */
8344 ;
8345 else
8346 {
8347 /* Section size is only divisible by rela. */
8348 if (use_rela_initialised && (use_rela == FALSE))
8349 {
8350 _bfd_error_handler
8351 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8352 bfd_set_error (bfd_error_invalid_operation);
8353 return 0;
8354 }
8355 else
8356 {
8357 use_rela = TRUE;
8358 use_rela_initialised = TRUE;
8359 }
8360 }
8361 }
8362 else if ((o->size % bed->s->sizeof_rel) == 0)
8363 {
8364 /* Section size is only divisible by rel. */
8365 if (use_rela_initialised && (use_rela == TRUE))
8366 {
8367 _bfd_error_handler
8368 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8369 bfd_set_error (bfd_error_invalid_operation);
8370 return 0;
8371 }
8372 else
8373 {
8374 use_rela = FALSE;
8375 use_rela_initialised = TRUE;
8376 }
8377 }
8378 else
8379 {
8380 /* The section size is not divisible by either - something is wrong. */
8381 _bfd_error_handler
8382 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8383 bfd_set_error (bfd_error_invalid_operation);
8384 return 0;
8385 }
8386 }
8387
8388 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8389 if (lo->type == bfd_indirect_link_order)
8390 {
8391 asection *o = lo->u.indirect.section;
8392
8393 if ((o->size % bed->s->sizeof_rela) == 0)
8394 {
8395 if ((o->size % bed->s->sizeof_rel) == 0)
8396 /* Section size is divisible by both rel and rela sizes.
8397 It is of no help to us. */
8398 ;
8399 else
8400 {
8401 /* Section size is only divisible by rela. */
8402 if (use_rela_initialised && (use_rela == FALSE))
8403 {
8404 _bfd_error_handler
8405 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8406 bfd_set_error (bfd_error_invalid_operation);
8407 return 0;
8408 }
8409 else
8410 {
8411 use_rela = TRUE;
8412 use_rela_initialised = TRUE;
8413 }
8414 }
8415 }
8416 else if ((o->size % bed->s->sizeof_rel) == 0)
8417 {
8418 /* Section size is only divisible by rel. */
8419 if (use_rela_initialised && (use_rela == TRUE))
8420 {
8421 _bfd_error_handler
8422 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8423 bfd_set_error (bfd_error_invalid_operation);
8424 return 0;
8425 }
8426 else
8427 {
8428 use_rela = FALSE;
8429 use_rela_initialised = TRUE;
8430 }
8431 }
8432 else
8433 {
8434 /* The section size is not divisible by either - something is wrong. */
8435 _bfd_error_handler
8436 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8437 bfd_set_error (bfd_error_invalid_operation);
8438 return 0;
8439 }
8440 }
8441
8442 if (! use_rela_initialised)
8443 /* Make a guess. */
8444 use_rela = TRUE;
8445 }
8446 else if (rela_dyn != NULL && rela_dyn->size > 0)
8447 use_rela = TRUE;
8448 else if (rel_dyn != NULL && rel_dyn->size > 0)
8449 use_rela = FALSE;
8450 else
8451 return 0;
8452
8453 if (use_rela)
8454 {
8455 dynamic_relocs = rela_dyn;
8456 ext_size = bed->s->sizeof_rela;
8457 swap_in = bed->s->swap_reloca_in;
8458 swap_out = bed->s->swap_reloca_out;
8459 }
8460 else
8461 {
8462 dynamic_relocs = rel_dyn;
8463 ext_size = bed->s->sizeof_rel;
8464 swap_in = bed->s->swap_reloc_in;
8465 swap_out = bed->s->swap_reloc_out;
8466 }
8467
8468 size = 0;
8469 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8470 if (lo->type == bfd_indirect_link_order)
8471 size += lo->u.indirect.section->size;
8472
8473 if (size != dynamic_relocs->size)
8474 return 0;
8475
8476 sort_elt = (sizeof (struct elf_link_sort_rela)
8477 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8478
8479 count = dynamic_relocs->size / ext_size;
8480 if (count == 0)
8481 return 0;
8482 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8483
8484 if (sort == NULL)
8485 {
8486 (*info->callbacks->warning)
8487 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8488 return 0;
8489 }
8490
8491 if (bed->s->arch_size == 32)
8492 r_sym_mask = ~(bfd_vma) 0xff;
8493 else
8494 r_sym_mask = ~(bfd_vma) 0xffffffff;
8495
8496 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8497 if (lo->type == bfd_indirect_link_order)
8498 {
8499 bfd_byte *erel, *erelend;
8500 asection *o = lo->u.indirect.section;
8501
8502 if (o->contents == NULL && o->size != 0)
8503 {
8504 /* This is a reloc section that is being handled as a normal
8505 section. See bfd_section_from_shdr. We can't combine
8506 relocs in this case. */
8507 free (sort);
8508 return 0;
8509 }
8510 erel = o->contents;
8511 erelend = o->contents + o->size;
8512 /* FIXME: octets_per_byte. */
8513 p = sort + o->output_offset / ext_size * sort_elt;
8514
8515 while (erel < erelend)
8516 {
8517 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8518
8519 (*swap_in) (abfd, erel, s->rela);
8520 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8521 s->u.sym_mask = r_sym_mask;
8522 p += sort_elt;
8523 erel += ext_size;
8524 }
8525 }
8526
8527 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8528
8529 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8530 {
8531 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8532 if (s->type != reloc_class_relative)
8533 break;
8534 }
8535 ret = i;
8536 s_non_relative = p;
8537
8538 sq = (struct elf_link_sort_rela *) s_non_relative;
8539 for (; i < count; i++, p += sort_elt)
8540 {
8541 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8542 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8543 sq = sp;
8544 sp->u.offset = sq->rela->r_offset;
8545 }
8546
8547 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8548
8549 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8550 if (lo->type == bfd_indirect_link_order)
8551 {
8552 bfd_byte *erel, *erelend;
8553 asection *o = lo->u.indirect.section;
8554
8555 erel = o->contents;
8556 erelend = o->contents + o->size;
8557 /* FIXME: octets_per_byte. */
8558 p = sort + o->output_offset / ext_size * sort_elt;
8559 while (erel < erelend)
8560 {
8561 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8562 (*swap_out) (abfd, s->rela, erel);
8563 p += sort_elt;
8564 erel += ext_size;
8565 }
8566 }
8567
8568 free (sort);
8569 *psec = dynamic_relocs;
8570 return ret;
8571}
8572
8573/* Flush the output symbols to the file. */
8574
8575static bfd_boolean
8576elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8577 const struct elf_backend_data *bed)
8578{
8579 if (flinfo->symbuf_count > 0)
8580 {
8581 Elf_Internal_Shdr *hdr;
8582 file_ptr pos;
8583 bfd_size_type amt;
8584
8585 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8586 pos = hdr->sh_offset + hdr->sh_size;
8587 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8588 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8589 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8590 return FALSE;
8591
8592 hdr->sh_size += amt;
8593 flinfo->symbuf_count = 0;
8594 }
8595
8596 return TRUE;
8597}
8598
8599/* Add a symbol to the output symbol table. */
8600
8601static int
8602elf_link_output_sym (struct elf_final_link_info *flinfo,
8603 const char *name,
8604 Elf_Internal_Sym *elfsym,
8605 asection *input_sec,
8606 struct elf_link_hash_entry *h)
8607{
8608 bfd_byte *dest;
8609 Elf_External_Sym_Shndx *destshndx;
8610 int (*output_symbol_hook)
8611 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8612 struct elf_link_hash_entry *);
8613 const struct elf_backend_data *bed;
8614
8615 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8616
8617 bed = get_elf_backend_data (flinfo->output_bfd);
8618 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8619 if (output_symbol_hook != NULL)
8620 {
8621 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8622 if (ret != 1)
8623 return ret;
8624 }
8625
8626 if (name == NULL || *name == '\0')
8627 elfsym->st_name = 0;
8628 else if (input_sec->flags & SEC_EXCLUDE)
8629 elfsym->st_name = 0;
8630 else
8631 {
8632 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8633 name, TRUE, FALSE);
8634 if (elfsym->st_name == (unsigned long) -1)
8635 return 0;
8636 }
8637
8638 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8639 {
8640 if (! elf_link_flush_output_syms (flinfo, bed))
8641 return 0;
8642 }
8643
8644 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8645 destshndx = flinfo->symshndxbuf;
8646 if (destshndx != NULL)
8647 {
8648 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8649 {
8650 bfd_size_type amt;
8651
8652 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8653 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8654 amt * 2);
8655 if (destshndx == NULL)
8656 return 0;
8657 flinfo->symshndxbuf = destshndx;
8658 memset ((char *) destshndx + amt, 0, amt);
8659 flinfo->shndxbuf_size *= 2;
8660 }
8661 destshndx += bfd_get_symcount (flinfo->output_bfd);
8662 }
8663
8664 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8665 flinfo->symbuf_count += 1;
8666 bfd_get_symcount (flinfo->output_bfd) += 1;
8667
8668 return 1;
8669}
8670
8671/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8672
8673static bfd_boolean
8674check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8675{
8676 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8677 && sym->st_shndx < SHN_LORESERVE)
8678 {
8679 /* The gABI doesn't support dynamic symbols in output sections
8680 beyond 64k. */
8681 (*_bfd_error_handler)
8682 (_("%B: Too many sections: %d (>= %d)"),
8683 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8684 bfd_set_error (bfd_error_nonrepresentable_section);
8685 return FALSE;
8686 }
8687 return TRUE;
8688}
8689
8690/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8691 allowing an unsatisfied unversioned symbol in the DSO to match a
8692 versioned symbol that would normally require an explicit version.
8693 We also handle the case that a DSO references a hidden symbol
8694 which may be satisfied by a versioned symbol in another DSO. */
8695
8696static bfd_boolean
8697elf_link_check_versioned_symbol (struct bfd_link_info *info,
8698 const struct elf_backend_data *bed,
8699 struct elf_link_hash_entry *h)
8700{
8701 bfd *abfd;
8702 struct elf_link_loaded_list *loaded;
8703
8704 if (!is_elf_hash_table (info->hash))
8705 return FALSE;
8706
8707 /* Check indirect symbol. */
8708 while (h->root.type == bfd_link_hash_indirect)
8709 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8710
8711 switch (h->root.type)
8712 {
8713 default:
8714 abfd = NULL;
8715 break;
8716
8717 case bfd_link_hash_undefined:
8718 case bfd_link_hash_undefweak:
8719 abfd = h->root.u.undef.abfd;
8720 if ((abfd->flags & DYNAMIC) == 0
8721 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8722 return FALSE;
8723 break;
8724
8725 case bfd_link_hash_defined:
8726 case bfd_link_hash_defweak:
8727 abfd = h->root.u.def.section->owner;
8728 break;
8729
8730 case bfd_link_hash_common:
8731 abfd = h->root.u.c.p->section->owner;
8732 break;
8733 }
8734 BFD_ASSERT (abfd != NULL);
8735
8736 for (loaded = elf_hash_table (info)->loaded;
8737 loaded != NULL;
8738 loaded = loaded->next)
8739 {
8740 bfd *input;
8741 Elf_Internal_Shdr *hdr;
8742 bfd_size_type symcount;
8743 bfd_size_type extsymcount;
8744 bfd_size_type extsymoff;
8745 Elf_Internal_Shdr *versymhdr;
8746 Elf_Internal_Sym *isym;
8747 Elf_Internal_Sym *isymend;
8748 Elf_Internal_Sym *isymbuf;
8749 Elf_External_Versym *ever;
8750 Elf_External_Versym *extversym;
8751
8752 input = loaded->abfd;
8753
8754 /* We check each DSO for a possible hidden versioned definition. */
8755 if (input == abfd
8756 || (input->flags & DYNAMIC) == 0
8757 || elf_dynversym (input) == 0)
8758 continue;
8759
8760 hdr = &elf_tdata (input)->dynsymtab_hdr;
8761
8762 symcount = hdr->sh_size / bed->s->sizeof_sym;
8763 if (elf_bad_symtab (input))
8764 {
8765 extsymcount = symcount;
8766 extsymoff = 0;
8767 }
8768 else
8769 {
8770 extsymcount = symcount - hdr->sh_info;
8771 extsymoff = hdr->sh_info;
8772 }
8773
8774 if (extsymcount == 0)
8775 continue;
8776
8777 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8778 NULL, NULL, NULL);
8779 if (isymbuf == NULL)
8780 return FALSE;
8781
8782 /* Read in any version definitions. */
8783 versymhdr = &elf_tdata (input)->dynversym_hdr;
8784 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8785 if (extversym == NULL)
8786 goto error_ret;
8787
8788 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8789 || (bfd_bread (extversym, versymhdr->sh_size, input)
8790 != versymhdr->sh_size))
8791 {
8792 free (extversym);
8793 error_ret:
8794 free (isymbuf);
8795 return FALSE;
8796 }
8797
8798 ever = extversym + extsymoff;
8799 isymend = isymbuf + extsymcount;
8800 for (isym = isymbuf; isym < isymend; isym++, ever++)
8801 {
8802 const char *name;
8803 Elf_Internal_Versym iver;
8804 unsigned short version_index;
8805
8806 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8807 || isym->st_shndx == SHN_UNDEF)
8808 continue;
8809
8810 name = bfd_elf_string_from_elf_section (input,
8811 hdr->sh_link,
8812 isym->st_name);
8813 if (strcmp (name, h->root.root.string) != 0)
8814 continue;
8815
8816 _bfd_elf_swap_versym_in (input, ever, &iver);
8817
8818 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8819 && !(h->def_regular
8820 && h->forced_local))
8821 {
8822 /* If we have a non-hidden versioned sym, then it should
8823 have provided a definition for the undefined sym unless
8824 it is defined in a non-shared object and forced local.
8825 */
8826 abort ();
8827 }
8828
8829 version_index = iver.vs_vers & VERSYM_VERSION;
8830 if (version_index == 1 || version_index == 2)
8831 {
8832 /* This is the base or first version. We can use it. */
8833 free (extversym);
8834 free (isymbuf);
8835 return TRUE;
8836 }
8837 }
8838
8839 free (extversym);
8840 free (isymbuf);
8841 }
8842
8843 return FALSE;
8844}
8845
8846/* Add an external symbol to the symbol table. This is called from
8847 the hash table traversal routine. When generating a shared object,
8848 we go through the symbol table twice. The first time we output
8849 anything that might have been forced to local scope in a version
8850 script. The second time we output the symbols that are still
8851 global symbols. */
8852
8853static bfd_boolean
8854elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8855{
8856 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8857 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8858 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8859 bfd_boolean strip;
8860 Elf_Internal_Sym sym;
8861 asection *input_sec;
8862 const struct elf_backend_data *bed;
8863 long indx;
8864 int ret;
8865
8866 if (h->root.type == bfd_link_hash_warning)
8867 {
8868 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8869 if (h->root.type == bfd_link_hash_new)
8870 return TRUE;
8871 }
8872
8873 /* Decide whether to output this symbol in this pass. */
8874 if (eoinfo->localsyms)
8875 {
8876 if (!h->forced_local)
8877 return TRUE;
8878 }
8879 else
8880 {
8881 if (h->forced_local)
8882 return TRUE;
8883 }
8884
8885 bed = get_elf_backend_data (flinfo->output_bfd);
8886
8887 if (h->root.type == bfd_link_hash_undefined)
8888 {
8889 /* If we have an undefined symbol reference here then it must have
8890 come from a shared library that is being linked in. (Undefined
8891 references in regular files have already been handled unless
8892 they are in unreferenced sections which are removed by garbage
8893 collection). */
8894 bfd_boolean ignore_undef = FALSE;
8895
8896 /* Some symbols may be special in that the fact that they're
8897 undefined can be safely ignored - let backend determine that. */
8898 if (bed->elf_backend_ignore_undef_symbol)
8899 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8900
8901 /* If we are reporting errors for this situation then do so now. */
8902 if (!ignore_undef
8903 && h->ref_dynamic
8904 && (!h->ref_regular || flinfo->info->gc_sections)
8905 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8906 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8907 {
8908 if (!(flinfo->info->callbacks->undefined_symbol
8909 (flinfo->info, h->root.root.string,
8910 h->ref_regular ? NULL : h->root.u.undef.abfd,
8911 NULL, 0,
8912 (flinfo->info->unresolved_syms_in_shared_libs
8913 == RM_GENERATE_ERROR))))
8914 {
8915 bfd_set_error (bfd_error_bad_value);
8916 eoinfo->failed = TRUE;
8917 return FALSE;
8918 }
8919 }
8920 }
8921
8922 /* We should also warn if a forced local symbol is referenced from
8923 shared libraries. */
8924 if (!flinfo->info->relocatable
8925 && flinfo->info->executable
8926 && h->forced_local
8927 && h->ref_dynamic
8928 && h->def_regular
8929 && !h->dynamic_def
8930 && h->ref_dynamic_nonweak
8931 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8932 {
8933 bfd *def_bfd;
8934 const char *msg;
8935 struct elf_link_hash_entry *hi = h;
8936
8937 /* Check indirect symbol. */
8938 while (hi->root.type == bfd_link_hash_indirect)
8939 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8940
8941 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8942 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8943 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8944 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8945 else
8946 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8947 def_bfd = flinfo->output_bfd;
8948 if (hi->root.u.def.section != bfd_abs_section_ptr)
8949 def_bfd = hi->root.u.def.section->owner;
8950 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8951 h->root.root.string);
8952 bfd_set_error (bfd_error_bad_value);
8953 eoinfo->failed = TRUE;
8954 return FALSE;
8955 }
8956
8957 /* We don't want to output symbols that have never been mentioned by
8958 a regular file, or that we have been told to strip. However, if
8959 h->indx is set to -2, the symbol is used by a reloc and we must
8960 output it. */
8961 strip = FALSE;
8962 if (h->indx == -2)
8963 ;
8964 else if ((h->def_dynamic
8965 || h->ref_dynamic
8966 || h->root.type == bfd_link_hash_new)
8967 && !h->def_regular
8968 && !h->ref_regular)
8969 strip = TRUE;
8970 else if (flinfo->info->strip == strip_all)
8971 strip = TRUE;
8972 else if (flinfo->info->strip == strip_some
8973 && bfd_hash_lookup (flinfo->info->keep_hash,
8974 h->root.root.string, FALSE, FALSE) == NULL)
8975 strip = TRUE;
8976 else if ((h->root.type == bfd_link_hash_defined
8977 || h->root.type == bfd_link_hash_defweak)
8978 && ((flinfo->info->strip_discarded
8979 && discarded_section (h->root.u.def.section))
8980 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8981 && h->root.u.def.section->owner != NULL
8982 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8983 strip = TRUE;
8984 else if ((h->root.type == bfd_link_hash_undefined
8985 || h->root.type == bfd_link_hash_undefweak)
8986 && h->root.u.undef.abfd != NULL
8987 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8988 strip = TRUE;
8989
8990 /* If we're stripping it, and it's not a dynamic symbol, there's
8991 nothing else to do. However, if it is a forced local symbol or
8992 an ifunc symbol we need to give the backend finish_dynamic_symbol
8993 function a chance to make it dynamic. */
8994 if (strip
8995 && h->dynindx == -1
8996 && h->type != STT_GNU_IFUNC
8997 && !h->forced_local)
8998 return TRUE;
8999
9000 sym.st_value = 0;
9001 sym.st_size = h->size;
9002 sym.st_other = h->other;
9003 if (h->forced_local)
9004 {
9005 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
9006 /* Turn off visibility on local symbol. */
9007 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9008 }
9009 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9010 else if (h->unique_global && h->def_regular)
9011 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
9012 else if (h->root.type == bfd_link_hash_undefweak
9013 || h->root.type == bfd_link_hash_defweak)
9014 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
9015 else
9016 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
9017 sym.st_target_internal = h->target_internal;
9018
9019 switch (h->root.type)
9020 {
9021 default:
9022 case bfd_link_hash_new:
9023 case bfd_link_hash_warning:
9024 abort ();
9025 return FALSE;
9026
9027 case bfd_link_hash_undefined:
9028 case bfd_link_hash_undefweak:
9029 input_sec = bfd_und_section_ptr;
9030 sym.st_shndx = SHN_UNDEF;
9031 break;
9032
9033 case bfd_link_hash_defined:
9034 case bfd_link_hash_defweak:
9035 {
9036 input_sec = h->root.u.def.section;
9037 if (input_sec->output_section != NULL)
9038 {
9039 sym.st_shndx =
9040 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9041 input_sec->output_section);
9042 if (sym.st_shndx == SHN_BAD)
9043 {
9044 (*_bfd_error_handler)
9045 (_("%B: could not find output section %A for input section %A"),
9046 flinfo->output_bfd, input_sec->output_section, input_sec);
9047 bfd_set_error (bfd_error_nonrepresentable_section);
9048 eoinfo->failed = TRUE;
9049 return FALSE;
9050 }
9051
9052 /* ELF symbols in relocatable files are section relative,
9053 but in nonrelocatable files they are virtual
9054 addresses. */
9055 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9056 if (!flinfo->info->relocatable)
9057 {
9058 sym.st_value += input_sec->output_section->vma;
9059 if (h->type == STT_TLS)
9060 {
9061 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9062 if (tls_sec != NULL)
9063 sym.st_value -= tls_sec->vma;
9064 }
9065 }
9066 }
9067 else
9068 {
9069 BFD_ASSERT (input_sec->owner == NULL
9070 || (input_sec->owner->flags & DYNAMIC) != 0);
9071 sym.st_shndx = SHN_UNDEF;
9072 input_sec = bfd_und_section_ptr;
9073 }
9074 }
9075 break;
9076
9077 case bfd_link_hash_common:
9078 input_sec = h->root.u.c.p->section;
9079 sym.st_shndx = bed->common_section_index (input_sec);
9080 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9081 break;
9082
9083 case bfd_link_hash_indirect:
9084 /* These symbols are created by symbol versioning. They point
9085 to the decorated version of the name. For example, if the
9086 symbol foo@@GNU_1.2 is the default, which should be used when
9087 foo is used with no version, then we add an indirect symbol
9088 foo which points to foo@@GNU_1.2. We ignore these symbols,
9089 since the indirected symbol is already in the hash table. */
9090 return TRUE;
9091 }
9092
9093 /* Give the processor backend a chance to tweak the symbol value,
9094 and also to finish up anything that needs to be done for this
9095 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9096 forced local syms when non-shared is due to a historical quirk.
9097 STT_GNU_IFUNC symbol must go through PLT. */
9098 if ((h->type == STT_GNU_IFUNC
9099 && h->def_regular
9100 && !flinfo->info->relocatable)
9101 || ((h->dynindx != -1
9102 || h->forced_local)
9103 && ((flinfo->info->shared
9104 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9105 || h->root.type != bfd_link_hash_undefweak))
9106 || !h->forced_local)
9107 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9108 {
9109 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9110 (flinfo->output_bfd, flinfo->info, h, &sym)))
9111 {
9112 eoinfo->failed = TRUE;
9113 return FALSE;
9114 }
9115 }
9116
9117 /* If we are marking the symbol as undefined, and there are no
9118 non-weak references to this symbol from a regular object, then
9119 mark the symbol as weak undefined; if there are non-weak
9120 references, mark the symbol as strong. We can't do this earlier,
9121 because it might not be marked as undefined until the
9122 finish_dynamic_symbol routine gets through with it. */
9123 if (sym.st_shndx == SHN_UNDEF
9124 && h->ref_regular
9125 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9126 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9127 {
9128 int bindtype;
9129 unsigned int type = ELF_ST_TYPE (sym.st_info);
9130
9131 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9132 if (type == STT_GNU_IFUNC)
9133 type = STT_FUNC;
9134
9135 if (h->ref_regular_nonweak)
9136 bindtype = STB_GLOBAL;
9137 else
9138 bindtype = STB_WEAK;
9139 sym.st_info = ELF_ST_INFO (bindtype, type);
9140 }
9141
9142 /* If this is a symbol defined in a dynamic library, don't use the
9143 symbol size from the dynamic library. Relinking an executable
9144 against a new library may introduce gratuitous changes in the
9145 executable's symbols if we keep the size. */
9146 if (sym.st_shndx == SHN_UNDEF
9147 && !h->def_regular
9148 && h->def_dynamic)
9149 sym.st_size = 0;
9150
9151 /* If a non-weak symbol with non-default visibility is not defined
9152 locally, it is a fatal error. */
9153 if (!flinfo->info->relocatable
9154 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9155 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9156 && h->root.type == bfd_link_hash_undefined
9157 && !h->def_regular)
9158 {
9159 const char *msg;
9160
9161 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9162 msg = _("%B: protected symbol `%s' isn't defined");
9163 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9164 msg = _("%B: internal symbol `%s' isn't defined");
9165 else
9166 msg = _("%B: hidden symbol `%s' isn't defined");
9167 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9168 bfd_set_error (bfd_error_bad_value);
9169 eoinfo->failed = TRUE;
9170 return FALSE;
9171 }
9172
9173 /* If this symbol should be put in the .dynsym section, then put it
9174 there now. We already know the symbol index. We also fill in
9175 the entry in the .hash section. */
9176 if (flinfo->dynsym_sec != NULL
9177 && h->dynindx != -1
9178 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9179 {
9180 bfd_byte *esym;
9181
9182 /* Since there is no version information in the dynamic string,
9183 if there is no version info in symbol version section, we will
9184 have a run-time problem. */
9185 if (h->verinfo.verdef == NULL)
9186 {
9187 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9188
9189 if (p && p [1] != '\0')
9190 {
9191 (*_bfd_error_handler)
9192 (_("%B: No symbol version section for versioned symbol `%s'"),
9193 flinfo->output_bfd, h->root.root.string);
9194 eoinfo->failed = TRUE;
9195 return FALSE;
9196 }
9197 }
9198
9199 sym.st_name = h->dynstr_index;
9200 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9201 if (!check_dynsym (flinfo->output_bfd, &sym))
9202 {
9203 eoinfo->failed = TRUE;
9204 return FALSE;
9205 }
9206 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9207
9208 if (flinfo->hash_sec != NULL)
9209 {
9210 size_t hash_entry_size;
9211 bfd_byte *bucketpos;
9212 bfd_vma chain;
9213 size_t bucketcount;
9214 size_t bucket;
9215
9216 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9217 bucket = h->u.elf_hash_value % bucketcount;
9218
9219 hash_entry_size
9220 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9221 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9222 + (bucket + 2) * hash_entry_size);
9223 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9224 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9225 bucketpos);
9226 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9227 ((bfd_byte *) flinfo->hash_sec->contents
9228 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9229 }
9230
9231 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9232 {
9233 Elf_Internal_Versym iversym;
9234 Elf_External_Versym *eversym;
9235
9236 if (!h->def_regular)
9237 {
9238 if (h->verinfo.verdef == NULL
9239 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9240 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9241 iversym.vs_vers = 0;
9242 else
9243 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9244 }
9245 else
9246 {
9247 if (h->verinfo.vertree == NULL)
9248 iversym.vs_vers = 1;
9249 else
9250 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9251 if (flinfo->info->create_default_symver)
9252 iversym.vs_vers++;
9253 }
9254
9255 if (h->hidden)
9256 iversym.vs_vers |= VERSYM_HIDDEN;
9257
9258 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9259 eversym += h->dynindx;
9260 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9261 }
9262 }
9263
9264 /* If the symbol is undefined, and we didn't output it to .dynsym,
9265 strip it from .symtab too. Obviously we can't do this for
9266 relocatable output or when needed for --emit-relocs. */
9267 else if (input_sec == bfd_und_section_ptr
9268 && h->indx != -2
9269 && !flinfo->info->relocatable)
9270 return TRUE;
9271 /* Also strip others that we couldn't earlier due to dynamic symbol
9272 processing. */
9273 if (strip)
9274 return TRUE;
9275 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9276 return TRUE;
9277
9278 /* Output a FILE symbol so that following locals are not associated
9279 with the wrong input file. We need one for forced local symbols
9280 if we've seen more than one FILE symbol or when we have exactly
9281 one FILE symbol but global symbols are present in a file other
9282 than the one with the FILE symbol. We also need one if linker
9283 defined symbols are present. In practice these conditions are
9284 always met, so just emit the FILE symbol unconditionally. */
9285 if (eoinfo->localsyms
9286 && !eoinfo->file_sym_done
9287 && eoinfo->flinfo->filesym_count != 0)
9288 {
9289 Elf_Internal_Sym fsym;
9290
9291 memset (&fsym, 0, sizeof (fsym));
9292 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9293 fsym.st_shndx = SHN_ABS;
9294 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9295 bfd_und_section_ptr, NULL))
9296 return FALSE;
9297
9298 eoinfo->file_sym_done = TRUE;
9299 }
9300
9301 indx = bfd_get_symcount (flinfo->output_bfd);
9302 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9303 if (ret == 0)
9304 {
9305 eoinfo->failed = TRUE;
9306 return FALSE;
9307 }
9308 else if (ret == 1)
9309 h->indx = indx;
9310 else if (h->indx == -2)
9311 abort();
9312
9313 return TRUE;
9314}
9315
9316/* Return TRUE if special handling is done for relocs in SEC against
9317 symbols defined in discarded sections. */
9318
9319static bfd_boolean
9320elf_section_ignore_discarded_relocs (asection *sec)
9321{
9322 const struct elf_backend_data *bed;
9323
9324 switch (sec->sec_info_type)
9325 {
9326 case SEC_INFO_TYPE_STABS:
9327 case SEC_INFO_TYPE_EH_FRAME:
9328 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9329 return TRUE;
9330 default:
9331 break;
9332 }
9333
9334 bed = get_elf_backend_data (sec->owner);
9335 if (bed->elf_backend_ignore_discarded_relocs != NULL
9336 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9337 return TRUE;
9338
9339 return FALSE;
9340}
9341
9342/* Return a mask saying how ld should treat relocations in SEC against
9343 symbols defined in discarded sections. If this function returns
9344 COMPLAIN set, ld will issue a warning message. If this function
9345 returns PRETEND set, and the discarded section was link-once and the
9346 same size as the kept link-once section, ld will pretend that the
9347 symbol was actually defined in the kept section. Otherwise ld will
9348 zero the reloc (at least that is the intent, but some cooperation by
9349 the target dependent code is needed, particularly for REL targets). */
9350
9351unsigned int
9352_bfd_elf_default_action_discarded (asection *sec)
9353{
9354 if (sec->flags & SEC_DEBUGGING)
9355 return PRETEND;
9356
9357 if (strcmp (".eh_frame", sec->name) == 0)
9358 return 0;
9359
9360 if (strcmp (".gcc_except_table", sec->name) == 0)
9361 return 0;
9362
9363 return COMPLAIN | PRETEND;
9364}
9365
9366/* Find a match between a section and a member of a section group. */
9367
9368static asection *
9369match_group_member (asection *sec, asection *group,
9370 struct bfd_link_info *info)
9371{
9372 asection *first = elf_next_in_group (group);
9373 asection *s = first;
9374
9375 while (s != NULL)
9376 {
9377 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9378 return s;
9379
9380 s = elf_next_in_group (s);
9381 if (s == first)
9382 break;
9383 }
9384
9385 return NULL;
9386}
9387
9388/* Check if the kept section of a discarded section SEC can be used
9389 to replace it. Return the replacement if it is OK. Otherwise return
9390 NULL. */
9391
9392asection *
9393_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9394{
9395 asection *kept;
9396
9397 kept = sec->kept_section;
9398 if (kept != NULL)
9399 {
9400 if ((kept->flags & SEC_GROUP) != 0)
9401 kept = match_group_member (sec, kept, info);
9402 if (kept != NULL
9403 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9404 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9405 kept = NULL;
9406 sec->kept_section = kept;
9407 }
9408 return kept;
9409}
9410
9411/* Link an input file into the linker output file. This function
9412 handles all the sections and relocations of the input file at once.
9413 This is so that we only have to read the local symbols once, and
9414 don't have to keep them in memory. */
9415
9416static bfd_boolean
9417elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9418{
9419 int (*relocate_section)
9420 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9421 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9422 bfd *output_bfd;
9423 Elf_Internal_Shdr *symtab_hdr;
9424 size_t locsymcount;
9425 size_t extsymoff;
9426 Elf_Internal_Sym *isymbuf;
9427 Elf_Internal_Sym *isym;
9428 Elf_Internal_Sym *isymend;
9429 long *pindex;
9430 asection **ppsection;
9431 asection *o;
9432 const struct elf_backend_data *bed;
9433 struct elf_link_hash_entry **sym_hashes;
9434 bfd_size_type address_size;
9435 bfd_vma r_type_mask;
9436 int r_sym_shift;
9437 bfd_boolean have_file_sym = FALSE;
9438
9439 output_bfd = flinfo->output_bfd;
9440 bed = get_elf_backend_data (output_bfd);
9441 relocate_section = bed->elf_backend_relocate_section;
9442
9443 /* If this is a dynamic object, we don't want to do anything here:
9444 we don't want the local symbols, and we don't want the section
9445 contents. */
9446 if ((input_bfd->flags & DYNAMIC) != 0)
9447 return TRUE;
9448
9449 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9450 if (elf_bad_symtab (input_bfd))
9451 {
9452 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9453 extsymoff = 0;
9454 }
9455 else
9456 {
9457 locsymcount = symtab_hdr->sh_info;
9458 extsymoff = symtab_hdr->sh_info;
9459 }
9460
9461 /* Read the local symbols. */
9462 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9463 if (isymbuf == NULL && locsymcount != 0)
9464 {
9465 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9466 flinfo->internal_syms,
9467 flinfo->external_syms,
9468 flinfo->locsym_shndx);
9469 if (isymbuf == NULL)
9470 return FALSE;
9471 }
9472
9473 /* Find local symbol sections and adjust values of symbols in
9474 SEC_MERGE sections. Write out those local symbols we know are
9475 going into the output file. */
9476 isymend = isymbuf + locsymcount;
9477 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9478 isym < isymend;
9479 isym++, pindex++, ppsection++)
9480 {
9481 asection *isec;
9482 const char *name;
9483 Elf_Internal_Sym osym;
9484 long indx;
9485 int ret;
9486
9487 *pindex = -1;
9488
9489 if (elf_bad_symtab (input_bfd))
9490 {
9491 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9492 {
9493 *ppsection = NULL;
9494 continue;
9495 }
9496 }
9497
9498 if (isym->st_shndx == SHN_UNDEF)
9499 isec = bfd_und_section_ptr;
9500 else if (isym->st_shndx == SHN_ABS)
9501 isec = bfd_abs_section_ptr;
9502 else if (isym->st_shndx == SHN_COMMON)
9503 isec = bfd_com_section_ptr;
9504 else
9505 {
9506 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9507 if (isec == NULL)
9508 {
9509 /* Don't attempt to output symbols with st_shnx in the
9510 reserved range other than SHN_ABS and SHN_COMMON. */
9511 *ppsection = NULL;
9512 continue;
9513 }
9514 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9515 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9516 isym->st_value =
9517 _bfd_merged_section_offset (output_bfd, &isec,
9518 elf_section_data (isec)->sec_info,
9519 isym->st_value);
9520 }
9521
9522 *ppsection = isec;
9523
9524 /* Don't output the first, undefined, symbol. In fact, don't
9525 output any undefined local symbol. */
9526 if (isec == bfd_und_section_ptr)
9527 continue;
9528
9529 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9530 {
9531 /* We never output section symbols. Instead, we use the
9532 section symbol of the corresponding section in the output
9533 file. */
9534 continue;
9535 }
9536
9537 /* If we are stripping all symbols, we don't want to output this
9538 one. */
9539 if (flinfo->info->strip == strip_all)
9540 continue;
9541
9542 /* If we are discarding all local symbols, we don't want to
9543 output this one. If we are generating a relocatable output
9544 file, then some of the local symbols may be required by
9545 relocs; we output them below as we discover that they are
9546 needed. */
9547 if (flinfo->info->discard == discard_all)
9548 continue;
9549
9550 /* If this symbol is defined in a section which we are
9551 discarding, we don't need to keep it. */
9552 if (isym->st_shndx != SHN_UNDEF
9553 && isym->st_shndx < SHN_LORESERVE
9554 && bfd_section_removed_from_list (output_bfd,
9555 isec->output_section))
9556 continue;
9557
9558 /* Get the name of the symbol. */
9559 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9560 isym->st_name);
9561 if (name == NULL)
9562 return FALSE;
9563
9564 /* See if we are discarding symbols with this name. */
9565 if ((flinfo->info->strip == strip_some
9566 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9567 == NULL))
9568 || (((flinfo->info->discard == discard_sec_merge
9569 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9570 || flinfo->info->discard == discard_l)
9571 && bfd_is_local_label_name (input_bfd, name)))
9572 continue;
9573
9574 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9575 {
9576 if (input_bfd->lto_output)
9577 /* -flto puts a temp file name here. This means builds
9578 are not reproducible. Discard the symbol. */
9579 continue;
9580 have_file_sym = TRUE;
9581 flinfo->filesym_count += 1;
9582 }
9583 if (!have_file_sym)
9584 {
9585 /* In the absence of debug info, bfd_find_nearest_line uses
9586 FILE symbols to determine the source file for local
9587 function symbols. Provide a FILE symbol here if input
9588 files lack such, so that their symbols won't be
9589 associated with a previous input file. It's not the
9590 source file, but the best we can do. */
9591 have_file_sym = TRUE;
9592 flinfo->filesym_count += 1;
9593 memset (&osym, 0, sizeof (osym));
9594 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9595 osym.st_shndx = SHN_ABS;
9596 if (!elf_link_output_sym (flinfo,
9597 (input_bfd->lto_output ? NULL
9598 : input_bfd->filename),
9599 &osym, bfd_abs_section_ptr, NULL))
9600 return FALSE;
9601 }
9602
9603 osym = *isym;
9604
9605 /* Adjust the section index for the output file. */
9606 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9607 isec->output_section);
9608 if (osym.st_shndx == SHN_BAD)
9609 return FALSE;
9610
9611 /* ELF symbols in relocatable files are section relative, but
9612 in executable files they are virtual addresses. Note that
9613 this code assumes that all ELF sections have an associated
9614 BFD section with a reasonable value for output_offset; below
9615 we assume that they also have a reasonable value for
9616 output_section. Any special sections must be set up to meet
9617 these requirements. */
9618 osym.st_value += isec->output_offset;
9619 if (!flinfo->info->relocatable)
9620 {
9621 osym.st_value += isec->output_section->vma;
9622 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9623 {
9624 /* STT_TLS symbols are relative to PT_TLS segment base. */
9625 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9626 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9627 }
9628 }
9629
9630 indx = bfd_get_symcount (output_bfd);
9631 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9632 if (ret == 0)
9633 return FALSE;
9634 else if (ret == 1)
9635 *pindex = indx;
9636 }
9637
9638 if (bed->s->arch_size == 32)
9639 {
9640 r_type_mask = 0xff;
9641 r_sym_shift = 8;
9642 address_size = 4;
9643 }
9644 else
9645 {
9646 r_type_mask = 0xffffffff;
9647 r_sym_shift = 32;
9648 address_size = 8;
9649 }
9650
9651 /* Relocate the contents of each section. */
9652 sym_hashes = elf_sym_hashes (input_bfd);
9653 for (o = input_bfd->sections; o != NULL; o = o->next)
9654 {
9655 bfd_byte *contents;
9656
9657 if (! o->linker_mark)
9658 {
9659 /* This section was omitted from the link. */
9660 continue;
9661 }
9662
9663 if (flinfo->info->relocatable
9664 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9665 {
9666 /* Deal with the group signature symbol. */
9667 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9668 unsigned long symndx = sec_data->this_hdr.sh_info;
9669 asection *osec = o->output_section;
9670
9671 if (symndx >= locsymcount
9672 || (elf_bad_symtab (input_bfd)
9673 && flinfo->sections[symndx] == NULL))
9674 {
9675 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9676 while (h->root.type == bfd_link_hash_indirect
9677 || h->root.type == bfd_link_hash_warning)
9678 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9679 /* Arrange for symbol to be output. */
9680 h->indx = -2;
9681 elf_section_data (osec)->this_hdr.sh_info = -2;
9682 }
9683 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9684 {
9685 /* We'll use the output section target_index. */
9686 asection *sec = flinfo->sections[symndx]->output_section;
9687 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9688 }
9689 else
9690 {
9691 if (flinfo->indices[symndx] == -1)
9692 {
9693 /* Otherwise output the local symbol now. */
9694 Elf_Internal_Sym sym = isymbuf[symndx];
9695 asection *sec = flinfo->sections[symndx]->output_section;
9696 const char *name;
9697 long indx;
9698 int ret;
9699
9700 name = bfd_elf_string_from_elf_section (input_bfd,
9701 symtab_hdr->sh_link,
9702 sym.st_name);
9703 if (name == NULL)
9704 return FALSE;
9705
9706 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9707 sec);
9708 if (sym.st_shndx == SHN_BAD)
9709 return FALSE;
9710
9711 sym.st_value += o->output_offset;
9712
9713 indx = bfd_get_symcount (output_bfd);
9714 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9715 if (ret == 0)
9716 return FALSE;
9717 else if (ret == 1)
9718 flinfo->indices[symndx] = indx;
9719 else
9720 abort ();
9721 }
9722 elf_section_data (osec)->this_hdr.sh_info
9723 = flinfo->indices[symndx];
9724 }
9725 }
9726
9727 if ((o->flags & SEC_HAS_CONTENTS) == 0
9728 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9729 continue;
9730
9731 if ((o->flags & SEC_LINKER_CREATED) != 0)
9732 {
9733 /* Section was created by _bfd_elf_link_create_dynamic_sections
9734 or somesuch. */
9735 continue;
9736 }
9737
9738 /* Get the contents of the section. They have been cached by a
9739 relaxation routine. Note that o is a section in an input
9740 file, so the contents field will not have been set by any of
9741 the routines which work on output files. */
9742 if (elf_section_data (o)->this_hdr.contents != NULL)
9743 {
9744 contents = elf_section_data (o)->this_hdr.contents;
9745 if (bed->caches_rawsize
9746 && o->rawsize != 0
9747 && o->rawsize < o->size)
9748 {
9749 memcpy (flinfo->contents, contents, o->rawsize);
9750 contents = flinfo->contents;
9751 }
9752 }
9753 else
9754 {
9755 contents = flinfo->contents;
9756 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9757 return FALSE;
9758 }
9759
9760 if ((o->flags & SEC_RELOC) != 0)
9761 {
9762 Elf_Internal_Rela *internal_relocs;
9763 Elf_Internal_Rela *rel, *relend;
9764 int action_discarded;
9765 int ret;
9766
9767 /* Get the swapped relocs. */
9768 internal_relocs
9769 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9770 flinfo->internal_relocs, FALSE);
9771 if (internal_relocs == NULL
9772 && o->reloc_count > 0)
9773 return FALSE;
9774
9775 /* We need to reverse-copy input .ctors/.dtors sections if
9776 they are placed in .init_array/.finit_array for output. */
9777 if (o->size > address_size
9778 && ((strncmp (o->name, ".ctors", 6) == 0
9779 && strcmp (o->output_section->name,
9780 ".init_array") == 0)
9781 || (strncmp (o->name, ".dtors", 6) == 0
9782 && strcmp (o->output_section->name,
9783 ".fini_array") == 0))
9784 && (o->name[6] == 0 || o->name[6] == '.'))
9785 {
9786 if (o->size != o->reloc_count * address_size)
9787 {
9788 (*_bfd_error_handler)
9789 (_("error: %B: size of section %A is not "
9790 "multiple of address size"),
9791 input_bfd, o);
9792 bfd_set_error (bfd_error_on_input);
9793 return FALSE;
9794 }
9795 o->flags |= SEC_ELF_REVERSE_COPY;
9796 }
9797
9798 action_discarded = -1;
9799 if (!elf_section_ignore_discarded_relocs (o))
9800 action_discarded = (*bed->action_discarded) (o);
9801
9802 /* Run through the relocs evaluating complex reloc symbols and
9803 looking for relocs against symbols from discarded sections
9804 or section symbols from removed link-once sections.
9805 Complain about relocs against discarded sections. Zero
9806 relocs against removed link-once sections. */
9807
9808 rel = internal_relocs;
9809 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9810 for ( ; rel < relend; rel++)
9811 {
9812 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9813 unsigned int s_type;
9814 asection **ps, *sec;
9815 struct elf_link_hash_entry *h = NULL;
9816 const char *sym_name;
9817
9818 if (r_symndx == STN_UNDEF)
9819 continue;
9820
9821 if (r_symndx >= locsymcount
9822 || (elf_bad_symtab (input_bfd)
9823 && flinfo->sections[r_symndx] == NULL))
9824 {
9825 h = sym_hashes[r_symndx - extsymoff];
9826
9827 /* Badly formatted input files can contain relocs that
9828 reference non-existant symbols. Check here so that
9829 we do not seg fault. */
9830 if (h == NULL)
9831 {
9832 char buffer [32];
9833
9834 sprintf_vma (buffer, rel->r_info);
9835 (*_bfd_error_handler)
9836 (_("error: %B contains a reloc (0x%s) for section %A "
9837 "that references a non-existent global symbol"),
9838 input_bfd, o, buffer);
9839 bfd_set_error (bfd_error_bad_value);
9840 return FALSE;
9841 }
9842
9843 while (h->root.type == bfd_link_hash_indirect
9844 || h->root.type == bfd_link_hash_warning)
9845 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9846
9847 s_type = h->type;
9848
9849 /* If a plugin symbol is referenced from a non-IR file,
9850 mark the symbol as undefined. Note that the
9851 linker may attach linker created dynamic sections
9852 to the plugin bfd. Symbols defined in linker
9853 created sections are not plugin symbols. */
9854 if (h->root.non_ir_ref
9855 && (h->root.type == bfd_link_hash_defined
9856 || h->root.type == bfd_link_hash_defweak)
9857 && (h->root.u.def.section->flags
9858 & SEC_LINKER_CREATED) == 0
9859 && h->root.u.def.section->owner != NULL
9860 && (h->root.u.def.section->owner->flags
9861 & BFD_PLUGIN) != 0)
9862 {
9863 h->root.type = bfd_link_hash_undefined;
9864 h->root.u.undef.abfd = h->root.u.def.section->owner;
9865 }
9866
9867 ps = NULL;
9868 if (h->root.type == bfd_link_hash_defined
9869 || h->root.type == bfd_link_hash_defweak)
9870 ps = &h->root.u.def.section;
9871
9872 sym_name = h->root.root.string;
9873 }
9874 else
9875 {
9876 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9877
9878 s_type = ELF_ST_TYPE (sym->st_info);
9879 ps = &flinfo->sections[r_symndx];
9880 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9881 sym, *ps);
9882 }
9883
9884 if ((s_type == STT_RELC || s_type == STT_SRELC)
9885 && !flinfo->info->relocatable)
9886 {
9887 bfd_vma val;
9888 bfd_vma dot = (rel->r_offset
9889 + o->output_offset + o->output_section->vma);
9890#ifdef DEBUG
9891 printf ("Encountered a complex symbol!");
9892 printf (" (input_bfd %s, section %s, reloc %ld\n",
9893 input_bfd->filename, o->name,
9894 (long) (rel - internal_relocs));
9895 printf (" symbol: idx %8.8lx, name %s\n",
9896 r_symndx, sym_name);
9897 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9898 (unsigned long) rel->r_info,
9899 (unsigned long) rel->r_offset);
9900#endif
9901 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9902 isymbuf, locsymcount, s_type == STT_SRELC))
9903 return FALSE;
9904
9905 /* Symbol evaluated OK. Update to absolute value. */
9906 set_symbol_value (input_bfd, isymbuf, locsymcount,
9907 r_symndx, val);
9908 continue;
9909 }
9910
9911 if (action_discarded != -1 && ps != NULL)
9912 {
9913 /* Complain if the definition comes from a
9914 discarded section. */
9915 if ((sec = *ps) != NULL && discarded_section (sec))
9916 {
9917 BFD_ASSERT (r_symndx != STN_UNDEF);
9918 if (action_discarded & COMPLAIN)
9919 (*flinfo->info->callbacks->einfo)
9920 (_("%X`%s' referenced in section `%A' of %B: "
9921 "defined in discarded section `%A' of %B\n"),
9922 sym_name, o, input_bfd, sec, sec->owner);
9923
9924 /* Try to do the best we can to support buggy old
9925 versions of gcc. Pretend that the symbol is
9926 really defined in the kept linkonce section.
9927 FIXME: This is quite broken. Modifying the
9928 symbol here means we will be changing all later
9929 uses of the symbol, not just in this section. */
9930 if (action_discarded & PRETEND)
9931 {
9932 asection *kept;
9933
9934 kept = _bfd_elf_check_kept_section (sec,
9935 flinfo->info);
9936 if (kept != NULL)
9937 {
9938 *ps = kept;
9939 continue;
9940 }
9941 }
9942 }
9943 }
9944 }
9945
9946 /* Relocate the section by invoking a back end routine.
9947
9948 The back end routine is responsible for adjusting the
9949 section contents as necessary, and (if using Rela relocs
9950 and generating a relocatable output file) adjusting the
9951 reloc addend as necessary.
9952
9953 The back end routine does not have to worry about setting
9954 the reloc address or the reloc symbol index.
9955
9956 The back end routine is given a pointer to the swapped in
9957 internal symbols, and can access the hash table entries
9958 for the external symbols via elf_sym_hashes (input_bfd).
9959
9960 When generating relocatable output, the back end routine
9961 must handle STB_LOCAL/STT_SECTION symbols specially. The
9962 output symbol is going to be a section symbol
9963 corresponding to the output section, which will require
9964 the addend to be adjusted. */
9965
9966 ret = (*relocate_section) (output_bfd, flinfo->info,
9967 input_bfd, o, contents,
9968 internal_relocs,
9969 isymbuf,
9970 flinfo->sections);
9971 if (!ret)
9972 return FALSE;
9973
9974 if (ret == 2
9975 || flinfo->info->relocatable
9976 || flinfo->info->emitrelocations)
9977 {
9978 Elf_Internal_Rela *irela;
9979 Elf_Internal_Rela *irelaend, *irelamid;
9980 bfd_vma last_offset;
9981 struct elf_link_hash_entry **rel_hash;
9982 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9983 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9984 unsigned int next_erel;
9985 bfd_boolean rela_normal;
9986 struct bfd_elf_section_data *esdi, *esdo;
9987
9988 esdi = elf_section_data (o);
9989 esdo = elf_section_data (o->output_section);
9990 rela_normal = FALSE;
9991
9992 /* Adjust the reloc addresses and symbol indices. */
9993
9994 irela = internal_relocs;
9995 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9996 rel_hash = esdo->rel.hashes + esdo->rel.count;
9997 /* We start processing the REL relocs, if any. When we reach
9998 IRELAMID in the loop, we switch to the RELA relocs. */
9999 irelamid = irela;
10000 if (esdi->rel.hdr != NULL)
10001 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10002 * bed->s->int_rels_per_ext_rel);
10003 rel_hash_list = rel_hash;
10004 rela_hash_list = NULL;
10005 last_offset = o->output_offset;
10006 if (!flinfo->info->relocatable)
10007 last_offset += o->output_section->vma;
10008 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10009 {
10010 unsigned long r_symndx;
10011 asection *sec;
10012 Elf_Internal_Sym sym;
10013
10014 if (next_erel == bed->s->int_rels_per_ext_rel)
10015 {
10016 rel_hash++;
10017 next_erel = 0;
10018 }
10019
10020 if (irela == irelamid)
10021 {
10022 rel_hash = esdo->rela.hashes + esdo->rela.count;
10023 rela_hash_list = rel_hash;
10024 rela_normal = bed->rela_normal;
10025 }
10026
10027 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10028 flinfo->info, o,
10029 irela->r_offset);
10030 if (irela->r_offset >= (bfd_vma) -2)
10031 {
10032 /* This is a reloc for a deleted entry or somesuch.
10033 Turn it into an R_*_NONE reloc, at the same
10034 offset as the last reloc. elf_eh_frame.c and
10035 bfd_elf_discard_info rely on reloc offsets
10036 being ordered. */
10037 irela->r_offset = last_offset;
10038 irela->r_info = 0;
10039 irela->r_addend = 0;
10040 continue;
10041 }
10042
10043 irela->r_offset += o->output_offset;
10044
10045 /* Relocs in an executable have to be virtual addresses. */
10046 if (!flinfo->info->relocatable)
10047 irela->r_offset += o->output_section->vma;
10048
10049 last_offset = irela->r_offset;
10050
10051 r_symndx = irela->r_info >> r_sym_shift;
10052 if (r_symndx == STN_UNDEF)
10053 continue;
10054
10055 if (r_symndx >= locsymcount
10056 || (elf_bad_symtab (input_bfd)
10057 && flinfo->sections[r_symndx] == NULL))
10058 {
10059 struct elf_link_hash_entry *rh;
10060 unsigned long indx;
10061
10062 /* This is a reloc against a global symbol. We
10063 have not yet output all the local symbols, so
10064 we do not know the symbol index of any global
10065 symbol. We set the rel_hash entry for this
10066 reloc to point to the global hash table entry
10067 for this symbol. The symbol index is then
10068 set at the end of bfd_elf_final_link. */
10069 indx = r_symndx - extsymoff;
10070 rh = elf_sym_hashes (input_bfd)[indx];
10071 while (rh->root.type == bfd_link_hash_indirect
10072 || rh->root.type == bfd_link_hash_warning)
10073 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10074
10075 /* Setting the index to -2 tells
10076 elf_link_output_extsym that this symbol is
10077 used by a reloc. */
10078 BFD_ASSERT (rh->indx < 0);
10079 rh->indx = -2;
10080
10081 *rel_hash = rh;
10082
10083 continue;
10084 }
10085
10086 /* This is a reloc against a local symbol. */
10087
10088 *rel_hash = NULL;
10089 sym = isymbuf[r_symndx];
10090 sec = flinfo->sections[r_symndx];
10091 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10092 {
10093 /* I suppose the backend ought to fill in the
10094 section of any STT_SECTION symbol against a
10095 processor specific section. */
10096 r_symndx = STN_UNDEF;
10097 if (bfd_is_abs_section (sec))
10098 ;
10099 else if (sec == NULL || sec->owner == NULL)
10100 {
10101 bfd_set_error (bfd_error_bad_value);
10102 return FALSE;
10103 }
10104 else
10105 {
10106 asection *osec = sec->output_section;
10107
10108 /* If we have discarded a section, the output
10109 section will be the absolute section. In
10110 case of discarded SEC_MERGE sections, use
10111 the kept section. relocate_section should
10112 have already handled discarded linkonce
10113 sections. */
10114 if (bfd_is_abs_section (osec)
10115 && sec->kept_section != NULL
10116 && sec->kept_section->output_section != NULL)
10117 {
10118 osec = sec->kept_section->output_section;
10119 irela->r_addend -= osec->vma;
10120 }
10121
10122 if (!bfd_is_abs_section (osec))
10123 {
10124 r_symndx = osec->target_index;
10125 if (r_symndx == STN_UNDEF)
10126 {
10127 irela->r_addend += osec->vma;
10128 osec = _bfd_nearby_section (output_bfd, osec,
10129 osec->vma);
10130 irela->r_addend -= osec->vma;
10131 r_symndx = osec->target_index;
10132 }
10133 }
10134 }
10135
10136 /* Adjust the addend according to where the
10137 section winds up in the output section. */
10138 if (rela_normal)
10139 irela->r_addend += sec->output_offset;
10140 }
10141 else
10142 {
10143 if (flinfo->indices[r_symndx] == -1)
10144 {
10145 unsigned long shlink;
10146 const char *name;
10147 asection *osec;
10148 long indx;
10149
10150 if (flinfo->info->strip == strip_all)
10151 {
10152 /* You can't do ld -r -s. */
10153 bfd_set_error (bfd_error_invalid_operation);
10154 return FALSE;
10155 }
10156
10157 /* This symbol was skipped earlier, but
10158 since it is needed by a reloc, we
10159 must output it now. */
10160 shlink = symtab_hdr->sh_link;
10161 name = (bfd_elf_string_from_elf_section
10162 (input_bfd, shlink, sym.st_name));
10163 if (name == NULL)
10164 return FALSE;
10165
10166 osec = sec->output_section;
10167 sym.st_shndx =
10168 _bfd_elf_section_from_bfd_section (output_bfd,
10169 osec);
10170 if (sym.st_shndx == SHN_BAD)
10171 return FALSE;
10172
10173 sym.st_value += sec->output_offset;
10174 if (!flinfo->info->relocatable)
10175 {
10176 sym.st_value += osec->vma;
10177 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10178 {
10179 /* STT_TLS symbols are relative to PT_TLS
10180 segment base. */
10181 BFD_ASSERT (elf_hash_table (flinfo->info)
10182 ->tls_sec != NULL);
10183 sym.st_value -= (elf_hash_table (flinfo->info)
10184 ->tls_sec->vma);
10185 }
10186 }
10187
10188 indx = bfd_get_symcount (output_bfd);
10189 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10190 NULL);
10191 if (ret == 0)
10192 return FALSE;
10193 else if (ret == 1)
10194 flinfo->indices[r_symndx] = indx;
10195 else
10196 abort ();
10197 }
10198
10199 r_symndx = flinfo->indices[r_symndx];
10200 }
10201
10202 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10203 | (irela->r_info & r_type_mask));
10204 }
10205
10206 /* Swap out the relocs. */
10207 input_rel_hdr = esdi->rel.hdr;
10208 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10209 {
10210 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10211 input_rel_hdr,
10212 internal_relocs,
10213 rel_hash_list))
10214 return FALSE;
10215 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10216 * bed->s->int_rels_per_ext_rel);
10217 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10218 }
10219
10220 input_rela_hdr = esdi->rela.hdr;
10221 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10222 {
10223 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10224 input_rela_hdr,
10225 internal_relocs,
10226 rela_hash_list))
10227 return FALSE;
10228 }
10229 }
10230 }
10231
10232 /* Write out the modified section contents. */
10233 if (bed->elf_backend_write_section
10234 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10235 contents))
10236 {
10237 /* Section written out. */
10238 }
10239 else switch (o->sec_info_type)
10240 {
10241 case SEC_INFO_TYPE_STABS:
10242 if (! (_bfd_write_section_stabs
10243 (output_bfd,
10244 &elf_hash_table (flinfo->info)->stab_info,
10245 o, &elf_section_data (o)->sec_info, contents)))
10246 return FALSE;
10247 break;
10248 case SEC_INFO_TYPE_MERGE:
10249 if (! _bfd_write_merged_section (output_bfd, o,
10250 elf_section_data (o)->sec_info))
10251 return FALSE;
10252 break;
10253 case SEC_INFO_TYPE_EH_FRAME:
10254 {
10255 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10256 o, contents))
10257 return FALSE;
10258 }
10259 break;
10260 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10261 {
10262 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10263 flinfo->info,
10264 o, contents))
10265 return FALSE;
10266 }
10267 break;
10268 default:
10269 {
10270 /* FIXME: octets_per_byte. */
10271 if (! (o->flags & SEC_EXCLUDE))
10272 {
10273 file_ptr offset = (file_ptr) o->output_offset;
10274 bfd_size_type todo = o->size;
10275 if ((o->flags & SEC_ELF_REVERSE_COPY))
10276 {
10277 /* Reverse-copy input section to output. */
10278 do
10279 {
10280 todo -= address_size;
10281 if (! bfd_set_section_contents (output_bfd,
10282 o->output_section,
10283 contents + todo,
10284 offset,
10285 address_size))
10286 return FALSE;
10287 if (todo == 0)
10288 break;
10289 offset += address_size;
10290 }
10291 while (1);
10292 }
10293 else if (! bfd_set_section_contents (output_bfd,
10294 o->output_section,
10295 contents,
10296 offset, todo))
10297 return FALSE;
10298 }
10299 }
10300 break;
10301 }
10302 }
10303
10304 return TRUE;
10305}
10306
10307/* Generate a reloc when linking an ELF file. This is a reloc
10308 requested by the linker, and does not come from any input file. This
10309 is used to build constructor and destructor tables when linking
10310 with -Ur. */
10311
10312static bfd_boolean
10313elf_reloc_link_order (bfd *output_bfd,
10314 struct bfd_link_info *info,
10315 asection *output_section,
10316 struct bfd_link_order *link_order)
10317{
10318 reloc_howto_type *howto;
10319 long indx;
10320 bfd_vma offset;
10321 bfd_vma addend;
10322 struct bfd_elf_section_reloc_data *reldata;
10323 struct elf_link_hash_entry **rel_hash_ptr;
10324 Elf_Internal_Shdr *rel_hdr;
10325 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10326 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10327 bfd_byte *erel;
10328 unsigned int i;
10329 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10330
10331 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10332 if (howto == NULL)
10333 {
10334 bfd_set_error (bfd_error_bad_value);
10335 return FALSE;
10336 }
10337
10338 addend = link_order->u.reloc.p->addend;
10339
10340 if (esdo->rel.hdr)
10341 reldata = &esdo->rel;
10342 else if (esdo->rela.hdr)
10343 reldata = &esdo->rela;
10344 else
10345 {
10346 reldata = NULL;
10347 BFD_ASSERT (0);
10348 }
10349
10350 /* Figure out the symbol index. */
10351 rel_hash_ptr = reldata->hashes + reldata->count;
10352 if (link_order->type == bfd_section_reloc_link_order)
10353 {
10354 indx = link_order->u.reloc.p->u.section->target_index;
10355 BFD_ASSERT (indx != 0);
10356 *rel_hash_ptr = NULL;
10357 }
10358 else
10359 {
10360 struct elf_link_hash_entry *h;
10361
10362 /* Treat a reloc against a defined symbol as though it were
10363 actually against the section. */
10364 h = ((struct elf_link_hash_entry *)
10365 bfd_wrapped_link_hash_lookup (output_bfd, info,
10366 link_order->u.reloc.p->u.name,
10367 FALSE, FALSE, TRUE));
10368 if (h != NULL
10369 && (h->root.type == bfd_link_hash_defined
10370 || h->root.type == bfd_link_hash_defweak))
10371 {
10372 asection *section;
10373
10374 section = h->root.u.def.section;
10375 indx = section->output_section->target_index;
10376 *rel_hash_ptr = NULL;
10377 /* It seems that we ought to add the symbol value to the
10378 addend here, but in practice it has already been added
10379 because it was passed to constructor_callback. */
10380 addend += section->output_section->vma + section->output_offset;
10381 }
10382 else if (h != NULL)
10383 {
10384 /* Setting the index to -2 tells elf_link_output_extsym that
10385 this symbol is used by a reloc. */
10386 h->indx = -2;
10387 *rel_hash_ptr = h;
10388 indx = 0;
10389 }
10390 else
10391 {
10392 if (! ((*info->callbacks->unattached_reloc)
10393 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10394 return FALSE;
10395 indx = 0;
10396 }
10397 }
10398
10399 /* If this is an inplace reloc, we must write the addend into the
10400 object file. */
10401 if (howto->partial_inplace && addend != 0)
10402 {
10403 bfd_size_type size;
10404 bfd_reloc_status_type rstat;
10405 bfd_byte *buf;
10406 bfd_boolean ok;
10407 const char *sym_name;
10408
10409 size = (bfd_size_type) bfd_get_reloc_size (howto);
10410 buf = (bfd_byte *) bfd_zmalloc (size);
10411 if (buf == NULL && size != 0)
10412 return FALSE;
10413 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10414 switch (rstat)
10415 {
10416 case bfd_reloc_ok:
10417 break;
10418
10419 default:
10420 case bfd_reloc_outofrange:
10421 abort ();
10422
10423 case bfd_reloc_overflow:
10424 if (link_order->type == bfd_section_reloc_link_order)
10425 sym_name = bfd_section_name (output_bfd,
10426 link_order->u.reloc.p->u.section);
10427 else
10428 sym_name = link_order->u.reloc.p->u.name;
10429 if (! ((*info->callbacks->reloc_overflow)
10430 (info, NULL, sym_name, howto->name, addend, NULL,
10431 NULL, (bfd_vma) 0)))
10432 {
10433 free (buf);
10434 return FALSE;
10435 }
10436 break;
10437 }
10438 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10439 link_order->offset, size);
10440 free (buf);
10441 if (! ok)
10442 return FALSE;
10443 }
10444
10445 /* The address of a reloc is relative to the section in a
10446 relocatable file, and is a virtual address in an executable
10447 file. */
10448 offset = link_order->offset;
10449 if (! info->relocatable)
10450 offset += output_section->vma;
10451
10452 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10453 {
10454 irel[i].r_offset = offset;
10455 irel[i].r_info = 0;
10456 irel[i].r_addend = 0;
10457 }
10458 if (bed->s->arch_size == 32)
10459 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10460 else
10461 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10462
10463 rel_hdr = reldata->hdr;
10464 erel = rel_hdr->contents;
10465 if (rel_hdr->sh_type == SHT_REL)
10466 {
10467 erel += reldata->count * bed->s->sizeof_rel;
10468 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10469 }
10470 else
10471 {
10472 irel[0].r_addend = addend;
10473 erel += reldata->count * bed->s->sizeof_rela;
10474 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10475 }
10476
10477 ++reldata->count;
10478
10479 return TRUE;
10480}
10481
10482
10483/* Get the output vma of the section pointed to by the sh_link field. */
10484
10485static bfd_vma
10486elf_get_linked_section_vma (struct bfd_link_order *p)
10487{
10488 Elf_Internal_Shdr **elf_shdrp;
10489 asection *s;
10490 int elfsec;
10491
10492 s = p->u.indirect.section;
10493 elf_shdrp = elf_elfsections (s->owner);
10494 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10495 elfsec = elf_shdrp[elfsec]->sh_link;
10496 /* PR 290:
10497 The Intel C compiler generates SHT_IA_64_UNWIND with
10498 SHF_LINK_ORDER. But it doesn't set the sh_link or
10499 sh_info fields. Hence we could get the situation
10500 where elfsec is 0. */
10501 if (elfsec == 0)
10502 {
10503 const struct elf_backend_data *bed
10504 = get_elf_backend_data (s->owner);
10505 if (bed->link_order_error_handler)
10506 bed->link_order_error_handler
10507 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10508 return 0;
10509 }
10510 else
10511 {
10512 s = elf_shdrp[elfsec]->bfd_section;
10513 return s->output_section->vma + s->output_offset;
10514 }
10515}
10516
10517
10518/* Compare two sections based on the locations of the sections they are
10519 linked to. Used by elf_fixup_link_order. */
10520
10521static int
10522compare_link_order (const void * a, const void * b)
10523{
10524 bfd_vma apos;
10525 bfd_vma bpos;
10526
10527 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10528 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10529 if (apos < bpos)
10530 return -1;
10531 return apos > bpos;
10532}
10533
10534
10535/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10536 order as their linked sections. Returns false if this could not be done
10537 because an output section includes both ordered and unordered
10538 sections. Ideally we'd do this in the linker proper. */
10539
10540static bfd_boolean
10541elf_fixup_link_order (bfd *abfd, asection *o)
10542{
10543 int seen_linkorder;
10544 int seen_other;
10545 int n;
10546 struct bfd_link_order *p;
10547 bfd *sub;
10548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10549 unsigned elfsec;
10550 struct bfd_link_order **sections;
10551 asection *s, *other_sec, *linkorder_sec;
10552 bfd_vma offset;
10553
10554 other_sec = NULL;
10555 linkorder_sec = NULL;
10556 seen_other = 0;
10557 seen_linkorder = 0;
10558 for (p = o->map_head.link_order; p != NULL; p = p->next)
10559 {
10560 if (p->type == bfd_indirect_link_order)
10561 {
10562 s = p->u.indirect.section;
10563 sub = s->owner;
10564 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10565 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10566 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10567 && elfsec < elf_numsections (sub)
10568 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10569 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10570 {
10571 seen_linkorder++;
10572 linkorder_sec = s;
10573 }
10574 else
10575 {
10576 seen_other++;
10577 other_sec = s;
10578 }
10579 }
10580 else
10581 seen_other++;
10582
10583 if (seen_other && seen_linkorder)
10584 {
10585 if (other_sec && linkorder_sec)
10586 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10587 o, linkorder_sec,
10588 linkorder_sec->owner, other_sec,
10589 other_sec->owner);
10590 else
10591 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10592 o);
10593 bfd_set_error (bfd_error_bad_value);
10594 return FALSE;
10595 }
10596 }
10597
10598 if (!seen_linkorder)
10599 return TRUE;
10600
10601 sections = (struct bfd_link_order **)
10602 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10603 if (sections == NULL)
10604 return FALSE;
10605 seen_linkorder = 0;
10606
10607 for (p = o->map_head.link_order; p != NULL; p = p->next)
10608 {
10609 sections[seen_linkorder++] = p;
10610 }
10611 /* Sort the input sections in the order of their linked section. */
10612 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10613 compare_link_order);
10614
10615 /* Change the offsets of the sections. */
10616 offset = 0;
10617 for (n = 0; n < seen_linkorder; n++)
10618 {
10619 s = sections[n]->u.indirect.section;
10620 offset &= ~(bfd_vma) 0 << s->alignment_power;
10621 s->output_offset = offset;
10622 sections[n]->offset = offset;
10623 /* FIXME: octets_per_byte. */
10624 offset += sections[n]->size;
10625 }
10626
10627 free (sections);
10628 return TRUE;
10629}
10630
10631static void
10632elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10633{
10634 asection *o;
10635
10636 if (flinfo->symstrtab != NULL)
10637 _bfd_stringtab_free (flinfo->symstrtab);
10638 if (flinfo->contents != NULL)
10639 free (flinfo->contents);
10640 if (flinfo->external_relocs != NULL)
10641 free (flinfo->external_relocs);
10642 if (flinfo->internal_relocs != NULL)
10643 free (flinfo->internal_relocs);
10644 if (flinfo->external_syms != NULL)
10645 free (flinfo->external_syms);
10646 if (flinfo->locsym_shndx != NULL)
10647 free (flinfo->locsym_shndx);
10648 if (flinfo->internal_syms != NULL)
10649 free (flinfo->internal_syms);
10650 if (flinfo->indices != NULL)
10651 free (flinfo->indices);
10652 if (flinfo->sections != NULL)
10653 free (flinfo->sections);
10654 if (flinfo->symbuf != NULL)
10655 free (flinfo->symbuf);
10656 if (flinfo->symshndxbuf != NULL)
10657 free (flinfo->symshndxbuf);
10658 for (o = obfd->sections; o != NULL; o = o->next)
10659 {
10660 struct bfd_elf_section_data *esdo = elf_section_data (o);
10661 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10662 free (esdo->rel.hashes);
10663 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10664 free (esdo->rela.hashes);
10665 }
10666}
10667
10668/* Do the final step of an ELF link. */
10669
10670bfd_boolean
10671bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10672{
10673 bfd_boolean dynamic;
10674 bfd_boolean emit_relocs;
10675 bfd *dynobj;
10676 struct elf_final_link_info flinfo;
10677 asection *o;
10678 struct bfd_link_order *p;
10679 bfd *sub;
10680 bfd_size_type max_contents_size;
10681 bfd_size_type max_external_reloc_size;
10682 bfd_size_type max_internal_reloc_count;
10683 bfd_size_type max_sym_count;
10684 bfd_size_type max_sym_shndx_count;
10685 Elf_Internal_Sym elfsym;
10686 unsigned int i;
10687 Elf_Internal_Shdr *symtab_hdr;
10688 Elf_Internal_Shdr *symtab_shndx_hdr;
10689 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10690 struct elf_outext_info eoinfo;
10691 bfd_boolean merged;
10692 size_t relativecount = 0;
10693 asection *reldyn = 0;
10694 bfd_size_type amt;
10695 asection *attr_section = NULL;
10696 bfd_vma attr_size = 0;
10697 const char *std_attrs_section;
10698
10699 if (! is_elf_hash_table (info->hash))
10700 return FALSE;
10701
10702 if (info->shared)
10703 abfd->flags |= DYNAMIC;
10704
10705 dynamic = elf_hash_table (info)->dynamic_sections_created;
10706 dynobj = elf_hash_table (info)->dynobj;
10707
10708 emit_relocs = (info->relocatable
10709 || info->emitrelocations);
10710
10711 flinfo.info = info;
10712 flinfo.output_bfd = abfd;
10713 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10714 if (flinfo.symstrtab == NULL)
10715 return FALSE;
10716
10717 if (! dynamic)
10718 {
10719 flinfo.dynsym_sec = NULL;
10720 flinfo.hash_sec = NULL;
10721 flinfo.symver_sec = NULL;
10722 }
10723 else
10724 {
10725 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10726 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10727 /* Note that dynsym_sec can be NULL (on VMS). */
10728 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10729 /* Note that it is OK if symver_sec is NULL. */
10730 }
10731
10732 flinfo.contents = NULL;
10733 flinfo.external_relocs = NULL;
10734 flinfo.internal_relocs = NULL;
10735 flinfo.external_syms = NULL;
10736 flinfo.locsym_shndx = NULL;
10737 flinfo.internal_syms = NULL;
10738 flinfo.indices = NULL;
10739 flinfo.sections = NULL;
10740 flinfo.symbuf = NULL;
10741 flinfo.symshndxbuf = NULL;
10742 flinfo.symbuf_count = 0;
10743 flinfo.shndxbuf_size = 0;
10744 flinfo.filesym_count = 0;
10745
10746 /* The object attributes have been merged. Remove the input
10747 sections from the link, and set the contents of the output
10748 secton. */
10749 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10750 for (o = abfd->sections; o != NULL; o = o->next)
10751 {
10752 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10753 || strcmp (o->name, ".gnu.attributes") == 0)
10754 {
10755 for (p = o->map_head.link_order; p != NULL; p = p->next)
10756 {
10757 asection *input_section;
10758
10759 if (p->type != bfd_indirect_link_order)
10760 continue;
10761 input_section = p->u.indirect.section;
10762 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10763 elf_link_input_bfd ignores this section. */
10764 input_section->flags &= ~SEC_HAS_CONTENTS;
10765 }
10766
10767 attr_size = bfd_elf_obj_attr_size (abfd);
10768 if (attr_size)
10769 {
10770 bfd_set_section_size (abfd, o, attr_size);
10771 attr_section = o;
10772 /* Skip this section later on. */
10773 o->map_head.link_order = NULL;
10774 }
10775 else
10776 o->flags |= SEC_EXCLUDE;
10777 }
10778 }
10779
10780 /* Count up the number of relocations we will output for each output
10781 section, so that we know the sizes of the reloc sections. We
10782 also figure out some maximum sizes. */
10783 max_contents_size = 0;
10784 max_external_reloc_size = 0;
10785 max_internal_reloc_count = 0;
10786 max_sym_count = 0;
10787 max_sym_shndx_count = 0;
10788 merged = FALSE;
10789 for (o = abfd->sections; o != NULL; o = o->next)
10790 {
10791 struct bfd_elf_section_data *esdo = elf_section_data (o);
10792 o->reloc_count = 0;
10793
10794 for (p = o->map_head.link_order; p != NULL; p = p->next)
10795 {
10796 unsigned int reloc_count = 0;
10797 struct bfd_elf_section_data *esdi = NULL;
10798
10799 if (p->type == bfd_section_reloc_link_order
10800 || p->type == bfd_symbol_reloc_link_order)
10801 reloc_count = 1;
10802 else if (p->type == bfd_indirect_link_order)
10803 {
10804 asection *sec;
10805
10806 sec = p->u.indirect.section;
10807 esdi = elf_section_data (sec);
10808
10809 /* Mark all sections which are to be included in the
10810 link. This will normally be every section. We need
10811 to do this so that we can identify any sections which
10812 the linker has decided to not include. */
10813 sec->linker_mark = TRUE;
10814
10815 if (sec->flags & SEC_MERGE)
10816 merged = TRUE;
10817
10818 if (esdo->this_hdr.sh_type == SHT_REL
10819 || esdo->this_hdr.sh_type == SHT_RELA)
10820 /* Some backends use reloc_count in relocation sections
10821 to count particular types of relocs. Of course,
10822 reloc sections themselves can't have relocations. */
10823 reloc_count = 0;
10824 else if (info->relocatable || info->emitrelocations)
10825 reloc_count = sec->reloc_count;
10826 else if (bed->elf_backend_count_relocs)
10827 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10828
10829 if (sec->rawsize > max_contents_size)
10830 max_contents_size = sec->rawsize;
10831 if (sec->size > max_contents_size)
10832 max_contents_size = sec->size;
10833
10834 /* We are interested in just local symbols, not all
10835 symbols. */
10836 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10837 && (sec->owner->flags & DYNAMIC) == 0)
10838 {
10839 size_t sym_count;
10840
10841 if (elf_bad_symtab (sec->owner))
10842 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10843 / bed->s->sizeof_sym);
10844 else
10845 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10846
10847 if (sym_count > max_sym_count)
10848 max_sym_count = sym_count;
10849
10850 if (sym_count > max_sym_shndx_count
10851 && elf_symtab_shndx (sec->owner) != 0)
10852 max_sym_shndx_count = sym_count;
10853
10854 if ((sec->flags & SEC_RELOC) != 0)
10855 {
10856 size_t ext_size = 0;
10857
10858 if (esdi->rel.hdr != NULL)
10859 ext_size = esdi->rel.hdr->sh_size;
10860 if (esdi->rela.hdr != NULL)
10861 ext_size += esdi->rela.hdr->sh_size;
10862
10863 if (ext_size > max_external_reloc_size)
10864 max_external_reloc_size = ext_size;
10865 if (sec->reloc_count > max_internal_reloc_count)
10866 max_internal_reloc_count = sec->reloc_count;
10867 }
10868 }
10869 }
10870
10871 if (reloc_count == 0)
10872 continue;
10873
10874 o->reloc_count += reloc_count;
10875
10876 if (p->type == bfd_indirect_link_order
10877 && (info->relocatable || info->emitrelocations))
10878 {
10879 if (esdi->rel.hdr)
10880 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10881 if (esdi->rela.hdr)
10882 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10883 }
10884 else
10885 {
10886 if (o->use_rela_p)
10887 esdo->rela.count += reloc_count;
10888 else
10889 esdo->rel.count += reloc_count;
10890 }
10891 }
10892
10893 if (o->reloc_count > 0)
10894 o->flags |= SEC_RELOC;
10895 else
10896 {
10897 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10898 set it (this is probably a bug) and if it is set
10899 assign_section_numbers will create a reloc section. */
10900 o->flags &=~ SEC_RELOC;
10901 }
10902
10903 /* If the SEC_ALLOC flag is not set, force the section VMA to
10904 zero. This is done in elf_fake_sections as well, but forcing
10905 the VMA to 0 here will ensure that relocs against these
10906 sections are handled correctly. */
10907 if ((o->flags & SEC_ALLOC) == 0
10908 && ! o->user_set_vma)
10909 o->vma = 0;
10910 }
10911
10912 if (! info->relocatable && merged)
10913 elf_link_hash_traverse (elf_hash_table (info),
10914 _bfd_elf_link_sec_merge_syms, abfd);
10915
10916 /* Figure out the file positions for everything but the symbol table
10917 and the relocs. We set symcount to force assign_section_numbers
10918 to create a symbol table. */
10919 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10920 BFD_ASSERT (! abfd->output_has_begun);
10921 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10922 goto error_return;
10923
10924 /* Set sizes, and assign file positions for reloc sections. */
10925 for (o = abfd->sections; o != NULL; o = o->next)
10926 {
10927 struct bfd_elf_section_data *esdo = elf_section_data (o);
10928 if ((o->flags & SEC_RELOC) != 0)
10929 {
10930 if (esdo->rel.hdr
10931 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10932 goto error_return;
10933
10934 if (esdo->rela.hdr
10935 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10936 goto error_return;
10937 }
10938
10939 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10940 to count upwards while actually outputting the relocations. */
10941 esdo->rel.count = 0;
10942 esdo->rela.count = 0;
10943
10944 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
10945 {
10946 /* Cache the section contents so that they can be compressed
10947 later. Use bfd_malloc since it will be freed by
10948 bfd_compress_section_contents. */
10949 unsigned char *contents = esdo->this_hdr.contents;
10950 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
10951 abort ();
10952 contents
10953 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
10954 if (contents == NULL)
10955 goto error_return;
10956 esdo->this_hdr.contents = contents;
10957 }
10958 }
10959
10960 /* We have now assigned file positions for all the sections except
10961 .symtab, .strtab, and non-loaded reloc sections. We start the
10962 .symtab section at the current file position, and write directly
10963 to it. We build the .strtab section in memory. */
10964 bfd_get_symcount (abfd) = 0;
10965 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10966 /* sh_name is set in prep_headers. */
10967 symtab_hdr->sh_type = SHT_SYMTAB;
10968 /* sh_flags, sh_addr and sh_size all start off zero. */
10969 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10970 /* sh_link is set in assign_section_numbers. */
10971 /* sh_info is set below. */
10972 /* sh_offset is set just below. */
10973 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10974
10975 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10976 continuously seeking to the right position in the file. */
10977 if (! info->keep_memory || max_sym_count < 20)
10978 flinfo.symbuf_size = 20;
10979 else
10980 flinfo.symbuf_size = max_sym_count;
10981 amt = flinfo.symbuf_size;
10982 amt *= bed->s->sizeof_sym;
10983 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10984 if (flinfo.symbuf == NULL)
10985 goto error_return;
10986 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10987 {
10988 /* Wild guess at number of output symbols. realloc'd as needed. */
10989 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10990 flinfo.shndxbuf_size = amt;
10991 amt *= sizeof (Elf_External_Sym_Shndx);
10992 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10993 if (flinfo.symshndxbuf == NULL)
10994 goto error_return;
10995 }
10996
10997 if (info->strip != strip_all || emit_relocs)
10998 {
10999 file_ptr off = elf_next_file_pos (abfd);
11000
11001 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11002
11003 /* Note that at this point elf_next_file_pos (abfd) is
11004 incorrect. We do not yet know the size of the .symtab section.
11005 We correct next_file_pos below, after we do know the size. */
11006
11007 /* Start writing out the symbol table. The first symbol is always a
11008 dummy symbol. */
11009 elfsym.st_value = 0;
11010 elfsym.st_size = 0;
11011 elfsym.st_info = 0;
11012 elfsym.st_other = 0;
11013 elfsym.st_shndx = SHN_UNDEF;
11014 elfsym.st_target_internal = 0;
11015 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
11016 NULL) != 1)
11017 goto error_return;
11018
11019 /* Output a symbol for each section. We output these even if we are
11020 discarding local symbols, since they are used for relocs. These
11021 symbols have no names. We store the index of each one in the
11022 index field of the section, so that we can find it again when
11023 outputting relocs. */
11024
11025 elfsym.st_size = 0;
11026 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11027 elfsym.st_other = 0;
11028 elfsym.st_value = 0;
11029 elfsym.st_target_internal = 0;
11030 for (i = 1; i < elf_numsections (abfd); i++)
11031 {
11032 o = bfd_section_from_elf_index (abfd, i);
11033 if (o != NULL)
11034 {
11035 o->target_index = bfd_get_symcount (abfd);
11036 elfsym.st_shndx = i;
11037 if (!info->relocatable)
11038 elfsym.st_value = o->vma;
11039 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
11040 goto error_return;
11041 }
11042 }
11043 }
11044
11045 /* Allocate some memory to hold information read in from the input
11046 files. */
11047 if (max_contents_size != 0)
11048 {
11049 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11050 if (flinfo.contents == NULL)
11051 goto error_return;
11052 }
11053
11054 if (max_external_reloc_size != 0)
11055 {
11056 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11057 if (flinfo.external_relocs == NULL)
11058 goto error_return;
11059 }
11060
11061 if (max_internal_reloc_count != 0)
11062 {
11063 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11064 amt *= sizeof (Elf_Internal_Rela);
11065 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11066 if (flinfo.internal_relocs == NULL)
11067 goto error_return;
11068 }
11069
11070 if (max_sym_count != 0)
11071 {
11072 amt = max_sym_count * bed->s->sizeof_sym;
11073 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11074 if (flinfo.external_syms == NULL)
11075 goto error_return;
11076
11077 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11078 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11079 if (flinfo.internal_syms == NULL)
11080 goto error_return;
11081
11082 amt = max_sym_count * sizeof (long);
11083 flinfo.indices = (long int *) bfd_malloc (amt);
11084 if (flinfo.indices == NULL)
11085 goto error_return;
11086
11087 amt = max_sym_count * sizeof (asection *);
11088 flinfo.sections = (asection **) bfd_malloc (amt);
11089 if (flinfo.sections == NULL)
11090 goto error_return;
11091 }
11092
11093 if (max_sym_shndx_count != 0)
11094 {
11095 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11096 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11097 if (flinfo.locsym_shndx == NULL)
11098 goto error_return;
11099 }
11100
11101 if (elf_hash_table (info)->tls_sec)
11102 {
11103 bfd_vma base, end = 0;
11104 asection *sec;
11105
11106 for (sec = elf_hash_table (info)->tls_sec;
11107 sec && (sec->flags & SEC_THREAD_LOCAL);
11108 sec = sec->next)
11109 {
11110 bfd_size_type size = sec->size;
11111
11112 if (size == 0
11113 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11114 {
11115 struct bfd_link_order *ord = sec->map_tail.link_order;
11116
11117 if (ord != NULL)
11118 size = ord->offset + ord->size;
11119 }
11120 end = sec->vma + size;
11121 }
11122 base = elf_hash_table (info)->tls_sec->vma;
11123 /* Only align end of TLS section if static TLS doesn't have special
11124 alignment requirements. */
11125 if (bed->static_tls_alignment == 1)
11126 end = align_power (end,
11127 elf_hash_table (info)->tls_sec->alignment_power);
11128 elf_hash_table (info)->tls_size = end - base;
11129 }
11130
11131 /* Reorder SHF_LINK_ORDER sections. */
11132 for (o = abfd->sections; o != NULL; o = o->next)
11133 {
11134 if (!elf_fixup_link_order (abfd, o))
11135 return FALSE;
11136 }
11137
11138 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11139 return FALSE;
11140
11141 /* Since ELF permits relocations to be against local symbols, we
11142 must have the local symbols available when we do the relocations.
11143 Since we would rather only read the local symbols once, and we
11144 would rather not keep them in memory, we handle all the
11145 relocations for a single input file at the same time.
11146
11147 Unfortunately, there is no way to know the total number of local
11148 symbols until we have seen all of them, and the local symbol
11149 indices precede the global symbol indices. This means that when
11150 we are generating relocatable output, and we see a reloc against
11151 a global symbol, we can not know the symbol index until we have
11152 finished examining all the local symbols to see which ones we are
11153 going to output. To deal with this, we keep the relocations in
11154 memory, and don't output them until the end of the link. This is
11155 an unfortunate waste of memory, but I don't see a good way around
11156 it. Fortunately, it only happens when performing a relocatable
11157 link, which is not the common case. FIXME: If keep_memory is set
11158 we could write the relocs out and then read them again; I don't
11159 know how bad the memory loss will be. */
11160
11161 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11162 sub->output_has_begun = FALSE;
11163 for (o = abfd->sections; o != NULL; o = o->next)
11164 {
11165 for (p = o->map_head.link_order; p != NULL; p = p->next)
11166 {
11167 if (p->type == bfd_indirect_link_order
11168 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11169 == bfd_target_elf_flavour)
11170 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11171 {
11172 if (! sub->output_has_begun)
11173 {
11174 if (! elf_link_input_bfd (&flinfo, sub))
11175 goto error_return;
11176 sub->output_has_begun = TRUE;
11177 }
11178 }
11179 else if (p->type == bfd_section_reloc_link_order
11180 || p->type == bfd_symbol_reloc_link_order)
11181 {
11182 if (! elf_reloc_link_order (abfd, info, o, p))
11183 goto error_return;
11184 }
11185 else
11186 {
11187 if (! _bfd_default_link_order (abfd, info, o, p))
11188 {
11189 if (p->type == bfd_indirect_link_order
11190 && (bfd_get_flavour (sub)
11191 == bfd_target_elf_flavour)
11192 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11193 != bed->s->elfclass))
11194 {
11195 const char *iclass, *oclass;
11196
11197 if (bed->s->elfclass == ELFCLASS64)
11198 {
11199 iclass = "ELFCLASS32";
11200 oclass = "ELFCLASS64";
11201 }
11202 else
11203 {
11204 iclass = "ELFCLASS64";
11205 oclass = "ELFCLASS32";
11206 }
11207
11208 bfd_set_error (bfd_error_wrong_format);
11209 (*_bfd_error_handler)
11210 (_("%B: file class %s incompatible with %s"),
11211 sub, iclass, oclass);
11212 }
11213
11214 goto error_return;
11215 }
11216 }
11217 }
11218 }
11219
11220 /* Free symbol buffer if needed. */
11221 if (!info->reduce_memory_overheads)
11222 {
11223 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11224 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11225 && elf_tdata (sub)->symbuf)
11226 {
11227 free (elf_tdata (sub)->symbuf);
11228 elf_tdata (sub)->symbuf = NULL;
11229 }
11230 }
11231
11232 /* Output any global symbols that got converted to local in a
11233 version script or due to symbol visibility. We do this in a
11234 separate step since ELF requires all local symbols to appear
11235 prior to any global symbols. FIXME: We should only do this if
11236 some global symbols were, in fact, converted to become local.
11237 FIXME: Will this work correctly with the Irix 5 linker? */
11238 eoinfo.failed = FALSE;
11239 eoinfo.flinfo = &flinfo;
11240 eoinfo.localsyms = TRUE;
11241 eoinfo.file_sym_done = FALSE;
11242 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11243 if (eoinfo.failed)
11244 return FALSE;
11245
11246 /* If backend needs to output some local symbols not present in the hash
11247 table, do it now. */
11248 if (bed->elf_backend_output_arch_local_syms
11249 && (info->strip != strip_all || emit_relocs))
11250 {
11251 typedef int (*out_sym_func)
11252 (void *, const char *, Elf_Internal_Sym *, asection *,
11253 struct elf_link_hash_entry *);
11254
11255 if (! ((*bed->elf_backend_output_arch_local_syms)
11256 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11257 return FALSE;
11258 }
11259
11260 /* That wrote out all the local symbols. Finish up the symbol table
11261 with the global symbols. Even if we want to strip everything we
11262 can, we still need to deal with those global symbols that got
11263 converted to local in a version script. */
11264
11265 /* The sh_info field records the index of the first non local symbol. */
11266 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11267
11268 if (dynamic
11269 && flinfo.dynsym_sec != NULL
11270 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11271 {
11272 Elf_Internal_Sym sym;
11273 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11274 long last_local = 0;
11275
11276 /* Write out the section symbols for the output sections. */
11277 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11278 {
11279 asection *s;
11280
11281 sym.st_size = 0;
11282 sym.st_name = 0;
11283 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11284 sym.st_other = 0;
11285 sym.st_target_internal = 0;
11286
11287 for (s = abfd->sections; s != NULL; s = s->next)
11288 {
11289 int indx;
11290 bfd_byte *dest;
11291 long dynindx;
11292
11293 dynindx = elf_section_data (s)->dynindx;
11294 if (dynindx <= 0)
11295 continue;
11296 indx = elf_section_data (s)->this_idx;
11297 BFD_ASSERT (indx > 0);
11298 sym.st_shndx = indx;
11299 if (! check_dynsym (abfd, &sym))
11300 return FALSE;
11301 sym.st_value = s->vma;
11302 dest = dynsym + dynindx * bed->s->sizeof_sym;
11303 if (last_local < dynindx)
11304 last_local = dynindx;
11305 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11306 }
11307 }
11308
11309 /* Write out the local dynsyms. */
11310 if (elf_hash_table (info)->dynlocal)
11311 {
11312 struct elf_link_local_dynamic_entry *e;
11313 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11314 {
11315 asection *s;
11316 bfd_byte *dest;
11317
11318 /* Copy the internal symbol and turn off visibility.
11319 Note that we saved a word of storage and overwrote
11320 the original st_name with the dynstr_index. */
11321 sym = e->isym;
11322 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11323
11324 s = bfd_section_from_elf_index (e->input_bfd,
11325 e->isym.st_shndx);
11326 if (s != NULL)
11327 {
11328 sym.st_shndx =
11329 elf_section_data (s->output_section)->this_idx;
11330 if (! check_dynsym (abfd, &sym))
11331 return FALSE;
11332 sym.st_value = (s->output_section->vma
11333 + s->output_offset
11334 + e->isym.st_value);
11335 }
11336
11337 if (last_local < e->dynindx)
11338 last_local = e->dynindx;
11339
11340 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11341 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11342 }
11343 }
11344
11345 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11346 last_local + 1;
11347 }
11348
11349 /* We get the global symbols from the hash table. */
11350 eoinfo.failed = FALSE;
11351 eoinfo.localsyms = FALSE;
11352 eoinfo.flinfo = &flinfo;
11353 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11354 if (eoinfo.failed)
11355 return FALSE;
11356
11357 /* If backend needs to output some symbols not present in the hash
11358 table, do it now. */
11359 if (bed->elf_backend_output_arch_syms
11360 && (info->strip != strip_all || emit_relocs))
11361 {
11362 typedef int (*out_sym_func)
11363 (void *, const char *, Elf_Internal_Sym *, asection *,
11364 struct elf_link_hash_entry *);
11365
11366 if (! ((*bed->elf_backend_output_arch_syms)
11367 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11368 return FALSE;
11369 }
11370
11371 /* Flush all symbols to the file. */
11372 if (! elf_link_flush_output_syms (&flinfo, bed))
11373 return FALSE;
11374
11375 /* Now we know the size of the symtab section. */
11376 if (bfd_get_symcount (abfd) > 0)
11377 {
11378 /* Finish up and write out the symbol string table (.strtab)
11379 section. */
11380 Elf_Internal_Shdr *symstrtab_hdr;
11381 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11382
11383 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11384 if (symtab_shndx_hdr->sh_name != 0)
11385 {
11386 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11387 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11388 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11389 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11390 symtab_shndx_hdr->sh_size = amt;
11391
11392 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11393 off, TRUE);
11394
11395 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11396 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11397 return FALSE;
11398 }
11399
11400 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11401 /* sh_name was set in prep_headers. */
11402 symstrtab_hdr->sh_type = SHT_STRTAB;
11403 symstrtab_hdr->sh_flags = 0;
11404 symstrtab_hdr->sh_addr = 0;
11405 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11406 symstrtab_hdr->sh_entsize = 0;
11407 symstrtab_hdr->sh_link = 0;
11408 symstrtab_hdr->sh_info = 0;
11409 /* sh_offset is set just below. */
11410 symstrtab_hdr->sh_addralign = 1;
11411
11412 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11413 off, TRUE);
11414 elf_next_file_pos (abfd) = off;
11415
11416 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11417 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11418 return FALSE;
11419 }
11420
11421 /* Adjust the relocs to have the correct symbol indices. */
11422 for (o = abfd->sections; o != NULL; o = o->next)
11423 {
11424 struct bfd_elf_section_data *esdo = elf_section_data (o);
11425 bfd_boolean sort;
11426 if ((o->flags & SEC_RELOC) == 0)
11427 continue;
11428
11429 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11430 if (esdo->rel.hdr != NULL)
11431 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11432 if (esdo->rela.hdr != NULL)
11433 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11434
11435 /* Set the reloc_count field to 0 to prevent write_relocs from
11436 trying to swap the relocs out itself. */
11437 o->reloc_count = 0;
11438 }
11439
11440 if (dynamic && info->combreloc && dynobj != NULL)
11441 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11442
11443 /* If we are linking against a dynamic object, or generating a
11444 shared library, finish up the dynamic linking information. */
11445 if (dynamic)
11446 {
11447 bfd_byte *dyncon, *dynconend;
11448
11449 /* Fix up .dynamic entries. */
11450 o = bfd_get_linker_section (dynobj, ".dynamic");
11451 BFD_ASSERT (o != NULL);
11452
11453 dyncon = o->contents;
11454 dynconend = o->contents + o->size;
11455 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11456 {
11457 Elf_Internal_Dyn dyn;
11458 const char *name;
11459 unsigned int type;
11460
11461 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11462
11463 switch (dyn.d_tag)
11464 {
11465 default:
11466 continue;
11467 case DT_NULL:
11468 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11469 {
11470 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11471 {
11472 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11473 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11474 default: continue;
11475 }
11476 dyn.d_un.d_val = relativecount;
11477 relativecount = 0;
11478 break;
11479 }
11480 continue;
11481
11482 case DT_INIT:
11483 name = info->init_function;
11484 goto get_sym;
11485 case DT_FINI:
11486 name = info->fini_function;
11487 get_sym:
11488 {
11489 struct elf_link_hash_entry *h;
11490
11491 h = elf_link_hash_lookup (elf_hash_table (info), name,
11492 FALSE, FALSE, TRUE);
11493 if (h != NULL
11494 && (h->root.type == bfd_link_hash_defined
11495 || h->root.type == bfd_link_hash_defweak))
11496 {
11497 dyn.d_un.d_ptr = h->root.u.def.value;
11498 o = h->root.u.def.section;
11499 if (o->output_section != NULL)
11500 dyn.d_un.d_ptr += (o->output_section->vma
11501 + o->output_offset);
11502 else
11503 {
11504 /* The symbol is imported from another shared
11505 library and does not apply to this one. */
11506 dyn.d_un.d_ptr = 0;
11507 }
11508 break;
11509 }
11510 }
11511 continue;
11512
11513 case DT_PREINIT_ARRAYSZ:
11514 name = ".preinit_array";
11515 goto get_size;
11516 case DT_INIT_ARRAYSZ:
11517 name = ".init_array";
11518 goto get_size;
11519 case DT_FINI_ARRAYSZ:
11520 name = ".fini_array";
11521 get_size:
11522 o = bfd_get_section_by_name (abfd, name);
11523 if (o == NULL)
11524 {
11525 (*_bfd_error_handler)
11526 (_("%B: could not find output section %s"), abfd, name);
11527 goto error_return;
11528 }
11529 if (o->size == 0)
11530 (*_bfd_error_handler)
11531 (_("warning: %s section has zero size"), name);
11532 dyn.d_un.d_val = o->size;
11533 break;
11534
11535 case DT_PREINIT_ARRAY:
11536 name = ".preinit_array";
11537 goto get_vma;
11538 case DT_INIT_ARRAY:
11539 name = ".init_array";
11540 goto get_vma;
11541 case DT_FINI_ARRAY:
11542 name = ".fini_array";
11543 goto get_vma;
11544
11545 case DT_HASH:
11546 name = ".hash";
11547 goto get_vma;
11548 case DT_GNU_HASH:
11549 name = ".gnu.hash";
11550 goto get_vma;
11551 case DT_STRTAB:
11552 name = ".dynstr";
11553 goto get_vma;
11554 case DT_SYMTAB:
11555 name = ".dynsym";
11556 goto get_vma;
11557 case DT_VERDEF:
11558 name = ".gnu.version_d";
11559 goto get_vma;
11560 case DT_VERNEED:
11561 name = ".gnu.version_r";
11562 goto get_vma;
11563 case DT_VERSYM:
11564 name = ".gnu.version";
11565 get_vma:
11566 o = bfd_get_section_by_name (abfd, name);
11567 if (o == NULL)
11568 {
11569 (*_bfd_error_handler)
11570 (_("%B: could not find output section %s"), abfd, name);
11571 goto error_return;
11572 }
11573 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11574 {
11575 (*_bfd_error_handler)
11576 (_("warning: section '%s' is being made into a note"), name);
11577 bfd_set_error (bfd_error_nonrepresentable_section);
11578 goto error_return;
11579 }
11580 dyn.d_un.d_ptr = o->vma;
11581 break;
11582
11583 case DT_REL:
11584 case DT_RELA:
11585 case DT_RELSZ:
11586 case DT_RELASZ:
11587 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11588 type = SHT_REL;
11589 else
11590 type = SHT_RELA;
11591 dyn.d_un.d_val = 0;
11592 dyn.d_un.d_ptr = 0;
11593 for (i = 1; i < elf_numsections (abfd); i++)
11594 {
11595 Elf_Internal_Shdr *hdr;
11596
11597 hdr = elf_elfsections (abfd)[i];
11598 if (hdr->sh_type == type
11599 && (hdr->sh_flags & SHF_ALLOC) != 0)
11600 {
11601 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11602 dyn.d_un.d_val += hdr->sh_size;
11603 else
11604 {
11605 if (dyn.d_un.d_ptr == 0
11606 || hdr->sh_addr < dyn.d_un.d_ptr)
11607 dyn.d_un.d_ptr = hdr->sh_addr;
11608 }
11609 }
11610 }
11611 break;
11612 }
11613 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11614 }
11615 }
11616
11617 /* If we have created any dynamic sections, then output them. */
11618 if (dynobj != NULL)
11619 {
11620 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11621 goto error_return;
11622
11623 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11624 if (((info->warn_shared_textrel && info->shared)
11625 || info->error_textrel)
11626 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11627 {
11628 bfd_byte *dyncon, *dynconend;
11629
11630 dyncon = o->contents;
11631 dynconend = o->contents + o->size;
11632 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11633 {
11634 Elf_Internal_Dyn dyn;
11635
11636 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11637
11638 if (dyn.d_tag == DT_TEXTREL)
11639 {
11640 if (info->error_textrel)
11641 info->callbacks->einfo
11642 (_("%P%X: read-only segment has dynamic relocations.\n"));
11643 else
11644 info->callbacks->einfo
11645 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11646 break;
11647 }
11648 }
11649 }
11650
11651 for (o = dynobj->sections; o != NULL; o = o->next)
11652 {
11653 if ((o->flags & SEC_HAS_CONTENTS) == 0
11654 || o->size == 0
11655 || o->output_section == bfd_abs_section_ptr)
11656 continue;
11657 if ((o->flags & SEC_LINKER_CREATED) == 0)
11658 {
11659 /* At this point, we are only interested in sections
11660 created by _bfd_elf_link_create_dynamic_sections. */
11661 continue;
11662 }
11663 if (elf_hash_table (info)->stab_info.stabstr == o)
11664 continue;
11665 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11666 continue;
11667 if (strcmp (o->name, ".dynstr") != 0)
11668 {
11669 /* FIXME: octets_per_byte. */
11670 if (! bfd_set_section_contents (abfd, o->output_section,
11671 o->contents,
11672 (file_ptr) o->output_offset,
11673 o->size))
11674 goto error_return;
11675 }
11676 else
11677 {
11678 /* The contents of the .dynstr section are actually in a
11679 stringtab. */
11680 file_ptr off;
11681
11682 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11683 if (bfd_seek (abfd, off, SEEK_SET) != 0
11684 || ! _bfd_elf_strtab_emit (abfd,
11685 elf_hash_table (info)->dynstr))
11686 goto error_return;
11687 }
11688 }
11689 }
11690
11691 if (info->relocatable)
11692 {
11693 bfd_boolean failed = FALSE;
11694
11695 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11696 if (failed)
11697 goto error_return;
11698 }
11699
11700 /* If we have optimized stabs strings, output them. */
11701 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11702 {
11703 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11704 goto error_return;
11705 }
11706
11707 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11708 goto error_return;
11709
11710 elf_final_link_free (abfd, &flinfo);
11711
11712 elf_linker (abfd) = TRUE;
11713
11714 if (attr_section)
11715 {
11716 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11717 if (contents == NULL)
11718 return FALSE; /* Bail out and fail. */
11719 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11720 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11721 free (contents);
11722 }
11723
11724 return TRUE;
11725
11726 error_return:
11727 elf_final_link_free (abfd, &flinfo);
11728 return FALSE;
11729}
11730\f
11731/* Initialize COOKIE for input bfd ABFD. */
11732
11733static bfd_boolean
11734init_reloc_cookie (struct elf_reloc_cookie *cookie,
11735 struct bfd_link_info *info, bfd *abfd)
11736{
11737 Elf_Internal_Shdr *symtab_hdr;
11738 const struct elf_backend_data *bed;
11739
11740 bed = get_elf_backend_data (abfd);
11741 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11742
11743 cookie->abfd = abfd;
11744 cookie->sym_hashes = elf_sym_hashes (abfd);
11745 cookie->bad_symtab = elf_bad_symtab (abfd);
11746 if (cookie->bad_symtab)
11747 {
11748 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11749 cookie->extsymoff = 0;
11750 }
11751 else
11752 {
11753 cookie->locsymcount = symtab_hdr->sh_info;
11754 cookie->extsymoff = symtab_hdr->sh_info;
11755 }
11756
11757 if (bed->s->arch_size == 32)
11758 cookie->r_sym_shift = 8;
11759 else
11760 cookie->r_sym_shift = 32;
11761
11762 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11763 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11764 {
11765 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11766 cookie->locsymcount, 0,
11767 NULL, NULL, NULL);
11768 if (cookie->locsyms == NULL)
11769 {
11770 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11771 return FALSE;
11772 }
11773 if (info->keep_memory)
11774 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11775 }
11776 return TRUE;
11777}
11778
11779/* Free the memory allocated by init_reloc_cookie, if appropriate. */
11780
11781static void
11782fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11783{
11784 Elf_Internal_Shdr *symtab_hdr;
11785
11786 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11787 if (cookie->locsyms != NULL
11788 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11789 free (cookie->locsyms);
11790}
11791
11792/* Initialize the relocation information in COOKIE for input section SEC
11793 of input bfd ABFD. */
11794
11795static bfd_boolean
11796init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11797 struct bfd_link_info *info, bfd *abfd,
11798 asection *sec)
11799{
11800 const struct elf_backend_data *bed;
11801
11802 if (sec->reloc_count == 0)
11803 {
11804 cookie->rels = NULL;
11805 cookie->relend = NULL;
11806 }
11807 else
11808 {
11809 bed = get_elf_backend_data (abfd);
11810
11811 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11812 info->keep_memory);
11813 if (cookie->rels == NULL)
11814 return FALSE;
11815 cookie->rel = cookie->rels;
11816 cookie->relend = (cookie->rels
11817 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11818 }
11819 cookie->rel = cookie->rels;
11820 return TRUE;
11821}
11822
11823/* Free the memory allocated by init_reloc_cookie_rels,
11824 if appropriate. */
11825
11826static void
11827fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11828 asection *sec)
11829{
11830 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11831 free (cookie->rels);
11832}
11833
11834/* Initialize the whole of COOKIE for input section SEC. */
11835
11836static bfd_boolean
11837init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11838 struct bfd_link_info *info,
11839 asection *sec)
11840{
11841 if (!init_reloc_cookie (cookie, info, sec->owner))
11842 goto error1;
11843 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11844 goto error2;
11845 return TRUE;
11846
11847 error2:
11848 fini_reloc_cookie (cookie, sec->owner);
11849 error1:
11850 return FALSE;
11851}
11852
11853/* Free the memory allocated by init_reloc_cookie_for_section,
11854 if appropriate. */
11855
11856static void
11857fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11858 asection *sec)
11859{
11860 fini_reloc_cookie_rels (cookie, sec);
11861 fini_reloc_cookie (cookie, sec->owner);
11862}
11863\f
11864/* Garbage collect unused sections. */
11865
11866/* Default gc_mark_hook. */
11867
11868asection *
11869_bfd_elf_gc_mark_hook (asection *sec,
11870 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11871 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11872 struct elf_link_hash_entry *h,
11873 Elf_Internal_Sym *sym)
11874{
11875 const char *sec_name;
11876
11877 if (h != NULL)
11878 {
11879 switch (h->root.type)
11880 {
11881 case bfd_link_hash_defined:
11882 case bfd_link_hash_defweak:
11883 return h->root.u.def.section;
11884
11885 case bfd_link_hash_common:
11886 return h->root.u.c.p->section;
11887
11888 case bfd_link_hash_undefined:
11889 case bfd_link_hash_undefweak:
11890 /* To work around a glibc bug, keep all XXX input sections
11891 when there is an as yet undefined reference to __start_XXX
11892 or __stop_XXX symbols. The linker will later define such
11893 symbols for orphan input sections that have a name
11894 representable as a C identifier. */
11895 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11896 sec_name = h->root.root.string + 8;
11897 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11898 sec_name = h->root.root.string + 7;
11899 else
11900 sec_name = NULL;
11901
11902 if (sec_name && *sec_name != '\0')
11903 {
11904 bfd *i;
11905
11906 for (i = info->input_bfds; i; i = i->link.next)
11907 {
11908 sec = bfd_get_section_by_name (i, sec_name);
11909 if (sec)
11910 sec->flags |= SEC_KEEP;
11911 }
11912 }
11913 break;
11914
11915 default:
11916 break;
11917 }
11918 }
11919 else
11920 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11921
11922 return NULL;
11923}
11924
11925/* COOKIE->rel describes a relocation against section SEC, which is
11926 a section we've decided to keep. Return the section that contains
11927 the relocation symbol, or NULL if no section contains it. */
11928
11929asection *
11930_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11931 elf_gc_mark_hook_fn gc_mark_hook,
11932 struct elf_reloc_cookie *cookie)
11933{
11934 unsigned long r_symndx;
11935 struct elf_link_hash_entry *h;
11936
11937 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11938 if (r_symndx == STN_UNDEF)
11939 return NULL;
11940
11941 if (r_symndx >= cookie->locsymcount
11942 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11943 {
11944 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11945 if (h == NULL)
11946 {
11947 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11948 sec->owner);
11949 return NULL;
11950 }
11951 while (h->root.type == bfd_link_hash_indirect
11952 || h->root.type == bfd_link_hash_warning)
11953 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11954 h->mark = 1;
11955 /* If this symbol is weak and there is a non-weak definition, we
11956 keep the non-weak definition because many backends put
11957 dynamic reloc info on the non-weak definition for code
11958 handling copy relocs. */
11959 if (h->u.weakdef != NULL)
11960 h->u.weakdef->mark = 1;
11961 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11962 }
11963
11964 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11965 &cookie->locsyms[r_symndx]);
11966}
11967
11968/* COOKIE->rel describes a relocation against section SEC, which is
11969 a section we've decided to keep. Mark the section that contains
11970 the relocation symbol. */
11971
11972bfd_boolean
11973_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11974 asection *sec,
11975 elf_gc_mark_hook_fn gc_mark_hook,
11976 struct elf_reloc_cookie *cookie)
11977{
11978 asection *rsec;
11979
11980 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11981 if (rsec && !rsec->gc_mark)
11982 {
11983 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11984 || (rsec->owner->flags & DYNAMIC) != 0)
11985 rsec->gc_mark = 1;
11986 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11987 return FALSE;
11988 }
11989 return TRUE;
11990}
11991
11992/* The mark phase of garbage collection. For a given section, mark
11993 it and any sections in this section's group, and all the sections
11994 which define symbols to which it refers. */
11995
11996bfd_boolean
11997_bfd_elf_gc_mark (struct bfd_link_info *info,
11998 asection *sec,
11999 elf_gc_mark_hook_fn gc_mark_hook)
12000{
12001 bfd_boolean ret;
12002 asection *group_sec, *eh_frame;
12003
12004 sec->gc_mark = 1;
12005
12006 /* Mark all the sections in the group. */
12007 group_sec = elf_section_data (sec)->next_in_group;
12008 if (group_sec && !group_sec->gc_mark)
12009 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12010 return FALSE;
12011
12012 /* Look through the section relocs. */
12013 ret = TRUE;
12014 eh_frame = elf_eh_frame_section (sec->owner);
12015 if ((sec->flags & SEC_RELOC) != 0
12016 && sec->reloc_count > 0
12017 && sec != eh_frame)
12018 {
12019 struct elf_reloc_cookie cookie;
12020
12021 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12022 ret = FALSE;
12023 else
12024 {
12025 for (; cookie.rel < cookie.relend; cookie.rel++)
12026 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12027 {
12028 ret = FALSE;
12029 break;
12030 }
12031 fini_reloc_cookie_for_section (&cookie, sec);
12032 }
12033 }
12034
12035 if (ret && eh_frame && elf_fde_list (sec))
12036 {
12037 struct elf_reloc_cookie cookie;
12038
12039 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12040 ret = FALSE;
12041 else
12042 {
12043 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12044 gc_mark_hook, &cookie))
12045 ret = FALSE;
12046 fini_reloc_cookie_for_section (&cookie, eh_frame);
12047 }
12048 }
12049
12050 eh_frame = elf_section_eh_frame_entry (sec);
12051 if (ret && eh_frame && !eh_frame->gc_mark)
12052 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12053 ret = FALSE;
12054
12055 return ret;
12056}
12057
12058/* Scan and mark sections in a special or debug section group. */
12059
12060static void
12061_bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12062{
12063 /* Point to first section of section group. */
12064 asection *ssec;
12065 /* Used to iterate the section group. */
12066 asection *msec;
12067
12068 bfd_boolean is_special_grp = TRUE;
12069 bfd_boolean is_debug_grp = TRUE;
12070
12071 /* First scan to see if group contains any section other than debug
12072 and special section. */
12073 ssec = msec = elf_next_in_group (grp);
12074 do
12075 {
12076 if ((msec->flags & SEC_DEBUGGING) == 0)
12077 is_debug_grp = FALSE;
12078
12079 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12080 is_special_grp = FALSE;
12081
12082 msec = elf_next_in_group (msec);
12083 }
12084 while (msec != ssec);
12085
12086 /* If this is a pure debug section group or pure special section group,
12087 keep all sections in this group. */
12088 if (is_debug_grp || is_special_grp)
12089 {
12090 do
12091 {
12092 msec->gc_mark = 1;
12093 msec = elf_next_in_group (msec);
12094 }
12095 while (msec != ssec);
12096 }
12097}
12098
12099/* Keep debug and special sections. */
12100
12101bfd_boolean
12102_bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12103 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12104{
12105 bfd *ibfd;
12106
12107 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12108 {
12109 asection *isec;
12110 bfd_boolean some_kept;
12111 bfd_boolean debug_frag_seen;
12112
12113 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12114 continue;
12115
12116 /* Ensure all linker created sections are kept,
12117 see if any other section is already marked,
12118 and note if we have any fragmented debug sections. */
12119 debug_frag_seen = some_kept = FALSE;
12120 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12121 {
12122 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12123 isec->gc_mark = 1;
12124 else if (isec->gc_mark)
12125 some_kept = TRUE;
12126
12127 if (debug_frag_seen == FALSE
12128 && (isec->flags & SEC_DEBUGGING)
12129 && CONST_STRNEQ (isec->name, ".debug_line."))
12130 debug_frag_seen = TRUE;
12131 }
12132
12133 /* If no section in this file will be kept, then we can
12134 toss out the debug and special sections. */
12135 if (!some_kept)
12136 continue;
12137
12138 /* Keep debug and special sections like .comment when they are
12139 not part of a group. Also keep section groups that contain
12140 just debug sections or special sections. */
12141 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12142 {
12143 if ((isec->flags & SEC_GROUP) != 0)
12144 _bfd_elf_gc_mark_debug_special_section_group (isec);
12145 else if (((isec->flags & SEC_DEBUGGING) != 0
12146 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12147 && elf_next_in_group (isec) == NULL)
12148 isec->gc_mark = 1;
12149 }
12150
12151 if (! debug_frag_seen)
12152 continue;
12153
12154 /* Look for CODE sections which are going to be discarded,
12155 and find and discard any fragmented debug sections which
12156 are associated with that code section. */
12157 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12158 if ((isec->flags & SEC_CODE) != 0
12159 && isec->gc_mark == 0)
12160 {
12161 unsigned int ilen;
12162 asection *dsec;
12163
12164 ilen = strlen (isec->name);
12165
12166 /* Association is determined by the name of the debug section
12167 containing the name of the code section as a suffix. For
12168 example .debug_line.text.foo is a debug section associated
12169 with .text.foo. */
12170 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12171 {
12172 unsigned int dlen;
12173
12174 if (dsec->gc_mark == 0
12175 || (dsec->flags & SEC_DEBUGGING) == 0)
12176 continue;
12177
12178 dlen = strlen (dsec->name);
12179
12180 if (dlen > ilen
12181 && strncmp (dsec->name + (dlen - ilen),
12182 isec->name, ilen) == 0)
12183 {
12184 dsec->gc_mark = 0;
12185 }
12186 }
12187 }
12188 }
12189 return TRUE;
12190}
12191
12192/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12193
12194struct elf_gc_sweep_symbol_info
12195{
12196 struct bfd_link_info *info;
12197 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12198 bfd_boolean);
12199};
12200
12201static bfd_boolean
12202elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12203{
12204 if (!h->mark
12205 && (((h->root.type == bfd_link_hash_defined
12206 || h->root.type == bfd_link_hash_defweak)
12207 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12208 && h->root.u.def.section->gc_mark))
12209 || h->root.type == bfd_link_hash_undefined
12210 || h->root.type == bfd_link_hash_undefweak))
12211 {
12212 struct elf_gc_sweep_symbol_info *inf;
12213
12214 inf = (struct elf_gc_sweep_symbol_info *) data;
12215 (*inf->hide_symbol) (inf->info, h, TRUE);
12216 h->def_regular = 0;
12217 h->ref_regular = 0;
12218 h->ref_regular_nonweak = 0;
12219 }
12220
12221 return TRUE;
12222}
12223
12224/* The sweep phase of garbage collection. Remove all garbage sections. */
12225
12226typedef bfd_boolean (*gc_sweep_hook_fn)
12227 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12228
12229static bfd_boolean
12230elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12231{
12232 bfd *sub;
12233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12234 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12235 unsigned long section_sym_count;
12236 struct elf_gc_sweep_symbol_info sweep_info;
12237
12238 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12239 {
12240 asection *o;
12241
12242 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12243 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12244 continue;
12245
12246 for (o = sub->sections; o != NULL; o = o->next)
12247 {
12248 /* When any section in a section group is kept, we keep all
12249 sections in the section group. If the first member of
12250 the section group is excluded, we will also exclude the
12251 group section. */
12252 if (o->flags & SEC_GROUP)
12253 {
12254 asection *first = elf_next_in_group (o);
12255 o->gc_mark = first->gc_mark;
12256 }
12257
12258 if (o->gc_mark)
12259 continue;
12260
12261 /* Skip sweeping sections already excluded. */
12262 if (o->flags & SEC_EXCLUDE)
12263 continue;
12264
12265 /* Since this is early in the link process, it is simple
12266 to remove a section from the output. */
12267 o->flags |= SEC_EXCLUDE;
12268
12269 if (info->print_gc_sections && o->size != 0)
12270 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12271
12272 /* But we also have to update some of the relocation
12273 info we collected before. */
12274 if (gc_sweep_hook
12275 && (o->flags & SEC_RELOC) != 0
12276 && o->reloc_count != 0
12277 && !((info->strip == strip_all || info->strip == strip_debugger)
12278 && (o->flags & SEC_DEBUGGING) != 0)
12279 && !bfd_is_abs_section (o->output_section))
12280 {
12281 Elf_Internal_Rela *internal_relocs;
12282 bfd_boolean r;
12283
12284 internal_relocs
12285 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12286 info->keep_memory);
12287 if (internal_relocs == NULL)
12288 return FALSE;
12289
12290 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12291
12292 if (elf_section_data (o)->relocs != internal_relocs)
12293 free (internal_relocs);
12294
12295 if (!r)
12296 return FALSE;
12297 }
12298 }
12299 }
12300
12301 /* Remove the symbols that were in the swept sections from the dynamic
12302 symbol table. GCFIXME: Anyone know how to get them out of the
12303 static symbol table as well? */
12304 sweep_info.info = info;
12305 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12306 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12307 &sweep_info);
12308
12309 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12310 return TRUE;
12311}
12312
12313/* Propagate collected vtable information. This is called through
12314 elf_link_hash_traverse. */
12315
12316static bfd_boolean
12317elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12318{
12319 /* Those that are not vtables. */
12320 if (h->vtable == NULL || h->vtable->parent == NULL)
12321 return TRUE;
12322
12323 /* Those vtables that do not have parents, we cannot merge. */
12324 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12325 return TRUE;
12326
12327 /* If we've already been done, exit. */
12328 if (h->vtable->used && h->vtable->used[-1])
12329 return TRUE;
12330
12331 /* Make sure the parent's table is up to date. */
12332 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12333
12334 if (h->vtable->used == NULL)
12335 {
12336 /* None of this table's entries were referenced. Re-use the
12337 parent's table. */
12338 h->vtable->used = h->vtable->parent->vtable->used;
12339 h->vtable->size = h->vtable->parent->vtable->size;
12340 }
12341 else
12342 {
12343 size_t n;
12344 bfd_boolean *cu, *pu;
12345
12346 /* Or the parent's entries into ours. */
12347 cu = h->vtable->used;
12348 cu[-1] = TRUE;
12349 pu = h->vtable->parent->vtable->used;
12350 if (pu != NULL)
12351 {
12352 const struct elf_backend_data *bed;
12353 unsigned int log_file_align;
12354
12355 bed = get_elf_backend_data (h->root.u.def.section->owner);
12356 log_file_align = bed->s->log_file_align;
12357 n = h->vtable->parent->vtable->size >> log_file_align;
12358 while (n--)
12359 {
12360 if (*pu)
12361 *cu = TRUE;
12362 pu++;
12363 cu++;
12364 }
12365 }
12366 }
12367
12368 return TRUE;
12369}
12370
12371static bfd_boolean
12372elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12373{
12374 asection *sec;
12375 bfd_vma hstart, hend;
12376 Elf_Internal_Rela *relstart, *relend, *rel;
12377 const struct elf_backend_data *bed;
12378 unsigned int log_file_align;
12379
12380 /* Take care of both those symbols that do not describe vtables as
12381 well as those that are not loaded. */
12382 if (h->vtable == NULL || h->vtable->parent == NULL)
12383 return TRUE;
12384
12385 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12386 || h->root.type == bfd_link_hash_defweak);
12387
12388 sec = h->root.u.def.section;
12389 hstart = h->root.u.def.value;
12390 hend = hstart + h->size;
12391
12392 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12393 if (!relstart)
12394 return *(bfd_boolean *) okp = FALSE;
12395 bed = get_elf_backend_data (sec->owner);
12396 log_file_align = bed->s->log_file_align;
12397
12398 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12399
12400 for (rel = relstart; rel < relend; ++rel)
12401 if (rel->r_offset >= hstart && rel->r_offset < hend)
12402 {
12403 /* If the entry is in use, do nothing. */
12404 if (h->vtable->used
12405 && (rel->r_offset - hstart) < h->vtable->size)
12406 {
12407 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12408 if (h->vtable->used[entry])
12409 continue;
12410 }
12411 /* Otherwise, kill it. */
12412 rel->r_offset = rel->r_info = rel->r_addend = 0;
12413 }
12414
12415 return TRUE;
12416}
12417
12418/* Mark sections containing dynamically referenced symbols. When
12419 building shared libraries, we must assume that any visible symbol is
12420 referenced. */
12421
12422bfd_boolean
12423bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12424{
12425 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12426 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12427
12428 if ((h->root.type == bfd_link_hash_defined
12429 || h->root.type == bfd_link_hash_defweak)
12430 && (h->ref_dynamic
12431 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12432 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12433 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12434 && (!info->executable
12435 || info->export_dynamic
12436 || (h->dynamic
12437 && d != NULL
12438 && (*d->match) (&d->head, NULL, h->root.root.string)))
12439 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12440 || !bfd_hide_sym_by_version (info->version_info,
12441 h->root.root.string)))))
12442 h->root.u.def.section->flags |= SEC_KEEP;
12443
12444 return TRUE;
12445}
12446
12447/* Keep all sections containing symbols undefined on the command-line,
12448 and the section containing the entry symbol. */
12449
12450void
12451_bfd_elf_gc_keep (struct bfd_link_info *info)
12452{
12453 struct bfd_sym_chain *sym;
12454
12455 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12456 {
12457 struct elf_link_hash_entry *h;
12458
12459 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12460 FALSE, FALSE, FALSE);
12461
12462 if (h != NULL
12463 && (h->root.type == bfd_link_hash_defined
12464 || h->root.type == bfd_link_hash_defweak)
12465 && !bfd_is_abs_section (h->root.u.def.section))
12466 h->root.u.def.section->flags |= SEC_KEEP;
12467 }
12468}
12469
12470bfd_boolean
12471bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12472 struct bfd_link_info *info)
12473{
12474 bfd *ibfd = info->input_bfds;
12475
12476 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12477 {
12478 asection *sec;
12479 struct elf_reloc_cookie cookie;
12480
12481 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12482 continue;
12483
12484 if (!init_reloc_cookie (&cookie, info, ibfd))
12485 return FALSE;
12486
12487 for (sec = ibfd->sections; sec; sec = sec->next)
12488 {
12489 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12490 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12491 {
12492 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12493 fini_reloc_cookie_rels (&cookie, sec);
12494 }
12495 }
12496 }
12497 return TRUE;
12498}
12499
12500/* Do mark and sweep of unused sections. */
12501
12502bfd_boolean
12503bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12504{
12505 bfd_boolean ok = TRUE;
12506 bfd *sub;
12507 elf_gc_mark_hook_fn gc_mark_hook;
12508 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12509 struct elf_link_hash_table *htab;
12510
12511 if (!bed->can_gc_sections
12512 || !is_elf_hash_table (info->hash))
12513 {
12514 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12515 return TRUE;
12516 }
12517
12518 bed->gc_keep (info);
12519 htab = elf_hash_table (info);
12520
12521 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12522 at the .eh_frame section if we can mark the FDEs individually. */
12523 for (sub = info->input_bfds;
12524 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12525 sub = sub->link.next)
12526 {
12527 asection *sec;
12528 struct elf_reloc_cookie cookie;
12529
12530 sec = bfd_get_section_by_name (sub, ".eh_frame");
12531 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12532 {
12533 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12534 if (elf_section_data (sec)->sec_info
12535 && (sec->flags & SEC_LINKER_CREATED) == 0)
12536 elf_eh_frame_section (sub) = sec;
12537 fini_reloc_cookie_for_section (&cookie, sec);
12538 sec = bfd_get_next_section_by_name (sec);
12539 }
12540 }
12541
12542 /* Apply transitive closure to the vtable entry usage info. */
12543 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12544 if (!ok)
12545 return FALSE;
12546
12547 /* Kill the vtable relocations that were not used. */
12548 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12549 if (!ok)
12550 return FALSE;
12551
12552 /* Mark dynamically referenced symbols. */
12553 if (htab->dynamic_sections_created)
12554 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12555
12556 /* Grovel through relocs to find out who stays ... */
12557 gc_mark_hook = bed->gc_mark_hook;
12558 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12559 {
12560 asection *o;
12561
12562 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12563 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12564 continue;
12565
12566 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12567 Also treat note sections as a root, if the section is not part
12568 of a group. */
12569 for (o = sub->sections; o != NULL; o = o->next)
12570 if (!o->gc_mark
12571 && (o->flags & SEC_EXCLUDE) == 0
12572 && ((o->flags & SEC_KEEP) != 0
12573 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12574 && elf_next_in_group (o) == NULL )))
12575 {
12576 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12577 return FALSE;
12578 }
12579 }
12580
12581 /* Allow the backend to mark additional target specific sections. */
12582 bed->gc_mark_extra_sections (info, gc_mark_hook);
12583
12584 /* ... and mark SEC_EXCLUDE for those that go. */
12585 return elf_gc_sweep (abfd, info);
12586}
12587\f
12588/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12589
12590bfd_boolean
12591bfd_elf_gc_record_vtinherit (bfd *abfd,
12592 asection *sec,
12593 struct elf_link_hash_entry *h,
12594 bfd_vma offset)
12595{
12596 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12597 struct elf_link_hash_entry **search, *child;
12598 bfd_size_type extsymcount;
12599 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12600
12601 /* The sh_info field of the symtab header tells us where the
12602 external symbols start. We don't care about the local symbols at
12603 this point. */
12604 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12605 if (!elf_bad_symtab (abfd))
12606 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12607
12608 sym_hashes = elf_sym_hashes (abfd);
12609 sym_hashes_end = sym_hashes + extsymcount;
12610
12611 /* Hunt down the child symbol, which is in this section at the same
12612 offset as the relocation. */
12613 for (search = sym_hashes; search != sym_hashes_end; ++search)
12614 {
12615 if ((child = *search) != NULL
12616 && (child->root.type == bfd_link_hash_defined
12617 || child->root.type == bfd_link_hash_defweak)
12618 && child->root.u.def.section == sec
12619 && child->root.u.def.value == offset)
12620 goto win;
12621 }
12622
12623 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12624 abfd, sec, (unsigned long) offset);
12625 bfd_set_error (bfd_error_invalid_operation);
12626 return FALSE;
12627
12628 win:
12629 if (!child->vtable)
12630 {
12631 child->vtable = ((struct elf_link_virtual_table_entry *)
12632 bfd_zalloc (abfd, sizeof (*child->vtable)));
12633 if (!child->vtable)
12634 return FALSE;
12635 }
12636 if (!h)
12637 {
12638 /* This *should* only be the absolute section. It could potentially
12639 be that someone has defined a non-global vtable though, which
12640 would be bad. It isn't worth paging in the local symbols to be
12641 sure though; that case should simply be handled by the assembler. */
12642
12643 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12644 }
12645 else
12646 child->vtable->parent = h;
12647
12648 return TRUE;
12649}
12650
12651/* Called from check_relocs to record the existence of a VTENTRY reloc. */
12652
12653bfd_boolean
12654bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12655 asection *sec ATTRIBUTE_UNUSED,
12656 struct elf_link_hash_entry *h,
12657 bfd_vma addend)
12658{
12659 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12660 unsigned int log_file_align = bed->s->log_file_align;
12661
12662 if (!h->vtable)
12663 {
12664 h->vtable = ((struct elf_link_virtual_table_entry *)
12665 bfd_zalloc (abfd, sizeof (*h->vtable)));
12666 if (!h->vtable)
12667 return FALSE;
12668 }
12669
12670 if (addend >= h->vtable->size)
12671 {
12672 size_t size, bytes, file_align;
12673 bfd_boolean *ptr = h->vtable->used;
12674
12675 /* While the symbol is undefined, we have to be prepared to handle
12676 a zero size. */
12677 file_align = 1 << log_file_align;
12678 if (h->root.type == bfd_link_hash_undefined)
12679 size = addend + file_align;
12680 else
12681 {
12682 size = h->size;
12683 if (addend >= size)
12684 {
12685 /* Oops! We've got a reference past the defined end of
12686 the table. This is probably a bug -- shall we warn? */
12687 size = addend + file_align;
12688 }
12689 }
12690 size = (size + file_align - 1) & -file_align;
12691
12692 /* Allocate one extra entry for use as a "done" flag for the
12693 consolidation pass. */
12694 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12695
12696 if (ptr)
12697 {
12698 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12699
12700 if (ptr != NULL)
12701 {
12702 size_t oldbytes;
12703
12704 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12705 * sizeof (bfd_boolean));
12706 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12707 }
12708 }
12709 else
12710 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12711
12712 if (ptr == NULL)
12713 return FALSE;
12714
12715 /* And arrange for that done flag to be at index -1. */
12716 h->vtable->used = ptr + 1;
12717 h->vtable->size = size;
12718 }
12719
12720 h->vtable->used[addend >> log_file_align] = TRUE;
12721
12722 return TRUE;
12723}
12724
12725/* Map an ELF section header flag to its corresponding string. */
12726typedef struct
12727{
12728 char *flag_name;
12729 flagword flag_value;
12730} elf_flags_to_name_table;
12731
12732static elf_flags_to_name_table elf_flags_to_names [] =
12733{
12734 { "SHF_WRITE", SHF_WRITE },
12735 { "SHF_ALLOC", SHF_ALLOC },
12736 { "SHF_EXECINSTR", SHF_EXECINSTR },
12737 { "SHF_MERGE", SHF_MERGE },
12738 { "SHF_STRINGS", SHF_STRINGS },
12739 { "SHF_INFO_LINK", SHF_INFO_LINK},
12740 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12741 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12742 { "SHF_GROUP", SHF_GROUP },
12743 { "SHF_TLS", SHF_TLS },
12744 { "SHF_MASKOS", SHF_MASKOS },
12745 { "SHF_EXCLUDE", SHF_EXCLUDE },
12746};
12747
12748/* Returns TRUE if the section is to be included, otherwise FALSE. */
12749bfd_boolean
12750bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12751 struct flag_info *flaginfo,
12752 asection *section)
12753{
12754 const bfd_vma sh_flags = elf_section_flags (section);
12755
12756 if (!flaginfo->flags_initialized)
12757 {
12758 bfd *obfd = info->output_bfd;
12759 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12760 struct flag_info_list *tf = flaginfo->flag_list;
12761 int with_hex = 0;
12762 int without_hex = 0;
12763
12764 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12765 {
12766 unsigned i;
12767 flagword (*lookup) (char *);
12768
12769 lookup = bed->elf_backend_lookup_section_flags_hook;
12770 if (lookup != NULL)
12771 {
12772 flagword hexval = (*lookup) ((char *) tf->name);
12773
12774 if (hexval != 0)
12775 {
12776 if (tf->with == with_flags)
12777 with_hex |= hexval;
12778 else if (tf->with == without_flags)
12779 without_hex |= hexval;
12780 tf->valid = TRUE;
12781 continue;
12782 }
12783 }
12784 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12785 {
12786 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12787 {
12788 if (tf->with == with_flags)
12789 with_hex |= elf_flags_to_names[i].flag_value;
12790 else if (tf->with == without_flags)
12791 without_hex |= elf_flags_to_names[i].flag_value;
12792 tf->valid = TRUE;
12793 break;
12794 }
12795 }
12796 if (!tf->valid)
12797 {
12798 info->callbacks->einfo
12799 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12800 return FALSE;
12801 }
12802 }
12803 flaginfo->flags_initialized = TRUE;
12804 flaginfo->only_with_flags |= with_hex;
12805 flaginfo->not_with_flags |= without_hex;
12806 }
12807
12808 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12809 return FALSE;
12810
12811 if ((flaginfo->not_with_flags & sh_flags) != 0)
12812 return FALSE;
12813
12814 return TRUE;
12815}
12816
12817struct alloc_got_off_arg {
12818 bfd_vma gotoff;
12819 struct bfd_link_info *info;
12820};
12821
12822/* We need a special top-level link routine to convert got reference counts
12823 to real got offsets. */
12824
12825static bfd_boolean
12826elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12827{
12828 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12829 bfd *obfd = gofarg->info->output_bfd;
12830 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12831
12832 if (h->got.refcount > 0)
12833 {
12834 h->got.offset = gofarg->gotoff;
12835 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12836 }
12837 else
12838 h->got.offset = (bfd_vma) -1;
12839
12840 return TRUE;
12841}
12842
12843/* And an accompanying bit to work out final got entry offsets once
12844 we're done. Should be called from final_link. */
12845
12846bfd_boolean
12847bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12848 struct bfd_link_info *info)
12849{
12850 bfd *i;
12851 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12852 bfd_vma gotoff;
12853 struct alloc_got_off_arg gofarg;
12854
12855 BFD_ASSERT (abfd == info->output_bfd);
12856
12857 if (! is_elf_hash_table (info->hash))
12858 return FALSE;
12859
12860 /* The GOT offset is relative to the .got section, but the GOT header is
12861 put into the .got.plt section, if the backend uses it. */
12862 if (bed->want_got_plt)
12863 gotoff = 0;
12864 else
12865 gotoff = bed->got_header_size;
12866
12867 /* Do the local .got entries first. */
12868 for (i = info->input_bfds; i; i = i->link.next)
12869 {
12870 bfd_signed_vma *local_got;
12871 bfd_size_type j, locsymcount;
12872 Elf_Internal_Shdr *symtab_hdr;
12873
12874 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12875 continue;
12876
12877 local_got = elf_local_got_refcounts (i);
12878 if (!local_got)
12879 continue;
12880
12881 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12882 if (elf_bad_symtab (i))
12883 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12884 else
12885 locsymcount = symtab_hdr->sh_info;
12886
12887 for (j = 0; j < locsymcount; ++j)
12888 {
12889 if (local_got[j] > 0)
12890 {
12891 local_got[j] = gotoff;
12892 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12893 }
12894 else
12895 local_got[j] = (bfd_vma) -1;
12896 }
12897 }
12898
12899 /* Then the global .got entries. .plt refcounts are handled by
12900 adjust_dynamic_symbol */
12901 gofarg.gotoff = gotoff;
12902 gofarg.info = info;
12903 elf_link_hash_traverse (elf_hash_table (info),
12904 elf_gc_allocate_got_offsets,
12905 &gofarg);
12906 return TRUE;
12907}
12908
12909/* Many folk need no more in the way of final link than this, once
12910 got entry reference counting is enabled. */
12911
12912bfd_boolean
12913bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12914{
12915 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12916 return FALSE;
12917
12918 /* Invoke the regular ELF backend linker to do all the work. */
12919 return bfd_elf_final_link (abfd, info);
12920}
12921
12922bfd_boolean
12923bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12924{
12925 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12926
12927 if (rcookie->bad_symtab)
12928 rcookie->rel = rcookie->rels;
12929
12930 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12931 {
12932 unsigned long r_symndx;
12933
12934 if (! rcookie->bad_symtab)
12935 if (rcookie->rel->r_offset > offset)
12936 return FALSE;
12937 if (rcookie->rel->r_offset != offset)
12938 continue;
12939
12940 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12941 if (r_symndx == STN_UNDEF)
12942 return TRUE;
12943
12944 if (r_symndx >= rcookie->locsymcount
12945 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12946 {
12947 struct elf_link_hash_entry *h;
12948
12949 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12950
12951 while (h->root.type == bfd_link_hash_indirect
12952 || h->root.type == bfd_link_hash_warning)
12953 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12954
12955 if ((h->root.type == bfd_link_hash_defined
12956 || h->root.type == bfd_link_hash_defweak)
12957 && (h->root.u.def.section->owner != rcookie->abfd
12958 || h->root.u.def.section->kept_section != NULL
12959 || discarded_section (h->root.u.def.section)))
12960 return TRUE;
12961 }
12962 else
12963 {
12964 /* It's not a relocation against a global symbol,
12965 but it could be a relocation against a local
12966 symbol for a discarded section. */
12967 asection *isec;
12968 Elf_Internal_Sym *isym;
12969
12970 /* Need to: get the symbol; get the section. */
12971 isym = &rcookie->locsyms[r_symndx];
12972 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12973 if (isec != NULL
12974 && (isec->kept_section != NULL
12975 || discarded_section (isec)))
12976 return TRUE;
12977 }
12978 return FALSE;
12979 }
12980 return FALSE;
12981}
12982
12983/* Discard unneeded references to discarded sections.
12984 Returns -1 on error, 1 if any section's size was changed, 0 if
12985 nothing changed. This function assumes that the relocations are in
12986 sorted order, which is true for all known assemblers. */
12987
12988int
12989bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12990{
12991 struct elf_reloc_cookie cookie;
12992 asection *o;
12993 bfd *abfd;
12994 int changed = 0;
12995
12996 if (info->traditional_format
12997 || !is_elf_hash_table (info->hash))
12998 return 0;
12999
13000 o = bfd_get_section_by_name (output_bfd, ".stab");
13001 if (o != NULL)
13002 {
13003 asection *i;
13004
13005 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13006 {
13007 if (i->size == 0
13008 || i->reloc_count == 0
13009 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13010 continue;
13011
13012 abfd = i->owner;
13013 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13014 continue;
13015
13016 if (!init_reloc_cookie_for_section (&cookie, info, i))
13017 return -1;
13018
13019 if (_bfd_discard_section_stabs (abfd, i,
13020 elf_section_data (i)->sec_info,
13021 bfd_elf_reloc_symbol_deleted_p,
13022 &cookie))
13023 changed = 1;
13024
13025 fini_reloc_cookie_for_section (&cookie, i);
13026 }
13027 }
13028
13029 o = NULL;
13030 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13031 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13032 if (o != NULL)
13033 {
13034 asection *i;
13035
13036 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13037 {
13038 if (i->size == 0)
13039 continue;
13040
13041 abfd = i->owner;
13042 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13043 continue;
13044
13045 if (!init_reloc_cookie_for_section (&cookie, info, i))
13046 return -1;
13047
13048 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13049 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13050 bfd_elf_reloc_symbol_deleted_p,
13051 &cookie))
13052 changed = 1;
13053
13054 fini_reloc_cookie_for_section (&cookie, i);
13055 }
13056 }
13057
13058 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13059 {
13060 const struct elf_backend_data *bed;
13061
13062 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13063 continue;
13064
13065 bed = get_elf_backend_data (abfd);
13066
13067 if (bed->elf_backend_discard_info != NULL)
13068 {
13069 if (!init_reloc_cookie (&cookie, info, abfd))
13070 return -1;
13071
13072 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13073 changed = 1;
13074
13075 fini_reloc_cookie (&cookie, abfd);
13076 }
13077 }
13078
13079 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13080 _bfd_elf_end_eh_frame_parsing (info);
13081
13082 if (info->eh_frame_hdr_type
13083 && !info->relocatable
13084 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13085 changed = 1;
13086
13087 return changed;
13088}
13089
13090bfd_boolean
13091_bfd_elf_section_already_linked (bfd *abfd,
13092 asection *sec,
13093 struct bfd_link_info *info)
13094{
13095 flagword flags;
13096 const char *name, *key;
13097 struct bfd_section_already_linked *l;
13098 struct bfd_section_already_linked_hash_entry *already_linked_list;
13099
13100 if (sec->output_section == bfd_abs_section_ptr)
13101 return FALSE;
13102
13103 flags = sec->flags;
13104
13105 /* Return if it isn't a linkonce section. A comdat group section
13106 also has SEC_LINK_ONCE set. */
13107 if ((flags & SEC_LINK_ONCE) == 0)
13108 return FALSE;
13109
13110 /* Don't put group member sections on our list of already linked
13111 sections. They are handled as a group via their group section. */
13112 if (elf_sec_group (sec) != NULL)
13113 return FALSE;
13114
13115 /* For a SHT_GROUP section, use the group signature as the key. */
13116 name = sec->name;
13117 if ((flags & SEC_GROUP) != 0
13118 && elf_next_in_group (sec) != NULL
13119 && elf_group_name (elf_next_in_group (sec)) != NULL)
13120 key = elf_group_name (elf_next_in_group (sec));
13121 else
13122 {
13123 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13124 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13125 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13126 key++;
13127 else
13128 /* Must be a user linkonce section that doesn't follow gcc's
13129 naming convention. In this case we won't be matching
13130 single member groups. */
13131 key = name;
13132 }
13133
13134 already_linked_list = bfd_section_already_linked_table_lookup (key);
13135
13136 for (l = already_linked_list->entry; l != NULL; l = l->next)
13137 {
13138 /* We may have 2 different types of sections on the list: group
13139 sections with a signature of <key> (<key> is some string),
13140 and linkonce sections named .gnu.linkonce.<type>.<key>.
13141 Match like sections. LTO plugin sections are an exception.
13142 They are always named .gnu.linkonce.t.<key> and match either
13143 type of section. */
13144 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13145 && ((flags & SEC_GROUP) != 0
13146 || strcmp (name, l->sec->name) == 0))
13147 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13148 {
13149 /* The section has already been linked. See if we should
13150 issue a warning. */
13151 if (!_bfd_handle_already_linked (sec, l, info))
13152 return FALSE;
13153
13154 if (flags & SEC_GROUP)
13155 {
13156 asection *first = elf_next_in_group (sec);
13157 asection *s = first;
13158
13159 while (s != NULL)
13160 {
13161 s->output_section = bfd_abs_section_ptr;
13162 /* Record which group discards it. */
13163 s->kept_section = l->sec;
13164 s = elf_next_in_group (s);
13165 /* These lists are circular. */
13166 if (s == first)
13167 break;
13168 }
13169 }
13170
13171 return TRUE;
13172 }
13173 }
13174
13175 /* A single member comdat group section may be discarded by a
13176 linkonce section and vice versa. */
13177 if ((flags & SEC_GROUP) != 0)
13178 {
13179 asection *first = elf_next_in_group (sec);
13180
13181 if (first != NULL && elf_next_in_group (first) == first)
13182 /* Check this single member group against linkonce sections. */
13183 for (l = already_linked_list->entry; l != NULL; l = l->next)
13184 if ((l->sec->flags & SEC_GROUP) == 0
13185 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13186 {
13187 first->output_section = bfd_abs_section_ptr;
13188 first->kept_section = l->sec;
13189 sec->output_section = bfd_abs_section_ptr;
13190 break;
13191 }
13192 }
13193 else
13194 /* Check this linkonce section against single member groups. */
13195 for (l = already_linked_list->entry; l != NULL; l = l->next)
13196 if (l->sec->flags & SEC_GROUP)
13197 {
13198 asection *first = elf_next_in_group (l->sec);
13199
13200 if (first != NULL
13201 && elf_next_in_group (first) == first
13202 && bfd_elf_match_symbols_in_sections (first, sec, info))
13203 {
13204 sec->output_section = bfd_abs_section_ptr;
13205 sec->kept_section = first;
13206 break;
13207 }
13208 }
13209
13210 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13211 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13212 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13213 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13214 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13215 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13216 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13217 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13218 The reverse order cannot happen as there is never a bfd with only the
13219 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13220 matter as here were are looking only for cross-bfd sections. */
13221
13222 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13223 for (l = already_linked_list->entry; l != NULL; l = l->next)
13224 if ((l->sec->flags & SEC_GROUP) == 0
13225 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13226 {
13227 if (abfd != l->sec->owner)
13228 sec->output_section = bfd_abs_section_ptr;
13229 break;
13230 }
13231
13232 /* This is the first section with this name. Record it. */
13233 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13234 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13235 return sec->output_section == bfd_abs_section_ptr;
13236}
13237
13238bfd_boolean
13239_bfd_elf_common_definition (Elf_Internal_Sym *sym)
13240{
13241 return sym->st_shndx == SHN_COMMON;
13242}
13243
13244unsigned int
13245_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13246{
13247 return SHN_COMMON;
13248}
13249
13250asection *
13251_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13252{
13253 return bfd_com_section_ptr;
13254}
13255
13256bfd_vma
13257_bfd_elf_default_got_elt_size (bfd *abfd,
13258 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13259 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13260 bfd *ibfd ATTRIBUTE_UNUSED,
13261 unsigned long symndx ATTRIBUTE_UNUSED)
13262{
13263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13264 return bed->s->arch_size / 8;
13265}
13266
13267/* Routines to support the creation of dynamic relocs. */
13268
13269/* Returns the name of the dynamic reloc section associated with SEC. */
13270
13271static const char *
13272get_dynamic_reloc_section_name (bfd * abfd,
13273 asection * sec,
13274 bfd_boolean is_rela)
13275{
13276 char *name;
13277 const char *old_name = bfd_get_section_name (NULL, sec);
13278 const char *prefix = is_rela ? ".rela" : ".rel";
13279
13280 if (old_name == NULL)
13281 return NULL;
13282
13283 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13284 sprintf (name, "%s%s", prefix, old_name);
13285
13286 return name;
13287}
13288
13289/* Returns the dynamic reloc section associated with SEC.
13290 If necessary compute the name of the dynamic reloc section based
13291 on SEC's name (looked up in ABFD's string table) and the setting
13292 of IS_RELA. */
13293
13294asection *
13295_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13296 asection * sec,
13297 bfd_boolean is_rela)
13298{
13299 asection * reloc_sec = elf_section_data (sec)->sreloc;
13300
13301 if (reloc_sec == NULL)
13302 {
13303 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13304
13305 if (name != NULL)
13306 {
13307 reloc_sec = bfd_get_linker_section (abfd, name);
13308
13309 if (reloc_sec != NULL)
13310 elf_section_data (sec)->sreloc = reloc_sec;
13311 }
13312 }
13313
13314 return reloc_sec;
13315}
13316
13317/* Returns the dynamic reloc section associated with SEC. If the
13318 section does not exist it is created and attached to the DYNOBJ
13319 bfd and stored in the SRELOC field of SEC's elf_section_data
13320 structure.
13321
13322 ALIGNMENT is the alignment for the newly created section and
13323 IS_RELA defines whether the name should be .rela.<SEC's name>
13324 or .rel.<SEC's name>. The section name is looked up in the
13325 string table associated with ABFD. */
13326
13327asection *
13328_bfd_elf_make_dynamic_reloc_section (asection *sec,
13329 bfd *dynobj,
13330 unsigned int alignment,
13331 bfd *abfd,
13332 bfd_boolean is_rela)
13333{
13334 asection * reloc_sec = elf_section_data (sec)->sreloc;
13335
13336 if (reloc_sec == NULL)
13337 {
13338 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13339
13340 if (name == NULL)
13341 return NULL;
13342
13343 reloc_sec = bfd_get_linker_section (dynobj, name);
13344
13345 if (reloc_sec == NULL)
13346 {
13347 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13348 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13349 if ((sec->flags & SEC_ALLOC) != 0)
13350 flags |= SEC_ALLOC | SEC_LOAD;
13351
13352 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13353 if (reloc_sec != NULL)
13354 {
13355 /* _bfd_elf_get_sec_type_attr chooses a section type by
13356 name. Override as it may be wrong, eg. for a user
13357 section named "auto" we'll get ".relauto" which is
13358 seen to be a .rela section. */
13359 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13360 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13361 reloc_sec = NULL;
13362 }
13363 }
13364
13365 elf_section_data (sec)->sreloc = reloc_sec;
13366 }
13367
13368 return reloc_sec;
13369}
13370
13371/* Copy the ELF symbol type and other attributes for a linker script
13372 assignment from HSRC to HDEST. Generally this should be treated as
13373 if we found a strong non-dynamic definition for HDEST (except that
13374 ld ignores multiple definition errors). */
13375void
13376_bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13377 struct bfd_link_hash_entry *hdest,
13378 struct bfd_link_hash_entry *hsrc)
13379{
13380 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13381 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13382 Elf_Internal_Sym isym;
13383
13384 ehdest->type = ehsrc->type;
13385 ehdest->target_internal = ehsrc->target_internal;
13386
13387 isym.st_other = ehsrc->other;
13388 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13389}
13390
13391/* Append a RELA relocation REL to section S in BFD. */
13392
13393void
13394elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13395{
13396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13397 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13398 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13399 bed->s->swap_reloca_out (abfd, rel, loc);
13400}
13401
13402/* Append a REL relocation REL to section S in BFD. */
13403
13404void
13405elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13406{
13407 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13408 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13409 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13410 bed->s->swap_reloc_out (abfd, rel, loc);
13411}
This page took 0.072245 seconds and 4 git commands to generate.