| 1 | /* ELF linker support. |
| 2 | Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001 |
| 3 | Free Software Foundation, Inc. |
| 4 | |
| 5 | This file is part of BFD, the Binary File Descriptor library. |
| 6 | |
| 7 | This program is free software; you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation; either version 2 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | This program is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with this program; if not, write to the Free Software |
| 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
| 20 | |
| 21 | /* ELF linker code. */ |
| 22 | |
| 23 | /* This struct is used to pass information to routines called via |
| 24 | elf_link_hash_traverse which must return failure. */ |
| 25 | |
| 26 | struct elf_info_failed |
| 27 | { |
| 28 | boolean failed; |
| 29 | struct bfd_link_info *info; |
| 30 | }; |
| 31 | |
| 32 | static boolean elf_link_add_object_symbols |
| 33 | PARAMS ((bfd *, struct bfd_link_info *)); |
| 34 | static boolean elf_link_add_archive_symbols |
| 35 | PARAMS ((bfd *, struct bfd_link_info *)); |
| 36 | static boolean elf_merge_symbol |
| 37 | PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *, |
| 38 | asection **, bfd_vma *, struct elf_link_hash_entry **, |
| 39 | boolean *, boolean *, boolean *, boolean)); |
| 40 | static boolean elf_export_symbol |
| 41 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
| 42 | static boolean elf_fix_symbol_flags |
| 43 | PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *)); |
| 44 | static boolean elf_adjust_dynamic_symbol |
| 45 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
| 46 | static boolean elf_link_find_version_dependencies |
| 47 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
| 48 | static boolean elf_link_find_version_dependencies |
| 49 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
| 50 | static boolean elf_link_assign_sym_version |
| 51 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
| 52 | static boolean elf_collect_hash_codes |
| 53 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
| 54 | static boolean elf_link_read_relocs_from_section |
| 55 | PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *)); |
| 56 | static void elf_link_output_relocs |
| 57 | PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *)); |
| 58 | static boolean elf_link_size_reloc_section |
| 59 | PARAMS ((bfd *, Elf_Internal_Shdr *, asection *)); |
| 60 | static void elf_link_adjust_relocs |
| 61 | PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int, |
| 62 | struct elf_link_hash_entry **)); |
| 63 | |
| 64 | /* Given an ELF BFD, add symbols to the global hash table as |
| 65 | appropriate. */ |
| 66 | |
| 67 | boolean |
| 68 | elf_bfd_link_add_symbols (abfd, info) |
| 69 | bfd *abfd; |
| 70 | struct bfd_link_info *info; |
| 71 | { |
| 72 | switch (bfd_get_format (abfd)) |
| 73 | { |
| 74 | case bfd_object: |
| 75 | return elf_link_add_object_symbols (abfd, info); |
| 76 | case bfd_archive: |
| 77 | return elf_link_add_archive_symbols (abfd, info); |
| 78 | default: |
| 79 | bfd_set_error (bfd_error_wrong_format); |
| 80 | return false; |
| 81 | } |
| 82 | } |
| 83 | \f |
| 84 | /* Return true iff this is a non-common, definition of a non-function symbol. */ |
| 85 | static boolean |
| 86 | is_global_data_symbol_definition (abfd, sym) |
| 87 | bfd * abfd ATTRIBUTE_UNUSED; |
| 88 | Elf_Internal_Sym * sym; |
| 89 | { |
| 90 | /* Local symbols do not count, but target specific ones might. */ |
| 91 | if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL |
| 92 | && ELF_ST_BIND (sym->st_info) < STB_LOOS) |
| 93 | return false; |
| 94 | |
| 95 | /* Function symbols do not count. */ |
| 96 | if (ELF_ST_TYPE (sym->st_info) == STT_FUNC) |
| 97 | return false; |
| 98 | |
| 99 | /* If the section is undefined, then so is the symbol. */ |
| 100 | if (sym->st_shndx == SHN_UNDEF) |
| 101 | return false; |
| 102 | |
| 103 | /* If the symbol is defined in the common section, then |
| 104 | it is a common definition and so does not count. */ |
| 105 | if (sym->st_shndx == SHN_COMMON) |
| 106 | return false; |
| 107 | |
| 108 | /* If the symbol is in a target specific section then we |
| 109 | must rely upon the backend to tell us what it is. */ |
| 110 | if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) |
| 111 | /* FIXME - this function is not coded yet: |
| 112 | |
| 113 | return _bfd_is_global_symbol_definition (abfd, sym); |
| 114 | |
| 115 | Instead for now assume that the definition is not global, |
| 116 | Even if this is wrong, at least the linker will behave |
| 117 | in the same way that it used to do. */ |
| 118 | return false; |
| 119 | |
| 120 | return true; |
| 121 | } |
| 122 | |
| 123 | /* Search the symbol table of the archive element of the archive ABFD |
| 124 | whoes archive map contains a mention of SYMDEF, and determine if |
| 125 | the symbol is defined in this element. */ |
| 126 | static boolean |
| 127 | elf_link_is_defined_archive_symbol (abfd, symdef) |
| 128 | bfd * abfd; |
| 129 | carsym * symdef; |
| 130 | { |
| 131 | Elf_Internal_Shdr * hdr; |
| 132 | Elf_External_Sym * esym; |
| 133 | Elf_External_Sym * esymend; |
| 134 | Elf_External_Sym * buf = NULL; |
| 135 | size_t symcount; |
| 136 | size_t extsymcount; |
| 137 | size_t extsymoff; |
| 138 | boolean result = false; |
| 139 | |
| 140 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); |
| 141 | if (abfd == (bfd *) NULL) |
| 142 | return false; |
| 143 | |
| 144 | if (! bfd_check_format (abfd, bfd_object)) |
| 145 | return false; |
| 146 | |
| 147 | /* If we have already included the element containing this symbol in the |
| 148 | link then we do not need to include it again. Just claim that any symbol |
| 149 | it contains is not a definition, so that our caller will not decide to |
| 150 | (re)include this element. */ |
| 151 | if (abfd->archive_pass) |
| 152 | return false; |
| 153 | |
| 154 | /* Select the appropriate symbol table. */ |
| 155 | if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) |
| 156 | hdr = &elf_tdata (abfd)->symtab_hdr; |
| 157 | else |
| 158 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
| 159 | |
| 160 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
| 161 | |
| 162 | /* The sh_info field of the symtab header tells us where the |
| 163 | external symbols start. We don't care about the local symbols. */ |
| 164 | if (elf_bad_symtab (abfd)) |
| 165 | { |
| 166 | extsymcount = symcount; |
| 167 | extsymoff = 0; |
| 168 | } |
| 169 | else |
| 170 | { |
| 171 | extsymcount = symcount - hdr->sh_info; |
| 172 | extsymoff = hdr->sh_info; |
| 173 | } |
| 174 | |
| 175 | buf = ((Elf_External_Sym *) |
| 176 | bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); |
| 177 | if (buf == NULL && extsymcount != 0) |
| 178 | return false; |
| 179 | |
| 180 | /* Read in the symbol table. |
| 181 | FIXME: This ought to be cached somewhere. */ |
| 182 | if (bfd_seek (abfd, |
| 183 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), |
| 184 | SEEK_SET) != 0 |
| 185 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) |
| 186 | != extsymcount * sizeof (Elf_External_Sym))) |
| 187 | { |
| 188 | free (buf); |
| 189 | return false; |
| 190 | } |
| 191 | |
| 192 | /* Scan the symbol table looking for SYMDEF. */ |
| 193 | esymend = buf + extsymcount; |
| 194 | for (esym = buf; |
| 195 | esym < esymend; |
| 196 | esym++) |
| 197 | { |
| 198 | Elf_Internal_Sym sym; |
| 199 | const char * name; |
| 200 | |
| 201 | elf_swap_symbol_in (abfd, esym, & sym); |
| 202 | |
| 203 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); |
| 204 | if (name == (const char *) NULL) |
| 205 | break; |
| 206 | |
| 207 | if (strcmp (name, symdef->name) == 0) |
| 208 | { |
| 209 | result = is_global_data_symbol_definition (abfd, & sym); |
| 210 | break; |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | free (buf); |
| 215 | |
| 216 | return result; |
| 217 | } |
| 218 | \f |
| 219 | /* Add symbols from an ELF archive file to the linker hash table. We |
| 220 | don't use _bfd_generic_link_add_archive_symbols because of a |
| 221 | problem which arises on UnixWare. The UnixWare libc.so is an |
| 222 | archive which includes an entry libc.so.1 which defines a bunch of |
| 223 | symbols. The libc.so archive also includes a number of other |
| 224 | object files, which also define symbols, some of which are the same |
| 225 | as those defined in libc.so.1. Correct linking requires that we |
| 226 | consider each object file in turn, and include it if it defines any |
| 227 | symbols we need. _bfd_generic_link_add_archive_symbols does not do |
| 228 | this; it looks through the list of undefined symbols, and includes |
| 229 | any object file which defines them. When this algorithm is used on |
| 230 | UnixWare, it winds up pulling in libc.so.1 early and defining a |
| 231 | bunch of symbols. This means that some of the other objects in the |
| 232 | archive are not included in the link, which is incorrect since they |
| 233 | precede libc.so.1 in the archive. |
| 234 | |
| 235 | Fortunately, ELF archive handling is simpler than that done by |
| 236 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out |
| 237 | oddities. In ELF, if we find a symbol in the archive map, and the |
| 238 | symbol is currently undefined, we know that we must pull in that |
| 239 | object file. |
| 240 | |
| 241 | Unfortunately, we do have to make multiple passes over the symbol |
| 242 | table until nothing further is resolved. */ |
| 243 | |
| 244 | static boolean |
| 245 | elf_link_add_archive_symbols (abfd, info) |
| 246 | bfd *abfd; |
| 247 | struct bfd_link_info *info; |
| 248 | { |
| 249 | symindex c; |
| 250 | boolean *defined = NULL; |
| 251 | boolean *included = NULL; |
| 252 | carsym *symdefs; |
| 253 | boolean loop; |
| 254 | |
| 255 | if (! bfd_has_map (abfd)) |
| 256 | { |
| 257 | /* An empty archive is a special case. */ |
| 258 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) |
| 259 | return true; |
| 260 | bfd_set_error (bfd_error_no_armap); |
| 261 | return false; |
| 262 | } |
| 263 | |
| 264 | /* Keep track of all symbols we know to be already defined, and all |
| 265 | files we know to be already included. This is to speed up the |
| 266 | second and subsequent passes. */ |
| 267 | c = bfd_ardata (abfd)->symdef_count; |
| 268 | if (c == 0) |
| 269 | return true; |
| 270 | defined = (boolean *) bfd_malloc (c * sizeof (boolean)); |
| 271 | included = (boolean *) bfd_malloc (c * sizeof (boolean)); |
| 272 | if (defined == (boolean *) NULL || included == (boolean *) NULL) |
| 273 | goto error_return; |
| 274 | memset (defined, 0, c * sizeof (boolean)); |
| 275 | memset (included, 0, c * sizeof (boolean)); |
| 276 | |
| 277 | symdefs = bfd_ardata (abfd)->symdefs; |
| 278 | |
| 279 | do |
| 280 | { |
| 281 | file_ptr last; |
| 282 | symindex i; |
| 283 | carsym *symdef; |
| 284 | carsym *symdefend; |
| 285 | |
| 286 | loop = false; |
| 287 | last = -1; |
| 288 | |
| 289 | symdef = symdefs; |
| 290 | symdefend = symdef + c; |
| 291 | for (i = 0; symdef < symdefend; symdef++, i++) |
| 292 | { |
| 293 | struct elf_link_hash_entry *h; |
| 294 | bfd *element; |
| 295 | struct bfd_link_hash_entry *undefs_tail; |
| 296 | symindex mark; |
| 297 | |
| 298 | if (defined[i] || included[i]) |
| 299 | continue; |
| 300 | if (symdef->file_offset == last) |
| 301 | { |
| 302 | included[i] = true; |
| 303 | continue; |
| 304 | } |
| 305 | |
| 306 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, |
| 307 | false, false, false); |
| 308 | |
| 309 | if (h == NULL) |
| 310 | { |
| 311 | char *p, *copy; |
| 312 | |
| 313 | /* If this is a default version (the name contains @@), |
| 314 | look up the symbol again without the version. The |
| 315 | effect is that references to the symbol without the |
| 316 | version will be matched by the default symbol in the |
| 317 | archive. */ |
| 318 | |
| 319 | p = strchr (symdef->name, ELF_VER_CHR); |
| 320 | if (p == NULL || p[1] != ELF_VER_CHR) |
| 321 | continue; |
| 322 | |
| 323 | copy = bfd_alloc (abfd, p - symdef->name + 1); |
| 324 | if (copy == NULL) |
| 325 | goto error_return; |
| 326 | memcpy (copy, symdef->name, p - symdef->name); |
| 327 | copy[p - symdef->name] = '\0'; |
| 328 | |
| 329 | h = elf_link_hash_lookup (elf_hash_table (info), copy, |
| 330 | false, false, false); |
| 331 | |
| 332 | bfd_release (abfd, copy); |
| 333 | } |
| 334 | |
| 335 | if (h == NULL) |
| 336 | continue; |
| 337 | |
| 338 | if (h->root.type == bfd_link_hash_common) |
| 339 | { |
| 340 | /* We currently have a common symbol. The archive map contains |
| 341 | a reference to this symbol, so we may want to include it. We |
| 342 | only want to include it however, if this archive element |
| 343 | contains a definition of the symbol, not just another common |
| 344 | declaration of it. |
| 345 | |
| 346 | Unfortunately some archivers (including GNU ar) will put |
| 347 | declarations of common symbols into their archive maps, as |
| 348 | well as real definitions, so we cannot just go by the archive |
| 349 | map alone. Instead we must read in the element's symbol |
| 350 | table and check that to see what kind of symbol definition |
| 351 | this is. */ |
| 352 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) |
| 353 | continue; |
| 354 | } |
| 355 | else if (h->root.type != bfd_link_hash_undefined) |
| 356 | { |
| 357 | if (h->root.type != bfd_link_hash_undefweak) |
| 358 | defined[i] = true; |
| 359 | continue; |
| 360 | } |
| 361 | |
| 362 | /* We need to include this archive member. */ |
| 363 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); |
| 364 | if (element == (bfd *) NULL) |
| 365 | goto error_return; |
| 366 | |
| 367 | if (! bfd_check_format (element, bfd_object)) |
| 368 | goto error_return; |
| 369 | |
| 370 | /* Doublecheck that we have not included this object |
| 371 | already--it should be impossible, but there may be |
| 372 | something wrong with the archive. */ |
| 373 | if (element->archive_pass != 0) |
| 374 | { |
| 375 | bfd_set_error (bfd_error_bad_value); |
| 376 | goto error_return; |
| 377 | } |
| 378 | element->archive_pass = 1; |
| 379 | |
| 380 | undefs_tail = info->hash->undefs_tail; |
| 381 | |
| 382 | if (! (*info->callbacks->add_archive_element) (info, element, |
| 383 | symdef->name)) |
| 384 | goto error_return; |
| 385 | if (! elf_link_add_object_symbols (element, info)) |
| 386 | goto error_return; |
| 387 | |
| 388 | /* If there are any new undefined symbols, we need to make |
| 389 | another pass through the archive in order to see whether |
| 390 | they can be defined. FIXME: This isn't perfect, because |
| 391 | common symbols wind up on undefs_tail and because an |
| 392 | undefined symbol which is defined later on in this pass |
| 393 | does not require another pass. This isn't a bug, but it |
| 394 | does make the code less efficient than it could be. */ |
| 395 | if (undefs_tail != info->hash->undefs_tail) |
| 396 | loop = true; |
| 397 | |
| 398 | /* Look backward to mark all symbols from this object file |
| 399 | which we have already seen in this pass. */ |
| 400 | mark = i; |
| 401 | do |
| 402 | { |
| 403 | included[mark] = true; |
| 404 | if (mark == 0) |
| 405 | break; |
| 406 | --mark; |
| 407 | } |
| 408 | while (symdefs[mark].file_offset == symdef->file_offset); |
| 409 | |
| 410 | /* We mark subsequent symbols from this object file as we go |
| 411 | on through the loop. */ |
| 412 | last = symdef->file_offset; |
| 413 | } |
| 414 | } |
| 415 | while (loop); |
| 416 | |
| 417 | free (defined); |
| 418 | free (included); |
| 419 | |
| 420 | return true; |
| 421 | |
| 422 | error_return: |
| 423 | if (defined != (boolean *) NULL) |
| 424 | free (defined); |
| 425 | if (included != (boolean *) NULL) |
| 426 | free (included); |
| 427 | return false; |
| 428 | } |
| 429 | |
| 430 | /* This function is called when we want to define a new symbol. It |
| 431 | handles the various cases which arise when we find a definition in |
| 432 | a dynamic object, or when there is already a definition in a |
| 433 | dynamic object. The new symbol is described by NAME, SYM, PSEC, |
| 434 | and PVALUE. We set SYM_HASH to the hash table entry. We set |
| 435 | OVERRIDE if the old symbol is overriding a new definition. We set |
| 436 | TYPE_CHANGE_OK if it is OK for the type to change. We set |
| 437 | SIZE_CHANGE_OK if it is OK for the size to change. By OK to |
| 438 | change, we mean that we shouldn't warn if the type or size does |
| 439 | change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of |
| 440 | a shared object. */ |
| 441 | |
| 442 | static boolean |
| 443 | elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash, |
| 444 | override, type_change_ok, size_change_ok, dt_needed) |
| 445 | bfd *abfd; |
| 446 | struct bfd_link_info *info; |
| 447 | const char *name; |
| 448 | Elf_Internal_Sym *sym; |
| 449 | asection **psec; |
| 450 | bfd_vma *pvalue; |
| 451 | struct elf_link_hash_entry **sym_hash; |
| 452 | boolean *override; |
| 453 | boolean *type_change_ok; |
| 454 | boolean *size_change_ok; |
| 455 | boolean dt_needed; |
| 456 | { |
| 457 | asection *sec; |
| 458 | struct elf_link_hash_entry *h; |
| 459 | int bind; |
| 460 | bfd *oldbfd; |
| 461 | boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; |
| 462 | |
| 463 | *override = false; |
| 464 | |
| 465 | sec = *psec; |
| 466 | bind = ELF_ST_BIND (sym->st_info); |
| 467 | |
| 468 | if (! bfd_is_und_section (sec)) |
| 469 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); |
| 470 | else |
| 471 | h = ((struct elf_link_hash_entry *) |
| 472 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); |
| 473 | if (h == NULL) |
| 474 | return false; |
| 475 | *sym_hash = h; |
| 476 | |
| 477 | /* This code is for coping with dynamic objects, and is only useful |
| 478 | if we are doing an ELF link. */ |
| 479 | if (info->hash->creator != abfd->xvec) |
| 480 | return true; |
| 481 | |
| 482 | /* For merging, we only care about real symbols. */ |
| 483 | |
| 484 | while (h->root.type == bfd_link_hash_indirect |
| 485 | || h->root.type == bfd_link_hash_warning) |
| 486 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 487 | |
| 488 | /* If we just created the symbol, mark it as being an ELF symbol. |
| 489 | Other than that, there is nothing to do--there is no merge issue |
| 490 | with a newly defined symbol--so we just return. */ |
| 491 | |
| 492 | if (h->root.type == bfd_link_hash_new) |
| 493 | { |
| 494 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; |
| 495 | return true; |
| 496 | } |
| 497 | |
| 498 | /* OLDBFD is a BFD associated with the existing symbol. */ |
| 499 | |
| 500 | switch (h->root.type) |
| 501 | { |
| 502 | default: |
| 503 | oldbfd = NULL; |
| 504 | break; |
| 505 | |
| 506 | case bfd_link_hash_undefined: |
| 507 | case bfd_link_hash_undefweak: |
| 508 | oldbfd = h->root.u.undef.abfd; |
| 509 | break; |
| 510 | |
| 511 | case bfd_link_hash_defined: |
| 512 | case bfd_link_hash_defweak: |
| 513 | oldbfd = h->root.u.def.section->owner; |
| 514 | break; |
| 515 | |
| 516 | case bfd_link_hash_common: |
| 517 | oldbfd = h->root.u.c.p->section->owner; |
| 518 | break; |
| 519 | } |
| 520 | |
| 521 | /* In cases involving weak versioned symbols, we may wind up trying |
| 522 | to merge a symbol with itself. Catch that here, to avoid the |
| 523 | confusion that results if we try to override a symbol with |
| 524 | itself. The additional tests catch cases like |
| 525 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a |
| 526 | dynamic object, which we do want to handle here. */ |
| 527 | if (abfd == oldbfd |
| 528 | && ((abfd->flags & DYNAMIC) == 0 |
| 529 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) |
| 530 | return true; |
| 531 | |
| 532 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, |
| 533 | respectively, is from a dynamic object. */ |
| 534 | |
| 535 | if ((abfd->flags & DYNAMIC) != 0) |
| 536 | newdyn = true; |
| 537 | else |
| 538 | newdyn = false; |
| 539 | |
| 540 | if (oldbfd != NULL) |
| 541 | olddyn = (oldbfd->flags & DYNAMIC) != 0; |
| 542 | else |
| 543 | { |
| 544 | asection *hsec; |
| 545 | |
| 546 | /* This code handles the special SHN_MIPS_{TEXT,DATA} section |
| 547 | indices used by MIPS ELF. */ |
| 548 | switch (h->root.type) |
| 549 | { |
| 550 | default: |
| 551 | hsec = NULL; |
| 552 | break; |
| 553 | |
| 554 | case bfd_link_hash_defined: |
| 555 | case bfd_link_hash_defweak: |
| 556 | hsec = h->root.u.def.section; |
| 557 | break; |
| 558 | |
| 559 | case bfd_link_hash_common: |
| 560 | hsec = h->root.u.c.p->section; |
| 561 | break; |
| 562 | } |
| 563 | |
| 564 | if (hsec == NULL) |
| 565 | olddyn = false; |
| 566 | else |
| 567 | olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0; |
| 568 | } |
| 569 | |
| 570 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, |
| 571 | respectively, appear to be a definition rather than reference. */ |
| 572 | |
| 573 | if (bfd_is_und_section (sec) || bfd_is_com_section (sec)) |
| 574 | newdef = false; |
| 575 | else |
| 576 | newdef = true; |
| 577 | |
| 578 | if (h->root.type == bfd_link_hash_undefined |
| 579 | || h->root.type == bfd_link_hash_undefweak |
| 580 | || h->root.type == bfd_link_hash_common) |
| 581 | olddef = false; |
| 582 | else |
| 583 | olddef = true; |
| 584 | |
| 585 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old |
| 586 | symbol, respectively, appears to be a common symbol in a dynamic |
| 587 | object. If a symbol appears in an uninitialized section, and is |
| 588 | not weak, and is not a function, then it may be a common symbol |
| 589 | which was resolved when the dynamic object was created. We want |
| 590 | to treat such symbols specially, because they raise special |
| 591 | considerations when setting the symbol size: if the symbol |
| 592 | appears as a common symbol in a regular object, and the size in |
| 593 | the regular object is larger, we must make sure that we use the |
| 594 | larger size. This problematic case can always be avoided in C, |
| 595 | but it must be handled correctly when using Fortran shared |
| 596 | libraries. |
| 597 | |
| 598 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and |
| 599 | likewise for OLDDYNCOMMON and OLDDEF. |
| 600 | |
| 601 | Note that this test is just a heuristic, and that it is quite |
| 602 | possible to have an uninitialized symbol in a shared object which |
| 603 | is really a definition, rather than a common symbol. This could |
| 604 | lead to some minor confusion when the symbol really is a common |
| 605 | symbol in some regular object. However, I think it will be |
| 606 | harmless. */ |
| 607 | |
| 608 | if (newdyn |
| 609 | && newdef |
| 610 | && (sec->flags & SEC_ALLOC) != 0 |
| 611 | && (sec->flags & SEC_LOAD) == 0 |
| 612 | && sym->st_size > 0 |
| 613 | && bind != STB_WEAK |
| 614 | && ELF_ST_TYPE (sym->st_info) != STT_FUNC) |
| 615 | newdyncommon = true; |
| 616 | else |
| 617 | newdyncommon = false; |
| 618 | |
| 619 | if (olddyn |
| 620 | && olddef |
| 621 | && h->root.type == bfd_link_hash_defined |
| 622 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
| 623 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 |
| 624 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 |
| 625 | && h->size > 0 |
| 626 | && h->type != STT_FUNC) |
| 627 | olddyncommon = true; |
| 628 | else |
| 629 | olddyncommon = false; |
| 630 | |
| 631 | /* It's OK to change the type if either the existing symbol or the |
| 632 | new symbol is weak unless it comes from a DT_NEEDED entry of |
| 633 | a shared object, in which case, the DT_NEEDED entry may not be |
| 634 | required at the run time. */ |
| 635 | |
| 636 | if ((! dt_needed && h->root.type == bfd_link_hash_defweak) |
| 637 | || h->root.type == bfd_link_hash_undefweak |
| 638 | || bind == STB_WEAK) |
| 639 | *type_change_ok = true; |
| 640 | |
| 641 | /* It's OK to change the size if either the existing symbol or the |
| 642 | new symbol is weak, or if the old symbol is undefined. */ |
| 643 | |
| 644 | if (*type_change_ok |
| 645 | || h->root.type == bfd_link_hash_undefined) |
| 646 | *size_change_ok = true; |
| 647 | |
| 648 | /* If both the old and the new symbols look like common symbols in a |
| 649 | dynamic object, set the size of the symbol to the larger of the |
| 650 | two. */ |
| 651 | |
| 652 | if (olddyncommon |
| 653 | && newdyncommon |
| 654 | && sym->st_size != h->size) |
| 655 | { |
| 656 | /* Since we think we have two common symbols, issue a multiple |
| 657 | common warning if desired. Note that we only warn if the |
| 658 | size is different. If the size is the same, we simply let |
| 659 | the old symbol override the new one as normally happens with |
| 660 | symbols defined in dynamic objects. */ |
| 661 | |
| 662 | if (! ((*info->callbacks->multiple_common) |
| 663 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, |
| 664 | h->size, abfd, bfd_link_hash_common, sym->st_size))) |
| 665 | return false; |
| 666 | |
| 667 | if (sym->st_size > h->size) |
| 668 | h->size = sym->st_size; |
| 669 | |
| 670 | *size_change_ok = true; |
| 671 | } |
| 672 | |
| 673 | /* If we are looking at a dynamic object, and we have found a |
| 674 | definition, we need to see if the symbol was already defined by |
| 675 | some other object. If so, we want to use the existing |
| 676 | definition, and we do not want to report a multiple symbol |
| 677 | definition error; we do this by clobbering *PSEC to be |
| 678 | bfd_und_section_ptr. |
| 679 | |
| 680 | We treat a common symbol as a definition if the symbol in the |
| 681 | shared library is a function, since common symbols always |
| 682 | represent variables; this can cause confusion in principle, but |
| 683 | any such confusion would seem to indicate an erroneous program or |
| 684 | shared library. We also permit a common symbol in a regular |
| 685 | object to override a weak symbol in a shared object. |
| 686 | |
| 687 | We prefer a non-weak definition in a shared library to a weak |
| 688 | definition in the executable unless it comes from a DT_NEEDED |
| 689 | entry of a shared object, in which case, the DT_NEEDED entry |
| 690 | may not be required at the run time. */ |
| 691 | |
| 692 | if (newdyn |
| 693 | && newdef |
| 694 | && (olddef |
| 695 | || (h->root.type == bfd_link_hash_common |
| 696 | && (bind == STB_WEAK |
| 697 | || ELF_ST_TYPE (sym->st_info) == STT_FUNC))) |
| 698 | && (h->root.type != bfd_link_hash_defweak |
| 699 | || dt_needed |
| 700 | || bind == STB_WEAK)) |
| 701 | { |
| 702 | *override = true; |
| 703 | newdef = false; |
| 704 | newdyncommon = false; |
| 705 | |
| 706 | *psec = sec = bfd_und_section_ptr; |
| 707 | *size_change_ok = true; |
| 708 | |
| 709 | /* If we get here when the old symbol is a common symbol, then |
| 710 | we are explicitly letting it override a weak symbol or |
| 711 | function in a dynamic object, and we don't want to warn about |
| 712 | a type change. If the old symbol is a defined symbol, a type |
| 713 | change warning may still be appropriate. */ |
| 714 | |
| 715 | if (h->root.type == bfd_link_hash_common) |
| 716 | *type_change_ok = true; |
| 717 | } |
| 718 | |
| 719 | /* Handle the special case of an old common symbol merging with a |
| 720 | new symbol which looks like a common symbol in a shared object. |
| 721 | We change *PSEC and *PVALUE to make the new symbol look like a |
| 722 | common symbol, and let _bfd_generic_link_add_one_symbol will do |
| 723 | the right thing. */ |
| 724 | |
| 725 | if (newdyncommon |
| 726 | && h->root.type == bfd_link_hash_common) |
| 727 | { |
| 728 | *override = true; |
| 729 | newdef = false; |
| 730 | newdyncommon = false; |
| 731 | *pvalue = sym->st_size; |
| 732 | *psec = sec = bfd_com_section_ptr; |
| 733 | *size_change_ok = true; |
| 734 | } |
| 735 | |
| 736 | /* If the old symbol is from a dynamic object, and the new symbol is |
| 737 | a definition which is not from a dynamic object, then the new |
| 738 | symbol overrides the old symbol. Symbols from regular files |
| 739 | always take precedence over symbols from dynamic objects, even if |
| 740 | they are defined after the dynamic object in the link. |
| 741 | |
| 742 | As above, we again permit a common symbol in a regular object to |
| 743 | override a definition in a shared object if the shared object |
| 744 | symbol is a function or is weak. |
| 745 | |
| 746 | As above, we permit a non-weak definition in a shared object to |
| 747 | override a weak definition in a regular object. */ |
| 748 | |
| 749 | if (! newdyn |
| 750 | && (newdef |
| 751 | || (bfd_is_com_section (sec) |
| 752 | && (h->root.type == bfd_link_hash_defweak |
| 753 | || h->type == STT_FUNC))) |
| 754 | && olddyn |
| 755 | && olddef |
| 756 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
| 757 | && (bind != STB_WEAK |
| 758 | || h->root.type == bfd_link_hash_defweak)) |
| 759 | { |
| 760 | /* Change the hash table entry to undefined, and let |
| 761 | _bfd_generic_link_add_one_symbol do the right thing with the |
| 762 | new definition. */ |
| 763 | |
| 764 | h->root.type = bfd_link_hash_undefined; |
| 765 | h->root.u.undef.abfd = h->root.u.def.section->owner; |
| 766 | *size_change_ok = true; |
| 767 | |
| 768 | olddef = false; |
| 769 | olddyncommon = false; |
| 770 | |
| 771 | /* We again permit a type change when a common symbol may be |
| 772 | overriding a function. */ |
| 773 | |
| 774 | if (bfd_is_com_section (sec)) |
| 775 | *type_change_ok = true; |
| 776 | |
| 777 | /* This union may have been set to be non-NULL when this symbol |
| 778 | was seen in a dynamic object. We must force the union to be |
| 779 | NULL, so that it is correct for a regular symbol. */ |
| 780 | |
| 781 | h->verinfo.vertree = NULL; |
| 782 | |
| 783 | /* In this special case, if H is the target of an indirection, |
| 784 | we want the caller to frob with H rather than with the |
| 785 | indirect symbol. That will permit the caller to redefine the |
| 786 | target of the indirection, rather than the indirect symbol |
| 787 | itself. FIXME: This will break the -y option if we store a |
| 788 | symbol with a different name. */ |
| 789 | *sym_hash = h; |
| 790 | } |
| 791 | |
| 792 | /* Handle the special case of a new common symbol merging with an |
| 793 | old symbol that looks like it might be a common symbol defined in |
| 794 | a shared object. Note that we have already handled the case in |
| 795 | which a new common symbol should simply override the definition |
| 796 | in the shared library. */ |
| 797 | |
| 798 | if (! newdyn |
| 799 | && bfd_is_com_section (sec) |
| 800 | && olddyncommon) |
| 801 | { |
| 802 | /* It would be best if we could set the hash table entry to a |
| 803 | common symbol, but we don't know what to use for the section |
| 804 | or the alignment. */ |
| 805 | if (! ((*info->callbacks->multiple_common) |
| 806 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, |
| 807 | h->size, abfd, bfd_link_hash_common, sym->st_size))) |
| 808 | return false; |
| 809 | |
| 810 | /* If the predumed common symbol in the dynamic object is |
| 811 | larger, pretend that the new symbol has its size. */ |
| 812 | |
| 813 | if (h->size > *pvalue) |
| 814 | *pvalue = h->size; |
| 815 | |
| 816 | /* FIXME: We no longer know the alignment required by the symbol |
| 817 | in the dynamic object, so we just wind up using the one from |
| 818 | the regular object. */ |
| 819 | |
| 820 | olddef = false; |
| 821 | olddyncommon = false; |
| 822 | |
| 823 | h->root.type = bfd_link_hash_undefined; |
| 824 | h->root.u.undef.abfd = h->root.u.def.section->owner; |
| 825 | |
| 826 | *size_change_ok = true; |
| 827 | *type_change_ok = true; |
| 828 | |
| 829 | h->verinfo.vertree = NULL; |
| 830 | } |
| 831 | |
| 832 | /* Handle the special case of a weak definition in a regular object |
| 833 | followed by a non-weak definition in a shared object. In this |
| 834 | case, we prefer the definition in the shared object unless it |
| 835 | comes from a DT_NEEDED entry of a shared object, in which case, |
| 836 | the DT_NEEDED entry may not be required at the run time. */ |
| 837 | if (olddef |
| 838 | && ! dt_needed |
| 839 | && h->root.type == bfd_link_hash_defweak |
| 840 | && newdef |
| 841 | && newdyn |
| 842 | && bind != STB_WEAK) |
| 843 | { |
| 844 | /* To make this work we have to frob the flags so that the rest |
| 845 | of the code does not think we are using the regular |
| 846 | definition. */ |
| 847 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
| 848 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; |
| 849 | else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) |
| 850 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; |
| 851 | h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR |
| 852 | | ELF_LINK_HASH_DEF_DYNAMIC); |
| 853 | |
| 854 | /* If H is the target of an indirection, we want the caller to |
| 855 | use H rather than the indirect symbol. Otherwise if we are |
| 856 | defining a new indirect symbol we will wind up attaching it |
| 857 | to the entry we are overriding. */ |
| 858 | *sym_hash = h; |
| 859 | } |
| 860 | |
| 861 | /* Handle the special case of a non-weak definition in a shared |
| 862 | object followed by a weak definition in a regular object. In |
| 863 | this case we prefer to definition in the shared object. To make |
| 864 | this work we have to tell the caller to not treat the new symbol |
| 865 | as a definition. */ |
| 866 | if (olddef |
| 867 | && olddyn |
| 868 | && h->root.type != bfd_link_hash_defweak |
| 869 | && newdef |
| 870 | && ! newdyn |
| 871 | && bind == STB_WEAK) |
| 872 | *override = true; |
| 873 | |
| 874 | return true; |
| 875 | } |
| 876 | |
| 877 | /* Add symbols from an ELF object file to the linker hash table. */ |
| 878 | |
| 879 | static boolean |
| 880 | elf_link_add_object_symbols (abfd, info) |
| 881 | bfd *abfd; |
| 882 | struct bfd_link_info *info; |
| 883 | { |
| 884 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, |
| 885 | const Elf_Internal_Sym *, |
| 886 | const char **, flagword *, |
| 887 | asection **, bfd_vma *)); |
| 888 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, |
| 889 | asection *, const Elf_Internal_Rela *)); |
| 890 | boolean collect; |
| 891 | Elf_Internal_Shdr *hdr; |
| 892 | size_t symcount; |
| 893 | size_t extsymcount; |
| 894 | size_t extsymoff; |
| 895 | Elf_External_Sym *buf = NULL; |
| 896 | struct elf_link_hash_entry **sym_hash; |
| 897 | boolean dynamic; |
| 898 | Elf_External_Versym *extversym = NULL; |
| 899 | Elf_External_Versym *ever; |
| 900 | Elf_External_Dyn *dynbuf = NULL; |
| 901 | struct elf_link_hash_entry *weaks; |
| 902 | Elf_External_Sym *esym; |
| 903 | Elf_External_Sym *esymend; |
| 904 | struct elf_backend_data *bed; |
| 905 | boolean dt_needed; |
| 906 | |
| 907 | bed = get_elf_backend_data (abfd); |
| 908 | add_symbol_hook = bed->elf_add_symbol_hook; |
| 909 | collect = bed->collect; |
| 910 | |
| 911 | if ((abfd->flags & DYNAMIC) == 0) |
| 912 | dynamic = false; |
| 913 | else |
| 914 | { |
| 915 | dynamic = true; |
| 916 | |
| 917 | /* You can't use -r against a dynamic object. Also, there's no |
| 918 | hope of using a dynamic object which does not exactly match |
| 919 | the format of the output file. */ |
| 920 | if (info->relocateable || info->hash->creator != abfd->xvec) |
| 921 | { |
| 922 | bfd_set_error (bfd_error_invalid_operation); |
| 923 | goto error_return; |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | /* As a GNU extension, any input sections which are named |
| 928 | .gnu.warning.SYMBOL are treated as warning symbols for the given |
| 929 | symbol. This differs from .gnu.warning sections, which generate |
| 930 | warnings when they are included in an output file. */ |
| 931 | if (! info->shared) |
| 932 | { |
| 933 | asection *s; |
| 934 | |
| 935 | for (s = abfd->sections; s != NULL; s = s->next) |
| 936 | { |
| 937 | const char *name; |
| 938 | |
| 939 | name = bfd_get_section_name (abfd, s); |
| 940 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) |
| 941 | { |
| 942 | char *msg; |
| 943 | bfd_size_type sz; |
| 944 | |
| 945 | name += sizeof ".gnu.warning." - 1; |
| 946 | |
| 947 | /* If this is a shared object, then look up the symbol |
| 948 | in the hash table. If it is there, and it is already |
| 949 | been defined, then we will not be using the entry |
| 950 | from this shared object, so we don't need to warn. |
| 951 | FIXME: If we see the definition in a regular object |
| 952 | later on, we will warn, but we shouldn't. The only |
| 953 | fix is to keep track of what warnings we are supposed |
| 954 | to emit, and then handle them all at the end of the |
| 955 | link. */ |
| 956 | if (dynamic && abfd->xvec == info->hash->creator) |
| 957 | { |
| 958 | struct elf_link_hash_entry *h; |
| 959 | |
| 960 | h = elf_link_hash_lookup (elf_hash_table (info), name, |
| 961 | false, false, true); |
| 962 | |
| 963 | /* FIXME: What about bfd_link_hash_common? */ |
| 964 | if (h != NULL |
| 965 | && (h->root.type == bfd_link_hash_defined |
| 966 | || h->root.type == bfd_link_hash_defweak)) |
| 967 | { |
| 968 | /* We don't want to issue this warning. Clobber |
| 969 | the section size so that the warning does not |
| 970 | get copied into the output file. */ |
| 971 | s->_raw_size = 0; |
| 972 | continue; |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | sz = bfd_section_size (abfd, s); |
| 977 | msg = (char *) bfd_alloc (abfd, sz + 1); |
| 978 | if (msg == NULL) |
| 979 | goto error_return; |
| 980 | |
| 981 | if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) |
| 982 | goto error_return; |
| 983 | |
| 984 | msg[sz] = '\0'; |
| 985 | |
| 986 | if (! (_bfd_generic_link_add_one_symbol |
| 987 | (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg, |
| 988 | false, collect, (struct bfd_link_hash_entry **) NULL))) |
| 989 | goto error_return; |
| 990 | |
| 991 | if (! info->relocateable) |
| 992 | { |
| 993 | /* Clobber the section size so that the warning does |
| 994 | not get copied into the output file. */ |
| 995 | s->_raw_size = 0; |
| 996 | } |
| 997 | } |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | /* If this is a dynamic object, we always link against the .dynsym |
| 1002 | symbol table, not the .symtab symbol table. The dynamic linker |
| 1003 | will only see the .dynsym symbol table, so there is no reason to |
| 1004 | look at .symtab for a dynamic object. */ |
| 1005 | |
| 1006 | if (! dynamic || elf_dynsymtab (abfd) == 0) |
| 1007 | hdr = &elf_tdata (abfd)->symtab_hdr; |
| 1008 | else |
| 1009 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
| 1010 | |
| 1011 | if (dynamic) |
| 1012 | { |
| 1013 | /* Read in any version definitions. */ |
| 1014 | |
| 1015 | if (! _bfd_elf_slurp_version_tables (abfd)) |
| 1016 | goto error_return; |
| 1017 | |
| 1018 | /* Read in the symbol versions, but don't bother to convert them |
| 1019 | to internal format. */ |
| 1020 | if (elf_dynversym (abfd) != 0) |
| 1021 | { |
| 1022 | Elf_Internal_Shdr *versymhdr; |
| 1023 | |
| 1024 | versymhdr = &elf_tdata (abfd)->dynversym_hdr; |
| 1025 | extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); |
| 1026 | if (extversym == NULL) |
| 1027 | goto error_return; |
| 1028 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 |
| 1029 | || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd) |
| 1030 | != versymhdr->sh_size)) |
| 1031 | goto error_return; |
| 1032 | } |
| 1033 | } |
| 1034 | |
| 1035 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
| 1036 | |
| 1037 | /* The sh_info field of the symtab header tells us where the |
| 1038 | external symbols start. We don't care about the local symbols at |
| 1039 | this point. */ |
| 1040 | if (elf_bad_symtab (abfd)) |
| 1041 | { |
| 1042 | extsymcount = symcount; |
| 1043 | extsymoff = 0; |
| 1044 | } |
| 1045 | else |
| 1046 | { |
| 1047 | extsymcount = symcount - hdr->sh_info; |
| 1048 | extsymoff = hdr->sh_info; |
| 1049 | } |
| 1050 | |
| 1051 | buf = ((Elf_External_Sym *) |
| 1052 | bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); |
| 1053 | if (buf == NULL && extsymcount != 0) |
| 1054 | goto error_return; |
| 1055 | |
| 1056 | /* We store a pointer to the hash table entry for each external |
| 1057 | symbol. */ |
| 1058 | sym_hash = ((struct elf_link_hash_entry **) |
| 1059 | bfd_alloc (abfd, |
| 1060 | extsymcount * sizeof (struct elf_link_hash_entry *))); |
| 1061 | if (sym_hash == NULL) |
| 1062 | goto error_return; |
| 1063 | elf_sym_hashes (abfd) = sym_hash; |
| 1064 | |
| 1065 | dt_needed = false; |
| 1066 | |
| 1067 | if (! dynamic) |
| 1068 | { |
| 1069 | /* If we are creating a shared library, create all the dynamic |
| 1070 | sections immediately. We need to attach them to something, |
| 1071 | so we attach them to this BFD, provided it is the right |
| 1072 | format. FIXME: If there are no input BFD's of the same |
| 1073 | format as the output, we can't make a shared library. */ |
| 1074 | if (info->shared |
| 1075 | && ! elf_hash_table (info)->dynamic_sections_created |
| 1076 | && abfd->xvec == info->hash->creator) |
| 1077 | { |
| 1078 | if (! elf_link_create_dynamic_sections (abfd, info)) |
| 1079 | goto error_return; |
| 1080 | } |
| 1081 | } |
| 1082 | else |
| 1083 | { |
| 1084 | asection *s; |
| 1085 | boolean add_needed; |
| 1086 | const char *name; |
| 1087 | bfd_size_type oldsize; |
| 1088 | bfd_size_type strindex; |
| 1089 | |
| 1090 | /* Find the name to use in a DT_NEEDED entry that refers to this |
| 1091 | object. If the object has a DT_SONAME entry, we use it. |
| 1092 | Otherwise, if the generic linker stuck something in |
| 1093 | elf_dt_name, we use that. Otherwise, we just use the file |
| 1094 | name. If the generic linker put a null string into |
| 1095 | elf_dt_name, we don't make a DT_NEEDED entry at all, even if |
| 1096 | there is a DT_SONAME entry. */ |
| 1097 | add_needed = true; |
| 1098 | name = basename (bfd_get_filename (abfd)); |
| 1099 | if (elf_dt_name (abfd) != NULL) |
| 1100 | { |
| 1101 | name = elf_dt_name (abfd); |
| 1102 | if (*name == '\0') |
| 1103 | { |
| 1104 | if (elf_dt_soname (abfd) != NULL) |
| 1105 | dt_needed = true; |
| 1106 | |
| 1107 | add_needed = false; |
| 1108 | } |
| 1109 | } |
| 1110 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
| 1111 | if (s != NULL) |
| 1112 | { |
| 1113 | Elf_External_Dyn *extdyn; |
| 1114 | Elf_External_Dyn *extdynend; |
| 1115 | int elfsec; |
| 1116 | unsigned long link; |
| 1117 | int rpath; |
| 1118 | int runpath; |
| 1119 | |
| 1120 | dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size); |
| 1121 | if (dynbuf == NULL) |
| 1122 | goto error_return; |
| 1123 | |
| 1124 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, |
| 1125 | (file_ptr) 0, s->_raw_size)) |
| 1126 | goto error_return; |
| 1127 | |
| 1128 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
| 1129 | if (elfsec == -1) |
| 1130 | goto error_return; |
| 1131 | link = elf_elfsections (abfd)[elfsec]->sh_link; |
| 1132 | |
| 1133 | { |
| 1134 | /* The shared libraries distributed with hpux11 have a bogus |
| 1135 | sh_link field for the ".dynamic" section. This code detects |
| 1136 | when LINK refers to a section that is not a string table and |
| 1137 | tries to find the string table for the ".dynsym" section |
| 1138 | instead. */ |
| 1139 | Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link]; |
| 1140 | if (hdr->sh_type != SHT_STRTAB) |
| 1141 | { |
| 1142 | asection *s = bfd_get_section_by_name (abfd, ".dynsym"); |
| 1143 | int elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
| 1144 | if (elfsec == -1) |
| 1145 | goto error_return; |
| 1146 | link = elf_elfsections (abfd)[elfsec]->sh_link; |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | extdyn = dynbuf; |
| 1151 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); |
| 1152 | rpath = 0; |
| 1153 | runpath = 0; |
| 1154 | for (; extdyn < extdynend; extdyn++) |
| 1155 | { |
| 1156 | Elf_Internal_Dyn dyn; |
| 1157 | |
| 1158 | elf_swap_dyn_in (abfd, extdyn, &dyn); |
| 1159 | if (dyn.d_tag == DT_SONAME) |
| 1160 | { |
| 1161 | name = bfd_elf_string_from_elf_section (abfd, link, |
| 1162 | dyn.d_un.d_val); |
| 1163 | if (name == NULL) |
| 1164 | goto error_return; |
| 1165 | } |
| 1166 | if (dyn.d_tag == DT_NEEDED) |
| 1167 | { |
| 1168 | struct bfd_link_needed_list *n, **pn; |
| 1169 | char *fnm, *anm; |
| 1170 | |
| 1171 | n = ((struct bfd_link_needed_list *) |
| 1172 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); |
| 1173 | fnm = bfd_elf_string_from_elf_section (abfd, link, |
| 1174 | dyn.d_un.d_val); |
| 1175 | if (n == NULL || fnm == NULL) |
| 1176 | goto error_return; |
| 1177 | anm = bfd_alloc (abfd, strlen (fnm) + 1); |
| 1178 | if (anm == NULL) |
| 1179 | goto error_return; |
| 1180 | strcpy (anm, fnm); |
| 1181 | n->name = anm; |
| 1182 | n->by = abfd; |
| 1183 | n->next = NULL; |
| 1184 | for (pn = &elf_hash_table (info)->needed; |
| 1185 | *pn != NULL; |
| 1186 | pn = &(*pn)->next) |
| 1187 | ; |
| 1188 | *pn = n; |
| 1189 | } |
| 1190 | if (dyn.d_tag == DT_RUNPATH) |
| 1191 | { |
| 1192 | struct bfd_link_needed_list *n, **pn; |
| 1193 | char *fnm, *anm; |
| 1194 | |
| 1195 | /* When we see DT_RPATH before DT_RUNPATH, we have |
| 1196 | to clear runpath. Do _NOT_ bfd_release, as that |
| 1197 | frees all more recently bfd_alloc'd blocks as |
| 1198 | well. */ |
| 1199 | if (rpath && elf_hash_table (info)->runpath) |
| 1200 | elf_hash_table (info)->runpath = NULL; |
| 1201 | |
| 1202 | n = ((struct bfd_link_needed_list *) |
| 1203 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); |
| 1204 | fnm = bfd_elf_string_from_elf_section (abfd, link, |
| 1205 | dyn.d_un.d_val); |
| 1206 | if (n == NULL || fnm == NULL) |
| 1207 | goto error_return; |
| 1208 | anm = bfd_alloc (abfd, strlen (fnm) + 1); |
| 1209 | if (anm == NULL) |
| 1210 | goto error_return; |
| 1211 | strcpy (anm, fnm); |
| 1212 | n->name = anm; |
| 1213 | n->by = abfd; |
| 1214 | n->next = NULL; |
| 1215 | for (pn = &elf_hash_table (info)->runpath; |
| 1216 | *pn != NULL; |
| 1217 | pn = &(*pn)->next) |
| 1218 | ; |
| 1219 | *pn = n; |
| 1220 | runpath = 1; |
| 1221 | rpath = 0; |
| 1222 | } |
| 1223 | /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ |
| 1224 | if (!runpath && dyn.d_tag == DT_RPATH) |
| 1225 | { |
| 1226 | struct bfd_link_needed_list *n, **pn; |
| 1227 | char *fnm, *anm; |
| 1228 | |
| 1229 | n = ((struct bfd_link_needed_list *) |
| 1230 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); |
| 1231 | fnm = bfd_elf_string_from_elf_section (abfd, link, |
| 1232 | dyn.d_un.d_val); |
| 1233 | if (n == NULL || fnm == NULL) |
| 1234 | goto error_return; |
| 1235 | anm = bfd_alloc (abfd, strlen (fnm) + 1); |
| 1236 | if (anm == NULL) |
| 1237 | goto error_return; |
| 1238 | strcpy (anm, fnm); |
| 1239 | n->name = anm; |
| 1240 | n->by = abfd; |
| 1241 | n->next = NULL; |
| 1242 | for (pn = &elf_hash_table (info)->runpath; |
| 1243 | *pn != NULL; |
| 1244 | pn = &(*pn)->next) |
| 1245 | ; |
| 1246 | *pn = n; |
| 1247 | rpath = 1; |
| 1248 | } |
| 1249 | } |
| 1250 | |
| 1251 | free (dynbuf); |
| 1252 | dynbuf = NULL; |
| 1253 | } |
| 1254 | |
| 1255 | /* We do not want to include any of the sections in a dynamic |
| 1256 | object in the output file. We hack by simply clobbering the |
| 1257 | list of sections in the BFD. This could be handled more |
| 1258 | cleanly by, say, a new section flag; the existing |
| 1259 | SEC_NEVER_LOAD flag is not the one we want, because that one |
| 1260 | still implies that the section takes up space in the output |
| 1261 | file. */ |
| 1262 | abfd->sections = NULL; |
| 1263 | abfd->section_count = 0; |
| 1264 | |
| 1265 | /* If this is the first dynamic object found in the link, create |
| 1266 | the special sections required for dynamic linking. */ |
| 1267 | if (! elf_hash_table (info)->dynamic_sections_created) |
| 1268 | { |
| 1269 | if (! elf_link_create_dynamic_sections (abfd, info)) |
| 1270 | goto error_return; |
| 1271 | } |
| 1272 | |
| 1273 | if (add_needed) |
| 1274 | { |
| 1275 | /* Add a DT_NEEDED entry for this dynamic object. */ |
| 1276 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); |
| 1277 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, |
| 1278 | true, false); |
| 1279 | if (strindex == (bfd_size_type) -1) |
| 1280 | goto error_return; |
| 1281 | |
| 1282 | if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) |
| 1283 | { |
| 1284 | asection *sdyn; |
| 1285 | Elf_External_Dyn *dyncon, *dynconend; |
| 1286 | |
| 1287 | /* The hash table size did not change, which means that |
| 1288 | the dynamic object name was already entered. If we |
| 1289 | have already included this dynamic object in the |
| 1290 | link, just ignore it. There is no reason to include |
| 1291 | a particular dynamic object more than once. */ |
| 1292 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, |
| 1293 | ".dynamic"); |
| 1294 | BFD_ASSERT (sdyn != NULL); |
| 1295 | |
| 1296 | dyncon = (Elf_External_Dyn *) sdyn->contents; |
| 1297 | dynconend = (Elf_External_Dyn *) (sdyn->contents + |
| 1298 | sdyn->_raw_size); |
| 1299 | for (; dyncon < dynconend; dyncon++) |
| 1300 | { |
| 1301 | Elf_Internal_Dyn dyn; |
| 1302 | |
| 1303 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, |
| 1304 | &dyn); |
| 1305 | if (dyn.d_tag == DT_NEEDED |
| 1306 | && dyn.d_un.d_val == strindex) |
| 1307 | { |
| 1308 | if (buf != NULL) |
| 1309 | free (buf); |
| 1310 | if (extversym != NULL) |
| 1311 | free (extversym); |
| 1312 | return true; |
| 1313 | } |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) |
| 1318 | goto error_return; |
| 1319 | } |
| 1320 | |
| 1321 | /* Save the SONAME, if there is one, because sometimes the |
| 1322 | linker emulation code will need to know it. */ |
| 1323 | if (*name == '\0') |
| 1324 | name = basename (bfd_get_filename (abfd)); |
| 1325 | elf_dt_name (abfd) = name; |
| 1326 | } |
| 1327 | |
| 1328 | if (bfd_seek (abfd, |
| 1329 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), |
| 1330 | SEEK_SET) != 0 |
| 1331 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) |
| 1332 | != extsymcount * sizeof (Elf_External_Sym))) |
| 1333 | goto error_return; |
| 1334 | |
| 1335 | weaks = NULL; |
| 1336 | |
| 1337 | ever = extversym != NULL ? extversym + extsymoff : NULL; |
| 1338 | esymend = buf + extsymcount; |
| 1339 | for (esym = buf; |
| 1340 | esym < esymend; |
| 1341 | esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) |
| 1342 | { |
| 1343 | Elf_Internal_Sym sym; |
| 1344 | int bind; |
| 1345 | bfd_vma value; |
| 1346 | asection *sec; |
| 1347 | flagword flags; |
| 1348 | const char *name; |
| 1349 | struct elf_link_hash_entry *h; |
| 1350 | boolean definition; |
| 1351 | boolean size_change_ok, type_change_ok; |
| 1352 | boolean new_weakdef; |
| 1353 | unsigned int old_alignment; |
| 1354 | |
| 1355 | elf_swap_symbol_in (abfd, esym, &sym); |
| 1356 | |
| 1357 | flags = BSF_NO_FLAGS; |
| 1358 | sec = NULL; |
| 1359 | value = sym.st_value; |
| 1360 | *sym_hash = NULL; |
| 1361 | |
| 1362 | bind = ELF_ST_BIND (sym.st_info); |
| 1363 | if (bind == STB_LOCAL) |
| 1364 | { |
| 1365 | /* This should be impossible, since ELF requires that all |
| 1366 | global symbols follow all local symbols, and that sh_info |
| 1367 | point to the first global symbol. Unfortunatealy, Irix 5 |
| 1368 | screws this up. */ |
| 1369 | continue; |
| 1370 | } |
| 1371 | else if (bind == STB_GLOBAL) |
| 1372 | { |
| 1373 | if (sym.st_shndx != SHN_UNDEF |
| 1374 | && sym.st_shndx != SHN_COMMON) |
| 1375 | flags = BSF_GLOBAL; |
| 1376 | } |
| 1377 | else if (bind == STB_WEAK) |
| 1378 | flags = BSF_WEAK; |
| 1379 | else |
| 1380 | { |
| 1381 | /* Leave it up to the processor backend. */ |
| 1382 | } |
| 1383 | |
| 1384 | if (sym.st_shndx == SHN_UNDEF) |
| 1385 | sec = bfd_und_section_ptr; |
| 1386 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) |
| 1387 | { |
| 1388 | sec = section_from_elf_index (abfd, sym.st_shndx); |
| 1389 | if (sec == NULL) |
| 1390 | sec = bfd_abs_section_ptr; |
| 1391 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) |
| 1392 | value -= sec->vma; |
| 1393 | } |
| 1394 | else if (sym.st_shndx == SHN_ABS) |
| 1395 | sec = bfd_abs_section_ptr; |
| 1396 | else if (sym.st_shndx == SHN_COMMON) |
| 1397 | { |
| 1398 | sec = bfd_com_section_ptr; |
| 1399 | /* What ELF calls the size we call the value. What ELF |
| 1400 | calls the value we call the alignment. */ |
| 1401 | value = sym.st_size; |
| 1402 | } |
| 1403 | else |
| 1404 | { |
| 1405 | /* Leave it up to the processor backend. */ |
| 1406 | } |
| 1407 | |
| 1408 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); |
| 1409 | if (name == (const char *) NULL) |
| 1410 | goto error_return; |
| 1411 | |
| 1412 | if (add_symbol_hook) |
| 1413 | { |
| 1414 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, |
| 1415 | &value)) |
| 1416 | goto error_return; |
| 1417 | |
| 1418 | /* The hook function sets the name to NULL if this symbol |
| 1419 | should be skipped for some reason. */ |
| 1420 | if (name == (const char *) NULL) |
| 1421 | continue; |
| 1422 | } |
| 1423 | |
| 1424 | /* Sanity check that all possibilities were handled. */ |
| 1425 | if (sec == (asection *) NULL) |
| 1426 | { |
| 1427 | bfd_set_error (bfd_error_bad_value); |
| 1428 | goto error_return; |
| 1429 | } |
| 1430 | |
| 1431 | if (bfd_is_und_section (sec) |
| 1432 | || bfd_is_com_section (sec)) |
| 1433 | definition = false; |
| 1434 | else |
| 1435 | definition = true; |
| 1436 | |
| 1437 | size_change_ok = false; |
| 1438 | type_change_ok = get_elf_backend_data (abfd)->type_change_ok; |
| 1439 | old_alignment = 0; |
| 1440 | if (info->hash->creator->flavour == bfd_target_elf_flavour) |
| 1441 | { |
| 1442 | Elf_Internal_Versym iver; |
| 1443 | unsigned int vernum = 0; |
| 1444 | boolean override; |
| 1445 | |
| 1446 | if (ever != NULL) |
| 1447 | { |
| 1448 | _bfd_elf_swap_versym_in (abfd, ever, &iver); |
| 1449 | vernum = iver.vs_vers & VERSYM_VERSION; |
| 1450 | |
| 1451 | /* If this is a hidden symbol, or if it is not version |
| 1452 | 1, we append the version name to the symbol name. |
| 1453 | However, we do not modify a non-hidden absolute |
| 1454 | symbol, because it might be the version symbol |
| 1455 | itself. FIXME: What if it isn't? */ |
| 1456 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 |
| 1457 | || (vernum > 1 && ! bfd_is_abs_section (sec))) |
| 1458 | { |
| 1459 | const char *verstr; |
| 1460 | int namelen, newlen; |
| 1461 | char *newname, *p; |
| 1462 | |
| 1463 | if (sym.st_shndx != SHN_UNDEF) |
| 1464 | { |
| 1465 | if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info) |
| 1466 | { |
| 1467 | (*_bfd_error_handler) |
| 1468 | (_("%s: %s: invalid version %u (max %d)"), |
| 1469 | bfd_get_filename (abfd), name, vernum, |
| 1470 | elf_tdata (abfd)->dynverdef_hdr.sh_info); |
| 1471 | bfd_set_error (bfd_error_bad_value); |
| 1472 | goto error_return; |
| 1473 | } |
| 1474 | else if (vernum > 1) |
| 1475 | verstr = |
| 1476 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; |
| 1477 | else |
| 1478 | verstr = ""; |
| 1479 | } |
| 1480 | else |
| 1481 | { |
| 1482 | /* We cannot simply test for the number of |
| 1483 | entries in the VERNEED section since the |
| 1484 | numbers for the needed versions do not start |
| 1485 | at 0. */ |
| 1486 | Elf_Internal_Verneed *t; |
| 1487 | |
| 1488 | verstr = NULL; |
| 1489 | for (t = elf_tdata (abfd)->verref; |
| 1490 | t != NULL; |
| 1491 | t = t->vn_nextref) |
| 1492 | { |
| 1493 | Elf_Internal_Vernaux *a; |
| 1494 | |
| 1495 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| 1496 | { |
| 1497 | if (a->vna_other == vernum) |
| 1498 | { |
| 1499 | verstr = a->vna_nodename; |
| 1500 | break; |
| 1501 | } |
| 1502 | } |
| 1503 | if (a != NULL) |
| 1504 | break; |
| 1505 | } |
| 1506 | if (verstr == NULL) |
| 1507 | { |
| 1508 | (*_bfd_error_handler) |
| 1509 | (_("%s: %s: invalid needed version %d"), |
| 1510 | bfd_get_filename (abfd), name, vernum); |
| 1511 | bfd_set_error (bfd_error_bad_value); |
| 1512 | goto error_return; |
| 1513 | } |
| 1514 | } |
| 1515 | |
| 1516 | namelen = strlen (name); |
| 1517 | newlen = namelen + strlen (verstr) + 2; |
| 1518 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0) |
| 1519 | ++newlen; |
| 1520 | |
| 1521 | newname = (char *) bfd_alloc (abfd, newlen); |
| 1522 | if (newname == NULL) |
| 1523 | goto error_return; |
| 1524 | strcpy (newname, name); |
| 1525 | p = newname + namelen; |
| 1526 | *p++ = ELF_VER_CHR; |
| 1527 | /* If this is a defined non-hidden version symbol, |
| 1528 | we add another @ to the name. This indicates the |
| 1529 | default version of the symbol. */ |
| 1530 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 |
| 1531 | && sym.st_shndx != SHN_UNDEF) |
| 1532 | *p++ = ELF_VER_CHR; |
| 1533 | strcpy (p, verstr); |
| 1534 | |
| 1535 | name = newname; |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value, |
| 1540 | sym_hash, &override, &type_change_ok, |
| 1541 | &size_change_ok, dt_needed)) |
| 1542 | goto error_return; |
| 1543 | |
| 1544 | if (override) |
| 1545 | definition = false; |
| 1546 | |
| 1547 | h = *sym_hash; |
| 1548 | while (h->root.type == bfd_link_hash_indirect |
| 1549 | || h->root.type == bfd_link_hash_warning) |
| 1550 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 1551 | |
| 1552 | /* Remember the old alignment if this is a common symbol, so |
| 1553 | that we don't reduce the alignment later on. We can't |
| 1554 | check later, because _bfd_generic_link_add_one_symbol |
| 1555 | will set a default for the alignment which we want to |
| 1556 | override. */ |
| 1557 | if (h->root.type == bfd_link_hash_common) |
| 1558 | old_alignment = h->root.u.c.p->alignment_power; |
| 1559 | |
| 1560 | if (elf_tdata (abfd)->verdef != NULL |
| 1561 | && ! override |
| 1562 | && vernum > 1 |
| 1563 | && definition) |
| 1564 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; |
| 1565 | } |
| 1566 | |
| 1567 | if (! (_bfd_generic_link_add_one_symbol |
| 1568 | (info, abfd, name, flags, sec, value, (const char *) NULL, |
| 1569 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) |
| 1570 | goto error_return; |
| 1571 | |
| 1572 | h = *sym_hash; |
| 1573 | while (h->root.type == bfd_link_hash_indirect |
| 1574 | || h->root.type == bfd_link_hash_warning) |
| 1575 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 1576 | *sym_hash = h; |
| 1577 | |
| 1578 | new_weakdef = false; |
| 1579 | if (dynamic |
| 1580 | && definition |
| 1581 | && (flags & BSF_WEAK) != 0 |
| 1582 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC |
| 1583 | && info->hash->creator->flavour == bfd_target_elf_flavour |
| 1584 | && h->weakdef == NULL) |
| 1585 | { |
| 1586 | /* Keep a list of all weak defined non function symbols from |
| 1587 | a dynamic object, using the weakdef field. Later in this |
| 1588 | function we will set the weakdef field to the correct |
| 1589 | value. We only put non-function symbols from dynamic |
| 1590 | objects on this list, because that happens to be the only |
| 1591 | time we need to know the normal symbol corresponding to a |
| 1592 | weak symbol, and the information is time consuming to |
| 1593 | figure out. If the weakdef field is not already NULL, |
| 1594 | then this symbol was already defined by some previous |
| 1595 | dynamic object, and we will be using that previous |
| 1596 | definition anyhow. */ |
| 1597 | |
| 1598 | h->weakdef = weaks; |
| 1599 | weaks = h; |
| 1600 | new_weakdef = true; |
| 1601 | } |
| 1602 | |
| 1603 | /* Set the alignment of a common symbol. */ |
| 1604 | if (sym.st_shndx == SHN_COMMON |
| 1605 | && h->root.type == bfd_link_hash_common) |
| 1606 | { |
| 1607 | unsigned int align; |
| 1608 | |
| 1609 | align = bfd_log2 (sym.st_value); |
| 1610 | if (align > old_alignment |
| 1611 | /* Permit an alignment power of zero if an alignment of one |
| 1612 | is specified and no other alignments have been specified. */ |
| 1613 | || (sym.st_value == 1 && old_alignment == 0)) |
| 1614 | h->root.u.c.p->alignment_power = align; |
| 1615 | } |
| 1616 | |
| 1617 | if (info->hash->creator->flavour == bfd_target_elf_flavour) |
| 1618 | { |
| 1619 | int old_flags; |
| 1620 | boolean dynsym; |
| 1621 | int new_flag; |
| 1622 | |
| 1623 | /* Remember the symbol size and type. */ |
| 1624 | if (sym.st_size != 0 |
| 1625 | && (definition || h->size == 0)) |
| 1626 | { |
| 1627 | if (h->size != 0 && h->size != sym.st_size && ! size_change_ok) |
| 1628 | (*_bfd_error_handler) |
| 1629 | (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"), |
| 1630 | name, (unsigned long) h->size, (unsigned long) sym.st_size, |
| 1631 | bfd_get_filename (abfd)); |
| 1632 | |
| 1633 | h->size = sym.st_size; |
| 1634 | } |
| 1635 | |
| 1636 | /* If this is a common symbol, then we always want H->SIZE |
| 1637 | to be the size of the common symbol. The code just above |
| 1638 | won't fix the size if a common symbol becomes larger. We |
| 1639 | don't warn about a size change here, because that is |
| 1640 | covered by --warn-common. */ |
| 1641 | if (h->root.type == bfd_link_hash_common) |
| 1642 | h->size = h->root.u.c.size; |
| 1643 | |
| 1644 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE |
| 1645 | && (definition || h->type == STT_NOTYPE)) |
| 1646 | { |
| 1647 | if (h->type != STT_NOTYPE |
| 1648 | && h->type != ELF_ST_TYPE (sym.st_info) |
| 1649 | && ! type_change_ok) |
| 1650 | (*_bfd_error_handler) |
| 1651 | (_("Warning: type of symbol `%s' changed from %d to %d in %s"), |
| 1652 | name, h->type, ELF_ST_TYPE (sym.st_info), |
| 1653 | bfd_get_filename (abfd)); |
| 1654 | |
| 1655 | h->type = ELF_ST_TYPE (sym.st_info); |
| 1656 | } |
| 1657 | |
| 1658 | /* If st_other has a processor-specific meaning, specific code |
| 1659 | might be needed here. */ |
| 1660 | if (sym.st_other != 0) |
| 1661 | { |
| 1662 | /* Combine visibilities, using the most constraining one. */ |
| 1663 | unsigned char hvis = ELF_ST_VISIBILITY (h->other); |
| 1664 | unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other); |
| 1665 | |
| 1666 | if (symvis && (hvis > symvis || hvis == 0)) |
| 1667 | h->other = sym.st_other; |
| 1668 | |
| 1669 | /* If neither has visibility, use the st_other of the |
| 1670 | definition. This is an arbitrary choice, since the |
| 1671 | other bits have no general meaning. */ |
| 1672 | if (!symvis && !hvis |
| 1673 | && (definition || h->other == 0)) |
| 1674 | h->other = sym.st_other; |
| 1675 | } |
| 1676 | |
| 1677 | /* Set a flag in the hash table entry indicating the type of |
| 1678 | reference or definition we just found. Keep a count of |
| 1679 | the number of dynamic symbols we find. A dynamic symbol |
| 1680 | is one which is referenced or defined by both a regular |
| 1681 | object and a shared object. */ |
| 1682 | old_flags = h->elf_link_hash_flags; |
| 1683 | dynsym = false; |
| 1684 | if (! dynamic) |
| 1685 | { |
| 1686 | if (! definition) |
| 1687 | { |
| 1688 | new_flag = ELF_LINK_HASH_REF_REGULAR; |
| 1689 | if (bind != STB_WEAK) |
| 1690 | new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; |
| 1691 | } |
| 1692 | else |
| 1693 | new_flag = ELF_LINK_HASH_DEF_REGULAR; |
| 1694 | if (info->shared |
| 1695 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC |
| 1696 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) |
| 1697 | dynsym = true; |
| 1698 | } |
| 1699 | else |
| 1700 | { |
| 1701 | if (! definition) |
| 1702 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; |
| 1703 | else |
| 1704 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; |
| 1705 | if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR |
| 1706 | | ELF_LINK_HASH_REF_REGULAR)) != 0 |
| 1707 | || (h->weakdef != NULL |
| 1708 | && ! new_weakdef |
| 1709 | && h->weakdef->dynindx != -1)) |
| 1710 | dynsym = true; |
| 1711 | } |
| 1712 | |
| 1713 | h->elf_link_hash_flags |= new_flag; |
| 1714 | |
| 1715 | /* If this symbol has a version, and it is the default |
| 1716 | version, we create an indirect symbol from the default |
| 1717 | name to the fully decorated name. This will cause |
| 1718 | external references which do not specify a version to be |
| 1719 | bound to this version of the symbol. */ |
| 1720 | if (definition || h->root.type == bfd_link_hash_common) |
| 1721 | { |
| 1722 | char *p; |
| 1723 | |
| 1724 | p = strchr (name, ELF_VER_CHR); |
| 1725 | if (p != NULL && p[1] == ELF_VER_CHR) |
| 1726 | { |
| 1727 | char *shortname; |
| 1728 | struct elf_link_hash_entry *hi; |
| 1729 | boolean override; |
| 1730 | |
| 1731 | shortname = bfd_hash_allocate (&info->hash->table, |
| 1732 | p - name + 1); |
| 1733 | if (shortname == NULL) |
| 1734 | goto error_return; |
| 1735 | strncpy (shortname, name, p - name); |
| 1736 | shortname[p - name] = '\0'; |
| 1737 | |
| 1738 | /* We are going to create a new symbol. Merge it |
| 1739 | with any existing symbol with this name. For the |
| 1740 | purposes of the merge, act as though we were |
| 1741 | defining the symbol we just defined, although we |
| 1742 | actually going to define an indirect symbol. */ |
| 1743 | type_change_ok = false; |
| 1744 | size_change_ok = false; |
| 1745 | if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, |
| 1746 | &value, &hi, &override, |
| 1747 | &type_change_ok, |
| 1748 | &size_change_ok, dt_needed)) |
| 1749 | goto error_return; |
| 1750 | |
| 1751 | if (! override) |
| 1752 | { |
| 1753 | if (! (_bfd_generic_link_add_one_symbol |
| 1754 | (info, abfd, shortname, BSF_INDIRECT, |
| 1755 | bfd_ind_section_ptr, (bfd_vma) 0, name, false, |
| 1756 | collect, (struct bfd_link_hash_entry **) &hi))) |
| 1757 | goto error_return; |
| 1758 | } |
| 1759 | else |
| 1760 | { |
| 1761 | /* In this case the symbol named SHORTNAME is |
| 1762 | overriding the indirect symbol we want to |
| 1763 | add. We were planning on making SHORTNAME an |
| 1764 | indirect symbol referring to NAME. SHORTNAME |
| 1765 | is the name without a version. NAME is the |
| 1766 | fully versioned name, and it is the default |
| 1767 | version. |
| 1768 | |
| 1769 | Overriding means that we already saw a |
| 1770 | definition for the symbol SHORTNAME in a |
| 1771 | regular object, and it is overriding the |
| 1772 | symbol defined in the dynamic object. |
| 1773 | |
| 1774 | When this happens, we actually want to change |
| 1775 | NAME, the symbol we just added, to refer to |
| 1776 | SHORTNAME. This will cause references to |
| 1777 | NAME in the shared object to become |
| 1778 | references to SHORTNAME in the regular |
| 1779 | object. This is what we expect when we |
| 1780 | override a function in a shared object: that |
| 1781 | the references in the shared object will be |
| 1782 | mapped to the definition in the regular |
| 1783 | object. */ |
| 1784 | |
| 1785 | while (hi->root.type == bfd_link_hash_indirect |
| 1786 | || hi->root.type == bfd_link_hash_warning) |
| 1787 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; |
| 1788 | |
| 1789 | h->root.type = bfd_link_hash_indirect; |
| 1790 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; |
| 1791 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) |
| 1792 | { |
| 1793 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC; |
| 1794 | hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; |
| 1795 | if (hi->elf_link_hash_flags |
| 1796 | & (ELF_LINK_HASH_REF_REGULAR |
| 1797 | | ELF_LINK_HASH_DEF_REGULAR)) |
| 1798 | { |
| 1799 | if (! _bfd_elf_link_record_dynamic_symbol (info, |
| 1800 | hi)) |
| 1801 | goto error_return; |
| 1802 | } |
| 1803 | } |
| 1804 | |
| 1805 | /* Now set HI to H, so that the following code |
| 1806 | will set the other fields correctly. */ |
| 1807 | hi = h; |
| 1808 | } |
| 1809 | |
| 1810 | /* If there is a duplicate definition somewhere, |
| 1811 | then HI may not point to an indirect symbol. We |
| 1812 | will have reported an error to the user in that |
| 1813 | case. */ |
| 1814 | |
| 1815 | if (hi->root.type == bfd_link_hash_indirect) |
| 1816 | { |
| 1817 | struct elf_link_hash_entry *ht; |
| 1818 | |
| 1819 | /* If the symbol became indirect, then we assume |
| 1820 | that we have not seen a definition before. */ |
| 1821 | BFD_ASSERT ((hi->elf_link_hash_flags |
| 1822 | & (ELF_LINK_HASH_DEF_DYNAMIC |
| 1823 | | ELF_LINK_HASH_DEF_REGULAR)) |
| 1824 | == 0); |
| 1825 | |
| 1826 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; |
| 1827 | (*bed->elf_backend_copy_indirect_symbol) (ht, hi); |
| 1828 | |
| 1829 | /* See if the new flags lead us to realize that |
| 1830 | the symbol must be dynamic. */ |
| 1831 | if (! dynsym) |
| 1832 | { |
| 1833 | if (! dynamic) |
| 1834 | { |
| 1835 | if (info->shared |
| 1836 | || ((hi->elf_link_hash_flags |
| 1837 | & ELF_LINK_HASH_REF_DYNAMIC) |
| 1838 | != 0)) |
| 1839 | dynsym = true; |
| 1840 | } |
| 1841 | else |
| 1842 | { |
| 1843 | if ((hi->elf_link_hash_flags |
| 1844 | & ELF_LINK_HASH_REF_REGULAR) != 0) |
| 1845 | dynsym = true; |
| 1846 | } |
| 1847 | } |
| 1848 | } |
| 1849 | |
| 1850 | /* We also need to define an indirection from the |
| 1851 | nondefault version of the symbol. */ |
| 1852 | |
| 1853 | shortname = bfd_hash_allocate (&info->hash->table, |
| 1854 | strlen (name)); |
| 1855 | if (shortname == NULL) |
| 1856 | goto error_return; |
| 1857 | strncpy (shortname, name, p - name); |
| 1858 | strcpy (shortname + (p - name), p + 1); |
| 1859 | |
| 1860 | /* Once again, merge with any existing symbol. */ |
| 1861 | type_change_ok = false; |
| 1862 | size_change_ok = false; |
| 1863 | if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, |
| 1864 | &value, &hi, &override, |
| 1865 | &type_change_ok, |
| 1866 | &size_change_ok, dt_needed)) |
| 1867 | goto error_return; |
| 1868 | |
| 1869 | if (override) |
| 1870 | { |
| 1871 | /* Here SHORTNAME is a versioned name, so we |
| 1872 | don't expect to see the type of override we |
| 1873 | do in the case above. */ |
| 1874 | (*_bfd_error_handler) |
| 1875 | (_("%s: warning: unexpected redefinition of `%s'"), |
| 1876 | bfd_get_filename (abfd), shortname); |
| 1877 | } |
| 1878 | else |
| 1879 | { |
| 1880 | if (! (_bfd_generic_link_add_one_symbol |
| 1881 | (info, abfd, shortname, BSF_INDIRECT, |
| 1882 | bfd_ind_section_ptr, (bfd_vma) 0, name, false, |
| 1883 | collect, (struct bfd_link_hash_entry **) &hi))) |
| 1884 | goto error_return; |
| 1885 | |
| 1886 | /* If there is a duplicate definition somewhere, |
| 1887 | then HI may not point to an indirect symbol. |
| 1888 | We will have reported an error to the user in |
| 1889 | that case. */ |
| 1890 | |
| 1891 | if (hi->root.type == bfd_link_hash_indirect) |
| 1892 | { |
| 1893 | /* If the symbol became indirect, then we |
| 1894 | assume that we have not seen a definition |
| 1895 | before. */ |
| 1896 | BFD_ASSERT ((hi->elf_link_hash_flags |
| 1897 | & (ELF_LINK_HASH_DEF_DYNAMIC |
| 1898 | | ELF_LINK_HASH_DEF_REGULAR)) |
| 1899 | == 0); |
| 1900 | |
| 1901 | (*bed->elf_backend_copy_indirect_symbol) (h, hi); |
| 1902 | |
| 1903 | /* See if the new flags lead us to realize |
| 1904 | that the symbol must be dynamic. */ |
| 1905 | if (! dynsym) |
| 1906 | { |
| 1907 | if (! dynamic) |
| 1908 | { |
| 1909 | if (info->shared |
| 1910 | || ((hi->elf_link_hash_flags |
| 1911 | & ELF_LINK_HASH_REF_DYNAMIC) |
| 1912 | != 0)) |
| 1913 | dynsym = true; |
| 1914 | } |
| 1915 | else |
| 1916 | { |
| 1917 | if ((hi->elf_link_hash_flags |
| 1918 | & ELF_LINK_HASH_REF_REGULAR) != 0) |
| 1919 | dynsym = true; |
| 1920 | } |
| 1921 | } |
| 1922 | } |
| 1923 | } |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | if (dynsym && h->dynindx == -1) |
| 1928 | { |
| 1929 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) |
| 1930 | goto error_return; |
| 1931 | if (h->weakdef != NULL |
| 1932 | && ! new_weakdef |
| 1933 | && h->weakdef->dynindx == -1) |
| 1934 | { |
| 1935 | if (! _bfd_elf_link_record_dynamic_symbol (info, |
| 1936 | h->weakdef)) |
| 1937 | goto error_return; |
| 1938 | } |
| 1939 | } |
| 1940 | else if (dynsym && h->dynindx != -1) |
| 1941 | /* If the symbol already has a dynamic index, but |
| 1942 | visibility says it should not be visible, turn it into |
| 1943 | a local symbol. */ |
| 1944 | switch (ELF_ST_VISIBILITY (h->other)) |
| 1945 | { |
| 1946 | case STV_INTERNAL: |
| 1947 | case STV_HIDDEN: |
| 1948 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
| 1949 | (*bed->elf_backend_hide_symbol) (info, h); |
| 1950 | break; |
| 1951 | } |
| 1952 | |
| 1953 | if (dt_needed && definition |
| 1954 | && (h->elf_link_hash_flags |
| 1955 | & ELF_LINK_HASH_REF_REGULAR) != 0) |
| 1956 | { |
| 1957 | bfd_size_type oldsize; |
| 1958 | bfd_size_type strindex; |
| 1959 | |
| 1960 | /* The symbol from a DT_NEEDED object is referenced from |
| 1961 | the regular object to create a dynamic executable. We |
| 1962 | have to make sure there is a DT_NEEDED entry for it. */ |
| 1963 | |
| 1964 | dt_needed = false; |
| 1965 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); |
| 1966 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
| 1967 | elf_dt_soname (abfd), |
| 1968 | true, false); |
| 1969 | if (strindex == (bfd_size_type) -1) |
| 1970 | goto error_return; |
| 1971 | |
| 1972 | if (oldsize |
| 1973 | == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) |
| 1974 | { |
| 1975 | asection *sdyn; |
| 1976 | Elf_External_Dyn *dyncon, *dynconend; |
| 1977 | |
| 1978 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, |
| 1979 | ".dynamic"); |
| 1980 | BFD_ASSERT (sdyn != NULL); |
| 1981 | |
| 1982 | dyncon = (Elf_External_Dyn *) sdyn->contents; |
| 1983 | dynconend = (Elf_External_Dyn *) (sdyn->contents + |
| 1984 | sdyn->_raw_size); |
| 1985 | for (; dyncon < dynconend; dyncon++) |
| 1986 | { |
| 1987 | Elf_Internal_Dyn dyn; |
| 1988 | |
| 1989 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, |
| 1990 | dyncon, &dyn); |
| 1991 | BFD_ASSERT (dyn.d_tag != DT_NEEDED || |
| 1992 | dyn.d_un.d_val != strindex); |
| 1993 | } |
| 1994 | } |
| 1995 | |
| 1996 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) |
| 1997 | goto error_return; |
| 1998 | } |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | /* Now set the weakdefs field correctly for all the weak defined |
| 2003 | symbols we found. The only way to do this is to search all the |
| 2004 | symbols. Since we only need the information for non functions in |
| 2005 | dynamic objects, that's the only time we actually put anything on |
| 2006 | the list WEAKS. We need this information so that if a regular |
| 2007 | object refers to a symbol defined weakly in a dynamic object, the |
| 2008 | real symbol in the dynamic object is also put in the dynamic |
| 2009 | symbols; we also must arrange for both symbols to point to the |
| 2010 | same memory location. We could handle the general case of symbol |
| 2011 | aliasing, but a general symbol alias can only be generated in |
| 2012 | assembler code, handling it correctly would be very time |
| 2013 | consuming, and other ELF linkers don't handle general aliasing |
| 2014 | either. */ |
| 2015 | while (weaks != NULL) |
| 2016 | { |
| 2017 | struct elf_link_hash_entry *hlook; |
| 2018 | asection *slook; |
| 2019 | bfd_vma vlook; |
| 2020 | struct elf_link_hash_entry **hpp; |
| 2021 | struct elf_link_hash_entry **hppend; |
| 2022 | |
| 2023 | hlook = weaks; |
| 2024 | weaks = hlook->weakdef; |
| 2025 | hlook->weakdef = NULL; |
| 2026 | |
| 2027 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined |
| 2028 | || hlook->root.type == bfd_link_hash_defweak |
| 2029 | || hlook->root.type == bfd_link_hash_common |
| 2030 | || hlook->root.type == bfd_link_hash_indirect); |
| 2031 | slook = hlook->root.u.def.section; |
| 2032 | vlook = hlook->root.u.def.value; |
| 2033 | |
| 2034 | hpp = elf_sym_hashes (abfd); |
| 2035 | hppend = hpp + extsymcount; |
| 2036 | for (; hpp < hppend; hpp++) |
| 2037 | { |
| 2038 | struct elf_link_hash_entry *h; |
| 2039 | |
| 2040 | h = *hpp; |
| 2041 | if (h != NULL && h != hlook |
| 2042 | && h->root.type == bfd_link_hash_defined |
| 2043 | && h->root.u.def.section == slook |
| 2044 | && h->root.u.def.value == vlook) |
| 2045 | { |
| 2046 | hlook->weakdef = h; |
| 2047 | |
| 2048 | /* If the weak definition is in the list of dynamic |
| 2049 | symbols, make sure the real definition is put there |
| 2050 | as well. */ |
| 2051 | if (hlook->dynindx != -1 |
| 2052 | && h->dynindx == -1) |
| 2053 | { |
| 2054 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2055 | goto error_return; |
| 2056 | } |
| 2057 | |
| 2058 | /* If the real definition is in the list of dynamic |
| 2059 | symbols, make sure the weak definition is put there |
| 2060 | as well. If we don't do this, then the dynamic |
| 2061 | loader might not merge the entries for the real |
| 2062 | definition and the weak definition. */ |
| 2063 | if (h->dynindx != -1 |
| 2064 | && hlook->dynindx == -1) |
| 2065 | { |
| 2066 | if (! _bfd_elf_link_record_dynamic_symbol (info, hlook)) |
| 2067 | goto error_return; |
| 2068 | } |
| 2069 | |
| 2070 | break; |
| 2071 | } |
| 2072 | } |
| 2073 | } |
| 2074 | |
| 2075 | if (buf != NULL) |
| 2076 | { |
| 2077 | free (buf); |
| 2078 | buf = NULL; |
| 2079 | } |
| 2080 | |
| 2081 | if (extversym != NULL) |
| 2082 | { |
| 2083 | free (extversym); |
| 2084 | extversym = NULL; |
| 2085 | } |
| 2086 | |
| 2087 | /* If this object is the same format as the output object, and it is |
| 2088 | not a shared library, then let the backend look through the |
| 2089 | relocs. |
| 2090 | |
| 2091 | This is required to build global offset table entries and to |
| 2092 | arrange for dynamic relocs. It is not required for the |
| 2093 | particular common case of linking non PIC code, even when linking |
| 2094 | against shared libraries, but unfortunately there is no way of |
| 2095 | knowing whether an object file has been compiled PIC or not. |
| 2096 | Looking through the relocs is not particularly time consuming. |
| 2097 | The problem is that we must either (1) keep the relocs in memory, |
| 2098 | which causes the linker to require additional runtime memory or |
| 2099 | (2) read the relocs twice from the input file, which wastes time. |
| 2100 | This would be a good case for using mmap. |
| 2101 | |
| 2102 | I have no idea how to handle linking PIC code into a file of a |
| 2103 | different format. It probably can't be done. */ |
| 2104 | check_relocs = get_elf_backend_data (abfd)->check_relocs; |
| 2105 | if (! dynamic |
| 2106 | && abfd->xvec == info->hash->creator |
| 2107 | && check_relocs != NULL) |
| 2108 | { |
| 2109 | asection *o; |
| 2110 | |
| 2111 | for (o = abfd->sections; o != NULL; o = o->next) |
| 2112 | { |
| 2113 | Elf_Internal_Rela *internal_relocs; |
| 2114 | boolean ok; |
| 2115 | |
| 2116 | if ((o->flags & SEC_RELOC) == 0 |
| 2117 | || o->reloc_count == 0 |
| 2118 | || ((info->strip == strip_all || info->strip == strip_debugger) |
| 2119 | && (o->flags & SEC_DEBUGGING) != 0) |
| 2120 | || bfd_is_abs_section (o->output_section)) |
| 2121 | continue; |
| 2122 | |
| 2123 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) |
| 2124 | (abfd, o, (PTR) NULL, |
| 2125 | (Elf_Internal_Rela *) NULL, |
| 2126 | info->keep_memory)); |
| 2127 | if (internal_relocs == NULL) |
| 2128 | goto error_return; |
| 2129 | |
| 2130 | ok = (*check_relocs) (abfd, info, o, internal_relocs); |
| 2131 | |
| 2132 | if (! info->keep_memory) |
| 2133 | free (internal_relocs); |
| 2134 | |
| 2135 | if (! ok) |
| 2136 | goto error_return; |
| 2137 | } |
| 2138 | } |
| 2139 | |
| 2140 | /* If this is a non-traditional, non-relocateable link, try to |
| 2141 | optimize the handling of the .stab/.stabstr sections. */ |
| 2142 | if (! dynamic |
| 2143 | && ! info->relocateable |
| 2144 | && ! info->traditional_format |
| 2145 | && info->hash->creator->flavour == bfd_target_elf_flavour |
| 2146 | && (info->strip != strip_all && info->strip != strip_debugger)) |
| 2147 | { |
| 2148 | asection *stab, *stabstr; |
| 2149 | |
| 2150 | stab = bfd_get_section_by_name (abfd, ".stab"); |
| 2151 | if (stab != NULL) |
| 2152 | { |
| 2153 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); |
| 2154 | |
| 2155 | if (stabstr != NULL) |
| 2156 | { |
| 2157 | struct bfd_elf_section_data *secdata; |
| 2158 | |
| 2159 | secdata = elf_section_data (stab); |
| 2160 | if (! _bfd_link_section_stabs (abfd, |
| 2161 | &elf_hash_table (info)->stab_info, |
| 2162 | stab, stabstr, |
| 2163 | &secdata->stab_info)) |
| 2164 | goto error_return; |
| 2165 | } |
| 2166 | } |
| 2167 | } |
| 2168 | |
| 2169 | if (! info->relocateable && ! dynamic) |
| 2170 | { |
| 2171 | asection *s; |
| 2172 | |
| 2173 | for (s = abfd->sections; s != NULL; s = s->next) |
| 2174 | if ((s->flags & SEC_MERGE) |
| 2175 | && ! _bfd_merge_section (abfd, |
| 2176 | &elf_hash_table (info)->merge_info, |
| 2177 | s, &elf_section_data (s)->merge_info)) |
| 2178 | goto error_return; |
| 2179 | } |
| 2180 | |
| 2181 | return true; |
| 2182 | |
| 2183 | error_return: |
| 2184 | if (buf != NULL) |
| 2185 | free (buf); |
| 2186 | if (dynbuf != NULL) |
| 2187 | free (dynbuf); |
| 2188 | if (extversym != NULL) |
| 2189 | free (extversym); |
| 2190 | return false; |
| 2191 | } |
| 2192 | |
| 2193 | /* Create some sections which will be filled in with dynamic linking |
| 2194 | information. ABFD is an input file which requires dynamic sections |
| 2195 | to be created. The dynamic sections take up virtual memory space |
| 2196 | when the final executable is run, so we need to create them before |
| 2197 | addresses are assigned to the output sections. We work out the |
| 2198 | actual contents and size of these sections later. */ |
| 2199 | |
| 2200 | boolean |
| 2201 | elf_link_create_dynamic_sections (abfd, info) |
| 2202 | bfd *abfd; |
| 2203 | struct bfd_link_info *info; |
| 2204 | { |
| 2205 | flagword flags; |
| 2206 | register asection *s; |
| 2207 | struct elf_link_hash_entry *h; |
| 2208 | struct elf_backend_data *bed; |
| 2209 | |
| 2210 | if (elf_hash_table (info)->dynamic_sections_created) |
| 2211 | return true; |
| 2212 | |
| 2213 | /* Make sure that all dynamic sections use the same input BFD. */ |
| 2214 | if (elf_hash_table (info)->dynobj == NULL) |
| 2215 | elf_hash_table (info)->dynobj = abfd; |
| 2216 | else |
| 2217 | abfd = elf_hash_table (info)->dynobj; |
| 2218 | |
| 2219 | /* Note that we set the SEC_IN_MEMORY flag for all of these |
| 2220 | sections. */ |
| 2221 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS |
| 2222 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); |
| 2223 | |
| 2224 | /* A dynamically linked executable has a .interp section, but a |
| 2225 | shared library does not. */ |
| 2226 | if (! info->shared) |
| 2227 | { |
| 2228 | s = bfd_make_section (abfd, ".interp"); |
| 2229 | if (s == NULL |
| 2230 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) |
| 2231 | return false; |
| 2232 | } |
| 2233 | |
| 2234 | /* Create sections to hold version informations. These are removed |
| 2235 | if they are not needed. */ |
| 2236 | s = bfd_make_section (abfd, ".gnu.version_d"); |
| 2237 | if (s == NULL |
| 2238 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) |
| 2239 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) |
| 2240 | return false; |
| 2241 | |
| 2242 | s = bfd_make_section (abfd, ".gnu.version"); |
| 2243 | if (s == NULL |
| 2244 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) |
| 2245 | || ! bfd_set_section_alignment (abfd, s, 1)) |
| 2246 | return false; |
| 2247 | |
| 2248 | s = bfd_make_section (abfd, ".gnu.version_r"); |
| 2249 | if (s == NULL |
| 2250 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) |
| 2251 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) |
| 2252 | return false; |
| 2253 | |
| 2254 | s = bfd_make_section (abfd, ".dynsym"); |
| 2255 | if (s == NULL |
| 2256 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) |
| 2257 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) |
| 2258 | return false; |
| 2259 | |
| 2260 | s = bfd_make_section (abfd, ".dynstr"); |
| 2261 | if (s == NULL |
| 2262 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) |
| 2263 | return false; |
| 2264 | |
| 2265 | /* Create a strtab to hold the dynamic symbol names. */ |
| 2266 | if (elf_hash_table (info)->dynstr == NULL) |
| 2267 | { |
| 2268 | elf_hash_table (info)->dynstr = elf_stringtab_init (); |
| 2269 | if (elf_hash_table (info)->dynstr == NULL) |
| 2270 | return false; |
| 2271 | } |
| 2272 | |
| 2273 | s = bfd_make_section (abfd, ".dynamic"); |
| 2274 | if (s == NULL |
| 2275 | || ! bfd_set_section_flags (abfd, s, flags) |
| 2276 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) |
| 2277 | return false; |
| 2278 | |
| 2279 | /* The special symbol _DYNAMIC is always set to the start of the |
| 2280 | .dynamic section. This call occurs before we have processed the |
| 2281 | symbols for any dynamic object, so we don't have to worry about |
| 2282 | overriding a dynamic definition. We could set _DYNAMIC in a |
| 2283 | linker script, but we only want to define it if we are, in fact, |
| 2284 | creating a .dynamic section. We don't want to define it if there |
| 2285 | is no .dynamic section, since on some ELF platforms the start up |
| 2286 | code examines it to decide how to initialize the process. */ |
| 2287 | h = NULL; |
| 2288 | if (! (_bfd_generic_link_add_one_symbol |
| 2289 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, |
| 2290 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, |
| 2291 | (struct bfd_link_hash_entry **) &h))) |
| 2292 | return false; |
| 2293 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| 2294 | h->type = STT_OBJECT; |
| 2295 | |
| 2296 | if (info->shared |
| 2297 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2298 | return false; |
| 2299 | |
| 2300 | bed = get_elf_backend_data (abfd); |
| 2301 | |
| 2302 | s = bfd_make_section (abfd, ".hash"); |
| 2303 | if (s == NULL |
| 2304 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) |
| 2305 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) |
| 2306 | return false; |
| 2307 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; |
| 2308 | |
| 2309 | /* Let the backend create the rest of the sections. This lets the |
| 2310 | backend set the right flags. The backend will normally create |
| 2311 | the .got and .plt sections. */ |
| 2312 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) |
| 2313 | return false; |
| 2314 | |
| 2315 | elf_hash_table (info)->dynamic_sections_created = true; |
| 2316 | |
| 2317 | return true; |
| 2318 | } |
| 2319 | |
| 2320 | /* Add an entry to the .dynamic table. */ |
| 2321 | |
| 2322 | boolean |
| 2323 | elf_add_dynamic_entry (info, tag, val) |
| 2324 | struct bfd_link_info *info; |
| 2325 | bfd_vma tag; |
| 2326 | bfd_vma val; |
| 2327 | { |
| 2328 | Elf_Internal_Dyn dyn; |
| 2329 | bfd *dynobj; |
| 2330 | asection *s; |
| 2331 | size_t newsize; |
| 2332 | bfd_byte *newcontents; |
| 2333 | |
| 2334 | dynobj = elf_hash_table (info)->dynobj; |
| 2335 | |
| 2336 | s = bfd_get_section_by_name (dynobj, ".dynamic"); |
| 2337 | BFD_ASSERT (s != NULL); |
| 2338 | |
| 2339 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); |
| 2340 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); |
| 2341 | if (newcontents == NULL) |
| 2342 | return false; |
| 2343 | |
| 2344 | dyn.d_tag = tag; |
| 2345 | dyn.d_un.d_val = val; |
| 2346 | elf_swap_dyn_out (dynobj, &dyn, |
| 2347 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); |
| 2348 | |
| 2349 | s->_raw_size = newsize; |
| 2350 | s->contents = newcontents; |
| 2351 | |
| 2352 | return true; |
| 2353 | } |
| 2354 | |
| 2355 | /* Record a new local dynamic symbol. */ |
| 2356 | |
| 2357 | boolean |
| 2358 | elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx) |
| 2359 | struct bfd_link_info *info; |
| 2360 | bfd *input_bfd; |
| 2361 | long input_indx; |
| 2362 | { |
| 2363 | struct elf_link_local_dynamic_entry *entry; |
| 2364 | struct elf_link_hash_table *eht; |
| 2365 | struct bfd_strtab_hash *dynstr; |
| 2366 | Elf_External_Sym esym; |
| 2367 | unsigned long dynstr_index; |
| 2368 | char *name; |
| 2369 | |
| 2370 | /* See if the entry exists already. */ |
| 2371 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) |
| 2372 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) |
| 2373 | return true; |
| 2374 | |
| 2375 | entry = (struct elf_link_local_dynamic_entry *) |
| 2376 | bfd_alloc (input_bfd, sizeof (*entry)); |
| 2377 | if (entry == NULL) |
| 2378 | return false; |
| 2379 | |
| 2380 | /* Go find the symbol, so that we can find it's name. */ |
| 2381 | if (bfd_seek (input_bfd, |
| 2382 | (elf_tdata (input_bfd)->symtab_hdr.sh_offset |
| 2383 | + input_indx * sizeof (Elf_External_Sym)), |
| 2384 | SEEK_SET) != 0 |
| 2385 | || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd) |
| 2386 | != sizeof (Elf_External_Sym))) |
| 2387 | return false; |
| 2388 | elf_swap_symbol_in (input_bfd, &esym, &entry->isym); |
| 2389 | |
| 2390 | name = (bfd_elf_string_from_elf_section |
| 2391 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, |
| 2392 | entry->isym.st_name)); |
| 2393 | |
| 2394 | dynstr = elf_hash_table (info)->dynstr; |
| 2395 | if (dynstr == NULL) |
| 2396 | { |
| 2397 | /* Create a strtab to hold the dynamic symbol names. */ |
| 2398 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init (); |
| 2399 | if (dynstr == NULL) |
| 2400 | return false; |
| 2401 | } |
| 2402 | |
| 2403 | dynstr_index = _bfd_stringtab_add (dynstr, name, true, false); |
| 2404 | if (dynstr_index == (unsigned long) -1) |
| 2405 | return false; |
| 2406 | entry->isym.st_name = dynstr_index; |
| 2407 | |
| 2408 | eht = elf_hash_table (info); |
| 2409 | |
| 2410 | entry->next = eht->dynlocal; |
| 2411 | eht->dynlocal = entry; |
| 2412 | entry->input_bfd = input_bfd; |
| 2413 | entry->input_indx = input_indx; |
| 2414 | eht->dynsymcount++; |
| 2415 | |
| 2416 | /* Whatever binding the symbol had before, it's now local. */ |
| 2417 | entry->isym.st_info |
| 2418 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); |
| 2419 | |
| 2420 | /* The dynindx will be set at the end of size_dynamic_sections. */ |
| 2421 | |
| 2422 | return true; |
| 2423 | } |
| 2424 | \f |
| 2425 | /* Read and swap the relocs from the section indicated by SHDR. This |
| 2426 | may be either a REL or a RELA section. The relocations are |
| 2427 | translated into RELA relocations and stored in INTERNAL_RELOCS, |
| 2428 | which should have already been allocated to contain enough space. |
| 2429 | The EXTERNAL_RELOCS are a buffer where the external form of the |
| 2430 | relocations should be stored. |
| 2431 | |
| 2432 | Returns false if something goes wrong. */ |
| 2433 | |
| 2434 | static boolean |
| 2435 | elf_link_read_relocs_from_section (abfd, shdr, external_relocs, |
| 2436 | internal_relocs) |
| 2437 | bfd *abfd; |
| 2438 | Elf_Internal_Shdr *shdr; |
| 2439 | PTR external_relocs; |
| 2440 | Elf_Internal_Rela *internal_relocs; |
| 2441 | { |
| 2442 | struct elf_backend_data *bed; |
| 2443 | |
| 2444 | /* If there aren't any relocations, that's OK. */ |
| 2445 | if (!shdr) |
| 2446 | return true; |
| 2447 | |
| 2448 | /* Position ourselves at the start of the section. */ |
| 2449 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) |
| 2450 | return false; |
| 2451 | |
| 2452 | /* Read the relocations. */ |
| 2453 | if (bfd_read (external_relocs, 1, shdr->sh_size, abfd) |
| 2454 | != shdr->sh_size) |
| 2455 | return false; |
| 2456 | |
| 2457 | bed = get_elf_backend_data (abfd); |
| 2458 | |
| 2459 | /* Convert the external relocations to the internal format. */ |
| 2460 | if (shdr->sh_entsize == sizeof (Elf_External_Rel)) |
| 2461 | { |
| 2462 | Elf_External_Rel *erel; |
| 2463 | Elf_External_Rel *erelend; |
| 2464 | Elf_Internal_Rela *irela; |
| 2465 | Elf_Internal_Rel *irel; |
| 2466 | |
| 2467 | erel = (Elf_External_Rel *) external_relocs; |
| 2468 | erelend = erel + shdr->sh_size / shdr->sh_entsize; |
| 2469 | irela = internal_relocs; |
| 2470 | irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel |
| 2471 | * sizeof (Elf_Internal_Rel))); |
| 2472 | for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel) |
| 2473 | { |
| 2474 | unsigned char i; |
| 2475 | |
| 2476 | if (bed->s->swap_reloc_in) |
| 2477 | (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel); |
| 2478 | else |
| 2479 | elf_swap_reloc_in (abfd, erel, irel); |
| 2480 | |
| 2481 | for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i) |
| 2482 | { |
| 2483 | irela[i].r_offset = irel[i].r_offset; |
| 2484 | irela[i].r_info = irel[i].r_info; |
| 2485 | irela[i].r_addend = 0; |
| 2486 | } |
| 2487 | } |
| 2488 | } |
| 2489 | else |
| 2490 | { |
| 2491 | Elf_External_Rela *erela; |
| 2492 | Elf_External_Rela *erelaend; |
| 2493 | Elf_Internal_Rela *irela; |
| 2494 | |
| 2495 | BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela)); |
| 2496 | |
| 2497 | erela = (Elf_External_Rela *) external_relocs; |
| 2498 | erelaend = erela + shdr->sh_size / shdr->sh_entsize; |
| 2499 | irela = internal_relocs; |
| 2500 | for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel) |
| 2501 | { |
| 2502 | if (bed->s->swap_reloca_in) |
| 2503 | (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela); |
| 2504 | else |
| 2505 | elf_swap_reloca_in (abfd, erela, irela); |
| 2506 | } |
| 2507 | } |
| 2508 | |
| 2509 | return true; |
| 2510 | } |
| 2511 | |
| 2512 | /* Read and swap the relocs for a section O. They may have been |
| 2513 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are |
| 2514 | not NULL, they are used as buffers to read into. They are known to |
| 2515 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, |
| 2516 | the return value is allocated using either malloc or bfd_alloc, |
| 2517 | according to the KEEP_MEMORY argument. If O has two relocation |
| 2518 | sections (both REL and RELA relocations), then the REL_HDR |
| 2519 | relocations will appear first in INTERNAL_RELOCS, followed by the |
| 2520 | REL_HDR2 relocations. */ |
| 2521 | |
| 2522 | Elf_Internal_Rela * |
| 2523 | NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs, |
| 2524 | keep_memory) |
| 2525 | bfd *abfd; |
| 2526 | asection *o; |
| 2527 | PTR external_relocs; |
| 2528 | Elf_Internal_Rela *internal_relocs; |
| 2529 | boolean keep_memory; |
| 2530 | { |
| 2531 | Elf_Internal_Shdr *rel_hdr; |
| 2532 | PTR alloc1 = NULL; |
| 2533 | Elf_Internal_Rela *alloc2 = NULL; |
| 2534 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 2535 | |
| 2536 | if (elf_section_data (o)->relocs != NULL) |
| 2537 | return elf_section_data (o)->relocs; |
| 2538 | |
| 2539 | if (o->reloc_count == 0) |
| 2540 | return NULL; |
| 2541 | |
| 2542 | rel_hdr = &elf_section_data (o)->rel_hdr; |
| 2543 | |
| 2544 | if (internal_relocs == NULL) |
| 2545 | { |
| 2546 | size_t size; |
| 2547 | |
| 2548 | size = (o->reloc_count * bed->s->int_rels_per_ext_rel |
| 2549 | * sizeof (Elf_Internal_Rela)); |
| 2550 | if (keep_memory) |
| 2551 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); |
| 2552 | else |
| 2553 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); |
| 2554 | if (internal_relocs == NULL) |
| 2555 | goto error_return; |
| 2556 | } |
| 2557 | |
| 2558 | if (external_relocs == NULL) |
| 2559 | { |
| 2560 | size_t size = (size_t) rel_hdr->sh_size; |
| 2561 | |
| 2562 | if (elf_section_data (o)->rel_hdr2) |
| 2563 | size += (size_t) elf_section_data (o)->rel_hdr2->sh_size; |
| 2564 | alloc1 = (PTR) bfd_malloc (size); |
| 2565 | if (alloc1 == NULL) |
| 2566 | goto error_return; |
| 2567 | external_relocs = alloc1; |
| 2568 | } |
| 2569 | |
| 2570 | if (!elf_link_read_relocs_from_section (abfd, rel_hdr, |
| 2571 | external_relocs, |
| 2572 | internal_relocs)) |
| 2573 | goto error_return; |
| 2574 | if (!elf_link_read_relocs_from_section |
| 2575 | (abfd, |
| 2576 | elf_section_data (o)->rel_hdr2, |
| 2577 | ((bfd_byte *) external_relocs) + rel_hdr->sh_size, |
| 2578 | internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize |
| 2579 | * bed->s->int_rels_per_ext_rel))) |
| 2580 | goto error_return; |
| 2581 | |
| 2582 | /* Cache the results for next time, if we can. */ |
| 2583 | if (keep_memory) |
| 2584 | elf_section_data (o)->relocs = internal_relocs; |
| 2585 | |
| 2586 | if (alloc1 != NULL) |
| 2587 | free (alloc1); |
| 2588 | |
| 2589 | /* Don't free alloc2, since if it was allocated we are passing it |
| 2590 | back (under the name of internal_relocs). */ |
| 2591 | |
| 2592 | return internal_relocs; |
| 2593 | |
| 2594 | error_return: |
| 2595 | if (alloc1 != NULL) |
| 2596 | free (alloc1); |
| 2597 | if (alloc2 != NULL) |
| 2598 | free (alloc2); |
| 2599 | return NULL; |
| 2600 | } |
| 2601 | \f |
| 2602 | /* Record an assignment to a symbol made by a linker script. We need |
| 2603 | this in case some dynamic object refers to this symbol. */ |
| 2604 | |
| 2605 | /*ARGSUSED*/ |
| 2606 | boolean |
| 2607 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) |
| 2608 | bfd *output_bfd ATTRIBUTE_UNUSED; |
| 2609 | struct bfd_link_info *info; |
| 2610 | const char *name; |
| 2611 | boolean provide; |
| 2612 | { |
| 2613 | struct elf_link_hash_entry *h; |
| 2614 | |
| 2615 | if (info->hash->creator->flavour != bfd_target_elf_flavour) |
| 2616 | return true; |
| 2617 | |
| 2618 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); |
| 2619 | if (h == NULL) |
| 2620 | return false; |
| 2621 | |
| 2622 | if (h->root.type == bfd_link_hash_new) |
| 2623 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; |
| 2624 | |
| 2625 | /* If this symbol is being provided by the linker script, and it is |
| 2626 | currently defined by a dynamic object, but not by a regular |
| 2627 | object, then mark it as undefined so that the generic linker will |
| 2628 | force the correct value. */ |
| 2629 | if (provide |
| 2630 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
| 2631 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) |
| 2632 | h->root.type = bfd_link_hash_undefined; |
| 2633 | |
| 2634 | /* If this symbol is not being provided by the linker script, and it is |
| 2635 | currently defined by a dynamic object, but not by a regular object, |
| 2636 | then clear out any version information because the symbol will not be |
| 2637 | associated with the dynamic object any more. */ |
| 2638 | if (!provide |
| 2639 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
| 2640 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) |
| 2641 | h->verinfo.verdef = NULL; |
| 2642 | |
| 2643 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| 2644 | |
| 2645 | /* When possible, keep the original type of the symbol */ |
| 2646 | if (h->type == STT_NOTYPE) |
| 2647 | h->type = STT_OBJECT; |
| 2648 | |
| 2649 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC |
| 2650 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 |
| 2651 | || info->shared) |
| 2652 | && h->dynindx == -1) |
| 2653 | { |
| 2654 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2655 | return false; |
| 2656 | |
| 2657 | /* If this is a weak defined symbol, and we know a corresponding |
| 2658 | real symbol from the same dynamic object, make sure the real |
| 2659 | symbol is also made into a dynamic symbol. */ |
| 2660 | if (h->weakdef != NULL |
| 2661 | && h->weakdef->dynindx == -1) |
| 2662 | { |
| 2663 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) |
| 2664 | return false; |
| 2665 | } |
| 2666 | } |
| 2667 | |
| 2668 | return true; |
| 2669 | } |
| 2670 | \f |
| 2671 | /* This structure is used to pass information to |
| 2672 | elf_link_assign_sym_version. */ |
| 2673 | |
| 2674 | struct elf_assign_sym_version_info |
| 2675 | { |
| 2676 | /* Output BFD. */ |
| 2677 | bfd *output_bfd; |
| 2678 | /* General link information. */ |
| 2679 | struct bfd_link_info *info; |
| 2680 | /* Version tree. */ |
| 2681 | struct bfd_elf_version_tree *verdefs; |
| 2682 | /* Whether we are exporting all dynamic symbols. */ |
| 2683 | boolean export_dynamic; |
| 2684 | /* Whether we had a failure. */ |
| 2685 | boolean failed; |
| 2686 | }; |
| 2687 | |
| 2688 | /* This structure is used to pass information to |
| 2689 | elf_link_find_version_dependencies. */ |
| 2690 | |
| 2691 | struct elf_find_verdep_info |
| 2692 | { |
| 2693 | /* Output BFD. */ |
| 2694 | bfd *output_bfd; |
| 2695 | /* General link information. */ |
| 2696 | struct bfd_link_info *info; |
| 2697 | /* The number of dependencies. */ |
| 2698 | unsigned int vers; |
| 2699 | /* Whether we had a failure. */ |
| 2700 | boolean failed; |
| 2701 | }; |
| 2702 | |
| 2703 | /* Array used to determine the number of hash table buckets to use |
| 2704 | based on the number of symbols there are. If there are fewer than |
| 2705 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, |
| 2706 | fewer than 37 we use 17 buckets, and so forth. We never use more |
| 2707 | than 32771 buckets. */ |
| 2708 | |
| 2709 | static const size_t elf_buckets[] = |
| 2710 | { |
| 2711 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, |
| 2712 | 16411, 32771, 0 |
| 2713 | }; |
| 2714 | |
| 2715 | /* Compute bucket count for hashing table. We do not use a static set |
| 2716 | of possible tables sizes anymore. Instead we determine for all |
| 2717 | possible reasonable sizes of the table the outcome (i.e., the |
| 2718 | number of collisions etc) and choose the best solution. The |
| 2719 | weighting functions are not too simple to allow the table to grow |
| 2720 | without bounds. Instead one of the weighting factors is the size. |
| 2721 | Therefore the result is always a good payoff between few collisions |
| 2722 | (= short chain lengths) and table size. */ |
| 2723 | static size_t |
| 2724 | compute_bucket_count (info) |
| 2725 | struct bfd_link_info *info; |
| 2726 | { |
| 2727 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; |
| 2728 | size_t best_size = 0; |
| 2729 | unsigned long int *hashcodes; |
| 2730 | unsigned long int *hashcodesp; |
| 2731 | unsigned long int i; |
| 2732 | |
| 2733 | /* Compute the hash values for all exported symbols. At the same |
| 2734 | time store the values in an array so that we could use them for |
| 2735 | optimizations. */ |
| 2736 | hashcodes = (unsigned long int *) bfd_malloc (dynsymcount |
| 2737 | * sizeof (unsigned long int)); |
| 2738 | if (hashcodes == NULL) |
| 2739 | return 0; |
| 2740 | hashcodesp = hashcodes; |
| 2741 | |
| 2742 | /* Put all hash values in HASHCODES. */ |
| 2743 | elf_link_hash_traverse (elf_hash_table (info), |
| 2744 | elf_collect_hash_codes, &hashcodesp); |
| 2745 | |
| 2746 | /* We have a problem here. The following code to optimize the table |
| 2747 | size requires an integer type with more the 32 bits. If |
| 2748 | BFD_HOST_U_64_BIT is set we know about such a type. */ |
| 2749 | #ifdef BFD_HOST_U_64_BIT |
| 2750 | if (info->optimize == true) |
| 2751 | { |
| 2752 | unsigned long int nsyms = hashcodesp - hashcodes; |
| 2753 | size_t minsize; |
| 2754 | size_t maxsize; |
| 2755 | BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); |
| 2756 | unsigned long int *counts ; |
| 2757 | |
| 2758 | /* Possible optimization parameters: if we have NSYMS symbols we say |
| 2759 | that the hashing table must at least have NSYMS/4 and at most |
| 2760 | 2*NSYMS buckets. */ |
| 2761 | minsize = nsyms / 4; |
| 2762 | if (minsize == 0) |
| 2763 | minsize = 1; |
| 2764 | best_size = maxsize = nsyms * 2; |
| 2765 | |
| 2766 | /* Create array where we count the collisions in. We must use bfd_malloc |
| 2767 | since the size could be large. */ |
| 2768 | counts = (unsigned long int *) bfd_malloc (maxsize |
| 2769 | * sizeof (unsigned long int)); |
| 2770 | if (counts == NULL) |
| 2771 | { |
| 2772 | free (hashcodes); |
| 2773 | return 0; |
| 2774 | } |
| 2775 | |
| 2776 | /* Compute the "optimal" size for the hash table. The criteria is a |
| 2777 | minimal chain length. The minor criteria is (of course) the size |
| 2778 | of the table. */ |
| 2779 | for (i = minsize; i < maxsize; ++i) |
| 2780 | { |
| 2781 | /* Walk through the array of hashcodes and count the collisions. */ |
| 2782 | BFD_HOST_U_64_BIT max; |
| 2783 | unsigned long int j; |
| 2784 | unsigned long int fact; |
| 2785 | |
| 2786 | memset (counts, '\0', i * sizeof (unsigned long int)); |
| 2787 | |
| 2788 | /* Determine how often each hash bucket is used. */ |
| 2789 | for (j = 0; j < nsyms; ++j) |
| 2790 | ++counts[hashcodes[j] % i]; |
| 2791 | |
| 2792 | /* For the weight function we need some information about the |
| 2793 | pagesize on the target. This is information need not be 100% |
| 2794 | accurate. Since this information is not available (so far) we |
| 2795 | define it here to a reasonable default value. If it is crucial |
| 2796 | to have a better value some day simply define this value. */ |
| 2797 | # ifndef BFD_TARGET_PAGESIZE |
| 2798 | # define BFD_TARGET_PAGESIZE (4096) |
| 2799 | # endif |
| 2800 | |
| 2801 | /* We in any case need 2 + NSYMS entries for the size values and |
| 2802 | the chains. */ |
| 2803 | max = (2 + nsyms) * (ARCH_SIZE / 8); |
| 2804 | |
| 2805 | # if 1 |
| 2806 | /* Variant 1: optimize for short chains. We add the squares |
| 2807 | of all the chain lengths (which favous many small chain |
| 2808 | over a few long chains). */ |
| 2809 | for (j = 0; j < i; ++j) |
| 2810 | max += counts[j] * counts[j]; |
| 2811 | |
| 2812 | /* This adds penalties for the overall size of the table. */ |
| 2813 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; |
| 2814 | max *= fact * fact; |
| 2815 | # else |
| 2816 | /* Variant 2: Optimize a lot more for small table. Here we |
| 2817 | also add squares of the size but we also add penalties for |
| 2818 | empty slots (the +1 term). */ |
| 2819 | for (j = 0; j < i; ++j) |
| 2820 | max += (1 + counts[j]) * (1 + counts[j]); |
| 2821 | |
| 2822 | /* The overall size of the table is considered, but not as |
| 2823 | strong as in variant 1, where it is squared. */ |
| 2824 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; |
| 2825 | max *= fact; |
| 2826 | # endif |
| 2827 | |
| 2828 | /* Compare with current best results. */ |
| 2829 | if (max < best_chlen) |
| 2830 | { |
| 2831 | best_chlen = max; |
| 2832 | best_size = i; |
| 2833 | } |
| 2834 | } |
| 2835 | |
| 2836 | free (counts); |
| 2837 | } |
| 2838 | else |
| 2839 | #endif /* defined (BFD_HOST_U_64_BIT) */ |
| 2840 | { |
| 2841 | /* This is the fallback solution if no 64bit type is available or if we |
| 2842 | are not supposed to spend much time on optimizations. We select the |
| 2843 | bucket count using a fixed set of numbers. */ |
| 2844 | for (i = 0; elf_buckets[i] != 0; i++) |
| 2845 | { |
| 2846 | best_size = elf_buckets[i]; |
| 2847 | if (dynsymcount < elf_buckets[i + 1]) |
| 2848 | break; |
| 2849 | } |
| 2850 | } |
| 2851 | |
| 2852 | /* Free the arrays we needed. */ |
| 2853 | free (hashcodes); |
| 2854 | |
| 2855 | return best_size; |
| 2856 | } |
| 2857 | |
| 2858 | /* Set up the sizes and contents of the ELF dynamic sections. This is |
| 2859 | called by the ELF linker emulation before_allocation routine. We |
| 2860 | must set the sizes of the sections before the linker sets the |
| 2861 | addresses of the various sections. */ |
| 2862 | |
| 2863 | boolean |
| 2864 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, |
| 2865 | export_dynamic, filter_shlib, |
| 2866 | auxiliary_filters, info, sinterpptr, |
| 2867 | verdefs) |
| 2868 | bfd *output_bfd; |
| 2869 | const char *soname; |
| 2870 | const char *rpath; |
| 2871 | boolean export_dynamic; |
| 2872 | const char *filter_shlib; |
| 2873 | const char * const *auxiliary_filters; |
| 2874 | struct bfd_link_info *info; |
| 2875 | asection **sinterpptr; |
| 2876 | struct bfd_elf_version_tree *verdefs; |
| 2877 | { |
| 2878 | bfd_size_type soname_indx; |
| 2879 | bfd *dynobj; |
| 2880 | struct elf_backend_data *bed; |
| 2881 | struct elf_assign_sym_version_info asvinfo; |
| 2882 | |
| 2883 | *sinterpptr = NULL; |
| 2884 | |
| 2885 | soname_indx = (bfd_size_type) -1; |
| 2886 | |
| 2887 | if (info->hash->creator->flavour != bfd_target_elf_flavour) |
| 2888 | return true; |
| 2889 | |
| 2890 | /* The backend may have to create some sections regardless of whether |
| 2891 | we're dynamic or not. */ |
| 2892 | bed = get_elf_backend_data (output_bfd); |
| 2893 | if (bed->elf_backend_always_size_sections |
| 2894 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) |
| 2895 | return false; |
| 2896 | |
| 2897 | dynobj = elf_hash_table (info)->dynobj; |
| 2898 | |
| 2899 | /* If there were no dynamic objects in the link, there is nothing to |
| 2900 | do here. */ |
| 2901 | if (dynobj == NULL) |
| 2902 | return true; |
| 2903 | |
| 2904 | if (elf_hash_table (info)->dynamic_sections_created) |
| 2905 | { |
| 2906 | struct elf_info_failed eif; |
| 2907 | struct elf_link_hash_entry *h; |
| 2908 | asection *dynstr; |
| 2909 | |
| 2910 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); |
| 2911 | BFD_ASSERT (*sinterpptr != NULL || info->shared); |
| 2912 | |
| 2913 | if (soname != NULL) |
| 2914 | { |
| 2915 | soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
| 2916 | soname, true, true); |
| 2917 | if (soname_indx == (bfd_size_type) -1 |
| 2918 | || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) |
| 2919 | return false; |
| 2920 | } |
| 2921 | |
| 2922 | if (info->symbolic) |
| 2923 | { |
| 2924 | if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) |
| 2925 | return false; |
| 2926 | info->flags |= DF_SYMBOLIC; |
| 2927 | } |
| 2928 | |
| 2929 | if (rpath != NULL) |
| 2930 | { |
| 2931 | bfd_size_type indx; |
| 2932 | |
| 2933 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, |
| 2934 | true, true); |
| 2935 | if (indx == (bfd_size_type) -1 |
| 2936 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx) |
| 2937 | || (info->new_dtags |
| 2938 | && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx))) |
| 2939 | return false; |
| 2940 | } |
| 2941 | |
| 2942 | if (filter_shlib != NULL) |
| 2943 | { |
| 2944 | bfd_size_type indx; |
| 2945 | |
| 2946 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
| 2947 | filter_shlib, true, true); |
| 2948 | if (indx == (bfd_size_type) -1 |
| 2949 | || ! elf_add_dynamic_entry (info, DT_FILTER, indx)) |
| 2950 | return false; |
| 2951 | } |
| 2952 | |
| 2953 | if (auxiliary_filters != NULL) |
| 2954 | { |
| 2955 | const char * const *p; |
| 2956 | |
| 2957 | for (p = auxiliary_filters; *p != NULL; p++) |
| 2958 | { |
| 2959 | bfd_size_type indx; |
| 2960 | |
| 2961 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
| 2962 | *p, true, true); |
| 2963 | if (indx == (bfd_size_type) -1 |
| 2964 | || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) |
| 2965 | return false; |
| 2966 | } |
| 2967 | } |
| 2968 | |
| 2969 | eif.info = info; |
| 2970 | eif.failed = false; |
| 2971 | |
| 2972 | /* If we are supposed to export all symbols into the dynamic symbol |
| 2973 | table (this is not the normal case), then do so. */ |
| 2974 | if (export_dynamic) |
| 2975 | { |
| 2976 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, |
| 2977 | (PTR) &eif); |
| 2978 | if (eif.failed) |
| 2979 | return false; |
| 2980 | } |
| 2981 | |
| 2982 | /* Attach all the symbols to their version information. */ |
| 2983 | asvinfo.output_bfd = output_bfd; |
| 2984 | asvinfo.info = info; |
| 2985 | asvinfo.verdefs = verdefs; |
| 2986 | asvinfo.export_dynamic = export_dynamic; |
| 2987 | asvinfo.failed = false; |
| 2988 | |
| 2989 | elf_link_hash_traverse (elf_hash_table (info), |
| 2990 | elf_link_assign_sym_version, |
| 2991 | (PTR) &asvinfo); |
| 2992 | if (asvinfo.failed) |
| 2993 | return false; |
| 2994 | |
| 2995 | /* Find all symbols which were defined in a dynamic object and make |
| 2996 | the backend pick a reasonable value for them. */ |
| 2997 | elf_link_hash_traverse (elf_hash_table (info), |
| 2998 | elf_adjust_dynamic_symbol, |
| 2999 | (PTR) &eif); |
| 3000 | if (eif.failed) |
| 3001 | return false; |
| 3002 | |
| 3003 | /* Add some entries to the .dynamic section. We fill in some of the |
| 3004 | values later, in elf_bfd_final_link, but we must add the entries |
| 3005 | now so that we know the final size of the .dynamic section. */ |
| 3006 | |
| 3007 | /* If there are initialization and/or finalization functions to |
| 3008 | call then add the corresponding DT_INIT/DT_FINI entries. */ |
| 3009 | h = (info->init_function |
| 3010 | ? elf_link_hash_lookup (elf_hash_table (info), |
| 3011 | info->init_function, false, |
| 3012 | false, false) |
| 3013 | : NULL); |
| 3014 | if (h != NULL |
| 3015 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR |
| 3016 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) |
| 3017 | { |
| 3018 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) |
| 3019 | return false; |
| 3020 | } |
| 3021 | h = (info->fini_function |
| 3022 | ? elf_link_hash_lookup (elf_hash_table (info), |
| 3023 | info->fini_function, false, |
| 3024 | false, false) |
| 3025 | : NULL); |
| 3026 | if (h != NULL |
| 3027 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR |
| 3028 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) |
| 3029 | { |
| 3030 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) |
| 3031 | return false; |
| 3032 | } |
| 3033 | |
| 3034 | dynstr = bfd_get_section_by_name (dynobj, ".dynstr"); |
| 3035 | /* If .dynstr is excluded from the link, we don't want any of |
| 3036 | these tags. Strictly, we should be checking each section |
| 3037 | individually; This quick check covers for the case where |
| 3038 | someone does a /DISCARD/ : { *(*) }. */ |
| 3039 | if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) |
| 3040 | { |
| 3041 | bfd_size_type strsize; |
| 3042 | |
| 3043 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); |
| 3044 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) |
| 3045 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) |
| 3046 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) |
| 3047 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) |
| 3048 | || ! elf_add_dynamic_entry (info, DT_SYMENT, |
| 3049 | sizeof (Elf_External_Sym))) |
| 3050 | return false; |
| 3051 | } |
| 3052 | } |
| 3053 | |
| 3054 | /* The backend must work out the sizes of all the other dynamic |
| 3055 | sections. */ |
| 3056 | if (bed->elf_backend_size_dynamic_sections |
| 3057 | && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) |
| 3058 | return false; |
| 3059 | |
| 3060 | if (elf_hash_table (info)->dynamic_sections_created) |
| 3061 | { |
| 3062 | size_t dynsymcount; |
| 3063 | asection *s; |
| 3064 | size_t bucketcount = 0; |
| 3065 | size_t hash_entry_size; |
| 3066 | |
| 3067 | /* Set up the version definition section. */ |
| 3068 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); |
| 3069 | BFD_ASSERT (s != NULL); |
| 3070 | |
| 3071 | /* We may have created additional version definitions if we are |
| 3072 | just linking a regular application. */ |
| 3073 | verdefs = asvinfo.verdefs; |
| 3074 | |
| 3075 | if (verdefs == NULL) |
| 3076 | _bfd_strip_section_from_output (info, s); |
| 3077 | else |
| 3078 | { |
| 3079 | unsigned int cdefs; |
| 3080 | bfd_size_type size; |
| 3081 | struct bfd_elf_version_tree *t; |
| 3082 | bfd_byte *p; |
| 3083 | Elf_Internal_Verdef def; |
| 3084 | Elf_Internal_Verdaux defaux; |
| 3085 | |
| 3086 | cdefs = 0; |
| 3087 | size = 0; |
| 3088 | |
| 3089 | /* Make space for the base version. */ |
| 3090 | size += sizeof (Elf_External_Verdef); |
| 3091 | size += sizeof (Elf_External_Verdaux); |
| 3092 | ++cdefs; |
| 3093 | |
| 3094 | for (t = verdefs; t != NULL; t = t->next) |
| 3095 | { |
| 3096 | struct bfd_elf_version_deps *n; |
| 3097 | |
| 3098 | size += sizeof (Elf_External_Verdef); |
| 3099 | size += sizeof (Elf_External_Verdaux); |
| 3100 | ++cdefs; |
| 3101 | |
| 3102 | for (n = t->deps; n != NULL; n = n->next) |
| 3103 | size += sizeof (Elf_External_Verdaux); |
| 3104 | } |
| 3105 | |
| 3106 | s->_raw_size = size; |
| 3107 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); |
| 3108 | if (s->contents == NULL && s->_raw_size != 0) |
| 3109 | return false; |
| 3110 | |
| 3111 | /* Fill in the version definition section. */ |
| 3112 | |
| 3113 | p = s->contents; |
| 3114 | |
| 3115 | def.vd_version = VER_DEF_CURRENT; |
| 3116 | def.vd_flags = VER_FLG_BASE; |
| 3117 | def.vd_ndx = 1; |
| 3118 | def.vd_cnt = 1; |
| 3119 | def.vd_aux = sizeof (Elf_External_Verdef); |
| 3120 | def.vd_next = (sizeof (Elf_External_Verdef) |
| 3121 | + sizeof (Elf_External_Verdaux)); |
| 3122 | |
| 3123 | if (soname_indx != (bfd_size_type) -1) |
| 3124 | { |
| 3125 | def.vd_hash = bfd_elf_hash (soname); |
| 3126 | defaux.vda_name = soname_indx; |
| 3127 | } |
| 3128 | else |
| 3129 | { |
| 3130 | const char *name; |
| 3131 | bfd_size_type indx; |
| 3132 | |
| 3133 | name = output_bfd->filename; |
| 3134 | def.vd_hash = bfd_elf_hash (name); |
| 3135 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
| 3136 | name, true, false); |
| 3137 | if (indx == (bfd_size_type) -1) |
| 3138 | return false; |
| 3139 | defaux.vda_name = indx; |
| 3140 | } |
| 3141 | defaux.vda_next = 0; |
| 3142 | |
| 3143 | _bfd_elf_swap_verdef_out (output_bfd, &def, |
| 3144 | (Elf_External_Verdef *)p); |
| 3145 | p += sizeof (Elf_External_Verdef); |
| 3146 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
| 3147 | (Elf_External_Verdaux *) p); |
| 3148 | p += sizeof (Elf_External_Verdaux); |
| 3149 | |
| 3150 | for (t = verdefs; t != NULL; t = t->next) |
| 3151 | { |
| 3152 | unsigned int cdeps; |
| 3153 | struct bfd_elf_version_deps *n; |
| 3154 | struct elf_link_hash_entry *h; |
| 3155 | |
| 3156 | cdeps = 0; |
| 3157 | for (n = t->deps; n != NULL; n = n->next) |
| 3158 | ++cdeps; |
| 3159 | |
| 3160 | /* Add a symbol representing this version. */ |
| 3161 | h = NULL; |
| 3162 | if (! (_bfd_generic_link_add_one_symbol |
| 3163 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, |
| 3164 | (bfd_vma) 0, (const char *) NULL, false, |
| 3165 | get_elf_backend_data (dynobj)->collect, |
| 3166 | (struct bfd_link_hash_entry **) &h))) |
| 3167 | return false; |
| 3168 | h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF; |
| 3169 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| 3170 | h->type = STT_OBJECT; |
| 3171 | h->verinfo.vertree = t; |
| 3172 | |
| 3173 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) |
| 3174 | return false; |
| 3175 | |
| 3176 | def.vd_version = VER_DEF_CURRENT; |
| 3177 | def.vd_flags = 0; |
| 3178 | if (t->globals == NULL && t->locals == NULL && ! t->used) |
| 3179 | def.vd_flags |= VER_FLG_WEAK; |
| 3180 | def.vd_ndx = t->vernum + 1; |
| 3181 | def.vd_cnt = cdeps + 1; |
| 3182 | def.vd_hash = bfd_elf_hash (t->name); |
| 3183 | def.vd_aux = sizeof (Elf_External_Verdef); |
| 3184 | if (t->next != NULL) |
| 3185 | def.vd_next = (sizeof (Elf_External_Verdef) |
| 3186 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); |
| 3187 | else |
| 3188 | def.vd_next = 0; |
| 3189 | |
| 3190 | _bfd_elf_swap_verdef_out (output_bfd, &def, |
| 3191 | (Elf_External_Verdef *) p); |
| 3192 | p += sizeof (Elf_External_Verdef); |
| 3193 | |
| 3194 | defaux.vda_name = h->dynstr_index; |
| 3195 | if (t->deps == NULL) |
| 3196 | defaux.vda_next = 0; |
| 3197 | else |
| 3198 | defaux.vda_next = sizeof (Elf_External_Verdaux); |
| 3199 | t->name_indx = defaux.vda_name; |
| 3200 | |
| 3201 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
| 3202 | (Elf_External_Verdaux *) p); |
| 3203 | p += sizeof (Elf_External_Verdaux); |
| 3204 | |
| 3205 | for (n = t->deps; n != NULL; n = n->next) |
| 3206 | { |
| 3207 | if (n->version_needed == NULL) |
| 3208 | { |
| 3209 | /* This can happen if there was an error in the |
| 3210 | version script. */ |
| 3211 | defaux.vda_name = 0; |
| 3212 | } |
| 3213 | else |
| 3214 | defaux.vda_name = n->version_needed->name_indx; |
| 3215 | if (n->next == NULL) |
| 3216 | defaux.vda_next = 0; |
| 3217 | else |
| 3218 | defaux.vda_next = sizeof (Elf_External_Verdaux); |
| 3219 | |
| 3220 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
| 3221 | (Elf_External_Verdaux *) p); |
| 3222 | p += sizeof (Elf_External_Verdaux); |
| 3223 | } |
| 3224 | } |
| 3225 | |
| 3226 | if (! elf_add_dynamic_entry (info, DT_VERDEF, 0) |
| 3227 | || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs)) |
| 3228 | return false; |
| 3229 | |
| 3230 | elf_tdata (output_bfd)->cverdefs = cdefs; |
| 3231 | } |
| 3232 | |
| 3233 | if (info->new_dtags && info->flags) |
| 3234 | { |
| 3235 | if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) |
| 3236 | return false; |
| 3237 | } |
| 3238 | |
| 3239 | if (info->flags_1) |
| 3240 | { |
| 3241 | if (! info->shared) |
| 3242 | info->flags_1 &= ~ (DF_1_INITFIRST |
| 3243 | | DF_1_NODELETE |
| 3244 | | DF_1_NOOPEN); |
| 3245 | if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) |
| 3246 | return false; |
| 3247 | } |
| 3248 | |
| 3249 | /* Work out the size of the version reference section. */ |
| 3250 | |
| 3251 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); |
| 3252 | BFD_ASSERT (s != NULL); |
| 3253 | { |
| 3254 | struct elf_find_verdep_info sinfo; |
| 3255 | |
| 3256 | sinfo.output_bfd = output_bfd; |
| 3257 | sinfo.info = info; |
| 3258 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; |
| 3259 | if (sinfo.vers == 0) |
| 3260 | sinfo.vers = 1; |
| 3261 | sinfo.failed = false; |
| 3262 | |
| 3263 | elf_link_hash_traverse (elf_hash_table (info), |
| 3264 | elf_link_find_version_dependencies, |
| 3265 | (PTR) &sinfo); |
| 3266 | |
| 3267 | if (elf_tdata (output_bfd)->verref == NULL) |
| 3268 | _bfd_strip_section_from_output (info, s); |
| 3269 | else |
| 3270 | { |
| 3271 | Elf_Internal_Verneed *t; |
| 3272 | unsigned int size; |
| 3273 | unsigned int crefs; |
| 3274 | bfd_byte *p; |
| 3275 | |
| 3276 | /* Build the version definition section. */ |
| 3277 | size = 0; |
| 3278 | crefs = 0; |
| 3279 | for (t = elf_tdata (output_bfd)->verref; |
| 3280 | t != NULL; |
| 3281 | t = t->vn_nextref) |
| 3282 | { |
| 3283 | Elf_Internal_Vernaux *a; |
| 3284 | |
| 3285 | size += sizeof (Elf_External_Verneed); |
| 3286 | ++crefs; |
| 3287 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| 3288 | size += sizeof (Elf_External_Vernaux); |
| 3289 | } |
| 3290 | |
| 3291 | s->_raw_size = size; |
| 3292 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, size); |
| 3293 | if (s->contents == NULL) |
| 3294 | return false; |
| 3295 | |
| 3296 | p = s->contents; |
| 3297 | for (t = elf_tdata (output_bfd)->verref; |
| 3298 | t != NULL; |
| 3299 | t = t->vn_nextref) |
| 3300 | { |
| 3301 | unsigned int caux; |
| 3302 | Elf_Internal_Vernaux *a; |
| 3303 | bfd_size_type indx; |
| 3304 | |
| 3305 | caux = 0; |
| 3306 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| 3307 | ++caux; |
| 3308 | |
| 3309 | t->vn_version = VER_NEED_CURRENT; |
| 3310 | t->vn_cnt = caux; |
| 3311 | if (elf_dt_name (t->vn_bfd) != NULL) |
| 3312 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
| 3313 | elf_dt_name (t->vn_bfd), |
| 3314 | true, false); |
| 3315 | else |
| 3316 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
| 3317 | basename (t->vn_bfd->filename), |
| 3318 | true, false); |
| 3319 | if (indx == (bfd_size_type) -1) |
| 3320 | return false; |
| 3321 | t->vn_file = indx; |
| 3322 | t->vn_aux = sizeof (Elf_External_Verneed); |
| 3323 | if (t->vn_nextref == NULL) |
| 3324 | t->vn_next = 0; |
| 3325 | else |
| 3326 | t->vn_next = (sizeof (Elf_External_Verneed) |
| 3327 | + caux * sizeof (Elf_External_Vernaux)); |
| 3328 | |
| 3329 | _bfd_elf_swap_verneed_out (output_bfd, t, |
| 3330 | (Elf_External_Verneed *) p); |
| 3331 | p += sizeof (Elf_External_Verneed); |
| 3332 | |
| 3333 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| 3334 | { |
| 3335 | a->vna_hash = bfd_elf_hash (a->vna_nodename); |
| 3336 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
| 3337 | a->vna_nodename, true, false); |
| 3338 | if (indx == (bfd_size_type) -1) |
| 3339 | return false; |
| 3340 | a->vna_name = indx; |
| 3341 | if (a->vna_nextptr == NULL) |
| 3342 | a->vna_next = 0; |
| 3343 | else |
| 3344 | a->vna_next = sizeof (Elf_External_Vernaux); |
| 3345 | |
| 3346 | _bfd_elf_swap_vernaux_out (output_bfd, a, |
| 3347 | (Elf_External_Vernaux *) p); |
| 3348 | p += sizeof (Elf_External_Vernaux); |
| 3349 | } |
| 3350 | } |
| 3351 | |
| 3352 | if (! elf_add_dynamic_entry (info, DT_VERNEED, 0) |
| 3353 | || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) |
| 3354 | return false; |
| 3355 | |
| 3356 | elf_tdata (output_bfd)->cverrefs = crefs; |
| 3357 | } |
| 3358 | } |
| 3359 | |
| 3360 | /* Assign dynsym indicies. In a shared library we generate a |
| 3361 | section symbol for each output section, which come first. |
| 3362 | Next come all of the back-end allocated local dynamic syms, |
| 3363 | followed by the rest of the global symbols. */ |
| 3364 | |
| 3365 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); |
| 3366 | |
| 3367 | /* Work out the size of the symbol version section. */ |
| 3368 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); |
| 3369 | BFD_ASSERT (s != NULL); |
| 3370 | if (dynsymcount == 0 |
| 3371 | || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL)) |
| 3372 | { |
| 3373 | _bfd_strip_section_from_output (info, s); |
| 3374 | /* The DYNSYMCOUNT might have changed if we were going to |
| 3375 | output a dynamic symbol table entry for S. */ |
| 3376 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); |
| 3377 | } |
| 3378 | else |
| 3379 | { |
| 3380 | s->_raw_size = dynsymcount * sizeof (Elf_External_Versym); |
| 3381 | s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size); |
| 3382 | if (s->contents == NULL) |
| 3383 | return false; |
| 3384 | |
| 3385 | if (! elf_add_dynamic_entry (info, DT_VERSYM, 0)) |
| 3386 | return false; |
| 3387 | } |
| 3388 | |
| 3389 | /* Set the size of the .dynsym and .hash sections. We counted |
| 3390 | the number of dynamic symbols in elf_link_add_object_symbols. |
| 3391 | We will build the contents of .dynsym and .hash when we build |
| 3392 | the final symbol table, because until then we do not know the |
| 3393 | correct value to give the symbols. We built the .dynstr |
| 3394 | section as we went along in elf_link_add_object_symbols. */ |
| 3395 | s = bfd_get_section_by_name (dynobj, ".dynsym"); |
| 3396 | BFD_ASSERT (s != NULL); |
| 3397 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); |
| 3398 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); |
| 3399 | if (s->contents == NULL && s->_raw_size != 0) |
| 3400 | return false; |
| 3401 | |
| 3402 | if (dynsymcount != 0) |
| 3403 | { |
| 3404 | Elf_Internal_Sym isym; |
| 3405 | |
| 3406 | /* The first entry in .dynsym is a dummy symbol. */ |
| 3407 | isym.st_value = 0; |
| 3408 | isym.st_size = 0; |
| 3409 | isym.st_name = 0; |
| 3410 | isym.st_info = 0; |
| 3411 | isym.st_other = 0; |
| 3412 | isym.st_shndx = 0; |
| 3413 | elf_swap_symbol_out (output_bfd, &isym, |
| 3414 | (PTR) (Elf_External_Sym *) s->contents); |
| 3415 | } |
| 3416 | |
| 3417 | /* Compute the size of the hashing table. As a side effect this |
| 3418 | computes the hash values for all the names we export. */ |
| 3419 | bucketcount = compute_bucket_count (info); |
| 3420 | |
| 3421 | s = bfd_get_section_by_name (dynobj, ".hash"); |
| 3422 | BFD_ASSERT (s != NULL); |
| 3423 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; |
| 3424 | s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size); |
| 3425 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); |
| 3426 | if (s->contents == NULL) |
| 3427 | return false; |
| 3428 | memset (s->contents, 0, (size_t) s->_raw_size); |
| 3429 | |
| 3430 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); |
| 3431 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, |
| 3432 | s->contents + hash_entry_size); |
| 3433 | |
| 3434 | elf_hash_table (info)->bucketcount = bucketcount; |
| 3435 | |
| 3436 | s = bfd_get_section_by_name (dynobj, ".dynstr"); |
| 3437 | BFD_ASSERT (s != NULL); |
| 3438 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); |
| 3439 | |
| 3440 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) |
| 3441 | return false; |
| 3442 | } |
| 3443 | |
| 3444 | return true; |
| 3445 | } |
| 3446 | \f |
| 3447 | /* Fix up the flags for a symbol. This handles various cases which |
| 3448 | can only be fixed after all the input files are seen. This is |
| 3449 | currently called by both adjust_dynamic_symbol and |
| 3450 | assign_sym_version, which is unnecessary but perhaps more robust in |
| 3451 | the face of future changes. */ |
| 3452 | |
| 3453 | static boolean |
| 3454 | elf_fix_symbol_flags (h, eif) |
| 3455 | struct elf_link_hash_entry *h; |
| 3456 | struct elf_info_failed *eif; |
| 3457 | { |
| 3458 | /* If this symbol was mentioned in a non-ELF file, try to set |
| 3459 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to |
| 3460 | permit a non-ELF file to correctly refer to a symbol defined in |
| 3461 | an ELF dynamic object. */ |
| 3462 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) |
| 3463 | { |
| 3464 | while (h->root.type == bfd_link_hash_indirect) |
| 3465 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 3466 | |
| 3467 | if (h->root.type != bfd_link_hash_defined |
| 3468 | && h->root.type != bfd_link_hash_defweak) |
| 3469 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR |
| 3470 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); |
| 3471 | else |
| 3472 | { |
| 3473 | if (h->root.u.def.section->owner != NULL |
| 3474 | && (bfd_get_flavour (h->root.u.def.section->owner) |
| 3475 | == bfd_target_elf_flavour)) |
| 3476 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR |
| 3477 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); |
| 3478 | else |
| 3479 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| 3480 | } |
| 3481 | |
| 3482 | if (h->dynindx == -1 |
| 3483 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
| 3484 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)) |
| 3485 | { |
| 3486 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
| 3487 | { |
| 3488 | eif->failed = true; |
| 3489 | return false; |
| 3490 | } |
| 3491 | } |
| 3492 | } |
| 3493 | else |
| 3494 | { |
| 3495 | /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol |
| 3496 | was first seen in a non-ELF file. Fortunately, if the symbol |
| 3497 | was first seen in an ELF file, we're probably OK unless the |
| 3498 | symbol was defined in a non-ELF file. Catch that case here. |
| 3499 | FIXME: We're still in trouble if the symbol was first seen in |
| 3500 | a dynamic object, and then later in a non-ELF regular object. */ |
| 3501 | if ((h->root.type == bfd_link_hash_defined |
| 3502 | || h->root.type == bfd_link_hash_defweak) |
| 3503 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 |
| 3504 | && (h->root.u.def.section->owner != NULL |
| 3505 | ? (bfd_get_flavour (h->root.u.def.section->owner) |
| 3506 | != bfd_target_elf_flavour) |
| 3507 | : (bfd_is_abs_section (h->root.u.def.section) |
| 3508 | && (h->elf_link_hash_flags |
| 3509 | & ELF_LINK_HASH_DEF_DYNAMIC) == 0))) |
| 3510 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| 3511 | } |
| 3512 | |
| 3513 | /* If this is a final link, and the symbol was defined as a common |
| 3514 | symbol in a regular object file, and there was no definition in |
| 3515 | any dynamic object, then the linker will have allocated space for |
| 3516 | the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR |
| 3517 | flag will not have been set. */ |
| 3518 | if (h->root.type == bfd_link_hash_defined |
| 3519 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 |
| 3520 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 |
| 3521 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 |
| 3522 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) |
| 3523 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| 3524 | |
| 3525 | /* If -Bsymbolic was used (which means to bind references to global |
| 3526 | symbols to the definition within the shared object), and this |
| 3527 | symbol was defined in a regular object, then it actually doesn't |
| 3528 | need a PLT entry, and we can accomplish that by forcing it local. |
| 3529 | Likewise, if the symbol has hidden or internal visibility. |
| 3530 | FIXME: It might be that we also do not need a PLT for other |
| 3531 | non-hidden visibilities, but we would have to tell that to the |
| 3532 | backend specifically; we can't just clear PLT-related data here. */ |
| 3533 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 |
| 3534 | && eif->info->shared |
| 3535 | && (eif->info->symbolic |
| 3536 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
| 3537 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) |
| 3538 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
| 3539 | { |
| 3540 | struct elf_backend_data *bed; |
| 3541 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); |
| 3542 | if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
| 3543 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) |
| 3544 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
| 3545 | (*bed->elf_backend_hide_symbol) (eif->info, h); |
| 3546 | } |
| 3547 | |
| 3548 | /* If this is a weak defined symbol in a dynamic object, and we know |
| 3549 | the real definition in the dynamic object, copy interesting flags |
| 3550 | over to the real definition. */ |
| 3551 | if (h->weakdef != NULL) |
| 3552 | { |
| 3553 | struct elf_link_hash_entry *weakdef; |
| 3554 | |
| 3555 | BFD_ASSERT (h->root.type == bfd_link_hash_defined |
| 3556 | || h->root.type == bfd_link_hash_defweak); |
| 3557 | weakdef = h->weakdef; |
| 3558 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined |
| 3559 | || weakdef->root.type == bfd_link_hash_defweak); |
| 3560 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); |
| 3561 | |
| 3562 | /* If the real definition is defined by a regular object file, |
| 3563 | don't do anything special. See the longer description in |
| 3564 | elf_adjust_dynamic_symbol, below. */ |
| 3565 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
| 3566 | h->weakdef = NULL; |
| 3567 | else |
| 3568 | weakdef->elf_link_hash_flags |= |
| 3569 | (h->elf_link_hash_flags |
| 3570 | & (ELF_LINK_HASH_REF_REGULAR |
| 3571 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK |
| 3572 | | ELF_LINK_NON_GOT_REF)); |
| 3573 | } |
| 3574 | |
| 3575 | return true; |
| 3576 | } |
| 3577 | |
| 3578 | /* Make the backend pick a good value for a dynamic symbol. This is |
| 3579 | called via elf_link_hash_traverse, and also calls itself |
| 3580 | recursively. */ |
| 3581 | |
| 3582 | static boolean |
| 3583 | elf_adjust_dynamic_symbol (h, data) |
| 3584 | struct elf_link_hash_entry *h; |
| 3585 | PTR data; |
| 3586 | { |
| 3587 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
| 3588 | bfd *dynobj; |
| 3589 | struct elf_backend_data *bed; |
| 3590 | |
| 3591 | /* Ignore indirect symbols. These are added by the versioning code. */ |
| 3592 | if (h->root.type == bfd_link_hash_indirect) |
| 3593 | return true; |
| 3594 | |
| 3595 | /* Fix the symbol flags. */ |
| 3596 | if (! elf_fix_symbol_flags (h, eif)) |
| 3597 | return false; |
| 3598 | |
| 3599 | /* If this symbol does not require a PLT entry, and it is not |
| 3600 | defined by a dynamic object, or is not referenced by a regular |
| 3601 | object, ignore it. We do have to handle a weak defined symbol, |
| 3602 | even if no regular object refers to it, if we decided to add it |
| 3603 | to the dynamic symbol table. FIXME: Do we normally need to worry |
| 3604 | about symbols which are defined by one dynamic object and |
| 3605 | referenced by another one? */ |
| 3606 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 |
| 3607 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 |
| 3608 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 |
| 3609 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 |
| 3610 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) |
| 3611 | { |
| 3612 | h->plt.offset = (bfd_vma) -1; |
| 3613 | return true; |
| 3614 | } |
| 3615 | |
| 3616 | /* If we've already adjusted this symbol, don't do it again. This |
| 3617 | can happen via a recursive call. */ |
| 3618 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) |
| 3619 | return true; |
| 3620 | |
| 3621 | /* Don't look at this symbol again. Note that we must set this |
| 3622 | after checking the above conditions, because we may look at a |
| 3623 | symbol once, decide not to do anything, and then get called |
| 3624 | recursively later after REF_REGULAR is set below. */ |
| 3625 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; |
| 3626 | |
| 3627 | /* If this is a weak definition, and we know a real definition, and |
| 3628 | the real symbol is not itself defined by a regular object file, |
| 3629 | then get a good value for the real definition. We handle the |
| 3630 | real symbol first, for the convenience of the backend routine. |
| 3631 | |
| 3632 | Note that there is a confusing case here. If the real definition |
| 3633 | is defined by a regular object file, we don't get the real symbol |
| 3634 | from the dynamic object, but we do get the weak symbol. If the |
| 3635 | processor backend uses a COPY reloc, then if some routine in the |
| 3636 | dynamic object changes the real symbol, we will not see that |
| 3637 | change in the corresponding weak symbol. This is the way other |
| 3638 | ELF linkers work as well, and seems to be a result of the shared |
| 3639 | library model. |
| 3640 | |
| 3641 | I will clarify this issue. Most SVR4 shared libraries define the |
| 3642 | variable _timezone and define timezone as a weak synonym. The |
| 3643 | tzset call changes _timezone. If you write |
| 3644 | extern int timezone; |
| 3645 | int _timezone = 5; |
| 3646 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } |
| 3647 | you might expect that, since timezone is a synonym for _timezone, |
| 3648 | the same number will print both times. However, if the processor |
| 3649 | backend uses a COPY reloc, then actually timezone will be copied |
| 3650 | into your process image, and, since you define _timezone |
| 3651 | yourself, _timezone will not. Thus timezone and _timezone will |
| 3652 | wind up at different memory locations. The tzset call will set |
| 3653 | _timezone, leaving timezone unchanged. */ |
| 3654 | |
| 3655 | if (h->weakdef != NULL) |
| 3656 | { |
| 3657 | /* If we get to this point, we know there is an implicit |
| 3658 | reference by a regular object file via the weak symbol H. |
| 3659 | FIXME: Is this really true? What if the traversal finds |
| 3660 | H->WEAKDEF before it finds H? */ |
| 3661 | h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; |
| 3662 | |
| 3663 | if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif)) |
| 3664 | return false; |
| 3665 | } |
| 3666 | |
| 3667 | /* If a symbol has no type and no size and does not require a PLT |
| 3668 | entry, then we are probably about to do the wrong thing here: we |
| 3669 | are probably going to create a COPY reloc for an empty object. |
| 3670 | This case can arise when a shared object is built with assembly |
| 3671 | code, and the assembly code fails to set the symbol type. */ |
| 3672 | if (h->size == 0 |
| 3673 | && h->type == STT_NOTYPE |
| 3674 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) |
| 3675 | (*_bfd_error_handler) |
| 3676 | (_("warning: type and size of dynamic symbol `%s' are not defined"), |
| 3677 | h->root.root.string); |
| 3678 | |
| 3679 | dynobj = elf_hash_table (eif->info)->dynobj; |
| 3680 | bed = get_elf_backend_data (dynobj); |
| 3681 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) |
| 3682 | { |
| 3683 | eif->failed = true; |
| 3684 | return false; |
| 3685 | } |
| 3686 | |
| 3687 | return true; |
| 3688 | } |
| 3689 | \f |
| 3690 | /* This routine is used to export all defined symbols into the dynamic |
| 3691 | symbol table. It is called via elf_link_hash_traverse. */ |
| 3692 | |
| 3693 | static boolean |
| 3694 | elf_export_symbol (h, data) |
| 3695 | struct elf_link_hash_entry *h; |
| 3696 | PTR data; |
| 3697 | { |
| 3698 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
| 3699 | |
| 3700 | /* Ignore indirect symbols. These are added by the versioning code. */ |
| 3701 | if (h->root.type == bfd_link_hash_indirect) |
| 3702 | return true; |
| 3703 | |
| 3704 | if (h->dynindx == -1 |
| 3705 | && (h->elf_link_hash_flags |
| 3706 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) |
| 3707 | { |
| 3708 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
| 3709 | { |
| 3710 | eif->failed = true; |
| 3711 | return false; |
| 3712 | } |
| 3713 | } |
| 3714 | |
| 3715 | return true; |
| 3716 | } |
| 3717 | \f |
| 3718 | /* Look through the symbols which are defined in other shared |
| 3719 | libraries and referenced here. Update the list of version |
| 3720 | dependencies. This will be put into the .gnu.version_r section. |
| 3721 | This function is called via elf_link_hash_traverse. */ |
| 3722 | |
| 3723 | static boolean |
| 3724 | elf_link_find_version_dependencies (h, data) |
| 3725 | struct elf_link_hash_entry *h; |
| 3726 | PTR data; |
| 3727 | { |
| 3728 | struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; |
| 3729 | Elf_Internal_Verneed *t; |
| 3730 | Elf_Internal_Vernaux *a; |
| 3731 | |
| 3732 | /* We only care about symbols defined in shared objects with version |
| 3733 | information. */ |
| 3734 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 |
| 3735 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 |
| 3736 | || h->dynindx == -1 |
| 3737 | || h->verinfo.verdef == NULL) |
| 3738 | return true; |
| 3739 | |
| 3740 | /* See if we already know about this version. */ |
| 3741 | for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref) |
| 3742 | { |
| 3743 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) |
| 3744 | continue; |
| 3745 | |
| 3746 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| 3747 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) |
| 3748 | return true; |
| 3749 | |
| 3750 | break; |
| 3751 | } |
| 3752 | |
| 3753 | /* This is a new version. Add it to tree we are building. */ |
| 3754 | |
| 3755 | if (t == NULL) |
| 3756 | { |
| 3757 | t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t); |
| 3758 | if (t == NULL) |
| 3759 | { |
| 3760 | rinfo->failed = true; |
| 3761 | return false; |
| 3762 | } |
| 3763 | |
| 3764 | t->vn_bfd = h->verinfo.verdef->vd_bfd; |
| 3765 | t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref; |
| 3766 | elf_tdata (rinfo->output_bfd)->verref = t; |
| 3767 | } |
| 3768 | |
| 3769 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a); |
| 3770 | |
| 3771 | /* Note that we are copying a string pointer here, and testing it |
| 3772 | above. If bfd_elf_string_from_elf_section is ever changed to |
| 3773 | discard the string data when low in memory, this will have to be |
| 3774 | fixed. */ |
| 3775 | a->vna_nodename = h->verinfo.verdef->vd_nodename; |
| 3776 | |
| 3777 | a->vna_flags = h->verinfo.verdef->vd_flags; |
| 3778 | a->vna_nextptr = t->vn_auxptr; |
| 3779 | |
| 3780 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; |
| 3781 | ++rinfo->vers; |
| 3782 | |
| 3783 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; |
| 3784 | |
| 3785 | t->vn_auxptr = a; |
| 3786 | |
| 3787 | return true; |
| 3788 | } |
| 3789 | |
| 3790 | /* Figure out appropriate versions for all the symbols. We may not |
| 3791 | have the version number script until we have read all of the input |
| 3792 | files, so until that point we don't know which symbols should be |
| 3793 | local. This function is called via elf_link_hash_traverse. */ |
| 3794 | |
| 3795 | static boolean |
| 3796 | elf_link_assign_sym_version (h, data) |
| 3797 | struct elf_link_hash_entry *h; |
| 3798 | PTR data; |
| 3799 | { |
| 3800 | struct elf_assign_sym_version_info *sinfo = |
| 3801 | (struct elf_assign_sym_version_info *) data; |
| 3802 | struct bfd_link_info *info = sinfo->info; |
| 3803 | struct elf_backend_data *bed; |
| 3804 | struct elf_info_failed eif; |
| 3805 | char *p; |
| 3806 | |
| 3807 | /* Fix the symbol flags. */ |
| 3808 | eif.failed = false; |
| 3809 | eif.info = info; |
| 3810 | if (! elf_fix_symbol_flags (h, &eif)) |
| 3811 | { |
| 3812 | if (eif.failed) |
| 3813 | sinfo->failed = true; |
| 3814 | return false; |
| 3815 | } |
| 3816 | |
| 3817 | /* We only need version numbers for symbols defined in regular |
| 3818 | objects. */ |
| 3819 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) |
| 3820 | return true; |
| 3821 | |
| 3822 | bed = get_elf_backend_data (sinfo->output_bfd); |
| 3823 | p = strchr (h->root.root.string, ELF_VER_CHR); |
| 3824 | if (p != NULL && h->verinfo.vertree == NULL) |
| 3825 | { |
| 3826 | struct bfd_elf_version_tree *t; |
| 3827 | boolean hidden; |
| 3828 | |
| 3829 | hidden = true; |
| 3830 | |
| 3831 | /* There are two consecutive ELF_VER_CHR characters if this is |
| 3832 | not a hidden symbol. */ |
| 3833 | ++p; |
| 3834 | if (*p == ELF_VER_CHR) |
| 3835 | { |
| 3836 | hidden = false; |
| 3837 | ++p; |
| 3838 | } |
| 3839 | |
| 3840 | /* If there is no version string, we can just return out. */ |
| 3841 | if (*p == '\0') |
| 3842 | { |
| 3843 | if (hidden) |
| 3844 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; |
| 3845 | return true; |
| 3846 | } |
| 3847 | |
| 3848 | /* Look for the version. If we find it, it is no longer weak. */ |
| 3849 | for (t = sinfo->verdefs; t != NULL; t = t->next) |
| 3850 | { |
| 3851 | if (strcmp (t->name, p) == 0) |
| 3852 | { |
| 3853 | int len; |
| 3854 | char *alc; |
| 3855 | struct bfd_elf_version_expr *d; |
| 3856 | |
| 3857 | len = p - h->root.root.string; |
| 3858 | alc = bfd_alloc (sinfo->output_bfd, len); |
| 3859 | if (alc == NULL) |
| 3860 | return false; |
| 3861 | strncpy (alc, h->root.root.string, len - 1); |
| 3862 | alc[len - 1] = '\0'; |
| 3863 | if (alc[len - 2] == ELF_VER_CHR) |
| 3864 | alc[len - 2] = '\0'; |
| 3865 | |
| 3866 | h->verinfo.vertree = t; |
| 3867 | t->used = true; |
| 3868 | d = NULL; |
| 3869 | |
| 3870 | if (t->globals != NULL) |
| 3871 | { |
| 3872 | for (d = t->globals; d != NULL; d = d->next) |
| 3873 | if ((*d->match) (d, alc)) |
| 3874 | break; |
| 3875 | } |
| 3876 | |
| 3877 | /* See if there is anything to force this symbol to |
| 3878 | local scope. */ |
| 3879 | if (d == NULL && t->locals != NULL) |
| 3880 | { |
| 3881 | for (d = t->locals; d != NULL; d = d->next) |
| 3882 | { |
| 3883 | if ((*d->match) (d, alc)) |
| 3884 | { |
| 3885 | if (h->dynindx != -1 |
| 3886 | && info->shared |
| 3887 | && ! sinfo->export_dynamic) |
| 3888 | { |
| 3889 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
| 3890 | (*bed->elf_backend_hide_symbol) (info, h); |
| 3891 | /* FIXME: The name of the symbol has |
| 3892 | already been recorded in the dynamic |
| 3893 | string table section. */ |
| 3894 | } |
| 3895 | |
| 3896 | break; |
| 3897 | } |
| 3898 | } |
| 3899 | } |
| 3900 | |
| 3901 | bfd_release (sinfo->output_bfd, alc); |
| 3902 | break; |
| 3903 | } |
| 3904 | } |
| 3905 | |
| 3906 | /* If we are building an application, we need to create a |
| 3907 | version node for this version. */ |
| 3908 | if (t == NULL && ! info->shared) |
| 3909 | { |
| 3910 | struct bfd_elf_version_tree **pp; |
| 3911 | int version_index; |
| 3912 | |
| 3913 | /* If we aren't going to export this symbol, we don't need |
| 3914 | to worry about it. */ |
| 3915 | if (h->dynindx == -1) |
| 3916 | return true; |
| 3917 | |
| 3918 | t = ((struct bfd_elf_version_tree *) |
| 3919 | bfd_alloc (sinfo->output_bfd, sizeof *t)); |
| 3920 | if (t == NULL) |
| 3921 | { |
| 3922 | sinfo->failed = true; |
| 3923 | return false; |
| 3924 | } |
| 3925 | |
| 3926 | t->next = NULL; |
| 3927 | t->name = p; |
| 3928 | t->globals = NULL; |
| 3929 | t->locals = NULL; |
| 3930 | t->deps = NULL; |
| 3931 | t->name_indx = (unsigned int) -1; |
| 3932 | t->used = true; |
| 3933 | |
| 3934 | version_index = 1; |
| 3935 | for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) |
| 3936 | ++version_index; |
| 3937 | t->vernum = version_index; |
| 3938 | |
| 3939 | *pp = t; |
| 3940 | |
| 3941 | h->verinfo.vertree = t; |
| 3942 | } |
| 3943 | else if (t == NULL) |
| 3944 | { |
| 3945 | /* We could not find the version for a symbol when |
| 3946 | generating a shared archive. Return an error. */ |
| 3947 | (*_bfd_error_handler) |
| 3948 | (_("%s: undefined versioned symbol name %s"), |
| 3949 | bfd_get_filename (sinfo->output_bfd), h->root.root.string); |
| 3950 | bfd_set_error (bfd_error_bad_value); |
| 3951 | sinfo->failed = true; |
| 3952 | return false; |
| 3953 | } |
| 3954 | |
| 3955 | if (hidden) |
| 3956 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; |
| 3957 | } |
| 3958 | |
| 3959 | /* If we don't have a version for this symbol, see if we can find |
| 3960 | something. */ |
| 3961 | if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) |
| 3962 | { |
| 3963 | struct bfd_elf_version_tree *t; |
| 3964 | struct bfd_elf_version_tree *deflt; |
| 3965 | struct bfd_elf_version_expr *d; |
| 3966 | |
| 3967 | /* See if can find what version this symbol is in. If the |
| 3968 | symbol is supposed to be local, then don't actually register |
| 3969 | it. */ |
| 3970 | deflt = NULL; |
| 3971 | for (t = sinfo->verdefs; t != NULL; t = t->next) |
| 3972 | { |
| 3973 | if (t->globals != NULL) |
| 3974 | { |
| 3975 | for (d = t->globals; d != NULL; d = d->next) |
| 3976 | { |
| 3977 | if ((*d->match) (d, h->root.root.string)) |
| 3978 | { |
| 3979 | h->verinfo.vertree = t; |
| 3980 | break; |
| 3981 | } |
| 3982 | } |
| 3983 | |
| 3984 | if (d != NULL) |
| 3985 | break; |
| 3986 | } |
| 3987 | |
| 3988 | if (t->locals != NULL) |
| 3989 | { |
| 3990 | for (d = t->locals; d != NULL; d = d->next) |
| 3991 | { |
| 3992 | if (d->pattern[0] == '*' && d->pattern[1] == '\0') |
| 3993 | deflt = t; |
| 3994 | else if ((*d->match) (d, h->root.root.string)) |
| 3995 | { |
| 3996 | h->verinfo.vertree = t; |
| 3997 | if (h->dynindx != -1 |
| 3998 | && info->shared |
| 3999 | && ! sinfo->export_dynamic) |
| 4000 | { |
| 4001 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
| 4002 | (*bed->elf_backend_hide_symbol) (info, h); |
| 4003 | /* FIXME: The name of the symbol has already |
| 4004 | been recorded in the dynamic string table |
| 4005 | section. */ |
| 4006 | } |
| 4007 | break; |
| 4008 | } |
| 4009 | } |
| 4010 | |
| 4011 | if (d != NULL) |
| 4012 | break; |
| 4013 | } |
| 4014 | } |
| 4015 | |
| 4016 | if (deflt != NULL && h->verinfo.vertree == NULL) |
| 4017 | { |
| 4018 | h->verinfo.vertree = deflt; |
| 4019 | if (h->dynindx != -1 |
| 4020 | && info->shared |
| 4021 | && ! sinfo->export_dynamic) |
| 4022 | { |
| 4023 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
| 4024 | (*bed->elf_backend_hide_symbol) (info, h); |
| 4025 | /* FIXME: The name of the symbol has already been |
| 4026 | recorded in the dynamic string table section. */ |
| 4027 | } |
| 4028 | } |
| 4029 | } |
| 4030 | |
| 4031 | return true; |
| 4032 | } |
| 4033 | \f |
| 4034 | /* Final phase of ELF linker. */ |
| 4035 | |
| 4036 | /* A structure we use to avoid passing large numbers of arguments. */ |
| 4037 | |
| 4038 | struct elf_final_link_info |
| 4039 | { |
| 4040 | /* General link information. */ |
| 4041 | struct bfd_link_info *info; |
| 4042 | /* Output BFD. */ |
| 4043 | bfd *output_bfd; |
| 4044 | /* Symbol string table. */ |
| 4045 | struct bfd_strtab_hash *symstrtab; |
| 4046 | /* .dynsym section. */ |
| 4047 | asection *dynsym_sec; |
| 4048 | /* .hash section. */ |
| 4049 | asection *hash_sec; |
| 4050 | /* symbol version section (.gnu.version). */ |
| 4051 | asection *symver_sec; |
| 4052 | /* Buffer large enough to hold contents of any section. */ |
| 4053 | bfd_byte *contents; |
| 4054 | /* Buffer large enough to hold external relocs of any section. */ |
| 4055 | PTR external_relocs; |
| 4056 | /* Buffer large enough to hold internal relocs of any section. */ |
| 4057 | Elf_Internal_Rela *internal_relocs; |
| 4058 | /* Buffer large enough to hold external local symbols of any input |
| 4059 | BFD. */ |
| 4060 | Elf_External_Sym *external_syms; |
| 4061 | /* Buffer large enough to hold internal local symbols of any input |
| 4062 | BFD. */ |
| 4063 | Elf_Internal_Sym *internal_syms; |
| 4064 | /* Array large enough to hold a symbol index for each local symbol |
| 4065 | of any input BFD. */ |
| 4066 | long *indices; |
| 4067 | /* Array large enough to hold a section pointer for each local |
| 4068 | symbol of any input BFD. */ |
| 4069 | asection **sections; |
| 4070 | /* Buffer to hold swapped out symbols. */ |
| 4071 | Elf_External_Sym *symbuf; |
| 4072 | /* Number of swapped out symbols in buffer. */ |
| 4073 | size_t symbuf_count; |
| 4074 | /* Number of symbols which fit in symbuf. */ |
| 4075 | size_t symbuf_size; |
| 4076 | }; |
| 4077 | |
| 4078 | static boolean elf_link_output_sym |
| 4079 | PARAMS ((struct elf_final_link_info *, const char *, |
| 4080 | Elf_Internal_Sym *, asection *)); |
| 4081 | static boolean elf_link_flush_output_syms |
| 4082 | PARAMS ((struct elf_final_link_info *)); |
| 4083 | static boolean elf_link_output_extsym |
| 4084 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
| 4085 | static boolean elf_link_sec_merge_syms |
| 4086 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
| 4087 | static boolean elf_link_input_bfd |
| 4088 | PARAMS ((struct elf_final_link_info *, bfd *)); |
| 4089 | static boolean elf_reloc_link_order |
| 4090 | PARAMS ((bfd *, struct bfd_link_info *, asection *, |
| 4091 | struct bfd_link_order *)); |
| 4092 | |
| 4093 | /* This struct is used to pass information to elf_link_output_extsym. */ |
| 4094 | |
| 4095 | struct elf_outext_info |
| 4096 | { |
| 4097 | boolean failed; |
| 4098 | boolean localsyms; |
| 4099 | struct elf_final_link_info *finfo; |
| 4100 | }; |
| 4101 | |
| 4102 | /* Compute the size of, and allocate space for, REL_HDR which is the |
| 4103 | section header for a section containing relocations for O. */ |
| 4104 | |
| 4105 | static boolean |
| 4106 | elf_link_size_reloc_section (abfd, rel_hdr, o) |
| 4107 | bfd *abfd; |
| 4108 | Elf_Internal_Shdr *rel_hdr; |
| 4109 | asection *o; |
| 4110 | { |
| 4111 | register struct elf_link_hash_entry **p, **pend; |
| 4112 | unsigned reloc_count; |
| 4113 | |
| 4114 | /* Figure out how many relocations there will be. */ |
| 4115 | if (rel_hdr == &elf_section_data (o)->rel_hdr) |
| 4116 | reloc_count = elf_section_data (o)->rel_count; |
| 4117 | else |
| 4118 | reloc_count = elf_section_data (o)->rel_count2; |
| 4119 | |
| 4120 | /* That allows us to calculate the size of the section. */ |
| 4121 | rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count; |
| 4122 | |
| 4123 | /* The contents field must last into write_object_contents, so we |
| 4124 | allocate it with bfd_alloc rather than malloc. Also since we |
| 4125 | cannot be sure that the contents will actually be filled in, |
| 4126 | we zero the allocated space. */ |
| 4127 | rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size); |
| 4128 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) |
| 4129 | return false; |
| 4130 | |
| 4131 | /* We only allocate one set of hash entries, so we only do it the |
| 4132 | first time we are called. */ |
| 4133 | if (elf_section_data (o)->rel_hashes == NULL) |
| 4134 | { |
| 4135 | p = ((struct elf_link_hash_entry **) |
| 4136 | bfd_malloc (o->reloc_count |
| 4137 | * sizeof (struct elf_link_hash_entry *))); |
| 4138 | if (p == NULL && o->reloc_count != 0) |
| 4139 | return false; |
| 4140 | |
| 4141 | elf_section_data (o)->rel_hashes = p; |
| 4142 | pend = p + o->reloc_count; |
| 4143 | for (; p < pend; p++) |
| 4144 | *p = NULL; |
| 4145 | } |
| 4146 | |
| 4147 | return true; |
| 4148 | } |
| 4149 | |
| 4150 | /* When performing a relocateable link, the input relocations are |
| 4151 | preserved. But, if they reference global symbols, the indices |
| 4152 | referenced must be updated. Update all the relocations in |
| 4153 | REL_HDR (there are COUNT of them), using the data in REL_HASH. */ |
| 4154 | |
| 4155 | static void |
| 4156 | elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash) |
| 4157 | bfd *abfd; |
| 4158 | Elf_Internal_Shdr *rel_hdr; |
| 4159 | unsigned int count; |
| 4160 | struct elf_link_hash_entry **rel_hash; |
| 4161 | { |
| 4162 | unsigned int i; |
| 4163 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 4164 | |
| 4165 | for (i = 0; i < count; i++, rel_hash++) |
| 4166 | { |
| 4167 | if (*rel_hash == NULL) |
| 4168 | continue; |
| 4169 | |
| 4170 | BFD_ASSERT ((*rel_hash)->indx >= 0); |
| 4171 | |
| 4172 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) |
| 4173 | { |
| 4174 | Elf_External_Rel *erel; |
| 4175 | Elf_Internal_Rel irel; |
| 4176 | |
| 4177 | erel = (Elf_External_Rel *) rel_hdr->contents + i; |
| 4178 | if (bed->s->swap_reloc_in) |
| 4179 | (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel); |
| 4180 | else |
| 4181 | elf_swap_reloc_in (abfd, erel, &irel); |
| 4182 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, |
| 4183 | ELF_R_TYPE (irel.r_info)); |
| 4184 | if (bed->s->swap_reloc_out) |
| 4185 | (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel); |
| 4186 | else |
| 4187 | elf_swap_reloc_out (abfd, &irel, erel); |
| 4188 | } |
| 4189 | else |
| 4190 | { |
| 4191 | Elf_External_Rela *erela; |
| 4192 | Elf_Internal_Rela irela; |
| 4193 | |
| 4194 | BFD_ASSERT (rel_hdr->sh_entsize |
| 4195 | == sizeof (Elf_External_Rela)); |
| 4196 | |
| 4197 | erela = (Elf_External_Rela *) rel_hdr->contents + i; |
| 4198 | if (bed->s->swap_reloca_in) |
| 4199 | (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela); |
| 4200 | else |
| 4201 | elf_swap_reloca_in (abfd, erela, &irela); |
| 4202 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, |
| 4203 | ELF_R_TYPE (irela.r_info)); |
| 4204 | if (bed->s->swap_reloca_out) |
| 4205 | (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela); |
| 4206 | else |
| 4207 | elf_swap_reloca_out (abfd, &irela, erela); |
| 4208 | } |
| 4209 | } |
| 4210 | } |
| 4211 | |
| 4212 | /* Do the final step of an ELF link. */ |
| 4213 | |
| 4214 | boolean |
| 4215 | elf_bfd_final_link (abfd, info) |
| 4216 | bfd *abfd; |
| 4217 | struct bfd_link_info *info; |
| 4218 | { |
| 4219 | boolean dynamic; |
| 4220 | bfd *dynobj; |
| 4221 | struct elf_final_link_info finfo; |
| 4222 | register asection *o; |
| 4223 | register struct bfd_link_order *p; |
| 4224 | register bfd *sub; |
| 4225 | size_t max_contents_size; |
| 4226 | size_t max_external_reloc_size; |
| 4227 | size_t max_internal_reloc_count; |
| 4228 | size_t max_sym_count; |
| 4229 | file_ptr off; |
| 4230 | Elf_Internal_Sym elfsym; |
| 4231 | unsigned int i; |
| 4232 | Elf_Internal_Shdr *symtab_hdr; |
| 4233 | Elf_Internal_Shdr *symstrtab_hdr; |
| 4234 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 4235 | struct elf_outext_info eoinfo; |
| 4236 | boolean merged; |
| 4237 | |
| 4238 | if (info->shared) |
| 4239 | abfd->flags |= DYNAMIC; |
| 4240 | |
| 4241 | dynamic = elf_hash_table (info)->dynamic_sections_created; |
| 4242 | dynobj = elf_hash_table (info)->dynobj; |
| 4243 | |
| 4244 | finfo.info = info; |
| 4245 | finfo.output_bfd = abfd; |
| 4246 | finfo.symstrtab = elf_stringtab_init (); |
| 4247 | if (finfo.symstrtab == NULL) |
| 4248 | return false; |
| 4249 | |
| 4250 | if (! dynamic) |
| 4251 | { |
| 4252 | finfo.dynsym_sec = NULL; |
| 4253 | finfo.hash_sec = NULL; |
| 4254 | finfo.symver_sec = NULL; |
| 4255 | } |
| 4256 | else |
| 4257 | { |
| 4258 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); |
| 4259 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); |
| 4260 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); |
| 4261 | finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version"); |
| 4262 | /* Note that it is OK if symver_sec is NULL. */ |
| 4263 | } |
| 4264 | |
| 4265 | finfo.contents = NULL; |
| 4266 | finfo.external_relocs = NULL; |
| 4267 | finfo.internal_relocs = NULL; |
| 4268 | finfo.external_syms = NULL; |
| 4269 | finfo.internal_syms = NULL; |
| 4270 | finfo.indices = NULL; |
| 4271 | finfo.sections = NULL; |
| 4272 | finfo.symbuf = NULL; |
| 4273 | finfo.symbuf_count = 0; |
| 4274 | |
| 4275 | /* Count up the number of relocations we will output for each output |
| 4276 | section, so that we know the sizes of the reloc sections. We |
| 4277 | also figure out some maximum sizes. */ |
| 4278 | max_contents_size = 0; |
| 4279 | max_external_reloc_size = 0; |
| 4280 | max_internal_reloc_count = 0; |
| 4281 | max_sym_count = 0; |
| 4282 | merged = false; |
| 4283 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) |
| 4284 | { |
| 4285 | o->reloc_count = 0; |
| 4286 | |
| 4287 | for (p = o->link_order_head; p != NULL; p = p->next) |
| 4288 | { |
| 4289 | if (p->type == bfd_section_reloc_link_order |
| 4290 | || p->type == bfd_symbol_reloc_link_order) |
| 4291 | ++o->reloc_count; |
| 4292 | else if (p->type == bfd_indirect_link_order) |
| 4293 | { |
| 4294 | asection *sec; |
| 4295 | |
| 4296 | sec = p->u.indirect.section; |
| 4297 | |
| 4298 | /* Mark all sections which are to be included in the |
| 4299 | link. This will normally be every section. We need |
| 4300 | to do this so that we can identify any sections which |
| 4301 | the linker has decided to not include. */ |
| 4302 | sec->linker_mark = true; |
| 4303 | |
| 4304 | if (sec->flags & SEC_MERGE) |
| 4305 | merged = true; |
| 4306 | |
| 4307 | if (info->relocateable || info->emitrelocations) |
| 4308 | o->reloc_count += sec->reloc_count; |
| 4309 | |
| 4310 | if (sec->_raw_size > max_contents_size) |
| 4311 | max_contents_size = sec->_raw_size; |
| 4312 | if (sec->_cooked_size > max_contents_size) |
| 4313 | max_contents_size = sec->_cooked_size; |
| 4314 | |
| 4315 | /* We are interested in just local symbols, not all |
| 4316 | symbols. */ |
| 4317 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour |
| 4318 | && (sec->owner->flags & DYNAMIC) == 0) |
| 4319 | { |
| 4320 | size_t sym_count; |
| 4321 | |
| 4322 | if (elf_bad_symtab (sec->owner)) |
| 4323 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size |
| 4324 | / sizeof (Elf_External_Sym)); |
| 4325 | else |
| 4326 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; |
| 4327 | |
| 4328 | if (sym_count > max_sym_count) |
| 4329 | max_sym_count = sym_count; |
| 4330 | |
| 4331 | if ((sec->flags & SEC_RELOC) != 0) |
| 4332 | { |
| 4333 | size_t ext_size; |
| 4334 | |
| 4335 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; |
| 4336 | if (ext_size > max_external_reloc_size) |
| 4337 | max_external_reloc_size = ext_size; |
| 4338 | if (sec->reloc_count > max_internal_reloc_count) |
| 4339 | max_internal_reloc_count = sec->reloc_count; |
| 4340 | } |
| 4341 | } |
| 4342 | } |
| 4343 | } |
| 4344 | |
| 4345 | if (o->reloc_count > 0) |
| 4346 | o->flags |= SEC_RELOC; |
| 4347 | else |
| 4348 | { |
| 4349 | /* Explicitly clear the SEC_RELOC flag. The linker tends to |
| 4350 | set it (this is probably a bug) and if it is set |
| 4351 | assign_section_numbers will create a reloc section. */ |
| 4352 | o->flags &=~ SEC_RELOC; |
| 4353 | } |
| 4354 | |
| 4355 | /* If the SEC_ALLOC flag is not set, force the section VMA to |
| 4356 | zero. This is done in elf_fake_sections as well, but forcing |
| 4357 | the VMA to 0 here will ensure that relocs against these |
| 4358 | sections are handled correctly. */ |
| 4359 | if ((o->flags & SEC_ALLOC) == 0 |
| 4360 | && ! o->user_set_vma) |
| 4361 | o->vma = 0; |
| 4362 | } |
| 4363 | |
| 4364 | if (! info->relocateable && merged) |
| 4365 | elf_link_hash_traverse (elf_hash_table (info), |
| 4366 | elf_link_sec_merge_syms, (PTR) abfd); |
| 4367 | |
| 4368 | /* Figure out the file positions for everything but the symbol table |
| 4369 | and the relocs. We set symcount to force assign_section_numbers |
| 4370 | to create a symbol table. */ |
| 4371 | bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1; |
| 4372 | BFD_ASSERT (! abfd->output_has_begun); |
| 4373 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) |
| 4374 | goto error_return; |
| 4375 | |
| 4376 | /* Figure out how many relocations we will have in each section. |
| 4377 | Just using RELOC_COUNT isn't good enough since that doesn't |
| 4378 | maintain a separate value for REL vs. RELA relocations. */ |
| 4379 | if (info->relocateable || info->emitrelocations) |
| 4380 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) |
| 4381 | for (o = sub->sections; o != NULL; o = o->next) |
| 4382 | { |
| 4383 | asection *output_section; |
| 4384 | |
| 4385 | if (! o->linker_mark) |
| 4386 | { |
| 4387 | /* This section was omitted from the link. */ |
| 4388 | continue; |
| 4389 | } |
| 4390 | |
| 4391 | output_section = o->output_section; |
| 4392 | |
| 4393 | if (output_section != NULL |
| 4394 | && (o->flags & SEC_RELOC) != 0) |
| 4395 | { |
| 4396 | struct bfd_elf_section_data *esdi |
| 4397 | = elf_section_data (o); |
| 4398 | struct bfd_elf_section_data *esdo |
| 4399 | = elf_section_data (output_section); |
| 4400 | unsigned int *rel_count; |
| 4401 | unsigned int *rel_count2; |
| 4402 | |
| 4403 | /* We must be careful to add the relocation froms the |
| 4404 | input section to the right output count. */ |
| 4405 | if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize) |
| 4406 | { |
| 4407 | rel_count = &esdo->rel_count; |
| 4408 | rel_count2 = &esdo->rel_count2; |
| 4409 | } |
| 4410 | else |
| 4411 | { |
| 4412 | rel_count = &esdo->rel_count2; |
| 4413 | rel_count2 = &esdo->rel_count; |
| 4414 | } |
| 4415 | |
| 4416 | *rel_count += (esdi->rel_hdr.sh_size |
| 4417 | / esdi->rel_hdr.sh_entsize); |
| 4418 | if (esdi->rel_hdr2) |
| 4419 | *rel_count2 += (esdi->rel_hdr2->sh_size |
| 4420 | / esdi->rel_hdr2->sh_entsize); |
| 4421 | } |
| 4422 | } |
| 4423 | |
| 4424 | /* That created the reloc sections. Set their sizes, and assign |
| 4425 | them file positions, and allocate some buffers. */ |
| 4426 | for (o = abfd->sections; o != NULL; o = o->next) |
| 4427 | { |
| 4428 | if ((o->flags & SEC_RELOC) != 0) |
| 4429 | { |
| 4430 | if (!elf_link_size_reloc_section (abfd, |
| 4431 | &elf_section_data (o)->rel_hdr, |
| 4432 | o)) |
| 4433 | goto error_return; |
| 4434 | |
| 4435 | if (elf_section_data (o)->rel_hdr2 |
| 4436 | && !elf_link_size_reloc_section (abfd, |
| 4437 | elf_section_data (o)->rel_hdr2, |
| 4438 | o)) |
| 4439 | goto error_return; |
| 4440 | } |
| 4441 | |
| 4442 | /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them |
| 4443 | to count upwards while actually outputting the relocations. */ |
| 4444 | elf_section_data (o)->rel_count = 0; |
| 4445 | elf_section_data (o)->rel_count2 = 0; |
| 4446 | } |
| 4447 | |
| 4448 | _bfd_elf_assign_file_positions_for_relocs (abfd); |
| 4449 | |
| 4450 | /* We have now assigned file positions for all the sections except |
| 4451 | .symtab and .strtab. We start the .symtab section at the current |
| 4452 | file position, and write directly to it. We build the .strtab |
| 4453 | section in memory. */ |
| 4454 | bfd_get_symcount (abfd) = 0; |
| 4455 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 4456 | /* sh_name is set in prep_headers. */ |
| 4457 | symtab_hdr->sh_type = SHT_SYMTAB; |
| 4458 | symtab_hdr->sh_flags = 0; |
| 4459 | symtab_hdr->sh_addr = 0; |
| 4460 | symtab_hdr->sh_size = 0; |
| 4461 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); |
| 4462 | /* sh_link is set in assign_section_numbers. */ |
| 4463 | /* sh_info is set below. */ |
| 4464 | /* sh_offset is set just below. */ |
| 4465 | symtab_hdr->sh_addralign = bed->s->file_align; |
| 4466 | |
| 4467 | off = elf_tdata (abfd)->next_file_pos; |
| 4468 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); |
| 4469 | |
| 4470 | /* Note that at this point elf_tdata (abfd)->next_file_pos is |
| 4471 | incorrect. We do not yet know the size of the .symtab section. |
| 4472 | We correct next_file_pos below, after we do know the size. */ |
| 4473 | |
| 4474 | /* Allocate a buffer to hold swapped out symbols. This is to avoid |
| 4475 | continuously seeking to the right position in the file. */ |
| 4476 | if (! info->keep_memory || max_sym_count < 20) |
| 4477 | finfo.symbuf_size = 20; |
| 4478 | else |
| 4479 | finfo.symbuf_size = max_sym_count; |
| 4480 | finfo.symbuf = ((Elf_External_Sym *) |
| 4481 | bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); |
| 4482 | if (finfo.symbuf == NULL) |
| 4483 | goto error_return; |
| 4484 | |
| 4485 | /* Start writing out the symbol table. The first symbol is always a |
| 4486 | dummy symbol. */ |
| 4487 | if (info->strip != strip_all || info->relocateable || info->emitrelocations) |
| 4488 | { |
| 4489 | elfsym.st_value = 0; |
| 4490 | elfsym.st_size = 0; |
| 4491 | elfsym.st_info = 0; |
| 4492 | elfsym.st_other = 0; |
| 4493 | elfsym.st_shndx = SHN_UNDEF; |
| 4494 | if (! elf_link_output_sym (&finfo, (const char *) NULL, |
| 4495 | &elfsym, bfd_und_section_ptr)) |
| 4496 | goto error_return; |
| 4497 | } |
| 4498 | |
| 4499 | #if 0 |
| 4500 | /* Some standard ELF linkers do this, but we don't because it causes |
| 4501 | bootstrap comparison failures. */ |
| 4502 | /* Output a file symbol for the output file as the second symbol. |
| 4503 | We output this even if we are discarding local symbols, although |
| 4504 | I'm not sure if this is correct. */ |
| 4505 | elfsym.st_value = 0; |
| 4506 | elfsym.st_size = 0; |
| 4507 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); |
| 4508 | elfsym.st_other = 0; |
| 4509 | elfsym.st_shndx = SHN_ABS; |
| 4510 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), |
| 4511 | &elfsym, bfd_abs_section_ptr)) |
| 4512 | goto error_return; |
| 4513 | #endif |
| 4514 | |
| 4515 | /* Output a symbol for each section. We output these even if we are |
| 4516 | discarding local symbols, since they are used for relocs. These |
| 4517 | symbols have no names. We store the index of each one in the |
| 4518 | index field of the section, so that we can find it again when |
| 4519 | outputting relocs. */ |
| 4520 | if (info->strip != strip_all || info->relocateable || info->emitrelocations) |
| 4521 | { |
| 4522 | elfsym.st_size = 0; |
| 4523 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); |
| 4524 | elfsym.st_other = 0; |
| 4525 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) |
| 4526 | { |
| 4527 | o = section_from_elf_index (abfd, i); |
| 4528 | if (o != NULL) |
| 4529 | o->target_index = bfd_get_symcount (abfd); |
| 4530 | elfsym.st_shndx = i; |
| 4531 | if (info->relocateable || o == NULL) |
| 4532 | elfsym.st_value = 0; |
| 4533 | else |
| 4534 | elfsym.st_value = o->vma; |
| 4535 | if (! elf_link_output_sym (&finfo, (const char *) NULL, |
| 4536 | &elfsym, o)) |
| 4537 | goto error_return; |
| 4538 | } |
| 4539 | } |
| 4540 | |
| 4541 | /* Allocate some memory to hold information read in from the input |
| 4542 | files. */ |
| 4543 | finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); |
| 4544 | finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size); |
| 4545 | finfo.internal_relocs = ((Elf_Internal_Rela *) |
| 4546 | bfd_malloc (max_internal_reloc_count |
| 4547 | * sizeof (Elf_Internal_Rela) |
| 4548 | * bed->s->int_rels_per_ext_rel)); |
| 4549 | finfo.external_syms = ((Elf_External_Sym *) |
| 4550 | bfd_malloc (max_sym_count |
| 4551 | * sizeof (Elf_External_Sym))); |
| 4552 | finfo.internal_syms = ((Elf_Internal_Sym *) |
| 4553 | bfd_malloc (max_sym_count |
| 4554 | * sizeof (Elf_Internal_Sym))); |
| 4555 | finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long)); |
| 4556 | finfo.sections = ((asection **) |
| 4557 | bfd_malloc (max_sym_count * sizeof (asection *))); |
| 4558 | if ((finfo.contents == NULL && max_contents_size != 0) |
| 4559 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) |
| 4560 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) |
| 4561 | || (finfo.external_syms == NULL && max_sym_count != 0) |
| 4562 | || (finfo.internal_syms == NULL && max_sym_count != 0) |
| 4563 | || (finfo.indices == NULL && max_sym_count != 0) |
| 4564 | || (finfo.sections == NULL && max_sym_count != 0)) |
| 4565 | goto error_return; |
| 4566 | |
| 4567 | /* Since ELF permits relocations to be against local symbols, we |
| 4568 | must have the local symbols available when we do the relocations. |
| 4569 | Since we would rather only read the local symbols once, and we |
| 4570 | would rather not keep them in memory, we handle all the |
| 4571 | relocations for a single input file at the same time. |
| 4572 | |
| 4573 | Unfortunately, there is no way to know the total number of local |
| 4574 | symbols until we have seen all of them, and the local symbol |
| 4575 | indices precede the global symbol indices. This means that when |
| 4576 | we are generating relocateable output, and we see a reloc against |
| 4577 | a global symbol, we can not know the symbol index until we have |
| 4578 | finished examining all the local symbols to see which ones we are |
| 4579 | going to output. To deal with this, we keep the relocations in |
| 4580 | memory, and don't output them until the end of the link. This is |
| 4581 | an unfortunate waste of memory, but I don't see a good way around |
| 4582 | it. Fortunately, it only happens when performing a relocateable |
| 4583 | link, which is not the common case. FIXME: If keep_memory is set |
| 4584 | we could write the relocs out and then read them again; I don't |
| 4585 | know how bad the memory loss will be. */ |
| 4586 | |
| 4587 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) |
| 4588 | sub->output_has_begun = false; |
| 4589 | for (o = abfd->sections; o != NULL; o = o->next) |
| 4590 | { |
| 4591 | for (p = o->link_order_head; p != NULL; p = p->next) |
| 4592 | { |
| 4593 | if (p->type == bfd_indirect_link_order |
| 4594 | && (bfd_get_flavour (p->u.indirect.section->owner) |
| 4595 | == bfd_target_elf_flavour)) |
| 4596 | { |
| 4597 | sub = p->u.indirect.section->owner; |
| 4598 | if (! sub->output_has_begun) |
| 4599 | { |
| 4600 | if (! elf_link_input_bfd (&finfo, sub)) |
| 4601 | goto error_return; |
| 4602 | sub->output_has_begun = true; |
| 4603 | } |
| 4604 | } |
| 4605 | else if (p->type == bfd_section_reloc_link_order |
| 4606 | || p->type == bfd_symbol_reloc_link_order) |
| 4607 | { |
| 4608 | if (! elf_reloc_link_order (abfd, info, o, p)) |
| 4609 | goto error_return; |
| 4610 | } |
| 4611 | else |
| 4612 | { |
| 4613 | if (! _bfd_default_link_order (abfd, info, o, p)) |
| 4614 | goto error_return; |
| 4615 | } |
| 4616 | } |
| 4617 | } |
| 4618 | |
| 4619 | /* That wrote out all the local symbols. Finish up the symbol table |
| 4620 | with the global symbols. Even if we want to strip everything we |
| 4621 | can, we still need to deal with those global symbols that got |
| 4622 | converted to local in a version script. */ |
| 4623 | |
| 4624 | if (info->shared) |
| 4625 | { |
| 4626 | /* Output any global symbols that got converted to local in a |
| 4627 | version script. We do this in a separate step since ELF |
| 4628 | requires all local symbols to appear prior to any global |
| 4629 | symbols. FIXME: We should only do this if some global |
| 4630 | symbols were, in fact, converted to become local. FIXME: |
| 4631 | Will this work correctly with the Irix 5 linker? */ |
| 4632 | eoinfo.failed = false; |
| 4633 | eoinfo.finfo = &finfo; |
| 4634 | eoinfo.localsyms = true; |
| 4635 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, |
| 4636 | (PTR) &eoinfo); |
| 4637 | if (eoinfo.failed) |
| 4638 | return false; |
| 4639 | } |
| 4640 | |
| 4641 | /* The sh_info field records the index of the first non local symbol. */ |
| 4642 | symtab_hdr->sh_info = bfd_get_symcount (abfd); |
| 4643 | |
| 4644 | if (dynamic |
| 4645 | && finfo.dynsym_sec->output_section != bfd_abs_section_ptr) |
| 4646 | { |
| 4647 | Elf_Internal_Sym sym; |
| 4648 | Elf_External_Sym *dynsym = |
| 4649 | (Elf_External_Sym *)finfo.dynsym_sec->contents; |
| 4650 | long last_local = 0; |
| 4651 | |
| 4652 | /* Write out the section symbols for the output sections. */ |
| 4653 | if (info->shared) |
| 4654 | { |
| 4655 | asection *s; |
| 4656 | |
| 4657 | sym.st_size = 0; |
| 4658 | sym.st_name = 0; |
| 4659 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); |
| 4660 | sym.st_other = 0; |
| 4661 | |
| 4662 | for (s = abfd->sections; s != NULL; s = s->next) |
| 4663 | { |
| 4664 | int indx; |
| 4665 | indx = elf_section_data (s)->this_idx; |
| 4666 | BFD_ASSERT (indx > 0); |
| 4667 | sym.st_shndx = indx; |
| 4668 | sym.st_value = s->vma; |
| 4669 | |
| 4670 | elf_swap_symbol_out (abfd, &sym, |
| 4671 | dynsym + elf_section_data (s)->dynindx); |
| 4672 | } |
| 4673 | |
| 4674 | last_local = bfd_count_sections (abfd); |
| 4675 | } |
| 4676 | |
| 4677 | /* Write out the local dynsyms. */ |
| 4678 | if (elf_hash_table (info)->dynlocal) |
| 4679 | { |
| 4680 | struct elf_link_local_dynamic_entry *e; |
| 4681 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) |
| 4682 | { |
| 4683 | asection *s; |
| 4684 | |
| 4685 | sym.st_size = e->isym.st_size; |
| 4686 | sym.st_other = e->isym.st_other; |
| 4687 | |
| 4688 | /* Copy the internal symbol as is. |
| 4689 | Note that we saved a word of storage and overwrote |
| 4690 | the original st_name with the dynstr_index. */ |
| 4691 | sym = e->isym; |
| 4692 | |
| 4693 | if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE) |
| 4694 | { |
| 4695 | s = bfd_section_from_elf_index (e->input_bfd, |
| 4696 | e->isym.st_shndx); |
| 4697 | |
| 4698 | sym.st_shndx = |
| 4699 | elf_section_data (s->output_section)->this_idx; |
| 4700 | sym.st_value = (s->output_section->vma |
| 4701 | + s->output_offset |
| 4702 | + e->isym.st_value); |
| 4703 | } |
| 4704 | |
| 4705 | if (last_local < e->dynindx) |
| 4706 | last_local = e->dynindx; |
| 4707 | |
| 4708 | elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx); |
| 4709 | } |
| 4710 | } |
| 4711 | |
| 4712 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = |
| 4713 | last_local + 1; |
| 4714 | } |
| 4715 | |
| 4716 | /* We get the global symbols from the hash table. */ |
| 4717 | eoinfo.failed = false; |
| 4718 | eoinfo.localsyms = false; |
| 4719 | eoinfo.finfo = &finfo; |
| 4720 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, |
| 4721 | (PTR) &eoinfo); |
| 4722 | if (eoinfo.failed) |
| 4723 | return false; |
| 4724 | |
| 4725 | /* If backend needs to output some symbols not present in the hash |
| 4726 | table, do it now. */ |
| 4727 | if (bed->elf_backend_output_arch_syms) |
| 4728 | { |
| 4729 | if (! (*bed->elf_backend_output_arch_syms) |
| 4730 | (abfd, info, (PTR) &finfo, |
| 4731 | (boolean (*) PARAMS ((PTR, const char *, |
| 4732 | Elf_Internal_Sym *, asection *))) |
| 4733 | elf_link_output_sym)) |
| 4734 | return false; |
| 4735 | } |
| 4736 | |
| 4737 | /* Flush all symbols to the file. */ |
| 4738 | if (! elf_link_flush_output_syms (&finfo)) |
| 4739 | return false; |
| 4740 | |
| 4741 | /* Now we know the size of the symtab section. */ |
| 4742 | off += symtab_hdr->sh_size; |
| 4743 | |
| 4744 | /* Finish up and write out the symbol string table (.strtab) |
| 4745 | section. */ |
| 4746 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
| 4747 | /* sh_name was set in prep_headers. */ |
| 4748 | symstrtab_hdr->sh_type = SHT_STRTAB; |
| 4749 | symstrtab_hdr->sh_flags = 0; |
| 4750 | symstrtab_hdr->sh_addr = 0; |
| 4751 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); |
| 4752 | symstrtab_hdr->sh_entsize = 0; |
| 4753 | symstrtab_hdr->sh_link = 0; |
| 4754 | symstrtab_hdr->sh_info = 0; |
| 4755 | /* sh_offset is set just below. */ |
| 4756 | symstrtab_hdr->sh_addralign = 1; |
| 4757 | |
| 4758 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); |
| 4759 | elf_tdata (abfd)->next_file_pos = off; |
| 4760 | |
| 4761 | if (bfd_get_symcount (abfd) > 0) |
| 4762 | { |
| 4763 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 |
| 4764 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) |
| 4765 | return false; |
| 4766 | } |
| 4767 | |
| 4768 | /* Adjust the relocs to have the correct symbol indices. */ |
| 4769 | for (o = abfd->sections; o != NULL; o = o->next) |
| 4770 | { |
| 4771 | if ((o->flags & SEC_RELOC) == 0) |
| 4772 | continue; |
| 4773 | |
| 4774 | elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr, |
| 4775 | elf_section_data (o)->rel_count, |
| 4776 | elf_section_data (o)->rel_hashes); |
| 4777 | if (elf_section_data (o)->rel_hdr2 != NULL) |
| 4778 | elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2, |
| 4779 | elf_section_data (o)->rel_count2, |
| 4780 | (elf_section_data (o)->rel_hashes |
| 4781 | + elf_section_data (o)->rel_count)); |
| 4782 | |
| 4783 | /* Set the reloc_count field to 0 to prevent write_relocs from |
| 4784 | trying to swap the relocs out itself. */ |
| 4785 | o->reloc_count = 0; |
| 4786 | } |
| 4787 | |
| 4788 | /* If we are linking against a dynamic object, or generating a |
| 4789 | shared library, finish up the dynamic linking information. */ |
| 4790 | if (dynamic) |
| 4791 | { |
| 4792 | Elf_External_Dyn *dyncon, *dynconend; |
| 4793 | |
| 4794 | /* Fix up .dynamic entries. */ |
| 4795 | o = bfd_get_section_by_name (dynobj, ".dynamic"); |
| 4796 | BFD_ASSERT (o != NULL); |
| 4797 | |
| 4798 | dyncon = (Elf_External_Dyn *) o->contents; |
| 4799 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); |
| 4800 | for (; dyncon < dynconend; dyncon++) |
| 4801 | { |
| 4802 | Elf_Internal_Dyn dyn; |
| 4803 | const char *name; |
| 4804 | unsigned int type; |
| 4805 | |
| 4806 | elf_swap_dyn_in (dynobj, dyncon, &dyn); |
| 4807 | |
| 4808 | switch (dyn.d_tag) |
| 4809 | { |
| 4810 | default: |
| 4811 | break; |
| 4812 | case DT_INIT: |
| 4813 | name = info->init_function; |
| 4814 | goto get_sym; |
| 4815 | case DT_FINI: |
| 4816 | name = info->fini_function; |
| 4817 | get_sym: |
| 4818 | { |
| 4819 | struct elf_link_hash_entry *h; |
| 4820 | |
| 4821 | h = elf_link_hash_lookup (elf_hash_table (info), name, |
| 4822 | false, false, true); |
| 4823 | if (h != NULL |
| 4824 | && (h->root.type == bfd_link_hash_defined |
| 4825 | || h->root.type == bfd_link_hash_defweak)) |
| 4826 | { |
| 4827 | dyn.d_un.d_val = h->root.u.def.value; |
| 4828 | o = h->root.u.def.section; |
| 4829 | if (o->output_section != NULL) |
| 4830 | dyn.d_un.d_val += (o->output_section->vma |
| 4831 | + o->output_offset); |
| 4832 | else |
| 4833 | { |
| 4834 | /* The symbol is imported from another shared |
| 4835 | library and does not apply to this one. */ |
| 4836 | dyn.d_un.d_val = 0; |
| 4837 | } |
| 4838 | |
| 4839 | elf_swap_dyn_out (dynobj, &dyn, dyncon); |
| 4840 | } |
| 4841 | } |
| 4842 | break; |
| 4843 | |
| 4844 | case DT_HASH: |
| 4845 | name = ".hash"; |
| 4846 | goto get_vma; |
| 4847 | case DT_STRTAB: |
| 4848 | name = ".dynstr"; |
| 4849 | goto get_vma; |
| 4850 | case DT_SYMTAB: |
| 4851 | name = ".dynsym"; |
| 4852 | goto get_vma; |
| 4853 | case DT_VERDEF: |
| 4854 | name = ".gnu.version_d"; |
| 4855 | goto get_vma; |
| 4856 | case DT_VERNEED: |
| 4857 | name = ".gnu.version_r"; |
| 4858 | goto get_vma; |
| 4859 | case DT_VERSYM: |
| 4860 | name = ".gnu.version"; |
| 4861 | get_vma: |
| 4862 | o = bfd_get_section_by_name (abfd, name); |
| 4863 | BFD_ASSERT (o != NULL); |
| 4864 | dyn.d_un.d_ptr = o->vma; |
| 4865 | elf_swap_dyn_out (dynobj, &dyn, dyncon); |
| 4866 | break; |
| 4867 | |
| 4868 | case DT_REL: |
| 4869 | case DT_RELA: |
| 4870 | case DT_RELSZ: |
| 4871 | case DT_RELASZ: |
| 4872 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) |
| 4873 | type = SHT_REL; |
| 4874 | else |
| 4875 | type = SHT_RELA; |
| 4876 | dyn.d_un.d_val = 0; |
| 4877 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) |
| 4878 | { |
| 4879 | Elf_Internal_Shdr *hdr; |
| 4880 | |
| 4881 | hdr = elf_elfsections (abfd)[i]; |
| 4882 | if (hdr->sh_type == type |
| 4883 | && (hdr->sh_flags & SHF_ALLOC) != 0) |
| 4884 | { |
| 4885 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) |
| 4886 | dyn.d_un.d_val += hdr->sh_size; |
| 4887 | else |
| 4888 | { |
| 4889 | if (dyn.d_un.d_val == 0 |
| 4890 | || hdr->sh_addr < dyn.d_un.d_val) |
| 4891 | dyn.d_un.d_val = hdr->sh_addr; |
| 4892 | } |
| 4893 | } |
| 4894 | } |
| 4895 | elf_swap_dyn_out (dynobj, &dyn, dyncon); |
| 4896 | break; |
| 4897 | } |
| 4898 | } |
| 4899 | } |
| 4900 | |
| 4901 | /* If we have created any dynamic sections, then output them. */ |
| 4902 | if (dynobj != NULL) |
| 4903 | { |
| 4904 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) |
| 4905 | goto error_return; |
| 4906 | |
| 4907 | for (o = dynobj->sections; o != NULL; o = o->next) |
| 4908 | { |
| 4909 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
| 4910 | || o->_raw_size == 0 |
| 4911 | || o->output_section == bfd_abs_section_ptr) |
| 4912 | continue; |
| 4913 | if ((o->flags & SEC_LINKER_CREATED) == 0) |
| 4914 | { |
| 4915 | /* At this point, we are only interested in sections |
| 4916 | created by elf_link_create_dynamic_sections. */ |
| 4917 | continue; |
| 4918 | } |
| 4919 | if ((elf_section_data (o->output_section)->this_hdr.sh_type |
| 4920 | != SHT_STRTAB) |
| 4921 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) |
| 4922 | { |
| 4923 | if (! bfd_set_section_contents (abfd, o->output_section, |
| 4924 | o->contents, o->output_offset, |
| 4925 | o->_raw_size)) |
| 4926 | goto error_return; |
| 4927 | } |
| 4928 | else |
| 4929 | { |
| 4930 | file_ptr off; |
| 4931 | |
| 4932 | /* The contents of the .dynstr section are actually in a |
| 4933 | stringtab. */ |
| 4934 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; |
| 4935 | if (bfd_seek (abfd, off, SEEK_SET) != 0 |
| 4936 | || ! _bfd_stringtab_emit (abfd, |
| 4937 | elf_hash_table (info)->dynstr)) |
| 4938 | goto error_return; |
| 4939 | } |
| 4940 | } |
| 4941 | } |
| 4942 | |
| 4943 | /* If we have optimized stabs strings, output them. */ |
| 4944 | if (elf_hash_table (info)->stab_info != NULL) |
| 4945 | { |
| 4946 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) |
| 4947 | goto error_return; |
| 4948 | } |
| 4949 | |
| 4950 | if (finfo.symstrtab != NULL) |
| 4951 | _bfd_stringtab_free (finfo.symstrtab); |
| 4952 | if (finfo.contents != NULL) |
| 4953 | free (finfo.contents); |
| 4954 | if (finfo.external_relocs != NULL) |
| 4955 | free (finfo.external_relocs); |
| 4956 | if (finfo.internal_relocs != NULL) |
| 4957 | free (finfo.internal_relocs); |
| 4958 | if (finfo.external_syms != NULL) |
| 4959 | free (finfo.external_syms); |
| 4960 | if (finfo.internal_syms != NULL) |
| 4961 | free (finfo.internal_syms); |
| 4962 | if (finfo.indices != NULL) |
| 4963 | free (finfo.indices); |
| 4964 | if (finfo.sections != NULL) |
| 4965 | free (finfo.sections); |
| 4966 | if (finfo.symbuf != NULL) |
| 4967 | free (finfo.symbuf); |
| 4968 | for (o = abfd->sections; o != NULL; o = o->next) |
| 4969 | { |
| 4970 | if ((o->flags & SEC_RELOC) != 0 |
| 4971 | && elf_section_data (o)->rel_hashes != NULL) |
| 4972 | free (elf_section_data (o)->rel_hashes); |
| 4973 | } |
| 4974 | |
| 4975 | elf_tdata (abfd)->linker = true; |
| 4976 | |
| 4977 | return true; |
| 4978 | |
| 4979 | error_return: |
| 4980 | if (finfo.symstrtab != NULL) |
| 4981 | _bfd_stringtab_free (finfo.symstrtab); |
| 4982 | if (finfo.contents != NULL) |
| 4983 | free (finfo.contents); |
| 4984 | if (finfo.external_relocs != NULL) |
| 4985 | free (finfo.external_relocs); |
| 4986 | if (finfo.internal_relocs != NULL) |
| 4987 | free (finfo.internal_relocs); |
| 4988 | if (finfo.external_syms != NULL) |
| 4989 | free (finfo.external_syms); |
| 4990 | if (finfo.internal_syms != NULL) |
| 4991 | free (finfo.internal_syms); |
| 4992 | if (finfo.indices != NULL) |
| 4993 | free (finfo.indices); |
| 4994 | if (finfo.sections != NULL) |
| 4995 | free (finfo.sections); |
| 4996 | if (finfo.symbuf != NULL) |
| 4997 | free (finfo.symbuf); |
| 4998 | for (o = abfd->sections; o != NULL; o = o->next) |
| 4999 | { |
| 5000 | if ((o->flags & SEC_RELOC) != 0 |
| 5001 | && elf_section_data (o)->rel_hashes != NULL) |
| 5002 | free (elf_section_data (o)->rel_hashes); |
| 5003 | } |
| 5004 | |
| 5005 | return false; |
| 5006 | } |
| 5007 | |
| 5008 | /* Add a symbol to the output symbol table. */ |
| 5009 | |
| 5010 | static boolean |
| 5011 | elf_link_output_sym (finfo, name, elfsym, input_sec) |
| 5012 | struct elf_final_link_info *finfo; |
| 5013 | const char *name; |
| 5014 | Elf_Internal_Sym *elfsym; |
| 5015 | asection *input_sec; |
| 5016 | { |
| 5017 | boolean (*output_symbol_hook) PARAMS ((bfd *, |
| 5018 | struct bfd_link_info *info, |
| 5019 | const char *, |
| 5020 | Elf_Internal_Sym *, |
| 5021 | asection *)); |
| 5022 | |
| 5023 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> |
| 5024 | elf_backend_link_output_symbol_hook; |
| 5025 | if (output_symbol_hook != NULL) |
| 5026 | { |
| 5027 | if (! ((*output_symbol_hook) |
| 5028 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) |
| 5029 | return false; |
| 5030 | } |
| 5031 | |
| 5032 | if (name == (const char *) NULL || *name == '\0') |
| 5033 | elfsym->st_name = 0; |
| 5034 | else if (input_sec->flags & SEC_EXCLUDE) |
| 5035 | elfsym->st_name = 0; |
| 5036 | else |
| 5037 | { |
| 5038 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, |
| 5039 | name, true, |
| 5040 | false); |
| 5041 | if (elfsym->st_name == (unsigned long) -1) |
| 5042 | return false; |
| 5043 | } |
| 5044 | |
| 5045 | if (finfo->symbuf_count >= finfo->symbuf_size) |
| 5046 | { |
| 5047 | if (! elf_link_flush_output_syms (finfo)) |
| 5048 | return false; |
| 5049 | } |
| 5050 | |
| 5051 | elf_swap_symbol_out (finfo->output_bfd, elfsym, |
| 5052 | (PTR) (finfo->symbuf + finfo->symbuf_count)); |
| 5053 | ++finfo->symbuf_count; |
| 5054 | |
| 5055 | ++ bfd_get_symcount (finfo->output_bfd); |
| 5056 | |
| 5057 | return true; |
| 5058 | } |
| 5059 | |
| 5060 | /* Flush the output symbols to the file. */ |
| 5061 | |
| 5062 | static boolean |
| 5063 | elf_link_flush_output_syms (finfo) |
| 5064 | struct elf_final_link_info *finfo; |
| 5065 | { |
| 5066 | if (finfo->symbuf_count > 0) |
| 5067 | { |
| 5068 | Elf_Internal_Shdr *symtab; |
| 5069 | |
| 5070 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; |
| 5071 | |
| 5072 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, |
| 5073 | SEEK_SET) != 0 |
| 5074 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, |
| 5075 | sizeof (Elf_External_Sym), finfo->output_bfd) |
| 5076 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) |
| 5077 | return false; |
| 5078 | |
| 5079 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); |
| 5080 | |
| 5081 | finfo->symbuf_count = 0; |
| 5082 | } |
| 5083 | |
| 5084 | return true; |
| 5085 | } |
| 5086 | |
| 5087 | /* Adjust all external symbols pointing into SEC_MERGE sections |
| 5088 | to reflect the object merging within the sections. */ |
| 5089 | |
| 5090 | static boolean |
| 5091 | elf_link_sec_merge_syms (h, data) |
| 5092 | struct elf_link_hash_entry *h; |
| 5093 | PTR data; |
| 5094 | { |
| 5095 | asection *sec; |
| 5096 | |
| 5097 | if ((h->root.type == bfd_link_hash_defined |
| 5098 | || h->root.type == bfd_link_hash_defweak) |
| 5099 | && ((sec = h->root.u.def.section)->flags & SEC_MERGE) |
| 5100 | && elf_section_data (sec)->merge_info) |
| 5101 | { |
| 5102 | bfd *output_bfd = (bfd *) data; |
| 5103 | |
| 5104 | h->root.u.def.value = |
| 5105 | _bfd_merged_section_offset (output_bfd, |
| 5106 | &h->root.u.def.section, |
| 5107 | elf_section_data (sec)->merge_info, |
| 5108 | h->root.u.def.value, (bfd_vma) 0); |
| 5109 | } |
| 5110 | |
| 5111 | return true; |
| 5112 | } |
| 5113 | |
| 5114 | /* Add an external symbol to the symbol table. This is called from |
| 5115 | the hash table traversal routine. When generating a shared object, |
| 5116 | we go through the symbol table twice. The first time we output |
| 5117 | anything that might have been forced to local scope in a version |
| 5118 | script. The second time we output the symbols that are still |
| 5119 | global symbols. */ |
| 5120 | |
| 5121 | static boolean |
| 5122 | elf_link_output_extsym (h, data) |
| 5123 | struct elf_link_hash_entry *h; |
| 5124 | PTR data; |
| 5125 | { |
| 5126 | struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; |
| 5127 | struct elf_final_link_info *finfo = eoinfo->finfo; |
| 5128 | boolean strip; |
| 5129 | Elf_Internal_Sym sym; |
| 5130 | asection *input_sec; |
| 5131 | |
| 5132 | /* Decide whether to output this symbol in this pass. */ |
| 5133 | if (eoinfo->localsyms) |
| 5134 | { |
| 5135 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) |
| 5136 | return true; |
| 5137 | } |
| 5138 | else |
| 5139 | { |
| 5140 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) |
| 5141 | return true; |
| 5142 | } |
| 5143 | |
| 5144 | /* If we are not creating a shared library, and this symbol is |
| 5145 | referenced by a shared library but is not defined anywhere, then |
| 5146 | warn that it is undefined. If we do not do this, the runtime |
| 5147 | linker will complain that the symbol is undefined when the |
| 5148 | program is run. We don't have to worry about symbols that are |
| 5149 | referenced by regular files, because we will already have issued |
| 5150 | warnings for them. */ |
| 5151 | if (! finfo->info->relocateable |
| 5152 | && ! finfo->info->allow_shlib_undefined |
| 5153 | && ! (finfo->info->shared |
| 5154 | && !finfo->info->no_undefined) |
| 5155 | && h->root.type == bfd_link_hash_undefined |
| 5156 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 |
| 5157 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) |
| 5158 | { |
| 5159 | if (! ((*finfo->info->callbacks->undefined_symbol) |
| 5160 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, |
| 5161 | (asection *) NULL, 0, true))) |
| 5162 | { |
| 5163 | eoinfo->failed = true; |
| 5164 | return false; |
| 5165 | } |
| 5166 | } |
| 5167 | |
| 5168 | /* We don't want to output symbols that have never been mentioned by |
| 5169 | a regular file, or that we have been told to strip. However, if |
| 5170 | h->indx is set to -2, the symbol is used by a reloc and we must |
| 5171 | output it. */ |
| 5172 | if (h->indx == -2) |
| 5173 | strip = false; |
| 5174 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
| 5175 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) |
| 5176 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 |
| 5177 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) |
| 5178 | strip = true; |
| 5179 | else if (finfo->info->strip == strip_all |
| 5180 | || (finfo->info->strip == strip_some |
| 5181 | && bfd_hash_lookup (finfo->info->keep_hash, |
| 5182 | h->root.root.string, |
| 5183 | false, false) == NULL)) |
| 5184 | strip = true; |
| 5185 | else |
| 5186 | strip = false; |
| 5187 | |
| 5188 | /* If we're stripping it, and it's not a dynamic symbol, there's |
| 5189 | nothing else to do unless it is a forced local symbol. */ |
| 5190 | if (strip |
| 5191 | && h->dynindx == -1 |
| 5192 | && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) |
| 5193 | return true; |
| 5194 | |
| 5195 | sym.st_value = 0; |
| 5196 | sym.st_size = h->size; |
| 5197 | sym.st_other = h->other; |
| 5198 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) |
| 5199 | sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type); |
| 5200 | else if (h->root.type == bfd_link_hash_undefweak |
| 5201 | || h->root.type == bfd_link_hash_defweak) |
| 5202 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); |
| 5203 | else |
| 5204 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); |
| 5205 | |
| 5206 | switch (h->root.type) |
| 5207 | { |
| 5208 | default: |
| 5209 | case bfd_link_hash_new: |
| 5210 | abort (); |
| 5211 | return false; |
| 5212 | |
| 5213 | case bfd_link_hash_undefined: |
| 5214 | input_sec = bfd_und_section_ptr; |
| 5215 | sym.st_shndx = SHN_UNDEF; |
| 5216 | break; |
| 5217 | |
| 5218 | case bfd_link_hash_undefweak: |
| 5219 | input_sec = bfd_und_section_ptr; |
| 5220 | sym.st_shndx = SHN_UNDEF; |
| 5221 | break; |
| 5222 | |
| 5223 | case bfd_link_hash_defined: |
| 5224 | case bfd_link_hash_defweak: |
| 5225 | { |
| 5226 | input_sec = h->root.u.def.section; |
| 5227 | if (input_sec->output_section != NULL) |
| 5228 | { |
| 5229 | sym.st_shndx = |
| 5230 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, |
| 5231 | input_sec->output_section); |
| 5232 | if (sym.st_shndx == (unsigned short) -1) |
| 5233 | { |
| 5234 | (*_bfd_error_handler) |
| 5235 | (_("%s: could not find output section %s for input section %s"), |
| 5236 | bfd_get_filename (finfo->output_bfd), |
| 5237 | input_sec->output_section->name, |
| 5238 | input_sec->name); |
| 5239 | eoinfo->failed = true; |
| 5240 | return false; |
| 5241 | } |
| 5242 | |
| 5243 | /* ELF symbols in relocateable files are section relative, |
| 5244 | but in nonrelocateable files they are virtual |
| 5245 | addresses. */ |
| 5246 | sym.st_value = h->root.u.def.value + input_sec->output_offset; |
| 5247 | if (! finfo->info->relocateable) |
| 5248 | sym.st_value += input_sec->output_section->vma; |
| 5249 | } |
| 5250 | else |
| 5251 | { |
| 5252 | BFD_ASSERT (input_sec->owner == NULL |
| 5253 | || (input_sec->owner->flags & DYNAMIC) != 0); |
| 5254 | sym.st_shndx = SHN_UNDEF; |
| 5255 | input_sec = bfd_und_section_ptr; |
| 5256 | } |
| 5257 | } |
| 5258 | break; |
| 5259 | |
| 5260 | case bfd_link_hash_common: |
| 5261 | input_sec = h->root.u.c.p->section; |
| 5262 | sym.st_shndx = SHN_COMMON; |
| 5263 | sym.st_value = 1 << h->root.u.c.p->alignment_power; |
| 5264 | break; |
| 5265 | |
| 5266 | case bfd_link_hash_indirect: |
| 5267 | /* These symbols are created by symbol versioning. They point |
| 5268 | to the decorated version of the name. For example, if the |
| 5269 | symbol foo@@GNU_1.2 is the default, which should be used when |
| 5270 | foo is used with no version, then we add an indirect symbol |
| 5271 | foo which points to foo@@GNU_1.2. We ignore these symbols, |
| 5272 | since the indirected symbol is already in the hash table. */ |
| 5273 | return true; |
| 5274 | |
| 5275 | case bfd_link_hash_warning: |
| 5276 | /* We can't represent these symbols in ELF, although a warning |
| 5277 | symbol may have come from a .gnu.warning.SYMBOL section. We |
| 5278 | just put the target symbol in the hash table. If the target |
| 5279 | symbol does not really exist, don't do anything. */ |
| 5280 | if (h->root.u.i.link->type == bfd_link_hash_new) |
| 5281 | return true; |
| 5282 | return (elf_link_output_extsym |
| 5283 | ((struct elf_link_hash_entry *) h->root.u.i.link, data)); |
| 5284 | } |
| 5285 | |
| 5286 | /* Give the processor backend a chance to tweak the symbol value, |
| 5287 | and also to finish up anything that needs to be done for this |
| 5288 | symbol. */ |
| 5289 | if ((h->dynindx != -1 |
| 5290 | || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) |
| 5291 | && elf_hash_table (finfo->info)->dynamic_sections_created) |
| 5292 | { |
| 5293 | struct elf_backend_data *bed; |
| 5294 | |
| 5295 | bed = get_elf_backend_data (finfo->output_bfd); |
| 5296 | if (! ((*bed->elf_backend_finish_dynamic_symbol) |
| 5297 | (finfo->output_bfd, finfo->info, h, &sym))) |
| 5298 | { |
| 5299 | eoinfo->failed = true; |
| 5300 | return false; |
| 5301 | } |
| 5302 | } |
| 5303 | |
| 5304 | /* If we are marking the symbol as undefined, and there are no |
| 5305 | non-weak references to this symbol from a regular object, then |
| 5306 | mark the symbol as weak undefined; if there are non-weak |
| 5307 | references, mark the symbol as strong. We can't do this earlier, |
| 5308 | because it might not be marked as undefined until the |
| 5309 | finish_dynamic_symbol routine gets through with it. */ |
| 5310 | if (sym.st_shndx == SHN_UNDEF |
| 5311 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 |
| 5312 | && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL |
| 5313 | || ELF_ST_BIND(sym.st_info) == STB_WEAK)) |
| 5314 | { |
| 5315 | int bindtype; |
| 5316 | |
| 5317 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0) |
| 5318 | bindtype = STB_GLOBAL; |
| 5319 | else |
| 5320 | bindtype = STB_WEAK; |
| 5321 | sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info)); |
| 5322 | } |
| 5323 | |
| 5324 | /* If a symbol is not defined locally, we clear the visibility |
| 5325 | field. */ |
| 5326 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) |
| 5327 | sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other); |
| 5328 | |
| 5329 | /* If this symbol should be put in the .dynsym section, then put it |
| 5330 | there now. We have already know the symbol index. We also fill |
| 5331 | in the entry in the .hash section. */ |
| 5332 | if (h->dynindx != -1 |
| 5333 | && elf_hash_table (finfo->info)->dynamic_sections_created) |
| 5334 | { |
| 5335 | size_t bucketcount; |
| 5336 | size_t bucket; |
| 5337 | size_t hash_entry_size; |
| 5338 | bfd_byte *bucketpos; |
| 5339 | bfd_vma chain; |
| 5340 | |
| 5341 | sym.st_name = h->dynstr_index; |
| 5342 | |
| 5343 | elf_swap_symbol_out (finfo->output_bfd, &sym, |
| 5344 | (PTR) (((Elf_External_Sym *) |
| 5345 | finfo->dynsym_sec->contents) |
| 5346 | + h->dynindx)); |
| 5347 | |
| 5348 | bucketcount = elf_hash_table (finfo->info)->bucketcount; |
| 5349 | bucket = h->elf_hash_value % bucketcount; |
| 5350 | hash_entry_size |
| 5351 | = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize; |
| 5352 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents |
| 5353 | + (bucket + 2) * hash_entry_size); |
| 5354 | chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos); |
| 5355 | bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos); |
| 5356 | bfd_put (8 * hash_entry_size, finfo->output_bfd, chain, |
| 5357 | ((bfd_byte *) finfo->hash_sec->contents |
| 5358 | + (bucketcount + 2 + h->dynindx) * hash_entry_size)); |
| 5359 | |
| 5360 | if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL) |
| 5361 | { |
| 5362 | Elf_Internal_Versym iversym; |
| 5363 | |
| 5364 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) |
| 5365 | { |
| 5366 | if (h->verinfo.verdef == NULL) |
| 5367 | iversym.vs_vers = 0; |
| 5368 | else |
| 5369 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; |
| 5370 | } |
| 5371 | else |
| 5372 | { |
| 5373 | if (h->verinfo.vertree == NULL) |
| 5374 | iversym.vs_vers = 1; |
| 5375 | else |
| 5376 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; |
| 5377 | } |
| 5378 | |
| 5379 | if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0) |
| 5380 | iversym.vs_vers |= VERSYM_HIDDEN; |
| 5381 | |
| 5382 | _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, |
| 5383 | (((Elf_External_Versym *) |
| 5384 | finfo->symver_sec->contents) |
| 5385 | + h->dynindx)); |
| 5386 | } |
| 5387 | } |
| 5388 | |
| 5389 | /* If we're stripping it, then it was just a dynamic symbol, and |
| 5390 | there's nothing else to do. */ |
| 5391 | if (strip) |
| 5392 | return true; |
| 5393 | |
| 5394 | h->indx = bfd_get_symcount (finfo->output_bfd); |
| 5395 | |
| 5396 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) |
| 5397 | { |
| 5398 | eoinfo->failed = true; |
| 5399 | return false; |
| 5400 | } |
| 5401 | |
| 5402 | return true; |
| 5403 | } |
| 5404 | |
| 5405 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which |
| 5406 | originated from the section given by INPUT_REL_HDR) to the |
| 5407 | OUTPUT_BFD. */ |
| 5408 | |
| 5409 | static void |
| 5410 | elf_link_output_relocs (output_bfd, input_section, input_rel_hdr, |
| 5411 | internal_relocs) |
| 5412 | bfd *output_bfd; |
| 5413 | asection *input_section; |
| 5414 | Elf_Internal_Shdr *input_rel_hdr; |
| 5415 | Elf_Internal_Rela *internal_relocs; |
| 5416 | { |
| 5417 | Elf_Internal_Rela *irela; |
| 5418 | Elf_Internal_Rela *irelaend; |
| 5419 | Elf_Internal_Shdr *output_rel_hdr; |
| 5420 | asection *output_section; |
| 5421 | unsigned int *rel_countp = NULL; |
| 5422 | struct elf_backend_data *bed; |
| 5423 | |
| 5424 | output_section = input_section->output_section; |
| 5425 | output_rel_hdr = NULL; |
| 5426 | |
| 5427 | if (elf_section_data (output_section)->rel_hdr.sh_entsize |
| 5428 | == input_rel_hdr->sh_entsize) |
| 5429 | { |
| 5430 | output_rel_hdr = &elf_section_data (output_section)->rel_hdr; |
| 5431 | rel_countp = &elf_section_data (output_section)->rel_count; |
| 5432 | } |
| 5433 | else if (elf_section_data (output_section)->rel_hdr2 |
| 5434 | && (elf_section_data (output_section)->rel_hdr2->sh_entsize |
| 5435 | == input_rel_hdr->sh_entsize)) |
| 5436 | { |
| 5437 | output_rel_hdr = elf_section_data (output_section)->rel_hdr2; |
| 5438 | rel_countp = &elf_section_data (output_section)->rel_count2; |
| 5439 | } |
| 5440 | |
| 5441 | BFD_ASSERT (output_rel_hdr != NULL); |
| 5442 | |
| 5443 | bed = get_elf_backend_data (output_bfd); |
| 5444 | irela = internal_relocs; |
| 5445 | irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; |
| 5446 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) |
| 5447 | { |
| 5448 | Elf_External_Rel *erel; |
| 5449 | |
| 5450 | erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp); |
| 5451 | for (; irela < irelaend; irela++, erel++) |
| 5452 | { |
| 5453 | Elf_Internal_Rel irel; |
| 5454 | |
| 5455 | irel.r_offset = irela->r_offset; |
| 5456 | irel.r_info = irela->r_info; |
| 5457 | BFD_ASSERT (irela->r_addend == 0); |
| 5458 | if (bed->s->swap_reloc_out) |
| 5459 | (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel); |
| 5460 | else |
| 5461 | elf_swap_reloc_out (output_bfd, &irel, erel); |
| 5462 | } |
| 5463 | } |
| 5464 | else |
| 5465 | { |
| 5466 | Elf_External_Rela *erela; |
| 5467 | |
| 5468 | BFD_ASSERT (input_rel_hdr->sh_entsize |
| 5469 | == sizeof (Elf_External_Rela)); |
| 5470 | erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp); |
| 5471 | for (; irela < irelaend; irela++, erela++) |
| 5472 | if (bed->s->swap_reloca_out) |
| 5473 | (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela); |
| 5474 | else |
| 5475 | elf_swap_reloca_out (output_bfd, irela, erela); |
| 5476 | } |
| 5477 | |
| 5478 | /* Bump the counter, so that we know where to add the next set of |
| 5479 | relocations. */ |
| 5480 | *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; |
| 5481 | } |
| 5482 | |
| 5483 | /* Link an input file into the linker output file. This function |
| 5484 | handles all the sections and relocations of the input file at once. |
| 5485 | This is so that we only have to read the local symbols once, and |
| 5486 | don't have to keep them in memory. */ |
| 5487 | |
| 5488 | static boolean |
| 5489 | elf_link_input_bfd (finfo, input_bfd) |
| 5490 | struct elf_final_link_info *finfo; |
| 5491 | bfd *input_bfd; |
| 5492 | { |
| 5493 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, |
| 5494 | bfd *, asection *, bfd_byte *, |
| 5495 | Elf_Internal_Rela *, |
| 5496 | Elf_Internal_Sym *, asection **)); |
| 5497 | bfd *output_bfd; |
| 5498 | Elf_Internal_Shdr *symtab_hdr; |
| 5499 | size_t locsymcount; |
| 5500 | size_t extsymoff; |
| 5501 | Elf_External_Sym *external_syms; |
| 5502 | Elf_External_Sym *esym; |
| 5503 | Elf_External_Sym *esymend; |
| 5504 | Elf_Internal_Sym *isym; |
| 5505 | long *pindex; |
| 5506 | asection **ppsection; |
| 5507 | asection *o; |
| 5508 | struct elf_backend_data *bed; |
| 5509 | |
| 5510 | output_bfd = finfo->output_bfd; |
| 5511 | bed = get_elf_backend_data (output_bfd); |
| 5512 | relocate_section = bed->elf_backend_relocate_section; |
| 5513 | |
| 5514 | /* If this is a dynamic object, we don't want to do anything here: |
| 5515 | we don't want the local symbols, and we don't want the section |
| 5516 | contents. */ |
| 5517 | if ((input_bfd->flags & DYNAMIC) != 0) |
| 5518 | return true; |
| 5519 | |
| 5520 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 5521 | if (elf_bad_symtab (input_bfd)) |
| 5522 | { |
| 5523 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); |
| 5524 | extsymoff = 0; |
| 5525 | } |
| 5526 | else |
| 5527 | { |
| 5528 | locsymcount = symtab_hdr->sh_info; |
| 5529 | extsymoff = symtab_hdr->sh_info; |
| 5530 | } |
| 5531 | |
| 5532 | /* Read the local symbols. */ |
| 5533 | if (symtab_hdr->contents != NULL) |
| 5534 | external_syms = (Elf_External_Sym *) symtab_hdr->contents; |
| 5535 | else if (locsymcount == 0) |
| 5536 | external_syms = NULL; |
| 5537 | else |
| 5538 | { |
| 5539 | external_syms = finfo->external_syms; |
| 5540 | if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 |
| 5541 | || (bfd_read (external_syms, sizeof (Elf_External_Sym), |
| 5542 | locsymcount, input_bfd) |
| 5543 | != locsymcount * sizeof (Elf_External_Sym))) |
| 5544 | return false; |
| 5545 | } |
| 5546 | |
| 5547 | /* Swap in the local symbols and write out the ones which we know |
| 5548 | are going into the output file. */ |
| 5549 | esym = external_syms; |
| 5550 | esymend = esym + locsymcount; |
| 5551 | isym = finfo->internal_syms; |
| 5552 | pindex = finfo->indices; |
| 5553 | ppsection = finfo->sections; |
| 5554 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) |
| 5555 | { |
| 5556 | asection *isec; |
| 5557 | const char *name; |
| 5558 | Elf_Internal_Sym osym; |
| 5559 | |
| 5560 | elf_swap_symbol_in (input_bfd, esym, isym); |
| 5561 | *pindex = -1; |
| 5562 | |
| 5563 | if (elf_bad_symtab (input_bfd)) |
| 5564 | { |
| 5565 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) |
| 5566 | { |
| 5567 | *ppsection = NULL; |
| 5568 | continue; |
| 5569 | } |
| 5570 | } |
| 5571 | |
| 5572 | name = NULL; |
| 5573 | if (isym->st_shndx == SHN_UNDEF) |
| 5574 | { |
| 5575 | isec = bfd_und_section_ptr; |
| 5576 | name = isec->name; |
| 5577 | } |
| 5578 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) |
| 5579 | { |
| 5580 | isec = section_from_elf_index (input_bfd, isym->st_shndx); |
| 5581 | if (isec && elf_section_data (isec)->merge_info |
| 5582 | && ELF_ST_TYPE (isym->st_info) != STT_SECTION) |
| 5583 | isym->st_value = |
| 5584 | _bfd_merged_section_offset (output_bfd, &isec, |
| 5585 | elf_section_data (isec)->merge_info, |
| 5586 | isym->st_value, (bfd_vma) 0); |
| 5587 | } |
| 5588 | else if (isym->st_shndx == SHN_ABS) |
| 5589 | { |
| 5590 | isec = bfd_abs_section_ptr; |
| 5591 | name = isec->name; |
| 5592 | } |
| 5593 | else if (isym->st_shndx == SHN_COMMON) |
| 5594 | { |
| 5595 | isec = bfd_com_section_ptr; |
| 5596 | name = isec->name; |
| 5597 | } |
| 5598 | else |
| 5599 | { |
| 5600 | /* Who knows? */ |
| 5601 | isec = NULL; |
| 5602 | } |
| 5603 | |
| 5604 | *ppsection = isec; |
| 5605 | |
| 5606 | /* Don't output the first, undefined, symbol. */ |
| 5607 | if (esym == external_syms) |
| 5608 | continue; |
| 5609 | |
| 5610 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
| 5611 | { |
| 5612 | asection *ksec; |
| 5613 | |
| 5614 | /* Save away all section symbol values. */ |
| 5615 | if (isec != NULL) |
| 5616 | { |
| 5617 | if (name) |
| 5618 | { |
| 5619 | if (isec->symbol->value != isym->st_value) |
| 5620 | (*_bfd_error_handler) |
| 5621 | (_("%s: invalid section symbol index 0x%x (%s) ingored"), |
| 5622 | bfd_get_filename (input_bfd), isym->st_shndx, |
| 5623 | name); |
| 5624 | continue; |
| 5625 | } |
| 5626 | isec->symbol->value = isym->st_value; |
| 5627 | } |
| 5628 | |
| 5629 | /* If this is a discarded link-once section symbol, update |
| 5630 | it's value to that of the kept section symbol. The |
| 5631 | linker will keep the first of any matching link-once |
| 5632 | sections, so we should have already seen it's section |
| 5633 | symbol. I trust no-one will have the bright idea of |
| 5634 | re-ordering the bfd list... */ |
| 5635 | if (isec != NULL |
| 5636 | && (bfd_get_section_flags (input_bfd, isec) & SEC_LINK_ONCE) != 0 |
| 5637 | && (ksec = isec->kept_section) != NULL) |
| 5638 | { |
| 5639 | isym->st_value = ksec->symbol->value; |
| 5640 | |
| 5641 | /* That put the value right, but the section info is all |
| 5642 | wrong. I hope this works. */ |
| 5643 | isec->output_offset = ksec->output_offset; |
| 5644 | isec->output_section = ksec->output_section; |
| 5645 | } |
| 5646 | |
| 5647 | /* We never output section symbols. Instead, we use the |
| 5648 | section symbol of the corresponding section in the output |
| 5649 | file. */ |
| 5650 | continue; |
| 5651 | } |
| 5652 | |
| 5653 | /* If we are stripping all symbols, we don't want to output this |
| 5654 | one. */ |
| 5655 | if (finfo->info->strip == strip_all) |
| 5656 | continue; |
| 5657 | |
| 5658 | /* If we are discarding all local symbols, we don't want to |
| 5659 | output this one. If we are generating a relocateable output |
| 5660 | file, then some of the local symbols may be required by |
| 5661 | relocs; we output them below as we discover that they are |
| 5662 | needed. */ |
| 5663 | if (finfo->info->discard == discard_all) |
| 5664 | continue; |
| 5665 | |
| 5666 | /* If this symbol is defined in a section which we are |
| 5667 | discarding, we don't need to keep it, but note that |
| 5668 | linker_mark is only reliable for sections that have contents. |
| 5669 | For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE |
| 5670 | as well as linker_mark. */ |
| 5671 | if (isym->st_shndx > 0 |
| 5672 | && isym->st_shndx < SHN_LORESERVE |
| 5673 | && isec != NULL |
| 5674 | && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0) |
| 5675 | || (! finfo->info->relocateable |
| 5676 | && (isec->flags & SEC_EXCLUDE) != 0))) |
| 5677 | continue; |
| 5678 | |
| 5679 | /* Get the name of the symbol. */ |
| 5680 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, |
| 5681 | isym->st_name); |
| 5682 | if (name == NULL) |
| 5683 | return false; |
| 5684 | |
| 5685 | /* See if we are discarding symbols with this name. */ |
| 5686 | if ((finfo->info->strip == strip_some |
| 5687 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) |
| 5688 | == NULL)) |
| 5689 | || (((finfo->info->discard == discard_sec_merge |
| 5690 | && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable) |
| 5691 | || finfo->info->discard == discard_l) |
| 5692 | && bfd_is_local_label_name (input_bfd, name))) |
| 5693 | continue; |
| 5694 | |
| 5695 | /* If we get here, we are going to output this symbol. */ |
| 5696 | |
| 5697 | osym = *isym; |
| 5698 | |
| 5699 | /* Adjust the section index for the output file. */ |
| 5700 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, |
| 5701 | isec->output_section); |
| 5702 | if (osym.st_shndx == (unsigned short) -1) |
| 5703 | return false; |
| 5704 | |
| 5705 | *pindex = bfd_get_symcount (output_bfd); |
| 5706 | |
| 5707 | /* ELF symbols in relocateable files are section relative, but |
| 5708 | in executable files they are virtual addresses. Note that |
| 5709 | this code assumes that all ELF sections have an associated |
| 5710 | BFD section with a reasonable value for output_offset; below |
| 5711 | we assume that they also have a reasonable value for |
| 5712 | output_section. Any special sections must be set up to meet |
| 5713 | these requirements. */ |
| 5714 | osym.st_value += isec->output_offset; |
| 5715 | if (! finfo->info->relocateable) |
| 5716 | osym.st_value += isec->output_section->vma; |
| 5717 | |
| 5718 | if (! elf_link_output_sym (finfo, name, &osym, isec)) |
| 5719 | return false; |
| 5720 | } |
| 5721 | |
| 5722 | /* Relocate the contents of each section. */ |
| 5723 | for (o = input_bfd->sections; o != NULL; o = o->next) |
| 5724 | { |
| 5725 | bfd_byte *contents; |
| 5726 | |
| 5727 | if (! o->linker_mark) |
| 5728 | { |
| 5729 | /* This section was omitted from the link. */ |
| 5730 | continue; |
| 5731 | } |
| 5732 | |
| 5733 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
| 5734 | || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0)) |
| 5735 | continue; |
| 5736 | |
| 5737 | if ((o->flags & SEC_LINKER_CREATED) != 0) |
| 5738 | { |
| 5739 | /* Section was created by elf_link_create_dynamic_sections |
| 5740 | or somesuch. */ |
| 5741 | continue; |
| 5742 | } |
| 5743 | |
| 5744 | /* Get the contents of the section. They have been cached by a |
| 5745 | relaxation routine. Note that o is a section in an input |
| 5746 | file, so the contents field will not have been set by any of |
| 5747 | the routines which work on output files. */ |
| 5748 | if (elf_section_data (o)->this_hdr.contents != NULL) |
| 5749 | contents = elf_section_data (o)->this_hdr.contents; |
| 5750 | else |
| 5751 | { |
| 5752 | contents = finfo->contents; |
| 5753 | if (! bfd_get_section_contents (input_bfd, o, contents, |
| 5754 | (file_ptr) 0, o->_raw_size)) |
| 5755 | return false; |
| 5756 | } |
| 5757 | |
| 5758 | if ((o->flags & SEC_RELOC) != 0) |
| 5759 | { |
| 5760 | Elf_Internal_Rela *internal_relocs; |
| 5761 | |
| 5762 | /* Get the swapped relocs. */ |
| 5763 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) |
| 5764 | (input_bfd, o, finfo->external_relocs, |
| 5765 | finfo->internal_relocs, false)); |
| 5766 | if (internal_relocs == NULL |
| 5767 | && o->reloc_count > 0) |
| 5768 | return false; |
| 5769 | |
| 5770 | /* Relocate the section by invoking a back end routine. |
| 5771 | |
| 5772 | The back end routine is responsible for adjusting the |
| 5773 | section contents as necessary, and (if using Rela relocs |
| 5774 | and generating a relocateable output file) adjusting the |
| 5775 | reloc addend as necessary. |
| 5776 | |
| 5777 | The back end routine does not have to worry about setting |
| 5778 | the reloc address or the reloc symbol index. |
| 5779 | |
| 5780 | The back end routine is given a pointer to the swapped in |
| 5781 | internal symbols, and can access the hash table entries |
| 5782 | for the external symbols via elf_sym_hashes (input_bfd). |
| 5783 | |
| 5784 | When generating relocateable output, the back end routine |
| 5785 | must handle STB_LOCAL/STT_SECTION symbols specially. The |
| 5786 | output symbol is going to be a section symbol |
| 5787 | corresponding to the output section, which will require |
| 5788 | the addend to be adjusted. */ |
| 5789 | |
| 5790 | if (! (*relocate_section) (output_bfd, finfo->info, |
| 5791 | input_bfd, o, contents, |
| 5792 | internal_relocs, |
| 5793 | finfo->internal_syms, |
| 5794 | finfo->sections)) |
| 5795 | return false; |
| 5796 | |
| 5797 | if (finfo->info->relocateable || finfo->info->emitrelocations) |
| 5798 | { |
| 5799 | Elf_Internal_Rela *irela; |
| 5800 | Elf_Internal_Rela *irelaend; |
| 5801 | struct elf_link_hash_entry **rel_hash; |
| 5802 | Elf_Internal_Shdr *input_rel_hdr; |
| 5803 | |
| 5804 | /* Adjust the reloc addresses and symbol indices. */ |
| 5805 | |
| 5806 | irela = internal_relocs; |
| 5807 | irelaend = |
| 5808 | irela + o->reloc_count * bed->s->int_rels_per_ext_rel; |
| 5809 | rel_hash = (elf_section_data (o->output_section)->rel_hashes |
| 5810 | + elf_section_data (o->output_section)->rel_count |
| 5811 | + elf_section_data (o->output_section)->rel_count2); |
| 5812 | for (; irela < irelaend; irela++, rel_hash++) |
| 5813 | { |
| 5814 | unsigned long r_symndx; |
| 5815 | Elf_Internal_Sym *isym; |
| 5816 | asection *sec; |
| 5817 | |
| 5818 | irela->r_offset += o->output_offset; |
| 5819 | |
| 5820 | /* Relocs in an executable have to be virtual addresses. */ |
| 5821 | if (finfo->info->emitrelocations) |
| 5822 | irela->r_offset += o->output_section->vma; |
| 5823 | |
| 5824 | r_symndx = ELF_R_SYM (irela->r_info); |
| 5825 | |
| 5826 | if (r_symndx == 0) |
| 5827 | continue; |
| 5828 | |
| 5829 | if (r_symndx >= locsymcount |
| 5830 | || (elf_bad_symtab (input_bfd) |
| 5831 | && finfo->sections[r_symndx] == NULL)) |
| 5832 | { |
| 5833 | struct elf_link_hash_entry *rh; |
| 5834 | long indx; |
| 5835 | |
| 5836 | /* This is a reloc against a global symbol. We |
| 5837 | have not yet output all the local symbols, so |
| 5838 | we do not know the symbol index of any global |
| 5839 | symbol. We set the rel_hash entry for this |
| 5840 | reloc to point to the global hash table entry |
| 5841 | for this symbol. The symbol index is then |
| 5842 | set at the end of elf_bfd_final_link. */ |
| 5843 | indx = r_symndx - extsymoff; |
| 5844 | rh = elf_sym_hashes (input_bfd)[indx]; |
| 5845 | while (rh->root.type == bfd_link_hash_indirect |
| 5846 | || rh->root.type == bfd_link_hash_warning) |
| 5847 | rh = (struct elf_link_hash_entry *) rh->root.u.i.link; |
| 5848 | |
| 5849 | /* Setting the index to -2 tells |
| 5850 | elf_link_output_extsym that this symbol is |
| 5851 | used by a reloc. */ |
| 5852 | BFD_ASSERT (rh->indx < 0); |
| 5853 | rh->indx = -2; |
| 5854 | |
| 5855 | *rel_hash = rh; |
| 5856 | |
| 5857 | continue; |
| 5858 | } |
| 5859 | |
| 5860 | /* This is a reloc against a local symbol. */ |
| 5861 | |
| 5862 | *rel_hash = NULL; |
| 5863 | isym = finfo->internal_syms + r_symndx; |
| 5864 | sec = finfo->sections[r_symndx]; |
| 5865 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
| 5866 | { |
| 5867 | /* I suppose the backend ought to fill in the |
| 5868 | section of any STT_SECTION symbol against a |
| 5869 | processor specific section. If we have |
| 5870 | discarded a section, the output_section will |
| 5871 | be the absolute section. */ |
| 5872 | if (sec != NULL |
| 5873 | && (bfd_is_abs_section (sec) |
| 5874 | || (sec->output_section != NULL |
| 5875 | && bfd_is_abs_section (sec->output_section)))) |
| 5876 | r_symndx = 0; |
| 5877 | else if (sec == NULL || sec->owner == NULL) |
| 5878 | { |
| 5879 | bfd_set_error (bfd_error_bad_value); |
| 5880 | return false; |
| 5881 | } |
| 5882 | else |
| 5883 | { |
| 5884 | r_symndx = sec->output_section->target_index; |
| 5885 | BFD_ASSERT (r_symndx != 0); |
| 5886 | } |
| 5887 | } |
| 5888 | else |
| 5889 | { |
| 5890 | if (finfo->indices[r_symndx] == -1) |
| 5891 | { |
| 5892 | unsigned long link; |
| 5893 | const char *name; |
| 5894 | asection *osec; |
| 5895 | |
| 5896 | if (finfo->info->strip == strip_all) |
| 5897 | { |
| 5898 | /* You can't do ld -r -s. */ |
| 5899 | bfd_set_error (bfd_error_invalid_operation); |
| 5900 | return false; |
| 5901 | } |
| 5902 | |
| 5903 | /* This symbol was skipped earlier, but |
| 5904 | since it is needed by a reloc, we |
| 5905 | must output it now. */ |
| 5906 | link = symtab_hdr->sh_link; |
| 5907 | name = bfd_elf_string_from_elf_section (input_bfd, |
| 5908 | link, |
| 5909 | isym->st_name); |
| 5910 | if (name == NULL) |
| 5911 | return false; |
| 5912 | |
| 5913 | osec = sec->output_section; |
| 5914 | isym->st_shndx = |
| 5915 | _bfd_elf_section_from_bfd_section (output_bfd, |
| 5916 | osec); |
| 5917 | if (isym->st_shndx == (unsigned short) -1) |
| 5918 | return false; |
| 5919 | |
| 5920 | isym->st_value += sec->output_offset; |
| 5921 | if (! finfo->info->relocateable) |
| 5922 | isym->st_value += osec->vma; |
| 5923 | |
| 5924 | finfo->indices[r_symndx] = bfd_get_symcount (output_bfd); |
| 5925 | |
| 5926 | if (! elf_link_output_sym (finfo, name, isym, sec)) |
| 5927 | return false; |
| 5928 | } |
| 5929 | |
| 5930 | r_symndx = finfo->indices[r_symndx]; |
| 5931 | } |
| 5932 | |
| 5933 | irela->r_info = ELF_R_INFO (r_symndx, |
| 5934 | ELF_R_TYPE (irela->r_info)); |
| 5935 | } |
| 5936 | |
| 5937 | /* Swap out the relocs. */ |
| 5938 | input_rel_hdr = &elf_section_data (o)->rel_hdr; |
| 5939 | elf_link_output_relocs (output_bfd, o, |
| 5940 | input_rel_hdr, |
| 5941 | internal_relocs); |
| 5942 | internal_relocs |
| 5943 | += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; |
| 5944 | input_rel_hdr = elf_section_data (o)->rel_hdr2; |
| 5945 | if (input_rel_hdr) |
| 5946 | elf_link_output_relocs (output_bfd, o, |
| 5947 | input_rel_hdr, |
| 5948 | internal_relocs); |
| 5949 | } |
| 5950 | } |
| 5951 | |
| 5952 | /* Write out the modified section contents. */ |
| 5953 | if (elf_section_data (o)->stab_info) |
| 5954 | { |
| 5955 | if (! (_bfd_write_section_stabs |
| 5956 | (output_bfd, &elf_hash_table (finfo->info)->stab_info, |
| 5957 | o, &elf_section_data (o)->stab_info, contents))) |
| 5958 | return false; |
| 5959 | } |
| 5960 | else if (elf_section_data (o)->merge_info) |
| 5961 | { |
| 5962 | if (! (_bfd_write_merged_section |
| 5963 | (output_bfd, o, elf_section_data (o)->merge_info))) |
| 5964 | return false; |
| 5965 | } |
| 5966 | else |
| 5967 | { |
| 5968 | if (! (o->flags & SEC_EXCLUDE) && |
| 5969 | ! bfd_set_section_contents (output_bfd, o->output_section, |
| 5970 | contents, o->output_offset, |
| 5971 | (o->_cooked_size != 0 |
| 5972 | ? o->_cooked_size |
| 5973 | : o->_raw_size))) |
| 5974 | return false; |
| 5975 | } |
| 5976 | } |
| 5977 | |
| 5978 | return true; |
| 5979 | } |
| 5980 | |
| 5981 | /* Generate a reloc when linking an ELF file. This is a reloc |
| 5982 | requested by the linker, and does come from any input file. This |
| 5983 | is used to build constructor and destructor tables when linking |
| 5984 | with -Ur. */ |
| 5985 | |
| 5986 | static boolean |
| 5987 | elf_reloc_link_order (output_bfd, info, output_section, link_order) |
| 5988 | bfd *output_bfd; |
| 5989 | struct bfd_link_info *info; |
| 5990 | asection *output_section; |
| 5991 | struct bfd_link_order *link_order; |
| 5992 | { |
| 5993 | reloc_howto_type *howto; |
| 5994 | long indx; |
| 5995 | bfd_vma offset; |
| 5996 | bfd_vma addend; |
| 5997 | struct elf_link_hash_entry **rel_hash_ptr; |
| 5998 | Elf_Internal_Shdr *rel_hdr; |
| 5999 | struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
| 6000 | |
| 6001 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); |
| 6002 | if (howto == NULL) |
| 6003 | { |
| 6004 | bfd_set_error (bfd_error_bad_value); |
| 6005 | return false; |
| 6006 | } |
| 6007 | |
| 6008 | addend = link_order->u.reloc.p->addend; |
| 6009 | |
| 6010 | /* Figure out the symbol index. */ |
| 6011 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes |
| 6012 | + elf_section_data (output_section)->rel_count |
| 6013 | + elf_section_data (output_section)->rel_count2); |
| 6014 | if (link_order->type == bfd_section_reloc_link_order) |
| 6015 | { |
| 6016 | indx = link_order->u.reloc.p->u.section->target_index; |
| 6017 | BFD_ASSERT (indx != 0); |
| 6018 | *rel_hash_ptr = NULL; |
| 6019 | } |
| 6020 | else |
| 6021 | { |
| 6022 | struct elf_link_hash_entry *h; |
| 6023 | |
| 6024 | /* Treat a reloc against a defined symbol as though it were |
| 6025 | actually against the section. */ |
| 6026 | h = ((struct elf_link_hash_entry *) |
| 6027 | bfd_wrapped_link_hash_lookup (output_bfd, info, |
| 6028 | link_order->u.reloc.p->u.name, |
| 6029 | false, false, true)); |
| 6030 | if (h != NULL |
| 6031 | && (h->root.type == bfd_link_hash_defined |
| 6032 | || h->root.type == bfd_link_hash_defweak)) |
| 6033 | { |
| 6034 | asection *section; |
| 6035 | |
| 6036 | section = h->root.u.def.section; |
| 6037 | indx = section->output_section->target_index; |
| 6038 | *rel_hash_ptr = NULL; |
| 6039 | /* It seems that we ought to add the symbol value to the |
| 6040 | addend here, but in practice it has already been added |
| 6041 | because it was passed to constructor_callback. */ |
| 6042 | addend += section->output_section->vma + section->output_offset; |
| 6043 | } |
| 6044 | else if (h != NULL) |
| 6045 | { |
| 6046 | /* Setting the index to -2 tells elf_link_output_extsym that |
| 6047 | this symbol is used by a reloc. */ |
| 6048 | h->indx = -2; |
| 6049 | *rel_hash_ptr = h; |
| 6050 | indx = 0; |
| 6051 | } |
| 6052 | else |
| 6053 | { |
| 6054 | if (! ((*info->callbacks->unattached_reloc) |
| 6055 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, |
| 6056 | (asection *) NULL, (bfd_vma) 0))) |
| 6057 | return false; |
| 6058 | indx = 0; |
| 6059 | } |
| 6060 | } |
| 6061 | |
| 6062 | /* If this is an inplace reloc, we must write the addend into the |
| 6063 | object file. */ |
| 6064 | if (howto->partial_inplace && addend != 0) |
| 6065 | { |
| 6066 | bfd_size_type size; |
| 6067 | bfd_reloc_status_type rstat; |
| 6068 | bfd_byte *buf; |
| 6069 | boolean ok; |
| 6070 | |
| 6071 | size = bfd_get_reloc_size (howto); |
| 6072 | buf = (bfd_byte *) bfd_zmalloc (size); |
| 6073 | if (buf == (bfd_byte *) NULL) |
| 6074 | return false; |
| 6075 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); |
| 6076 | switch (rstat) |
| 6077 | { |
| 6078 | case bfd_reloc_ok: |
| 6079 | break; |
| 6080 | default: |
| 6081 | case bfd_reloc_outofrange: |
| 6082 | abort (); |
| 6083 | case bfd_reloc_overflow: |
| 6084 | if (! ((*info->callbacks->reloc_overflow) |
| 6085 | (info, |
| 6086 | (link_order->type == bfd_section_reloc_link_order |
| 6087 | ? bfd_section_name (output_bfd, |
| 6088 | link_order->u.reloc.p->u.section) |
| 6089 | : link_order->u.reloc.p->u.name), |
| 6090 | howto->name, addend, (bfd *) NULL, (asection *) NULL, |
| 6091 | (bfd_vma) 0))) |
| 6092 | { |
| 6093 | free (buf); |
| 6094 | return false; |
| 6095 | } |
| 6096 | break; |
| 6097 | } |
| 6098 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, |
| 6099 | (file_ptr) link_order->offset, size); |
| 6100 | free (buf); |
| 6101 | if (! ok) |
| 6102 | return false; |
| 6103 | } |
| 6104 | |
| 6105 | /* The address of a reloc is relative to the section in a |
| 6106 | relocateable file, and is a virtual address in an executable |
| 6107 | file. */ |
| 6108 | offset = link_order->offset; |
| 6109 | if (! info->relocateable) |
| 6110 | offset += output_section->vma; |
| 6111 | |
| 6112 | rel_hdr = &elf_section_data (output_section)->rel_hdr; |
| 6113 | |
| 6114 | if (rel_hdr->sh_type == SHT_REL) |
| 6115 | { |
| 6116 | Elf_Internal_Rel irel; |
| 6117 | Elf_External_Rel *erel; |
| 6118 | |
| 6119 | irel.r_offset = offset; |
| 6120 | irel.r_info = ELF_R_INFO (indx, howto->type); |
| 6121 | erel = ((Elf_External_Rel *) rel_hdr->contents |
| 6122 | + elf_section_data (output_section)->rel_count); |
| 6123 | if (bed->s->swap_reloc_out) |
| 6124 | (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel); |
| 6125 | else |
| 6126 | elf_swap_reloc_out (output_bfd, &irel, erel); |
| 6127 | } |
| 6128 | else |
| 6129 | { |
| 6130 | Elf_Internal_Rela irela; |
| 6131 | Elf_External_Rela *erela; |
| 6132 | |
| 6133 | irela.r_offset = offset; |
| 6134 | irela.r_info = ELF_R_INFO (indx, howto->type); |
| 6135 | irela.r_addend = addend; |
| 6136 | erela = ((Elf_External_Rela *) rel_hdr->contents |
| 6137 | + elf_section_data (output_section)->rel_count); |
| 6138 | if (bed->s->swap_reloca_out) |
| 6139 | (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela); |
| 6140 | else |
| 6141 | elf_swap_reloca_out (output_bfd, &irela, erela); |
| 6142 | } |
| 6143 | |
| 6144 | ++elf_section_data (output_section)->rel_count; |
| 6145 | |
| 6146 | return true; |
| 6147 | } |
| 6148 | \f |
| 6149 | /* Allocate a pointer to live in a linker created section. */ |
| 6150 | |
| 6151 | boolean |
| 6152 | elf_create_pointer_linker_section (abfd, info, lsect, h, rel) |
| 6153 | bfd *abfd; |
| 6154 | struct bfd_link_info *info; |
| 6155 | elf_linker_section_t *lsect; |
| 6156 | struct elf_link_hash_entry *h; |
| 6157 | const Elf_Internal_Rela *rel; |
| 6158 | { |
| 6159 | elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL; |
| 6160 | elf_linker_section_pointers_t *linker_section_ptr; |
| 6161 | unsigned long r_symndx = ELF_R_SYM (rel->r_info);; |
| 6162 | |
| 6163 | BFD_ASSERT (lsect != NULL); |
| 6164 | |
| 6165 | /* Is this a global symbol? */ |
| 6166 | if (h != NULL) |
| 6167 | { |
| 6168 | /* Has this symbol already been allocated, if so, our work is done */ |
| 6169 | if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer, |
| 6170 | rel->r_addend, |
| 6171 | lsect->which)) |
| 6172 | return true; |
| 6173 | |
| 6174 | ptr_linker_section_ptr = &h->linker_section_pointer; |
| 6175 | /* Make sure this symbol is output as a dynamic symbol. */ |
| 6176 | if (h->dynindx == -1) |
| 6177 | { |
| 6178 | if (! elf_link_record_dynamic_symbol (info, h)) |
| 6179 | return false; |
| 6180 | } |
| 6181 | |
| 6182 | if (lsect->rel_section) |
| 6183 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); |
| 6184 | } |
| 6185 | |
| 6186 | else /* Allocation of a pointer to a local symbol */ |
| 6187 | { |
| 6188 | elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd); |
| 6189 | |
| 6190 | /* Allocate a table to hold the local symbols if first time */ |
| 6191 | if (!ptr) |
| 6192 | { |
| 6193 | unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info; |
| 6194 | register unsigned int i; |
| 6195 | |
| 6196 | ptr = (elf_linker_section_pointers_t **) |
| 6197 | bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *)); |
| 6198 | |
| 6199 | if (!ptr) |
| 6200 | return false; |
| 6201 | |
| 6202 | elf_local_ptr_offsets (abfd) = ptr; |
| 6203 | for (i = 0; i < num_symbols; i++) |
| 6204 | ptr[i] = (elf_linker_section_pointers_t *)0; |
| 6205 | } |
| 6206 | |
| 6207 | /* Has this symbol already been allocated, if so, our work is done */ |
| 6208 | if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx], |
| 6209 | rel->r_addend, |
| 6210 | lsect->which)) |
| 6211 | return true; |
| 6212 | |
| 6213 | ptr_linker_section_ptr = &ptr[r_symndx]; |
| 6214 | |
| 6215 | if (info->shared) |
| 6216 | { |
| 6217 | /* If we are generating a shared object, we need to |
| 6218 | output a R_<xxx>_RELATIVE reloc so that the |
| 6219 | dynamic linker can adjust this GOT entry. */ |
| 6220 | BFD_ASSERT (lsect->rel_section != NULL); |
| 6221 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); |
| 6222 | } |
| 6223 | } |
| 6224 | |
| 6225 | /* Allocate space for a pointer in the linker section, and allocate a new pointer record |
| 6226 | from internal memory. */ |
| 6227 | BFD_ASSERT (ptr_linker_section_ptr != NULL); |
| 6228 | linker_section_ptr = (elf_linker_section_pointers_t *) |
| 6229 | bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t)); |
| 6230 | |
| 6231 | if (!linker_section_ptr) |
| 6232 | return false; |
| 6233 | |
| 6234 | linker_section_ptr->next = *ptr_linker_section_ptr; |
| 6235 | linker_section_ptr->addend = rel->r_addend; |
| 6236 | linker_section_ptr->which = lsect->which; |
| 6237 | linker_section_ptr->written_address_p = false; |
| 6238 | *ptr_linker_section_ptr = linker_section_ptr; |
| 6239 | |
| 6240 | #if 0 |
| 6241 | if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset) |
| 6242 | { |
| 6243 | linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8); |
| 6244 | lsect->hole_offset += ARCH_SIZE / 8; |
| 6245 | lsect->sym_offset += ARCH_SIZE / 8; |
| 6246 | if (lsect->sym_hash) /* Bump up symbol value if needed */ |
| 6247 | { |
| 6248 | lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8; |
| 6249 | #ifdef DEBUG |
| 6250 | fprintf (stderr, "Bump up %s by %ld, current value = %ld\n", |
| 6251 | lsect->sym_hash->root.root.string, |
| 6252 | (long)ARCH_SIZE / 8, |
| 6253 | (long)lsect->sym_hash->root.u.def.value); |
| 6254 | #endif |
| 6255 | } |
| 6256 | } |
| 6257 | else |
| 6258 | #endif |
| 6259 | linker_section_ptr->offset = lsect->section->_raw_size; |
| 6260 | |
| 6261 | lsect->section->_raw_size += ARCH_SIZE / 8; |
| 6262 | |
| 6263 | #ifdef DEBUG |
| 6264 | fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n", |
| 6265 | lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size); |
| 6266 | #endif |
| 6267 | |
| 6268 | return true; |
| 6269 | } |
| 6270 | \f |
| 6271 | #if ARCH_SIZE==64 |
| 6272 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR) |
| 6273 | #endif |
| 6274 | #if ARCH_SIZE==32 |
| 6275 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR) |
| 6276 | #endif |
| 6277 | |
| 6278 | /* Fill in the address for a pointer generated in alinker section. */ |
| 6279 | |
| 6280 | bfd_vma |
| 6281 | elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc) |
| 6282 | bfd *output_bfd; |
| 6283 | bfd *input_bfd; |
| 6284 | struct bfd_link_info *info; |
| 6285 | elf_linker_section_t *lsect; |
| 6286 | struct elf_link_hash_entry *h; |
| 6287 | bfd_vma relocation; |
| 6288 | const Elf_Internal_Rela *rel; |
| 6289 | int relative_reloc; |
| 6290 | { |
| 6291 | elf_linker_section_pointers_t *linker_section_ptr; |
| 6292 | |
| 6293 | BFD_ASSERT (lsect != NULL); |
| 6294 | |
| 6295 | if (h != NULL) /* global symbol */ |
| 6296 | { |
| 6297 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer, |
| 6298 | rel->r_addend, |
| 6299 | lsect->which); |
| 6300 | |
| 6301 | BFD_ASSERT (linker_section_ptr != NULL); |
| 6302 | |
| 6303 | if (! elf_hash_table (info)->dynamic_sections_created |
| 6304 | || (info->shared |
| 6305 | && info->symbolic |
| 6306 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) |
| 6307 | { |
| 6308 | /* This is actually a static link, or it is a |
| 6309 | -Bsymbolic link and the symbol is defined |
| 6310 | locally. We must initialize this entry in the |
| 6311 | global section. |
| 6312 | |
| 6313 | When doing a dynamic link, we create a .rela.<xxx> |
| 6314 | relocation entry to initialize the value. This |
| 6315 | is done in the finish_dynamic_symbol routine. */ |
| 6316 | if (!linker_section_ptr->written_address_p) |
| 6317 | { |
| 6318 | linker_section_ptr->written_address_p = true; |
| 6319 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, |
| 6320 | lsect->section->contents + linker_section_ptr->offset); |
| 6321 | } |
| 6322 | } |
| 6323 | } |
| 6324 | else /* local symbol */ |
| 6325 | { |
| 6326 | unsigned long r_symndx = ELF_R_SYM (rel->r_info); |
| 6327 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL); |
| 6328 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL); |
| 6329 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx], |
| 6330 | rel->r_addend, |
| 6331 | lsect->which); |
| 6332 | |
| 6333 | BFD_ASSERT (linker_section_ptr != NULL); |
| 6334 | |
| 6335 | /* Write out pointer if it hasn't been rewritten out before */ |
| 6336 | if (!linker_section_ptr->written_address_p) |
| 6337 | { |
| 6338 | linker_section_ptr->written_address_p = true; |
| 6339 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, |
| 6340 | lsect->section->contents + linker_section_ptr->offset); |
| 6341 | |
| 6342 | if (info->shared) |
| 6343 | { |
| 6344 | asection *srel = lsect->rel_section; |
| 6345 | Elf_Internal_Rela outrel; |
| 6346 | |
| 6347 | /* We need to generate a relative reloc for the dynamic linker. */ |
| 6348 | if (!srel) |
| 6349 | lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj, |
| 6350 | lsect->rel_name); |
| 6351 | |
| 6352 | BFD_ASSERT (srel != NULL); |
| 6353 | |
| 6354 | outrel.r_offset = (lsect->section->output_section->vma |
| 6355 | + lsect->section->output_offset |
| 6356 | + linker_section_ptr->offset); |
| 6357 | outrel.r_info = ELF_R_INFO (0, relative_reloc); |
| 6358 | outrel.r_addend = 0; |
| 6359 | elf_swap_reloca_out (output_bfd, &outrel, |
| 6360 | (((Elf_External_Rela *) |
| 6361 | lsect->section->contents) |
| 6362 | + elf_section_data (lsect->section)->rel_count)); |
| 6363 | ++elf_section_data (lsect->section)->rel_count; |
| 6364 | } |
| 6365 | } |
| 6366 | } |
| 6367 | |
| 6368 | relocation = (lsect->section->output_offset |
| 6369 | + linker_section_ptr->offset |
| 6370 | - lsect->hole_offset |
| 6371 | - lsect->sym_offset); |
| 6372 | |
| 6373 | #ifdef DEBUG |
| 6374 | fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n", |
| 6375 | lsect->name, (long)relocation, (long)relocation); |
| 6376 | #endif |
| 6377 | |
| 6378 | /* Subtract out the addend, because it will get added back in by the normal |
| 6379 | processing. */ |
| 6380 | return relocation - linker_section_ptr->addend; |
| 6381 | } |
| 6382 | \f |
| 6383 | /* Garbage collect unused sections. */ |
| 6384 | |
| 6385 | static boolean elf_gc_mark |
| 6386 | PARAMS ((struct bfd_link_info *info, asection *sec, |
| 6387 | asection * (*gc_mark_hook) |
| 6388 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, |
| 6389 | struct elf_link_hash_entry *, Elf_Internal_Sym *)))); |
| 6390 | |
| 6391 | static boolean elf_gc_sweep |
| 6392 | PARAMS ((struct bfd_link_info *info, |
| 6393 | boolean (*gc_sweep_hook) |
| 6394 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, |
| 6395 | const Elf_Internal_Rela *relocs)))); |
| 6396 | |
| 6397 | static boolean elf_gc_sweep_symbol |
| 6398 | PARAMS ((struct elf_link_hash_entry *h, PTR idxptr)); |
| 6399 | |
| 6400 | static boolean elf_gc_allocate_got_offsets |
| 6401 | PARAMS ((struct elf_link_hash_entry *h, PTR offarg)); |
| 6402 | |
| 6403 | static boolean elf_gc_propagate_vtable_entries_used |
| 6404 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); |
| 6405 | |
| 6406 | static boolean elf_gc_smash_unused_vtentry_relocs |
| 6407 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); |
| 6408 | |
| 6409 | /* The mark phase of garbage collection. For a given section, mark |
| 6410 | it, and all the sections which define symbols to which it refers. */ |
| 6411 | |
| 6412 | static boolean |
| 6413 | elf_gc_mark (info, sec, gc_mark_hook) |
| 6414 | struct bfd_link_info *info; |
| 6415 | asection *sec; |
| 6416 | asection * (*gc_mark_hook) |
| 6417 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, |
| 6418 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); |
| 6419 | { |
| 6420 | boolean ret = true; |
| 6421 | |
| 6422 | sec->gc_mark = 1; |
| 6423 | |
| 6424 | /* Look through the section relocs. */ |
| 6425 | |
| 6426 | if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0) |
| 6427 | { |
| 6428 | Elf_Internal_Rela *relstart, *rel, *relend; |
| 6429 | Elf_Internal_Shdr *symtab_hdr; |
| 6430 | struct elf_link_hash_entry **sym_hashes; |
| 6431 | size_t nlocsyms; |
| 6432 | size_t extsymoff; |
| 6433 | Elf_External_Sym *locsyms, *freesyms = NULL; |
| 6434 | bfd *input_bfd = sec->owner; |
| 6435 | struct elf_backend_data *bed = get_elf_backend_data (input_bfd); |
| 6436 | |
| 6437 | /* GCFIXME: how to arrange so that relocs and symbols are not |
| 6438 | reread continually? */ |
| 6439 | |
| 6440 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 6441 | sym_hashes = elf_sym_hashes (input_bfd); |
| 6442 | |
| 6443 | /* Read the local symbols. */ |
| 6444 | if (elf_bad_symtab (input_bfd)) |
| 6445 | { |
| 6446 | nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym); |
| 6447 | extsymoff = 0; |
| 6448 | } |
| 6449 | else |
| 6450 | extsymoff = nlocsyms = symtab_hdr->sh_info; |
| 6451 | if (symtab_hdr->contents) |
| 6452 | locsyms = (Elf_External_Sym *) symtab_hdr->contents; |
| 6453 | else if (nlocsyms == 0) |
| 6454 | locsyms = NULL; |
| 6455 | else |
| 6456 | { |
| 6457 | locsyms = freesyms = |
| 6458 | bfd_malloc (nlocsyms * sizeof (Elf_External_Sym)); |
| 6459 | if (freesyms == NULL |
| 6460 | || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 |
| 6461 | || (bfd_read (locsyms, sizeof (Elf_External_Sym), |
| 6462 | nlocsyms, input_bfd) |
| 6463 | != nlocsyms * sizeof (Elf_External_Sym))) |
| 6464 | { |
| 6465 | ret = false; |
| 6466 | goto out1; |
| 6467 | } |
| 6468 | } |
| 6469 | |
| 6470 | /* Read the relocations. */ |
| 6471 | relstart = (NAME(_bfd_elf,link_read_relocs) |
| 6472 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, |
| 6473 | info->keep_memory)); |
| 6474 | if (relstart == NULL) |
| 6475 | { |
| 6476 | ret = false; |
| 6477 | goto out1; |
| 6478 | } |
| 6479 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; |
| 6480 | |
| 6481 | for (rel = relstart; rel < relend; rel++) |
| 6482 | { |
| 6483 | unsigned long r_symndx; |
| 6484 | asection *rsec; |
| 6485 | struct elf_link_hash_entry *h; |
| 6486 | Elf_Internal_Sym s; |
| 6487 | |
| 6488 | r_symndx = ELF_R_SYM (rel->r_info); |
| 6489 | if (r_symndx == 0) |
| 6490 | continue; |
| 6491 | |
| 6492 | if (elf_bad_symtab (sec->owner)) |
| 6493 | { |
| 6494 | elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); |
| 6495 | if (ELF_ST_BIND (s.st_info) == STB_LOCAL) |
| 6496 | rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s); |
| 6497 | else |
| 6498 | { |
| 6499 | h = sym_hashes[r_symndx - extsymoff]; |
| 6500 | rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL); |
| 6501 | } |
| 6502 | } |
| 6503 | else if (r_symndx >= nlocsyms) |
| 6504 | { |
| 6505 | h = sym_hashes[r_symndx - extsymoff]; |
| 6506 | rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL); |
| 6507 | } |
| 6508 | else |
| 6509 | { |
| 6510 | elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); |
| 6511 | rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s); |
| 6512 | } |
| 6513 | |
| 6514 | if (rsec && !rsec->gc_mark) |
| 6515 | if (!elf_gc_mark (info, rsec, gc_mark_hook)) |
| 6516 | { |
| 6517 | ret = false; |
| 6518 | goto out2; |
| 6519 | } |
| 6520 | } |
| 6521 | |
| 6522 | out2: |
| 6523 | if (!info->keep_memory) |
| 6524 | free (relstart); |
| 6525 | out1: |
| 6526 | if (freesyms) |
| 6527 | free (freesyms); |
| 6528 | } |
| 6529 | |
| 6530 | return ret; |
| 6531 | } |
| 6532 | |
| 6533 | /* The sweep phase of garbage collection. Remove all garbage sections. */ |
| 6534 | |
| 6535 | static boolean |
| 6536 | elf_gc_sweep (info, gc_sweep_hook) |
| 6537 | struct bfd_link_info *info; |
| 6538 | boolean (*gc_sweep_hook) |
| 6539 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, |
| 6540 | const Elf_Internal_Rela *relocs)); |
| 6541 | { |
| 6542 | bfd *sub; |
| 6543 | |
| 6544 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) |
| 6545 | { |
| 6546 | asection *o; |
| 6547 | |
| 6548 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) |
| 6549 | continue; |
| 6550 | |
| 6551 | for (o = sub->sections; o != NULL; o = o->next) |
| 6552 | { |
| 6553 | /* Keep special sections. Keep .debug sections. */ |
| 6554 | if ((o->flags & SEC_LINKER_CREATED) |
| 6555 | || (o->flags & SEC_DEBUGGING)) |
| 6556 | o->gc_mark = 1; |
| 6557 | |
| 6558 | if (o->gc_mark) |
| 6559 | continue; |
| 6560 | |
| 6561 | /* Skip sweeping sections already excluded. */ |
| 6562 | if (o->flags & SEC_EXCLUDE) |
| 6563 | continue; |
| 6564 | |
| 6565 | /* Since this is early in the link process, it is simple |
| 6566 | to remove a section from the output. */ |
| 6567 | o->flags |= SEC_EXCLUDE; |
| 6568 | |
| 6569 | /* But we also have to update some of the relocation |
| 6570 | info we collected before. */ |
| 6571 | if (gc_sweep_hook |
| 6572 | && (o->flags & SEC_RELOC) && o->reloc_count > 0) |
| 6573 | { |
| 6574 | Elf_Internal_Rela *internal_relocs; |
| 6575 | boolean r; |
| 6576 | |
| 6577 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) |
| 6578 | (o->owner, o, NULL, NULL, info->keep_memory)); |
| 6579 | if (internal_relocs == NULL) |
| 6580 | return false; |
| 6581 | |
| 6582 | r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs); |
| 6583 | |
| 6584 | if (!info->keep_memory) |
| 6585 | free (internal_relocs); |
| 6586 | |
| 6587 | if (!r) |
| 6588 | return false; |
| 6589 | } |
| 6590 | } |
| 6591 | } |
| 6592 | |
| 6593 | /* Remove the symbols that were in the swept sections from the dynamic |
| 6594 | symbol table. GCFIXME: Anyone know how to get them out of the |
| 6595 | static symbol table as well? */ |
| 6596 | { |
| 6597 | int i = 0; |
| 6598 | |
| 6599 | elf_link_hash_traverse (elf_hash_table (info), |
| 6600 | elf_gc_sweep_symbol, |
| 6601 | (PTR) &i); |
| 6602 | |
| 6603 | elf_hash_table (info)->dynsymcount = i; |
| 6604 | } |
| 6605 | |
| 6606 | return true; |
| 6607 | } |
| 6608 | |
| 6609 | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ |
| 6610 | |
| 6611 | static boolean |
| 6612 | elf_gc_sweep_symbol (h, idxptr) |
| 6613 | struct elf_link_hash_entry *h; |
| 6614 | PTR idxptr; |
| 6615 | { |
| 6616 | int *idx = (int *) idxptr; |
| 6617 | |
| 6618 | if (h->dynindx != -1 |
| 6619 | && ((h->root.type != bfd_link_hash_defined |
| 6620 | && h->root.type != bfd_link_hash_defweak) |
| 6621 | || h->root.u.def.section->gc_mark)) |
| 6622 | h->dynindx = (*idx)++; |
| 6623 | |
| 6624 | return true; |
| 6625 | } |
| 6626 | |
| 6627 | /* Propogate collected vtable information. This is called through |
| 6628 | elf_link_hash_traverse. */ |
| 6629 | |
| 6630 | static boolean |
| 6631 | elf_gc_propagate_vtable_entries_used (h, okp) |
| 6632 | struct elf_link_hash_entry *h; |
| 6633 | PTR okp; |
| 6634 | { |
| 6635 | /* Those that are not vtables. */ |
| 6636 | if (h->vtable_parent == NULL) |
| 6637 | return true; |
| 6638 | |
| 6639 | /* Those vtables that do not have parents, we cannot merge. */ |
| 6640 | if (h->vtable_parent == (struct elf_link_hash_entry *) -1) |
| 6641 | return true; |
| 6642 | |
| 6643 | /* If we've already been done, exit. */ |
| 6644 | if (h->vtable_entries_used && h->vtable_entries_used[-1]) |
| 6645 | return true; |
| 6646 | |
| 6647 | /* Make sure the parent's table is up to date. */ |
| 6648 | elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp); |
| 6649 | |
| 6650 | if (h->vtable_entries_used == NULL) |
| 6651 | { |
| 6652 | /* None of this table's entries were referenced. Re-use the |
| 6653 | parent's table. */ |
| 6654 | h->vtable_entries_used = h->vtable_parent->vtable_entries_used; |
| 6655 | h->vtable_entries_size = h->vtable_parent->vtable_entries_size; |
| 6656 | } |
| 6657 | else |
| 6658 | { |
| 6659 | size_t n; |
| 6660 | boolean *cu, *pu; |
| 6661 | |
| 6662 | /* Or the parent's entries into ours. */ |
| 6663 | cu = h->vtable_entries_used; |
| 6664 | cu[-1] = true; |
| 6665 | pu = h->vtable_parent->vtable_entries_used; |
| 6666 | if (pu != NULL) |
| 6667 | { |
| 6668 | n = h->vtable_parent->vtable_entries_size / FILE_ALIGN; |
| 6669 | while (--n != 0) |
| 6670 | { |
| 6671 | if (*pu) *cu = true; |
| 6672 | pu++, cu++; |
| 6673 | } |
| 6674 | } |
| 6675 | } |
| 6676 | |
| 6677 | return true; |
| 6678 | } |
| 6679 | |
| 6680 | static boolean |
| 6681 | elf_gc_smash_unused_vtentry_relocs (h, okp) |
| 6682 | struct elf_link_hash_entry *h; |
| 6683 | PTR okp; |
| 6684 | { |
| 6685 | asection *sec; |
| 6686 | bfd_vma hstart, hend; |
| 6687 | Elf_Internal_Rela *relstart, *relend, *rel; |
| 6688 | struct elf_backend_data *bed; |
| 6689 | |
| 6690 | /* Take care of both those symbols that do not describe vtables as |
| 6691 | well as those that are not loaded. */ |
| 6692 | if (h->vtable_parent == NULL) |
| 6693 | return true; |
| 6694 | |
| 6695 | BFD_ASSERT (h->root.type == bfd_link_hash_defined |
| 6696 | || h->root.type == bfd_link_hash_defweak); |
| 6697 | |
| 6698 | sec = h->root.u.def.section; |
| 6699 | hstart = h->root.u.def.value; |
| 6700 | hend = hstart + h->size; |
| 6701 | |
| 6702 | relstart = (NAME(_bfd_elf,link_read_relocs) |
| 6703 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true)); |
| 6704 | if (!relstart) |
| 6705 | return *(boolean *)okp = false; |
| 6706 | bed = get_elf_backend_data (sec->owner); |
| 6707 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; |
| 6708 | |
| 6709 | for (rel = relstart; rel < relend; ++rel) |
| 6710 | if (rel->r_offset >= hstart && rel->r_offset < hend) |
| 6711 | { |
| 6712 | /* If the entry is in use, do nothing. */ |
| 6713 | if (h->vtable_entries_used |
| 6714 | && (rel->r_offset - hstart) < h->vtable_entries_size) |
| 6715 | { |
| 6716 | bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN; |
| 6717 | if (h->vtable_entries_used[entry]) |
| 6718 | continue; |
| 6719 | } |
| 6720 | /* Otherwise, kill it. */ |
| 6721 | rel->r_offset = rel->r_info = rel->r_addend = 0; |
| 6722 | } |
| 6723 | |
| 6724 | return true; |
| 6725 | } |
| 6726 | |
| 6727 | /* Do mark and sweep of unused sections. */ |
| 6728 | |
| 6729 | boolean |
| 6730 | elf_gc_sections (abfd, info) |
| 6731 | bfd *abfd; |
| 6732 | struct bfd_link_info *info; |
| 6733 | { |
| 6734 | boolean ok = true; |
| 6735 | bfd *sub; |
| 6736 | asection * (*gc_mark_hook) |
| 6737 | PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *, |
| 6738 | struct elf_link_hash_entry *h, Elf_Internal_Sym *)); |
| 6739 | |
| 6740 | if (!get_elf_backend_data (abfd)->can_gc_sections |
| 6741 | || info->relocateable || info->emitrelocations |
| 6742 | || elf_hash_table (info)->dynamic_sections_created) |
| 6743 | return true; |
| 6744 | |
| 6745 | /* Apply transitive closure to the vtable entry usage info. */ |
| 6746 | elf_link_hash_traverse (elf_hash_table (info), |
| 6747 | elf_gc_propagate_vtable_entries_used, |
| 6748 | (PTR) &ok); |
| 6749 | if (!ok) |
| 6750 | return false; |
| 6751 | |
| 6752 | /* Kill the vtable relocations that were not used. */ |
| 6753 | elf_link_hash_traverse (elf_hash_table (info), |
| 6754 | elf_gc_smash_unused_vtentry_relocs, |
| 6755 | (PTR) &ok); |
| 6756 | if (!ok) |
| 6757 | return false; |
| 6758 | |
| 6759 | /* Grovel through relocs to find out who stays ... */ |
| 6760 | |
| 6761 | gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook; |
| 6762 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) |
| 6763 | { |
| 6764 | asection *o; |
| 6765 | |
| 6766 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) |
| 6767 | continue; |
| 6768 | |
| 6769 | for (o = sub->sections; o != NULL; o = o->next) |
| 6770 | { |
| 6771 | if (o->flags & SEC_KEEP) |
| 6772 | if (!elf_gc_mark (info, o, gc_mark_hook)) |
| 6773 | return false; |
| 6774 | } |
| 6775 | } |
| 6776 | |
| 6777 | /* ... and mark SEC_EXCLUDE for those that go. */ |
| 6778 | if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook)) |
| 6779 | return false; |
| 6780 | |
| 6781 | return true; |
| 6782 | } |
| 6783 | \f |
| 6784 | /* Called from check_relocs to record the existance of a VTINHERIT reloc. */ |
| 6785 | |
| 6786 | boolean |
| 6787 | elf_gc_record_vtinherit (abfd, sec, h, offset) |
| 6788 | bfd *abfd; |
| 6789 | asection *sec; |
| 6790 | struct elf_link_hash_entry *h; |
| 6791 | bfd_vma offset; |
| 6792 | { |
| 6793 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; |
| 6794 | struct elf_link_hash_entry **search, *child; |
| 6795 | bfd_size_type extsymcount; |
| 6796 | |
| 6797 | /* The sh_info field of the symtab header tells us where the |
| 6798 | external symbols start. We don't care about the local symbols at |
| 6799 | this point. */ |
| 6800 | extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym); |
| 6801 | if (!elf_bad_symtab (abfd)) |
| 6802 | extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; |
| 6803 | |
| 6804 | sym_hashes = elf_sym_hashes (abfd); |
| 6805 | sym_hashes_end = sym_hashes + extsymcount; |
| 6806 | |
| 6807 | /* Hunt down the child symbol, which is in this section at the same |
| 6808 | offset as the relocation. */ |
| 6809 | for (search = sym_hashes; search != sym_hashes_end; ++search) |
| 6810 | { |
| 6811 | if ((child = *search) != NULL |
| 6812 | && (child->root.type == bfd_link_hash_defined |
| 6813 | || child->root.type == bfd_link_hash_defweak) |
| 6814 | && child->root.u.def.section == sec |
| 6815 | && child->root.u.def.value == offset) |
| 6816 | goto win; |
| 6817 | } |
| 6818 | |
| 6819 | (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT", |
| 6820 | bfd_get_filename (abfd), sec->name, |
| 6821 | (unsigned long)offset); |
| 6822 | bfd_set_error (bfd_error_invalid_operation); |
| 6823 | return false; |
| 6824 | |
| 6825 | win: |
| 6826 | if (!h) |
| 6827 | { |
| 6828 | /* This *should* only be the absolute section. It could potentially |
| 6829 | be that someone has defined a non-global vtable though, which |
| 6830 | would be bad. It isn't worth paging in the local symbols to be |
| 6831 | sure though; that case should simply be handled by the assembler. */ |
| 6832 | |
| 6833 | child->vtable_parent = (struct elf_link_hash_entry *) -1; |
| 6834 | } |
| 6835 | else |
| 6836 | child->vtable_parent = h; |
| 6837 | |
| 6838 | return true; |
| 6839 | } |
| 6840 | |
| 6841 | /* Called from check_relocs to record the existance of a VTENTRY reloc. */ |
| 6842 | |
| 6843 | boolean |
| 6844 | elf_gc_record_vtentry (abfd, sec, h, addend) |
| 6845 | bfd *abfd ATTRIBUTE_UNUSED; |
| 6846 | asection *sec ATTRIBUTE_UNUSED; |
| 6847 | struct elf_link_hash_entry *h; |
| 6848 | bfd_vma addend; |
| 6849 | { |
| 6850 | if (addend >= h->vtable_entries_size) |
| 6851 | { |
| 6852 | size_t size, bytes; |
| 6853 | boolean *ptr = h->vtable_entries_used; |
| 6854 | |
| 6855 | /* While the symbol is undefined, we have to be prepared to handle |
| 6856 | a zero size. */ |
| 6857 | if (h->root.type == bfd_link_hash_undefined) |
| 6858 | size = addend; |
| 6859 | else |
| 6860 | { |
| 6861 | size = h->size; |
| 6862 | if (size < addend) |
| 6863 | { |
| 6864 | /* Oops! We've got a reference past the defined end of |
| 6865 | the table. This is probably a bug -- shall we warn? */ |
| 6866 | size = addend; |
| 6867 | } |
| 6868 | } |
| 6869 | |
| 6870 | /* Allocate one extra entry for use as a "done" flag for the |
| 6871 | consolidation pass. */ |
| 6872 | bytes = (size / FILE_ALIGN + 1) * sizeof (boolean); |
| 6873 | |
| 6874 | if (ptr) |
| 6875 | { |
| 6876 | ptr = bfd_realloc (ptr - 1, bytes); |
| 6877 | |
| 6878 | if (ptr != NULL) |
| 6879 | { |
| 6880 | size_t oldbytes; |
| 6881 | |
| 6882 | oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean); |
| 6883 | memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes); |
| 6884 | } |
| 6885 | } |
| 6886 | else |
| 6887 | ptr = bfd_zmalloc (bytes); |
| 6888 | |
| 6889 | if (ptr == NULL) |
| 6890 | return false; |
| 6891 | |
| 6892 | /* And arrange for that done flag to be at index -1. */ |
| 6893 | h->vtable_entries_used = ptr + 1; |
| 6894 | h->vtable_entries_size = size; |
| 6895 | } |
| 6896 | |
| 6897 | h->vtable_entries_used[addend / FILE_ALIGN] = true; |
| 6898 | |
| 6899 | return true; |
| 6900 | } |
| 6901 | |
| 6902 | /* And an accompanying bit to work out final got entry offsets once |
| 6903 | we're done. Should be called from final_link. */ |
| 6904 | |
| 6905 | boolean |
| 6906 | elf_gc_common_finalize_got_offsets (abfd, info) |
| 6907 | bfd *abfd; |
| 6908 | struct bfd_link_info *info; |
| 6909 | { |
| 6910 | bfd *i; |
| 6911 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 6912 | bfd_vma gotoff; |
| 6913 | |
| 6914 | /* The GOT offset is relative to the .got section, but the GOT header is |
| 6915 | put into the .got.plt section, if the backend uses it. */ |
| 6916 | if (bed->want_got_plt) |
| 6917 | gotoff = 0; |
| 6918 | else |
| 6919 | gotoff = bed->got_header_size; |
| 6920 | |
| 6921 | /* Do the local .got entries first. */ |
| 6922 | for (i = info->input_bfds; i; i = i->link_next) |
| 6923 | { |
| 6924 | bfd_signed_vma *local_got; |
| 6925 | bfd_size_type j, locsymcount; |
| 6926 | Elf_Internal_Shdr *symtab_hdr; |
| 6927 | |
| 6928 | if (bfd_get_flavour (i) != bfd_target_elf_flavour) |
| 6929 | continue; |
| 6930 | |
| 6931 | local_got = elf_local_got_refcounts (i); |
| 6932 | if (!local_got) |
| 6933 | continue; |
| 6934 | |
| 6935 | symtab_hdr = &elf_tdata (i)->symtab_hdr; |
| 6936 | if (elf_bad_symtab (i)) |
| 6937 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); |
| 6938 | else |
| 6939 | locsymcount = symtab_hdr->sh_info; |
| 6940 | |
| 6941 | for (j = 0; j < locsymcount; ++j) |
| 6942 | { |
| 6943 | if (local_got[j] > 0) |
| 6944 | { |
| 6945 | local_got[j] = gotoff; |
| 6946 | gotoff += ARCH_SIZE / 8; |
| 6947 | } |
| 6948 | else |
| 6949 | local_got[j] = (bfd_vma) -1; |
| 6950 | } |
| 6951 | } |
| 6952 | |
| 6953 | /* Then the global .got entries. .plt refcounts are handled by |
| 6954 | adjust_dynamic_symbol */ |
| 6955 | elf_link_hash_traverse (elf_hash_table (info), |
| 6956 | elf_gc_allocate_got_offsets, |
| 6957 | (PTR) &gotoff); |
| 6958 | return true; |
| 6959 | } |
| 6960 | |
| 6961 | /* We need a special top-level link routine to convert got reference counts |
| 6962 | to real got offsets. */ |
| 6963 | |
| 6964 | static boolean |
| 6965 | elf_gc_allocate_got_offsets (h, offarg) |
| 6966 | struct elf_link_hash_entry *h; |
| 6967 | PTR offarg; |
| 6968 | { |
| 6969 | bfd_vma *off = (bfd_vma *) offarg; |
| 6970 | |
| 6971 | if (h->got.refcount > 0) |
| 6972 | { |
| 6973 | h->got.offset = off[0]; |
| 6974 | off[0] += ARCH_SIZE / 8; |
| 6975 | } |
| 6976 | else |
| 6977 | h->got.offset = (bfd_vma) -1; |
| 6978 | |
| 6979 | return true; |
| 6980 | } |
| 6981 | |
| 6982 | /* Many folk need no more in the way of final link than this, once |
| 6983 | got entry reference counting is enabled. */ |
| 6984 | |
| 6985 | boolean |
| 6986 | elf_gc_common_final_link (abfd, info) |
| 6987 | bfd *abfd; |
| 6988 | struct bfd_link_info *info; |
| 6989 | { |
| 6990 | if (!elf_gc_common_finalize_got_offsets (abfd, info)) |
| 6991 | return false; |
| 6992 | |
| 6993 | /* Invoke the regular ELF backend linker to do all the work. */ |
| 6994 | return elf_bfd_final_link (abfd, info); |
| 6995 | } |
| 6996 | |
| 6997 | /* This function will be called though elf_link_hash_traverse to store |
| 6998 | all hash value of the exported symbols in an array. */ |
| 6999 | |
| 7000 | static boolean |
| 7001 | elf_collect_hash_codes (h, data) |
| 7002 | struct elf_link_hash_entry *h; |
| 7003 | PTR data; |
| 7004 | { |
| 7005 | unsigned long **valuep = (unsigned long **) data; |
| 7006 | const char *name; |
| 7007 | char *p; |
| 7008 | unsigned long ha; |
| 7009 | char *alc = NULL; |
| 7010 | |
| 7011 | /* Ignore indirect symbols. These are added by the versioning code. */ |
| 7012 | if (h->dynindx == -1) |
| 7013 | return true; |
| 7014 | |
| 7015 | name = h->root.root.string; |
| 7016 | p = strchr (name, ELF_VER_CHR); |
| 7017 | if (p != NULL) |
| 7018 | { |
| 7019 | alc = bfd_malloc (p - name + 1); |
| 7020 | memcpy (alc, name, p - name); |
| 7021 | alc[p - name] = '\0'; |
| 7022 | name = alc; |
| 7023 | } |
| 7024 | |
| 7025 | /* Compute the hash value. */ |
| 7026 | ha = bfd_elf_hash (name); |
| 7027 | |
| 7028 | /* Store the found hash value in the array given as the argument. */ |
| 7029 | *(*valuep)++ = ha; |
| 7030 | |
| 7031 | /* And store it in the struct so that we can put it in the hash table |
| 7032 | later. */ |
| 7033 | h->elf_hash_value = ha; |
| 7034 | |
| 7035 | if (alc != NULL) |
| 7036 | free (alc); |
| 7037 | |
| 7038 | return true; |
| 7039 | } |