| 1 | /* MIPS-specific support for ELF |
| 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
| 3 | 2003, 2004, 2005, 2006 Free Software Foundation, Inc. |
| 4 | |
| 5 | Most of the information added by Ian Lance Taylor, Cygnus Support, |
| 6 | <ian@cygnus.com>. |
| 7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. |
| 8 | <mark@codesourcery.com> |
| 9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data |
| 10 | Elektronik & Operations Research Group. <kk@ddeorg.soft.net> |
| 11 | |
| 12 | This file is part of BFD, the Binary File Descriptor library. |
| 13 | |
| 14 | This program is free software; you can redistribute it and/or modify |
| 15 | it under the terms of the GNU General Public License as published by |
| 16 | the Free Software Foundation; either version 2 of the License, or |
| 17 | (at your option) any later version. |
| 18 | |
| 19 | This program is distributed in the hope that it will be useful, |
| 20 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 22 | GNU General Public License for more details. |
| 23 | |
| 24 | You should have received a copy of the GNU General Public License |
| 25 | along with this program; if not, write to the Free Software |
| 26 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ |
| 27 | |
| 28 | /* This file handles functionality common to the different MIPS ABI's. */ |
| 29 | |
| 30 | #include "bfd.h" |
| 31 | #include "sysdep.h" |
| 32 | #include "libbfd.h" |
| 33 | #include "libiberty.h" |
| 34 | #include "elf-bfd.h" |
| 35 | #include "elfxx-mips.h" |
| 36 | #include "elf/mips.h" |
| 37 | #include "elf-vxworks.h" |
| 38 | |
| 39 | /* Get the ECOFF swapping routines. */ |
| 40 | #include "coff/sym.h" |
| 41 | #include "coff/symconst.h" |
| 42 | #include "coff/ecoff.h" |
| 43 | #include "coff/mips.h" |
| 44 | |
| 45 | #include "hashtab.h" |
| 46 | |
| 47 | /* This structure is used to hold information about one GOT entry. |
| 48 | There are three types of entry: |
| 49 | |
| 50 | (1) absolute addresses |
| 51 | (abfd == NULL) |
| 52 | (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd |
| 53 | (abfd != NULL, symndx >= 0) |
| 54 | (3) global and forced-local symbols |
| 55 | (abfd != NULL, symndx == -1) |
| 56 | |
| 57 | Type (3) entries are treated differently for different types of GOT. |
| 58 | In the "master" GOT -- i.e. the one that describes every GOT |
| 59 | reference needed in the link -- the mips_got_entry is keyed on both |
| 60 | the symbol and the input bfd that references it. If it turns out |
| 61 | that we need multiple GOTs, we can then use this information to |
| 62 | create separate GOTs for each input bfd. |
| 63 | |
| 64 | However, we want each of these separate GOTs to have at most one |
| 65 | entry for a given symbol, so their type (3) entries are keyed only |
| 66 | on the symbol. The input bfd given by the "abfd" field is somewhat |
| 67 | arbitrary in this case. |
| 68 | |
| 69 | This means that when there are multiple GOTs, each GOT has a unique |
| 70 | mips_got_entry for every symbol within it. We can therefore use the |
| 71 | mips_got_entry fields (tls_type and gotidx) to track the symbol's |
| 72 | GOT index. |
| 73 | |
| 74 | However, if it turns out that we need only a single GOT, we continue |
| 75 | to use the master GOT to describe it. There may therefore be several |
| 76 | mips_got_entries for the same symbol, each with a different input bfd. |
| 77 | We want to make sure that each symbol gets a unique GOT entry, so when |
| 78 | there's a single GOT, we use the symbol's hash entry, not the |
| 79 | mips_got_entry fields, to track a symbol's GOT index. */ |
| 80 | struct mips_got_entry |
| 81 | { |
| 82 | /* The input bfd in which the symbol is defined. */ |
| 83 | bfd *abfd; |
| 84 | /* The index of the symbol, as stored in the relocation r_info, if |
| 85 | we have a local symbol; -1 otherwise. */ |
| 86 | long symndx; |
| 87 | union |
| 88 | { |
| 89 | /* If abfd == NULL, an address that must be stored in the got. */ |
| 90 | bfd_vma address; |
| 91 | /* If abfd != NULL && symndx != -1, the addend of the relocation |
| 92 | that should be added to the symbol value. */ |
| 93 | bfd_vma addend; |
| 94 | /* If abfd != NULL && symndx == -1, the hash table entry |
| 95 | corresponding to a global symbol in the got (or, local, if |
| 96 | h->forced_local). */ |
| 97 | struct mips_elf_link_hash_entry *h; |
| 98 | } d; |
| 99 | |
| 100 | /* The TLS types included in this GOT entry (specifically, GD and |
| 101 | IE). The GD and IE flags can be added as we encounter new |
| 102 | relocations. LDM can also be set; it will always be alone, not |
| 103 | combined with any GD or IE flags. An LDM GOT entry will be |
| 104 | a local symbol entry with r_symndx == 0. */ |
| 105 | unsigned char tls_type; |
| 106 | |
| 107 | /* The offset from the beginning of the .got section to the entry |
| 108 | corresponding to this symbol+addend. If it's a global symbol |
| 109 | whose offset is yet to be decided, it's going to be -1. */ |
| 110 | long gotidx; |
| 111 | }; |
| 112 | |
| 113 | /* This structure is used to hold .got information when linking. */ |
| 114 | |
| 115 | struct mips_got_info |
| 116 | { |
| 117 | /* The global symbol in the GOT with the lowest index in the dynamic |
| 118 | symbol table. */ |
| 119 | struct elf_link_hash_entry *global_gotsym; |
| 120 | /* The number of global .got entries. */ |
| 121 | unsigned int global_gotno; |
| 122 | /* The number of .got slots used for TLS. */ |
| 123 | unsigned int tls_gotno; |
| 124 | /* The first unused TLS .got entry. Used only during |
| 125 | mips_elf_initialize_tls_index. */ |
| 126 | unsigned int tls_assigned_gotno; |
| 127 | /* The number of local .got entries. */ |
| 128 | unsigned int local_gotno; |
| 129 | /* The number of local .got entries we have used. */ |
| 130 | unsigned int assigned_gotno; |
| 131 | /* A hash table holding members of the got. */ |
| 132 | struct htab *got_entries; |
| 133 | /* A hash table mapping input bfds to other mips_got_info. NULL |
| 134 | unless multi-got was necessary. */ |
| 135 | struct htab *bfd2got; |
| 136 | /* In multi-got links, a pointer to the next got (err, rather, most |
| 137 | of the time, it points to the previous got). */ |
| 138 | struct mips_got_info *next; |
| 139 | /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE |
| 140 | for none, or MINUS_TWO for not yet assigned. This is needed |
| 141 | because a single-GOT link may have multiple hash table entries |
| 142 | for the LDM. It does not get initialized in multi-GOT mode. */ |
| 143 | bfd_vma tls_ldm_offset; |
| 144 | }; |
| 145 | |
| 146 | /* Map an input bfd to a got in a multi-got link. */ |
| 147 | |
| 148 | struct mips_elf_bfd2got_hash { |
| 149 | bfd *bfd; |
| 150 | struct mips_got_info *g; |
| 151 | }; |
| 152 | |
| 153 | /* Structure passed when traversing the bfd2got hash table, used to |
| 154 | create and merge bfd's gots. */ |
| 155 | |
| 156 | struct mips_elf_got_per_bfd_arg |
| 157 | { |
| 158 | /* A hashtable that maps bfds to gots. */ |
| 159 | htab_t bfd2got; |
| 160 | /* The output bfd. */ |
| 161 | bfd *obfd; |
| 162 | /* The link information. */ |
| 163 | struct bfd_link_info *info; |
| 164 | /* A pointer to the primary got, i.e., the one that's going to get |
| 165 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and |
| 166 | DT_MIPS_GOTSYM. */ |
| 167 | struct mips_got_info *primary; |
| 168 | /* A non-primary got we're trying to merge with other input bfd's |
| 169 | gots. */ |
| 170 | struct mips_got_info *current; |
| 171 | /* The maximum number of got entries that can be addressed with a |
| 172 | 16-bit offset. */ |
| 173 | unsigned int max_count; |
| 174 | /* The number of local and global entries in the primary got. */ |
| 175 | unsigned int primary_count; |
| 176 | /* The number of local and global entries in the current got. */ |
| 177 | unsigned int current_count; |
| 178 | /* The total number of global entries which will live in the |
| 179 | primary got and be automatically relocated. This includes |
| 180 | those not referenced by the primary GOT but included in |
| 181 | the "master" GOT. */ |
| 182 | unsigned int global_count; |
| 183 | }; |
| 184 | |
| 185 | /* Another structure used to pass arguments for got entries traversal. */ |
| 186 | |
| 187 | struct mips_elf_set_global_got_offset_arg |
| 188 | { |
| 189 | struct mips_got_info *g; |
| 190 | int value; |
| 191 | unsigned int needed_relocs; |
| 192 | struct bfd_link_info *info; |
| 193 | }; |
| 194 | |
| 195 | /* A structure used to count TLS relocations or GOT entries, for GOT |
| 196 | entry or ELF symbol table traversal. */ |
| 197 | |
| 198 | struct mips_elf_count_tls_arg |
| 199 | { |
| 200 | struct bfd_link_info *info; |
| 201 | unsigned int needed; |
| 202 | }; |
| 203 | |
| 204 | struct _mips_elf_section_data |
| 205 | { |
| 206 | struct bfd_elf_section_data elf; |
| 207 | union |
| 208 | { |
| 209 | struct mips_got_info *got_info; |
| 210 | bfd_byte *tdata; |
| 211 | } u; |
| 212 | }; |
| 213 | |
| 214 | #define mips_elf_section_data(sec) \ |
| 215 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
| 216 | |
| 217 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
| 218 | the dynamic symbols. */ |
| 219 | |
| 220 | struct mips_elf_hash_sort_data |
| 221 | { |
| 222 | /* The symbol in the global GOT with the lowest dynamic symbol table |
| 223 | index. */ |
| 224 | struct elf_link_hash_entry *low; |
| 225 | /* The least dynamic symbol table index corresponding to a non-TLS |
| 226 | symbol with a GOT entry. */ |
| 227 | long min_got_dynindx; |
| 228 | /* The greatest dynamic symbol table index corresponding to a symbol |
| 229 | with a GOT entry that is not referenced (e.g., a dynamic symbol |
| 230 | with dynamic relocations pointing to it from non-primary GOTs). */ |
| 231 | long max_unref_got_dynindx; |
| 232 | /* The greatest dynamic symbol table index not corresponding to a |
| 233 | symbol without a GOT entry. */ |
| 234 | long max_non_got_dynindx; |
| 235 | }; |
| 236 | |
| 237 | /* The MIPS ELF linker needs additional information for each symbol in |
| 238 | the global hash table. */ |
| 239 | |
| 240 | struct mips_elf_link_hash_entry |
| 241 | { |
| 242 | struct elf_link_hash_entry root; |
| 243 | |
| 244 | /* External symbol information. */ |
| 245 | EXTR esym; |
| 246 | |
| 247 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against |
| 248 | this symbol. */ |
| 249 | unsigned int possibly_dynamic_relocs; |
| 250 | |
| 251 | /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against |
| 252 | a readonly section. */ |
| 253 | bfd_boolean readonly_reloc; |
| 254 | |
| 255 | /* We must not create a stub for a symbol that has relocations |
| 256 | related to taking the function's address, i.e. any but |
| 257 | R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", |
| 258 | p. 4-20. */ |
| 259 | bfd_boolean no_fn_stub; |
| 260 | |
| 261 | /* If there is a stub that 32 bit functions should use to call this |
| 262 | 16 bit function, this points to the section containing the stub. */ |
| 263 | asection *fn_stub; |
| 264 | |
| 265 | /* Whether we need the fn_stub; this is set if this symbol appears |
| 266 | in any relocs other than a 16 bit call. */ |
| 267 | bfd_boolean need_fn_stub; |
| 268 | |
| 269 | /* If there is a stub that 16 bit functions should use to call this |
| 270 | 32 bit function, this points to the section containing the stub. */ |
| 271 | asection *call_stub; |
| 272 | |
| 273 | /* This is like the call_stub field, but it is used if the function |
| 274 | being called returns a floating point value. */ |
| 275 | asection *call_fp_stub; |
| 276 | |
| 277 | /* Are we forced local? This will only be set if we have converted |
| 278 | the initial global GOT entry to a local GOT entry. */ |
| 279 | bfd_boolean forced_local; |
| 280 | |
| 281 | /* Are we referenced by some kind of relocation? */ |
| 282 | bfd_boolean is_relocation_target; |
| 283 | |
| 284 | /* Are we referenced by branch relocations? */ |
| 285 | bfd_boolean is_branch_target; |
| 286 | |
| 287 | #define GOT_NORMAL 0 |
| 288 | #define GOT_TLS_GD 1 |
| 289 | #define GOT_TLS_LDM 2 |
| 290 | #define GOT_TLS_IE 4 |
| 291 | #define GOT_TLS_OFFSET_DONE 0x40 |
| 292 | #define GOT_TLS_DONE 0x80 |
| 293 | unsigned char tls_type; |
| 294 | /* This is only used in single-GOT mode; in multi-GOT mode there |
| 295 | is one mips_got_entry per GOT entry, so the offset is stored |
| 296 | there. In single-GOT mode there may be many mips_got_entry |
| 297 | structures all referring to the same GOT slot. It might be |
| 298 | possible to use root.got.offset instead, but that field is |
| 299 | overloaded already. */ |
| 300 | bfd_vma tls_got_offset; |
| 301 | }; |
| 302 | |
| 303 | /* MIPS ELF linker hash table. */ |
| 304 | |
| 305 | struct mips_elf_link_hash_table |
| 306 | { |
| 307 | struct elf_link_hash_table root; |
| 308 | #if 0 |
| 309 | /* We no longer use this. */ |
| 310 | /* String section indices for the dynamic section symbols. */ |
| 311 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; |
| 312 | #endif |
| 313 | /* The number of .rtproc entries. */ |
| 314 | bfd_size_type procedure_count; |
| 315 | /* The size of the .compact_rel section (if SGI_COMPAT). */ |
| 316 | bfd_size_type compact_rel_size; |
| 317 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic |
| 318 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
| 319 | bfd_boolean use_rld_obj_head; |
| 320 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
| 321 | bfd_vma rld_value; |
| 322 | /* This is set if we see any mips16 stub sections. */ |
| 323 | bfd_boolean mips16_stubs_seen; |
| 324 | /* True if we're generating code for VxWorks. */ |
| 325 | bfd_boolean is_vxworks; |
| 326 | /* Shortcuts to some dynamic sections, or NULL if they are not |
| 327 | being used. */ |
| 328 | asection *srelbss; |
| 329 | asection *sdynbss; |
| 330 | asection *srelplt; |
| 331 | asection *srelplt2; |
| 332 | asection *sgotplt; |
| 333 | asection *splt; |
| 334 | /* The size of the PLT header in bytes (VxWorks only). */ |
| 335 | bfd_vma plt_header_size; |
| 336 | /* The size of a PLT entry in bytes (VxWorks only). */ |
| 337 | bfd_vma plt_entry_size; |
| 338 | /* The size of a function stub entry in bytes. */ |
| 339 | bfd_vma function_stub_size; |
| 340 | }; |
| 341 | |
| 342 | #define TLS_RELOC_P(r_type) \ |
| 343 | (r_type == R_MIPS_TLS_DTPMOD32 \ |
| 344 | || r_type == R_MIPS_TLS_DTPMOD64 \ |
| 345 | || r_type == R_MIPS_TLS_DTPREL32 \ |
| 346 | || r_type == R_MIPS_TLS_DTPREL64 \ |
| 347 | || r_type == R_MIPS_TLS_GD \ |
| 348 | || r_type == R_MIPS_TLS_LDM \ |
| 349 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ |
| 350 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ |
| 351 | || r_type == R_MIPS_TLS_GOTTPREL \ |
| 352 | || r_type == R_MIPS_TLS_TPREL32 \ |
| 353 | || r_type == R_MIPS_TLS_TPREL64 \ |
| 354 | || r_type == R_MIPS_TLS_TPREL_HI16 \ |
| 355 | || r_type == R_MIPS_TLS_TPREL_LO16) |
| 356 | |
| 357 | /* Structure used to pass information to mips_elf_output_extsym. */ |
| 358 | |
| 359 | struct extsym_info |
| 360 | { |
| 361 | bfd *abfd; |
| 362 | struct bfd_link_info *info; |
| 363 | struct ecoff_debug_info *debug; |
| 364 | const struct ecoff_debug_swap *swap; |
| 365 | bfd_boolean failed; |
| 366 | }; |
| 367 | |
| 368 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
| 369 | |
| 370 | static const char * const mips_elf_dynsym_rtproc_names[] = |
| 371 | { |
| 372 | "_procedure_table", |
| 373 | "_procedure_string_table", |
| 374 | "_procedure_table_size", |
| 375 | NULL |
| 376 | }; |
| 377 | |
| 378 | /* These structures are used to generate the .compact_rel section on |
| 379 | IRIX5. */ |
| 380 | |
| 381 | typedef struct |
| 382 | { |
| 383 | unsigned long id1; /* Always one? */ |
| 384 | unsigned long num; /* Number of compact relocation entries. */ |
| 385 | unsigned long id2; /* Always two? */ |
| 386 | unsigned long offset; /* The file offset of the first relocation. */ |
| 387 | unsigned long reserved0; /* Zero? */ |
| 388 | unsigned long reserved1; /* Zero? */ |
| 389 | } Elf32_compact_rel; |
| 390 | |
| 391 | typedef struct |
| 392 | { |
| 393 | bfd_byte id1[4]; |
| 394 | bfd_byte num[4]; |
| 395 | bfd_byte id2[4]; |
| 396 | bfd_byte offset[4]; |
| 397 | bfd_byte reserved0[4]; |
| 398 | bfd_byte reserved1[4]; |
| 399 | } Elf32_External_compact_rel; |
| 400 | |
| 401 | typedef struct |
| 402 | { |
| 403 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ |
| 404 | unsigned int rtype : 4; /* Relocation types. See below. */ |
| 405 | unsigned int dist2to : 8; |
| 406 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ |
| 407 | unsigned long konst; /* KONST field. See below. */ |
| 408 | unsigned long vaddr; /* VADDR to be relocated. */ |
| 409 | } Elf32_crinfo; |
| 410 | |
| 411 | typedef struct |
| 412 | { |
| 413 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ |
| 414 | unsigned int rtype : 4; /* Relocation types. See below. */ |
| 415 | unsigned int dist2to : 8; |
| 416 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ |
| 417 | unsigned long konst; /* KONST field. See below. */ |
| 418 | } Elf32_crinfo2; |
| 419 | |
| 420 | typedef struct |
| 421 | { |
| 422 | bfd_byte info[4]; |
| 423 | bfd_byte konst[4]; |
| 424 | bfd_byte vaddr[4]; |
| 425 | } Elf32_External_crinfo; |
| 426 | |
| 427 | typedef struct |
| 428 | { |
| 429 | bfd_byte info[4]; |
| 430 | bfd_byte konst[4]; |
| 431 | } Elf32_External_crinfo2; |
| 432 | |
| 433 | /* These are the constants used to swap the bitfields in a crinfo. */ |
| 434 | |
| 435 | #define CRINFO_CTYPE (0x1) |
| 436 | #define CRINFO_CTYPE_SH (31) |
| 437 | #define CRINFO_RTYPE (0xf) |
| 438 | #define CRINFO_RTYPE_SH (27) |
| 439 | #define CRINFO_DIST2TO (0xff) |
| 440 | #define CRINFO_DIST2TO_SH (19) |
| 441 | #define CRINFO_RELVADDR (0x7ffff) |
| 442 | #define CRINFO_RELVADDR_SH (0) |
| 443 | |
| 444 | /* A compact relocation info has long (3 words) or short (2 words) |
| 445 | formats. A short format doesn't have VADDR field and relvaddr |
| 446 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ |
| 447 | #define CRF_MIPS_LONG 1 |
| 448 | #define CRF_MIPS_SHORT 0 |
| 449 | |
| 450 | /* There are 4 types of compact relocation at least. The value KONST |
| 451 | has different meaning for each type: |
| 452 | |
| 453 | (type) (konst) |
| 454 | CT_MIPS_REL32 Address in data |
| 455 | CT_MIPS_WORD Address in word (XXX) |
| 456 | CT_MIPS_GPHI_LO GP - vaddr |
| 457 | CT_MIPS_JMPAD Address to jump |
| 458 | */ |
| 459 | |
| 460 | #define CRT_MIPS_REL32 0xa |
| 461 | #define CRT_MIPS_WORD 0xb |
| 462 | #define CRT_MIPS_GPHI_LO 0xc |
| 463 | #define CRT_MIPS_JMPAD 0xd |
| 464 | |
| 465 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) |
| 466 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) |
| 467 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) |
| 468 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) |
| 469 | \f |
| 470 | /* The structure of the runtime procedure descriptor created by the |
| 471 | loader for use by the static exception system. */ |
| 472 | |
| 473 | typedef struct runtime_pdr { |
| 474 | bfd_vma adr; /* Memory address of start of procedure. */ |
| 475 | long regmask; /* Save register mask. */ |
| 476 | long regoffset; /* Save register offset. */ |
| 477 | long fregmask; /* Save floating point register mask. */ |
| 478 | long fregoffset; /* Save floating point register offset. */ |
| 479 | long frameoffset; /* Frame size. */ |
| 480 | short framereg; /* Frame pointer register. */ |
| 481 | short pcreg; /* Offset or reg of return pc. */ |
| 482 | long irpss; /* Index into the runtime string table. */ |
| 483 | long reserved; |
| 484 | struct exception_info *exception_info;/* Pointer to exception array. */ |
| 485 | } RPDR, *pRPDR; |
| 486 | #define cbRPDR sizeof (RPDR) |
| 487 | #define rpdNil ((pRPDR) 0) |
| 488 | \f |
| 489 | static struct mips_got_entry *mips_elf_create_local_got_entry |
| 490 | (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *, |
| 491 | asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int); |
| 492 | static bfd_boolean mips_elf_sort_hash_table_f |
| 493 | (struct mips_elf_link_hash_entry *, void *); |
| 494 | static bfd_vma mips_elf_high |
| 495 | (bfd_vma); |
| 496 | static bfd_boolean mips16_stub_section_p |
| 497 | (bfd *, asection *); |
| 498 | static bfd_boolean mips_elf_create_dynamic_relocation |
| 499 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
| 500 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, |
| 501 | bfd_vma *, asection *); |
| 502 | static hashval_t mips_elf_got_entry_hash |
| 503 | (const void *); |
| 504 | static bfd_vma mips_elf_adjust_gp |
| 505 | (bfd *, struct mips_got_info *, bfd *); |
| 506 | static struct mips_got_info *mips_elf_got_for_ibfd |
| 507 | (struct mips_got_info *, bfd *); |
| 508 | |
| 509 | /* This will be used when we sort the dynamic relocation records. */ |
| 510 | static bfd *reldyn_sorting_bfd; |
| 511 | |
| 512 | /* Nonzero if ABFD is using the N32 ABI. */ |
| 513 | #define ABI_N32_P(abfd) \ |
| 514 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) |
| 515 | |
| 516 | /* Nonzero if ABFD is using the N64 ABI. */ |
| 517 | #define ABI_64_P(abfd) \ |
| 518 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
| 519 | |
| 520 | /* Nonzero if ABFD is using NewABI conventions. */ |
| 521 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) |
| 522 | |
| 523 | /* The IRIX compatibility level we are striving for. */ |
| 524 | #define IRIX_COMPAT(abfd) \ |
| 525 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) |
| 526 | |
| 527 | /* Whether we are trying to be compatible with IRIX at all. */ |
| 528 | #define SGI_COMPAT(abfd) \ |
| 529 | (IRIX_COMPAT (abfd) != ict_none) |
| 530 | |
| 531 | /* The name of the options section. */ |
| 532 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ |
| 533 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
| 534 | |
| 535 | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
| 536 | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ |
| 537 | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ |
| 538 | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) |
| 539 | |
| 540 | /* Whether the section is readonly. */ |
| 541 | #define MIPS_ELF_READONLY_SECTION(sec) \ |
| 542 | ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ |
| 543 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
| 544 | |
| 545 | /* The name of the stub section. */ |
| 546 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
| 547 | |
| 548 | /* The size of an external REL relocation. */ |
| 549 | #define MIPS_ELF_REL_SIZE(abfd) \ |
| 550 | (get_elf_backend_data (abfd)->s->sizeof_rel) |
| 551 | |
| 552 | /* The size of an external RELA relocation. */ |
| 553 | #define MIPS_ELF_RELA_SIZE(abfd) \ |
| 554 | (get_elf_backend_data (abfd)->s->sizeof_rela) |
| 555 | |
| 556 | /* The size of an external dynamic table entry. */ |
| 557 | #define MIPS_ELF_DYN_SIZE(abfd) \ |
| 558 | (get_elf_backend_data (abfd)->s->sizeof_dyn) |
| 559 | |
| 560 | /* The size of a GOT entry. */ |
| 561 | #define MIPS_ELF_GOT_SIZE(abfd) \ |
| 562 | (get_elf_backend_data (abfd)->s->arch_size / 8) |
| 563 | |
| 564 | /* The size of a symbol-table entry. */ |
| 565 | #define MIPS_ELF_SYM_SIZE(abfd) \ |
| 566 | (get_elf_backend_data (abfd)->s->sizeof_sym) |
| 567 | |
| 568 | /* The default alignment for sections, as a power of two. */ |
| 569 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ |
| 570 | (get_elf_backend_data (abfd)->s->log_file_align) |
| 571 | |
| 572 | /* Get word-sized data. */ |
| 573 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ |
| 574 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) |
| 575 | |
| 576 | /* Put out word-sized data. */ |
| 577 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ |
| 578 | (ABI_64_P (abfd) \ |
| 579 | ? bfd_put_64 (abfd, val, ptr) \ |
| 580 | : bfd_put_32 (abfd, val, ptr)) |
| 581 | |
| 582 | /* Add a dynamic symbol table-entry. */ |
| 583 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
| 584 | _bfd_elf_add_dynamic_entry (info, tag, val) |
| 585 | |
| 586 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ |
| 587 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) |
| 588 | |
| 589 | /* Determine whether the internal relocation of index REL_IDX is REL |
| 590 | (zero) or RELA (non-zero). The assumption is that, if there are |
| 591 | two relocation sections for this section, one of them is REL and |
| 592 | the other is RELA. If the index of the relocation we're testing is |
| 593 | in range for the first relocation section, check that the external |
| 594 | relocation size is that for RELA. It is also assumed that, if |
| 595 | rel_idx is not in range for the first section, and this first |
| 596 | section contains REL relocs, then the relocation is in the second |
| 597 | section, that is RELA. */ |
| 598 | #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ |
| 599 | ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ |
| 600 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ |
| 601 | > (bfd_vma)(rel_idx)) \ |
| 602 | == (elf_section_data (sec)->rel_hdr.sh_entsize \ |
| 603 | == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ |
| 604 | : sizeof (Elf32_External_Rela)))) |
| 605 | |
| 606 | /* The name of the dynamic relocation section. */ |
| 607 | #define MIPS_ELF_REL_DYN_NAME(INFO) \ |
| 608 | (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") |
| 609 | |
| 610 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
| 611 | from smaller values. Start with zero, widen, *then* decrement. */ |
| 612 | #define MINUS_ONE (((bfd_vma)0) - 1) |
| 613 | #define MINUS_TWO (((bfd_vma)0) - 2) |
| 614 | |
| 615 | /* The number of local .got entries we reserve. */ |
| 616 | #define MIPS_RESERVED_GOTNO(INFO) \ |
| 617 | (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2) |
| 618 | |
| 619 | /* The offset of $gp from the beginning of the .got section. */ |
| 620 | #define ELF_MIPS_GP_OFFSET(INFO) \ |
| 621 | (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) |
| 622 | |
| 623 | /* The maximum size of the GOT for it to be addressable using 16-bit |
| 624 | offsets from $gp. */ |
| 625 | #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) |
| 626 | |
| 627 | /* Instructions which appear in a stub. */ |
| 628 | #define STUB_LW(abfd) \ |
| 629 | ((ABI_64_P (abfd) \ |
| 630 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ |
| 631 | : 0x8f998010)) /* lw t9,0x8010(gp) */ |
| 632 | #define STUB_MOVE(abfd) \ |
| 633 | ((ABI_64_P (abfd) \ |
| 634 | ? 0x03e0782d /* daddu t7,ra */ \ |
| 635 | : 0x03e07821)) /* addu t7,ra */ |
| 636 | #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ |
| 637 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ |
| 638 | #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ |
| 639 | #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ |
| 640 | #define STUB_LI16S(abfd, VAL) \ |
| 641 | ((ABI_64_P (abfd) \ |
| 642 | ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ |
| 643 | : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ |
| 644 | |
| 645 | #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 |
| 646 | #define MIPS_FUNCTION_STUB_BIG_SIZE 20 |
| 647 | |
| 648 | /* The name of the dynamic interpreter. This is put in the .interp |
| 649 | section. */ |
| 650 | |
| 651 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ |
| 652 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ |
| 653 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ |
| 654 | : "/usr/lib/libc.so.1") |
| 655 | |
| 656 | #ifdef BFD64 |
| 657 | #define MNAME(bfd,pre,pos) \ |
| 658 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) |
| 659 | #define ELF_R_SYM(bfd, i) \ |
| 660 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) |
| 661 | #define ELF_R_TYPE(bfd, i) \ |
| 662 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) |
| 663 | #define ELF_R_INFO(bfd, s, t) \ |
| 664 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) |
| 665 | #else |
| 666 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
| 667 | #define ELF_R_SYM(bfd, i) \ |
| 668 | (ELF32_R_SYM (i)) |
| 669 | #define ELF_R_TYPE(bfd, i) \ |
| 670 | (ELF32_R_TYPE (i)) |
| 671 | #define ELF_R_INFO(bfd, s, t) \ |
| 672 | (ELF32_R_INFO (s, t)) |
| 673 | #endif |
| 674 | \f |
| 675 | /* The mips16 compiler uses a couple of special sections to handle |
| 676 | floating point arguments. |
| 677 | |
| 678 | Section names that look like .mips16.fn.FNNAME contain stubs that |
| 679 | copy floating point arguments from the fp regs to the gp regs and |
| 680 | then jump to FNNAME. If any 32 bit function calls FNNAME, the |
| 681 | call should be redirected to the stub instead. If no 32 bit |
| 682 | function calls FNNAME, the stub should be discarded. We need to |
| 683 | consider any reference to the function, not just a call, because |
| 684 | if the address of the function is taken we will need the stub, |
| 685 | since the address might be passed to a 32 bit function. |
| 686 | |
| 687 | Section names that look like .mips16.call.FNNAME contain stubs |
| 688 | that copy floating point arguments from the gp regs to the fp |
| 689 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, |
| 690 | then any 16 bit function that calls FNNAME should be redirected |
| 691 | to the stub instead. If FNNAME is not a 32 bit function, the |
| 692 | stub should be discarded. |
| 693 | |
| 694 | .mips16.call.fp.FNNAME sections are similar, but contain stubs |
| 695 | which call FNNAME and then copy the return value from the fp regs |
| 696 | to the gp regs. These stubs store the return value in $18 while |
| 697 | calling FNNAME; any function which might call one of these stubs |
| 698 | must arrange to save $18 around the call. (This case is not |
| 699 | needed for 32 bit functions that call 16 bit functions, because |
| 700 | 16 bit functions always return floating point values in both |
| 701 | $f0/$f1 and $2/$3.) |
| 702 | |
| 703 | Note that in all cases FNNAME might be defined statically. |
| 704 | Therefore, FNNAME is not used literally. Instead, the relocation |
| 705 | information will indicate which symbol the section is for. |
| 706 | |
| 707 | We record any stubs that we find in the symbol table. */ |
| 708 | |
| 709 | #define FN_STUB ".mips16.fn." |
| 710 | #define CALL_STUB ".mips16.call." |
| 711 | #define CALL_FP_STUB ".mips16.call.fp." |
| 712 | |
| 713 | #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) |
| 714 | #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) |
| 715 | #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) |
| 716 | \f |
| 717 | /* The format of the first PLT entry in a VxWorks executable. */ |
| 718 | static const bfd_vma mips_vxworks_exec_plt0_entry[] = { |
| 719 | 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ |
| 720 | 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ |
| 721 | 0x8f390008, /* lw t9, 8(t9) */ |
| 722 | 0x00000000, /* nop */ |
| 723 | 0x03200008, /* jr t9 */ |
| 724 | 0x00000000 /* nop */ |
| 725 | }; |
| 726 | |
| 727 | /* The format of subsequent PLT entries. */ |
| 728 | static const bfd_vma mips_vxworks_exec_plt_entry[] = { |
| 729 | 0x10000000, /* b .PLT_resolver */ |
| 730 | 0x24180000, /* li t8, <pltindex> */ |
| 731 | 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ |
| 732 | 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ |
| 733 | 0x8f390000, /* lw t9, 0(t9) */ |
| 734 | 0x00000000, /* nop */ |
| 735 | 0x03200008, /* jr t9 */ |
| 736 | 0x00000000 /* nop */ |
| 737 | }; |
| 738 | |
| 739 | /* The format of the first PLT entry in a VxWorks shared object. */ |
| 740 | static const bfd_vma mips_vxworks_shared_plt0_entry[] = { |
| 741 | 0x8f990008, /* lw t9, 8(gp) */ |
| 742 | 0x00000000, /* nop */ |
| 743 | 0x03200008, /* jr t9 */ |
| 744 | 0x00000000, /* nop */ |
| 745 | 0x00000000, /* nop */ |
| 746 | 0x00000000 /* nop */ |
| 747 | }; |
| 748 | |
| 749 | /* The format of subsequent PLT entries. */ |
| 750 | static const bfd_vma mips_vxworks_shared_plt_entry[] = { |
| 751 | 0x10000000, /* b .PLT_resolver */ |
| 752 | 0x24180000 /* li t8, <pltindex> */ |
| 753 | }; |
| 754 | \f |
| 755 | /* Look up an entry in a MIPS ELF linker hash table. */ |
| 756 | |
| 757 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ |
| 758 | ((struct mips_elf_link_hash_entry *) \ |
| 759 | elf_link_hash_lookup (&(table)->root, (string), (create), \ |
| 760 | (copy), (follow))) |
| 761 | |
| 762 | /* Traverse a MIPS ELF linker hash table. */ |
| 763 | |
| 764 | #define mips_elf_link_hash_traverse(table, func, info) \ |
| 765 | (elf_link_hash_traverse \ |
| 766 | (&(table)->root, \ |
| 767 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
| 768 | (info))) |
| 769 | |
| 770 | /* Get the MIPS ELF linker hash table from a link_info structure. */ |
| 771 | |
| 772 | #define mips_elf_hash_table(p) \ |
| 773 | ((struct mips_elf_link_hash_table *) ((p)->hash)) |
| 774 | |
| 775 | /* Find the base offsets for thread-local storage in this object, |
| 776 | for GD/LD and IE/LE respectively. */ |
| 777 | |
| 778 | #define TP_OFFSET 0x7000 |
| 779 | #define DTP_OFFSET 0x8000 |
| 780 | |
| 781 | static bfd_vma |
| 782 | dtprel_base (struct bfd_link_info *info) |
| 783 | { |
| 784 | /* If tls_sec is NULL, we should have signalled an error already. */ |
| 785 | if (elf_hash_table (info)->tls_sec == NULL) |
| 786 | return 0; |
| 787 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; |
| 788 | } |
| 789 | |
| 790 | static bfd_vma |
| 791 | tprel_base (struct bfd_link_info *info) |
| 792 | { |
| 793 | /* If tls_sec is NULL, we should have signalled an error already. */ |
| 794 | if (elf_hash_table (info)->tls_sec == NULL) |
| 795 | return 0; |
| 796 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; |
| 797 | } |
| 798 | |
| 799 | /* Create an entry in a MIPS ELF linker hash table. */ |
| 800 | |
| 801 | static struct bfd_hash_entry * |
| 802 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
| 803 | struct bfd_hash_table *table, const char *string) |
| 804 | { |
| 805 | struct mips_elf_link_hash_entry *ret = |
| 806 | (struct mips_elf_link_hash_entry *) entry; |
| 807 | |
| 808 | /* Allocate the structure if it has not already been allocated by a |
| 809 | subclass. */ |
| 810 | if (ret == NULL) |
| 811 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); |
| 812 | if (ret == NULL) |
| 813 | return (struct bfd_hash_entry *) ret; |
| 814 | |
| 815 | /* Call the allocation method of the superclass. */ |
| 816 | ret = ((struct mips_elf_link_hash_entry *) |
| 817 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| 818 | table, string)); |
| 819 | if (ret != NULL) |
| 820 | { |
| 821 | /* Set local fields. */ |
| 822 | memset (&ret->esym, 0, sizeof (EXTR)); |
| 823 | /* We use -2 as a marker to indicate that the information has |
| 824 | not been set. -1 means there is no associated ifd. */ |
| 825 | ret->esym.ifd = -2; |
| 826 | ret->possibly_dynamic_relocs = 0; |
| 827 | ret->readonly_reloc = FALSE; |
| 828 | ret->no_fn_stub = FALSE; |
| 829 | ret->fn_stub = NULL; |
| 830 | ret->need_fn_stub = FALSE; |
| 831 | ret->call_stub = NULL; |
| 832 | ret->call_fp_stub = NULL; |
| 833 | ret->forced_local = FALSE; |
| 834 | ret->is_branch_target = FALSE; |
| 835 | ret->is_relocation_target = FALSE; |
| 836 | ret->tls_type = GOT_NORMAL; |
| 837 | } |
| 838 | |
| 839 | return (struct bfd_hash_entry *) ret; |
| 840 | } |
| 841 | |
| 842 | bfd_boolean |
| 843 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
| 844 | { |
| 845 | if (!sec->used_by_bfd) |
| 846 | { |
| 847 | struct _mips_elf_section_data *sdata; |
| 848 | bfd_size_type amt = sizeof (*sdata); |
| 849 | |
| 850 | sdata = bfd_zalloc (abfd, amt); |
| 851 | if (sdata == NULL) |
| 852 | return FALSE; |
| 853 | sec->used_by_bfd = sdata; |
| 854 | } |
| 855 | |
| 856 | return _bfd_elf_new_section_hook (abfd, sec); |
| 857 | } |
| 858 | \f |
| 859 | /* Read ECOFF debugging information from a .mdebug section into a |
| 860 | ecoff_debug_info structure. */ |
| 861 | |
| 862 | bfd_boolean |
| 863 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
| 864 | struct ecoff_debug_info *debug) |
| 865 | { |
| 866 | HDRR *symhdr; |
| 867 | const struct ecoff_debug_swap *swap; |
| 868 | char *ext_hdr; |
| 869 | |
| 870 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| 871 | memset (debug, 0, sizeof (*debug)); |
| 872 | |
| 873 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
| 874 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
| 875 | goto error_return; |
| 876 | |
| 877 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
| 878 | swap->external_hdr_size)) |
| 879 | goto error_return; |
| 880 | |
| 881 | symhdr = &debug->symbolic_header; |
| 882 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); |
| 883 | |
| 884 | /* The symbolic header contains absolute file offsets and sizes to |
| 885 | read. */ |
| 886 | #define READ(ptr, offset, count, size, type) \ |
| 887 | if (symhdr->count == 0) \ |
| 888 | debug->ptr = NULL; \ |
| 889 | else \ |
| 890 | { \ |
| 891 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ |
| 892 | debug->ptr = bfd_malloc (amt); \ |
| 893 | if (debug->ptr == NULL) \ |
| 894 | goto error_return; \ |
| 895 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
| 896 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
| 897 | goto error_return; \ |
| 898 | } |
| 899 | |
| 900 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); |
| 901 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
| 902 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); |
| 903 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); |
| 904 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); |
| 905 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
| 906 | union aux_ext *); |
| 907 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); |
| 908 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); |
| 909 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
| 910 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); |
| 911 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); |
| 912 | #undef READ |
| 913 | |
| 914 | debug->fdr = NULL; |
| 915 | |
| 916 | return TRUE; |
| 917 | |
| 918 | error_return: |
| 919 | if (ext_hdr != NULL) |
| 920 | free (ext_hdr); |
| 921 | if (debug->line != NULL) |
| 922 | free (debug->line); |
| 923 | if (debug->external_dnr != NULL) |
| 924 | free (debug->external_dnr); |
| 925 | if (debug->external_pdr != NULL) |
| 926 | free (debug->external_pdr); |
| 927 | if (debug->external_sym != NULL) |
| 928 | free (debug->external_sym); |
| 929 | if (debug->external_opt != NULL) |
| 930 | free (debug->external_opt); |
| 931 | if (debug->external_aux != NULL) |
| 932 | free (debug->external_aux); |
| 933 | if (debug->ss != NULL) |
| 934 | free (debug->ss); |
| 935 | if (debug->ssext != NULL) |
| 936 | free (debug->ssext); |
| 937 | if (debug->external_fdr != NULL) |
| 938 | free (debug->external_fdr); |
| 939 | if (debug->external_rfd != NULL) |
| 940 | free (debug->external_rfd); |
| 941 | if (debug->external_ext != NULL) |
| 942 | free (debug->external_ext); |
| 943 | return FALSE; |
| 944 | } |
| 945 | \f |
| 946 | /* Swap RPDR (runtime procedure table entry) for output. */ |
| 947 | |
| 948 | static void |
| 949 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
| 950 | { |
| 951 | H_PUT_S32 (abfd, in->adr, ex->p_adr); |
| 952 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); |
| 953 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); |
| 954 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); |
| 955 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); |
| 956 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); |
| 957 | |
| 958 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); |
| 959 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); |
| 960 | |
| 961 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); |
| 962 | } |
| 963 | |
| 964 | /* Create a runtime procedure table from the .mdebug section. */ |
| 965 | |
| 966 | static bfd_boolean |
| 967 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
| 968 | struct bfd_link_info *info, asection *s, |
| 969 | struct ecoff_debug_info *debug) |
| 970 | { |
| 971 | const struct ecoff_debug_swap *swap; |
| 972 | HDRR *hdr = &debug->symbolic_header; |
| 973 | RPDR *rpdr, *rp; |
| 974 | struct rpdr_ext *erp; |
| 975 | void *rtproc; |
| 976 | struct pdr_ext *epdr; |
| 977 | struct sym_ext *esym; |
| 978 | char *ss, **sv; |
| 979 | char *str; |
| 980 | bfd_size_type size; |
| 981 | bfd_size_type count; |
| 982 | unsigned long sindex; |
| 983 | unsigned long i; |
| 984 | PDR pdr; |
| 985 | SYMR sym; |
| 986 | const char *no_name_func = _("static procedure (no name)"); |
| 987 | |
| 988 | epdr = NULL; |
| 989 | rpdr = NULL; |
| 990 | esym = NULL; |
| 991 | ss = NULL; |
| 992 | sv = NULL; |
| 993 | |
| 994 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| 995 | |
| 996 | sindex = strlen (no_name_func) + 1; |
| 997 | count = hdr->ipdMax; |
| 998 | if (count > 0) |
| 999 | { |
| 1000 | size = swap->external_pdr_size; |
| 1001 | |
| 1002 | epdr = bfd_malloc (size * count); |
| 1003 | if (epdr == NULL) |
| 1004 | goto error_return; |
| 1005 | |
| 1006 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
| 1007 | goto error_return; |
| 1008 | |
| 1009 | size = sizeof (RPDR); |
| 1010 | rp = rpdr = bfd_malloc (size * count); |
| 1011 | if (rpdr == NULL) |
| 1012 | goto error_return; |
| 1013 | |
| 1014 | size = sizeof (char *); |
| 1015 | sv = bfd_malloc (size * count); |
| 1016 | if (sv == NULL) |
| 1017 | goto error_return; |
| 1018 | |
| 1019 | count = hdr->isymMax; |
| 1020 | size = swap->external_sym_size; |
| 1021 | esym = bfd_malloc (size * count); |
| 1022 | if (esym == NULL) |
| 1023 | goto error_return; |
| 1024 | |
| 1025 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
| 1026 | goto error_return; |
| 1027 | |
| 1028 | count = hdr->issMax; |
| 1029 | ss = bfd_malloc (count); |
| 1030 | if (ss == NULL) |
| 1031 | goto error_return; |
| 1032 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
| 1033 | goto error_return; |
| 1034 | |
| 1035 | count = hdr->ipdMax; |
| 1036 | for (i = 0; i < (unsigned long) count; i++, rp++) |
| 1037 | { |
| 1038 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
| 1039 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); |
| 1040 | rp->adr = sym.value; |
| 1041 | rp->regmask = pdr.regmask; |
| 1042 | rp->regoffset = pdr.regoffset; |
| 1043 | rp->fregmask = pdr.fregmask; |
| 1044 | rp->fregoffset = pdr.fregoffset; |
| 1045 | rp->frameoffset = pdr.frameoffset; |
| 1046 | rp->framereg = pdr.framereg; |
| 1047 | rp->pcreg = pdr.pcreg; |
| 1048 | rp->irpss = sindex; |
| 1049 | sv[i] = ss + sym.iss; |
| 1050 | sindex += strlen (sv[i]) + 1; |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; |
| 1055 | size = BFD_ALIGN (size, 16); |
| 1056 | rtproc = bfd_alloc (abfd, size); |
| 1057 | if (rtproc == NULL) |
| 1058 | { |
| 1059 | mips_elf_hash_table (info)->procedure_count = 0; |
| 1060 | goto error_return; |
| 1061 | } |
| 1062 | |
| 1063 | mips_elf_hash_table (info)->procedure_count = count + 2; |
| 1064 | |
| 1065 | erp = rtproc; |
| 1066 | memset (erp, 0, sizeof (struct rpdr_ext)); |
| 1067 | erp++; |
| 1068 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); |
| 1069 | strcpy (str, no_name_func); |
| 1070 | str += strlen (no_name_func) + 1; |
| 1071 | for (i = 0; i < count; i++) |
| 1072 | { |
| 1073 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); |
| 1074 | strcpy (str, sv[i]); |
| 1075 | str += strlen (sv[i]) + 1; |
| 1076 | } |
| 1077 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); |
| 1078 | |
| 1079 | /* Set the size and contents of .rtproc section. */ |
| 1080 | s->size = size; |
| 1081 | s->contents = rtproc; |
| 1082 | |
| 1083 | /* Skip this section later on (I don't think this currently |
| 1084 | matters, but someday it might). */ |
| 1085 | s->map_head.link_order = NULL; |
| 1086 | |
| 1087 | if (epdr != NULL) |
| 1088 | free (epdr); |
| 1089 | if (rpdr != NULL) |
| 1090 | free (rpdr); |
| 1091 | if (esym != NULL) |
| 1092 | free (esym); |
| 1093 | if (ss != NULL) |
| 1094 | free (ss); |
| 1095 | if (sv != NULL) |
| 1096 | free (sv); |
| 1097 | |
| 1098 | return TRUE; |
| 1099 | |
| 1100 | error_return: |
| 1101 | if (epdr != NULL) |
| 1102 | free (epdr); |
| 1103 | if (rpdr != NULL) |
| 1104 | free (rpdr); |
| 1105 | if (esym != NULL) |
| 1106 | free (esym); |
| 1107 | if (ss != NULL) |
| 1108 | free (ss); |
| 1109 | if (sv != NULL) |
| 1110 | free (sv); |
| 1111 | return FALSE; |
| 1112 | } |
| 1113 | |
| 1114 | /* Check the mips16 stubs for a particular symbol, and see if we can |
| 1115 | discard them. */ |
| 1116 | |
| 1117 | static bfd_boolean |
| 1118 | mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, |
| 1119 | void *data ATTRIBUTE_UNUSED) |
| 1120 | { |
| 1121 | if (h->root.root.type == bfd_link_hash_warning) |
| 1122 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| 1123 | |
| 1124 | if (h->fn_stub != NULL |
| 1125 | && ! h->need_fn_stub) |
| 1126 | { |
| 1127 | /* We don't need the fn_stub; the only references to this symbol |
| 1128 | are 16 bit calls. Clobber the size to 0 to prevent it from |
| 1129 | being included in the link. */ |
| 1130 | h->fn_stub->size = 0; |
| 1131 | h->fn_stub->flags &= ~SEC_RELOC; |
| 1132 | h->fn_stub->reloc_count = 0; |
| 1133 | h->fn_stub->flags |= SEC_EXCLUDE; |
| 1134 | } |
| 1135 | |
| 1136 | if (h->call_stub != NULL |
| 1137 | && h->root.other == STO_MIPS16) |
| 1138 | { |
| 1139 | /* We don't need the call_stub; this is a 16 bit function, so |
| 1140 | calls from other 16 bit functions are OK. Clobber the size |
| 1141 | to 0 to prevent it from being included in the link. */ |
| 1142 | h->call_stub->size = 0; |
| 1143 | h->call_stub->flags &= ~SEC_RELOC; |
| 1144 | h->call_stub->reloc_count = 0; |
| 1145 | h->call_stub->flags |= SEC_EXCLUDE; |
| 1146 | } |
| 1147 | |
| 1148 | if (h->call_fp_stub != NULL |
| 1149 | && h->root.other == STO_MIPS16) |
| 1150 | { |
| 1151 | /* We don't need the call_stub; this is a 16 bit function, so |
| 1152 | calls from other 16 bit functions are OK. Clobber the size |
| 1153 | to 0 to prevent it from being included in the link. */ |
| 1154 | h->call_fp_stub->size = 0; |
| 1155 | h->call_fp_stub->flags &= ~SEC_RELOC; |
| 1156 | h->call_fp_stub->reloc_count = 0; |
| 1157 | h->call_fp_stub->flags |= SEC_EXCLUDE; |
| 1158 | } |
| 1159 | |
| 1160 | return TRUE; |
| 1161 | } |
| 1162 | \f |
| 1163 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
| 1164 | Most mips16 instructions are 16 bits, but these instructions |
| 1165 | are 32 bits. |
| 1166 | |
| 1167 | The format of these instructions is: |
| 1168 | |
| 1169 | +--------------+--------------------------------+ |
| 1170 | | JALX | X| Imm 20:16 | Imm 25:21 | |
| 1171 | +--------------+--------------------------------+ |
| 1172 | | Immediate 15:0 | |
| 1173 | +-----------------------------------------------+ |
| 1174 | |
| 1175 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. |
| 1176 | Note that the immediate value in the first word is swapped. |
| 1177 | |
| 1178 | When producing a relocatable object file, R_MIPS16_26 is |
| 1179 | handled mostly like R_MIPS_26. In particular, the addend is |
| 1180 | stored as a straight 26-bit value in a 32-bit instruction. |
| 1181 | (gas makes life simpler for itself by never adjusting a |
| 1182 | R_MIPS16_26 reloc to be against a section, so the addend is |
| 1183 | always zero). However, the 32 bit instruction is stored as 2 |
| 1184 | 16-bit values, rather than a single 32-bit value. In a |
| 1185 | big-endian file, the result is the same; in a little-endian |
| 1186 | file, the two 16-bit halves of the 32 bit value are swapped. |
| 1187 | This is so that a disassembler can recognize the jal |
| 1188 | instruction. |
| 1189 | |
| 1190 | When doing a final link, R_MIPS16_26 is treated as a 32 bit |
| 1191 | instruction stored as two 16-bit values. The addend A is the |
| 1192 | contents of the targ26 field. The calculation is the same as |
| 1193 | R_MIPS_26. When storing the calculated value, reorder the |
| 1194 | immediate value as shown above, and don't forget to store the |
| 1195 | value as two 16-bit values. |
| 1196 | |
| 1197 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, |
| 1198 | defined as |
| 1199 | |
| 1200 | big-endian: |
| 1201 | +--------+----------------------+ |
| 1202 | | | | |
| 1203 | | | targ26-16 | |
| 1204 | |31 26|25 0| |
| 1205 | +--------+----------------------+ |
| 1206 | |
| 1207 | little-endian: |
| 1208 | +----------+------+-------------+ |
| 1209 | | | | | |
| 1210 | | sub1 | | sub2 | |
| 1211 | |0 9|10 15|16 31| |
| 1212 | +----------+--------------------+ |
| 1213 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is |
| 1214 | ((sub1 << 16) | sub2)). |
| 1215 | |
| 1216 | When producing a relocatable object file, the calculation is |
| 1217 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
| 1218 | When producing a fully linked file, the calculation is |
| 1219 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
| 1220 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) |
| 1221 | |
| 1222 | R_MIPS16_GPREL is used for GP-relative addressing in mips16 |
| 1223 | mode. A typical instruction will have a format like this: |
| 1224 | |
| 1225 | +--------------+--------------------------------+ |
| 1226 | | EXTEND | Imm 10:5 | Imm 15:11 | |
| 1227 | +--------------+--------------------------------+ |
| 1228 | | Major | rx | ry | Imm 4:0 | |
| 1229 | +--------------+--------------------------------+ |
| 1230 | |
| 1231 | EXTEND is the five bit value 11110. Major is the instruction |
| 1232 | opcode. |
| 1233 | |
| 1234 | This is handled exactly like R_MIPS_GPREL16, except that the |
| 1235 | addend is retrieved and stored as shown in this diagram; that |
| 1236 | is, the Imm fields above replace the V-rel16 field. |
| 1237 | |
| 1238 | All we need to do here is shuffle the bits appropriately. As |
| 1239 | above, the two 16-bit halves must be swapped on a |
| 1240 | little-endian system. |
| 1241 | |
| 1242 | R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to |
| 1243 | access data when neither GP-relative nor PC-relative addressing |
| 1244 | can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16, |
| 1245 | except that the addend is retrieved and stored as shown above |
| 1246 | for R_MIPS16_GPREL. |
| 1247 | */ |
| 1248 | void |
| 1249 | _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type, |
| 1250 | bfd_boolean jal_shuffle, bfd_byte *data) |
| 1251 | { |
| 1252 | bfd_vma extend, insn, val; |
| 1253 | |
| 1254 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL |
| 1255 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) |
| 1256 | return; |
| 1257 | |
| 1258 | /* Pick up the mips16 extend instruction and the real instruction. */ |
| 1259 | extend = bfd_get_16 (abfd, data); |
| 1260 | insn = bfd_get_16 (abfd, data + 2); |
| 1261 | if (r_type == R_MIPS16_26) |
| 1262 | { |
| 1263 | if (jal_shuffle) |
| 1264 | val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11) |
| 1265 | | ((extend & 0x1f) << 21) | insn; |
| 1266 | else |
| 1267 | val = extend << 16 | insn; |
| 1268 | } |
| 1269 | else |
| 1270 | val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11) |
| 1271 | | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f); |
| 1272 | bfd_put_32 (abfd, val, data); |
| 1273 | } |
| 1274 | |
| 1275 | void |
| 1276 | _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type, |
| 1277 | bfd_boolean jal_shuffle, bfd_byte *data) |
| 1278 | { |
| 1279 | bfd_vma extend, insn, val; |
| 1280 | |
| 1281 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL |
| 1282 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) |
| 1283 | return; |
| 1284 | |
| 1285 | val = bfd_get_32 (abfd, data); |
| 1286 | if (r_type == R_MIPS16_26) |
| 1287 | { |
| 1288 | if (jal_shuffle) |
| 1289 | { |
| 1290 | insn = val & 0xffff; |
| 1291 | extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) |
| 1292 | | ((val >> 21) & 0x1f); |
| 1293 | } |
| 1294 | else |
| 1295 | { |
| 1296 | insn = val & 0xffff; |
| 1297 | extend = val >> 16; |
| 1298 | } |
| 1299 | } |
| 1300 | else |
| 1301 | { |
| 1302 | insn = ((val >> 11) & 0xffe0) | (val & 0x1f); |
| 1303 | extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); |
| 1304 | } |
| 1305 | bfd_put_16 (abfd, insn, data + 2); |
| 1306 | bfd_put_16 (abfd, extend, data); |
| 1307 | } |
| 1308 | |
| 1309 | bfd_reloc_status_type |
| 1310 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
| 1311 | arelent *reloc_entry, asection *input_section, |
| 1312 | bfd_boolean relocatable, void *data, bfd_vma gp) |
| 1313 | { |
| 1314 | bfd_vma relocation; |
| 1315 | bfd_signed_vma val; |
| 1316 | bfd_reloc_status_type status; |
| 1317 | |
| 1318 | if (bfd_is_com_section (symbol->section)) |
| 1319 | relocation = 0; |
| 1320 | else |
| 1321 | relocation = symbol->value; |
| 1322 | |
| 1323 | relocation += symbol->section->output_section->vma; |
| 1324 | relocation += symbol->section->output_offset; |
| 1325 | |
| 1326 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
| 1327 | return bfd_reloc_outofrange; |
| 1328 | |
| 1329 | /* Set val to the offset into the section or symbol. */ |
| 1330 | val = reloc_entry->addend; |
| 1331 | |
| 1332 | _bfd_mips_elf_sign_extend (val, 16); |
| 1333 | |
| 1334 | /* Adjust val for the final section location and GP value. If we |
| 1335 | are producing relocatable output, we don't want to do this for |
| 1336 | an external symbol. */ |
| 1337 | if (! relocatable |
| 1338 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
| 1339 | val += relocation - gp; |
| 1340 | |
| 1341 | if (reloc_entry->howto->partial_inplace) |
| 1342 | { |
| 1343 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
| 1344 | (bfd_byte *) data |
| 1345 | + reloc_entry->address); |
| 1346 | if (status != bfd_reloc_ok) |
| 1347 | return status; |
| 1348 | } |
| 1349 | else |
| 1350 | reloc_entry->addend = val; |
| 1351 | |
| 1352 | if (relocatable) |
| 1353 | reloc_entry->address += input_section->output_offset; |
| 1354 | |
| 1355 | return bfd_reloc_ok; |
| 1356 | } |
| 1357 | |
| 1358 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or |
| 1359 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section |
| 1360 | that contains the relocation field and DATA points to the start of |
| 1361 | INPUT_SECTION. */ |
| 1362 | |
| 1363 | struct mips_hi16 |
| 1364 | { |
| 1365 | struct mips_hi16 *next; |
| 1366 | bfd_byte *data; |
| 1367 | asection *input_section; |
| 1368 | arelent rel; |
| 1369 | }; |
| 1370 | |
| 1371 | /* FIXME: This should not be a static variable. */ |
| 1372 | |
| 1373 | static struct mips_hi16 *mips_hi16_list; |
| 1374 | |
| 1375 | /* A howto special_function for REL *HI16 relocations. We can only |
| 1376 | calculate the correct value once we've seen the partnering |
| 1377 | *LO16 relocation, so just save the information for later. |
| 1378 | |
| 1379 | The ABI requires that the *LO16 immediately follow the *HI16. |
| 1380 | However, as a GNU extension, we permit an arbitrary number of |
| 1381 | *HI16s to be associated with a single *LO16. This significantly |
| 1382 | simplies the relocation handling in gcc. */ |
| 1383 | |
| 1384 | bfd_reloc_status_type |
| 1385 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, |
| 1386 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, |
| 1387 | asection *input_section, bfd *output_bfd, |
| 1388 | char **error_message ATTRIBUTE_UNUSED) |
| 1389 | { |
| 1390 | struct mips_hi16 *n; |
| 1391 | |
| 1392 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
| 1393 | return bfd_reloc_outofrange; |
| 1394 | |
| 1395 | n = bfd_malloc (sizeof *n); |
| 1396 | if (n == NULL) |
| 1397 | return bfd_reloc_outofrange; |
| 1398 | |
| 1399 | n->next = mips_hi16_list; |
| 1400 | n->data = data; |
| 1401 | n->input_section = input_section; |
| 1402 | n->rel = *reloc_entry; |
| 1403 | mips_hi16_list = n; |
| 1404 | |
| 1405 | if (output_bfd != NULL) |
| 1406 | reloc_entry->address += input_section->output_offset; |
| 1407 | |
| 1408 | return bfd_reloc_ok; |
| 1409 | } |
| 1410 | |
| 1411 | /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just |
| 1412 | like any other 16-bit relocation when applied to global symbols, but is |
| 1413 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ |
| 1414 | |
| 1415 | bfd_reloc_status_type |
| 1416 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, |
| 1417 | void *data, asection *input_section, |
| 1418 | bfd *output_bfd, char **error_message) |
| 1419 | { |
| 1420 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 |
| 1421 | || bfd_is_und_section (bfd_get_section (symbol)) |
| 1422 | || bfd_is_com_section (bfd_get_section (symbol))) |
| 1423 | /* The relocation is against a global symbol. */ |
| 1424 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, |
| 1425 | input_section, output_bfd, |
| 1426 | error_message); |
| 1427 | |
| 1428 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, |
| 1429 | input_section, output_bfd, error_message); |
| 1430 | } |
| 1431 | |
| 1432 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself |
| 1433 | is a straightforward 16 bit inplace relocation, but we must deal with |
| 1434 | any partnering high-part relocations as well. */ |
| 1435 | |
| 1436 | bfd_reloc_status_type |
| 1437 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, |
| 1438 | void *data, asection *input_section, |
| 1439 | bfd *output_bfd, char **error_message) |
| 1440 | { |
| 1441 | bfd_vma vallo; |
| 1442 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
| 1443 | |
| 1444 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
| 1445 | return bfd_reloc_outofrange; |
| 1446 | |
| 1447 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
| 1448 | location); |
| 1449 | vallo = bfd_get_32 (abfd, location); |
| 1450 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, |
| 1451 | location); |
| 1452 | |
| 1453 | while (mips_hi16_list != NULL) |
| 1454 | { |
| 1455 | bfd_reloc_status_type ret; |
| 1456 | struct mips_hi16 *hi; |
| 1457 | |
| 1458 | hi = mips_hi16_list; |
| 1459 | |
| 1460 | /* R_MIPS_GOT16 relocations are something of a special case. We |
| 1461 | want to install the addend in the same way as for a R_MIPS_HI16 |
| 1462 | relocation (with a rightshift of 16). However, since GOT16 |
| 1463 | relocations can also be used with global symbols, their howto |
| 1464 | has a rightshift of 0. */ |
| 1465 | if (hi->rel.howto->type == R_MIPS_GOT16) |
| 1466 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); |
| 1467 | |
| 1468 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any |
| 1469 | carry or borrow will induce a change of +1 or -1 in the high part. */ |
| 1470 | hi->rel.addend += (vallo + 0x8000) & 0xffff; |
| 1471 | |
| 1472 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
| 1473 | hi->input_section, output_bfd, |
| 1474 | error_message); |
| 1475 | if (ret != bfd_reloc_ok) |
| 1476 | return ret; |
| 1477 | |
| 1478 | mips_hi16_list = hi->next; |
| 1479 | free (hi); |
| 1480 | } |
| 1481 | |
| 1482 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, |
| 1483 | input_section, output_bfd, |
| 1484 | error_message); |
| 1485 | } |
| 1486 | |
| 1487 | /* A generic howto special_function. This calculates and installs the |
| 1488 | relocation itself, thus avoiding the oft-discussed problems in |
| 1489 | bfd_perform_relocation and bfd_install_relocation. */ |
| 1490 | |
| 1491 | bfd_reloc_status_type |
| 1492 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, |
| 1493 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, |
| 1494 | asection *input_section, bfd *output_bfd, |
| 1495 | char **error_message ATTRIBUTE_UNUSED) |
| 1496 | { |
| 1497 | bfd_signed_vma val; |
| 1498 | bfd_reloc_status_type status; |
| 1499 | bfd_boolean relocatable; |
| 1500 | |
| 1501 | relocatable = (output_bfd != NULL); |
| 1502 | |
| 1503 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
| 1504 | return bfd_reloc_outofrange; |
| 1505 | |
| 1506 | /* Build up the field adjustment in VAL. */ |
| 1507 | val = 0; |
| 1508 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) |
| 1509 | { |
| 1510 | /* Either we're calculating the final field value or we have a |
| 1511 | relocation against a section symbol. Add in the section's |
| 1512 | offset or address. */ |
| 1513 | val += symbol->section->output_section->vma; |
| 1514 | val += symbol->section->output_offset; |
| 1515 | } |
| 1516 | |
| 1517 | if (!relocatable) |
| 1518 | { |
| 1519 | /* We're calculating the final field value. Add in the symbol's value |
| 1520 | and, if pc-relative, subtract the address of the field itself. */ |
| 1521 | val += symbol->value; |
| 1522 | if (reloc_entry->howto->pc_relative) |
| 1523 | { |
| 1524 | val -= input_section->output_section->vma; |
| 1525 | val -= input_section->output_offset; |
| 1526 | val -= reloc_entry->address; |
| 1527 | } |
| 1528 | } |
| 1529 | |
| 1530 | /* VAL is now the final adjustment. If we're keeping this relocation |
| 1531 | in the output file, and if the relocation uses a separate addend, |
| 1532 | we just need to add VAL to that addend. Otherwise we need to add |
| 1533 | VAL to the relocation field itself. */ |
| 1534 | if (relocatable && !reloc_entry->howto->partial_inplace) |
| 1535 | reloc_entry->addend += val; |
| 1536 | else |
| 1537 | { |
| 1538 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
| 1539 | |
| 1540 | /* Add in the separate addend, if any. */ |
| 1541 | val += reloc_entry->addend; |
| 1542 | |
| 1543 | /* Add VAL to the relocation field. */ |
| 1544 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
| 1545 | location); |
| 1546 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
| 1547 | location); |
| 1548 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, |
| 1549 | location); |
| 1550 | |
| 1551 | if (status != bfd_reloc_ok) |
| 1552 | return status; |
| 1553 | } |
| 1554 | |
| 1555 | if (relocatable) |
| 1556 | reloc_entry->address += input_section->output_offset; |
| 1557 | |
| 1558 | return bfd_reloc_ok; |
| 1559 | } |
| 1560 | \f |
| 1561 | /* Swap an entry in a .gptab section. Note that these routines rely |
| 1562 | on the equivalence of the two elements of the union. */ |
| 1563 | |
| 1564 | static void |
| 1565 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
| 1566 | Elf32_gptab *in) |
| 1567 | { |
| 1568 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); |
| 1569 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); |
| 1570 | } |
| 1571 | |
| 1572 | static void |
| 1573 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
| 1574 | Elf32_External_gptab *ex) |
| 1575 | { |
| 1576 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); |
| 1577 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); |
| 1578 | } |
| 1579 | |
| 1580 | static void |
| 1581 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
| 1582 | Elf32_External_compact_rel *ex) |
| 1583 | { |
| 1584 | H_PUT_32 (abfd, in->id1, ex->id1); |
| 1585 | H_PUT_32 (abfd, in->num, ex->num); |
| 1586 | H_PUT_32 (abfd, in->id2, ex->id2); |
| 1587 | H_PUT_32 (abfd, in->offset, ex->offset); |
| 1588 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); |
| 1589 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); |
| 1590 | } |
| 1591 | |
| 1592 | static void |
| 1593 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
| 1594 | Elf32_External_crinfo *ex) |
| 1595 | { |
| 1596 | unsigned long l; |
| 1597 | |
| 1598 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) |
| 1599 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) |
| 1600 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) |
| 1601 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); |
| 1602 | H_PUT_32 (abfd, l, ex->info); |
| 1603 | H_PUT_32 (abfd, in->konst, ex->konst); |
| 1604 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); |
| 1605 | } |
| 1606 | \f |
| 1607 | /* A .reginfo section holds a single Elf32_RegInfo structure. These |
| 1608 | routines swap this structure in and out. They are used outside of |
| 1609 | BFD, so they are globally visible. */ |
| 1610 | |
| 1611 | void |
| 1612 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
| 1613 | Elf32_RegInfo *in) |
| 1614 | { |
| 1615 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); |
| 1616 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); |
| 1617 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); |
| 1618 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); |
| 1619 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); |
| 1620 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); |
| 1621 | } |
| 1622 | |
| 1623 | void |
| 1624 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
| 1625 | Elf32_External_RegInfo *ex) |
| 1626 | { |
| 1627 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); |
| 1628 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); |
| 1629 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); |
| 1630 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); |
| 1631 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); |
| 1632 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); |
| 1633 | } |
| 1634 | |
| 1635 | /* In the 64 bit ABI, the .MIPS.options section holds register |
| 1636 | information in an Elf64_Reginfo structure. These routines swap |
| 1637 | them in and out. They are globally visible because they are used |
| 1638 | outside of BFD. These routines are here so that gas can call them |
| 1639 | without worrying about whether the 64 bit ABI has been included. */ |
| 1640 | |
| 1641 | void |
| 1642 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
| 1643 | Elf64_Internal_RegInfo *in) |
| 1644 | { |
| 1645 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); |
| 1646 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); |
| 1647 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); |
| 1648 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); |
| 1649 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); |
| 1650 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); |
| 1651 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); |
| 1652 | } |
| 1653 | |
| 1654 | void |
| 1655 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
| 1656 | Elf64_External_RegInfo *ex) |
| 1657 | { |
| 1658 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); |
| 1659 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); |
| 1660 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); |
| 1661 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); |
| 1662 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); |
| 1663 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); |
| 1664 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); |
| 1665 | } |
| 1666 | |
| 1667 | /* Swap in an options header. */ |
| 1668 | |
| 1669 | void |
| 1670 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
| 1671 | Elf_Internal_Options *in) |
| 1672 | { |
| 1673 | in->kind = H_GET_8 (abfd, ex->kind); |
| 1674 | in->size = H_GET_8 (abfd, ex->size); |
| 1675 | in->section = H_GET_16 (abfd, ex->section); |
| 1676 | in->info = H_GET_32 (abfd, ex->info); |
| 1677 | } |
| 1678 | |
| 1679 | /* Swap out an options header. */ |
| 1680 | |
| 1681 | void |
| 1682 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
| 1683 | Elf_External_Options *ex) |
| 1684 | { |
| 1685 | H_PUT_8 (abfd, in->kind, ex->kind); |
| 1686 | H_PUT_8 (abfd, in->size, ex->size); |
| 1687 | H_PUT_16 (abfd, in->section, ex->section); |
| 1688 | H_PUT_32 (abfd, in->info, ex->info); |
| 1689 | } |
| 1690 | \f |
| 1691 | /* This function is called via qsort() to sort the dynamic relocation |
| 1692 | entries by increasing r_symndx value. */ |
| 1693 | |
| 1694 | static int |
| 1695 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
| 1696 | { |
| 1697 | Elf_Internal_Rela int_reloc1; |
| 1698 | Elf_Internal_Rela int_reloc2; |
| 1699 | int diff; |
| 1700 | |
| 1701 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
| 1702 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); |
| 1703 | |
| 1704 | diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
| 1705 | if (diff != 0) |
| 1706 | return diff; |
| 1707 | |
| 1708 | if (int_reloc1.r_offset < int_reloc2.r_offset) |
| 1709 | return -1; |
| 1710 | if (int_reloc1.r_offset > int_reloc2.r_offset) |
| 1711 | return 1; |
| 1712 | return 0; |
| 1713 | } |
| 1714 | |
| 1715 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
| 1716 | |
| 1717 | static int |
| 1718 | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
| 1719 | const void *arg2 ATTRIBUTE_UNUSED) |
| 1720 | { |
| 1721 | #ifdef BFD64 |
| 1722 | Elf_Internal_Rela int_reloc1[3]; |
| 1723 | Elf_Internal_Rela int_reloc2[3]; |
| 1724 | |
| 1725 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) |
| 1726 | (reldyn_sorting_bfd, arg1, int_reloc1); |
| 1727 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) |
| 1728 | (reldyn_sorting_bfd, arg2, int_reloc2); |
| 1729 | |
| 1730 | if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) |
| 1731 | return -1; |
| 1732 | if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) |
| 1733 | return 1; |
| 1734 | |
| 1735 | if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) |
| 1736 | return -1; |
| 1737 | if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) |
| 1738 | return 1; |
| 1739 | return 0; |
| 1740 | #else |
| 1741 | abort (); |
| 1742 | #endif |
| 1743 | } |
| 1744 | |
| 1745 | |
| 1746 | /* This routine is used to write out ECOFF debugging external symbol |
| 1747 | information. It is called via mips_elf_link_hash_traverse. The |
| 1748 | ECOFF external symbol information must match the ELF external |
| 1749 | symbol information. Unfortunately, at this point we don't know |
| 1750 | whether a symbol is required by reloc information, so the two |
| 1751 | tables may wind up being different. We must sort out the external |
| 1752 | symbol information before we can set the final size of the .mdebug |
| 1753 | section, and we must set the size of the .mdebug section before we |
| 1754 | can relocate any sections, and we can't know which symbols are |
| 1755 | required by relocation until we relocate the sections. |
| 1756 | Fortunately, it is relatively unlikely that any symbol will be |
| 1757 | stripped but required by a reloc. In particular, it can not happen |
| 1758 | when generating a final executable. */ |
| 1759 | |
| 1760 | static bfd_boolean |
| 1761 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
| 1762 | { |
| 1763 | struct extsym_info *einfo = data; |
| 1764 | bfd_boolean strip; |
| 1765 | asection *sec, *output_section; |
| 1766 | |
| 1767 | if (h->root.root.type == bfd_link_hash_warning) |
| 1768 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| 1769 | |
| 1770 | if (h->root.indx == -2) |
| 1771 | strip = FALSE; |
| 1772 | else if ((h->root.def_dynamic |
| 1773 | || h->root.ref_dynamic |
| 1774 | || h->root.type == bfd_link_hash_new) |
| 1775 | && !h->root.def_regular |
| 1776 | && !h->root.ref_regular) |
| 1777 | strip = TRUE; |
| 1778 | else if (einfo->info->strip == strip_all |
| 1779 | || (einfo->info->strip == strip_some |
| 1780 | && bfd_hash_lookup (einfo->info->keep_hash, |
| 1781 | h->root.root.root.string, |
| 1782 | FALSE, FALSE) == NULL)) |
| 1783 | strip = TRUE; |
| 1784 | else |
| 1785 | strip = FALSE; |
| 1786 | |
| 1787 | if (strip) |
| 1788 | return TRUE; |
| 1789 | |
| 1790 | if (h->esym.ifd == -2) |
| 1791 | { |
| 1792 | h->esym.jmptbl = 0; |
| 1793 | h->esym.cobol_main = 0; |
| 1794 | h->esym.weakext = 0; |
| 1795 | h->esym.reserved = 0; |
| 1796 | h->esym.ifd = ifdNil; |
| 1797 | h->esym.asym.value = 0; |
| 1798 | h->esym.asym.st = stGlobal; |
| 1799 | |
| 1800 | if (h->root.root.type == bfd_link_hash_undefined |
| 1801 | || h->root.root.type == bfd_link_hash_undefweak) |
| 1802 | { |
| 1803 | const char *name; |
| 1804 | |
| 1805 | /* Use undefined class. Also, set class and type for some |
| 1806 | special symbols. */ |
| 1807 | name = h->root.root.root.string; |
| 1808 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 |
| 1809 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) |
| 1810 | { |
| 1811 | h->esym.asym.sc = scData; |
| 1812 | h->esym.asym.st = stLabel; |
| 1813 | h->esym.asym.value = 0; |
| 1814 | } |
| 1815 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) |
| 1816 | { |
| 1817 | h->esym.asym.sc = scAbs; |
| 1818 | h->esym.asym.st = stLabel; |
| 1819 | h->esym.asym.value = |
| 1820 | mips_elf_hash_table (einfo->info)->procedure_count; |
| 1821 | } |
| 1822 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
| 1823 | { |
| 1824 | h->esym.asym.sc = scAbs; |
| 1825 | h->esym.asym.st = stLabel; |
| 1826 | h->esym.asym.value = elf_gp (einfo->abfd); |
| 1827 | } |
| 1828 | else |
| 1829 | h->esym.asym.sc = scUndefined; |
| 1830 | } |
| 1831 | else if (h->root.root.type != bfd_link_hash_defined |
| 1832 | && h->root.root.type != bfd_link_hash_defweak) |
| 1833 | h->esym.asym.sc = scAbs; |
| 1834 | else |
| 1835 | { |
| 1836 | const char *name; |
| 1837 | |
| 1838 | sec = h->root.root.u.def.section; |
| 1839 | output_section = sec->output_section; |
| 1840 | |
| 1841 | /* When making a shared library and symbol h is the one from |
| 1842 | the another shared library, OUTPUT_SECTION may be null. */ |
| 1843 | if (output_section == NULL) |
| 1844 | h->esym.asym.sc = scUndefined; |
| 1845 | else |
| 1846 | { |
| 1847 | name = bfd_section_name (output_section->owner, output_section); |
| 1848 | |
| 1849 | if (strcmp (name, ".text") == 0) |
| 1850 | h->esym.asym.sc = scText; |
| 1851 | else if (strcmp (name, ".data") == 0) |
| 1852 | h->esym.asym.sc = scData; |
| 1853 | else if (strcmp (name, ".sdata") == 0) |
| 1854 | h->esym.asym.sc = scSData; |
| 1855 | else if (strcmp (name, ".rodata") == 0 |
| 1856 | || strcmp (name, ".rdata") == 0) |
| 1857 | h->esym.asym.sc = scRData; |
| 1858 | else if (strcmp (name, ".bss") == 0) |
| 1859 | h->esym.asym.sc = scBss; |
| 1860 | else if (strcmp (name, ".sbss") == 0) |
| 1861 | h->esym.asym.sc = scSBss; |
| 1862 | else if (strcmp (name, ".init") == 0) |
| 1863 | h->esym.asym.sc = scInit; |
| 1864 | else if (strcmp (name, ".fini") == 0) |
| 1865 | h->esym.asym.sc = scFini; |
| 1866 | else |
| 1867 | h->esym.asym.sc = scAbs; |
| 1868 | } |
| 1869 | } |
| 1870 | |
| 1871 | h->esym.asym.reserved = 0; |
| 1872 | h->esym.asym.index = indexNil; |
| 1873 | } |
| 1874 | |
| 1875 | if (h->root.root.type == bfd_link_hash_common) |
| 1876 | h->esym.asym.value = h->root.root.u.c.size; |
| 1877 | else if (h->root.root.type == bfd_link_hash_defined |
| 1878 | || h->root.root.type == bfd_link_hash_defweak) |
| 1879 | { |
| 1880 | if (h->esym.asym.sc == scCommon) |
| 1881 | h->esym.asym.sc = scBss; |
| 1882 | else if (h->esym.asym.sc == scSCommon) |
| 1883 | h->esym.asym.sc = scSBss; |
| 1884 | |
| 1885 | sec = h->root.root.u.def.section; |
| 1886 | output_section = sec->output_section; |
| 1887 | if (output_section != NULL) |
| 1888 | h->esym.asym.value = (h->root.root.u.def.value |
| 1889 | + sec->output_offset |
| 1890 | + output_section->vma); |
| 1891 | else |
| 1892 | h->esym.asym.value = 0; |
| 1893 | } |
| 1894 | else if (h->root.needs_plt) |
| 1895 | { |
| 1896 | struct mips_elf_link_hash_entry *hd = h; |
| 1897 | bfd_boolean no_fn_stub = h->no_fn_stub; |
| 1898 | |
| 1899 | while (hd->root.root.type == bfd_link_hash_indirect) |
| 1900 | { |
| 1901 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; |
| 1902 | no_fn_stub = no_fn_stub || hd->no_fn_stub; |
| 1903 | } |
| 1904 | |
| 1905 | if (!no_fn_stub) |
| 1906 | { |
| 1907 | /* Set type and value for a symbol with a function stub. */ |
| 1908 | h->esym.asym.st = stProc; |
| 1909 | sec = hd->root.root.u.def.section; |
| 1910 | if (sec == NULL) |
| 1911 | h->esym.asym.value = 0; |
| 1912 | else |
| 1913 | { |
| 1914 | output_section = sec->output_section; |
| 1915 | if (output_section != NULL) |
| 1916 | h->esym.asym.value = (hd->root.plt.offset |
| 1917 | + sec->output_offset |
| 1918 | + output_section->vma); |
| 1919 | else |
| 1920 | h->esym.asym.value = 0; |
| 1921 | } |
| 1922 | } |
| 1923 | } |
| 1924 | |
| 1925 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, |
| 1926 | h->root.root.root.string, |
| 1927 | &h->esym)) |
| 1928 | { |
| 1929 | einfo->failed = TRUE; |
| 1930 | return FALSE; |
| 1931 | } |
| 1932 | |
| 1933 | return TRUE; |
| 1934 | } |
| 1935 | |
| 1936 | /* A comparison routine used to sort .gptab entries. */ |
| 1937 | |
| 1938 | static int |
| 1939 | gptab_compare (const void *p1, const void *p2) |
| 1940 | { |
| 1941 | const Elf32_gptab *a1 = p1; |
| 1942 | const Elf32_gptab *a2 = p2; |
| 1943 | |
| 1944 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; |
| 1945 | } |
| 1946 | \f |
| 1947 | /* Functions to manage the got entry hash table. */ |
| 1948 | |
| 1949 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit |
| 1950 | hash number. */ |
| 1951 | |
| 1952 | static INLINE hashval_t |
| 1953 | mips_elf_hash_bfd_vma (bfd_vma addr) |
| 1954 | { |
| 1955 | #ifdef BFD64 |
| 1956 | return addr + (addr >> 32); |
| 1957 | #else |
| 1958 | return addr; |
| 1959 | #endif |
| 1960 | } |
| 1961 | |
| 1962 | /* got_entries only match if they're identical, except for gotidx, so |
| 1963 | use all fields to compute the hash, and compare the appropriate |
| 1964 | union members. */ |
| 1965 | |
| 1966 | static hashval_t |
| 1967 | mips_elf_got_entry_hash (const void *entry_) |
| 1968 | { |
| 1969 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; |
| 1970 | |
| 1971 | return entry->symndx |
| 1972 | + ((entry->tls_type & GOT_TLS_LDM) << 17) |
| 1973 | + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
| 1974 | : entry->abfd->id |
| 1975 | + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) |
| 1976 | : entry->d.h->root.root.root.hash)); |
| 1977 | } |
| 1978 | |
| 1979 | static int |
| 1980 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
| 1981 | { |
| 1982 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; |
| 1983 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; |
| 1984 | |
| 1985 | /* An LDM entry can only match another LDM entry. */ |
| 1986 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) |
| 1987 | return 0; |
| 1988 | |
| 1989 | return e1->abfd == e2->abfd && e1->symndx == e2->symndx |
| 1990 | && (! e1->abfd ? e1->d.address == e2->d.address |
| 1991 | : e1->symndx >= 0 ? e1->d.addend == e2->d.addend |
| 1992 | : e1->d.h == e2->d.h); |
| 1993 | } |
| 1994 | |
| 1995 | /* multi_got_entries are still a match in the case of global objects, |
| 1996 | even if the input bfd in which they're referenced differs, so the |
| 1997 | hash computation and compare functions are adjusted |
| 1998 | accordingly. */ |
| 1999 | |
| 2000 | static hashval_t |
| 2001 | mips_elf_multi_got_entry_hash (const void *entry_) |
| 2002 | { |
| 2003 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; |
| 2004 | |
| 2005 | return entry->symndx |
| 2006 | + (! entry->abfd |
| 2007 | ? mips_elf_hash_bfd_vma (entry->d.address) |
| 2008 | : entry->symndx >= 0 |
| 2009 | ? ((entry->tls_type & GOT_TLS_LDM) |
| 2010 | ? (GOT_TLS_LDM << 17) |
| 2011 | : (entry->abfd->id |
| 2012 | + mips_elf_hash_bfd_vma (entry->d.addend))) |
| 2013 | : entry->d.h->root.root.root.hash); |
| 2014 | } |
| 2015 | |
| 2016 | static int |
| 2017 | mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2) |
| 2018 | { |
| 2019 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; |
| 2020 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; |
| 2021 | |
| 2022 | /* Any two LDM entries match. */ |
| 2023 | if (e1->tls_type & e2->tls_type & GOT_TLS_LDM) |
| 2024 | return 1; |
| 2025 | |
| 2026 | /* Nothing else matches an LDM entry. */ |
| 2027 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) |
| 2028 | return 0; |
| 2029 | |
| 2030 | return e1->symndx == e2->symndx |
| 2031 | && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend |
| 2032 | : e1->abfd == NULL || e2->abfd == NULL |
| 2033 | ? e1->abfd == e2->abfd && e1->d.address == e2->d.address |
| 2034 | : e1->d.h == e2->d.h); |
| 2035 | } |
| 2036 | \f |
| 2037 | /* Return the dynamic relocation section. If it doesn't exist, try to |
| 2038 | create a new it if CREATE_P, otherwise return NULL. Also return NULL |
| 2039 | if creation fails. */ |
| 2040 | |
| 2041 | static asection * |
| 2042 | mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) |
| 2043 | { |
| 2044 | const char *dname; |
| 2045 | asection *sreloc; |
| 2046 | bfd *dynobj; |
| 2047 | |
| 2048 | dname = MIPS_ELF_REL_DYN_NAME (info); |
| 2049 | dynobj = elf_hash_table (info)->dynobj; |
| 2050 | sreloc = bfd_get_section_by_name (dynobj, dname); |
| 2051 | if (sreloc == NULL && create_p) |
| 2052 | { |
| 2053 | sreloc = bfd_make_section_with_flags (dynobj, dname, |
| 2054 | (SEC_ALLOC |
| 2055 | | SEC_LOAD |
| 2056 | | SEC_HAS_CONTENTS |
| 2057 | | SEC_IN_MEMORY |
| 2058 | | SEC_LINKER_CREATED |
| 2059 | | SEC_READONLY)); |
| 2060 | if (sreloc == NULL |
| 2061 | || ! bfd_set_section_alignment (dynobj, sreloc, |
| 2062 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
| 2063 | return NULL; |
| 2064 | } |
| 2065 | return sreloc; |
| 2066 | } |
| 2067 | |
| 2068 | /* Returns the GOT section for ABFD. */ |
| 2069 | |
| 2070 | static asection * |
| 2071 | mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded) |
| 2072 | { |
| 2073 | asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
| 2074 | if (sgot == NULL |
| 2075 | || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0)) |
| 2076 | return NULL; |
| 2077 | return sgot; |
| 2078 | } |
| 2079 | |
| 2080 | /* Returns the GOT information associated with the link indicated by |
| 2081 | INFO. If SGOTP is non-NULL, it is filled in with the GOT |
| 2082 | section. */ |
| 2083 | |
| 2084 | static struct mips_got_info * |
| 2085 | mips_elf_got_info (bfd *abfd, asection **sgotp) |
| 2086 | { |
| 2087 | asection *sgot; |
| 2088 | struct mips_got_info *g; |
| 2089 | |
| 2090 | sgot = mips_elf_got_section (abfd, TRUE); |
| 2091 | BFD_ASSERT (sgot != NULL); |
| 2092 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
| 2093 | g = mips_elf_section_data (sgot)->u.got_info; |
| 2094 | BFD_ASSERT (g != NULL); |
| 2095 | |
| 2096 | if (sgotp) |
| 2097 | *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL; |
| 2098 | |
| 2099 | return g; |
| 2100 | } |
| 2101 | |
| 2102 | /* Count the number of relocations needed for a TLS GOT entry, with |
| 2103 | access types from TLS_TYPE, and symbol H (or a local symbol if H |
| 2104 | is NULL). */ |
| 2105 | |
| 2106 | static int |
| 2107 | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, |
| 2108 | struct elf_link_hash_entry *h) |
| 2109 | { |
| 2110 | int indx = 0; |
| 2111 | int ret = 0; |
| 2112 | bfd_boolean need_relocs = FALSE; |
| 2113 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; |
| 2114 | |
| 2115 | if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) |
| 2116 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) |
| 2117 | indx = h->dynindx; |
| 2118 | |
| 2119 | if ((info->shared || indx != 0) |
| 2120 | && (h == NULL |
| 2121 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| 2122 | || h->root.type != bfd_link_hash_undefweak)) |
| 2123 | need_relocs = TRUE; |
| 2124 | |
| 2125 | if (!need_relocs) |
| 2126 | return FALSE; |
| 2127 | |
| 2128 | if (tls_type & GOT_TLS_GD) |
| 2129 | { |
| 2130 | ret++; |
| 2131 | if (indx != 0) |
| 2132 | ret++; |
| 2133 | } |
| 2134 | |
| 2135 | if (tls_type & GOT_TLS_IE) |
| 2136 | ret++; |
| 2137 | |
| 2138 | if ((tls_type & GOT_TLS_LDM) && info->shared) |
| 2139 | ret++; |
| 2140 | |
| 2141 | return ret; |
| 2142 | } |
| 2143 | |
| 2144 | /* Count the number of TLS relocations required for the GOT entry in |
| 2145 | ARG1, if it describes a local symbol. */ |
| 2146 | |
| 2147 | static int |
| 2148 | mips_elf_count_local_tls_relocs (void **arg1, void *arg2) |
| 2149 | { |
| 2150 | struct mips_got_entry *entry = * (struct mips_got_entry **) arg1; |
| 2151 | struct mips_elf_count_tls_arg *arg = arg2; |
| 2152 | |
| 2153 | if (entry->abfd != NULL && entry->symndx != -1) |
| 2154 | arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL); |
| 2155 | |
| 2156 | return 1; |
| 2157 | } |
| 2158 | |
| 2159 | /* Count the number of TLS GOT entries required for the global (or |
| 2160 | forced-local) symbol in ARG1. */ |
| 2161 | |
| 2162 | static int |
| 2163 | mips_elf_count_global_tls_entries (void *arg1, void *arg2) |
| 2164 | { |
| 2165 | struct mips_elf_link_hash_entry *hm |
| 2166 | = (struct mips_elf_link_hash_entry *) arg1; |
| 2167 | struct mips_elf_count_tls_arg *arg = arg2; |
| 2168 | |
| 2169 | if (hm->tls_type & GOT_TLS_GD) |
| 2170 | arg->needed += 2; |
| 2171 | if (hm->tls_type & GOT_TLS_IE) |
| 2172 | arg->needed += 1; |
| 2173 | |
| 2174 | return 1; |
| 2175 | } |
| 2176 | |
| 2177 | /* Count the number of TLS relocations required for the global (or |
| 2178 | forced-local) symbol in ARG1. */ |
| 2179 | |
| 2180 | static int |
| 2181 | mips_elf_count_global_tls_relocs (void *arg1, void *arg2) |
| 2182 | { |
| 2183 | struct mips_elf_link_hash_entry *hm |
| 2184 | = (struct mips_elf_link_hash_entry *) arg1; |
| 2185 | struct mips_elf_count_tls_arg *arg = arg2; |
| 2186 | |
| 2187 | arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root); |
| 2188 | |
| 2189 | return 1; |
| 2190 | } |
| 2191 | |
| 2192 | /* Output a simple dynamic relocation into SRELOC. */ |
| 2193 | |
| 2194 | static void |
| 2195 | mips_elf_output_dynamic_relocation (bfd *output_bfd, |
| 2196 | asection *sreloc, |
| 2197 | unsigned long indx, |
| 2198 | int r_type, |
| 2199 | bfd_vma offset) |
| 2200 | { |
| 2201 | Elf_Internal_Rela rel[3]; |
| 2202 | |
| 2203 | memset (rel, 0, sizeof (rel)); |
| 2204 | |
| 2205 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); |
| 2206 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; |
| 2207 | |
| 2208 | if (ABI_64_P (output_bfd)) |
| 2209 | { |
| 2210 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) |
| 2211 | (output_bfd, &rel[0], |
| 2212 | (sreloc->contents |
| 2213 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); |
| 2214 | } |
| 2215 | else |
| 2216 | bfd_elf32_swap_reloc_out |
| 2217 | (output_bfd, &rel[0], |
| 2218 | (sreloc->contents |
| 2219 | + sreloc->reloc_count * sizeof (Elf32_External_Rel))); |
| 2220 | ++sreloc->reloc_count; |
| 2221 | } |
| 2222 | |
| 2223 | /* Initialize a set of TLS GOT entries for one symbol. */ |
| 2224 | |
| 2225 | static void |
| 2226 | mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset, |
| 2227 | unsigned char *tls_type_p, |
| 2228 | struct bfd_link_info *info, |
| 2229 | struct mips_elf_link_hash_entry *h, |
| 2230 | bfd_vma value) |
| 2231 | { |
| 2232 | int indx; |
| 2233 | asection *sreloc, *sgot; |
| 2234 | bfd_vma offset, offset2; |
| 2235 | bfd *dynobj; |
| 2236 | bfd_boolean need_relocs = FALSE; |
| 2237 | |
| 2238 | dynobj = elf_hash_table (info)->dynobj; |
| 2239 | sgot = mips_elf_got_section (dynobj, FALSE); |
| 2240 | |
| 2241 | indx = 0; |
| 2242 | if (h != NULL) |
| 2243 | { |
| 2244 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; |
| 2245 | |
| 2246 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) |
| 2247 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) |
| 2248 | indx = h->root.dynindx; |
| 2249 | } |
| 2250 | |
| 2251 | if (*tls_type_p & GOT_TLS_DONE) |
| 2252 | return; |
| 2253 | |
| 2254 | if ((info->shared || indx != 0) |
| 2255 | && (h == NULL |
| 2256 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT |
| 2257 | || h->root.type != bfd_link_hash_undefweak)) |
| 2258 | need_relocs = TRUE; |
| 2259 | |
| 2260 | /* MINUS_ONE means the symbol is not defined in this object. It may not |
| 2261 | be defined at all; assume that the value doesn't matter in that |
| 2262 | case. Otherwise complain if we would use the value. */ |
| 2263 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) |
| 2264 | || h->root.root.type == bfd_link_hash_undefweak); |
| 2265 | |
| 2266 | /* Emit necessary relocations. */ |
| 2267 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
| 2268 | |
| 2269 | /* General Dynamic. */ |
| 2270 | if (*tls_type_p & GOT_TLS_GD) |
| 2271 | { |
| 2272 | offset = got_offset; |
| 2273 | offset2 = offset + MIPS_ELF_GOT_SIZE (abfd); |
| 2274 | |
| 2275 | if (need_relocs) |
| 2276 | { |
| 2277 | mips_elf_output_dynamic_relocation |
| 2278 | (abfd, sreloc, indx, |
| 2279 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
| 2280 | sgot->output_offset + sgot->output_section->vma + offset); |
| 2281 | |
| 2282 | if (indx) |
| 2283 | mips_elf_output_dynamic_relocation |
| 2284 | (abfd, sreloc, indx, |
| 2285 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, |
| 2286 | sgot->output_offset + sgot->output_section->vma + offset2); |
| 2287 | else |
| 2288 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), |
| 2289 | sgot->contents + offset2); |
| 2290 | } |
| 2291 | else |
| 2292 | { |
| 2293 | MIPS_ELF_PUT_WORD (abfd, 1, |
| 2294 | sgot->contents + offset); |
| 2295 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), |
| 2296 | sgot->contents + offset2); |
| 2297 | } |
| 2298 | |
| 2299 | got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd); |
| 2300 | } |
| 2301 | |
| 2302 | /* Initial Exec model. */ |
| 2303 | if (*tls_type_p & GOT_TLS_IE) |
| 2304 | { |
| 2305 | offset = got_offset; |
| 2306 | |
| 2307 | if (need_relocs) |
| 2308 | { |
| 2309 | if (indx == 0) |
| 2310 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, |
| 2311 | sgot->contents + offset); |
| 2312 | else |
| 2313 | MIPS_ELF_PUT_WORD (abfd, 0, |
| 2314 | sgot->contents + offset); |
| 2315 | |
| 2316 | mips_elf_output_dynamic_relocation |
| 2317 | (abfd, sreloc, indx, |
| 2318 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, |
| 2319 | sgot->output_offset + sgot->output_section->vma + offset); |
| 2320 | } |
| 2321 | else |
| 2322 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), |
| 2323 | sgot->contents + offset); |
| 2324 | } |
| 2325 | |
| 2326 | if (*tls_type_p & GOT_TLS_LDM) |
| 2327 | { |
| 2328 | /* The initial offset is zero, and the LD offsets will include the |
| 2329 | bias by DTP_OFFSET. */ |
| 2330 | MIPS_ELF_PUT_WORD (abfd, 0, |
| 2331 | sgot->contents + got_offset |
| 2332 | + MIPS_ELF_GOT_SIZE (abfd)); |
| 2333 | |
| 2334 | if (!info->shared) |
| 2335 | MIPS_ELF_PUT_WORD (abfd, 1, |
| 2336 | sgot->contents + got_offset); |
| 2337 | else |
| 2338 | mips_elf_output_dynamic_relocation |
| 2339 | (abfd, sreloc, indx, |
| 2340 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
| 2341 | sgot->output_offset + sgot->output_section->vma + got_offset); |
| 2342 | } |
| 2343 | |
| 2344 | *tls_type_p |= GOT_TLS_DONE; |
| 2345 | } |
| 2346 | |
| 2347 | /* Return the GOT index to use for a relocation of type R_TYPE against |
| 2348 | a symbol accessed using TLS_TYPE models. The GOT entries for this |
| 2349 | symbol in this GOT start at GOT_INDEX. This function initializes the |
| 2350 | GOT entries and corresponding relocations. */ |
| 2351 | |
| 2352 | static bfd_vma |
| 2353 | mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type, |
| 2354 | int r_type, struct bfd_link_info *info, |
| 2355 | struct mips_elf_link_hash_entry *h, bfd_vma symbol) |
| 2356 | { |
| 2357 | BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD |
| 2358 | || r_type == R_MIPS_TLS_LDM); |
| 2359 | |
| 2360 | mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol); |
| 2361 | |
| 2362 | if (r_type == R_MIPS_TLS_GOTTPREL) |
| 2363 | { |
| 2364 | BFD_ASSERT (*tls_type & GOT_TLS_IE); |
| 2365 | if (*tls_type & GOT_TLS_GD) |
| 2366 | return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd); |
| 2367 | else |
| 2368 | return got_index; |
| 2369 | } |
| 2370 | |
| 2371 | if (r_type == R_MIPS_TLS_GD) |
| 2372 | { |
| 2373 | BFD_ASSERT (*tls_type & GOT_TLS_GD); |
| 2374 | return got_index; |
| 2375 | } |
| 2376 | |
| 2377 | if (r_type == R_MIPS_TLS_LDM) |
| 2378 | { |
| 2379 | BFD_ASSERT (*tls_type & GOT_TLS_LDM); |
| 2380 | return got_index; |
| 2381 | } |
| 2382 | |
| 2383 | return got_index; |
| 2384 | } |
| 2385 | |
| 2386 | /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry |
| 2387 | for global symbol H. .got.plt comes before the GOT, so the offset |
| 2388 | will be negative. */ |
| 2389 | |
| 2390 | static bfd_vma |
| 2391 | mips_elf_gotplt_index (struct bfd_link_info *info, |
| 2392 | struct elf_link_hash_entry *h) |
| 2393 | { |
| 2394 | bfd_vma plt_index, got_address, got_value; |
| 2395 | struct mips_elf_link_hash_table *htab; |
| 2396 | |
| 2397 | htab = mips_elf_hash_table (info); |
| 2398 | BFD_ASSERT (h->plt.offset != (bfd_vma) -1); |
| 2399 | |
| 2400 | /* Calculate the index of the symbol's PLT entry. */ |
| 2401 | plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; |
| 2402 | |
| 2403 | /* Calculate the address of the associated .got.plt entry. */ |
| 2404 | got_address = (htab->sgotplt->output_section->vma |
| 2405 | + htab->sgotplt->output_offset |
| 2406 | + plt_index * 4); |
| 2407 | |
| 2408 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ |
| 2409 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma |
| 2410 | + htab->root.hgot->root.u.def.section->output_offset |
| 2411 | + htab->root.hgot->root.u.def.value); |
| 2412 | |
| 2413 | return got_address - got_value; |
| 2414 | } |
| 2415 | |
| 2416 | /* Return the GOT offset for address VALUE, which was derived from |
| 2417 | a symbol belonging to INPUT_SECTION. If there is not yet a GOT |
| 2418 | entry for this value, create one. If R_SYMNDX refers to a TLS symbol, |
| 2419 | create a TLS GOT entry instead. Return -1 if no satisfactory GOT |
| 2420 | offset can be found. */ |
| 2421 | |
| 2422 | static bfd_vma |
| 2423 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
| 2424 | asection *input_section, bfd_vma value, |
| 2425 | unsigned long r_symndx, |
| 2426 | struct mips_elf_link_hash_entry *h, int r_type) |
| 2427 | { |
| 2428 | asection *sgot; |
| 2429 | struct mips_got_info *g; |
| 2430 | struct mips_got_entry *entry; |
| 2431 | |
| 2432 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); |
| 2433 | |
| 2434 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, |
| 2435 | input_section, value, |
| 2436 | r_symndx, h, r_type); |
| 2437 | if (!entry) |
| 2438 | return MINUS_ONE; |
| 2439 | |
| 2440 | if (TLS_RELOC_P (r_type)) |
| 2441 | { |
| 2442 | if (entry->symndx == -1 && g->next == NULL) |
| 2443 | /* A type (3) entry in the single-GOT case. We use the symbol's |
| 2444 | hash table entry to track the index. */ |
| 2445 | return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type, |
| 2446 | r_type, info, h, value); |
| 2447 | else |
| 2448 | return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, |
| 2449 | r_type, info, h, value); |
| 2450 | } |
| 2451 | else |
| 2452 | return entry->gotidx; |
| 2453 | } |
| 2454 | |
| 2455 | /* Returns the GOT index for the global symbol indicated by H. */ |
| 2456 | |
| 2457 | static bfd_vma |
| 2458 | mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h, |
| 2459 | int r_type, struct bfd_link_info *info) |
| 2460 | { |
| 2461 | bfd_vma index; |
| 2462 | asection *sgot; |
| 2463 | struct mips_got_info *g, *gg; |
| 2464 | long global_got_dynindx = 0; |
| 2465 | |
| 2466 | gg = g = mips_elf_got_info (abfd, &sgot); |
| 2467 | if (g->bfd2got && ibfd) |
| 2468 | { |
| 2469 | struct mips_got_entry e, *p; |
| 2470 | |
| 2471 | BFD_ASSERT (h->dynindx >= 0); |
| 2472 | |
| 2473 | g = mips_elf_got_for_ibfd (g, ibfd); |
| 2474 | if (g->next != gg || TLS_RELOC_P (r_type)) |
| 2475 | { |
| 2476 | e.abfd = ibfd; |
| 2477 | e.symndx = -1; |
| 2478 | e.d.h = (struct mips_elf_link_hash_entry *)h; |
| 2479 | e.tls_type = 0; |
| 2480 | |
| 2481 | p = htab_find (g->got_entries, &e); |
| 2482 | |
| 2483 | BFD_ASSERT (p->gotidx > 0); |
| 2484 | |
| 2485 | if (TLS_RELOC_P (r_type)) |
| 2486 | { |
| 2487 | bfd_vma value = MINUS_ONE; |
| 2488 | if ((h->root.type == bfd_link_hash_defined |
| 2489 | || h->root.type == bfd_link_hash_defweak) |
| 2490 | && h->root.u.def.section->output_section) |
| 2491 | value = (h->root.u.def.value |
| 2492 | + h->root.u.def.section->output_offset |
| 2493 | + h->root.u.def.section->output_section->vma); |
| 2494 | |
| 2495 | return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type, |
| 2496 | info, e.d.h, value); |
| 2497 | } |
| 2498 | else |
| 2499 | return p->gotidx; |
| 2500 | } |
| 2501 | } |
| 2502 | |
| 2503 | if (gg->global_gotsym != NULL) |
| 2504 | global_got_dynindx = gg->global_gotsym->dynindx; |
| 2505 | |
| 2506 | if (TLS_RELOC_P (r_type)) |
| 2507 | { |
| 2508 | struct mips_elf_link_hash_entry *hm |
| 2509 | = (struct mips_elf_link_hash_entry *) h; |
| 2510 | bfd_vma value = MINUS_ONE; |
| 2511 | |
| 2512 | if ((h->root.type == bfd_link_hash_defined |
| 2513 | || h->root.type == bfd_link_hash_defweak) |
| 2514 | && h->root.u.def.section->output_section) |
| 2515 | value = (h->root.u.def.value |
| 2516 | + h->root.u.def.section->output_offset |
| 2517 | + h->root.u.def.section->output_section->vma); |
| 2518 | |
| 2519 | index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type, |
| 2520 | r_type, info, hm, value); |
| 2521 | } |
| 2522 | else |
| 2523 | { |
| 2524 | /* Once we determine the global GOT entry with the lowest dynamic |
| 2525 | symbol table index, we must put all dynamic symbols with greater |
| 2526 | indices into the GOT. That makes it easy to calculate the GOT |
| 2527 | offset. */ |
| 2528 | BFD_ASSERT (h->dynindx >= global_got_dynindx); |
| 2529 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) |
| 2530 | * MIPS_ELF_GOT_SIZE (abfd)); |
| 2531 | } |
| 2532 | BFD_ASSERT (index < sgot->size); |
| 2533 | |
| 2534 | return index; |
| 2535 | } |
| 2536 | |
| 2537 | /* Find a GOT page entry that points to within 32KB of VALUE, which was |
| 2538 | calculated from a symbol belonging to INPUT_SECTION. These entries |
| 2539 | are supposed to be placed at small offsets in the GOT, i.e., within |
| 2540 | 32KB of GP. Return the index of the GOT entry, or -1 if no entry |
| 2541 | could be created. If OFFSETP is nonnull, use it to return the |
| 2542 | offset of the GOT entry from VALUE. */ |
| 2543 | |
| 2544 | static bfd_vma |
| 2545 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
| 2546 | asection *input_section, bfd_vma value, bfd_vma *offsetp) |
| 2547 | { |
| 2548 | asection *sgot; |
| 2549 | struct mips_got_info *g; |
| 2550 | bfd_vma page, index; |
| 2551 | struct mips_got_entry *entry; |
| 2552 | |
| 2553 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); |
| 2554 | |
| 2555 | page = (value + 0x8000) & ~(bfd_vma) 0xffff; |
| 2556 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, |
| 2557 | input_section, page, 0, |
| 2558 | NULL, R_MIPS_GOT_PAGE); |
| 2559 | |
| 2560 | if (!entry) |
| 2561 | return MINUS_ONE; |
| 2562 | |
| 2563 | index = entry->gotidx; |
| 2564 | |
| 2565 | if (offsetp) |
| 2566 | *offsetp = value - entry->d.address; |
| 2567 | |
| 2568 | return index; |
| 2569 | } |
| 2570 | |
| 2571 | /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE, |
| 2572 | which was calculated from a symbol belonging to INPUT_SECTION. |
| 2573 | EXTERNAL is true if the relocation was against a global symbol |
| 2574 | that has been forced local. */ |
| 2575 | |
| 2576 | static bfd_vma |
| 2577 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
| 2578 | asection *input_section, bfd_vma value, |
| 2579 | bfd_boolean external) |
| 2580 | { |
| 2581 | asection *sgot; |
| 2582 | struct mips_got_info *g; |
| 2583 | struct mips_got_entry *entry; |
| 2584 | |
| 2585 | /* GOT16 relocations against local symbols are followed by a LO16 |
| 2586 | relocation; those against global symbols are not. Thus if the |
| 2587 | symbol was originally local, the GOT16 relocation should load the |
| 2588 | equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ |
| 2589 | if (! external) |
| 2590 | value = mips_elf_high (value) << 16; |
| 2591 | |
| 2592 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); |
| 2593 | |
| 2594 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, |
| 2595 | input_section, value, 0, |
| 2596 | NULL, R_MIPS_GOT16); |
| 2597 | if (entry) |
| 2598 | return entry->gotidx; |
| 2599 | else |
| 2600 | return MINUS_ONE; |
| 2601 | } |
| 2602 | |
| 2603 | /* Returns the offset for the entry at the INDEXth position |
| 2604 | in the GOT. */ |
| 2605 | |
| 2606 | static bfd_vma |
| 2607 | mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd, |
| 2608 | bfd *input_bfd, bfd_vma index) |
| 2609 | { |
| 2610 | asection *sgot; |
| 2611 | bfd_vma gp; |
| 2612 | struct mips_got_info *g; |
| 2613 | |
| 2614 | g = mips_elf_got_info (dynobj, &sgot); |
| 2615 | gp = _bfd_get_gp_value (output_bfd) |
| 2616 | + mips_elf_adjust_gp (output_bfd, g, input_bfd); |
| 2617 | |
| 2618 | return sgot->output_section->vma + sgot->output_offset + index - gp; |
| 2619 | } |
| 2620 | |
| 2621 | /* Create and return a local GOT entry for VALUE, which was calculated |
| 2622 | from a symbol belonging to INPUT_SECTON. Return NULL if it could not |
| 2623 | be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry |
| 2624 | instead. */ |
| 2625 | |
| 2626 | static struct mips_got_entry * |
| 2627 | mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, |
| 2628 | bfd *ibfd, struct mips_got_info *gg, |
| 2629 | asection *sgot, asection *input_section, |
| 2630 | bfd_vma value, unsigned long r_symndx, |
| 2631 | struct mips_elf_link_hash_entry *h, |
| 2632 | int r_type) |
| 2633 | { |
| 2634 | struct mips_got_entry entry, **loc; |
| 2635 | struct mips_got_info *g; |
| 2636 | struct mips_elf_link_hash_table *htab; |
| 2637 | |
| 2638 | htab = mips_elf_hash_table (info); |
| 2639 | |
| 2640 | entry.abfd = NULL; |
| 2641 | entry.symndx = -1; |
| 2642 | entry.d.address = value; |
| 2643 | entry.tls_type = 0; |
| 2644 | |
| 2645 | g = mips_elf_got_for_ibfd (gg, ibfd); |
| 2646 | if (g == NULL) |
| 2647 | { |
| 2648 | g = mips_elf_got_for_ibfd (gg, abfd); |
| 2649 | BFD_ASSERT (g != NULL); |
| 2650 | } |
| 2651 | |
| 2652 | /* We might have a symbol, H, if it has been forced local. Use the |
| 2653 | global entry then. It doesn't matter whether an entry is local |
| 2654 | or global for TLS, since the dynamic linker does not |
| 2655 | automatically relocate TLS GOT entries. */ |
| 2656 | BFD_ASSERT (h == NULL || h->root.forced_local); |
| 2657 | if (TLS_RELOC_P (r_type)) |
| 2658 | { |
| 2659 | struct mips_got_entry *p; |
| 2660 | |
| 2661 | entry.abfd = ibfd; |
| 2662 | if (r_type == R_MIPS_TLS_LDM) |
| 2663 | { |
| 2664 | entry.tls_type = GOT_TLS_LDM; |
| 2665 | entry.symndx = 0; |
| 2666 | entry.d.addend = 0; |
| 2667 | } |
| 2668 | else if (h == NULL) |
| 2669 | { |
| 2670 | entry.symndx = r_symndx; |
| 2671 | entry.d.addend = 0; |
| 2672 | } |
| 2673 | else |
| 2674 | entry.d.h = h; |
| 2675 | |
| 2676 | p = (struct mips_got_entry *) |
| 2677 | htab_find (g->got_entries, &entry); |
| 2678 | |
| 2679 | BFD_ASSERT (p); |
| 2680 | return p; |
| 2681 | } |
| 2682 | |
| 2683 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
| 2684 | INSERT); |
| 2685 | if (*loc) |
| 2686 | return *loc; |
| 2687 | |
| 2688 | entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
| 2689 | entry.tls_type = 0; |
| 2690 | |
| 2691 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); |
| 2692 | |
| 2693 | if (! *loc) |
| 2694 | return NULL; |
| 2695 | |
| 2696 | memcpy (*loc, &entry, sizeof entry); |
| 2697 | |
| 2698 | if (g->assigned_gotno >= g->local_gotno) |
| 2699 | { |
| 2700 | (*loc)->gotidx = -1; |
| 2701 | /* We didn't allocate enough space in the GOT. */ |
| 2702 | (*_bfd_error_handler) |
| 2703 | (_("not enough GOT space for local GOT entries")); |
| 2704 | bfd_set_error (bfd_error_bad_value); |
| 2705 | return NULL; |
| 2706 | } |
| 2707 | |
| 2708 | MIPS_ELF_PUT_WORD (abfd, value, |
| 2709 | (sgot->contents + entry.gotidx)); |
| 2710 | |
| 2711 | /* These GOT entries need a dynamic relocation on VxWorks. Because |
| 2712 | the offset between segments is not fixed, the relocation must be |
| 2713 | against a symbol in the same segment as the original symbol. |
| 2714 | The easiest way to do this is to take INPUT_SECTION's output |
| 2715 | section and emit a relocation against its section symbol. */ |
| 2716 | if (htab->is_vxworks) |
| 2717 | { |
| 2718 | Elf_Internal_Rela outrel; |
| 2719 | asection *s, *output_section; |
| 2720 | bfd_byte *loc; |
| 2721 | bfd_vma got_address; |
| 2722 | int dynindx; |
| 2723 | |
| 2724 | s = mips_elf_rel_dyn_section (info, FALSE); |
| 2725 | output_section = input_section->output_section; |
| 2726 | dynindx = elf_section_data (output_section)->dynindx; |
| 2727 | got_address = (sgot->output_section->vma |
| 2728 | + sgot->output_offset |
| 2729 | + entry.gotidx); |
| 2730 | |
| 2731 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); |
| 2732 | outrel.r_offset = got_address; |
| 2733 | outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32); |
| 2734 | outrel.r_addend = value - output_section->vma; |
| 2735 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); |
| 2736 | } |
| 2737 | |
| 2738 | return *loc; |
| 2739 | } |
| 2740 | |
| 2741 | /* Sort the dynamic symbol table so that symbols that need GOT entries |
| 2742 | appear towards the end. This reduces the amount of GOT space |
| 2743 | required. MAX_LOCAL is used to set the number of local symbols |
| 2744 | known to be in the dynamic symbol table. During |
| 2745 | _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the |
| 2746 | section symbols are added and the count is higher. */ |
| 2747 | |
| 2748 | static bfd_boolean |
| 2749 | mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local) |
| 2750 | { |
| 2751 | struct mips_elf_hash_sort_data hsd; |
| 2752 | struct mips_got_info *g; |
| 2753 | bfd *dynobj; |
| 2754 | |
| 2755 | dynobj = elf_hash_table (info)->dynobj; |
| 2756 | |
| 2757 | g = mips_elf_got_info (dynobj, NULL); |
| 2758 | |
| 2759 | hsd.low = NULL; |
| 2760 | hsd.max_unref_got_dynindx = |
| 2761 | hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount |
| 2762 | /* In the multi-got case, assigned_gotno of the master got_info |
| 2763 | indicate the number of entries that aren't referenced in the |
| 2764 | primary GOT, but that must have entries because there are |
| 2765 | dynamic relocations that reference it. Since they aren't |
| 2766 | referenced, we move them to the end of the GOT, so that they |
| 2767 | don't prevent other entries that are referenced from getting |
| 2768 | too large offsets. */ |
| 2769 | - (g->next ? g->assigned_gotno : 0); |
| 2770 | hsd.max_non_got_dynindx = max_local; |
| 2771 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) |
| 2772 | elf_hash_table (info)), |
| 2773 | mips_elf_sort_hash_table_f, |
| 2774 | &hsd); |
| 2775 | |
| 2776 | /* There should have been enough room in the symbol table to |
| 2777 | accommodate both the GOT and non-GOT symbols. */ |
| 2778 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
| 2779 | BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx |
| 2780 | <= elf_hash_table (info)->dynsymcount); |
| 2781 | |
| 2782 | /* Now we know which dynamic symbol has the lowest dynamic symbol |
| 2783 | table index in the GOT. */ |
| 2784 | g->global_gotsym = hsd.low; |
| 2785 | |
| 2786 | return TRUE; |
| 2787 | } |
| 2788 | |
| 2789 | /* If H needs a GOT entry, assign it the highest available dynamic |
| 2790 | index. Otherwise, assign it the lowest available dynamic |
| 2791 | index. */ |
| 2792 | |
| 2793 | static bfd_boolean |
| 2794 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
| 2795 | { |
| 2796 | struct mips_elf_hash_sort_data *hsd = data; |
| 2797 | |
| 2798 | if (h->root.root.type == bfd_link_hash_warning) |
| 2799 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| 2800 | |
| 2801 | /* Symbols without dynamic symbol table entries aren't interesting |
| 2802 | at all. */ |
| 2803 | if (h->root.dynindx == -1) |
| 2804 | return TRUE; |
| 2805 | |
| 2806 | /* Global symbols that need GOT entries that are not explicitly |
| 2807 | referenced are marked with got offset 2. Those that are |
| 2808 | referenced get a 1, and those that don't need GOT entries get |
| 2809 | -1. */ |
| 2810 | if (h->root.got.offset == 2) |
| 2811 | { |
| 2812 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
| 2813 | |
| 2814 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
| 2815 | hsd->low = (struct elf_link_hash_entry *) h; |
| 2816 | h->root.dynindx = hsd->max_unref_got_dynindx++; |
| 2817 | } |
| 2818 | else if (h->root.got.offset != 1) |
| 2819 | h->root.dynindx = hsd->max_non_got_dynindx++; |
| 2820 | else |
| 2821 | { |
| 2822 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
| 2823 | |
| 2824 | h->root.dynindx = --hsd->min_got_dynindx; |
| 2825 | hsd->low = (struct elf_link_hash_entry *) h; |
| 2826 | } |
| 2827 | |
| 2828 | return TRUE; |
| 2829 | } |
| 2830 | |
| 2831 | /* If H is a symbol that needs a global GOT entry, but has a dynamic |
| 2832 | symbol table index lower than any we've seen to date, record it for |
| 2833 | posterity. */ |
| 2834 | |
| 2835 | static bfd_boolean |
| 2836 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
| 2837 | bfd *abfd, struct bfd_link_info *info, |
| 2838 | struct mips_got_info *g, |
| 2839 | unsigned char tls_flag) |
| 2840 | { |
| 2841 | struct mips_got_entry entry, **loc; |
| 2842 | |
| 2843 | /* A global symbol in the GOT must also be in the dynamic symbol |
| 2844 | table. */ |
| 2845 | if (h->dynindx == -1) |
| 2846 | { |
| 2847 | switch (ELF_ST_VISIBILITY (h->other)) |
| 2848 | { |
| 2849 | case STV_INTERNAL: |
| 2850 | case STV_HIDDEN: |
| 2851 | _bfd_mips_elf_hide_symbol (info, h, TRUE); |
| 2852 | break; |
| 2853 | } |
| 2854 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2855 | return FALSE; |
| 2856 | } |
| 2857 | |
| 2858 | /* Make sure we have a GOT to put this entry into. */ |
| 2859 | BFD_ASSERT (g != NULL); |
| 2860 | |
| 2861 | entry.abfd = abfd; |
| 2862 | entry.symndx = -1; |
| 2863 | entry.d.h = (struct mips_elf_link_hash_entry *) h; |
| 2864 | entry.tls_type = 0; |
| 2865 | |
| 2866 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
| 2867 | INSERT); |
| 2868 | |
| 2869 | /* If we've already marked this entry as needing GOT space, we don't |
| 2870 | need to do it again. */ |
| 2871 | if (*loc) |
| 2872 | { |
| 2873 | (*loc)->tls_type |= tls_flag; |
| 2874 | return TRUE; |
| 2875 | } |
| 2876 | |
| 2877 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); |
| 2878 | |
| 2879 | if (! *loc) |
| 2880 | return FALSE; |
| 2881 | |
| 2882 | entry.gotidx = -1; |
| 2883 | entry.tls_type = tls_flag; |
| 2884 | |
| 2885 | memcpy (*loc, &entry, sizeof entry); |
| 2886 | |
| 2887 | if (h->got.offset != MINUS_ONE) |
| 2888 | return TRUE; |
| 2889 | |
| 2890 | /* By setting this to a value other than -1, we are indicating that |
| 2891 | there needs to be a GOT entry for H. Avoid using zero, as the |
| 2892 | generic ELF copy_indirect_symbol tests for <= 0. */ |
| 2893 | if (tls_flag == 0) |
| 2894 | h->got.offset = 1; |
| 2895 | |
| 2896 | return TRUE; |
| 2897 | } |
| 2898 | |
| 2899 | /* Reserve space in G for a GOT entry containing the value of symbol |
| 2900 | SYMNDX in input bfd ABDF, plus ADDEND. */ |
| 2901 | |
| 2902 | static bfd_boolean |
| 2903 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
| 2904 | struct mips_got_info *g, |
| 2905 | unsigned char tls_flag) |
| 2906 | { |
| 2907 | struct mips_got_entry entry, **loc; |
| 2908 | |
| 2909 | entry.abfd = abfd; |
| 2910 | entry.symndx = symndx; |
| 2911 | entry.d.addend = addend; |
| 2912 | entry.tls_type = tls_flag; |
| 2913 | loc = (struct mips_got_entry **) |
| 2914 | htab_find_slot (g->got_entries, &entry, INSERT); |
| 2915 | |
| 2916 | if (*loc) |
| 2917 | { |
| 2918 | if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD)) |
| 2919 | { |
| 2920 | g->tls_gotno += 2; |
| 2921 | (*loc)->tls_type |= tls_flag; |
| 2922 | } |
| 2923 | else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE)) |
| 2924 | { |
| 2925 | g->tls_gotno += 1; |
| 2926 | (*loc)->tls_type |= tls_flag; |
| 2927 | } |
| 2928 | return TRUE; |
| 2929 | } |
| 2930 | |
| 2931 | if (tls_flag != 0) |
| 2932 | { |
| 2933 | entry.gotidx = -1; |
| 2934 | entry.tls_type = tls_flag; |
| 2935 | if (tls_flag == GOT_TLS_IE) |
| 2936 | g->tls_gotno += 1; |
| 2937 | else if (tls_flag == GOT_TLS_GD) |
| 2938 | g->tls_gotno += 2; |
| 2939 | else if (g->tls_ldm_offset == MINUS_ONE) |
| 2940 | { |
| 2941 | g->tls_ldm_offset = MINUS_TWO; |
| 2942 | g->tls_gotno += 2; |
| 2943 | } |
| 2944 | } |
| 2945 | else |
| 2946 | { |
| 2947 | entry.gotidx = g->local_gotno++; |
| 2948 | entry.tls_type = 0; |
| 2949 | } |
| 2950 | |
| 2951 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); |
| 2952 | |
| 2953 | if (! *loc) |
| 2954 | return FALSE; |
| 2955 | |
| 2956 | memcpy (*loc, &entry, sizeof entry); |
| 2957 | |
| 2958 | return TRUE; |
| 2959 | } |
| 2960 | \f |
| 2961 | /* Compute the hash value of the bfd in a bfd2got hash entry. */ |
| 2962 | |
| 2963 | static hashval_t |
| 2964 | mips_elf_bfd2got_entry_hash (const void *entry_) |
| 2965 | { |
| 2966 | const struct mips_elf_bfd2got_hash *entry |
| 2967 | = (struct mips_elf_bfd2got_hash *)entry_; |
| 2968 | |
| 2969 | return entry->bfd->id; |
| 2970 | } |
| 2971 | |
| 2972 | /* Check whether two hash entries have the same bfd. */ |
| 2973 | |
| 2974 | static int |
| 2975 | mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2) |
| 2976 | { |
| 2977 | const struct mips_elf_bfd2got_hash *e1 |
| 2978 | = (const struct mips_elf_bfd2got_hash *)entry1; |
| 2979 | const struct mips_elf_bfd2got_hash *e2 |
| 2980 | = (const struct mips_elf_bfd2got_hash *)entry2; |
| 2981 | |
| 2982 | return e1->bfd == e2->bfd; |
| 2983 | } |
| 2984 | |
| 2985 | /* In a multi-got link, determine the GOT to be used for IBFD. G must |
| 2986 | be the master GOT data. */ |
| 2987 | |
| 2988 | static struct mips_got_info * |
| 2989 | mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd) |
| 2990 | { |
| 2991 | struct mips_elf_bfd2got_hash e, *p; |
| 2992 | |
| 2993 | if (! g->bfd2got) |
| 2994 | return g; |
| 2995 | |
| 2996 | e.bfd = ibfd; |
| 2997 | p = htab_find (g->bfd2got, &e); |
| 2998 | return p ? p->g : NULL; |
| 2999 | } |
| 3000 | |
| 3001 | /* Create one separate got for each bfd that has entries in the global |
| 3002 | got, such that we can tell how many local and global entries each |
| 3003 | bfd requires. */ |
| 3004 | |
| 3005 | static int |
| 3006 | mips_elf_make_got_per_bfd (void **entryp, void *p) |
| 3007 | { |
| 3008 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; |
| 3009 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; |
| 3010 | htab_t bfd2got = arg->bfd2got; |
| 3011 | struct mips_got_info *g; |
| 3012 | struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; |
| 3013 | void **bfdgotp; |
| 3014 | |
| 3015 | /* Find the got_info for this GOT entry's input bfd. Create one if |
| 3016 | none exists. */ |
| 3017 | bfdgot_entry.bfd = entry->abfd; |
| 3018 | bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); |
| 3019 | bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp; |
| 3020 | |
| 3021 | if (bfdgot != NULL) |
| 3022 | g = bfdgot->g; |
| 3023 | else |
| 3024 | { |
| 3025 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
| 3026 | (arg->obfd, sizeof (struct mips_elf_bfd2got_hash)); |
| 3027 | |
| 3028 | if (bfdgot == NULL) |
| 3029 | { |
| 3030 | arg->obfd = 0; |
| 3031 | return 0; |
| 3032 | } |
| 3033 | |
| 3034 | *bfdgotp = bfdgot; |
| 3035 | |
| 3036 | bfdgot->bfd = entry->abfd; |
| 3037 | bfdgot->g = g = (struct mips_got_info *) |
| 3038 | bfd_alloc (arg->obfd, sizeof (struct mips_got_info)); |
| 3039 | if (g == NULL) |
| 3040 | { |
| 3041 | arg->obfd = 0; |
| 3042 | return 0; |
| 3043 | } |
| 3044 | |
| 3045 | g->global_gotsym = NULL; |
| 3046 | g->global_gotno = 0; |
| 3047 | g->local_gotno = 0; |
| 3048 | g->assigned_gotno = -1; |
| 3049 | g->tls_gotno = 0; |
| 3050 | g->tls_assigned_gotno = 0; |
| 3051 | g->tls_ldm_offset = MINUS_ONE; |
| 3052 | g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
| 3053 | mips_elf_multi_got_entry_eq, NULL); |
| 3054 | if (g->got_entries == NULL) |
| 3055 | { |
| 3056 | arg->obfd = 0; |
| 3057 | return 0; |
| 3058 | } |
| 3059 | |
| 3060 | g->bfd2got = NULL; |
| 3061 | g->next = NULL; |
| 3062 | } |
| 3063 | |
| 3064 | /* Insert the GOT entry in the bfd's got entry hash table. */ |
| 3065 | entryp = htab_find_slot (g->got_entries, entry, INSERT); |
| 3066 | if (*entryp != NULL) |
| 3067 | return 1; |
| 3068 | |
| 3069 | *entryp = entry; |
| 3070 | |
| 3071 | if (entry->tls_type) |
| 3072 | { |
| 3073 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) |
| 3074 | g->tls_gotno += 2; |
| 3075 | if (entry->tls_type & GOT_TLS_IE) |
| 3076 | g->tls_gotno += 1; |
| 3077 | } |
| 3078 | else if (entry->symndx >= 0 || entry->d.h->forced_local) |
| 3079 | ++g->local_gotno; |
| 3080 | else |
| 3081 | ++g->global_gotno; |
| 3082 | |
| 3083 | return 1; |
| 3084 | } |
| 3085 | |
| 3086 | /* Attempt to merge gots of different input bfds. Try to use as much |
| 3087 | as possible of the primary got, since it doesn't require explicit |
| 3088 | dynamic relocations, but don't use bfds that would reference global |
| 3089 | symbols out of the addressable range. Failing the primary got, |
| 3090 | attempt to merge with the current got, or finish the current got |
| 3091 | and then make make the new got current. */ |
| 3092 | |
| 3093 | static int |
| 3094 | mips_elf_merge_gots (void **bfd2got_, void *p) |
| 3095 | { |
| 3096 | struct mips_elf_bfd2got_hash *bfd2got |
| 3097 | = (struct mips_elf_bfd2got_hash *)*bfd2got_; |
| 3098 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; |
| 3099 | unsigned int lcount = bfd2got->g->local_gotno; |
| 3100 | unsigned int gcount = bfd2got->g->global_gotno; |
| 3101 | unsigned int tcount = bfd2got->g->tls_gotno; |
| 3102 | unsigned int maxcnt = arg->max_count; |
| 3103 | bfd_boolean too_many_for_tls = FALSE; |
| 3104 | |
| 3105 | /* We place TLS GOT entries after both locals and globals. The globals |
| 3106 | for the primary GOT may overflow the normal GOT size limit, so be |
| 3107 | sure not to merge a GOT which requires TLS with the primary GOT in that |
| 3108 | case. This doesn't affect non-primary GOTs. */ |
| 3109 | if (tcount > 0) |
| 3110 | { |
| 3111 | unsigned int primary_total = lcount + tcount + arg->global_count; |
| 3112 | if (primary_total > maxcnt) |
| 3113 | too_many_for_tls = TRUE; |
| 3114 | } |
| 3115 | |
| 3116 | /* If we don't have a primary GOT and this is not too big, use it as |
| 3117 | a starting point for the primary GOT. */ |
| 3118 | if (! arg->primary && lcount + gcount + tcount <= maxcnt |
| 3119 | && ! too_many_for_tls) |
| 3120 | { |
| 3121 | arg->primary = bfd2got->g; |
| 3122 | arg->primary_count = lcount + gcount; |
| 3123 | } |
| 3124 | /* If it looks like we can merge this bfd's entries with those of |
| 3125 | the primary, merge them. The heuristics is conservative, but we |
| 3126 | don't have to squeeze it too hard. */ |
| 3127 | else if (arg->primary && ! too_many_for_tls |
| 3128 | && (arg->primary_count + lcount + gcount + tcount) <= maxcnt) |
| 3129 | { |
| 3130 | struct mips_got_info *g = bfd2got->g; |
| 3131 | int old_lcount = arg->primary->local_gotno; |
| 3132 | int old_gcount = arg->primary->global_gotno; |
| 3133 | int old_tcount = arg->primary->tls_gotno; |
| 3134 | |
| 3135 | bfd2got->g = arg->primary; |
| 3136 | |
| 3137 | htab_traverse (g->got_entries, |
| 3138 | mips_elf_make_got_per_bfd, |
| 3139 | arg); |
| 3140 | if (arg->obfd == NULL) |
| 3141 | return 0; |
| 3142 | |
| 3143 | htab_delete (g->got_entries); |
| 3144 | /* We don't have to worry about releasing memory of the actual |
| 3145 | got entries, since they're all in the master got_entries hash |
| 3146 | table anyway. */ |
| 3147 | |
| 3148 | BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno); |
| 3149 | BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno); |
| 3150 | BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno); |
| 3151 | |
| 3152 | arg->primary_count = arg->primary->local_gotno |
| 3153 | + arg->primary->global_gotno + arg->primary->tls_gotno; |
| 3154 | } |
| 3155 | /* If we can merge with the last-created got, do it. */ |
| 3156 | else if (arg->current |
| 3157 | && arg->current_count + lcount + gcount + tcount <= maxcnt) |
| 3158 | { |
| 3159 | struct mips_got_info *g = bfd2got->g; |
| 3160 | int old_lcount = arg->current->local_gotno; |
| 3161 | int old_gcount = arg->current->global_gotno; |
| 3162 | int old_tcount = arg->current->tls_gotno; |
| 3163 | |
| 3164 | bfd2got->g = arg->current; |
| 3165 | |
| 3166 | htab_traverse (g->got_entries, |
| 3167 | mips_elf_make_got_per_bfd, |
| 3168 | arg); |
| 3169 | if (arg->obfd == NULL) |
| 3170 | return 0; |
| 3171 | |
| 3172 | htab_delete (g->got_entries); |
| 3173 | |
| 3174 | BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno); |
| 3175 | BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno); |
| 3176 | BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno); |
| 3177 | |
| 3178 | arg->current_count = arg->current->local_gotno |
| 3179 | + arg->current->global_gotno + arg->current->tls_gotno; |
| 3180 | } |
| 3181 | /* Well, we couldn't merge, so create a new GOT. Don't check if it |
| 3182 | fits; if it turns out that it doesn't, we'll get relocation |
| 3183 | overflows anyway. */ |
| 3184 | else |
| 3185 | { |
| 3186 | bfd2got->g->next = arg->current; |
| 3187 | arg->current = bfd2got->g; |
| 3188 | |
| 3189 | arg->current_count = lcount + gcount + 2 * tcount; |
| 3190 | } |
| 3191 | |
| 3192 | return 1; |
| 3193 | } |
| 3194 | |
| 3195 | /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field |
| 3196 | is null iff there is just a single GOT. */ |
| 3197 | |
| 3198 | static int |
| 3199 | mips_elf_initialize_tls_index (void **entryp, void *p) |
| 3200 | { |
| 3201 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; |
| 3202 | struct mips_got_info *g = p; |
| 3203 | bfd_vma next_index; |
| 3204 | |
| 3205 | /* We're only interested in TLS symbols. */ |
| 3206 | if (entry->tls_type == 0) |
| 3207 | return 1; |
| 3208 | |
| 3209 | next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno; |
| 3210 | |
| 3211 | if (entry->symndx == -1 && g->next == NULL) |
| 3212 | { |
| 3213 | /* A type (3) got entry in the single-GOT case. We use the symbol's |
| 3214 | hash table entry to track its index. */ |
| 3215 | if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE) |
| 3216 | return 1; |
| 3217 | entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE; |
| 3218 | entry->d.h->tls_got_offset = next_index; |
| 3219 | } |
| 3220 | else |
| 3221 | { |
| 3222 | if (entry->tls_type & GOT_TLS_LDM) |
| 3223 | { |
| 3224 | /* There are separate mips_got_entry objects for each input bfd |
| 3225 | that requires an LDM entry. Make sure that all LDM entries in |
| 3226 | a GOT resolve to the same index. */ |
| 3227 | if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE) |
| 3228 | { |
| 3229 | entry->gotidx = g->tls_ldm_offset; |
| 3230 | return 1; |
| 3231 | } |
| 3232 | g->tls_ldm_offset = next_index; |
| 3233 | } |
| 3234 | entry->gotidx = next_index; |
| 3235 | } |
| 3236 | |
| 3237 | /* Account for the entries we've just allocated. */ |
| 3238 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) |
| 3239 | g->tls_assigned_gotno += 2; |
| 3240 | if (entry->tls_type & GOT_TLS_IE) |
| 3241 | g->tls_assigned_gotno += 1; |
| 3242 | |
| 3243 | return 1; |
| 3244 | } |
| 3245 | |
| 3246 | /* If passed a NULL mips_got_info in the argument, set the marker used |
| 3247 | to tell whether a global symbol needs a got entry (in the primary |
| 3248 | got) to the given VALUE. |
| 3249 | |
| 3250 | If passed a pointer G to a mips_got_info in the argument (it must |
| 3251 | not be the primary GOT), compute the offset from the beginning of |
| 3252 | the (primary) GOT section to the entry in G corresponding to the |
| 3253 | global symbol. G's assigned_gotno must contain the index of the |
| 3254 | first available global GOT entry in G. VALUE must contain the size |
| 3255 | of a GOT entry in bytes. For each global GOT entry that requires a |
| 3256 | dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is |
| 3257 | marked as not eligible for lazy resolution through a function |
| 3258 | stub. */ |
| 3259 | static int |
| 3260 | mips_elf_set_global_got_offset (void **entryp, void *p) |
| 3261 | { |
| 3262 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; |
| 3263 | struct mips_elf_set_global_got_offset_arg *arg |
| 3264 | = (struct mips_elf_set_global_got_offset_arg *)p; |
| 3265 | struct mips_got_info *g = arg->g; |
| 3266 | |
| 3267 | if (g && entry->tls_type != GOT_NORMAL) |
| 3268 | arg->needed_relocs += |
| 3269 | mips_tls_got_relocs (arg->info, entry->tls_type, |
| 3270 | entry->symndx == -1 ? &entry->d.h->root : NULL); |
| 3271 | |
| 3272 | if (entry->abfd != NULL && entry->symndx == -1 |
| 3273 | && entry->d.h->root.dynindx != -1 |
| 3274 | && entry->d.h->tls_type == GOT_NORMAL) |
| 3275 | { |
| 3276 | if (g) |
| 3277 | { |
| 3278 | BFD_ASSERT (g->global_gotsym == NULL); |
| 3279 | |
| 3280 | entry->gotidx = arg->value * (long) g->assigned_gotno++; |
| 3281 | if (arg->info->shared |
| 3282 | || (elf_hash_table (arg->info)->dynamic_sections_created |
| 3283 | && entry->d.h->root.def_dynamic |
| 3284 | && !entry->d.h->root.def_regular)) |
| 3285 | ++arg->needed_relocs; |
| 3286 | } |
| 3287 | else |
| 3288 | entry->d.h->root.got.offset = arg->value; |
| 3289 | } |
| 3290 | |
| 3291 | return 1; |
| 3292 | } |
| 3293 | |
| 3294 | /* Mark any global symbols referenced in the GOT we are iterating over |
| 3295 | as inelligible for lazy resolution stubs. */ |
| 3296 | static int |
| 3297 | mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED) |
| 3298 | { |
| 3299 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; |
| 3300 | |
| 3301 | if (entry->abfd != NULL |
| 3302 | && entry->symndx == -1 |
| 3303 | && entry->d.h->root.dynindx != -1) |
| 3304 | entry->d.h->no_fn_stub = TRUE; |
| 3305 | |
| 3306 | return 1; |
| 3307 | } |
| 3308 | |
| 3309 | /* Follow indirect and warning hash entries so that each got entry |
| 3310 | points to the final symbol definition. P must point to a pointer |
| 3311 | to the hash table we're traversing. Since this traversal may |
| 3312 | modify the hash table, we set this pointer to NULL to indicate |
| 3313 | we've made a potentially-destructive change to the hash table, so |
| 3314 | the traversal must be restarted. */ |
| 3315 | static int |
| 3316 | mips_elf_resolve_final_got_entry (void **entryp, void *p) |
| 3317 | { |
| 3318 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; |
| 3319 | htab_t got_entries = *(htab_t *)p; |
| 3320 | |
| 3321 | if (entry->abfd != NULL && entry->symndx == -1) |
| 3322 | { |
| 3323 | struct mips_elf_link_hash_entry *h = entry->d.h; |
| 3324 | |
| 3325 | while (h->root.root.type == bfd_link_hash_indirect |
| 3326 | || h->root.root.type == bfd_link_hash_warning) |
| 3327 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| 3328 | |
| 3329 | if (entry->d.h == h) |
| 3330 | return 1; |
| 3331 | |
| 3332 | entry->d.h = h; |
| 3333 | |
| 3334 | /* If we can't find this entry with the new bfd hash, re-insert |
| 3335 | it, and get the traversal restarted. */ |
| 3336 | if (! htab_find (got_entries, entry)) |
| 3337 | { |
| 3338 | htab_clear_slot (got_entries, entryp); |
| 3339 | entryp = htab_find_slot (got_entries, entry, INSERT); |
| 3340 | if (! *entryp) |
| 3341 | *entryp = entry; |
| 3342 | /* Abort the traversal, since the whole table may have |
| 3343 | moved, and leave it up to the parent to restart the |
| 3344 | process. */ |
| 3345 | *(htab_t *)p = NULL; |
| 3346 | return 0; |
| 3347 | } |
| 3348 | /* We might want to decrement the global_gotno count, but it's |
| 3349 | either too early or too late for that at this point. */ |
| 3350 | } |
| 3351 | |
| 3352 | return 1; |
| 3353 | } |
| 3354 | |
| 3355 | /* Turn indirect got entries in a got_entries table into their final |
| 3356 | locations. */ |
| 3357 | static void |
| 3358 | mips_elf_resolve_final_got_entries (struct mips_got_info *g) |
| 3359 | { |
| 3360 | htab_t got_entries; |
| 3361 | |
| 3362 | do |
| 3363 | { |
| 3364 | got_entries = g->got_entries; |
| 3365 | |
| 3366 | htab_traverse (got_entries, |
| 3367 | mips_elf_resolve_final_got_entry, |
| 3368 | &got_entries); |
| 3369 | } |
| 3370 | while (got_entries == NULL); |
| 3371 | } |
| 3372 | |
| 3373 | /* Return the offset of an input bfd IBFD's GOT from the beginning of |
| 3374 | the primary GOT. */ |
| 3375 | static bfd_vma |
| 3376 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
| 3377 | { |
| 3378 | if (g->bfd2got == NULL) |
| 3379 | return 0; |
| 3380 | |
| 3381 | g = mips_elf_got_for_ibfd (g, ibfd); |
| 3382 | if (! g) |
| 3383 | return 0; |
| 3384 | |
| 3385 | BFD_ASSERT (g->next); |
| 3386 | |
| 3387 | g = g->next; |
| 3388 | |
| 3389 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
| 3390 | * MIPS_ELF_GOT_SIZE (abfd); |
| 3391 | } |
| 3392 | |
| 3393 | /* Turn a single GOT that is too big for 16-bit addressing into |
| 3394 | a sequence of GOTs, each one 16-bit addressable. */ |
| 3395 | |
| 3396 | static bfd_boolean |
| 3397 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
| 3398 | struct mips_got_info *g, asection *got, |
| 3399 | bfd_size_type pages) |
| 3400 | { |
| 3401 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; |
| 3402 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; |
| 3403 | struct mips_got_info *gg; |
| 3404 | unsigned int assign; |
| 3405 | |
| 3406 | g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, |
| 3407 | mips_elf_bfd2got_entry_eq, NULL); |
| 3408 | if (g->bfd2got == NULL) |
| 3409 | return FALSE; |
| 3410 | |
| 3411 | got_per_bfd_arg.bfd2got = g->bfd2got; |
| 3412 | got_per_bfd_arg.obfd = abfd; |
| 3413 | got_per_bfd_arg.info = info; |
| 3414 | |
| 3415 | /* Count how many GOT entries each input bfd requires, creating a |
| 3416 | map from bfd to got info while at that. */ |
| 3417 | htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); |
| 3418 | if (got_per_bfd_arg.obfd == NULL) |
| 3419 | return FALSE; |
| 3420 | |
| 3421 | got_per_bfd_arg.current = NULL; |
| 3422 | got_per_bfd_arg.primary = NULL; |
| 3423 | /* Taking out PAGES entries is a worst-case estimate. We could |
| 3424 | compute the maximum number of pages that each separate input bfd |
| 3425 | uses, but it's probably not worth it. */ |
| 3426 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) |
| 3427 | / MIPS_ELF_GOT_SIZE (abfd)) |
| 3428 | - MIPS_RESERVED_GOTNO (info) - pages); |
| 3429 | /* The number of globals that will be included in the primary GOT. |
| 3430 | See the calls to mips_elf_set_global_got_offset below for more |
| 3431 | information. */ |
| 3432 | got_per_bfd_arg.global_count = g->global_gotno; |
| 3433 | |
| 3434 | /* Try to merge the GOTs of input bfds together, as long as they |
| 3435 | don't seem to exceed the maximum GOT size, choosing one of them |
| 3436 | to be the primary GOT. */ |
| 3437 | htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); |
| 3438 | if (got_per_bfd_arg.obfd == NULL) |
| 3439 | return FALSE; |
| 3440 | |
| 3441 | /* If we do not find any suitable primary GOT, create an empty one. */ |
| 3442 | if (got_per_bfd_arg.primary == NULL) |
| 3443 | { |
| 3444 | g->next = (struct mips_got_info *) |
| 3445 | bfd_alloc (abfd, sizeof (struct mips_got_info)); |
| 3446 | if (g->next == NULL) |
| 3447 | return FALSE; |
| 3448 | |
| 3449 | g->next->global_gotsym = NULL; |
| 3450 | g->next->global_gotno = 0; |
| 3451 | g->next->local_gotno = 0; |
| 3452 | g->next->tls_gotno = 0; |
| 3453 | g->next->assigned_gotno = 0; |
| 3454 | g->next->tls_assigned_gotno = 0; |
| 3455 | g->next->tls_ldm_offset = MINUS_ONE; |
| 3456 | g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
| 3457 | mips_elf_multi_got_entry_eq, |
| 3458 | NULL); |
| 3459 | if (g->next->got_entries == NULL) |
| 3460 | return FALSE; |
| 3461 | g->next->bfd2got = NULL; |
| 3462 | } |
| 3463 | else |
| 3464 | g->next = got_per_bfd_arg.primary; |
| 3465 | g->next->next = got_per_bfd_arg.current; |
| 3466 | |
| 3467 | /* GG is now the master GOT, and G is the primary GOT. */ |
| 3468 | gg = g; |
| 3469 | g = g->next; |
| 3470 | |
| 3471 | /* Map the output bfd to the primary got. That's what we're going |
| 3472 | to use for bfds that use GOT16 or GOT_PAGE relocations that we |
| 3473 | didn't mark in check_relocs, and we want a quick way to find it. |
| 3474 | We can't just use gg->next because we're going to reverse the |
| 3475 | list. */ |
| 3476 | { |
| 3477 | struct mips_elf_bfd2got_hash *bfdgot; |
| 3478 | void **bfdgotp; |
| 3479 | |
| 3480 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
| 3481 | (abfd, sizeof (struct mips_elf_bfd2got_hash)); |
| 3482 | |
| 3483 | if (bfdgot == NULL) |
| 3484 | return FALSE; |
| 3485 | |
| 3486 | bfdgot->bfd = abfd; |
| 3487 | bfdgot->g = g; |
| 3488 | bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); |
| 3489 | |
| 3490 | BFD_ASSERT (*bfdgotp == NULL); |
| 3491 | *bfdgotp = bfdgot; |
| 3492 | } |
| 3493 | |
| 3494 | /* The IRIX dynamic linker requires every symbol that is referenced |
| 3495 | in a dynamic relocation to be present in the primary GOT, so |
| 3496 | arrange for them to appear after those that are actually |
| 3497 | referenced. |
| 3498 | |
| 3499 | GNU/Linux could very well do without it, but it would slow down |
| 3500 | the dynamic linker, since it would have to resolve every dynamic |
| 3501 | symbol referenced in other GOTs more than once, without help from |
| 3502 | the cache. Also, knowing that every external symbol has a GOT |
| 3503 | helps speed up the resolution of local symbols too, so GNU/Linux |
| 3504 | follows IRIX's practice. |
| 3505 | |
| 3506 | The number 2 is used by mips_elf_sort_hash_table_f to count |
| 3507 | global GOT symbols that are unreferenced in the primary GOT, with |
| 3508 | an initial dynamic index computed from gg->assigned_gotno, where |
| 3509 | the number of unreferenced global entries in the primary GOT is |
| 3510 | preserved. */ |
| 3511 | if (1) |
| 3512 | { |
| 3513 | gg->assigned_gotno = gg->global_gotno - g->global_gotno; |
| 3514 | g->global_gotno = gg->global_gotno; |
| 3515 | set_got_offset_arg.value = 2; |
| 3516 | } |
| 3517 | else |
| 3518 | { |
| 3519 | /* This could be used for dynamic linkers that don't optimize |
| 3520 | symbol resolution while applying relocations so as to use |
| 3521 | primary GOT entries or assuming the symbol is locally-defined. |
| 3522 | With this code, we assign lower dynamic indices to global |
| 3523 | symbols that are not referenced in the primary GOT, so that |
| 3524 | their entries can be omitted. */ |
| 3525 | gg->assigned_gotno = 0; |
| 3526 | set_got_offset_arg.value = -1; |
| 3527 | } |
| 3528 | |
| 3529 | /* Reorder dynamic symbols as described above (which behavior |
| 3530 | depends on the setting of VALUE). */ |
| 3531 | set_got_offset_arg.g = NULL; |
| 3532 | htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, |
| 3533 | &set_got_offset_arg); |
| 3534 | set_got_offset_arg.value = 1; |
| 3535 | htab_traverse (g->got_entries, mips_elf_set_global_got_offset, |
| 3536 | &set_got_offset_arg); |
| 3537 | if (! mips_elf_sort_hash_table (info, 1)) |
| 3538 | return FALSE; |
| 3539 | |
| 3540 | /* Now go through the GOTs assigning them offset ranges. |
| 3541 | [assigned_gotno, local_gotno[ will be set to the range of local |
| 3542 | entries in each GOT. We can then compute the end of a GOT by |
| 3543 | adding local_gotno to global_gotno. We reverse the list and make |
| 3544 | it circular since then we'll be able to quickly compute the |
| 3545 | beginning of a GOT, by computing the end of its predecessor. To |
| 3546 | avoid special cases for the primary GOT, while still preserving |
| 3547 | assertions that are valid for both single- and multi-got links, |
| 3548 | we arrange for the main got struct to have the right number of |
| 3549 | global entries, but set its local_gotno such that the initial |
| 3550 | offset of the primary GOT is zero. Remember that the primary GOT |
| 3551 | will become the last item in the circular linked list, so it |
| 3552 | points back to the master GOT. */ |
| 3553 | gg->local_gotno = -g->global_gotno; |
| 3554 | gg->global_gotno = g->global_gotno; |
| 3555 | gg->tls_gotno = 0; |
| 3556 | assign = 0; |
| 3557 | gg->next = gg; |
| 3558 | |
| 3559 | do |
| 3560 | { |
| 3561 | struct mips_got_info *gn; |
| 3562 | |
| 3563 | assign += MIPS_RESERVED_GOTNO (info); |
| 3564 | g->assigned_gotno = assign; |
| 3565 | g->local_gotno += assign + pages; |
| 3566 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
| 3567 | |
| 3568 | /* Take g out of the direct list, and push it onto the reversed |
| 3569 | list that gg points to. g->next is guaranteed to be nonnull after |
| 3570 | this operation, as required by mips_elf_initialize_tls_index. */ |
| 3571 | gn = g->next; |
| 3572 | g->next = gg->next; |
| 3573 | gg->next = g; |
| 3574 | |
| 3575 | /* Set up any TLS entries. We always place the TLS entries after |
| 3576 | all non-TLS entries. */ |
| 3577 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; |
| 3578 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); |
| 3579 | |
| 3580 | /* Move onto the next GOT. It will be a secondary GOT if nonull. */ |
| 3581 | g = gn; |
| 3582 | |
| 3583 | /* Mark global symbols in every non-primary GOT as ineligible for |
| 3584 | stubs. */ |
| 3585 | if (g) |
| 3586 | htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL); |
| 3587 | } |
| 3588 | while (g); |
| 3589 | |
| 3590 | got->size = (gg->next->local_gotno |
| 3591 | + gg->next->global_gotno |
| 3592 | + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd); |
| 3593 | |
| 3594 | return TRUE; |
| 3595 | } |
| 3596 | |
| 3597 | \f |
| 3598 | /* Returns the first relocation of type r_type found, beginning with |
| 3599 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ |
| 3600 | |
| 3601 | static const Elf_Internal_Rela * |
| 3602 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
| 3603 | const Elf_Internal_Rela *relocation, |
| 3604 | const Elf_Internal_Rela *relend) |
| 3605 | { |
| 3606 | unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); |
| 3607 | |
| 3608 | while (relocation < relend) |
| 3609 | { |
| 3610 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type |
| 3611 | && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) |
| 3612 | return relocation; |
| 3613 | |
| 3614 | ++relocation; |
| 3615 | } |
| 3616 | |
| 3617 | /* We didn't find it. */ |
| 3618 | return NULL; |
| 3619 | } |
| 3620 | |
| 3621 | /* Return whether a relocation is against a local symbol. */ |
| 3622 | |
| 3623 | static bfd_boolean |
| 3624 | mips_elf_local_relocation_p (bfd *input_bfd, |
| 3625 | const Elf_Internal_Rela *relocation, |
| 3626 | asection **local_sections, |
| 3627 | bfd_boolean check_forced) |
| 3628 | { |
| 3629 | unsigned long r_symndx; |
| 3630 | Elf_Internal_Shdr *symtab_hdr; |
| 3631 | struct mips_elf_link_hash_entry *h; |
| 3632 | size_t extsymoff; |
| 3633 | |
| 3634 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); |
| 3635 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 3636 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; |
| 3637 | |
| 3638 | if (r_symndx < extsymoff) |
| 3639 | return TRUE; |
| 3640 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
| 3641 | return TRUE; |
| 3642 | |
| 3643 | if (check_forced) |
| 3644 | { |
| 3645 | /* Look up the hash table to check whether the symbol |
| 3646 | was forced local. */ |
| 3647 | h = (struct mips_elf_link_hash_entry *) |
| 3648 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; |
| 3649 | /* Find the real hash-table entry for this symbol. */ |
| 3650 | while (h->root.root.type == bfd_link_hash_indirect |
| 3651 | || h->root.root.type == bfd_link_hash_warning) |
| 3652 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| 3653 | if (h->root.forced_local) |
| 3654 | return TRUE; |
| 3655 | } |
| 3656 | |
| 3657 | return FALSE; |
| 3658 | } |
| 3659 | \f |
| 3660 | /* Sign-extend VALUE, which has the indicated number of BITS. */ |
| 3661 | |
| 3662 | bfd_vma |
| 3663 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
| 3664 | { |
| 3665 | if (value & ((bfd_vma) 1 << (bits - 1))) |
| 3666 | /* VALUE is negative. */ |
| 3667 | value |= ((bfd_vma) - 1) << bits; |
| 3668 | |
| 3669 | return value; |
| 3670 | } |
| 3671 | |
| 3672 | /* Return non-zero if the indicated VALUE has overflowed the maximum |
| 3673 | range expressible by a signed number with the indicated number of |
| 3674 | BITS. */ |
| 3675 | |
| 3676 | static bfd_boolean |
| 3677 | mips_elf_overflow_p (bfd_vma value, int bits) |
| 3678 | { |
| 3679 | bfd_signed_vma svalue = (bfd_signed_vma) value; |
| 3680 | |
| 3681 | if (svalue > (1 << (bits - 1)) - 1) |
| 3682 | /* The value is too big. */ |
| 3683 | return TRUE; |
| 3684 | else if (svalue < -(1 << (bits - 1))) |
| 3685 | /* The value is too small. */ |
| 3686 | return TRUE; |
| 3687 | |
| 3688 | /* All is well. */ |
| 3689 | return FALSE; |
| 3690 | } |
| 3691 | |
| 3692 | /* Calculate the %high function. */ |
| 3693 | |
| 3694 | static bfd_vma |
| 3695 | mips_elf_high (bfd_vma value) |
| 3696 | { |
| 3697 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; |
| 3698 | } |
| 3699 | |
| 3700 | /* Calculate the %higher function. */ |
| 3701 | |
| 3702 | static bfd_vma |
| 3703 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
| 3704 | { |
| 3705 | #ifdef BFD64 |
| 3706 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; |
| 3707 | #else |
| 3708 | abort (); |
| 3709 | return MINUS_ONE; |
| 3710 | #endif |
| 3711 | } |
| 3712 | |
| 3713 | /* Calculate the %highest function. */ |
| 3714 | |
| 3715 | static bfd_vma |
| 3716 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
| 3717 | { |
| 3718 | #ifdef BFD64 |
| 3719 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
| 3720 | #else |
| 3721 | abort (); |
| 3722 | return MINUS_ONE; |
| 3723 | #endif |
| 3724 | } |
| 3725 | \f |
| 3726 | /* Create the .compact_rel section. */ |
| 3727 | |
| 3728 | static bfd_boolean |
| 3729 | mips_elf_create_compact_rel_section |
| 3730 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| 3731 | { |
| 3732 | flagword flags; |
| 3733 | register asection *s; |
| 3734 | |
| 3735 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) |
| 3736 | { |
| 3737 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED |
| 3738 | | SEC_READONLY); |
| 3739 | |
| 3740 | s = bfd_make_section_with_flags (abfd, ".compact_rel", flags); |
| 3741 | if (s == NULL |
| 3742 | || ! bfd_set_section_alignment (abfd, s, |
| 3743 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
| 3744 | return FALSE; |
| 3745 | |
| 3746 | s->size = sizeof (Elf32_External_compact_rel); |
| 3747 | } |
| 3748 | |
| 3749 | return TRUE; |
| 3750 | } |
| 3751 | |
| 3752 | /* Create the .got section to hold the global offset table. */ |
| 3753 | |
| 3754 | static bfd_boolean |
| 3755 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info, |
| 3756 | bfd_boolean maybe_exclude) |
| 3757 | { |
| 3758 | flagword flags; |
| 3759 | register asection *s; |
| 3760 | struct elf_link_hash_entry *h; |
| 3761 | struct bfd_link_hash_entry *bh; |
| 3762 | struct mips_got_info *g; |
| 3763 | bfd_size_type amt; |
| 3764 | struct mips_elf_link_hash_table *htab; |
| 3765 | |
| 3766 | htab = mips_elf_hash_table (info); |
| 3767 | |
| 3768 | /* This function may be called more than once. */ |
| 3769 | s = mips_elf_got_section (abfd, TRUE); |
| 3770 | if (s) |
| 3771 | { |
| 3772 | if (! maybe_exclude) |
| 3773 | s->flags &= ~SEC_EXCLUDE; |
| 3774 | return TRUE; |
| 3775 | } |
| 3776 | |
| 3777 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| 3778 | | SEC_LINKER_CREATED); |
| 3779 | |
| 3780 | if (maybe_exclude) |
| 3781 | flags |= SEC_EXCLUDE; |
| 3782 | |
| 3783 | /* We have to use an alignment of 2**4 here because this is hardcoded |
| 3784 | in the function stub generation and in the linker script. */ |
| 3785 | s = bfd_make_section_with_flags (abfd, ".got", flags); |
| 3786 | if (s == NULL |
| 3787 | || ! bfd_set_section_alignment (abfd, s, 4)) |
| 3788 | return FALSE; |
| 3789 | |
| 3790 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the |
| 3791 | linker script because we don't want to define the symbol if we |
| 3792 | are not creating a global offset table. */ |
| 3793 | bh = NULL; |
| 3794 | if (! (_bfd_generic_link_add_one_symbol |
| 3795 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, |
| 3796 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
| 3797 | return FALSE; |
| 3798 | |
| 3799 | h = (struct elf_link_hash_entry *) bh; |
| 3800 | h->non_elf = 0; |
| 3801 | h->def_regular = 1; |
| 3802 | h->type = STT_OBJECT; |
| 3803 | elf_hash_table (info)->hgot = h; |
| 3804 | |
| 3805 | if (info->shared |
| 3806 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 3807 | return FALSE; |
| 3808 | |
| 3809 | amt = sizeof (struct mips_got_info); |
| 3810 | g = bfd_alloc (abfd, amt); |
| 3811 | if (g == NULL) |
| 3812 | return FALSE; |
| 3813 | g->global_gotsym = NULL; |
| 3814 | g->global_gotno = 0; |
| 3815 | g->tls_gotno = 0; |
| 3816 | g->local_gotno = MIPS_RESERVED_GOTNO (info); |
| 3817 | g->assigned_gotno = MIPS_RESERVED_GOTNO (info); |
| 3818 | g->bfd2got = NULL; |
| 3819 | g->next = NULL; |
| 3820 | g->tls_ldm_offset = MINUS_ONE; |
| 3821 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
| 3822 | mips_elf_got_entry_eq, NULL); |
| 3823 | if (g->got_entries == NULL) |
| 3824 | return FALSE; |
| 3825 | mips_elf_section_data (s)->u.got_info = g; |
| 3826 | mips_elf_section_data (s)->elf.this_hdr.sh_flags |
| 3827 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
| 3828 | |
| 3829 | /* VxWorks also needs a .got.plt section. */ |
| 3830 | if (htab->is_vxworks) |
| 3831 | { |
| 3832 | s = bfd_make_section_with_flags (abfd, ".got.plt", |
| 3833 | SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS |
| 3834 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); |
| 3835 | if (s == NULL || !bfd_set_section_alignment (abfd, s, 4)) |
| 3836 | return FALSE; |
| 3837 | |
| 3838 | htab->sgotplt = s; |
| 3839 | } |
| 3840 | return TRUE; |
| 3841 | } |
| 3842 | \f |
| 3843 | /* Return true if H refers to the special VxWorks __GOTT_BASE__ or |
| 3844 | __GOTT_INDEX__ symbols. These symbols are only special for |
| 3845 | shared objects; they are not used in executables. */ |
| 3846 | |
| 3847 | static bfd_boolean |
| 3848 | is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) |
| 3849 | { |
| 3850 | return (mips_elf_hash_table (info)->is_vxworks |
| 3851 | && info->shared |
| 3852 | && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 |
| 3853 | || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); |
| 3854 | } |
| 3855 | \f |
| 3856 | /* Calculate the value produced by the RELOCATION (which comes from |
| 3857 | the INPUT_BFD). The ADDEND is the addend to use for this |
| 3858 | RELOCATION; RELOCATION->R_ADDEND is ignored. |
| 3859 | |
| 3860 | The result of the relocation calculation is stored in VALUEP. |
| 3861 | REQUIRE_JALXP indicates whether or not the opcode used with this |
| 3862 | relocation must be JALX. |
| 3863 | |
| 3864 | This function returns bfd_reloc_continue if the caller need take no |
| 3865 | further action regarding this relocation, bfd_reloc_notsupported if |
| 3866 | something goes dramatically wrong, bfd_reloc_overflow if an |
| 3867 | overflow occurs, and bfd_reloc_ok to indicate success. */ |
| 3868 | |
| 3869 | static bfd_reloc_status_type |
| 3870 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
| 3871 | asection *input_section, |
| 3872 | struct bfd_link_info *info, |
| 3873 | const Elf_Internal_Rela *relocation, |
| 3874 | bfd_vma addend, reloc_howto_type *howto, |
| 3875 | Elf_Internal_Sym *local_syms, |
| 3876 | asection **local_sections, bfd_vma *valuep, |
| 3877 | const char **namep, bfd_boolean *require_jalxp, |
| 3878 | bfd_boolean save_addend) |
| 3879 | { |
| 3880 | /* The eventual value we will return. */ |
| 3881 | bfd_vma value; |
| 3882 | /* The address of the symbol against which the relocation is |
| 3883 | occurring. */ |
| 3884 | bfd_vma symbol = 0; |
| 3885 | /* The final GP value to be used for the relocatable, executable, or |
| 3886 | shared object file being produced. */ |
| 3887 | bfd_vma gp = MINUS_ONE; |
| 3888 | /* The place (section offset or address) of the storage unit being |
| 3889 | relocated. */ |
| 3890 | bfd_vma p; |
| 3891 | /* The value of GP used to create the relocatable object. */ |
| 3892 | bfd_vma gp0 = MINUS_ONE; |
| 3893 | /* The offset into the global offset table at which the address of |
| 3894 | the relocation entry symbol, adjusted by the addend, resides |
| 3895 | during execution. */ |
| 3896 | bfd_vma g = MINUS_ONE; |
| 3897 | /* The section in which the symbol referenced by the relocation is |
| 3898 | located. */ |
| 3899 | asection *sec = NULL; |
| 3900 | struct mips_elf_link_hash_entry *h = NULL; |
| 3901 | /* TRUE if the symbol referred to by this relocation is a local |
| 3902 | symbol. */ |
| 3903 | bfd_boolean local_p, was_local_p; |
| 3904 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ |
| 3905 | bfd_boolean gp_disp_p = FALSE; |
| 3906 | /* TRUE if the symbol referred to by this relocation is |
| 3907 | "__gnu_local_gp". */ |
| 3908 | bfd_boolean gnu_local_gp_p = FALSE; |
| 3909 | Elf_Internal_Shdr *symtab_hdr; |
| 3910 | size_t extsymoff; |
| 3911 | unsigned long r_symndx; |
| 3912 | int r_type; |
| 3913 | /* TRUE if overflow occurred during the calculation of the |
| 3914 | relocation value. */ |
| 3915 | bfd_boolean overflowed_p; |
| 3916 | /* TRUE if this relocation refers to a MIPS16 function. */ |
| 3917 | bfd_boolean target_is_16_bit_code_p = FALSE; |
| 3918 | struct mips_elf_link_hash_table *htab; |
| 3919 | bfd *dynobj; |
| 3920 | |
| 3921 | dynobj = elf_hash_table (info)->dynobj; |
| 3922 | htab = mips_elf_hash_table (info); |
| 3923 | |
| 3924 | /* Parse the relocation. */ |
| 3925 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); |
| 3926 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
| 3927 | p = (input_section->output_section->vma |
| 3928 | + input_section->output_offset |
| 3929 | + relocation->r_offset); |
| 3930 | |
| 3931 | /* Assume that there will be no overflow. */ |
| 3932 | overflowed_p = FALSE; |
| 3933 | |
| 3934 | /* Figure out whether or not the symbol is local, and get the offset |
| 3935 | used in the array of hash table entries. */ |
| 3936 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 3937 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, |
| 3938 | local_sections, FALSE); |
| 3939 | was_local_p = local_p; |
| 3940 | if (! elf_bad_symtab (input_bfd)) |
| 3941 | extsymoff = symtab_hdr->sh_info; |
| 3942 | else |
| 3943 | { |
| 3944 | /* The symbol table does not follow the rule that local symbols |
| 3945 | must come before globals. */ |
| 3946 | extsymoff = 0; |
| 3947 | } |
| 3948 | |
| 3949 | /* Figure out the value of the symbol. */ |
| 3950 | if (local_p) |
| 3951 | { |
| 3952 | Elf_Internal_Sym *sym; |
| 3953 | |
| 3954 | sym = local_syms + r_symndx; |
| 3955 | sec = local_sections[r_symndx]; |
| 3956 | |
| 3957 | symbol = sec->output_section->vma + sec->output_offset; |
| 3958 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
| 3959 | || (sec->flags & SEC_MERGE)) |
| 3960 | symbol += sym->st_value; |
| 3961 | if ((sec->flags & SEC_MERGE) |
| 3962 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
| 3963 | { |
| 3964 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); |
| 3965 | addend -= symbol; |
| 3966 | addend += sec->output_section->vma + sec->output_offset; |
| 3967 | } |
| 3968 | |
| 3969 | /* MIPS16 text labels should be treated as odd. */ |
| 3970 | if (sym->st_other == STO_MIPS16) |
| 3971 | ++symbol; |
| 3972 | |
| 3973 | /* Record the name of this symbol, for our caller. */ |
| 3974 | *namep = bfd_elf_string_from_elf_section (input_bfd, |
| 3975 | symtab_hdr->sh_link, |
| 3976 | sym->st_name); |
| 3977 | if (*namep == '\0') |
| 3978 | *namep = bfd_section_name (input_bfd, sec); |
| 3979 | |
| 3980 | target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); |
| 3981 | } |
| 3982 | else |
| 3983 | { |
| 3984 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
| 3985 | |
| 3986 | /* For global symbols we look up the symbol in the hash-table. */ |
| 3987 | h = ((struct mips_elf_link_hash_entry *) |
| 3988 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); |
| 3989 | /* Find the real hash-table entry for this symbol. */ |
| 3990 | while (h->root.root.type == bfd_link_hash_indirect |
| 3991 | || h->root.root.type == bfd_link_hash_warning) |
| 3992 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| 3993 | |
| 3994 | /* Record the name of this symbol, for our caller. */ |
| 3995 | *namep = h->root.root.root.string; |
| 3996 | |
| 3997 | /* See if this is the special _gp_disp symbol. Note that such a |
| 3998 | symbol must always be a global symbol. */ |
| 3999 | if (strcmp (*namep, "_gp_disp") == 0 |
| 4000 | && ! NEWABI_P (input_bfd)) |
| 4001 | { |
| 4002 | /* Relocations against _gp_disp are permitted only with |
| 4003 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ |
| 4004 | if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16 |
| 4005 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) |
| 4006 | return bfd_reloc_notsupported; |
| 4007 | |
| 4008 | gp_disp_p = TRUE; |
| 4009 | } |
| 4010 | /* See if this is the special _gp symbol. Note that such a |
| 4011 | symbol must always be a global symbol. */ |
| 4012 | else if (strcmp (*namep, "__gnu_local_gp") == 0) |
| 4013 | gnu_local_gp_p = TRUE; |
| 4014 | |
| 4015 | |
| 4016 | /* If this symbol is defined, calculate its address. Note that |
| 4017 | _gp_disp is a magic symbol, always implicitly defined by the |
| 4018 | linker, so it's inappropriate to check to see whether or not |
| 4019 | its defined. */ |
| 4020 | else if ((h->root.root.type == bfd_link_hash_defined |
| 4021 | || h->root.root.type == bfd_link_hash_defweak) |
| 4022 | && h->root.root.u.def.section) |
| 4023 | { |
| 4024 | sec = h->root.root.u.def.section; |
| 4025 | if (sec->output_section) |
| 4026 | symbol = (h->root.root.u.def.value |
| 4027 | + sec->output_section->vma |
| 4028 | + sec->output_offset); |
| 4029 | else |
| 4030 | symbol = h->root.root.u.def.value; |
| 4031 | } |
| 4032 | else if (h->root.root.type == bfd_link_hash_undefweak) |
| 4033 | /* We allow relocations against undefined weak symbols, giving |
| 4034 | it the value zero, so that you can undefined weak functions |
| 4035 | and check to see if they exist by looking at their |
| 4036 | addresses. */ |
| 4037 | symbol = 0; |
| 4038 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
| 4039 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
| 4040 | symbol = 0; |
| 4041 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
| 4042 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) |
| 4043 | { |
| 4044 | /* If this is a dynamic link, we should have created a |
| 4045 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol |
| 4046 | in in _bfd_mips_elf_create_dynamic_sections. |
| 4047 | Otherwise, we should define the symbol with a value of 0. |
| 4048 | FIXME: It should probably get into the symbol table |
| 4049 | somehow as well. */ |
| 4050 | BFD_ASSERT (! info->shared); |
| 4051 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); |
| 4052 | symbol = 0; |
| 4053 | } |
| 4054 | else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) |
| 4055 | { |
| 4056 | /* This is an optional symbol - an Irix specific extension to the |
| 4057 | ELF spec. Ignore it for now. |
| 4058 | XXX - FIXME - there is more to the spec for OPTIONAL symbols |
| 4059 | than simply ignoring them, but we do not handle this for now. |
| 4060 | For information see the "64-bit ELF Object File Specification" |
| 4061 | which is available from here: |
| 4062 | http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ |
| 4063 | symbol = 0; |
| 4064 | } |
| 4065 | else |
| 4066 | { |
| 4067 | if (! ((*info->callbacks->undefined_symbol) |
| 4068 | (info, h->root.root.root.string, input_bfd, |
| 4069 | input_section, relocation->r_offset, |
| 4070 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) |
| 4071 | || ELF_ST_VISIBILITY (h->root.other)))) |
| 4072 | return bfd_reloc_undefined; |
| 4073 | symbol = 0; |
| 4074 | } |
| 4075 | |
| 4076 | target_is_16_bit_code_p = (h->root.other == STO_MIPS16); |
| 4077 | } |
| 4078 | |
| 4079 | /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we |
| 4080 | need to redirect the call to the stub, unless we're already *in* |
| 4081 | a stub. */ |
| 4082 | if (r_type != R_MIPS16_26 && !info->relocatable |
| 4083 | && ((h != NULL && h->fn_stub != NULL) |
| 4084 | || (local_p |
| 4085 | && elf_tdata (input_bfd)->local_stubs != NULL |
| 4086 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) |
| 4087 | && !mips16_stub_section_p (input_bfd, input_section)) |
| 4088 | { |
| 4089 | /* This is a 32- or 64-bit call to a 16-bit function. We should |
| 4090 | have already noticed that we were going to need the |
| 4091 | stub. */ |
| 4092 | if (local_p) |
| 4093 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; |
| 4094 | else |
| 4095 | { |
| 4096 | BFD_ASSERT (h->need_fn_stub); |
| 4097 | sec = h->fn_stub; |
| 4098 | } |
| 4099 | |
| 4100 | symbol = sec->output_section->vma + sec->output_offset; |
| 4101 | /* The target is 16-bit, but the stub isn't. */ |
| 4102 | target_is_16_bit_code_p = FALSE; |
| 4103 | } |
| 4104 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we |
| 4105 | need to redirect the call to the stub. */ |
| 4106 | else if (r_type == R_MIPS16_26 && !info->relocatable |
| 4107 | && h != NULL |
| 4108 | && ((h->call_stub != NULL || h->call_fp_stub != NULL) |
| 4109 | || (local_p |
| 4110 | && elf_tdata (input_bfd)->local_call_stubs != NULL |
| 4111 | && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) |
| 4112 | && !target_is_16_bit_code_p) |
| 4113 | { |
| 4114 | if (local_p) |
| 4115 | sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx]; |
| 4116 | else |
| 4117 | { |
| 4118 | /* If both call_stub and call_fp_stub are defined, we can figure |
| 4119 | out which one to use by checking which one appears in the input |
| 4120 | file. */ |
| 4121 | if (h->call_stub != NULL && h->call_fp_stub != NULL) |
| 4122 | { |
| 4123 | asection *o; |
| 4124 | |
| 4125 | sec = NULL; |
| 4126 | for (o = input_bfd->sections; o != NULL; o = o->next) |
| 4127 | { |
| 4128 | if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) |
| 4129 | { |
| 4130 | sec = h->call_fp_stub; |
| 4131 | break; |
| 4132 | } |
| 4133 | } |
| 4134 | if (sec == NULL) |
| 4135 | sec = h->call_stub; |
| 4136 | } |
| 4137 | else if (h->call_stub != NULL) |
| 4138 | sec = h->call_stub; |
| 4139 | else |
| 4140 | sec = h->call_fp_stub; |
| 4141 | } |
| 4142 | |
| 4143 | BFD_ASSERT (sec->size > 0); |
| 4144 | symbol = sec->output_section->vma + sec->output_offset; |
| 4145 | } |
| 4146 | |
| 4147 | /* Calls from 16-bit code to 32-bit code and vice versa require the |
| 4148 | special jalx instruction. */ |
| 4149 | *require_jalxp = (!info->relocatable |
| 4150 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
| 4151 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); |
| 4152 | |
| 4153 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, |
| 4154 | local_sections, TRUE); |
| 4155 | |
| 4156 | /* If we haven't already determined the GOT offset, or the GP value, |
| 4157 | and we're going to need it, get it now. */ |
| 4158 | switch (r_type) |
| 4159 | { |
| 4160 | case R_MIPS_GOT_PAGE: |
| 4161 | case R_MIPS_GOT_OFST: |
| 4162 | /* We need to decay to GOT_DISP/addend if the symbol doesn't |
| 4163 | bind locally. */ |
| 4164 | local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1); |
| 4165 | if (local_p || r_type == R_MIPS_GOT_OFST) |
| 4166 | break; |
| 4167 | /* Fall through. */ |
| 4168 | |
| 4169 | case R_MIPS_CALL16: |
| 4170 | case R_MIPS_GOT16: |
| 4171 | case R_MIPS_GOT_DISP: |
| 4172 | case R_MIPS_GOT_HI16: |
| 4173 | case R_MIPS_CALL_HI16: |
| 4174 | case R_MIPS_GOT_LO16: |
| 4175 | case R_MIPS_CALL_LO16: |
| 4176 | case R_MIPS_TLS_GD: |
| 4177 | case R_MIPS_TLS_GOTTPREL: |
| 4178 | case R_MIPS_TLS_LDM: |
| 4179 | /* Find the index into the GOT where this value is located. */ |
| 4180 | if (r_type == R_MIPS_TLS_LDM) |
| 4181 | { |
| 4182 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
| 4183 | sec, 0, 0, NULL, r_type); |
| 4184 | if (g == MINUS_ONE) |
| 4185 | return bfd_reloc_outofrange; |
| 4186 | } |
| 4187 | else if (!local_p) |
| 4188 | { |
| 4189 | /* On VxWorks, CALL relocations should refer to the .got.plt |
| 4190 | entry, which is initialized to point at the PLT stub. */ |
| 4191 | if (htab->is_vxworks |
| 4192 | && (r_type == R_MIPS_CALL_HI16 |
| 4193 | || r_type == R_MIPS_CALL_LO16 |
| 4194 | || r_type == R_MIPS_CALL16)) |
| 4195 | { |
| 4196 | BFD_ASSERT (addend == 0); |
| 4197 | BFD_ASSERT (h->root.needs_plt); |
| 4198 | g = mips_elf_gotplt_index (info, &h->root); |
| 4199 | } |
| 4200 | else |
| 4201 | { |
| 4202 | /* GOT_PAGE may take a non-zero addend, that is ignored in a |
| 4203 | GOT_PAGE relocation that decays to GOT_DISP because the |
| 4204 | symbol turns out to be global. The addend is then added |
| 4205 | as GOT_OFST. */ |
| 4206 | BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); |
| 4207 | g = mips_elf_global_got_index (dynobj, input_bfd, |
| 4208 | &h->root, r_type, info); |
| 4209 | if (h->tls_type == GOT_NORMAL |
| 4210 | && (! elf_hash_table(info)->dynamic_sections_created |
| 4211 | || (info->shared |
| 4212 | && (info->symbolic || h->root.forced_local) |
| 4213 | && h->root.def_regular))) |
| 4214 | { |
| 4215 | /* This is a static link or a -Bsymbolic link. The |
| 4216 | symbol is defined locally, or was forced to be local. |
| 4217 | We must initialize this entry in the GOT. */ |
| 4218 | asection *sgot = mips_elf_got_section (dynobj, FALSE); |
| 4219 | MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g); |
| 4220 | } |
| 4221 | } |
| 4222 | } |
| 4223 | else if (!htab->is_vxworks |
| 4224 | && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16))) |
| 4225 | /* The calculation below does not involve "g". */ |
| 4226 | break; |
| 4227 | else |
| 4228 | { |
| 4229 | g = mips_elf_local_got_index (abfd, input_bfd, info, sec, |
| 4230 | symbol + addend, r_symndx, h, r_type); |
| 4231 | if (g == MINUS_ONE) |
| 4232 | return bfd_reloc_outofrange; |
| 4233 | } |
| 4234 | |
| 4235 | /* Convert GOT indices to actual offsets. */ |
| 4236 | g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g); |
| 4237 | break; |
| 4238 | |
| 4239 | case R_MIPS_HI16: |
| 4240 | case R_MIPS_LO16: |
| 4241 | case R_MIPS_GPREL16: |
| 4242 | case R_MIPS_GPREL32: |
| 4243 | case R_MIPS_LITERAL: |
| 4244 | case R_MIPS16_HI16: |
| 4245 | case R_MIPS16_LO16: |
| 4246 | case R_MIPS16_GPREL: |
| 4247 | gp0 = _bfd_get_gp_value (input_bfd); |
| 4248 | gp = _bfd_get_gp_value (abfd); |
| 4249 | if (dynobj) |
| 4250 | gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL), |
| 4251 | input_bfd); |
| 4252 | break; |
| 4253 | |
| 4254 | default: |
| 4255 | break; |
| 4256 | } |
| 4257 | |
| 4258 | if (gnu_local_gp_p) |
| 4259 | symbol = gp; |
| 4260 | |
| 4261 | /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ |
| 4262 | symbols are resolved by the loader. Add them to .rela.dyn. */ |
| 4263 | if (h != NULL && is_gott_symbol (info, &h->root)) |
| 4264 | { |
| 4265 | Elf_Internal_Rela outrel; |
| 4266 | bfd_byte *loc; |
| 4267 | asection *s; |
| 4268 | |
| 4269 | s = mips_elf_rel_dyn_section (info, FALSE); |
| 4270 | loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); |
| 4271 | |
| 4272 | outrel.r_offset = (input_section->output_section->vma |
| 4273 | + input_section->output_offset |
| 4274 | + relocation->r_offset); |
| 4275 | outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); |
| 4276 | outrel.r_addend = addend; |
| 4277 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); |
| 4278 | *valuep = 0; |
| 4279 | return bfd_reloc_ok; |
| 4280 | } |
| 4281 | |
| 4282 | /* Figure out what kind of relocation is being performed. */ |
| 4283 | switch (r_type) |
| 4284 | { |
| 4285 | case R_MIPS_NONE: |
| 4286 | return bfd_reloc_continue; |
| 4287 | |
| 4288 | case R_MIPS_16: |
| 4289 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
| 4290 | overflowed_p = mips_elf_overflow_p (value, 16); |
| 4291 | break; |
| 4292 | |
| 4293 | case R_MIPS_32: |
| 4294 | case R_MIPS_REL32: |
| 4295 | case R_MIPS_64: |
| 4296 | if ((info->shared |
| 4297 | || (!htab->is_vxworks |
| 4298 | && htab->root.dynamic_sections_created |
| 4299 | && h != NULL |
| 4300 | && h->root.def_dynamic |
| 4301 | && !h->root.def_regular)) |
| 4302 | && r_symndx != 0 |
| 4303 | && (input_section->flags & SEC_ALLOC) != 0) |
| 4304 | { |
| 4305 | /* If we're creating a shared library, or this relocation is |
| 4306 | against a symbol in a shared library, then we can't know |
| 4307 | where the symbol will end up. So, we create a relocation |
| 4308 | record in the output, and leave the job up to the dynamic |
| 4309 | linker. |
| 4310 | |
| 4311 | In VxWorks executables, references to external symbols |
| 4312 | are handled using copy relocs or PLT stubs, so there's |
| 4313 | no need to add a dynamic relocation here. */ |
| 4314 | value = addend; |
| 4315 | if (!mips_elf_create_dynamic_relocation (abfd, |
| 4316 | info, |
| 4317 | relocation, |
| 4318 | h, |
| 4319 | sec, |
| 4320 | symbol, |
| 4321 | &value, |
| 4322 | input_section)) |
| 4323 | return bfd_reloc_undefined; |
| 4324 | } |
| 4325 | else |
| 4326 | { |
| 4327 | if (r_type != R_MIPS_REL32) |
| 4328 | value = symbol + addend; |
| 4329 | else |
| 4330 | value = addend; |
| 4331 | } |
| 4332 | value &= howto->dst_mask; |
| 4333 | break; |
| 4334 | |
| 4335 | case R_MIPS_PC32: |
| 4336 | value = symbol + addend - p; |
| 4337 | value &= howto->dst_mask; |
| 4338 | break; |
| 4339 | |
| 4340 | case R_MIPS16_26: |
| 4341 | /* The calculation for R_MIPS16_26 is just the same as for an |
| 4342 | R_MIPS_26. It's only the storage of the relocated field into |
| 4343 | the output file that's different. That's handled in |
| 4344 | mips_elf_perform_relocation. So, we just fall through to the |
| 4345 | R_MIPS_26 case here. */ |
| 4346 | case R_MIPS_26: |
| 4347 | if (local_p) |
| 4348 | value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2; |
| 4349 | else |
| 4350 | { |
| 4351 | value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2; |
| 4352 | if (h->root.root.type != bfd_link_hash_undefweak) |
| 4353 | overflowed_p = (value >> 26) != ((p + 4) >> 28); |
| 4354 | } |
| 4355 | value &= howto->dst_mask; |
| 4356 | break; |
| 4357 | |
| 4358 | case R_MIPS_TLS_DTPREL_HI16: |
| 4359 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) |
| 4360 | & howto->dst_mask); |
| 4361 | break; |
| 4362 | |
| 4363 | case R_MIPS_TLS_DTPREL_LO16: |
| 4364 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; |
| 4365 | break; |
| 4366 | |
| 4367 | case R_MIPS_TLS_TPREL_HI16: |
| 4368 | value = (mips_elf_high (addend + symbol - tprel_base (info)) |
| 4369 | & howto->dst_mask); |
| 4370 | break; |
| 4371 | |
| 4372 | case R_MIPS_TLS_TPREL_LO16: |
| 4373 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; |
| 4374 | break; |
| 4375 | |
| 4376 | case R_MIPS_HI16: |
| 4377 | case R_MIPS16_HI16: |
| 4378 | if (!gp_disp_p) |
| 4379 | { |
| 4380 | value = mips_elf_high (addend + symbol); |
| 4381 | value &= howto->dst_mask; |
| 4382 | } |
| 4383 | else |
| 4384 | { |
| 4385 | /* For MIPS16 ABI code we generate this sequence |
| 4386 | 0: li $v0,%hi(_gp_disp) |
| 4387 | 4: addiupc $v1,%lo(_gp_disp) |
| 4388 | 8: sll $v0,16 |
| 4389 | 12: addu $v0,$v1 |
| 4390 | 14: move $gp,$v0 |
| 4391 | So the offsets of hi and lo relocs are the same, but the |
| 4392 | $pc is four higher than $t9 would be, so reduce |
| 4393 | both reloc addends by 4. */ |
| 4394 | if (r_type == R_MIPS16_HI16) |
| 4395 | value = mips_elf_high (addend + gp - p - 4); |
| 4396 | else |
| 4397 | value = mips_elf_high (addend + gp - p); |
| 4398 | overflowed_p = mips_elf_overflow_p (value, 16); |
| 4399 | } |
| 4400 | break; |
| 4401 | |
| 4402 | case R_MIPS_LO16: |
| 4403 | case R_MIPS16_LO16: |
| 4404 | if (!gp_disp_p) |
| 4405 | value = (symbol + addend) & howto->dst_mask; |
| 4406 | else |
| 4407 | { |
| 4408 | /* See the comment for R_MIPS16_HI16 above for the reason |
| 4409 | for this conditional. */ |
| 4410 | if (r_type == R_MIPS16_LO16) |
| 4411 | value = addend + gp - p; |
| 4412 | else |
| 4413 | value = addend + gp - p + 4; |
| 4414 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
| 4415 | for overflow. But, on, say, IRIX5, relocations against |
| 4416 | _gp_disp are normally generated from the .cpload |
| 4417 | pseudo-op. It generates code that normally looks like |
| 4418 | this: |
| 4419 | |
| 4420 | lui $gp,%hi(_gp_disp) |
| 4421 | addiu $gp,$gp,%lo(_gp_disp) |
| 4422 | addu $gp,$gp,$t9 |
| 4423 | |
| 4424 | Here $t9 holds the address of the function being called, |
| 4425 | as required by the MIPS ELF ABI. The R_MIPS_LO16 |
| 4426 | relocation can easily overflow in this situation, but the |
| 4427 | R_MIPS_HI16 relocation will handle the overflow. |
| 4428 | Therefore, we consider this a bug in the MIPS ABI, and do |
| 4429 | not check for overflow here. */ |
| 4430 | } |
| 4431 | break; |
| 4432 | |
| 4433 | case R_MIPS_LITERAL: |
| 4434 | /* Because we don't merge literal sections, we can handle this |
| 4435 | just like R_MIPS_GPREL16. In the long run, we should merge |
| 4436 | shared literals, and then we will need to additional work |
| 4437 | here. */ |
| 4438 | |
| 4439 | /* Fall through. */ |
| 4440 | |
| 4441 | case R_MIPS16_GPREL: |
| 4442 | /* The R_MIPS16_GPREL performs the same calculation as |
| 4443 | R_MIPS_GPREL16, but stores the relocated bits in a different |
| 4444 | order. We don't need to do anything special here; the |
| 4445 | differences are handled in mips_elf_perform_relocation. */ |
| 4446 | case R_MIPS_GPREL16: |
| 4447 | /* Only sign-extend the addend if it was extracted from the |
| 4448 | instruction. If the addend was separate, leave it alone, |
| 4449 | otherwise we may lose significant bits. */ |
| 4450 | if (howto->partial_inplace) |
| 4451 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
| 4452 | value = symbol + addend - gp; |
| 4453 | /* If the symbol was local, any earlier relocatable links will |
| 4454 | have adjusted its addend with the gp offset, so compensate |
| 4455 | for that now. Don't do it for symbols forced local in this |
| 4456 | link, though, since they won't have had the gp offset applied |
| 4457 | to them before. */ |
| 4458 | if (was_local_p) |
| 4459 | value += gp0; |
| 4460 | overflowed_p = mips_elf_overflow_p (value, 16); |
| 4461 | break; |
| 4462 | |
| 4463 | case R_MIPS_GOT16: |
| 4464 | case R_MIPS_CALL16: |
| 4465 | /* VxWorks does not have separate local and global semantics for |
| 4466 | R_MIPS_GOT16; every relocation evaluates to "G". */ |
| 4467 | if (!htab->is_vxworks && local_p) |
| 4468 | { |
| 4469 | bfd_boolean forced; |
| 4470 | |
| 4471 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, |
| 4472 | local_sections, FALSE); |
| 4473 | value = mips_elf_got16_entry (abfd, input_bfd, info, sec, |
| 4474 | symbol + addend, forced); |
| 4475 | if (value == MINUS_ONE) |
| 4476 | return bfd_reloc_outofrange; |
| 4477 | value |
| 4478 | = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value); |
| 4479 | overflowed_p = mips_elf_overflow_p (value, 16); |
| 4480 | break; |
| 4481 | } |
| 4482 | |
| 4483 | /* Fall through. */ |
| 4484 | |
| 4485 | case R_MIPS_TLS_GD: |
| 4486 | case R_MIPS_TLS_GOTTPREL: |
| 4487 | case R_MIPS_TLS_LDM: |
| 4488 | case R_MIPS_GOT_DISP: |
| 4489 | got_disp: |
| 4490 | value = g; |
| 4491 | overflowed_p = mips_elf_overflow_p (value, 16); |
| 4492 | break; |
| 4493 | |
| 4494 | case R_MIPS_GPREL32: |
| 4495 | value = (addend + symbol + gp0 - gp); |
| 4496 | if (!save_addend) |
| 4497 | value &= howto->dst_mask; |
| 4498 | break; |
| 4499 | |
| 4500 | case R_MIPS_PC16: |
| 4501 | case R_MIPS_GNU_REL16_S2: |
| 4502 | value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; |
| 4503 | overflowed_p = mips_elf_overflow_p (value, 18); |
| 4504 | value >>= howto->rightshift; |
| 4505 | value &= howto->dst_mask; |
| 4506 | break; |
| 4507 | |
| 4508 | case R_MIPS_GOT_HI16: |
| 4509 | case R_MIPS_CALL_HI16: |
| 4510 | /* We're allowed to handle these two relocations identically. |
| 4511 | The dynamic linker is allowed to handle the CALL relocations |
| 4512 | differently by creating a lazy evaluation stub. */ |
| 4513 | value = g; |
| 4514 | value = mips_elf_high (value); |
| 4515 | value &= howto->dst_mask; |
| 4516 | break; |
| 4517 | |
| 4518 | case R_MIPS_GOT_LO16: |
| 4519 | case R_MIPS_CALL_LO16: |
| 4520 | value = g & howto->dst_mask; |
| 4521 | break; |
| 4522 | |
| 4523 | case R_MIPS_GOT_PAGE: |
| 4524 | /* GOT_PAGE relocations that reference non-local symbols decay |
| 4525 | to GOT_DISP. The corresponding GOT_OFST relocation decays to |
| 4526 | 0. */ |
| 4527 | if (! local_p) |
| 4528 | goto got_disp; |
| 4529 | value = mips_elf_got_page (abfd, input_bfd, info, sec, |
| 4530 | symbol + addend, NULL); |
| 4531 | if (value == MINUS_ONE) |
| 4532 | return bfd_reloc_outofrange; |
| 4533 | value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value); |
| 4534 | overflowed_p = mips_elf_overflow_p (value, 16); |
| 4535 | break; |
| 4536 | |
| 4537 | case R_MIPS_GOT_OFST: |
| 4538 | if (local_p) |
| 4539 | mips_elf_got_page (abfd, input_bfd, info, sec, |
| 4540 | symbol + addend, &value); |
| 4541 | else |
| 4542 | value = addend; |
| 4543 | overflowed_p = mips_elf_overflow_p (value, 16); |
| 4544 | break; |
| 4545 | |
| 4546 | case R_MIPS_SUB: |
| 4547 | value = symbol - addend; |
| 4548 | value &= howto->dst_mask; |
| 4549 | break; |
| 4550 | |
| 4551 | case R_MIPS_HIGHER: |
| 4552 | value = mips_elf_higher (addend + symbol); |
| 4553 | value &= howto->dst_mask; |
| 4554 | break; |
| 4555 | |
| 4556 | case R_MIPS_HIGHEST: |
| 4557 | value = mips_elf_highest (addend + symbol); |
| 4558 | value &= howto->dst_mask; |
| 4559 | break; |
| 4560 | |
| 4561 | case R_MIPS_SCN_DISP: |
| 4562 | value = symbol + addend - sec->output_offset; |
| 4563 | value &= howto->dst_mask; |
| 4564 | break; |
| 4565 | |
| 4566 | case R_MIPS_JALR: |
| 4567 | /* This relocation is only a hint. In some cases, we optimize |
| 4568 | it into a bal instruction. But we don't try to optimize |
| 4569 | branches to the PLT; that will wind up wasting time. */ |
| 4570 | if (h != NULL && h->root.plt.offset != (bfd_vma) -1) |
| 4571 | return bfd_reloc_continue; |
| 4572 | value = symbol + addend; |
| 4573 | break; |
| 4574 | |
| 4575 | case R_MIPS_PJUMP: |
| 4576 | case R_MIPS_GNU_VTINHERIT: |
| 4577 | case R_MIPS_GNU_VTENTRY: |
| 4578 | /* We don't do anything with these at present. */ |
| 4579 | return bfd_reloc_continue; |
| 4580 | |
| 4581 | default: |
| 4582 | /* An unrecognized relocation type. */ |
| 4583 | return bfd_reloc_notsupported; |
| 4584 | } |
| 4585 | |
| 4586 | /* Store the VALUE for our caller. */ |
| 4587 | *valuep = value; |
| 4588 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; |
| 4589 | } |
| 4590 | |
| 4591 | /* Obtain the field relocated by RELOCATION. */ |
| 4592 | |
| 4593 | static bfd_vma |
| 4594 | mips_elf_obtain_contents (reloc_howto_type *howto, |
| 4595 | const Elf_Internal_Rela *relocation, |
| 4596 | bfd *input_bfd, bfd_byte *contents) |
| 4597 | { |
| 4598 | bfd_vma x; |
| 4599 | bfd_byte *location = contents + relocation->r_offset; |
| 4600 | |
| 4601 | /* Obtain the bytes. */ |
| 4602 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); |
| 4603 | |
| 4604 | return x; |
| 4605 | } |
| 4606 | |
| 4607 | /* It has been determined that the result of the RELOCATION is the |
| 4608 | VALUE. Use HOWTO to place VALUE into the output file at the |
| 4609 | appropriate position. The SECTION is the section to which the |
| 4610 | relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
| 4611 | for the relocation must be either JAL or JALX, and it is |
| 4612 | unconditionally converted to JALX. |
| 4613 | |
| 4614 | Returns FALSE if anything goes wrong. */ |
| 4615 | |
| 4616 | static bfd_boolean |
| 4617 | mips_elf_perform_relocation (struct bfd_link_info *info, |
| 4618 | reloc_howto_type *howto, |
| 4619 | const Elf_Internal_Rela *relocation, |
| 4620 | bfd_vma value, bfd *input_bfd, |
| 4621 | asection *input_section, bfd_byte *contents, |
| 4622 | bfd_boolean require_jalx) |
| 4623 | { |
| 4624 | bfd_vma x; |
| 4625 | bfd_byte *location; |
| 4626 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
| 4627 | |
| 4628 | /* Figure out where the relocation is occurring. */ |
| 4629 | location = contents + relocation->r_offset; |
| 4630 | |
| 4631 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); |
| 4632 | |
| 4633 | /* Obtain the current value. */ |
| 4634 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); |
| 4635 | |
| 4636 | /* Clear the field we are setting. */ |
| 4637 | x &= ~howto->dst_mask; |
| 4638 | |
| 4639 | /* Set the field. */ |
| 4640 | x |= (value & howto->dst_mask); |
| 4641 | |
| 4642 | /* If required, turn JAL into JALX. */ |
| 4643 | if (require_jalx) |
| 4644 | { |
| 4645 | bfd_boolean ok; |
| 4646 | bfd_vma opcode = x >> 26; |
| 4647 | bfd_vma jalx_opcode; |
| 4648 | |
| 4649 | /* Check to see if the opcode is already JAL or JALX. */ |
| 4650 | if (r_type == R_MIPS16_26) |
| 4651 | { |
| 4652 | ok = ((opcode == 0x6) || (opcode == 0x7)); |
| 4653 | jalx_opcode = 0x7; |
| 4654 | } |
| 4655 | else |
| 4656 | { |
| 4657 | ok = ((opcode == 0x3) || (opcode == 0x1d)); |
| 4658 | jalx_opcode = 0x1d; |
| 4659 | } |
| 4660 | |
| 4661 | /* If the opcode is not JAL or JALX, there's a problem. */ |
| 4662 | if (!ok) |
| 4663 | { |
| 4664 | (*_bfd_error_handler) |
| 4665 | (_("%B: %A+0x%lx: jump to stub routine which is not jal"), |
| 4666 | input_bfd, |
| 4667 | input_section, |
| 4668 | (unsigned long) relocation->r_offset); |
| 4669 | bfd_set_error (bfd_error_bad_value); |
| 4670 | return FALSE; |
| 4671 | } |
| 4672 | |
| 4673 | /* Make this the JALX opcode. */ |
| 4674 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); |
| 4675 | } |
| 4676 | |
| 4677 | /* On the RM9000, bal is faster than jal, because bal uses branch |
| 4678 | prediction hardware. If we are linking for the RM9000, and we |
| 4679 | see jal, and bal fits, use it instead. Note that this |
| 4680 | transformation should be safe for all architectures. */ |
| 4681 | if (bfd_get_mach (input_bfd) == bfd_mach_mips9000 |
| 4682 | && !info->relocatable |
| 4683 | && !require_jalx |
| 4684 | && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */ |
| 4685 | || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */ |
| 4686 | { |
| 4687 | bfd_vma addr; |
| 4688 | bfd_vma dest; |
| 4689 | bfd_signed_vma off; |
| 4690 | |
| 4691 | addr = (input_section->output_section->vma |
| 4692 | + input_section->output_offset |
| 4693 | + relocation->r_offset |
| 4694 | + 4); |
| 4695 | if (r_type == R_MIPS_26) |
| 4696 | dest = (value << 2) | ((addr >> 28) << 28); |
| 4697 | else |
| 4698 | dest = value; |
| 4699 | off = dest - addr; |
| 4700 | if (off <= 0x1ffff && off >= -0x20000) |
| 4701 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ |
| 4702 | } |
| 4703 | |
| 4704 | /* Put the value into the output. */ |
| 4705 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); |
| 4706 | |
| 4707 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable, |
| 4708 | location); |
| 4709 | |
| 4710 | return TRUE; |
| 4711 | } |
| 4712 | |
| 4713 | /* Returns TRUE if SECTION is a MIPS16 stub section. */ |
| 4714 | |
| 4715 | static bfd_boolean |
| 4716 | mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section) |
| 4717 | { |
| 4718 | const char *name = bfd_get_section_name (abfd, section); |
| 4719 | |
| 4720 | return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name); |
| 4721 | } |
| 4722 | \f |
| 4723 | /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ |
| 4724 | |
| 4725 | static void |
| 4726 | mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, |
| 4727 | unsigned int n) |
| 4728 | { |
| 4729 | asection *s; |
| 4730 | struct mips_elf_link_hash_table *htab; |
| 4731 | |
| 4732 | htab = mips_elf_hash_table (info); |
| 4733 | s = mips_elf_rel_dyn_section (info, FALSE); |
| 4734 | BFD_ASSERT (s != NULL); |
| 4735 | |
| 4736 | if (htab->is_vxworks) |
| 4737 | s->size += n * MIPS_ELF_RELA_SIZE (abfd); |
| 4738 | else |
| 4739 | { |
| 4740 | if (s->size == 0) |
| 4741 | { |
| 4742 | /* Make room for a null element. */ |
| 4743 | s->size += MIPS_ELF_REL_SIZE (abfd); |
| 4744 | ++s->reloc_count; |
| 4745 | } |
| 4746 | s->size += n * MIPS_ELF_REL_SIZE (abfd); |
| 4747 | } |
| 4748 | } |
| 4749 | |
| 4750 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL |
| 4751 | is the original relocation, which is now being transformed into a |
| 4752 | dynamic relocation. The ADDENDP is adjusted if necessary; the |
| 4753 | caller should store the result in place of the original addend. */ |
| 4754 | |
| 4755 | static bfd_boolean |
| 4756 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
| 4757 | struct bfd_link_info *info, |
| 4758 | const Elf_Internal_Rela *rel, |
| 4759 | struct mips_elf_link_hash_entry *h, |
| 4760 | asection *sec, bfd_vma symbol, |
| 4761 | bfd_vma *addendp, asection *input_section) |
| 4762 | { |
| 4763 | Elf_Internal_Rela outrel[3]; |
| 4764 | asection *sreloc; |
| 4765 | bfd *dynobj; |
| 4766 | int r_type; |
| 4767 | long indx; |
| 4768 | bfd_boolean defined_p; |
| 4769 | struct mips_elf_link_hash_table *htab; |
| 4770 | |
| 4771 | htab = mips_elf_hash_table (info); |
| 4772 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
| 4773 | dynobj = elf_hash_table (info)->dynobj; |
| 4774 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
| 4775 | BFD_ASSERT (sreloc != NULL); |
| 4776 | BFD_ASSERT (sreloc->contents != NULL); |
| 4777 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) |
| 4778 | < sreloc->size); |
| 4779 | |
| 4780 | outrel[0].r_offset = |
| 4781 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); |
| 4782 | outrel[1].r_offset = |
| 4783 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); |
| 4784 | outrel[2].r_offset = |
| 4785 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); |
| 4786 | |
| 4787 | if (outrel[0].r_offset == MINUS_ONE) |
| 4788 | /* The relocation field has been deleted. */ |
| 4789 | return TRUE; |
| 4790 | |
| 4791 | if (outrel[0].r_offset == MINUS_TWO) |
| 4792 | { |
| 4793 | /* The relocation field has been converted into a relative value of |
| 4794 | some sort. Functions like _bfd_elf_write_section_eh_frame expect |
| 4795 | the field to be fully relocated, so add in the symbol's value. */ |
| 4796 | *addendp += symbol; |
| 4797 | return TRUE; |
| 4798 | } |
| 4799 | |
| 4800 | /* We must now calculate the dynamic symbol table index to use |
| 4801 | in the relocation. */ |
| 4802 | if (h != NULL |
| 4803 | && (!h->root.def_regular |
| 4804 | || (info->shared && !info->symbolic && !h->root.forced_local))) |
| 4805 | { |
| 4806 | indx = h->root.dynindx; |
| 4807 | if (SGI_COMPAT (output_bfd)) |
| 4808 | defined_p = h->root.def_regular; |
| 4809 | else |
| 4810 | /* ??? glibc's ld.so just adds the final GOT entry to the |
| 4811 | relocation field. It therefore treats relocs against |
| 4812 | defined symbols in the same way as relocs against |
| 4813 | undefined symbols. */ |
| 4814 | defined_p = FALSE; |
| 4815 | } |
| 4816 | else |
| 4817 | { |
| 4818 | if (sec != NULL && bfd_is_abs_section (sec)) |
| 4819 | indx = 0; |
| 4820 | else if (sec == NULL || sec->owner == NULL) |
| 4821 | { |
| 4822 | bfd_set_error (bfd_error_bad_value); |
| 4823 | return FALSE; |
| 4824 | } |
| 4825 | else |
| 4826 | { |
| 4827 | indx = elf_section_data (sec->output_section)->dynindx; |
| 4828 | if (indx == 0) |
| 4829 | { |
| 4830 | asection *osec = htab->root.text_index_section; |
| 4831 | indx = elf_section_data (osec)->dynindx; |
| 4832 | } |
| 4833 | if (indx == 0) |
| 4834 | abort (); |
| 4835 | } |
| 4836 | |
| 4837 | /* Instead of generating a relocation using the section |
| 4838 | symbol, we may as well make it a fully relative |
| 4839 | relocation. We want to avoid generating relocations to |
| 4840 | local symbols because we used to generate them |
| 4841 | incorrectly, without adding the original symbol value, |
| 4842 | which is mandated by the ABI for section symbols. In |
| 4843 | order to give dynamic loaders and applications time to |
| 4844 | phase out the incorrect use, we refrain from emitting |
| 4845 | section-relative relocations. It's not like they're |
| 4846 | useful, after all. This should be a bit more efficient |
| 4847 | as well. */ |
| 4848 | /* ??? Although this behavior is compatible with glibc's ld.so, |
| 4849 | the ABI says that relocations against STN_UNDEF should have |
| 4850 | a symbol value of 0. Irix rld honors this, so relocations |
| 4851 | against STN_UNDEF have no effect. */ |
| 4852 | if (!SGI_COMPAT (output_bfd)) |
| 4853 | indx = 0; |
| 4854 | defined_p = TRUE; |
| 4855 | } |
| 4856 | |
| 4857 | /* If the relocation was previously an absolute relocation and |
| 4858 | this symbol will not be referred to by the relocation, we must |
| 4859 | adjust it by the value we give it in the dynamic symbol table. |
| 4860 | Otherwise leave the job up to the dynamic linker. */ |
| 4861 | if (defined_p && r_type != R_MIPS_REL32) |
| 4862 | *addendp += symbol; |
| 4863 | |
| 4864 | if (htab->is_vxworks) |
| 4865 | /* VxWorks uses non-relative relocations for this. */ |
| 4866 | outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); |
| 4867 | else |
| 4868 | /* The relocation is always an REL32 relocation because we don't |
| 4869 | know where the shared library will wind up at load-time. */ |
| 4870 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, |
| 4871 | R_MIPS_REL32); |
| 4872 | |
| 4873 | /* For strict adherence to the ABI specification, we should |
| 4874 | generate a R_MIPS_64 relocation record by itself before the |
| 4875 | _REL32/_64 record as well, such that the addend is read in as |
| 4876 | a 64-bit value (REL32 is a 32-bit relocation, after all). |
| 4877 | However, since none of the existing ELF64 MIPS dynamic |
| 4878 | loaders seems to care, we don't waste space with these |
| 4879 | artificial relocations. If this turns out to not be true, |
| 4880 | mips_elf_allocate_dynamic_relocation() should be tweaked so |
| 4881 | as to make room for a pair of dynamic relocations per |
| 4882 | invocation if ABI_64_P, and here we should generate an |
| 4883 | additional relocation record with R_MIPS_64 by itself for a |
| 4884 | NULL symbol before this relocation record. */ |
| 4885 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, |
| 4886 | ABI_64_P (output_bfd) |
| 4887 | ? R_MIPS_64 |
| 4888 | : R_MIPS_NONE); |
| 4889 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); |
| 4890 | |
| 4891 | /* Adjust the output offset of the relocation to reference the |
| 4892 | correct location in the output file. */ |
| 4893 | outrel[0].r_offset += (input_section->output_section->vma |
| 4894 | + input_section->output_offset); |
| 4895 | outrel[1].r_offset += (input_section->output_section->vma |
| 4896 | + input_section->output_offset); |
| 4897 | outrel[2].r_offset += (input_section->output_section->vma |
| 4898 | + input_section->output_offset); |
| 4899 | |
| 4900 | /* Put the relocation back out. We have to use the special |
| 4901 | relocation outputter in the 64-bit case since the 64-bit |
| 4902 | relocation format is non-standard. */ |
| 4903 | if (ABI_64_P (output_bfd)) |
| 4904 | { |
| 4905 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) |
| 4906 | (output_bfd, &outrel[0], |
| 4907 | (sreloc->contents |
| 4908 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); |
| 4909 | } |
| 4910 | else if (htab->is_vxworks) |
| 4911 | { |
| 4912 | /* VxWorks uses RELA rather than REL dynamic relocations. */ |
| 4913 | outrel[0].r_addend = *addendp; |
| 4914 | bfd_elf32_swap_reloca_out |
| 4915 | (output_bfd, &outrel[0], |
| 4916 | (sreloc->contents |
| 4917 | + sreloc->reloc_count * sizeof (Elf32_External_Rela))); |
| 4918 | } |
| 4919 | else |
| 4920 | bfd_elf32_swap_reloc_out |
| 4921 | (output_bfd, &outrel[0], |
| 4922 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); |
| 4923 | |
| 4924 | /* We've now added another relocation. */ |
| 4925 | ++sreloc->reloc_count; |
| 4926 | |
| 4927 | /* Make sure the output section is writable. The dynamic linker |
| 4928 | will be writing to it. */ |
| 4929 | elf_section_data (input_section->output_section)->this_hdr.sh_flags |
| 4930 | |= SHF_WRITE; |
| 4931 | |
| 4932 | /* On IRIX5, make an entry of compact relocation info. */ |
| 4933 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
| 4934 | { |
| 4935 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); |
| 4936 | bfd_byte *cr; |
| 4937 | |
| 4938 | if (scpt) |
| 4939 | { |
| 4940 | Elf32_crinfo cptrel; |
| 4941 | |
| 4942 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); |
| 4943 | cptrel.vaddr = (rel->r_offset |
| 4944 | + input_section->output_section->vma |
| 4945 | + input_section->output_offset); |
| 4946 | if (r_type == R_MIPS_REL32) |
| 4947 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); |
| 4948 | else |
| 4949 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); |
| 4950 | mips_elf_set_cr_dist2to (cptrel, 0); |
| 4951 | cptrel.konst = *addendp; |
| 4952 | |
| 4953 | cr = (scpt->contents |
| 4954 | + sizeof (Elf32_External_compact_rel)); |
| 4955 | mips_elf_set_cr_relvaddr (cptrel, 0); |
| 4956 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
| 4957 | ((Elf32_External_crinfo *) cr |
| 4958 | + scpt->reloc_count)); |
| 4959 | ++scpt->reloc_count; |
| 4960 | } |
| 4961 | } |
| 4962 | |
| 4963 | /* If we've written this relocation for a readonly section, |
| 4964 | we need to set DF_TEXTREL again, so that we do not delete the |
| 4965 | DT_TEXTREL tag. */ |
| 4966 | if (MIPS_ELF_READONLY_SECTION (input_section)) |
| 4967 | info->flags |= DF_TEXTREL; |
| 4968 | |
| 4969 | return TRUE; |
| 4970 | } |
| 4971 | \f |
| 4972 | /* Return the MACH for a MIPS e_flags value. */ |
| 4973 | |
| 4974 | unsigned long |
| 4975 | _bfd_elf_mips_mach (flagword flags) |
| 4976 | { |
| 4977 | switch (flags & EF_MIPS_MACH) |
| 4978 | { |
| 4979 | case E_MIPS_MACH_3900: |
| 4980 | return bfd_mach_mips3900; |
| 4981 | |
| 4982 | case E_MIPS_MACH_4010: |
| 4983 | return bfd_mach_mips4010; |
| 4984 | |
| 4985 | case E_MIPS_MACH_4100: |
| 4986 | return bfd_mach_mips4100; |
| 4987 | |
| 4988 | case E_MIPS_MACH_4111: |
| 4989 | return bfd_mach_mips4111; |
| 4990 | |
| 4991 | case E_MIPS_MACH_4120: |
| 4992 | return bfd_mach_mips4120; |
| 4993 | |
| 4994 | case E_MIPS_MACH_4650: |
| 4995 | return bfd_mach_mips4650; |
| 4996 | |
| 4997 | case E_MIPS_MACH_5400: |
| 4998 | return bfd_mach_mips5400; |
| 4999 | |
| 5000 | case E_MIPS_MACH_5500: |
| 5001 | return bfd_mach_mips5500; |
| 5002 | |
| 5003 | case E_MIPS_MACH_9000: |
| 5004 | return bfd_mach_mips9000; |
| 5005 | |
| 5006 | case E_MIPS_MACH_SB1: |
| 5007 | return bfd_mach_mips_sb1; |
| 5008 | |
| 5009 | default: |
| 5010 | switch (flags & EF_MIPS_ARCH) |
| 5011 | { |
| 5012 | default: |
| 5013 | case E_MIPS_ARCH_1: |
| 5014 | return bfd_mach_mips3000; |
| 5015 | |
| 5016 | case E_MIPS_ARCH_2: |
| 5017 | return bfd_mach_mips6000; |
| 5018 | |
| 5019 | case E_MIPS_ARCH_3: |
| 5020 | return bfd_mach_mips4000; |
| 5021 | |
| 5022 | case E_MIPS_ARCH_4: |
| 5023 | return bfd_mach_mips8000; |
| 5024 | |
| 5025 | case E_MIPS_ARCH_5: |
| 5026 | return bfd_mach_mips5; |
| 5027 | |
| 5028 | case E_MIPS_ARCH_32: |
| 5029 | return bfd_mach_mipsisa32; |
| 5030 | |
| 5031 | case E_MIPS_ARCH_64: |
| 5032 | return bfd_mach_mipsisa64; |
| 5033 | |
| 5034 | case E_MIPS_ARCH_32R2: |
| 5035 | return bfd_mach_mipsisa32r2; |
| 5036 | |
| 5037 | case E_MIPS_ARCH_64R2: |
| 5038 | return bfd_mach_mipsisa64r2; |
| 5039 | } |
| 5040 | } |
| 5041 | |
| 5042 | return 0; |
| 5043 | } |
| 5044 | |
| 5045 | /* Return printable name for ABI. */ |
| 5046 | |
| 5047 | static INLINE char * |
| 5048 | elf_mips_abi_name (bfd *abfd) |
| 5049 | { |
| 5050 | flagword flags; |
| 5051 | |
| 5052 | flags = elf_elfheader (abfd)->e_flags; |
| 5053 | switch (flags & EF_MIPS_ABI) |
| 5054 | { |
| 5055 | case 0: |
| 5056 | if (ABI_N32_P (abfd)) |
| 5057 | return "N32"; |
| 5058 | else if (ABI_64_P (abfd)) |
| 5059 | return "64"; |
| 5060 | else |
| 5061 | return "none"; |
| 5062 | case E_MIPS_ABI_O32: |
| 5063 | return "O32"; |
| 5064 | case E_MIPS_ABI_O64: |
| 5065 | return "O64"; |
| 5066 | case E_MIPS_ABI_EABI32: |
| 5067 | return "EABI32"; |
| 5068 | case E_MIPS_ABI_EABI64: |
| 5069 | return "EABI64"; |
| 5070 | default: |
| 5071 | return "unknown abi"; |
| 5072 | } |
| 5073 | } |
| 5074 | \f |
| 5075 | /* MIPS ELF uses two common sections. One is the usual one, and the |
| 5076 | other is for small objects. All the small objects are kept |
| 5077 | together, and then referenced via the gp pointer, which yields |
| 5078 | faster assembler code. This is what we use for the small common |
| 5079 | section. This approach is copied from ecoff.c. */ |
| 5080 | static asection mips_elf_scom_section; |
| 5081 | static asymbol mips_elf_scom_symbol; |
| 5082 | static asymbol *mips_elf_scom_symbol_ptr; |
| 5083 | |
| 5084 | /* MIPS ELF also uses an acommon section, which represents an |
| 5085 | allocated common symbol which may be overridden by a |
| 5086 | definition in a shared library. */ |
| 5087 | static asection mips_elf_acom_section; |
| 5088 | static asymbol mips_elf_acom_symbol; |
| 5089 | static asymbol *mips_elf_acom_symbol_ptr; |
| 5090 | |
| 5091 | /* Handle the special MIPS section numbers that a symbol may use. |
| 5092 | This is used for both the 32-bit and the 64-bit ABI. */ |
| 5093 | |
| 5094 | void |
| 5095 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
| 5096 | { |
| 5097 | elf_symbol_type *elfsym; |
| 5098 | |
| 5099 | elfsym = (elf_symbol_type *) asym; |
| 5100 | switch (elfsym->internal_elf_sym.st_shndx) |
| 5101 | { |
| 5102 | case SHN_MIPS_ACOMMON: |
| 5103 | /* This section is used in a dynamically linked executable file. |
| 5104 | It is an allocated common section. The dynamic linker can |
| 5105 | either resolve these symbols to something in a shared |
| 5106 | library, or it can just leave them here. For our purposes, |
| 5107 | we can consider these symbols to be in a new section. */ |
| 5108 | if (mips_elf_acom_section.name == NULL) |
| 5109 | { |
| 5110 | /* Initialize the acommon section. */ |
| 5111 | mips_elf_acom_section.name = ".acommon"; |
| 5112 | mips_elf_acom_section.flags = SEC_ALLOC; |
| 5113 | mips_elf_acom_section.output_section = &mips_elf_acom_section; |
| 5114 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; |
| 5115 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; |
| 5116 | mips_elf_acom_symbol.name = ".acommon"; |
| 5117 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; |
| 5118 | mips_elf_acom_symbol.section = &mips_elf_acom_section; |
| 5119 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; |
| 5120 | } |
| 5121 | asym->section = &mips_elf_acom_section; |
| 5122 | break; |
| 5123 | |
| 5124 | case SHN_COMMON: |
| 5125 | /* Common symbols less than the GP size are automatically |
| 5126 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ |
| 5127 | if (asym->value > elf_gp_size (abfd) |
| 5128 | || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS |
| 5129 | || IRIX_COMPAT (abfd) == ict_irix6) |
| 5130 | break; |
| 5131 | /* Fall through. */ |
| 5132 | case SHN_MIPS_SCOMMON: |
| 5133 | if (mips_elf_scom_section.name == NULL) |
| 5134 | { |
| 5135 | /* Initialize the small common section. */ |
| 5136 | mips_elf_scom_section.name = ".scommon"; |
| 5137 | mips_elf_scom_section.flags = SEC_IS_COMMON; |
| 5138 | mips_elf_scom_section.output_section = &mips_elf_scom_section; |
| 5139 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; |
| 5140 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; |
| 5141 | mips_elf_scom_symbol.name = ".scommon"; |
| 5142 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; |
| 5143 | mips_elf_scom_symbol.section = &mips_elf_scom_section; |
| 5144 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; |
| 5145 | } |
| 5146 | asym->section = &mips_elf_scom_section; |
| 5147 | asym->value = elfsym->internal_elf_sym.st_size; |
| 5148 | break; |
| 5149 | |
| 5150 | case SHN_MIPS_SUNDEFINED: |
| 5151 | asym->section = bfd_und_section_ptr; |
| 5152 | break; |
| 5153 | |
| 5154 | case SHN_MIPS_TEXT: |
| 5155 | { |
| 5156 | asection *section = bfd_get_section_by_name (abfd, ".text"); |
| 5157 | |
| 5158 | BFD_ASSERT (SGI_COMPAT (abfd)); |
| 5159 | if (section != NULL) |
| 5160 | { |
| 5161 | asym->section = section; |
| 5162 | /* MIPS_TEXT is a bit special, the address is not an offset |
| 5163 | to the base of the .text section. So substract the section |
| 5164 | base address to make it an offset. */ |
| 5165 | asym->value -= section->vma; |
| 5166 | } |
| 5167 | } |
| 5168 | break; |
| 5169 | |
| 5170 | case SHN_MIPS_DATA: |
| 5171 | { |
| 5172 | asection *section = bfd_get_section_by_name (abfd, ".data"); |
| 5173 | |
| 5174 | BFD_ASSERT (SGI_COMPAT (abfd)); |
| 5175 | if (section != NULL) |
| 5176 | { |
| 5177 | asym->section = section; |
| 5178 | /* MIPS_DATA is a bit special, the address is not an offset |
| 5179 | to the base of the .data section. So substract the section |
| 5180 | base address to make it an offset. */ |
| 5181 | asym->value -= section->vma; |
| 5182 | } |
| 5183 | } |
| 5184 | break; |
| 5185 | } |
| 5186 | } |
| 5187 | \f |
| 5188 | /* Implement elf_backend_eh_frame_address_size. This differs from |
| 5189 | the default in the way it handles EABI64. |
| 5190 | |
| 5191 | EABI64 was originally specified as an LP64 ABI, and that is what |
| 5192 | -mabi=eabi normally gives on a 64-bit target. However, gcc has |
| 5193 | historically accepted the combination of -mabi=eabi and -mlong32, |
| 5194 | and this ILP32 variation has become semi-official over time. |
| 5195 | Both forms use elf32 and have pointer-sized FDE addresses. |
| 5196 | |
| 5197 | If an EABI object was generated by GCC 4.0 or above, it will have |
| 5198 | an empty .gcc_compiled_longXX section, where XX is the size of longs |
| 5199 | in bits. Unfortunately, ILP32 objects generated by earlier compilers |
| 5200 | have no special marking to distinguish them from LP64 objects. |
| 5201 | |
| 5202 | We don't want users of the official LP64 ABI to be punished for the |
| 5203 | existence of the ILP32 variant, but at the same time, we don't want |
| 5204 | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. |
| 5205 | We therefore take the following approach: |
| 5206 | |
| 5207 | - If ABFD contains a .gcc_compiled_longXX section, use it to |
| 5208 | determine the pointer size. |
| 5209 | |
| 5210 | - Otherwise check the type of the first relocation. Assume that |
| 5211 | the LP64 ABI is being used if the relocation is of type R_MIPS_64. |
| 5212 | |
| 5213 | - Otherwise punt. |
| 5214 | |
| 5215 | The second check is enough to detect LP64 objects generated by pre-4.0 |
| 5216 | compilers because, in the kind of output generated by those compilers, |
| 5217 | the first relocation will be associated with either a CIE personality |
| 5218 | routine or an FDE start address. Furthermore, the compilers never |
| 5219 | used a special (non-pointer) encoding for this ABI. |
| 5220 | |
| 5221 | Checking the relocation type should also be safe because there is no |
| 5222 | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never |
| 5223 | did so. */ |
| 5224 | |
| 5225 | unsigned int |
| 5226 | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) |
| 5227 | { |
| 5228 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) |
| 5229 | return 8; |
| 5230 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) |
| 5231 | { |
| 5232 | bfd_boolean long32_p, long64_p; |
| 5233 | |
| 5234 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; |
| 5235 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; |
| 5236 | if (long32_p && long64_p) |
| 5237 | return 0; |
| 5238 | if (long32_p) |
| 5239 | return 4; |
| 5240 | if (long64_p) |
| 5241 | return 8; |
| 5242 | |
| 5243 | if (sec->reloc_count > 0 |
| 5244 | && elf_section_data (sec)->relocs != NULL |
| 5245 | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) |
| 5246 | == R_MIPS_64)) |
| 5247 | return 8; |
| 5248 | |
| 5249 | return 0; |
| 5250 | } |
| 5251 | return 4; |
| 5252 | } |
| 5253 | \f |
| 5254 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
| 5255 | relocations against two unnamed section symbols to resolve to the |
| 5256 | same address. For example, if we have code like: |
| 5257 | |
| 5258 | lw $4,%got_disp(.data)($gp) |
| 5259 | lw $25,%got_disp(.text)($gp) |
| 5260 | jalr $25 |
| 5261 | |
| 5262 | then the linker will resolve both relocations to .data and the program |
| 5263 | will jump there rather than to .text. |
| 5264 | |
| 5265 | We can work around this problem by giving names to local section symbols. |
| 5266 | This is also what the MIPSpro tools do. */ |
| 5267 | |
| 5268 | bfd_boolean |
| 5269 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) |
| 5270 | { |
| 5271 | return SGI_COMPAT (abfd); |
| 5272 | } |
| 5273 | \f |
| 5274 | /* Work over a section just before writing it out. This routine is |
| 5275 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize |
| 5276 | sections that need the SHF_MIPS_GPREL flag by name; there has to be |
| 5277 | a better way. */ |
| 5278 | |
| 5279 | bfd_boolean |
| 5280 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
| 5281 | { |
| 5282 | if (hdr->sh_type == SHT_MIPS_REGINFO |
| 5283 | && hdr->sh_size > 0) |
| 5284 | { |
| 5285 | bfd_byte buf[4]; |
| 5286 | |
| 5287 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); |
| 5288 | BFD_ASSERT (hdr->contents == NULL); |
| 5289 | |
| 5290 | if (bfd_seek (abfd, |
| 5291 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, |
| 5292 | SEEK_SET) != 0) |
| 5293 | return FALSE; |
| 5294 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
| 5295 | if (bfd_bwrite (buf, 4, abfd) != 4) |
| 5296 | return FALSE; |
| 5297 | } |
| 5298 | |
| 5299 | if (hdr->sh_type == SHT_MIPS_OPTIONS |
| 5300 | && hdr->bfd_section != NULL |
| 5301 | && mips_elf_section_data (hdr->bfd_section) != NULL |
| 5302 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) |
| 5303 | { |
| 5304 | bfd_byte *contents, *l, *lend; |
| 5305 | |
| 5306 | /* We stored the section contents in the tdata field in the |
| 5307 | set_section_contents routine. We save the section contents |
| 5308 | so that we don't have to read them again. |
| 5309 | At this point we know that elf_gp is set, so we can look |
| 5310 | through the section contents to see if there is an |
| 5311 | ODK_REGINFO structure. */ |
| 5312 | |
| 5313 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
| 5314 | l = contents; |
| 5315 | lend = contents + hdr->sh_size; |
| 5316 | while (l + sizeof (Elf_External_Options) <= lend) |
| 5317 | { |
| 5318 | Elf_Internal_Options intopt; |
| 5319 | |
| 5320 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, |
| 5321 | &intopt); |
| 5322 | if (intopt.size < sizeof (Elf_External_Options)) |
| 5323 | { |
| 5324 | (*_bfd_error_handler) |
| 5325 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), |
| 5326 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); |
| 5327 | break; |
| 5328 | } |
| 5329 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
| 5330 | { |
| 5331 | bfd_byte buf[8]; |
| 5332 | |
| 5333 | if (bfd_seek (abfd, |
| 5334 | (hdr->sh_offset |
| 5335 | + (l - contents) |
| 5336 | + sizeof (Elf_External_Options) |
| 5337 | + (sizeof (Elf64_External_RegInfo) - 8)), |
| 5338 | SEEK_SET) != 0) |
| 5339 | return FALSE; |
| 5340 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
| 5341 | if (bfd_bwrite (buf, 8, abfd) != 8) |
| 5342 | return FALSE; |
| 5343 | } |
| 5344 | else if (intopt.kind == ODK_REGINFO) |
| 5345 | { |
| 5346 | bfd_byte buf[4]; |
| 5347 | |
| 5348 | if (bfd_seek (abfd, |
| 5349 | (hdr->sh_offset |
| 5350 | + (l - contents) |
| 5351 | + sizeof (Elf_External_Options) |
| 5352 | + (sizeof (Elf32_External_RegInfo) - 4)), |
| 5353 | SEEK_SET) != 0) |
| 5354 | return FALSE; |
| 5355 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
| 5356 | if (bfd_bwrite (buf, 4, abfd) != 4) |
| 5357 | return FALSE; |
| 5358 | } |
| 5359 | l += intopt.size; |
| 5360 | } |
| 5361 | } |
| 5362 | |
| 5363 | if (hdr->bfd_section != NULL) |
| 5364 | { |
| 5365 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); |
| 5366 | |
| 5367 | if (strcmp (name, ".sdata") == 0 |
| 5368 | || strcmp (name, ".lit8") == 0 |
| 5369 | || strcmp (name, ".lit4") == 0) |
| 5370 | { |
| 5371 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
| 5372 | hdr->sh_type = SHT_PROGBITS; |
| 5373 | } |
| 5374 | else if (strcmp (name, ".sbss") == 0) |
| 5375 | { |
| 5376 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
| 5377 | hdr->sh_type = SHT_NOBITS; |
| 5378 | } |
| 5379 | else if (strcmp (name, ".srdata") == 0) |
| 5380 | { |
| 5381 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; |
| 5382 | hdr->sh_type = SHT_PROGBITS; |
| 5383 | } |
| 5384 | else if (strcmp (name, ".compact_rel") == 0) |
| 5385 | { |
| 5386 | hdr->sh_flags = 0; |
| 5387 | hdr->sh_type = SHT_PROGBITS; |
| 5388 | } |
| 5389 | else if (strcmp (name, ".rtproc") == 0) |
| 5390 | { |
| 5391 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) |
| 5392 | { |
| 5393 | unsigned int adjust; |
| 5394 | |
| 5395 | adjust = hdr->sh_size % hdr->sh_addralign; |
| 5396 | if (adjust != 0) |
| 5397 | hdr->sh_size += hdr->sh_addralign - adjust; |
| 5398 | } |
| 5399 | } |
| 5400 | } |
| 5401 | |
| 5402 | return TRUE; |
| 5403 | } |
| 5404 | |
| 5405 | /* Handle a MIPS specific section when reading an object file. This |
| 5406 | is called when elfcode.h finds a section with an unknown type. |
| 5407 | This routine supports both the 32-bit and 64-bit ELF ABI. |
| 5408 | |
| 5409 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure |
| 5410 | how to. */ |
| 5411 | |
| 5412 | bfd_boolean |
| 5413 | _bfd_mips_elf_section_from_shdr (bfd *abfd, |
| 5414 | Elf_Internal_Shdr *hdr, |
| 5415 | const char *name, |
| 5416 | int shindex) |
| 5417 | { |
| 5418 | flagword flags = 0; |
| 5419 | |
| 5420 | /* There ought to be a place to keep ELF backend specific flags, but |
| 5421 | at the moment there isn't one. We just keep track of the |
| 5422 | sections by their name, instead. Fortunately, the ABI gives |
| 5423 | suggested names for all the MIPS specific sections, so we will |
| 5424 | probably get away with this. */ |
| 5425 | switch (hdr->sh_type) |
| 5426 | { |
| 5427 | case SHT_MIPS_LIBLIST: |
| 5428 | if (strcmp (name, ".liblist") != 0) |
| 5429 | return FALSE; |
| 5430 | break; |
| 5431 | case SHT_MIPS_MSYM: |
| 5432 | if (strcmp (name, ".msym") != 0) |
| 5433 | return FALSE; |
| 5434 | break; |
| 5435 | case SHT_MIPS_CONFLICT: |
| 5436 | if (strcmp (name, ".conflict") != 0) |
| 5437 | return FALSE; |
| 5438 | break; |
| 5439 | case SHT_MIPS_GPTAB: |
| 5440 | if (! CONST_STRNEQ (name, ".gptab.")) |
| 5441 | return FALSE; |
| 5442 | break; |
| 5443 | case SHT_MIPS_UCODE: |
| 5444 | if (strcmp (name, ".ucode") != 0) |
| 5445 | return FALSE; |
| 5446 | break; |
| 5447 | case SHT_MIPS_DEBUG: |
| 5448 | if (strcmp (name, ".mdebug") != 0) |
| 5449 | return FALSE; |
| 5450 | flags = SEC_DEBUGGING; |
| 5451 | break; |
| 5452 | case SHT_MIPS_REGINFO: |
| 5453 | if (strcmp (name, ".reginfo") != 0 |
| 5454 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) |
| 5455 | return FALSE; |
| 5456 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
| 5457 | break; |
| 5458 | case SHT_MIPS_IFACE: |
| 5459 | if (strcmp (name, ".MIPS.interfaces") != 0) |
| 5460 | return FALSE; |
| 5461 | break; |
| 5462 | case SHT_MIPS_CONTENT: |
| 5463 | if (! CONST_STRNEQ (name, ".MIPS.content")) |
| 5464 | return FALSE; |
| 5465 | break; |
| 5466 | case SHT_MIPS_OPTIONS: |
| 5467 | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
| 5468 | return FALSE; |
| 5469 | break; |
| 5470 | case SHT_MIPS_DWARF: |
| 5471 | if (! CONST_STRNEQ (name, ".debug_")) |
| 5472 | return FALSE; |
| 5473 | break; |
| 5474 | case SHT_MIPS_SYMBOL_LIB: |
| 5475 | if (strcmp (name, ".MIPS.symlib") != 0) |
| 5476 | return FALSE; |
| 5477 | break; |
| 5478 | case SHT_MIPS_EVENTS: |
| 5479 | if (! CONST_STRNEQ (name, ".MIPS.events") |
| 5480 | && ! CONST_STRNEQ (name, ".MIPS.post_rel")) |
| 5481 | return FALSE; |
| 5482 | break; |
| 5483 | default: |
| 5484 | break; |
| 5485 | } |
| 5486 | |
| 5487 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
| 5488 | return FALSE; |
| 5489 | |
| 5490 | if (flags) |
| 5491 | { |
| 5492 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, |
| 5493 | (bfd_get_section_flags (abfd, |
| 5494 | hdr->bfd_section) |
| 5495 | | flags))) |
| 5496 | return FALSE; |
| 5497 | } |
| 5498 | |
| 5499 | /* FIXME: We should record sh_info for a .gptab section. */ |
| 5500 | |
| 5501 | /* For a .reginfo section, set the gp value in the tdata information |
| 5502 | from the contents of this section. We need the gp value while |
| 5503 | processing relocs, so we just get it now. The .reginfo section |
| 5504 | is not used in the 64-bit MIPS ELF ABI. */ |
| 5505 | if (hdr->sh_type == SHT_MIPS_REGINFO) |
| 5506 | { |
| 5507 | Elf32_External_RegInfo ext; |
| 5508 | Elf32_RegInfo s; |
| 5509 | |
| 5510 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
| 5511 | &ext, 0, sizeof ext)) |
| 5512 | return FALSE; |
| 5513 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
| 5514 | elf_gp (abfd) = s.ri_gp_value; |
| 5515 | } |
| 5516 | |
| 5517 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and |
| 5518 | set the gp value based on what we find. We may see both |
| 5519 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, |
| 5520 | they should agree. */ |
| 5521 | if (hdr->sh_type == SHT_MIPS_OPTIONS) |
| 5522 | { |
| 5523 | bfd_byte *contents, *l, *lend; |
| 5524 | |
| 5525 | contents = bfd_malloc (hdr->sh_size); |
| 5526 | if (contents == NULL) |
| 5527 | return FALSE; |
| 5528 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
| 5529 | 0, hdr->sh_size)) |
| 5530 | { |
| 5531 | free (contents); |
| 5532 | return FALSE; |
| 5533 | } |
| 5534 | l = contents; |
| 5535 | lend = contents + hdr->sh_size; |
| 5536 | while (l + sizeof (Elf_External_Options) <= lend) |
| 5537 | { |
| 5538 | Elf_Internal_Options intopt; |
| 5539 | |
| 5540 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, |
| 5541 | &intopt); |
| 5542 | if (intopt.size < sizeof (Elf_External_Options)) |
| 5543 | { |
| 5544 | (*_bfd_error_handler) |
| 5545 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), |
| 5546 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); |
| 5547 | break; |
| 5548 | } |
| 5549 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
| 5550 | { |
| 5551 | Elf64_Internal_RegInfo intreg; |
| 5552 | |
| 5553 | bfd_mips_elf64_swap_reginfo_in |
| 5554 | (abfd, |
| 5555 | ((Elf64_External_RegInfo *) |
| 5556 | (l + sizeof (Elf_External_Options))), |
| 5557 | &intreg); |
| 5558 | elf_gp (abfd) = intreg.ri_gp_value; |
| 5559 | } |
| 5560 | else if (intopt.kind == ODK_REGINFO) |
| 5561 | { |
| 5562 | Elf32_RegInfo intreg; |
| 5563 | |
| 5564 | bfd_mips_elf32_swap_reginfo_in |
| 5565 | (abfd, |
| 5566 | ((Elf32_External_RegInfo *) |
| 5567 | (l + sizeof (Elf_External_Options))), |
| 5568 | &intreg); |
| 5569 | elf_gp (abfd) = intreg.ri_gp_value; |
| 5570 | } |
| 5571 | l += intopt.size; |
| 5572 | } |
| 5573 | free (contents); |
| 5574 | } |
| 5575 | |
| 5576 | return TRUE; |
| 5577 | } |
| 5578 | |
| 5579 | /* Set the correct type for a MIPS ELF section. We do this by the |
| 5580 | section name, which is a hack, but ought to work. This routine is |
| 5581 | used by both the 32-bit and the 64-bit ABI. */ |
| 5582 | |
| 5583 | bfd_boolean |
| 5584 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
| 5585 | { |
| 5586 | register const char *name; |
| 5587 | unsigned int sh_type; |
| 5588 | |
| 5589 | name = bfd_get_section_name (abfd, sec); |
| 5590 | sh_type = hdr->sh_type; |
| 5591 | |
| 5592 | if (strcmp (name, ".liblist") == 0) |
| 5593 | { |
| 5594 | hdr->sh_type = SHT_MIPS_LIBLIST; |
| 5595 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
| 5596 | /* The sh_link field is set in final_write_processing. */ |
| 5597 | } |
| 5598 | else if (strcmp (name, ".conflict") == 0) |
| 5599 | hdr->sh_type = SHT_MIPS_CONFLICT; |
| 5600 | else if (CONST_STRNEQ (name, ".gptab.")) |
| 5601 | { |
| 5602 | hdr->sh_type = SHT_MIPS_GPTAB; |
| 5603 | hdr->sh_entsize = sizeof (Elf32_External_gptab); |
| 5604 | /* The sh_info field is set in final_write_processing. */ |
| 5605 | } |
| 5606 | else if (strcmp (name, ".ucode") == 0) |
| 5607 | hdr->sh_type = SHT_MIPS_UCODE; |
| 5608 | else if (strcmp (name, ".mdebug") == 0) |
| 5609 | { |
| 5610 | hdr->sh_type = SHT_MIPS_DEBUG; |
| 5611 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
| 5612 | entsize of 0. FIXME: Does this matter? */ |
| 5613 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) |
| 5614 | hdr->sh_entsize = 0; |
| 5615 | else |
| 5616 | hdr->sh_entsize = 1; |
| 5617 | } |
| 5618 | else if (strcmp (name, ".reginfo") == 0) |
| 5619 | { |
| 5620 | hdr->sh_type = SHT_MIPS_REGINFO; |
| 5621 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
| 5622 | entsize of 0x18. FIXME: Does this matter? */ |
| 5623 | if (SGI_COMPAT (abfd)) |
| 5624 | { |
| 5625 | if ((abfd->flags & DYNAMIC) != 0) |
| 5626 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); |
| 5627 | else |
| 5628 | hdr->sh_entsize = 1; |
| 5629 | } |
| 5630 | else |
| 5631 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); |
| 5632 | } |
| 5633 | else if (SGI_COMPAT (abfd) |
| 5634 | && (strcmp (name, ".hash") == 0 |
| 5635 | || strcmp (name, ".dynamic") == 0 |
| 5636 | || strcmp (name, ".dynstr") == 0)) |
| 5637 | { |
| 5638 | if (SGI_COMPAT (abfd)) |
| 5639 | hdr->sh_entsize = 0; |
| 5640 | #if 0 |
| 5641 | /* This isn't how the IRIX6 linker behaves. */ |
| 5642 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
| 5643 | #endif |
| 5644 | } |
| 5645 | else if (strcmp (name, ".got") == 0 |
| 5646 | || strcmp (name, ".srdata") == 0 |
| 5647 | || strcmp (name, ".sdata") == 0 |
| 5648 | || strcmp (name, ".sbss") == 0 |
| 5649 | || strcmp (name, ".lit4") == 0 |
| 5650 | || strcmp (name, ".lit8") == 0) |
| 5651 | hdr->sh_flags |= SHF_MIPS_GPREL; |
| 5652 | else if (strcmp (name, ".MIPS.interfaces") == 0) |
| 5653 | { |
| 5654 | hdr->sh_type = SHT_MIPS_IFACE; |
| 5655 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| 5656 | } |
| 5657 | else if (CONST_STRNEQ (name, ".MIPS.content")) |
| 5658 | { |
| 5659 | hdr->sh_type = SHT_MIPS_CONTENT; |
| 5660 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| 5661 | /* The sh_info field is set in final_write_processing. */ |
| 5662 | } |
| 5663 | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
| 5664 | { |
| 5665 | hdr->sh_type = SHT_MIPS_OPTIONS; |
| 5666 | hdr->sh_entsize = 1; |
| 5667 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| 5668 | } |
| 5669 | else if (CONST_STRNEQ (name, ".debug_")) |
| 5670 | hdr->sh_type = SHT_MIPS_DWARF; |
| 5671 | else if (strcmp (name, ".MIPS.symlib") == 0) |
| 5672 | { |
| 5673 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; |
| 5674 | /* The sh_link and sh_info fields are set in |
| 5675 | final_write_processing. */ |
| 5676 | } |
| 5677 | else if (CONST_STRNEQ (name, ".MIPS.events") |
| 5678 | || CONST_STRNEQ (name, ".MIPS.post_rel")) |
| 5679 | { |
| 5680 | hdr->sh_type = SHT_MIPS_EVENTS; |
| 5681 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| 5682 | /* The sh_link field is set in final_write_processing. */ |
| 5683 | } |
| 5684 | else if (strcmp (name, ".msym") == 0) |
| 5685 | { |
| 5686 | hdr->sh_type = SHT_MIPS_MSYM; |
| 5687 | hdr->sh_flags |= SHF_ALLOC; |
| 5688 | hdr->sh_entsize = 8; |
| 5689 | } |
| 5690 | |
| 5691 | /* In the unlikely event a special section is empty it has to lose its |
| 5692 | special meaning. This may happen e.g. when using `strip' with the |
| 5693 | "--only-keep-debug" option. */ |
| 5694 | if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS)) |
| 5695 | hdr->sh_type = sh_type; |
| 5696 | |
| 5697 | /* The generic elf_fake_sections will set up REL_HDR using the default |
| 5698 | kind of relocations. We used to set up a second header for the |
| 5699 | non-default kind of relocations here, but only NewABI would use |
| 5700 | these, and the IRIX ld doesn't like resulting empty RELA sections. |
| 5701 | Thus we create those header only on demand now. */ |
| 5702 | |
| 5703 | return TRUE; |
| 5704 | } |
| 5705 | |
| 5706 | /* Given a BFD section, try to locate the corresponding ELF section |
| 5707 | index. This is used by both the 32-bit and the 64-bit ABI. |
| 5708 | Actually, it's not clear to me that the 64-bit ABI supports these, |
| 5709 | but for non-PIC objects we will certainly want support for at least |
| 5710 | the .scommon section. */ |
| 5711 | |
| 5712 | bfd_boolean |
| 5713 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
| 5714 | asection *sec, int *retval) |
| 5715 | { |
| 5716 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) |
| 5717 | { |
| 5718 | *retval = SHN_MIPS_SCOMMON; |
| 5719 | return TRUE; |
| 5720 | } |
| 5721 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) |
| 5722 | { |
| 5723 | *retval = SHN_MIPS_ACOMMON; |
| 5724 | return TRUE; |
| 5725 | } |
| 5726 | return FALSE; |
| 5727 | } |
| 5728 | \f |
| 5729 | /* Hook called by the linker routine which adds symbols from an object |
| 5730 | file. We must handle the special MIPS section numbers here. */ |
| 5731 | |
| 5732 | bfd_boolean |
| 5733 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
| 5734 | Elf_Internal_Sym *sym, const char **namep, |
| 5735 | flagword *flagsp ATTRIBUTE_UNUSED, |
| 5736 | asection **secp, bfd_vma *valp) |
| 5737 | { |
| 5738 | if (SGI_COMPAT (abfd) |
| 5739 | && (abfd->flags & DYNAMIC) != 0 |
| 5740 | && strcmp (*namep, "_rld_new_interface") == 0) |
| 5741 | { |
| 5742 | /* Skip IRIX5 rld entry name. */ |
| 5743 | *namep = NULL; |
| 5744 | return TRUE; |
| 5745 | } |
| 5746 | |
| 5747 | /* Shared objects may have a dynamic symbol '_gp_disp' defined as |
| 5748 | a SECTION *ABS*. This causes ld to think it can resolve _gp_disp |
| 5749 | by setting a DT_NEEDED for the shared object. Since _gp_disp is |
| 5750 | a magic symbol resolved by the linker, we ignore this bogus definition |
| 5751 | of _gp_disp. New ABI objects do not suffer from this problem so this |
| 5752 | is not done for them. */ |
| 5753 | if (!NEWABI_P(abfd) |
| 5754 | && (sym->st_shndx == SHN_ABS) |
| 5755 | && (strcmp (*namep, "_gp_disp") == 0)) |
| 5756 | { |
| 5757 | *namep = NULL; |
| 5758 | return TRUE; |
| 5759 | } |
| 5760 | |
| 5761 | switch (sym->st_shndx) |
| 5762 | { |
| 5763 | case SHN_COMMON: |
| 5764 | /* Common symbols less than the GP size are automatically |
| 5765 | treated as SHN_MIPS_SCOMMON symbols. */ |
| 5766 | if (sym->st_size > elf_gp_size (abfd) |
| 5767 | || ELF_ST_TYPE (sym->st_info) == STT_TLS |
| 5768 | || IRIX_COMPAT (abfd) == ict_irix6) |
| 5769 | break; |
| 5770 | /* Fall through. */ |
| 5771 | case SHN_MIPS_SCOMMON: |
| 5772 | *secp = bfd_make_section_old_way (abfd, ".scommon"); |
| 5773 | (*secp)->flags |= SEC_IS_COMMON; |
| 5774 | *valp = sym->st_size; |
| 5775 | break; |
| 5776 | |
| 5777 | case SHN_MIPS_TEXT: |
| 5778 | /* This section is used in a shared object. */ |
| 5779 | if (elf_tdata (abfd)->elf_text_section == NULL) |
| 5780 | { |
| 5781 | asymbol *elf_text_symbol; |
| 5782 | asection *elf_text_section; |
| 5783 | bfd_size_type amt = sizeof (asection); |
| 5784 | |
| 5785 | elf_text_section = bfd_zalloc (abfd, amt); |
| 5786 | if (elf_text_section == NULL) |
| 5787 | return FALSE; |
| 5788 | |
| 5789 | amt = sizeof (asymbol); |
| 5790 | elf_text_symbol = bfd_zalloc (abfd, amt); |
| 5791 | if (elf_text_symbol == NULL) |
| 5792 | return FALSE; |
| 5793 | |
| 5794 | /* Initialize the section. */ |
| 5795 | |
| 5796 | elf_tdata (abfd)->elf_text_section = elf_text_section; |
| 5797 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; |
| 5798 | |
| 5799 | elf_text_section->symbol = elf_text_symbol; |
| 5800 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; |
| 5801 | |
| 5802 | elf_text_section->name = ".text"; |
| 5803 | elf_text_section->flags = SEC_NO_FLAGS; |
| 5804 | elf_text_section->output_section = NULL; |
| 5805 | elf_text_section->owner = abfd; |
| 5806 | elf_text_symbol->name = ".text"; |
| 5807 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; |
| 5808 | elf_text_symbol->section = elf_text_section; |
| 5809 | } |
| 5810 | /* This code used to do *secp = bfd_und_section_ptr if |
| 5811 | info->shared. I don't know why, and that doesn't make sense, |
| 5812 | so I took it out. */ |
| 5813 | *secp = elf_tdata (abfd)->elf_text_section; |
| 5814 | break; |
| 5815 | |
| 5816 | case SHN_MIPS_ACOMMON: |
| 5817 | /* Fall through. XXX Can we treat this as allocated data? */ |
| 5818 | case SHN_MIPS_DATA: |
| 5819 | /* This section is used in a shared object. */ |
| 5820 | if (elf_tdata (abfd)->elf_data_section == NULL) |
| 5821 | { |
| 5822 | asymbol *elf_data_symbol; |
| 5823 | asection *elf_data_section; |
| 5824 | bfd_size_type amt = sizeof (asection); |
| 5825 | |
| 5826 | elf_data_section = bfd_zalloc (abfd, amt); |
| 5827 | if (elf_data_section == NULL) |
| 5828 | return FALSE; |
| 5829 | |
| 5830 | amt = sizeof (asymbol); |
| 5831 | elf_data_symbol = bfd_zalloc (abfd, amt); |
| 5832 | if (elf_data_symbol == NULL) |
| 5833 | return FALSE; |
| 5834 | |
| 5835 | /* Initialize the section. */ |
| 5836 | |
| 5837 | elf_tdata (abfd)->elf_data_section = elf_data_section; |
| 5838 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; |
| 5839 | |
| 5840 | elf_data_section->symbol = elf_data_symbol; |
| 5841 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; |
| 5842 | |
| 5843 | elf_data_section->name = ".data"; |
| 5844 | elf_data_section->flags = SEC_NO_FLAGS; |
| 5845 | elf_data_section->output_section = NULL; |
| 5846 | elf_data_section->owner = abfd; |
| 5847 | elf_data_symbol->name = ".data"; |
| 5848 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; |
| 5849 | elf_data_symbol->section = elf_data_section; |
| 5850 | } |
| 5851 | /* This code used to do *secp = bfd_und_section_ptr if |
| 5852 | info->shared. I don't know why, and that doesn't make sense, |
| 5853 | so I took it out. */ |
| 5854 | *secp = elf_tdata (abfd)->elf_data_section; |
| 5855 | break; |
| 5856 | |
| 5857 | case SHN_MIPS_SUNDEFINED: |
| 5858 | *secp = bfd_und_section_ptr; |
| 5859 | break; |
| 5860 | } |
| 5861 | |
| 5862 | if (SGI_COMPAT (abfd) |
| 5863 | && ! info->shared |
| 5864 | && info->hash->creator == abfd->xvec |
| 5865 | && strcmp (*namep, "__rld_obj_head") == 0) |
| 5866 | { |
| 5867 | struct elf_link_hash_entry *h; |
| 5868 | struct bfd_link_hash_entry *bh; |
| 5869 | |
| 5870 | /* Mark __rld_obj_head as dynamic. */ |
| 5871 | bh = NULL; |
| 5872 | if (! (_bfd_generic_link_add_one_symbol |
| 5873 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
| 5874 | get_elf_backend_data (abfd)->collect, &bh))) |
| 5875 | return FALSE; |
| 5876 | |
| 5877 | h = (struct elf_link_hash_entry *) bh; |
| 5878 | h->non_elf = 0; |
| 5879 | h->def_regular = 1; |
| 5880 | h->type = STT_OBJECT; |
| 5881 | |
| 5882 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 5883 | return FALSE; |
| 5884 | |
| 5885 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
| 5886 | } |
| 5887 | |
| 5888 | /* If this is a mips16 text symbol, add 1 to the value to make it |
| 5889 | odd. This will cause something like .word SYM to come up with |
| 5890 | the right value when it is loaded into the PC. */ |
| 5891 | if (sym->st_other == STO_MIPS16) |
| 5892 | ++*valp; |
| 5893 | |
| 5894 | return TRUE; |
| 5895 | } |
| 5896 | |
| 5897 | /* This hook function is called before the linker writes out a global |
| 5898 | symbol. We mark symbols as small common if appropriate. This is |
| 5899 | also where we undo the increment of the value for a mips16 symbol. */ |
| 5900 | |
| 5901 | bfd_boolean |
| 5902 | _bfd_mips_elf_link_output_symbol_hook |
| 5903 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| 5904 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, |
| 5905 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) |
| 5906 | { |
| 5907 | /* If we see a common symbol, which implies a relocatable link, then |
| 5908 | if a symbol was small common in an input file, mark it as small |
| 5909 | common in the output file. */ |
| 5910 | if (sym->st_shndx == SHN_COMMON |
| 5911 | && strcmp (input_sec->name, ".scommon") == 0) |
| 5912 | sym->st_shndx = SHN_MIPS_SCOMMON; |
| 5913 | |
| 5914 | if (sym->st_other == STO_MIPS16) |
| 5915 | sym->st_value &= ~1; |
| 5916 | |
| 5917 | return TRUE; |
| 5918 | } |
| 5919 | \f |
| 5920 | /* Functions for the dynamic linker. */ |
| 5921 | |
| 5922 | /* Create dynamic sections when linking against a dynamic object. */ |
| 5923 | |
| 5924 | bfd_boolean |
| 5925 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
| 5926 | { |
| 5927 | struct elf_link_hash_entry *h; |
| 5928 | struct bfd_link_hash_entry *bh; |
| 5929 | flagword flags; |
| 5930 | register asection *s; |
| 5931 | const char * const *namep; |
| 5932 | struct mips_elf_link_hash_table *htab; |
| 5933 | |
| 5934 | htab = mips_elf_hash_table (info); |
| 5935 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| 5936 | | SEC_LINKER_CREATED | SEC_READONLY); |
| 5937 | |
| 5938 | /* The psABI requires a read-only .dynamic section, but the VxWorks |
| 5939 | EABI doesn't. */ |
| 5940 | if (!htab->is_vxworks) |
| 5941 | { |
| 5942 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
| 5943 | if (s != NULL) |
| 5944 | { |
| 5945 | if (! bfd_set_section_flags (abfd, s, flags)) |
| 5946 | return FALSE; |
| 5947 | } |
| 5948 | } |
| 5949 | |
| 5950 | /* We need to create .got section. */ |
| 5951 | if (! mips_elf_create_got_section (abfd, info, FALSE)) |
| 5952 | return FALSE; |
| 5953 | |
| 5954 | if (! mips_elf_rel_dyn_section (info, TRUE)) |
| 5955 | return FALSE; |
| 5956 | |
| 5957 | /* Create .stub section. */ |
| 5958 | if (bfd_get_section_by_name (abfd, |
| 5959 | MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) |
| 5960 | { |
| 5961 | s = bfd_make_section_with_flags (abfd, |
| 5962 | MIPS_ELF_STUB_SECTION_NAME (abfd), |
| 5963 | flags | SEC_CODE); |
| 5964 | if (s == NULL |
| 5965 | || ! bfd_set_section_alignment (abfd, s, |
| 5966 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
| 5967 | return FALSE; |
| 5968 | } |
| 5969 | |
| 5970 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) |
| 5971 | && !info->shared |
| 5972 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) |
| 5973 | { |
| 5974 | s = bfd_make_section_with_flags (abfd, ".rld_map", |
| 5975 | flags &~ (flagword) SEC_READONLY); |
| 5976 | if (s == NULL |
| 5977 | || ! bfd_set_section_alignment (abfd, s, |
| 5978 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
| 5979 | return FALSE; |
| 5980 | } |
| 5981 | |
| 5982 | /* On IRIX5, we adjust add some additional symbols and change the |
| 5983 | alignments of several sections. There is no ABI documentation |
| 5984 | indicating that this is necessary on IRIX6, nor any evidence that |
| 5985 | the linker takes such action. */ |
| 5986 | if (IRIX_COMPAT (abfd) == ict_irix5) |
| 5987 | { |
| 5988 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) |
| 5989 | { |
| 5990 | bh = NULL; |
| 5991 | if (! (_bfd_generic_link_add_one_symbol |
| 5992 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
| 5993 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
| 5994 | return FALSE; |
| 5995 | |
| 5996 | h = (struct elf_link_hash_entry *) bh; |
| 5997 | h->non_elf = 0; |
| 5998 | h->def_regular = 1; |
| 5999 | h->type = STT_SECTION; |
| 6000 | |
| 6001 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 6002 | return FALSE; |
| 6003 | } |
| 6004 | |
| 6005 | /* We need to create a .compact_rel section. */ |
| 6006 | if (SGI_COMPAT (abfd)) |
| 6007 | { |
| 6008 | if (!mips_elf_create_compact_rel_section (abfd, info)) |
| 6009 | return FALSE; |
| 6010 | } |
| 6011 | |
| 6012 | /* Change alignments of some sections. */ |
| 6013 | s = bfd_get_section_by_name (abfd, ".hash"); |
| 6014 | if (s != NULL) |
| 6015 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| 6016 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
| 6017 | if (s != NULL) |
| 6018 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| 6019 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
| 6020 | if (s != NULL) |
| 6021 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| 6022 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
| 6023 | if (s != NULL) |
| 6024 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| 6025 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
| 6026 | if (s != NULL) |
| 6027 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| 6028 | } |
| 6029 | |
| 6030 | if (!info->shared) |
| 6031 | { |
| 6032 | const char *name; |
| 6033 | |
| 6034 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; |
| 6035 | bh = NULL; |
| 6036 | if (!(_bfd_generic_link_add_one_symbol |
| 6037 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
| 6038 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
| 6039 | return FALSE; |
| 6040 | |
| 6041 | h = (struct elf_link_hash_entry *) bh; |
| 6042 | h->non_elf = 0; |
| 6043 | h->def_regular = 1; |
| 6044 | h->type = STT_SECTION; |
| 6045 | |
| 6046 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 6047 | return FALSE; |
| 6048 | |
| 6049 | if (! mips_elf_hash_table (info)->use_rld_obj_head) |
| 6050 | { |
| 6051 | /* __rld_map is a four byte word located in the .data section |
| 6052 | and is filled in by the rtld to contain a pointer to |
| 6053 | the _r_debug structure. Its symbol value will be set in |
| 6054 | _bfd_mips_elf_finish_dynamic_symbol. */ |
| 6055 | s = bfd_get_section_by_name (abfd, ".rld_map"); |
| 6056 | BFD_ASSERT (s != NULL); |
| 6057 | |
| 6058 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
| 6059 | bh = NULL; |
| 6060 | if (!(_bfd_generic_link_add_one_symbol |
| 6061 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, |
| 6062 | get_elf_backend_data (abfd)->collect, &bh))) |
| 6063 | return FALSE; |
| 6064 | |
| 6065 | h = (struct elf_link_hash_entry *) bh; |
| 6066 | h->non_elf = 0; |
| 6067 | h->def_regular = 1; |
| 6068 | h->type = STT_OBJECT; |
| 6069 | |
| 6070 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 6071 | return FALSE; |
| 6072 | } |
| 6073 | } |
| 6074 | |
| 6075 | if (htab->is_vxworks) |
| 6076 | { |
| 6077 | /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections. |
| 6078 | Also create the _PROCEDURE_LINKAGE_TABLE symbol. */ |
| 6079 | if (!_bfd_elf_create_dynamic_sections (abfd, info)) |
| 6080 | return FALSE; |
| 6081 | |
| 6082 | /* Cache the sections created above. */ |
| 6083 | htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); |
| 6084 | htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); |
| 6085 | htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); |
| 6086 | htab->splt = bfd_get_section_by_name (abfd, ".plt"); |
| 6087 | if (!htab->sdynbss |
| 6088 | || (!htab->srelbss && !info->shared) |
| 6089 | || !htab->srelplt |
| 6090 | || !htab->splt) |
| 6091 | abort (); |
| 6092 | |
| 6093 | /* Do the usual VxWorks handling. */ |
| 6094 | if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) |
| 6095 | return FALSE; |
| 6096 | |
| 6097 | /* Work out the PLT sizes. */ |
| 6098 | if (info->shared) |
| 6099 | { |
| 6100 | htab->plt_header_size |
| 6101 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); |
| 6102 | htab->plt_entry_size |
| 6103 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); |
| 6104 | } |
| 6105 | else |
| 6106 | { |
| 6107 | htab->plt_header_size |
| 6108 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); |
| 6109 | htab->plt_entry_size |
| 6110 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); |
| 6111 | } |
| 6112 | } |
| 6113 | |
| 6114 | return TRUE; |
| 6115 | } |
| 6116 | \f |
| 6117 | /* Look through the relocs for a section during the first phase, and |
| 6118 | allocate space in the global offset table. */ |
| 6119 | |
| 6120 | bfd_boolean |
| 6121 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
| 6122 | asection *sec, const Elf_Internal_Rela *relocs) |
| 6123 | { |
| 6124 | const char *name; |
| 6125 | bfd *dynobj; |
| 6126 | Elf_Internal_Shdr *symtab_hdr; |
| 6127 | struct elf_link_hash_entry **sym_hashes; |
| 6128 | struct mips_got_info *g; |
| 6129 | size_t extsymoff; |
| 6130 | const Elf_Internal_Rela *rel; |
| 6131 | const Elf_Internal_Rela *rel_end; |
| 6132 | asection *sgot; |
| 6133 | asection *sreloc; |
| 6134 | const struct elf_backend_data *bed; |
| 6135 | struct mips_elf_link_hash_table *htab; |
| 6136 | |
| 6137 | if (info->relocatable) |
| 6138 | return TRUE; |
| 6139 | |
| 6140 | htab = mips_elf_hash_table (info); |
| 6141 | dynobj = elf_hash_table (info)->dynobj; |
| 6142 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 6143 | sym_hashes = elf_sym_hashes (abfd); |
| 6144 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; |
| 6145 | |
| 6146 | /* Check for the mips16 stub sections. */ |
| 6147 | |
| 6148 | name = bfd_get_section_name (abfd, sec); |
| 6149 | if (FN_STUB_P (name)) |
| 6150 | { |
| 6151 | unsigned long r_symndx; |
| 6152 | |
| 6153 | /* Look at the relocation information to figure out which symbol |
| 6154 | this is for. */ |
| 6155 | |
| 6156 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); |
| 6157 | |
| 6158 | if (r_symndx < extsymoff |
| 6159 | || sym_hashes[r_symndx - extsymoff] == NULL) |
| 6160 | { |
| 6161 | asection *o; |
| 6162 | |
| 6163 | /* This stub is for a local symbol. This stub will only be |
| 6164 | needed if there is some relocation in this BFD, other |
| 6165 | than a 16 bit function call, which refers to this symbol. */ |
| 6166 | for (o = abfd->sections; o != NULL; o = o->next) |
| 6167 | { |
| 6168 | Elf_Internal_Rela *sec_relocs; |
| 6169 | const Elf_Internal_Rela *r, *rend; |
| 6170 | |
| 6171 | /* We can ignore stub sections when looking for relocs. */ |
| 6172 | if ((o->flags & SEC_RELOC) == 0 |
| 6173 | || o->reloc_count == 0 |
| 6174 | || mips16_stub_section_p (abfd, o)) |
| 6175 | continue; |
| 6176 | |
| 6177 | sec_relocs |
| 6178 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
| 6179 | info->keep_memory); |
| 6180 | if (sec_relocs == NULL) |
| 6181 | return FALSE; |
| 6182 | |
| 6183 | rend = sec_relocs + o->reloc_count; |
| 6184 | for (r = sec_relocs; r < rend; r++) |
| 6185 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx |
| 6186 | && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) |
| 6187 | break; |
| 6188 | |
| 6189 | if (elf_section_data (o)->relocs != sec_relocs) |
| 6190 | free (sec_relocs); |
| 6191 | |
| 6192 | if (r < rend) |
| 6193 | break; |
| 6194 | } |
| 6195 | |
| 6196 | if (o == NULL) |
| 6197 | { |
| 6198 | /* There is no non-call reloc for this stub, so we do |
| 6199 | not need it. Since this function is called before |
| 6200 | the linker maps input sections to output sections, we |
| 6201 | can easily discard it by setting the SEC_EXCLUDE |
| 6202 | flag. */ |
| 6203 | sec->flags |= SEC_EXCLUDE; |
| 6204 | return TRUE; |
| 6205 | } |
| 6206 | |
| 6207 | /* Record this stub in an array of local symbol stubs for |
| 6208 | this BFD. */ |
| 6209 | if (elf_tdata (abfd)->local_stubs == NULL) |
| 6210 | { |
| 6211 | unsigned long symcount; |
| 6212 | asection **n; |
| 6213 | bfd_size_type amt; |
| 6214 | |
| 6215 | if (elf_bad_symtab (abfd)) |
| 6216 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); |
| 6217 | else |
| 6218 | symcount = symtab_hdr->sh_info; |
| 6219 | amt = symcount * sizeof (asection *); |
| 6220 | n = bfd_zalloc (abfd, amt); |
| 6221 | if (n == NULL) |
| 6222 | return FALSE; |
| 6223 | elf_tdata (abfd)->local_stubs = n; |
| 6224 | } |
| 6225 | |
| 6226 | sec->flags |= SEC_KEEP; |
| 6227 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; |
| 6228 | |
| 6229 | /* We don't need to set mips16_stubs_seen in this case. |
| 6230 | That flag is used to see whether we need to look through |
| 6231 | the global symbol table for stubs. We don't need to set |
| 6232 | it here, because we just have a local stub. */ |
| 6233 | } |
| 6234 | else |
| 6235 | { |
| 6236 | struct mips_elf_link_hash_entry *h; |
| 6237 | |
| 6238 | h = ((struct mips_elf_link_hash_entry *) |
| 6239 | sym_hashes[r_symndx - extsymoff]); |
| 6240 | |
| 6241 | while (h->root.root.type == bfd_link_hash_indirect |
| 6242 | || h->root.root.type == bfd_link_hash_warning) |
| 6243 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| 6244 | |
| 6245 | /* H is the symbol this stub is for. */ |
| 6246 | |
| 6247 | /* If we already have an appropriate stub for this function, we |
| 6248 | don't need another one, so we can discard this one. Since |
| 6249 | this function is called before the linker maps input sections |
| 6250 | to output sections, we can easily discard it by setting the |
| 6251 | SEC_EXCLUDE flag. */ |
| 6252 | if (h->fn_stub != NULL) |
| 6253 | { |
| 6254 | sec->flags |= SEC_EXCLUDE; |
| 6255 | return TRUE; |
| 6256 | } |
| 6257 | |
| 6258 | sec->flags |= SEC_KEEP; |
| 6259 | h->fn_stub = sec; |
| 6260 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
| 6261 | } |
| 6262 | } |
| 6263 | else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) |
| 6264 | { |
| 6265 | unsigned long r_symndx; |
| 6266 | struct mips_elf_link_hash_entry *h; |
| 6267 | asection **loc; |
| 6268 | |
| 6269 | /* Look at the relocation information to figure out which symbol |
| 6270 | this is for. */ |
| 6271 | |
| 6272 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); |
| 6273 | |
| 6274 | if (r_symndx < extsymoff |
| 6275 | || sym_hashes[r_symndx - extsymoff] == NULL) |
| 6276 | { |
| 6277 | asection *o; |
| 6278 | |
| 6279 | /* This stub is for a local symbol. This stub will only be |
| 6280 | needed if there is some relocation (R_MIPS16_26) in this BFD |
| 6281 | that refers to this symbol. */ |
| 6282 | for (o = abfd->sections; o != NULL; o = o->next) |
| 6283 | { |
| 6284 | Elf_Internal_Rela *sec_relocs; |
| 6285 | const Elf_Internal_Rela *r, *rend; |
| 6286 | |
| 6287 | /* We can ignore stub sections when looking for relocs. */ |
| 6288 | if ((o->flags & SEC_RELOC) == 0 |
| 6289 | || o->reloc_count == 0 |
| 6290 | || mips16_stub_section_p (abfd, o)) |
| 6291 | continue; |
| 6292 | |
| 6293 | sec_relocs |
| 6294 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
| 6295 | info->keep_memory); |
| 6296 | if (sec_relocs == NULL) |
| 6297 | return FALSE; |
| 6298 | |
| 6299 | rend = sec_relocs + o->reloc_count; |
| 6300 | for (r = sec_relocs; r < rend; r++) |
| 6301 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx |
| 6302 | && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) |
| 6303 | break; |
| 6304 | |
| 6305 | if (elf_section_data (o)->relocs != sec_relocs) |
| 6306 | free (sec_relocs); |
| 6307 | |
| 6308 | if (r < rend) |
| 6309 | break; |
| 6310 | } |
| 6311 | |
| 6312 | if (o == NULL) |
| 6313 | { |
| 6314 | /* There is no non-call reloc for this stub, so we do |
| 6315 | not need it. Since this function is called before |
| 6316 | the linker maps input sections to output sections, we |
| 6317 | can easily discard it by setting the SEC_EXCLUDE |
| 6318 | flag. */ |
| 6319 | sec->flags |= SEC_EXCLUDE; |
| 6320 | return TRUE; |
| 6321 | } |
| 6322 | |
| 6323 | /* Record this stub in an array of local symbol call_stubs for |
| 6324 | this BFD. */ |
| 6325 | if (elf_tdata (abfd)->local_call_stubs == NULL) |
| 6326 | { |
| 6327 | unsigned long symcount; |
| 6328 | asection **n; |
| 6329 | bfd_size_type amt; |
| 6330 | |
| 6331 | if (elf_bad_symtab (abfd)) |
| 6332 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); |
| 6333 | else |
| 6334 | symcount = symtab_hdr->sh_info; |
| 6335 | amt = symcount * sizeof (asection *); |
| 6336 | n = bfd_zalloc (abfd, amt); |
| 6337 | if (n == NULL) |
| 6338 | return FALSE; |
| 6339 | elf_tdata (abfd)->local_call_stubs = n; |
| 6340 | } |
| 6341 | |
| 6342 | sec->flags |= SEC_KEEP; |
| 6343 | elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; |
| 6344 | |
| 6345 | /* We don't need to set mips16_stubs_seen in this case. |
| 6346 | That flag is used to see whether we need to look through |
| 6347 | the global symbol table for stubs. We don't need to set |
| 6348 | it here, because we just have a local stub. */ |
| 6349 | } |
| 6350 | else |
| 6351 | { |
| 6352 | h = ((struct mips_elf_link_hash_entry *) |
| 6353 | sym_hashes[r_symndx - extsymoff]); |
| 6354 | |
| 6355 | /* H is the symbol this stub is for. */ |
| 6356 | |
| 6357 | if (CALL_FP_STUB_P (name)) |
| 6358 | loc = &h->call_fp_stub; |
| 6359 | else |
| 6360 | loc = &h->call_stub; |
| 6361 | |
| 6362 | /* If we already have an appropriate stub for this function, we |
| 6363 | don't need another one, so we can discard this one. Since |
| 6364 | this function is called before the linker maps input sections |
| 6365 | to output sections, we can easily discard it by setting the |
| 6366 | SEC_EXCLUDE flag. */ |
| 6367 | if (*loc != NULL) |
| 6368 | { |
| 6369 | sec->flags |= SEC_EXCLUDE; |
| 6370 | return TRUE; |
| 6371 | } |
| 6372 | |
| 6373 | sec->flags |= SEC_KEEP; |
| 6374 | *loc = sec; |
| 6375 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
| 6376 | } |
| 6377 | } |
| 6378 | |
| 6379 | if (dynobj == NULL) |
| 6380 | { |
| 6381 | sgot = NULL; |
| 6382 | g = NULL; |
| 6383 | } |
| 6384 | else |
| 6385 | { |
| 6386 | sgot = mips_elf_got_section (dynobj, FALSE); |
| 6387 | if (sgot == NULL) |
| 6388 | g = NULL; |
| 6389 | else |
| 6390 | { |
| 6391 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
| 6392 | g = mips_elf_section_data (sgot)->u.got_info; |
| 6393 | BFD_ASSERT (g != NULL); |
| 6394 | } |
| 6395 | } |
| 6396 | |
| 6397 | sreloc = NULL; |
| 6398 | bed = get_elf_backend_data (abfd); |
| 6399 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; |
| 6400 | for (rel = relocs; rel < rel_end; ++rel) |
| 6401 | { |
| 6402 | unsigned long r_symndx; |
| 6403 | unsigned int r_type; |
| 6404 | struct elf_link_hash_entry *h; |
| 6405 | |
| 6406 | r_symndx = ELF_R_SYM (abfd, rel->r_info); |
| 6407 | r_type = ELF_R_TYPE (abfd, rel->r_info); |
| 6408 | |
| 6409 | if (r_symndx < extsymoff) |
| 6410 | h = NULL; |
| 6411 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) |
| 6412 | { |
| 6413 | (*_bfd_error_handler) |
| 6414 | (_("%B: Malformed reloc detected for section %s"), |
| 6415 | abfd, name); |
| 6416 | bfd_set_error (bfd_error_bad_value); |
| 6417 | return FALSE; |
| 6418 | } |
| 6419 | else |
| 6420 | { |
| 6421 | h = sym_hashes[r_symndx - extsymoff]; |
| 6422 | |
| 6423 | /* This may be an indirect symbol created because of a version. */ |
| 6424 | if (h != NULL) |
| 6425 | { |
| 6426 | while (h->root.type == bfd_link_hash_indirect) |
| 6427 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 6428 | } |
| 6429 | } |
| 6430 | |
| 6431 | /* Some relocs require a global offset table. */ |
| 6432 | if (dynobj == NULL || sgot == NULL) |
| 6433 | { |
| 6434 | switch (r_type) |
| 6435 | { |
| 6436 | case R_MIPS_GOT16: |
| 6437 | case R_MIPS_CALL16: |
| 6438 | case R_MIPS_CALL_HI16: |
| 6439 | case R_MIPS_CALL_LO16: |
| 6440 | case R_MIPS_GOT_HI16: |
| 6441 | case R_MIPS_GOT_LO16: |
| 6442 | case R_MIPS_GOT_PAGE: |
| 6443 | case R_MIPS_GOT_OFST: |
| 6444 | case R_MIPS_GOT_DISP: |
| 6445 | case R_MIPS_TLS_GOTTPREL: |
| 6446 | case R_MIPS_TLS_GD: |
| 6447 | case R_MIPS_TLS_LDM: |
| 6448 | if (dynobj == NULL) |
| 6449 | elf_hash_table (info)->dynobj = dynobj = abfd; |
| 6450 | if (! mips_elf_create_got_section (dynobj, info, FALSE)) |
| 6451 | return FALSE; |
| 6452 | g = mips_elf_got_info (dynobj, &sgot); |
| 6453 | if (htab->is_vxworks && !info->shared) |
| 6454 | { |
| 6455 | (*_bfd_error_handler) |
| 6456 | (_("%B: GOT reloc at 0x%lx not expected in executables"), |
| 6457 | abfd, (unsigned long) rel->r_offset); |
| 6458 | bfd_set_error (bfd_error_bad_value); |
| 6459 | return FALSE; |
| 6460 | } |
| 6461 | break; |
| 6462 | |
| 6463 | case R_MIPS_32: |
| 6464 | case R_MIPS_REL32: |
| 6465 | case R_MIPS_64: |
| 6466 | /* In VxWorks executables, references to external symbols |
| 6467 | are handled using copy relocs or PLT stubs, so there's |
| 6468 | no need to add a dynamic relocation here. */ |
| 6469 | if (dynobj == NULL |
| 6470 | && (info->shared || (h != NULL && !htab->is_vxworks)) |
| 6471 | && (sec->flags & SEC_ALLOC) != 0) |
| 6472 | elf_hash_table (info)->dynobj = dynobj = abfd; |
| 6473 | break; |
| 6474 | |
| 6475 | default: |
| 6476 | break; |
| 6477 | } |
| 6478 | } |
| 6479 | |
| 6480 | if (h) |
| 6481 | { |
| 6482 | ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE; |
| 6483 | |
| 6484 | /* Relocations against the special VxWorks __GOTT_BASE__ and |
| 6485 | __GOTT_INDEX__ symbols must be left to the loader. Allocate |
| 6486 | room for them in .rela.dyn. */ |
| 6487 | if (is_gott_symbol (info, h)) |
| 6488 | { |
| 6489 | if (sreloc == NULL) |
| 6490 | { |
| 6491 | sreloc = mips_elf_rel_dyn_section (info, TRUE); |
| 6492 | if (sreloc == NULL) |
| 6493 | return FALSE; |
| 6494 | } |
| 6495 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); |
| 6496 | } |
| 6497 | } |
| 6498 | else if (r_type == R_MIPS_CALL_LO16 |
| 6499 | || r_type == R_MIPS_GOT_LO16 |
| 6500 | || r_type == R_MIPS_GOT_DISP |
| 6501 | || (r_type == R_MIPS_GOT16 && htab->is_vxworks)) |
| 6502 | { |
| 6503 | /* We may need a local GOT entry for this relocation. We |
| 6504 | don't count R_MIPS_GOT_PAGE because we can estimate the |
| 6505 | maximum number of pages needed by looking at the size of |
| 6506 | the segment. Similar comments apply to R_MIPS_GOT16 and |
| 6507 | R_MIPS_CALL16, except on VxWorks, where GOT relocations |
| 6508 | always evaluate to "G". We don't count R_MIPS_GOT_HI16, or |
| 6509 | R_MIPS_CALL_HI16 because these are always followed by an |
| 6510 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
| 6511 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
| 6512 | rel->r_addend, g, 0)) |
| 6513 | return FALSE; |
| 6514 | } |
| 6515 | |
| 6516 | switch (r_type) |
| 6517 | { |
| 6518 | case R_MIPS_CALL16: |
| 6519 | if (h == NULL) |
| 6520 | { |
| 6521 | (*_bfd_error_handler) |
| 6522 | (_("%B: CALL16 reloc at 0x%lx not against global symbol"), |
| 6523 | abfd, (unsigned long) rel->r_offset); |
| 6524 | bfd_set_error (bfd_error_bad_value); |
| 6525 | return FALSE; |
| 6526 | } |
| 6527 | /* Fall through. */ |
| 6528 | |
| 6529 | case R_MIPS_CALL_HI16: |
| 6530 | case R_MIPS_CALL_LO16: |
| 6531 | if (h != NULL) |
| 6532 | { |
| 6533 | /* VxWorks call relocations point the function's .got.plt |
| 6534 | entry, which will be allocated by adjust_dynamic_symbol. |
| 6535 | Otherwise, this symbol requires a global GOT entry. */ |
| 6536 | if (!htab->is_vxworks |
| 6537 | && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
| 6538 | return FALSE; |
| 6539 | |
| 6540 | /* We need a stub, not a plt entry for the undefined |
| 6541 | function. But we record it as if it needs plt. See |
| 6542 | _bfd_elf_adjust_dynamic_symbol. */ |
| 6543 | h->needs_plt = 1; |
| 6544 | h->type = STT_FUNC; |
| 6545 | } |
| 6546 | break; |
| 6547 | |
| 6548 | case R_MIPS_GOT_PAGE: |
| 6549 | /* If this is a global, overridable symbol, GOT_PAGE will |
| 6550 | decay to GOT_DISP, so we'll need a GOT entry for it. */ |
| 6551 | if (h == NULL) |
| 6552 | break; |
| 6553 | else |
| 6554 | { |
| 6555 | struct mips_elf_link_hash_entry *hmips = |
| 6556 | (struct mips_elf_link_hash_entry *) h; |
| 6557 | |
| 6558 | while (hmips->root.root.type == bfd_link_hash_indirect |
| 6559 | || hmips->root.root.type == bfd_link_hash_warning) |
| 6560 | hmips = (struct mips_elf_link_hash_entry *) |
| 6561 | hmips->root.root.u.i.link; |
| 6562 | |
| 6563 | if (hmips->root.def_regular |
| 6564 | && ! (info->shared && ! info->symbolic |
| 6565 | && ! hmips->root.forced_local)) |
| 6566 | break; |
| 6567 | } |
| 6568 | /* Fall through. */ |
| 6569 | |
| 6570 | case R_MIPS_GOT16: |
| 6571 | case R_MIPS_GOT_HI16: |
| 6572 | case R_MIPS_GOT_LO16: |
| 6573 | case R_MIPS_GOT_DISP: |
| 6574 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
| 6575 | return FALSE; |
| 6576 | break; |
| 6577 | |
| 6578 | case R_MIPS_TLS_GOTTPREL: |
| 6579 | if (info->shared) |
| 6580 | info->flags |= DF_STATIC_TLS; |
| 6581 | /* Fall through */ |
| 6582 | |
| 6583 | case R_MIPS_TLS_LDM: |
| 6584 | if (r_type == R_MIPS_TLS_LDM) |
| 6585 | { |
| 6586 | r_symndx = 0; |
| 6587 | h = NULL; |
| 6588 | } |
| 6589 | /* Fall through */ |
| 6590 | |
| 6591 | case R_MIPS_TLS_GD: |
| 6592 | /* This symbol requires a global offset table entry, or two |
| 6593 | for TLS GD relocations. */ |
| 6594 | { |
| 6595 | unsigned char flag = (r_type == R_MIPS_TLS_GD |
| 6596 | ? GOT_TLS_GD |
| 6597 | : r_type == R_MIPS_TLS_LDM |
| 6598 | ? GOT_TLS_LDM |
| 6599 | : GOT_TLS_IE); |
| 6600 | if (h != NULL) |
| 6601 | { |
| 6602 | struct mips_elf_link_hash_entry *hmips = |
| 6603 | (struct mips_elf_link_hash_entry *) h; |
| 6604 | hmips->tls_type |= flag; |
| 6605 | |
| 6606 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag)) |
| 6607 | return FALSE; |
| 6608 | } |
| 6609 | else |
| 6610 | { |
| 6611 | BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0); |
| 6612 | |
| 6613 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
| 6614 | rel->r_addend, g, flag)) |
| 6615 | return FALSE; |
| 6616 | } |
| 6617 | } |
| 6618 | break; |
| 6619 | |
| 6620 | case R_MIPS_32: |
| 6621 | case R_MIPS_REL32: |
| 6622 | case R_MIPS_64: |
| 6623 | /* In VxWorks executables, references to external symbols |
| 6624 | are handled using copy relocs or PLT stubs, so there's |
| 6625 | no need to add a .rela.dyn entry for this relocation. */ |
| 6626 | if ((info->shared || (h != NULL && !htab->is_vxworks)) |
| 6627 | && (sec->flags & SEC_ALLOC) != 0) |
| 6628 | { |
| 6629 | if (sreloc == NULL) |
| 6630 | { |
| 6631 | sreloc = mips_elf_rel_dyn_section (info, TRUE); |
| 6632 | if (sreloc == NULL) |
| 6633 | return FALSE; |
| 6634 | } |
| 6635 | if (info->shared) |
| 6636 | { |
| 6637 | /* When creating a shared object, we must copy these |
| 6638 | reloc types into the output file as R_MIPS_REL32 |
| 6639 | relocs. Make room for this reloc in .rel(a).dyn. */ |
| 6640 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); |
| 6641 | if (MIPS_ELF_READONLY_SECTION (sec)) |
| 6642 | /* We tell the dynamic linker that there are |
| 6643 | relocations against the text segment. */ |
| 6644 | info->flags |= DF_TEXTREL; |
| 6645 | } |
| 6646 | else |
| 6647 | { |
| 6648 | struct mips_elf_link_hash_entry *hmips; |
| 6649 | |
| 6650 | /* We only need to copy this reloc if the symbol is |
| 6651 | defined in a dynamic object. */ |
| 6652 | hmips = (struct mips_elf_link_hash_entry *) h; |
| 6653 | ++hmips->possibly_dynamic_relocs; |
| 6654 | if (MIPS_ELF_READONLY_SECTION (sec)) |
| 6655 | /* We need it to tell the dynamic linker if there |
| 6656 | are relocations against the text segment. */ |
| 6657 | hmips->readonly_reloc = TRUE; |
| 6658 | } |
| 6659 | |
| 6660 | /* Even though we don't directly need a GOT entry for |
| 6661 | this symbol, a symbol must have a dynamic symbol |
| 6662 | table index greater that DT_MIPS_GOTSYM if there are |
| 6663 | dynamic relocations against it. This does not apply |
| 6664 | to VxWorks, which does not have the usual coupling |
| 6665 | between global GOT entries and .dynsym entries. */ |
| 6666 | if (h != NULL && !htab->is_vxworks) |
| 6667 | { |
| 6668 | if (dynobj == NULL) |
| 6669 | elf_hash_table (info)->dynobj = dynobj = abfd; |
| 6670 | if (! mips_elf_create_got_section (dynobj, info, TRUE)) |
| 6671 | return FALSE; |
| 6672 | g = mips_elf_got_info (dynobj, &sgot); |
| 6673 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
| 6674 | return FALSE; |
| 6675 | } |
| 6676 | } |
| 6677 | |
| 6678 | if (SGI_COMPAT (abfd)) |
| 6679 | mips_elf_hash_table (info)->compact_rel_size += |
| 6680 | sizeof (Elf32_External_crinfo); |
| 6681 | break; |
| 6682 | |
| 6683 | case R_MIPS_PC16: |
| 6684 | if (h) |
| 6685 | ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE; |
| 6686 | break; |
| 6687 | |
| 6688 | case R_MIPS_26: |
| 6689 | if (h) |
| 6690 | ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE; |
| 6691 | /* Fall through. */ |
| 6692 | |
| 6693 | case R_MIPS_GPREL16: |
| 6694 | case R_MIPS_LITERAL: |
| 6695 | case R_MIPS_GPREL32: |
| 6696 | if (SGI_COMPAT (abfd)) |
| 6697 | mips_elf_hash_table (info)->compact_rel_size += |
| 6698 | sizeof (Elf32_External_crinfo); |
| 6699 | break; |
| 6700 | |
| 6701 | /* This relocation describes the C++ object vtable hierarchy. |
| 6702 | Reconstruct it for later use during GC. */ |
| 6703 | case R_MIPS_GNU_VTINHERIT: |
| 6704 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| 6705 | return FALSE; |
| 6706 | break; |
| 6707 | |
| 6708 | /* This relocation describes which C++ vtable entries are actually |
| 6709 | used. Record for later use during GC. */ |
| 6710 | case R_MIPS_GNU_VTENTRY: |
| 6711 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
| 6712 | return FALSE; |
| 6713 | break; |
| 6714 | |
| 6715 | default: |
| 6716 | break; |
| 6717 | } |
| 6718 | |
| 6719 | /* We must not create a stub for a symbol that has relocations |
| 6720 | related to taking the function's address. This doesn't apply to |
| 6721 | VxWorks, where CALL relocs refer to a .got.plt entry instead of |
| 6722 | a normal .got entry. */ |
| 6723 | if (!htab->is_vxworks && h != NULL) |
| 6724 | switch (r_type) |
| 6725 | { |
| 6726 | default: |
| 6727 | ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; |
| 6728 | break; |
| 6729 | case R_MIPS_CALL16: |
| 6730 | case R_MIPS_CALL_HI16: |
| 6731 | case R_MIPS_CALL_LO16: |
| 6732 | case R_MIPS_JALR: |
| 6733 | break; |
| 6734 | } |
| 6735 | |
| 6736 | /* If this reloc is not a 16 bit call, and it has a global |
| 6737 | symbol, then we will need the fn_stub if there is one. |
| 6738 | References from a stub section do not count. */ |
| 6739 | if (h != NULL |
| 6740 | && r_type != R_MIPS16_26 |
| 6741 | && !mips16_stub_section_p (abfd, sec)) |
| 6742 | { |
| 6743 | struct mips_elf_link_hash_entry *mh; |
| 6744 | |
| 6745 | mh = (struct mips_elf_link_hash_entry *) h; |
| 6746 | mh->need_fn_stub = TRUE; |
| 6747 | } |
| 6748 | } |
| 6749 | |
| 6750 | return TRUE; |
| 6751 | } |
| 6752 | \f |
| 6753 | bfd_boolean |
| 6754 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
| 6755 | struct bfd_link_info *link_info, |
| 6756 | bfd_boolean *again) |
| 6757 | { |
| 6758 | Elf_Internal_Rela *internal_relocs; |
| 6759 | Elf_Internal_Rela *irel, *irelend; |
| 6760 | Elf_Internal_Shdr *symtab_hdr; |
| 6761 | bfd_byte *contents = NULL; |
| 6762 | size_t extsymoff; |
| 6763 | bfd_boolean changed_contents = FALSE; |
| 6764 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; |
| 6765 | Elf_Internal_Sym *isymbuf = NULL; |
| 6766 | |
| 6767 | /* We are not currently changing any sizes, so only one pass. */ |
| 6768 | *again = FALSE; |
| 6769 | |
| 6770 | if (link_info->relocatable) |
| 6771 | return TRUE; |
| 6772 | |
| 6773 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
| 6774 | link_info->keep_memory); |
| 6775 | if (internal_relocs == NULL) |
| 6776 | return TRUE; |
| 6777 | |
| 6778 | irelend = internal_relocs + sec->reloc_count |
| 6779 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; |
| 6780 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 6781 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; |
| 6782 | |
| 6783 | for (irel = internal_relocs; irel < irelend; irel++) |
| 6784 | { |
| 6785 | bfd_vma symval; |
| 6786 | bfd_signed_vma sym_offset; |
| 6787 | unsigned int r_type; |
| 6788 | unsigned long r_symndx; |
| 6789 | asection *sym_sec; |
| 6790 | unsigned long instruction; |
| 6791 | |
| 6792 | /* Turn jalr into bgezal, and jr into beq, if they're marked |
| 6793 | with a JALR relocation, that indicate where they jump to. |
| 6794 | This saves some pipeline bubbles. */ |
| 6795 | r_type = ELF_R_TYPE (abfd, irel->r_info); |
| 6796 | if (r_type != R_MIPS_JALR) |
| 6797 | continue; |
| 6798 | |
| 6799 | r_symndx = ELF_R_SYM (abfd, irel->r_info); |
| 6800 | /* Compute the address of the jump target. */ |
| 6801 | if (r_symndx >= extsymoff) |
| 6802 | { |
| 6803 | struct mips_elf_link_hash_entry *h |
| 6804 | = ((struct mips_elf_link_hash_entry *) |
| 6805 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); |
| 6806 | |
| 6807 | while (h->root.root.type == bfd_link_hash_indirect |
| 6808 | || h->root.root.type == bfd_link_hash_warning) |
| 6809 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| 6810 | |
| 6811 | /* If a symbol is undefined, or if it may be overridden, |
| 6812 | skip it. */ |
| 6813 | if (! ((h->root.root.type == bfd_link_hash_defined |
| 6814 | || h->root.root.type == bfd_link_hash_defweak) |
| 6815 | && h->root.root.u.def.section) |
| 6816 | || (link_info->shared && ! link_info->symbolic |
| 6817 | && !h->root.forced_local)) |
| 6818 | continue; |
| 6819 | |
| 6820 | sym_sec = h->root.root.u.def.section; |
| 6821 | if (sym_sec->output_section) |
| 6822 | symval = (h->root.root.u.def.value |
| 6823 | + sym_sec->output_section->vma |
| 6824 | + sym_sec->output_offset); |
| 6825 | else |
| 6826 | symval = h->root.root.u.def.value; |
| 6827 | } |
| 6828 | else |
| 6829 | { |
| 6830 | Elf_Internal_Sym *isym; |
| 6831 | |
| 6832 | /* Read this BFD's symbols if we haven't done so already. */ |
| 6833 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) |
| 6834 | { |
| 6835 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| 6836 | if (isymbuf == NULL) |
| 6837 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| 6838 | symtab_hdr->sh_info, 0, |
| 6839 | NULL, NULL, NULL); |
| 6840 | if (isymbuf == NULL) |
| 6841 | goto relax_return; |
| 6842 | } |
| 6843 | |
| 6844 | isym = isymbuf + r_symndx; |
| 6845 | if (isym->st_shndx == SHN_UNDEF) |
| 6846 | continue; |
| 6847 | else if (isym->st_shndx == SHN_ABS) |
| 6848 | sym_sec = bfd_abs_section_ptr; |
| 6849 | else if (isym->st_shndx == SHN_COMMON) |
| 6850 | sym_sec = bfd_com_section_ptr; |
| 6851 | else |
| 6852 | sym_sec |
| 6853 | = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| 6854 | symval = isym->st_value |
| 6855 | + sym_sec->output_section->vma |
| 6856 | + sym_sec->output_offset; |
| 6857 | } |
| 6858 | |
| 6859 | /* Compute branch offset, from delay slot of the jump to the |
| 6860 | branch target. */ |
| 6861 | sym_offset = (symval + irel->r_addend) |
| 6862 | - (sec_start + irel->r_offset + 4); |
| 6863 | |
| 6864 | /* Branch offset must be properly aligned. */ |
| 6865 | if ((sym_offset & 3) != 0) |
| 6866 | continue; |
| 6867 | |
| 6868 | sym_offset >>= 2; |
| 6869 | |
| 6870 | /* Check that it's in range. */ |
| 6871 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) |
| 6872 | continue; |
| 6873 | |
| 6874 | /* Get the section contents if we haven't done so already. */ |
| 6875 | if (contents == NULL) |
| 6876 | { |
| 6877 | /* Get cached copy if it exists. */ |
| 6878 | if (elf_section_data (sec)->this_hdr.contents != NULL) |
| 6879 | contents = elf_section_data (sec)->this_hdr.contents; |
| 6880 | else |
| 6881 | { |
| 6882 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| 6883 | goto relax_return; |
| 6884 | } |
| 6885 | } |
| 6886 | |
| 6887 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); |
| 6888 | |
| 6889 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ |
| 6890 | if ((instruction & 0xfc1fffff) == 0x0000f809) |
| 6891 | instruction = 0x04110000; |
| 6892 | /* If it was jr <reg>, turn it into b <target>. */ |
| 6893 | else if ((instruction & 0xfc1fffff) == 0x00000008) |
| 6894 | instruction = 0x10000000; |
| 6895 | else |
| 6896 | continue; |
| 6897 | |
| 6898 | instruction |= (sym_offset & 0xffff); |
| 6899 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); |
| 6900 | changed_contents = TRUE; |
| 6901 | } |
| 6902 | |
| 6903 | if (contents != NULL |
| 6904 | && elf_section_data (sec)->this_hdr.contents != contents) |
| 6905 | { |
| 6906 | if (!changed_contents && !link_info->keep_memory) |
| 6907 | free (contents); |
| 6908 | else |
| 6909 | { |
| 6910 | /* Cache the section contents for elf_link_input_bfd. */ |
| 6911 | elf_section_data (sec)->this_hdr.contents = contents; |
| 6912 | } |
| 6913 | } |
| 6914 | return TRUE; |
| 6915 | |
| 6916 | relax_return: |
| 6917 | if (contents != NULL |
| 6918 | && elf_section_data (sec)->this_hdr.contents != contents) |
| 6919 | free (contents); |
| 6920 | return FALSE; |
| 6921 | } |
| 6922 | \f |
| 6923 | /* Adjust a symbol defined by a dynamic object and referenced by a |
| 6924 | regular object. The current definition is in some section of the |
| 6925 | dynamic object, but we're not including those sections. We have to |
| 6926 | change the definition to something the rest of the link can |
| 6927 | understand. */ |
| 6928 | |
| 6929 | bfd_boolean |
| 6930 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
| 6931 | struct elf_link_hash_entry *h) |
| 6932 | { |
| 6933 | bfd *dynobj; |
| 6934 | struct mips_elf_link_hash_entry *hmips; |
| 6935 | asection *s; |
| 6936 | struct mips_elf_link_hash_table *htab; |
| 6937 | |
| 6938 | htab = mips_elf_hash_table (info); |
| 6939 | dynobj = elf_hash_table (info)->dynobj; |
| 6940 | |
| 6941 | /* Make sure we know what is going on here. */ |
| 6942 | BFD_ASSERT (dynobj != NULL |
| 6943 | && (h->needs_plt |
| 6944 | || h->u.weakdef != NULL |
| 6945 | || (h->def_dynamic |
| 6946 | && h->ref_regular |
| 6947 | && !h->def_regular))); |
| 6948 | |
| 6949 | /* If this symbol is defined in a dynamic object, we need to copy |
| 6950 | any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output |
| 6951 | file. */ |
| 6952 | hmips = (struct mips_elf_link_hash_entry *) h; |
| 6953 | if (! info->relocatable |
| 6954 | && hmips->possibly_dynamic_relocs != 0 |
| 6955 | && (h->root.type == bfd_link_hash_defweak |
| 6956 | || !h->def_regular)) |
| 6957 | { |
| 6958 | mips_elf_allocate_dynamic_relocations |
| 6959 | (dynobj, info, hmips->possibly_dynamic_relocs); |
| 6960 | if (hmips->readonly_reloc) |
| 6961 | /* We tell the dynamic linker that there are relocations |
| 6962 | against the text segment. */ |
| 6963 | info->flags |= DF_TEXTREL; |
| 6964 | } |
| 6965 | |
| 6966 | /* For a function, create a stub, if allowed. */ |
| 6967 | if (! hmips->no_fn_stub |
| 6968 | && h->needs_plt) |
| 6969 | { |
| 6970 | if (! elf_hash_table (info)->dynamic_sections_created) |
| 6971 | return TRUE; |
| 6972 | |
| 6973 | /* If this symbol is not defined in a regular file, then set |
| 6974 | the symbol to the stub location. This is required to make |
| 6975 | function pointers compare as equal between the normal |
| 6976 | executable and the shared library. */ |
| 6977 | if (!h->def_regular) |
| 6978 | { |
| 6979 | /* We need .stub section. */ |
| 6980 | s = bfd_get_section_by_name (dynobj, |
| 6981 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); |
| 6982 | BFD_ASSERT (s != NULL); |
| 6983 | |
| 6984 | h->root.u.def.section = s; |
| 6985 | h->root.u.def.value = s->size; |
| 6986 | |
| 6987 | /* XXX Write this stub address somewhere. */ |
| 6988 | h->plt.offset = s->size; |
| 6989 | |
| 6990 | /* Make room for this stub code. */ |
| 6991 | s->size += htab->function_stub_size; |
| 6992 | |
| 6993 | /* The last half word of the stub will be filled with the index |
| 6994 | of this symbol in .dynsym section. */ |
| 6995 | return TRUE; |
| 6996 | } |
| 6997 | } |
| 6998 | else if ((h->type == STT_FUNC) |
| 6999 | && !h->needs_plt) |
| 7000 | { |
| 7001 | /* This will set the entry for this symbol in the GOT to 0, and |
| 7002 | the dynamic linker will take care of this. */ |
| 7003 | h->root.u.def.value = 0; |
| 7004 | return TRUE; |
| 7005 | } |
| 7006 | |
| 7007 | /* If this is a weak symbol, and there is a real definition, the |
| 7008 | processor independent code will have arranged for us to see the |
| 7009 | real definition first, and we can just use the same value. */ |
| 7010 | if (h->u.weakdef != NULL) |
| 7011 | { |
| 7012 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
| 7013 | || h->u.weakdef->root.type == bfd_link_hash_defweak); |
| 7014 | h->root.u.def.section = h->u.weakdef->root.u.def.section; |
| 7015 | h->root.u.def.value = h->u.weakdef->root.u.def.value; |
| 7016 | return TRUE; |
| 7017 | } |
| 7018 | |
| 7019 | /* This is a reference to a symbol defined by a dynamic object which |
| 7020 | is not a function. */ |
| 7021 | |
| 7022 | return TRUE; |
| 7023 | } |
| 7024 | |
| 7025 | /* Likewise, for VxWorks. */ |
| 7026 | |
| 7027 | bfd_boolean |
| 7028 | _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info, |
| 7029 | struct elf_link_hash_entry *h) |
| 7030 | { |
| 7031 | bfd *dynobj; |
| 7032 | struct mips_elf_link_hash_entry *hmips; |
| 7033 | struct mips_elf_link_hash_table *htab; |
| 7034 | unsigned int power_of_two; |
| 7035 | |
| 7036 | htab = mips_elf_hash_table (info); |
| 7037 | dynobj = elf_hash_table (info)->dynobj; |
| 7038 | hmips = (struct mips_elf_link_hash_entry *) h; |
| 7039 | |
| 7040 | /* Make sure we know what is going on here. */ |
| 7041 | BFD_ASSERT (dynobj != NULL |
| 7042 | && (h->needs_plt |
| 7043 | || h->needs_copy |
| 7044 | || h->u.weakdef != NULL |
| 7045 | || (h->def_dynamic |
| 7046 | && h->ref_regular |
| 7047 | && !h->def_regular))); |
| 7048 | |
| 7049 | /* If the symbol is defined by a dynamic object, we need a PLT stub if |
| 7050 | either (a) we want to branch to the symbol or (b) we're linking an |
| 7051 | executable that needs a canonical function address. In the latter |
| 7052 | case, the canonical address will be the address of the executable's |
| 7053 | load stub. */ |
| 7054 | if ((hmips->is_branch_target |
| 7055 | || (!info->shared |
| 7056 | && h->type == STT_FUNC |
| 7057 | && hmips->is_relocation_target)) |
| 7058 | && h->def_dynamic |
| 7059 | && h->ref_regular |
| 7060 | && !h->def_regular |
| 7061 | && !h->forced_local) |
| 7062 | h->needs_plt = 1; |
| 7063 | |
| 7064 | /* Locally-binding symbols do not need a PLT stub; we can refer to |
| 7065 | the functions directly. */ |
| 7066 | else if (h->needs_plt |
| 7067 | && (SYMBOL_CALLS_LOCAL (info, h) |
| 7068 | || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| 7069 | && h->root.type == bfd_link_hash_undefweak))) |
| 7070 | { |
| 7071 | h->needs_plt = 0; |
| 7072 | return TRUE; |
| 7073 | } |
| 7074 | |
| 7075 | if (h->needs_plt) |
| 7076 | { |
| 7077 | /* If this is the first symbol to need a PLT entry, allocate room |
| 7078 | for the header, and for the header's .rela.plt.unloaded entries. */ |
| 7079 | if (htab->splt->size == 0) |
| 7080 | { |
| 7081 | htab->splt->size += htab->plt_header_size; |
| 7082 | if (!info->shared) |
| 7083 | htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); |
| 7084 | } |
| 7085 | |
| 7086 | /* Assign the next .plt entry to this symbol. */ |
| 7087 | h->plt.offset = htab->splt->size; |
| 7088 | htab->splt->size += htab->plt_entry_size; |
| 7089 | |
| 7090 | /* If the output file has no definition of the symbol, set the |
| 7091 | symbol's value to the address of the stub. For executables, |
| 7092 | point at the PLT load stub rather than the lazy resolution stub; |
| 7093 | this stub will become the canonical function address. */ |
| 7094 | if (!h->def_regular) |
| 7095 | { |
| 7096 | h->root.u.def.section = htab->splt; |
| 7097 | h->root.u.def.value = h->plt.offset; |
| 7098 | if (!info->shared) |
| 7099 | h->root.u.def.value += 8; |
| 7100 | } |
| 7101 | |
| 7102 | /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */ |
| 7103 | htab->sgotplt->size += 4; |
| 7104 | htab->srelplt->size += sizeof (Elf32_External_Rela); |
| 7105 | |
| 7106 | /* Make room for the .rela.plt.unloaded relocations. */ |
| 7107 | if (!info->shared) |
| 7108 | htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); |
| 7109 | |
| 7110 | return TRUE; |
| 7111 | } |
| 7112 | |
| 7113 | /* If a function symbol is defined by a dynamic object, and we do not |
| 7114 | need a PLT stub for it, the symbol's value should be zero. */ |
| 7115 | if (h->type == STT_FUNC |
| 7116 | && h->def_dynamic |
| 7117 | && h->ref_regular |
| 7118 | && !h->def_regular) |
| 7119 | { |
| 7120 | h->root.u.def.value = 0; |
| 7121 | return TRUE; |
| 7122 | } |
| 7123 | |
| 7124 | /* If this is a weak symbol, and there is a real definition, the |
| 7125 | processor independent code will have arranged for us to see the |
| 7126 | real definition first, and we can just use the same value. */ |
| 7127 | if (h->u.weakdef != NULL) |
| 7128 | { |
| 7129 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
| 7130 | || h->u.weakdef->root.type == bfd_link_hash_defweak); |
| 7131 | h->root.u.def.section = h->u.weakdef->root.u.def.section; |
| 7132 | h->root.u.def.value = h->u.weakdef->root.u.def.value; |
| 7133 | return TRUE; |
| 7134 | } |
| 7135 | |
| 7136 | /* This is a reference to a symbol defined by a dynamic object which |
| 7137 | is not a function. */ |
| 7138 | if (info->shared) |
| 7139 | return TRUE; |
| 7140 | |
| 7141 | /* We must allocate the symbol in our .dynbss section, which will |
| 7142 | become part of the .bss section of the executable. There will be |
| 7143 | an entry for this symbol in the .dynsym section. The dynamic |
| 7144 | object will contain position independent code, so all references |
| 7145 | from the dynamic object to this symbol will go through the global |
| 7146 | offset table. The dynamic linker will use the .dynsym entry to |
| 7147 | determine the address it must put in the global offset table, so |
| 7148 | both the dynamic object and the regular object will refer to the |
| 7149 | same memory location for the variable. */ |
| 7150 | |
| 7151 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) |
| 7152 | { |
| 7153 | htab->srelbss->size += sizeof (Elf32_External_Rela); |
| 7154 | h->needs_copy = 1; |
| 7155 | } |
| 7156 | |
| 7157 | /* We need to figure out the alignment required for this symbol. */ |
| 7158 | power_of_two = bfd_log2 (h->size); |
| 7159 | if (power_of_two > 4) |
| 7160 | power_of_two = 4; |
| 7161 | |
| 7162 | /* Apply the required alignment. */ |
| 7163 | htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size, |
| 7164 | (bfd_size_type) 1 << power_of_two); |
| 7165 | if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss) |
| 7166 | && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two)) |
| 7167 | return FALSE; |
| 7168 | |
| 7169 | /* Define the symbol as being at this point in the section. */ |
| 7170 | h->root.u.def.section = htab->sdynbss; |
| 7171 | h->root.u.def.value = htab->sdynbss->size; |
| 7172 | |
| 7173 | /* Increment the section size to make room for the symbol. */ |
| 7174 | htab->sdynbss->size += h->size; |
| 7175 | |
| 7176 | return TRUE; |
| 7177 | } |
| 7178 | \f |
| 7179 | /* Return the number of dynamic section symbols required by OUTPUT_BFD. |
| 7180 | The number might be exact or a worst-case estimate, depending on how |
| 7181 | much information is available to elf_backend_omit_section_dynsym at |
| 7182 | the current linking stage. */ |
| 7183 | |
| 7184 | static bfd_size_type |
| 7185 | count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) |
| 7186 | { |
| 7187 | bfd_size_type count; |
| 7188 | |
| 7189 | count = 0; |
| 7190 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) |
| 7191 | { |
| 7192 | asection *p; |
| 7193 | const struct elf_backend_data *bed; |
| 7194 | |
| 7195 | bed = get_elf_backend_data (output_bfd); |
| 7196 | for (p = output_bfd->sections; p ; p = p->next) |
| 7197 | if ((p->flags & SEC_EXCLUDE) == 0 |
| 7198 | && (p->flags & SEC_ALLOC) != 0 |
| 7199 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) |
| 7200 | ++count; |
| 7201 | } |
| 7202 | return count; |
| 7203 | } |
| 7204 | |
| 7205 | /* This function is called after all the input files have been read, |
| 7206 | and the input sections have been assigned to output sections. We |
| 7207 | check for any mips16 stub sections that we can discard. */ |
| 7208 | |
| 7209 | bfd_boolean |
| 7210 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
| 7211 | struct bfd_link_info *info) |
| 7212 | { |
| 7213 | asection *ri; |
| 7214 | |
| 7215 | bfd *dynobj; |
| 7216 | asection *s; |
| 7217 | struct mips_got_info *g; |
| 7218 | int i; |
| 7219 | bfd_size_type loadable_size = 0; |
| 7220 | bfd_size_type local_gotno; |
| 7221 | bfd_size_type dynsymcount; |
| 7222 | bfd *sub; |
| 7223 | struct mips_elf_count_tls_arg count_tls_arg; |
| 7224 | struct mips_elf_link_hash_table *htab; |
| 7225 | |
| 7226 | htab = mips_elf_hash_table (info); |
| 7227 | |
| 7228 | /* The .reginfo section has a fixed size. */ |
| 7229 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); |
| 7230 | if (ri != NULL) |
| 7231 | bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); |
| 7232 | |
| 7233 | if (! (info->relocatable |
| 7234 | || ! mips_elf_hash_table (info)->mips16_stubs_seen)) |
| 7235 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
| 7236 | mips_elf_check_mips16_stubs, NULL); |
| 7237 | |
| 7238 | dynobj = elf_hash_table (info)->dynobj; |
| 7239 | if (dynobj == NULL) |
| 7240 | /* Relocatable links don't have it. */ |
| 7241 | return TRUE; |
| 7242 | |
| 7243 | g = mips_elf_got_info (dynobj, &s); |
| 7244 | if (s == NULL) |
| 7245 | return TRUE; |
| 7246 | |
| 7247 | /* Calculate the total loadable size of the output. That |
| 7248 | will give us the maximum number of GOT_PAGE entries |
| 7249 | required. */ |
| 7250 | for (sub = info->input_bfds; sub; sub = sub->link_next) |
| 7251 | { |
| 7252 | asection *subsection; |
| 7253 | |
| 7254 | for (subsection = sub->sections; |
| 7255 | subsection; |
| 7256 | subsection = subsection->next) |
| 7257 | { |
| 7258 | if ((subsection->flags & SEC_ALLOC) == 0) |
| 7259 | continue; |
| 7260 | loadable_size += ((subsection->size + 0xf) |
| 7261 | &~ (bfd_size_type) 0xf); |
| 7262 | } |
| 7263 | } |
| 7264 | |
| 7265 | /* There has to be a global GOT entry for every symbol with |
| 7266 | a dynamic symbol table index of DT_MIPS_GOTSYM or |
| 7267 | higher. Therefore, it make sense to put those symbols |
| 7268 | that need GOT entries at the end of the symbol table. We |
| 7269 | do that here. */ |
| 7270 | if (! mips_elf_sort_hash_table (info, 1)) |
| 7271 | return FALSE; |
| 7272 | |
| 7273 | if (g->global_gotsym != NULL) |
| 7274 | i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; |
| 7275 | else |
| 7276 | /* If there are no global symbols, or none requiring |
| 7277 | relocations, then GLOBAL_GOTSYM will be NULL. */ |
| 7278 | i = 0; |
| 7279 | |
| 7280 | /* Get a worst-case estimate of the number of dynamic symbols needed. |
| 7281 | At this point, dynsymcount does not account for section symbols |
| 7282 | and count_section_dynsyms may overestimate the number that will |
| 7283 | be needed. */ |
| 7284 | dynsymcount = (elf_hash_table (info)->dynsymcount |
| 7285 | + count_section_dynsyms (output_bfd, info)); |
| 7286 | |
| 7287 | /* Determine the size of one stub entry. */ |
| 7288 | htab->function_stub_size = (dynsymcount > 0x10000 |
| 7289 | ? MIPS_FUNCTION_STUB_BIG_SIZE |
| 7290 | : MIPS_FUNCTION_STUB_NORMAL_SIZE); |
| 7291 | |
| 7292 | /* In the worst case, we'll get one stub per dynamic symbol, plus |
| 7293 | one to account for the dummy entry at the end required by IRIX |
| 7294 | rld. */ |
| 7295 | loadable_size += htab->function_stub_size * (i + 1); |
| 7296 | |
| 7297 | if (htab->is_vxworks) |
| 7298 | /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16 |
| 7299 | relocations against local symbols evaluate to "G", and the EABI does |
| 7300 | not include R_MIPS_GOT_PAGE. */ |
| 7301 | local_gotno = 0; |
| 7302 | else |
| 7303 | /* Assume there are two loadable segments consisting of contiguous |
| 7304 | sections. Is 5 enough? */ |
| 7305 | local_gotno = (loadable_size >> 16) + 5; |
| 7306 | |
| 7307 | g->local_gotno += local_gotno; |
| 7308 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
| 7309 | |
| 7310 | g->global_gotno = i; |
| 7311 | s->size += i * MIPS_ELF_GOT_SIZE (output_bfd); |
| 7312 | |
| 7313 | /* We need to calculate tls_gotno for global symbols at this point |
| 7314 | instead of building it up earlier, to avoid doublecounting |
| 7315 | entries for one global symbol from multiple input files. */ |
| 7316 | count_tls_arg.info = info; |
| 7317 | count_tls_arg.needed = 0; |
| 7318 | elf_link_hash_traverse (elf_hash_table (info), |
| 7319 | mips_elf_count_global_tls_entries, |
| 7320 | &count_tls_arg); |
| 7321 | g->tls_gotno += count_tls_arg.needed; |
| 7322 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
| 7323 | |
| 7324 | mips_elf_resolve_final_got_entries (g); |
| 7325 | |
| 7326 | /* VxWorks does not support multiple GOTs. It initializes $gp to |
| 7327 | __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the |
| 7328 | dynamic loader. */ |
| 7329 | if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) |
| 7330 | { |
| 7331 | if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno)) |
| 7332 | return FALSE; |
| 7333 | } |
| 7334 | else |
| 7335 | { |
| 7336 | /* Set up TLS entries for the first GOT. */ |
| 7337 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; |
| 7338 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); |
| 7339 | } |
| 7340 | |
| 7341 | return TRUE; |
| 7342 | } |
| 7343 | |
| 7344 | /* Set the sizes of the dynamic sections. */ |
| 7345 | |
| 7346 | bfd_boolean |
| 7347 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
| 7348 | struct bfd_link_info *info) |
| 7349 | { |
| 7350 | bfd *dynobj; |
| 7351 | asection *s, *sreldyn; |
| 7352 | bfd_boolean reltext; |
| 7353 | struct mips_elf_link_hash_table *htab; |
| 7354 | |
| 7355 | htab = mips_elf_hash_table (info); |
| 7356 | dynobj = elf_hash_table (info)->dynobj; |
| 7357 | BFD_ASSERT (dynobj != NULL); |
| 7358 | |
| 7359 | if (elf_hash_table (info)->dynamic_sections_created) |
| 7360 | { |
| 7361 | /* Set the contents of the .interp section to the interpreter. */ |
| 7362 | if (info->executable) |
| 7363 | { |
| 7364 | s = bfd_get_section_by_name (dynobj, ".interp"); |
| 7365 | BFD_ASSERT (s != NULL); |
| 7366 | s->size |
| 7367 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
| 7368 | s->contents |
| 7369 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); |
| 7370 | } |
| 7371 | } |
| 7372 | |
| 7373 | /* The check_relocs and adjust_dynamic_symbol entry points have |
| 7374 | determined the sizes of the various dynamic sections. Allocate |
| 7375 | memory for them. */ |
| 7376 | reltext = FALSE; |
| 7377 | sreldyn = NULL; |
| 7378 | for (s = dynobj->sections; s != NULL; s = s->next) |
| 7379 | { |
| 7380 | const char *name; |
| 7381 | |
| 7382 | /* It's OK to base decisions on the section name, because none |
| 7383 | of the dynobj section names depend upon the input files. */ |
| 7384 | name = bfd_get_section_name (dynobj, s); |
| 7385 | |
| 7386 | if ((s->flags & SEC_LINKER_CREATED) == 0) |
| 7387 | continue; |
| 7388 | |
| 7389 | if (CONST_STRNEQ (name, ".rel")) |
| 7390 | { |
| 7391 | if (s->size != 0) |
| 7392 | { |
| 7393 | const char *outname; |
| 7394 | asection *target; |
| 7395 | |
| 7396 | /* If this relocation section applies to a read only |
| 7397 | section, then we probably need a DT_TEXTREL entry. |
| 7398 | If the relocation section is .rel(a).dyn, we always |
| 7399 | assert a DT_TEXTREL entry rather than testing whether |
| 7400 | there exists a relocation to a read only section or |
| 7401 | not. */ |
| 7402 | outname = bfd_get_section_name (output_bfd, |
| 7403 | s->output_section); |
| 7404 | target = bfd_get_section_by_name (output_bfd, outname + 4); |
| 7405 | if ((target != NULL |
| 7406 | && (target->flags & SEC_READONLY) != 0 |
| 7407 | && (target->flags & SEC_ALLOC) != 0) |
| 7408 | || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
| 7409 | reltext = TRUE; |
| 7410 | |
| 7411 | /* We use the reloc_count field as a counter if we need |
| 7412 | to copy relocs into the output file. */ |
| 7413 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) |
| 7414 | s->reloc_count = 0; |
| 7415 | |
| 7416 | /* If combreloc is enabled, elf_link_sort_relocs() will |
| 7417 | sort relocations, but in a different way than we do, |
| 7418 | and before we're done creating relocations. Also, it |
| 7419 | will move them around between input sections' |
| 7420 | relocation's contents, so our sorting would be |
| 7421 | broken, so don't let it run. */ |
| 7422 | info->combreloc = 0; |
| 7423 | } |
| 7424 | } |
| 7425 | else if (htab->is_vxworks && strcmp (name, ".got") == 0) |
| 7426 | { |
| 7427 | /* Executables do not need a GOT. */ |
| 7428 | if (info->shared) |
| 7429 | { |
| 7430 | /* Allocate relocations for all but the reserved entries. */ |
| 7431 | struct mips_got_info *g; |
| 7432 | unsigned int count; |
| 7433 | |
| 7434 | g = mips_elf_got_info (dynobj, NULL); |
| 7435 | count = (g->global_gotno |
| 7436 | + g->local_gotno |
| 7437 | - MIPS_RESERVED_GOTNO (info)); |
| 7438 | mips_elf_allocate_dynamic_relocations (dynobj, info, count); |
| 7439 | } |
| 7440 | } |
| 7441 | else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got")) |
| 7442 | { |
| 7443 | /* _bfd_mips_elf_always_size_sections() has already done |
| 7444 | most of the work, but some symbols may have been mapped |
| 7445 | to versions that we must now resolve in the got_entries |
| 7446 | hash tables. */ |
| 7447 | struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL); |
| 7448 | struct mips_got_info *g = gg; |
| 7449 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; |
| 7450 | unsigned int needed_relocs = 0; |
| 7451 | |
| 7452 | if (gg->next) |
| 7453 | { |
| 7454 | set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd); |
| 7455 | set_got_offset_arg.info = info; |
| 7456 | |
| 7457 | /* NOTE 2005-02-03: How can this call, or the next, ever |
| 7458 | find any indirect entries to resolve? They were all |
| 7459 | resolved in mips_elf_multi_got. */ |
| 7460 | mips_elf_resolve_final_got_entries (gg); |
| 7461 | for (g = gg->next; g && g->next != gg; g = g->next) |
| 7462 | { |
| 7463 | unsigned int save_assign; |
| 7464 | |
| 7465 | mips_elf_resolve_final_got_entries (g); |
| 7466 | |
| 7467 | /* Assign offsets to global GOT entries. */ |
| 7468 | save_assign = g->assigned_gotno; |
| 7469 | g->assigned_gotno = g->local_gotno; |
| 7470 | set_got_offset_arg.g = g; |
| 7471 | set_got_offset_arg.needed_relocs = 0; |
| 7472 | htab_traverse (g->got_entries, |
| 7473 | mips_elf_set_global_got_offset, |
| 7474 | &set_got_offset_arg); |
| 7475 | needed_relocs += set_got_offset_arg.needed_relocs; |
| 7476 | BFD_ASSERT (g->assigned_gotno - g->local_gotno |
| 7477 | <= g->global_gotno); |
| 7478 | |
| 7479 | g->assigned_gotno = save_assign; |
| 7480 | if (info->shared) |
| 7481 | { |
| 7482 | needed_relocs += g->local_gotno - g->assigned_gotno; |
| 7483 | BFD_ASSERT (g->assigned_gotno == g->next->local_gotno |
| 7484 | + g->next->global_gotno |
| 7485 | + g->next->tls_gotno |
| 7486 | + MIPS_RESERVED_GOTNO (info)); |
| 7487 | } |
| 7488 | } |
| 7489 | } |
| 7490 | else |
| 7491 | { |
| 7492 | struct mips_elf_count_tls_arg arg; |
| 7493 | arg.info = info; |
| 7494 | arg.needed = 0; |
| 7495 | |
| 7496 | htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs, |
| 7497 | &arg); |
| 7498 | elf_link_hash_traverse (elf_hash_table (info), |
| 7499 | mips_elf_count_global_tls_relocs, |
| 7500 | &arg); |
| 7501 | |
| 7502 | needed_relocs += arg.needed; |
| 7503 | } |
| 7504 | |
| 7505 | if (needed_relocs) |
| 7506 | mips_elf_allocate_dynamic_relocations (dynobj, info, |
| 7507 | needed_relocs); |
| 7508 | } |
| 7509 | else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) |
| 7510 | { |
| 7511 | /* IRIX rld assumes that the function stub isn't at the end |
| 7512 | of .text section. So put a dummy. XXX */ |
| 7513 | s->size += htab->function_stub_size; |
| 7514 | } |
| 7515 | else if (! info->shared |
| 7516 | && ! mips_elf_hash_table (info)->use_rld_obj_head |
| 7517 | && CONST_STRNEQ (name, ".rld_map")) |
| 7518 | { |
| 7519 | /* We add a room for __rld_map. It will be filled in by the |
| 7520 | rtld to contain a pointer to the _r_debug structure. */ |
| 7521 | s->size += 4; |
| 7522 | } |
| 7523 | else if (SGI_COMPAT (output_bfd) |
| 7524 | && CONST_STRNEQ (name, ".compact_rel")) |
| 7525 | s->size += mips_elf_hash_table (info)->compact_rel_size; |
| 7526 | else if (! CONST_STRNEQ (name, ".init") |
| 7527 | && s != htab->sgotplt |
| 7528 | && s != htab->splt) |
| 7529 | { |
| 7530 | /* It's not one of our sections, so don't allocate space. */ |
| 7531 | continue; |
| 7532 | } |
| 7533 | |
| 7534 | if (s->size == 0) |
| 7535 | { |
| 7536 | s->flags |= SEC_EXCLUDE; |
| 7537 | continue; |
| 7538 | } |
| 7539 | |
| 7540 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| 7541 | continue; |
| 7542 | |
| 7543 | /* Allocate memory for this section last, since we may increase its |
| 7544 | size above. */ |
| 7545 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
| 7546 | { |
| 7547 | sreldyn = s; |
| 7548 | continue; |
| 7549 | } |
| 7550 | |
| 7551 | /* Allocate memory for the section contents. */ |
| 7552 | s->contents = bfd_zalloc (dynobj, s->size); |
| 7553 | if (s->contents == NULL) |
| 7554 | { |
| 7555 | bfd_set_error (bfd_error_no_memory); |
| 7556 | return FALSE; |
| 7557 | } |
| 7558 | } |
| 7559 | |
| 7560 | /* Allocate memory for the .rel(a).dyn section. */ |
| 7561 | if (sreldyn != NULL) |
| 7562 | { |
| 7563 | sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size); |
| 7564 | if (sreldyn->contents == NULL) |
| 7565 | { |
| 7566 | bfd_set_error (bfd_error_no_memory); |
| 7567 | return FALSE; |
| 7568 | } |
| 7569 | } |
| 7570 | |
| 7571 | if (elf_hash_table (info)->dynamic_sections_created) |
| 7572 | { |
| 7573 | /* Add some entries to the .dynamic section. We fill in the |
| 7574 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we |
| 7575 | must add the entries now so that we get the correct size for |
| 7576 | the .dynamic section. The DT_DEBUG entry is filled in by the |
| 7577 | dynamic linker and used by the debugger. */ |
| 7578 | if (info->executable) |
| 7579 | { |
| 7580 | /* SGI object has the equivalence of DT_DEBUG in the |
| 7581 | DT_MIPS_RLD_MAP entry. */ |
| 7582 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) |
| 7583 | return FALSE; |
| 7584 | if (!SGI_COMPAT (output_bfd)) |
| 7585 | { |
| 7586 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) |
| 7587 | return FALSE; |
| 7588 | } |
| 7589 | } |
| 7590 | |
| 7591 | if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) |
| 7592 | info->flags |= DF_TEXTREL; |
| 7593 | |
| 7594 | if ((info->flags & DF_TEXTREL) != 0) |
| 7595 | { |
| 7596 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) |
| 7597 | return FALSE; |
| 7598 | |
| 7599 | /* Clear the DF_TEXTREL flag. It will be set again if we |
| 7600 | write out an actual text relocation; we may not, because |
| 7601 | at this point we do not know whether e.g. any .eh_frame |
| 7602 | absolute relocations have been converted to PC-relative. */ |
| 7603 | info->flags &= ~DF_TEXTREL; |
| 7604 | } |
| 7605 | |
| 7606 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) |
| 7607 | return FALSE; |
| 7608 | |
| 7609 | if (htab->is_vxworks) |
| 7610 | { |
| 7611 | /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not |
| 7612 | use any of the DT_MIPS_* tags. */ |
| 7613 | if (mips_elf_rel_dyn_section (info, FALSE)) |
| 7614 | { |
| 7615 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) |
| 7616 | return FALSE; |
| 7617 | |
| 7618 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) |
| 7619 | return FALSE; |
| 7620 | |
| 7621 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) |
| 7622 | return FALSE; |
| 7623 | } |
| 7624 | if (htab->splt->size > 0) |
| 7625 | { |
| 7626 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) |
| 7627 | return FALSE; |
| 7628 | |
| 7629 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) |
| 7630 | return FALSE; |
| 7631 | |
| 7632 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) |
| 7633 | return FALSE; |
| 7634 | } |
| 7635 | } |
| 7636 | else |
| 7637 | { |
| 7638 | if (mips_elf_rel_dyn_section (info, FALSE)) |
| 7639 | { |
| 7640 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) |
| 7641 | return FALSE; |
| 7642 | |
| 7643 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
| 7644 | return FALSE; |
| 7645 | |
| 7646 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
| 7647 | return FALSE; |
| 7648 | } |
| 7649 | |
| 7650 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
| 7651 | return FALSE; |
| 7652 | |
| 7653 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
| 7654 | return FALSE; |
| 7655 | |
| 7656 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
| 7657 | return FALSE; |
| 7658 | |
| 7659 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
| 7660 | return FALSE; |
| 7661 | |
| 7662 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
| 7663 | return FALSE; |
| 7664 | |
| 7665 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
| 7666 | return FALSE; |
| 7667 | |
| 7668 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
| 7669 | return FALSE; |
| 7670 | |
| 7671 | if (IRIX_COMPAT (dynobj) == ict_irix5 |
| 7672 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) |
| 7673 | return FALSE; |
| 7674 | |
| 7675 | if (IRIX_COMPAT (dynobj) == ict_irix6 |
| 7676 | && (bfd_get_section_by_name |
| 7677 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) |
| 7678 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) |
| 7679 | return FALSE; |
| 7680 | } |
| 7681 | } |
| 7682 | |
| 7683 | return TRUE; |
| 7684 | } |
| 7685 | \f |
| 7686 | /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. |
| 7687 | Adjust its R_ADDEND field so that it is correct for the output file. |
| 7688 | LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols |
| 7689 | and sections respectively; both use symbol indexes. */ |
| 7690 | |
| 7691 | static void |
| 7692 | mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, |
| 7693 | bfd *input_bfd, Elf_Internal_Sym *local_syms, |
| 7694 | asection **local_sections, Elf_Internal_Rela *rel) |
| 7695 | { |
| 7696 | unsigned int r_type, r_symndx; |
| 7697 | Elf_Internal_Sym *sym; |
| 7698 | asection *sec; |
| 7699 | |
| 7700 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE)) |
| 7701 | { |
| 7702 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
| 7703 | if (r_type == R_MIPS16_GPREL |
| 7704 | || r_type == R_MIPS_GPREL16 |
| 7705 | || r_type == R_MIPS_GPREL32 |
| 7706 | || r_type == R_MIPS_LITERAL) |
| 7707 | { |
| 7708 | rel->r_addend += _bfd_get_gp_value (input_bfd); |
| 7709 | rel->r_addend -= _bfd_get_gp_value (output_bfd); |
| 7710 | } |
| 7711 | |
| 7712 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); |
| 7713 | sym = local_syms + r_symndx; |
| 7714 | |
| 7715 | /* Adjust REL's addend to account for section merging. */ |
| 7716 | if (!info->relocatable) |
| 7717 | { |
| 7718 | sec = local_sections[r_symndx]; |
| 7719 | _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| 7720 | } |
| 7721 | |
| 7722 | /* This would normally be done by the rela_normal code in elflink.c. */ |
| 7723 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
| 7724 | rel->r_addend += local_sections[r_symndx]->output_offset; |
| 7725 | } |
| 7726 | } |
| 7727 | |
| 7728 | /* Relocate a MIPS ELF section. */ |
| 7729 | |
| 7730 | bfd_boolean |
| 7731 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
| 7732 | bfd *input_bfd, asection *input_section, |
| 7733 | bfd_byte *contents, Elf_Internal_Rela *relocs, |
| 7734 | Elf_Internal_Sym *local_syms, |
| 7735 | asection **local_sections) |
| 7736 | { |
| 7737 | Elf_Internal_Rela *rel; |
| 7738 | const Elf_Internal_Rela *relend; |
| 7739 | bfd_vma addend = 0; |
| 7740 | bfd_boolean use_saved_addend_p = FALSE; |
| 7741 | const struct elf_backend_data *bed; |
| 7742 | |
| 7743 | bed = get_elf_backend_data (output_bfd); |
| 7744 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; |
| 7745 | for (rel = relocs; rel < relend; ++rel) |
| 7746 | { |
| 7747 | const char *name; |
| 7748 | bfd_vma value = 0; |
| 7749 | reloc_howto_type *howto; |
| 7750 | bfd_boolean require_jalx; |
| 7751 | /* TRUE if the relocation is a RELA relocation, rather than a |
| 7752 | REL relocation. */ |
| 7753 | bfd_boolean rela_relocation_p = TRUE; |
| 7754 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
| 7755 | const char *msg; |
| 7756 | unsigned long r_symndx; |
| 7757 | asection *sec; |
| 7758 | Elf_Internal_Shdr *symtab_hdr; |
| 7759 | struct elf_link_hash_entry *h; |
| 7760 | |
| 7761 | /* Find the relocation howto for this relocation. */ |
| 7762 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, |
| 7763 | NEWABI_P (input_bfd) |
| 7764 | && (MIPS_RELOC_RELA_P |
| 7765 | (input_bfd, input_section, |
| 7766 | rel - relocs))); |
| 7767 | |
| 7768 | r_symndx = ELF_R_SYM (input_bfd, rel->r_info); |
| 7769 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 7770 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE)) |
| 7771 | { |
| 7772 | sec = local_sections[r_symndx]; |
| 7773 | h = NULL; |
| 7774 | } |
| 7775 | else |
| 7776 | { |
| 7777 | unsigned long extsymoff; |
| 7778 | |
| 7779 | extsymoff = 0; |
| 7780 | if (!elf_bad_symtab (input_bfd)) |
| 7781 | extsymoff = symtab_hdr->sh_info; |
| 7782 | h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; |
| 7783 | while (h->root.type == bfd_link_hash_indirect |
| 7784 | || h->root.type == bfd_link_hash_warning) |
| 7785 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 7786 | |
| 7787 | sec = NULL; |
| 7788 | if (h->root.type == bfd_link_hash_defined |
| 7789 | || h->root.type == bfd_link_hash_defweak) |
| 7790 | sec = h->root.u.def.section; |
| 7791 | } |
| 7792 | |
| 7793 | if (sec != NULL && elf_discarded_section (sec)) |
| 7794 | { |
| 7795 | /* For relocs against symbols from removed linkonce sections, |
| 7796 | or sections discarded by a linker script, we just want the |
| 7797 | section contents zeroed. Avoid any special processing. */ |
| 7798 | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); |
| 7799 | rel->r_info = 0; |
| 7800 | rel->r_addend = 0; |
| 7801 | continue; |
| 7802 | } |
| 7803 | |
| 7804 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
| 7805 | { |
| 7806 | /* Some 32-bit code uses R_MIPS_64. In particular, people use |
| 7807 | 64-bit code, but make sure all their addresses are in the |
| 7808 | lowermost or uppermost 32-bit section of the 64-bit address |
| 7809 | space. Thus, when they use an R_MIPS_64 they mean what is |
| 7810 | usually meant by R_MIPS_32, with the exception that the |
| 7811 | stored value is sign-extended to 64 bits. */ |
| 7812 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
| 7813 | |
| 7814 | /* On big-endian systems, we need to lie about the position |
| 7815 | of the reloc. */ |
| 7816 | if (bfd_big_endian (input_bfd)) |
| 7817 | rel->r_offset += 4; |
| 7818 | } |
| 7819 | |
| 7820 | if (!use_saved_addend_p) |
| 7821 | { |
| 7822 | Elf_Internal_Shdr *rel_hdr; |
| 7823 | |
| 7824 | /* If these relocations were originally of the REL variety, |
| 7825 | we must pull the addend out of the field that will be |
| 7826 | relocated. Otherwise, we simply use the contents of the |
| 7827 | RELA relocation. To determine which flavor or relocation |
| 7828 | this is, we depend on the fact that the INPUT_SECTION's |
| 7829 | REL_HDR is read before its REL_HDR2. */ |
| 7830 | rel_hdr = &elf_section_data (input_section)->rel_hdr; |
| 7831 | if ((size_t) (rel - relocs) |
| 7832 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) |
| 7833 | rel_hdr = elf_section_data (input_section)->rel_hdr2; |
| 7834 | if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) |
| 7835 | { |
| 7836 | bfd_byte *location = contents + rel->r_offset; |
| 7837 | |
| 7838 | /* Note that this is a REL relocation. */ |
| 7839 | rela_relocation_p = FALSE; |
| 7840 | |
| 7841 | /* Get the addend, which is stored in the input file. */ |
| 7842 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, |
| 7843 | location); |
| 7844 | addend = mips_elf_obtain_contents (howto, rel, input_bfd, |
| 7845 | contents); |
| 7846 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE, |
| 7847 | location); |
| 7848 | |
| 7849 | addend &= howto->src_mask; |
| 7850 | |
| 7851 | /* For some kinds of relocations, the ADDEND is a |
| 7852 | combination of the addend stored in two different |
| 7853 | relocations. */ |
| 7854 | if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16 |
| 7855 | || (r_type == R_MIPS_GOT16 |
| 7856 | && mips_elf_local_relocation_p (input_bfd, rel, |
| 7857 | local_sections, FALSE))) |
| 7858 | { |
| 7859 | const Elf_Internal_Rela *lo16_relocation; |
| 7860 | reloc_howto_type *lo16_howto; |
| 7861 | int lo16_type; |
| 7862 | |
| 7863 | if (r_type == R_MIPS16_HI16) |
| 7864 | lo16_type = R_MIPS16_LO16; |
| 7865 | else |
| 7866 | lo16_type = R_MIPS_LO16; |
| 7867 | |
| 7868 | /* The combined value is the sum of the HI16 addend, |
| 7869 | left-shifted by sixteen bits, and the LO16 |
| 7870 | addend, sign extended. (Usually, the code does |
| 7871 | a `lui' of the HI16 value, and then an `addiu' of |
| 7872 | the LO16 value.) |
| 7873 | |
| 7874 | Scan ahead to find a matching LO16 relocation. |
| 7875 | |
| 7876 | According to the MIPS ELF ABI, the R_MIPS_LO16 |
| 7877 | relocation must be immediately following. |
| 7878 | However, for the IRIX6 ABI, the next relocation |
| 7879 | may be a composed relocation consisting of |
| 7880 | several relocations for the same address. In |
| 7881 | that case, the R_MIPS_LO16 relocation may occur |
| 7882 | as one of these. We permit a similar extension |
| 7883 | in general, as that is useful for GCC. |
| 7884 | |
| 7885 | In some cases GCC dead code elimination removes |
| 7886 | the LO16 but keeps the corresponding HI16. This |
| 7887 | is strictly speaking a violation of the ABI but |
| 7888 | not immediately harmful. */ |
| 7889 | lo16_relocation = mips_elf_next_relocation (input_bfd, |
| 7890 | lo16_type, |
| 7891 | rel, relend); |
| 7892 | if (lo16_relocation == NULL) |
| 7893 | { |
| 7894 | const char *name; |
| 7895 | |
| 7896 | if (h) |
| 7897 | name = h->root.root.string; |
| 7898 | else |
| 7899 | name = bfd_elf_sym_name (input_bfd, symtab_hdr, |
| 7900 | local_syms + r_symndx, |
| 7901 | sec); |
| 7902 | (*_bfd_error_handler) |
| 7903 | (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), |
| 7904 | input_bfd, input_section, name, howto->name, |
| 7905 | rel->r_offset); |
| 7906 | } |
| 7907 | else |
| 7908 | { |
| 7909 | bfd_byte *lo16_location; |
| 7910 | bfd_vma l; |
| 7911 | |
| 7912 | lo16_location = contents + lo16_relocation->r_offset; |
| 7913 | |
| 7914 | /* Obtain the addend kept there. */ |
| 7915 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, |
| 7916 | lo16_type, FALSE); |
| 7917 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, |
| 7918 | FALSE, lo16_location); |
| 7919 | l = mips_elf_obtain_contents (lo16_howto, |
| 7920 | lo16_relocation, |
| 7921 | input_bfd, contents); |
| 7922 | _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, |
| 7923 | FALSE, lo16_location); |
| 7924 | l &= lo16_howto->src_mask; |
| 7925 | l <<= lo16_howto->rightshift; |
| 7926 | l = _bfd_mips_elf_sign_extend (l, 16); |
| 7927 | |
| 7928 | addend <<= 16; |
| 7929 | |
| 7930 | /* Compute the combined addend. */ |
| 7931 | addend += l; |
| 7932 | } |
| 7933 | } |
| 7934 | else |
| 7935 | addend <<= howto->rightshift; |
| 7936 | } |
| 7937 | else |
| 7938 | addend = rel->r_addend; |
| 7939 | mips_elf_adjust_addend (output_bfd, info, input_bfd, |
| 7940 | local_syms, local_sections, rel); |
| 7941 | } |
| 7942 | |
| 7943 | if (info->relocatable) |
| 7944 | { |
| 7945 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
| 7946 | && bfd_big_endian (input_bfd)) |
| 7947 | rel->r_offset -= 4; |
| 7948 | |
| 7949 | if (!rela_relocation_p && rel->r_addend) |
| 7950 | { |
| 7951 | addend += rel->r_addend; |
| 7952 | if (r_type == R_MIPS_HI16 |
| 7953 | || r_type == R_MIPS_GOT16) |
| 7954 | addend = mips_elf_high (addend); |
| 7955 | else if (r_type == R_MIPS_HIGHER) |
| 7956 | addend = mips_elf_higher (addend); |
| 7957 | else if (r_type == R_MIPS_HIGHEST) |
| 7958 | addend = mips_elf_highest (addend); |
| 7959 | else |
| 7960 | addend >>= howto->rightshift; |
| 7961 | |
| 7962 | /* We use the source mask, rather than the destination |
| 7963 | mask because the place to which we are writing will be |
| 7964 | source of the addend in the final link. */ |
| 7965 | addend &= howto->src_mask; |
| 7966 | |
| 7967 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
| 7968 | /* See the comment above about using R_MIPS_64 in the 32-bit |
| 7969 | ABI. Here, we need to update the addend. It would be |
| 7970 | possible to get away with just using the R_MIPS_32 reloc |
| 7971 | but for endianness. */ |
| 7972 | { |
| 7973 | bfd_vma sign_bits; |
| 7974 | bfd_vma low_bits; |
| 7975 | bfd_vma high_bits; |
| 7976 | |
| 7977 | if (addend & ((bfd_vma) 1 << 31)) |
| 7978 | #ifdef BFD64 |
| 7979 | sign_bits = ((bfd_vma) 1 << 32) - 1; |
| 7980 | #else |
| 7981 | sign_bits = -1; |
| 7982 | #endif |
| 7983 | else |
| 7984 | sign_bits = 0; |
| 7985 | |
| 7986 | /* If we don't know that we have a 64-bit type, |
| 7987 | do two separate stores. */ |
| 7988 | if (bfd_big_endian (input_bfd)) |
| 7989 | { |
| 7990 | /* Store the sign-bits (which are most significant) |
| 7991 | first. */ |
| 7992 | low_bits = sign_bits; |
| 7993 | high_bits = addend; |
| 7994 | } |
| 7995 | else |
| 7996 | { |
| 7997 | low_bits = addend; |
| 7998 | high_bits = sign_bits; |
| 7999 | } |
| 8000 | bfd_put_32 (input_bfd, low_bits, |
| 8001 | contents + rel->r_offset); |
| 8002 | bfd_put_32 (input_bfd, high_bits, |
| 8003 | contents + rel->r_offset + 4); |
| 8004 | continue; |
| 8005 | } |
| 8006 | |
| 8007 | if (! mips_elf_perform_relocation (info, howto, rel, addend, |
| 8008 | input_bfd, input_section, |
| 8009 | contents, FALSE)) |
| 8010 | return FALSE; |
| 8011 | } |
| 8012 | |
| 8013 | /* Go on to the next relocation. */ |
| 8014 | continue; |
| 8015 | } |
| 8016 | |
| 8017 | /* In the N32 and 64-bit ABIs there may be multiple consecutive |
| 8018 | relocations for the same offset. In that case we are |
| 8019 | supposed to treat the output of each relocation as the addend |
| 8020 | for the next. */ |
| 8021 | if (rel + 1 < relend |
| 8022 | && rel->r_offset == rel[1].r_offset |
| 8023 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) |
| 8024 | use_saved_addend_p = TRUE; |
| 8025 | else |
| 8026 | use_saved_addend_p = FALSE; |
| 8027 | |
| 8028 | /* Figure out what value we are supposed to relocate. */ |
| 8029 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, |
| 8030 | input_section, info, rel, |
| 8031 | addend, howto, local_syms, |
| 8032 | local_sections, &value, |
| 8033 | &name, &require_jalx, |
| 8034 | use_saved_addend_p)) |
| 8035 | { |
| 8036 | case bfd_reloc_continue: |
| 8037 | /* There's nothing to do. */ |
| 8038 | continue; |
| 8039 | |
| 8040 | case bfd_reloc_undefined: |
| 8041 | /* mips_elf_calculate_relocation already called the |
| 8042 | undefined_symbol callback. There's no real point in |
| 8043 | trying to perform the relocation at this point, so we |
| 8044 | just skip ahead to the next relocation. */ |
| 8045 | continue; |
| 8046 | |
| 8047 | case bfd_reloc_notsupported: |
| 8048 | msg = _("internal error: unsupported relocation error"); |
| 8049 | info->callbacks->warning |
| 8050 | (info, msg, name, input_bfd, input_section, rel->r_offset); |
| 8051 | return FALSE; |
| 8052 | |
| 8053 | case bfd_reloc_overflow: |
| 8054 | if (use_saved_addend_p) |
| 8055 | /* Ignore overflow until we reach the last relocation for |
| 8056 | a given location. */ |
| 8057 | ; |
| 8058 | else |
| 8059 | { |
| 8060 | BFD_ASSERT (name != NULL); |
| 8061 | if (! ((*info->callbacks->reloc_overflow) |
| 8062 | (info, NULL, name, howto->name, (bfd_vma) 0, |
| 8063 | input_bfd, input_section, rel->r_offset))) |
| 8064 | return FALSE; |
| 8065 | } |
| 8066 | break; |
| 8067 | |
| 8068 | case bfd_reloc_ok: |
| 8069 | break; |
| 8070 | |
| 8071 | default: |
| 8072 | abort (); |
| 8073 | break; |
| 8074 | } |
| 8075 | |
| 8076 | /* If we've got another relocation for the address, keep going |
| 8077 | until we reach the last one. */ |
| 8078 | if (use_saved_addend_p) |
| 8079 | { |
| 8080 | addend = value; |
| 8081 | continue; |
| 8082 | } |
| 8083 | |
| 8084 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
| 8085 | /* See the comment above about using R_MIPS_64 in the 32-bit |
| 8086 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; |
| 8087 | that calculated the right value. Now, however, we |
| 8088 | sign-extend the 32-bit result to 64-bits, and store it as a |
| 8089 | 64-bit value. We are especially generous here in that we |
| 8090 | go to extreme lengths to support this usage on systems with |
| 8091 | only a 32-bit VMA. */ |
| 8092 | { |
| 8093 | bfd_vma sign_bits; |
| 8094 | bfd_vma low_bits; |
| 8095 | bfd_vma high_bits; |
| 8096 | |
| 8097 | if (value & ((bfd_vma) 1 << 31)) |
| 8098 | #ifdef BFD64 |
| 8099 | sign_bits = ((bfd_vma) 1 << 32) - 1; |
| 8100 | #else |
| 8101 | sign_bits = -1; |
| 8102 | #endif |
| 8103 | else |
| 8104 | sign_bits = 0; |
| 8105 | |
| 8106 | /* If we don't know that we have a 64-bit type, |
| 8107 | do two separate stores. */ |
| 8108 | if (bfd_big_endian (input_bfd)) |
| 8109 | { |
| 8110 | /* Undo what we did above. */ |
| 8111 | rel->r_offset -= 4; |
| 8112 | /* Store the sign-bits (which are most significant) |
| 8113 | first. */ |
| 8114 | low_bits = sign_bits; |
| 8115 | high_bits = value; |
| 8116 | } |
| 8117 | else |
| 8118 | { |
| 8119 | low_bits = value; |
| 8120 | high_bits = sign_bits; |
| 8121 | } |
| 8122 | bfd_put_32 (input_bfd, low_bits, |
| 8123 | contents + rel->r_offset); |
| 8124 | bfd_put_32 (input_bfd, high_bits, |
| 8125 | contents + rel->r_offset + 4); |
| 8126 | continue; |
| 8127 | } |
| 8128 | |
| 8129 | /* Actually perform the relocation. */ |
| 8130 | if (! mips_elf_perform_relocation (info, howto, rel, value, |
| 8131 | input_bfd, input_section, |
| 8132 | contents, require_jalx)) |
| 8133 | return FALSE; |
| 8134 | } |
| 8135 | |
| 8136 | return TRUE; |
| 8137 | } |
| 8138 | \f |
| 8139 | /* If NAME is one of the special IRIX6 symbols defined by the linker, |
| 8140 | adjust it appropriately now. */ |
| 8141 | |
| 8142 | static void |
| 8143 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
| 8144 | const char *name, Elf_Internal_Sym *sym) |
| 8145 | { |
| 8146 | /* The linker script takes care of providing names and values for |
| 8147 | these, but we must place them into the right sections. */ |
| 8148 | static const char* const text_section_symbols[] = { |
| 8149 | "_ftext", |
| 8150 | "_etext", |
| 8151 | "__dso_displacement", |
| 8152 | "__elf_header", |
| 8153 | "__program_header_table", |
| 8154 | NULL |
| 8155 | }; |
| 8156 | |
| 8157 | static const char* const data_section_symbols[] = { |
| 8158 | "_fdata", |
| 8159 | "_edata", |
| 8160 | "_end", |
| 8161 | "_fbss", |
| 8162 | NULL |
| 8163 | }; |
| 8164 | |
| 8165 | const char* const *p; |
| 8166 | int i; |
| 8167 | |
| 8168 | for (i = 0; i < 2; ++i) |
| 8169 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; |
| 8170 | *p; |
| 8171 | ++p) |
| 8172 | if (strcmp (*p, name) == 0) |
| 8173 | { |
| 8174 | /* All of these symbols are given type STT_SECTION by the |
| 8175 | IRIX6 linker. */ |
| 8176 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| 8177 | sym->st_other = STO_PROTECTED; |
| 8178 | |
| 8179 | /* The IRIX linker puts these symbols in special sections. */ |
| 8180 | if (i == 0) |
| 8181 | sym->st_shndx = SHN_MIPS_TEXT; |
| 8182 | else |
| 8183 | sym->st_shndx = SHN_MIPS_DATA; |
| 8184 | |
| 8185 | break; |
| 8186 | } |
| 8187 | } |
| 8188 | |
| 8189 | /* Finish up dynamic symbol handling. We set the contents of various |
| 8190 | dynamic sections here. */ |
| 8191 | |
| 8192 | bfd_boolean |
| 8193 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
| 8194 | struct bfd_link_info *info, |
| 8195 | struct elf_link_hash_entry *h, |
| 8196 | Elf_Internal_Sym *sym) |
| 8197 | { |
| 8198 | bfd *dynobj; |
| 8199 | asection *sgot; |
| 8200 | struct mips_got_info *g, *gg; |
| 8201 | const char *name; |
| 8202 | int idx; |
| 8203 | struct mips_elf_link_hash_table *htab; |
| 8204 | |
| 8205 | htab = mips_elf_hash_table (info); |
| 8206 | dynobj = elf_hash_table (info)->dynobj; |
| 8207 | |
| 8208 | if (h->plt.offset != MINUS_ONE) |
| 8209 | { |
| 8210 | asection *s; |
| 8211 | bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; |
| 8212 | |
| 8213 | /* This symbol has a stub. Set it up. */ |
| 8214 | |
| 8215 | BFD_ASSERT (h->dynindx != -1); |
| 8216 | |
| 8217 | s = bfd_get_section_by_name (dynobj, |
| 8218 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); |
| 8219 | BFD_ASSERT (s != NULL); |
| 8220 | |
| 8221 | BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
| 8222 | || (h->dynindx <= 0xffff)); |
| 8223 | |
| 8224 | /* Values up to 2^31 - 1 are allowed. Larger values would cause |
| 8225 | sign extension at runtime in the stub, resulting in a negative |
| 8226 | index value. */ |
| 8227 | if (h->dynindx & ~0x7fffffff) |
| 8228 | return FALSE; |
| 8229 | |
| 8230 | /* Fill the stub. */ |
| 8231 | idx = 0; |
| 8232 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); |
| 8233 | idx += 4; |
| 8234 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx); |
| 8235 | idx += 4; |
| 8236 | if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
| 8237 | { |
| 8238 | bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), |
| 8239 | stub + idx); |
| 8240 | idx += 4; |
| 8241 | } |
| 8242 | bfd_put_32 (output_bfd, STUB_JALR, stub + idx); |
| 8243 | idx += 4; |
| 8244 | |
| 8245 | /* If a large stub is not required and sign extension is not a |
| 8246 | problem, then use legacy code in the stub. */ |
| 8247 | if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
| 8248 | bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx); |
| 8249 | else if (h->dynindx & ~0x7fff) |
| 8250 | bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx); |
| 8251 | else |
| 8252 | bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), |
| 8253 | stub + idx); |
| 8254 | |
| 8255 | BFD_ASSERT (h->plt.offset <= s->size); |
| 8256 | memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size); |
| 8257 | |
| 8258 | /* Mark the symbol as undefined. plt.offset != -1 occurs |
| 8259 | only for the referenced symbol. */ |
| 8260 | sym->st_shndx = SHN_UNDEF; |
| 8261 | |
| 8262 | /* The run-time linker uses the st_value field of the symbol |
| 8263 | to reset the global offset table entry for this external |
| 8264 | to its stub address when unlinking a shared object. */ |
| 8265 | sym->st_value = (s->output_section->vma + s->output_offset |
| 8266 | + h->plt.offset); |
| 8267 | } |
| 8268 | |
| 8269 | BFD_ASSERT (h->dynindx != -1 |
| 8270 | || h->forced_local); |
| 8271 | |
| 8272 | sgot = mips_elf_got_section (dynobj, FALSE); |
| 8273 | BFD_ASSERT (sgot != NULL); |
| 8274 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
| 8275 | g = mips_elf_section_data (sgot)->u.got_info; |
| 8276 | BFD_ASSERT (g != NULL); |
| 8277 | |
| 8278 | /* Run through the global symbol table, creating GOT entries for all |
| 8279 | the symbols that need them. */ |
| 8280 | if (g->global_gotsym != NULL |
| 8281 | && h->dynindx >= g->global_gotsym->dynindx) |
| 8282 | { |
| 8283 | bfd_vma offset; |
| 8284 | bfd_vma value; |
| 8285 | |
| 8286 | value = sym->st_value; |
| 8287 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info); |
| 8288 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
| 8289 | } |
| 8290 | |
| 8291 | if (g->next && h->dynindx != -1 && h->type != STT_TLS) |
| 8292 | { |
| 8293 | struct mips_got_entry e, *p; |
| 8294 | bfd_vma entry; |
| 8295 | bfd_vma offset; |
| 8296 | |
| 8297 | gg = g; |
| 8298 | |
| 8299 | e.abfd = output_bfd; |
| 8300 | e.symndx = -1; |
| 8301 | e.d.h = (struct mips_elf_link_hash_entry *)h; |
| 8302 | e.tls_type = 0; |
| 8303 | |
| 8304 | for (g = g->next; g->next != gg; g = g->next) |
| 8305 | { |
| 8306 | if (g->got_entries |
| 8307 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, |
| 8308 | &e))) |
| 8309 | { |
| 8310 | offset = p->gotidx; |
| 8311 | if (info->shared |
| 8312 | || (elf_hash_table (info)->dynamic_sections_created |
| 8313 | && p->d.h != NULL |
| 8314 | && p->d.h->root.def_dynamic |
| 8315 | && !p->d.h->root.def_regular)) |
| 8316 | { |
| 8317 | /* Create an R_MIPS_REL32 relocation for this entry. Due to |
| 8318 | the various compatibility problems, it's easier to mock |
| 8319 | up an R_MIPS_32 or R_MIPS_64 relocation and leave |
| 8320 | mips_elf_create_dynamic_relocation to calculate the |
| 8321 | appropriate addend. */ |
| 8322 | Elf_Internal_Rela rel[3]; |
| 8323 | |
| 8324 | memset (rel, 0, sizeof (rel)); |
| 8325 | if (ABI_64_P (output_bfd)) |
| 8326 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); |
| 8327 | else |
| 8328 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); |
| 8329 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; |
| 8330 | |
| 8331 | entry = 0; |
| 8332 | if (! (mips_elf_create_dynamic_relocation |
| 8333 | (output_bfd, info, rel, |
| 8334 | e.d.h, NULL, sym->st_value, &entry, sgot))) |
| 8335 | return FALSE; |
| 8336 | } |
| 8337 | else |
| 8338 | entry = sym->st_value; |
| 8339 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); |
| 8340 | } |
| 8341 | } |
| 8342 | } |
| 8343 | |
| 8344 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
| 8345 | name = h->root.root.string; |
| 8346 | if (strcmp (name, "_DYNAMIC") == 0 |
| 8347 | || h == elf_hash_table (info)->hgot) |
| 8348 | sym->st_shndx = SHN_ABS; |
| 8349 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 |
| 8350 | || strcmp (name, "_DYNAMIC_LINKING") == 0) |
| 8351 | { |
| 8352 | sym->st_shndx = SHN_ABS; |
| 8353 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| 8354 | sym->st_value = 1; |
| 8355 | } |
| 8356 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
| 8357 | { |
| 8358 | sym->st_shndx = SHN_ABS; |
| 8359 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| 8360 | sym->st_value = elf_gp (output_bfd); |
| 8361 | } |
| 8362 | else if (SGI_COMPAT (output_bfd)) |
| 8363 | { |
| 8364 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 |
| 8365 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) |
| 8366 | { |
| 8367 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| 8368 | sym->st_other = STO_PROTECTED; |
| 8369 | sym->st_value = 0; |
| 8370 | sym->st_shndx = SHN_MIPS_DATA; |
| 8371 | } |
| 8372 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) |
| 8373 | { |
| 8374 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| 8375 | sym->st_other = STO_PROTECTED; |
| 8376 | sym->st_value = mips_elf_hash_table (info)->procedure_count; |
| 8377 | sym->st_shndx = SHN_ABS; |
| 8378 | } |
| 8379 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) |
| 8380 | { |
| 8381 | if (h->type == STT_FUNC) |
| 8382 | sym->st_shndx = SHN_MIPS_TEXT; |
| 8383 | else if (h->type == STT_OBJECT) |
| 8384 | sym->st_shndx = SHN_MIPS_DATA; |
| 8385 | } |
| 8386 | } |
| 8387 | |
| 8388 | /* Handle the IRIX6-specific symbols. */ |
| 8389 | if (IRIX_COMPAT (output_bfd) == ict_irix6) |
| 8390 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); |
| 8391 | |
| 8392 | if (! info->shared) |
| 8393 | { |
| 8394 | if (! mips_elf_hash_table (info)->use_rld_obj_head |
| 8395 | && (strcmp (name, "__rld_map") == 0 |
| 8396 | || strcmp (name, "__RLD_MAP") == 0)) |
| 8397 | { |
| 8398 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); |
| 8399 | BFD_ASSERT (s != NULL); |
| 8400 | sym->st_value = s->output_section->vma + s->output_offset; |
| 8401 | bfd_put_32 (output_bfd, 0, s->contents); |
| 8402 | if (mips_elf_hash_table (info)->rld_value == 0) |
| 8403 | mips_elf_hash_table (info)->rld_value = sym->st_value; |
| 8404 | } |
| 8405 | else if (mips_elf_hash_table (info)->use_rld_obj_head |
| 8406 | && strcmp (name, "__rld_obj_head") == 0) |
| 8407 | { |
| 8408 | /* IRIX6 does not use a .rld_map section. */ |
| 8409 | if (IRIX_COMPAT (output_bfd) == ict_irix5 |
| 8410 | || IRIX_COMPAT (output_bfd) == ict_none) |
| 8411 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") |
| 8412 | != NULL); |
| 8413 | mips_elf_hash_table (info)->rld_value = sym->st_value; |
| 8414 | } |
| 8415 | } |
| 8416 | |
| 8417 | /* If this is a mips16 symbol, force the value to be even. */ |
| 8418 | if (sym->st_other == STO_MIPS16) |
| 8419 | sym->st_value &= ~1; |
| 8420 | |
| 8421 | return TRUE; |
| 8422 | } |
| 8423 | |
| 8424 | /* Likewise, for VxWorks. */ |
| 8425 | |
| 8426 | bfd_boolean |
| 8427 | _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, |
| 8428 | struct bfd_link_info *info, |
| 8429 | struct elf_link_hash_entry *h, |
| 8430 | Elf_Internal_Sym *sym) |
| 8431 | { |
| 8432 | bfd *dynobj; |
| 8433 | asection *sgot; |
| 8434 | struct mips_got_info *g; |
| 8435 | struct mips_elf_link_hash_table *htab; |
| 8436 | |
| 8437 | htab = mips_elf_hash_table (info); |
| 8438 | dynobj = elf_hash_table (info)->dynobj; |
| 8439 | |
| 8440 | if (h->plt.offset != (bfd_vma) -1) |
| 8441 | { |
| 8442 | bfd_byte *loc; |
| 8443 | bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset; |
| 8444 | Elf_Internal_Rela rel; |
| 8445 | static const bfd_vma *plt_entry; |
| 8446 | |
| 8447 | BFD_ASSERT (h->dynindx != -1); |
| 8448 | BFD_ASSERT (htab->splt != NULL); |
| 8449 | BFD_ASSERT (h->plt.offset <= htab->splt->size); |
| 8450 | |
| 8451 | /* Calculate the address of the .plt entry. */ |
| 8452 | plt_address = (htab->splt->output_section->vma |
| 8453 | + htab->splt->output_offset |
| 8454 | + h->plt.offset); |
| 8455 | |
| 8456 | /* Calculate the index of the entry. */ |
| 8457 | plt_index = ((h->plt.offset - htab->plt_header_size) |
| 8458 | / htab->plt_entry_size); |
| 8459 | |
| 8460 | /* Calculate the address of the .got.plt entry. */ |
| 8461 | got_address = (htab->sgotplt->output_section->vma |
| 8462 | + htab->sgotplt->output_offset |
| 8463 | + plt_index * 4); |
| 8464 | |
| 8465 | /* Calculate the offset of the .got.plt entry from |
| 8466 | _GLOBAL_OFFSET_TABLE_. */ |
| 8467 | got_offset = mips_elf_gotplt_index (info, h); |
| 8468 | |
| 8469 | /* Calculate the offset for the branch at the start of the PLT |
| 8470 | entry. The branch jumps to the beginning of .plt. */ |
| 8471 | branch_offset = -(h->plt.offset / 4 + 1) & 0xffff; |
| 8472 | |
| 8473 | /* Fill in the initial value of the .got.plt entry. */ |
| 8474 | bfd_put_32 (output_bfd, plt_address, |
| 8475 | htab->sgotplt->contents + plt_index * 4); |
| 8476 | |
| 8477 | /* Find out where the .plt entry should go. */ |
| 8478 | loc = htab->splt->contents + h->plt.offset; |
| 8479 | |
| 8480 | if (info->shared) |
| 8481 | { |
| 8482 | plt_entry = mips_vxworks_shared_plt_entry; |
| 8483 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); |
| 8484 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); |
| 8485 | } |
| 8486 | else |
| 8487 | { |
| 8488 | bfd_vma got_address_high, got_address_low; |
| 8489 | |
| 8490 | plt_entry = mips_vxworks_exec_plt_entry; |
| 8491 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; |
| 8492 | got_address_low = got_address & 0xffff; |
| 8493 | |
| 8494 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); |
| 8495 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); |
| 8496 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); |
| 8497 | bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); |
| 8498 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); |
| 8499 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); |
| 8500 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); |
| 8501 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); |
| 8502 | |
| 8503 | loc = (htab->srelplt2->contents |
| 8504 | + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela)); |
| 8505 | |
| 8506 | /* Emit a relocation for the .got.plt entry. */ |
| 8507 | rel.r_offset = got_address; |
| 8508 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); |
| 8509 | rel.r_addend = h->plt.offset; |
| 8510 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| 8511 | |
| 8512 | /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ |
| 8513 | loc += sizeof (Elf32_External_Rela); |
| 8514 | rel.r_offset = plt_address + 8; |
| 8515 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); |
| 8516 | rel.r_addend = got_offset; |
| 8517 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| 8518 | |
| 8519 | /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ |
| 8520 | loc += sizeof (Elf32_External_Rela); |
| 8521 | rel.r_offset += 4; |
| 8522 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); |
| 8523 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| 8524 | } |
| 8525 | |
| 8526 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ |
| 8527 | loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela); |
| 8528 | rel.r_offset = got_address; |
| 8529 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); |
| 8530 | rel.r_addend = 0; |
| 8531 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| 8532 | |
| 8533 | if (!h->def_regular) |
| 8534 | sym->st_shndx = SHN_UNDEF; |
| 8535 | } |
| 8536 | |
| 8537 | BFD_ASSERT (h->dynindx != -1 || h->forced_local); |
| 8538 | |
| 8539 | sgot = mips_elf_got_section (dynobj, FALSE); |
| 8540 | BFD_ASSERT (sgot != NULL); |
| 8541 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
| 8542 | g = mips_elf_section_data (sgot)->u.got_info; |
| 8543 | BFD_ASSERT (g != NULL); |
| 8544 | |
| 8545 | /* See if this symbol has an entry in the GOT. */ |
| 8546 | if (g->global_gotsym != NULL |
| 8547 | && h->dynindx >= g->global_gotsym->dynindx) |
| 8548 | { |
| 8549 | bfd_vma offset; |
| 8550 | Elf_Internal_Rela outrel; |
| 8551 | bfd_byte *loc; |
| 8552 | asection *s; |
| 8553 | |
| 8554 | /* Install the symbol value in the GOT. */ |
| 8555 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, |
| 8556 | R_MIPS_GOT16, info); |
| 8557 | MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); |
| 8558 | |
| 8559 | /* Add a dynamic relocation for it. */ |
| 8560 | s = mips_elf_rel_dyn_section (info, FALSE); |
| 8561 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); |
| 8562 | outrel.r_offset = (sgot->output_section->vma |
| 8563 | + sgot->output_offset |
| 8564 | + offset); |
| 8565 | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); |
| 8566 | outrel.r_addend = 0; |
| 8567 | bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); |
| 8568 | } |
| 8569 | |
| 8570 | /* Emit a copy reloc, if needed. */ |
| 8571 | if (h->needs_copy) |
| 8572 | { |
| 8573 | Elf_Internal_Rela rel; |
| 8574 | |
| 8575 | BFD_ASSERT (h->dynindx != -1); |
| 8576 | |
| 8577 | rel.r_offset = (h->root.u.def.section->output_section->vma |
| 8578 | + h->root.u.def.section->output_offset |
| 8579 | + h->root.u.def.value); |
| 8580 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); |
| 8581 | rel.r_addend = 0; |
| 8582 | bfd_elf32_swap_reloca_out (output_bfd, &rel, |
| 8583 | htab->srelbss->contents |
| 8584 | + (htab->srelbss->reloc_count |
| 8585 | * sizeof (Elf32_External_Rela))); |
| 8586 | ++htab->srelbss->reloc_count; |
| 8587 | } |
| 8588 | |
| 8589 | /* If this is a mips16 symbol, force the value to be even. */ |
| 8590 | if (sym->st_other == STO_MIPS16) |
| 8591 | sym->st_value &= ~1; |
| 8592 | |
| 8593 | return TRUE; |
| 8594 | } |
| 8595 | |
| 8596 | /* Install the PLT header for a VxWorks executable and finalize the |
| 8597 | contents of .rela.plt.unloaded. */ |
| 8598 | |
| 8599 | static void |
| 8600 | mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) |
| 8601 | { |
| 8602 | Elf_Internal_Rela rela; |
| 8603 | bfd_byte *loc; |
| 8604 | bfd_vma got_value, got_value_high, got_value_low, plt_address; |
| 8605 | static const bfd_vma *plt_entry; |
| 8606 | struct mips_elf_link_hash_table *htab; |
| 8607 | |
| 8608 | htab = mips_elf_hash_table (info); |
| 8609 | plt_entry = mips_vxworks_exec_plt0_entry; |
| 8610 | |
| 8611 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ |
| 8612 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma |
| 8613 | + htab->root.hgot->root.u.def.section->output_offset |
| 8614 | + htab->root.hgot->root.u.def.value); |
| 8615 | |
| 8616 | got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; |
| 8617 | got_value_low = got_value & 0xffff; |
| 8618 | |
| 8619 | /* Calculate the address of the PLT header. */ |
| 8620 | plt_address = htab->splt->output_section->vma + htab->splt->output_offset; |
| 8621 | |
| 8622 | /* Install the PLT header. */ |
| 8623 | loc = htab->splt->contents; |
| 8624 | bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); |
| 8625 | bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); |
| 8626 | bfd_put_32 (output_bfd, plt_entry[2], loc + 8); |
| 8627 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); |
| 8628 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); |
| 8629 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); |
| 8630 | |
| 8631 | /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ |
| 8632 | loc = htab->srelplt2->contents; |
| 8633 | rela.r_offset = plt_address; |
| 8634 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); |
| 8635 | rela.r_addend = 0; |
| 8636 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); |
| 8637 | loc += sizeof (Elf32_External_Rela); |
| 8638 | |
| 8639 | /* Output the relocation for the following addiu of |
| 8640 | %lo(_GLOBAL_OFFSET_TABLE_). */ |
| 8641 | rela.r_offset += 4; |
| 8642 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); |
| 8643 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); |
| 8644 | loc += sizeof (Elf32_External_Rela); |
| 8645 | |
| 8646 | /* Fix up the remaining relocations. They may have the wrong |
| 8647 | symbol index for _G_O_T_ or _P_L_T_ depending on the order |
| 8648 | in which symbols were output. */ |
| 8649 | while (loc < htab->srelplt2->contents + htab->srelplt2->size) |
| 8650 | { |
| 8651 | Elf_Internal_Rela rel; |
| 8652 | |
| 8653 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); |
| 8654 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); |
| 8655 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| 8656 | loc += sizeof (Elf32_External_Rela); |
| 8657 | |
| 8658 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); |
| 8659 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); |
| 8660 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| 8661 | loc += sizeof (Elf32_External_Rela); |
| 8662 | |
| 8663 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); |
| 8664 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); |
| 8665 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| 8666 | loc += sizeof (Elf32_External_Rela); |
| 8667 | } |
| 8668 | } |
| 8669 | |
| 8670 | /* Install the PLT header for a VxWorks shared library. */ |
| 8671 | |
| 8672 | static void |
| 8673 | mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) |
| 8674 | { |
| 8675 | unsigned int i; |
| 8676 | struct mips_elf_link_hash_table *htab; |
| 8677 | |
| 8678 | htab = mips_elf_hash_table (info); |
| 8679 | |
| 8680 | /* We just need to copy the entry byte-by-byte. */ |
| 8681 | for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) |
| 8682 | bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], |
| 8683 | htab->splt->contents + i * 4); |
| 8684 | } |
| 8685 | |
| 8686 | /* Finish up the dynamic sections. */ |
| 8687 | |
| 8688 | bfd_boolean |
| 8689 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
| 8690 | struct bfd_link_info *info) |
| 8691 | { |
| 8692 | bfd *dynobj; |
| 8693 | asection *sdyn; |
| 8694 | asection *sgot; |
| 8695 | struct mips_got_info *gg, *g; |
| 8696 | struct mips_elf_link_hash_table *htab; |
| 8697 | |
| 8698 | htab = mips_elf_hash_table (info); |
| 8699 | dynobj = elf_hash_table (info)->dynobj; |
| 8700 | |
| 8701 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
| 8702 | |
| 8703 | sgot = mips_elf_got_section (dynobj, FALSE); |
| 8704 | if (sgot == NULL) |
| 8705 | gg = g = NULL; |
| 8706 | else |
| 8707 | { |
| 8708 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
| 8709 | gg = mips_elf_section_data (sgot)->u.got_info; |
| 8710 | BFD_ASSERT (gg != NULL); |
| 8711 | g = mips_elf_got_for_ibfd (gg, output_bfd); |
| 8712 | BFD_ASSERT (g != NULL); |
| 8713 | } |
| 8714 | |
| 8715 | if (elf_hash_table (info)->dynamic_sections_created) |
| 8716 | { |
| 8717 | bfd_byte *b; |
| 8718 | int dyn_to_skip = 0, dyn_skipped = 0; |
| 8719 | |
| 8720 | BFD_ASSERT (sdyn != NULL); |
| 8721 | BFD_ASSERT (g != NULL); |
| 8722 | |
| 8723 | for (b = sdyn->contents; |
| 8724 | b < sdyn->contents + sdyn->size; |
| 8725 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
| 8726 | { |
| 8727 | Elf_Internal_Dyn dyn; |
| 8728 | const char *name; |
| 8729 | size_t elemsize; |
| 8730 | asection *s; |
| 8731 | bfd_boolean swap_out_p; |
| 8732 | |
| 8733 | /* Read in the current dynamic entry. */ |
| 8734 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); |
| 8735 | |
| 8736 | /* Assume that we're going to modify it and write it out. */ |
| 8737 | swap_out_p = TRUE; |
| 8738 | |
| 8739 | switch (dyn.d_tag) |
| 8740 | { |
| 8741 | case DT_RELENT: |
| 8742 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
| 8743 | break; |
| 8744 | |
| 8745 | case DT_RELAENT: |
| 8746 | BFD_ASSERT (htab->is_vxworks); |
| 8747 | dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); |
| 8748 | break; |
| 8749 | |
| 8750 | case DT_STRSZ: |
| 8751 | /* Rewrite DT_STRSZ. */ |
| 8752 | dyn.d_un.d_val = |
| 8753 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
| 8754 | break; |
| 8755 | |
| 8756 | case DT_PLTGOT: |
| 8757 | name = ".got"; |
| 8758 | if (htab->is_vxworks) |
| 8759 | { |
| 8760 | /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning |
| 8761 | of the ".got" section in DYNOBJ. */ |
| 8762 | s = bfd_get_section_by_name (dynobj, name); |
| 8763 | BFD_ASSERT (s != NULL); |
| 8764 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| 8765 | } |
| 8766 | else |
| 8767 | { |
| 8768 | s = bfd_get_section_by_name (output_bfd, name); |
| 8769 | BFD_ASSERT (s != NULL); |
| 8770 | dyn.d_un.d_ptr = s->vma; |
| 8771 | } |
| 8772 | break; |
| 8773 | |
| 8774 | case DT_MIPS_RLD_VERSION: |
| 8775 | dyn.d_un.d_val = 1; /* XXX */ |
| 8776 | break; |
| 8777 | |
| 8778 | case DT_MIPS_FLAGS: |
| 8779 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ |
| 8780 | break; |
| 8781 | |
| 8782 | case DT_MIPS_TIME_STAMP: |
| 8783 | { |
| 8784 | time_t t; |
| 8785 | time (&t); |
| 8786 | dyn.d_un.d_val = t; |
| 8787 | } |
| 8788 | break; |
| 8789 | |
| 8790 | case DT_MIPS_ICHECKSUM: |
| 8791 | /* XXX FIXME: */ |
| 8792 | swap_out_p = FALSE; |
| 8793 | break; |
| 8794 | |
| 8795 | case DT_MIPS_IVERSION: |
| 8796 | /* XXX FIXME: */ |
| 8797 | swap_out_p = FALSE; |
| 8798 | break; |
| 8799 | |
| 8800 | case DT_MIPS_BASE_ADDRESS: |
| 8801 | s = output_bfd->sections; |
| 8802 | BFD_ASSERT (s != NULL); |
| 8803 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; |
| 8804 | break; |
| 8805 | |
| 8806 | case DT_MIPS_LOCAL_GOTNO: |
| 8807 | dyn.d_un.d_val = g->local_gotno; |
| 8808 | break; |
| 8809 | |
| 8810 | case DT_MIPS_UNREFEXTNO: |
| 8811 | /* The index into the dynamic symbol table which is the |
| 8812 | entry of the first external symbol that is not |
| 8813 | referenced within the same object. */ |
| 8814 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; |
| 8815 | break; |
| 8816 | |
| 8817 | case DT_MIPS_GOTSYM: |
| 8818 | if (gg->global_gotsym) |
| 8819 | { |
| 8820 | dyn.d_un.d_val = gg->global_gotsym->dynindx; |
| 8821 | break; |
| 8822 | } |
| 8823 | /* In case if we don't have global got symbols we default |
| 8824 | to setting DT_MIPS_GOTSYM to the same value as |
| 8825 | DT_MIPS_SYMTABNO, so we just fall through. */ |
| 8826 | |
| 8827 | case DT_MIPS_SYMTABNO: |
| 8828 | name = ".dynsym"; |
| 8829 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); |
| 8830 | s = bfd_get_section_by_name (output_bfd, name); |
| 8831 | BFD_ASSERT (s != NULL); |
| 8832 | |
| 8833 | dyn.d_un.d_val = s->size / elemsize; |
| 8834 | break; |
| 8835 | |
| 8836 | case DT_MIPS_HIPAGENO: |
| 8837 | dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info); |
| 8838 | break; |
| 8839 | |
| 8840 | case DT_MIPS_RLD_MAP: |
| 8841 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; |
| 8842 | break; |
| 8843 | |
| 8844 | case DT_MIPS_OPTIONS: |
| 8845 | s = (bfd_get_section_by_name |
| 8846 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); |
| 8847 | dyn.d_un.d_ptr = s->vma; |
| 8848 | break; |
| 8849 | |
| 8850 | case DT_RELASZ: |
| 8851 | BFD_ASSERT (htab->is_vxworks); |
| 8852 | /* The count does not include the JUMP_SLOT relocations. */ |
| 8853 | if (htab->srelplt) |
| 8854 | dyn.d_un.d_val -= htab->srelplt->size; |
| 8855 | break; |
| 8856 | |
| 8857 | case DT_PLTREL: |
| 8858 | BFD_ASSERT (htab->is_vxworks); |
| 8859 | dyn.d_un.d_val = DT_RELA; |
| 8860 | break; |
| 8861 | |
| 8862 | case DT_PLTRELSZ: |
| 8863 | BFD_ASSERT (htab->is_vxworks); |
| 8864 | dyn.d_un.d_val = htab->srelplt->size; |
| 8865 | break; |
| 8866 | |
| 8867 | case DT_JMPREL: |
| 8868 | BFD_ASSERT (htab->is_vxworks); |
| 8869 | dyn.d_un.d_val = (htab->srelplt->output_section->vma |
| 8870 | + htab->srelplt->output_offset); |
| 8871 | break; |
| 8872 | |
| 8873 | case DT_TEXTREL: |
| 8874 | /* If we didn't need any text relocations after all, delete |
| 8875 | the dynamic tag. */ |
| 8876 | if (!(info->flags & DF_TEXTREL)) |
| 8877 | { |
| 8878 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); |
| 8879 | swap_out_p = FALSE; |
| 8880 | } |
| 8881 | break; |
| 8882 | |
| 8883 | case DT_FLAGS: |
| 8884 | /* If we didn't need any text relocations after all, clear |
| 8885 | DF_TEXTREL from DT_FLAGS. */ |
| 8886 | if (!(info->flags & DF_TEXTREL)) |
| 8887 | dyn.d_un.d_val &= ~DF_TEXTREL; |
| 8888 | else |
| 8889 | swap_out_p = FALSE; |
| 8890 | break; |
| 8891 | |
| 8892 | default: |
| 8893 | swap_out_p = FALSE; |
| 8894 | break; |
| 8895 | } |
| 8896 | |
| 8897 | if (swap_out_p || dyn_skipped) |
| 8898 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
| 8899 | (dynobj, &dyn, b - dyn_skipped); |
| 8900 | |
| 8901 | if (dyn_to_skip) |
| 8902 | { |
| 8903 | dyn_skipped += dyn_to_skip; |
| 8904 | dyn_to_skip = 0; |
| 8905 | } |
| 8906 | } |
| 8907 | |
| 8908 | /* Wipe out any trailing entries if we shifted down a dynamic tag. */ |
| 8909 | if (dyn_skipped > 0) |
| 8910 | memset (b - dyn_skipped, 0, dyn_skipped); |
| 8911 | } |
| 8912 | |
| 8913 | if (sgot != NULL && sgot->size > 0) |
| 8914 | { |
| 8915 | if (htab->is_vxworks) |
| 8916 | { |
| 8917 | /* The first entry of the global offset table points to the |
| 8918 | ".dynamic" section. The second is initialized by the |
| 8919 | loader and contains the shared library identifier. |
| 8920 | The third is also initialized by the loader and points |
| 8921 | to the lazy resolution stub. */ |
| 8922 | MIPS_ELF_PUT_WORD (output_bfd, |
| 8923 | sdyn->output_offset + sdyn->output_section->vma, |
| 8924 | sgot->contents); |
| 8925 | MIPS_ELF_PUT_WORD (output_bfd, 0, |
| 8926 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
| 8927 | MIPS_ELF_PUT_WORD (output_bfd, 0, |
| 8928 | sgot->contents |
| 8929 | + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); |
| 8930 | } |
| 8931 | else |
| 8932 | { |
| 8933 | /* The first entry of the global offset table will be filled at |
| 8934 | runtime. The second entry will be used by some runtime loaders. |
| 8935 | This isn't the case of IRIX rld. */ |
| 8936 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); |
| 8937 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, |
| 8938 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
| 8939 | } |
| 8940 | |
| 8941 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize |
| 8942 | = MIPS_ELF_GOT_SIZE (output_bfd); |
| 8943 | } |
| 8944 | |
| 8945 | /* Generate dynamic relocations for the non-primary gots. */ |
| 8946 | if (gg != NULL && gg->next) |
| 8947 | { |
| 8948 | Elf_Internal_Rela rel[3]; |
| 8949 | bfd_vma addend = 0; |
| 8950 | |
| 8951 | memset (rel, 0, sizeof (rel)); |
| 8952 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); |
| 8953 | |
| 8954 | for (g = gg->next; g->next != gg; g = g->next) |
| 8955 | { |
| 8956 | bfd_vma index = g->next->local_gotno + g->next->global_gotno |
| 8957 | + g->next->tls_gotno; |
| 8958 | |
| 8959 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
| 8960 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
| 8961 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents |
| 8962 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
| 8963 | |
| 8964 | if (! info->shared) |
| 8965 | continue; |
| 8966 | |
| 8967 | while (index < g->assigned_gotno) |
| 8968 | { |
| 8969 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset |
| 8970 | = index++ * MIPS_ELF_GOT_SIZE (output_bfd); |
| 8971 | if (!(mips_elf_create_dynamic_relocation |
| 8972 | (output_bfd, info, rel, NULL, |
| 8973 | bfd_abs_section_ptr, |
| 8974 | 0, &addend, sgot))) |
| 8975 | return FALSE; |
| 8976 | BFD_ASSERT (addend == 0); |
| 8977 | } |
| 8978 | } |
| 8979 | } |
| 8980 | |
| 8981 | /* The generation of dynamic relocations for the non-primary gots |
| 8982 | adds more dynamic relocations. We cannot count them until |
| 8983 | here. */ |
| 8984 | |
| 8985 | if (elf_hash_table (info)->dynamic_sections_created) |
| 8986 | { |
| 8987 | bfd_byte *b; |
| 8988 | bfd_boolean swap_out_p; |
| 8989 | |
| 8990 | BFD_ASSERT (sdyn != NULL); |
| 8991 | |
| 8992 | for (b = sdyn->contents; |
| 8993 | b < sdyn->contents + sdyn->size; |
| 8994 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
| 8995 | { |
| 8996 | Elf_Internal_Dyn dyn; |
| 8997 | asection *s; |
| 8998 | |
| 8999 | /* Read in the current dynamic entry. */ |
| 9000 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); |
| 9001 | |
| 9002 | /* Assume that we're going to modify it and write it out. */ |
| 9003 | swap_out_p = TRUE; |
| 9004 | |
| 9005 | switch (dyn.d_tag) |
| 9006 | { |
| 9007 | case DT_RELSZ: |
| 9008 | /* Reduce DT_RELSZ to account for any relocations we |
| 9009 | decided not to make. This is for the n64 irix rld, |
| 9010 | which doesn't seem to apply any relocations if there |
| 9011 | are trailing null entries. */ |
| 9012 | s = mips_elf_rel_dyn_section (info, FALSE); |
| 9013 | dyn.d_un.d_val = (s->reloc_count |
| 9014 | * (ABI_64_P (output_bfd) |
| 9015 | ? sizeof (Elf64_Mips_External_Rel) |
| 9016 | : sizeof (Elf32_External_Rel))); |
| 9017 | /* Adjust the section size too. Tools like the prelinker |
| 9018 | can reasonably expect the values to the same. */ |
| 9019 | elf_section_data (s->output_section)->this_hdr.sh_size |
| 9020 | = dyn.d_un.d_val; |
| 9021 | break; |
| 9022 | |
| 9023 | default: |
| 9024 | swap_out_p = FALSE; |
| 9025 | break; |
| 9026 | } |
| 9027 | |
| 9028 | if (swap_out_p) |
| 9029 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
| 9030 | (dynobj, &dyn, b); |
| 9031 | } |
| 9032 | } |
| 9033 | |
| 9034 | { |
| 9035 | asection *s; |
| 9036 | Elf32_compact_rel cpt; |
| 9037 | |
| 9038 | if (SGI_COMPAT (output_bfd)) |
| 9039 | { |
| 9040 | /* Write .compact_rel section out. */ |
| 9041 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); |
| 9042 | if (s != NULL) |
| 9043 | { |
| 9044 | cpt.id1 = 1; |
| 9045 | cpt.num = s->reloc_count; |
| 9046 | cpt.id2 = 2; |
| 9047 | cpt.offset = (s->output_section->filepos |
| 9048 | + sizeof (Elf32_External_compact_rel)); |
| 9049 | cpt.reserved0 = 0; |
| 9050 | cpt.reserved1 = 0; |
| 9051 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, |
| 9052 | ((Elf32_External_compact_rel *) |
| 9053 | s->contents)); |
| 9054 | |
| 9055 | /* Clean up a dummy stub function entry in .text. */ |
| 9056 | s = bfd_get_section_by_name (dynobj, |
| 9057 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); |
| 9058 | if (s != NULL) |
| 9059 | { |
| 9060 | file_ptr dummy_offset; |
| 9061 | |
| 9062 | BFD_ASSERT (s->size >= htab->function_stub_size); |
| 9063 | dummy_offset = s->size - htab->function_stub_size; |
| 9064 | memset (s->contents + dummy_offset, 0, |
| 9065 | htab->function_stub_size); |
| 9066 | } |
| 9067 | } |
| 9068 | } |
| 9069 | |
| 9070 | /* The psABI says that the dynamic relocations must be sorted in |
| 9071 | increasing order of r_symndx. The VxWorks EABI doesn't require |
| 9072 | this, and because the code below handles REL rather than RELA |
| 9073 | relocations, using it for VxWorks would be outright harmful. */ |
| 9074 | if (!htab->is_vxworks) |
| 9075 | { |
| 9076 | s = mips_elf_rel_dyn_section (info, FALSE); |
| 9077 | if (s != NULL |
| 9078 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) |
| 9079 | { |
| 9080 | reldyn_sorting_bfd = output_bfd; |
| 9081 | |
| 9082 | if (ABI_64_P (output_bfd)) |
| 9083 | qsort ((Elf64_External_Rel *) s->contents + 1, |
| 9084 | s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), |
| 9085 | sort_dynamic_relocs_64); |
| 9086 | else |
| 9087 | qsort ((Elf32_External_Rel *) s->contents + 1, |
| 9088 | s->reloc_count - 1, sizeof (Elf32_External_Rel), |
| 9089 | sort_dynamic_relocs); |
| 9090 | } |
| 9091 | } |
| 9092 | } |
| 9093 | |
| 9094 | if (htab->is_vxworks && htab->splt->size > 0) |
| 9095 | { |
| 9096 | if (info->shared) |
| 9097 | mips_vxworks_finish_shared_plt (output_bfd, info); |
| 9098 | else |
| 9099 | mips_vxworks_finish_exec_plt (output_bfd, info); |
| 9100 | } |
| 9101 | return TRUE; |
| 9102 | } |
| 9103 | |
| 9104 | |
| 9105 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
| 9106 | |
| 9107 | static void |
| 9108 | mips_set_isa_flags (bfd *abfd) |
| 9109 | { |
| 9110 | flagword val; |
| 9111 | |
| 9112 | switch (bfd_get_mach (abfd)) |
| 9113 | { |
| 9114 | default: |
| 9115 | case bfd_mach_mips3000: |
| 9116 | val = E_MIPS_ARCH_1; |
| 9117 | break; |
| 9118 | |
| 9119 | case bfd_mach_mips3900: |
| 9120 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; |
| 9121 | break; |
| 9122 | |
| 9123 | case bfd_mach_mips6000: |
| 9124 | val = E_MIPS_ARCH_2; |
| 9125 | break; |
| 9126 | |
| 9127 | case bfd_mach_mips4000: |
| 9128 | case bfd_mach_mips4300: |
| 9129 | case bfd_mach_mips4400: |
| 9130 | case bfd_mach_mips4600: |
| 9131 | val = E_MIPS_ARCH_3; |
| 9132 | break; |
| 9133 | |
| 9134 | case bfd_mach_mips4010: |
| 9135 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; |
| 9136 | break; |
| 9137 | |
| 9138 | case bfd_mach_mips4100: |
| 9139 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; |
| 9140 | break; |
| 9141 | |
| 9142 | case bfd_mach_mips4111: |
| 9143 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; |
| 9144 | break; |
| 9145 | |
| 9146 | case bfd_mach_mips4120: |
| 9147 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; |
| 9148 | break; |
| 9149 | |
| 9150 | case bfd_mach_mips4650: |
| 9151 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; |
| 9152 | break; |
| 9153 | |
| 9154 | case bfd_mach_mips5400: |
| 9155 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; |
| 9156 | break; |
| 9157 | |
| 9158 | case bfd_mach_mips5500: |
| 9159 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; |
| 9160 | break; |
| 9161 | |
| 9162 | case bfd_mach_mips9000: |
| 9163 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; |
| 9164 | break; |
| 9165 | |
| 9166 | case bfd_mach_mips5000: |
| 9167 | case bfd_mach_mips7000: |
| 9168 | case bfd_mach_mips8000: |
| 9169 | case bfd_mach_mips10000: |
| 9170 | case bfd_mach_mips12000: |
| 9171 | val = E_MIPS_ARCH_4; |
| 9172 | break; |
| 9173 | |
| 9174 | case bfd_mach_mips5: |
| 9175 | val = E_MIPS_ARCH_5; |
| 9176 | break; |
| 9177 | |
| 9178 | case bfd_mach_mips_sb1: |
| 9179 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; |
| 9180 | break; |
| 9181 | |
| 9182 | case bfd_mach_mipsisa32: |
| 9183 | val = E_MIPS_ARCH_32; |
| 9184 | break; |
| 9185 | |
| 9186 | case bfd_mach_mipsisa64: |
| 9187 | val = E_MIPS_ARCH_64; |
| 9188 | break; |
| 9189 | |
| 9190 | case bfd_mach_mipsisa32r2: |
| 9191 | val = E_MIPS_ARCH_32R2; |
| 9192 | break; |
| 9193 | |
| 9194 | case bfd_mach_mipsisa64r2: |
| 9195 | val = E_MIPS_ARCH_64R2; |
| 9196 | break; |
| 9197 | } |
| 9198 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
| 9199 | elf_elfheader (abfd)->e_flags |= val; |
| 9200 | |
| 9201 | } |
| 9202 | |
| 9203 | |
| 9204 | /* The final processing done just before writing out a MIPS ELF object |
| 9205 | file. This gets the MIPS architecture right based on the machine |
| 9206 | number. This is used by both the 32-bit and the 64-bit ABI. */ |
| 9207 | |
| 9208 | void |
| 9209 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
| 9210 | bfd_boolean linker ATTRIBUTE_UNUSED) |
| 9211 | { |
| 9212 | unsigned int i; |
| 9213 | Elf_Internal_Shdr **hdrpp; |
| 9214 | const char *name; |
| 9215 | asection *sec; |
| 9216 | |
| 9217 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former |
| 9218 | is nonzero. This is for compatibility with old objects, which used |
| 9219 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ |
| 9220 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) |
| 9221 | mips_set_isa_flags (abfd); |
| 9222 | |
| 9223 | /* Set the sh_info field for .gptab sections and other appropriate |
| 9224 | info for each special section. */ |
| 9225 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; |
| 9226 | i < elf_numsections (abfd); |
| 9227 | i++, hdrpp++) |
| 9228 | { |
| 9229 | switch ((*hdrpp)->sh_type) |
| 9230 | { |
| 9231 | case SHT_MIPS_MSYM: |
| 9232 | case SHT_MIPS_LIBLIST: |
| 9233 | sec = bfd_get_section_by_name (abfd, ".dynstr"); |
| 9234 | if (sec != NULL) |
| 9235 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| 9236 | break; |
| 9237 | |
| 9238 | case SHT_MIPS_GPTAB: |
| 9239 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
| 9240 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); |
| 9241 | BFD_ASSERT (name != NULL |
| 9242 | && CONST_STRNEQ (name, ".gptab.")); |
| 9243 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); |
| 9244 | BFD_ASSERT (sec != NULL); |
| 9245 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; |
| 9246 | break; |
| 9247 | |
| 9248 | case SHT_MIPS_CONTENT: |
| 9249 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
| 9250 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); |
| 9251 | BFD_ASSERT (name != NULL |
| 9252 | && CONST_STRNEQ (name, ".MIPS.content")); |
| 9253 | sec = bfd_get_section_by_name (abfd, |
| 9254 | name + sizeof ".MIPS.content" - 1); |
| 9255 | BFD_ASSERT (sec != NULL); |
| 9256 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| 9257 | break; |
| 9258 | |
| 9259 | case SHT_MIPS_SYMBOL_LIB: |
| 9260 | sec = bfd_get_section_by_name (abfd, ".dynsym"); |
| 9261 | if (sec != NULL) |
| 9262 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| 9263 | sec = bfd_get_section_by_name (abfd, ".liblist"); |
| 9264 | if (sec != NULL) |
| 9265 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; |
| 9266 | break; |
| 9267 | |
| 9268 | case SHT_MIPS_EVENTS: |
| 9269 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
| 9270 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); |
| 9271 | BFD_ASSERT (name != NULL); |
| 9272 | if (CONST_STRNEQ (name, ".MIPS.events")) |
| 9273 | sec = bfd_get_section_by_name (abfd, |
| 9274 | name + sizeof ".MIPS.events" - 1); |
| 9275 | else |
| 9276 | { |
| 9277 | BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); |
| 9278 | sec = bfd_get_section_by_name (abfd, |
| 9279 | (name |
| 9280 | + sizeof ".MIPS.post_rel" - 1)); |
| 9281 | } |
| 9282 | BFD_ASSERT (sec != NULL); |
| 9283 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| 9284 | break; |
| 9285 | |
| 9286 | } |
| 9287 | } |
| 9288 | } |
| 9289 | \f |
| 9290 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
| 9291 | segments. */ |
| 9292 | |
| 9293 | int |
| 9294 | _bfd_mips_elf_additional_program_headers (bfd *abfd, |
| 9295 | struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| 9296 | { |
| 9297 | asection *s; |
| 9298 | int ret = 0; |
| 9299 | |
| 9300 | /* See if we need a PT_MIPS_REGINFO segment. */ |
| 9301 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
| 9302 | if (s && (s->flags & SEC_LOAD)) |
| 9303 | ++ret; |
| 9304 | |
| 9305 | /* See if we need a PT_MIPS_OPTIONS segment. */ |
| 9306 | if (IRIX_COMPAT (abfd) == ict_irix6 |
| 9307 | && bfd_get_section_by_name (abfd, |
| 9308 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) |
| 9309 | ++ret; |
| 9310 | |
| 9311 | /* See if we need a PT_MIPS_RTPROC segment. */ |
| 9312 | if (IRIX_COMPAT (abfd) == ict_irix5 |
| 9313 | && bfd_get_section_by_name (abfd, ".dynamic") |
| 9314 | && bfd_get_section_by_name (abfd, ".mdebug")) |
| 9315 | ++ret; |
| 9316 | |
| 9317 | /* Allocate a PT_NULL header in dynamic objects. See |
| 9318 | _bfd_mips_elf_modify_segment_map for details. */ |
| 9319 | if (!SGI_COMPAT (abfd) |
| 9320 | && bfd_get_section_by_name (abfd, ".dynamic")) |
| 9321 | ++ret; |
| 9322 | |
| 9323 | return ret; |
| 9324 | } |
| 9325 | |
| 9326 | /* Modify the segment map for an IRIX5 executable. */ |
| 9327 | |
| 9328 | bfd_boolean |
| 9329 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
| 9330 | struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| 9331 | { |
| 9332 | asection *s; |
| 9333 | struct elf_segment_map *m, **pm; |
| 9334 | bfd_size_type amt; |
| 9335 | |
| 9336 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO |
| 9337 | segment. */ |
| 9338 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
| 9339 | if (s != NULL && (s->flags & SEC_LOAD) != 0) |
| 9340 | { |
| 9341 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) |
| 9342 | if (m->p_type == PT_MIPS_REGINFO) |
| 9343 | break; |
| 9344 | if (m == NULL) |
| 9345 | { |
| 9346 | amt = sizeof *m; |
| 9347 | m = bfd_zalloc (abfd, amt); |
| 9348 | if (m == NULL) |
| 9349 | return FALSE; |
| 9350 | |
| 9351 | m->p_type = PT_MIPS_REGINFO; |
| 9352 | m->count = 1; |
| 9353 | m->sections[0] = s; |
| 9354 | |
| 9355 | /* We want to put it after the PHDR and INTERP segments. */ |
| 9356 | pm = &elf_tdata (abfd)->segment_map; |
| 9357 | while (*pm != NULL |
| 9358 | && ((*pm)->p_type == PT_PHDR |
| 9359 | || (*pm)->p_type == PT_INTERP)) |
| 9360 | pm = &(*pm)->next; |
| 9361 | |
| 9362 | m->next = *pm; |
| 9363 | *pm = m; |
| 9364 | } |
| 9365 | } |
| 9366 | |
| 9367 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but |
| 9368 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a |
| 9369 | PT_MIPS_OPTIONS segment immediately following the program header |
| 9370 | table. */ |
| 9371 | if (NEWABI_P (abfd) |
| 9372 | /* On non-IRIX6 new abi, we'll have already created a segment |
| 9373 | for this section, so don't create another. I'm not sure this |
| 9374 | is not also the case for IRIX 6, but I can't test it right |
| 9375 | now. */ |
| 9376 | && IRIX_COMPAT (abfd) == ict_irix6) |
| 9377 | { |
| 9378 | for (s = abfd->sections; s; s = s->next) |
| 9379 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) |
| 9380 | break; |
| 9381 | |
| 9382 | if (s) |
| 9383 | { |
| 9384 | struct elf_segment_map *options_segment; |
| 9385 | |
| 9386 | pm = &elf_tdata (abfd)->segment_map; |
| 9387 | while (*pm != NULL |
| 9388 | && ((*pm)->p_type == PT_PHDR |
| 9389 | || (*pm)->p_type == PT_INTERP)) |
| 9390 | pm = &(*pm)->next; |
| 9391 | |
| 9392 | if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) |
| 9393 | { |
| 9394 | amt = sizeof (struct elf_segment_map); |
| 9395 | options_segment = bfd_zalloc (abfd, amt); |
| 9396 | options_segment->next = *pm; |
| 9397 | options_segment->p_type = PT_MIPS_OPTIONS; |
| 9398 | options_segment->p_flags = PF_R; |
| 9399 | options_segment->p_flags_valid = TRUE; |
| 9400 | options_segment->count = 1; |
| 9401 | options_segment->sections[0] = s; |
| 9402 | *pm = options_segment; |
| 9403 | } |
| 9404 | } |
| 9405 | } |
| 9406 | else |
| 9407 | { |
| 9408 | if (IRIX_COMPAT (abfd) == ict_irix5) |
| 9409 | { |
| 9410 | /* If there are .dynamic and .mdebug sections, we make a room |
| 9411 | for the RTPROC header. FIXME: Rewrite without section names. */ |
| 9412 | if (bfd_get_section_by_name (abfd, ".interp") == NULL |
| 9413 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL |
| 9414 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) |
| 9415 | { |
| 9416 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) |
| 9417 | if (m->p_type == PT_MIPS_RTPROC) |
| 9418 | break; |
| 9419 | if (m == NULL) |
| 9420 | { |
| 9421 | amt = sizeof *m; |
| 9422 | m = bfd_zalloc (abfd, amt); |
| 9423 | if (m == NULL) |
| 9424 | return FALSE; |
| 9425 | |
| 9426 | m->p_type = PT_MIPS_RTPROC; |
| 9427 | |
| 9428 | s = bfd_get_section_by_name (abfd, ".rtproc"); |
| 9429 | if (s == NULL) |
| 9430 | { |
| 9431 | m->count = 0; |
| 9432 | m->p_flags = 0; |
| 9433 | m->p_flags_valid = 1; |
| 9434 | } |
| 9435 | else |
| 9436 | { |
| 9437 | m->count = 1; |
| 9438 | m->sections[0] = s; |
| 9439 | } |
| 9440 | |
| 9441 | /* We want to put it after the DYNAMIC segment. */ |
| 9442 | pm = &elf_tdata (abfd)->segment_map; |
| 9443 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) |
| 9444 | pm = &(*pm)->next; |
| 9445 | if (*pm != NULL) |
| 9446 | pm = &(*pm)->next; |
| 9447 | |
| 9448 | m->next = *pm; |
| 9449 | *pm = m; |
| 9450 | } |
| 9451 | } |
| 9452 | } |
| 9453 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
| 9454 | .dynstr, .dynsym, and .hash sections, and everything in |
| 9455 | between. */ |
| 9456 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; |
| 9457 | pm = &(*pm)->next) |
| 9458 | if ((*pm)->p_type == PT_DYNAMIC) |
| 9459 | break; |
| 9460 | m = *pm; |
| 9461 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) |
| 9462 | { |
| 9463 | /* For a normal mips executable the permissions for the PT_DYNAMIC |
| 9464 | segment are read, write and execute. We do that here since |
| 9465 | the code in elf.c sets only the read permission. This matters |
| 9466 | sometimes for the dynamic linker. */ |
| 9467 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) |
| 9468 | { |
| 9469 | m->p_flags = PF_R | PF_W | PF_X; |
| 9470 | m->p_flags_valid = 1; |
| 9471 | } |
| 9472 | } |
| 9473 | /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. |
| 9474 | glibc's dynamic linker has traditionally derived the number of |
| 9475 | tags from the p_filesz field, and sometimes allocates stack |
| 9476 | arrays of that size. An overly-big PT_DYNAMIC segment can |
| 9477 | be actively harmful in such cases. Making PT_DYNAMIC contain |
| 9478 | other sections can also make life hard for the prelinker, |
| 9479 | which might move one of the other sections to a different |
| 9480 | PT_LOAD segment. */ |
| 9481 | if (SGI_COMPAT (abfd) |
| 9482 | && m != NULL |
| 9483 | && m->count == 1 |
| 9484 | && strcmp (m->sections[0]->name, ".dynamic") == 0) |
| 9485 | { |
| 9486 | static const char *sec_names[] = |
| 9487 | { |
| 9488 | ".dynamic", ".dynstr", ".dynsym", ".hash" |
| 9489 | }; |
| 9490 | bfd_vma low, high; |
| 9491 | unsigned int i, c; |
| 9492 | struct elf_segment_map *n; |
| 9493 | |
| 9494 | low = ~(bfd_vma) 0; |
| 9495 | high = 0; |
| 9496 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) |
| 9497 | { |
| 9498 | s = bfd_get_section_by_name (abfd, sec_names[i]); |
| 9499 | if (s != NULL && (s->flags & SEC_LOAD) != 0) |
| 9500 | { |
| 9501 | bfd_size_type sz; |
| 9502 | |
| 9503 | if (low > s->vma) |
| 9504 | low = s->vma; |
| 9505 | sz = s->size; |
| 9506 | if (high < s->vma + sz) |
| 9507 | high = s->vma + sz; |
| 9508 | } |
| 9509 | } |
| 9510 | |
| 9511 | c = 0; |
| 9512 | for (s = abfd->sections; s != NULL; s = s->next) |
| 9513 | if ((s->flags & SEC_LOAD) != 0 |
| 9514 | && s->vma >= low |
| 9515 | && s->vma + s->size <= high) |
| 9516 | ++c; |
| 9517 | |
| 9518 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); |
| 9519 | n = bfd_zalloc (abfd, amt); |
| 9520 | if (n == NULL) |
| 9521 | return FALSE; |
| 9522 | *n = *m; |
| 9523 | n->count = c; |
| 9524 | |
| 9525 | i = 0; |
| 9526 | for (s = abfd->sections; s != NULL; s = s->next) |
| 9527 | { |
| 9528 | if ((s->flags & SEC_LOAD) != 0 |
| 9529 | && s->vma >= low |
| 9530 | && s->vma + s->size <= high) |
| 9531 | { |
| 9532 | n->sections[i] = s; |
| 9533 | ++i; |
| 9534 | } |
| 9535 | } |
| 9536 | |
| 9537 | *pm = n; |
| 9538 | } |
| 9539 | } |
| 9540 | |
| 9541 | /* Allocate a spare program header in dynamic objects so that tools |
| 9542 | like the prelinker can add an extra PT_LOAD entry. |
| 9543 | |
| 9544 | If the prelinker needs to make room for a new PT_LOAD entry, its |
| 9545 | standard procedure is to move the first (read-only) sections into |
| 9546 | the new (writable) segment. However, the MIPS ABI requires |
| 9547 | .dynamic to be in a read-only segment, and the section will often |
| 9548 | start within sizeof (ElfNN_Phdr) bytes of the last program header. |
| 9549 | |
| 9550 | Although the prelinker could in principle move .dynamic to a |
| 9551 | writable segment, it seems better to allocate a spare program |
| 9552 | header instead, and avoid the need to move any sections. |
| 9553 | There is a long tradition of allocating spare dynamic tags, |
| 9554 | so allocating a spare program header seems like a natural |
| 9555 | extension. */ |
| 9556 | if (!SGI_COMPAT (abfd) |
| 9557 | && bfd_get_section_by_name (abfd, ".dynamic")) |
| 9558 | { |
| 9559 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next) |
| 9560 | if ((*pm)->p_type == PT_NULL) |
| 9561 | break; |
| 9562 | if (*pm == NULL) |
| 9563 | { |
| 9564 | m = bfd_zalloc (abfd, sizeof (*m)); |
| 9565 | if (m == NULL) |
| 9566 | return FALSE; |
| 9567 | |
| 9568 | m->p_type = PT_NULL; |
| 9569 | *pm = m; |
| 9570 | } |
| 9571 | } |
| 9572 | |
| 9573 | return TRUE; |
| 9574 | } |
| 9575 | \f |
| 9576 | /* Return the section that should be marked against GC for a given |
| 9577 | relocation. */ |
| 9578 | |
| 9579 | asection * |
| 9580 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
| 9581 | struct bfd_link_info *info, |
| 9582 | Elf_Internal_Rela *rel, |
| 9583 | struct elf_link_hash_entry *h, |
| 9584 | Elf_Internal_Sym *sym) |
| 9585 | { |
| 9586 | /* ??? Do mips16 stub sections need to be handled special? */ |
| 9587 | |
| 9588 | if (h != NULL) |
| 9589 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
| 9590 | { |
| 9591 | case R_MIPS_GNU_VTINHERIT: |
| 9592 | case R_MIPS_GNU_VTENTRY: |
| 9593 | return NULL; |
| 9594 | } |
| 9595 | |
| 9596 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| 9597 | } |
| 9598 | |
| 9599 | /* Update the got entry reference counts for the section being removed. */ |
| 9600 | |
| 9601 | bfd_boolean |
| 9602 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
| 9603 | struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| 9604 | asection *sec ATTRIBUTE_UNUSED, |
| 9605 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) |
| 9606 | { |
| 9607 | #if 0 |
| 9608 | Elf_Internal_Shdr *symtab_hdr; |
| 9609 | struct elf_link_hash_entry **sym_hashes; |
| 9610 | bfd_signed_vma *local_got_refcounts; |
| 9611 | const Elf_Internal_Rela *rel, *relend; |
| 9612 | unsigned long r_symndx; |
| 9613 | struct elf_link_hash_entry *h; |
| 9614 | |
| 9615 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 9616 | sym_hashes = elf_sym_hashes (abfd); |
| 9617 | local_got_refcounts = elf_local_got_refcounts (abfd); |
| 9618 | |
| 9619 | relend = relocs + sec->reloc_count; |
| 9620 | for (rel = relocs; rel < relend; rel++) |
| 9621 | switch (ELF_R_TYPE (abfd, rel->r_info)) |
| 9622 | { |
| 9623 | case R_MIPS_GOT16: |
| 9624 | case R_MIPS_CALL16: |
| 9625 | case R_MIPS_CALL_HI16: |
| 9626 | case R_MIPS_CALL_LO16: |
| 9627 | case R_MIPS_GOT_HI16: |
| 9628 | case R_MIPS_GOT_LO16: |
| 9629 | case R_MIPS_GOT_DISP: |
| 9630 | case R_MIPS_GOT_PAGE: |
| 9631 | case R_MIPS_GOT_OFST: |
| 9632 | /* ??? It would seem that the existing MIPS code does no sort |
| 9633 | of reference counting or whatnot on its GOT and PLT entries, |
| 9634 | so it is not possible to garbage collect them at this time. */ |
| 9635 | break; |
| 9636 | |
| 9637 | default: |
| 9638 | break; |
| 9639 | } |
| 9640 | #endif |
| 9641 | |
| 9642 | return TRUE; |
| 9643 | } |
| 9644 | \f |
| 9645 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, |
| 9646 | hiding the old indirect symbol. Process additional relocation |
| 9647 | information. Also called for weakdefs, in which case we just let |
| 9648 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ |
| 9649 | |
| 9650 | void |
| 9651 | _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, |
| 9652 | struct elf_link_hash_entry *dir, |
| 9653 | struct elf_link_hash_entry *ind) |
| 9654 | { |
| 9655 | struct mips_elf_link_hash_entry *dirmips, *indmips; |
| 9656 | |
| 9657 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| 9658 | |
| 9659 | if (ind->root.type != bfd_link_hash_indirect) |
| 9660 | return; |
| 9661 | |
| 9662 | dirmips = (struct mips_elf_link_hash_entry *) dir; |
| 9663 | indmips = (struct mips_elf_link_hash_entry *) ind; |
| 9664 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; |
| 9665 | if (indmips->readonly_reloc) |
| 9666 | dirmips->readonly_reloc = TRUE; |
| 9667 | if (indmips->no_fn_stub) |
| 9668 | dirmips->no_fn_stub = TRUE; |
| 9669 | |
| 9670 | if (dirmips->tls_type == 0) |
| 9671 | dirmips->tls_type = indmips->tls_type; |
| 9672 | } |
| 9673 | |
| 9674 | void |
| 9675 | _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, |
| 9676 | struct elf_link_hash_entry *entry, |
| 9677 | bfd_boolean force_local) |
| 9678 | { |
| 9679 | bfd *dynobj; |
| 9680 | asection *got; |
| 9681 | struct mips_got_info *g; |
| 9682 | struct mips_elf_link_hash_entry *h; |
| 9683 | |
| 9684 | h = (struct mips_elf_link_hash_entry *) entry; |
| 9685 | if (h->forced_local) |
| 9686 | return; |
| 9687 | h->forced_local = force_local; |
| 9688 | |
| 9689 | dynobj = elf_hash_table (info)->dynobj; |
| 9690 | if (dynobj != NULL && force_local && h->root.type != STT_TLS |
| 9691 | && (got = mips_elf_got_section (dynobj, TRUE)) != NULL |
| 9692 | && (g = mips_elf_section_data (got)->u.got_info) != NULL) |
| 9693 | { |
| 9694 | if (g->next) |
| 9695 | { |
| 9696 | struct mips_got_entry e; |
| 9697 | struct mips_got_info *gg = g; |
| 9698 | |
| 9699 | /* Since we're turning what used to be a global symbol into a |
| 9700 | local one, bump up the number of local entries of each GOT |
| 9701 | that had an entry for it. This will automatically decrease |
| 9702 | the number of global entries, since global_gotno is actually |
| 9703 | the upper limit of global entries. */ |
| 9704 | e.abfd = dynobj; |
| 9705 | e.symndx = -1; |
| 9706 | e.d.h = h; |
| 9707 | e.tls_type = 0; |
| 9708 | |
| 9709 | for (g = g->next; g != gg; g = g->next) |
| 9710 | if (htab_find (g->got_entries, &e)) |
| 9711 | { |
| 9712 | BFD_ASSERT (g->global_gotno > 0); |
| 9713 | g->local_gotno++; |
| 9714 | g->global_gotno--; |
| 9715 | } |
| 9716 | |
| 9717 | /* If this was a global symbol forced into the primary GOT, we |
| 9718 | no longer need an entry for it. We can't release the entry |
| 9719 | at this point, but we must at least stop counting it as one |
| 9720 | of the symbols that required a forced got entry. */ |
| 9721 | if (h->root.got.offset == 2) |
| 9722 | { |
| 9723 | BFD_ASSERT (gg->assigned_gotno > 0); |
| 9724 | gg->assigned_gotno--; |
| 9725 | } |
| 9726 | } |
| 9727 | else if (g->global_gotno == 0 && g->global_gotsym == NULL) |
| 9728 | /* If we haven't got through GOT allocation yet, just bump up the |
| 9729 | number of local entries, as this symbol won't be counted as |
| 9730 | global. */ |
| 9731 | g->local_gotno++; |
| 9732 | else if (h->root.got.offset == 1) |
| 9733 | { |
| 9734 | /* If we're past non-multi-GOT allocation and this symbol had |
| 9735 | been marked for a global got entry, give it a local entry |
| 9736 | instead. */ |
| 9737 | BFD_ASSERT (g->global_gotno > 0); |
| 9738 | g->local_gotno++; |
| 9739 | g->global_gotno--; |
| 9740 | } |
| 9741 | } |
| 9742 | |
| 9743 | _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); |
| 9744 | } |
| 9745 | \f |
| 9746 | #define PDR_SIZE 32 |
| 9747 | |
| 9748 | bfd_boolean |
| 9749 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
| 9750 | struct bfd_link_info *info) |
| 9751 | { |
| 9752 | asection *o; |
| 9753 | bfd_boolean ret = FALSE; |
| 9754 | unsigned char *tdata; |
| 9755 | size_t i, skip; |
| 9756 | |
| 9757 | o = bfd_get_section_by_name (abfd, ".pdr"); |
| 9758 | if (! o) |
| 9759 | return FALSE; |
| 9760 | if (o->size == 0) |
| 9761 | return FALSE; |
| 9762 | if (o->size % PDR_SIZE != 0) |
| 9763 | return FALSE; |
| 9764 | if (o->output_section != NULL |
| 9765 | && bfd_is_abs_section (o->output_section)) |
| 9766 | return FALSE; |
| 9767 | |
| 9768 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
| 9769 | if (! tdata) |
| 9770 | return FALSE; |
| 9771 | |
| 9772 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
| 9773 | info->keep_memory); |
| 9774 | if (!cookie->rels) |
| 9775 | { |
| 9776 | free (tdata); |
| 9777 | return FALSE; |
| 9778 | } |
| 9779 | |
| 9780 | cookie->rel = cookie->rels; |
| 9781 | cookie->relend = cookie->rels + o->reloc_count; |
| 9782 | |
| 9783 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
| 9784 | { |
| 9785 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
| 9786 | { |
| 9787 | tdata[i] = 1; |
| 9788 | skip ++; |
| 9789 | } |
| 9790 | } |
| 9791 | |
| 9792 | if (skip != 0) |
| 9793 | { |
| 9794 | mips_elf_section_data (o)->u.tdata = tdata; |
| 9795 | o->size -= skip * PDR_SIZE; |
| 9796 | ret = TRUE; |
| 9797 | } |
| 9798 | else |
| 9799 | free (tdata); |
| 9800 | |
| 9801 | if (! info->keep_memory) |
| 9802 | free (cookie->rels); |
| 9803 | |
| 9804 | return ret; |
| 9805 | } |
| 9806 | |
| 9807 | bfd_boolean |
| 9808 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
| 9809 | { |
| 9810 | if (strcmp (sec->name, ".pdr") == 0) |
| 9811 | return TRUE; |
| 9812 | return FALSE; |
| 9813 | } |
| 9814 | |
| 9815 | bfd_boolean |
| 9816 | _bfd_mips_elf_write_section (bfd *output_bfd, |
| 9817 | struct bfd_link_info *link_info ATTRIBUTE_UNUSED, |
| 9818 | asection *sec, bfd_byte *contents) |
| 9819 | { |
| 9820 | bfd_byte *to, *from, *end; |
| 9821 | int i; |
| 9822 | |
| 9823 | if (strcmp (sec->name, ".pdr") != 0) |
| 9824 | return FALSE; |
| 9825 | |
| 9826 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
| 9827 | return FALSE; |
| 9828 | |
| 9829 | to = contents; |
| 9830 | end = contents + sec->size; |
| 9831 | for (from = contents, i = 0; |
| 9832 | from < end; |
| 9833 | from += PDR_SIZE, i++) |
| 9834 | { |
| 9835 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
| 9836 | continue; |
| 9837 | if (to != from) |
| 9838 | memcpy (to, from, PDR_SIZE); |
| 9839 | to += PDR_SIZE; |
| 9840 | } |
| 9841 | bfd_set_section_contents (output_bfd, sec->output_section, contents, |
| 9842 | sec->output_offset, sec->size); |
| 9843 | return TRUE; |
| 9844 | } |
| 9845 | \f |
| 9846 | /* MIPS ELF uses a special find_nearest_line routine in order the |
| 9847 | handle the ECOFF debugging information. */ |
| 9848 | |
| 9849 | struct mips_elf_find_line |
| 9850 | { |
| 9851 | struct ecoff_debug_info d; |
| 9852 | struct ecoff_find_line i; |
| 9853 | }; |
| 9854 | |
| 9855 | bfd_boolean |
| 9856 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, |
| 9857 | asymbol **symbols, bfd_vma offset, |
| 9858 | const char **filename_ptr, |
| 9859 | const char **functionname_ptr, |
| 9860 | unsigned int *line_ptr) |
| 9861 | { |
| 9862 | asection *msec; |
| 9863 | |
| 9864 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, |
| 9865 | filename_ptr, functionname_ptr, |
| 9866 | line_ptr)) |
| 9867 | return TRUE; |
| 9868 | |
| 9869 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, |
| 9870 | filename_ptr, functionname_ptr, |
| 9871 | line_ptr, ABI_64_P (abfd) ? 8 : 0, |
| 9872 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
| 9873 | return TRUE; |
| 9874 | |
| 9875 | msec = bfd_get_section_by_name (abfd, ".mdebug"); |
| 9876 | if (msec != NULL) |
| 9877 | { |
| 9878 | flagword origflags; |
| 9879 | struct mips_elf_find_line *fi; |
| 9880 | const struct ecoff_debug_swap * const swap = |
| 9881 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| 9882 | |
| 9883 | /* If we are called during a link, mips_elf_final_link may have |
| 9884 | cleared the SEC_HAS_CONTENTS field. We force it back on here |
| 9885 | if appropriate (which it normally will be). */ |
| 9886 | origflags = msec->flags; |
| 9887 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) |
| 9888 | msec->flags |= SEC_HAS_CONTENTS; |
| 9889 | |
| 9890 | fi = elf_tdata (abfd)->find_line_info; |
| 9891 | if (fi == NULL) |
| 9892 | { |
| 9893 | bfd_size_type external_fdr_size; |
| 9894 | char *fraw_src; |
| 9895 | char *fraw_end; |
| 9896 | struct fdr *fdr_ptr; |
| 9897 | bfd_size_type amt = sizeof (struct mips_elf_find_line); |
| 9898 | |
| 9899 | fi = bfd_zalloc (abfd, amt); |
| 9900 | if (fi == NULL) |
| 9901 | { |
| 9902 | msec->flags = origflags; |
| 9903 | return FALSE; |
| 9904 | } |
| 9905 | |
| 9906 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) |
| 9907 | { |
| 9908 | msec->flags = origflags; |
| 9909 | return FALSE; |
| 9910 | } |
| 9911 | |
| 9912 | /* Swap in the FDR information. */ |
| 9913 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); |
| 9914 | fi->d.fdr = bfd_alloc (abfd, amt); |
| 9915 | if (fi->d.fdr == NULL) |
| 9916 | { |
| 9917 | msec->flags = origflags; |
| 9918 | return FALSE; |
| 9919 | } |
| 9920 | external_fdr_size = swap->external_fdr_size; |
| 9921 | fdr_ptr = fi->d.fdr; |
| 9922 | fraw_src = (char *) fi->d.external_fdr; |
| 9923 | fraw_end = (fraw_src |
| 9924 | + fi->d.symbolic_header.ifdMax * external_fdr_size); |
| 9925 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) |
| 9926 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
| 9927 | |
| 9928 | elf_tdata (abfd)->find_line_info = fi; |
| 9929 | |
| 9930 | /* Note that we don't bother to ever free this information. |
| 9931 | find_nearest_line is either called all the time, as in |
| 9932 | objdump -l, so the information should be saved, or it is |
| 9933 | rarely called, as in ld error messages, so the memory |
| 9934 | wasted is unimportant. Still, it would probably be a |
| 9935 | good idea for free_cached_info to throw it away. */ |
| 9936 | } |
| 9937 | |
| 9938 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, |
| 9939 | &fi->i, filename_ptr, functionname_ptr, |
| 9940 | line_ptr)) |
| 9941 | { |
| 9942 | msec->flags = origflags; |
| 9943 | return TRUE; |
| 9944 | } |
| 9945 | |
| 9946 | msec->flags = origflags; |
| 9947 | } |
| 9948 | |
| 9949 | /* Fall back on the generic ELF find_nearest_line routine. */ |
| 9950 | |
| 9951 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, |
| 9952 | filename_ptr, functionname_ptr, |
| 9953 | line_ptr); |
| 9954 | } |
| 9955 | |
| 9956 | bfd_boolean |
| 9957 | _bfd_mips_elf_find_inliner_info (bfd *abfd, |
| 9958 | const char **filename_ptr, |
| 9959 | const char **functionname_ptr, |
| 9960 | unsigned int *line_ptr) |
| 9961 | { |
| 9962 | bfd_boolean found; |
| 9963 | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, |
| 9964 | functionname_ptr, line_ptr, |
| 9965 | & elf_tdata (abfd)->dwarf2_find_line_info); |
| 9966 | return found; |
| 9967 | } |
| 9968 | |
| 9969 | \f |
| 9970 | /* When are writing out the .options or .MIPS.options section, |
| 9971 | remember the bytes we are writing out, so that we can install the |
| 9972 | GP value in the section_processing routine. */ |
| 9973 | |
| 9974 | bfd_boolean |
| 9975 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
| 9976 | const void *location, |
| 9977 | file_ptr offset, bfd_size_type count) |
| 9978 | { |
| 9979 | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
| 9980 | { |
| 9981 | bfd_byte *c; |
| 9982 | |
| 9983 | if (elf_section_data (section) == NULL) |
| 9984 | { |
| 9985 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); |
| 9986 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
| 9987 | if (elf_section_data (section) == NULL) |
| 9988 | return FALSE; |
| 9989 | } |
| 9990 | c = mips_elf_section_data (section)->u.tdata; |
| 9991 | if (c == NULL) |
| 9992 | { |
| 9993 | c = bfd_zalloc (abfd, section->size); |
| 9994 | if (c == NULL) |
| 9995 | return FALSE; |
| 9996 | mips_elf_section_data (section)->u.tdata = c; |
| 9997 | } |
| 9998 | |
| 9999 | memcpy (c + offset, location, count); |
| 10000 | } |
| 10001 | |
| 10002 | return _bfd_elf_set_section_contents (abfd, section, location, offset, |
| 10003 | count); |
| 10004 | } |
| 10005 | |
| 10006 | /* This is almost identical to bfd_generic_get_... except that some |
| 10007 | MIPS relocations need to be handled specially. Sigh. */ |
| 10008 | |
| 10009 | bfd_byte * |
| 10010 | _bfd_elf_mips_get_relocated_section_contents |
| 10011 | (bfd *abfd, |
| 10012 | struct bfd_link_info *link_info, |
| 10013 | struct bfd_link_order *link_order, |
| 10014 | bfd_byte *data, |
| 10015 | bfd_boolean relocatable, |
| 10016 | asymbol **symbols) |
| 10017 | { |
| 10018 | /* Get enough memory to hold the stuff */ |
| 10019 | bfd *input_bfd = link_order->u.indirect.section->owner; |
| 10020 | asection *input_section = link_order->u.indirect.section; |
| 10021 | bfd_size_type sz; |
| 10022 | |
| 10023 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); |
| 10024 | arelent **reloc_vector = NULL; |
| 10025 | long reloc_count; |
| 10026 | |
| 10027 | if (reloc_size < 0) |
| 10028 | goto error_return; |
| 10029 | |
| 10030 | reloc_vector = bfd_malloc (reloc_size); |
| 10031 | if (reloc_vector == NULL && reloc_size != 0) |
| 10032 | goto error_return; |
| 10033 | |
| 10034 | /* read in the section */ |
| 10035 | sz = input_section->rawsize ? input_section->rawsize : input_section->size; |
| 10036 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) |
| 10037 | goto error_return; |
| 10038 | |
| 10039 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
| 10040 | input_section, |
| 10041 | reloc_vector, |
| 10042 | symbols); |
| 10043 | if (reloc_count < 0) |
| 10044 | goto error_return; |
| 10045 | |
| 10046 | if (reloc_count > 0) |
| 10047 | { |
| 10048 | arelent **parent; |
| 10049 | /* for mips */ |
| 10050 | int gp_found; |
| 10051 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ |
| 10052 | |
| 10053 | { |
| 10054 | struct bfd_hash_entry *h; |
| 10055 | struct bfd_link_hash_entry *lh; |
| 10056 | /* Skip all this stuff if we aren't mixing formats. */ |
| 10057 | if (abfd && input_bfd |
| 10058 | && abfd->xvec == input_bfd->xvec) |
| 10059 | lh = 0; |
| 10060 | else |
| 10061 | { |
| 10062 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
| 10063 | lh = (struct bfd_link_hash_entry *) h; |
| 10064 | } |
| 10065 | lookup: |
| 10066 | if (lh) |
| 10067 | { |
| 10068 | switch (lh->type) |
| 10069 | { |
| 10070 | case bfd_link_hash_undefined: |
| 10071 | case bfd_link_hash_undefweak: |
| 10072 | case bfd_link_hash_common: |
| 10073 | gp_found = 0; |
| 10074 | break; |
| 10075 | case bfd_link_hash_defined: |
| 10076 | case bfd_link_hash_defweak: |
| 10077 | gp_found = 1; |
| 10078 | gp = lh->u.def.value; |
| 10079 | break; |
| 10080 | case bfd_link_hash_indirect: |
| 10081 | case bfd_link_hash_warning: |
| 10082 | lh = lh->u.i.link; |
| 10083 | /* @@FIXME ignoring warning for now */ |
| 10084 | goto lookup; |
| 10085 | case bfd_link_hash_new: |
| 10086 | default: |
| 10087 | abort (); |
| 10088 | } |
| 10089 | } |
| 10090 | else |
| 10091 | gp_found = 0; |
| 10092 | } |
| 10093 | /* end mips */ |
| 10094 | for (parent = reloc_vector; *parent != NULL; parent++) |
| 10095 | { |
| 10096 | char *error_message = NULL; |
| 10097 | bfd_reloc_status_type r; |
| 10098 | |
| 10099 | /* Specific to MIPS: Deal with relocation types that require |
| 10100 | knowing the gp of the output bfd. */ |
| 10101 | asymbol *sym = *(*parent)->sym_ptr_ptr; |
| 10102 | |
| 10103 | /* If we've managed to find the gp and have a special |
| 10104 | function for the relocation then go ahead, else default |
| 10105 | to the generic handling. */ |
| 10106 | if (gp_found |
| 10107 | && (*parent)->howto->special_function |
| 10108 | == _bfd_mips_elf32_gprel16_reloc) |
| 10109 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, |
| 10110 | input_section, relocatable, |
| 10111 | data, gp); |
| 10112 | else |
| 10113 | r = bfd_perform_relocation (input_bfd, *parent, data, |
| 10114 | input_section, |
| 10115 | relocatable ? abfd : NULL, |
| 10116 | &error_message); |
| 10117 | |
| 10118 | if (relocatable) |
| 10119 | { |
| 10120 | asection *os = input_section->output_section; |
| 10121 | |
| 10122 | /* A partial link, so keep the relocs */ |
| 10123 | os->orelocation[os->reloc_count] = *parent; |
| 10124 | os->reloc_count++; |
| 10125 | } |
| 10126 | |
| 10127 | if (r != bfd_reloc_ok) |
| 10128 | { |
| 10129 | switch (r) |
| 10130 | { |
| 10131 | case bfd_reloc_undefined: |
| 10132 | if (!((*link_info->callbacks->undefined_symbol) |
| 10133 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), |
| 10134 | input_bfd, input_section, (*parent)->address, TRUE))) |
| 10135 | goto error_return; |
| 10136 | break; |
| 10137 | case bfd_reloc_dangerous: |
| 10138 | BFD_ASSERT (error_message != NULL); |
| 10139 | if (!((*link_info->callbacks->reloc_dangerous) |
| 10140 | (link_info, error_message, input_bfd, input_section, |
| 10141 | (*parent)->address))) |
| 10142 | goto error_return; |
| 10143 | break; |
| 10144 | case bfd_reloc_overflow: |
| 10145 | if (!((*link_info->callbacks->reloc_overflow) |
| 10146 | (link_info, NULL, |
| 10147 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), |
| 10148 | (*parent)->howto->name, (*parent)->addend, |
| 10149 | input_bfd, input_section, (*parent)->address))) |
| 10150 | goto error_return; |
| 10151 | break; |
| 10152 | case bfd_reloc_outofrange: |
| 10153 | default: |
| 10154 | abort (); |
| 10155 | break; |
| 10156 | } |
| 10157 | |
| 10158 | } |
| 10159 | } |
| 10160 | } |
| 10161 | if (reloc_vector != NULL) |
| 10162 | free (reloc_vector); |
| 10163 | return data; |
| 10164 | |
| 10165 | error_return: |
| 10166 | if (reloc_vector != NULL) |
| 10167 | free (reloc_vector); |
| 10168 | return NULL; |
| 10169 | } |
| 10170 | \f |
| 10171 | /* Create a MIPS ELF linker hash table. */ |
| 10172 | |
| 10173 | struct bfd_link_hash_table * |
| 10174 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
| 10175 | { |
| 10176 | struct mips_elf_link_hash_table *ret; |
| 10177 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); |
| 10178 | |
| 10179 | ret = bfd_malloc (amt); |
| 10180 | if (ret == NULL) |
| 10181 | return NULL; |
| 10182 | |
| 10183 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
| 10184 | mips_elf_link_hash_newfunc, |
| 10185 | sizeof (struct mips_elf_link_hash_entry))) |
| 10186 | { |
| 10187 | free (ret); |
| 10188 | return NULL; |
| 10189 | } |
| 10190 | |
| 10191 | #if 0 |
| 10192 | /* We no longer use this. */ |
| 10193 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) |
| 10194 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; |
| 10195 | #endif |
| 10196 | ret->procedure_count = 0; |
| 10197 | ret->compact_rel_size = 0; |
| 10198 | ret->use_rld_obj_head = FALSE; |
| 10199 | ret->rld_value = 0; |
| 10200 | ret->mips16_stubs_seen = FALSE; |
| 10201 | ret->is_vxworks = FALSE; |
| 10202 | ret->srelbss = NULL; |
| 10203 | ret->sdynbss = NULL; |
| 10204 | ret->srelplt = NULL; |
| 10205 | ret->srelplt2 = NULL; |
| 10206 | ret->sgotplt = NULL; |
| 10207 | ret->splt = NULL; |
| 10208 | ret->plt_header_size = 0; |
| 10209 | ret->plt_entry_size = 0; |
| 10210 | ret->function_stub_size = 0; |
| 10211 | |
| 10212 | return &ret->root.root; |
| 10213 | } |
| 10214 | |
| 10215 | /* Likewise, but indicate that the target is VxWorks. */ |
| 10216 | |
| 10217 | struct bfd_link_hash_table * |
| 10218 | _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) |
| 10219 | { |
| 10220 | struct bfd_link_hash_table *ret; |
| 10221 | |
| 10222 | ret = _bfd_mips_elf_link_hash_table_create (abfd); |
| 10223 | if (ret) |
| 10224 | { |
| 10225 | struct mips_elf_link_hash_table *htab; |
| 10226 | |
| 10227 | htab = (struct mips_elf_link_hash_table *) ret; |
| 10228 | htab->is_vxworks = 1; |
| 10229 | } |
| 10230 | return ret; |
| 10231 | } |
| 10232 | \f |
| 10233 | /* We need to use a special link routine to handle the .reginfo and |
| 10234 | the .mdebug sections. We need to merge all instances of these |
| 10235 | sections together, not write them all out sequentially. */ |
| 10236 | |
| 10237 | bfd_boolean |
| 10238 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
| 10239 | { |
| 10240 | asection *o; |
| 10241 | struct bfd_link_order *p; |
| 10242 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; |
| 10243 | asection *rtproc_sec; |
| 10244 | Elf32_RegInfo reginfo; |
| 10245 | struct ecoff_debug_info debug; |
| 10246 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 10247 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; |
| 10248 | HDRR *symhdr = &debug.symbolic_header; |
| 10249 | void *mdebug_handle = NULL; |
| 10250 | asection *s; |
| 10251 | EXTR esym; |
| 10252 | unsigned int i; |
| 10253 | bfd_size_type amt; |
| 10254 | struct mips_elf_link_hash_table *htab; |
| 10255 | |
| 10256 | static const char * const secname[] = |
| 10257 | { |
| 10258 | ".text", ".init", ".fini", ".data", |
| 10259 | ".rodata", ".sdata", ".sbss", ".bss" |
| 10260 | }; |
| 10261 | static const int sc[] = |
| 10262 | { |
| 10263 | scText, scInit, scFini, scData, |
| 10264 | scRData, scSData, scSBss, scBss |
| 10265 | }; |
| 10266 | |
| 10267 | /* We'd carefully arranged the dynamic symbol indices, and then the |
| 10268 | generic size_dynamic_sections renumbered them out from under us. |
| 10269 | Rather than trying somehow to prevent the renumbering, just do |
| 10270 | the sort again. */ |
| 10271 | htab = mips_elf_hash_table (info); |
| 10272 | if (elf_hash_table (info)->dynamic_sections_created) |
| 10273 | { |
| 10274 | bfd *dynobj; |
| 10275 | asection *got; |
| 10276 | struct mips_got_info *g; |
| 10277 | bfd_size_type dynsecsymcount; |
| 10278 | |
| 10279 | /* When we resort, we must tell mips_elf_sort_hash_table what |
| 10280 | the lowest index it may use is. That's the number of section |
| 10281 | symbols we're going to add. The generic ELF linker only |
| 10282 | adds these symbols when building a shared object. Note that |
| 10283 | we count the sections after (possibly) removing the .options |
| 10284 | section above. */ |
| 10285 | |
| 10286 | dynsecsymcount = count_section_dynsyms (abfd, info); |
| 10287 | if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1)) |
| 10288 | return FALSE; |
| 10289 | |
| 10290 | /* Make sure we didn't grow the global .got region. */ |
| 10291 | dynobj = elf_hash_table (info)->dynobj; |
| 10292 | got = mips_elf_got_section (dynobj, FALSE); |
| 10293 | g = mips_elf_section_data (got)->u.got_info; |
| 10294 | |
| 10295 | if (g->global_gotsym != NULL) |
| 10296 | BFD_ASSERT ((elf_hash_table (info)->dynsymcount |
| 10297 | - g->global_gotsym->dynindx) |
| 10298 | <= g->global_gotno); |
| 10299 | } |
| 10300 | |
| 10301 | /* Get a value for the GP register. */ |
| 10302 | if (elf_gp (abfd) == 0) |
| 10303 | { |
| 10304 | struct bfd_link_hash_entry *h; |
| 10305 | |
| 10306 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
| 10307 | if (h != NULL && h->type == bfd_link_hash_defined) |
| 10308 | elf_gp (abfd) = (h->u.def.value |
| 10309 | + h->u.def.section->output_section->vma |
| 10310 | + h->u.def.section->output_offset); |
| 10311 | else if (htab->is_vxworks |
| 10312 | && (h = bfd_link_hash_lookup (info->hash, |
| 10313 | "_GLOBAL_OFFSET_TABLE_", |
| 10314 | FALSE, FALSE, TRUE)) |
| 10315 | && h->type == bfd_link_hash_defined) |
| 10316 | elf_gp (abfd) = (h->u.def.section->output_section->vma |
| 10317 | + h->u.def.section->output_offset |
| 10318 | + h->u.def.value); |
| 10319 | else if (info->relocatable) |
| 10320 | { |
| 10321 | bfd_vma lo = MINUS_ONE; |
| 10322 | |
| 10323 | /* Find the GP-relative section with the lowest offset. */ |
| 10324 | for (o = abfd->sections; o != NULL; o = o->next) |
| 10325 | if (o->vma < lo |
| 10326 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) |
| 10327 | lo = o->vma; |
| 10328 | |
| 10329 | /* And calculate GP relative to that. */ |
| 10330 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); |
| 10331 | } |
| 10332 | else |
| 10333 | { |
| 10334 | /* If the relocate_section function needs to do a reloc |
| 10335 | involving the GP value, it should make a reloc_dangerous |
| 10336 | callback to warn that GP is not defined. */ |
| 10337 | } |
| 10338 | } |
| 10339 | |
| 10340 | /* Go through the sections and collect the .reginfo and .mdebug |
| 10341 | information. */ |
| 10342 | reginfo_sec = NULL; |
| 10343 | mdebug_sec = NULL; |
| 10344 | gptab_data_sec = NULL; |
| 10345 | gptab_bss_sec = NULL; |
| 10346 | for (o = abfd->sections; o != NULL; o = o->next) |
| 10347 | { |
| 10348 | if (strcmp (o->name, ".reginfo") == 0) |
| 10349 | { |
| 10350 | memset (®info, 0, sizeof reginfo); |
| 10351 | |
| 10352 | /* We have found the .reginfo section in the output file. |
| 10353 | Look through all the link_orders comprising it and merge |
| 10354 | the information together. */ |
| 10355 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
| 10356 | { |
| 10357 | asection *input_section; |
| 10358 | bfd *input_bfd; |
| 10359 | Elf32_External_RegInfo ext; |
| 10360 | Elf32_RegInfo sub; |
| 10361 | |
| 10362 | if (p->type != bfd_indirect_link_order) |
| 10363 | { |
| 10364 | if (p->type == bfd_data_link_order) |
| 10365 | continue; |
| 10366 | abort (); |
| 10367 | } |
| 10368 | |
| 10369 | input_section = p->u.indirect.section; |
| 10370 | input_bfd = input_section->owner; |
| 10371 | |
| 10372 | if (! bfd_get_section_contents (input_bfd, input_section, |
| 10373 | &ext, 0, sizeof ext)) |
| 10374 | return FALSE; |
| 10375 | |
| 10376 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); |
| 10377 | |
| 10378 | reginfo.ri_gprmask |= sub.ri_gprmask; |
| 10379 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; |
| 10380 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; |
| 10381 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; |
| 10382 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; |
| 10383 | |
| 10384 | /* ri_gp_value is set by the function |
| 10385 | mips_elf32_section_processing when the section is |
| 10386 | finally written out. */ |
| 10387 | |
| 10388 | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| 10389 | elf_link_input_bfd ignores this section. */ |
| 10390 | input_section->flags &= ~SEC_HAS_CONTENTS; |
| 10391 | } |
| 10392 | |
| 10393 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ |
| 10394 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
| 10395 | |
| 10396 | /* Skip this section later on (I don't think this currently |
| 10397 | matters, but someday it might). */ |
| 10398 | o->map_head.link_order = NULL; |
| 10399 | |
| 10400 | reginfo_sec = o; |
| 10401 | } |
| 10402 | |
| 10403 | if (strcmp (o->name, ".mdebug") == 0) |
| 10404 | { |
| 10405 | struct extsym_info einfo; |
| 10406 | bfd_vma last; |
| 10407 | |
| 10408 | /* We have found the .mdebug section in the output file. |
| 10409 | Look through all the link_orders comprising it and merge |
| 10410 | the information together. */ |
| 10411 | symhdr->magic = swap->sym_magic; |
| 10412 | /* FIXME: What should the version stamp be? */ |
| 10413 | symhdr->vstamp = 0; |
| 10414 | symhdr->ilineMax = 0; |
| 10415 | symhdr->cbLine = 0; |
| 10416 | symhdr->idnMax = 0; |
| 10417 | symhdr->ipdMax = 0; |
| 10418 | symhdr->isymMax = 0; |
| 10419 | symhdr->ioptMax = 0; |
| 10420 | symhdr->iauxMax = 0; |
| 10421 | symhdr->issMax = 0; |
| 10422 | symhdr->issExtMax = 0; |
| 10423 | symhdr->ifdMax = 0; |
| 10424 | symhdr->crfd = 0; |
| 10425 | symhdr->iextMax = 0; |
| 10426 | |
| 10427 | /* We accumulate the debugging information itself in the |
| 10428 | debug_info structure. */ |
| 10429 | debug.line = NULL; |
| 10430 | debug.external_dnr = NULL; |
| 10431 | debug.external_pdr = NULL; |
| 10432 | debug.external_sym = NULL; |
| 10433 | debug.external_opt = NULL; |
| 10434 | debug.external_aux = NULL; |
| 10435 | debug.ss = NULL; |
| 10436 | debug.ssext = debug.ssext_end = NULL; |
| 10437 | debug.external_fdr = NULL; |
| 10438 | debug.external_rfd = NULL; |
| 10439 | debug.external_ext = debug.external_ext_end = NULL; |
| 10440 | |
| 10441 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); |
| 10442 | if (mdebug_handle == NULL) |
| 10443 | return FALSE; |
| 10444 | |
| 10445 | esym.jmptbl = 0; |
| 10446 | esym.cobol_main = 0; |
| 10447 | esym.weakext = 0; |
| 10448 | esym.reserved = 0; |
| 10449 | esym.ifd = ifdNil; |
| 10450 | esym.asym.iss = issNil; |
| 10451 | esym.asym.st = stLocal; |
| 10452 | esym.asym.reserved = 0; |
| 10453 | esym.asym.index = indexNil; |
| 10454 | last = 0; |
| 10455 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) |
| 10456 | { |
| 10457 | esym.asym.sc = sc[i]; |
| 10458 | s = bfd_get_section_by_name (abfd, secname[i]); |
| 10459 | if (s != NULL) |
| 10460 | { |
| 10461 | esym.asym.value = s->vma; |
| 10462 | last = s->vma + s->size; |
| 10463 | } |
| 10464 | else |
| 10465 | esym.asym.value = last; |
| 10466 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, |
| 10467 | secname[i], &esym)) |
| 10468 | return FALSE; |
| 10469 | } |
| 10470 | |
| 10471 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
| 10472 | { |
| 10473 | asection *input_section; |
| 10474 | bfd *input_bfd; |
| 10475 | const struct ecoff_debug_swap *input_swap; |
| 10476 | struct ecoff_debug_info input_debug; |
| 10477 | char *eraw_src; |
| 10478 | char *eraw_end; |
| 10479 | |
| 10480 | if (p->type != bfd_indirect_link_order) |
| 10481 | { |
| 10482 | if (p->type == bfd_data_link_order) |
| 10483 | continue; |
| 10484 | abort (); |
| 10485 | } |
| 10486 | |
| 10487 | input_section = p->u.indirect.section; |
| 10488 | input_bfd = input_section->owner; |
| 10489 | |
| 10490 | if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour |
| 10491 | || (get_elf_backend_data (input_bfd) |
| 10492 | ->elf_backend_ecoff_debug_swap) == NULL) |
| 10493 | { |
| 10494 | /* I don't know what a non MIPS ELF bfd would be |
| 10495 | doing with a .mdebug section, but I don't really |
| 10496 | want to deal with it. */ |
| 10497 | continue; |
| 10498 | } |
| 10499 | |
| 10500 | input_swap = (get_elf_backend_data (input_bfd) |
| 10501 | ->elf_backend_ecoff_debug_swap); |
| 10502 | |
| 10503 | BFD_ASSERT (p->size == input_section->size); |
| 10504 | |
| 10505 | /* The ECOFF linking code expects that we have already |
| 10506 | read in the debugging information and set up an |
| 10507 | ecoff_debug_info structure, so we do that now. */ |
| 10508 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, |
| 10509 | &input_debug)) |
| 10510 | return FALSE; |
| 10511 | |
| 10512 | if (! (bfd_ecoff_debug_accumulate |
| 10513 | (mdebug_handle, abfd, &debug, swap, input_bfd, |
| 10514 | &input_debug, input_swap, info))) |
| 10515 | return FALSE; |
| 10516 | |
| 10517 | /* Loop through the external symbols. For each one with |
| 10518 | interesting information, try to find the symbol in |
| 10519 | the linker global hash table and save the information |
| 10520 | for the output external symbols. */ |
| 10521 | eraw_src = input_debug.external_ext; |
| 10522 | eraw_end = (eraw_src |
| 10523 | + (input_debug.symbolic_header.iextMax |
| 10524 | * input_swap->external_ext_size)); |
| 10525 | for (; |
| 10526 | eraw_src < eraw_end; |
| 10527 | eraw_src += input_swap->external_ext_size) |
| 10528 | { |
| 10529 | EXTR ext; |
| 10530 | const char *name; |
| 10531 | struct mips_elf_link_hash_entry *h; |
| 10532 | |
| 10533 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
| 10534 | if (ext.asym.sc == scNil |
| 10535 | || ext.asym.sc == scUndefined |
| 10536 | || ext.asym.sc == scSUndefined) |
| 10537 | continue; |
| 10538 | |
| 10539 | name = input_debug.ssext + ext.asym.iss; |
| 10540 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), |
| 10541 | name, FALSE, FALSE, TRUE); |
| 10542 | if (h == NULL || h->esym.ifd != -2) |
| 10543 | continue; |
| 10544 | |
| 10545 | if (ext.ifd != -1) |
| 10546 | { |
| 10547 | BFD_ASSERT (ext.ifd |
| 10548 | < input_debug.symbolic_header.ifdMax); |
| 10549 | ext.ifd = input_debug.ifdmap[ext.ifd]; |
| 10550 | } |
| 10551 | |
| 10552 | h->esym = ext; |
| 10553 | } |
| 10554 | |
| 10555 | /* Free up the information we just read. */ |
| 10556 | free (input_debug.line); |
| 10557 | free (input_debug.external_dnr); |
| 10558 | free (input_debug.external_pdr); |
| 10559 | free (input_debug.external_sym); |
| 10560 | free (input_debug.external_opt); |
| 10561 | free (input_debug.external_aux); |
| 10562 | free (input_debug.ss); |
| 10563 | free (input_debug.ssext); |
| 10564 | free (input_debug.external_fdr); |
| 10565 | free (input_debug.external_rfd); |
| 10566 | free (input_debug.external_ext); |
| 10567 | |
| 10568 | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| 10569 | elf_link_input_bfd ignores this section. */ |
| 10570 | input_section->flags &= ~SEC_HAS_CONTENTS; |
| 10571 | } |
| 10572 | |
| 10573 | if (SGI_COMPAT (abfd) && info->shared) |
| 10574 | { |
| 10575 | /* Create .rtproc section. */ |
| 10576 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); |
| 10577 | if (rtproc_sec == NULL) |
| 10578 | { |
| 10579 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| 10580 | | SEC_LINKER_CREATED | SEC_READONLY); |
| 10581 | |
| 10582 | rtproc_sec = bfd_make_section_with_flags (abfd, |
| 10583 | ".rtproc", |
| 10584 | flags); |
| 10585 | if (rtproc_sec == NULL |
| 10586 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) |
| 10587 | return FALSE; |
| 10588 | } |
| 10589 | |
| 10590 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, |
| 10591 | info, rtproc_sec, |
| 10592 | &debug)) |
| 10593 | return FALSE; |
| 10594 | } |
| 10595 | |
| 10596 | /* Build the external symbol information. */ |
| 10597 | einfo.abfd = abfd; |
| 10598 | einfo.info = info; |
| 10599 | einfo.debug = &debug; |
| 10600 | einfo.swap = swap; |
| 10601 | einfo.failed = FALSE; |
| 10602 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
| 10603 | mips_elf_output_extsym, &einfo); |
| 10604 | if (einfo.failed) |
| 10605 | return FALSE; |
| 10606 | |
| 10607 | /* Set the size of the .mdebug section. */ |
| 10608 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
| 10609 | |
| 10610 | /* Skip this section later on (I don't think this currently |
| 10611 | matters, but someday it might). */ |
| 10612 | o->map_head.link_order = NULL; |
| 10613 | |
| 10614 | mdebug_sec = o; |
| 10615 | } |
| 10616 | |
| 10617 | if (CONST_STRNEQ (o->name, ".gptab.")) |
| 10618 | { |
| 10619 | const char *subname; |
| 10620 | unsigned int c; |
| 10621 | Elf32_gptab *tab; |
| 10622 | Elf32_External_gptab *ext_tab; |
| 10623 | unsigned int j; |
| 10624 | |
| 10625 | /* The .gptab.sdata and .gptab.sbss sections hold |
| 10626 | information describing how the small data area would |
| 10627 | change depending upon the -G switch. These sections |
| 10628 | not used in executables files. */ |
| 10629 | if (! info->relocatable) |
| 10630 | { |
| 10631 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
| 10632 | { |
| 10633 | asection *input_section; |
| 10634 | |
| 10635 | if (p->type != bfd_indirect_link_order) |
| 10636 | { |
| 10637 | if (p->type == bfd_data_link_order) |
| 10638 | continue; |
| 10639 | abort (); |
| 10640 | } |
| 10641 | |
| 10642 | input_section = p->u.indirect.section; |
| 10643 | |
| 10644 | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| 10645 | elf_link_input_bfd ignores this section. */ |
| 10646 | input_section->flags &= ~SEC_HAS_CONTENTS; |
| 10647 | } |
| 10648 | |
| 10649 | /* Skip this section later on (I don't think this |
| 10650 | currently matters, but someday it might). */ |
| 10651 | o->map_head.link_order = NULL; |
| 10652 | |
| 10653 | /* Really remove the section. */ |
| 10654 | bfd_section_list_remove (abfd, o); |
| 10655 | --abfd->section_count; |
| 10656 | |
| 10657 | continue; |
| 10658 | } |
| 10659 | |
| 10660 | /* There is one gptab for initialized data, and one for |
| 10661 | uninitialized data. */ |
| 10662 | if (strcmp (o->name, ".gptab.sdata") == 0) |
| 10663 | gptab_data_sec = o; |
| 10664 | else if (strcmp (o->name, ".gptab.sbss") == 0) |
| 10665 | gptab_bss_sec = o; |
| 10666 | else |
| 10667 | { |
| 10668 | (*_bfd_error_handler) |
| 10669 | (_("%s: illegal section name `%s'"), |
| 10670 | bfd_get_filename (abfd), o->name); |
| 10671 | bfd_set_error (bfd_error_nonrepresentable_section); |
| 10672 | return FALSE; |
| 10673 | } |
| 10674 | |
| 10675 | /* The linker script always combines .gptab.data and |
| 10676 | .gptab.sdata into .gptab.sdata, and likewise for |
| 10677 | .gptab.bss and .gptab.sbss. It is possible that there is |
| 10678 | no .sdata or .sbss section in the output file, in which |
| 10679 | case we must change the name of the output section. */ |
| 10680 | subname = o->name + sizeof ".gptab" - 1; |
| 10681 | if (bfd_get_section_by_name (abfd, subname) == NULL) |
| 10682 | { |
| 10683 | if (o == gptab_data_sec) |
| 10684 | o->name = ".gptab.data"; |
| 10685 | else |
| 10686 | o->name = ".gptab.bss"; |
| 10687 | subname = o->name + sizeof ".gptab" - 1; |
| 10688 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); |
| 10689 | } |
| 10690 | |
| 10691 | /* Set up the first entry. */ |
| 10692 | c = 1; |
| 10693 | amt = c * sizeof (Elf32_gptab); |
| 10694 | tab = bfd_malloc (amt); |
| 10695 | if (tab == NULL) |
| 10696 | return FALSE; |
| 10697 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
| 10698 | tab[0].gt_header.gt_unused = 0; |
| 10699 | |
| 10700 | /* Combine the input sections. */ |
| 10701 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
| 10702 | { |
| 10703 | asection *input_section; |
| 10704 | bfd *input_bfd; |
| 10705 | bfd_size_type size; |
| 10706 | unsigned long last; |
| 10707 | bfd_size_type gpentry; |
| 10708 | |
| 10709 | if (p->type != bfd_indirect_link_order) |
| 10710 | { |
| 10711 | if (p->type == bfd_data_link_order) |
| 10712 | continue; |
| 10713 | abort (); |
| 10714 | } |
| 10715 | |
| 10716 | input_section = p->u.indirect.section; |
| 10717 | input_bfd = input_section->owner; |
| 10718 | |
| 10719 | /* Combine the gptab entries for this input section one |
| 10720 | by one. We know that the input gptab entries are |
| 10721 | sorted by ascending -G value. */ |
| 10722 | size = input_section->size; |
| 10723 | last = 0; |
| 10724 | for (gpentry = sizeof (Elf32_External_gptab); |
| 10725 | gpentry < size; |
| 10726 | gpentry += sizeof (Elf32_External_gptab)) |
| 10727 | { |
| 10728 | Elf32_External_gptab ext_gptab; |
| 10729 | Elf32_gptab int_gptab; |
| 10730 | unsigned long val; |
| 10731 | unsigned long add; |
| 10732 | bfd_boolean exact; |
| 10733 | unsigned int look; |
| 10734 | |
| 10735 | if (! (bfd_get_section_contents |
| 10736 | (input_bfd, input_section, &ext_gptab, gpentry, |
| 10737 | sizeof (Elf32_External_gptab)))) |
| 10738 | { |
| 10739 | free (tab); |
| 10740 | return FALSE; |
| 10741 | } |
| 10742 | |
| 10743 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, |
| 10744 | &int_gptab); |
| 10745 | val = int_gptab.gt_entry.gt_g_value; |
| 10746 | add = int_gptab.gt_entry.gt_bytes - last; |
| 10747 | |
| 10748 | exact = FALSE; |
| 10749 | for (look = 1; look < c; look++) |
| 10750 | { |
| 10751 | if (tab[look].gt_entry.gt_g_value >= val) |
| 10752 | tab[look].gt_entry.gt_bytes += add; |
| 10753 | |
| 10754 | if (tab[look].gt_entry.gt_g_value == val) |
| 10755 | exact = TRUE; |
| 10756 | } |
| 10757 | |
| 10758 | if (! exact) |
| 10759 | { |
| 10760 | Elf32_gptab *new_tab; |
| 10761 | unsigned int max; |
| 10762 | |
| 10763 | /* We need a new table entry. */ |
| 10764 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); |
| 10765 | new_tab = bfd_realloc (tab, amt); |
| 10766 | if (new_tab == NULL) |
| 10767 | { |
| 10768 | free (tab); |
| 10769 | return FALSE; |
| 10770 | } |
| 10771 | tab = new_tab; |
| 10772 | tab[c].gt_entry.gt_g_value = val; |
| 10773 | tab[c].gt_entry.gt_bytes = add; |
| 10774 | |
| 10775 | /* Merge in the size for the next smallest -G |
| 10776 | value, since that will be implied by this new |
| 10777 | value. */ |
| 10778 | max = 0; |
| 10779 | for (look = 1; look < c; look++) |
| 10780 | { |
| 10781 | if (tab[look].gt_entry.gt_g_value < val |
| 10782 | && (max == 0 |
| 10783 | || (tab[look].gt_entry.gt_g_value |
| 10784 | > tab[max].gt_entry.gt_g_value))) |
| 10785 | max = look; |
| 10786 | } |
| 10787 | if (max != 0) |
| 10788 | tab[c].gt_entry.gt_bytes += |
| 10789 | tab[max].gt_entry.gt_bytes; |
| 10790 | |
| 10791 | ++c; |
| 10792 | } |
| 10793 | |
| 10794 | last = int_gptab.gt_entry.gt_bytes; |
| 10795 | } |
| 10796 | |
| 10797 | /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| 10798 | elf_link_input_bfd ignores this section. */ |
| 10799 | input_section->flags &= ~SEC_HAS_CONTENTS; |
| 10800 | } |
| 10801 | |
| 10802 | /* The table must be sorted by -G value. */ |
| 10803 | if (c > 2) |
| 10804 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); |
| 10805 | |
| 10806 | /* Swap out the table. */ |
| 10807 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); |
| 10808 | ext_tab = bfd_alloc (abfd, amt); |
| 10809 | if (ext_tab == NULL) |
| 10810 | { |
| 10811 | free (tab); |
| 10812 | return FALSE; |
| 10813 | } |
| 10814 | |
| 10815 | for (j = 0; j < c; j++) |
| 10816 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); |
| 10817 | free (tab); |
| 10818 | |
| 10819 | o->size = c * sizeof (Elf32_External_gptab); |
| 10820 | o->contents = (bfd_byte *) ext_tab; |
| 10821 | |
| 10822 | /* Skip this section later on (I don't think this currently |
| 10823 | matters, but someday it might). */ |
| 10824 | o->map_head.link_order = NULL; |
| 10825 | } |
| 10826 | } |
| 10827 | |
| 10828 | /* Invoke the regular ELF backend linker to do all the work. */ |
| 10829 | if (!bfd_elf_final_link (abfd, info)) |
| 10830 | return FALSE; |
| 10831 | |
| 10832 | /* Now write out the computed sections. */ |
| 10833 | |
| 10834 | if (reginfo_sec != NULL) |
| 10835 | { |
| 10836 | Elf32_External_RegInfo ext; |
| 10837 | |
| 10838 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); |
| 10839 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
| 10840 | return FALSE; |
| 10841 | } |
| 10842 | |
| 10843 | if (mdebug_sec != NULL) |
| 10844 | { |
| 10845 | BFD_ASSERT (abfd->output_has_begun); |
| 10846 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, |
| 10847 | swap, info, |
| 10848 | mdebug_sec->filepos)) |
| 10849 | return FALSE; |
| 10850 | |
| 10851 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); |
| 10852 | } |
| 10853 | |
| 10854 | if (gptab_data_sec != NULL) |
| 10855 | { |
| 10856 | if (! bfd_set_section_contents (abfd, gptab_data_sec, |
| 10857 | gptab_data_sec->contents, |
| 10858 | 0, gptab_data_sec->size)) |
| 10859 | return FALSE; |
| 10860 | } |
| 10861 | |
| 10862 | if (gptab_bss_sec != NULL) |
| 10863 | { |
| 10864 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, |
| 10865 | gptab_bss_sec->contents, |
| 10866 | 0, gptab_bss_sec->size)) |
| 10867 | return FALSE; |
| 10868 | } |
| 10869 | |
| 10870 | if (SGI_COMPAT (abfd)) |
| 10871 | { |
| 10872 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); |
| 10873 | if (rtproc_sec != NULL) |
| 10874 | { |
| 10875 | if (! bfd_set_section_contents (abfd, rtproc_sec, |
| 10876 | rtproc_sec->contents, |
| 10877 | 0, rtproc_sec->size)) |
| 10878 | return FALSE; |
| 10879 | } |
| 10880 | } |
| 10881 | |
| 10882 | return TRUE; |
| 10883 | } |
| 10884 | \f |
| 10885 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
| 10886 | |
| 10887 | struct mips_mach_extension { |
| 10888 | unsigned long extension, base; |
| 10889 | }; |
| 10890 | |
| 10891 | |
| 10892 | /* An array describing how BFD machines relate to one another. The entries |
| 10893 | are ordered topologically with MIPS I extensions listed last. */ |
| 10894 | |
| 10895 | static const struct mips_mach_extension mips_mach_extensions[] = { |
| 10896 | /* MIPS64 extensions. */ |
| 10897 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
| 10898 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
| 10899 | |
| 10900 | /* MIPS V extensions. */ |
| 10901 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, |
| 10902 | |
| 10903 | /* R10000 extensions. */ |
| 10904 | { bfd_mach_mips12000, bfd_mach_mips10000 }, |
| 10905 | |
| 10906 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core |
| 10907 | vr5400 ISA, but doesn't include the multimedia stuff. It seems |
| 10908 | better to allow vr5400 and vr5500 code to be merged anyway, since |
| 10909 | many libraries will just use the core ISA. Perhaps we could add |
| 10910 | some sort of ASE flag if this ever proves a problem. */ |
| 10911 | { bfd_mach_mips5500, bfd_mach_mips5400 }, |
| 10912 | { bfd_mach_mips5400, bfd_mach_mips5000 }, |
| 10913 | |
| 10914 | /* MIPS IV extensions. */ |
| 10915 | { bfd_mach_mips5, bfd_mach_mips8000 }, |
| 10916 | { bfd_mach_mips10000, bfd_mach_mips8000 }, |
| 10917 | { bfd_mach_mips5000, bfd_mach_mips8000 }, |
| 10918 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
| 10919 | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
| 10920 | |
| 10921 | /* VR4100 extensions. */ |
| 10922 | { bfd_mach_mips4120, bfd_mach_mips4100 }, |
| 10923 | { bfd_mach_mips4111, bfd_mach_mips4100 }, |
| 10924 | |
| 10925 | /* MIPS III extensions. */ |
| 10926 | { bfd_mach_mips8000, bfd_mach_mips4000 }, |
| 10927 | { bfd_mach_mips4650, bfd_mach_mips4000 }, |
| 10928 | { bfd_mach_mips4600, bfd_mach_mips4000 }, |
| 10929 | { bfd_mach_mips4400, bfd_mach_mips4000 }, |
| 10930 | { bfd_mach_mips4300, bfd_mach_mips4000 }, |
| 10931 | { bfd_mach_mips4100, bfd_mach_mips4000 }, |
| 10932 | { bfd_mach_mips4010, bfd_mach_mips4000 }, |
| 10933 | |
| 10934 | /* MIPS32 extensions. */ |
| 10935 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, |
| 10936 | |
| 10937 | /* MIPS II extensions. */ |
| 10938 | { bfd_mach_mips4000, bfd_mach_mips6000 }, |
| 10939 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, |
| 10940 | |
| 10941 | /* MIPS I extensions. */ |
| 10942 | { bfd_mach_mips6000, bfd_mach_mips3000 }, |
| 10943 | { bfd_mach_mips3900, bfd_mach_mips3000 } |
| 10944 | }; |
| 10945 | |
| 10946 | |
| 10947 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ |
| 10948 | |
| 10949 | static bfd_boolean |
| 10950 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
| 10951 | { |
| 10952 | size_t i; |
| 10953 | |
| 10954 | if (extension == base) |
| 10955 | return TRUE; |
| 10956 | |
| 10957 | if (base == bfd_mach_mipsisa32 |
| 10958 | && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) |
| 10959 | return TRUE; |
| 10960 | |
| 10961 | if (base == bfd_mach_mipsisa32r2 |
| 10962 | && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) |
| 10963 | return TRUE; |
| 10964 | |
| 10965 | for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) |
| 10966 | if (extension == mips_mach_extensions[i].extension) |
| 10967 | { |
| 10968 | extension = mips_mach_extensions[i].base; |
| 10969 | if (extension == base) |
| 10970 | return TRUE; |
| 10971 | } |
| 10972 | |
| 10973 | return FALSE; |
| 10974 | } |
| 10975 | |
| 10976 | |
| 10977 | /* Return true if the given ELF header flags describe a 32-bit binary. */ |
| 10978 | |
| 10979 | static bfd_boolean |
| 10980 | mips_32bit_flags_p (flagword flags) |
| 10981 | { |
| 10982 | return ((flags & EF_MIPS_32BITMODE) != 0 |
| 10983 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 |
| 10984 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 |
| 10985 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 |
| 10986 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 |
| 10987 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 |
| 10988 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); |
| 10989 | } |
| 10990 | |
| 10991 | |
| 10992 | /* Merge backend specific data from an object file to the output |
| 10993 | object file when linking. */ |
| 10994 | |
| 10995 | bfd_boolean |
| 10996 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
| 10997 | { |
| 10998 | flagword old_flags; |
| 10999 | flagword new_flags; |
| 11000 | bfd_boolean ok; |
| 11001 | bfd_boolean null_input_bfd = TRUE; |
| 11002 | asection *sec; |
| 11003 | |
| 11004 | /* Check if we have the same endianess */ |
| 11005 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
| 11006 | { |
| 11007 | (*_bfd_error_handler) |
| 11008 | (_("%B: endianness incompatible with that of the selected emulation"), |
| 11009 | ibfd); |
| 11010 | return FALSE; |
| 11011 | } |
| 11012 | |
| 11013 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| 11014 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| 11015 | return TRUE; |
| 11016 | |
| 11017 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
| 11018 | { |
| 11019 | (*_bfd_error_handler) |
| 11020 | (_("%B: ABI is incompatible with that of the selected emulation"), |
| 11021 | ibfd); |
| 11022 | return FALSE; |
| 11023 | } |
| 11024 | |
| 11025 | new_flags = elf_elfheader (ibfd)->e_flags; |
| 11026 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; |
| 11027 | old_flags = elf_elfheader (obfd)->e_flags; |
| 11028 | |
| 11029 | if (! elf_flags_init (obfd)) |
| 11030 | { |
| 11031 | elf_flags_init (obfd) = TRUE; |
| 11032 | elf_elfheader (obfd)->e_flags = new_flags; |
| 11033 | elf_elfheader (obfd)->e_ident[EI_CLASS] |
| 11034 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; |
| 11035 | |
| 11036 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
| 11037 | && (bfd_get_arch_info (obfd)->the_default |
| 11038 | || mips_mach_extends_p (bfd_get_mach (obfd), |
| 11039 | bfd_get_mach (ibfd)))) |
| 11040 | { |
| 11041 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
| 11042 | bfd_get_mach (ibfd))) |
| 11043 | return FALSE; |
| 11044 | } |
| 11045 | |
| 11046 | return TRUE; |
| 11047 | } |
| 11048 | |
| 11049 | /* Check flag compatibility. */ |
| 11050 | |
| 11051 | new_flags &= ~EF_MIPS_NOREORDER; |
| 11052 | old_flags &= ~EF_MIPS_NOREORDER; |
| 11053 | |
| 11054 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
| 11055 | doesn't seem to matter. */ |
| 11056 | new_flags &= ~EF_MIPS_XGOT; |
| 11057 | old_flags &= ~EF_MIPS_XGOT; |
| 11058 | |
| 11059 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
| 11060 | just be able to ignore this. */ |
| 11061 | new_flags &= ~EF_MIPS_UCODE; |
| 11062 | old_flags &= ~EF_MIPS_UCODE; |
| 11063 | |
| 11064 | /* Don't care about the PIC flags from dynamic objects; they are |
| 11065 | PIC by design. */ |
| 11066 | if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0 |
| 11067 | && (ibfd->flags & DYNAMIC) != 0) |
| 11068 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); |
| 11069 | |
| 11070 | if (new_flags == old_flags) |
| 11071 | return TRUE; |
| 11072 | |
| 11073 | /* Check to see if the input BFD actually contains any sections. |
| 11074 | If not, its flags may not have been initialised either, but it cannot |
| 11075 | actually cause any incompatibility. */ |
| 11076 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| 11077 | { |
| 11078 | /* Ignore synthetic sections and empty .text, .data and .bss sections |
| 11079 | which are automatically generated by gas. */ |
| 11080 | if (strcmp (sec->name, ".reginfo") |
| 11081 | && strcmp (sec->name, ".mdebug") |
| 11082 | && (sec->size != 0 |
| 11083 | || (strcmp (sec->name, ".text") |
| 11084 | && strcmp (sec->name, ".data") |
| 11085 | && strcmp (sec->name, ".bss")))) |
| 11086 | { |
| 11087 | null_input_bfd = FALSE; |
| 11088 | break; |
| 11089 | } |
| 11090 | } |
| 11091 | if (null_input_bfd) |
| 11092 | return TRUE; |
| 11093 | |
| 11094 | ok = TRUE; |
| 11095 | |
| 11096 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
| 11097 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) |
| 11098 | { |
| 11099 | (*_bfd_error_handler) |
| 11100 | (_("%B: warning: linking PIC files with non-PIC files"), |
| 11101 | ibfd); |
| 11102 | ok = TRUE; |
| 11103 | } |
| 11104 | |
| 11105 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
| 11106 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; |
| 11107 | if (! (new_flags & EF_MIPS_PIC)) |
| 11108 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; |
| 11109 | |
| 11110 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); |
| 11111 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); |
| 11112 | |
| 11113 | /* Compare the ISAs. */ |
| 11114 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) |
| 11115 | { |
| 11116 | (*_bfd_error_handler) |
| 11117 | (_("%B: linking 32-bit code with 64-bit code"), |
| 11118 | ibfd); |
| 11119 | ok = FALSE; |
| 11120 | } |
| 11121 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) |
| 11122 | { |
| 11123 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ |
| 11124 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) |
| 11125 | { |
| 11126 | /* Copy the architecture info from IBFD to OBFD. Also copy |
| 11127 | the 32-bit flag (if set) so that we continue to recognise |
| 11128 | OBFD as a 32-bit binary. */ |
| 11129 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); |
| 11130 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
| 11131 | elf_elfheader (obfd)->e_flags |
| 11132 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
| 11133 | |
| 11134 | /* Copy across the ABI flags if OBFD doesn't use them |
| 11135 | and if that was what caused us to treat IBFD as 32-bit. */ |
| 11136 | if ((old_flags & EF_MIPS_ABI) == 0 |
| 11137 | && mips_32bit_flags_p (new_flags) |
| 11138 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) |
| 11139 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; |
| 11140 | } |
| 11141 | else |
| 11142 | { |
| 11143 | /* The ISAs aren't compatible. */ |
| 11144 | (*_bfd_error_handler) |
| 11145 | (_("%B: linking %s module with previous %s modules"), |
| 11146 | ibfd, |
| 11147 | bfd_printable_name (ibfd), |
| 11148 | bfd_printable_name (obfd)); |
| 11149 | ok = FALSE; |
| 11150 | } |
| 11151 | } |
| 11152 | |
| 11153 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
| 11154 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
| 11155 | |
| 11156 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it |
| 11157 | does set EI_CLASS differently from any 32-bit ABI. */ |
| 11158 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) |
| 11159 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
| 11160 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) |
| 11161 | { |
| 11162 | /* Only error if both are set (to different values). */ |
| 11163 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) |
| 11164 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
| 11165 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) |
| 11166 | { |
| 11167 | (*_bfd_error_handler) |
| 11168 | (_("%B: ABI mismatch: linking %s module with previous %s modules"), |
| 11169 | ibfd, |
| 11170 | elf_mips_abi_name (ibfd), |
| 11171 | elf_mips_abi_name (obfd)); |
| 11172 | ok = FALSE; |
| 11173 | } |
| 11174 | new_flags &= ~EF_MIPS_ABI; |
| 11175 | old_flags &= ~EF_MIPS_ABI; |
| 11176 | } |
| 11177 | |
| 11178 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
| 11179 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) |
| 11180 | { |
| 11181 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; |
| 11182 | |
| 11183 | new_flags &= ~ EF_MIPS_ARCH_ASE; |
| 11184 | old_flags &= ~ EF_MIPS_ARCH_ASE; |
| 11185 | } |
| 11186 | |
| 11187 | /* Warn about any other mismatches */ |
| 11188 | if (new_flags != old_flags) |
| 11189 | { |
| 11190 | (*_bfd_error_handler) |
| 11191 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
| 11192 | ibfd, (unsigned long) new_flags, |
| 11193 | (unsigned long) old_flags); |
| 11194 | ok = FALSE; |
| 11195 | } |
| 11196 | |
| 11197 | if (! ok) |
| 11198 | { |
| 11199 | bfd_set_error (bfd_error_bad_value); |
| 11200 | return FALSE; |
| 11201 | } |
| 11202 | |
| 11203 | return TRUE; |
| 11204 | } |
| 11205 | |
| 11206 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ |
| 11207 | |
| 11208 | bfd_boolean |
| 11209 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
| 11210 | { |
| 11211 | BFD_ASSERT (!elf_flags_init (abfd) |
| 11212 | || elf_elfheader (abfd)->e_flags == flags); |
| 11213 | |
| 11214 | elf_elfheader (abfd)->e_flags = flags; |
| 11215 | elf_flags_init (abfd) = TRUE; |
| 11216 | return TRUE; |
| 11217 | } |
| 11218 | |
| 11219 | bfd_boolean |
| 11220 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
| 11221 | { |
| 11222 | FILE *file = ptr; |
| 11223 | |
| 11224 | BFD_ASSERT (abfd != NULL && ptr != NULL); |
| 11225 | |
| 11226 | /* Print normal ELF private data. */ |
| 11227 | _bfd_elf_print_private_bfd_data (abfd, ptr); |
| 11228 | |
| 11229 | /* xgettext:c-format */ |
| 11230 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); |
| 11231 | |
| 11232 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) |
| 11233 | fprintf (file, _(" [abi=O32]")); |
| 11234 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) |
| 11235 | fprintf (file, _(" [abi=O64]")); |
| 11236 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) |
| 11237 | fprintf (file, _(" [abi=EABI32]")); |
| 11238 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) |
| 11239 | fprintf (file, _(" [abi=EABI64]")); |
| 11240 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) |
| 11241 | fprintf (file, _(" [abi unknown]")); |
| 11242 | else if (ABI_N32_P (abfd)) |
| 11243 | fprintf (file, _(" [abi=N32]")); |
| 11244 | else if (ABI_64_P (abfd)) |
| 11245 | fprintf (file, _(" [abi=64]")); |
| 11246 | else |
| 11247 | fprintf (file, _(" [no abi set]")); |
| 11248 | |
| 11249 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) |
| 11250 | fprintf (file, " [mips1]"); |
| 11251 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) |
| 11252 | fprintf (file, " [mips2]"); |
| 11253 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) |
| 11254 | fprintf (file, " [mips3]"); |
| 11255 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) |
| 11256 | fprintf (file, " [mips4]"); |
| 11257 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) |
| 11258 | fprintf (file, " [mips5]"); |
| 11259 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) |
| 11260 | fprintf (file, " [mips32]"); |
| 11261 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) |
| 11262 | fprintf (file, " [mips64]"); |
| 11263 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
| 11264 | fprintf (file, " [mips32r2]"); |
| 11265 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
| 11266 | fprintf (file, " [mips64r2]"); |
| 11267 | else |
| 11268 | fprintf (file, _(" [unknown ISA]")); |
| 11269 | |
| 11270 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
| 11271 | fprintf (file, " [mdmx]"); |
| 11272 | |
| 11273 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) |
| 11274 | fprintf (file, " [mips16]"); |
| 11275 | |
| 11276 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
| 11277 | fprintf (file, " [32bitmode]"); |
| 11278 | else |
| 11279 | fprintf (file, _(" [not 32bitmode]")); |
| 11280 | |
| 11281 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) |
| 11282 | fprintf (file, " [noreorder]"); |
| 11283 | |
| 11284 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) |
| 11285 | fprintf (file, " [PIC]"); |
| 11286 | |
| 11287 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) |
| 11288 | fprintf (file, " [CPIC]"); |
| 11289 | |
| 11290 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) |
| 11291 | fprintf (file, " [XGOT]"); |
| 11292 | |
| 11293 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) |
| 11294 | fprintf (file, " [UCODE]"); |
| 11295 | |
| 11296 | fputc ('\n', file); |
| 11297 | |
| 11298 | return TRUE; |
| 11299 | } |
| 11300 | |
| 11301 | const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = |
| 11302 | { |
| 11303 | { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| 11304 | { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| 11305 | { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, |
| 11306 | { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| 11307 | { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| 11308 | { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, |
| 11309 | { NULL, 0, 0, 0, 0 } |
| 11310 | }; |
| 11311 | |
| 11312 | /* Merge non visibility st_other attributes. Ensure that the |
| 11313 | STO_OPTIONAL flag is copied into h->other, even if this is not a |
| 11314 | definiton of the symbol. */ |
| 11315 | void |
| 11316 | _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, |
| 11317 | const Elf_Internal_Sym *isym, |
| 11318 | bfd_boolean definition, |
| 11319 | bfd_boolean dynamic ATTRIBUTE_UNUSED) |
| 11320 | { |
| 11321 | if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) |
| 11322 | { |
| 11323 | unsigned char other; |
| 11324 | |
| 11325 | other = (definition ? isym->st_other : h->other); |
| 11326 | other &= ~ELF_ST_VISIBILITY (-1); |
| 11327 | h->other = other | ELF_ST_VISIBILITY (h->other); |
| 11328 | } |
| 11329 | |
| 11330 | if (!definition |
| 11331 | && ELF_MIPS_IS_OPTIONAL (isym->st_other)) |
| 11332 | h->other |= STO_OPTIONAL; |
| 11333 | } |
| 11334 | |
| 11335 | /* Decide whether an undefined symbol is special and can be ignored. |
| 11336 | This is the case for OPTIONAL symbols on IRIX. */ |
| 11337 | bfd_boolean |
| 11338 | _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) |
| 11339 | { |
| 11340 | return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; |
| 11341 | } |
| 11342 | |
| 11343 | bfd_boolean |
| 11344 | _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) |
| 11345 | { |
| 11346 | return (sym->st_shndx == SHN_COMMON |
| 11347 | || sym->st_shndx == SHN_MIPS_ACOMMON |
| 11348 | || sym->st_shndx == SHN_MIPS_SCOMMON); |
| 11349 | } |