* remote-e7000.c: unuse TM_FILE defined macro.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
... / ...
CommitLineData
1/* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
33#include "libiberty.h"
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71};
72
73/* This structure is used to hold .got information when linking. */
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138};
139
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215};
216
217/* MIPS ELF linker hash table. */
218
219struct mips_elf_link_hash_table
220{
221 struct elf_link_hash_table root;
222#if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226#endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238};
239
240/* Structure used to pass information to mips_elf_output_extsym. */
241
242struct extsym_info
243{
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249};
250
251/* The names of the runtime procedure table symbols used on IRIX5. */
252
253static const char * const mips_elf_dynsym_rtproc_names[] =
254{
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259};
260
261/* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264typedef struct
265{
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272} Elf32_compact_rel;
273
274typedef struct
275{
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282} Elf32_External_compact_rel;
283
284typedef struct
285{
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292} Elf32_crinfo;
293
294typedef struct
295{
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301} Elf32_crinfo2;
302
303typedef struct
304{
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308} Elf32_External_crinfo;
309
310typedef struct
311{
312 bfd_byte info[4];
313 bfd_byte konst[4];
314} Elf32_External_crinfo2;
315
316/* These are the constants used to swap the bitfields in a crinfo. */
317
318#define CRINFO_CTYPE (0x1)
319#define CRINFO_CTYPE_SH (31)
320#define CRINFO_RTYPE (0xf)
321#define CRINFO_RTYPE_SH (27)
322#define CRINFO_DIST2TO (0xff)
323#define CRINFO_DIST2TO_SH (19)
324#define CRINFO_RELVADDR (0x7ffff)
325#define CRINFO_RELVADDR_SH (0)
326
327/* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330#define CRF_MIPS_LONG 1
331#define CRF_MIPS_SHORT 0
332
333/* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343#define CRT_MIPS_REL32 0xa
344#define CRT_MIPS_WORD 0xb
345#define CRT_MIPS_GPHI_LO 0xc
346#define CRT_MIPS_JMPAD 0xd
347
348#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352\f
353/* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368} RPDR, *pRPDR;
369#define cbRPDR sizeof (RPDR)
370#define rpdNil ((pRPDR) 0)
371\f
372static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389static int sort_dynamic_relocs
390 (const void *, const void *);
391static int sort_dynamic_relocs_64
392 (const void *, const void *);
393static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395static int gptab_compare
396 (const void *, const void *);
397static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403static bfd_vma mips_elf_local_got_index
404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
405static bfd_vma mips_elf_global_got_index
406 (bfd *, bfd *, struct elf_link_hash_entry *);
407static bfd_vma mips_elf_got_page
408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
409static bfd_vma mips_elf_got16_entry
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
411static bfd_vma mips_elf_got_offset_from_index
412 (bfd *, bfd *, bfd *, bfd_vma);
413static struct mips_got_entry *mips_elf_create_local_got_entry
414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
415static bfd_boolean mips_elf_sort_hash_table
416 (struct bfd_link_info *, unsigned long);
417static bfd_boolean mips_elf_sort_hash_table_f
418 (struct mips_elf_link_hash_entry *, void *);
419static bfd_boolean mips_elf_record_local_got_symbol
420 (bfd *, long, bfd_vma, struct mips_got_info *);
421static bfd_boolean mips_elf_record_global_got_symbol
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
424static const Elf_Internal_Rela *mips_elf_next_relocation
425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
426static bfd_boolean mips_elf_local_relocation_p
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430static bfd_vma mips_elf_high
431 (bfd_vma);
432static bfd_vma mips_elf_higher
433 (bfd_vma);
434static bfd_vma mips_elf_highest
435 (bfd_vma);
436static bfd_boolean mips_elf_create_compact_rel_section
437 (bfd *, struct bfd_link_info *);
438static bfd_boolean mips_elf_create_got_section
439 (bfd *, struct bfd_link_info *, bfd_boolean);
440static bfd_reloc_status_type mips_elf_calculate_relocation
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
445static bfd_vma mips_elf_obtain_contents
446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
447static bfd_boolean mips_elf_perform_relocation
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
450static bfd_boolean mips_elf_stub_section_p
451 (bfd *, asection *);
452static void mips_elf_allocate_dynamic_relocations
453 (bfd *, unsigned int);
454static bfd_boolean mips_elf_create_dynamic_relocation
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458static void mips_set_isa_flags
459 (bfd *);
460static INLINE char *elf_mips_abi_name
461 (bfd *);
462static void mips_elf_irix6_finish_dynamic_symbol
463 (bfd *, const char *, Elf_Internal_Sym *);
464static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466static bfd_boolean mips_32bit_flags_p
467 (flagword);
468static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470static hashval_t mips_elf_got_entry_hash
471 (const void *);
472static int mips_elf_got_entry_eq
473 (const void *, const void *);
474
475static bfd_boolean mips_elf_multi_got
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486static int mips_elf_make_got_per_bfd
487 (void **, void *);
488static int mips_elf_merge_gots
489 (void **, void *);
490static int mips_elf_set_global_got_offset
491 (void **, void *);
492static int mips_elf_set_no_stub
493 (void **, void *);
494static int mips_elf_resolve_final_got_entry
495 (void **, void *);
496static void mips_elf_resolve_final_got_entries
497 (struct mips_got_info *);
498static bfd_vma mips_elf_adjust_gp
499 (bfd *, struct mips_got_info *, bfd *);
500static struct mips_got_info *mips_elf_got_for_ibfd
501 (struct mips_got_info *, bfd *);
502
503/* This will be used when we sort the dynamic relocation records. */
504static bfd *reldyn_sorting_bfd;
505
506/* Nonzero if ABFD is using the N32 ABI. */
507
508#define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
511/* Nonzero if ABFD is using the N64 ABI. */
512#define ABI_64_P(abfd) \
513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
514
515/* Nonzero if ABFD is using NewABI conventions. */
516#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518/* The IRIX compatibility level we are striving for. */
519#define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
522/* Whether we are trying to be compatible with IRIX at all. */
523#define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526/* The name of the options section. */
527#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
529
530/* The name of the stub section. */
531#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
532
533/* The size of an external REL relocation. */
534#define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537/* The size of an external dynamic table entry. */
538#define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541/* The size of a GOT entry. */
542#define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545/* The size of a symbol-table entry. */
546#define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549/* The default alignment for sections, as a power of two. */
550#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
551 (get_elf_backend_data (abfd)->s->log_file_align)
552
553/* Get word-sized data. */
554#define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557/* Put out word-sized data. */
558#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563/* Add a dynamic symbol table-entry. */
564#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
565 _bfd_elf_add_dynamic_entry (info, tag, val)
566
567#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
570/* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
587/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589#define MINUS_ONE (((bfd_vma)0) - 1)
590#define MINUS_TWO (((bfd_vma)0) - 2)
591
592/* The number of local .got entries we reserve. */
593#define MIPS_RESERVED_GOTNO (2)
594
595/* The offset of $gp from the beginning of the .got section. */
596#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598/* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602/* Instructions which appear in a stub. */
603#define STUB_LW(abfd) \
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
607#define STUB_MOVE(abfd) \
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611#define STUB_JALR 0x0320f809 /* jalr t9,ra */
612#define STUB_LI16(abfd) \
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
616#define MIPS_FUNCTION_STUB_SIZE (16)
617
618/* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621#define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626#ifdef BFD64
627#define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
629#define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631#define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633#define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635#else
636#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
637#define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639#define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641#define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643#endif
644\f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679#define FN_STUB ".mips16.fn."
680#define CALL_STUB ".mips16.call."
681#define CALL_FP_STUB ".mips16.call.fp."
682\f
683/* Look up an entry in a MIPS ELF linker hash table. */
684
685#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690/* Traverse a MIPS ELF linker hash table. */
691
692#define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
696 (info)))
697
698/* Get the MIPS ELF linker hash table from a link_info structure. */
699
700#define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703/* Create an entry in a MIPS ELF linker hash table. */
704
705static struct bfd_hash_entry *
706mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
723 if (ret != NULL)
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
731 ret->readonly_reloc = FALSE;
732 ret->no_fn_stub = FALSE;
733 ret->fn_stub = NULL;
734 ret->need_fn_stub = FALSE;
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
737 ret->forced_local = FALSE;
738 }
739
740 return (struct bfd_hash_entry *) ret;
741}
742
743bfd_boolean
744_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
745{
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
749 sdata = bfd_zalloc (abfd, amt);
750 if (sdata == NULL)
751 return FALSE;
752 sec->used_by_bfd = sdata;
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755}
756\f
757/* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
760bfd_boolean
761_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
763{
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
766 char *ext_hdr;
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
771 ext_hdr = bfd_malloc (swap->external_hdr_size);
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
776 swap->external_hdr_size))
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784#define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
790 debug->ptr = bfd_malloc (amt); \
791 if (debug->ptr == NULL) \
792 goto error_return; \
793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
810#undef READ
811
812 debug->fdr = NULL;
813
814 return TRUE;
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
841 return FALSE;
842}
843\f
844/* Swap RPDR (runtime procedure table entry) for output. */
845
846static void
847ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
848{
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860#if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862#endif
863}
864
865/* Create a runtime procedure table from the .mdebug section. */
866
867static bfd_boolean
868mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
871{
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
876 void *rtproc;
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
903 epdr = bfd_malloc (size * count);
904 if (epdr == NULL)
905 goto error_return;
906
907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
908 goto error_return;
909
910 size = sizeof (RPDR);
911 rp = rpdr = bfd_malloc (size * count);
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
916 sv = bfd_malloc (size * count);
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
922 esym = bfd_malloc (size * count);
923 if (esym == NULL)
924 goto error_return;
925
926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
927 goto error_return;
928
929 count = hdr->issMax;
930 ss = bfd_malloc (count);
931 if (ss == NULL)
932 goto error_return;
933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
957 rtproc = bfd_alloc (abfd, size);
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
966 erp = rtproc;
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
981 s->size = size;
982 s->contents = rtproc;
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
986 s->link_order_head = NULL;
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
999 return TRUE;
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012 return FALSE;
1013}
1014
1015/* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
1018static bfd_boolean
1019mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
1021{
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
1031 h->fn_stub->size = 0;
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
1043 h->call_stub->size = 0;
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
1055 h->call_fp_stub->size = 0;
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
1061 return TRUE;
1062}
1063\f
1064/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1065 Most mips16 instructions are 16 bits, but these instructions
1066 are 32 bits.
1067
1068 The format of these instructions is:
1069
1070 +--------------+--------------------------------+
1071 | JALX | X| Imm 20:16 | Imm 25:21 |
1072 +--------------+--------------------------------+
1073 | Immediate 15:0 |
1074 +-----------------------------------------------+
1075
1076 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1077 Note that the immediate value in the first word is swapped.
1078
1079 When producing a relocatable object file, R_MIPS16_26 is
1080 handled mostly like R_MIPS_26. In particular, the addend is
1081 stored as a straight 26-bit value in a 32-bit instruction.
1082 (gas makes life simpler for itself by never adjusting a
1083 R_MIPS16_26 reloc to be against a section, so the addend is
1084 always zero). However, the 32 bit instruction is stored as 2
1085 16-bit values, rather than a single 32-bit value. In a
1086 big-endian file, the result is the same; in a little-endian
1087 file, the two 16-bit halves of the 32 bit value are swapped.
1088 This is so that a disassembler can recognize the jal
1089 instruction.
1090
1091 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1092 instruction stored as two 16-bit values. The addend A is the
1093 contents of the targ26 field. The calculation is the same as
1094 R_MIPS_26. When storing the calculated value, reorder the
1095 immediate value as shown above, and don't forget to store the
1096 value as two 16-bit values.
1097
1098 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1099 defined as
1100
1101 big-endian:
1102 +--------+----------------------+
1103 | | |
1104 | | targ26-16 |
1105 |31 26|25 0|
1106 +--------+----------------------+
1107
1108 little-endian:
1109 +----------+------+-------------+
1110 | | | |
1111 | sub1 | | sub2 |
1112 |0 9|10 15|16 31|
1113 +----------+--------------------+
1114 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1115 ((sub1 << 16) | sub2)).
1116
1117 When producing a relocatable object file, the calculation is
1118 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1119 When producing a fully linked file, the calculation is
1120 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1121 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1122
1123 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1124 mode. A typical instruction will have a format like this:
1125
1126 +--------------+--------------------------------+
1127 | EXTEND | Imm 10:5 | Imm 15:11 |
1128 +--------------+--------------------------------+
1129 | Major | rx | ry | Imm 4:0 |
1130 +--------------+--------------------------------+
1131
1132 EXTEND is the five bit value 11110. Major is the instruction
1133 opcode.
1134
1135 This is handled exactly like R_MIPS_GPREL16, except that the
1136 addend is retrieved and stored as shown in this diagram; that
1137 is, the Imm fields above replace the V-rel16 field.
1138
1139 All we need to do here is shuffle the bits appropriately. As
1140 above, the two 16-bit halves must be swapped on a
1141 little-endian system.
1142
1143 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1144 access data when neither GP-relative nor PC-relative addressing
1145 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1146 except that the addend is retrieved and stored as shown above
1147 for R_MIPS16_GPREL.
1148 */
1149void
1150_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1151 bfd_boolean jal_shuffle, bfd_byte *data)
1152{
1153 bfd_vma extend, insn, val;
1154
1155 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1156 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1157 return;
1158
1159 /* Pick up the mips16 extend instruction and the real instruction. */
1160 extend = bfd_get_16 (abfd, data);
1161 insn = bfd_get_16 (abfd, data + 2);
1162 if (r_type == R_MIPS16_26)
1163 {
1164 if (jal_shuffle)
1165 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1166 | ((extend & 0x1f) << 21) | insn;
1167 else
1168 val = extend << 16 | insn;
1169 }
1170 else
1171 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1172 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1173 bfd_put_32 (abfd, val, data);
1174}
1175
1176void
1177_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1178 bfd_boolean jal_shuffle, bfd_byte *data)
1179{
1180 bfd_vma extend, insn, val;
1181
1182 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1183 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1184 return;
1185
1186 val = bfd_get_32 (abfd, data);
1187 if (r_type == R_MIPS16_26)
1188 {
1189 if (jal_shuffle)
1190 {
1191 insn = val & 0xffff;
1192 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1193 | ((val >> 21) & 0x1f);
1194 }
1195 else
1196 {
1197 insn = val & 0xffff;
1198 extend = val >> 16;
1199 }
1200 }
1201 else
1202 {
1203 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1204 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1205 }
1206 bfd_put_16 (abfd, insn, data + 2);
1207 bfd_put_16 (abfd, extend, data);
1208}
1209
1210bfd_reloc_status_type
1211_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1212 arelent *reloc_entry, asection *input_section,
1213 bfd_boolean relocatable, void *data, bfd_vma gp)
1214{
1215 bfd_vma relocation;
1216 bfd_signed_vma val;
1217 bfd_reloc_status_type status;
1218
1219 if (bfd_is_com_section (symbol->section))
1220 relocation = 0;
1221 else
1222 relocation = symbol->value;
1223
1224 relocation += symbol->section->output_section->vma;
1225 relocation += symbol->section->output_offset;
1226
1227 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1228 return bfd_reloc_outofrange;
1229
1230 /* Set val to the offset into the section or symbol. */
1231 val = reloc_entry->addend;
1232
1233 _bfd_mips_elf_sign_extend (val, 16);
1234
1235 /* Adjust val for the final section location and GP value. If we
1236 are producing relocatable output, we don't want to do this for
1237 an external symbol. */
1238 if (! relocatable
1239 || (symbol->flags & BSF_SECTION_SYM) != 0)
1240 val += relocation - gp;
1241
1242 if (reloc_entry->howto->partial_inplace)
1243 {
1244 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1245 (bfd_byte *) data
1246 + reloc_entry->address);
1247 if (status != bfd_reloc_ok)
1248 return status;
1249 }
1250 else
1251 reloc_entry->addend = val;
1252
1253 if (relocatable)
1254 reloc_entry->address += input_section->output_offset;
1255
1256 return bfd_reloc_ok;
1257}
1258
1259/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1260 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1261 that contains the relocation field and DATA points to the start of
1262 INPUT_SECTION. */
1263
1264struct mips_hi16
1265{
1266 struct mips_hi16 *next;
1267 bfd_byte *data;
1268 asection *input_section;
1269 arelent rel;
1270};
1271
1272/* FIXME: This should not be a static variable. */
1273
1274static struct mips_hi16 *mips_hi16_list;
1275
1276/* A howto special_function for REL *HI16 relocations. We can only
1277 calculate the correct value once we've seen the partnering
1278 *LO16 relocation, so just save the information for later.
1279
1280 The ABI requires that the *LO16 immediately follow the *HI16.
1281 However, as a GNU extension, we permit an arbitrary number of
1282 *HI16s to be associated with a single *LO16. This significantly
1283 simplies the relocation handling in gcc. */
1284
1285bfd_reloc_status_type
1286_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1287 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1288 asection *input_section, bfd *output_bfd,
1289 char **error_message ATTRIBUTE_UNUSED)
1290{
1291 struct mips_hi16 *n;
1292
1293 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1294 return bfd_reloc_outofrange;
1295
1296 n = bfd_malloc (sizeof *n);
1297 if (n == NULL)
1298 return bfd_reloc_outofrange;
1299
1300 n->next = mips_hi16_list;
1301 n->data = data;
1302 n->input_section = input_section;
1303 n->rel = *reloc_entry;
1304 mips_hi16_list = n;
1305
1306 if (output_bfd != NULL)
1307 reloc_entry->address += input_section->output_offset;
1308
1309 return bfd_reloc_ok;
1310}
1311
1312/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1313 like any other 16-bit relocation when applied to global symbols, but is
1314 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1315
1316bfd_reloc_status_type
1317_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1318 void *data, asection *input_section,
1319 bfd *output_bfd, char **error_message)
1320{
1321 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1322 || bfd_is_und_section (bfd_get_section (symbol))
1323 || bfd_is_com_section (bfd_get_section (symbol)))
1324 /* The relocation is against a global symbol. */
1325 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1326 input_section, output_bfd,
1327 error_message);
1328
1329 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1330 input_section, output_bfd, error_message);
1331}
1332
1333/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1334 is a straightforward 16 bit inplace relocation, but we must deal with
1335 any partnering high-part relocations as well. */
1336
1337bfd_reloc_status_type
1338_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1339 void *data, asection *input_section,
1340 bfd *output_bfd, char **error_message)
1341{
1342 bfd_vma vallo;
1343 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1344
1345 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1346 return bfd_reloc_outofrange;
1347
1348 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1349 location);
1350 vallo = bfd_get_32 (abfd, location);
1351 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1352 location);
1353
1354 while (mips_hi16_list != NULL)
1355 {
1356 bfd_reloc_status_type ret;
1357 struct mips_hi16 *hi;
1358
1359 hi = mips_hi16_list;
1360
1361 /* R_MIPS_GOT16 relocations are something of a special case. We
1362 want to install the addend in the same way as for a R_MIPS_HI16
1363 relocation (with a rightshift of 16). However, since GOT16
1364 relocations can also be used with global symbols, their howto
1365 has a rightshift of 0. */
1366 if (hi->rel.howto->type == R_MIPS_GOT16)
1367 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1368
1369 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1370 carry or borrow will induce a change of +1 or -1 in the high part. */
1371 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1372
1373 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1374 hi->input_section, output_bfd,
1375 error_message);
1376 if (ret != bfd_reloc_ok)
1377 return ret;
1378
1379 mips_hi16_list = hi->next;
1380 free (hi);
1381 }
1382
1383 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1384 input_section, output_bfd,
1385 error_message);
1386}
1387
1388/* A generic howto special_function. This calculates and installs the
1389 relocation itself, thus avoiding the oft-discussed problems in
1390 bfd_perform_relocation and bfd_install_relocation. */
1391
1392bfd_reloc_status_type
1393_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1394 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1395 asection *input_section, bfd *output_bfd,
1396 char **error_message ATTRIBUTE_UNUSED)
1397{
1398 bfd_signed_vma val;
1399 bfd_reloc_status_type status;
1400 bfd_boolean relocatable;
1401
1402 relocatable = (output_bfd != NULL);
1403
1404 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1405 return bfd_reloc_outofrange;
1406
1407 /* Build up the field adjustment in VAL. */
1408 val = 0;
1409 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1410 {
1411 /* Either we're calculating the final field value or we have a
1412 relocation against a section symbol. Add in the section's
1413 offset or address. */
1414 val += symbol->section->output_section->vma;
1415 val += symbol->section->output_offset;
1416 }
1417
1418 if (!relocatable)
1419 {
1420 /* We're calculating the final field value. Add in the symbol's value
1421 and, if pc-relative, subtract the address of the field itself. */
1422 val += symbol->value;
1423 if (reloc_entry->howto->pc_relative)
1424 {
1425 val -= input_section->output_section->vma;
1426 val -= input_section->output_offset;
1427 val -= reloc_entry->address;
1428 }
1429 }
1430
1431 /* VAL is now the final adjustment. If we're keeping this relocation
1432 in the output file, and if the relocation uses a separate addend,
1433 we just need to add VAL to that addend. Otherwise we need to add
1434 VAL to the relocation field itself. */
1435 if (relocatable && !reloc_entry->howto->partial_inplace)
1436 reloc_entry->addend += val;
1437 else
1438 {
1439 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1440
1441 /* Add in the separate addend, if any. */
1442 val += reloc_entry->addend;
1443
1444 /* Add VAL to the relocation field. */
1445 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1446 location);
1447 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1448 location);
1449 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1450 location);
1451
1452 if (status != bfd_reloc_ok)
1453 return status;
1454 }
1455
1456 if (relocatable)
1457 reloc_entry->address += input_section->output_offset;
1458
1459 return bfd_reloc_ok;
1460}
1461\f
1462/* Swap an entry in a .gptab section. Note that these routines rely
1463 on the equivalence of the two elements of the union. */
1464
1465static void
1466bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1467 Elf32_gptab *in)
1468{
1469 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1470 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1471}
1472
1473static void
1474bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1475 Elf32_External_gptab *ex)
1476{
1477 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1478 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1479}
1480
1481static void
1482bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1483 Elf32_External_compact_rel *ex)
1484{
1485 H_PUT_32 (abfd, in->id1, ex->id1);
1486 H_PUT_32 (abfd, in->num, ex->num);
1487 H_PUT_32 (abfd, in->id2, ex->id2);
1488 H_PUT_32 (abfd, in->offset, ex->offset);
1489 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1490 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1491}
1492
1493static void
1494bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1495 Elf32_External_crinfo *ex)
1496{
1497 unsigned long l;
1498
1499 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1500 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1501 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1502 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1503 H_PUT_32 (abfd, l, ex->info);
1504 H_PUT_32 (abfd, in->konst, ex->konst);
1505 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1506}
1507\f
1508/* A .reginfo section holds a single Elf32_RegInfo structure. These
1509 routines swap this structure in and out. They are used outside of
1510 BFD, so they are globally visible. */
1511
1512void
1513bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1514 Elf32_RegInfo *in)
1515{
1516 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1517 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1518 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1519 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1520 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1521 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1522}
1523
1524void
1525bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1526 Elf32_External_RegInfo *ex)
1527{
1528 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1529 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1530 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1531 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1532 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1533 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1534}
1535
1536/* In the 64 bit ABI, the .MIPS.options section holds register
1537 information in an Elf64_Reginfo structure. These routines swap
1538 them in and out. They are globally visible because they are used
1539 outside of BFD. These routines are here so that gas can call them
1540 without worrying about whether the 64 bit ABI has been included. */
1541
1542void
1543bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1544 Elf64_Internal_RegInfo *in)
1545{
1546 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1547 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1548 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1549 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1550 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1551 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1552 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1553}
1554
1555void
1556bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1557 Elf64_External_RegInfo *ex)
1558{
1559 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1560 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1561 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1562 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1563 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1564 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1565 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1566}
1567
1568/* Swap in an options header. */
1569
1570void
1571bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1572 Elf_Internal_Options *in)
1573{
1574 in->kind = H_GET_8 (abfd, ex->kind);
1575 in->size = H_GET_8 (abfd, ex->size);
1576 in->section = H_GET_16 (abfd, ex->section);
1577 in->info = H_GET_32 (abfd, ex->info);
1578}
1579
1580/* Swap out an options header. */
1581
1582void
1583bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1584 Elf_External_Options *ex)
1585{
1586 H_PUT_8 (abfd, in->kind, ex->kind);
1587 H_PUT_8 (abfd, in->size, ex->size);
1588 H_PUT_16 (abfd, in->section, ex->section);
1589 H_PUT_32 (abfd, in->info, ex->info);
1590}
1591\f
1592/* This function is called via qsort() to sort the dynamic relocation
1593 entries by increasing r_symndx value. */
1594
1595static int
1596sort_dynamic_relocs (const void *arg1, const void *arg2)
1597{
1598 Elf_Internal_Rela int_reloc1;
1599 Elf_Internal_Rela int_reloc2;
1600
1601 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1602 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1603
1604 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1605}
1606
1607/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1608
1609static int
1610sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1611{
1612 Elf_Internal_Rela int_reloc1[3];
1613 Elf_Internal_Rela int_reloc2[3];
1614
1615 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1616 (reldyn_sorting_bfd, arg1, int_reloc1);
1617 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1618 (reldyn_sorting_bfd, arg2, int_reloc2);
1619
1620 return (ELF64_R_SYM (int_reloc1[0].r_info)
1621 - ELF64_R_SYM (int_reloc2[0].r_info));
1622}
1623
1624
1625/* This routine is used to write out ECOFF debugging external symbol
1626 information. It is called via mips_elf_link_hash_traverse. The
1627 ECOFF external symbol information must match the ELF external
1628 symbol information. Unfortunately, at this point we don't know
1629 whether a symbol is required by reloc information, so the two
1630 tables may wind up being different. We must sort out the external
1631 symbol information before we can set the final size of the .mdebug
1632 section, and we must set the size of the .mdebug section before we
1633 can relocate any sections, and we can't know which symbols are
1634 required by relocation until we relocate the sections.
1635 Fortunately, it is relatively unlikely that any symbol will be
1636 stripped but required by a reloc. In particular, it can not happen
1637 when generating a final executable. */
1638
1639static bfd_boolean
1640mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1641{
1642 struct extsym_info *einfo = data;
1643 bfd_boolean strip;
1644 asection *sec, *output_section;
1645
1646 if (h->root.root.type == bfd_link_hash_warning)
1647 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1648
1649 if (h->root.indx == -2)
1650 strip = FALSE;
1651 else if ((h->root.def_dynamic
1652 || h->root.ref_dynamic
1653 || h->root.type == bfd_link_hash_new)
1654 && !h->root.def_regular
1655 && !h->root.ref_regular)
1656 strip = TRUE;
1657 else if (einfo->info->strip == strip_all
1658 || (einfo->info->strip == strip_some
1659 && bfd_hash_lookup (einfo->info->keep_hash,
1660 h->root.root.root.string,
1661 FALSE, FALSE) == NULL))
1662 strip = TRUE;
1663 else
1664 strip = FALSE;
1665
1666 if (strip)
1667 return TRUE;
1668
1669 if (h->esym.ifd == -2)
1670 {
1671 h->esym.jmptbl = 0;
1672 h->esym.cobol_main = 0;
1673 h->esym.weakext = 0;
1674 h->esym.reserved = 0;
1675 h->esym.ifd = ifdNil;
1676 h->esym.asym.value = 0;
1677 h->esym.asym.st = stGlobal;
1678
1679 if (h->root.root.type == bfd_link_hash_undefined
1680 || h->root.root.type == bfd_link_hash_undefweak)
1681 {
1682 const char *name;
1683
1684 /* Use undefined class. Also, set class and type for some
1685 special symbols. */
1686 name = h->root.root.root.string;
1687 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1688 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1689 {
1690 h->esym.asym.sc = scData;
1691 h->esym.asym.st = stLabel;
1692 h->esym.asym.value = 0;
1693 }
1694 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1695 {
1696 h->esym.asym.sc = scAbs;
1697 h->esym.asym.st = stLabel;
1698 h->esym.asym.value =
1699 mips_elf_hash_table (einfo->info)->procedure_count;
1700 }
1701 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1702 {
1703 h->esym.asym.sc = scAbs;
1704 h->esym.asym.st = stLabel;
1705 h->esym.asym.value = elf_gp (einfo->abfd);
1706 }
1707 else
1708 h->esym.asym.sc = scUndefined;
1709 }
1710 else if (h->root.root.type != bfd_link_hash_defined
1711 && h->root.root.type != bfd_link_hash_defweak)
1712 h->esym.asym.sc = scAbs;
1713 else
1714 {
1715 const char *name;
1716
1717 sec = h->root.root.u.def.section;
1718 output_section = sec->output_section;
1719
1720 /* When making a shared library and symbol h is the one from
1721 the another shared library, OUTPUT_SECTION may be null. */
1722 if (output_section == NULL)
1723 h->esym.asym.sc = scUndefined;
1724 else
1725 {
1726 name = bfd_section_name (output_section->owner, output_section);
1727
1728 if (strcmp (name, ".text") == 0)
1729 h->esym.asym.sc = scText;
1730 else if (strcmp (name, ".data") == 0)
1731 h->esym.asym.sc = scData;
1732 else if (strcmp (name, ".sdata") == 0)
1733 h->esym.asym.sc = scSData;
1734 else if (strcmp (name, ".rodata") == 0
1735 || strcmp (name, ".rdata") == 0)
1736 h->esym.asym.sc = scRData;
1737 else if (strcmp (name, ".bss") == 0)
1738 h->esym.asym.sc = scBss;
1739 else if (strcmp (name, ".sbss") == 0)
1740 h->esym.asym.sc = scSBss;
1741 else if (strcmp (name, ".init") == 0)
1742 h->esym.asym.sc = scInit;
1743 else if (strcmp (name, ".fini") == 0)
1744 h->esym.asym.sc = scFini;
1745 else
1746 h->esym.asym.sc = scAbs;
1747 }
1748 }
1749
1750 h->esym.asym.reserved = 0;
1751 h->esym.asym.index = indexNil;
1752 }
1753
1754 if (h->root.root.type == bfd_link_hash_common)
1755 h->esym.asym.value = h->root.root.u.c.size;
1756 else if (h->root.root.type == bfd_link_hash_defined
1757 || h->root.root.type == bfd_link_hash_defweak)
1758 {
1759 if (h->esym.asym.sc == scCommon)
1760 h->esym.asym.sc = scBss;
1761 else if (h->esym.asym.sc == scSCommon)
1762 h->esym.asym.sc = scSBss;
1763
1764 sec = h->root.root.u.def.section;
1765 output_section = sec->output_section;
1766 if (output_section != NULL)
1767 h->esym.asym.value = (h->root.root.u.def.value
1768 + sec->output_offset
1769 + output_section->vma);
1770 else
1771 h->esym.asym.value = 0;
1772 }
1773 else if (h->root.needs_plt)
1774 {
1775 struct mips_elf_link_hash_entry *hd = h;
1776 bfd_boolean no_fn_stub = h->no_fn_stub;
1777
1778 while (hd->root.root.type == bfd_link_hash_indirect)
1779 {
1780 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1781 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1782 }
1783
1784 if (!no_fn_stub)
1785 {
1786 /* Set type and value for a symbol with a function stub. */
1787 h->esym.asym.st = stProc;
1788 sec = hd->root.root.u.def.section;
1789 if (sec == NULL)
1790 h->esym.asym.value = 0;
1791 else
1792 {
1793 output_section = sec->output_section;
1794 if (output_section != NULL)
1795 h->esym.asym.value = (hd->root.plt.offset
1796 + sec->output_offset
1797 + output_section->vma);
1798 else
1799 h->esym.asym.value = 0;
1800 }
1801#if 0 /* FIXME? */
1802 h->esym.ifd = 0;
1803#endif
1804 }
1805 }
1806
1807 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1808 h->root.root.root.string,
1809 &h->esym))
1810 {
1811 einfo->failed = TRUE;
1812 return FALSE;
1813 }
1814
1815 return TRUE;
1816}
1817
1818/* A comparison routine used to sort .gptab entries. */
1819
1820static int
1821gptab_compare (const void *p1, const void *p2)
1822{
1823 const Elf32_gptab *a1 = p1;
1824 const Elf32_gptab *a2 = p2;
1825
1826 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1827}
1828\f
1829/* Functions to manage the got entry hash table. */
1830
1831/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1832 hash number. */
1833
1834static INLINE hashval_t
1835mips_elf_hash_bfd_vma (bfd_vma addr)
1836{
1837#ifdef BFD64
1838 return addr + (addr >> 32);
1839#else
1840 return addr;
1841#endif
1842}
1843
1844/* got_entries only match if they're identical, except for gotidx, so
1845 use all fields to compute the hash, and compare the appropriate
1846 union members. */
1847
1848static hashval_t
1849mips_elf_got_entry_hash (const void *entry_)
1850{
1851 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1852
1853 return entry->symndx
1854 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1855 : entry->abfd->id
1856 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1857 : entry->d.h->root.root.root.hash));
1858}
1859
1860static int
1861mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1862{
1863 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1864 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1865
1866 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1867 && (! e1->abfd ? e1->d.address == e2->d.address
1868 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1869 : e1->d.h == e2->d.h);
1870}
1871
1872/* multi_got_entries are still a match in the case of global objects,
1873 even if the input bfd in which they're referenced differs, so the
1874 hash computation and compare functions are adjusted
1875 accordingly. */
1876
1877static hashval_t
1878mips_elf_multi_got_entry_hash (const void *entry_)
1879{
1880 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1881
1882 return entry->symndx
1883 + (! entry->abfd
1884 ? mips_elf_hash_bfd_vma (entry->d.address)
1885 : entry->symndx >= 0
1886 ? (entry->abfd->id
1887 + mips_elf_hash_bfd_vma (entry->d.addend))
1888 : entry->d.h->root.root.root.hash);
1889}
1890
1891static int
1892mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1893{
1894 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1895 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1896
1897 return e1->symndx == e2->symndx
1898 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1899 : e1->abfd == NULL || e2->abfd == NULL
1900 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1901 : e1->d.h == e2->d.h);
1902}
1903\f
1904/* Returns the dynamic relocation section for DYNOBJ. */
1905
1906static asection *
1907mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1908{
1909 static const char dname[] = ".rel.dyn";
1910 asection *sreloc;
1911
1912 sreloc = bfd_get_section_by_name (dynobj, dname);
1913 if (sreloc == NULL && create_p)
1914 {
1915 sreloc = bfd_make_section (dynobj, dname);
1916 if (sreloc == NULL
1917 || ! bfd_set_section_flags (dynobj, sreloc,
1918 (SEC_ALLOC
1919 | SEC_LOAD
1920 | SEC_HAS_CONTENTS
1921 | SEC_IN_MEMORY
1922 | SEC_LINKER_CREATED
1923 | SEC_READONLY))
1924 || ! bfd_set_section_alignment (dynobj, sreloc,
1925 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1926 return NULL;
1927 }
1928 return sreloc;
1929}
1930
1931/* Returns the GOT section for ABFD. */
1932
1933static asection *
1934mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1935{
1936 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1937 if (sgot == NULL
1938 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1939 return NULL;
1940 return sgot;
1941}
1942
1943/* Returns the GOT information associated with the link indicated by
1944 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1945 section. */
1946
1947static struct mips_got_info *
1948mips_elf_got_info (bfd *abfd, asection **sgotp)
1949{
1950 asection *sgot;
1951 struct mips_got_info *g;
1952
1953 sgot = mips_elf_got_section (abfd, TRUE);
1954 BFD_ASSERT (sgot != NULL);
1955 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1956 g = mips_elf_section_data (sgot)->u.got_info;
1957 BFD_ASSERT (g != NULL);
1958
1959 if (sgotp)
1960 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1961
1962 return g;
1963}
1964
1965/* Returns the GOT offset at which the indicated address can be found.
1966 If there is not yet a GOT entry for this value, create one. Returns
1967 -1 if no satisfactory GOT offset can be found. */
1968
1969static bfd_vma
1970mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1971 bfd_vma value)
1972{
1973 asection *sgot;
1974 struct mips_got_info *g;
1975 struct mips_got_entry *entry;
1976
1977 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1978
1979 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1980 if (entry)
1981 return entry->gotidx;
1982 else
1983 return MINUS_ONE;
1984}
1985
1986/* Returns the GOT index for the global symbol indicated by H. */
1987
1988static bfd_vma
1989mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1990{
1991 bfd_vma index;
1992 asection *sgot;
1993 struct mips_got_info *g, *gg;
1994 long global_got_dynindx = 0;
1995
1996 gg = g = mips_elf_got_info (abfd, &sgot);
1997 if (g->bfd2got && ibfd)
1998 {
1999 struct mips_got_entry e, *p;
2000
2001 BFD_ASSERT (h->dynindx >= 0);
2002
2003 g = mips_elf_got_for_ibfd (g, ibfd);
2004 if (g->next != gg)
2005 {
2006 e.abfd = ibfd;
2007 e.symndx = -1;
2008 e.d.h = (struct mips_elf_link_hash_entry *)h;
2009
2010 p = htab_find (g->got_entries, &e);
2011
2012 BFD_ASSERT (p->gotidx > 0);
2013 return p->gotidx;
2014 }
2015 }
2016
2017 if (gg->global_gotsym != NULL)
2018 global_got_dynindx = gg->global_gotsym->dynindx;
2019
2020 /* Once we determine the global GOT entry with the lowest dynamic
2021 symbol table index, we must put all dynamic symbols with greater
2022 indices into the GOT. That makes it easy to calculate the GOT
2023 offset. */
2024 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2025 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2026 * MIPS_ELF_GOT_SIZE (abfd));
2027 BFD_ASSERT (index < sgot->size);
2028
2029 return index;
2030}
2031
2032/* Find a GOT entry that is within 32KB of the VALUE. These entries
2033 are supposed to be placed at small offsets in the GOT, i.e.,
2034 within 32KB of GP. Return the index into the GOT for this page,
2035 and store the offset from this entry to the desired address in
2036 OFFSETP, if it is non-NULL. */
2037
2038static bfd_vma
2039mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2040 bfd_vma value, bfd_vma *offsetp)
2041{
2042 asection *sgot;
2043 struct mips_got_info *g;
2044 bfd_vma index;
2045 struct mips_got_entry *entry;
2046
2047 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2048
2049 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
2050 (value + 0x8000)
2051 & (~(bfd_vma)0xffff));
2052
2053 if (!entry)
2054 return MINUS_ONE;
2055
2056 index = entry->gotidx;
2057
2058 if (offsetp)
2059 *offsetp = value - entry->d.address;
2060
2061 return index;
2062}
2063
2064/* Find a GOT entry whose higher-order 16 bits are the same as those
2065 for value. Return the index into the GOT for this entry. */
2066
2067static bfd_vma
2068mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2069 bfd_vma value, bfd_boolean external)
2070{
2071 asection *sgot;
2072 struct mips_got_info *g;
2073 struct mips_got_entry *entry;
2074
2075 if (! external)
2076 {
2077 /* Although the ABI says that it is "the high-order 16 bits" that we
2078 want, it is really the %high value. The complete value is
2079 calculated with a `addiu' of a LO16 relocation, just as with a
2080 HI16/LO16 pair. */
2081 value = mips_elf_high (value) << 16;
2082 }
2083
2084 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2085
2086 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
2087 if (entry)
2088 return entry->gotidx;
2089 else
2090 return MINUS_ONE;
2091}
2092
2093/* Returns the offset for the entry at the INDEXth position
2094 in the GOT. */
2095
2096static bfd_vma
2097mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2098 bfd *input_bfd, bfd_vma index)
2099{
2100 asection *sgot;
2101 bfd_vma gp;
2102 struct mips_got_info *g;
2103
2104 g = mips_elf_got_info (dynobj, &sgot);
2105 gp = _bfd_get_gp_value (output_bfd)
2106 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2107
2108 return sgot->output_section->vma + sgot->output_offset + index - gp;
2109}
2110
2111/* Create a local GOT entry for VALUE. Return the index of the entry,
2112 or -1 if it could not be created. */
2113
2114static struct mips_got_entry *
2115mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2116 struct mips_got_info *gg,
2117 asection *sgot, bfd_vma value)
2118{
2119 struct mips_got_entry entry, **loc;
2120 struct mips_got_info *g;
2121
2122 entry.abfd = NULL;
2123 entry.symndx = -1;
2124 entry.d.address = value;
2125
2126 g = mips_elf_got_for_ibfd (gg, ibfd);
2127 if (g == NULL)
2128 {
2129 g = mips_elf_got_for_ibfd (gg, abfd);
2130 BFD_ASSERT (g != NULL);
2131 }
2132
2133 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2134 INSERT);
2135 if (*loc)
2136 return *loc;
2137
2138 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2139
2140 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2141
2142 if (! *loc)
2143 return NULL;
2144
2145 memcpy (*loc, &entry, sizeof entry);
2146
2147 if (g->assigned_gotno >= g->local_gotno)
2148 {
2149 (*loc)->gotidx = -1;
2150 /* We didn't allocate enough space in the GOT. */
2151 (*_bfd_error_handler)
2152 (_("not enough GOT space for local GOT entries"));
2153 bfd_set_error (bfd_error_bad_value);
2154 return NULL;
2155 }
2156
2157 MIPS_ELF_PUT_WORD (abfd, value,
2158 (sgot->contents + entry.gotidx));
2159
2160 return *loc;
2161}
2162
2163/* Sort the dynamic symbol table so that symbols that need GOT entries
2164 appear towards the end. This reduces the amount of GOT space
2165 required. MAX_LOCAL is used to set the number of local symbols
2166 known to be in the dynamic symbol table. During
2167 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2168 section symbols are added and the count is higher. */
2169
2170static bfd_boolean
2171mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2172{
2173 struct mips_elf_hash_sort_data hsd;
2174 struct mips_got_info *g;
2175 bfd *dynobj;
2176
2177 dynobj = elf_hash_table (info)->dynobj;
2178
2179 g = mips_elf_got_info (dynobj, NULL);
2180
2181 hsd.low = NULL;
2182 hsd.max_unref_got_dynindx =
2183 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2184 /* In the multi-got case, assigned_gotno of the master got_info
2185 indicate the number of entries that aren't referenced in the
2186 primary GOT, but that must have entries because there are
2187 dynamic relocations that reference it. Since they aren't
2188 referenced, we move them to the end of the GOT, so that they
2189 don't prevent other entries that are referenced from getting
2190 too large offsets. */
2191 - (g->next ? g->assigned_gotno : 0);
2192 hsd.max_non_got_dynindx = max_local;
2193 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2194 elf_hash_table (info)),
2195 mips_elf_sort_hash_table_f,
2196 &hsd);
2197
2198 /* There should have been enough room in the symbol table to
2199 accommodate both the GOT and non-GOT symbols. */
2200 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2201 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2202 <= elf_hash_table (info)->dynsymcount);
2203
2204 /* Now we know which dynamic symbol has the lowest dynamic symbol
2205 table index in the GOT. */
2206 g->global_gotsym = hsd.low;
2207
2208 return TRUE;
2209}
2210
2211/* If H needs a GOT entry, assign it the highest available dynamic
2212 index. Otherwise, assign it the lowest available dynamic
2213 index. */
2214
2215static bfd_boolean
2216mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2217{
2218 struct mips_elf_hash_sort_data *hsd = data;
2219
2220 if (h->root.root.type == bfd_link_hash_warning)
2221 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2222
2223 /* Symbols without dynamic symbol table entries aren't interesting
2224 at all. */
2225 if (h->root.dynindx == -1)
2226 return TRUE;
2227
2228 /* Global symbols that need GOT entries that are not explicitly
2229 referenced are marked with got offset 2. Those that are
2230 referenced get a 1, and those that don't need GOT entries get
2231 -1. */
2232 if (h->root.got.offset == 2)
2233 {
2234 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2235 hsd->low = (struct elf_link_hash_entry *) h;
2236 h->root.dynindx = hsd->max_unref_got_dynindx++;
2237 }
2238 else if (h->root.got.offset != 1)
2239 h->root.dynindx = hsd->max_non_got_dynindx++;
2240 else
2241 {
2242 h->root.dynindx = --hsd->min_got_dynindx;
2243 hsd->low = (struct elf_link_hash_entry *) h;
2244 }
2245
2246 return TRUE;
2247}
2248
2249/* If H is a symbol that needs a global GOT entry, but has a dynamic
2250 symbol table index lower than any we've seen to date, record it for
2251 posterity. */
2252
2253static bfd_boolean
2254mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2255 bfd *abfd, struct bfd_link_info *info,
2256 struct mips_got_info *g)
2257{
2258 struct mips_got_entry entry, **loc;
2259
2260 /* A global symbol in the GOT must also be in the dynamic symbol
2261 table. */
2262 if (h->dynindx == -1)
2263 {
2264 switch (ELF_ST_VISIBILITY (h->other))
2265 {
2266 case STV_INTERNAL:
2267 case STV_HIDDEN:
2268 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2269 break;
2270 }
2271 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2272 return FALSE;
2273 }
2274
2275 entry.abfd = abfd;
2276 entry.symndx = -1;
2277 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2278
2279 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2280 INSERT);
2281
2282 /* If we've already marked this entry as needing GOT space, we don't
2283 need to do it again. */
2284 if (*loc)
2285 return TRUE;
2286
2287 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2288
2289 if (! *loc)
2290 return FALSE;
2291
2292 entry.gotidx = -1;
2293 memcpy (*loc, &entry, sizeof entry);
2294
2295 if (h->got.offset != MINUS_ONE)
2296 return TRUE;
2297
2298 /* By setting this to a value other than -1, we are indicating that
2299 there needs to be a GOT entry for H. Avoid using zero, as the
2300 generic ELF copy_indirect_symbol tests for <= 0. */
2301 h->got.offset = 1;
2302
2303 return TRUE;
2304}
2305
2306/* Reserve space in G for a GOT entry containing the value of symbol
2307 SYMNDX in input bfd ABDF, plus ADDEND. */
2308
2309static bfd_boolean
2310mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2311 struct mips_got_info *g)
2312{
2313 struct mips_got_entry entry, **loc;
2314
2315 entry.abfd = abfd;
2316 entry.symndx = symndx;
2317 entry.d.addend = addend;
2318 loc = (struct mips_got_entry **)
2319 htab_find_slot (g->got_entries, &entry, INSERT);
2320
2321 if (*loc)
2322 return TRUE;
2323
2324 entry.gotidx = g->local_gotno++;
2325
2326 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2327
2328 if (! *loc)
2329 return FALSE;
2330
2331 memcpy (*loc, &entry, sizeof entry);
2332
2333 return TRUE;
2334}
2335\f
2336/* Compute the hash value of the bfd in a bfd2got hash entry. */
2337
2338static hashval_t
2339mips_elf_bfd2got_entry_hash (const void *entry_)
2340{
2341 const struct mips_elf_bfd2got_hash *entry
2342 = (struct mips_elf_bfd2got_hash *)entry_;
2343
2344 return entry->bfd->id;
2345}
2346
2347/* Check whether two hash entries have the same bfd. */
2348
2349static int
2350mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2351{
2352 const struct mips_elf_bfd2got_hash *e1
2353 = (const struct mips_elf_bfd2got_hash *)entry1;
2354 const struct mips_elf_bfd2got_hash *e2
2355 = (const struct mips_elf_bfd2got_hash *)entry2;
2356
2357 return e1->bfd == e2->bfd;
2358}
2359
2360/* In a multi-got link, determine the GOT to be used for IBDF. G must
2361 be the master GOT data. */
2362
2363static struct mips_got_info *
2364mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2365{
2366 struct mips_elf_bfd2got_hash e, *p;
2367
2368 if (! g->bfd2got)
2369 return g;
2370
2371 e.bfd = ibfd;
2372 p = htab_find (g->bfd2got, &e);
2373 return p ? p->g : NULL;
2374}
2375
2376/* Create one separate got for each bfd that has entries in the global
2377 got, such that we can tell how many local and global entries each
2378 bfd requires. */
2379
2380static int
2381mips_elf_make_got_per_bfd (void **entryp, void *p)
2382{
2383 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2384 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2385 htab_t bfd2got = arg->bfd2got;
2386 struct mips_got_info *g;
2387 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2388 void **bfdgotp;
2389
2390 /* Find the got_info for this GOT entry's input bfd. Create one if
2391 none exists. */
2392 bfdgot_entry.bfd = entry->abfd;
2393 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2394 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2395
2396 if (bfdgot != NULL)
2397 g = bfdgot->g;
2398 else
2399 {
2400 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2401 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2402
2403 if (bfdgot == NULL)
2404 {
2405 arg->obfd = 0;
2406 return 0;
2407 }
2408
2409 *bfdgotp = bfdgot;
2410
2411 bfdgot->bfd = entry->abfd;
2412 bfdgot->g = g = (struct mips_got_info *)
2413 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2414 if (g == NULL)
2415 {
2416 arg->obfd = 0;
2417 return 0;
2418 }
2419
2420 g->global_gotsym = NULL;
2421 g->global_gotno = 0;
2422 g->local_gotno = 0;
2423 g->assigned_gotno = -1;
2424 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2425 mips_elf_multi_got_entry_eq, NULL);
2426 if (g->got_entries == NULL)
2427 {
2428 arg->obfd = 0;
2429 return 0;
2430 }
2431
2432 g->bfd2got = NULL;
2433 g->next = NULL;
2434 }
2435
2436 /* Insert the GOT entry in the bfd's got entry hash table. */
2437 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2438 if (*entryp != NULL)
2439 return 1;
2440
2441 *entryp = entry;
2442
2443 if (entry->symndx >= 0 || entry->d.h->forced_local)
2444 ++g->local_gotno;
2445 else
2446 ++g->global_gotno;
2447
2448 return 1;
2449}
2450
2451/* Attempt to merge gots of different input bfds. Try to use as much
2452 as possible of the primary got, since it doesn't require explicit
2453 dynamic relocations, but don't use bfds that would reference global
2454 symbols out of the addressable range. Failing the primary got,
2455 attempt to merge with the current got, or finish the current got
2456 and then make make the new got current. */
2457
2458static int
2459mips_elf_merge_gots (void **bfd2got_, void *p)
2460{
2461 struct mips_elf_bfd2got_hash *bfd2got
2462 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2463 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2464 unsigned int lcount = bfd2got->g->local_gotno;
2465 unsigned int gcount = bfd2got->g->global_gotno;
2466 unsigned int maxcnt = arg->max_count;
2467
2468 /* If we don't have a primary GOT and this is not too big, use it as
2469 a starting point for the primary GOT. */
2470 if (! arg->primary && lcount + gcount <= maxcnt)
2471 {
2472 arg->primary = bfd2got->g;
2473 arg->primary_count = lcount + gcount;
2474 }
2475 /* If it looks like we can merge this bfd's entries with those of
2476 the primary, merge them. The heuristics is conservative, but we
2477 don't have to squeeze it too hard. */
2478 else if (arg->primary
2479 && (arg->primary_count + lcount + gcount) <= maxcnt)
2480 {
2481 struct mips_got_info *g = bfd2got->g;
2482 int old_lcount = arg->primary->local_gotno;
2483 int old_gcount = arg->primary->global_gotno;
2484
2485 bfd2got->g = arg->primary;
2486
2487 htab_traverse (g->got_entries,
2488 mips_elf_make_got_per_bfd,
2489 arg);
2490 if (arg->obfd == NULL)
2491 return 0;
2492
2493 htab_delete (g->got_entries);
2494 /* We don't have to worry about releasing memory of the actual
2495 got entries, since they're all in the master got_entries hash
2496 table anyway. */
2497
2498 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2499 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2500
2501 arg->primary_count = arg->primary->local_gotno
2502 + arg->primary->global_gotno;
2503 }
2504 /* If we can merge with the last-created got, do it. */
2505 else if (arg->current
2506 && arg->current_count + lcount + gcount <= maxcnt)
2507 {
2508 struct mips_got_info *g = bfd2got->g;
2509 int old_lcount = arg->current->local_gotno;
2510 int old_gcount = arg->current->global_gotno;
2511
2512 bfd2got->g = arg->current;
2513
2514 htab_traverse (g->got_entries,
2515 mips_elf_make_got_per_bfd,
2516 arg);
2517 if (arg->obfd == NULL)
2518 return 0;
2519
2520 htab_delete (g->got_entries);
2521
2522 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2523 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2524
2525 arg->current_count = arg->current->local_gotno
2526 + arg->current->global_gotno;
2527 }
2528 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2529 fits; if it turns out that it doesn't, we'll get relocation
2530 overflows anyway. */
2531 else
2532 {
2533 bfd2got->g->next = arg->current;
2534 arg->current = bfd2got->g;
2535
2536 arg->current_count = lcount + gcount;
2537 }
2538
2539 return 1;
2540}
2541
2542/* If passed a NULL mips_got_info in the argument, set the marker used
2543 to tell whether a global symbol needs a got entry (in the primary
2544 got) to the given VALUE.
2545
2546 If passed a pointer G to a mips_got_info in the argument (it must
2547 not be the primary GOT), compute the offset from the beginning of
2548 the (primary) GOT section to the entry in G corresponding to the
2549 global symbol. G's assigned_gotno must contain the index of the
2550 first available global GOT entry in G. VALUE must contain the size
2551 of a GOT entry in bytes. For each global GOT entry that requires a
2552 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2553 marked as not eligible for lazy resolution through a function
2554 stub. */
2555static int
2556mips_elf_set_global_got_offset (void **entryp, void *p)
2557{
2558 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2559 struct mips_elf_set_global_got_offset_arg *arg
2560 = (struct mips_elf_set_global_got_offset_arg *)p;
2561 struct mips_got_info *g = arg->g;
2562
2563 if (entry->abfd != NULL && entry->symndx == -1
2564 && entry->d.h->root.dynindx != -1)
2565 {
2566 if (g)
2567 {
2568 BFD_ASSERT (g->global_gotsym == NULL);
2569
2570 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2571 if (arg->info->shared
2572 || (elf_hash_table (arg->info)->dynamic_sections_created
2573 && entry->d.h->root.def_dynamic
2574 && !entry->d.h->root.def_regular))
2575 ++arg->needed_relocs;
2576 }
2577 else
2578 entry->d.h->root.got.offset = arg->value;
2579 }
2580
2581 return 1;
2582}
2583
2584/* Mark any global symbols referenced in the GOT we are iterating over
2585 as inelligible for lazy resolution stubs. */
2586static int
2587mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2588{
2589 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2590
2591 if (entry->abfd != NULL
2592 && entry->symndx == -1
2593 && entry->d.h->root.dynindx != -1)
2594 entry->d.h->no_fn_stub = TRUE;
2595
2596 return 1;
2597}
2598
2599/* Follow indirect and warning hash entries so that each got entry
2600 points to the final symbol definition. P must point to a pointer
2601 to the hash table we're traversing. Since this traversal may
2602 modify the hash table, we set this pointer to NULL to indicate
2603 we've made a potentially-destructive change to the hash table, so
2604 the traversal must be restarted. */
2605static int
2606mips_elf_resolve_final_got_entry (void **entryp, void *p)
2607{
2608 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2609 htab_t got_entries = *(htab_t *)p;
2610
2611 if (entry->abfd != NULL && entry->symndx == -1)
2612 {
2613 struct mips_elf_link_hash_entry *h = entry->d.h;
2614
2615 while (h->root.root.type == bfd_link_hash_indirect
2616 || h->root.root.type == bfd_link_hash_warning)
2617 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2618
2619 if (entry->d.h == h)
2620 return 1;
2621
2622 entry->d.h = h;
2623
2624 /* If we can't find this entry with the new bfd hash, re-insert
2625 it, and get the traversal restarted. */
2626 if (! htab_find (got_entries, entry))
2627 {
2628 htab_clear_slot (got_entries, entryp);
2629 entryp = htab_find_slot (got_entries, entry, INSERT);
2630 if (! *entryp)
2631 *entryp = entry;
2632 /* Abort the traversal, since the whole table may have
2633 moved, and leave it up to the parent to restart the
2634 process. */
2635 *(htab_t *)p = NULL;
2636 return 0;
2637 }
2638 /* We might want to decrement the global_gotno count, but it's
2639 either too early or too late for that at this point. */
2640 }
2641
2642 return 1;
2643}
2644
2645/* Turn indirect got entries in a got_entries table into their final
2646 locations. */
2647static void
2648mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2649{
2650 htab_t got_entries;
2651
2652 do
2653 {
2654 got_entries = g->got_entries;
2655
2656 htab_traverse (got_entries,
2657 mips_elf_resolve_final_got_entry,
2658 &got_entries);
2659 }
2660 while (got_entries == NULL);
2661}
2662
2663/* Return the offset of an input bfd IBFD's GOT from the beginning of
2664 the primary GOT. */
2665static bfd_vma
2666mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2667{
2668 if (g->bfd2got == NULL)
2669 return 0;
2670
2671 g = mips_elf_got_for_ibfd (g, ibfd);
2672 if (! g)
2673 return 0;
2674
2675 BFD_ASSERT (g->next);
2676
2677 g = g->next;
2678
2679 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2680}
2681
2682/* Turn a single GOT that is too big for 16-bit addressing into
2683 a sequence of GOTs, each one 16-bit addressable. */
2684
2685static bfd_boolean
2686mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2687 struct mips_got_info *g, asection *got,
2688 bfd_size_type pages)
2689{
2690 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2691 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2692 struct mips_got_info *gg;
2693 unsigned int assign;
2694
2695 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2696 mips_elf_bfd2got_entry_eq, NULL);
2697 if (g->bfd2got == NULL)
2698 return FALSE;
2699
2700 got_per_bfd_arg.bfd2got = g->bfd2got;
2701 got_per_bfd_arg.obfd = abfd;
2702 got_per_bfd_arg.info = info;
2703
2704 /* Count how many GOT entries each input bfd requires, creating a
2705 map from bfd to got info while at that. */
2706 mips_elf_resolve_final_got_entries (g);
2707 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2708 if (got_per_bfd_arg.obfd == NULL)
2709 return FALSE;
2710
2711 got_per_bfd_arg.current = NULL;
2712 got_per_bfd_arg.primary = NULL;
2713 /* Taking out PAGES entries is a worst-case estimate. We could
2714 compute the maximum number of pages that each separate input bfd
2715 uses, but it's probably not worth it. */
2716 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2717 / MIPS_ELF_GOT_SIZE (abfd))
2718 - MIPS_RESERVED_GOTNO - pages);
2719
2720 /* Try to merge the GOTs of input bfds together, as long as they
2721 don't seem to exceed the maximum GOT size, choosing one of them
2722 to be the primary GOT. */
2723 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2724 if (got_per_bfd_arg.obfd == NULL)
2725 return FALSE;
2726
2727 /* If we find any suitable primary GOT, create an empty one. */
2728 if (got_per_bfd_arg.primary == NULL)
2729 {
2730 g->next = (struct mips_got_info *)
2731 bfd_alloc (abfd, sizeof (struct mips_got_info));
2732 if (g->next == NULL)
2733 return FALSE;
2734
2735 g->next->global_gotsym = NULL;
2736 g->next->global_gotno = 0;
2737 g->next->local_gotno = 0;
2738 g->next->assigned_gotno = 0;
2739 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2740 mips_elf_multi_got_entry_eq,
2741 NULL);
2742 if (g->next->got_entries == NULL)
2743 return FALSE;
2744 g->next->bfd2got = NULL;
2745 }
2746 else
2747 g->next = got_per_bfd_arg.primary;
2748 g->next->next = got_per_bfd_arg.current;
2749
2750 /* GG is now the master GOT, and G is the primary GOT. */
2751 gg = g;
2752 g = g->next;
2753
2754 /* Map the output bfd to the primary got. That's what we're going
2755 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2756 didn't mark in check_relocs, and we want a quick way to find it.
2757 We can't just use gg->next because we're going to reverse the
2758 list. */
2759 {
2760 struct mips_elf_bfd2got_hash *bfdgot;
2761 void **bfdgotp;
2762
2763 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2764 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2765
2766 if (bfdgot == NULL)
2767 return FALSE;
2768
2769 bfdgot->bfd = abfd;
2770 bfdgot->g = g;
2771 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2772
2773 BFD_ASSERT (*bfdgotp == NULL);
2774 *bfdgotp = bfdgot;
2775 }
2776
2777 /* The IRIX dynamic linker requires every symbol that is referenced
2778 in a dynamic relocation to be present in the primary GOT, so
2779 arrange for them to appear after those that are actually
2780 referenced.
2781
2782 GNU/Linux could very well do without it, but it would slow down
2783 the dynamic linker, since it would have to resolve every dynamic
2784 symbol referenced in other GOTs more than once, without help from
2785 the cache. Also, knowing that every external symbol has a GOT
2786 helps speed up the resolution of local symbols too, so GNU/Linux
2787 follows IRIX's practice.
2788
2789 The number 2 is used by mips_elf_sort_hash_table_f to count
2790 global GOT symbols that are unreferenced in the primary GOT, with
2791 an initial dynamic index computed from gg->assigned_gotno, where
2792 the number of unreferenced global entries in the primary GOT is
2793 preserved. */
2794 if (1)
2795 {
2796 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2797 g->global_gotno = gg->global_gotno;
2798 set_got_offset_arg.value = 2;
2799 }
2800 else
2801 {
2802 /* This could be used for dynamic linkers that don't optimize
2803 symbol resolution while applying relocations so as to use
2804 primary GOT entries or assuming the symbol is locally-defined.
2805 With this code, we assign lower dynamic indices to global
2806 symbols that are not referenced in the primary GOT, so that
2807 their entries can be omitted. */
2808 gg->assigned_gotno = 0;
2809 set_got_offset_arg.value = -1;
2810 }
2811
2812 /* Reorder dynamic symbols as described above (which behavior
2813 depends on the setting of VALUE). */
2814 set_got_offset_arg.g = NULL;
2815 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2816 &set_got_offset_arg);
2817 set_got_offset_arg.value = 1;
2818 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2819 &set_got_offset_arg);
2820 if (! mips_elf_sort_hash_table (info, 1))
2821 return FALSE;
2822
2823 /* Now go through the GOTs assigning them offset ranges.
2824 [assigned_gotno, local_gotno[ will be set to the range of local
2825 entries in each GOT. We can then compute the end of a GOT by
2826 adding local_gotno to global_gotno. We reverse the list and make
2827 it circular since then we'll be able to quickly compute the
2828 beginning of a GOT, by computing the end of its predecessor. To
2829 avoid special cases for the primary GOT, while still preserving
2830 assertions that are valid for both single- and multi-got links,
2831 we arrange for the main got struct to have the right number of
2832 global entries, but set its local_gotno such that the initial
2833 offset of the primary GOT is zero. Remember that the primary GOT
2834 will become the last item in the circular linked list, so it
2835 points back to the master GOT. */
2836 gg->local_gotno = -g->global_gotno;
2837 gg->global_gotno = g->global_gotno;
2838 assign = 0;
2839 gg->next = gg;
2840
2841 do
2842 {
2843 struct mips_got_info *gn;
2844
2845 assign += MIPS_RESERVED_GOTNO;
2846 g->assigned_gotno = assign;
2847 g->local_gotno += assign + pages;
2848 assign = g->local_gotno + g->global_gotno;
2849
2850 /* Take g out of the direct list, and push it onto the reversed
2851 list that gg points to. */
2852 gn = g->next;
2853 g->next = gg->next;
2854 gg->next = g;
2855 g = gn;
2856
2857 /* Mark global symbols in every non-primary GOT as ineligible for
2858 stubs. */
2859 if (g)
2860 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2861 }
2862 while (g);
2863
2864 got->size = (gg->next->local_gotno
2865 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2866
2867 return TRUE;
2868}
2869
2870\f
2871/* Returns the first relocation of type r_type found, beginning with
2872 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2873
2874static const Elf_Internal_Rela *
2875mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2876 const Elf_Internal_Rela *relocation,
2877 const Elf_Internal_Rela *relend)
2878{
2879 while (relocation < relend)
2880 {
2881 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2882 return relocation;
2883
2884 ++relocation;
2885 }
2886
2887 /* We didn't find it. */
2888 bfd_set_error (bfd_error_bad_value);
2889 return NULL;
2890}
2891
2892/* Return whether a relocation is against a local symbol. */
2893
2894static bfd_boolean
2895mips_elf_local_relocation_p (bfd *input_bfd,
2896 const Elf_Internal_Rela *relocation,
2897 asection **local_sections,
2898 bfd_boolean check_forced)
2899{
2900 unsigned long r_symndx;
2901 Elf_Internal_Shdr *symtab_hdr;
2902 struct mips_elf_link_hash_entry *h;
2903 size_t extsymoff;
2904
2905 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2906 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2907 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2908
2909 if (r_symndx < extsymoff)
2910 return TRUE;
2911 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2912 return TRUE;
2913
2914 if (check_forced)
2915 {
2916 /* Look up the hash table to check whether the symbol
2917 was forced local. */
2918 h = (struct mips_elf_link_hash_entry *)
2919 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2920 /* Find the real hash-table entry for this symbol. */
2921 while (h->root.root.type == bfd_link_hash_indirect
2922 || h->root.root.type == bfd_link_hash_warning)
2923 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2924 if (h->root.forced_local)
2925 return TRUE;
2926 }
2927
2928 return FALSE;
2929}
2930\f
2931/* Sign-extend VALUE, which has the indicated number of BITS. */
2932
2933bfd_vma
2934_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2935{
2936 if (value & ((bfd_vma) 1 << (bits - 1)))
2937 /* VALUE is negative. */
2938 value |= ((bfd_vma) - 1) << bits;
2939
2940 return value;
2941}
2942
2943/* Return non-zero if the indicated VALUE has overflowed the maximum
2944 range expressible by a signed number with the indicated number of
2945 BITS. */
2946
2947static bfd_boolean
2948mips_elf_overflow_p (bfd_vma value, int bits)
2949{
2950 bfd_signed_vma svalue = (bfd_signed_vma) value;
2951
2952 if (svalue > (1 << (bits - 1)) - 1)
2953 /* The value is too big. */
2954 return TRUE;
2955 else if (svalue < -(1 << (bits - 1)))
2956 /* The value is too small. */
2957 return TRUE;
2958
2959 /* All is well. */
2960 return FALSE;
2961}
2962
2963/* Calculate the %high function. */
2964
2965static bfd_vma
2966mips_elf_high (bfd_vma value)
2967{
2968 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2969}
2970
2971/* Calculate the %higher function. */
2972
2973static bfd_vma
2974mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2975{
2976#ifdef BFD64
2977 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2978#else
2979 abort ();
2980 return MINUS_ONE;
2981#endif
2982}
2983
2984/* Calculate the %highest function. */
2985
2986static bfd_vma
2987mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2988{
2989#ifdef BFD64
2990 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2991#else
2992 abort ();
2993 return MINUS_ONE;
2994#endif
2995}
2996\f
2997/* Create the .compact_rel section. */
2998
2999static bfd_boolean
3000mips_elf_create_compact_rel_section
3001 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3002{
3003 flagword flags;
3004 register asection *s;
3005
3006 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3007 {
3008 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3009 | SEC_READONLY);
3010
3011 s = bfd_make_section (abfd, ".compact_rel");
3012 if (s == NULL
3013 || ! bfd_set_section_flags (abfd, s, flags)
3014 || ! bfd_set_section_alignment (abfd, s,
3015 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3016 return FALSE;
3017
3018 s->size = sizeof (Elf32_External_compact_rel);
3019 }
3020
3021 return TRUE;
3022}
3023
3024/* Create the .got section to hold the global offset table. */
3025
3026static bfd_boolean
3027mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3028 bfd_boolean maybe_exclude)
3029{
3030 flagword flags;
3031 register asection *s;
3032 struct elf_link_hash_entry *h;
3033 struct bfd_link_hash_entry *bh;
3034 struct mips_got_info *g;
3035 bfd_size_type amt;
3036
3037 /* This function may be called more than once. */
3038 s = mips_elf_got_section (abfd, TRUE);
3039 if (s)
3040 {
3041 if (! maybe_exclude)
3042 s->flags &= ~SEC_EXCLUDE;
3043 return TRUE;
3044 }
3045
3046 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3047 | SEC_LINKER_CREATED);
3048
3049 if (maybe_exclude)
3050 flags |= SEC_EXCLUDE;
3051
3052 /* We have to use an alignment of 2**4 here because this is hardcoded
3053 in the function stub generation and in the linker script. */
3054 s = bfd_make_section (abfd, ".got");
3055 if (s == NULL
3056 || ! bfd_set_section_flags (abfd, s, flags)
3057 || ! bfd_set_section_alignment (abfd, s, 4))
3058 return FALSE;
3059
3060 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3061 linker script because we don't want to define the symbol if we
3062 are not creating a global offset table. */
3063 bh = NULL;
3064 if (! (_bfd_generic_link_add_one_symbol
3065 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3066 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3067 return FALSE;
3068
3069 h = (struct elf_link_hash_entry *) bh;
3070 h->non_elf = 0;
3071 h->def_regular = 1;
3072 h->type = STT_OBJECT;
3073
3074 if (info->shared
3075 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3076 return FALSE;
3077
3078 amt = sizeof (struct mips_got_info);
3079 g = bfd_alloc (abfd, amt);
3080 if (g == NULL)
3081 return FALSE;
3082 g->global_gotsym = NULL;
3083 g->global_gotno = 0;
3084 g->local_gotno = MIPS_RESERVED_GOTNO;
3085 g->assigned_gotno = MIPS_RESERVED_GOTNO;
3086 g->bfd2got = NULL;
3087 g->next = NULL;
3088 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3089 mips_elf_got_entry_eq, NULL);
3090 if (g->got_entries == NULL)
3091 return FALSE;
3092 mips_elf_section_data (s)->u.got_info = g;
3093 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3094 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3095
3096 return TRUE;
3097}
3098\f
3099/* Calculate the value produced by the RELOCATION (which comes from
3100 the INPUT_BFD). The ADDEND is the addend to use for this
3101 RELOCATION; RELOCATION->R_ADDEND is ignored.
3102
3103 The result of the relocation calculation is stored in VALUEP.
3104 REQUIRE_JALXP indicates whether or not the opcode used with this
3105 relocation must be JALX.
3106
3107 This function returns bfd_reloc_continue if the caller need take no
3108 further action regarding this relocation, bfd_reloc_notsupported if
3109 something goes dramatically wrong, bfd_reloc_overflow if an
3110 overflow occurs, and bfd_reloc_ok to indicate success. */
3111
3112static bfd_reloc_status_type
3113mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3114 asection *input_section,
3115 struct bfd_link_info *info,
3116 const Elf_Internal_Rela *relocation,
3117 bfd_vma addend, reloc_howto_type *howto,
3118 Elf_Internal_Sym *local_syms,
3119 asection **local_sections, bfd_vma *valuep,
3120 const char **namep, bfd_boolean *require_jalxp,
3121 bfd_boolean save_addend)
3122{
3123 /* The eventual value we will return. */
3124 bfd_vma value;
3125 /* The address of the symbol against which the relocation is
3126 occurring. */
3127 bfd_vma symbol = 0;
3128 /* The final GP value to be used for the relocatable, executable, or
3129 shared object file being produced. */
3130 bfd_vma gp = MINUS_ONE;
3131 /* The place (section offset or address) of the storage unit being
3132 relocated. */
3133 bfd_vma p;
3134 /* The value of GP used to create the relocatable object. */
3135 bfd_vma gp0 = MINUS_ONE;
3136 /* The offset into the global offset table at which the address of
3137 the relocation entry symbol, adjusted by the addend, resides
3138 during execution. */
3139 bfd_vma g = MINUS_ONE;
3140 /* The section in which the symbol referenced by the relocation is
3141 located. */
3142 asection *sec = NULL;
3143 struct mips_elf_link_hash_entry *h = NULL;
3144 /* TRUE if the symbol referred to by this relocation is a local
3145 symbol. */
3146 bfd_boolean local_p, was_local_p;
3147 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3148 bfd_boolean gp_disp_p = FALSE;
3149 Elf_Internal_Shdr *symtab_hdr;
3150 size_t extsymoff;
3151 unsigned long r_symndx;
3152 int r_type;
3153 /* TRUE if overflow occurred during the calculation of the
3154 relocation value. */
3155 bfd_boolean overflowed_p;
3156 /* TRUE if this relocation refers to a MIPS16 function. */
3157 bfd_boolean target_is_16_bit_code_p = FALSE;
3158
3159 /* Parse the relocation. */
3160 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3161 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3162 p = (input_section->output_section->vma
3163 + input_section->output_offset
3164 + relocation->r_offset);
3165
3166 /* Assume that there will be no overflow. */
3167 overflowed_p = FALSE;
3168
3169 /* Figure out whether or not the symbol is local, and get the offset
3170 used in the array of hash table entries. */
3171 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3172 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3173 local_sections, FALSE);
3174 was_local_p = local_p;
3175 if (! elf_bad_symtab (input_bfd))
3176 extsymoff = symtab_hdr->sh_info;
3177 else
3178 {
3179 /* The symbol table does not follow the rule that local symbols
3180 must come before globals. */
3181 extsymoff = 0;
3182 }
3183
3184 /* Figure out the value of the symbol. */
3185 if (local_p)
3186 {
3187 Elf_Internal_Sym *sym;
3188
3189 sym = local_syms + r_symndx;
3190 sec = local_sections[r_symndx];
3191
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3194 || (sec->flags & SEC_MERGE))
3195 symbol += sym->st_value;
3196 if ((sec->flags & SEC_MERGE)
3197 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3198 {
3199 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3200 addend -= symbol;
3201 addend += sec->output_section->vma + sec->output_offset;
3202 }
3203
3204 /* MIPS16 text labels should be treated as odd. */
3205 if (sym->st_other == STO_MIPS16)
3206 ++symbol;
3207
3208 /* Record the name of this symbol, for our caller. */
3209 *namep = bfd_elf_string_from_elf_section (input_bfd,
3210 symtab_hdr->sh_link,
3211 sym->st_name);
3212 if (*namep == '\0')
3213 *namep = bfd_section_name (input_bfd, sec);
3214
3215 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3216 }
3217 else
3218 {
3219 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3220
3221 /* For global symbols we look up the symbol in the hash-table. */
3222 h = ((struct mips_elf_link_hash_entry *)
3223 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3224 /* Find the real hash-table entry for this symbol. */
3225 while (h->root.root.type == bfd_link_hash_indirect
3226 || h->root.root.type == bfd_link_hash_warning)
3227 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3228
3229 /* Record the name of this symbol, for our caller. */
3230 *namep = h->root.root.root.string;
3231
3232 /* See if this is the special _gp_disp symbol. Note that such a
3233 symbol must always be a global symbol. */
3234 if (strcmp (*namep, "_gp_disp") == 0
3235 && ! NEWABI_P (input_bfd))
3236 {
3237 /* Relocations against _gp_disp are permitted only with
3238 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3239 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3240 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3241 return bfd_reloc_notsupported;
3242
3243 gp_disp_p = TRUE;
3244 }
3245 /* If this symbol is defined, calculate its address. Note that
3246 _gp_disp is a magic symbol, always implicitly defined by the
3247 linker, so it's inappropriate to check to see whether or not
3248 its defined. */
3249 else if ((h->root.root.type == bfd_link_hash_defined
3250 || h->root.root.type == bfd_link_hash_defweak)
3251 && h->root.root.u.def.section)
3252 {
3253 sec = h->root.root.u.def.section;
3254 if (sec->output_section)
3255 symbol = (h->root.root.u.def.value
3256 + sec->output_section->vma
3257 + sec->output_offset);
3258 else
3259 symbol = h->root.root.u.def.value;
3260 }
3261 else if (h->root.root.type == bfd_link_hash_undefweak)
3262 /* We allow relocations against undefined weak symbols, giving
3263 it the value zero, so that you can undefined weak functions
3264 and check to see if they exist by looking at their
3265 addresses. */
3266 symbol = 0;
3267 else if (info->unresolved_syms_in_objects == RM_IGNORE
3268 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3269 symbol = 0;
3270 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3271 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3272 {
3273 /* If this is a dynamic link, we should have created a
3274 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3275 in in _bfd_mips_elf_create_dynamic_sections.
3276 Otherwise, we should define the symbol with a value of 0.
3277 FIXME: It should probably get into the symbol table
3278 somehow as well. */
3279 BFD_ASSERT (! info->shared);
3280 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3281 symbol = 0;
3282 }
3283 else
3284 {
3285 if (! ((*info->callbacks->undefined_symbol)
3286 (info, h->root.root.root.string, input_bfd,
3287 input_section, relocation->r_offset,
3288 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3289 || ELF_ST_VISIBILITY (h->root.other))))
3290 return bfd_reloc_undefined;
3291 symbol = 0;
3292 }
3293
3294 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3295 }
3296
3297 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3298 need to redirect the call to the stub, unless we're already *in*
3299 a stub. */
3300 if (r_type != R_MIPS16_26 && !info->relocatable
3301 && ((h != NULL && h->fn_stub != NULL)
3302 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3303 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3304 && !mips_elf_stub_section_p (input_bfd, input_section))
3305 {
3306 /* This is a 32- or 64-bit call to a 16-bit function. We should
3307 have already noticed that we were going to need the
3308 stub. */
3309 if (local_p)
3310 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3311 else
3312 {
3313 BFD_ASSERT (h->need_fn_stub);
3314 sec = h->fn_stub;
3315 }
3316
3317 symbol = sec->output_section->vma + sec->output_offset;
3318 }
3319 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3320 need to redirect the call to the stub. */
3321 else if (r_type == R_MIPS16_26 && !info->relocatable
3322 && h != NULL
3323 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3324 && !target_is_16_bit_code_p)
3325 {
3326 /* If both call_stub and call_fp_stub are defined, we can figure
3327 out which one to use by seeing which one appears in the input
3328 file. */
3329 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3330 {
3331 asection *o;
3332
3333 sec = NULL;
3334 for (o = input_bfd->sections; o != NULL; o = o->next)
3335 {
3336 if (strncmp (bfd_get_section_name (input_bfd, o),
3337 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3338 {
3339 sec = h->call_fp_stub;
3340 break;
3341 }
3342 }
3343 if (sec == NULL)
3344 sec = h->call_stub;
3345 }
3346 else if (h->call_stub != NULL)
3347 sec = h->call_stub;
3348 else
3349 sec = h->call_fp_stub;
3350
3351 BFD_ASSERT (sec->size > 0);
3352 symbol = sec->output_section->vma + sec->output_offset;
3353 }
3354
3355 /* Calls from 16-bit code to 32-bit code and vice versa require the
3356 special jalx instruction. */
3357 *require_jalxp = (!info->relocatable
3358 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3359 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3360
3361 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3362 local_sections, TRUE);
3363
3364 /* If we haven't already determined the GOT offset, or the GP value,
3365 and we're going to need it, get it now. */
3366 switch (r_type)
3367 {
3368 case R_MIPS_GOT_PAGE:
3369 case R_MIPS_GOT_OFST:
3370 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3371 bind locally. */
3372 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3373 if (local_p || r_type == R_MIPS_GOT_OFST)
3374 break;
3375 /* Fall through. */
3376
3377 case R_MIPS_CALL16:
3378 case R_MIPS_GOT16:
3379 case R_MIPS_GOT_DISP:
3380 case R_MIPS_GOT_HI16:
3381 case R_MIPS_CALL_HI16:
3382 case R_MIPS_GOT_LO16:
3383 case R_MIPS_CALL_LO16:
3384 /* Find the index into the GOT where this value is located. */
3385 if (!local_p)
3386 {
3387 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3388 GOT_PAGE relocation that decays to GOT_DISP because the
3389 symbol turns out to be global. The addend is then added
3390 as GOT_OFST. */
3391 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3392 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3393 input_bfd,
3394 (struct elf_link_hash_entry *) h);
3395 if (! elf_hash_table(info)->dynamic_sections_created
3396 || (info->shared
3397 && (info->symbolic || h->root.dynindx == -1)
3398 && h->root.def_regular))
3399 {
3400 /* This is a static link or a -Bsymbolic link. The
3401 symbol is defined locally, or was forced to be local.
3402 We must initialize this entry in the GOT. */
3403 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3404 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3405 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3406 }
3407 }
3408 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3409 /* There's no need to create a local GOT entry here; the
3410 calculation for a local GOT16 entry does not involve G. */
3411 break;
3412 else
3413 {
3414 g = mips_elf_local_got_index (abfd, input_bfd,
3415 info, symbol + addend);
3416 if (g == MINUS_ONE)
3417 return bfd_reloc_outofrange;
3418 }
3419
3420 /* Convert GOT indices to actual offsets. */
3421 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3422 abfd, input_bfd, g);
3423 break;
3424
3425 case R_MIPS_HI16:
3426 case R_MIPS_LO16:
3427 case R_MIPS_GPREL16:
3428 case R_MIPS_GPREL32:
3429 case R_MIPS_LITERAL:
3430 case R_MIPS16_HI16:
3431 case R_MIPS16_LO16:
3432 case R_MIPS16_GPREL:
3433 gp0 = _bfd_get_gp_value (input_bfd);
3434 gp = _bfd_get_gp_value (abfd);
3435 if (elf_hash_table (info)->dynobj)
3436 gp += mips_elf_adjust_gp (abfd,
3437 mips_elf_got_info
3438 (elf_hash_table (info)->dynobj, NULL),
3439 input_bfd);
3440 break;
3441
3442 default:
3443 break;
3444 }
3445
3446 /* Figure out what kind of relocation is being performed. */
3447 switch (r_type)
3448 {
3449 case R_MIPS_NONE:
3450 return bfd_reloc_continue;
3451
3452 case R_MIPS_16:
3453 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3454 overflowed_p = mips_elf_overflow_p (value, 16);
3455 break;
3456
3457 case R_MIPS_32:
3458 case R_MIPS_REL32:
3459 case R_MIPS_64:
3460 if ((info->shared
3461 || (elf_hash_table (info)->dynamic_sections_created
3462 && h != NULL
3463 && h->root.def_dynamic
3464 && !h->root.def_regular))
3465 && r_symndx != 0
3466 && (input_section->flags & SEC_ALLOC) != 0)
3467 {
3468 /* If we're creating a shared library, or this relocation is
3469 against a symbol in a shared library, then we can't know
3470 where the symbol will end up. So, we create a relocation
3471 record in the output, and leave the job up to the dynamic
3472 linker. */
3473 value = addend;
3474 if (!mips_elf_create_dynamic_relocation (abfd,
3475 info,
3476 relocation,
3477 h,
3478 sec,
3479 symbol,
3480 &value,
3481 input_section))
3482 return bfd_reloc_undefined;
3483 }
3484 else
3485 {
3486 if (r_type != R_MIPS_REL32)
3487 value = symbol + addend;
3488 else
3489 value = addend;
3490 }
3491 value &= howto->dst_mask;
3492 break;
3493
3494 case R_MIPS_PC32:
3495 value = symbol + addend - p;
3496 value &= howto->dst_mask;
3497 break;
3498
3499 case R_MIPS_GNU_REL16_S2:
3500 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3501 overflowed_p = mips_elf_overflow_p (value, 18);
3502 value = (value >> 2) & howto->dst_mask;
3503 break;
3504
3505 case R_MIPS16_26:
3506 /* The calculation for R_MIPS16_26 is just the same as for an
3507 R_MIPS_26. It's only the storage of the relocated field into
3508 the output file that's different. That's handled in
3509 mips_elf_perform_relocation. So, we just fall through to the
3510 R_MIPS_26 case here. */
3511 case R_MIPS_26:
3512 if (local_p)
3513 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3514 else
3515 {
3516 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3517 if (h->root.root.type != bfd_link_hash_undefweak)
3518 overflowed_p = (value >> 26) != ((p + 4) >> 28);
3519 }
3520 value &= howto->dst_mask;
3521 break;
3522
3523 case R_MIPS_HI16:
3524 case R_MIPS16_HI16:
3525 if (!gp_disp_p)
3526 {
3527 value = mips_elf_high (addend + symbol);
3528 value &= howto->dst_mask;
3529 }
3530 else
3531 {
3532 /* For MIPS16 ABI code we generate this sequence
3533 0: li $v0,%hi(_gp_disp)
3534 4: addiupc $v1,%lo(_gp_disp)
3535 8: sll $v0,16
3536 12: addu $v0,$v1
3537 14: move $gp,$v0
3538 So the offsets of hi and lo relocs are the same, but the
3539 $pc is four higher than $t9 would be, so reduce
3540 both reloc addends by 4. */
3541 if (r_type == R_MIPS16_HI16)
3542 value = mips_elf_high (addend + gp - p - 4);
3543 else
3544 value = mips_elf_high (addend + gp - p);
3545 overflowed_p = mips_elf_overflow_p (value, 16);
3546 }
3547 break;
3548
3549 case R_MIPS_LO16:
3550 case R_MIPS16_LO16:
3551 if (!gp_disp_p)
3552 value = (symbol + addend) & howto->dst_mask;
3553 else
3554 {
3555 /* See the comment for R_MIPS16_HI16 above for the reason
3556 for this conditional. */
3557 if (r_type == R_MIPS16_LO16)
3558 value = addend + gp - p;
3559 else
3560 value = addend + gp - p + 4;
3561 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3562 for overflow. But, on, say, IRIX5, relocations against
3563 _gp_disp are normally generated from the .cpload
3564 pseudo-op. It generates code that normally looks like
3565 this:
3566
3567 lui $gp,%hi(_gp_disp)
3568 addiu $gp,$gp,%lo(_gp_disp)
3569 addu $gp,$gp,$t9
3570
3571 Here $t9 holds the address of the function being called,
3572 as required by the MIPS ELF ABI. The R_MIPS_LO16
3573 relocation can easily overflow in this situation, but the
3574 R_MIPS_HI16 relocation will handle the overflow.
3575 Therefore, we consider this a bug in the MIPS ABI, and do
3576 not check for overflow here. */
3577 }
3578 break;
3579
3580 case R_MIPS_LITERAL:
3581 /* Because we don't merge literal sections, we can handle this
3582 just like R_MIPS_GPREL16. In the long run, we should merge
3583 shared literals, and then we will need to additional work
3584 here. */
3585
3586 /* Fall through. */
3587
3588 case R_MIPS16_GPREL:
3589 /* The R_MIPS16_GPREL performs the same calculation as
3590 R_MIPS_GPREL16, but stores the relocated bits in a different
3591 order. We don't need to do anything special here; the
3592 differences are handled in mips_elf_perform_relocation. */
3593 case R_MIPS_GPREL16:
3594 /* Only sign-extend the addend if it was extracted from the
3595 instruction. If the addend was separate, leave it alone,
3596 otherwise we may lose significant bits. */
3597 if (howto->partial_inplace)
3598 addend = _bfd_mips_elf_sign_extend (addend, 16);
3599 value = symbol + addend - gp;
3600 /* If the symbol was local, any earlier relocatable links will
3601 have adjusted its addend with the gp offset, so compensate
3602 for that now. Don't do it for symbols forced local in this
3603 link, though, since they won't have had the gp offset applied
3604 to them before. */
3605 if (was_local_p)
3606 value += gp0;
3607 overflowed_p = mips_elf_overflow_p (value, 16);
3608 break;
3609
3610 case R_MIPS_GOT16:
3611 case R_MIPS_CALL16:
3612 if (local_p)
3613 {
3614 bfd_boolean forced;
3615
3616 /* The special case is when the symbol is forced to be local. We
3617 need the full address in the GOT since no R_MIPS_LO16 relocation
3618 follows. */
3619 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3620 local_sections, FALSE);
3621 value = mips_elf_got16_entry (abfd, input_bfd, info,
3622 symbol + addend, forced);
3623 if (value == MINUS_ONE)
3624 return bfd_reloc_outofrange;
3625 value
3626 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3627 abfd, input_bfd, value);
3628 overflowed_p = mips_elf_overflow_p (value, 16);
3629 break;
3630 }
3631
3632 /* Fall through. */
3633
3634 case R_MIPS_GOT_DISP:
3635 got_disp:
3636 value = g;
3637 overflowed_p = mips_elf_overflow_p (value, 16);
3638 break;
3639
3640 case R_MIPS_GPREL32:
3641 value = (addend + symbol + gp0 - gp);
3642 if (!save_addend)
3643 value &= howto->dst_mask;
3644 break;
3645
3646 case R_MIPS_PC16:
3647 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3648 overflowed_p = mips_elf_overflow_p (value, 16);
3649 break;
3650
3651 case R_MIPS_GOT_HI16:
3652 case R_MIPS_CALL_HI16:
3653 /* We're allowed to handle these two relocations identically.
3654 The dynamic linker is allowed to handle the CALL relocations
3655 differently by creating a lazy evaluation stub. */
3656 value = g;
3657 value = mips_elf_high (value);
3658 value &= howto->dst_mask;
3659 break;
3660
3661 case R_MIPS_GOT_LO16:
3662 case R_MIPS_CALL_LO16:
3663 value = g & howto->dst_mask;
3664 break;
3665
3666 case R_MIPS_GOT_PAGE:
3667 /* GOT_PAGE relocations that reference non-local symbols decay
3668 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3669 0. */
3670 if (! local_p)
3671 goto got_disp;
3672 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3673 if (value == MINUS_ONE)
3674 return bfd_reloc_outofrange;
3675 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3676 abfd, input_bfd, value);
3677 overflowed_p = mips_elf_overflow_p (value, 16);
3678 break;
3679
3680 case R_MIPS_GOT_OFST:
3681 if (local_p)
3682 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3683 else
3684 value = addend;
3685 overflowed_p = mips_elf_overflow_p (value, 16);
3686 break;
3687
3688 case R_MIPS_SUB:
3689 value = symbol - addend;
3690 value &= howto->dst_mask;
3691 break;
3692
3693 case R_MIPS_HIGHER:
3694 value = mips_elf_higher (addend + symbol);
3695 value &= howto->dst_mask;
3696 break;
3697
3698 case R_MIPS_HIGHEST:
3699 value = mips_elf_highest (addend + symbol);
3700 value &= howto->dst_mask;
3701 break;
3702
3703 case R_MIPS_SCN_DISP:
3704 value = symbol + addend - sec->output_offset;
3705 value &= howto->dst_mask;
3706 break;
3707
3708 case R_MIPS_JALR:
3709 /* This relocation is only a hint. In some cases, we optimize
3710 it into a bal instruction. But we don't try to optimize
3711 branches to the PLT; that will wind up wasting time. */
3712 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
3713 return bfd_reloc_continue;
3714 value = symbol + addend;
3715 break;
3716
3717 case R_MIPS_PJUMP:
3718 case R_MIPS_GNU_VTINHERIT:
3719 case R_MIPS_GNU_VTENTRY:
3720 /* We don't do anything with these at present. */
3721 return bfd_reloc_continue;
3722
3723 default:
3724 /* An unrecognized relocation type. */
3725 return bfd_reloc_notsupported;
3726 }
3727
3728 /* Store the VALUE for our caller. */
3729 *valuep = value;
3730 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3731}
3732
3733/* Obtain the field relocated by RELOCATION. */
3734
3735static bfd_vma
3736mips_elf_obtain_contents (reloc_howto_type *howto,
3737 const Elf_Internal_Rela *relocation,
3738 bfd *input_bfd, bfd_byte *contents)
3739{
3740 bfd_vma x;
3741 bfd_byte *location = contents + relocation->r_offset;
3742
3743 /* Obtain the bytes. */
3744 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3745
3746 return x;
3747}
3748
3749/* It has been determined that the result of the RELOCATION is the
3750 VALUE. Use HOWTO to place VALUE into the output file at the
3751 appropriate position. The SECTION is the section to which the
3752 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3753 for the relocation must be either JAL or JALX, and it is
3754 unconditionally converted to JALX.
3755
3756 Returns FALSE if anything goes wrong. */
3757
3758static bfd_boolean
3759mips_elf_perform_relocation (struct bfd_link_info *info,
3760 reloc_howto_type *howto,
3761 const Elf_Internal_Rela *relocation,
3762 bfd_vma value, bfd *input_bfd,
3763 asection *input_section, bfd_byte *contents,
3764 bfd_boolean require_jalx)
3765{
3766 bfd_vma x;
3767 bfd_byte *location;
3768 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3769
3770 /* Figure out where the relocation is occurring. */
3771 location = contents + relocation->r_offset;
3772
3773 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
3774
3775 /* Obtain the current value. */
3776 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3777
3778 /* Clear the field we are setting. */
3779 x &= ~howto->dst_mask;
3780
3781 /* Set the field. */
3782 x |= (value & howto->dst_mask);
3783
3784 /* If required, turn JAL into JALX. */
3785 if (require_jalx)
3786 {
3787 bfd_boolean ok;
3788 bfd_vma opcode = x >> 26;
3789 bfd_vma jalx_opcode;
3790
3791 /* Check to see if the opcode is already JAL or JALX. */
3792 if (r_type == R_MIPS16_26)
3793 {
3794 ok = ((opcode == 0x6) || (opcode == 0x7));
3795 jalx_opcode = 0x7;
3796 }
3797 else
3798 {
3799 ok = ((opcode == 0x3) || (opcode == 0x1d));
3800 jalx_opcode = 0x1d;
3801 }
3802
3803 /* If the opcode is not JAL or JALX, there's a problem. */
3804 if (!ok)
3805 {
3806 (*_bfd_error_handler)
3807 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3808 input_bfd,
3809 input_section,
3810 (unsigned long) relocation->r_offset);
3811 bfd_set_error (bfd_error_bad_value);
3812 return FALSE;
3813 }
3814
3815 /* Make this the JALX opcode. */
3816 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3817 }
3818
3819 /* On the RM9000, bal is faster than jal, because bal uses branch
3820 prediction hardware. If we are linking for the RM9000, and we
3821 see jal, and bal fits, use it instead. Note that this
3822 transformation should be safe for all architectures. */
3823 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
3824 && !info->relocatable
3825 && !require_jalx
3826 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
3827 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
3828 {
3829 bfd_vma addr;
3830 bfd_vma dest;
3831 bfd_signed_vma off;
3832
3833 addr = (input_section->output_section->vma
3834 + input_section->output_offset
3835 + relocation->r_offset
3836 + 4);
3837 if (r_type == R_MIPS_26)
3838 dest = (value << 2) | ((addr >> 28) << 28);
3839 else
3840 dest = value;
3841 off = dest - addr;
3842 if (off <= 0x1ffff && off >= -0x20000)
3843 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
3844 }
3845
3846 /* Put the value into the output. */
3847 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3848
3849 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
3850 location);
3851
3852 return TRUE;
3853}
3854
3855/* Returns TRUE if SECTION is a MIPS16 stub section. */
3856
3857static bfd_boolean
3858mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3859{
3860 const char *name = bfd_get_section_name (abfd, section);
3861
3862 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3863 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3864 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3865}
3866\f
3867/* Add room for N relocations to the .rel.dyn section in ABFD. */
3868
3869static void
3870mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3871{
3872 asection *s;
3873
3874 s = mips_elf_rel_dyn_section (abfd, FALSE);
3875 BFD_ASSERT (s != NULL);
3876
3877 if (s->size == 0)
3878 {
3879 /* Make room for a null element. */
3880 s->size += MIPS_ELF_REL_SIZE (abfd);
3881 ++s->reloc_count;
3882 }
3883 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3884}
3885
3886/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3887 is the original relocation, which is now being transformed into a
3888 dynamic relocation. The ADDENDP is adjusted if necessary; the
3889 caller should store the result in place of the original addend. */
3890
3891static bfd_boolean
3892mips_elf_create_dynamic_relocation (bfd *output_bfd,
3893 struct bfd_link_info *info,
3894 const Elf_Internal_Rela *rel,
3895 struct mips_elf_link_hash_entry *h,
3896 asection *sec, bfd_vma symbol,
3897 bfd_vma *addendp, asection *input_section)
3898{
3899 Elf_Internal_Rela outrel[3];
3900 asection *sreloc;
3901 bfd *dynobj;
3902 int r_type;
3903 long indx;
3904 bfd_boolean defined_p;
3905
3906 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3907 dynobj = elf_hash_table (info)->dynobj;
3908 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3909 BFD_ASSERT (sreloc != NULL);
3910 BFD_ASSERT (sreloc->contents != NULL);
3911 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3912 < sreloc->size);
3913
3914 outrel[0].r_offset =
3915 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3916 outrel[1].r_offset =
3917 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3918 outrel[2].r_offset =
3919 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3920
3921#if 0
3922 /* We begin by assuming that the offset for the dynamic relocation
3923 is the same as for the original relocation. We'll adjust this
3924 later to reflect the correct output offsets. */
3925 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3926 {
3927 outrel[1].r_offset = rel[1].r_offset;
3928 outrel[2].r_offset = rel[2].r_offset;
3929 }
3930 else
3931 {
3932 /* Except that in a stab section things are more complex.
3933 Because we compress stab information, the offset given in the
3934 relocation may not be the one we want; we must let the stabs
3935 machinery tell us the offset. */
3936 outrel[1].r_offset = outrel[0].r_offset;
3937 outrel[2].r_offset = outrel[0].r_offset;
3938 /* If we didn't need the relocation at all, this value will be
3939 -1. */
3940 if (outrel[0].r_offset == MINUS_ONE)
3941 skip = TRUE;
3942 }
3943#endif
3944
3945 if (outrel[0].r_offset == MINUS_ONE)
3946 /* The relocation field has been deleted. */
3947 return TRUE;
3948
3949 if (outrel[0].r_offset == MINUS_TWO)
3950 {
3951 /* The relocation field has been converted into a relative value of
3952 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3953 the field to be fully relocated, so add in the symbol's value. */
3954 *addendp += symbol;
3955 return TRUE;
3956 }
3957
3958 /* We must now calculate the dynamic symbol table index to use
3959 in the relocation. */
3960 if (h != NULL
3961 && (! info->symbolic || !h->root.def_regular)
3962 /* h->root.dynindx may be -1 if this symbol was marked to
3963 become local. */
3964 && h->root.dynindx != -1)
3965 {
3966 indx = h->root.dynindx;
3967 if (SGI_COMPAT (output_bfd))
3968 defined_p = h->root.def_regular;
3969 else
3970 /* ??? glibc's ld.so just adds the final GOT entry to the
3971 relocation field. It therefore treats relocs against
3972 defined symbols in the same way as relocs against
3973 undefined symbols. */
3974 defined_p = FALSE;
3975 }
3976 else
3977 {
3978 if (sec != NULL && bfd_is_abs_section (sec))
3979 indx = 0;
3980 else if (sec == NULL || sec->owner == NULL)
3981 {
3982 bfd_set_error (bfd_error_bad_value);
3983 return FALSE;
3984 }
3985 else
3986 {
3987 indx = elf_section_data (sec->output_section)->dynindx;
3988 if (indx == 0)
3989 abort ();
3990 }
3991
3992 /* Instead of generating a relocation using the section
3993 symbol, we may as well make it a fully relative
3994 relocation. We want to avoid generating relocations to
3995 local symbols because we used to generate them
3996 incorrectly, without adding the original symbol value,
3997 which is mandated by the ABI for section symbols. In
3998 order to give dynamic loaders and applications time to
3999 phase out the incorrect use, we refrain from emitting
4000 section-relative relocations. It's not like they're
4001 useful, after all. This should be a bit more efficient
4002 as well. */
4003 /* ??? Although this behavior is compatible with glibc's ld.so,
4004 the ABI says that relocations against STN_UNDEF should have
4005 a symbol value of 0. Irix rld honors this, so relocations
4006 against STN_UNDEF have no effect. */
4007 if (!SGI_COMPAT (output_bfd))
4008 indx = 0;
4009 defined_p = TRUE;
4010 }
4011
4012 /* If the relocation was previously an absolute relocation and
4013 this symbol will not be referred to by the relocation, we must
4014 adjust it by the value we give it in the dynamic symbol table.
4015 Otherwise leave the job up to the dynamic linker. */
4016 if (defined_p && r_type != R_MIPS_REL32)
4017 *addendp += symbol;
4018
4019 /* The relocation is always an REL32 relocation because we don't
4020 know where the shared library will wind up at load-time. */
4021 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4022 R_MIPS_REL32);
4023 /* For strict adherence to the ABI specification, we should
4024 generate a R_MIPS_64 relocation record by itself before the
4025 _REL32/_64 record as well, such that the addend is read in as
4026 a 64-bit value (REL32 is a 32-bit relocation, after all).
4027 However, since none of the existing ELF64 MIPS dynamic
4028 loaders seems to care, we don't waste space with these
4029 artificial relocations. If this turns out to not be true,
4030 mips_elf_allocate_dynamic_relocation() should be tweaked so
4031 as to make room for a pair of dynamic relocations per
4032 invocation if ABI_64_P, and here we should generate an
4033 additional relocation record with R_MIPS_64 by itself for a
4034 NULL symbol before this relocation record. */
4035 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4036 ABI_64_P (output_bfd)
4037 ? R_MIPS_64
4038 : R_MIPS_NONE);
4039 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4040
4041 /* Adjust the output offset of the relocation to reference the
4042 correct location in the output file. */
4043 outrel[0].r_offset += (input_section->output_section->vma
4044 + input_section->output_offset);
4045 outrel[1].r_offset += (input_section->output_section->vma
4046 + input_section->output_offset);
4047 outrel[2].r_offset += (input_section->output_section->vma
4048 + input_section->output_offset);
4049
4050 /* Put the relocation back out. We have to use the special
4051 relocation outputter in the 64-bit case since the 64-bit
4052 relocation format is non-standard. */
4053 if (ABI_64_P (output_bfd))
4054 {
4055 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4056 (output_bfd, &outrel[0],
4057 (sreloc->contents
4058 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4059 }
4060 else
4061 bfd_elf32_swap_reloc_out
4062 (output_bfd, &outrel[0],
4063 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4064
4065 /* We've now added another relocation. */
4066 ++sreloc->reloc_count;
4067
4068 /* Make sure the output section is writable. The dynamic linker
4069 will be writing to it. */
4070 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4071 |= SHF_WRITE;
4072
4073 /* On IRIX5, make an entry of compact relocation info. */
4074 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4075 {
4076 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4077 bfd_byte *cr;
4078
4079 if (scpt)
4080 {
4081 Elf32_crinfo cptrel;
4082
4083 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4084 cptrel.vaddr = (rel->r_offset
4085 + input_section->output_section->vma
4086 + input_section->output_offset);
4087 if (r_type == R_MIPS_REL32)
4088 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4089 else
4090 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4091 mips_elf_set_cr_dist2to (cptrel, 0);
4092 cptrel.konst = *addendp;
4093
4094 cr = (scpt->contents
4095 + sizeof (Elf32_External_compact_rel));
4096 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4097 ((Elf32_External_crinfo *) cr
4098 + scpt->reloc_count));
4099 ++scpt->reloc_count;
4100 }
4101 }
4102
4103 return TRUE;
4104}
4105\f
4106/* Return the MACH for a MIPS e_flags value. */
4107
4108unsigned long
4109_bfd_elf_mips_mach (flagword flags)
4110{
4111 switch (flags & EF_MIPS_MACH)
4112 {
4113 case E_MIPS_MACH_3900:
4114 return bfd_mach_mips3900;
4115
4116 case E_MIPS_MACH_4010:
4117 return bfd_mach_mips4010;
4118
4119 case E_MIPS_MACH_4100:
4120 return bfd_mach_mips4100;
4121
4122 case E_MIPS_MACH_4111:
4123 return bfd_mach_mips4111;
4124
4125 case E_MIPS_MACH_4120:
4126 return bfd_mach_mips4120;
4127
4128 case E_MIPS_MACH_4650:
4129 return bfd_mach_mips4650;
4130
4131 case E_MIPS_MACH_5400:
4132 return bfd_mach_mips5400;
4133
4134 case E_MIPS_MACH_5500:
4135 return bfd_mach_mips5500;
4136
4137 case E_MIPS_MACH_9000:
4138 return bfd_mach_mips9000;
4139
4140 case E_MIPS_MACH_SB1:
4141 return bfd_mach_mips_sb1;
4142
4143 default:
4144 switch (flags & EF_MIPS_ARCH)
4145 {
4146 default:
4147 case E_MIPS_ARCH_1:
4148 return bfd_mach_mips3000;
4149 break;
4150
4151 case E_MIPS_ARCH_2:
4152 return bfd_mach_mips6000;
4153 break;
4154
4155 case E_MIPS_ARCH_3:
4156 return bfd_mach_mips4000;
4157 break;
4158
4159 case E_MIPS_ARCH_4:
4160 return bfd_mach_mips8000;
4161 break;
4162
4163 case E_MIPS_ARCH_5:
4164 return bfd_mach_mips5;
4165 break;
4166
4167 case E_MIPS_ARCH_32:
4168 return bfd_mach_mipsisa32;
4169 break;
4170
4171 case E_MIPS_ARCH_64:
4172 return bfd_mach_mipsisa64;
4173 break;
4174
4175 case E_MIPS_ARCH_32R2:
4176 return bfd_mach_mipsisa32r2;
4177 break;
4178
4179 case E_MIPS_ARCH_64R2:
4180 return bfd_mach_mipsisa64r2;
4181 break;
4182 }
4183 }
4184
4185 return 0;
4186}
4187
4188/* Return printable name for ABI. */
4189
4190static INLINE char *
4191elf_mips_abi_name (bfd *abfd)
4192{
4193 flagword flags;
4194
4195 flags = elf_elfheader (abfd)->e_flags;
4196 switch (flags & EF_MIPS_ABI)
4197 {
4198 case 0:
4199 if (ABI_N32_P (abfd))
4200 return "N32";
4201 else if (ABI_64_P (abfd))
4202 return "64";
4203 else
4204 return "none";
4205 case E_MIPS_ABI_O32:
4206 return "O32";
4207 case E_MIPS_ABI_O64:
4208 return "O64";
4209 case E_MIPS_ABI_EABI32:
4210 return "EABI32";
4211 case E_MIPS_ABI_EABI64:
4212 return "EABI64";
4213 default:
4214 return "unknown abi";
4215 }
4216}
4217\f
4218/* MIPS ELF uses two common sections. One is the usual one, and the
4219 other is for small objects. All the small objects are kept
4220 together, and then referenced via the gp pointer, which yields
4221 faster assembler code. This is what we use for the small common
4222 section. This approach is copied from ecoff.c. */
4223static asection mips_elf_scom_section;
4224static asymbol mips_elf_scom_symbol;
4225static asymbol *mips_elf_scom_symbol_ptr;
4226
4227/* MIPS ELF also uses an acommon section, which represents an
4228 allocated common symbol which may be overridden by a
4229 definition in a shared library. */
4230static asection mips_elf_acom_section;
4231static asymbol mips_elf_acom_symbol;
4232static asymbol *mips_elf_acom_symbol_ptr;
4233
4234/* Handle the special MIPS section numbers that a symbol may use.
4235 This is used for both the 32-bit and the 64-bit ABI. */
4236
4237void
4238_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4239{
4240 elf_symbol_type *elfsym;
4241
4242 elfsym = (elf_symbol_type *) asym;
4243 switch (elfsym->internal_elf_sym.st_shndx)
4244 {
4245 case SHN_MIPS_ACOMMON:
4246 /* This section is used in a dynamically linked executable file.
4247 It is an allocated common section. The dynamic linker can
4248 either resolve these symbols to something in a shared
4249 library, or it can just leave them here. For our purposes,
4250 we can consider these symbols to be in a new section. */
4251 if (mips_elf_acom_section.name == NULL)
4252 {
4253 /* Initialize the acommon section. */
4254 mips_elf_acom_section.name = ".acommon";
4255 mips_elf_acom_section.flags = SEC_ALLOC;
4256 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4257 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4258 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4259 mips_elf_acom_symbol.name = ".acommon";
4260 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4261 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4262 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4263 }
4264 asym->section = &mips_elf_acom_section;
4265 break;
4266
4267 case SHN_COMMON:
4268 /* Common symbols less than the GP size are automatically
4269 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4270 if (asym->value > elf_gp_size (abfd)
4271 || IRIX_COMPAT (abfd) == ict_irix6)
4272 break;
4273 /* Fall through. */
4274 case SHN_MIPS_SCOMMON:
4275 if (mips_elf_scom_section.name == NULL)
4276 {
4277 /* Initialize the small common section. */
4278 mips_elf_scom_section.name = ".scommon";
4279 mips_elf_scom_section.flags = SEC_IS_COMMON;
4280 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4281 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4282 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4283 mips_elf_scom_symbol.name = ".scommon";
4284 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4285 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4286 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4287 }
4288 asym->section = &mips_elf_scom_section;
4289 asym->value = elfsym->internal_elf_sym.st_size;
4290 break;
4291
4292 case SHN_MIPS_SUNDEFINED:
4293 asym->section = bfd_und_section_ptr;
4294 break;
4295
4296 case SHN_MIPS_TEXT:
4297 {
4298 asection *section = bfd_get_section_by_name (abfd, ".text");
4299
4300 BFD_ASSERT (SGI_COMPAT (abfd));
4301 if (section != NULL)
4302 {
4303 asym->section = section;
4304 /* MIPS_TEXT is a bit special, the address is not an offset
4305 to the base of the .text section. So substract the section
4306 base address to make it an offset. */
4307 asym->value -= section->vma;
4308 }
4309 }
4310 break;
4311
4312 case SHN_MIPS_DATA:
4313 {
4314 asection *section = bfd_get_section_by_name (abfd, ".data");
4315
4316 BFD_ASSERT (SGI_COMPAT (abfd));
4317 if (section != NULL)
4318 {
4319 asym->section = section;
4320 /* MIPS_DATA is a bit special, the address is not an offset
4321 to the base of the .data section. So substract the section
4322 base address to make it an offset. */
4323 asym->value -= section->vma;
4324 }
4325 }
4326 break;
4327 }
4328}
4329\f
4330/* Implement elf_backend_eh_frame_address_size. This differs from
4331 the default in the way it handles EABI64.
4332
4333 EABI64 was originally specified as an LP64 ABI, and that is what
4334 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4335 historically accepted the combination of -mabi=eabi and -mlong32,
4336 and this ILP32 variation has become semi-official over time.
4337 Both forms use elf32 and have pointer-sized FDE addresses.
4338
4339 If an EABI object was generated by GCC 4.0 or above, it will have
4340 an empty .gcc_compiled_longXX section, where XX is the size of longs
4341 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4342 have no special marking to distinguish them from LP64 objects.
4343
4344 We don't want users of the official LP64 ABI to be punished for the
4345 existence of the ILP32 variant, but at the same time, we don't want
4346 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4347 We therefore take the following approach:
4348
4349 - If ABFD contains a .gcc_compiled_longXX section, use it to
4350 determine the pointer size.
4351
4352 - Otherwise check the type of the first relocation. Assume that
4353 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4354
4355 - Otherwise punt.
4356
4357 The second check is enough to detect LP64 objects generated by pre-4.0
4358 compilers because, in the kind of output generated by those compilers,
4359 the first relocation will be associated with either a CIE personality
4360 routine or an FDE start address. Furthermore, the compilers never
4361 used a special (non-pointer) encoding for this ABI.
4362
4363 Checking the relocation type should also be safe because there is no
4364 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4365 did so. */
4366
4367unsigned int
4368_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4369{
4370 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4371 return 8;
4372 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4373 {
4374 bfd_boolean long32_p, long64_p;
4375
4376 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4377 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4378 if (long32_p && long64_p)
4379 return 0;
4380 if (long32_p)
4381 return 4;
4382 if (long64_p)
4383 return 8;
4384
4385 if (sec->reloc_count > 0
4386 && elf_section_data (sec)->relocs != NULL
4387 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4388 == R_MIPS_64))
4389 return 8;
4390
4391 return 0;
4392 }
4393 return 4;
4394}
4395\f
4396/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4397 relocations against two unnamed section symbols to resolve to the
4398 same address. For example, if we have code like:
4399
4400 lw $4,%got_disp(.data)($gp)
4401 lw $25,%got_disp(.text)($gp)
4402 jalr $25
4403
4404 then the linker will resolve both relocations to .data and the program
4405 will jump there rather than to .text.
4406
4407 We can work around this problem by giving names to local section symbols.
4408 This is also what the MIPSpro tools do. */
4409
4410bfd_boolean
4411_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4412{
4413 return SGI_COMPAT (abfd);
4414}
4415\f
4416/* Work over a section just before writing it out. This routine is
4417 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4418 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4419 a better way. */
4420
4421bfd_boolean
4422_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4423{
4424 if (hdr->sh_type == SHT_MIPS_REGINFO
4425 && hdr->sh_size > 0)
4426 {
4427 bfd_byte buf[4];
4428
4429 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4430 BFD_ASSERT (hdr->contents == NULL);
4431
4432 if (bfd_seek (abfd,
4433 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4434 SEEK_SET) != 0)
4435 return FALSE;
4436 H_PUT_32 (abfd, elf_gp (abfd), buf);
4437 if (bfd_bwrite (buf, 4, abfd) != 4)
4438 return FALSE;
4439 }
4440
4441 if (hdr->sh_type == SHT_MIPS_OPTIONS
4442 && hdr->bfd_section != NULL
4443 && mips_elf_section_data (hdr->bfd_section) != NULL
4444 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4445 {
4446 bfd_byte *contents, *l, *lend;
4447
4448 /* We stored the section contents in the tdata field in the
4449 set_section_contents routine. We save the section contents
4450 so that we don't have to read them again.
4451 At this point we know that elf_gp is set, so we can look
4452 through the section contents to see if there is an
4453 ODK_REGINFO structure. */
4454
4455 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4456 l = contents;
4457 lend = contents + hdr->sh_size;
4458 while (l + sizeof (Elf_External_Options) <= lend)
4459 {
4460 Elf_Internal_Options intopt;
4461
4462 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4463 &intopt);
4464 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4465 {
4466 bfd_byte buf[8];
4467
4468 if (bfd_seek (abfd,
4469 (hdr->sh_offset
4470 + (l - contents)
4471 + sizeof (Elf_External_Options)
4472 + (sizeof (Elf64_External_RegInfo) - 8)),
4473 SEEK_SET) != 0)
4474 return FALSE;
4475 H_PUT_64 (abfd, elf_gp (abfd), buf);
4476 if (bfd_bwrite (buf, 8, abfd) != 8)
4477 return FALSE;
4478 }
4479 else if (intopt.kind == ODK_REGINFO)
4480 {
4481 bfd_byte buf[4];
4482
4483 if (bfd_seek (abfd,
4484 (hdr->sh_offset
4485 + (l - contents)
4486 + sizeof (Elf_External_Options)
4487 + (sizeof (Elf32_External_RegInfo) - 4)),
4488 SEEK_SET) != 0)
4489 return FALSE;
4490 H_PUT_32 (abfd, elf_gp (abfd), buf);
4491 if (bfd_bwrite (buf, 4, abfd) != 4)
4492 return FALSE;
4493 }
4494 l += intopt.size;
4495 }
4496 }
4497
4498 if (hdr->bfd_section != NULL)
4499 {
4500 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4501
4502 if (strcmp (name, ".sdata") == 0
4503 || strcmp (name, ".lit8") == 0
4504 || strcmp (name, ".lit4") == 0)
4505 {
4506 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4507 hdr->sh_type = SHT_PROGBITS;
4508 }
4509 else if (strcmp (name, ".sbss") == 0)
4510 {
4511 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4512 hdr->sh_type = SHT_NOBITS;
4513 }
4514 else if (strcmp (name, ".srdata") == 0)
4515 {
4516 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4517 hdr->sh_type = SHT_PROGBITS;
4518 }
4519 else if (strcmp (name, ".compact_rel") == 0)
4520 {
4521 hdr->sh_flags = 0;
4522 hdr->sh_type = SHT_PROGBITS;
4523 }
4524 else if (strcmp (name, ".rtproc") == 0)
4525 {
4526 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4527 {
4528 unsigned int adjust;
4529
4530 adjust = hdr->sh_size % hdr->sh_addralign;
4531 if (adjust != 0)
4532 hdr->sh_size += hdr->sh_addralign - adjust;
4533 }
4534 }
4535 }
4536
4537 return TRUE;
4538}
4539
4540/* Handle a MIPS specific section when reading an object file. This
4541 is called when elfcode.h finds a section with an unknown type.
4542 This routine supports both the 32-bit and 64-bit ELF ABI.
4543
4544 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4545 how to. */
4546
4547bfd_boolean
4548_bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4549 const char *name)
4550{
4551 flagword flags = 0;
4552
4553 /* There ought to be a place to keep ELF backend specific flags, but
4554 at the moment there isn't one. We just keep track of the
4555 sections by their name, instead. Fortunately, the ABI gives
4556 suggested names for all the MIPS specific sections, so we will
4557 probably get away with this. */
4558 switch (hdr->sh_type)
4559 {
4560 case SHT_MIPS_LIBLIST:
4561 if (strcmp (name, ".liblist") != 0)
4562 return FALSE;
4563 break;
4564 case SHT_MIPS_MSYM:
4565 if (strcmp (name, ".msym") != 0)
4566 return FALSE;
4567 break;
4568 case SHT_MIPS_CONFLICT:
4569 if (strcmp (name, ".conflict") != 0)
4570 return FALSE;
4571 break;
4572 case SHT_MIPS_GPTAB:
4573 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4574 return FALSE;
4575 break;
4576 case SHT_MIPS_UCODE:
4577 if (strcmp (name, ".ucode") != 0)
4578 return FALSE;
4579 break;
4580 case SHT_MIPS_DEBUG:
4581 if (strcmp (name, ".mdebug") != 0)
4582 return FALSE;
4583 flags = SEC_DEBUGGING;
4584 break;
4585 case SHT_MIPS_REGINFO:
4586 if (strcmp (name, ".reginfo") != 0
4587 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4588 return FALSE;
4589 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4590 break;
4591 case SHT_MIPS_IFACE:
4592 if (strcmp (name, ".MIPS.interfaces") != 0)
4593 return FALSE;
4594 break;
4595 case SHT_MIPS_CONTENT:
4596 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4597 return FALSE;
4598 break;
4599 case SHT_MIPS_OPTIONS:
4600 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4601 return FALSE;
4602 break;
4603 case SHT_MIPS_DWARF:
4604 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4605 return FALSE;
4606 break;
4607 case SHT_MIPS_SYMBOL_LIB:
4608 if (strcmp (name, ".MIPS.symlib") != 0)
4609 return FALSE;
4610 break;
4611 case SHT_MIPS_EVENTS:
4612 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4613 && strncmp (name, ".MIPS.post_rel",
4614 sizeof ".MIPS.post_rel" - 1) != 0)
4615 return FALSE;
4616 break;
4617 default:
4618 return FALSE;
4619 }
4620
4621 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4622 return FALSE;
4623
4624 if (flags)
4625 {
4626 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4627 (bfd_get_section_flags (abfd,
4628 hdr->bfd_section)
4629 | flags)))
4630 return FALSE;
4631 }
4632
4633 /* FIXME: We should record sh_info for a .gptab section. */
4634
4635 /* For a .reginfo section, set the gp value in the tdata information
4636 from the contents of this section. We need the gp value while
4637 processing relocs, so we just get it now. The .reginfo section
4638 is not used in the 64-bit MIPS ELF ABI. */
4639 if (hdr->sh_type == SHT_MIPS_REGINFO)
4640 {
4641 Elf32_External_RegInfo ext;
4642 Elf32_RegInfo s;
4643
4644 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4645 &ext, 0, sizeof ext))
4646 return FALSE;
4647 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4648 elf_gp (abfd) = s.ri_gp_value;
4649 }
4650
4651 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4652 set the gp value based on what we find. We may see both
4653 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4654 they should agree. */
4655 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4656 {
4657 bfd_byte *contents, *l, *lend;
4658
4659 contents = bfd_malloc (hdr->sh_size);
4660 if (contents == NULL)
4661 return FALSE;
4662 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4663 0, hdr->sh_size))
4664 {
4665 free (contents);
4666 return FALSE;
4667 }
4668 l = contents;
4669 lend = contents + hdr->sh_size;
4670 while (l + sizeof (Elf_External_Options) <= lend)
4671 {
4672 Elf_Internal_Options intopt;
4673
4674 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4675 &intopt);
4676 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4677 {
4678 Elf64_Internal_RegInfo intreg;
4679
4680 bfd_mips_elf64_swap_reginfo_in
4681 (abfd,
4682 ((Elf64_External_RegInfo *)
4683 (l + sizeof (Elf_External_Options))),
4684 &intreg);
4685 elf_gp (abfd) = intreg.ri_gp_value;
4686 }
4687 else if (intopt.kind == ODK_REGINFO)
4688 {
4689 Elf32_RegInfo intreg;
4690
4691 bfd_mips_elf32_swap_reginfo_in
4692 (abfd,
4693 ((Elf32_External_RegInfo *)
4694 (l + sizeof (Elf_External_Options))),
4695 &intreg);
4696 elf_gp (abfd) = intreg.ri_gp_value;
4697 }
4698 l += intopt.size;
4699 }
4700 free (contents);
4701 }
4702
4703 return TRUE;
4704}
4705
4706/* Set the correct type for a MIPS ELF section. We do this by the
4707 section name, which is a hack, but ought to work. This routine is
4708 used by both the 32-bit and the 64-bit ABI. */
4709
4710bfd_boolean
4711_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4712{
4713 register const char *name;
4714
4715 name = bfd_get_section_name (abfd, sec);
4716
4717 if (strcmp (name, ".liblist") == 0)
4718 {
4719 hdr->sh_type = SHT_MIPS_LIBLIST;
4720 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
4721 /* The sh_link field is set in final_write_processing. */
4722 }
4723 else if (strcmp (name, ".conflict") == 0)
4724 hdr->sh_type = SHT_MIPS_CONFLICT;
4725 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4726 {
4727 hdr->sh_type = SHT_MIPS_GPTAB;
4728 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4729 /* The sh_info field is set in final_write_processing. */
4730 }
4731 else if (strcmp (name, ".ucode") == 0)
4732 hdr->sh_type = SHT_MIPS_UCODE;
4733 else if (strcmp (name, ".mdebug") == 0)
4734 {
4735 hdr->sh_type = SHT_MIPS_DEBUG;
4736 /* In a shared object on IRIX 5.3, the .mdebug section has an
4737 entsize of 0. FIXME: Does this matter? */
4738 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4739 hdr->sh_entsize = 0;
4740 else
4741 hdr->sh_entsize = 1;
4742 }
4743 else if (strcmp (name, ".reginfo") == 0)
4744 {
4745 hdr->sh_type = SHT_MIPS_REGINFO;
4746 /* In a shared object on IRIX 5.3, the .reginfo section has an
4747 entsize of 0x18. FIXME: Does this matter? */
4748 if (SGI_COMPAT (abfd))
4749 {
4750 if ((abfd->flags & DYNAMIC) != 0)
4751 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4752 else
4753 hdr->sh_entsize = 1;
4754 }
4755 else
4756 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4757 }
4758 else if (SGI_COMPAT (abfd)
4759 && (strcmp (name, ".hash") == 0
4760 || strcmp (name, ".dynamic") == 0
4761 || strcmp (name, ".dynstr") == 0))
4762 {
4763 if (SGI_COMPAT (abfd))
4764 hdr->sh_entsize = 0;
4765#if 0
4766 /* This isn't how the IRIX6 linker behaves. */
4767 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4768#endif
4769 }
4770 else if (strcmp (name, ".got") == 0
4771 || strcmp (name, ".srdata") == 0
4772 || strcmp (name, ".sdata") == 0
4773 || strcmp (name, ".sbss") == 0
4774 || strcmp (name, ".lit4") == 0
4775 || strcmp (name, ".lit8") == 0)
4776 hdr->sh_flags |= SHF_MIPS_GPREL;
4777 else if (strcmp (name, ".MIPS.interfaces") == 0)
4778 {
4779 hdr->sh_type = SHT_MIPS_IFACE;
4780 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4781 }
4782 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4783 {
4784 hdr->sh_type = SHT_MIPS_CONTENT;
4785 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4786 /* The sh_info field is set in final_write_processing. */
4787 }
4788 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4789 {
4790 hdr->sh_type = SHT_MIPS_OPTIONS;
4791 hdr->sh_entsize = 1;
4792 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4793 }
4794 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4795 hdr->sh_type = SHT_MIPS_DWARF;
4796 else if (strcmp (name, ".MIPS.symlib") == 0)
4797 {
4798 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4799 /* The sh_link and sh_info fields are set in
4800 final_write_processing. */
4801 }
4802 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4803 || strncmp (name, ".MIPS.post_rel",
4804 sizeof ".MIPS.post_rel" - 1) == 0)
4805 {
4806 hdr->sh_type = SHT_MIPS_EVENTS;
4807 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4808 /* The sh_link field is set in final_write_processing. */
4809 }
4810 else if (strcmp (name, ".msym") == 0)
4811 {
4812 hdr->sh_type = SHT_MIPS_MSYM;
4813 hdr->sh_flags |= SHF_ALLOC;
4814 hdr->sh_entsize = 8;
4815 }
4816
4817 /* The generic elf_fake_sections will set up REL_HDR using the default
4818 kind of relocations. We used to set up a second header for the
4819 non-default kind of relocations here, but only NewABI would use
4820 these, and the IRIX ld doesn't like resulting empty RELA sections.
4821 Thus we create those header only on demand now. */
4822
4823 return TRUE;
4824}
4825
4826/* Given a BFD section, try to locate the corresponding ELF section
4827 index. This is used by both the 32-bit and the 64-bit ABI.
4828 Actually, it's not clear to me that the 64-bit ABI supports these,
4829 but for non-PIC objects we will certainly want support for at least
4830 the .scommon section. */
4831
4832bfd_boolean
4833_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4834 asection *sec, int *retval)
4835{
4836 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4837 {
4838 *retval = SHN_MIPS_SCOMMON;
4839 return TRUE;
4840 }
4841 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4842 {
4843 *retval = SHN_MIPS_ACOMMON;
4844 return TRUE;
4845 }
4846 return FALSE;
4847}
4848\f
4849/* Hook called by the linker routine which adds symbols from an object
4850 file. We must handle the special MIPS section numbers here. */
4851
4852bfd_boolean
4853_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4854 Elf_Internal_Sym *sym, const char **namep,
4855 flagword *flagsp ATTRIBUTE_UNUSED,
4856 asection **secp, bfd_vma *valp)
4857{
4858 if (SGI_COMPAT (abfd)
4859 && (abfd->flags & DYNAMIC) != 0
4860 && strcmp (*namep, "_rld_new_interface") == 0)
4861 {
4862 /* Skip IRIX5 rld entry name. */
4863 *namep = NULL;
4864 return TRUE;
4865 }
4866
4867 switch (sym->st_shndx)
4868 {
4869 case SHN_COMMON:
4870 /* Common symbols less than the GP size are automatically
4871 treated as SHN_MIPS_SCOMMON symbols. */
4872 if (sym->st_size > elf_gp_size (abfd)
4873 || IRIX_COMPAT (abfd) == ict_irix6)
4874 break;
4875 /* Fall through. */
4876 case SHN_MIPS_SCOMMON:
4877 *secp = bfd_make_section_old_way (abfd, ".scommon");
4878 (*secp)->flags |= SEC_IS_COMMON;
4879 *valp = sym->st_size;
4880 break;
4881
4882 case SHN_MIPS_TEXT:
4883 /* This section is used in a shared object. */
4884 if (elf_tdata (abfd)->elf_text_section == NULL)
4885 {
4886 asymbol *elf_text_symbol;
4887 asection *elf_text_section;
4888 bfd_size_type amt = sizeof (asection);
4889
4890 elf_text_section = bfd_zalloc (abfd, amt);
4891 if (elf_text_section == NULL)
4892 return FALSE;
4893
4894 amt = sizeof (asymbol);
4895 elf_text_symbol = bfd_zalloc (abfd, amt);
4896 if (elf_text_symbol == NULL)
4897 return FALSE;
4898
4899 /* Initialize the section. */
4900
4901 elf_tdata (abfd)->elf_text_section = elf_text_section;
4902 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4903
4904 elf_text_section->symbol = elf_text_symbol;
4905 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4906
4907 elf_text_section->name = ".text";
4908 elf_text_section->flags = SEC_NO_FLAGS;
4909 elf_text_section->output_section = NULL;
4910 elf_text_section->owner = abfd;
4911 elf_text_symbol->name = ".text";
4912 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4913 elf_text_symbol->section = elf_text_section;
4914 }
4915 /* This code used to do *secp = bfd_und_section_ptr if
4916 info->shared. I don't know why, and that doesn't make sense,
4917 so I took it out. */
4918 *secp = elf_tdata (abfd)->elf_text_section;
4919 break;
4920
4921 case SHN_MIPS_ACOMMON:
4922 /* Fall through. XXX Can we treat this as allocated data? */
4923 case SHN_MIPS_DATA:
4924 /* This section is used in a shared object. */
4925 if (elf_tdata (abfd)->elf_data_section == NULL)
4926 {
4927 asymbol *elf_data_symbol;
4928 asection *elf_data_section;
4929 bfd_size_type amt = sizeof (asection);
4930
4931 elf_data_section = bfd_zalloc (abfd, amt);
4932 if (elf_data_section == NULL)
4933 return FALSE;
4934
4935 amt = sizeof (asymbol);
4936 elf_data_symbol = bfd_zalloc (abfd, amt);
4937 if (elf_data_symbol == NULL)
4938 return FALSE;
4939
4940 /* Initialize the section. */
4941
4942 elf_tdata (abfd)->elf_data_section = elf_data_section;
4943 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4944
4945 elf_data_section->symbol = elf_data_symbol;
4946 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4947
4948 elf_data_section->name = ".data";
4949 elf_data_section->flags = SEC_NO_FLAGS;
4950 elf_data_section->output_section = NULL;
4951 elf_data_section->owner = abfd;
4952 elf_data_symbol->name = ".data";
4953 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4954 elf_data_symbol->section = elf_data_section;
4955 }
4956 /* This code used to do *secp = bfd_und_section_ptr if
4957 info->shared. I don't know why, and that doesn't make sense,
4958 so I took it out. */
4959 *secp = elf_tdata (abfd)->elf_data_section;
4960 break;
4961
4962 case SHN_MIPS_SUNDEFINED:
4963 *secp = bfd_und_section_ptr;
4964 break;
4965 }
4966
4967 if (SGI_COMPAT (abfd)
4968 && ! info->shared
4969 && info->hash->creator == abfd->xvec
4970 && strcmp (*namep, "__rld_obj_head") == 0)
4971 {
4972 struct elf_link_hash_entry *h;
4973 struct bfd_link_hash_entry *bh;
4974
4975 /* Mark __rld_obj_head as dynamic. */
4976 bh = NULL;
4977 if (! (_bfd_generic_link_add_one_symbol
4978 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4979 get_elf_backend_data (abfd)->collect, &bh)))
4980 return FALSE;
4981
4982 h = (struct elf_link_hash_entry *) bh;
4983 h->non_elf = 0;
4984 h->def_regular = 1;
4985 h->type = STT_OBJECT;
4986
4987 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4988 return FALSE;
4989
4990 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4991 }
4992
4993 /* If this is a mips16 text symbol, add 1 to the value to make it
4994 odd. This will cause something like .word SYM to come up with
4995 the right value when it is loaded into the PC. */
4996 if (sym->st_other == STO_MIPS16)
4997 ++*valp;
4998
4999 return TRUE;
5000}
5001
5002/* This hook function is called before the linker writes out a global
5003 symbol. We mark symbols as small common if appropriate. This is
5004 also where we undo the increment of the value for a mips16 symbol. */
5005
5006bfd_boolean
5007_bfd_mips_elf_link_output_symbol_hook
5008 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5009 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5010 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5011{
5012 /* If we see a common symbol, which implies a relocatable link, then
5013 if a symbol was small common in an input file, mark it as small
5014 common in the output file. */
5015 if (sym->st_shndx == SHN_COMMON
5016 && strcmp (input_sec->name, ".scommon") == 0)
5017 sym->st_shndx = SHN_MIPS_SCOMMON;
5018
5019 if (sym->st_other == STO_MIPS16)
5020 sym->st_value &= ~1;
5021
5022 return TRUE;
5023}
5024\f
5025/* Functions for the dynamic linker. */
5026
5027/* Create dynamic sections when linking against a dynamic object. */
5028
5029bfd_boolean
5030_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5031{
5032 struct elf_link_hash_entry *h;
5033 struct bfd_link_hash_entry *bh;
5034 flagword flags;
5035 register asection *s;
5036 const char * const *namep;
5037
5038 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5039 | SEC_LINKER_CREATED | SEC_READONLY);
5040
5041 /* Mips ABI requests the .dynamic section to be read only. */
5042 s = bfd_get_section_by_name (abfd, ".dynamic");
5043 if (s != NULL)
5044 {
5045 if (! bfd_set_section_flags (abfd, s, flags))
5046 return FALSE;
5047 }
5048
5049 /* We need to create .got section. */
5050 if (! mips_elf_create_got_section (abfd, info, FALSE))
5051 return FALSE;
5052
5053 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
5054 return FALSE;
5055
5056 /* Create .stub section. */
5057 if (bfd_get_section_by_name (abfd,
5058 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5059 {
5060 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
5061 if (s == NULL
5062 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
5063 || ! bfd_set_section_alignment (abfd, s,
5064 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5065 return FALSE;
5066 }
5067
5068 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5069 && !info->shared
5070 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5071 {
5072 s = bfd_make_section (abfd, ".rld_map");
5073 if (s == NULL
5074 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
5075 || ! bfd_set_section_alignment (abfd, s,
5076 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5077 return FALSE;
5078 }
5079
5080 /* On IRIX5, we adjust add some additional symbols and change the
5081 alignments of several sections. There is no ABI documentation
5082 indicating that this is necessary on IRIX6, nor any evidence that
5083 the linker takes such action. */
5084 if (IRIX_COMPAT (abfd) == ict_irix5)
5085 {
5086 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5087 {
5088 bh = NULL;
5089 if (! (_bfd_generic_link_add_one_symbol
5090 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5091 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5092 return FALSE;
5093
5094 h = (struct elf_link_hash_entry *) bh;
5095 h->non_elf = 0;
5096 h->def_regular = 1;
5097 h->type = STT_SECTION;
5098
5099 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5100 return FALSE;
5101 }
5102
5103 /* We need to create a .compact_rel section. */
5104 if (SGI_COMPAT (abfd))
5105 {
5106 if (!mips_elf_create_compact_rel_section (abfd, info))
5107 return FALSE;
5108 }
5109
5110 /* Change alignments of some sections. */
5111 s = bfd_get_section_by_name (abfd, ".hash");
5112 if (s != NULL)
5113 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5114 s = bfd_get_section_by_name (abfd, ".dynsym");
5115 if (s != NULL)
5116 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5117 s = bfd_get_section_by_name (abfd, ".dynstr");
5118 if (s != NULL)
5119 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5120 s = bfd_get_section_by_name (abfd, ".reginfo");
5121 if (s != NULL)
5122 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5123 s = bfd_get_section_by_name (abfd, ".dynamic");
5124 if (s != NULL)
5125 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5126 }
5127
5128 if (!info->shared)
5129 {
5130 const char *name;
5131
5132 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5133 bh = NULL;
5134 if (!(_bfd_generic_link_add_one_symbol
5135 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5136 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5137 return FALSE;
5138
5139 h = (struct elf_link_hash_entry *) bh;
5140 h->non_elf = 0;
5141 h->def_regular = 1;
5142 h->type = STT_SECTION;
5143
5144 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5145 return FALSE;
5146
5147 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5148 {
5149 /* __rld_map is a four byte word located in the .data section
5150 and is filled in by the rtld to contain a pointer to
5151 the _r_debug structure. Its symbol value will be set in
5152 _bfd_mips_elf_finish_dynamic_symbol. */
5153 s = bfd_get_section_by_name (abfd, ".rld_map");
5154 BFD_ASSERT (s != NULL);
5155
5156 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5157 bh = NULL;
5158 if (!(_bfd_generic_link_add_one_symbol
5159 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
5160 get_elf_backend_data (abfd)->collect, &bh)))
5161 return FALSE;
5162
5163 h = (struct elf_link_hash_entry *) bh;
5164 h->non_elf = 0;
5165 h->def_regular = 1;
5166 h->type = STT_OBJECT;
5167
5168 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5169 return FALSE;
5170 }
5171 }
5172
5173 return TRUE;
5174}
5175\f
5176/* Look through the relocs for a section during the first phase, and
5177 allocate space in the global offset table. */
5178
5179bfd_boolean
5180_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5181 asection *sec, const Elf_Internal_Rela *relocs)
5182{
5183 const char *name;
5184 bfd *dynobj;
5185 Elf_Internal_Shdr *symtab_hdr;
5186 struct elf_link_hash_entry **sym_hashes;
5187 struct mips_got_info *g;
5188 size_t extsymoff;
5189 const Elf_Internal_Rela *rel;
5190 const Elf_Internal_Rela *rel_end;
5191 asection *sgot;
5192 asection *sreloc;
5193 const struct elf_backend_data *bed;
5194
5195 if (info->relocatable)
5196 return TRUE;
5197
5198 dynobj = elf_hash_table (info)->dynobj;
5199 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5200 sym_hashes = elf_sym_hashes (abfd);
5201 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5202
5203 /* Check for the mips16 stub sections. */
5204
5205 name = bfd_get_section_name (abfd, sec);
5206 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5207 {
5208 unsigned long r_symndx;
5209
5210 /* Look at the relocation information to figure out which symbol
5211 this is for. */
5212
5213 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5214
5215 if (r_symndx < extsymoff
5216 || sym_hashes[r_symndx - extsymoff] == NULL)
5217 {
5218 asection *o;
5219
5220 /* This stub is for a local symbol. This stub will only be
5221 needed if there is some relocation in this BFD, other
5222 than a 16 bit function call, which refers to this symbol. */
5223 for (o = abfd->sections; o != NULL; o = o->next)
5224 {
5225 Elf_Internal_Rela *sec_relocs;
5226 const Elf_Internal_Rela *r, *rend;
5227
5228 /* We can ignore stub sections when looking for relocs. */
5229 if ((o->flags & SEC_RELOC) == 0
5230 || o->reloc_count == 0
5231 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5232 sizeof FN_STUB - 1) == 0
5233 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5234 sizeof CALL_STUB - 1) == 0
5235 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5236 sizeof CALL_FP_STUB - 1) == 0)
5237 continue;
5238
5239 sec_relocs
5240 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5241 info->keep_memory);
5242 if (sec_relocs == NULL)
5243 return FALSE;
5244
5245 rend = sec_relocs + o->reloc_count;
5246 for (r = sec_relocs; r < rend; r++)
5247 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5248 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5249 break;
5250
5251 if (elf_section_data (o)->relocs != sec_relocs)
5252 free (sec_relocs);
5253
5254 if (r < rend)
5255 break;
5256 }
5257
5258 if (o == NULL)
5259 {
5260 /* There is no non-call reloc for this stub, so we do
5261 not need it. Since this function is called before
5262 the linker maps input sections to output sections, we
5263 can easily discard it by setting the SEC_EXCLUDE
5264 flag. */
5265 sec->flags |= SEC_EXCLUDE;
5266 return TRUE;
5267 }
5268
5269 /* Record this stub in an array of local symbol stubs for
5270 this BFD. */
5271 if (elf_tdata (abfd)->local_stubs == NULL)
5272 {
5273 unsigned long symcount;
5274 asection **n;
5275 bfd_size_type amt;
5276
5277 if (elf_bad_symtab (abfd))
5278 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5279 else
5280 symcount = symtab_hdr->sh_info;
5281 amt = symcount * sizeof (asection *);
5282 n = bfd_zalloc (abfd, amt);
5283 if (n == NULL)
5284 return FALSE;
5285 elf_tdata (abfd)->local_stubs = n;
5286 }
5287
5288 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5289
5290 /* We don't need to set mips16_stubs_seen in this case.
5291 That flag is used to see whether we need to look through
5292 the global symbol table for stubs. We don't need to set
5293 it here, because we just have a local stub. */
5294 }
5295 else
5296 {
5297 struct mips_elf_link_hash_entry *h;
5298
5299 h = ((struct mips_elf_link_hash_entry *)
5300 sym_hashes[r_symndx - extsymoff]);
5301
5302 /* H is the symbol this stub is for. */
5303
5304 h->fn_stub = sec;
5305 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5306 }
5307 }
5308 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5309 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5310 {
5311 unsigned long r_symndx;
5312 struct mips_elf_link_hash_entry *h;
5313 asection **loc;
5314
5315 /* Look at the relocation information to figure out which symbol
5316 this is for. */
5317
5318 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5319
5320 if (r_symndx < extsymoff
5321 || sym_hashes[r_symndx - extsymoff] == NULL)
5322 {
5323 /* This stub was actually built for a static symbol defined
5324 in the same file. We assume that all static symbols in
5325 mips16 code are themselves mips16, so we can simply
5326 discard this stub. Since this function is called before
5327 the linker maps input sections to output sections, we can
5328 easily discard it by setting the SEC_EXCLUDE flag. */
5329 sec->flags |= SEC_EXCLUDE;
5330 return TRUE;
5331 }
5332
5333 h = ((struct mips_elf_link_hash_entry *)
5334 sym_hashes[r_symndx - extsymoff]);
5335
5336 /* H is the symbol this stub is for. */
5337
5338 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5339 loc = &h->call_fp_stub;
5340 else
5341 loc = &h->call_stub;
5342
5343 /* If we already have an appropriate stub for this function, we
5344 don't need another one, so we can discard this one. Since
5345 this function is called before the linker maps input sections
5346 to output sections, we can easily discard it by setting the
5347 SEC_EXCLUDE flag. We can also discard this section if we
5348 happen to already know that this is a mips16 function; it is
5349 not necessary to check this here, as it is checked later, but
5350 it is slightly faster to check now. */
5351 if (*loc != NULL || h->root.other == STO_MIPS16)
5352 {
5353 sec->flags |= SEC_EXCLUDE;
5354 return TRUE;
5355 }
5356
5357 *loc = sec;
5358 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5359 }
5360
5361 if (dynobj == NULL)
5362 {
5363 sgot = NULL;
5364 g = NULL;
5365 }
5366 else
5367 {
5368 sgot = mips_elf_got_section (dynobj, FALSE);
5369 if (sgot == NULL)
5370 g = NULL;
5371 else
5372 {
5373 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5374 g = mips_elf_section_data (sgot)->u.got_info;
5375 BFD_ASSERT (g != NULL);
5376 }
5377 }
5378
5379 sreloc = NULL;
5380 bed = get_elf_backend_data (abfd);
5381 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5382 for (rel = relocs; rel < rel_end; ++rel)
5383 {
5384 unsigned long r_symndx;
5385 unsigned int r_type;
5386 struct elf_link_hash_entry *h;
5387
5388 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5389 r_type = ELF_R_TYPE (abfd, rel->r_info);
5390
5391 if (r_symndx < extsymoff)
5392 h = NULL;
5393 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5394 {
5395 (*_bfd_error_handler)
5396 (_("%B: Malformed reloc detected for section %s"),
5397 abfd, name);
5398 bfd_set_error (bfd_error_bad_value);
5399 return FALSE;
5400 }
5401 else
5402 {
5403 h = sym_hashes[r_symndx - extsymoff];
5404
5405 /* This may be an indirect symbol created because of a version. */
5406 if (h != NULL)
5407 {
5408 while (h->root.type == bfd_link_hash_indirect)
5409 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5410 }
5411 }
5412
5413 /* Some relocs require a global offset table. */
5414 if (dynobj == NULL || sgot == NULL)
5415 {
5416 switch (r_type)
5417 {
5418 case R_MIPS_GOT16:
5419 case R_MIPS_CALL16:
5420 case R_MIPS_CALL_HI16:
5421 case R_MIPS_CALL_LO16:
5422 case R_MIPS_GOT_HI16:
5423 case R_MIPS_GOT_LO16:
5424 case R_MIPS_GOT_PAGE:
5425 case R_MIPS_GOT_OFST:
5426 case R_MIPS_GOT_DISP:
5427 if (dynobj == NULL)
5428 elf_hash_table (info)->dynobj = dynobj = abfd;
5429 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5430 return FALSE;
5431 g = mips_elf_got_info (dynobj, &sgot);
5432 break;
5433
5434 case R_MIPS_32:
5435 case R_MIPS_REL32:
5436 case R_MIPS_64:
5437 if (dynobj == NULL
5438 && (info->shared || h != NULL)
5439 && (sec->flags & SEC_ALLOC) != 0)
5440 elf_hash_table (info)->dynobj = dynobj = abfd;
5441 break;
5442
5443 default:
5444 break;
5445 }
5446 }
5447
5448 if (!h && (r_type == R_MIPS_CALL_LO16
5449 || r_type == R_MIPS_GOT_LO16
5450 || r_type == R_MIPS_GOT_DISP))
5451 {
5452 /* We may need a local GOT entry for this relocation. We
5453 don't count R_MIPS_GOT_PAGE because we can estimate the
5454 maximum number of pages needed by looking at the size of
5455 the segment. Similar comments apply to R_MIPS_GOT16 and
5456 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5457 R_MIPS_CALL_HI16 because these are always followed by an
5458 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5459 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5460 rel->r_addend, g))
5461 return FALSE;
5462 }
5463
5464 switch (r_type)
5465 {
5466 case R_MIPS_CALL16:
5467 if (h == NULL)
5468 {
5469 (*_bfd_error_handler)
5470 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5471 abfd, (unsigned long) rel->r_offset);
5472 bfd_set_error (bfd_error_bad_value);
5473 return FALSE;
5474 }
5475 /* Fall through. */
5476
5477 case R_MIPS_CALL_HI16:
5478 case R_MIPS_CALL_LO16:
5479 if (h != NULL)
5480 {
5481 /* This symbol requires a global offset table entry. */
5482 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5483 return FALSE;
5484
5485 /* We need a stub, not a plt entry for the undefined
5486 function. But we record it as if it needs plt. See
5487 _bfd_elf_adjust_dynamic_symbol. */
5488 h->needs_plt = 1;
5489 h->type = STT_FUNC;
5490 }
5491 break;
5492
5493 case R_MIPS_GOT_PAGE:
5494 /* If this is a global, overridable symbol, GOT_PAGE will
5495 decay to GOT_DISP, so we'll need a GOT entry for it. */
5496 if (h == NULL)
5497 break;
5498 else
5499 {
5500 struct mips_elf_link_hash_entry *hmips =
5501 (struct mips_elf_link_hash_entry *) h;
5502
5503 while (hmips->root.root.type == bfd_link_hash_indirect
5504 || hmips->root.root.type == bfd_link_hash_warning)
5505 hmips = (struct mips_elf_link_hash_entry *)
5506 hmips->root.root.u.i.link;
5507
5508 if (hmips->root.def_regular
5509 && ! (info->shared && ! info->symbolic
5510 && ! hmips->root.forced_local))
5511 break;
5512 }
5513 /* Fall through. */
5514
5515 case R_MIPS_GOT16:
5516 case R_MIPS_GOT_HI16:
5517 case R_MIPS_GOT_LO16:
5518 case R_MIPS_GOT_DISP:
5519 /* This symbol requires a global offset table entry. */
5520 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5521 return FALSE;
5522 break;
5523
5524 case R_MIPS_32:
5525 case R_MIPS_REL32:
5526 case R_MIPS_64:
5527 if ((info->shared || h != NULL)
5528 && (sec->flags & SEC_ALLOC) != 0)
5529 {
5530 if (sreloc == NULL)
5531 {
5532 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5533 if (sreloc == NULL)
5534 return FALSE;
5535 }
5536#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5537 if (info->shared)
5538 {
5539 /* When creating a shared object, we must copy these
5540 reloc types into the output file as R_MIPS_REL32
5541 relocs. We make room for this reloc in the
5542 .rel.dyn reloc section. */
5543 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5544 if ((sec->flags & MIPS_READONLY_SECTION)
5545 == MIPS_READONLY_SECTION)
5546 /* We tell the dynamic linker that there are
5547 relocations against the text segment. */
5548 info->flags |= DF_TEXTREL;
5549 }
5550 else
5551 {
5552 struct mips_elf_link_hash_entry *hmips;
5553
5554 /* We only need to copy this reloc if the symbol is
5555 defined in a dynamic object. */
5556 hmips = (struct mips_elf_link_hash_entry *) h;
5557 ++hmips->possibly_dynamic_relocs;
5558 if ((sec->flags & MIPS_READONLY_SECTION)
5559 == MIPS_READONLY_SECTION)
5560 /* We need it to tell the dynamic linker if there
5561 are relocations against the text segment. */
5562 hmips->readonly_reloc = TRUE;
5563 }
5564
5565 /* Even though we don't directly need a GOT entry for
5566 this symbol, a symbol must have a dynamic symbol
5567 table index greater that DT_MIPS_GOTSYM if there are
5568 dynamic relocations against it. */
5569 if (h != NULL)
5570 {
5571 if (dynobj == NULL)
5572 elf_hash_table (info)->dynobj = dynobj = abfd;
5573 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5574 return FALSE;
5575 g = mips_elf_got_info (dynobj, &sgot);
5576 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5577 return FALSE;
5578 }
5579 }
5580
5581 if (SGI_COMPAT (abfd))
5582 mips_elf_hash_table (info)->compact_rel_size +=
5583 sizeof (Elf32_External_crinfo);
5584 break;
5585
5586 case R_MIPS_26:
5587 case R_MIPS_GPREL16:
5588 case R_MIPS_LITERAL:
5589 case R_MIPS_GPREL32:
5590 if (SGI_COMPAT (abfd))
5591 mips_elf_hash_table (info)->compact_rel_size +=
5592 sizeof (Elf32_External_crinfo);
5593 break;
5594
5595 /* This relocation describes the C++ object vtable hierarchy.
5596 Reconstruct it for later use during GC. */
5597 case R_MIPS_GNU_VTINHERIT:
5598 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5599 return FALSE;
5600 break;
5601
5602 /* This relocation describes which C++ vtable entries are actually
5603 used. Record for later use during GC. */
5604 case R_MIPS_GNU_VTENTRY:
5605 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5606 return FALSE;
5607 break;
5608
5609 default:
5610 break;
5611 }
5612
5613 /* We must not create a stub for a symbol that has relocations
5614 related to taking the function's address. */
5615 switch (r_type)
5616 {
5617 default:
5618 if (h != NULL)
5619 {
5620 struct mips_elf_link_hash_entry *mh;
5621
5622 mh = (struct mips_elf_link_hash_entry *) h;
5623 mh->no_fn_stub = TRUE;
5624 }
5625 break;
5626 case R_MIPS_CALL16:
5627 case R_MIPS_CALL_HI16:
5628 case R_MIPS_CALL_LO16:
5629 case R_MIPS_JALR:
5630 break;
5631 }
5632
5633 /* If this reloc is not a 16 bit call, and it has a global
5634 symbol, then we will need the fn_stub if there is one.
5635 References from a stub section do not count. */
5636 if (h != NULL
5637 && r_type != R_MIPS16_26
5638 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5639 sizeof FN_STUB - 1) != 0
5640 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5641 sizeof CALL_STUB - 1) != 0
5642 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5643 sizeof CALL_FP_STUB - 1) != 0)
5644 {
5645 struct mips_elf_link_hash_entry *mh;
5646
5647 mh = (struct mips_elf_link_hash_entry *) h;
5648 mh->need_fn_stub = TRUE;
5649 }
5650 }
5651
5652 return TRUE;
5653}
5654\f
5655bfd_boolean
5656_bfd_mips_relax_section (bfd *abfd, asection *sec,
5657 struct bfd_link_info *link_info,
5658 bfd_boolean *again)
5659{
5660 Elf_Internal_Rela *internal_relocs;
5661 Elf_Internal_Rela *irel, *irelend;
5662 Elf_Internal_Shdr *symtab_hdr;
5663 bfd_byte *contents = NULL;
5664 size_t extsymoff;
5665 bfd_boolean changed_contents = FALSE;
5666 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5667 Elf_Internal_Sym *isymbuf = NULL;
5668
5669 /* We are not currently changing any sizes, so only one pass. */
5670 *again = FALSE;
5671
5672 if (link_info->relocatable)
5673 return TRUE;
5674
5675 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5676 link_info->keep_memory);
5677 if (internal_relocs == NULL)
5678 return TRUE;
5679
5680 irelend = internal_relocs + sec->reloc_count
5681 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5682 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5683 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5684
5685 for (irel = internal_relocs; irel < irelend; irel++)
5686 {
5687 bfd_vma symval;
5688 bfd_signed_vma sym_offset;
5689 unsigned int r_type;
5690 unsigned long r_symndx;
5691 asection *sym_sec;
5692 unsigned long instruction;
5693
5694 /* Turn jalr into bgezal, and jr into beq, if they're marked
5695 with a JALR relocation, that indicate where they jump to.
5696 This saves some pipeline bubbles. */
5697 r_type = ELF_R_TYPE (abfd, irel->r_info);
5698 if (r_type != R_MIPS_JALR)
5699 continue;
5700
5701 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5702 /* Compute the address of the jump target. */
5703 if (r_symndx >= extsymoff)
5704 {
5705 struct mips_elf_link_hash_entry *h
5706 = ((struct mips_elf_link_hash_entry *)
5707 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5708
5709 while (h->root.root.type == bfd_link_hash_indirect
5710 || h->root.root.type == bfd_link_hash_warning)
5711 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5712
5713 /* If a symbol is undefined, or if it may be overridden,
5714 skip it. */
5715 if (! ((h->root.root.type == bfd_link_hash_defined
5716 || h->root.root.type == bfd_link_hash_defweak)
5717 && h->root.root.u.def.section)
5718 || (link_info->shared && ! link_info->symbolic
5719 && !h->root.forced_local))
5720 continue;
5721
5722 sym_sec = h->root.root.u.def.section;
5723 if (sym_sec->output_section)
5724 symval = (h->root.root.u.def.value
5725 + sym_sec->output_section->vma
5726 + sym_sec->output_offset);
5727 else
5728 symval = h->root.root.u.def.value;
5729 }
5730 else
5731 {
5732 Elf_Internal_Sym *isym;
5733
5734 /* Read this BFD's symbols if we haven't done so already. */
5735 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5736 {
5737 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5738 if (isymbuf == NULL)
5739 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5740 symtab_hdr->sh_info, 0,
5741 NULL, NULL, NULL);
5742 if (isymbuf == NULL)
5743 goto relax_return;
5744 }
5745
5746 isym = isymbuf + r_symndx;
5747 if (isym->st_shndx == SHN_UNDEF)
5748 continue;
5749 else if (isym->st_shndx == SHN_ABS)
5750 sym_sec = bfd_abs_section_ptr;
5751 else if (isym->st_shndx == SHN_COMMON)
5752 sym_sec = bfd_com_section_ptr;
5753 else
5754 sym_sec
5755 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5756 symval = isym->st_value
5757 + sym_sec->output_section->vma
5758 + sym_sec->output_offset;
5759 }
5760
5761 /* Compute branch offset, from delay slot of the jump to the
5762 branch target. */
5763 sym_offset = (symval + irel->r_addend)
5764 - (sec_start + irel->r_offset + 4);
5765
5766 /* Branch offset must be properly aligned. */
5767 if ((sym_offset & 3) != 0)
5768 continue;
5769
5770 sym_offset >>= 2;
5771
5772 /* Check that it's in range. */
5773 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5774 continue;
5775
5776 /* Get the section contents if we haven't done so already. */
5777 if (contents == NULL)
5778 {
5779 /* Get cached copy if it exists. */
5780 if (elf_section_data (sec)->this_hdr.contents != NULL)
5781 contents = elf_section_data (sec)->this_hdr.contents;
5782 else
5783 {
5784 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5785 goto relax_return;
5786 }
5787 }
5788
5789 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5790
5791 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5792 if ((instruction & 0xfc1fffff) == 0x0000f809)
5793 instruction = 0x04110000;
5794 /* If it was jr <reg>, turn it into b <target>. */
5795 else if ((instruction & 0xfc1fffff) == 0x00000008)
5796 instruction = 0x10000000;
5797 else
5798 continue;
5799
5800 instruction |= (sym_offset & 0xffff);
5801 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5802 changed_contents = TRUE;
5803 }
5804
5805 if (contents != NULL
5806 && elf_section_data (sec)->this_hdr.contents != contents)
5807 {
5808 if (!changed_contents && !link_info->keep_memory)
5809 free (contents);
5810 else
5811 {
5812 /* Cache the section contents for elf_link_input_bfd. */
5813 elf_section_data (sec)->this_hdr.contents = contents;
5814 }
5815 }
5816 return TRUE;
5817
5818 relax_return:
5819 if (contents != NULL
5820 && elf_section_data (sec)->this_hdr.contents != contents)
5821 free (contents);
5822 return FALSE;
5823}
5824\f
5825/* Adjust a symbol defined by a dynamic object and referenced by a
5826 regular object. The current definition is in some section of the
5827 dynamic object, but we're not including those sections. We have to
5828 change the definition to something the rest of the link can
5829 understand. */
5830
5831bfd_boolean
5832_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5833 struct elf_link_hash_entry *h)
5834{
5835 bfd *dynobj;
5836 struct mips_elf_link_hash_entry *hmips;
5837 asection *s;
5838
5839 dynobj = elf_hash_table (info)->dynobj;
5840
5841 /* Make sure we know what is going on here. */
5842 BFD_ASSERT (dynobj != NULL
5843 && (h->needs_plt
5844 || h->u.weakdef != NULL
5845 || (h->def_dynamic
5846 && h->ref_regular
5847 && !h->def_regular)));
5848
5849 /* If this symbol is defined in a dynamic object, we need to copy
5850 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5851 file. */
5852 hmips = (struct mips_elf_link_hash_entry *) h;
5853 if (! info->relocatable
5854 && hmips->possibly_dynamic_relocs != 0
5855 && (h->root.type == bfd_link_hash_defweak
5856 || !h->def_regular))
5857 {
5858 mips_elf_allocate_dynamic_relocations (dynobj,
5859 hmips->possibly_dynamic_relocs);
5860 if (hmips->readonly_reloc)
5861 /* We tell the dynamic linker that there are relocations
5862 against the text segment. */
5863 info->flags |= DF_TEXTREL;
5864 }
5865
5866 /* For a function, create a stub, if allowed. */
5867 if (! hmips->no_fn_stub
5868 && h->needs_plt)
5869 {
5870 if (! elf_hash_table (info)->dynamic_sections_created)
5871 return TRUE;
5872
5873 /* If this symbol is not defined in a regular file, then set
5874 the symbol to the stub location. This is required to make
5875 function pointers compare as equal between the normal
5876 executable and the shared library. */
5877 if (!h->def_regular)
5878 {
5879 /* We need .stub section. */
5880 s = bfd_get_section_by_name (dynobj,
5881 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5882 BFD_ASSERT (s != NULL);
5883
5884 h->root.u.def.section = s;
5885 h->root.u.def.value = s->size;
5886
5887 /* XXX Write this stub address somewhere. */
5888 h->plt.offset = s->size;
5889
5890 /* Make room for this stub code. */
5891 s->size += MIPS_FUNCTION_STUB_SIZE;
5892
5893 /* The last half word of the stub will be filled with the index
5894 of this symbol in .dynsym section. */
5895 return TRUE;
5896 }
5897 }
5898 else if ((h->type == STT_FUNC)
5899 && !h->needs_plt)
5900 {
5901 /* This will set the entry for this symbol in the GOT to 0, and
5902 the dynamic linker will take care of this. */
5903 h->root.u.def.value = 0;
5904 return TRUE;
5905 }
5906
5907 /* If this is a weak symbol, and there is a real definition, the
5908 processor independent code will have arranged for us to see the
5909 real definition first, and we can just use the same value. */
5910 if (h->u.weakdef != NULL)
5911 {
5912 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5913 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5914 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5915 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5916 return TRUE;
5917 }
5918
5919 /* This is a reference to a symbol defined by a dynamic object which
5920 is not a function. */
5921
5922 return TRUE;
5923}
5924\f
5925/* This function is called after all the input files have been read,
5926 and the input sections have been assigned to output sections. We
5927 check for any mips16 stub sections that we can discard. */
5928
5929bfd_boolean
5930_bfd_mips_elf_always_size_sections (bfd *output_bfd,
5931 struct bfd_link_info *info)
5932{
5933 asection *ri;
5934
5935 bfd *dynobj;
5936 asection *s;
5937 struct mips_got_info *g;
5938 int i;
5939 bfd_size_type loadable_size = 0;
5940 bfd_size_type local_gotno;
5941 bfd *sub;
5942
5943 /* The .reginfo section has a fixed size. */
5944 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5945 if (ri != NULL)
5946 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5947
5948 if (! (info->relocatable
5949 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5950 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5951 mips_elf_check_mips16_stubs, NULL);
5952
5953 dynobj = elf_hash_table (info)->dynobj;
5954 if (dynobj == NULL)
5955 /* Relocatable links don't have it. */
5956 return TRUE;
5957
5958 g = mips_elf_got_info (dynobj, &s);
5959 if (s == NULL)
5960 return TRUE;
5961
5962 /* Calculate the total loadable size of the output. That
5963 will give us the maximum number of GOT_PAGE entries
5964 required. */
5965 for (sub = info->input_bfds; sub; sub = sub->link_next)
5966 {
5967 asection *subsection;
5968
5969 for (subsection = sub->sections;
5970 subsection;
5971 subsection = subsection->next)
5972 {
5973 if ((subsection->flags & SEC_ALLOC) == 0)
5974 continue;
5975 loadable_size += ((subsection->size + 0xf)
5976 &~ (bfd_size_type) 0xf);
5977 }
5978 }
5979
5980 /* There has to be a global GOT entry for every symbol with
5981 a dynamic symbol table index of DT_MIPS_GOTSYM or
5982 higher. Therefore, it make sense to put those symbols
5983 that need GOT entries at the end of the symbol table. We
5984 do that here. */
5985 if (! mips_elf_sort_hash_table (info, 1))
5986 return FALSE;
5987
5988 if (g->global_gotsym != NULL)
5989 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5990 else
5991 /* If there are no global symbols, or none requiring
5992 relocations, then GLOBAL_GOTSYM will be NULL. */
5993 i = 0;
5994
5995 /* In the worst case, we'll get one stub per dynamic symbol, plus
5996 one to account for the dummy entry at the end required by IRIX
5997 rld. */
5998 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5999
6000 /* Assume there are two loadable segments consisting of
6001 contiguous sections. Is 5 enough? */
6002 local_gotno = (loadable_size >> 16) + 5;
6003
6004 g->local_gotno += local_gotno;
6005 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6006
6007 g->global_gotno = i;
6008 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
6009
6010 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
6011 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
6012 return FALSE;
6013
6014 return TRUE;
6015}
6016
6017/* Set the sizes of the dynamic sections. */
6018
6019bfd_boolean
6020_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
6021 struct bfd_link_info *info)
6022{
6023 bfd *dynobj;
6024 asection *s;
6025 bfd_boolean reltext;
6026
6027 dynobj = elf_hash_table (info)->dynobj;
6028 BFD_ASSERT (dynobj != NULL);
6029
6030 if (elf_hash_table (info)->dynamic_sections_created)
6031 {
6032 /* Set the contents of the .interp section to the interpreter. */
6033 if (info->executable)
6034 {
6035 s = bfd_get_section_by_name (dynobj, ".interp");
6036 BFD_ASSERT (s != NULL);
6037 s->size
6038 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
6039 s->contents
6040 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
6041 }
6042 }
6043
6044 /* The check_relocs and adjust_dynamic_symbol entry points have
6045 determined the sizes of the various dynamic sections. Allocate
6046 memory for them. */
6047 reltext = FALSE;
6048 for (s = dynobj->sections; s != NULL; s = s->next)
6049 {
6050 const char *name;
6051 bfd_boolean strip;
6052
6053 /* It's OK to base decisions on the section name, because none
6054 of the dynobj section names depend upon the input files. */
6055 name = bfd_get_section_name (dynobj, s);
6056
6057 if ((s->flags & SEC_LINKER_CREATED) == 0)
6058 continue;
6059
6060 strip = FALSE;
6061
6062 if (strncmp (name, ".rel", 4) == 0)
6063 {
6064 if (s->size == 0)
6065 {
6066 /* We only strip the section if the output section name
6067 has the same name. Otherwise, there might be several
6068 input sections for this output section. FIXME: This
6069 code is probably not needed these days anyhow, since
6070 the linker now does not create empty output sections. */
6071 if (s->output_section != NULL
6072 && strcmp (name,
6073 bfd_get_section_name (s->output_section->owner,
6074 s->output_section)) == 0)
6075 strip = TRUE;
6076 }
6077 else
6078 {
6079 const char *outname;
6080 asection *target;
6081
6082 /* If this relocation section applies to a read only
6083 section, then we probably need a DT_TEXTREL entry.
6084 If the relocation section is .rel.dyn, we always
6085 assert a DT_TEXTREL entry rather than testing whether
6086 there exists a relocation to a read only section or
6087 not. */
6088 outname = bfd_get_section_name (output_bfd,
6089 s->output_section);
6090 target = bfd_get_section_by_name (output_bfd, outname + 4);
6091 if ((target != NULL
6092 && (target->flags & SEC_READONLY) != 0
6093 && (target->flags & SEC_ALLOC) != 0)
6094 || strcmp (outname, ".rel.dyn") == 0)
6095 reltext = TRUE;
6096
6097 /* We use the reloc_count field as a counter if we need
6098 to copy relocs into the output file. */
6099 if (strcmp (name, ".rel.dyn") != 0)
6100 s->reloc_count = 0;
6101
6102 /* If combreloc is enabled, elf_link_sort_relocs() will
6103 sort relocations, but in a different way than we do,
6104 and before we're done creating relocations. Also, it
6105 will move them around between input sections'
6106 relocation's contents, so our sorting would be
6107 broken, so don't let it run. */
6108 info->combreloc = 0;
6109 }
6110 }
6111 else if (strncmp (name, ".got", 4) == 0)
6112 {
6113 /* _bfd_mips_elf_always_size_sections() has already done
6114 most of the work, but some symbols may have been mapped
6115 to versions that we must now resolve in the got_entries
6116 hash tables. */
6117 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6118 struct mips_got_info *g = gg;
6119 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6120 unsigned int needed_relocs = 0;
6121
6122 if (gg->next)
6123 {
6124 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6125 set_got_offset_arg.info = info;
6126
6127 mips_elf_resolve_final_got_entries (gg);
6128 for (g = gg->next; g && g->next != gg; g = g->next)
6129 {
6130 unsigned int save_assign;
6131
6132 mips_elf_resolve_final_got_entries (g);
6133
6134 /* Assign offsets to global GOT entries. */
6135 save_assign = g->assigned_gotno;
6136 g->assigned_gotno = g->local_gotno;
6137 set_got_offset_arg.g = g;
6138 set_got_offset_arg.needed_relocs = 0;
6139 htab_traverse (g->got_entries,
6140 mips_elf_set_global_got_offset,
6141 &set_got_offset_arg);
6142 needed_relocs += set_got_offset_arg.needed_relocs;
6143 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6144 <= g->global_gotno);
6145
6146 g->assigned_gotno = save_assign;
6147 if (info->shared)
6148 {
6149 needed_relocs += g->local_gotno - g->assigned_gotno;
6150 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6151 + g->next->global_gotno
6152 + MIPS_RESERVED_GOTNO);
6153 }
6154 }
6155
6156 if (needed_relocs)
6157 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6158 }
6159 }
6160 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6161 {
6162 /* IRIX rld assumes that the function stub isn't at the end
6163 of .text section. So put a dummy. XXX */
6164 s->size += MIPS_FUNCTION_STUB_SIZE;
6165 }
6166 else if (! info->shared
6167 && ! mips_elf_hash_table (info)->use_rld_obj_head
6168 && strncmp (name, ".rld_map", 8) == 0)
6169 {
6170 /* We add a room for __rld_map. It will be filled in by the
6171 rtld to contain a pointer to the _r_debug structure. */
6172 s->size += 4;
6173 }
6174 else if (SGI_COMPAT (output_bfd)
6175 && strncmp (name, ".compact_rel", 12) == 0)
6176 s->size += mips_elf_hash_table (info)->compact_rel_size;
6177 else if (strncmp (name, ".init", 5) != 0)
6178 {
6179 /* It's not one of our sections, so don't allocate space. */
6180 continue;
6181 }
6182
6183 if (strip)
6184 {
6185 _bfd_strip_section_from_output (info, s);
6186 continue;
6187 }
6188
6189 /* Allocate memory for the section contents. */
6190 s->contents = bfd_zalloc (dynobj, s->size);
6191 if (s->contents == NULL && s->size != 0)
6192 {
6193 bfd_set_error (bfd_error_no_memory);
6194 return FALSE;
6195 }
6196 }
6197
6198 if (elf_hash_table (info)->dynamic_sections_created)
6199 {
6200 /* Add some entries to the .dynamic section. We fill in the
6201 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6202 must add the entries now so that we get the correct size for
6203 the .dynamic section. The DT_DEBUG entry is filled in by the
6204 dynamic linker and used by the debugger. */
6205 if (! info->shared)
6206 {
6207 /* SGI object has the equivalence of DT_DEBUG in the
6208 DT_MIPS_RLD_MAP entry. */
6209 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6210 return FALSE;
6211 if (!SGI_COMPAT (output_bfd))
6212 {
6213 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6214 return FALSE;
6215 }
6216 }
6217 else
6218 {
6219 /* Shared libraries on traditional mips have DT_DEBUG. */
6220 if (!SGI_COMPAT (output_bfd))
6221 {
6222 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6223 return FALSE;
6224 }
6225 }
6226
6227 if (reltext && SGI_COMPAT (output_bfd))
6228 info->flags |= DF_TEXTREL;
6229
6230 if ((info->flags & DF_TEXTREL) != 0)
6231 {
6232 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6233 return FALSE;
6234 }
6235
6236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6237 return FALSE;
6238
6239 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6240 {
6241 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6242 return FALSE;
6243
6244 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6245 return FALSE;
6246
6247 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6248 return FALSE;
6249 }
6250
6251 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6252 return FALSE;
6253
6254 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6255 return FALSE;
6256
6257#if 0
6258 /* Time stamps in executable files are a bad idea. */
6259 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6260 return FALSE;
6261#endif
6262
6263#if 0 /* FIXME */
6264 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6265 return FALSE;
6266#endif
6267
6268#if 0 /* FIXME */
6269 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6270 return FALSE;
6271#endif
6272
6273 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6274 return FALSE;
6275
6276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6277 return FALSE;
6278
6279 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6280 return FALSE;
6281
6282 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6283 return FALSE;
6284
6285 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6286 return FALSE;
6287
6288 if (IRIX_COMPAT (dynobj) == ict_irix5
6289 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6290 return FALSE;
6291
6292 if (IRIX_COMPAT (dynobj) == ict_irix6
6293 && (bfd_get_section_by_name
6294 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6295 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6296 return FALSE;
6297 }
6298
6299 return TRUE;
6300}
6301\f
6302/* Relocate a MIPS ELF section. */
6303
6304bfd_boolean
6305_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6306 bfd *input_bfd, asection *input_section,
6307 bfd_byte *contents, Elf_Internal_Rela *relocs,
6308 Elf_Internal_Sym *local_syms,
6309 asection **local_sections)
6310{
6311 Elf_Internal_Rela *rel;
6312 const Elf_Internal_Rela *relend;
6313 bfd_vma addend = 0;
6314 bfd_boolean use_saved_addend_p = FALSE;
6315 const struct elf_backend_data *bed;
6316
6317 bed = get_elf_backend_data (output_bfd);
6318 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6319 for (rel = relocs; rel < relend; ++rel)
6320 {
6321 const char *name;
6322 bfd_vma value;
6323 reloc_howto_type *howto;
6324 bfd_boolean require_jalx;
6325 /* TRUE if the relocation is a RELA relocation, rather than a
6326 REL relocation. */
6327 bfd_boolean rela_relocation_p = TRUE;
6328 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6329 const char *msg;
6330
6331 /* Find the relocation howto for this relocation. */
6332 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6333 {
6334 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6335 64-bit code, but make sure all their addresses are in the
6336 lowermost or uppermost 32-bit section of the 64-bit address
6337 space. Thus, when they use an R_MIPS_64 they mean what is
6338 usually meant by R_MIPS_32, with the exception that the
6339 stored value is sign-extended to 64 bits. */
6340 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6341
6342 /* On big-endian systems, we need to lie about the position
6343 of the reloc. */
6344 if (bfd_big_endian (input_bfd))
6345 rel->r_offset += 4;
6346 }
6347 else
6348 /* NewABI defaults to RELA relocations. */
6349 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6350 NEWABI_P (input_bfd)
6351 && (MIPS_RELOC_RELA_P
6352 (input_bfd, input_section,
6353 rel - relocs)));
6354
6355 if (!use_saved_addend_p)
6356 {
6357 Elf_Internal_Shdr *rel_hdr;
6358
6359 /* If these relocations were originally of the REL variety,
6360 we must pull the addend out of the field that will be
6361 relocated. Otherwise, we simply use the contents of the
6362 RELA relocation. To determine which flavor or relocation
6363 this is, we depend on the fact that the INPUT_SECTION's
6364 REL_HDR is read before its REL_HDR2. */
6365 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6366 if ((size_t) (rel - relocs)
6367 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6368 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6369 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6370 {
6371 bfd_byte *location = contents + rel->r_offset;
6372
6373 /* Note that this is a REL relocation. */
6374 rela_relocation_p = FALSE;
6375
6376 /* Get the addend, which is stored in the input file. */
6377 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
6378 location);
6379 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6380 contents);
6381 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
6382 location);
6383
6384 addend &= howto->src_mask;
6385
6386 /* For some kinds of relocations, the ADDEND is a
6387 combination of the addend stored in two different
6388 relocations. */
6389 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
6390 || (r_type == R_MIPS_GOT16
6391 && mips_elf_local_relocation_p (input_bfd, rel,
6392 local_sections, FALSE)))
6393 {
6394 bfd_vma l;
6395 const Elf_Internal_Rela *lo16_relocation;
6396 reloc_howto_type *lo16_howto;
6397 bfd_byte *lo16_location;
6398 int lo16_type;
6399
6400 if (r_type == R_MIPS16_HI16)
6401 lo16_type = R_MIPS16_LO16;
6402 else
6403 lo16_type = R_MIPS_LO16;
6404
6405 /* The combined value is the sum of the HI16 addend,
6406 left-shifted by sixteen bits, and the LO16
6407 addend, sign extended. (Usually, the code does
6408 a `lui' of the HI16 value, and then an `addiu' of
6409 the LO16 value.)
6410
6411 Scan ahead to find a matching LO16 relocation.
6412
6413 According to the MIPS ELF ABI, the R_MIPS_LO16
6414 relocation must be immediately following.
6415 However, for the IRIX6 ABI, the next relocation
6416 may be a composed relocation consisting of
6417 several relocations for the same address. In
6418 that case, the R_MIPS_LO16 relocation may occur
6419 as one of these. We permit a similar extension
6420 in general, as that is useful for GCC. */
6421 lo16_relocation = mips_elf_next_relocation (input_bfd,
6422 lo16_type,
6423 rel, relend);
6424 if (lo16_relocation == NULL)
6425 return FALSE;
6426
6427 lo16_location = contents + lo16_relocation->r_offset;
6428
6429 /* Obtain the addend kept there. */
6430 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6431 lo16_type, FALSE);
6432 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
6433 lo16_location);
6434 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6435 input_bfd, contents);
6436 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
6437 lo16_location);
6438 l &= lo16_howto->src_mask;
6439 l <<= lo16_howto->rightshift;
6440 l = _bfd_mips_elf_sign_extend (l, 16);
6441
6442 addend <<= 16;
6443
6444 /* Compute the combined addend. */
6445 addend += l;
6446 }
6447 else
6448 addend <<= howto->rightshift;
6449 }
6450 else
6451 addend = rel->r_addend;
6452 }
6453
6454 if (info->relocatable)
6455 {
6456 Elf_Internal_Sym *sym;
6457 unsigned long r_symndx;
6458
6459 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6460 && bfd_big_endian (input_bfd))
6461 rel->r_offset -= 4;
6462
6463 /* Since we're just relocating, all we need to do is copy
6464 the relocations back out to the object file, unless
6465 they're against a section symbol, in which case we need
6466 to adjust by the section offset, or unless they're GP
6467 relative in which case we need to adjust by the amount
6468 that we're adjusting GP in this relocatable object. */
6469
6470 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6471 FALSE))
6472 /* There's nothing to do for non-local relocations. */
6473 continue;
6474
6475 if (r_type == R_MIPS16_GPREL
6476 || r_type == R_MIPS_GPREL16
6477 || r_type == R_MIPS_GPREL32
6478 || r_type == R_MIPS_LITERAL)
6479 addend -= (_bfd_get_gp_value (output_bfd)
6480 - _bfd_get_gp_value (input_bfd));
6481
6482 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6483 sym = local_syms + r_symndx;
6484 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6485 /* Adjust the addend appropriately. */
6486 addend += local_sections[r_symndx]->output_offset;
6487
6488 if (rela_relocation_p)
6489 /* If this is a RELA relocation, just update the addend. */
6490 rel->r_addend = addend;
6491 else
6492 {
6493 if (r_type == R_MIPS_HI16
6494 || r_type == R_MIPS_GOT16)
6495 addend = mips_elf_high (addend);
6496 else if (r_type == R_MIPS_HIGHER)
6497 addend = mips_elf_higher (addend);
6498 else if (r_type == R_MIPS_HIGHEST)
6499 addend = mips_elf_highest (addend);
6500 else
6501 addend >>= howto->rightshift;
6502
6503 /* We use the source mask, rather than the destination
6504 mask because the place to which we are writing will be
6505 source of the addend in the final link. */
6506 addend &= howto->src_mask;
6507
6508 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6509 /* See the comment above about using R_MIPS_64 in the 32-bit
6510 ABI. Here, we need to update the addend. It would be
6511 possible to get away with just using the R_MIPS_32 reloc
6512 but for endianness. */
6513 {
6514 bfd_vma sign_bits;
6515 bfd_vma low_bits;
6516 bfd_vma high_bits;
6517
6518 if (addend & ((bfd_vma) 1 << 31))
6519#ifdef BFD64
6520 sign_bits = ((bfd_vma) 1 << 32) - 1;
6521#else
6522 sign_bits = -1;
6523#endif
6524 else
6525 sign_bits = 0;
6526
6527 /* If we don't know that we have a 64-bit type,
6528 do two separate stores. */
6529 if (bfd_big_endian (input_bfd))
6530 {
6531 /* Store the sign-bits (which are most significant)
6532 first. */
6533 low_bits = sign_bits;
6534 high_bits = addend;
6535 }
6536 else
6537 {
6538 low_bits = addend;
6539 high_bits = sign_bits;
6540 }
6541 bfd_put_32 (input_bfd, low_bits,
6542 contents + rel->r_offset);
6543 bfd_put_32 (input_bfd, high_bits,
6544 contents + rel->r_offset + 4);
6545 continue;
6546 }
6547
6548 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6549 input_bfd, input_section,
6550 contents, FALSE))
6551 return FALSE;
6552 }
6553
6554 /* Go on to the next relocation. */
6555 continue;
6556 }
6557
6558 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6559 relocations for the same offset. In that case we are
6560 supposed to treat the output of each relocation as the addend
6561 for the next. */
6562 if (rel + 1 < relend
6563 && rel->r_offset == rel[1].r_offset
6564 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6565 use_saved_addend_p = TRUE;
6566 else
6567 use_saved_addend_p = FALSE;
6568
6569 /* Figure out what value we are supposed to relocate. */
6570 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6571 input_section, info, rel,
6572 addend, howto, local_syms,
6573 local_sections, &value,
6574 &name, &require_jalx,
6575 use_saved_addend_p))
6576 {
6577 case bfd_reloc_continue:
6578 /* There's nothing to do. */
6579 continue;
6580
6581 case bfd_reloc_undefined:
6582 /* mips_elf_calculate_relocation already called the
6583 undefined_symbol callback. There's no real point in
6584 trying to perform the relocation at this point, so we
6585 just skip ahead to the next relocation. */
6586 continue;
6587
6588 case bfd_reloc_notsupported:
6589 msg = _("internal error: unsupported relocation error");
6590 info->callbacks->warning
6591 (info, msg, name, input_bfd, input_section, rel->r_offset);
6592 return FALSE;
6593
6594 case bfd_reloc_overflow:
6595 if (use_saved_addend_p)
6596 /* Ignore overflow until we reach the last relocation for
6597 a given location. */
6598 ;
6599 else
6600 {
6601 BFD_ASSERT (name != NULL);
6602 if (! ((*info->callbacks->reloc_overflow)
6603 (info, NULL, name, howto->name, (bfd_vma) 0,
6604 input_bfd, input_section, rel->r_offset)))
6605 return FALSE;
6606 }
6607 break;
6608
6609 case bfd_reloc_ok:
6610 break;
6611
6612 default:
6613 abort ();
6614 break;
6615 }
6616
6617 /* If we've got another relocation for the address, keep going
6618 until we reach the last one. */
6619 if (use_saved_addend_p)
6620 {
6621 addend = value;
6622 continue;
6623 }
6624
6625 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6626 /* See the comment above about using R_MIPS_64 in the 32-bit
6627 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6628 that calculated the right value. Now, however, we
6629 sign-extend the 32-bit result to 64-bits, and store it as a
6630 64-bit value. We are especially generous here in that we
6631 go to extreme lengths to support this usage on systems with
6632 only a 32-bit VMA. */
6633 {
6634 bfd_vma sign_bits;
6635 bfd_vma low_bits;
6636 bfd_vma high_bits;
6637
6638 if (value & ((bfd_vma) 1 << 31))
6639#ifdef BFD64
6640 sign_bits = ((bfd_vma) 1 << 32) - 1;
6641#else
6642 sign_bits = -1;
6643#endif
6644 else
6645 sign_bits = 0;
6646
6647 /* If we don't know that we have a 64-bit type,
6648 do two separate stores. */
6649 if (bfd_big_endian (input_bfd))
6650 {
6651 /* Undo what we did above. */
6652 rel->r_offset -= 4;
6653 /* Store the sign-bits (which are most significant)
6654 first. */
6655 low_bits = sign_bits;
6656 high_bits = value;
6657 }
6658 else
6659 {
6660 low_bits = value;
6661 high_bits = sign_bits;
6662 }
6663 bfd_put_32 (input_bfd, low_bits,
6664 contents + rel->r_offset);
6665 bfd_put_32 (input_bfd, high_bits,
6666 contents + rel->r_offset + 4);
6667 continue;
6668 }
6669
6670 /* Actually perform the relocation. */
6671 if (! mips_elf_perform_relocation (info, howto, rel, value,
6672 input_bfd, input_section,
6673 contents, require_jalx))
6674 return FALSE;
6675 }
6676
6677 return TRUE;
6678}
6679\f
6680/* If NAME is one of the special IRIX6 symbols defined by the linker,
6681 adjust it appropriately now. */
6682
6683static void
6684mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6685 const char *name, Elf_Internal_Sym *sym)
6686{
6687 /* The linker script takes care of providing names and values for
6688 these, but we must place them into the right sections. */
6689 static const char* const text_section_symbols[] = {
6690 "_ftext",
6691 "_etext",
6692 "__dso_displacement",
6693 "__elf_header",
6694 "__program_header_table",
6695 NULL
6696 };
6697
6698 static const char* const data_section_symbols[] = {
6699 "_fdata",
6700 "_edata",
6701 "_end",
6702 "_fbss",
6703 NULL
6704 };
6705
6706 const char* const *p;
6707 int i;
6708
6709 for (i = 0; i < 2; ++i)
6710 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6711 *p;
6712 ++p)
6713 if (strcmp (*p, name) == 0)
6714 {
6715 /* All of these symbols are given type STT_SECTION by the
6716 IRIX6 linker. */
6717 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6718 sym->st_other = STO_PROTECTED;
6719
6720 /* The IRIX linker puts these symbols in special sections. */
6721 if (i == 0)
6722 sym->st_shndx = SHN_MIPS_TEXT;
6723 else
6724 sym->st_shndx = SHN_MIPS_DATA;
6725
6726 break;
6727 }
6728}
6729
6730/* Finish up dynamic symbol handling. We set the contents of various
6731 dynamic sections here. */
6732
6733bfd_boolean
6734_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6735 struct bfd_link_info *info,
6736 struct elf_link_hash_entry *h,
6737 Elf_Internal_Sym *sym)
6738{
6739 bfd *dynobj;
6740 asection *sgot;
6741 struct mips_got_info *g, *gg;
6742 const char *name;
6743
6744 dynobj = elf_hash_table (info)->dynobj;
6745
6746 if (h->plt.offset != MINUS_ONE)
6747 {
6748 asection *s;
6749 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6750
6751 /* This symbol has a stub. Set it up. */
6752
6753 BFD_ASSERT (h->dynindx != -1);
6754
6755 s = bfd_get_section_by_name (dynobj,
6756 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6757 BFD_ASSERT (s != NULL);
6758
6759 /* FIXME: Can h->dynindex be more than 64K? */
6760 if (h->dynindx & 0xffff0000)
6761 return FALSE;
6762
6763 /* Fill the stub. */
6764 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6765 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6766 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6767 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6768
6769 BFD_ASSERT (h->plt.offset <= s->size);
6770 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6771
6772 /* Mark the symbol as undefined. plt.offset != -1 occurs
6773 only for the referenced symbol. */
6774 sym->st_shndx = SHN_UNDEF;
6775
6776 /* The run-time linker uses the st_value field of the symbol
6777 to reset the global offset table entry for this external
6778 to its stub address when unlinking a shared object. */
6779 sym->st_value = (s->output_section->vma + s->output_offset
6780 + h->plt.offset);
6781 }
6782
6783 BFD_ASSERT (h->dynindx != -1
6784 || h->forced_local);
6785
6786 sgot = mips_elf_got_section (dynobj, FALSE);
6787 BFD_ASSERT (sgot != NULL);
6788 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6789 g = mips_elf_section_data (sgot)->u.got_info;
6790 BFD_ASSERT (g != NULL);
6791
6792 /* Run through the global symbol table, creating GOT entries for all
6793 the symbols that need them. */
6794 if (g->global_gotsym != NULL
6795 && h->dynindx >= g->global_gotsym->dynindx)
6796 {
6797 bfd_vma offset;
6798 bfd_vma value;
6799
6800 value = sym->st_value;
6801 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6802 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6803 }
6804
6805 if (g->next && h->dynindx != -1)
6806 {
6807 struct mips_got_entry e, *p;
6808 bfd_vma entry;
6809 bfd_vma offset;
6810
6811 gg = g;
6812
6813 e.abfd = output_bfd;
6814 e.symndx = -1;
6815 e.d.h = (struct mips_elf_link_hash_entry *)h;
6816
6817 for (g = g->next; g->next != gg; g = g->next)
6818 {
6819 if (g->got_entries
6820 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6821 &e)))
6822 {
6823 offset = p->gotidx;
6824 if (info->shared
6825 || (elf_hash_table (info)->dynamic_sections_created
6826 && p->d.h != NULL
6827 && p->d.h->root.def_dynamic
6828 && !p->d.h->root.def_regular))
6829 {
6830 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6831 the various compatibility problems, it's easier to mock
6832 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6833 mips_elf_create_dynamic_relocation to calculate the
6834 appropriate addend. */
6835 Elf_Internal_Rela rel[3];
6836
6837 memset (rel, 0, sizeof (rel));
6838 if (ABI_64_P (output_bfd))
6839 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6840 else
6841 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6842 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6843
6844 entry = 0;
6845 if (! (mips_elf_create_dynamic_relocation
6846 (output_bfd, info, rel,
6847 e.d.h, NULL, sym->st_value, &entry, sgot)))
6848 return FALSE;
6849 }
6850 else
6851 entry = sym->st_value;
6852 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6853 }
6854 }
6855 }
6856
6857 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6858 name = h->root.root.string;
6859 if (strcmp (name, "_DYNAMIC") == 0
6860 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6861 sym->st_shndx = SHN_ABS;
6862 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6863 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6864 {
6865 sym->st_shndx = SHN_ABS;
6866 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6867 sym->st_value = 1;
6868 }
6869 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6870 {
6871 sym->st_shndx = SHN_ABS;
6872 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6873 sym->st_value = elf_gp (output_bfd);
6874 }
6875 else if (SGI_COMPAT (output_bfd))
6876 {
6877 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6878 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6879 {
6880 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6881 sym->st_other = STO_PROTECTED;
6882 sym->st_value = 0;
6883 sym->st_shndx = SHN_MIPS_DATA;
6884 }
6885 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6886 {
6887 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6888 sym->st_other = STO_PROTECTED;
6889 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6890 sym->st_shndx = SHN_ABS;
6891 }
6892 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6893 {
6894 if (h->type == STT_FUNC)
6895 sym->st_shndx = SHN_MIPS_TEXT;
6896 else if (h->type == STT_OBJECT)
6897 sym->st_shndx = SHN_MIPS_DATA;
6898 }
6899 }
6900
6901 /* Handle the IRIX6-specific symbols. */
6902 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6903 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6904
6905 if (! info->shared)
6906 {
6907 if (! mips_elf_hash_table (info)->use_rld_obj_head
6908 && (strcmp (name, "__rld_map") == 0
6909 || strcmp (name, "__RLD_MAP") == 0))
6910 {
6911 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6912 BFD_ASSERT (s != NULL);
6913 sym->st_value = s->output_section->vma + s->output_offset;
6914 bfd_put_32 (output_bfd, 0, s->contents);
6915 if (mips_elf_hash_table (info)->rld_value == 0)
6916 mips_elf_hash_table (info)->rld_value = sym->st_value;
6917 }
6918 else if (mips_elf_hash_table (info)->use_rld_obj_head
6919 && strcmp (name, "__rld_obj_head") == 0)
6920 {
6921 /* IRIX6 does not use a .rld_map section. */
6922 if (IRIX_COMPAT (output_bfd) == ict_irix5
6923 || IRIX_COMPAT (output_bfd) == ict_none)
6924 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6925 != NULL);
6926 mips_elf_hash_table (info)->rld_value = sym->st_value;
6927 }
6928 }
6929
6930 /* If this is a mips16 symbol, force the value to be even. */
6931 if (sym->st_other == STO_MIPS16)
6932 sym->st_value &= ~1;
6933
6934 return TRUE;
6935}
6936
6937/* Finish up the dynamic sections. */
6938
6939bfd_boolean
6940_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6941 struct bfd_link_info *info)
6942{
6943 bfd *dynobj;
6944 asection *sdyn;
6945 asection *sgot;
6946 struct mips_got_info *gg, *g;
6947
6948 dynobj = elf_hash_table (info)->dynobj;
6949
6950 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6951
6952 sgot = mips_elf_got_section (dynobj, FALSE);
6953 if (sgot == NULL)
6954 gg = g = NULL;
6955 else
6956 {
6957 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6958 gg = mips_elf_section_data (sgot)->u.got_info;
6959 BFD_ASSERT (gg != NULL);
6960 g = mips_elf_got_for_ibfd (gg, output_bfd);
6961 BFD_ASSERT (g != NULL);
6962 }
6963
6964 if (elf_hash_table (info)->dynamic_sections_created)
6965 {
6966 bfd_byte *b;
6967
6968 BFD_ASSERT (sdyn != NULL);
6969 BFD_ASSERT (g != NULL);
6970
6971 for (b = sdyn->contents;
6972 b < sdyn->contents + sdyn->size;
6973 b += MIPS_ELF_DYN_SIZE (dynobj))
6974 {
6975 Elf_Internal_Dyn dyn;
6976 const char *name;
6977 size_t elemsize;
6978 asection *s;
6979 bfd_boolean swap_out_p;
6980
6981 /* Read in the current dynamic entry. */
6982 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6983
6984 /* Assume that we're going to modify it and write it out. */
6985 swap_out_p = TRUE;
6986
6987 switch (dyn.d_tag)
6988 {
6989 case DT_RELENT:
6990 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6991 BFD_ASSERT (s != NULL);
6992 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6993 break;
6994
6995 case DT_STRSZ:
6996 /* Rewrite DT_STRSZ. */
6997 dyn.d_un.d_val =
6998 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6999 break;
7000
7001 case DT_PLTGOT:
7002 name = ".got";
7003 s = bfd_get_section_by_name (output_bfd, name);
7004 BFD_ASSERT (s != NULL);
7005 dyn.d_un.d_ptr = s->vma;
7006 break;
7007
7008 case DT_MIPS_RLD_VERSION:
7009 dyn.d_un.d_val = 1; /* XXX */
7010 break;
7011
7012 case DT_MIPS_FLAGS:
7013 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7014 break;
7015
7016 case DT_MIPS_TIME_STAMP:
7017 time ((time_t *) &dyn.d_un.d_val);
7018 break;
7019
7020 case DT_MIPS_ICHECKSUM:
7021 /* XXX FIXME: */
7022 swap_out_p = FALSE;
7023 break;
7024
7025 case DT_MIPS_IVERSION:
7026 /* XXX FIXME: */
7027 swap_out_p = FALSE;
7028 break;
7029
7030 case DT_MIPS_BASE_ADDRESS:
7031 s = output_bfd->sections;
7032 BFD_ASSERT (s != NULL);
7033 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7034 break;
7035
7036 case DT_MIPS_LOCAL_GOTNO:
7037 dyn.d_un.d_val = g->local_gotno;
7038 break;
7039
7040 case DT_MIPS_UNREFEXTNO:
7041 /* The index into the dynamic symbol table which is the
7042 entry of the first external symbol that is not
7043 referenced within the same object. */
7044 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7045 break;
7046
7047 case DT_MIPS_GOTSYM:
7048 if (gg->global_gotsym)
7049 {
7050 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7051 break;
7052 }
7053 /* In case if we don't have global got symbols we default
7054 to setting DT_MIPS_GOTSYM to the same value as
7055 DT_MIPS_SYMTABNO, so we just fall through. */
7056
7057 case DT_MIPS_SYMTABNO:
7058 name = ".dynsym";
7059 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7060 s = bfd_get_section_by_name (output_bfd, name);
7061 BFD_ASSERT (s != NULL);
7062
7063 dyn.d_un.d_val = s->size / elemsize;
7064 break;
7065
7066 case DT_MIPS_HIPAGENO:
7067 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7068 break;
7069
7070 case DT_MIPS_RLD_MAP:
7071 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7072 break;
7073
7074 case DT_MIPS_OPTIONS:
7075 s = (bfd_get_section_by_name
7076 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7077 dyn.d_un.d_ptr = s->vma;
7078 break;
7079
7080 case DT_RELSZ:
7081 /* Reduce DT_RELSZ to account for any relocations we
7082 decided not to make. This is for the n64 irix rld,
7083 which doesn't seem to apply any relocations if there
7084 are trailing null entries. */
7085 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7086 dyn.d_un.d_val = (s->reloc_count
7087 * (ABI_64_P (output_bfd)
7088 ? sizeof (Elf64_Mips_External_Rel)
7089 : sizeof (Elf32_External_Rel)));
7090 break;
7091
7092 default:
7093 swap_out_p = FALSE;
7094 break;
7095 }
7096
7097 if (swap_out_p)
7098 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7099 (dynobj, &dyn, b);
7100 }
7101 }
7102
7103 /* The first entry of the global offset table will be filled at
7104 runtime. The second entry will be used by some runtime loaders.
7105 This isn't the case of IRIX rld. */
7106 if (sgot != NULL && sgot->size > 0)
7107 {
7108 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
7109 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
7110 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7111 }
7112
7113 if (sgot != NULL)
7114 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7115 = MIPS_ELF_GOT_SIZE (output_bfd);
7116
7117 /* Generate dynamic relocations for the non-primary gots. */
7118 if (gg != NULL && gg->next)
7119 {
7120 Elf_Internal_Rela rel[3];
7121 bfd_vma addend = 0;
7122
7123 memset (rel, 0, sizeof (rel));
7124 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7125
7126 for (g = gg->next; g->next != gg; g = g->next)
7127 {
7128 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7129
7130 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
7131 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7132 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
7133 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7134
7135 if (! info->shared)
7136 continue;
7137
7138 while (index < g->assigned_gotno)
7139 {
7140 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7141 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7142 if (!(mips_elf_create_dynamic_relocation
7143 (output_bfd, info, rel, NULL,
7144 bfd_abs_section_ptr,
7145 0, &addend, sgot)))
7146 return FALSE;
7147 BFD_ASSERT (addend == 0);
7148 }
7149 }
7150 }
7151
7152 {
7153 asection *s;
7154 Elf32_compact_rel cpt;
7155
7156 if (SGI_COMPAT (output_bfd))
7157 {
7158 /* Write .compact_rel section out. */
7159 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7160 if (s != NULL)
7161 {
7162 cpt.id1 = 1;
7163 cpt.num = s->reloc_count;
7164 cpt.id2 = 2;
7165 cpt.offset = (s->output_section->filepos
7166 + sizeof (Elf32_External_compact_rel));
7167 cpt.reserved0 = 0;
7168 cpt.reserved1 = 0;
7169 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7170 ((Elf32_External_compact_rel *)
7171 s->contents));
7172
7173 /* Clean up a dummy stub function entry in .text. */
7174 s = bfd_get_section_by_name (dynobj,
7175 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7176 if (s != NULL)
7177 {
7178 file_ptr dummy_offset;
7179
7180 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7181 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
7182 memset (s->contents + dummy_offset, 0,
7183 MIPS_FUNCTION_STUB_SIZE);
7184 }
7185 }
7186 }
7187
7188 /* We need to sort the entries of the dynamic relocation section. */
7189
7190 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7191
7192 if (s != NULL
7193 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7194 {
7195 reldyn_sorting_bfd = output_bfd;
7196
7197 if (ABI_64_P (output_bfd))
7198 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7199 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7200 else
7201 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7202 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7203 }
7204 }
7205
7206 return TRUE;
7207}
7208
7209
7210/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7211
7212static void
7213mips_set_isa_flags (bfd *abfd)
7214{
7215 flagword val;
7216
7217 switch (bfd_get_mach (abfd))
7218 {
7219 default:
7220 case bfd_mach_mips3000:
7221 val = E_MIPS_ARCH_1;
7222 break;
7223
7224 case bfd_mach_mips3900:
7225 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7226 break;
7227
7228 case bfd_mach_mips6000:
7229 val = E_MIPS_ARCH_2;
7230 break;
7231
7232 case bfd_mach_mips4000:
7233 case bfd_mach_mips4300:
7234 case bfd_mach_mips4400:
7235 case bfd_mach_mips4600:
7236 val = E_MIPS_ARCH_3;
7237 break;
7238
7239 case bfd_mach_mips4010:
7240 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7241 break;
7242
7243 case bfd_mach_mips4100:
7244 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7245 break;
7246
7247 case bfd_mach_mips4111:
7248 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7249 break;
7250
7251 case bfd_mach_mips4120:
7252 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7253 break;
7254
7255 case bfd_mach_mips4650:
7256 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7257 break;
7258
7259 case bfd_mach_mips5400:
7260 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7261 break;
7262
7263 case bfd_mach_mips5500:
7264 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7265 break;
7266
7267 case bfd_mach_mips9000:
7268 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7269 break;
7270
7271 case bfd_mach_mips5000:
7272 case bfd_mach_mips7000:
7273 case bfd_mach_mips8000:
7274 case bfd_mach_mips10000:
7275 case bfd_mach_mips12000:
7276 val = E_MIPS_ARCH_4;
7277 break;
7278
7279 case bfd_mach_mips5:
7280 val = E_MIPS_ARCH_5;
7281 break;
7282
7283 case bfd_mach_mips_sb1:
7284 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7285 break;
7286
7287 case bfd_mach_mipsisa32:
7288 val = E_MIPS_ARCH_32;
7289 break;
7290
7291 case bfd_mach_mipsisa64:
7292 val = E_MIPS_ARCH_64;
7293 break;
7294
7295 case bfd_mach_mipsisa32r2:
7296 val = E_MIPS_ARCH_32R2;
7297 break;
7298
7299 case bfd_mach_mipsisa64r2:
7300 val = E_MIPS_ARCH_64R2;
7301 break;
7302 }
7303 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7304 elf_elfheader (abfd)->e_flags |= val;
7305
7306}
7307
7308
7309/* The final processing done just before writing out a MIPS ELF object
7310 file. This gets the MIPS architecture right based on the machine
7311 number. This is used by both the 32-bit and the 64-bit ABI. */
7312
7313void
7314_bfd_mips_elf_final_write_processing (bfd *abfd,
7315 bfd_boolean linker ATTRIBUTE_UNUSED)
7316{
7317 unsigned int i;
7318 Elf_Internal_Shdr **hdrpp;
7319 const char *name;
7320 asection *sec;
7321
7322 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7323 is nonzero. This is for compatibility with old objects, which used
7324 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7325 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7326 mips_set_isa_flags (abfd);
7327
7328 /* Set the sh_info field for .gptab sections and other appropriate
7329 info for each special section. */
7330 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7331 i < elf_numsections (abfd);
7332 i++, hdrpp++)
7333 {
7334 switch ((*hdrpp)->sh_type)
7335 {
7336 case SHT_MIPS_MSYM:
7337 case SHT_MIPS_LIBLIST:
7338 sec = bfd_get_section_by_name (abfd, ".dynstr");
7339 if (sec != NULL)
7340 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7341 break;
7342
7343 case SHT_MIPS_GPTAB:
7344 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7345 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7346 BFD_ASSERT (name != NULL
7347 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7348 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7349 BFD_ASSERT (sec != NULL);
7350 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7351 break;
7352
7353 case SHT_MIPS_CONTENT:
7354 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7355 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7356 BFD_ASSERT (name != NULL
7357 && strncmp (name, ".MIPS.content",
7358 sizeof ".MIPS.content" - 1) == 0);
7359 sec = bfd_get_section_by_name (abfd,
7360 name + sizeof ".MIPS.content" - 1);
7361 BFD_ASSERT (sec != NULL);
7362 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7363 break;
7364
7365 case SHT_MIPS_SYMBOL_LIB:
7366 sec = bfd_get_section_by_name (abfd, ".dynsym");
7367 if (sec != NULL)
7368 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7369 sec = bfd_get_section_by_name (abfd, ".liblist");
7370 if (sec != NULL)
7371 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7372 break;
7373
7374 case SHT_MIPS_EVENTS:
7375 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7376 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7377 BFD_ASSERT (name != NULL);
7378 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7379 sec = bfd_get_section_by_name (abfd,
7380 name + sizeof ".MIPS.events" - 1);
7381 else
7382 {
7383 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7384 sizeof ".MIPS.post_rel" - 1) == 0);
7385 sec = bfd_get_section_by_name (abfd,
7386 (name
7387 + sizeof ".MIPS.post_rel" - 1));
7388 }
7389 BFD_ASSERT (sec != NULL);
7390 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7391 break;
7392
7393 }
7394 }
7395}
7396\f
7397/* When creating an IRIX5 executable, we need REGINFO and RTPROC
7398 segments. */
7399
7400int
7401_bfd_mips_elf_additional_program_headers (bfd *abfd)
7402{
7403 asection *s;
7404 int ret = 0;
7405
7406 /* See if we need a PT_MIPS_REGINFO segment. */
7407 s = bfd_get_section_by_name (abfd, ".reginfo");
7408 if (s && (s->flags & SEC_LOAD))
7409 ++ret;
7410
7411 /* See if we need a PT_MIPS_OPTIONS segment. */
7412 if (IRIX_COMPAT (abfd) == ict_irix6
7413 && bfd_get_section_by_name (abfd,
7414 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7415 ++ret;
7416
7417 /* See if we need a PT_MIPS_RTPROC segment. */
7418 if (IRIX_COMPAT (abfd) == ict_irix5
7419 && bfd_get_section_by_name (abfd, ".dynamic")
7420 && bfd_get_section_by_name (abfd, ".mdebug"))
7421 ++ret;
7422
7423 return ret;
7424}
7425
7426/* Modify the segment map for an IRIX5 executable. */
7427
7428bfd_boolean
7429_bfd_mips_elf_modify_segment_map (bfd *abfd,
7430 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7431{
7432 asection *s;
7433 struct elf_segment_map *m, **pm;
7434 bfd_size_type amt;
7435
7436 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7437 segment. */
7438 s = bfd_get_section_by_name (abfd, ".reginfo");
7439 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7440 {
7441 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7442 if (m->p_type == PT_MIPS_REGINFO)
7443 break;
7444 if (m == NULL)
7445 {
7446 amt = sizeof *m;
7447 m = bfd_zalloc (abfd, amt);
7448 if (m == NULL)
7449 return FALSE;
7450
7451 m->p_type = PT_MIPS_REGINFO;
7452 m->count = 1;
7453 m->sections[0] = s;
7454
7455 /* We want to put it after the PHDR and INTERP segments. */
7456 pm = &elf_tdata (abfd)->segment_map;
7457 while (*pm != NULL
7458 && ((*pm)->p_type == PT_PHDR
7459 || (*pm)->p_type == PT_INTERP))
7460 pm = &(*pm)->next;
7461
7462 m->next = *pm;
7463 *pm = m;
7464 }
7465 }
7466
7467 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7468 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7469 PT_MIPS_OPTIONS segment immediately following the program header
7470 table. */
7471 if (NEWABI_P (abfd)
7472 /* On non-IRIX6 new abi, we'll have already created a segment
7473 for this section, so don't create another. I'm not sure this
7474 is not also the case for IRIX 6, but I can't test it right
7475 now. */
7476 && IRIX_COMPAT (abfd) == ict_irix6)
7477 {
7478 for (s = abfd->sections; s; s = s->next)
7479 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7480 break;
7481
7482 if (s)
7483 {
7484 struct elf_segment_map *options_segment;
7485
7486 pm = &elf_tdata (abfd)->segment_map;
7487 while (*pm != NULL
7488 && ((*pm)->p_type == PT_PHDR
7489 || (*pm)->p_type == PT_INTERP))
7490 pm = &(*pm)->next;
7491
7492 amt = sizeof (struct elf_segment_map);
7493 options_segment = bfd_zalloc (abfd, amt);
7494 options_segment->next = *pm;
7495 options_segment->p_type = PT_MIPS_OPTIONS;
7496 options_segment->p_flags = PF_R;
7497 options_segment->p_flags_valid = TRUE;
7498 options_segment->count = 1;
7499 options_segment->sections[0] = s;
7500 *pm = options_segment;
7501 }
7502 }
7503 else
7504 {
7505 if (IRIX_COMPAT (abfd) == ict_irix5)
7506 {
7507 /* If there are .dynamic and .mdebug sections, we make a room
7508 for the RTPROC header. FIXME: Rewrite without section names. */
7509 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7510 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7511 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7512 {
7513 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7514 if (m->p_type == PT_MIPS_RTPROC)
7515 break;
7516 if (m == NULL)
7517 {
7518 amt = sizeof *m;
7519 m = bfd_zalloc (abfd, amt);
7520 if (m == NULL)
7521 return FALSE;
7522
7523 m->p_type = PT_MIPS_RTPROC;
7524
7525 s = bfd_get_section_by_name (abfd, ".rtproc");
7526 if (s == NULL)
7527 {
7528 m->count = 0;
7529 m->p_flags = 0;
7530 m->p_flags_valid = 1;
7531 }
7532 else
7533 {
7534 m->count = 1;
7535 m->sections[0] = s;
7536 }
7537
7538 /* We want to put it after the DYNAMIC segment. */
7539 pm = &elf_tdata (abfd)->segment_map;
7540 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7541 pm = &(*pm)->next;
7542 if (*pm != NULL)
7543 pm = &(*pm)->next;
7544
7545 m->next = *pm;
7546 *pm = m;
7547 }
7548 }
7549 }
7550 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7551 .dynstr, .dynsym, and .hash sections, and everything in
7552 between. */
7553 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7554 pm = &(*pm)->next)
7555 if ((*pm)->p_type == PT_DYNAMIC)
7556 break;
7557 m = *pm;
7558 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7559 {
7560 /* For a normal mips executable the permissions for the PT_DYNAMIC
7561 segment are read, write and execute. We do that here since
7562 the code in elf.c sets only the read permission. This matters
7563 sometimes for the dynamic linker. */
7564 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7565 {
7566 m->p_flags = PF_R | PF_W | PF_X;
7567 m->p_flags_valid = 1;
7568 }
7569 }
7570 if (m != NULL
7571 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7572 {
7573 static const char *sec_names[] =
7574 {
7575 ".dynamic", ".dynstr", ".dynsym", ".hash"
7576 };
7577 bfd_vma low, high;
7578 unsigned int i, c;
7579 struct elf_segment_map *n;
7580
7581 low = ~(bfd_vma) 0;
7582 high = 0;
7583 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7584 {
7585 s = bfd_get_section_by_name (abfd, sec_names[i]);
7586 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7587 {
7588 bfd_size_type sz;
7589
7590 if (low > s->vma)
7591 low = s->vma;
7592 sz = s->size;
7593 if (high < s->vma + sz)
7594 high = s->vma + sz;
7595 }
7596 }
7597
7598 c = 0;
7599 for (s = abfd->sections; s != NULL; s = s->next)
7600 if ((s->flags & SEC_LOAD) != 0
7601 && s->vma >= low
7602 && s->vma + s->size <= high)
7603 ++c;
7604
7605 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7606 n = bfd_zalloc (abfd, amt);
7607 if (n == NULL)
7608 return FALSE;
7609 *n = *m;
7610 n->count = c;
7611
7612 i = 0;
7613 for (s = abfd->sections; s != NULL; s = s->next)
7614 {
7615 if ((s->flags & SEC_LOAD) != 0
7616 && s->vma >= low
7617 && s->vma + s->size <= high)
7618 {
7619 n->sections[i] = s;
7620 ++i;
7621 }
7622 }
7623
7624 *pm = n;
7625 }
7626 }
7627
7628 return TRUE;
7629}
7630\f
7631/* Return the section that should be marked against GC for a given
7632 relocation. */
7633
7634asection *
7635_bfd_mips_elf_gc_mark_hook (asection *sec,
7636 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7637 Elf_Internal_Rela *rel,
7638 struct elf_link_hash_entry *h,
7639 Elf_Internal_Sym *sym)
7640{
7641 /* ??? Do mips16 stub sections need to be handled special? */
7642
7643 if (h != NULL)
7644 {
7645 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7646 {
7647 case R_MIPS_GNU_VTINHERIT:
7648 case R_MIPS_GNU_VTENTRY:
7649 break;
7650
7651 default:
7652 switch (h->root.type)
7653 {
7654 case bfd_link_hash_defined:
7655 case bfd_link_hash_defweak:
7656 return h->root.u.def.section;
7657
7658 case bfd_link_hash_common:
7659 return h->root.u.c.p->section;
7660
7661 default:
7662 break;
7663 }
7664 }
7665 }
7666 else
7667 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7668
7669 return NULL;
7670}
7671
7672/* Update the got entry reference counts for the section being removed. */
7673
7674bfd_boolean
7675_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7676 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7677 asection *sec ATTRIBUTE_UNUSED,
7678 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7679{
7680#if 0
7681 Elf_Internal_Shdr *symtab_hdr;
7682 struct elf_link_hash_entry **sym_hashes;
7683 bfd_signed_vma *local_got_refcounts;
7684 const Elf_Internal_Rela *rel, *relend;
7685 unsigned long r_symndx;
7686 struct elf_link_hash_entry *h;
7687
7688 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7689 sym_hashes = elf_sym_hashes (abfd);
7690 local_got_refcounts = elf_local_got_refcounts (abfd);
7691
7692 relend = relocs + sec->reloc_count;
7693 for (rel = relocs; rel < relend; rel++)
7694 switch (ELF_R_TYPE (abfd, rel->r_info))
7695 {
7696 case R_MIPS_GOT16:
7697 case R_MIPS_CALL16:
7698 case R_MIPS_CALL_HI16:
7699 case R_MIPS_CALL_LO16:
7700 case R_MIPS_GOT_HI16:
7701 case R_MIPS_GOT_LO16:
7702 case R_MIPS_GOT_DISP:
7703 case R_MIPS_GOT_PAGE:
7704 case R_MIPS_GOT_OFST:
7705 /* ??? It would seem that the existing MIPS code does no sort
7706 of reference counting or whatnot on its GOT and PLT entries,
7707 so it is not possible to garbage collect them at this time. */
7708 break;
7709
7710 default:
7711 break;
7712 }
7713#endif
7714
7715 return TRUE;
7716}
7717\f
7718/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7719 hiding the old indirect symbol. Process additional relocation
7720 information. Also called for weakdefs, in which case we just let
7721 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7722
7723void
7724_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7725 struct elf_link_hash_entry *dir,
7726 struct elf_link_hash_entry *ind)
7727{
7728 struct mips_elf_link_hash_entry *dirmips, *indmips;
7729
7730 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7731
7732 if (ind->root.type != bfd_link_hash_indirect)
7733 return;
7734
7735 dirmips = (struct mips_elf_link_hash_entry *) dir;
7736 indmips = (struct mips_elf_link_hash_entry *) ind;
7737 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7738 if (indmips->readonly_reloc)
7739 dirmips->readonly_reloc = TRUE;
7740 if (indmips->no_fn_stub)
7741 dirmips->no_fn_stub = TRUE;
7742}
7743
7744void
7745_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7746 struct elf_link_hash_entry *entry,
7747 bfd_boolean force_local)
7748{
7749 bfd *dynobj;
7750 asection *got;
7751 struct mips_got_info *g;
7752 struct mips_elf_link_hash_entry *h;
7753
7754 h = (struct mips_elf_link_hash_entry *) entry;
7755 if (h->forced_local)
7756 return;
7757 h->forced_local = force_local;
7758
7759 dynobj = elf_hash_table (info)->dynobj;
7760 if (dynobj != NULL && force_local)
7761 {
7762 got = mips_elf_got_section (dynobj, FALSE);
7763 g = mips_elf_section_data (got)->u.got_info;
7764
7765 if (g->next)
7766 {
7767 struct mips_got_entry e;
7768 struct mips_got_info *gg = g;
7769
7770 /* Since we're turning what used to be a global symbol into a
7771 local one, bump up the number of local entries of each GOT
7772 that had an entry for it. This will automatically decrease
7773 the number of global entries, since global_gotno is actually
7774 the upper limit of global entries. */
7775 e.abfd = dynobj;
7776 e.symndx = -1;
7777 e.d.h = h;
7778
7779 for (g = g->next; g != gg; g = g->next)
7780 if (htab_find (g->got_entries, &e))
7781 {
7782 BFD_ASSERT (g->global_gotno > 0);
7783 g->local_gotno++;
7784 g->global_gotno--;
7785 }
7786
7787 /* If this was a global symbol forced into the primary GOT, we
7788 no longer need an entry for it. We can't release the entry
7789 at this point, but we must at least stop counting it as one
7790 of the symbols that required a forced got entry. */
7791 if (h->root.got.offset == 2)
7792 {
7793 BFD_ASSERT (gg->assigned_gotno > 0);
7794 gg->assigned_gotno--;
7795 }
7796 }
7797 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7798 /* If we haven't got through GOT allocation yet, just bump up the
7799 number of local entries, as this symbol won't be counted as
7800 global. */
7801 g->local_gotno++;
7802 else if (h->root.got.offset == 1)
7803 {
7804 /* If we're past non-multi-GOT allocation and this symbol had
7805 been marked for a global got entry, give it a local entry
7806 instead. */
7807 BFD_ASSERT (g->global_gotno > 0);
7808 g->local_gotno++;
7809 g->global_gotno--;
7810 }
7811 }
7812
7813 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7814}
7815\f
7816#define PDR_SIZE 32
7817
7818bfd_boolean
7819_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7820 struct bfd_link_info *info)
7821{
7822 asection *o;
7823 bfd_boolean ret = FALSE;
7824 unsigned char *tdata;
7825 size_t i, skip;
7826
7827 o = bfd_get_section_by_name (abfd, ".pdr");
7828 if (! o)
7829 return FALSE;
7830 if (o->size == 0)
7831 return FALSE;
7832 if (o->size % PDR_SIZE != 0)
7833 return FALSE;
7834 if (o->output_section != NULL
7835 && bfd_is_abs_section (o->output_section))
7836 return FALSE;
7837
7838 tdata = bfd_zmalloc (o->size / PDR_SIZE);
7839 if (! tdata)
7840 return FALSE;
7841
7842 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7843 info->keep_memory);
7844 if (!cookie->rels)
7845 {
7846 free (tdata);
7847 return FALSE;
7848 }
7849
7850 cookie->rel = cookie->rels;
7851 cookie->relend = cookie->rels + o->reloc_count;
7852
7853 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
7854 {
7855 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7856 {
7857 tdata[i] = 1;
7858 skip ++;
7859 }
7860 }
7861
7862 if (skip != 0)
7863 {
7864 mips_elf_section_data (o)->u.tdata = tdata;
7865 o->size -= skip * PDR_SIZE;
7866 ret = TRUE;
7867 }
7868 else
7869 free (tdata);
7870
7871 if (! info->keep_memory)
7872 free (cookie->rels);
7873
7874 return ret;
7875}
7876
7877bfd_boolean
7878_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7879{
7880 if (strcmp (sec->name, ".pdr") == 0)
7881 return TRUE;
7882 return FALSE;
7883}
7884
7885bfd_boolean
7886_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7887 bfd_byte *contents)
7888{
7889 bfd_byte *to, *from, *end;
7890 int i;
7891
7892 if (strcmp (sec->name, ".pdr") != 0)
7893 return FALSE;
7894
7895 if (mips_elf_section_data (sec)->u.tdata == NULL)
7896 return FALSE;
7897
7898 to = contents;
7899 end = contents + sec->size;
7900 for (from = contents, i = 0;
7901 from < end;
7902 from += PDR_SIZE, i++)
7903 {
7904 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7905 continue;
7906 if (to != from)
7907 memcpy (to, from, PDR_SIZE);
7908 to += PDR_SIZE;
7909 }
7910 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7911 sec->output_offset, sec->size);
7912 return TRUE;
7913}
7914\f
7915/* MIPS ELF uses a special find_nearest_line routine in order the
7916 handle the ECOFF debugging information. */
7917
7918struct mips_elf_find_line
7919{
7920 struct ecoff_debug_info d;
7921 struct ecoff_find_line i;
7922};
7923
7924bfd_boolean
7925_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7926 asymbol **symbols, bfd_vma offset,
7927 const char **filename_ptr,
7928 const char **functionname_ptr,
7929 unsigned int *line_ptr)
7930{
7931 asection *msec;
7932
7933 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7934 filename_ptr, functionname_ptr,
7935 line_ptr))
7936 return TRUE;
7937
7938 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7939 filename_ptr, functionname_ptr,
7940 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7941 &elf_tdata (abfd)->dwarf2_find_line_info))
7942 return TRUE;
7943
7944 msec = bfd_get_section_by_name (abfd, ".mdebug");
7945 if (msec != NULL)
7946 {
7947 flagword origflags;
7948 struct mips_elf_find_line *fi;
7949 const struct ecoff_debug_swap * const swap =
7950 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7951
7952 /* If we are called during a link, mips_elf_final_link may have
7953 cleared the SEC_HAS_CONTENTS field. We force it back on here
7954 if appropriate (which it normally will be). */
7955 origflags = msec->flags;
7956 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7957 msec->flags |= SEC_HAS_CONTENTS;
7958
7959 fi = elf_tdata (abfd)->find_line_info;
7960 if (fi == NULL)
7961 {
7962 bfd_size_type external_fdr_size;
7963 char *fraw_src;
7964 char *fraw_end;
7965 struct fdr *fdr_ptr;
7966 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7967
7968 fi = bfd_zalloc (abfd, amt);
7969 if (fi == NULL)
7970 {
7971 msec->flags = origflags;
7972 return FALSE;
7973 }
7974
7975 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7976 {
7977 msec->flags = origflags;
7978 return FALSE;
7979 }
7980
7981 /* Swap in the FDR information. */
7982 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7983 fi->d.fdr = bfd_alloc (abfd, amt);
7984 if (fi->d.fdr == NULL)
7985 {
7986 msec->flags = origflags;
7987 return FALSE;
7988 }
7989 external_fdr_size = swap->external_fdr_size;
7990 fdr_ptr = fi->d.fdr;
7991 fraw_src = (char *) fi->d.external_fdr;
7992 fraw_end = (fraw_src
7993 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7994 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7995 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7996
7997 elf_tdata (abfd)->find_line_info = fi;
7998
7999 /* Note that we don't bother to ever free this information.
8000 find_nearest_line is either called all the time, as in
8001 objdump -l, so the information should be saved, or it is
8002 rarely called, as in ld error messages, so the memory
8003 wasted is unimportant. Still, it would probably be a
8004 good idea for free_cached_info to throw it away. */
8005 }
8006
8007 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8008 &fi->i, filename_ptr, functionname_ptr,
8009 line_ptr))
8010 {
8011 msec->flags = origflags;
8012 return TRUE;
8013 }
8014
8015 msec->flags = origflags;
8016 }
8017
8018 /* Fall back on the generic ELF find_nearest_line routine. */
8019
8020 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8021 filename_ptr, functionname_ptr,
8022 line_ptr);
8023}
8024\f
8025/* When are writing out the .options or .MIPS.options section,
8026 remember the bytes we are writing out, so that we can install the
8027 GP value in the section_processing routine. */
8028
8029bfd_boolean
8030_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
8031 const void *location,
8032 file_ptr offset, bfd_size_type count)
8033{
8034 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8035 {
8036 bfd_byte *c;
8037
8038 if (elf_section_data (section) == NULL)
8039 {
8040 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8041 section->used_by_bfd = bfd_zalloc (abfd, amt);
8042 if (elf_section_data (section) == NULL)
8043 return FALSE;
8044 }
8045 c = mips_elf_section_data (section)->u.tdata;
8046 if (c == NULL)
8047 {
8048 c = bfd_zalloc (abfd, section->size);
8049 if (c == NULL)
8050 return FALSE;
8051 mips_elf_section_data (section)->u.tdata = c;
8052 }
8053
8054 memcpy (c + offset, location, count);
8055 }
8056
8057 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8058 count);
8059}
8060
8061/* This is almost identical to bfd_generic_get_... except that some
8062 MIPS relocations need to be handled specially. Sigh. */
8063
8064bfd_byte *
8065_bfd_elf_mips_get_relocated_section_contents
8066 (bfd *abfd,
8067 struct bfd_link_info *link_info,
8068 struct bfd_link_order *link_order,
8069 bfd_byte *data,
8070 bfd_boolean relocatable,
8071 asymbol **symbols)
8072{
8073 /* Get enough memory to hold the stuff */
8074 bfd *input_bfd = link_order->u.indirect.section->owner;
8075 asection *input_section = link_order->u.indirect.section;
8076 bfd_size_type sz;
8077
8078 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8079 arelent **reloc_vector = NULL;
8080 long reloc_count;
8081
8082 if (reloc_size < 0)
8083 goto error_return;
8084
8085 reloc_vector = bfd_malloc (reloc_size);
8086 if (reloc_vector == NULL && reloc_size != 0)
8087 goto error_return;
8088
8089 /* read in the section */
8090 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
8091 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
8092 goto error_return;
8093
8094 reloc_count = bfd_canonicalize_reloc (input_bfd,
8095 input_section,
8096 reloc_vector,
8097 symbols);
8098 if (reloc_count < 0)
8099 goto error_return;
8100
8101 if (reloc_count > 0)
8102 {
8103 arelent **parent;
8104 /* for mips */
8105 int gp_found;
8106 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8107
8108 {
8109 struct bfd_hash_entry *h;
8110 struct bfd_link_hash_entry *lh;
8111 /* Skip all this stuff if we aren't mixing formats. */
8112 if (abfd && input_bfd
8113 && abfd->xvec == input_bfd->xvec)
8114 lh = 0;
8115 else
8116 {
8117 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8118 lh = (struct bfd_link_hash_entry *) h;
8119 }
8120 lookup:
8121 if (lh)
8122 {
8123 switch (lh->type)
8124 {
8125 case bfd_link_hash_undefined:
8126 case bfd_link_hash_undefweak:
8127 case bfd_link_hash_common:
8128 gp_found = 0;
8129 break;
8130 case bfd_link_hash_defined:
8131 case bfd_link_hash_defweak:
8132 gp_found = 1;
8133 gp = lh->u.def.value;
8134 break;
8135 case bfd_link_hash_indirect:
8136 case bfd_link_hash_warning:
8137 lh = lh->u.i.link;
8138 /* @@FIXME ignoring warning for now */
8139 goto lookup;
8140 case bfd_link_hash_new:
8141 default:
8142 abort ();
8143 }
8144 }
8145 else
8146 gp_found = 0;
8147 }
8148 /* end mips */
8149 for (parent = reloc_vector; *parent != NULL; parent++)
8150 {
8151 char *error_message = NULL;
8152 bfd_reloc_status_type r;
8153
8154 /* Specific to MIPS: Deal with relocation types that require
8155 knowing the gp of the output bfd. */
8156 asymbol *sym = *(*parent)->sym_ptr_ptr;
8157 if (bfd_is_abs_section (sym->section) && abfd)
8158 {
8159 /* The special_function wouldn't get called anyway. */
8160 }
8161 else if (!gp_found)
8162 {
8163 /* The gp isn't there; let the special function code
8164 fall over on its own. */
8165 }
8166 else if ((*parent)->howto->special_function
8167 == _bfd_mips_elf32_gprel16_reloc)
8168 {
8169 /* bypass special_function call */
8170 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8171 input_section, relocatable,
8172 data, gp);
8173 goto skip_bfd_perform_relocation;
8174 }
8175 /* end mips specific stuff */
8176
8177 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8178 relocatable ? abfd : NULL,
8179 &error_message);
8180 skip_bfd_perform_relocation:
8181
8182 if (relocatable)
8183 {
8184 asection *os = input_section->output_section;
8185
8186 /* A partial link, so keep the relocs */
8187 os->orelocation[os->reloc_count] = *parent;
8188 os->reloc_count++;
8189 }
8190
8191 if (r != bfd_reloc_ok)
8192 {
8193 switch (r)
8194 {
8195 case bfd_reloc_undefined:
8196 if (!((*link_info->callbacks->undefined_symbol)
8197 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8198 input_bfd, input_section, (*parent)->address,
8199 TRUE)))
8200 goto error_return;
8201 break;
8202 case bfd_reloc_dangerous:
8203 BFD_ASSERT (error_message != NULL);
8204 if (!((*link_info->callbacks->reloc_dangerous)
8205 (link_info, error_message, input_bfd, input_section,
8206 (*parent)->address)))
8207 goto error_return;
8208 break;
8209 case bfd_reloc_overflow:
8210 if (!((*link_info->callbacks->reloc_overflow)
8211 (link_info, NULL,
8212 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8213 (*parent)->howto->name, (*parent)->addend,
8214 input_bfd, input_section, (*parent)->address)))
8215 goto error_return;
8216 break;
8217 case bfd_reloc_outofrange:
8218 default:
8219 abort ();
8220 break;
8221 }
8222
8223 }
8224 }
8225 }
8226 if (reloc_vector != NULL)
8227 free (reloc_vector);
8228 return data;
8229
8230error_return:
8231 if (reloc_vector != NULL)
8232 free (reloc_vector);
8233 return NULL;
8234}
8235\f
8236/* Create a MIPS ELF linker hash table. */
8237
8238struct bfd_link_hash_table *
8239_bfd_mips_elf_link_hash_table_create (bfd *abfd)
8240{
8241 struct mips_elf_link_hash_table *ret;
8242 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8243
8244 ret = bfd_malloc (amt);
8245 if (ret == NULL)
8246 return NULL;
8247
8248 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8249 mips_elf_link_hash_newfunc))
8250 {
8251 free (ret);
8252 return NULL;
8253 }
8254
8255#if 0
8256 /* We no longer use this. */
8257 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8258 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8259#endif
8260 ret->procedure_count = 0;
8261 ret->compact_rel_size = 0;
8262 ret->use_rld_obj_head = FALSE;
8263 ret->rld_value = 0;
8264 ret->mips16_stubs_seen = FALSE;
8265
8266 return &ret->root.root;
8267}
8268\f
8269/* We need to use a special link routine to handle the .reginfo and
8270 the .mdebug sections. We need to merge all instances of these
8271 sections together, not write them all out sequentially. */
8272
8273bfd_boolean
8274_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8275{
8276 asection **secpp;
8277 asection *o;
8278 struct bfd_link_order *p;
8279 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8280 asection *rtproc_sec;
8281 Elf32_RegInfo reginfo;
8282 struct ecoff_debug_info debug;
8283 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8284 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
8285 HDRR *symhdr = &debug.symbolic_header;
8286 void *mdebug_handle = NULL;
8287 asection *s;
8288 EXTR esym;
8289 unsigned int i;
8290 bfd_size_type amt;
8291
8292 static const char * const secname[] =
8293 {
8294 ".text", ".init", ".fini", ".data",
8295 ".rodata", ".sdata", ".sbss", ".bss"
8296 };
8297 static const int sc[] =
8298 {
8299 scText, scInit, scFini, scData,
8300 scRData, scSData, scSBss, scBss
8301 };
8302
8303 /* We'd carefully arranged the dynamic symbol indices, and then the
8304 generic size_dynamic_sections renumbered them out from under us.
8305 Rather than trying somehow to prevent the renumbering, just do
8306 the sort again. */
8307 if (elf_hash_table (info)->dynamic_sections_created)
8308 {
8309 bfd *dynobj;
8310 asection *got;
8311 struct mips_got_info *g;
8312 bfd_size_type dynsecsymcount;
8313
8314 /* When we resort, we must tell mips_elf_sort_hash_table what
8315 the lowest index it may use is. That's the number of section
8316 symbols we're going to add. The generic ELF linker only
8317 adds these symbols when building a shared object. Note that
8318 we count the sections after (possibly) removing the .options
8319 section above. */
8320
8321 dynsecsymcount = 0;
8322 if (info->shared)
8323 {
8324 asection * p;
8325
8326 for (p = abfd->sections; p ; p = p->next)
8327 if ((p->flags & SEC_EXCLUDE) == 0
8328 && (p->flags & SEC_ALLOC) != 0
8329 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8330 ++ dynsecsymcount;
8331 }
8332
8333 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
8334 return FALSE;
8335
8336 /* Make sure we didn't grow the global .got region. */
8337 dynobj = elf_hash_table (info)->dynobj;
8338 got = mips_elf_got_section (dynobj, FALSE);
8339 g = mips_elf_section_data (got)->u.got_info;
8340
8341 if (g->global_gotsym != NULL)
8342 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8343 - g->global_gotsym->dynindx)
8344 <= g->global_gotno);
8345 }
8346
8347#if 0
8348 /* We want to set the GP value for ld -r. */
8349 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8350 include it, even though we don't process it quite right. (Some
8351 entries are supposed to be merged.) Empirically, we seem to be
8352 better off including it then not. */
8353 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8354 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8355 {
8356 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8357 {
8358 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8359 if (p->type == bfd_indirect_link_order)
8360 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8361 (*secpp)->link_order_head = NULL;
8362 bfd_section_list_remove (abfd, secpp);
8363 --abfd->section_count;
8364
8365 break;
8366 }
8367 }
8368
8369 /* We include .MIPS.options, even though we don't process it quite right.
8370 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8371 to be better off including it than not. */
8372 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8373 {
8374 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8375 {
8376 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8377 if (p->type == bfd_indirect_link_order)
8378 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8379 (*secpp)->link_order_head = NULL;
8380 bfd_section_list_remove (abfd, secpp);
8381 --abfd->section_count;
8382
8383 break;
8384 }
8385 }
8386#endif
8387
8388 /* Get a value for the GP register. */
8389 if (elf_gp (abfd) == 0)
8390 {
8391 struct bfd_link_hash_entry *h;
8392
8393 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8394 if (h != NULL && h->type == bfd_link_hash_defined)
8395 elf_gp (abfd) = (h->u.def.value
8396 + h->u.def.section->output_section->vma
8397 + h->u.def.section->output_offset);
8398 else if (info->relocatable)
8399 {
8400 bfd_vma lo = MINUS_ONE;
8401
8402 /* Find the GP-relative section with the lowest offset. */
8403 for (o = abfd->sections; o != NULL; o = o->next)
8404 if (o->vma < lo
8405 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8406 lo = o->vma;
8407
8408 /* And calculate GP relative to that. */
8409 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8410 }
8411 else
8412 {
8413 /* If the relocate_section function needs to do a reloc
8414 involving the GP value, it should make a reloc_dangerous
8415 callback to warn that GP is not defined. */
8416 }
8417 }
8418
8419 /* Go through the sections and collect the .reginfo and .mdebug
8420 information. */
8421 reginfo_sec = NULL;
8422 mdebug_sec = NULL;
8423 gptab_data_sec = NULL;
8424 gptab_bss_sec = NULL;
8425 for (o = abfd->sections; o != NULL; o = o->next)
8426 {
8427 if (strcmp (o->name, ".reginfo") == 0)
8428 {
8429 memset (&reginfo, 0, sizeof reginfo);
8430
8431 /* We have found the .reginfo section in the output file.
8432 Look through all the link_orders comprising it and merge
8433 the information together. */
8434 for (p = o->link_order_head; p != NULL; p = p->next)
8435 {
8436 asection *input_section;
8437 bfd *input_bfd;
8438 Elf32_External_RegInfo ext;
8439 Elf32_RegInfo sub;
8440
8441 if (p->type != bfd_indirect_link_order)
8442 {
8443 if (p->type == bfd_data_link_order)
8444 continue;
8445 abort ();
8446 }
8447
8448 input_section = p->u.indirect.section;
8449 input_bfd = input_section->owner;
8450
8451 if (! bfd_get_section_contents (input_bfd, input_section,
8452 &ext, 0, sizeof ext))
8453 return FALSE;
8454
8455 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8456
8457 reginfo.ri_gprmask |= sub.ri_gprmask;
8458 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8459 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8460 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8461 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8462
8463 /* ri_gp_value is set by the function
8464 mips_elf32_section_processing when the section is
8465 finally written out. */
8466
8467 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8468 elf_link_input_bfd ignores this section. */
8469 input_section->flags &= ~SEC_HAS_CONTENTS;
8470 }
8471
8472 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8473 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
8474
8475 /* Skip this section later on (I don't think this currently
8476 matters, but someday it might). */
8477 o->link_order_head = NULL;
8478
8479 reginfo_sec = o;
8480 }
8481
8482 if (strcmp (o->name, ".mdebug") == 0)
8483 {
8484 struct extsym_info einfo;
8485 bfd_vma last;
8486
8487 /* We have found the .mdebug section in the output file.
8488 Look through all the link_orders comprising it and merge
8489 the information together. */
8490 symhdr->magic = swap->sym_magic;
8491 /* FIXME: What should the version stamp be? */
8492 symhdr->vstamp = 0;
8493 symhdr->ilineMax = 0;
8494 symhdr->cbLine = 0;
8495 symhdr->idnMax = 0;
8496 symhdr->ipdMax = 0;
8497 symhdr->isymMax = 0;
8498 symhdr->ioptMax = 0;
8499 symhdr->iauxMax = 0;
8500 symhdr->issMax = 0;
8501 symhdr->issExtMax = 0;
8502 symhdr->ifdMax = 0;
8503 symhdr->crfd = 0;
8504 symhdr->iextMax = 0;
8505
8506 /* We accumulate the debugging information itself in the
8507 debug_info structure. */
8508 debug.line = NULL;
8509 debug.external_dnr = NULL;
8510 debug.external_pdr = NULL;
8511 debug.external_sym = NULL;
8512 debug.external_opt = NULL;
8513 debug.external_aux = NULL;
8514 debug.ss = NULL;
8515 debug.ssext = debug.ssext_end = NULL;
8516 debug.external_fdr = NULL;
8517 debug.external_rfd = NULL;
8518 debug.external_ext = debug.external_ext_end = NULL;
8519
8520 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8521 if (mdebug_handle == NULL)
8522 return FALSE;
8523
8524 esym.jmptbl = 0;
8525 esym.cobol_main = 0;
8526 esym.weakext = 0;
8527 esym.reserved = 0;
8528 esym.ifd = ifdNil;
8529 esym.asym.iss = issNil;
8530 esym.asym.st = stLocal;
8531 esym.asym.reserved = 0;
8532 esym.asym.index = indexNil;
8533 last = 0;
8534 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8535 {
8536 esym.asym.sc = sc[i];
8537 s = bfd_get_section_by_name (abfd, secname[i]);
8538 if (s != NULL)
8539 {
8540 esym.asym.value = s->vma;
8541 last = s->vma + s->size;
8542 }
8543 else
8544 esym.asym.value = last;
8545 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8546 secname[i], &esym))
8547 return FALSE;
8548 }
8549
8550 for (p = o->link_order_head; p != NULL; p = p->next)
8551 {
8552 asection *input_section;
8553 bfd *input_bfd;
8554 const struct ecoff_debug_swap *input_swap;
8555 struct ecoff_debug_info input_debug;
8556 char *eraw_src;
8557 char *eraw_end;
8558
8559 if (p->type != bfd_indirect_link_order)
8560 {
8561 if (p->type == bfd_data_link_order)
8562 continue;
8563 abort ();
8564 }
8565
8566 input_section = p->u.indirect.section;
8567 input_bfd = input_section->owner;
8568
8569 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8570 || (get_elf_backend_data (input_bfd)
8571 ->elf_backend_ecoff_debug_swap) == NULL)
8572 {
8573 /* I don't know what a non MIPS ELF bfd would be
8574 doing with a .mdebug section, but I don't really
8575 want to deal with it. */
8576 continue;
8577 }
8578
8579 input_swap = (get_elf_backend_data (input_bfd)
8580 ->elf_backend_ecoff_debug_swap);
8581
8582 BFD_ASSERT (p->size == input_section->size);
8583
8584 /* The ECOFF linking code expects that we have already
8585 read in the debugging information and set up an
8586 ecoff_debug_info structure, so we do that now. */
8587 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8588 &input_debug))
8589 return FALSE;
8590
8591 if (! (bfd_ecoff_debug_accumulate
8592 (mdebug_handle, abfd, &debug, swap, input_bfd,
8593 &input_debug, input_swap, info)))
8594 return FALSE;
8595
8596 /* Loop through the external symbols. For each one with
8597 interesting information, try to find the symbol in
8598 the linker global hash table and save the information
8599 for the output external symbols. */
8600 eraw_src = input_debug.external_ext;
8601 eraw_end = (eraw_src
8602 + (input_debug.symbolic_header.iextMax
8603 * input_swap->external_ext_size));
8604 for (;
8605 eraw_src < eraw_end;
8606 eraw_src += input_swap->external_ext_size)
8607 {
8608 EXTR ext;
8609 const char *name;
8610 struct mips_elf_link_hash_entry *h;
8611
8612 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8613 if (ext.asym.sc == scNil
8614 || ext.asym.sc == scUndefined
8615 || ext.asym.sc == scSUndefined)
8616 continue;
8617
8618 name = input_debug.ssext + ext.asym.iss;
8619 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8620 name, FALSE, FALSE, TRUE);
8621 if (h == NULL || h->esym.ifd != -2)
8622 continue;
8623
8624 if (ext.ifd != -1)
8625 {
8626 BFD_ASSERT (ext.ifd
8627 < input_debug.symbolic_header.ifdMax);
8628 ext.ifd = input_debug.ifdmap[ext.ifd];
8629 }
8630
8631 h->esym = ext;
8632 }
8633
8634 /* Free up the information we just read. */
8635 free (input_debug.line);
8636 free (input_debug.external_dnr);
8637 free (input_debug.external_pdr);
8638 free (input_debug.external_sym);
8639 free (input_debug.external_opt);
8640 free (input_debug.external_aux);
8641 free (input_debug.ss);
8642 free (input_debug.ssext);
8643 free (input_debug.external_fdr);
8644 free (input_debug.external_rfd);
8645 free (input_debug.external_ext);
8646
8647 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8648 elf_link_input_bfd ignores this section. */
8649 input_section->flags &= ~SEC_HAS_CONTENTS;
8650 }
8651
8652 if (SGI_COMPAT (abfd) && info->shared)
8653 {
8654 /* Create .rtproc section. */
8655 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8656 if (rtproc_sec == NULL)
8657 {
8658 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8659 | SEC_LINKER_CREATED | SEC_READONLY);
8660
8661 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8662 if (rtproc_sec == NULL
8663 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8664 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8665 return FALSE;
8666 }
8667
8668 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8669 info, rtproc_sec,
8670 &debug))
8671 return FALSE;
8672 }
8673
8674 /* Build the external symbol information. */
8675 einfo.abfd = abfd;
8676 einfo.info = info;
8677 einfo.debug = &debug;
8678 einfo.swap = swap;
8679 einfo.failed = FALSE;
8680 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8681 mips_elf_output_extsym, &einfo);
8682 if (einfo.failed)
8683 return FALSE;
8684
8685 /* Set the size of the .mdebug section. */
8686 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
8687
8688 /* Skip this section later on (I don't think this currently
8689 matters, but someday it might). */
8690 o->link_order_head = NULL;
8691
8692 mdebug_sec = o;
8693 }
8694
8695 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8696 {
8697 const char *subname;
8698 unsigned int c;
8699 Elf32_gptab *tab;
8700 Elf32_External_gptab *ext_tab;
8701 unsigned int j;
8702
8703 /* The .gptab.sdata and .gptab.sbss sections hold
8704 information describing how the small data area would
8705 change depending upon the -G switch. These sections
8706 not used in executables files. */
8707 if (! info->relocatable)
8708 {
8709 for (p = o->link_order_head; p != NULL; p = p->next)
8710 {
8711 asection *input_section;
8712
8713 if (p->type != bfd_indirect_link_order)
8714 {
8715 if (p->type == bfd_data_link_order)
8716 continue;
8717 abort ();
8718 }
8719
8720 input_section = p->u.indirect.section;
8721
8722 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8723 elf_link_input_bfd ignores this section. */
8724 input_section->flags &= ~SEC_HAS_CONTENTS;
8725 }
8726
8727 /* Skip this section later on (I don't think this
8728 currently matters, but someday it might). */
8729 o->link_order_head = NULL;
8730
8731 /* Really remove the section. */
8732 for (secpp = &abfd->sections;
8733 *secpp != o;
8734 secpp = &(*secpp)->next)
8735 ;
8736 bfd_section_list_remove (abfd, secpp);
8737 --abfd->section_count;
8738
8739 continue;
8740 }
8741
8742 /* There is one gptab for initialized data, and one for
8743 uninitialized data. */
8744 if (strcmp (o->name, ".gptab.sdata") == 0)
8745 gptab_data_sec = o;
8746 else if (strcmp (o->name, ".gptab.sbss") == 0)
8747 gptab_bss_sec = o;
8748 else
8749 {
8750 (*_bfd_error_handler)
8751 (_("%s: illegal section name `%s'"),
8752 bfd_get_filename (abfd), o->name);
8753 bfd_set_error (bfd_error_nonrepresentable_section);
8754 return FALSE;
8755 }
8756
8757 /* The linker script always combines .gptab.data and
8758 .gptab.sdata into .gptab.sdata, and likewise for
8759 .gptab.bss and .gptab.sbss. It is possible that there is
8760 no .sdata or .sbss section in the output file, in which
8761 case we must change the name of the output section. */
8762 subname = o->name + sizeof ".gptab" - 1;
8763 if (bfd_get_section_by_name (abfd, subname) == NULL)
8764 {
8765 if (o == gptab_data_sec)
8766 o->name = ".gptab.data";
8767 else
8768 o->name = ".gptab.bss";
8769 subname = o->name + sizeof ".gptab" - 1;
8770 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8771 }
8772
8773 /* Set up the first entry. */
8774 c = 1;
8775 amt = c * sizeof (Elf32_gptab);
8776 tab = bfd_malloc (amt);
8777 if (tab == NULL)
8778 return FALSE;
8779 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8780 tab[0].gt_header.gt_unused = 0;
8781
8782 /* Combine the input sections. */
8783 for (p = o->link_order_head; p != NULL; p = p->next)
8784 {
8785 asection *input_section;
8786 bfd *input_bfd;
8787 bfd_size_type size;
8788 unsigned long last;
8789 bfd_size_type gpentry;
8790
8791 if (p->type != bfd_indirect_link_order)
8792 {
8793 if (p->type == bfd_data_link_order)
8794 continue;
8795 abort ();
8796 }
8797
8798 input_section = p->u.indirect.section;
8799 input_bfd = input_section->owner;
8800
8801 /* Combine the gptab entries for this input section one
8802 by one. We know that the input gptab entries are
8803 sorted by ascending -G value. */
8804 size = input_section->size;
8805 last = 0;
8806 for (gpentry = sizeof (Elf32_External_gptab);
8807 gpentry < size;
8808 gpentry += sizeof (Elf32_External_gptab))
8809 {
8810 Elf32_External_gptab ext_gptab;
8811 Elf32_gptab int_gptab;
8812 unsigned long val;
8813 unsigned long add;
8814 bfd_boolean exact;
8815 unsigned int look;
8816
8817 if (! (bfd_get_section_contents
8818 (input_bfd, input_section, &ext_gptab, gpentry,
8819 sizeof (Elf32_External_gptab))))
8820 {
8821 free (tab);
8822 return FALSE;
8823 }
8824
8825 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8826 &int_gptab);
8827 val = int_gptab.gt_entry.gt_g_value;
8828 add = int_gptab.gt_entry.gt_bytes - last;
8829
8830 exact = FALSE;
8831 for (look = 1; look < c; look++)
8832 {
8833 if (tab[look].gt_entry.gt_g_value >= val)
8834 tab[look].gt_entry.gt_bytes += add;
8835
8836 if (tab[look].gt_entry.gt_g_value == val)
8837 exact = TRUE;
8838 }
8839
8840 if (! exact)
8841 {
8842 Elf32_gptab *new_tab;
8843 unsigned int max;
8844
8845 /* We need a new table entry. */
8846 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8847 new_tab = bfd_realloc (tab, amt);
8848 if (new_tab == NULL)
8849 {
8850 free (tab);
8851 return FALSE;
8852 }
8853 tab = new_tab;
8854 tab[c].gt_entry.gt_g_value = val;
8855 tab[c].gt_entry.gt_bytes = add;
8856
8857 /* Merge in the size for the next smallest -G
8858 value, since that will be implied by this new
8859 value. */
8860 max = 0;
8861 for (look = 1; look < c; look++)
8862 {
8863 if (tab[look].gt_entry.gt_g_value < val
8864 && (max == 0
8865 || (tab[look].gt_entry.gt_g_value
8866 > tab[max].gt_entry.gt_g_value)))
8867 max = look;
8868 }
8869 if (max != 0)
8870 tab[c].gt_entry.gt_bytes +=
8871 tab[max].gt_entry.gt_bytes;
8872
8873 ++c;
8874 }
8875
8876 last = int_gptab.gt_entry.gt_bytes;
8877 }
8878
8879 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8880 elf_link_input_bfd ignores this section. */
8881 input_section->flags &= ~SEC_HAS_CONTENTS;
8882 }
8883
8884 /* The table must be sorted by -G value. */
8885 if (c > 2)
8886 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8887
8888 /* Swap out the table. */
8889 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8890 ext_tab = bfd_alloc (abfd, amt);
8891 if (ext_tab == NULL)
8892 {
8893 free (tab);
8894 return FALSE;
8895 }
8896
8897 for (j = 0; j < c; j++)
8898 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8899 free (tab);
8900
8901 o->size = c * sizeof (Elf32_External_gptab);
8902 o->contents = (bfd_byte *) ext_tab;
8903
8904 /* Skip this section later on (I don't think this currently
8905 matters, but someday it might). */
8906 o->link_order_head = NULL;
8907 }
8908 }
8909
8910 /* Invoke the regular ELF backend linker to do all the work. */
8911 if (!bfd_elf_final_link (abfd, info))
8912 return FALSE;
8913
8914 /* Now write out the computed sections. */
8915
8916 if (reginfo_sec != NULL)
8917 {
8918 Elf32_External_RegInfo ext;
8919
8920 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8921 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8922 return FALSE;
8923 }
8924
8925 if (mdebug_sec != NULL)
8926 {
8927 BFD_ASSERT (abfd->output_has_begun);
8928 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8929 swap, info,
8930 mdebug_sec->filepos))
8931 return FALSE;
8932
8933 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8934 }
8935
8936 if (gptab_data_sec != NULL)
8937 {
8938 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8939 gptab_data_sec->contents,
8940 0, gptab_data_sec->size))
8941 return FALSE;
8942 }
8943
8944 if (gptab_bss_sec != NULL)
8945 {
8946 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8947 gptab_bss_sec->contents,
8948 0, gptab_bss_sec->size))
8949 return FALSE;
8950 }
8951
8952 if (SGI_COMPAT (abfd))
8953 {
8954 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8955 if (rtproc_sec != NULL)
8956 {
8957 if (! bfd_set_section_contents (abfd, rtproc_sec,
8958 rtproc_sec->contents,
8959 0, rtproc_sec->size))
8960 return FALSE;
8961 }
8962 }
8963
8964 return TRUE;
8965}
8966\f
8967/* Structure for saying that BFD machine EXTENSION extends BASE. */
8968
8969struct mips_mach_extension {
8970 unsigned long extension, base;
8971};
8972
8973
8974/* An array describing how BFD machines relate to one another. The entries
8975 are ordered topologically with MIPS I extensions listed last. */
8976
8977static const struct mips_mach_extension mips_mach_extensions[] = {
8978 /* MIPS64 extensions. */
8979 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8980 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8981
8982 /* MIPS V extensions. */
8983 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8984
8985 /* R10000 extensions. */
8986 { bfd_mach_mips12000, bfd_mach_mips10000 },
8987
8988 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8989 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8990 better to allow vr5400 and vr5500 code to be merged anyway, since
8991 many libraries will just use the core ISA. Perhaps we could add
8992 some sort of ASE flag if this ever proves a problem. */
8993 { bfd_mach_mips5500, bfd_mach_mips5400 },
8994 { bfd_mach_mips5400, bfd_mach_mips5000 },
8995
8996 /* MIPS IV extensions. */
8997 { bfd_mach_mips5, bfd_mach_mips8000 },
8998 { bfd_mach_mips10000, bfd_mach_mips8000 },
8999 { bfd_mach_mips5000, bfd_mach_mips8000 },
9000 { bfd_mach_mips7000, bfd_mach_mips8000 },
9001 { bfd_mach_mips9000, bfd_mach_mips8000 },
9002
9003 /* VR4100 extensions. */
9004 { bfd_mach_mips4120, bfd_mach_mips4100 },
9005 { bfd_mach_mips4111, bfd_mach_mips4100 },
9006
9007 /* MIPS III extensions. */
9008 { bfd_mach_mips8000, bfd_mach_mips4000 },
9009 { bfd_mach_mips4650, bfd_mach_mips4000 },
9010 { bfd_mach_mips4600, bfd_mach_mips4000 },
9011 { bfd_mach_mips4400, bfd_mach_mips4000 },
9012 { bfd_mach_mips4300, bfd_mach_mips4000 },
9013 { bfd_mach_mips4100, bfd_mach_mips4000 },
9014 { bfd_mach_mips4010, bfd_mach_mips4000 },
9015
9016 /* MIPS32 extensions. */
9017 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9018
9019 /* MIPS II extensions. */
9020 { bfd_mach_mips4000, bfd_mach_mips6000 },
9021 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9022
9023 /* MIPS I extensions. */
9024 { bfd_mach_mips6000, bfd_mach_mips3000 },
9025 { bfd_mach_mips3900, bfd_mach_mips3000 }
9026};
9027
9028
9029/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9030
9031static bfd_boolean
9032mips_mach_extends_p (unsigned long base, unsigned long extension)
9033{
9034 size_t i;
9035
9036 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9037 if (extension == mips_mach_extensions[i].extension)
9038 extension = mips_mach_extensions[i].base;
9039
9040 return extension == base;
9041}
9042
9043
9044/* Return true if the given ELF header flags describe a 32-bit binary. */
9045
9046static bfd_boolean
9047mips_32bit_flags_p (flagword flags)
9048{
9049 return ((flags & EF_MIPS_32BITMODE) != 0
9050 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9051 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9052 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9053 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9054 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9055 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9056}
9057
9058
9059/* Merge backend specific data from an object file to the output
9060 object file when linking. */
9061
9062bfd_boolean
9063_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
9064{
9065 flagword old_flags;
9066 flagword new_flags;
9067 bfd_boolean ok;
9068 bfd_boolean null_input_bfd = TRUE;
9069 asection *sec;
9070
9071 /* Check if we have the same endianess */
9072 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9073 {
9074 (*_bfd_error_handler)
9075 (_("%B: endianness incompatible with that of the selected emulation"),
9076 ibfd);
9077 return FALSE;
9078 }
9079
9080 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9081 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9082 return TRUE;
9083
9084 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9085 {
9086 (*_bfd_error_handler)
9087 (_("%B: ABI is incompatible with that of the selected emulation"),
9088 ibfd);
9089 return FALSE;
9090 }
9091
9092 new_flags = elf_elfheader (ibfd)->e_flags;
9093 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9094 old_flags = elf_elfheader (obfd)->e_flags;
9095
9096 if (! elf_flags_init (obfd))
9097 {
9098 elf_flags_init (obfd) = TRUE;
9099 elf_elfheader (obfd)->e_flags = new_flags;
9100 elf_elfheader (obfd)->e_ident[EI_CLASS]
9101 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9102
9103 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9104 && bfd_get_arch_info (obfd)->the_default)
9105 {
9106 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9107 bfd_get_mach (ibfd)))
9108 return FALSE;
9109 }
9110
9111 return TRUE;
9112 }
9113
9114 /* Check flag compatibility. */
9115
9116 new_flags &= ~EF_MIPS_NOREORDER;
9117 old_flags &= ~EF_MIPS_NOREORDER;
9118
9119 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9120 doesn't seem to matter. */
9121 new_flags &= ~EF_MIPS_XGOT;
9122 old_flags &= ~EF_MIPS_XGOT;
9123
9124 /* MIPSpro generates ucode info in n64 objects. Again, we should
9125 just be able to ignore this. */
9126 new_flags &= ~EF_MIPS_UCODE;
9127 old_flags &= ~EF_MIPS_UCODE;
9128
9129 if (new_flags == old_flags)
9130 return TRUE;
9131
9132 /* Check to see if the input BFD actually contains any sections.
9133 If not, its flags may not have been initialised either, but it cannot
9134 actually cause any incompatibility. */
9135 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9136 {
9137 /* Ignore synthetic sections and empty .text, .data and .bss sections
9138 which are automatically generated by gas. */
9139 if (strcmp (sec->name, ".reginfo")
9140 && strcmp (sec->name, ".mdebug")
9141 && (sec->size != 0
9142 || (strcmp (sec->name, ".text")
9143 && strcmp (sec->name, ".data")
9144 && strcmp (sec->name, ".bss"))))
9145 {
9146 null_input_bfd = FALSE;
9147 break;
9148 }
9149 }
9150 if (null_input_bfd)
9151 return TRUE;
9152
9153 ok = TRUE;
9154
9155 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9156 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9157 {
9158 (*_bfd_error_handler)
9159 (_("%B: warning: linking PIC files with non-PIC files"),
9160 ibfd);
9161 ok = TRUE;
9162 }
9163
9164 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9165 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9166 if (! (new_flags & EF_MIPS_PIC))
9167 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9168
9169 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9170 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9171
9172 /* Compare the ISAs. */
9173 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9174 {
9175 (*_bfd_error_handler)
9176 (_("%B: linking 32-bit code with 64-bit code"),
9177 ibfd);
9178 ok = FALSE;
9179 }
9180 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9181 {
9182 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9183 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9184 {
9185 /* Copy the architecture info from IBFD to OBFD. Also copy
9186 the 32-bit flag (if set) so that we continue to recognise
9187 OBFD as a 32-bit binary. */
9188 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9189 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9190 elf_elfheader (obfd)->e_flags
9191 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9192
9193 /* Copy across the ABI flags if OBFD doesn't use them
9194 and if that was what caused us to treat IBFD as 32-bit. */
9195 if ((old_flags & EF_MIPS_ABI) == 0
9196 && mips_32bit_flags_p (new_flags)
9197 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9198 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9199 }
9200 else
9201 {
9202 /* The ISAs aren't compatible. */
9203 (*_bfd_error_handler)
9204 (_("%B: linking %s module with previous %s modules"),
9205 ibfd,
9206 bfd_printable_name (ibfd),
9207 bfd_printable_name (obfd));
9208 ok = FALSE;
9209 }
9210 }
9211
9212 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9213 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9214
9215 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9216 does set EI_CLASS differently from any 32-bit ABI. */
9217 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9218 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9219 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9220 {
9221 /* Only error if both are set (to different values). */
9222 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9223 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9224 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9225 {
9226 (*_bfd_error_handler)
9227 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9228 ibfd,
9229 elf_mips_abi_name (ibfd),
9230 elf_mips_abi_name (obfd));
9231 ok = FALSE;
9232 }
9233 new_flags &= ~EF_MIPS_ABI;
9234 old_flags &= ~EF_MIPS_ABI;
9235 }
9236
9237 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9238 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9239 {
9240 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9241
9242 new_flags &= ~ EF_MIPS_ARCH_ASE;
9243 old_flags &= ~ EF_MIPS_ARCH_ASE;
9244 }
9245
9246 /* Warn about any other mismatches */
9247 if (new_flags != old_flags)
9248 {
9249 (*_bfd_error_handler)
9250 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9251 ibfd, (unsigned long) new_flags,
9252 (unsigned long) old_flags);
9253 ok = FALSE;
9254 }
9255
9256 if (! ok)
9257 {
9258 bfd_set_error (bfd_error_bad_value);
9259 return FALSE;
9260 }
9261
9262 return TRUE;
9263}
9264
9265/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9266
9267bfd_boolean
9268_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9269{
9270 BFD_ASSERT (!elf_flags_init (abfd)
9271 || elf_elfheader (abfd)->e_flags == flags);
9272
9273 elf_elfheader (abfd)->e_flags = flags;
9274 elf_flags_init (abfd) = TRUE;
9275 return TRUE;
9276}
9277
9278bfd_boolean
9279_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9280{
9281 FILE *file = ptr;
9282
9283 BFD_ASSERT (abfd != NULL && ptr != NULL);
9284
9285 /* Print normal ELF private data. */
9286 _bfd_elf_print_private_bfd_data (abfd, ptr);
9287
9288 /* xgettext:c-format */
9289 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9290
9291 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9292 fprintf (file, _(" [abi=O32]"));
9293 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9294 fprintf (file, _(" [abi=O64]"));
9295 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9296 fprintf (file, _(" [abi=EABI32]"));
9297 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9298 fprintf (file, _(" [abi=EABI64]"));
9299 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9300 fprintf (file, _(" [abi unknown]"));
9301 else if (ABI_N32_P (abfd))
9302 fprintf (file, _(" [abi=N32]"));
9303 else if (ABI_64_P (abfd))
9304 fprintf (file, _(" [abi=64]"));
9305 else
9306 fprintf (file, _(" [no abi set]"));
9307
9308 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9309 fprintf (file, _(" [mips1]"));
9310 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9311 fprintf (file, _(" [mips2]"));
9312 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9313 fprintf (file, _(" [mips3]"));
9314 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9315 fprintf (file, _(" [mips4]"));
9316 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9317 fprintf (file, _(" [mips5]"));
9318 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9319 fprintf (file, _(" [mips32]"));
9320 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9321 fprintf (file, _(" [mips64]"));
9322 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9323 fprintf (file, _(" [mips32r2]"));
9324 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9325 fprintf (file, _(" [mips64r2]"));
9326 else
9327 fprintf (file, _(" [unknown ISA]"));
9328
9329 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9330 fprintf (file, _(" [mdmx]"));
9331
9332 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9333 fprintf (file, _(" [mips16]"));
9334
9335 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9336 fprintf (file, _(" [32bitmode]"));
9337 else
9338 fprintf (file, _(" [not 32bitmode]"));
9339
9340 fputc ('\n', file);
9341
9342 return TRUE;
9343}
9344
9345struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9346{
9347 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9348 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9349 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9350 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9351 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9352 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9353 { NULL, 0, 0, 0, 0 }
9354};
This page took 0.077179 seconds and 4 git commands to generate.