gas/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
... / ...
CommitLineData
1/* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31/* This file handles functionality common to the different MIPS ABI's. */
32
33#include "sysdep.h"
34#include "bfd.h"
35#include "libbfd.h"
36#include "libiberty.h"
37#include "elf-bfd.h"
38#include "elfxx-mips.h"
39#include "elf/mips.h"
40#include "elf-vxworks.h"
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
48#include "hashtab.h"
49
50/* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83struct mips_got_entry
84{
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115};
116
117/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120struct mips_got_page_range
121{
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125};
126
127/* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129struct mips_got_page_entry
130{
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139};
140
141/* This structure is used to hold .got information when linking. */
142
143struct mips_got_info
144{
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178};
179
180/* Map an input bfd to a got in a multi-got link. */
181
182struct mips_elf_bfd2got_hash
183{
184 bfd *bfd;
185 struct mips_got_info *g;
186};
187
188/* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191struct mips_elf_got_per_bfd_arg
192{
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216};
217
218/* Another structure used to pass arguments for got entries traversal. */
219
220struct mips_elf_set_global_got_offset_arg
221{
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226};
227
228/* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231struct mips_elf_count_tls_arg
232{
233 struct bfd_link_info *info;
234 unsigned int needed;
235};
236
237struct _mips_elf_section_data
238{
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244};
245
246#define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249#define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254/* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271#define GGA_NORMAL 0
272#define GGA_RELOC_ONLY 1
273#define GGA_NONE 2
274
275/* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302};
303
304/* Macros for populating a mips_elf_la25_stub. */
305
306#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309
310/* This structure is passed to mips_elf_sort_hash_table_f when sorting
311 the dynamic symbols. */
312
313struct mips_elf_hash_sort_data
314{
315 /* The symbol in the global GOT with the lowest dynamic symbol table
316 index. */
317 struct elf_link_hash_entry *low;
318 /* The least dynamic symbol table index corresponding to a non-TLS
319 symbol with a GOT entry. */
320 long min_got_dynindx;
321 /* The greatest dynamic symbol table index corresponding to a symbol
322 with a GOT entry that is not referenced (e.g., a dynamic symbol
323 with dynamic relocations pointing to it from non-primary GOTs). */
324 long max_unref_got_dynindx;
325 /* The greatest dynamic symbol table index not corresponding to a
326 symbol without a GOT entry. */
327 long max_non_got_dynindx;
328};
329
330/* The MIPS ELF linker needs additional information for each symbol in
331 the global hash table. */
332
333struct mips_elf_link_hash_entry
334{
335 struct elf_link_hash_entry root;
336
337 /* External symbol information. */
338 EXTR esym;
339
340 /* The la25 stub we have created for ths symbol, if any. */
341 struct mips_elf_la25_stub *la25_stub;
342
343 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
344 this symbol. */
345 unsigned int possibly_dynamic_relocs;
346
347 /* If there is a stub that 32 bit functions should use to call this
348 16 bit function, this points to the section containing the stub. */
349 asection *fn_stub;
350
351 /* If there is a stub that 16 bit functions should use to call this
352 32 bit function, this points to the section containing the stub. */
353 asection *call_stub;
354
355 /* This is like the call_stub field, but it is used if the function
356 being called returns a floating point value. */
357 asection *call_fp_stub;
358
359#define GOT_NORMAL 0
360#define GOT_TLS_GD 1
361#define GOT_TLS_LDM 2
362#define GOT_TLS_IE 4
363#define GOT_TLS_OFFSET_DONE 0x40
364#define GOT_TLS_DONE 0x80
365 unsigned char tls_type;
366
367 /* This is only used in single-GOT mode; in multi-GOT mode there
368 is one mips_got_entry per GOT entry, so the offset is stored
369 there. In single-GOT mode there may be many mips_got_entry
370 structures all referring to the same GOT slot. It might be
371 possible to use root.got.offset instead, but that field is
372 overloaded already. */
373 bfd_vma tls_got_offset;
374
375 /* The highest GGA_* value that satisfies all references to this symbol. */
376 unsigned int global_got_area : 2;
377
378 /* True if all GOT relocations against this symbol are for calls. This is
379 a looser condition than no_fn_stub below, because there may be other
380 non-call non-GOT relocations against the symbol. */
381 unsigned int got_only_for_calls : 1;
382
383 /* True if one of the relocations described by possibly_dynamic_relocs
384 is against a readonly section. */
385 unsigned int readonly_reloc : 1;
386
387 /* True if there is a relocation against this symbol that must be
388 resolved by the static linker (in other words, if the relocation
389 cannot possibly be made dynamic). */
390 unsigned int has_static_relocs : 1;
391
392 /* True if we must not create a .MIPS.stubs entry for this symbol.
393 This is set, for example, if there are relocations related to
394 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
395 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
396 unsigned int no_fn_stub : 1;
397
398 /* Whether we need the fn_stub; this is true if this symbol appears
399 in any relocs other than a 16 bit call. */
400 unsigned int need_fn_stub : 1;
401
402 /* True if this symbol is referenced by branch relocations from
403 any non-PIC input file. This is used to determine whether an
404 la25 stub is required. */
405 unsigned int has_nonpic_branches : 1;
406
407 /* Does this symbol need a traditional MIPS lazy-binding stub
408 (as opposed to a PLT entry)? */
409 unsigned int needs_lazy_stub : 1;
410};
411
412/* MIPS ELF linker hash table. */
413
414struct mips_elf_link_hash_table
415{
416 struct elf_link_hash_table root;
417#if 0
418 /* We no longer use this. */
419 /* String section indices for the dynamic section symbols. */
420 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
421#endif
422
423 /* The number of .rtproc entries. */
424 bfd_size_type procedure_count;
425
426 /* The size of the .compact_rel section (if SGI_COMPAT). */
427 bfd_size_type compact_rel_size;
428
429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
430 entry is set to the address of __rld_obj_head as in IRIX5. */
431 bfd_boolean use_rld_obj_head;
432
433 /* This is the value of the __rld_map or __rld_obj_head symbol. */
434 bfd_vma rld_value;
435
436 /* This is set if we see any mips16 stub sections. */
437 bfd_boolean mips16_stubs_seen;
438
439 /* True if we can generate copy relocs and PLTs. */
440 bfd_boolean use_plts_and_copy_relocs;
441
442 /* True if we're generating code for VxWorks. */
443 bfd_boolean is_vxworks;
444
445 /* True if we already reported the small-data section overflow. */
446 bfd_boolean small_data_overflow_reported;
447
448 /* Shortcuts to some dynamic sections, or NULL if they are not
449 being used. */
450 asection *srelbss;
451 asection *sdynbss;
452 asection *srelplt;
453 asection *srelplt2;
454 asection *sgotplt;
455 asection *splt;
456 asection *sstubs;
457 asection *sgot;
458
459 /* The master GOT information. */
460 struct mips_got_info *got_info;
461
462 /* The size of the PLT header in bytes. */
463 bfd_vma plt_header_size;
464
465 /* The size of a PLT entry in bytes. */
466 bfd_vma plt_entry_size;
467
468 /* The number of functions that need a lazy-binding stub. */
469 bfd_vma lazy_stub_count;
470
471 /* The size of a function stub entry in bytes. */
472 bfd_vma function_stub_size;
473
474 /* The number of reserved entries at the beginning of the GOT. */
475 unsigned int reserved_gotno;
476
477 /* The section used for mips_elf_la25_stub trampolines.
478 See the comment above that structure for details. */
479 asection *strampoline;
480
481 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
482 pairs. */
483 htab_t la25_stubs;
484
485 /* A function FN (NAME, IS, OS) that creates a new input section
486 called NAME and links it to output section OS. If IS is nonnull,
487 the new section should go immediately before it, otherwise it
488 should go at the (current) beginning of OS.
489
490 The function returns the new section on success, otherwise it
491 returns null. */
492 asection *(*add_stub_section) (const char *, asection *, asection *);
493};
494
495/* Get the MIPS ELF linker hash table from a link_info structure. */
496
497#define mips_elf_hash_table(p) \
498 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
499 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
500
501/* A structure used to communicate with htab_traverse callbacks. */
502struct mips_htab_traverse_info
503{
504 /* The usual link-wide information. */
505 struct bfd_link_info *info;
506 bfd *output_bfd;
507
508 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
509 bfd_boolean error;
510};
511
512#define TLS_RELOC_P(r_type) \
513 (r_type == R_MIPS_TLS_DTPMOD32 \
514 || r_type == R_MIPS_TLS_DTPMOD64 \
515 || r_type == R_MIPS_TLS_DTPREL32 \
516 || r_type == R_MIPS_TLS_DTPREL64 \
517 || r_type == R_MIPS_TLS_GD \
518 || r_type == R_MIPS_TLS_LDM \
519 || r_type == R_MIPS_TLS_DTPREL_HI16 \
520 || r_type == R_MIPS_TLS_DTPREL_LO16 \
521 || r_type == R_MIPS_TLS_GOTTPREL \
522 || r_type == R_MIPS_TLS_TPREL32 \
523 || r_type == R_MIPS_TLS_TPREL64 \
524 || r_type == R_MIPS_TLS_TPREL_HI16 \
525 || r_type == R_MIPS_TLS_TPREL_LO16)
526
527/* Structure used to pass information to mips_elf_output_extsym. */
528
529struct extsym_info
530{
531 bfd *abfd;
532 struct bfd_link_info *info;
533 struct ecoff_debug_info *debug;
534 const struct ecoff_debug_swap *swap;
535 bfd_boolean failed;
536};
537
538/* The names of the runtime procedure table symbols used on IRIX5. */
539
540static const char * const mips_elf_dynsym_rtproc_names[] =
541{
542 "_procedure_table",
543 "_procedure_string_table",
544 "_procedure_table_size",
545 NULL
546};
547
548/* These structures are used to generate the .compact_rel section on
549 IRIX5. */
550
551typedef struct
552{
553 unsigned long id1; /* Always one? */
554 unsigned long num; /* Number of compact relocation entries. */
555 unsigned long id2; /* Always two? */
556 unsigned long offset; /* The file offset of the first relocation. */
557 unsigned long reserved0; /* Zero? */
558 unsigned long reserved1; /* Zero? */
559} Elf32_compact_rel;
560
561typedef struct
562{
563 bfd_byte id1[4];
564 bfd_byte num[4];
565 bfd_byte id2[4];
566 bfd_byte offset[4];
567 bfd_byte reserved0[4];
568 bfd_byte reserved1[4];
569} Elf32_External_compact_rel;
570
571typedef struct
572{
573 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
574 unsigned int rtype : 4; /* Relocation types. See below. */
575 unsigned int dist2to : 8;
576 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
577 unsigned long konst; /* KONST field. See below. */
578 unsigned long vaddr; /* VADDR to be relocated. */
579} Elf32_crinfo;
580
581typedef struct
582{
583 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
584 unsigned int rtype : 4; /* Relocation types. See below. */
585 unsigned int dist2to : 8;
586 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
587 unsigned long konst; /* KONST field. See below. */
588} Elf32_crinfo2;
589
590typedef struct
591{
592 bfd_byte info[4];
593 bfd_byte konst[4];
594 bfd_byte vaddr[4];
595} Elf32_External_crinfo;
596
597typedef struct
598{
599 bfd_byte info[4];
600 bfd_byte konst[4];
601} Elf32_External_crinfo2;
602
603/* These are the constants used to swap the bitfields in a crinfo. */
604
605#define CRINFO_CTYPE (0x1)
606#define CRINFO_CTYPE_SH (31)
607#define CRINFO_RTYPE (0xf)
608#define CRINFO_RTYPE_SH (27)
609#define CRINFO_DIST2TO (0xff)
610#define CRINFO_DIST2TO_SH (19)
611#define CRINFO_RELVADDR (0x7ffff)
612#define CRINFO_RELVADDR_SH (0)
613
614/* A compact relocation info has long (3 words) or short (2 words)
615 formats. A short format doesn't have VADDR field and relvaddr
616 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
617#define CRF_MIPS_LONG 1
618#define CRF_MIPS_SHORT 0
619
620/* There are 4 types of compact relocation at least. The value KONST
621 has different meaning for each type:
622
623 (type) (konst)
624 CT_MIPS_REL32 Address in data
625 CT_MIPS_WORD Address in word (XXX)
626 CT_MIPS_GPHI_LO GP - vaddr
627 CT_MIPS_JMPAD Address to jump
628 */
629
630#define CRT_MIPS_REL32 0xa
631#define CRT_MIPS_WORD 0xb
632#define CRT_MIPS_GPHI_LO 0xc
633#define CRT_MIPS_JMPAD 0xd
634
635#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
636#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
637#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
638#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
639\f
640/* The structure of the runtime procedure descriptor created by the
641 loader for use by the static exception system. */
642
643typedef struct runtime_pdr {
644 bfd_vma adr; /* Memory address of start of procedure. */
645 long regmask; /* Save register mask. */
646 long regoffset; /* Save register offset. */
647 long fregmask; /* Save floating point register mask. */
648 long fregoffset; /* Save floating point register offset. */
649 long frameoffset; /* Frame size. */
650 short framereg; /* Frame pointer register. */
651 short pcreg; /* Offset or reg of return pc. */
652 long irpss; /* Index into the runtime string table. */
653 long reserved;
654 struct exception_info *exception_info;/* Pointer to exception array. */
655} RPDR, *pRPDR;
656#define cbRPDR sizeof (RPDR)
657#define rpdNil ((pRPDR) 0)
658\f
659static struct mips_got_entry *mips_elf_create_local_got_entry
660 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
661 struct mips_elf_link_hash_entry *, int);
662static bfd_boolean mips_elf_sort_hash_table_f
663 (struct mips_elf_link_hash_entry *, void *);
664static bfd_vma mips_elf_high
665 (bfd_vma);
666static bfd_boolean mips_elf_create_dynamic_relocation
667 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
668 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
669 bfd_vma *, asection *);
670static hashval_t mips_elf_got_entry_hash
671 (const void *);
672static bfd_vma mips_elf_adjust_gp
673 (bfd *, struct mips_got_info *, bfd *);
674static struct mips_got_info *mips_elf_got_for_ibfd
675 (struct mips_got_info *, bfd *);
676
677/* This will be used when we sort the dynamic relocation records. */
678static bfd *reldyn_sorting_bfd;
679
680/* True if ABFD is for CPUs with load interlocking that include
681 non-MIPS1 CPUs and R3900. */
682#define LOAD_INTERLOCKS_P(abfd) \
683 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
684 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
685
686/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
687 This should be safe for all architectures. We enable this predicate
688 for RM9000 for now. */
689#define JAL_TO_BAL_P(abfd) \
690 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
691
692/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
693 This should be safe for all architectures. We enable this predicate for
694 all CPUs. */
695#define JALR_TO_BAL_P(abfd) 1
696
697/* True if ABFD is for CPUs that are faster if JR is converted to B.
698 This should be safe for all architectures. We enable this predicate for
699 all CPUs. */
700#define JR_TO_B_P(abfd) 1
701
702/* True if ABFD is a PIC object. */
703#define PIC_OBJECT_P(abfd) \
704 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
705
706/* Nonzero if ABFD is using the N32 ABI. */
707#define ABI_N32_P(abfd) \
708 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
709
710/* Nonzero if ABFD is using the N64 ABI. */
711#define ABI_64_P(abfd) \
712 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
713
714/* Nonzero if ABFD is using NewABI conventions. */
715#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
716
717/* The IRIX compatibility level we are striving for. */
718#define IRIX_COMPAT(abfd) \
719 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
720
721/* Whether we are trying to be compatible with IRIX at all. */
722#define SGI_COMPAT(abfd) \
723 (IRIX_COMPAT (abfd) != ict_none)
724
725/* The name of the options section. */
726#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
727 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
728
729/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
730 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
731#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
732 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
733
734/* Whether the section is readonly. */
735#define MIPS_ELF_READONLY_SECTION(sec) \
736 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
737 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
738
739/* The name of the stub section. */
740#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
741
742/* The size of an external REL relocation. */
743#define MIPS_ELF_REL_SIZE(abfd) \
744 (get_elf_backend_data (abfd)->s->sizeof_rel)
745
746/* The size of an external RELA relocation. */
747#define MIPS_ELF_RELA_SIZE(abfd) \
748 (get_elf_backend_data (abfd)->s->sizeof_rela)
749
750/* The size of an external dynamic table entry. */
751#define MIPS_ELF_DYN_SIZE(abfd) \
752 (get_elf_backend_data (abfd)->s->sizeof_dyn)
753
754/* The size of a GOT entry. */
755#define MIPS_ELF_GOT_SIZE(abfd) \
756 (get_elf_backend_data (abfd)->s->arch_size / 8)
757
758/* The size of a symbol-table entry. */
759#define MIPS_ELF_SYM_SIZE(abfd) \
760 (get_elf_backend_data (abfd)->s->sizeof_sym)
761
762/* The default alignment for sections, as a power of two. */
763#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
764 (get_elf_backend_data (abfd)->s->log_file_align)
765
766/* Get word-sized data. */
767#define MIPS_ELF_GET_WORD(abfd, ptr) \
768 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
769
770/* Put out word-sized data. */
771#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
772 (ABI_64_P (abfd) \
773 ? bfd_put_64 (abfd, val, ptr) \
774 : bfd_put_32 (abfd, val, ptr))
775
776/* The opcode for word-sized loads (LW or LD). */
777#define MIPS_ELF_LOAD_WORD(abfd) \
778 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
779
780/* Add a dynamic symbol table-entry. */
781#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
782 _bfd_elf_add_dynamic_entry (info, tag, val)
783
784#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
785 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
786
787/* The name of the dynamic relocation section. */
788#define MIPS_ELF_REL_DYN_NAME(INFO) \
789 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
790
791/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
792 from smaller values. Start with zero, widen, *then* decrement. */
793#define MINUS_ONE (((bfd_vma)0) - 1)
794#define MINUS_TWO (((bfd_vma)0) - 2)
795
796/* The value to write into got[1] for SVR4 targets, to identify it is
797 a GNU object. The dynamic linker can then use got[1] to store the
798 module pointer. */
799#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
800 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
801
802/* The offset of $gp from the beginning of the .got section. */
803#define ELF_MIPS_GP_OFFSET(INFO) \
804 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
805
806/* The maximum size of the GOT for it to be addressable using 16-bit
807 offsets from $gp. */
808#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
809
810/* Instructions which appear in a stub. */
811#define STUB_LW(abfd) \
812 ((ABI_64_P (abfd) \
813 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
814 : 0x8f998010)) /* lw t9,0x8010(gp) */
815#define STUB_MOVE(abfd) \
816 ((ABI_64_P (abfd) \
817 ? 0x03e0782d /* daddu t7,ra */ \
818 : 0x03e07821)) /* addu t7,ra */
819#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
820#define STUB_JALR 0x0320f809 /* jalr t9,ra */
821#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
822#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
823#define STUB_LI16S(abfd, VAL) \
824 ((ABI_64_P (abfd) \
825 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
826 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
827
828#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
829#define MIPS_FUNCTION_STUB_BIG_SIZE 20
830
831/* The name of the dynamic interpreter. This is put in the .interp
832 section. */
833
834#define ELF_DYNAMIC_INTERPRETER(abfd) \
835 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
836 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
837 : "/usr/lib/libc.so.1")
838
839#ifdef BFD64
840#define MNAME(bfd,pre,pos) \
841 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
842#define ELF_R_SYM(bfd, i) \
843 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
844#define ELF_R_TYPE(bfd, i) \
845 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
846#define ELF_R_INFO(bfd, s, t) \
847 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
848#else
849#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
850#define ELF_R_SYM(bfd, i) \
851 (ELF32_R_SYM (i))
852#define ELF_R_TYPE(bfd, i) \
853 (ELF32_R_TYPE (i))
854#define ELF_R_INFO(bfd, s, t) \
855 (ELF32_R_INFO (s, t))
856#endif
857\f
858 /* The mips16 compiler uses a couple of special sections to handle
859 floating point arguments.
860
861 Section names that look like .mips16.fn.FNNAME contain stubs that
862 copy floating point arguments from the fp regs to the gp regs and
863 then jump to FNNAME. If any 32 bit function calls FNNAME, the
864 call should be redirected to the stub instead. If no 32 bit
865 function calls FNNAME, the stub should be discarded. We need to
866 consider any reference to the function, not just a call, because
867 if the address of the function is taken we will need the stub,
868 since the address might be passed to a 32 bit function.
869
870 Section names that look like .mips16.call.FNNAME contain stubs
871 that copy floating point arguments from the gp regs to the fp
872 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
873 then any 16 bit function that calls FNNAME should be redirected
874 to the stub instead. If FNNAME is not a 32 bit function, the
875 stub should be discarded.
876
877 .mips16.call.fp.FNNAME sections are similar, but contain stubs
878 which call FNNAME and then copy the return value from the fp regs
879 to the gp regs. These stubs store the return value in $18 while
880 calling FNNAME; any function which might call one of these stubs
881 must arrange to save $18 around the call. (This case is not
882 needed for 32 bit functions that call 16 bit functions, because
883 16 bit functions always return floating point values in both
884 $f0/$f1 and $2/$3.)
885
886 Note that in all cases FNNAME might be defined statically.
887 Therefore, FNNAME is not used literally. Instead, the relocation
888 information will indicate which symbol the section is for.
889
890 We record any stubs that we find in the symbol table. */
891
892#define FN_STUB ".mips16.fn."
893#define CALL_STUB ".mips16.call."
894#define CALL_FP_STUB ".mips16.call.fp."
895
896#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
897#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
898#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
899\f
900/* The format of the first PLT entry in an O32 executable. */
901static const bfd_vma mips_o32_exec_plt0_entry[] =
902{
903 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
904 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
905 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
906 0x031cc023, /* subu $24, $24, $28 */
907 0x03e07821, /* move $15, $31 */
908 0x0018c082, /* srl $24, $24, 2 */
909 0x0320f809, /* jalr $25 */
910 0x2718fffe /* subu $24, $24, 2 */
911};
912
913/* The format of the first PLT entry in an N32 executable. Different
914 because gp ($28) is not available; we use t2 ($14) instead. */
915static const bfd_vma mips_n32_exec_plt0_entry[] =
916{
917 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
918 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
919 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
920 0x030ec023, /* subu $24, $24, $14 */
921 0x03e07821, /* move $15, $31 */
922 0x0018c082, /* srl $24, $24, 2 */
923 0x0320f809, /* jalr $25 */
924 0x2718fffe /* subu $24, $24, 2 */
925};
926
927/* The format of the first PLT entry in an N64 executable. Different
928 from N32 because of the increased size of GOT entries. */
929static const bfd_vma mips_n64_exec_plt0_entry[] =
930{
931 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
932 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
933 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
934 0x030ec023, /* subu $24, $24, $14 */
935 0x03e07821, /* move $15, $31 */
936 0x0018c0c2, /* srl $24, $24, 3 */
937 0x0320f809, /* jalr $25 */
938 0x2718fffe /* subu $24, $24, 2 */
939};
940
941/* The format of subsequent PLT entries. */
942static const bfd_vma mips_exec_plt_entry[] =
943{
944 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
945 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
946 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
947 0x03200008 /* jr $25 */
948};
949
950/* The format of the first PLT entry in a VxWorks executable. */
951static const bfd_vma mips_vxworks_exec_plt0_entry[] =
952{
953 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
954 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
955 0x8f390008, /* lw t9, 8(t9) */
956 0x00000000, /* nop */
957 0x03200008, /* jr t9 */
958 0x00000000 /* nop */
959};
960
961/* The format of subsequent PLT entries. */
962static const bfd_vma mips_vxworks_exec_plt_entry[] =
963{
964 0x10000000, /* b .PLT_resolver */
965 0x24180000, /* li t8, <pltindex> */
966 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
967 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
968 0x8f390000, /* lw t9, 0(t9) */
969 0x00000000, /* nop */
970 0x03200008, /* jr t9 */
971 0x00000000 /* nop */
972};
973
974/* The format of the first PLT entry in a VxWorks shared object. */
975static const bfd_vma mips_vxworks_shared_plt0_entry[] =
976{
977 0x8f990008, /* lw t9, 8(gp) */
978 0x00000000, /* nop */
979 0x03200008, /* jr t9 */
980 0x00000000, /* nop */
981 0x00000000, /* nop */
982 0x00000000 /* nop */
983};
984
985/* The format of subsequent PLT entries. */
986static const bfd_vma mips_vxworks_shared_plt_entry[] =
987{
988 0x10000000, /* b .PLT_resolver */
989 0x24180000 /* li t8, <pltindex> */
990};
991\f
992/* Look up an entry in a MIPS ELF linker hash table. */
993
994#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
995 ((struct mips_elf_link_hash_entry *) \
996 elf_link_hash_lookup (&(table)->root, (string), (create), \
997 (copy), (follow)))
998
999/* Traverse a MIPS ELF linker hash table. */
1000
1001#define mips_elf_link_hash_traverse(table, func, info) \
1002 (elf_link_hash_traverse \
1003 (&(table)->root, \
1004 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1005 (info)))
1006
1007/* Find the base offsets for thread-local storage in this object,
1008 for GD/LD and IE/LE respectively. */
1009
1010#define TP_OFFSET 0x7000
1011#define DTP_OFFSET 0x8000
1012
1013static bfd_vma
1014dtprel_base (struct bfd_link_info *info)
1015{
1016 /* If tls_sec is NULL, we should have signalled an error already. */
1017 if (elf_hash_table (info)->tls_sec == NULL)
1018 return 0;
1019 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1020}
1021
1022static bfd_vma
1023tprel_base (struct bfd_link_info *info)
1024{
1025 /* If tls_sec is NULL, we should have signalled an error already. */
1026 if (elf_hash_table (info)->tls_sec == NULL)
1027 return 0;
1028 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1029}
1030
1031/* Create an entry in a MIPS ELF linker hash table. */
1032
1033static struct bfd_hash_entry *
1034mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1035 struct bfd_hash_table *table, const char *string)
1036{
1037 struct mips_elf_link_hash_entry *ret =
1038 (struct mips_elf_link_hash_entry *) entry;
1039
1040 /* Allocate the structure if it has not already been allocated by a
1041 subclass. */
1042 if (ret == NULL)
1043 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1044 if (ret == NULL)
1045 return (struct bfd_hash_entry *) ret;
1046
1047 /* Call the allocation method of the superclass. */
1048 ret = ((struct mips_elf_link_hash_entry *)
1049 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1050 table, string));
1051 if (ret != NULL)
1052 {
1053 /* Set local fields. */
1054 memset (&ret->esym, 0, sizeof (EXTR));
1055 /* We use -2 as a marker to indicate that the information has
1056 not been set. -1 means there is no associated ifd. */
1057 ret->esym.ifd = -2;
1058 ret->la25_stub = 0;
1059 ret->possibly_dynamic_relocs = 0;
1060 ret->fn_stub = NULL;
1061 ret->call_stub = NULL;
1062 ret->call_fp_stub = NULL;
1063 ret->tls_type = GOT_NORMAL;
1064 ret->global_got_area = GGA_NONE;
1065 ret->got_only_for_calls = TRUE;
1066 ret->readonly_reloc = FALSE;
1067 ret->has_static_relocs = FALSE;
1068 ret->no_fn_stub = FALSE;
1069 ret->need_fn_stub = FALSE;
1070 ret->has_nonpic_branches = FALSE;
1071 ret->needs_lazy_stub = FALSE;
1072 }
1073
1074 return (struct bfd_hash_entry *) ret;
1075}
1076
1077bfd_boolean
1078_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1079{
1080 if (!sec->used_by_bfd)
1081 {
1082 struct _mips_elf_section_data *sdata;
1083 bfd_size_type amt = sizeof (*sdata);
1084
1085 sdata = bfd_zalloc (abfd, amt);
1086 if (sdata == NULL)
1087 return FALSE;
1088 sec->used_by_bfd = sdata;
1089 }
1090
1091 return _bfd_elf_new_section_hook (abfd, sec);
1092}
1093\f
1094/* Read ECOFF debugging information from a .mdebug section into a
1095 ecoff_debug_info structure. */
1096
1097bfd_boolean
1098_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1099 struct ecoff_debug_info *debug)
1100{
1101 HDRR *symhdr;
1102 const struct ecoff_debug_swap *swap;
1103 char *ext_hdr;
1104
1105 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1106 memset (debug, 0, sizeof (*debug));
1107
1108 ext_hdr = bfd_malloc (swap->external_hdr_size);
1109 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1110 goto error_return;
1111
1112 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1113 swap->external_hdr_size))
1114 goto error_return;
1115
1116 symhdr = &debug->symbolic_header;
1117 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1118
1119 /* The symbolic header contains absolute file offsets and sizes to
1120 read. */
1121#define READ(ptr, offset, count, size, type) \
1122 if (symhdr->count == 0) \
1123 debug->ptr = NULL; \
1124 else \
1125 { \
1126 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1127 debug->ptr = bfd_malloc (amt); \
1128 if (debug->ptr == NULL) \
1129 goto error_return; \
1130 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1131 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1132 goto error_return; \
1133 }
1134
1135 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1136 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1137 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1138 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1139 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1140 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1141 union aux_ext *);
1142 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1143 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1144 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1145 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1146 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1147#undef READ
1148
1149 debug->fdr = NULL;
1150
1151 return TRUE;
1152
1153 error_return:
1154 if (ext_hdr != NULL)
1155 free (ext_hdr);
1156 if (debug->line != NULL)
1157 free (debug->line);
1158 if (debug->external_dnr != NULL)
1159 free (debug->external_dnr);
1160 if (debug->external_pdr != NULL)
1161 free (debug->external_pdr);
1162 if (debug->external_sym != NULL)
1163 free (debug->external_sym);
1164 if (debug->external_opt != NULL)
1165 free (debug->external_opt);
1166 if (debug->external_aux != NULL)
1167 free (debug->external_aux);
1168 if (debug->ss != NULL)
1169 free (debug->ss);
1170 if (debug->ssext != NULL)
1171 free (debug->ssext);
1172 if (debug->external_fdr != NULL)
1173 free (debug->external_fdr);
1174 if (debug->external_rfd != NULL)
1175 free (debug->external_rfd);
1176 if (debug->external_ext != NULL)
1177 free (debug->external_ext);
1178 return FALSE;
1179}
1180\f
1181/* Swap RPDR (runtime procedure table entry) for output. */
1182
1183static void
1184ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1185{
1186 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1187 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1188 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1189 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1190 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1191 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1192
1193 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1194 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1195
1196 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1197}
1198
1199/* Create a runtime procedure table from the .mdebug section. */
1200
1201static bfd_boolean
1202mips_elf_create_procedure_table (void *handle, bfd *abfd,
1203 struct bfd_link_info *info, asection *s,
1204 struct ecoff_debug_info *debug)
1205{
1206 const struct ecoff_debug_swap *swap;
1207 HDRR *hdr = &debug->symbolic_header;
1208 RPDR *rpdr, *rp;
1209 struct rpdr_ext *erp;
1210 void *rtproc;
1211 struct pdr_ext *epdr;
1212 struct sym_ext *esym;
1213 char *ss, **sv;
1214 char *str;
1215 bfd_size_type size;
1216 bfd_size_type count;
1217 unsigned long sindex;
1218 unsigned long i;
1219 PDR pdr;
1220 SYMR sym;
1221 const char *no_name_func = _("static procedure (no name)");
1222
1223 epdr = NULL;
1224 rpdr = NULL;
1225 esym = NULL;
1226 ss = NULL;
1227 sv = NULL;
1228
1229 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1230
1231 sindex = strlen (no_name_func) + 1;
1232 count = hdr->ipdMax;
1233 if (count > 0)
1234 {
1235 size = swap->external_pdr_size;
1236
1237 epdr = bfd_malloc (size * count);
1238 if (epdr == NULL)
1239 goto error_return;
1240
1241 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1242 goto error_return;
1243
1244 size = sizeof (RPDR);
1245 rp = rpdr = bfd_malloc (size * count);
1246 if (rpdr == NULL)
1247 goto error_return;
1248
1249 size = sizeof (char *);
1250 sv = bfd_malloc (size * count);
1251 if (sv == NULL)
1252 goto error_return;
1253
1254 count = hdr->isymMax;
1255 size = swap->external_sym_size;
1256 esym = bfd_malloc (size * count);
1257 if (esym == NULL)
1258 goto error_return;
1259
1260 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1261 goto error_return;
1262
1263 count = hdr->issMax;
1264 ss = bfd_malloc (count);
1265 if (ss == NULL)
1266 goto error_return;
1267 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1268 goto error_return;
1269
1270 count = hdr->ipdMax;
1271 for (i = 0; i < (unsigned long) count; i++, rp++)
1272 {
1273 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1274 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1275 rp->adr = sym.value;
1276 rp->regmask = pdr.regmask;
1277 rp->regoffset = pdr.regoffset;
1278 rp->fregmask = pdr.fregmask;
1279 rp->fregoffset = pdr.fregoffset;
1280 rp->frameoffset = pdr.frameoffset;
1281 rp->framereg = pdr.framereg;
1282 rp->pcreg = pdr.pcreg;
1283 rp->irpss = sindex;
1284 sv[i] = ss + sym.iss;
1285 sindex += strlen (sv[i]) + 1;
1286 }
1287 }
1288
1289 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1290 size = BFD_ALIGN (size, 16);
1291 rtproc = bfd_alloc (abfd, size);
1292 if (rtproc == NULL)
1293 {
1294 mips_elf_hash_table (info)->procedure_count = 0;
1295 goto error_return;
1296 }
1297
1298 mips_elf_hash_table (info)->procedure_count = count + 2;
1299
1300 erp = rtproc;
1301 memset (erp, 0, sizeof (struct rpdr_ext));
1302 erp++;
1303 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1304 strcpy (str, no_name_func);
1305 str += strlen (no_name_func) + 1;
1306 for (i = 0; i < count; i++)
1307 {
1308 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1309 strcpy (str, sv[i]);
1310 str += strlen (sv[i]) + 1;
1311 }
1312 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1313
1314 /* Set the size and contents of .rtproc section. */
1315 s->size = size;
1316 s->contents = rtproc;
1317
1318 /* Skip this section later on (I don't think this currently
1319 matters, but someday it might). */
1320 s->map_head.link_order = NULL;
1321
1322 if (epdr != NULL)
1323 free (epdr);
1324 if (rpdr != NULL)
1325 free (rpdr);
1326 if (esym != NULL)
1327 free (esym);
1328 if (ss != NULL)
1329 free (ss);
1330 if (sv != NULL)
1331 free (sv);
1332
1333 return TRUE;
1334
1335 error_return:
1336 if (epdr != NULL)
1337 free (epdr);
1338 if (rpdr != NULL)
1339 free (rpdr);
1340 if (esym != NULL)
1341 free (esym);
1342 if (ss != NULL)
1343 free (ss);
1344 if (sv != NULL)
1345 free (sv);
1346 return FALSE;
1347}
1348\f
1349/* We're going to create a stub for H. Create a symbol for the stub's
1350 value and size, to help make the disassembly easier to read. */
1351
1352static bfd_boolean
1353mips_elf_create_stub_symbol (struct bfd_link_info *info,
1354 struct mips_elf_link_hash_entry *h,
1355 const char *prefix, asection *s, bfd_vma value,
1356 bfd_vma size)
1357{
1358 struct bfd_link_hash_entry *bh;
1359 struct elf_link_hash_entry *elfh;
1360 const char *name;
1361
1362 /* Create a new symbol. */
1363 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1364 bh = NULL;
1365 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1366 BSF_LOCAL, s, value, NULL,
1367 TRUE, FALSE, &bh))
1368 return FALSE;
1369
1370 /* Make it a local function. */
1371 elfh = (struct elf_link_hash_entry *) bh;
1372 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1373 elfh->size = size;
1374 elfh->forced_local = 1;
1375 return TRUE;
1376}
1377
1378/* We're about to redefine H. Create a symbol to represent H's
1379 current value and size, to help make the disassembly easier
1380 to read. */
1381
1382static bfd_boolean
1383mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1384 struct mips_elf_link_hash_entry *h,
1385 const char *prefix)
1386{
1387 struct bfd_link_hash_entry *bh;
1388 struct elf_link_hash_entry *elfh;
1389 const char *name;
1390 asection *s;
1391 bfd_vma value;
1392
1393 /* Read the symbol's value. */
1394 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1395 || h->root.root.type == bfd_link_hash_defweak);
1396 s = h->root.root.u.def.section;
1397 value = h->root.root.u.def.value;
1398
1399 /* Create a new symbol. */
1400 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1401 bh = NULL;
1402 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1403 BSF_LOCAL, s, value, NULL,
1404 TRUE, FALSE, &bh))
1405 return FALSE;
1406
1407 /* Make it local and copy the other attributes from H. */
1408 elfh = (struct elf_link_hash_entry *) bh;
1409 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1410 elfh->other = h->root.other;
1411 elfh->size = h->root.size;
1412 elfh->forced_local = 1;
1413 return TRUE;
1414}
1415
1416/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1417 function rather than to a hard-float stub. */
1418
1419static bfd_boolean
1420section_allows_mips16_refs_p (asection *section)
1421{
1422 const char *name;
1423
1424 name = bfd_get_section_name (section->owner, section);
1425 return (FN_STUB_P (name)
1426 || CALL_STUB_P (name)
1427 || CALL_FP_STUB_P (name)
1428 || strcmp (name, ".pdr") == 0);
1429}
1430
1431/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1432 stub section of some kind. Return the R_SYMNDX of the target
1433 function, or 0 if we can't decide which function that is. */
1434
1435static unsigned long
1436mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1437 const Elf_Internal_Rela *relocs,
1438 const Elf_Internal_Rela *relend)
1439{
1440 const Elf_Internal_Rela *rel;
1441
1442 /* Trust the first R_MIPS_NONE relocation, if any. */
1443 for (rel = relocs; rel < relend; rel++)
1444 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1445 return ELF_R_SYM (sec->owner, rel->r_info);
1446
1447 /* Otherwise trust the first relocation, whatever its kind. This is
1448 the traditional behavior. */
1449 if (relocs < relend)
1450 return ELF_R_SYM (sec->owner, relocs->r_info);
1451
1452 return 0;
1453}
1454
1455/* Check the mips16 stubs for a particular symbol, and see if we can
1456 discard them. */
1457
1458static void
1459mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1460 struct mips_elf_link_hash_entry *h)
1461{
1462 /* Dynamic symbols must use the standard call interface, in case other
1463 objects try to call them. */
1464 if (h->fn_stub != NULL
1465 && h->root.dynindx != -1)
1466 {
1467 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1468 h->need_fn_stub = TRUE;
1469 }
1470
1471 if (h->fn_stub != NULL
1472 && ! h->need_fn_stub)
1473 {
1474 /* We don't need the fn_stub; the only references to this symbol
1475 are 16 bit calls. Clobber the size to 0 to prevent it from
1476 being included in the link. */
1477 h->fn_stub->size = 0;
1478 h->fn_stub->flags &= ~SEC_RELOC;
1479 h->fn_stub->reloc_count = 0;
1480 h->fn_stub->flags |= SEC_EXCLUDE;
1481 }
1482
1483 if (h->call_stub != NULL
1484 && ELF_ST_IS_MIPS16 (h->root.other))
1485 {
1486 /* We don't need the call_stub; this is a 16 bit function, so
1487 calls from other 16 bit functions are OK. Clobber the size
1488 to 0 to prevent it from being included in the link. */
1489 h->call_stub->size = 0;
1490 h->call_stub->flags &= ~SEC_RELOC;
1491 h->call_stub->reloc_count = 0;
1492 h->call_stub->flags |= SEC_EXCLUDE;
1493 }
1494
1495 if (h->call_fp_stub != NULL
1496 && ELF_ST_IS_MIPS16 (h->root.other))
1497 {
1498 /* We don't need the call_stub; this is a 16 bit function, so
1499 calls from other 16 bit functions are OK. Clobber the size
1500 to 0 to prevent it from being included in the link. */
1501 h->call_fp_stub->size = 0;
1502 h->call_fp_stub->flags &= ~SEC_RELOC;
1503 h->call_fp_stub->reloc_count = 0;
1504 h->call_fp_stub->flags |= SEC_EXCLUDE;
1505 }
1506}
1507
1508/* Hashtable callbacks for mips_elf_la25_stubs. */
1509
1510static hashval_t
1511mips_elf_la25_stub_hash (const void *entry_)
1512{
1513 const struct mips_elf_la25_stub *entry;
1514
1515 entry = (struct mips_elf_la25_stub *) entry_;
1516 return entry->h->root.root.u.def.section->id
1517 + entry->h->root.root.u.def.value;
1518}
1519
1520static int
1521mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1522{
1523 const struct mips_elf_la25_stub *entry1, *entry2;
1524
1525 entry1 = (struct mips_elf_la25_stub *) entry1_;
1526 entry2 = (struct mips_elf_la25_stub *) entry2_;
1527 return ((entry1->h->root.root.u.def.section
1528 == entry2->h->root.root.u.def.section)
1529 && (entry1->h->root.root.u.def.value
1530 == entry2->h->root.root.u.def.value));
1531}
1532
1533/* Called by the linker to set up the la25 stub-creation code. FN is
1534 the linker's implementation of add_stub_function. Return true on
1535 success. */
1536
1537bfd_boolean
1538_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1539 asection *(*fn) (const char *, asection *,
1540 asection *))
1541{
1542 struct mips_elf_link_hash_table *htab;
1543
1544 htab = mips_elf_hash_table (info);
1545 if (htab == NULL)
1546 return FALSE;
1547
1548 htab->add_stub_section = fn;
1549 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1550 mips_elf_la25_stub_eq, NULL);
1551 if (htab->la25_stubs == NULL)
1552 return FALSE;
1553
1554 return TRUE;
1555}
1556
1557/* Return true if H is a locally-defined PIC function, in the sense
1558 that it might need $25 to be valid on entry. Note that MIPS16
1559 functions never need $25 to be valid on entry; they set up $gp
1560 using PC-relative instructions instead. */
1561
1562static bfd_boolean
1563mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1564{
1565 return ((h->root.root.type == bfd_link_hash_defined
1566 || h->root.root.type == bfd_link_hash_defweak)
1567 && h->root.def_regular
1568 && !bfd_is_abs_section (h->root.root.u.def.section)
1569 && !ELF_ST_IS_MIPS16 (h->root.other)
1570 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1571 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1572}
1573
1574/* STUB describes an la25 stub that we have decided to implement
1575 by inserting an LUI/ADDIU pair before the target function.
1576 Create the section and redirect the function symbol to it. */
1577
1578static bfd_boolean
1579mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1580 struct bfd_link_info *info)
1581{
1582 struct mips_elf_link_hash_table *htab;
1583 char *name;
1584 asection *s, *input_section;
1585 unsigned int align;
1586
1587 htab = mips_elf_hash_table (info);
1588 if (htab == NULL)
1589 return FALSE;
1590
1591 /* Create a unique name for the new section. */
1592 name = bfd_malloc (11 + sizeof (".text.stub."));
1593 if (name == NULL)
1594 return FALSE;
1595 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1596
1597 /* Create the section. */
1598 input_section = stub->h->root.root.u.def.section;
1599 s = htab->add_stub_section (name, input_section,
1600 input_section->output_section);
1601 if (s == NULL)
1602 return FALSE;
1603
1604 /* Make sure that any padding goes before the stub. */
1605 align = input_section->alignment_power;
1606 if (!bfd_set_section_alignment (s->owner, s, align))
1607 return FALSE;
1608 if (align > 3)
1609 s->size = (1 << align) - 8;
1610
1611 /* Create a symbol for the stub. */
1612 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1613 stub->stub_section = s;
1614 stub->offset = s->size;
1615
1616 /* Allocate room for it. */
1617 s->size += 8;
1618 return TRUE;
1619}
1620
1621/* STUB describes an la25 stub that we have decided to implement
1622 with a separate trampoline. Allocate room for it and redirect
1623 the function symbol to it. */
1624
1625static bfd_boolean
1626mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1627 struct bfd_link_info *info)
1628{
1629 struct mips_elf_link_hash_table *htab;
1630 asection *s;
1631
1632 htab = mips_elf_hash_table (info);
1633 if (htab == NULL)
1634 return FALSE;
1635
1636 /* Create a trampoline section, if we haven't already. */
1637 s = htab->strampoline;
1638 if (s == NULL)
1639 {
1640 asection *input_section = stub->h->root.root.u.def.section;
1641 s = htab->add_stub_section (".text", NULL,
1642 input_section->output_section);
1643 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1644 return FALSE;
1645 htab->strampoline = s;
1646 }
1647
1648 /* Create a symbol for the stub. */
1649 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1650 stub->stub_section = s;
1651 stub->offset = s->size;
1652
1653 /* Allocate room for it. */
1654 s->size += 16;
1655 return TRUE;
1656}
1657
1658/* H describes a symbol that needs an la25 stub. Make sure that an
1659 appropriate stub exists and point H at it. */
1660
1661static bfd_boolean
1662mips_elf_add_la25_stub (struct bfd_link_info *info,
1663 struct mips_elf_link_hash_entry *h)
1664{
1665 struct mips_elf_link_hash_table *htab;
1666 struct mips_elf_la25_stub search, *stub;
1667 bfd_boolean use_trampoline_p;
1668 asection *s;
1669 bfd_vma value;
1670 void **slot;
1671
1672 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1673 of the section and if we would need no more than 2 nops. */
1674 s = h->root.root.u.def.section;
1675 value = h->root.root.u.def.value;
1676 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1677
1678 /* Describe the stub we want. */
1679 search.stub_section = NULL;
1680 search.offset = 0;
1681 search.h = h;
1682
1683 /* See if we've already created an equivalent stub. */
1684 htab = mips_elf_hash_table (info);
1685 if (htab == NULL)
1686 return FALSE;
1687
1688 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1689 if (slot == NULL)
1690 return FALSE;
1691
1692 stub = (struct mips_elf_la25_stub *) *slot;
1693 if (stub != NULL)
1694 {
1695 /* We can reuse the existing stub. */
1696 h->la25_stub = stub;
1697 return TRUE;
1698 }
1699
1700 /* Create a permanent copy of ENTRY and add it to the hash table. */
1701 stub = bfd_malloc (sizeof (search));
1702 if (stub == NULL)
1703 return FALSE;
1704 *stub = search;
1705 *slot = stub;
1706
1707 h->la25_stub = stub;
1708 return (use_trampoline_p
1709 ? mips_elf_add_la25_trampoline (stub, info)
1710 : mips_elf_add_la25_intro (stub, info));
1711}
1712
1713/* A mips_elf_link_hash_traverse callback that is called before sizing
1714 sections. DATA points to a mips_htab_traverse_info structure. */
1715
1716static bfd_boolean
1717mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1718{
1719 struct mips_htab_traverse_info *hti;
1720
1721 hti = (struct mips_htab_traverse_info *) data;
1722 if (!hti->info->relocatable)
1723 mips_elf_check_mips16_stubs (hti->info, h);
1724
1725 if (mips_elf_local_pic_function_p (h))
1726 {
1727 /* PR 12845: If H is in a section that has been garbage
1728 collected it will have its output section set to *ABS*. */
1729 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1730 return TRUE;
1731
1732 /* H is a function that might need $25 to be valid on entry.
1733 If we're creating a non-PIC relocatable object, mark H as
1734 being PIC. If we're creating a non-relocatable object with
1735 non-PIC branches and jumps to H, make sure that H has an la25
1736 stub. */
1737 if (hti->info->relocatable)
1738 {
1739 if (!PIC_OBJECT_P (hti->output_bfd))
1740 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1741 }
1742 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1743 {
1744 hti->error = TRUE;
1745 return FALSE;
1746 }
1747 }
1748 return TRUE;
1749}
1750\f
1751/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1752 Most mips16 instructions are 16 bits, but these instructions
1753 are 32 bits.
1754
1755 The format of these instructions is:
1756
1757 +--------------+--------------------------------+
1758 | JALX | X| Imm 20:16 | Imm 25:21 |
1759 +--------------+--------------------------------+
1760 | Immediate 15:0 |
1761 +-----------------------------------------------+
1762
1763 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1764 Note that the immediate value in the first word is swapped.
1765
1766 When producing a relocatable object file, R_MIPS16_26 is
1767 handled mostly like R_MIPS_26. In particular, the addend is
1768 stored as a straight 26-bit value in a 32-bit instruction.
1769 (gas makes life simpler for itself by never adjusting a
1770 R_MIPS16_26 reloc to be against a section, so the addend is
1771 always zero). However, the 32 bit instruction is stored as 2
1772 16-bit values, rather than a single 32-bit value. In a
1773 big-endian file, the result is the same; in a little-endian
1774 file, the two 16-bit halves of the 32 bit value are swapped.
1775 This is so that a disassembler can recognize the jal
1776 instruction.
1777
1778 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1779 instruction stored as two 16-bit values. The addend A is the
1780 contents of the targ26 field. The calculation is the same as
1781 R_MIPS_26. When storing the calculated value, reorder the
1782 immediate value as shown above, and don't forget to store the
1783 value as two 16-bit values.
1784
1785 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1786 defined as
1787
1788 big-endian:
1789 +--------+----------------------+
1790 | | |
1791 | | targ26-16 |
1792 |31 26|25 0|
1793 +--------+----------------------+
1794
1795 little-endian:
1796 +----------+------+-------------+
1797 | | | |
1798 | sub1 | | sub2 |
1799 |0 9|10 15|16 31|
1800 +----------+--------------------+
1801 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1802 ((sub1 << 16) | sub2)).
1803
1804 When producing a relocatable object file, the calculation is
1805 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1806 When producing a fully linked file, the calculation is
1807 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1808 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1809
1810 The table below lists the other MIPS16 instruction relocations.
1811 Each one is calculated in the same way as the non-MIPS16 relocation
1812 given on the right, but using the extended MIPS16 layout of 16-bit
1813 immediate fields:
1814
1815 R_MIPS16_GPREL R_MIPS_GPREL16
1816 R_MIPS16_GOT16 R_MIPS_GOT16
1817 R_MIPS16_CALL16 R_MIPS_CALL16
1818 R_MIPS16_HI16 R_MIPS_HI16
1819 R_MIPS16_LO16 R_MIPS_LO16
1820
1821 A typical instruction will have a format like this:
1822
1823 +--------------+--------------------------------+
1824 | EXTEND | Imm 10:5 | Imm 15:11 |
1825 +--------------+--------------------------------+
1826 | Major | rx | ry | Imm 4:0 |
1827 +--------------+--------------------------------+
1828
1829 EXTEND is the five bit value 11110. Major is the instruction
1830 opcode.
1831
1832 All we need to do here is shuffle the bits appropriately.
1833 As above, the two 16-bit halves must be swapped on a
1834 little-endian system. */
1835
1836static inline bfd_boolean
1837mips16_reloc_p (int r_type)
1838{
1839 switch (r_type)
1840 {
1841 case R_MIPS16_26:
1842 case R_MIPS16_GPREL:
1843 case R_MIPS16_GOT16:
1844 case R_MIPS16_CALL16:
1845 case R_MIPS16_HI16:
1846 case R_MIPS16_LO16:
1847 return TRUE;
1848
1849 default:
1850 return FALSE;
1851 }
1852}
1853
1854static inline bfd_boolean
1855got16_reloc_p (int r_type)
1856{
1857 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1858}
1859
1860static inline bfd_boolean
1861call16_reloc_p (int r_type)
1862{
1863 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1864}
1865
1866static inline bfd_boolean
1867hi16_reloc_p (int r_type)
1868{
1869 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1870}
1871
1872static inline bfd_boolean
1873lo16_reloc_p (int r_type)
1874{
1875 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1876}
1877
1878static inline bfd_boolean
1879mips16_call_reloc_p (int r_type)
1880{
1881 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1882}
1883
1884static inline bfd_boolean
1885jal_reloc_p (int r_type)
1886{
1887 return r_type == R_MIPS_26 || r_type == R_MIPS16_26;
1888}
1889
1890void
1891_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1892 bfd_boolean jal_shuffle, bfd_byte *data)
1893{
1894 bfd_vma extend, insn, val;
1895
1896 if (!mips16_reloc_p (r_type))
1897 return;
1898
1899 /* Pick up the mips16 extend instruction and the real instruction. */
1900 extend = bfd_get_16 (abfd, data);
1901 insn = bfd_get_16 (abfd, data + 2);
1902 if (r_type == R_MIPS16_26)
1903 {
1904 if (jal_shuffle)
1905 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1906 | ((extend & 0x1f) << 21) | insn;
1907 else
1908 val = extend << 16 | insn;
1909 }
1910 else
1911 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1912 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1913 bfd_put_32 (abfd, val, data);
1914}
1915
1916void
1917_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1918 bfd_boolean jal_shuffle, bfd_byte *data)
1919{
1920 bfd_vma extend, insn, val;
1921
1922 if (!mips16_reloc_p (r_type))
1923 return;
1924
1925 val = bfd_get_32 (abfd, data);
1926 if (r_type == R_MIPS16_26)
1927 {
1928 if (jal_shuffle)
1929 {
1930 insn = val & 0xffff;
1931 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1932 | ((val >> 21) & 0x1f);
1933 }
1934 else
1935 {
1936 insn = val & 0xffff;
1937 extend = val >> 16;
1938 }
1939 }
1940 else
1941 {
1942 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1943 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1944 }
1945 bfd_put_16 (abfd, insn, data + 2);
1946 bfd_put_16 (abfd, extend, data);
1947}
1948
1949bfd_reloc_status_type
1950_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1951 arelent *reloc_entry, asection *input_section,
1952 bfd_boolean relocatable, void *data, bfd_vma gp)
1953{
1954 bfd_vma relocation;
1955 bfd_signed_vma val;
1956 bfd_reloc_status_type status;
1957
1958 if (bfd_is_com_section (symbol->section))
1959 relocation = 0;
1960 else
1961 relocation = symbol->value;
1962
1963 relocation += symbol->section->output_section->vma;
1964 relocation += symbol->section->output_offset;
1965
1966 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1967 return bfd_reloc_outofrange;
1968
1969 /* Set val to the offset into the section or symbol. */
1970 val = reloc_entry->addend;
1971
1972 _bfd_mips_elf_sign_extend (val, 16);
1973
1974 /* Adjust val for the final section location and GP value. If we
1975 are producing relocatable output, we don't want to do this for
1976 an external symbol. */
1977 if (! relocatable
1978 || (symbol->flags & BSF_SECTION_SYM) != 0)
1979 val += relocation - gp;
1980
1981 if (reloc_entry->howto->partial_inplace)
1982 {
1983 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1984 (bfd_byte *) data
1985 + reloc_entry->address);
1986 if (status != bfd_reloc_ok)
1987 return status;
1988 }
1989 else
1990 reloc_entry->addend = val;
1991
1992 if (relocatable)
1993 reloc_entry->address += input_section->output_offset;
1994
1995 return bfd_reloc_ok;
1996}
1997
1998/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1999 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2000 that contains the relocation field and DATA points to the start of
2001 INPUT_SECTION. */
2002
2003struct mips_hi16
2004{
2005 struct mips_hi16 *next;
2006 bfd_byte *data;
2007 asection *input_section;
2008 arelent rel;
2009};
2010
2011/* FIXME: This should not be a static variable. */
2012
2013static struct mips_hi16 *mips_hi16_list;
2014
2015/* A howto special_function for REL *HI16 relocations. We can only
2016 calculate the correct value once we've seen the partnering
2017 *LO16 relocation, so just save the information for later.
2018
2019 The ABI requires that the *LO16 immediately follow the *HI16.
2020 However, as a GNU extension, we permit an arbitrary number of
2021 *HI16s to be associated with a single *LO16. This significantly
2022 simplies the relocation handling in gcc. */
2023
2024bfd_reloc_status_type
2025_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2026 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2027 asection *input_section, bfd *output_bfd,
2028 char **error_message ATTRIBUTE_UNUSED)
2029{
2030 struct mips_hi16 *n;
2031
2032 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2033 return bfd_reloc_outofrange;
2034
2035 n = bfd_malloc (sizeof *n);
2036 if (n == NULL)
2037 return bfd_reloc_outofrange;
2038
2039 n->next = mips_hi16_list;
2040 n->data = data;
2041 n->input_section = input_section;
2042 n->rel = *reloc_entry;
2043 mips_hi16_list = n;
2044
2045 if (output_bfd != NULL)
2046 reloc_entry->address += input_section->output_offset;
2047
2048 return bfd_reloc_ok;
2049}
2050
2051/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2052 like any other 16-bit relocation when applied to global symbols, but is
2053 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2054
2055bfd_reloc_status_type
2056_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2057 void *data, asection *input_section,
2058 bfd *output_bfd, char **error_message)
2059{
2060 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2061 || bfd_is_und_section (bfd_get_section (symbol))
2062 || bfd_is_com_section (bfd_get_section (symbol)))
2063 /* The relocation is against a global symbol. */
2064 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2065 input_section, output_bfd,
2066 error_message);
2067
2068 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2069 input_section, output_bfd, error_message);
2070}
2071
2072/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2073 is a straightforward 16 bit inplace relocation, but we must deal with
2074 any partnering high-part relocations as well. */
2075
2076bfd_reloc_status_type
2077_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2078 void *data, asection *input_section,
2079 bfd *output_bfd, char **error_message)
2080{
2081 bfd_vma vallo;
2082 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2083
2084 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2085 return bfd_reloc_outofrange;
2086
2087 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2088 location);
2089 vallo = bfd_get_32 (abfd, location);
2090 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2091 location);
2092
2093 while (mips_hi16_list != NULL)
2094 {
2095 bfd_reloc_status_type ret;
2096 struct mips_hi16 *hi;
2097
2098 hi = mips_hi16_list;
2099
2100 /* R_MIPS*_GOT16 relocations are something of a special case. We
2101 want to install the addend in the same way as for a R_MIPS*_HI16
2102 relocation (with a rightshift of 16). However, since GOT16
2103 relocations can also be used with global symbols, their howto
2104 has a rightshift of 0. */
2105 if (hi->rel.howto->type == R_MIPS_GOT16)
2106 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2107 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2108 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2109
2110 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2111 carry or borrow will induce a change of +1 or -1 in the high part. */
2112 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2113
2114 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2115 hi->input_section, output_bfd,
2116 error_message);
2117 if (ret != bfd_reloc_ok)
2118 return ret;
2119
2120 mips_hi16_list = hi->next;
2121 free (hi);
2122 }
2123
2124 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2125 input_section, output_bfd,
2126 error_message);
2127}
2128
2129/* A generic howto special_function. This calculates and installs the
2130 relocation itself, thus avoiding the oft-discussed problems in
2131 bfd_perform_relocation and bfd_install_relocation. */
2132
2133bfd_reloc_status_type
2134_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2135 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2136 asection *input_section, bfd *output_bfd,
2137 char **error_message ATTRIBUTE_UNUSED)
2138{
2139 bfd_signed_vma val;
2140 bfd_reloc_status_type status;
2141 bfd_boolean relocatable;
2142
2143 relocatable = (output_bfd != NULL);
2144
2145 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2146 return bfd_reloc_outofrange;
2147
2148 /* Build up the field adjustment in VAL. */
2149 val = 0;
2150 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2151 {
2152 /* Either we're calculating the final field value or we have a
2153 relocation against a section symbol. Add in the section's
2154 offset or address. */
2155 val += symbol->section->output_section->vma;
2156 val += symbol->section->output_offset;
2157 }
2158
2159 if (!relocatable)
2160 {
2161 /* We're calculating the final field value. Add in the symbol's value
2162 and, if pc-relative, subtract the address of the field itself. */
2163 val += symbol->value;
2164 if (reloc_entry->howto->pc_relative)
2165 {
2166 val -= input_section->output_section->vma;
2167 val -= input_section->output_offset;
2168 val -= reloc_entry->address;
2169 }
2170 }
2171
2172 /* VAL is now the final adjustment. If we're keeping this relocation
2173 in the output file, and if the relocation uses a separate addend,
2174 we just need to add VAL to that addend. Otherwise we need to add
2175 VAL to the relocation field itself. */
2176 if (relocatable && !reloc_entry->howto->partial_inplace)
2177 reloc_entry->addend += val;
2178 else
2179 {
2180 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2181
2182 /* Add in the separate addend, if any. */
2183 val += reloc_entry->addend;
2184
2185 /* Add VAL to the relocation field. */
2186 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2187 location);
2188 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2189 location);
2190 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2191 location);
2192
2193 if (status != bfd_reloc_ok)
2194 return status;
2195 }
2196
2197 if (relocatable)
2198 reloc_entry->address += input_section->output_offset;
2199
2200 return bfd_reloc_ok;
2201}
2202\f
2203/* Swap an entry in a .gptab section. Note that these routines rely
2204 on the equivalence of the two elements of the union. */
2205
2206static void
2207bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2208 Elf32_gptab *in)
2209{
2210 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2211 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2212}
2213
2214static void
2215bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2216 Elf32_External_gptab *ex)
2217{
2218 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2219 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2220}
2221
2222static void
2223bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2224 Elf32_External_compact_rel *ex)
2225{
2226 H_PUT_32 (abfd, in->id1, ex->id1);
2227 H_PUT_32 (abfd, in->num, ex->num);
2228 H_PUT_32 (abfd, in->id2, ex->id2);
2229 H_PUT_32 (abfd, in->offset, ex->offset);
2230 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2231 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2232}
2233
2234static void
2235bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2236 Elf32_External_crinfo *ex)
2237{
2238 unsigned long l;
2239
2240 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2241 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2242 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2243 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2244 H_PUT_32 (abfd, l, ex->info);
2245 H_PUT_32 (abfd, in->konst, ex->konst);
2246 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2247}
2248\f
2249/* A .reginfo section holds a single Elf32_RegInfo structure. These
2250 routines swap this structure in and out. They are used outside of
2251 BFD, so they are globally visible. */
2252
2253void
2254bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2255 Elf32_RegInfo *in)
2256{
2257 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2258 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2259 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2260 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2261 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2262 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2263}
2264
2265void
2266bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2267 Elf32_External_RegInfo *ex)
2268{
2269 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2270 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2271 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2272 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2273 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2274 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2275}
2276
2277/* In the 64 bit ABI, the .MIPS.options section holds register
2278 information in an Elf64_Reginfo structure. These routines swap
2279 them in and out. They are globally visible because they are used
2280 outside of BFD. These routines are here so that gas can call them
2281 without worrying about whether the 64 bit ABI has been included. */
2282
2283void
2284bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2285 Elf64_Internal_RegInfo *in)
2286{
2287 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2288 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2289 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2290 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2291 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2292 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2293 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2294}
2295
2296void
2297bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2298 Elf64_External_RegInfo *ex)
2299{
2300 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2301 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2302 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2303 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2304 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2305 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2306 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2307}
2308
2309/* Swap in an options header. */
2310
2311void
2312bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2313 Elf_Internal_Options *in)
2314{
2315 in->kind = H_GET_8 (abfd, ex->kind);
2316 in->size = H_GET_8 (abfd, ex->size);
2317 in->section = H_GET_16 (abfd, ex->section);
2318 in->info = H_GET_32 (abfd, ex->info);
2319}
2320
2321/* Swap out an options header. */
2322
2323void
2324bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2325 Elf_External_Options *ex)
2326{
2327 H_PUT_8 (abfd, in->kind, ex->kind);
2328 H_PUT_8 (abfd, in->size, ex->size);
2329 H_PUT_16 (abfd, in->section, ex->section);
2330 H_PUT_32 (abfd, in->info, ex->info);
2331}
2332\f
2333/* This function is called via qsort() to sort the dynamic relocation
2334 entries by increasing r_symndx value. */
2335
2336static int
2337sort_dynamic_relocs (const void *arg1, const void *arg2)
2338{
2339 Elf_Internal_Rela int_reloc1;
2340 Elf_Internal_Rela int_reloc2;
2341 int diff;
2342
2343 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2344 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2345
2346 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2347 if (diff != 0)
2348 return diff;
2349
2350 if (int_reloc1.r_offset < int_reloc2.r_offset)
2351 return -1;
2352 if (int_reloc1.r_offset > int_reloc2.r_offset)
2353 return 1;
2354 return 0;
2355}
2356
2357/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2358
2359static int
2360sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2361 const void *arg2 ATTRIBUTE_UNUSED)
2362{
2363#ifdef BFD64
2364 Elf_Internal_Rela int_reloc1[3];
2365 Elf_Internal_Rela int_reloc2[3];
2366
2367 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2368 (reldyn_sorting_bfd, arg1, int_reloc1);
2369 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2370 (reldyn_sorting_bfd, arg2, int_reloc2);
2371
2372 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2373 return -1;
2374 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2375 return 1;
2376
2377 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2378 return -1;
2379 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2380 return 1;
2381 return 0;
2382#else
2383 abort ();
2384#endif
2385}
2386
2387
2388/* This routine is used to write out ECOFF debugging external symbol
2389 information. It is called via mips_elf_link_hash_traverse. The
2390 ECOFF external symbol information must match the ELF external
2391 symbol information. Unfortunately, at this point we don't know
2392 whether a symbol is required by reloc information, so the two
2393 tables may wind up being different. We must sort out the external
2394 symbol information before we can set the final size of the .mdebug
2395 section, and we must set the size of the .mdebug section before we
2396 can relocate any sections, and we can't know which symbols are
2397 required by relocation until we relocate the sections.
2398 Fortunately, it is relatively unlikely that any symbol will be
2399 stripped but required by a reloc. In particular, it can not happen
2400 when generating a final executable. */
2401
2402static bfd_boolean
2403mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2404{
2405 struct extsym_info *einfo = data;
2406 bfd_boolean strip;
2407 asection *sec, *output_section;
2408
2409 if (h->root.indx == -2)
2410 strip = FALSE;
2411 else if ((h->root.def_dynamic
2412 || h->root.ref_dynamic
2413 || h->root.type == bfd_link_hash_new)
2414 && !h->root.def_regular
2415 && !h->root.ref_regular)
2416 strip = TRUE;
2417 else if (einfo->info->strip == strip_all
2418 || (einfo->info->strip == strip_some
2419 && bfd_hash_lookup (einfo->info->keep_hash,
2420 h->root.root.root.string,
2421 FALSE, FALSE) == NULL))
2422 strip = TRUE;
2423 else
2424 strip = FALSE;
2425
2426 if (strip)
2427 return TRUE;
2428
2429 if (h->esym.ifd == -2)
2430 {
2431 h->esym.jmptbl = 0;
2432 h->esym.cobol_main = 0;
2433 h->esym.weakext = 0;
2434 h->esym.reserved = 0;
2435 h->esym.ifd = ifdNil;
2436 h->esym.asym.value = 0;
2437 h->esym.asym.st = stGlobal;
2438
2439 if (h->root.root.type == bfd_link_hash_undefined
2440 || h->root.root.type == bfd_link_hash_undefweak)
2441 {
2442 const char *name;
2443
2444 /* Use undefined class. Also, set class and type for some
2445 special symbols. */
2446 name = h->root.root.root.string;
2447 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2448 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2449 {
2450 h->esym.asym.sc = scData;
2451 h->esym.asym.st = stLabel;
2452 h->esym.asym.value = 0;
2453 }
2454 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2455 {
2456 h->esym.asym.sc = scAbs;
2457 h->esym.asym.st = stLabel;
2458 h->esym.asym.value =
2459 mips_elf_hash_table (einfo->info)->procedure_count;
2460 }
2461 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2462 {
2463 h->esym.asym.sc = scAbs;
2464 h->esym.asym.st = stLabel;
2465 h->esym.asym.value = elf_gp (einfo->abfd);
2466 }
2467 else
2468 h->esym.asym.sc = scUndefined;
2469 }
2470 else if (h->root.root.type != bfd_link_hash_defined
2471 && h->root.root.type != bfd_link_hash_defweak)
2472 h->esym.asym.sc = scAbs;
2473 else
2474 {
2475 const char *name;
2476
2477 sec = h->root.root.u.def.section;
2478 output_section = sec->output_section;
2479
2480 /* When making a shared library and symbol h is the one from
2481 the another shared library, OUTPUT_SECTION may be null. */
2482 if (output_section == NULL)
2483 h->esym.asym.sc = scUndefined;
2484 else
2485 {
2486 name = bfd_section_name (output_section->owner, output_section);
2487
2488 if (strcmp (name, ".text") == 0)
2489 h->esym.asym.sc = scText;
2490 else if (strcmp (name, ".data") == 0)
2491 h->esym.asym.sc = scData;
2492 else if (strcmp (name, ".sdata") == 0)
2493 h->esym.asym.sc = scSData;
2494 else if (strcmp (name, ".rodata") == 0
2495 || strcmp (name, ".rdata") == 0)
2496 h->esym.asym.sc = scRData;
2497 else if (strcmp (name, ".bss") == 0)
2498 h->esym.asym.sc = scBss;
2499 else if (strcmp (name, ".sbss") == 0)
2500 h->esym.asym.sc = scSBss;
2501 else if (strcmp (name, ".init") == 0)
2502 h->esym.asym.sc = scInit;
2503 else if (strcmp (name, ".fini") == 0)
2504 h->esym.asym.sc = scFini;
2505 else
2506 h->esym.asym.sc = scAbs;
2507 }
2508 }
2509
2510 h->esym.asym.reserved = 0;
2511 h->esym.asym.index = indexNil;
2512 }
2513
2514 if (h->root.root.type == bfd_link_hash_common)
2515 h->esym.asym.value = h->root.root.u.c.size;
2516 else if (h->root.root.type == bfd_link_hash_defined
2517 || h->root.root.type == bfd_link_hash_defweak)
2518 {
2519 if (h->esym.asym.sc == scCommon)
2520 h->esym.asym.sc = scBss;
2521 else if (h->esym.asym.sc == scSCommon)
2522 h->esym.asym.sc = scSBss;
2523
2524 sec = h->root.root.u.def.section;
2525 output_section = sec->output_section;
2526 if (output_section != NULL)
2527 h->esym.asym.value = (h->root.root.u.def.value
2528 + sec->output_offset
2529 + output_section->vma);
2530 else
2531 h->esym.asym.value = 0;
2532 }
2533 else
2534 {
2535 struct mips_elf_link_hash_entry *hd = h;
2536
2537 while (hd->root.root.type == bfd_link_hash_indirect)
2538 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2539
2540 if (hd->needs_lazy_stub)
2541 {
2542 /* Set type and value for a symbol with a function stub. */
2543 h->esym.asym.st = stProc;
2544 sec = hd->root.root.u.def.section;
2545 if (sec == NULL)
2546 h->esym.asym.value = 0;
2547 else
2548 {
2549 output_section = sec->output_section;
2550 if (output_section != NULL)
2551 h->esym.asym.value = (hd->root.plt.offset
2552 + sec->output_offset
2553 + output_section->vma);
2554 else
2555 h->esym.asym.value = 0;
2556 }
2557 }
2558 }
2559
2560 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2561 h->root.root.root.string,
2562 &h->esym))
2563 {
2564 einfo->failed = TRUE;
2565 return FALSE;
2566 }
2567
2568 return TRUE;
2569}
2570
2571/* A comparison routine used to sort .gptab entries. */
2572
2573static int
2574gptab_compare (const void *p1, const void *p2)
2575{
2576 const Elf32_gptab *a1 = p1;
2577 const Elf32_gptab *a2 = p2;
2578
2579 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2580}
2581\f
2582/* Functions to manage the got entry hash table. */
2583
2584/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2585 hash number. */
2586
2587static INLINE hashval_t
2588mips_elf_hash_bfd_vma (bfd_vma addr)
2589{
2590#ifdef BFD64
2591 return addr + (addr >> 32);
2592#else
2593 return addr;
2594#endif
2595}
2596
2597/* got_entries only match if they're identical, except for gotidx, so
2598 use all fields to compute the hash, and compare the appropriate
2599 union members. */
2600
2601static hashval_t
2602mips_elf_got_entry_hash (const void *entry_)
2603{
2604 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2605
2606 return entry->symndx
2607 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2608 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2609 : entry->abfd->id
2610 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2611 : entry->d.h->root.root.root.hash));
2612}
2613
2614static int
2615mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2616{
2617 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2618 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2619
2620 /* An LDM entry can only match another LDM entry. */
2621 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2622 return 0;
2623
2624 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2625 && (! e1->abfd ? e1->d.address == e2->d.address
2626 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2627 : e1->d.h == e2->d.h);
2628}
2629
2630/* multi_got_entries are still a match in the case of global objects,
2631 even if the input bfd in which they're referenced differs, so the
2632 hash computation and compare functions are adjusted
2633 accordingly. */
2634
2635static hashval_t
2636mips_elf_multi_got_entry_hash (const void *entry_)
2637{
2638 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2639
2640 return entry->symndx
2641 + (! entry->abfd
2642 ? mips_elf_hash_bfd_vma (entry->d.address)
2643 : entry->symndx >= 0
2644 ? ((entry->tls_type & GOT_TLS_LDM)
2645 ? (GOT_TLS_LDM << 17)
2646 : (entry->abfd->id
2647 + mips_elf_hash_bfd_vma (entry->d.addend)))
2648 : entry->d.h->root.root.root.hash);
2649}
2650
2651static int
2652mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2653{
2654 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2655 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2656
2657 /* Any two LDM entries match. */
2658 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2659 return 1;
2660
2661 /* Nothing else matches an LDM entry. */
2662 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2663 return 0;
2664
2665 return e1->symndx == e2->symndx
2666 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2667 : e1->abfd == NULL || e2->abfd == NULL
2668 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2669 : e1->d.h == e2->d.h);
2670}
2671
2672static hashval_t
2673mips_got_page_entry_hash (const void *entry_)
2674{
2675 const struct mips_got_page_entry *entry;
2676
2677 entry = (const struct mips_got_page_entry *) entry_;
2678 return entry->abfd->id + entry->symndx;
2679}
2680
2681static int
2682mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2683{
2684 const struct mips_got_page_entry *entry1, *entry2;
2685
2686 entry1 = (const struct mips_got_page_entry *) entry1_;
2687 entry2 = (const struct mips_got_page_entry *) entry2_;
2688 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2689}
2690\f
2691/* Return the dynamic relocation section. If it doesn't exist, try to
2692 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2693 if creation fails. */
2694
2695static asection *
2696mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2697{
2698 const char *dname;
2699 asection *sreloc;
2700 bfd *dynobj;
2701
2702 dname = MIPS_ELF_REL_DYN_NAME (info);
2703 dynobj = elf_hash_table (info)->dynobj;
2704 sreloc = bfd_get_section_by_name (dynobj, dname);
2705 if (sreloc == NULL && create_p)
2706 {
2707 sreloc = bfd_make_section_with_flags (dynobj, dname,
2708 (SEC_ALLOC
2709 | SEC_LOAD
2710 | SEC_HAS_CONTENTS
2711 | SEC_IN_MEMORY
2712 | SEC_LINKER_CREATED
2713 | SEC_READONLY));
2714 if (sreloc == NULL
2715 || ! bfd_set_section_alignment (dynobj, sreloc,
2716 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2717 return NULL;
2718 }
2719 return sreloc;
2720}
2721
2722/* Count the number of relocations needed for a TLS GOT entry, with
2723 access types from TLS_TYPE, and symbol H (or a local symbol if H
2724 is NULL). */
2725
2726static int
2727mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2728 struct elf_link_hash_entry *h)
2729{
2730 int indx = 0;
2731 int ret = 0;
2732 bfd_boolean need_relocs = FALSE;
2733 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2734
2735 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2736 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2737 indx = h->dynindx;
2738
2739 if ((info->shared || indx != 0)
2740 && (h == NULL
2741 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2742 || h->root.type != bfd_link_hash_undefweak))
2743 need_relocs = TRUE;
2744
2745 if (!need_relocs)
2746 return FALSE;
2747
2748 if (tls_type & GOT_TLS_GD)
2749 {
2750 ret++;
2751 if (indx != 0)
2752 ret++;
2753 }
2754
2755 if (tls_type & GOT_TLS_IE)
2756 ret++;
2757
2758 if ((tls_type & GOT_TLS_LDM) && info->shared)
2759 ret++;
2760
2761 return ret;
2762}
2763
2764/* Count the number of TLS relocations required for the GOT entry in
2765 ARG1, if it describes a local symbol. */
2766
2767static int
2768mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2769{
2770 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2771 struct mips_elf_count_tls_arg *arg = arg2;
2772
2773 if (entry->abfd != NULL && entry->symndx != -1)
2774 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2775
2776 return 1;
2777}
2778
2779/* Count the number of TLS GOT entries required for the global (or
2780 forced-local) symbol in ARG1. */
2781
2782static int
2783mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2784{
2785 struct mips_elf_link_hash_entry *hm
2786 = (struct mips_elf_link_hash_entry *) arg1;
2787 struct mips_elf_count_tls_arg *arg = arg2;
2788
2789 if (hm->tls_type & GOT_TLS_GD)
2790 arg->needed += 2;
2791 if (hm->tls_type & GOT_TLS_IE)
2792 arg->needed += 1;
2793
2794 return 1;
2795}
2796
2797/* Count the number of TLS relocations required for the global (or
2798 forced-local) symbol in ARG1. */
2799
2800static int
2801mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2802{
2803 struct mips_elf_link_hash_entry *hm
2804 = (struct mips_elf_link_hash_entry *) arg1;
2805 struct mips_elf_count_tls_arg *arg = arg2;
2806
2807 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2808
2809 return 1;
2810}
2811
2812/* Output a simple dynamic relocation into SRELOC. */
2813
2814static void
2815mips_elf_output_dynamic_relocation (bfd *output_bfd,
2816 asection *sreloc,
2817 unsigned long reloc_index,
2818 unsigned long indx,
2819 int r_type,
2820 bfd_vma offset)
2821{
2822 Elf_Internal_Rela rel[3];
2823
2824 memset (rel, 0, sizeof (rel));
2825
2826 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2827 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2828
2829 if (ABI_64_P (output_bfd))
2830 {
2831 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2832 (output_bfd, &rel[0],
2833 (sreloc->contents
2834 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2835 }
2836 else
2837 bfd_elf32_swap_reloc_out
2838 (output_bfd, &rel[0],
2839 (sreloc->contents
2840 + reloc_index * sizeof (Elf32_External_Rel)));
2841}
2842
2843/* Initialize a set of TLS GOT entries for one symbol. */
2844
2845static void
2846mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2847 unsigned char *tls_type_p,
2848 struct bfd_link_info *info,
2849 struct mips_elf_link_hash_entry *h,
2850 bfd_vma value)
2851{
2852 struct mips_elf_link_hash_table *htab;
2853 int indx;
2854 asection *sreloc, *sgot;
2855 bfd_vma offset, offset2;
2856 bfd_boolean need_relocs = FALSE;
2857
2858 htab = mips_elf_hash_table (info);
2859 if (htab == NULL)
2860 return;
2861
2862 sgot = htab->sgot;
2863
2864 indx = 0;
2865 if (h != NULL)
2866 {
2867 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2868
2869 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2870 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2871 indx = h->root.dynindx;
2872 }
2873
2874 if (*tls_type_p & GOT_TLS_DONE)
2875 return;
2876
2877 if ((info->shared || indx != 0)
2878 && (h == NULL
2879 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2880 || h->root.type != bfd_link_hash_undefweak))
2881 need_relocs = TRUE;
2882
2883 /* MINUS_ONE means the symbol is not defined in this object. It may not
2884 be defined at all; assume that the value doesn't matter in that
2885 case. Otherwise complain if we would use the value. */
2886 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2887 || h->root.root.type == bfd_link_hash_undefweak);
2888
2889 /* Emit necessary relocations. */
2890 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2891
2892 /* General Dynamic. */
2893 if (*tls_type_p & GOT_TLS_GD)
2894 {
2895 offset = got_offset;
2896 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2897
2898 if (need_relocs)
2899 {
2900 mips_elf_output_dynamic_relocation
2901 (abfd, sreloc, sreloc->reloc_count++, indx,
2902 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2903 sgot->output_offset + sgot->output_section->vma + offset);
2904
2905 if (indx)
2906 mips_elf_output_dynamic_relocation
2907 (abfd, sreloc, sreloc->reloc_count++, indx,
2908 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2909 sgot->output_offset + sgot->output_section->vma + offset2);
2910 else
2911 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2912 sgot->contents + offset2);
2913 }
2914 else
2915 {
2916 MIPS_ELF_PUT_WORD (abfd, 1,
2917 sgot->contents + offset);
2918 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2919 sgot->contents + offset2);
2920 }
2921
2922 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2923 }
2924
2925 /* Initial Exec model. */
2926 if (*tls_type_p & GOT_TLS_IE)
2927 {
2928 offset = got_offset;
2929
2930 if (need_relocs)
2931 {
2932 if (indx == 0)
2933 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2934 sgot->contents + offset);
2935 else
2936 MIPS_ELF_PUT_WORD (abfd, 0,
2937 sgot->contents + offset);
2938
2939 mips_elf_output_dynamic_relocation
2940 (abfd, sreloc, sreloc->reloc_count++, indx,
2941 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2942 sgot->output_offset + sgot->output_section->vma + offset);
2943 }
2944 else
2945 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2946 sgot->contents + offset);
2947 }
2948
2949 if (*tls_type_p & GOT_TLS_LDM)
2950 {
2951 /* The initial offset is zero, and the LD offsets will include the
2952 bias by DTP_OFFSET. */
2953 MIPS_ELF_PUT_WORD (abfd, 0,
2954 sgot->contents + got_offset
2955 + MIPS_ELF_GOT_SIZE (abfd));
2956
2957 if (!info->shared)
2958 MIPS_ELF_PUT_WORD (abfd, 1,
2959 sgot->contents + got_offset);
2960 else
2961 mips_elf_output_dynamic_relocation
2962 (abfd, sreloc, sreloc->reloc_count++, indx,
2963 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2964 sgot->output_offset + sgot->output_section->vma + got_offset);
2965 }
2966
2967 *tls_type_p |= GOT_TLS_DONE;
2968}
2969
2970/* Return the GOT index to use for a relocation of type R_TYPE against
2971 a symbol accessed using TLS_TYPE models. The GOT entries for this
2972 symbol in this GOT start at GOT_INDEX. This function initializes the
2973 GOT entries and corresponding relocations. */
2974
2975static bfd_vma
2976mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2977 int r_type, struct bfd_link_info *info,
2978 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2979{
2980 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2981 || r_type == R_MIPS_TLS_LDM);
2982
2983 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2984
2985 if (r_type == R_MIPS_TLS_GOTTPREL)
2986 {
2987 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2988 if (*tls_type & GOT_TLS_GD)
2989 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2990 else
2991 return got_index;
2992 }
2993
2994 if (r_type == R_MIPS_TLS_GD)
2995 {
2996 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2997 return got_index;
2998 }
2999
3000 if (r_type == R_MIPS_TLS_LDM)
3001 {
3002 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3003 return got_index;
3004 }
3005
3006 return got_index;
3007}
3008
3009/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3010 for global symbol H. .got.plt comes before the GOT, so the offset
3011 will be negative. */
3012
3013static bfd_vma
3014mips_elf_gotplt_index (struct bfd_link_info *info,
3015 struct elf_link_hash_entry *h)
3016{
3017 bfd_vma plt_index, got_address, got_value;
3018 struct mips_elf_link_hash_table *htab;
3019
3020 htab = mips_elf_hash_table (info);
3021 BFD_ASSERT (htab != NULL);
3022
3023 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3024
3025 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3026 section starts with reserved entries. */
3027 BFD_ASSERT (htab->is_vxworks);
3028
3029 /* Calculate the index of the symbol's PLT entry. */
3030 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3031
3032 /* Calculate the address of the associated .got.plt entry. */
3033 got_address = (htab->sgotplt->output_section->vma
3034 + htab->sgotplt->output_offset
3035 + plt_index * 4);
3036
3037 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3038 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3039 + htab->root.hgot->root.u.def.section->output_offset
3040 + htab->root.hgot->root.u.def.value);
3041
3042 return got_address - got_value;
3043}
3044
3045/* Return the GOT offset for address VALUE. If there is not yet a GOT
3046 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3047 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3048 offset can be found. */
3049
3050static bfd_vma
3051mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3052 bfd_vma value, unsigned long r_symndx,
3053 struct mips_elf_link_hash_entry *h, int r_type)
3054{
3055 struct mips_elf_link_hash_table *htab;
3056 struct mips_got_entry *entry;
3057
3058 htab = mips_elf_hash_table (info);
3059 BFD_ASSERT (htab != NULL);
3060
3061 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3062 r_symndx, h, r_type);
3063 if (!entry)
3064 return MINUS_ONE;
3065
3066 if (TLS_RELOC_P (r_type))
3067 {
3068 if (entry->symndx == -1 && htab->got_info->next == NULL)
3069 /* A type (3) entry in the single-GOT case. We use the symbol's
3070 hash table entry to track the index. */
3071 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3072 r_type, info, h, value);
3073 else
3074 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3075 r_type, info, h, value);
3076 }
3077 else
3078 return entry->gotidx;
3079}
3080
3081/* Returns the GOT index for the global symbol indicated by H. */
3082
3083static bfd_vma
3084mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3085 int r_type, struct bfd_link_info *info)
3086{
3087 struct mips_elf_link_hash_table *htab;
3088 bfd_vma got_index;
3089 struct mips_got_info *g, *gg;
3090 long global_got_dynindx = 0;
3091
3092 htab = mips_elf_hash_table (info);
3093 BFD_ASSERT (htab != NULL);
3094
3095 gg = g = htab->got_info;
3096 if (g->bfd2got && ibfd)
3097 {
3098 struct mips_got_entry e, *p;
3099
3100 BFD_ASSERT (h->dynindx >= 0);
3101
3102 g = mips_elf_got_for_ibfd (g, ibfd);
3103 if (g->next != gg || TLS_RELOC_P (r_type))
3104 {
3105 e.abfd = ibfd;
3106 e.symndx = -1;
3107 e.d.h = (struct mips_elf_link_hash_entry *)h;
3108 e.tls_type = 0;
3109
3110 p = htab_find (g->got_entries, &e);
3111
3112 BFD_ASSERT (p->gotidx > 0);
3113
3114 if (TLS_RELOC_P (r_type))
3115 {
3116 bfd_vma value = MINUS_ONE;
3117 if ((h->root.type == bfd_link_hash_defined
3118 || h->root.type == bfd_link_hash_defweak)
3119 && h->root.u.def.section->output_section)
3120 value = (h->root.u.def.value
3121 + h->root.u.def.section->output_offset
3122 + h->root.u.def.section->output_section->vma);
3123
3124 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3125 info, e.d.h, value);
3126 }
3127 else
3128 return p->gotidx;
3129 }
3130 }
3131
3132 if (gg->global_gotsym != NULL)
3133 global_got_dynindx = gg->global_gotsym->dynindx;
3134
3135 if (TLS_RELOC_P (r_type))
3136 {
3137 struct mips_elf_link_hash_entry *hm
3138 = (struct mips_elf_link_hash_entry *) h;
3139 bfd_vma value = MINUS_ONE;
3140
3141 if ((h->root.type == bfd_link_hash_defined
3142 || h->root.type == bfd_link_hash_defweak)
3143 && h->root.u.def.section->output_section)
3144 value = (h->root.u.def.value
3145 + h->root.u.def.section->output_offset
3146 + h->root.u.def.section->output_section->vma);
3147
3148 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3149 r_type, info, hm, value);
3150 }
3151 else
3152 {
3153 /* Once we determine the global GOT entry with the lowest dynamic
3154 symbol table index, we must put all dynamic symbols with greater
3155 indices into the GOT. That makes it easy to calculate the GOT
3156 offset. */
3157 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3158 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3159 * MIPS_ELF_GOT_SIZE (abfd));
3160 }
3161 BFD_ASSERT (got_index < htab->sgot->size);
3162
3163 return got_index;
3164}
3165
3166/* Find a GOT page entry that points to within 32KB of VALUE. These
3167 entries are supposed to be placed at small offsets in the GOT, i.e.,
3168 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3169 entry could be created. If OFFSETP is nonnull, use it to return the
3170 offset of the GOT entry from VALUE. */
3171
3172static bfd_vma
3173mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3174 bfd_vma value, bfd_vma *offsetp)
3175{
3176 bfd_vma page, got_index;
3177 struct mips_got_entry *entry;
3178
3179 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3180 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3181 NULL, R_MIPS_GOT_PAGE);
3182
3183 if (!entry)
3184 return MINUS_ONE;
3185
3186 got_index = entry->gotidx;
3187
3188 if (offsetp)
3189 *offsetp = value - entry->d.address;
3190
3191 return got_index;
3192}
3193
3194/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3195 EXTERNAL is true if the relocation was originally against a global
3196 symbol that binds locally. */
3197
3198static bfd_vma
3199mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3200 bfd_vma value, bfd_boolean external)
3201{
3202 struct mips_got_entry *entry;
3203
3204 /* GOT16 relocations against local symbols are followed by a LO16
3205 relocation; those against global symbols are not. Thus if the
3206 symbol was originally local, the GOT16 relocation should load the
3207 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3208 if (! external)
3209 value = mips_elf_high (value) << 16;
3210
3211 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3212 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3213 same in all cases. */
3214 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3215 NULL, R_MIPS_GOT16);
3216 if (entry)
3217 return entry->gotidx;
3218 else
3219 return MINUS_ONE;
3220}
3221
3222/* Returns the offset for the entry at the INDEXth position
3223 in the GOT. */
3224
3225static bfd_vma
3226mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3227 bfd *input_bfd, bfd_vma got_index)
3228{
3229 struct mips_elf_link_hash_table *htab;
3230 asection *sgot;
3231 bfd_vma gp;
3232
3233 htab = mips_elf_hash_table (info);
3234 BFD_ASSERT (htab != NULL);
3235
3236 sgot = htab->sgot;
3237 gp = _bfd_get_gp_value (output_bfd)
3238 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3239
3240 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3241}
3242
3243/* Create and return a local GOT entry for VALUE, which was calculated
3244 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3245 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3246 instead. */
3247
3248static struct mips_got_entry *
3249mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3250 bfd *ibfd, bfd_vma value,
3251 unsigned long r_symndx,
3252 struct mips_elf_link_hash_entry *h,
3253 int r_type)
3254{
3255 struct mips_got_entry entry, **loc;
3256 struct mips_got_info *g;
3257 struct mips_elf_link_hash_table *htab;
3258
3259 htab = mips_elf_hash_table (info);
3260 BFD_ASSERT (htab != NULL);
3261
3262 entry.abfd = NULL;
3263 entry.symndx = -1;
3264 entry.d.address = value;
3265 entry.tls_type = 0;
3266
3267 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3268 if (g == NULL)
3269 {
3270 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3271 BFD_ASSERT (g != NULL);
3272 }
3273
3274 /* This function shouldn't be called for symbols that live in the global
3275 area of the GOT. */
3276 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3277 if (TLS_RELOC_P (r_type))
3278 {
3279 struct mips_got_entry *p;
3280
3281 entry.abfd = ibfd;
3282 if (r_type == R_MIPS_TLS_LDM)
3283 {
3284 entry.tls_type = GOT_TLS_LDM;
3285 entry.symndx = 0;
3286 entry.d.addend = 0;
3287 }
3288 else if (h == NULL)
3289 {
3290 entry.symndx = r_symndx;
3291 entry.d.addend = 0;
3292 }
3293 else
3294 entry.d.h = h;
3295
3296 p = (struct mips_got_entry *)
3297 htab_find (g->got_entries, &entry);
3298
3299 BFD_ASSERT (p);
3300 return p;
3301 }
3302
3303 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3304 INSERT);
3305 if (*loc)
3306 return *loc;
3307
3308 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3309 entry.tls_type = 0;
3310
3311 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3312
3313 if (! *loc)
3314 return NULL;
3315
3316 memcpy (*loc, &entry, sizeof entry);
3317
3318 if (g->assigned_gotno > g->local_gotno)
3319 {
3320 (*loc)->gotidx = -1;
3321 /* We didn't allocate enough space in the GOT. */
3322 (*_bfd_error_handler)
3323 (_("not enough GOT space for local GOT entries"));
3324 bfd_set_error (bfd_error_bad_value);
3325 return NULL;
3326 }
3327
3328 MIPS_ELF_PUT_WORD (abfd, value,
3329 (htab->sgot->contents + entry.gotidx));
3330
3331 /* These GOT entries need a dynamic relocation on VxWorks. */
3332 if (htab->is_vxworks)
3333 {
3334 Elf_Internal_Rela outrel;
3335 asection *s;
3336 bfd_byte *rloc;
3337 bfd_vma got_address;
3338
3339 s = mips_elf_rel_dyn_section (info, FALSE);
3340 got_address = (htab->sgot->output_section->vma
3341 + htab->sgot->output_offset
3342 + entry.gotidx);
3343
3344 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3345 outrel.r_offset = got_address;
3346 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3347 outrel.r_addend = value;
3348 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3349 }
3350
3351 return *loc;
3352}
3353
3354/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3355 The number might be exact or a worst-case estimate, depending on how
3356 much information is available to elf_backend_omit_section_dynsym at
3357 the current linking stage. */
3358
3359static bfd_size_type
3360count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3361{
3362 bfd_size_type count;
3363
3364 count = 0;
3365 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3366 {
3367 asection *p;
3368 const struct elf_backend_data *bed;
3369
3370 bed = get_elf_backend_data (output_bfd);
3371 for (p = output_bfd->sections; p ; p = p->next)
3372 if ((p->flags & SEC_EXCLUDE) == 0
3373 && (p->flags & SEC_ALLOC) != 0
3374 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3375 ++count;
3376 }
3377 return count;
3378}
3379
3380/* Sort the dynamic symbol table so that symbols that need GOT entries
3381 appear towards the end. */
3382
3383static bfd_boolean
3384mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3385{
3386 struct mips_elf_link_hash_table *htab;
3387 struct mips_elf_hash_sort_data hsd;
3388 struct mips_got_info *g;
3389
3390 if (elf_hash_table (info)->dynsymcount == 0)
3391 return TRUE;
3392
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3395
3396 g = htab->got_info;
3397 if (g == NULL)
3398 return TRUE;
3399
3400 hsd.low = NULL;
3401 hsd.max_unref_got_dynindx
3402 = hsd.min_got_dynindx
3403 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3404 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3405 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3406 elf_hash_table (info)),
3407 mips_elf_sort_hash_table_f,
3408 &hsd);
3409
3410 /* There should have been enough room in the symbol table to
3411 accommodate both the GOT and non-GOT symbols. */
3412 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3413 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3414 == elf_hash_table (info)->dynsymcount);
3415 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3416 == g->global_gotno);
3417
3418 /* Now we know which dynamic symbol has the lowest dynamic symbol
3419 table index in the GOT. */
3420 g->global_gotsym = hsd.low;
3421
3422 return TRUE;
3423}
3424
3425/* If H needs a GOT entry, assign it the highest available dynamic
3426 index. Otherwise, assign it the lowest available dynamic
3427 index. */
3428
3429static bfd_boolean
3430mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3431{
3432 struct mips_elf_hash_sort_data *hsd = data;
3433
3434 /* Symbols without dynamic symbol table entries aren't interesting
3435 at all. */
3436 if (h->root.dynindx == -1)
3437 return TRUE;
3438
3439 switch (h->global_got_area)
3440 {
3441 case GGA_NONE:
3442 h->root.dynindx = hsd->max_non_got_dynindx++;
3443 break;
3444
3445 case GGA_NORMAL:
3446 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3447
3448 h->root.dynindx = --hsd->min_got_dynindx;
3449 hsd->low = (struct elf_link_hash_entry *) h;
3450 break;
3451
3452 case GGA_RELOC_ONLY:
3453 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3454
3455 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3456 hsd->low = (struct elf_link_hash_entry *) h;
3457 h->root.dynindx = hsd->max_unref_got_dynindx++;
3458 break;
3459 }
3460
3461 return TRUE;
3462}
3463
3464/* If H is a symbol that needs a global GOT entry, but has a dynamic
3465 symbol table index lower than any we've seen to date, record it for
3466 posterity. FOR_CALL is true if the caller is only interested in
3467 using the GOT entry for calls. */
3468
3469static bfd_boolean
3470mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3471 bfd *abfd, struct bfd_link_info *info,
3472 bfd_boolean for_call,
3473 unsigned char tls_flag)
3474{
3475 struct mips_elf_link_hash_table *htab;
3476 struct mips_elf_link_hash_entry *hmips;
3477 struct mips_got_entry entry, **loc;
3478 struct mips_got_info *g;
3479
3480 htab = mips_elf_hash_table (info);
3481 BFD_ASSERT (htab != NULL);
3482
3483 hmips = (struct mips_elf_link_hash_entry *) h;
3484 if (!for_call)
3485 hmips->got_only_for_calls = FALSE;
3486
3487 /* A global symbol in the GOT must also be in the dynamic symbol
3488 table. */
3489 if (h->dynindx == -1)
3490 {
3491 switch (ELF_ST_VISIBILITY (h->other))
3492 {
3493 case STV_INTERNAL:
3494 case STV_HIDDEN:
3495 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3496 break;
3497 }
3498 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3499 return FALSE;
3500 }
3501
3502 /* Make sure we have a GOT to put this entry into. */
3503 g = htab->got_info;
3504 BFD_ASSERT (g != NULL);
3505
3506 entry.abfd = abfd;
3507 entry.symndx = -1;
3508 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3509 entry.tls_type = 0;
3510
3511 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3512 INSERT);
3513
3514 /* If we've already marked this entry as needing GOT space, we don't
3515 need to do it again. */
3516 if (*loc)
3517 {
3518 (*loc)->tls_type |= tls_flag;
3519 return TRUE;
3520 }
3521
3522 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3523
3524 if (! *loc)
3525 return FALSE;
3526
3527 entry.gotidx = -1;
3528 entry.tls_type = tls_flag;
3529
3530 memcpy (*loc, &entry, sizeof entry);
3531
3532 if (tls_flag == 0)
3533 hmips->global_got_area = GGA_NORMAL;
3534
3535 return TRUE;
3536}
3537
3538/* Reserve space in G for a GOT entry containing the value of symbol
3539 SYMNDX in input bfd ABDF, plus ADDEND. */
3540
3541static bfd_boolean
3542mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3543 struct bfd_link_info *info,
3544 unsigned char tls_flag)
3545{
3546 struct mips_elf_link_hash_table *htab;
3547 struct mips_got_info *g;
3548 struct mips_got_entry entry, **loc;
3549
3550 htab = mips_elf_hash_table (info);
3551 BFD_ASSERT (htab != NULL);
3552
3553 g = htab->got_info;
3554 BFD_ASSERT (g != NULL);
3555
3556 entry.abfd = abfd;
3557 entry.symndx = symndx;
3558 entry.d.addend = addend;
3559 entry.tls_type = tls_flag;
3560 loc = (struct mips_got_entry **)
3561 htab_find_slot (g->got_entries, &entry, INSERT);
3562
3563 if (*loc)
3564 {
3565 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3566 {
3567 g->tls_gotno += 2;
3568 (*loc)->tls_type |= tls_flag;
3569 }
3570 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3571 {
3572 g->tls_gotno += 1;
3573 (*loc)->tls_type |= tls_flag;
3574 }
3575 return TRUE;
3576 }
3577
3578 if (tls_flag != 0)
3579 {
3580 entry.gotidx = -1;
3581 entry.tls_type = tls_flag;
3582 if (tls_flag == GOT_TLS_IE)
3583 g->tls_gotno += 1;
3584 else if (tls_flag == GOT_TLS_GD)
3585 g->tls_gotno += 2;
3586 else if (g->tls_ldm_offset == MINUS_ONE)
3587 {
3588 g->tls_ldm_offset = MINUS_TWO;
3589 g->tls_gotno += 2;
3590 }
3591 }
3592 else
3593 {
3594 entry.gotidx = g->local_gotno++;
3595 entry.tls_type = 0;
3596 }
3597
3598 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3599
3600 if (! *loc)
3601 return FALSE;
3602
3603 memcpy (*loc, &entry, sizeof entry);
3604
3605 return TRUE;
3606}
3607
3608/* Return the maximum number of GOT page entries required for RANGE. */
3609
3610static bfd_vma
3611mips_elf_pages_for_range (const struct mips_got_page_range *range)
3612{
3613 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3614}
3615
3616/* Record that ABFD has a page relocation against symbol SYMNDX and
3617 that ADDEND is the addend for that relocation.
3618
3619 This function creates an upper bound on the number of GOT slots
3620 required; no attempt is made to combine references to non-overridable
3621 global symbols across multiple input files. */
3622
3623static bfd_boolean
3624mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3625 long symndx, bfd_signed_vma addend)
3626{
3627 struct mips_elf_link_hash_table *htab;
3628 struct mips_got_info *g;
3629 struct mips_got_page_entry lookup, *entry;
3630 struct mips_got_page_range **range_ptr, *range;
3631 bfd_vma old_pages, new_pages;
3632 void **loc;
3633
3634 htab = mips_elf_hash_table (info);
3635 BFD_ASSERT (htab != NULL);
3636
3637 g = htab->got_info;
3638 BFD_ASSERT (g != NULL);
3639
3640 /* Find the mips_got_page_entry hash table entry for this symbol. */
3641 lookup.abfd = abfd;
3642 lookup.symndx = symndx;
3643 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3644 if (loc == NULL)
3645 return FALSE;
3646
3647 /* Create a mips_got_page_entry if this is the first time we've
3648 seen the symbol. */
3649 entry = (struct mips_got_page_entry *) *loc;
3650 if (!entry)
3651 {
3652 entry = bfd_alloc (abfd, sizeof (*entry));
3653 if (!entry)
3654 return FALSE;
3655
3656 entry->abfd = abfd;
3657 entry->symndx = symndx;
3658 entry->ranges = NULL;
3659 entry->num_pages = 0;
3660 *loc = entry;
3661 }
3662
3663 /* Skip over ranges whose maximum extent cannot share a page entry
3664 with ADDEND. */
3665 range_ptr = &entry->ranges;
3666 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3667 range_ptr = &(*range_ptr)->next;
3668
3669 /* If we scanned to the end of the list, or found a range whose
3670 minimum extent cannot share a page entry with ADDEND, create
3671 a new singleton range. */
3672 range = *range_ptr;
3673 if (!range || addend < range->min_addend - 0xffff)
3674 {
3675 range = bfd_alloc (abfd, sizeof (*range));
3676 if (!range)
3677 return FALSE;
3678
3679 range->next = *range_ptr;
3680 range->min_addend = addend;
3681 range->max_addend = addend;
3682
3683 *range_ptr = range;
3684 entry->num_pages++;
3685 g->page_gotno++;
3686 return TRUE;
3687 }
3688
3689 /* Remember how many pages the old range contributed. */
3690 old_pages = mips_elf_pages_for_range (range);
3691
3692 /* Update the ranges. */
3693 if (addend < range->min_addend)
3694 range->min_addend = addend;
3695 else if (addend > range->max_addend)
3696 {
3697 if (range->next && addend >= range->next->min_addend - 0xffff)
3698 {
3699 old_pages += mips_elf_pages_for_range (range->next);
3700 range->max_addend = range->next->max_addend;
3701 range->next = range->next->next;
3702 }
3703 else
3704 range->max_addend = addend;
3705 }
3706
3707 /* Record any change in the total estimate. */
3708 new_pages = mips_elf_pages_for_range (range);
3709 if (old_pages != new_pages)
3710 {
3711 entry->num_pages += new_pages - old_pages;
3712 g->page_gotno += new_pages - old_pages;
3713 }
3714
3715 return TRUE;
3716}
3717
3718/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3719
3720static void
3721mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3722 unsigned int n)
3723{
3724 asection *s;
3725 struct mips_elf_link_hash_table *htab;
3726
3727 htab = mips_elf_hash_table (info);
3728 BFD_ASSERT (htab != NULL);
3729
3730 s = mips_elf_rel_dyn_section (info, FALSE);
3731 BFD_ASSERT (s != NULL);
3732
3733 if (htab->is_vxworks)
3734 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3735 else
3736 {
3737 if (s->size == 0)
3738 {
3739 /* Make room for a null element. */
3740 s->size += MIPS_ELF_REL_SIZE (abfd);
3741 ++s->reloc_count;
3742 }
3743 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3744 }
3745}
3746\f
3747/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3748 if the GOT entry is for an indirect or warning symbol. */
3749
3750static int
3751mips_elf_check_recreate_got (void **entryp, void *data)
3752{
3753 struct mips_got_entry *entry;
3754 bfd_boolean *must_recreate;
3755
3756 entry = (struct mips_got_entry *) *entryp;
3757 must_recreate = (bfd_boolean *) data;
3758 if (entry->abfd != NULL && entry->symndx == -1)
3759 {
3760 struct mips_elf_link_hash_entry *h;
3761
3762 h = entry->d.h;
3763 if (h->root.root.type == bfd_link_hash_indirect
3764 || h->root.root.type == bfd_link_hash_warning)
3765 {
3766 *must_recreate = TRUE;
3767 return 0;
3768 }
3769 }
3770 return 1;
3771}
3772
3773/* A htab_traverse callback for GOT entries. Add all entries to
3774 hash table *DATA, converting entries for indirect and warning
3775 symbols into entries for the target symbol. Set *DATA to null
3776 on error. */
3777
3778static int
3779mips_elf_recreate_got (void **entryp, void *data)
3780{
3781 htab_t *new_got;
3782 struct mips_got_entry *entry;
3783 void **slot;
3784
3785 new_got = (htab_t *) data;
3786 entry = (struct mips_got_entry *) *entryp;
3787 if (entry->abfd != NULL && entry->symndx == -1)
3788 {
3789 struct mips_elf_link_hash_entry *h;
3790
3791 h = entry->d.h;
3792 while (h->root.root.type == bfd_link_hash_indirect
3793 || h->root.root.type == bfd_link_hash_warning)
3794 {
3795 BFD_ASSERT (h->global_got_area == GGA_NONE);
3796 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3797 }
3798 entry->d.h = h;
3799 }
3800 slot = htab_find_slot (*new_got, entry, INSERT);
3801 if (slot == NULL)
3802 {
3803 *new_got = NULL;
3804 return 0;
3805 }
3806 if (*slot == NULL)
3807 *slot = entry;
3808 else
3809 free (entry);
3810 return 1;
3811}
3812
3813/* If any entries in G->got_entries are for indirect or warning symbols,
3814 replace them with entries for the target symbol. */
3815
3816static bfd_boolean
3817mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3818{
3819 bfd_boolean must_recreate;
3820 htab_t new_got;
3821
3822 must_recreate = FALSE;
3823 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3824 if (must_recreate)
3825 {
3826 new_got = htab_create (htab_size (g->got_entries),
3827 mips_elf_got_entry_hash,
3828 mips_elf_got_entry_eq, NULL);
3829 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3830 if (new_got == NULL)
3831 return FALSE;
3832
3833 /* Each entry in g->got_entries has either been copied to new_got
3834 or freed. Now delete the hash table itself. */
3835 htab_delete (g->got_entries);
3836 g->got_entries = new_got;
3837 }
3838 return TRUE;
3839}
3840
3841/* A mips_elf_link_hash_traverse callback for which DATA points
3842 to the link_info structure. Count the number of type (3) entries
3843 in the master GOT. */
3844
3845static int
3846mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3847{
3848 struct bfd_link_info *info;
3849 struct mips_elf_link_hash_table *htab;
3850 struct mips_got_info *g;
3851
3852 info = (struct bfd_link_info *) data;
3853 htab = mips_elf_hash_table (info);
3854 g = htab->got_info;
3855 if (h->global_got_area != GGA_NONE)
3856 {
3857 /* Make a final decision about whether the symbol belongs in the
3858 local or global GOT. Symbols that bind locally can (and in the
3859 case of forced-local symbols, must) live in the local GOT.
3860 Those that are aren't in the dynamic symbol table must also
3861 live in the local GOT.
3862
3863 Note that the former condition does not always imply the
3864 latter: symbols do not bind locally if they are completely
3865 undefined. We'll report undefined symbols later if appropriate. */
3866 if (h->root.dynindx == -1
3867 || (h->got_only_for_calls
3868 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3869 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3870 {
3871 /* The symbol belongs in the local GOT. We no longer need this
3872 entry if it was only used for relocations; those relocations
3873 will be against the null or section symbol instead of H. */
3874 if (h->global_got_area != GGA_RELOC_ONLY)
3875 g->local_gotno++;
3876 h->global_got_area = GGA_NONE;
3877 }
3878 else if (htab->is_vxworks
3879 && h->got_only_for_calls
3880 && h->root.plt.offset != MINUS_ONE)
3881 /* On VxWorks, calls can refer directly to the .got.plt entry;
3882 they don't need entries in the regular GOT. .got.plt entries
3883 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3884 h->global_got_area = GGA_NONE;
3885 else
3886 {
3887 g->global_gotno++;
3888 if (h->global_got_area == GGA_RELOC_ONLY)
3889 g->reloc_only_gotno++;
3890 }
3891 }
3892 return 1;
3893}
3894\f
3895/* Compute the hash value of the bfd in a bfd2got hash entry. */
3896
3897static hashval_t
3898mips_elf_bfd2got_entry_hash (const void *entry_)
3899{
3900 const struct mips_elf_bfd2got_hash *entry
3901 = (struct mips_elf_bfd2got_hash *)entry_;
3902
3903 return entry->bfd->id;
3904}
3905
3906/* Check whether two hash entries have the same bfd. */
3907
3908static int
3909mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3910{
3911 const struct mips_elf_bfd2got_hash *e1
3912 = (const struct mips_elf_bfd2got_hash *)entry1;
3913 const struct mips_elf_bfd2got_hash *e2
3914 = (const struct mips_elf_bfd2got_hash *)entry2;
3915
3916 return e1->bfd == e2->bfd;
3917}
3918
3919/* In a multi-got link, determine the GOT to be used for IBFD. G must
3920 be the master GOT data. */
3921
3922static struct mips_got_info *
3923mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3924{
3925 struct mips_elf_bfd2got_hash e, *p;
3926
3927 if (! g->bfd2got)
3928 return g;
3929
3930 e.bfd = ibfd;
3931 p = htab_find (g->bfd2got, &e);
3932 return p ? p->g : NULL;
3933}
3934
3935/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3936 Return NULL if an error occured. */
3937
3938static struct mips_got_info *
3939mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3940 bfd *input_bfd)
3941{
3942 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3943 struct mips_got_info *g;
3944 void **bfdgotp;
3945
3946 bfdgot_entry.bfd = input_bfd;
3947 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3948 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3949
3950 if (bfdgot == NULL)
3951 {
3952 bfdgot = ((struct mips_elf_bfd2got_hash *)
3953 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3954 if (bfdgot == NULL)
3955 return NULL;
3956
3957 *bfdgotp = bfdgot;
3958
3959 g = ((struct mips_got_info *)
3960 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3961 if (g == NULL)
3962 return NULL;
3963
3964 bfdgot->bfd = input_bfd;
3965 bfdgot->g = g;
3966
3967 g->global_gotsym = NULL;
3968 g->global_gotno = 0;
3969 g->reloc_only_gotno = 0;
3970 g->local_gotno = 0;
3971 g->page_gotno = 0;
3972 g->assigned_gotno = -1;
3973 g->tls_gotno = 0;
3974 g->tls_assigned_gotno = 0;
3975 g->tls_ldm_offset = MINUS_ONE;
3976 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3977 mips_elf_multi_got_entry_eq, NULL);
3978 if (g->got_entries == NULL)
3979 return NULL;
3980
3981 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3982 mips_got_page_entry_eq, NULL);
3983 if (g->got_page_entries == NULL)
3984 return NULL;
3985
3986 g->bfd2got = NULL;
3987 g->next = NULL;
3988 }
3989
3990 return bfdgot->g;
3991}
3992
3993/* A htab_traverse callback for the entries in the master got.
3994 Create one separate got for each bfd that has entries in the global
3995 got, such that we can tell how many local and global entries each
3996 bfd requires. */
3997
3998static int
3999mips_elf_make_got_per_bfd (void **entryp, void *p)
4000{
4001 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4002 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4003 struct mips_got_info *g;
4004
4005 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4006 if (g == NULL)
4007 {
4008 arg->obfd = NULL;
4009 return 0;
4010 }
4011
4012 /* Insert the GOT entry in the bfd's got entry hash table. */
4013 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4014 if (*entryp != NULL)
4015 return 1;
4016
4017 *entryp = entry;
4018
4019 if (entry->tls_type)
4020 {
4021 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4022 g->tls_gotno += 2;
4023 if (entry->tls_type & GOT_TLS_IE)
4024 g->tls_gotno += 1;
4025 }
4026 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4027 ++g->local_gotno;
4028 else
4029 ++g->global_gotno;
4030
4031 return 1;
4032}
4033
4034/* A htab_traverse callback for the page entries in the master got.
4035 Associate each page entry with the bfd's got. */
4036
4037static int
4038mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4039{
4040 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4041 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4042 struct mips_got_info *g;
4043
4044 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4045 if (g == NULL)
4046 {
4047 arg->obfd = NULL;
4048 return 0;
4049 }
4050
4051 /* Insert the GOT entry in the bfd's got entry hash table. */
4052 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4053 if (*entryp != NULL)
4054 return 1;
4055
4056 *entryp = entry;
4057 g->page_gotno += entry->num_pages;
4058 return 1;
4059}
4060
4061/* Consider merging the got described by BFD2GOT with TO, using the
4062 information given by ARG. Return -1 if this would lead to overflow,
4063 1 if they were merged successfully, and 0 if a merge failed due to
4064 lack of memory. (These values are chosen so that nonnegative return
4065 values can be returned by a htab_traverse callback.) */
4066
4067static int
4068mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4069 struct mips_got_info *to,
4070 struct mips_elf_got_per_bfd_arg *arg)
4071{
4072 struct mips_got_info *from = bfd2got->g;
4073 unsigned int estimate;
4074
4075 /* Work out how many page entries we would need for the combined GOT. */
4076 estimate = arg->max_pages;
4077 if (estimate >= from->page_gotno + to->page_gotno)
4078 estimate = from->page_gotno + to->page_gotno;
4079
4080 /* And conservatively estimate how many local and TLS entries
4081 would be needed. */
4082 estimate += from->local_gotno + to->local_gotno;
4083 estimate += from->tls_gotno + to->tls_gotno;
4084
4085 /* If we're merging with the primary got, we will always have
4086 the full set of global entries. Otherwise estimate those
4087 conservatively as well. */
4088 if (to == arg->primary)
4089 estimate += arg->global_count;
4090 else
4091 estimate += from->global_gotno + to->global_gotno;
4092
4093 /* Bail out if the combined GOT might be too big. */
4094 if (estimate > arg->max_count)
4095 return -1;
4096
4097 /* Commit to the merge. Record that TO is now the bfd for this got. */
4098 bfd2got->g = to;
4099
4100 /* Transfer the bfd's got information from FROM to TO. */
4101 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4102 if (arg->obfd == NULL)
4103 return 0;
4104
4105 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4106 if (arg->obfd == NULL)
4107 return 0;
4108
4109 /* We don't have to worry about releasing memory of the actual
4110 got entries, since they're all in the master got_entries hash
4111 table anyway. */
4112 htab_delete (from->got_entries);
4113 htab_delete (from->got_page_entries);
4114 return 1;
4115}
4116
4117/* Attempt to merge gots of different input bfds. Try to use as much
4118 as possible of the primary got, since it doesn't require explicit
4119 dynamic relocations, but don't use bfds that would reference global
4120 symbols out of the addressable range. Failing the primary got,
4121 attempt to merge with the current got, or finish the current got
4122 and then make make the new got current. */
4123
4124static int
4125mips_elf_merge_gots (void **bfd2got_, void *p)
4126{
4127 struct mips_elf_bfd2got_hash *bfd2got
4128 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4129 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4130 struct mips_got_info *g;
4131 unsigned int estimate;
4132 int result;
4133
4134 g = bfd2got->g;
4135
4136 /* Work out the number of page, local and TLS entries. */
4137 estimate = arg->max_pages;
4138 if (estimate > g->page_gotno)
4139 estimate = g->page_gotno;
4140 estimate += g->local_gotno + g->tls_gotno;
4141
4142 /* We place TLS GOT entries after both locals and globals. The globals
4143 for the primary GOT may overflow the normal GOT size limit, so be
4144 sure not to merge a GOT which requires TLS with the primary GOT in that
4145 case. This doesn't affect non-primary GOTs. */
4146 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4147
4148 if (estimate <= arg->max_count)
4149 {
4150 /* If we don't have a primary GOT, use it as
4151 a starting point for the primary GOT. */
4152 if (!arg->primary)
4153 {
4154 arg->primary = bfd2got->g;
4155 return 1;
4156 }
4157
4158 /* Try merging with the primary GOT. */
4159 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4160 if (result >= 0)
4161 return result;
4162 }
4163
4164 /* If we can merge with the last-created got, do it. */
4165 if (arg->current)
4166 {
4167 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4168 if (result >= 0)
4169 return result;
4170 }
4171
4172 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4173 fits; if it turns out that it doesn't, we'll get relocation
4174 overflows anyway. */
4175 g->next = arg->current;
4176 arg->current = g;
4177
4178 return 1;
4179}
4180
4181/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4182 is null iff there is just a single GOT. */
4183
4184static int
4185mips_elf_initialize_tls_index (void **entryp, void *p)
4186{
4187 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4188 struct mips_got_info *g = p;
4189 bfd_vma next_index;
4190 unsigned char tls_type;
4191
4192 /* We're only interested in TLS symbols. */
4193 if (entry->tls_type == 0)
4194 return 1;
4195
4196 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4197
4198 if (entry->symndx == -1 && g->next == NULL)
4199 {
4200 /* A type (3) got entry in the single-GOT case. We use the symbol's
4201 hash table entry to track its index. */
4202 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4203 return 1;
4204 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4205 entry->d.h->tls_got_offset = next_index;
4206 tls_type = entry->d.h->tls_type;
4207 }
4208 else
4209 {
4210 if (entry->tls_type & GOT_TLS_LDM)
4211 {
4212 /* There are separate mips_got_entry objects for each input bfd
4213 that requires an LDM entry. Make sure that all LDM entries in
4214 a GOT resolve to the same index. */
4215 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4216 {
4217 entry->gotidx = g->tls_ldm_offset;
4218 return 1;
4219 }
4220 g->tls_ldm_offset = next_index;
4221 }
4222 entry->gotidx = next_index;
4223 tls_type = entry->tls_type;
4224 }
4225
4226 /* Account for the entries we've just allocated. */
4227 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4228 g->tls_assigned_gotno += 2;
4229 if (tls_type & GOT_TLS_IE)
4230 g->tls_assigned_gotno += 1;
4231
4232 return 1;
4233}
4234
4235/* If passed a NULL mips_got_info in the argument, set the marker used
4236 to tell whether a global symbol needs a got entry (in the primary
4237 got) to the given VALUE.
4238
4239 If passed a pointer G to a mips_got_info in the argument (it must
4240 not be the primary GOT), compute the offset from the beginning of
4241 the (primary) GOT section to the entry in G corresponding to the
4242 global symbol. G's assigned_gotno must contain the index of the
4243 first available global GOT entry in G. VALUE must contain the size
4244 of a GOT entry in bytes. For each global GOT entry that requires a
4245 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4246 marked as not eligible for lazy resolution through a function
4247 stub. */
4248static int
4249mips_elf_set_global_got_offset (void **entryp, void *p)
4250{
4251 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4252 struct mips_elf_set_global_got_offset_arg *arg
4253 = (struct mips_elf_set_global_got_offset_arg *)p;
4254 struct mips_got_info *g = arg->g;
4255
4256 if (g && entry->tls_type != GOT_NORMAL)
4257 arg->needed_relocs +=
4258 mips_tls_got_relocs (arg->info, entry->tls_type,
4259 entry->symndx == -1 ? &entry->d.h->root : NULL);
4260
4261 if (entry->abfd != NULL
4262 && entry->symndx == -1
4263 && entry->d.h->global_got_area != GGA_NONE)
4264 {
4265 if (g)
4266 {
4267 BFD_ASSERT (g->global_gotsym == NULL);
4268
4269 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4270 if (arg->info->shared
4271 || (elf_hash_table (arg->info)->dynamic_sections_created
4272 && entry->d.h->root.def_dynamic
4273 && !entry->d.h->root.def_regular))
4274 ++arg->needed_relocs;
4275 }
4276 else
4277 entry->d.h->global_got_area = arg->value;
4278 }
4279
4280 return 1;
4281}
4282
4283/* A htab_traverse callback for GOT entries for which DATA is the
4284 bfd_link_info. Forbid any global symbols from having traditional
4285 lazy-binding stubs. */
4286
4287static int
4288mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4289{
4290 struct bfd_link_info *info;
4291 struct mips_elf_link_hash_table *htab;
4292 struct mips_got_entry *entry;
4293
4294 entry = (struct mips_got_entry *) *entryp;
4295 info = (struct bfd_link_info *) data;
4296 htab = mips_elf_hash_table (info);
4297 BFD_ASSERT (htab != NULL);
4298
4299 if (entry->abfd != NULL
4300 && entry->symndx == -1
4301 && entry->d.h->needs_lazy_stub)
4302 {
4303 entry->d.h->needs_lazy_stub = FALSE;
4304 htab->lazy_stub_count--;
4305 }
4306
4307 return 1;
4308}
4309
4310/* Return the offset of an input bfd IBFD's GOT from the beginning of
4311 the primary GOT. */
4312static bfd_vma
4313mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4314{
4315 if (g->bfd2got == NULL)
4316 return 0;
4317
4318 g = mips_elf_got_for_ibfd (g, ibfd);
4319 if (! g)
4320 return 0;
4321
4322 BFD_ASSERT (g->next);
4323
4324 g = g->next;
4325
4326 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4327 * MIPS_ELF_GOT_SIZE (abfd);
4328}
4329
4330/* Turn a single GOT that is too big for 16-bit addressing into
4331 a sequence of GOTs, each one 16-bit addressable. */
4332
4333static bfd_boolean
4334mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4335 asection *got, bfd_size_type pages)
4336{
4337 struct mips_elf_link_hash_table *htab;
4338 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4339 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4340 struct mips_got_info *g, *gg;
4341 unsigned int assign, needed_relocs;
4342 bfd *dynobj;
4343
4344 dynobj = elf_hash_table (info)->dynobj;
4345 htab = mips_elf_hash_table (info);
4346 BFD_ASSERT (htab != NULL);
4347
4348 g = htab->got_info;
4349 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4350 mips_elf_bfd2got_entry_eq, NULL);
4351 if (g->bfd2got == NULL)
4352 return FALSE;
4353
4354 got_per_bfd_arg.bfd2got = g->bfd2got;
4355 got_per_bfd_arg.obfd = abfd;
4356 got_per_bfd_arg.info = info;
4357
4358 /* Count how many GOT entries each input bfd requires, creating a
4359 map from bfd to got info while at that. */
4360 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4361 if (got_per_bfd_arg.obfd == NULL)
4362 return FALSE;
4363
4364 /* Also count how many page entries each input bfd requires. */
4365 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4366 &got_per_bfd_arg);
4367 if (got_per_bfd_arg.obfd == NULL)
4368 return FALSE;
4369
4370 got_per_bfd_arg.current = NULL;
4371 got_per_bfd_arg.primary = NULL;
4372 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4373 / MIPS_ELF_GOT_SIZE (abfd))
4374 - htab->reserved_gotno);
4375 got_per_bfd_arg.max_pages = pages;
4376 /* The number of globals that will be included in the primary GOT.
4377 See the calls to mips_elf_set_global_got_offset below for more
4378 information. */
4379 got_per_bfd_arg.global_count = g->global_gotno;
4380
4381 /* Try to merge the GOTs of input bfds together, as long as they
4382 don't seem to exceed the maximum GOT size, choosing one of them
4383 to be the primary GOT. */
4384 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4385 if (got_per_bfd_arg.obfd == NULL)
4386 return FALSE;
4387
4388 /* If we do not find any suitable primary GOT, create an empty one. */
4389 if (got_per_bfd_arg.primary == NULL)
4390 {
4391 g->next = (struct mips_got_info *)
4392 bfd_alloc (abfd, sizeof (struct mips_got_info));
4393 if (g->next == NULL)
4394 return FALSE;
4395
4396 g->next->global_gotsym = NULL;
4397 g->next->global_gotno = 0;
4398 g->next->reloc_only_gotno = 0;
4399 g->next->local_gotno = 0;
4400 g->next->page_gotno = 0;
4401 g->next->tls_gotno = 0;
4402 g->next->assigned_gotno = 0;
4403 g->next->tls_assigned_gotno = 0;
4404 g->next->tls_ldm_offset = MINUS_ONE;
4405 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4406 mips_elf_multi_got_entry_eq,
4407 NULL);
4408 if (g->next->got_entries == NULL)
4409 return FALSE;
4410 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4411 mips_got_page_entry_eq,
4412 NULL);
4413 if (g->next->got_page_entries == NULL)
4414 return FALSE;
4415 g->next->bfd2got = NULL;
4416 }
4417 else
4418 g->next = got_per_bfd_arg.primary;
4419 g->next->next = got_per_bfd_arg.current;
4420
4421 /* GG is now the master GOT, and G is the primary GOT. */
4422 gg = g;
4423 g = g->next;
4424
4425 /* Map the output bfd to the primary got. That's what we're going
4426 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4427 didn't mark in check_relocs, and we want a quick way to find it.
4428 We can't just use gg->next because we're going to reverse the
4429 list. */
4430 {
4431 struct mips_elf_bfd2got_hash *bfdgot;
4432 void **bfdgotp;
4433
4434 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4435 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4436
4437 if (bfdgot == NULL)
4438 return FALSE;
4439
4440 bfdgot->bfd = abfd;
4441 bfdgot->g = g;
4442 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4443
4444 BFD_ASSERT (*bfdgotp == NULL);
4445 *bfdgotp = bfdgot;
4446 }
4447
4448 /* Every symbol that is referenced in a dynamic relocation must be
4449 present in the primary GOT, so arrange for them to appear after
4450 those that are actually referenced. */
4451 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4452 g->global_gotno = gg->global_gotno;
4453
4454 set_got_offset_arg.g = NULL;
4455 set_got_offset_arg.value = GGA_RELOC_ONLY;
4456 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4457 &set_got_offset_arg);
4458 set_got_offset_arg.value = GGA_NORMAL;
4459 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4460 &set_got_offset_arg);
4461
4462 /* Now go through the GOTs assigning them offset ranges.
4463 [assigned_gotno, local_gotno[ will be set to the range of local
4464 entries in each GOT. We can then compute the end of a GOT by
4465 adding local_gotno to global_gotno. We reverse the list and make
4466 it circular since then we'll be able to quickly compute the
4467 beginning of a GOT, by computing the end of its predecessor. To
4468 avoid special cases for the primary GOT, while still preserving
4469 assertions that are valid for both single- and multi-got links,
4470 we arrange for the main got struct to have the right number of
4471 global entries, but set its local_gotno such that the initial
4472 offset of the primary GOT is zero. Remember that the primary GOT
4473 will become the last item in the circular linked list, so it
4474 points back to the master GOT. */
4475 gg->local_gotno = -g->global_gotno;
4476 gg->global_gotno = g->global_gotno;
4477 gg->tls_gotno = 0;
4478 assign = 0;
4479 gg->next = gg;
4480
4481 do
4482 {
4483 struct mips_got_info *gn;
4484
4485 assign += htab->reserved_gotno;
4486 g->assigned_gotno = assign;
4487 g->local_gotno += assign;
4488 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4489 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4490
4491 /* Take g out of the direct list, and push it onto the reversed
4492 list that gg points to. g->next is guaranteed to be nonnull after
4493 this operation, as required by mips_elf_initialize_tls_index. */
4494 gn = g->next;
4495 g->next = gg->next;
4496 gg->next = g;
4497
4498 /* Set up any TLS entries. We always place the TLS entries after
4499 all non-TLS entries. */
4500 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4501 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4502
4503 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4504 g = gn;
4505
4506 /* Forbid global symbols in every non-primary GOT from having
4507 lazy-binding stubs. */
4508 if (g)
4509 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4510 }
4511 while (g);
4512
4513 got->size = (gg->next->local_gotno
4514 + gg->next->global_gotno
4515 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4516
4517 needed_relocs = 0;
4518 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4519 set_got_offset_arg.info = info;
4520 for (g = gg->next; g && g->next != gg; g = g->next)
4521 {
4522 unsigned int save_assign;
4523
4524 /* Assign offsets to global GOT entries. */
4525 save_assign = g->assigned_gotno;
4526 g->assigned_gotno = g->local_gotno;
4527 set_got_offset_arg.g = g;
4528 set_got_offset_arg.needed_relocs = 0;
4529 htab_traverse (g->got_entries,
4530 mips_elf_set_global_got_offset,
4531 &set_got_offset_arg);
4532 needed_relocs += set_got_offset_arg.needed_relocs;
4533 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4534
4535 g->assigned_gotno = save_assign;
4536 if (info->shared)
4537 {
4538 needed_relocs += g->local_gotno - g->assigned_gotno;
4539 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4540 + g->next->global_gotno
4541 + g->next->tls_gotno
4542 + htab->reserved_gotno);
4543 }
4544 }
4545
4546 if (needed_relocs)
4547 mips_elf_allocate_dynamic_relocations (dynobj, info,
4548 needed_relocs);
4549
4550 return TRUE;
4551}
4552
4553\f
4554/* Returns the first relocation of type r_type found, beginning with
4555 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4556
4557static const Elf_Internal_Rela *
4558mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4559 const Elf_Internal_Rela *relocation,
4560 const Elf_Internal_Rela *relend)
4561{
4562 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4563
4564 while (relocation < relend)
4565 {
4566 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4567 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4568 return relocation;
4569
4570 ++relocation;
4571 }
4572
4573 /* We didn't find it. */
4574 return NULL;
4575}
4576
4577/* Return whether an input relocation is against a local symbol. */
4578
4579static bfd_boolean
4580mips_elf_local_relocation_p (bfd *input_bfd,
4581 const Elf_Internal_Rela *relocation,
4582 asection **local_sections)
4583{
4584 unsigned long r_symndx;
4585 Elf_Internal_Shdr *symtab_hdr;
4586 size_t extsymoff;
4587
4588 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4589 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4590 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4591
4592 if (r_symndx < extsymoff)
4593 return TRUE;
4594 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4595 return TRUE;
4596
4597 return FALSE;
4598}
4599\f
4600/* Sign-extend VALUE, which has the indicated number of BITS. */
4601
4602bfd_vma
4603_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4604{
4605 if (value & ((bfd_vma) 1 << (bits - 1)))
4606 /* VALUE is negative. */
4607 value |= ((bfd_vma) - 1) << bits;
4608
4609 return value;
4610}
4611
4612/* Return non-zero if the indicated VALUE has overflowed the maximum
4613 range expressible by a signed number with the indicated number of
4614 BITS. */
4615
4616static bfd_boolean
4617mips_elf_overflow_p (bfd_vma value, int bits)
4618{
4619 bfd_signed_vma svalue = (bfd_signed_vma) value;
4620
4621 if (svalue > (1 << (bits - 1)) - 1)
4622 /* The value is too big. */
4623 return TRUE;
4624 else if (svalue < -(1 << (bits - 1)))
4625 /* The value is too small. */
4626 return TRUE;
4627
4628 /* All is well. */
4629 return FALSE;
4630}
4631
4632/* Calculate the %high function. */
4633
4634static bfd_vma
4635mips_elf_high (bfd_vma value)
4636{
4637 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4638}
4639
4640/* Calculate the %higher function. */
4641
4642static bfd_vma
4643mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4644{
4645#ifdef BFD64
4646 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4647#else
4648 abort ();
4649 return MINUS_ONE;
4650#endif
4651}
4652
4653/* Calculate the %highest function. */
4654
4655static bfd_vma
4656mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4657{
4658#ifdef BFD64
4659 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4660#else
4661 abort ();
4662 return MINUS_ONE;
4663#endif
4664}
4665\f
4666/* Create the .compact_rel section. */
4667
4668static bfd_boolean
4669mips_elf_create_compact_rel_section
4670 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4671{
4672 flagword flags;
4673 register asection *s;
4674
4675 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4676 {
4677 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4678 | SEC_READONLY);
4679
4680 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4681 if (s == NULL
4682 || ! bfd_set_section_alignment (abfd, s,
4683 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4684 return FALSE;
4685
4686 s->size = sizeof (Elf32_External_compact_rel);
4687 }
4688
4689 return TRUE;
4690}
4691
4692/* Create the .got section to hold the global offset table. */
4693
4694static bfd_boolean
4695mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4696{
4697 flagword flags;
4698 register asection *s;
4699 struct elf_link_hash_entry *h;
4700 struct bfd_link_hash_entry *bh;
4701 struct mips_got_info *g;
4702 bfd_size_type amt;
4703 struct mips_elf_link_hash_table *htab;
4704
4705 htab = mips_elf_hash_table (info);
4706 BFD_ASSERT (htab != NULL);
4707
4708 /* This function may be called more than once. */
4709 if (htab->sgot)
4710 return TRUE;
4711
4712 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4713 | SEC_LINKER_CREATED);
4714
4715 /* We have to use an alignment of 2**4 here because this is hardcoded
4716 in the function stub generation and in the linker script. */
4717 s = bfd_make_section_with_flags (abfd, ".got", flags);
4718 if (s == NULL
4719 || ! bfd_set_section_alignment (abfd, s, 4))
4720 return FALSE;
4721 htab->sgot = s;
4722
4723 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4724 linker script because we don't want to define the symbol if we
4725 are not creating a global offset table. */
4726 bh = NULL;
4727 if (! (_bfd_generic_link_add_one_symbol
4728 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4729 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4730 return FALSE;
4731
4732 h = (struct elf_link_hash_entry *) bh;
4733 h->non_elf = 0;
4734 h->def_regular = 1;
4735 h->type = STT_OBJECT;
4736 elf_hash_table (info)->hgot = h;
4737
4738 if (info->shared
4739 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4740 return FALSE;
4741
4742 amt = sizeof (struct mips_got_info);
4743 g = bfd_alloc (abfd, amt);
4744 if (g == NULL)
4745 return FALSE;
4746 g->global_gotsym = NULL;
4747 g->global_gotno = 0;
4748 g->reloc_only_gotno = 0;
4749 g->tls_gotno = 0;
4750 g->local_gotno = 0;
4751 g->page_gotno = 0;
4752 g->assigned_gotno = 0;
4753 g->bfd2got = NULL;
4754 g->next = NULL;
4755 g->tls_ldm_offset = MINUS_ONE;
4756 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4757 mips_elf_got_entry_eq, NULL);
4758 if (g->got_entries == NULL)
4759 return FALSE;
4760 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4761 mips_got_page_entry_eq, NULL);
4762 if (g->got_page_entries == NULL)
4763 return FALSE;
4764 htab->got_info = g;
4765 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4766 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4767
4768 /* We also need a .got.plt section when generating PLTs. */
4769 s = bfd_make_section_with_flags (abfd, ".got.plt",
4770 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4771 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4772 if (s == NULL)
4773 return FALSE;
4774 htab->sgotplt = s;
4775
4776 return TRUE;
4777}
4778\f
4779/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4780 __GOTT_INDEX__ symbols. These symbols are only special for
4781 shared objects; they are not used in executables. */
4782
4783static bfd_boolean
4784is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4785{
4786 return (mips_elf_hash_table (info)->is_vxworks
4787 && info->shared
4788 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4789 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4790}
4791
4792/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4793 require an la25 stub. See also mips_elf_local_pic_function_p,
4794 which determines whether the destination function ever requires a
4795 stub. */
4796
4797static bfd_boolean
4798mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4799{
4800 /* We specifically ignore branches and jumps from EF_PIC objects,
4801 where the onus is on the compiler or programmer to perform any
4802 necessary initialization of $25. Sometimes such initialization
4803 is unnecessary; for example, -mno-shared functions do not use
4804 the incoming value of $25, and may therefore be called directly. */
4805 if (PIC_OBJECT_P (input_bfd))
4806 return FALSE;
4807
4808 switch (r_type)
4809 {
4810 case R_MIPS_26:
4811 case R_MIPS_PC16:
4812 case R_MIPS16_26:
4813 return TRUE;
4814
4815 default:
4816 return FALSE;
4817 }
4818}
4819\f
4820/* Calculate the value produced by the RELOCATION (which comes from
4821 the INPUT_BFD). The ADDEND is the addend to use for this
4822 RELOCATION; RELOCATION->R_ADDEND is ignored.
4823
4824 The result of the relocation calculation is stored in VALUEP.
4825 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4826 is a MIPS16 jump to non-MIPS16 code, or vice versa.
4827
4828 This function returns bfd_reloc_continue if the caller need take no
4829 further action regarding this relocation, bfd_reloc_notsupported if
4830 something goes dramatically wrong, bfd_reloc_overflow if an
4831 overflow occurs, and bfd_reloc_ok to indicate success. */
4832
4833static bfd_reloc_status_type
4834mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4835 asection *input_section,
4836 struct bfd_link_info *info,
4837 const Elf_Internal_Rela *relocation,
4838 bfd_vma addend, reloc_howto_type *howto,
4839 Elf_Internal_Sym *local_syms,
4840 asection **local_sections, bfd_vma *valuep,
4841 const char **namep,
4842 bfd_boolean *cross_mode_jump_p,
4843 bfd_boolean save_addend)
4844{
4845 /* The eventual value we will return. */
4846 bfd_vma value;
4847 /* The address of the symbol against which the relocation is
4848 occurring. */
4849 bfd_vma symbol = 0;
4850 /* The final GP value to be used for the relocatable, executable, or
4851 shared object file being produced. */
4852 bfd_vma gp;
4853 /* The place (section offset or address) of the storage unit being
4854 relocated. */
4855 bfd_vma p;
4856 /* The value of GP used to create the relocatable object. */
4857 bfd_vma gp0;
4858 /* The offset into the global offset table at which the address of
4859 the relocation entry symbol, adjusted by the addend, resides
4860 during execution. */
4861 bfd_vma g = MINUS_ONE;
4862 /* The section in which the symbol referenced by the relocation is
4863 located. */
4864 asection *sec = NULL;
4865 struct mips_elf_link_hash_entry *h = NULL;
4866 /* TRUE if the symbol referred to by this relocation is a local
4867 symbol. */
4868 bfd_boolean local_p, was_local_p;
4869 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4870 bfd_boolean gp_disp_p = FALSE;
4871 /* TRUE if the symbol referred to by this relocation is
4872 "__gnu_local_gp". */
4873 bfd_boolean gnu_local_gp_p = FALSE;
4874 Elf_Internal_Shdr *symtab_hdr;
4875 size_t extsymoff;
4876 unsigned long r_symndx;
4877 int r_type;
4878 /* TRUE if overflow occurred during the calculation of the
4879 relocation value. */
4880 bfd_boolean overflowed_p;
4881 /* TRUE if this relocation refers to a MIPS16 function. */
4882 bfd_boolean target_is_16_bit_code_p = FALSE;
4883 struct mips_elf_link_hash_table *htab;
4884 bfd *dynobj;
4885
4886 dynobj = elf_hash_table (info)->dynobj;
4887 htab = mips_elf_hash_table (info);
4888 BFD_ASSERT (htab != NULL);
4889
4890 /* Parse the relocation. */
4891 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4892 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4893 p = (input_section->output_section->vma
4894 + input_section->output_offset
4895 + relocation->r_offset);
4896
4897 /* Assume that there will be no overflow. */
4898 overflowed_p = FALSE;
4899
4900 /* Figure out whether or not the symbol is local, and get the offset
4901 used in the array of hash table entries. */
4902 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4903 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4904 local_sections);
4905 was_local_p = local_p;
4906 if (! elf_bad_symtab (input_bfd))
4907 extsymoff = symtab_hdr->sh_info;
4908 else
4909 {
4910 /* The symbol table does not follow the rule that local symbols
4911 must come before globals. */
4912 extsymoff = 0;
4913 }
4914
4915 /* Figure out the value of the symbol. */
4916 if (local_p)
4917 {
4918 Elf_Internal_Sym *sym;
4919
4920 sym = local_syms + r_symndx;
4921 sec = local_sections[r_symndx];
4922
4923 symbol = sec->output_section->vma + sec->output_offset;
4924 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4925 || (sec->flags & SEC_MERGE))
4926 symbol += sym->st_value;
4927 if ((sec->flags & SEC_MERGE)
4928 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4929 {
4930 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4931 addend -= symbol;
4932 addend += sec->output_section->vma + sec->output_offset;
4933 }
4934
4935 /* MIPS16 text labels should be treated as odd. */
4936 if (ELF_ST_IS_MIPS16 (sym->st_other))
4937 ++symbol;
4938
4939 /* Record the name of this symbol, for our caller. */
4940 *namep = bfd_elf_string_from_elf_section (input_bfd,
4941 symtab_hdr->sh_link,
4942 sym->st_name);
4943 if (*namep == '\0')
4944 *namep = bfd_section_name (input_bfd, sec);
4945
4946 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4947 }
4948 else
4949 {
4950 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4951
4952 /* For global symbols we look up the symbol in the hash-table. */
4953 h = ((struct mips_elf_link_hash_entry *)
4954 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4955 /* Find the real hash-table entry for this symbol. */
4956 while (h->root.root.type == bfd_link_hash_indirect
4957 || h->root.root.type == bfd_link_hash_warning)
4958 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4959
4960 /* Record the name of this symbol, for our caller. */
4961 *namep = h->root.root.root.string;
4962
4963 /* See if this is the special _gp_disp symbol. Note that such a
4964 symbol must always be a global symbol. */
4965 if (strcmp (*namep, "_gp_disp") == 0
4966 && ! NEWABI_P (input_bfd))
4967 {
4968 /* Relocations against _gp_disp are permitted only with
4969 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4970 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4971 return bfd_reloc_notsupported;
4972
4973 gp_disp_p = TRUE;
4974 }
4975 /* See if this is the special _gp symbol. Note that such a
4976 symbol must always be a global symbol. */
4977 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4978 gnu_local_gp_p = TRUE;
4979
4980
4981 /* If this symbol is defined, calculate its address. Note that
4982 _gp_disp is a magic symbol, always implicitly defined by the
4983 linker, so it's inappropriate to check to see whether or not
4984 its defined. */
4985 else if ((h->root.root.type == bfd_link_hash_defined
4986 || h->root.root.type == bfd_link_hash_defweak)
4987 && h->root.root.u.def.section)
4988 {
4989 sec = h->root.root.u.def.section;
4990 if (sec->output_section)
4991 symbol = (h->root.root.u.def.value
4992 + sec->output_section->vma
4993 + sec->output_offset);
4994 else
4995 symbol = h->root.root.u.def.value;
4996 }
4997 else if (h->root.root.type == bfd_link_hash_undefweak)
4998 /* We allow relocations against undefined weak symbols, giving
4999 it the value zero, so that you can undefined weak functions
5000 and check to see if they exist by looking at their
5001 addresses. */
5002 symbol = 0;
5003 else if (info->unresolved_syms_in_objects == RM_IGNORE
5004 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5005 symbol = 0;
5006 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5007 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5008 {
5009 /* If this is a dynamic link, we should have created a
5010 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5011 in in _bfd_mips_elf_create_dynamic_sections.
5012 Otherwise, we should define the symbol with a value of 0.
5013 FIXME: It should probably get into the symbol table
5014 somehow as well. */
5015 BFD_ASSERT (! info->shared);
5016 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5017 symbol = 0;
5018 }
5019 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5020 {
5021 /* This is an optional symbol - an Irix specific extension to the
5022 ELF spec. Ignore it for now.
5023 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5024 than simply ignoring them, but we do not handle this for now.
5025 For information see the "64-bit ELF Object File Specification"
5026 which is available from here:
5027 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5028 symbol = 0;
5029 }
5030 else if ((*info->callbacks->undefined_symbol)
5031 (info, h->root.root.root.string, input_bfd,
5032 input_section, relocation->r_offset,
5033 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5034 || ELF_ST_VISIBILITY (h->root.other)))
5035 {
5036 return bfd_reloc_undefined;
5037 }
5038 else
5039 {
5040 return bfd_reloc_notsupported;
5041 }
5042
5043 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5044 }
5045
5046 /* If this is a reference to a 16-bit function with a stub, we need
5047 to redirect the relocation to the stub unless:
5048
5049 (a) the relocation is for a MIPS16 JAL;
5050
5051 (b) the relocation is for a MIPS16 PIC call, and there are no
5052 non-MIPS16 uses of the GOT slot; or
5053
5054 (c) the section allows direct references to MIPS16 functions. */
5055 if (r_type != R_MIPS16_26
5056 && !info->relocatable
5057 && ((h != NULL
5058 && h->fn_stub != NULL
5059 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5060 || (local_p
5061 && elf_tdata (input_bfd)->local_stubs != NULL
5062 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5063 && !section_allows_mips16_refs_p (input_section))
5064 {
5065 /* This is a 32- or 64-bit call to a 16-bit function. We should
5066 have already noticed that we were going to need the
5067 stub. */
5068 if (local_p)
5069 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5070 else
5071 {
5072 BFD_ASSERT (h->need_fn_stub);
5073 sec = h->fn_stub;
5074 }
5075
5076 symbol = sec->output_section->vma + sec->output_offset;
5077 /* The target is 16-bit, but the stub isn't. */
5078 target_is_16_bit_code_p = FALSE;
5079 }
5080 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5081 need to redirect the call to the stub. Note that we specifically
5082 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5083 use an indirect stub instead. */
5084 else if (r_type == R_MIPS16_26 && !info->relocatable
5085 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5086 || (local_p
5087 && elf_tdata (input_bfd)->local_call_stubs != NULL
5088 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5089 && !target_is_16_bit_code_p)
5090 {
5091 if (local_p)
5092 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5093 else
5094 {
5095 /* If both call_stub and call_fp_stub are defined, we can figure
5096 out which one to use by checking which one appears in the input
5097 file. */
5098 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5099 {
5100 asection *o;
5101
5102 sec = NULL;
5103 for (o = input_bfd->sections; o != NULL; o = o->next)
5104 {
5105 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5106 {
5107 sec = h->call_fp_stub;
5108 break;
5109 }
5110 }
5111 if (sec == NULL)
5112 sec = h->call_stub;
5113 }
5114 else if (h->call_stub != NULL)
5115 sec = h->call_stub;
5116 else
5117 sec = h->call_fp_stub;
5118 }
5119
5120 BFD_ASSERT (sec->size > 0);
5121 symbol = sec->output_section->vma + sec->output_offset;
5122 }
5123 /* If this is a direct call to a PIC function, redirect to the
5124 non-PIC stub. */
5125 else if (h != NULL && h->la25_stub
5126 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5127 symbol = (h->la25_stub->stub_section->output_section->vma
5128 + h->la25_stub->stub_section->output_offset
5129 + h->la25_stub->offset);
5130
5131 /* Calls from 16-bit code to 32-bit code and vice versa require the
5132 mode change. */
5133 *cross_mode_jump_p = !info->relocatable
5134 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5135 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5136 && target_is_16_bit_code_p));
5137
5138 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5139
5140 gp0 = _bfd_get_gp_value (input_bfd);
5141 gp = _bfd_get_gp_value (abfd);
5142 if (htab->got_info)
5143 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5144
5145 if (gnu_local_gp_p)
5146 symbol = gp;
5147
5148 /* Global R_MIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP.
5149 The addend is applied by the corresponding R_MIPS_GOT_OFST. */
5150 if (r_type == R_MIPS_GOT_PAGE && !local_p)
5151 {
5152 r_type = R_MIPS_GOT_DISP;
5153 addend = 0;
5154 }
5155
5156 /* If we haven't already determined the GOT offset, and we're going
5157 to need it, get it now. */
5158 switch (r_type)
5159 {
5160 case R_MIPS16_CALL16:
5161 case R_MIPS16_GOT16:
5162 case R_MIPS_CALL16:
5163 case R_MIPS_GOT16:
5164 case R_MIPS_GOT_DISP:
5165 case R_MIPS_GOT_HI16:
5166 case R_MIPS_CALL_HI16:
5167 case R_MIPS_GOT_LO16:
5168 case R_MIPS_CALL_LO16:
5169 case R_MIPS_TLS_GD:
5170 case R_MIPS_TLS_GOTTPREL:
5171 case R_MIPS_TLS_LDM:
5172 /* Find the index into the GOT where this value is located. */
5173 if (r_type == R_MIPS_TLS_LDM)
5174 {
5175 g = mips_elf_local_got_index (abfd, input_bfd, info,
5176 0, 0, NULL, r_type);
5177 if (g == MINUS_ONE)
5178 return bfd_reloc_outofrange;
5179 }
5180 else if (!local_p)
5181 {
5182 /* On VxWorks, CALL relocations should refer to the .got.plt
5183 entry, which is initialized to point at the PLT stub. */
5184 if (htab->is_vxworks
5185 && (r_type == R_MIPS_CALL_HI16
5186 || r_type == R_MIPS_CALL_LO16
5187 || call16_reloc_p (r_type)))
5188 {
5189 BFD_ASSERT (addend == 0);
5190 BFD_ASSERT (h->root.needs_plt);
5191 g = mips_elf_gotplt_index (info, &h->root);
5192 }
5193 else
5194 {
5195 BFD_ASSERT (addend == 0);
5196 g = mips_elf_global_got_index (dynobj, input_bfd,
5197 &h->root, r_type, info);
5198 if (h->tls_type == GOT_NORMAL
5199 && !elf_hash_table (info)->dynamic_sections_created)
5200 /* This is a static link. We must initialize the GOT entry. */
5201 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5202 }
5203 }
5204 else if (!htab->is_vxworks
5205 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5206 /* The calculation below does not involve "g". */
5207 break;
5208 else
5209 {
5210 g = mips_elf_local_got_index (abfd, input_bfd, info,
5211 symbol + addend, r_symndx, h, r_type);
5212 if (g == MINUS_ONE)
5213 return bfd_reloc_outofrange;
5214 }
5215
5216 /* Convert GOT indices to actual offsets. */
5217 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5218 break;
5219 }
5220
5221 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5222 symbols are resolved by the loader. Add them to .rela.dyn. */
5223 if (h != NULL && is_gott_symbol (info, &h->root))
5224 {
5225 Elf_Internal_Rela outrel;
5226 bfd_byte *loc;
5227 asection *s;
5228
5229 s = mips_elf_rel_dyn_section (info, FALSE);
5230 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5231
5232 outrel.r_offset = (input_section->output_section->vma
5233 + input_section->output_offset
5234 + relocation->r_offset);
5235 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5236 outrel.r_addend = addend;
5237 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5238
5239 /* If we've written this relocation for a readonly section,
5240 we need to set DF_TEXTREL again, so that we do not delete the
5241 DT_TEXTREL tag. */
5242 if (MIPS_ELF_READONLY_SECTION (input_section))
5243 info->flags |= DF_TEXTREL;
5244
5245 *valuep = 0;
5246 return bfd_reloc_ok;
5247 }
5248
5249 /* Figure out what kind of relocation is being performed. */
5250 switch (r_type)
5251 {
5252 case R_MIPS_NONE:
5253 return bfd_reloc_continue;
5254
5255 case R_MIPS_16:
5256 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5257 overflowed_p = mips_elf_overflow_p (value, 16);
5258 break;
5259
5260 case R_MIPS_32:
5261 case R_MIPS_REL32:
5262 case R_MIPS_64:
5263 if ((info->shared
5264 || (htab->root.dynamic_sections_created
5265 && h != NULL
5266 && h->root.def_dynamic
5267 && !h->root.def_regular
5268 && !h->has_static_relocs))
5269 && r_symndx != STN_UNDEF
5270 && (h == NULL
5271 || h->root.root.type != bfd_link_hash_undefweak
5272 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5273 && (input_section->flags & SEC_ALLOC) != 0)
5274 {
5275 /* If we're creating a shared library, then we can't know
5276 where the symbol will end up. So, we create a relocation
5277 record in the output, and leave the job up to the dynamic
5278 linker. We must do the same for executable references to
5279 shared library symbols, unless we've decided to use copy
5280 relocs or PLTs instead. */
5281 value = addend;
5282 if (!mips_elf_create_dynamic_relocation (abfd,
5283 info,
5284 relocation,
5285 h,
5286 sec,
5287 symbol,
5288 &value,
5289 input_section))
5290 return bfd_reloc_undefined;
5291 }
5292 else
5293 {
5294 if (r_type != R_MIPS_REL32)
5295 value = symbol + addend;
5296 else
5297 value = addend;
5298 }
5299 value &= howto->dst_mask;
5300 break;
5301
5302 case R_MIPS_PC32:
5303 value = symbol + addend - p;
5304 value &= howto->dst_mask;
5305 break;
5306
5307 case R_MIPS16_26:
5308 /* The calculation for R_MIPS16_26 is just the same as for an
5309 R_MIPS_26. It's only the storage of the relocated field into
5310 the output file that's different. That's handled in
5311 mips_elf_perform_relocation. So, we just fall through to the
5312 R_MIPS_26 case here. */
5313 case R_MIPS_26:
5314 if (was_local_p)
5315 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5316 else
5317 {
5318 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5319 if (h->root.root.type != bfd_link_hash_undefweak)
5320 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5321 }
5322 value &= howto->dst_mask;
5323 break;
5324
5325 case R_MIPS_TLS_DTPREL_HI16:
5326 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5327 & howto->dst_mask);
5328 break;
5329
5330 case R_MIPS_TLS_DTPREL_LO16:
5331 case R_MIPS_TLS_DTPREL32:
5332 case R_MIPS_TLS_DTPREL64:
5333 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5334 break;
5335
5336 case R_MIPS_TLS_TPREL_HI16:
5337 value = (mips_elf_high (addend + symbol - tprel_base (info))
5338 & howto->dst_mask);
5339 break;
5340
5341 case R_MIPS_TLS_TPREL_LO16:
5342 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5343 break;
5344
5345 case R_MIPS_HI16:
5346 case R_MIPS16_HI16:
5347 if (!gp_disp_p)
5348 {
5349 value = mips_elf_high (addend + symbol);
5350 value &= howto->dst_mask;
5351 }
5352 else
5353 {
5354 /* For MIPS16 ABI code we generate this sequence
5355 0: li $v0,%hi(_gp_disp)
5356 4: addiupc $v1,%lo(_gp_disp)
5357 8: sll $v0,16
5358 12: addu $v0,$v1
5359 14: move $gp,$v0
5360 So the offsets of hi and lo relocs are the same, but the
5361 $pc is four higher than $t9 would be, so reduce
5362 both reloc addends by 4. */
5363 if (r_type == R_MIPS16_HI16)
5364 value = mips_elf_high (addend + gp - p - 4);
5365 else
5366 value = mips_elf_high (addend + gp - p);
5367 overflowed_p = mips_elf_overflow_p (value, 16);
5368 }
5369 break;
5370
5371 case R_MIPS_LO16:
5372 case R_MIPS16_LO16:
5373 if (!gp_disp_p)
5374 value = (symbol + addend) & howto->dst_mask;
5375 else
5376 {
5377 /* See the comment for R_MIPS16_HI16 above for the reason
5378 for this conditional. */
5379 if (r_type == R_MIPS16_LO16)
5380 value = addend + gp - p;
5381 else
5382 value = addend + gp - p + 4;
5383 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5384 for overflow. But, on, say, IRIX5, relocations against
5385 _gp_disp are normally generated from the .cpload
5386 pseudo-op. It generates code that normally looks like
5387 this:
5388
5389 lui $gp,%hi(_gp_disp)
5390 addiu $gp,$gp,%lo(_gp_disp)
5391 addu $gp,$gp,$t9
5392
5393 Here $t9 holds the address of the function being called,
5394 as required by the MIPS ELF ABI. The R_MIPS_LO16
5395 relocation can easily overflow in this situation, but the
5396 R_MIPS_HI16 relocation will handle the overflow.
5397 Therefore, we consider this a bug in the MIPS ABI, and do
5398 not check for overflow here. */
5399 }
5400 break;
5401
5402 case R_MIPS_LITERAL:
5403 /* Because we don't merge literal sections, we can handle this
5404 just like R_MIPS_GPREL16. In the long run, we should merge
5405 shared literals, and then we will need to additional work
5406 here. */
5407
5408 /* Fall through. */
5409
5410 case R_MIPS16_GPREL:
5411 /* The R_MIPS16_GPREL performs the same calculation as
5412 R_MIPS_GPREL16, but stores the relocated bits in a different
5413 order. We don't need to do anything special here; the
5414 differences are handled in mips_elf_perform_relocation. */
5415 case R_MIPS_GPREL16:
5416 /* Only sign-extend the addend if it was extracted from the
5417 instruction. If the addend was separate, leave it alone,
5418 otherwise we may lose significant bits. */
5419 if (howto->partial_inplace)
5420 addend = _bfd_mips_elf_sign_extend (addend, 16);
5421 value = symbol + addend - gp;
5422 /* If the symbol was local, any earlier relocatable links will
5423 have adjusted its addend with the gp offset, so compensate
5424 for that now. Don't do it for symbols forced local in this
5425 link, though, since they won't have had the gp offset applied
5426 to them before. */
5427 if (was_local_p)
5428 value += gp0;
5429 overflowed_p = mips_elf_overflow_p (value, 16);
5430 break;
5431
5432 case R_MIPS16_GOT16:
5433 case R_MIPS16_CALL16:
5434 case R_MIPS_GOT16:
5435 case R_MIPS_CALL16:
5436 /* VxWorks does not have separate local and global semantics for
5437 R_MIPS*_GOT16; every relocation evaluates to "G". */
5438 if (!htab->is_vxworks && local_p)
5439 {
5440 value = mips_elf_got16_entry (abfd, input_bfd, info,
5441 symbol + addend, !was_local_p);
5442 if (value == MINUS_ONE)
5443 return bfd_reloc_outofrange;
5444 value
5445 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5446 overflowed_p = mips_elf_overflow_p (value, 16);
5447 break;
5448 }
5449
5450 /* Fall through. */
5451
5452 case R_MIPS_TLS_GD:
5453 case R_MIPS_TLS_GOTTPREL:
5454 case R_MIPS_TLS_LDM:
5455 case R_MIPS_GOT_DISP:
5456 value = g;
5457 overflowed_p = mips_elf_overflow_p (value, 16);
5458 break;
5459
5460 case R_MIPS_GPREL32:
5461 value = (addend + symbol + gp0 - gp);
5462 if (!save_addend)
5463 value &= howto->dst_mask;
5464 break;
5465
5466 case R_MIPS_PC16:
5467 case R_MIPS_GNU_REL16_S2:
5468 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5469 overflowed_p = mips_elf_overflow_p (value, 18);
5470 value >>= howto->rightshift;
5471 value &= howto->dst_mask;
5472 break;
5473
5474 case R_MIPS_GOT_HI16:
5475 case R_MIPS_CALL_HI16:
5476 /* We're allowed to handle these two relocations identically.
5477 The dynamic linker is allowed to handle the CALL relocations
5478 differently by creating a lazy evaluation stub. */
5479 value = g;
5480 value = mips_elf_high (value);
5481 value &= howto->dst_mask;
5482 break;
5483
5484 case R_MIPS_GOT_LO16:
5485 case R_MIPS_CALL_LO16:
5486 value = g & howto->dst_mask;
5487 break;
5488
5489 case R_MIPS_GOT_PAGE:
5490 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5491 if (value == MINUS_ONE)
5492 return bfd_reloc_outofrange;
5493 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5494 overflowed_p = mips_elf_overflow_p (value, 16);
5495 break;
5496
5497 case R_MIPS_GOT_OFST:
5498 if (local_p)
5499 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5500 else
5501 value = addend;
5502 overflowed_p = mips_elf_overflow_p (value, 16);
5503 break;
5504
5505 case R_MIPS_SUB:
5506 value = symbol - addend;
5507 value &= howto->dst_mask;
5508 break;
5509
5510 case R_MIPS_HIGHER:
5511 value = mips_elf_higher (addend + symbol);
5512 value &= howto->dst_mask;
5513 break;
5514
5515 case R_MIPS_HIGHEST:
5516 value = mips_elf_highest (addend + symbol);
5517 value &= howto->dst_mask;
5518 break;
5519
5520 case R_MIPS_SCN_DISP:
5521 value = symbol + addend - sec->output_offset;
5522 value &= howto->dst_mask;
5523 break;
5524
5525 case R_MIPS_JALR:
5526 /* This relocation is only a hint. In some cases, we optimize
5527 it into a bal instruction. But we don't try to optimize
5528 when the symbol does not resolve locally. */
5529 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5530 return bfd_reloc_continue;
5531 value = symbol + addend;
5532 break;
5533
5534 case R_MIPS_PJUMP:
5535 case R_MIPS_GNU_VTINHERIT:
5536 case R_MIPS_GNU_VTENTRY:
5537 /* We don't do anything with these at present. */
5538 return bfd_reloc_continue;
5539
5540 default:
5541 /* An unrecognized relocation type. */
5542 return bfd_reloc_notsupported;
5543 }
5544
5545 /* Store the VALUE for our caller. */
5546 *valuep = value;
5547 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5548}
5549
5550/* Obtain the field relocated by RELOCATION. */
5551
5552static bfd_vma
5553mips_elf_obtain_contents (reloc_howto_type *howto,
5554 const Elf_Internal_Rela *relocation,
5555 bfd *input_bfd, bfd_byte *contents)
5556{
5557 bfd_vma x;
5558 bfd_byte *location = contents + relocation->r_offset;
5559
5560 /* Obtain the bytes. */
5561 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5562
5563 return x;
5564}
5565
5566/* It has been determined that the result of the RELOCATION is the
5567 VALUE. Use HOWTO to place VALUE into the output file at the
5568 appropriate position. The SECTION is the section to which the
5569 relocation applies.
5570 CROSS_MODE_JUMP_P is true if the relocation field
5571 is a MIPS16 jump to non-MIPS16 code, or vice versa.
5572
5573 Returns FALSE if anything goes wrong. */
5574
5575static bfd_boolean
5576mips_elf_perform_relocation (struct bfd_link_info *info,
5577 reloc_howto_type *howto,
5578 const Elf_Internal_Rela *relocation,
5579 bfd_vma value, bfd *input_bfd,
5580 asection *input_section, bfd_byte *contents,
5581 bfd_boolean cross_mode_jump_p)
5582{
5583 bfd_vma x;
5584 bfd_byte *location;
5585 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5586
5587 /* Figure out where the relocation is occurring. */
5588 location = contents + relocation->r_offset;
5589
5590 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5591
5592 /* Obtain the current value. */
5593 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5594
5595 /* Clear the field we are setting. */
5596 x &= ~howto->dst_mask;
5597
5598 /* Set the field. */
5599 x |= (value & howto->dst_mask);
5600
5601 /* If required, turn JAL into JALX. */
5602 if (cross_mode_jump_p && jal_reloc_p (r_type))
5603 {
5604 bfd_boolean ok;
5605 bfd_vma opcode = x >> 26;
5606 bfd_vma jalx_opcode;
5607
5608 /* Check to see if the opcode is already JAL or JALX. */
5609 if (r_type == R_MIPS16_26)
5610 {
5611 ok = ((opcode == 0x6) || (opcode == 0x7));
5612 jalx_opcode = 0x7;
5613 }
5614 else
5615 {
5616 ok = ((opcode == 0x3) || (opcode == 0x1d));
5617 jalx_opcode = 0x1d;
5618 }
5619
5620 /* If the opcode is not JAL or JALX, there's a problem. */
5621 if (!ok)
5622 {
5623 (*_bfd_error_handler)
5624 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5625 input_bfd,
5626 input_section,
5627 (unsigned long) relocation->r_offset);
5628 bfd_set_error (bfd_error_bad_value);
5629 return FALSE;
5630 }
5631
5632 /* Make this the JALX opcode. */
5633 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5634 }
5635
5636 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5637 range. */
5638 if (!info->relocatable
5639 && !cross_mode_jump_p
5640 && ((JAL_TO_BAL_P (input_bfd)
5641 && r_type == R_MIPS_26
5642 && (x >> 26) == 0x3) /* jal addr */
5643 || (JALR_TO_BAL_P (input_bfd)
5644 && r_type == R_MIPS_JALR
5645 && x == 0x0320f809) /* jalr t9 */
5646 || (JR_TO_B_P (input_bfd)
5647 && r_type == R_MIPS_JALR
5648 && x == 0x03200008))) /* jr t9 */
5649 {
5650 bfd_vma addr;
5651 bfd_vma dest;
5652 bfd_signed_vma off;
5653
5654 addr = (input_section->output_section->vma
5655 + input_section->output_offset
5656 + relocation->r_offset
5657 + 4);
5658 if (r_type == R_MIPS_26)
5659 dest = (value << 2) | ((addr >> 28) << 28);
5660 else
5661 dest = value;
5662 off = dest - addr;
5663 if (off <= 0x1ffff && off >= -0x20000)
5664 {
5665 if (x == 0x03200008) /* jr t9 */
5666 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5667 else
5668 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5669 }
5670 }
5671
5672 /* Put the value into the output. */
5673 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5674
5675 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5676 location);
5677
5678 return TRUE;
5679}
5680\f
5681/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5682 is the original relocation, which is now being transformed into a
5683 dynamic relocation. The ADDENDP is adjusted if necessary; the
5684 caller should store the result in place of the original addend. */
5685
5686static bfd_boolean
5687mips_elf_create_dynamic_relocation (bfd *output_bfd,
5688 struct bfd_link_info *info,
5689 const Elf_Internal_Rela *rel,
5690 struct mips_elf_link_hash_entry *h,
5691 asection *sec, bfd_vma symbol,
5692 bfd_vma *addendp, asection *input_section)
5693{
5694 Elf_Internal_Rela outrel[3];
5695 asection *sreloc;
5696 bfd *dynobj;
5697 int r_type;
5698 long indx;
5699 bfd_boolean defined_p;
5700 struct mips_elf_link_hash_table *htab;
5701
5702 htab = mips_elf_hash_table (info);
5703 BFD_ASSERT (htab != NULL);
5704
5705 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5706 dynobj = elf_hash_table (info)->dynobj;
5707 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5708 BFD_ASSERT (sreloc != NULL);
5709 BFD_ASSERT (sreloc->contents != NULL);
5710 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5711 < sreloc->size);
5712
5713 outrel[0].r_offset =
5714 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5715 if (ABI_64_P (output_bfd))
5716 {
5717 outrel[1].r_offset =
5718 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5719 outrel[2].r_offset =
5720 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5721 }
5722
5723 if (outrel[0].r_offset == MINUS_ONE)
5724 /* The relocation field has been deleted. */
5725 return TRUE;
5726
5727 if (outrel[0].r_offset == MINUS_TWO)
5728 {
5729 /* The relocation field has been converted into a relative value of
5730 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5731 the field to be fully relocated, so add in the symbol's value. */
5732 *addendp += symbol;
5733 return TRUE;
5734 }
5735
5736 /* We must now calculate the dynamic symbol table index to use
5737 in the relocation. */
5738 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5739 {
5740 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5741 indx = h->root.dynindx;
5742 if (SGI_COMPAT (output_bfd))
5743 defined_p = h->root.def_regular;
5744 else
5745 /* ??? glibc's ld.so just adds the final GOT entry to the
5746 relocation field. It therefore treats relocs against
5747 defined symbols in the same way as relocs against
5748 undefined symbols. */
5749 defined_p = FALSE;
5750 }
5751 else
5752 {
5753 if (sec != NULL && bfd_is_abs_section (sec))
5754 indx = 0;
5755 else if (sec == NULL || sec->owner == NULL)
5756 {
5757 bfd_set_error (bfd_error_bad_value);
5758 return FALSE;
5759 }
5760 else
5761 {
5762 indx = elf_section_data (sec->output_section)->dynindx;
5763 if (indx == 0)
5764 {
5765 asection *osec = htab->root.text_index_section;
5766 indx = elf_section_data (osec)->dynindx;
5767 }
5768 if (indx == 0)
5769 abort ();
5770 }
5771
5772 /* Instead of generating a relocation using the section
5773 symbol, we may as well make it a fully relative
5774 relocation. We want to avoid generating relocations to
5775 local symbols because we used to generate them
5776 incorrectly, without adding the original symbol value,
5777 which is mandated by the ABI for section symbols. In
5778 order to give dynamic loaders and applications time to
5779 phase out the incorrect use, we refrain from emitting
5780 section-relative relocations. It's not like they're
5781 useful, after all. This should be a bit more efficient
5782 as well. */
5783 /* ??? Although this behavior is compatible with glibc's ld.so,
5784 the ABI says that relocations against STN_UNDEF should have
5785 a symbol value of 0. Irix rld honors this, so relocations
5786 against STN_UNDEF have no effect. */
5787 if (!SGI_COMPAT (output_bfd))
5788 indx = 0;
5789 defined_p = TRUE;
5790 }
5791
5792 /* If the relocation was previously an absolute relocation and
5793 this symbol will not be referred to by the relocation, we must
5794 adjust it by the value we give it in the dynamic symbol table.
5795 Otherwise leave the job up to the dynamic linker. */
5796 if (defined_p && r_type != R_MIPS_REL32)
5797 *addendp += symbol;
5798
5799 if (htab->is_vxworks)
5800 /* VxWorks uses non-relative relocations for this. */
5801 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5802 else
5803 /* The relocation is always an REL32 relocation because we don't
5804 know where the shared library will wind up at load-time. */
5805 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5806 R_MIPS_REL32);
5807
5808 /* For strict adherence to the ABI specification, we should
5809 generate a R_MIPS_64 relocation record by itself before the
5810 _REL32/_64 record as well, such that the addend is read in as
5811 a 64-bit value (REL32 is a 32-bit relocation, after all).
5812 However, since none of the existing ELF64 MIPS dynamic
5813 loaders seems to care, we don't waste space with these
5814 artificial relocations. If this turns out to not be true,
5815 mips_elf_allocate_dynamic_relocation() should be tweaked so
5816 as to make room for a pair of dynamic relocations per
5817 invocation if ABI_64_P, and here we should generate an
5818 additional relocation record with R_MIPS_64 by itself for a
5819 NULL symbol before this relocation record. */
5820 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5821 ABI_64_P (output_bfd)
5822 ? R_MIPS_64
5823 : R_MIPS_NONE);
5824 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5825
5826 /* Adjust the output offset of the relocation to reference the
5827 correct location in the output file. */
5828 outrel[0].r_offset += (input_section->output_section->vma
5829 + input_section->output_offset);
5830 outrel[1].r_offset += (input_section->output_section->vma
5831 + input_section->output_offset);
5832 outrel[2].r_offset += (input_section->output_section->vma
5833 + input_section->output_offset);
5834
5835 /* Put the relocation back out. We have to use the special
5836 relocation outputter in the 64-bit case since the 64-bit
5837 relocation format is non-standard. */
5838 if (ABI_64_P (output_bfd))
5839 {
5840 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5841 (output_bfd, &outrel[0],
5842 (sreloc->contents
5843 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5844 }
5845 else if (htab->is_vxworks)
5846 {
5847 /* VxWorks uses RELA rather than REL dynamic relocations. */
5848 outrel[0].r_addend = *addendp;
5849 bfd_elf32_swap_reloca_out
5850 (output_bfd, &outrel[0],
5851 (sreloc->contents
5852 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5853 }
5854 else
5855 bfd_elf32_swap_reloc_out
5856 (output_bfd, &outrel[0],
5857 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5858
5859 /* We've now added another relocation. */
5860 ++sreloc->reloc_count;
5861
5862 /* Make sure the output section is writable. The dynamic linker
5863 will be writing to it. */
5864 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5865 |= SHF_WRITE;
5866
5867 /* On IRIX5, make an entry of compact relocation info. */
5868 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5869 {
5870 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5871 bfd_byte *cr;
5872
5873 if (scpt)
5874 {
5875 Elf32_crinfo cptrel;
5876
5877 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5878 cptrel.vaddr = (rel->r_offset
5879 + input_section->output_section->vma
5880 + input_section->output_offset);
5881 if (r_type == R_MIPS_REL32)
5882 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5883 else
5884 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5885 mips_elf_set_cr_dist2to (cptrel, 0);
5886 cptrel.konst = *addendp;
5887
5888 cr = (scpt->contents
5889 + sizeof (Elf32_External_compact_rel));
5890 mips_elf_set_cr_relvaddr (cptrel, 0);
5891 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5892 ((Elf32_External_crinfo *) cr
5893 + scpt->reloc_count));
5894 ++scpt->reloc_count;
5895 }
5896 }
5897
5898 /* If we've written this relocation for a readonly section,
5899 we need to set DF_TEXTREL again, so that we do not delete the
5900 DT_TEXTREL tag. */
5901 if (MIPS_ELF_READONLY_SECTION (input_section))
5902 info->flags |= DF_TEXTREL;
5903
5904 return TRUE;
5905}
5906\f
5907/* Return the MACH for a MIPS e_flags value. */
5908
5909unsigned long
5910_bfd_elf_mips_mach (flagword flags)
5911{
5912 switch (flags & EF_MIPS_MACH)
5913 {
5914 case E_MIPS_MACH_3900:
5915 return bfd_mach_mips3900;
5916
5917 case E_MIPS_MACH_4010:
5918 return bfd_mach_mips4010;
5919
5920 case E_MIPS_MACH_4100:
5921 return bfd_mach_mips4100;
5922
5923 case E_MIPS_MACH_4111:
5924 return bfd_mach_mips4111;
5925
5926 case E_MIPS_MACH_4120:
5927 return bfd_mach_mips4120;
5928
5929 case E_MIPS_MACH_4650:
5930 return bfd_mach_mips4650;
5931
5932 case E_MIPS_MACH_5400:
5933 return bfd_mach_mips5400;
5934
5935 case E_MIPS_MACH_5500:
5936 return bfd_mach_mips5500;
5937
5938 case E_MIPS_MACH_9000:
5939 return bfd_mach_mips9000;
5940
5941 case E_MIPS_MACH_SB1:
5942 return bfd_mach_mips_sb1;
5943
5944 case E_MIPS_MACH_LS2E:
5945 return bfd_mach_mips_loongson_2e;
5946
5947 case E_MIPS_MACH_LS2F:
5948 return bfd_mach_mips_loongson_2f;
5949
5950 case E_MIPS_MACH_LS3A:
5951 return bfd_mach_mips_loongson_3a;
5952
5953 case E_MIPS_MACH_OCTEON:
5954 return bfd_mach_mips_octeon;
5955
5956 case E_MIPS_MACH_XLR:
5957 return bfd_mach_mips_xlr;
5958
5959 default:
5960 switch (flags & EF_MIPS_ARCH)
5961 {
5962 default:
5963 case E_MIPS_ARCH_1:
5964 return bfd_mach_mips3000;
5965
5966 case E_MIPS_ARCH_2:
5967 return bfd_mach_mips6000;
5968
5969 case E_MIPS_ARCH_3:
5970 return bfd_mach_mips4000;
5971
5972 case E_MIPS_ARCH_4:
5973 return bfd_mach_mips8000;
5974
5975 case E_MIPS_ARCH_5:
5976 return bfd_mach_mips5;
5977
5978 case E_MIPS_ARCH_32:
5979 return bfd_mach_mipsisa32;
5980
5981 case E_MIPS_ARCH_64:
5982 return bfd_mach_mipsisa64;
5983
5984 case E_MIPS_ARCH_32R2:
5985 return bfd_mach_mipsisa32r2;
5986
5987 case E_MIPS_ARCH_64R2:
5988 return bfd_mach_mipsisa64r2;
5989 }
5990 }
5991
5992 return 0;
5993}
5994
5995/* Return printable name for ABI. */
5996
5997static INLINE char *
5998elf_mips_abi_name (bfd *abfd)
5999{
6000 flagword flags;
6001
6002 flags = elf_elfheader (abfd)->e_flags;
6003 switch (flags & EF_MIPS_ABI)
6004 {
6005 case 0:
6006 if (ABI_N32_P (abfd))
6007 return "N32";
6008 else if (ABI_64_P (abfd))
6009 return "64";
6010 else
6011 return "none";
6012 case E_MIPS_ABI_O32:
6013 return "O32";
6014 case E_MIPS_ABI_O64:
6015 return "O64";
6016 case E_MIPS_ABI_EABI32:
6017 return "EABI32";
6018 case E_MIPS_ABI_EABI64:
6019 return "EABI64";
6020 default:
6021 return "unknown abi";
6022 }
6023}
6024\f
6025/* MIPS ELF uses two common sections. One is the usual one, and the
6026 other is for small objects. All the small objects are kept
6027 together, and then referenced via the gp pointer, which yields
6028 faster assembler code. This is what we use for the small common
6029 section. This approach is copied from ecoff.c. */
6030static asection mips_elf_scom_section;
6031static asymbol mips_elf_scom_symbol;
6032static asymbol *mips_elf_scom_symbol_ptr;
6033
6034/* MIPS ELF also uses an acommon section, which represents an
6035 allocated common symbol which may be overridden by a
6036 definition in a shared library. */
6037static asection mips_elf_acom_section;
6038static asymbol mips_elf_acom_symbol;
6039static asymbol *mips_elf_acom_symbol_ptr;
6040
6041/* This is used for both the 32-bit and the 64-bit ABI. */
6042
6043void
6044_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6045{
6046 elf_symbol_type *elfsym;
6047
6048 /* Handle the special MIPS section numbers that a symbol may use. */
6049 elfsym = (elf_symbol_type *) asym;
6050 switch (elfsym->internal_elf_sym.st_shndx)
6051 {
6052 case SHN_MIPS_ACOMMON:
6053 /* This section is used in a dynamically linked executable file.
6054 It is an allocated common section. The dynamic linker can
6055 either resolve these symbols to something in a shared
6056 library, or it can just leave them here. For our purposes,
6057 we can consider these symbols to be in a new section. */
6058 if (mips_elf_acom_section.name == NULL)
6059 {
6060 /* Initialize the acommon section. */
6061 mips_elf_acom_section.name = ".acommon";
6062 mips_elf_acom_section.flags = SEC_ALLOC;
6063 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6064 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6065 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6066 mips_elf_acom_symbol.name = ".acommon";
6067 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6068 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6069 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6070 }
6071 asym->section = &mips_elf_acom_section;
6072 break;
6073
6074 case SHN_COMMON:
6075 /* Common symbols less than the GP size are automatically
6076 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6077 if (asym->value > elf_gp_size (abfd)
6078 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6079 || IRIX_COMPAT (abfd) == ict_irix6)
6080 break;
6081 /* Fall through. */
6082 case SHN_MIPS_SCOMMON:
6083 if (mips_elf_scom_section.name == NULL)
6084 {
6085 /* Initialize the small common section. */
6086 mips_elf_scom_section.name = ".scommon";
6087 mips_elf_scom_section.flags = SEC_IS_COMMON;
6088 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6089 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6090 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6091 mips_elf_scom_symbol.name = ".scommon";
6092 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6093 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6094 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6095 }
6096 asym->section = &mips_elf_scom_section;
6097 asym->value = elfsym->internal_elf_sym.st_size;
6098 break;
6099
6100 case SHN_MIPS_SUNDEFINED:
6101 asym->section = bfd_und_section_ptr;
6102 break;
6103
6104 case SHN_MIPS_TEXT:
6105 {
6106 asection *section = bfd_get_section_by_name (abfd, ".text");
6107
6108 BFD_ASSERT (SGI_COMPAT (abfd));
6109 if (section != NULL)
6110 {
6111 asym->section = section;
6112 /* MIPS_TEXT is a bit special, the address is not an offset
6113 to the base of the .text section. So substract the section
6114 base address to make it an offset. */
6115 asym->value -= section->vma;
6116 }
6117 }
6118 break;
6119
6120 case SHN_MIPS_DATA:
6121 {
6122 asection *section = bfd_get_section_by_name (abfd, ".data");
6123
6124 BFD_ASSERT (SGI_COMPAT (abfd));
6125 if (section != NULL)
6126 {
6127 asym->section = section;
6128 /* MIPS_DATA is a bit special, the address is not an offset
6129 to the base of the .data section. So substract the section
6130 base address to make it an offset. */
6131 asym->value -= section->vma;
6132 }
6133 }
6134 break;
6135 }
6136
6137 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6138 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6139 && (asym->value & 1) != 0)
6140 {
6141 asym->value--;
6142 elfsym->internal_elf_sym.st_other
6143 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6144 }
6145}
6146\f
6147/* Implement elf_backend_eh_frame_address_size. This differs from
6148 the default in the way it handles EABI64.
6149
6150 EABI64 was originally specified as an LP64 ABI, and that is what
6151 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6152 historically accepted the combination of -mabi=eabi and -mlong32,
6153 and this ILP32 variation has become semi-official over time.
6154 Both forms use elf32 and have pointer-sized FDE addresses.
6155
6156 If an EABI object was generated by GCC 4.0 or above, it will have
6157 an empty .gcc_compiled_longXX section, where XX is the size of longs
6158 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6159 have no special marking to distinguish them from LP64 objects.
6160
6161 We don't want users of the official LP64 ABI to be punished for the
6162 existence of the ILP32 variant, but at the same time, we don't want
6163 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6164 We therefore take the following approach:
6165
6166 - If ABFD contains a .gcc_compiled_longXX section, use it to
6167 determine the pointer size.
6168
6169 - Otherwise check the type of the first relocation. Assume that
6170 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6171
6172 - Otherwise punt.
6173
6174 The second check is enough to detect LP64 objects generated by pre-4.0
6175 compilers because, in the kind of output generated by those compilers,
6176 the first relocation will be associated with either a CIE personality
6177 routine or an FDE start address. Furthermore, the compilers never
6178 used a special (non-pointer) encoding for this ABI.
6179
6180 Checking the relocation type should also be safe because there is no
6181 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6182 did so. */
6183
6184unsigned int
6185_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6186{
6187 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6188 return 8;
6189 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6190 {
6191 bfd_boolean long32_p, long64_p;
6192
6193 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6194 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6195 if (long32_p && long64_p)
6196 return 0;
6197 if (long32_p)
6198 return 4;
6199 if (long64_p)
6200 return 8;
6201
6202 if (sec->reloc_count > 0
6203 && elf_section_data (sec)->relocs != NULL
6204 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6205 == R_MIPS_64))
6206 return 8;
6207
6208 return 0;
6209 }
6210 return 4;
6211}
6212\f
6213/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6214 relocations against two unnamed section symbols to resolve to the
6215 same address. For example, if we have code like:
6216
6217 lw $4,%got_disp(.data)($gp)
6218 lw $25,%got_disp(.text)($gp)
6219 jalr $25
6220
6221 then the linker will resolve both relocations to .data and the program
6222 will jump there rather than to .text.
6223
6224 We can work around this problem by giving names to local section symbols.
6225 This is also what the MIPSpro tools do. */
6226
6227bfd_boolean
6228_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6229{
6230 return SGI_COMPAT (abfd);
6231}
6232\f
6233/* Work over a section just before writing it out. This routine is
6234 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6235 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6236 a better way. */
6237
6238bfd_boolean
6239_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6240{
6241 if (hdr->sh_type == SHT_MIPS_REGINFO
6242 && hdr->sh_size > 0)
6243 {
6244 bfd_byte buf[4];
6245
6246 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6247 BFD_ASSERT (hdr->contents == NULL);
6248
6249 if (bfd_seek (abfd,
6250 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6251 SEEK_SET) != 0)
6252 return FALSE;
6253 H_PUT_32 (abfd, elf_gp (abfd), buf);
6254 if (bfd_bwrite (buf, 4, abfd) != 4)
6255 return FALSE;
6256 }
6257
6258 if (hdr->sh_type == SHT_MIPS_OPTIONS
6259 && hdr->bfd_section != NULL
6260 && mips_elf_section_data (hdr->bfd_section) != NULL
6261 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6262 {
6263 bfd_byte *contents, *l, *lend;
6264
6265 /* We stored the section contents in the tdata field in the
6266 set_section_contents routine. We save the section contents
6267 so that we don't have to read them again.
6268 At this point we know that elf_gp is set, so we can look
6269 through the section contents to see if there is an
6270 ODK_REGINFO structure. */
6271
6272 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6273 l = contents;
6274 lend = contents + hdr->sh_size;
6275 while (l + sizeof (Elf_External_Options) <= lend)
6276 {
6277 Elf_Internal_Options intopt;
6278
6279 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6280 &intopt);
6281 if (intopt.size < sizeof (Elf_External_Options))
6282 {
6283 (*_bfd_error_handler)
6284 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6285 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6286 break;
6287 }
6288 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6289 {
6290 bfd_byte buf[8];
6291
6292 if (bfd_seek (abfd,
6293 (hdr->sh_offset
6294 + (l - contents)
6295 + sizeof (Elf_External_Options)
6296 + (sizeof (Elf64_External_RegInfo) - 8)),
6297 SEEK_SET) != 0)
6298 return FALSE;
6299 H_PUT_64 (abfd, elf_gp (abfd), buf);
6300 if (bfd_bwrite (buf, 8, abfd) != 8)
6301 return FALSE;
6302 }
6303 else if (intopt.kind == ODK_REGINFO)
6304 {
6305 bfd_byte buf[4];
6306
6307 if (bfd_seek (abfd,
6308 (hdr->sh_offset
6309 + (l - contents)
6310 + sizeof (Elf_External_Options)
6311 + (sizeof (Elf32_External_RegInfo) - 4)),
6312 SEEK_SET) != 0)
6313 return FALSE;
6314 H_PUT_32 (abfd, elf_gp (abfd), buf);
6315 if (bfd_bwrite (buf, 4, abfd) != 4)
6316 return FALSE;
6317 }
6318 l += intopt.size;
6319 }
6320 }
6321
6322 if (hdr->bfd_section != NULL)
6323 {
6324 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6325
6326 /* .sbss is not handled specially here because the GNU/Linux
6327 prelinker can convert .sbss from NOBITS to PROGBITS and
6328 changing it back to NOBITS breaks the binary. The entry in
6329 _bfd_mips_elf_special_sections will ensure the correct flags
6330 are set on .sbss if BFD creates it without reading it from an
6331 input file, and without special handling here the flags set
6332 on it in an input file will be followed. */
6333 if (strcmp (name, ".sdata") == 0
6334 || strcmp (name, ".lit8") == 0
6335 || strcmp (name, ".lit4") == 0)
6336 {
6337 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6338 hdr->sh_type = SHT_PROGBITS;
6339 }
6340 else if (strcmp (name, ".srdata") == 0)
6341 {
6342 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6343 hdr->sh_type = SHT_PROGBITS;
6344 }
6345 else if (strcmp (name, ".compact_rel") == 0)
6346 {
6347 hdr->sh_flags = 0;
6348 hdr->sh_type = SHT_PROGBITS;
6349 }
6350 else if (strcmp (name, ".rtproc") == 0)
6351 {
6352 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6353 {
6354 unsigned int adjust;
6355
6356 adjust = hdr->sh_size % hdr->sh_addralign;
6357 if (adjust != 0)
6358 hdr->sh_size += hdr->sh_addralign - adjust;
6359 }
6360 }
6361 }
6362
6363 return TRUE;
6364}
6365
6366/* Handle a MIPS specific section when reading an object file. This
6367 is called when elfcode.h finds a section with an unknown type.
6368 This routine supports both the 32-bit and 64-bit ELF ABI.
6369
6370 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6371 how to. */
6372
6373bfd_boolean
6374_bfd_mips_elf_section_from_shdr (bfd *abfd,
6375 Elf_Internal_Shdr *hdr,
6376 const char *name,
6377 int shindex)
6378{
6379 flagword flags = 0;
6380
6381 /* There ought to be a place to keep ELF backend specific flags, but
6382 at the moment there isn't one. We just keep track of the
6383 sections by their name, instead. Fortunately, the ABI gives
6384 suggested names for all the MIPS specific sections, so we will
6385 probably get away with this. */
6386 switch (hdr->sh_type)
6387 {
6388 case SHT_MIPS_LIBLIST:
6389 if (strcmp (name, ".liblist") != 0)
6390 return FALSE;
6391 break;
6392 case SHT_MIPS_MSYM:
6393 if (strcmp (name, ".msym") != 0)
6394 return FALSE;
6395 break;
6396 case SHT_MIPS_CONFLICT:
6397 if (strcmp (name, ".conflict") != 0)
6398 return FALSE;
6399 break;
6400 case SHT_MIPS_GPTAB:
6401 if (! CONST_STRNEQ (name, ".gptab."))
6402 return FALSE;
6403 break;
6404 case SHT_MIPS_UCODE:
6405 if (strcmp (name, ".ucode") != 0)
6406 return FALSE;
6407 break;
6408 case SHT_MIPS_DEBUG:
6409 if (strcmp (name, ".mdebug") != 0)
6410 return FALSE;
6411 flags = SEC_DEBUGGING;
6412 break;
6413 case SHT_MIPS_REGINFO:
6414 if (strcmp (name, ".reginfo") != 0
6415 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6416 return FALSE;
6417 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6418 break;
6419 case SHT_MIPS_IFACE:
6420 if (strcmp (name, ".MIPS.interfaces") != 0)
6421 return FALSE;
6422 break;
6423 case SHT_MIPS_CONTENT:
6424 if (! CONST_STRNEQ (name, ".MIPS.content"))
6425 return FALSE;
6426 break;
6427 case SHT_MIPS_OPTIONS:
6428 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6429 return FALSE;
6430 break;
6431 case SHT_MIPS_DWARF:
6432 if (! CONST_STRNEQ (name, ".debug_")
6433 && ! CONST_STRNEQ (name, ".zdebug_"))
6434 return FALSE;
6435 break;
6436 case SHT_MIPS_SYMBOL_LIB:
6437 if (strcmp (name, ".MIPS.symlib") != 0)
6438 return FALSE;
6439 break;
6440 case SHT_MIPS_EVENTS:
6441 if (! CONST_STRNEQ (name, ".MIPS.events")
6442 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6443 return FALSE;
6444 break;
6445 default:
6446 break;
6447 }
6448
6449 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6450 return FALSE;
6451
6452 if (flags)
6453 {
6454 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6455 (bfd_get_section_flags (abfd,
6456 hdr->bfd_section)
6457 | flags)))
6458 return FALSE;
6459 }
6460
6461 /* FIXME: We should record sh_info for a .gptab section. */
6462
6463 /* For a .reginfo section, set the gp value in the tdata information
6464 from the contents of this section. We need the gp value while
6465 processing relocs, so we just get it now. The .reginfo section
6466 is not used in the 64-bit MIPS ELF ABI. */
6467 if (hdr->sh_type == SHT_MIPS_REGINFO)
6468 {
6469 Elf32_External_RegInfo ext;
6470 Elf32_RegInfo s;
6471
6472 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6473 &ext, 0, sizeof ext))
6474 return FALSE;
6475 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6476 elf_gp (abfd) = s.ri_gp_value;
6477 }
6478
6479 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6480 set the gp value based on what we find. We may see both
6481 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6482 they should agree. */
6483 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6484 {
6485 bfd_byte *contents, *l, *lend;
6486
6487 contents = bfd_malloc (hdr->sh_size);
6488 if (contents == NULL)
6489 return FALSE;
6490 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6491 0, hdr->sh_size))
6492 {
6493 free (contents);
6494 return FALSE;
6495 }
6496 l = contents;
6497 lend = contents + hdr->sh_size;
6498 while (l + sizeof (Elf_External_Options) <= lend)
6499 {
6500 Elf_Internal_Options intopt;
6501
6502 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6503 &intopt);
6504 if (intopt.size < sizeof (Elf_External_Options))
6505 {
6506 (*_bfd_error_handler)
6507 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6508 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6509 break;
6510 }
6511 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6512 {
6513 Elf64_Internal_RegInfo intreg;
6514
6515 bfd_mips_elf64_swap_reginfo_in
6516 (abfd,
6517 ((Elf64_External_RegInfo *)
6518 (l + sizeof (Elf_External_Options))),
6519 &intreg);
6520 elf_gp (abfd) = intreg.ri_gp_value;
6521 }
6522 else if (intopt.kind == ODK_REGINFO)
6523 {
6524 Elf32_RegInfo intreg;
6525
6526 bfd_mips_elf32_swap_reginfo_in
6527 (abfd,
6528 ((Elf32_External_RegInfo *)
6529 (l + sizeof (Elf_External_Options))),
6530 &intreg);
6531 elf_gp (abfd) = intreg.ri_gp_value;
6532 }
6533 l += intopt.size;
6534 }
6535 free (contents);
6536 }
6537
6538 return TRUE;
6539}
6540
6541/* Set the correct type for a MIPS ELF section. We do this by the
6542 section name, which is a hack, but ought to work. This routine is
6543 used by both the 32-bit and the 64-bit ABI. */
6544
6545bfd_boolean
6546_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6547{
6548 const char *name = bfd_get_section_name (abfd, sec);
6549
6550 if (strcmp (name, ".liblist") == 0)
6551 {
6552 hdr->sh_type = SHT_MIPS_LIBLIST;
6553 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6554 /* The sh_link field is set in final_write_processing. */
6555 }
6556 else if (strcmp (name, ".conflict") == 0)
6557 hdr->sh_type = SHT_MIPS_CONFLICT;
6558 else if (CONST_STRNEQ (name, ".gptab."))
6559 {
6560 hdr->sh_type = SHT_MIPS_GPTAB;
6561 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6562 /* The sh_info field is set in final_write_processing. */
6563 }
6564 else if (strcmp (name, ".ucode") == 0)
6565 hdr->sh_type = SHT_MIPS_UCODE;
6566 else if (strcmp (name, ".mdebug") == 0)
6567 {
6568 hdr->sh_type = SHT_MIPS_DEBUG;
6569 /* In a shared object on IRIX 5.3, the .mdebug section has an
6570 entsize of 0. FIXME: Does this matter? */
6571 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6572 hdr->sh_entsize = 0;
6573 else
6574 hdr->sh_entsize = 1;
6575 }
6576 else if (strcmp (name, ".reginfo") == 0)
6577 {
6578 hdr->sh_type = SHT_MIPS_REGINFO;
6579 /* In a shared object on IRIX 5.3, the .reginfo section has an
6580 entsize of 0x18. FIXME: Does this matter? */
6581 if (SGI_COMPAT (abfd))
6582 {
6583 if ((abfd->flags & DYNAMIC) != 0)
6584 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6585 else
6586 hdr->sh_entsize = 1;
6587 }
6588 else
6589 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6590 }
6591 else if (SGI_COMPAT (abfd)
6592 && (strcmp (name, ".hash") == 0
6593 || strcmp (name, ".dynamic") == 0
6594 || strcmp (name, ".dynstr") == 0))
6595 {
6596 if (SGI_COMPAT (abfd))
6597 hdr->sh_entsize = 0;
6598#if 0
6599 /* This isn't how the IRIX6 linker behaves. */
6600 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6601#endif
6602 }
6603 else if (strcmp (name, ".got") == 0
6604 || strcmp (name, ".srdata") == 0
6605 || strcmp (name, ".sdata") == 0
6606 || strcmp (name, ".sbss") == 0
6607 || strcmp (name, ".lit4") == 0
6608 || strcmp (name, ".lit8") == 0)
6609 hdr->sh_flags |= SHF_MIPS_GPREL;
6610 else if (strcmp (name, ".MIPS.interfaces") == 0)
6611 {
6612 hdr->sh_type = SHT_MIPS_IFACE;
6613 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6614 }
6615 else if (CONST_STRNEQ (name, ".MIPS.content"))
6616 {
6617 hdr->sh_type = SHT_MIPS_CONTENT;
6618 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6619 /* The sh_info field is set in final_write_processing. */
6620 }
6621 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6622 {
6623 hdr->sh_type = SHT_MIPS_OPTIONS;
6624 hdr->sh_entsize = 1;
6625 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6626 }
6627 else if (CONST_STRNEQ (name, ".debug_")
6628 || CONST_STRNEQ (name, ".zdebug_"))
6629 {
6630 hdr->sh_type = SHT_MIPS_DWARF;
6631
6632 /* Irix facilities such as libexc expect a single .debug_frame
6633 per executable, the system ones have NOSTRIP set and the linker
6634 doesn't merge sections with different flags so ... */
6635 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6636 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6637 }
6638 else if (strcmp (name, ".MIPS.symlib") == 0)
6639 {
6640 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6641 /* The sh_link and sh_info fields are set in
6642 final_write_processing. */
6643 }
6644 else if (CONST_STRNEQ (name, ".MIPS.events")
6645 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6646 {
6647 hdr->sh_type = SHT_MIPS_EVENTS;
6648 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6649 /* The sh_link field is set in final_write_processing. */
6650 }
6651 else if (strcmp (name, ".msym") == 0)
6652 {
6653 hdr->sh_type = SHT_MIPS_MSYM;
6654 hdr->sh_flags |= SHF_ALLOC;
6655 hdr->sh_entsize = 8;
6656 }
6657
6658 /* The generic elf_fake_sections will set up REL_HDR using the default
6659 kind of relocations. We used to set up a second header for the
6660 non-default kind of relocations here, but only NewABI would use
6661 these, and the IRIX ld doesn't like resulting empty RELA sections.
6662 Thus we create those header only on demand now. */
6663
6664 return TRUE;
6665}
6666
6667/* Given a BFD section, try to locate the corresponding ELF section
6668 index. This is used by both the 32-bit and the 64-bit ABI.
6669 Actually, it's not clear to me that the 64-bit ABI supports these,
6670 but for non-PIC objects we will certainly want support for at least
6671 the .scommon section. */
6672
6673bfd_boolean
6674_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6675 asection *sec, int *retval)
6676{
6677 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6678 {
6679 *retval = SHN_MIPS_SCOMMON;
6680 return TRUE;
6681 }
6682 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6683 {
6684 *retval = SHN_MIPS_ACOMMON;
6685 return TRUE;
6686 }
6687 return FALSE;
6688}
6689\f
6690/* Hook called by the linker routine which adds symbols from an object
6691 file. We must handle the special MIPS section numbers here. */
6692
6693bfd_boolean
6694_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6695 Elf_Internal_Sym *sym, const char **namep,
6696 flagword *flagsp ATTRIBUTE_UNUSED,
6697 asection **secp, bfd_vma *valp)
6698{
6699 if (SGI_COMPAT (abfd)
6700 && (abfd->flags & DYNAMIC) != 0
6701 && strcmp (*namep, "_rld_new_interface") == 0)
6702 {
6703 /* Skip IRIX5 rld entry name. */
6704 *namep = NULL;
6705 return TRUE;
6706 }
6707
6708 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6709 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6710 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6711 a magic symbol resolved by the linker, we ignore this bogus definition
6712 of _gp_disp. New ABI objects do not suffer from this problem so this
6713 is not done for them. */
6714 if (!NEWABI_P(abfd)
6715 && (sym->st_shndx == SHN_ABS)
6716 && (strcmp (*namep, "_gp_disp") == 0))
6717 {
6718 *namep = NULL;
6719 return TRUE;
6720 }
6721
6722 switch (sym->st_shndx)
6723 {
6724 case SHN_COMMON:
6725 /* Common symbols less than the GP size are automatically
6726 treated as SHN_MIPS_SCOMMON symbols. */
6727 if (sym->st_size > elf_gp_size (abfd)
6728 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6729 || IRIX_COMPAT (abfd) == ict_irix6)
6730 break;
6731 /* Fall through. */
6732 case SHN_MIPS_SCOMMON:
6733 *secp = bfd_make_section_old_way (abfd, ".scommon");
6734 (*secp)->flags |= SEC_IS_COMMON;
6735 *valp = sym->st_size;
6736 break;
6737
6738 case SHN_MIPS_TEXT:
6739 /* This section is used in a shared object. */
6740 if (elf_tdata (abfd)->elf_text_section == NULL)
6741 {
6742 asymbol *elf_text_symbol;
6743 asection *elf_text_section;
6744 bfd_size_type amt = sizeof (asection);
6745
6746 elf_text_section = bfd_zalloc (abfd, amt);
6747 if (elf_text_section == NULL)
6748 return FALSE;
6749
6750 amt = sizeof (asymbol);
6751 elf_text_symbol = bfd_zalloc (abfd, amt);
6752 if (elf_text_symbol == NULL)
6753 return FALSE;
6754
6755 /* Initialize the section. */
6756
6757 elf_tdata (abfd)->elf_text_section = elf_text_section;
6758 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6759
6760 elf_text_section->symbol = elf_text_symbol;
6761 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6762
6763 elf_text_section->name = ".text";
6764 elf_text_section->flags = SEC_NO_FLAGS;
6765 elf_text_section->output_section = NULL;
6766 elf_text_section->owner = abfd;
6767 elf_text_symbol->name = ".text";
6768 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6769 elf_text_symbol->section = elf_text_section;
6770 }
6771 /* This code used to do *secp = bfd_und_section_ptr if
6772 info->shared. I don't know why, and that doesn't make sense,
6773 so I took it out. */
6774 *secp = elf_tdata (abfd)->elf_text_section;
6775 break;
6776
6777 case SHN_MIPS_ACOMMON:
6778 /* Fall through. XXX Can we treat this as allocated data? */
6779 case SHN_MIPS_DATA:
6780 /* This section is used in a shared object. */
6781 if (elf_tdata (abfd)->elf_data_section == NULL)
6782 {
6783 asymbol *elf_data_symbol;
6784 asection *elf_data_section;
6785 bfd_size_type amt = sizeof (asection);
6786
6787 elf_data_section = bfd_zalloc (abfd, amt);
6788 if (elf_data_section == NULL)
6789 return FALSE;
6790
6791 amt = sizeof (asymbol);
6792 elf_data_symbol = bfd_zalloc (abfd, amt);
6793 if (elf_data_symbol == NULL)
6794 return FALSE;
6795
6796 /* Initialize the section. */
6797
6798 elf_tdata (abfd)->elf_data_section = elf_data_section;
6799 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6800
6801 elf_data_section->symbol = elf_data_symbol;
6802 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6803
6804 elf_data_section->name = ".data";
6805 elf_data_section->flags = SEC_NO_FLAGS;
6806 elf_data_section->output_section = NULL;
6807 elf_data_section->owner = abfd;
6808 elf_data_symbol->name = ".data";
6809 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6810 elf_data_symbol->section = elf_data_section;
6811 }
6812 /* This code used to do *secp = bfd_und_section_ptr if
6813 info->shared. I don't know why, and that doesn't make sense,
6814 so I took it out. */
6815 *secp = elf_tdata (abfd)->elf_data_section;
6816 break;
6817
6818 case SHN_MIPS_SUNDEFINED:
6819 *secp = bfd_und_section_ptr;
6820 break;
6821 }
6822
6823 if (SGI_COMPAT (abfd)
6824 && ! info->shared
6825 && info->output_bfd->xvec == abfd->xvec
6826 && strcmp (*namep, "__rld_obj_head") == 0)
6827 {
6828 struct elf_link_hash_entry *h;
6829 struct bfd_link_hash_entry *bh;
6830
6831 /* Mark __rld_obj_head as dynamic. */
6832 bh = NULL;
6833 if (! (_bfd_generic_link_add_one_symbol
6834 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6835 get_elf_backend_data (abfd)->collect, &bh)))
6836 return FALSE;
6837
6838 h = (struct elf_link_hash_entry *) bh;
6839 h->non_elf = 0;
6840 h->def_regular = 1;
6841 h->type = STT_OBJECT;
6842
6843 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6844 return FALSE;
6845
6846 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6847 }
6848
6849 /* If this is a mips16 text symbol, add 1 to the value to make it
6850 odd. This will cause something like .word SYM to come up with
6851 the right value when it is loaded into the PC. */
6852 if (ELF_ST_IS_MIPS16 (sym->st_other))
6853 ++*valp;
6854
6855 return TRUE;
6856}
6857
6858/* This hook function is called before the linker writes out a global
6859 symbol. We mark symbols as small common if appropriate. This is
6860 also where we undo the increment of the value for a mips16 symbol. */
6861
6862int
6863_bfd_mips_elf_link_output_symbol_hook
6864 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6865 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6866 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6867{
6868 /* If we see a common symbol, which implies a relocatable link, then
6869 if a symbol was small common in an input file, mark it as small
6870 common in the output file. */
6871 if (sym->st_shndx == SHN_COMMON
6872 && strcmp (input_sec->name, ".scommon") == 0)
6873 sym->st_shndx = SHN_MIPS_SCOMMON;
6874
6875 if (ELF_ST_IS_MIPS16 (sym->st_other))
6876 sym->st_value &= ~1;
6877
6878 return 1;
6879}
6880\f
6881/* Functions for the dynamic linker. */
6882
6883/* Create dynamic sections when linking against a dynamic object. */
6884
6885bfd_boolean
6886_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6887{
6888 struct elf_link_hash_entry *h;
6889 struct bfd_link_hash_entry *bh;
6890 flagword flags;
6891 register asection *s;
6892 const char * const *namep;
6893 struct mips_elf_link_hash_table *htab;
6894
6895 htab = mips_elf_hash_table (info);
6896 BFD_ASSERT (htab != NULL);
6897
6898 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6899 | SEC_LINKER_CREATED | SEC_READONLY);
6900
6901 /* The psABI requires a read-only .dynamic section, but the VxWorks
6902 EABI doesn't. */
6903 if (!htab->is_vxworks)
6904 {
6905 s = bfd_get_section_by_name (abfd, ".dynamic");
6906 if (s != NULL)
6907 {
6908 if (! bfd_set_section_flags (abfd, s, flags))
6909 return FALSE;
6910 }
6911 }
6912
6913 /* We need to create .got section. */
6914 if (!mips_elf_create_got_section (abfd, info))
6915 return FALSE;
6916
6917 if (! mips_elf_rel_dyn_section (info, TRUE))
6918 return FALSE;
6919
6920 /* Create .stub section. */
6921 s = bfd_make_section_with_flags (abfd,
6922 MIPS_ELF_STUB_SECTION_NAME (abfd),
6923 flags | SEC_CODE);
6924 if (s == NULL
6925 || ! bfd_set_section_alignment (abfd, s,
6926 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6927 return FALSE;
6928 htab->sstubs = s;
6929
6930 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6931 && !info->shared
6932 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6933 {
6934 s = bfd_make_section_with_flags (abfd, ".rld_map",
6935 flags &~ (flagword) SEC_READONLY);
6936 if (s == NULL
6937 || ! bfd_set_section_alignment (abfd, s,
6938 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6939 return FALSE;
6940 }
6941
6942 /* On IRIX5, we adjust add some additional symbols and change the
6943 alignments of several sections. There is no ABI documentation
6944 indicating that this is necessary on IRIX6, nor any evidence that
6945 the linker takes such action. */
6946 if (IRIX_COMPAT (abfd) == ict_irix5)
6947 {
6948 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6949 {
6950 bh = NULL;
6951 if (! (_bfd_generic_link_add_one_symbol
6952 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6953 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6954 return FALSE;
6955
6956 h = (struct elf_link_hash_entry *) bh;
6957 h->non_elf = 0;
6958 h->def_regular = 1;
6959 h->type = STT_SECTION;
6960
6961 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6962 return FALSE;
6963 }
6964
6965 /* We need to create a .compact_rel section. */
6966 if (SGI_COMPAT (abfd))
6967 {
6968 if (!mips_elf_create_compact_rel_section (abfd, info))
6969 return FALSE;
6970 }
6971
6972 /* Change alignments of some sections. */
6973 s = bfd_get_section_by_name (abfd, ".hash");
6974 if (s != NULL)
6975 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6976 s = bfd_get_section_by_name (abfd, ".dynsym");
6977 if (s != NULL)
6978 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6979 s = bfd_get_section_by_name (abfd, ".dynstr");
6980 if (s != NULL)
6981 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6982 s = bfd_get_section_by_name (abfd, ".reginfo");
6983 if (s != NULL)
6984 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6985 s = bfd_get_section_by_name (abfd, ".dynamic");
6986 if (s != NULL)
6987 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6988 }
6989
6990 if (!info->shared)
6991 {
6992 const char *name;
6993
6994 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6995 bh = NULL;
6996 if (!(_bfd_generic_link_add_one_symbol
6997 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6998 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6999 return FALSE;
7000
7001 h = (struct elf_link_hash_entry *) bh;
7002 h->non_elf = 0;
7003 h->def_regular = 1;
7004 h->type = STT_SECTION;
7005
7006 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7007 return FALSE;
7008
7009 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7010 {
7011 /* __rld_map is a four byte word located in the .data section
7012 and is filled in by the rtld to contain a pointer to
7013 the _r_debug structure. Its symbol value will be set in
7014 _bfd_mips_elf_finish_dynamic_symbol. */
7015 s = bfd_get_section_by_name (abfd, ".rld_map");
7016 BFD_ASSERT (s != NULL);
7017
7018 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7019 bh = NULL;
7020 if (!(_bfd_generic_link_add_one_symbol
7021 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7022 get_elf_backend_data (abfd)->collect, &bh)))
7023 return FALSE;
7024
7025 h = (struct elf_link_hash_entry *) bh;
7026 h->non_elf = 0;
7027 h->def_regular = 1;
7028 h->type = STT_OBJECT;
7029
7030 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7031 return FALSE;
7032 }
7033 }
7034
7035 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7036 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7037 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7038 return FALSE;
7039
7040 /* Cache the sections created above. */
7041 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7042 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7043 if (htab->is_vxworks)
7044 {
7045 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7046 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7047 }
7048 else
7049 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7050 if (!htab->sdynbss
7051 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7052 || !htab->srelplt
7053 || !htab->splt)
7054 abort ();
7055
7056 if (htab->is_vxworks)
7057 {
7058 /* Do the usual VxWorks handling. */
7059 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7060 return FALSE;
7061
7062 /* Work out the PLT sizes. */
7063 if (info->shared)
7064 {
7065 htab->plt_header_size
7066 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7067 htab->plt_entry_size
7068 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7069 }
7070 else
7071 {
7072 htab->plt_header_size
7073 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7074 htab->plt_entry_size
7075 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7076 }
7077 }
7078 else if (!info->shared)
7079 {
7080 /* All variants of the plt0 entry are the same size. */
7081 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7082 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7083 }
7084
7085 return TRUE;
7086}
7087\f
7088/* Return true if relocation REL against section SEC is a REL rather than
7089 RELA relocation. RELOCS is the first relocation in the section and
7090 ABFD is the bfd that contains SEC. */
7091
7092static bfd_boolean
7093mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7094 const Elf_Internal_Rela *relocs,
7095 const Elf_Internal_Rela *rel)
7096{
7097 Elf_Internal_Shdr *rel_hdr;
7098 const struct elf_backend_data *bed;
7099
7100 /* To determine which flavor of relocation this is, we depend on the
7101 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7102 rel_hdr = elf_section_data (sec)->rel.hdr;
7103 if (rel_hdr == NULL)
7104 return FALSE;
7105 bed = get_elf_backend_data (abfd);
7106 return ((size_t) (rel - relocs)
7107 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7108}
7109
7110/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7111 HOWTO is the relocation's howto and CONTENTS points to the contents
7112 of the section that REL is against. */
7113
7114static bfd_vma
7115mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7116 reloc_howto_type *howto, bfd_byte *contents)
7117{
7118 bfd_byte *location;
7119 unsigned int r_type;
7120 bfd_vma addend;
7121
7122 r_type = ELF_R_TYPE (abfd, rel->r_info);
7123 location = contents + rel->r_offset;
7124
7125 /* Get the addend, which is stored in the input file. */
7126 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7127 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7128 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7129
7130 return addend & howto->src_mask;
7131}
7132
7133/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7134 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7135 and update *ADDEND with the final addend. Return true on success
7136 or false if the LO16 could not be found. RELEND is the exclusive
7137 upper bound on the relocations for REL's section. */
7138
7139static bfd_boolean
7140mips_elf_add_lo16_rel_addend (bfd *abfd,
7141 const Elf_Internal_Rela *rel,
7142 const Elf_Internal_Rela *relend,
7143 bfd_byte *contents, bfd_vma *addend)
7144{
7145 unsigned int r_type, lo16_type;
7146 const Elf_Internal_Rela *lo16_relocation;
7147 reloc_howto_type *lo16_howto;
7148 bfd_vma l;
7149
7150 r_type = ELF_R_TYPE (abfd, rel->r_info);
7151 if (mips16_reloc_p (r_type))
7152 lo16_type = R_MIPS16_LO16;
7153 else
7154 lo16_type = R_MIPS_LO16;
7155
7156 /* The combined value is the sum of the HI16 addend, left-shifted by
7157 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7158 code does a `lui' of the HI16 value, and then an `addiu' of the
7159 LO16 value.)
7160
7161 Scan ahead to find a matching LO16 relocation.
7162
7163 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7164 be immediately following. However, for the IRIX6 ABI, the next
7165 relocation may be a composed relocation consisting of several
7166 relocations for the same address. In that case, the R_MIPS_LO16
7167 relocation may occur as one of these. We permit a similar
7168 extension in general, as that is useful for GCC.
7169
7170 In some cases GCC dead code elimination removes the LO16 but keeps
7171 the corresponding HI16. This is strictly speaking a violation of
7172 the ABI but not immediately harmful. */
7173 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7174 if (lo16_relocation == NULL)
7175 return FALSE;
7176
7177 /* Obtain the addend kept there. */
7178 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7179 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7180
7181 l <<= lo16_howto->rightshift;
7182 l = _bfd_mips_elf_sign_extend (l, 16);
7183
7184 *addend <<= 16;
7185 *addend += l;
7186 return TRUE;
7187}
7188
7189/* Try to read the contents of section SEC in bfd ABFD. Return true and
7190 store the contents in *CONTENTS on success. Assume that *CONTENTS
7191 already holds the contents if it is nonull on entry. */
7192
7193static bfd_boolean
7194mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7195{
7196 if (*contents)
7197 return TRUE;
7198
7199 /* Get cached copy if it exists. */
7200 if (elf_section_data (sec)->this_hdr.contents != NULL)
7201 {
7202 *contents = elf_section_data (sec)->this_hdr.contents;
7203 return TRUE;
7204 }
7205
7206 return bfd_malloc_and_get_section (abfd, sec, contents);
7207}
7208
7209/* Look through the relocs for a section during the first phase, and
7210 allocate space in the global offset table. */
7211
7212bfd_boolean
7213_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7214 asection *sec, const Elf_Internal_Rela *relocs)
7215{
7216 const char *name;
7217 bfd *dynobj;
7218 Elf_Internal_Shdr *symtab_hdr;
7219 struct elf_link_hash_entry **sym_hashes;
7220 size_t extsymoff;
7221 const Elf_Internal_Rela *rel;
7222 const Elf_Internal_Rela *rel_end;
7223 asection *sreloc;
7224 const struct elf_backend_data *bed;
7225 struct mips_elf_link_hash_table *htab;
7226 bfd_byte *contents;
7227 bfd_vma addend;
7228 reloc_howto_type *howto;
7229
7230 if (info->relocatable)
7231 return TRUE;
7232
7233 htab = mips_elf_hash_table (info);
7234 BFD_ASSERT (htab != NULL);
7235
7236 dynobj = elf_hash_table (info)->dynobj;
7237 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7238 sym_hashes = elf_sym_hashes (abfd);
7239 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7240
7241 bed = get_elf_backend_data (abfd);
7242 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7243
7244 /* Check for the mips16 stub sections. */
7245
7246 name = bfd_get_section_name (abfd, sec);
7247 if (FN_STUB_P (name))
7248 {
7249 unsigned long r_symndx;
7250
7251 /* Look at the relocation information to figure out which symbol
7252 this is for. */
7253
7254 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7255 if (r_symndx == 0)
7256 {
7257 (*_bfd_error_handler)
7258 (_("%B: Warning: cannot determine the target function for"
7259 " stub section `%s'"),
7260 abfd, name);
7261 bfd_set_error (bfd_error_bad_value);
7262 return FALSE;
7263 }
7264
7265 if (r_symndx < extsymoff
7266 || sym_hashes[r_symndx - extsymoff] == NULL)
7267 {
7268 asection *o;
7269
7270 /* This stub is for a local symbol. This stub will only be
7271 needed if there is some relocation in this BFD, other
7272 than a 16 bit function call, which refers to this symbol. */
7273 for (o = abfd->sections; o != NULL; o = o->next)
7274 {
7275 Elf_Internal_Rela *sec_relocs;
7276 const Elf_Internal_Rela *r, *rend;
7277
7278 /* We can ignore stub sections when looking for relocs. */
7279 if ((o->flags & SEC_RELOC) == 0
7280 || o->reloc_count == 0
7281 || section_allows_mips16_refs_p (o))
7282 continue;
7283
7284 sec_relocs
7285 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7286 info->keep_memory);
7287 if (sec_relocs == NULL)
7288 return FALSE;
7289
7290 rend = sec_relocs + o->reloc_count;
7291 for (r = sec_relocs; r < rend; r++)
7292 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7293 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7294 break;
7295
7296 if (elf_section_data (o)->relocs != sec_relocs)
7297 free (sec_relocs);
7298
7299 if (r < rend)
7300 break;
7301 }
7302
7303 if (o == NULL)
7304 {
7305 /* There is no non-call reloc for this stub, so we do
7306 not need it. Since this function is called before
7307 the linker maps input sections to output sections, we
7308 can easily discard it by setting the SEC_EXCLUDE
7309 flag. */
7310 sec->flags |= SEC_EXCLUDE;
7311 return TRUE;
7312 }
7313
7314 /* Record this stub in an array of local symbol stubs for
7315 this BFD. */
7316 if (elf_tdata (abfd)->local_stubs == NULL)
7317 {
7318 unsigned long symcount;
7319 asection **n;
7320 bfd_size_type amt;
7321
7322 if (elf_bad_symtab (abfd))
7323 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7324 else
7325 symcount = symtab_hdr->sh_info;
7326 amt = symcount * sizeof (asection *);
7327 n = bfd_zalloc (abfd, amt);
7328 if (n == NULL)
7329 return FALSE;
7330 elf_tdata (abfd)->local_stubs = n;
7331 }
7332
7333 sec->flags |= SEC_KEEP;
7334 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7335
7336 /* We don't need to set mips16_stubs_seen in this case.
7337 That flag is used to see whether we need to look through
7338 the global symbol table for stubs. We don't need to set
7339 it here, because we just have a local stub. */
7340 }
7341 else
7342 {
7343 struct mips_elf_link_hash_entry *h;
7344
7345 h = ((struct mips_elf_link_hash_entry *)
7346 sym_hashes[r_symndx - extsymoff]);
7347
7348 while (h->root.root.type == bfd_link_hash_indirect
7349 || h->root.root.type == bfd_link_hash_warning)
7350 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7351
7352 /* H is the symbol this stub is for. */
7353
7354 /* If we already have an appropriate stub for this function, we
7355 don't need another one, so we can discard this one. Since
7356 this function is called before the linker maps input sections
7357 to output sections, we can easily discard it by setting the
7358 SEC_EXCLUDE flag. */
7359 if (h->fn_stub != NULL)
7360 {
7361 sec->flags |= SEC_EXCLUDE;
7362 return TRUE;
7363 }
7364
7365 sec->flags |= SEC_KEEP;
7366 h->fn_stub = sec;
7367 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7368 }
7369 }
7370 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7371 {
7372 unsigned long r_symndx;
7373 struct mips_elf_link_hash_entry *h;
7374 asection **loc;
7375
7376 /* Look at the relocation information to figure out which symbol
7377 this is for. */
7378
7379 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7380 if (r_symndx == 0)
7381 {
7382 (*_bfd_error_handler)
7383 (_("%B: Warning: cannot determine the target function for"
7384 " stub section `%s'"),
7385 abfd, name);
7386 bfd_set_error (bfd_error_bad_value);
7387 return FALSE;
7388 }
7389
7390 if (r_symndx < extsymoff
7391 || sym_hashes[r_symndx - extsymoff] == NULL)
7392 {
7393 asection *o;
7394
7395 /* This stub is for a local symbol. This stub will only be
7396 needed if there is some relocation (R_MIPS16_26) in this BFD
7397 that refers to this symbol. */
7398 for (o = abfd->sections; o != NULL; o = o->next)
7399 {
7400 Elf_Internal_Rela *sec_relocs;
7401 const Elf_Internal_Rela *r, *rend;
7402
7403 /* We can ignore stub sections when looking for relocs. */
7404 if ((o->flags & SEC_RELOC) == 0
7405 || o->reloc_count == 0
7406 || section_allows_mips16_refs_p (o))
7407 continue;
7408
7409 sec_relocs
7410 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7411 info->keep_memory);
7412 if (sec_relocs == NULL)
7413 return FALSE;
7414
7415 rend = sec_relocs + o->reloc_count;
7416 for (r = sec_relocs; r < rend; r++)
7417 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7418 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7419 break;
7420
7421 if (elf_section_data (o)->relocs != sec_relocs)
7422 free (sec_relocs);
7423
7424 if (r < rend)
7425 break;
7426 }
7427
7428 if (o == NULL)
7429 {
7430 /* There is no non-call reloc for this stub, so we do
7431 not need it. Since this function is called before
7432 the linker maps input sections to output sections, we
7433 can easily discard it by setting the SEC_EXCLUDE
7434 flag. */
7435 sec->flags |= SEC_EXCLUDE;
7436 return TRUE;
7437 }
7438
7439 /* Record this stub in an array of local symbol call_stubs for
7440 this BFD. */
7441 if (elf_tdata (abfd)->local_call_stubs == NULL)
7442 {
7443 unsigned long symcount;
7444 asection **n;
7445 bfd_size_type amt;
7446
7447 if (elf_bad_symtab (abfd))
7448 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7449 else
7450 symcount = symtab_hdr->sh_info;
7451 amt = symcount * sizeof (asection *);
7452 n = bfd_zalloc (abfd, amt);
7453 if (n == NULL)
7454 return FALSE;
7455 elf_tdata (abfd)->local_call_stubs = n;
7456 }
7457
7458 sec->flags |= SEC_KEEP;
7459 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7460
7461 /* We don't need to set mips16_stubs_seen in this case.
7462 That flag is used to see whether we need to look through
7463 the global symbol table for stubs. We don't need to set
7464 it here, because we just have a local stub. */
7465 }
7466 else
7467 {
7468 h = ((struct mips_elf_link_hash_entry *)
7469 sym_hashes[r_symndx - extsymoff]);
7470
7471 /* H is the symbol this stub is for. */
7472
7473 if (CALL_FP_STUB_P (name))
7474 loc = &h->call_fp_stub;
7475 else
7476 loc = &h->call_stub;
7477
7478 /* If we already have an appropriate stub for this function, we
7479 don't need another one, so we can discard this one. Since
7480 this function is called before the linker maps input sections
7481 to output sections, we can easily discard it by setting the
7482 SEC_EXCLUDE flag. */
7483 if (*loc != NULL)
7484 {
7485 sec->flags |= SEC_EXCLUDE;
7486 return TRUE;
7487 }
7488
7489 sec->flags |= SEC_KEEP;
7490 *loc = sec;
7491 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7492 }
7493 }
7494
7495 sreloc = NULL;
7496 contents = NULL;
7497 for (rel = relocs; rel < rel_end; ++rel)
7498 {
7499 unsigned long r_symndx;
7500 unsigned int r_type;
7501 struct elf_link_hash_entry *h;
7502 bfd_boolean can_make_dynamic_p;
7503
7504 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7505 r_type = ELF_R_TYPE (abfd, rel->r_info);
7506
7507 if (r_symndx < extsymoff)
7508 h = NULL;
7509 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7510 {
7511 (*_bfd_error_handler)
7512 (_("%B: Malformed reloc detected for section %s"),
7513 abfd, name);
7514 bfd_set_error (bfd_error_bad_value);
7515 return FALSE;
7516 }
7517 else
7518 {
7519 h = sym_hashes[r_symndx - extsymoff];
7520 while (h != NULL
7521 && (h->root.type == bfd_link_hash_indirect
7522 || h->root.type == bfd_link_hash_warning))
7523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7524 }
7525
7526 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7527 relocation into a dynamic one. */
7528 can_make_dynamic_p = FALSE;
7529 switch (r_type)
7530 {
7531 case R_MIPS16_GOT16:
7532 case R_MIPS16_CALL16:
7533 case R_MIPS_GOT16:
7534 case R_MIPS_CALL16:
7535 case R_MIPS_CALL_HI16:
7536 case R_MIPS_CALL_LO16:
7537 case R_MIPS_GOT_HI16:
7538 case R_MIPS_GOT_LO16:
7539 case R_MIPS_GOT_PAGE:
7540 case R_MIPS_GOT_OFST:
7541 case R_MIPS_GOT_DISP:
7542 case R_MIPS_TLS_GOTTPREL:
7543 case R_MIPS_TLS_GD:
7544 case R_MIPS_TLS_LDM:
7545 if (dynobj == NULL)
7546 elf_hash_table (info)->dynobj = dynobj = abfd;
7547 if (!mips_elf_create_got_section (dynobj, info))
7548 return FALSE;
7549 if (htab->is_vxworks && !info->shared)
7550 {
7551 (*_bfd_error_handler)
7552 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7553 abfd, (unsigned long) rel->r_offset);
7554 bfd_set_error (bfd_error_bad_value);
7555 return FALSE;
7556 }
7557 break;
7558
7559 /* This is just a hint; it can safely be ignored. Don't set
7560 has_static_relocs for the corresponding symbol. */
7561 case R_MIPS_JALR:
7562 break;
7563
7564 case R_MIPS_32:
7565 case R_MIPS_REL32:
7566 case R_MIPS_64:
7567 /* In VxWorks executables, references to external symbols
7568 must be handled using copy relocs or PLT entries; it is not
7569 possible to convert this relocation into a dynamic one.
7570
7571 For executables that use PLTs and copy-relocs, we have a
7572 choice between converting the relocation into a dynamic
7573 one or using copy relocations or PLT entries. It is
7574 usually better to do the former, unless the relocation is
7575 against a read-only section. */
7576 if ((info->shared
7577 || (h != NULL
7578 && !htab->is_vxworks
7579 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7580 && !(!info->nocopyreloc
7581 && !PIC_OBJECT_P (abfd)
7582 && MIPS_ELF_READONLY_SECTION (sec))))
7583 && (sec->flags & SEC_ALLOC) != 0)
7584 {
7585 can_make_dynamic_p = TRUE;
7586 if (dynobj == NULL)
7587 elf_hash_table (info)->dynobj = dynobj = abfd;
7588 break;
7589 }
7590 /* For sections that are not SEC_ALLOC a copy reloc would be
7591 output if possible (implying questionable semantics for
7592 read-only data objects) or otherwise the final link would
7593 fail as ld.so will not process them and could not therefore
7594 handle any outstanding dynamic relocations.
7595
7596 For such sections that are also SEC_DEBUGGING, we can avoid
7597 these problems by simply ignoring any relocs as these
7598 sections have a predefined use and we know it is safe to do
7599 so.
7600
7601 This is needed in cases such as a global symbol definition
7602 in a shared library causing a common symbol from an object
7603 file to be converted to an undefined reference. If that
7604 happens, then all the relocations against this symbol from
7605 SEC_DEBUGGING sections in the object file will resolve to
7606 nil. */
7607 if ((sec->flags & SEC_DEBUGGING) != 0)
7608 break;
7609 /* Fall through. */
7610
7611 default:
7612 /* Most static relocations require pointer equality, except
7613 for branches. */
7614 if (h)
7615 h->pointer_equality_needed = TRUE;
7616 /* Fall through. */
7617
7618 case R_MIPS_26:
7619 case R_MIPS_PC16:
7620 case R_MIPS16_26:
7621 if (h)
7622 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7623 break;
7624 }
7625
7626 if (h)
7627 {
7628 /* Relocations against the special VxWorks __GOTT_BASE__ and
7629 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7630 room for them in .rela.dyn. */
7631 if (is_gott_symbol (info, h))
7632 {
7633 if (sreloc == NULL)
7634 {
7635 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7636 if (sreloc == NULL)
7637 return FALSE;
7638 }
7639 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7640 if (MIPS_ELF_READONLY_SECTION (sec))
7641 /* We tell the dynamic linker that there are
7642 relocations against the text segment. */
7643 info->flags |= DF_TEXTREL;
7644 }
7645 }
7646 else if (r_type == R_MIPS_CALL_LO16
7647 || r_type == R_MIPS_GOT_LO16
7648 || r_type == R_MIPS_GOT_DISP
7649 || (got16_reloc_p (r_type) && htab->is_vxworks))
7650 {
7651 /* We may need a local GOT entry for this relocation. We
7652 don't count R_MIPS_GOT_PAGE because we can estimate the
7653 maximum number of pages needed by looking at the size of
7654 the segment. Similar comments apply to R_MIPS*_GOT16 and
7655 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7656 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7657 R_MIPS_CALL_HI16 because these are always followed by an
7658 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7659 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7660 rel->r_addend, info, 0))
7661 return FALSE;
7662 }
7663
7664 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7665 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7666
7667 switch (r_type)
7668 {
7669 case R_MIPS_CALL16:
7670 case R_MIPS16_CALL16:
7671 if (h == NULL)
7672 {
7673 (*_bfd_error_handler)
7674 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7675 abfd, (unsigned long) rel->r_offset);
7676 bfd_set_error (bfd_error_bad_value);
7677 return FALSE;
7678 }
7679 /* Fall through. */
7680
7681 case R_MIPS_CALL_HI16:
7682 case R_MIPS_CALL_LO16:
7683 if (h != NULL)
7684 {
7685 /* Make sure there is room in the regular GOT to hold the
7686 function's address. We may eliminate it in favour of
7687 a .got.plt entry later; see mips_elf_count_got_symbols. */
7688 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7689 return FALSE;
7690
7691 /* We need a stub, not a plt entry for the undefined
7692 function. But we record it as if it needs plt. See
7693 _bfd_elf_adjust_dynamic_symbol. */
7694 h->needs_plt = 1;
7695 h->type = STT_FUNC;
7696 }
7697 break;
7698
7699 case R_MIPS_GOT_PAGE:
7700 /* If this is a global, overridable symbol, GOT_PAGE will
7701 decay to GOT_DISP, so we'll need a GOT entry for it. */
7702 if (h)
7703 {
7704 struct mips_elf_link_hash_entry *hmips =
7705 (struct mips_elf_link_hash_entry *) h;
7706
7707 /* This symbol is definitely not overridable. */
7708 if (hmips->root.def_regular
7709 && ! (info->shared && ! info->symbolic
7710 && ! hmips->root.forced_local))
7711 h = NULL;
7712 }
7713 /* Fall through. */
7714
7715 case R_MIPS16_GOT16:
7716 case R_MIPS_GOT16:
7717 case R_MIPS_GOT_HI16:
7718 case R_MIPS_GOT_LO16:
7719 if (!h || r_type == R_MIPS_GOT_PAGE)
7720 {
7721 /* This relocation needs (or may need, if h != NULL) a
7722 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7723 know for sure until we know whether the symbol is
7724 preemptible. */
7725 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7726 {
7727 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7728 return FALSE;
7729 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7730 addend = mips_elf_read_rel_addend (abfd, rel,
7731 howto, contents);
7732 if (got16_reloc_p (r_type))
7733 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7734 contents, &addend);
7735 else
7736 addend <<= howto->rightshift;
7737 }
7738 else
7739 addend = rel->r_addend;
7740 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7741 addend))
7742 return FALSE;
7743 }
7744 /* Fall through. */
7745
7746 case R_MIPS_GOT_DISP:
7747 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7748 FALSE, 0))
7749 return FALSE;
7750 break;
7751
7752 case R_MIPS_TLS_GOTTPREL:
7753 if (info->shared)
7754 info->flags |= DF_STATIC_TLS;
7755 /* Fall through */
7756
7757 case R_MIPS_TLS_LDM:
7758 if (r_type == R_MIPS_TLS_LDM)
7759 {
7760 r_symndx = STN_UNDEF;
7761 h = NULL;
7762 }
7763 /* Fall through */
7764
7765 case R_MIPS_TLS_GD:
7766 /* This symbol requires a global offset table entry, or two
7767 for TLS GD relocations. */
7768 {
7769 unsigned char flag = (r_type == R_MIPS_TLS_GD
7770 ? GOT_TLS_GD
7771 : r_type == R_MIPS_TLS_LDM
7772 ? GOT_TLS_LDM
7773 : GOT_TLS_IE);
7774 if (h != NULL)
7775 {
7776 struct mips_elf_link_hash_entry *hmips =
7777 (struct mips_elf_link_hash_entry *) h;
7778 hmips->tls_type |= flag;
7779
7780 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7781 FALSE, flag))
7782 return FALSE;
7783 }
7784 else
7785 {
7786 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
7787
7788 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7789 rel->r_addend,
7790 info, flag))
7791 return FALSE;
7792 }
7793 }
7794 break;
7795
7796 case R_MIPS_32:
7797 case R_MIPS_REL32:
7798 case R_MIPS_64:
7799 /* In VxWorks executables, references to external symbols
7800 are handled using copy relocs or PLT stubs, so there's
7801 no need to add a .rela.dyn entry for this relocation. */
7802 if (can_make_dynamic_p)
7803 {
7804 if (sreloc == NULL)
7805 {
7806 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7807 if (sreloc == NULL)
7808 return FALSE;
7809 }
7810 if (info->shared && h == NULL)
7811 {
7812 /* When creating a shared object, we must copy these
7813 reloc types into the output file as R_MIPS_REL32
7814 relocs. Make room for this reloc in .rel(a).dyn. */
7815 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7816 if (MIPS_ELF_READONLY_SECTION (sec))
7817 /* We tell the dynamic linker that there are
7818 relocations against the text segment. */
7819 info->flags |= DF_TEXTREL;
7820 }
7821 else
7822 {
7823 struct mips_elf_link_hash_entry *hmips;
7824
7825 /* For a shared object, we must copy this relocation
7826 unless the symbol turns out to be undefined and
7827 weak with non-default visibility, in which case
7828 it will be left as zero.
7829
7830 We could elide R_MIPS_REL32 for locally binding symbols
7831 in shared libraries, but do not yet do so.
7832
7833 For an executable, we only need to copy this
7834 reloc if the symbol is defined in a dynamic
7835 object. */
7836 hmips = (struct mips_elf_link_hash_entry *) h;
7837 ++hmips->possibly_dynamic_relocs;
7838 if (MIPS_ELF_READONLY_SECTION (sec))
7839 /* We need it to tell the dynamic linker if there
7840 are relocations against the text segment. */
7841 hmips->readonly_reloc = TRUE;
7842 }
7843 }
7844
7845 if (SGI_COMPAT (abfd))
7846 mips_elf_hash_table (info)->compact_rel_size +=
7847 sizeof (Elf32_External_crinfo);
7848 break;
7849
7850 case R_MIPS_26:
7851 case R_MIPS_GPREL16:
7852 case R_MIPS_LITERAL:
7853 case R_MIPS_GPREL32:
7854 if (SGI_COMPAT (abfd))
7855 mips_elf_hash_table (info)->compact_rel_size +=
7856 sizeof (Elf32_External_crinfo);
7857 break;
7858
7859 /* This relocation describes the C++ object vtable hierarchy.
7860 Reconstruct it for later use during GC. */
7861 case R_MIPS_GNU_VTINHERIT:
7862 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7863 return FALSE;
7864 break;
7865
7866 /* This relocation describes which C++ vtable entries are actually
7867 used. Record for later use during GC. */
7868 case R_MIPS_GNU_VTENTRY:
7869 BFD_ASSERT (h != NULL);
7870 if (h != NULL
7871 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7872 return FALSE;
7873 break;
7874
7875 default:
7876 break;
7877 }
7878
7879 /* We must not create a stub for a symbol that has relocations
7880 related to taking the function's address. This doesn't apply to
7881 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7882 a normal .got entry. */
7883 if (!htab->is_vxworks && h != NULL)
7884 switch (r_type)
7885 {
7886 default:
7887 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7888 break;
7889 case R_MIPS16_CALL16:
7890 case R_MIPS_CALL16:
7891 case R_MIPS_CALL_HI16:
7892 case R_MIPS_CALL_LO16:
7893 case R_MIPS_JALR:
7894 break;
7895 }
7896
7897 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7898 if there is one. We only need to handle global symbols here;
7899 we decide whether to keep or delete stubs for local symbols
7900 when processing the stub's relocations. */
7901 if (h != NULL
7902 && !mips16_call_reloc_p (r_type)
7903 && !section_allows_mips16_refs_p (sec))
7904 {
7905 struct mips_elf_link_hash_entry *mh;
7906
7907 mh = (struct mips_elf_link_hash_entry *) h;
7908 mh->need_fn_stub = TRUE;
7909 }
7910
7911 /* Refuse some position-dependent relocations when creating a
7912 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7913 not PIC, but we can create dynamic relocations and the result
7914 will be fine. Also do not refuse R_MIPS_LO16, which can be
7915 combined with R_MIPS_GOT16. */
7916 if (info->shared)
7917 {
7918 switch (r_type)
7919 {
7920 case R_MIPS16_HI16:
7921 case R_MIPS_HI16:
7922 case R_MIPS_HIGHER:
7923 case R_MIPS_HIGHEST:
7924 /* Don't refuse a high part relocation if it's against
7925 no symbol (e.g. part of a compound relocation). */
7926 if (r_symndx == STN_UNDEF)
7927 break;
7928
7929 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7930 and has a special meaning. */
7931 if (!NEWABI_P (abfd) && h != NULL
7932 && strcmp (h->root.root.string, "_gp_disp") == 0)
7933 break;
7934
7935 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
7936 if (is_gott_symbol (info, h))
7937 break;
7938
7939 /* FALLTHROUGH */
7940
7941 case R_MIPS16_26:
7942 case R_MIPS_26:
7943 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7944 (*_bfd_error_handler)
7945 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7946 abfd, howto->name,
7947 (h) ? h->root.root.string : "a local symbol");
7948 bfd_set_error (bfd_error_bad_value);
7949 return FALSE;
7950 default:
7951 break;
7952 }
7953 }
7954 }
7955
7956 return TRUE;
7957}
7958\f
7959bfd_boolean
7960_bfd_mips_relax_section (bfd *abfd, asection *sec,
7961 struct bfd_link_info *link_info,
7962 bfd_boolean *again)
7963{
7964 Elf_Internal_Rela *internal_relocs;
7965 Elf_Internal_Rela *irel, *irelend;
7966 Elf_Internal_Shdr *symtab_hdr;
7967 bfd_byte *contents = NULL;
7968 size_t extsymoff;
7969 bfd_boolean changed_contents = FALSE;
7970 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7971 Elf_Internal_Sym *isymbuf = NULL;
7972
7973 /* We are not currently changing any sizes, so only one pass. */
7974 *again = FALSE;
7975
7976 if (link_info->relocatable)
7977 return TRUE;
7978
7979 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7980 link_info->keep_memory);
7981 if (internal_relocs == NULL)
7982 return TRUE;
7983
7984 irelend = internal_relocs + sec->reloc_count
7985 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7986 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7987 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7988
7989 for (irel = internal_relocs; irel < irelend; irel++)
7990 {
7991 bfd_vma symval;
7992 bfd_signed_vma sym_offset;
7993 unsigned int r_type;
7994 unsigned long r_symndx;
7995 asection *sym_sec;
7996 unsigned long instruction;
7997
7998 /* Turn jalr into bgezal, and jr into beq, if they're marked
7999 with a JALR relocation, that indicate where they jump to.
8000 This saves some pipeline bubbles. */
8001 r_type = ELF_R_TYPE (abfd, irel->r_info);
8002 if (r_type != R_MIPS_JALR)
8003 continue;
8004
8005 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8006 /* Compute the address of the jump target. */
8007 if (r_symndx >= extsymoff)
8008 {
8009 struct mips_elf_link_hash_entry *h
8010 = ((struct mips_elf_link_hash_entry *)
8011 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8012
8013 while (h->root.root.type == bfd_link_hash_indirect
8014 || h->root.root.type == bfd_link_hash_warning)
8015 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8016
8017 /* If a symbol is undefined, or if it may be overridden,
8018 skip it. */
8019 if (! ((h->root.root.type == bfd_link_hash_defined
8020 || h->root.root.type == bfd_link_hash_defweak)
8021 && h->root.root.u.def.section)
8022 || (link_info->shared && ! link_info->symbolic
8023 && !h->root.forced_local))
8024 continue;
8025
8026 sym_sec = h->root.root.u.def.section;
8027 if (sym_sec->output_section)
8028 symval = (h->root.root.u.def.value
8029 + sym_sec->output_section->vma
8030 + sym_sec->output_offset);
8031 else
8032 symval = h->root.root.u.def.value;
8033 }
8034 else
8035 {
8036 Elf_Internal_Sym *isym;
8037
8038 /* Read this BFD's symbols if we haven't done so already. */
8039 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8040 {
8041 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8042 if (isymbuf == NULL)
8043 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8044 symtab_hdr->sh_info, 0,
8045 NULL, NULL, NULL);
8046 if (isymbuf == NULL)
8047 goto relax_return;
8048 }
8049
8050 isym = isymbuf + r_symndx;
8051 if (isym->st_shndx == SHN_UNDEF)
8052 continue;
8053 else if (isym->st_shndx == SHN_ABS)
8054 sym_sec = bfd_abs_section_ptr;
8055 else if (isym->st_shndx == SHN_COMMON)
8056 sym_sec = bfd_com_section_ptr;
8057 else
8058 sym_sec
8059 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8060 symval = isym->st_value
8061 + sym_sec->output_section->vma
8062 + sym_sec->output_offset;
8063 }
8064
8065 /* Compute branch offset, from delay slot of the jump to the
8066 branch target. */
8067 sym_offset = (symval + irel->r_addend)
8068 - (sec_start + irel->r_offset + 4);
8069
8070 /* Branch offset must be properly aligned. */
8071 if ((sym_offset & 3) != 0)
8072 continue;
8073
8074 sym_offset >>= 2;
8075
8076 /* Check that it's in range. */
8077 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8078 continue;
8079
8080 /* Get the section contents if we haven't done so already. */
8081 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8082 goto relax_return;
8083
8084 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8085
8086 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8087 if ((instruction & 0xfc1fffff) == 0x0000f809)
8088 instruction = 0x04110000;
8089 /* If it was jr <reg>, turn it into b <target>. */
8090 else if ((instruction & 0xfc1fffff) == 0x00000008)
8091 instruction = 0x10000000;
8092 else
8093 continue;
8094
8095 instruction |= (sym_offset & 0xffff);
8096 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8097 changed_contents = TRUE;
8098 }
8099
8100 if (contents != NULL
8101 && elf_section_data (sec)->this_hdr.contents != contents)
8102 {
8103 if (!changed_contents && !link_info->keep_memory)
8104 free (contents);
8105 else
8106 {
8107 /* Cache the section contents for elf_link_input_bfd. */
8108 elf_section_data (sec)->this_hdr.contents = contents;
8109 }
8110 }
8111 return TRUE;
8112
8113 relax_return:
8114 if (contents != NULL
8115 && elf_section_data (sec)->this_hdr.contents != contents)
8116 free (contents);
8117 return FALSE;
8118}
8119\f
8120/* Allocate space for global sym dynamic relocs. */
8121
8122static bfd_boolean
8123allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8124{
8125 struct bfd_link_info *info = inf;
8126 bfd *dynobj;
8127 struct mips_elf_link_hash_entry *hmips;
8128 struct mips_elf_link_hash_table *htab;
8129
8130 htab = mips_elf_hash_table (info);
8131 BFD_ASSERT (htab != NULL);
8132
8133 dynobj = elf_hash_table (info)->dynobj;
8134 hmips = (struct mips_elf_link_hash_entry *) h;
8135
8136 /* VxWorks executables are handled elsewhere; we only need to
8137 allocate relocations in shared objects. */
8138 if (htab->is_vxworks && !info->shared)
8139 return TRUE;
8140
8141 /* Ignore indirect symbols. All relocations against such symbols
8142 will be redirected to the target symbol. */
8143 if (h->root.type == bfd_link_hash_indirect)
8144 return TRUE;
8145
8146 /* If this symbol is defined in a dynamic object, or we are creating
8147 a shared library, we will need to copy any R_MIPS_32 or
8148 R_MIPS_REL32 relocs against it into the output file. */
8149 if (! info->relocatable
8150 && hmips->possibly_dynamic_relocs != 0
8151 && (h->root.type == bfd_link_hash_defweak
8152 || !h->def_regular
8153 || info->shared))
8154 {
8155 bfd_boolean do_copy = TRUE;
8156
8157 if (h->root.type == bfd_link_hash_undefweak)
8158 {
8159 /* Do not copy relocations for undefined weak symbols with
8160 non-default visibility. */
8161 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8162 do_copy = FALSE;
8163
8164 /* Make sure undefined weak symbols are output as a dynamic
8165 symbol in PIEs. */
8166 else if (h->dynindx == -1 && !h->forced_local)
8167 {
8168 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8169 return FALSE;
8170 }
8171 }
8172
8173 if (do_copy)
8174 {
8175 /* Even though we don't directly need a GOT entry for this symbol,
8176 the SVR4 psABI requires it to have a dynamic symbol table
8177 index greater that DT_MIPS_GOTSYM if there are dynamic
8178 relocations against it.
8179
8180 VxWorks does not enforce the same mapping between the GOT
8181 and the symbol table, so the same requirement does not
8182 apply there. */
8183 if (!htab->is_vxworks)
8184 {
8185 if (hmips->global_got_area > GGA_RELOC_ONLY)
8186 hmips->global_got_area = GGA_RELOC_ONLY;
8187 hmips->got_only_for_calls = FALSE;
8188 }
8189
8190 mips_elf_allocate_dynamic_relocations
8191 (dynobj, info, hmips->possibly_dynamic_relocs);
8192 if (hmips->readonly_reloc)
8193 /* We tell the dynamic linker that there are relocations
8194 against the text segment. */
8195 info->flags |= DF_TEXTREL;
8196 }
8197 }
8198
8199 return TRUE;
8200}
8201
8202/* Adjust a symbol defined by a dynamic object and referenced by a
8203 regular object. The current definition is in some section of the
8204 dynamic object, but we're not including those sections. We have to
8205 change the definition to something the rest of the link can
8206 understand. */
8207
8208bfd_boolean
8209_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8210 struct elf_link_hash_entry *h)
8211{
8212 bfd *dynobj;
8213 struct mips_elf_link_hash_entry *hmips;
8214 struct mips_elf_link_hash_table *htab;
8215
8216 htab = mips_elf_hash_table (info);
8217 BFD_ASSERT (htab != NULL);
8218
8219 dynobj = elf_hash_table (info)->dynobj;
8220 hmips = (struct mips_elf_link_hash_entry *) h;
8221
8222 /* Make sure we know what is going on here. */
8223 BFD_ASSERT (dynobj != NULL
8224 && (h->needs_plt
8225 || h->u.weakdef != NULL
8226 || (h->def_dynamic
8227 && h->ref_regular
8228 && !h->def_regular)));
8229
8230 hmips = (struct mips_elf_link_hash_entry *) h;
8231
8232 /* If there are call relocations against an externally-defined symbol,
8233 see whether we can create a MIPS lazy-binding stub for it. We can
8234 only do this if all references to the function are through call
8235 relocations, and in that case, the traditional lazy-binding stubs
8236 are much more efficient than PLT entries.
8237
8238 Traditional stubs are only available on SVR4 psABI-based systems;
8239 VxWorks always uses PLTs instead. */
8240 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8241 {
8242 if (! elf_hash_table (info)->dynamic_sections_created)
8243 return TRUE;
8244
8245 /* If this symbol is not defined in a regular file, then set
8246 the symbol to the stub location. This is required to make
8247 function pointers compare as equal between the normal
8248 executable and the shared library. */
8249 if (!h->def_regular)
8250 {
8251 hmips->needs_lazy_stub = TRUE;
8252 htab->lazy_stub_count++;
8253 return TRUE;
8254 }
8255 }
8256 /* As above, VxWorks requires PLT entries for externally-defined
8257 functions that are only accessed through call relocations.
8258
8259 Both VxWorks and non-VxWorks targets also need PLT entries if there
8260 are static-only relocations against an externally-defined function.
8261 This can technically occur for shared libraries if there are
8262 branches to the symbol, although it is unlikely that this will be
8263 used in practice due to the short ranges involved. It can occur
8264 for any relative or absolute relocation in executables; in that
8265 case, the PLT entry becomes the function's canonical address. */
8266 else if (((h->needs_plt && !hmips->no_fn_stub)
8267 || (h->type == STT_FUNC && hmips->has_static_relocs))
8268 && htab->use_plts_and_copy_relocs
8269 && !SYMBOL_CALLS_LOCAL (info, h)
8270 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8271 && h->root.type == bfd_link_hash_undefweak))
8272 {
8273 /* If this is the first symbol to need a PLT entry, allocate room
8274 for the header. */
8275 if (htab->splt->size == 0)
8276 {
8277 BFD_ASSERT (htab->sgotplt->size == 0);
8278
8279 /* If we're using the PLT additions to the psABI, each PLT
8280 entry is 16 bytes and the PLT0 entry is 32 bytes.
8281 Encourage better cache usage by aligning. We do this
8282 lazily to avoid pessimizing traditional objects. */
8283 if (!htab->is_vxworks
8284 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8285 return FALSE;
8286
8287 /* Make sure that .got.plt is word-aligned. We do this lazily
8288 for the same reason as above. */
8289 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8290 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8291 return FALSE;
8292
8293 htab->splt->size += htab->plt_header_size;
8294
8295 /* On non-VxWorks targets, the first two entries in .got.plt
8296 are reserved. */
8297 if (!htab->is_vxworks)
8298 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8299
8300 /* On VxWorks, also allocate room for the header's
8301 .rela.plt.unloaded entries. */
8302 if (htab->is_vxworks && !info->shared)
8303 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8304 }
8305
8306 /* Assign the next .plt entry to this symbol. */
8307 h->plt.offset = htab->splt->size;
8308 htab->splt->size += htab->plt_entry_size;
8309
8310 /* If the output file has no definition of the symbol, set the
8311 symbol's value to the address of the stub. */
8312 if (!info->shared && !h->def_regular)
8313 {
8314 h->root.u.def.section = htab->splt;
8315 h->root.u.def.value = h->plt.offset;
8316 /* For VxWorks, point at the PLT load stub rather than the
8317 lazy resolution stub; this stub will become the canonical
8318 function address. */
8319 if (htab->is_vxworks)
8320 h->root.u.def.value += 8;
8321 }
8322
8323 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8324 relocation. */
8325 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8326 htab->srelplt->size += (htab->is_vxworks
8327 ? MIPS_ELF_RELA_SIZE (dynobj)
8328 : MIPS_ELF_REL_SIZE (dynobj));
8329
8330 /* Make room for the .rela.plt.unloaded relocations. */
8331 if (htab->is_vxworks && !info->shared)
8332 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8333
8334 /* All relocations against this symbol that could have been made
8335 dynamic will now refer to the PLT entry instead. */
8336 hmips->possibly_dynamic_relocs = 0;
8337
8338 return TRUE;
8339 }
8340
8341 /* If this is a weak symbol, and there is a real definition, the
8342 processor independent code will have arranged for us to see the
8343 real definition first, and we can just use the same value. */
8344 if (h->u.weakdef != NULL)
8345 {
8346 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8347 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8348 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8349 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8350 return TRUE;
8351 }
8352
8353 /* Otherwise, there is nothing further to do for symbols defined
8354 in regular objects. */
8355 if (h->def_regular)
8356 return TRUE;
8357
8358 /* There's also nothing more to do if we'll convert all relocations
8359 against this symbol into dynamic relocations. */
8360 if (!hmips->has_static_relocs)
8361 return TRUE;
8362
8363 /* We're now relying on copy relocations. Complain if we have
8364 some that we can't convert. */
8365 if (!htab->use_plts_and_copy_relocs || info->shared)
8366 {
8367 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8368 "dynamic symbol %s"),
8369 h->root.root.string);
8370 bfd_set_error (bfd_error_bad_value);
8371 return FALSE;
8372 }
8373
8374 /* We must allocate the symbol in our .dynbss section, which will
8375 become part of the .bss section of the executable. There will be
8376 an entry for this symbol in the .dynsym section. The dynamic
8377 object will contain position independent code, so all references
8378 from the dynamic object to this symbol will go through the global
8379 offset table. The dynamic linker will use the .dynsym entry to
8380 determine the address it must put in the global offset table, so
8381 both the dynamic object and the regular object will refer to the
8382 same memory location for the variable. */
8383
8384 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8385 {
8386 if (htab->is_vxworks)
8387 htab->srelbss->size += sizeof (Elf32_External_Rela);
8388 else
8389 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8390 h->needs_copy = 1;
8391 }
8392
8393 /* All relocations against this symbol that could have been made
8394 dynamic will now refer to the local copy instead. */
8395 hmips->possibly_dynamic_relocs = 0;
8396
8397 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8398}
8399\f
8400/* This function is called after all the input files have been read,
8401 and the input sections have been assigned to output sections. We
8402 check for any mips16 stub sections that we can discard. */
8403
8404bfd_boolean
8405_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8406 struct bfd_link_info *info)
8407{
8408 asection *ri;
8409 struct mips_elf_link_hash_table *htab;
8410 struct mips_htab_traverse_info hti;
8411
8412 htab = mips_elf_hash_table (info);
8413 BFD_ASSERT (htab != NULL);
8414
8415 /* The .reginfo section has a fixed size. */
8416 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8417 if (ri != NULL)
8418 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8419
8420 hti.info = info;
8421 hti.output_bfd = output_bfd;
8422 hti.error = FALSE;
8423 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8424 mips_elf_check_symbols, &hti);
8425 if (hti.error)
8426 return FALSE;
8427
8428 return TRUE;
8429}
8430
8431/* If the link uses a GOT, lay it out and work out its size. */
8432
8433static bfd_boolean
8434mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8435{
8436 bfd *dynobj;
8437 asection *s;
8438 struct mips_got_info *g;
8439 bfd_size_type loadable_size = 0;
8440 bfd_size_type page_gotno;
8441 bfd *sub;
8442 struct mips_elf_count_tls_arg count_tls_arg;
8443 struct mips_elf_link_hash_table *htab;
8444
8445 htab = mips_elf_hash_table (info);
8446 BFD_ASSERT (htab != NULL);
8447
8448 s = htab->sgot;
8449 if (s == NULL)
8450 return TRUE;
8451
8452 dynobj = elf_hash_table (info)->dynobj;
8453 g = htab->got_info;
8454
8455 /* Allocate room for the reserved entries. VxWorks always reserves
8456 3 entries; other objects only reserve 2 entries. */
8457 BFD_ASSERT (g->assigned_gotno == 0);
8458 if (htab->is_vxworks)
8459 htab->reserved_gotno = 3;
8460 else
8461 htab->reserved_gotno = 2;
8462 g->local_gotno += htab->reserved_gotno;
8463 g->assigned_gotno = htab->reserved_gotno;
8464
8465 /* Replace entries for indirect and warning symbols with entries for
8466 the target symbol. */
8467 if (!mips_elf_resolve_final_got_entries (g))
8468 return FALSE;
8469
8470 /* Count the number of GOT symbols. */
8471 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8472
8473 /* Calculate the total loadable size of the output. That
8474 will give us the maximum number of GOT_PAGE entries
8475 required. */
8476 for (sub = info->input_bfds; sub; sub = sub->link_next)
8477 {
8478 asection *subsection;
8479
8480 for (subsection = sub->sections;
8481 subsection;
8482 subsection = subsection->next)
8483 {
8484 if ((subsection->flags & SEC_ALLOC) == 0)
8485 continue;
8486 loadable_size += ((subsection->size + 0xf)
8487 &~ (bfd_size_type) 0xf);
8488 }
8489 }
8490
8491 if (htab->is_vxworks)
8492 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8493 relocations against local symbols evaluate to "G", and the EABI does
8494 not include R_MIPS_GOT_PAGE. */
8495 page_gotno = 0;
8496 else
8497 /* Assume there are two loadable segments consisting of contiguous
8498 sections. Is 5 enough? */
8499 page_gotno = (loadable_size >> 16) + 5;
8500
8501 /* Choose the smaller of the two estimates; both are intended to be
8502 conservative. */
8503 if (page_gotno > g->page_gotno)
8504 page_gotno = g->page_gotno;
8505
8506 g->local_gotno += page_gotno;
8507 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8508 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8509
8510 /* We need to calculate tls_gotno for global symbols at this point
8511 instead of building it up earlier, to avoid doublecounting
8512 entries for one global symbol from multiple input files. */
8513 count_tls_arg.info = info;
8514 count_tls_arg.needed = 0;
8515 elf_link_hash_traverse (elf_hash_table (info),
8516 mips_elf_count_global_tls_entries,
8517 &count_tls_arg);
8518 g->tls_gotno += count_tls_arg.needed;
8519 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8520
8521 /* VxWorks does not support multiple GOTs. It initializes $gp to
8522 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8523 dynamic loader. */
8524 if (htab->is_vxworks)
8525 {
8526 /* VxWorks executables do not need a GOT. */
8527 if (info->shared)
8528 {
8529 /* Each VxWorks GOT entry needs an explicit relocation. */
8530 unsigned int count;
8531
8532 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8533 if (count)
8534 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8535 }
8536 }
8537 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8538 {
8539 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8540 return FALSE;
8541 }
8542 else
8543 {
8544 struct mips_elf_count_tls_arg arg;
8545
8546 /* Set up TLS entries. */
8547 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8548 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8549
8550 /* Allocate room for the TLS relocations. */
8551 arg.info = info;
8552 arg.needed = 0;
8553 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8554 elf_link_hash_traverse (elf_hash_table (info),
8555 mips_elf_count_global_tls_relocs,
8556 &arg);
8557 if (arg.needed)
8558 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8559 }
8560
8561 return TRUE;
8562}
8563
8564/* Estimate the size of the .MIPS.stubs section. */
8565
8566static void
8567mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8568{
8569 struct mips_elf_link_hash_table *htab;
8570 bfd_size_type dynsymcount;
8571
8572 htab = mips_elf_hash_table (info);
8573 BFD_ASSERT (htab != NULL);
8574
8575 if (htab->lazy_stub_count == 0)
8576 return;
8577
8578 /* IRIX rld assumes that a function stub isn't at the end of the .text
8579 section, so add a dummy entry to the end. */
8580 htab->lazy_stub_count++;
8581
8582 /* Get a worst-case estimate of the number of dynamic symbols needed.
8583 At this point, dynsymcount does not account for section symbols
8584 and count_section_dynsyms may overestimate the number that will
8585 be needed. */
8586 dynsymcount = (elf_hash_table (info)->dynsymcount
8587 + count_section_dynsyms (output_bfd, info));
8588
8589 /* Determine the size of one stub entry. */
8590 htab->function_stub_size = (dynsymcount > 0x10000
8591 ? MIPS_FUNCTION_STUB_BIG_SIZE
8592 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8593
8594 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8595}
8596
8597/* A mips_elf_link_hash_traverse callback for which DATA points to the
8598 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8599 allocate an entry in the stubs section. */
8600
8601static bfd_boolean
8602mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8603{
8604 struct mips_elf_link_hash_table *htab;
8605
8606 htab = (struct mips_elf_link_hash_table *) data;
8607 if (h->needs_lazy_stub)
8608 {
8609 h->root.root.u.def.section = htab->sstubs;
8610 h->root.root.u.def.value = htab->sstubs->size;
8611 h->root.plt.offset = htab->sstubs->size;
8612 htab->sstubs->size += htab->function_stub_size;
8613 }
8614 return TRUE;
8615}
8616
8617/* Allocate offsets in the stubs section to each symbol that needs one.
8618 Set the final size of the .MIPS.stub section. */
8619
8620static void
8621mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8622{
8623 struct mips_elf_link_hash_table *htab;
8624
8625 htab = mips_elf_hash_table (info);
8626 BFD_ASSERT (htab != NULL);
8627
8628 if (htab->lazy_stub_count == 0)
8629 return;
8630
8631 htab->sstubs->size = 0;
8632 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8633 htab->sstubs->size += htab->function_stub_size;
8634 BFD_ASSERT (htab->sstubs->size
8635 == htab->lazy_stub_count * htab->function_stub_size);
8636}
8637
8638/* Set the sizes of the dynamic sections. */
8639
8640bfd_boolean
8641_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8642 struct bfd_link_info *info)
8643{
8644 bfd *dynobj;
8645 asection *s, *sreldyn;
8646 bfd_boolean reltext;
8647 struct mips_elf_link_hash_table *htab;
8648
8649 htab = mips_elf_hash_table (info);
8650 BFD_ASSERT (htab != NULL);
8651 dynobj = elf_hash_table (info)->dynobj;
8652 BFD_ASSERT (dynobj != NULL);
8653
8654 if (elf_hash_table (info)->dynamic_sections_created)
8655 {
8656 /* Set the contents of the .interp section to the interpreter. */
8657 if (info->executable)
8658 {
8659 s = bfd_get_section_by_name (dynobj, ".interp");
8660 BFD_ASSERT (s != NULL);
8661 s->size
8662 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8663 s->contents
8664 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8665 }
8666
8667 /* Create a symbol for the PLT, if we know that we are using it. */
8668 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8669 {
8670 struct elf_link_hash_entry *h;
8671
8672 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8673
8674 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8675 "_PROCEDURE_LINKAGE_TABLE_");
8676 htab->root.hplt = h;
8677 if (h == NULL)
8678 return FALSE;
8679 h->type = STT_FUNC;
8680 }
8681 }
8682
8683 /* Allocate space for global sym dynamic relocs. */
8684 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8685
8686 mips_elf_estimate_stub_size (output_bfd, info);
8687
8688 if (!mips_elf_lay_out_got (output_bfd, info))
8689 return FALSE;
8690
8691 mips_elf_lay_out_lazy_stubs (info);
8692
8693 /* The check_relocs and adjust_dynamic_symbol entry points have
8694 determined the sizes of the various dynamic sections. Allocate
8695 memory for them. */
8696 reltext = FALSE;
8697 for (s = dynobj->sections; s != NULL; s = s->next)
8698 {
8699 const char *name;
8700
8701 /* It's OK to base decisions on the section name, because none
8702 of the dynobj section names depend upon the input files. */
8703 name = bfd_get_section_name (dynobj, s);
8704
8705 if ((s->flags & SEC_LINKER_CREATED) == 0)
8706 continue;
8707
8708 if (CONST_STRNEQ (name, ".rel"))
8709 {
8710 if (s->size != 0)
8711 {
8712 const char *outname;
8713 asection *target;
8714
8715 /* If this relocation section applies to a read only
8716 section, then we probably need a DT_TEXTREL entry.
8717 If the relocation section is .rel(a).dyn, we always
8718 assert a DT_TEXTREL entry rather than testing whether
8719 there exists a relocation to a read only section or
8720 not. */
8721 outname = bfd_get_section_name (output_bfd,
8722 s->output_section);
8723 target = bfd_get_section_by_name (output_bfd, outname + 4);
8724 if ((target != NULL
8725 && (target->flags & SEC_READONLY) != 0
8726 && (target->flags & SEC_ALLOC) != 0)
8727 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8728 reltext = TRUE;
8729
8730 /* We use the reloc_count field as a counter if we need
8731 to copy relocs into the output file. */
8732 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8733 s->reloc_count = 0;
8734
8735 /* If combreloc is enabled, elf_link_sort_relocs() will
8736 sort relocations, but in a different way than we do,
8737 and before we're done creating relocations. Also, it
8738 will move them around between input sections'
8739 relocation's contents, so our sorting would be
8740 broken, so don't let it run. */
8741 info->combreloc = 0;
8742 }
8743 }
8744 else if (! info->shared
8745 && ! mips_elf_hash_table (info)->use_rld_obj_head
8746 && CONST_STRNEQ (name, ".rld_map"))
8747 {
8748 /* We add a room for __rld_map. It will be filled in by the
8749 rtld to contain a pointer to the _r_debug structure. */
8750 s->size += 4;
8751 }
8752 else if (SGI_COMPAT (output_bfd)
8753 && CONST_STRNEQ (name, ".compact_rel"))
8754 s->size += mips_elf_hash_table (info)->compact_rel_size;
8755 else if (s == htab->splt)
8756 {
8757 /* If the last PLT entry has a branch delay slot, allocate
8758 room for an extra nop to fill the delay slot. This is
8759 for CPUs without load interlocking. */
8760 if (! LOAD_INTERLOCKS_P (output_bfd)
8761 && ! htab->is_vxworks && s->size > 0)
8762 s->size += 4;
8763 }
8764 else if (! CONST_STRNEQ (name, ".init")
8765 && s != htab->sgot
8766 && s != htab->sgotplt
8767 && s != htab->sstubs
8768 && s != htab->sdynbss)
8769 {
8770 /* It's not one of our sections, so don't allocate space. */
8771 continue;
8772 }
8773
8774 if (s->size == 0)
8775 {
8776 s->flags |= SEC_EXCLUDE;
8777 continue;
8778 }
8779
8780 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8781 continue;
8782
8783 /* Allocate memory for the section contents. */
8784 s->contents = bfd_zalloc (dynobj, s->size);
8785 if (s->contents == NULL)
8786 {
8787 bfd_set_error (bfd_error_no_memory);
8788 return FALSE;
8789 }
8790 }
8791
8792 if (elf_hash_table (info)->dynamic_sections_created)
8793 {
8794 /* Add some entries to the .dynamic section. We fill in the
8795 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8796 must add the entries now so that we get the correct size for
8797 the .dynamic section. */
8798
8799 /* SGI object has the equivalence of DT_DEBUG in the
8800 DT_MIPS_RLD_MAP entry. This must come first because glibc
8801 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8802 looks at the first one it sees. */
8803 if (!info->shared
8804 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8805 return FALSE;
8806
8807 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8808 used by the debugger. */
8809 if (info->executable
8810 && !SGI_COMPAT (output_bfd)
8811 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8812 return FALSE;
8813
8814 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8815 info->flags |= DF_TEXTREL;
8816
8817 if ((info->flags & DF_TEXTREL) != 0)
8818 {
8819 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8820 return FALSE;
8821
8822 /* Clear the DF_TEXTREL flag. It will be set again if we
8823 write out an actual text relocation; we may not, because
8824 at this point we do not know whether e.g. any .eh_frame
8825 absolute relocations have been converted to PC-relative. */
8826 info->flags &= ~DF_TEXTREL;
8827 }
8828
8829 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8830 return FALSE;
8831
8832 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8833 if (htab->is_vxworks)
8834 {
8835 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8836 use any of the DT_MIPS_* tags. */
8837 if (sreldyn && sreldyn->size > 0)
8838 {
8839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8840 return FALSE;
8841
8842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8843 return FALSE;
8844
8845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8846 return FALSE;
8847 }
8848 }
8849 else
8850 {
8851 if (sreldyn && sreldyn->size > 0)
8852 {
8853 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8854 return FALSE;
8855
8856 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8857 return FALSE;
8858
8859 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8860 return FALSE;
8861 }
8862
8863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8864 return FALSE;
8865
8866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8867 return FALSE;
8868
8869 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8870 return FALSE;
8871
8872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8873 return FALSE;
8874
8875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8876 return FALSE;
8877
8878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8879 return FALSE;
8880
8881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8882 return FALSE;
8883
8884 if (IRIX_COMPAT (dynobj) == ict_irix5
8885 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8886 return FALSE;
8887
8888 if (IRIX_COMPAT (dynobj) == ict_irix6
8889 && (bfd_get_section_by_name
8890 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8891 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8892 return FALSE;
8893 }
8894 if (htab->splt->size > 0)
8895 {
8896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8897 return FALSE;
8898
8899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8900 return FALSE;
8901
8902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8903 return FALSE;
8904
8905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8906 return FALSE;
8907 }
8908 if (htab->is_vxworks
8909 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8910 return FALSE;
8911 }
8912
8913 return TRUE;
8914}
8915\f
8916/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8917 Adjust its R_ADDEND field so that it is correct for the output file.
8918 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8919 and sections respectively; both use symbol indexes. */
8920
8921static void
8922mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8923 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8924 asection **local_sections, Elf_Internal_Rela *rel)
8925{
8926 unsigned int r_type, r_symndx;
8927 Elf_Internal_Sym *sym;
8928 asection *sec;
8929
8930 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8931 {
8932 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8933 if (r_type == R_MIPS16_GPREL
8934 || r_type == R_MIPS_GPREL16
8935 || r_type == R_MIPS_GPREL32
8936 || r_type == R_MIPS_LITERAL)
8937 {
8938 rel->r_addend += _bfd_get_gp_value (input_bfd);
8939 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8940 }
8941
8942 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8943 sym = local_syms + r_symndx;
8944
8945 /* Adjust REL's addend to account for section merging. */
8946 if (!info->relocatable)
8947 {
8948 sec = local_sections[r_symndx];
8949 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8950 }
8951
8952 /* This would normally be done by the rela_normal code in elflink.c. */
8953 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8954 rel->r_addend += local_sections[r_symndx]->output_offset;
8955 }
8956}
8957
8958/* Relocate a MIPS ELF section. */
8959
8960bfd_boolean
8961_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8962 bfd *input_bfd, asection *input_section,
8963 bfd_byte *contents, Elf_Internal_Rela *relocs,
8964 Elf_Internal_Sym *local_syms,
8965 asection **local_sections)
8966{
8967 Elf_Internal_Rela *rel;
8968 const Elf_Internal_Rela *relend;
8969 bfd_vma addend = 0;
8970 bfd_boolean use_saved_addend_p = FALSE;
8971 const struct elf_backend_data *bed;
8972
8973 bed = get_elf_backend_data (output_bfd);
8974 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8975 for (rel = relocs; rel < relend; ++rel)
8976 {
8977 const char *name;
8978 bfd_vma value = 0;
8979 reloc_howto_type *howto;
8980 bfd_boolean cross_mode_jump_p;
8981 /* TRUE if the relocation is a RELA relocation, rather than a
8982 REL relocation. */
8983 bfd_boolean rela_relocation_p = TRUE;
8984 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8985 const char *msg;
8986 unsigned long r_symndx;
8987 asection *sec;
8988 Elf_Internal_Shdr *symtab_hdr;
8989 struct elf_link_hash_entry *h;
8990 bfd_boolean rel_reloc;
8991
8992 rel_reloc = (NEWABI_P (input_bfd)
8993 && mips_elf_rel_relocation_p (input_bfd, input_section,
8994 relocs, rel));
8995 /* Find the relocation howto for this relocation. */
8996 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
8997
8998 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8999 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9000 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9001 {
9002 sec = local_sections[r_symndx];
9003 h = NULL;
9004 }
9005 else
9006 {
9007 unsigned long extsymoff;
9008
9009 extsymoff = 0;
9010 if (!elf_bad_symtab (input_bfd))
9011 extsymoff = symtab_hdr->sh_info;
9012 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9013 while (h->root.type == bfd_link_hash_indirect
9014 || h->root.type == bfd_link_hash_warning)
9015 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9016
9017 sec = NULL;
9018 if (h->root.type == bfd_link_hash_defined
9019 || h->root.type == bfd_link_hash_defweak)
9020 sec = h->root.u.def.section;
9021 }
9022
9023 if (sec != NULL && elf_discarded_section (sec))
9024 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9025 rel, relend, howto, contents);
9026
9027 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9028 {
9029 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9030 64-bit code, but make sure all their addresses are in the
9031 lowermost or uppermost 32-bit section of the 64-bit address
9032 space. Thus, when they use an R_MIPS_64 they mean what is
9033 usually meant by R_MIPS_32, with the exception that the
9034 stored value is sign-extended to 64 bits. */
9035 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9036
9037 /* On big-endian systems, we need to lie about the position
9038 of the reloc. */
9039 if (bfd_big_endian (input_bfd))
9040 rel->r_offset += 4;
9041 }
9042
9043 if (!use_saved_addend_p)
9044 {
9045 /* If these relocations were originally of the REL variety,
9046 we must pull the addend out of the field that will be
9047 relocated. Otherwise, we simply use the contents of the
9048 RELA relocation. */
9049 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9050 relocs, rel))
9051 {
9052 rela_relocation_p = FALSE;
9053 addend = mips_elf_read_rel_addend (input_bfd, rel,
9054 howto, contents);
9055 if (hi16_reloc_p (r_type)
9056 || (got16_reloc_p (r_type)
9057 && mips_elf_local_relocation_p (input_bfd, rel,
9058 local_sections)))
9059 {
9060 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9061 contents, &addend))
9062 {
9063 if (h)
9064 name = h->root.root.string;
9065 else
9066 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9067 local_syms + r_symndx,
9068 sec);
9069 (*_bfd_error_handler)
9070 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9071 input_bfd, input_section, name, howto->name,
9072 rel->r_offset);
9073 }
9074 }
9075 else
9076 addend <<= howto->rightshift;
9077 }
9078 else
9079 addend = rel->r_addend;
9080 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9081 local_syms, local_sections, rel);
9082 }
9083
9084 if (info->relocatable)
9085 {
9086 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9087 && bfd_big_endian (input_bfd))
9088 rel->r_offset -= 4;
9089
9090 if (!rela_relocation_p && rel->r_addend)
9091 {
9092 addend += rel->r_addend;
9093 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9094 addend = mips_elf_high (addend);
9095 else if (r_type == R_MIPS_HIGHER)
9096 addend = mips_elf_higher (addend);
9097 else if (r_type == R_MIPS_HIGHEST)
9098 addend = mips_elf_highest (addend);
9099 else
9100 addend >>= howto->rightshift;
9101
9102 /* We use the source mask, rather than the destination
9103 mask because the place to which we are writing will be
9104 source of the addend in the final link. */
9105 addend &= howto->src_mask;
9106
9107 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9108 /* See the comment above about using R_MIPS_64 in the 32-bit
9109 ABI. Here, we need to update the addend. It would be
9110 possible to get away with just using the R_MIPS_32 reloc
9111 but for endianness. */
9112 {
9113 bfd_vma sign_bits;
9114 bfd_vma low_bits;
9115 bfd_vma high_bits;
9116
9117 if (addend & ((bfd_vma) 1 << 31))
9118#ifdef BFD64
9119 sign_bits = ((bfd_vma) 1 << 32) - 1;
9120#else
9121 sign_bits = -1;
9122#endif
9123 else
9124 sign_bits = 0;
9125
9126 /* If we don't know that we have a 64-bit type,
9127 do two separate stores. */
9128 if (bfd_big_endian (input_bfd))
9129 {
9130 /* Store the sign-bits (which are most significant)
9131 first. */
9132 low_bits = sign_bits;
9133 high_bits = addend;
9134 }
9135 else
9136 {
9137 low_bits = addend;
9138 high_bits = sign_bits;
9139 }
9140 bfd_put_32 (input_bfd, low_bits,
9141 contents + rel->r_offset);
9142 bfd_put_32 (input_bfd, high_bits,
9143 contents + rel->r_offset + 4);
9144 continue;
9145 }
9146
9147 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9148 input_bfd, input_section,
9149 contents, FALSE))
9150 return FALSE;
9151 }
9152
9153 /* Go on to the next relocation. */
9154 continue;
9155 }
9156
9157 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9158 relocations for the same offset. In that case we are
9159 supposed to treat the output of each relocation as the addend
9160 for the next. */
9161 if (rel + 1 < relend
9162 && rel->r_offset == rel[1].r_offset
9163 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9164 use_saved_addend_p = TRUE;
9165 else
9166 use_saved_addend_p = FALSE;
9167
9168 /* Figure out what value we are supposed to relocate. */
9169 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9170 input_section, info, rel,
9171 addend, howto, local_syms,
9172 local_sections, &value,
9173 &name, &cross_mode_jump_p,
9174 use_saved_addend_p))
9175 {
9176 case bfd_reloc_continue:
9177 /* There's nothing to do. */
9178 continue;
9179
9180 case bfd_reloc_undefined:
9181 /* mips_elf_calculate_relocation already called the
9182 undefined_symbol callback. There's no real point in
9183 trying to perform the relocation at this point, so we
9184 just skip ahead to the next relocation. */
9185 continue;
9186
9187 case bfd_reloc_notsupported:
9188 msg = _("internal error: unsupported relocation error");
9189 info->callbacks->warning
9190 (info, msg, name, input_bfd, input_section, rel->r_offset);
9191 return FALSE;
9192
9193 case bfd_reloc_overflow:
9194 if (use_saved_addend_p)
9195 /* Ignore overflow until we reach the last relocation for
9196 a given location. */
9197 ;
9198 else
9199 {
9200 struct mips_elf_link_hash_table *htab;
9201
9202 htab = mips_elf_hash_table (info);
9203 BFD_ASSERT (htab != NULL);
9204 BFD_ASSERT (name != NULL);
9205 if (!htab->small_data_overflow_reported
9206 && (gprel16_reloc_p (howto->type)
9207 || howto->type == R_MIPS_LITERAL))
9208 {
9209 msg = _("small-data section exceeds 64KB;"
9210 " lower small-data size limit (see option -G)");
9211
9212 htab->small_data_overflow_reported = TRUE;
9213 (*info->callbacks->einfo) ("%P: %s\n", msg);
9214 }
9215 if (! ((*info->callbacks->reloc_overflow)
9216 (info, NULL, name, howto->name, (bfd_vma) 0,
9217 input_bfd, input_section, rel->r_offset)))
9218 return FALSE;
9219 }
9220 break;
9221
9222 case bfd_reloc_ok:
9223 break;
9224
9225 default:
9226 abort ();
9227 break;
9228 }
9229
9230 /* If we've got another relocation for the address, keep going
9231 until we reach the last one. */
9232 if (use_saved_addend_p)
9233 {
9234 addend = value;
9235 continue;
9236 }
9237
9238 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9239 /* See the comment above about using R_MIPS_64 in the 32-bit
9240 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9241 that calculated the right value. Now, however, we
9242 sign-extend the 32-bit result to 64-bits, and store it as a
9243 64-bit value. We are especially generous here in that we
9244 go to extreme lengths to support this usage on systems with
9245 only a 32-bit VMA. */
9246 {
9247 bfd_vma sign_bits;
9248 bfd_vma low_bits;
9249 bfd_vma high_bits;
9250
9251 if (value & ((bfd_vma) 1 << 31))
9252#ifdef BFD64
9253 sign_bits = ((bfd_vma) 1 << 32) - 1;
9254#else
9255 sign_bits = -1;
9256#endif
9257 else
9258 sign_bits = 0;
9259
9260 /* If we don't know that we have a 64-bit type,
9261 do two separate stores. */
9262 if (bfd_big_endian (input_bfd))
9263 {
9264 /* Undo what we did above. */
9265 rel->r_offset -= 4;
9266 /* Store the sign-bits (which are most significant)
9267 first. */
9268 low_bits = sign_bits;
9269 high_bits = value;
9270 }
9271 else
9272 {
9273 low_bits = value;
9274 high_bits = sign_bits;
9275 }
9276 bfd_put_32 (input_bfd, low_bits,
9277 contents + rel->r_offset);
9278 bfd_put_32 (input_bfd, high_bits,
9279 contents + rel->r_offset + 4);
9280 continue;
9281 }
9282
9283 /* Actually perform the relocation. */
9284 if (! mips_elf_perform_relocation (info, howto, rel, value,
9285 input_bfd, input_section,
9286 contents, cross_mode_jump_p))
9287 return FALSE;
9288 }
9289
9290 return TRUE;
9291}
9292\f
9293/* A function that iterates over each entry in la25_stubs and fills
9294 in the code for each one. DATA points to a mips_htab_traverse_info. */
9295
9296static int
9297mips_elf_create_la25_stub (void **slot, void *data)
9298{
9299 struct mips_htab_traverse_info *hti;
9300 struct mips_elf_link_hash_table *htab;
9301 struct mips_elf_la25_stub *stub;
9302 asection *s;
9303 bfd_byte *loc;
9304 bfd_vma offset, target, target_high, target_low;
9305
9306 stub = (struct mips_elf_la25_stub *) *slot;
9307 hti = (struct mips_htab_traverse_info *) data;
9308 htab = mips_elf_hash_table (hti->info);
9309 BFD_ASSERT (htab != NULL);
9310
9311 /* Create the section contents, if we haven't already. */
9312 s = stub->stub_section;
9313 loc = s->contents;
9314 if (loc == NULL)
9315 {
9316 loc = bfd_malloc (s->size);
9317 if (loc == NULL)
9318 {
9319 hti->error = TRUE;
9320 return FALSE;
9321 }
9322 s->contents = loc;
9323 }
9324
9325 /* Work out where in the section this stub should go. */
9326 offset = stub->offset;
9327
9328 /* Work out the target address. */
9329 target = (stub->h->root.root.u.def.section->output_section->vma
9330 + stub->h->root.root.u.def.section->output_offset
9331 + stub->h->root.root.u.def.value);
9332 target_high = ((target + 0x8000) >> 16) & 0xffff;
9333 target_low = (target & 0xffff);
9334
9335 if (stub->stub_section != htab->strampoline)
9336 {
9337 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9338 of the section and write the two instructions at the end. */
9339 memset (loc, 0, offset);
9340 loc += offset;
9341 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9342 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9343 }
9344 else
9345 {
9346 /* This is trampoline. */
9347 loc += offset;
9348 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9349 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9350 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9351 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9352 }
9353 return TRUE;
9354}
9355
9356/* If NAME is one of the special IRIX6 symbols defined by the linker,
9357 adjust it appropriately now. */
9358
9359static void
9360mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9361 const char *name, Elf_Internal_Sym *sym)
9362{
9363 /* The linker script takes care of providing names and values for
9364 these, but we must place them into the right sections. */
9365 static const char* const text_section_symbols[] = {
9366 "_ftext",
9367 "_etext",
9368 "__dso_displacement",
9369 "__elf_header",
9370 "__program_header_table",
9371 NULL
9372 };
9373
9374 static const char* const data_section_symbols[] = {
9375 "_fdata",
9376 "_edata",
9377 "_end",
9378 "_fbss",
9379 NULL
9380 };
9381
9382 const char* const *p;
9383 int i;
9384
9385 for (i = 0; i < 2; ++i)
9386 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9387 *p;
9388 ++p)
9389 if (strcmp (*p, name) == 0)
9390 {
9391 /* All of these symbols are given type STT_SECTION by the
9392 IRIX6 linker. */
9393 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9394 sym->st_other = STO_PROTECTED;
9395
9396 /* The IRIX linker puts these symbols in special sections. */
9397 if (i == 0)
9398 sym->st_shndx = SHN_MIPS_TEXT;
9399 else
9400 sym->st_shndx = SHN_MIPS_DATA;
9401
9402 break;
9403 }
9404}
9405
9406/* Finish up dynamic symbol handling. We set the contents of various
9407 dynamic sections here. */
9408
9409bfd_boolean
9410_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9411 struct bfd_link_info *info,
9412 struct elf_link_hash_entry *h,
9413 Elf_Internal_Sym *sym)
9414{
9415 bfd *dynobj;
9416 asection *sgot;
9417 struct mips_got_info *g, *gg;
9418 const char *name;
9419 int idx;
9420 struct mips_elf_link_hash_table *htab;
9421 struct mips_elf_link_hash_entry *hmips;
9422
9423 htab = mips_elf_hash_table (info);
9424 BFD_ASSERT (htab != NULL);
9425 dynobj = elf_hash_table (info)->dynobj;
9426 hmips = (struct mips_elf_link_hash_entry *) h;
9427
9428 BFD_ASSERT (!htab->is_vxworks);
9429
9430 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9431 {
9432 /* We've decided to create a PLT entry for this symbol. */
9433 bfd_byte *loc;
9434 bfd_vma header_address, plt_index, got_address;
9435 bfd_vma got_address_high, got_address_low, load;
9436 const bfd_vma *plt_entry;
9437
9438 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9439 BFD_ASSERT (h->dynindx != -1);
9440 BFD_ASSERT (htab->splt != NULL);
9441 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9442 BFD_ASSERT (!h->def_regular);
9443
9444 /* Calculate the address of the PLT header. */
9445 header_address = (htab->splt->output_section->vma
9446 + htab->splt->output_offset);
9447
9448 /* Calculate the index of the entry. */
9449 plt_index = ((h->plt.offset - htab->plt_header_size)
9450 / htab->plt_entry_size);
9451
9452 /* Calculate the address of the .got.plt entry. */
9453 got_address = (htab->sgotplt->output_section->vma
9454 + htab->sgotplt->output_offset
9455 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9456 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9457 got_address_low = got_address & 0xffff;
9458
9459 /* Initially point the .got.plt entry at the PLT header. */
9460 loc = (htab->sgotplt->contents
9461 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9462 if (ABI_64_P (output_bfd))
9463 bfd_put_64 (output_bfd, header_address, loc);
9464 else
9465 bfd_put_32 (output_bfd, header_address, loc);
9466
9467 /* Find out where the .plt entry should go. */
9468 loc = htab->splt->contents + h->plt.offset;
9469
9470 /* Pick the load opcode. */
9471 load = MIPS_ELF_LOAD_WORD (output_bfd);
9472
9473 /* Fill in the PLT entry itself. */
9474 plt_entry = mips_exec_plt_entry;
9475 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9476 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9477
9478 if (! LOAD_INTERLOCKS_P (output_bfd))
9479 {
9480 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9481 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9482 }
9483 else
9484 {
9485 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9486 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9487 }
9488
9489 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9490 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9491 plt_index, h->dynindx,
9492 R_MIPS_JUMP_SLOT, got_address);
9493
9494 /* We distinguish between PLT entries and lazy-binding stubs by
9495 giving the former an st_other value of STO_MIPS_PLT. Set the
9496 flag and leave the value if there are any relocations in the
9497 binary where pointer equality matters. */
9498 sym->st_shndx = SHN_UNDEF;
9499 if (h->pointer_equality_needed)
9500 sym->st_other = STO_MIPS_PLT;
9501 else
9502 sym->st_value = 0;
9503 }
9504 else if (h->plt.offset != MINUS_ONE)
9505 {
9506 /* We've decided to create a lazy-binding stub. */
9507 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9508
9509 /* This symbol has a stub. Set it up. */
9510
9511 BFD_ASSERT (h->dynindx != -1);
9512
9513 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9514 || (h->dynindx <= 0xffff));
9515
9516 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9517 sign extension at runtime in the stub, resulting in a negative
9518 index value. */
9519 if (h->dynindx & ~0x7fffffff)
9520 return FALSE;
9521
9522 /* Fill the stub. */
9523 idx = 0;
9524 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9525 idx += 4;
9526 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9527 idx += 4;
9528 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9529 {
9530 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9531 stub + idx);
9532 idx += 4;
9533 }
9534 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9535 idx += 4;
9536
9537 /* If a large stub is not required and sign extension is not a
9538 problem, then use legacy code in the stub. */
9539 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9540 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9541 else if (h->dynindx & ~0x7fff)
9542 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9543 else
9544 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9545 stub + idx);
9546
9547 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9548 memcpy (htab->sstubs->contents + h->plt.offset,
9549 stub, htab->function_stub_size);
9550
9551 /* Mark the symbol as undefined. plt.offset != -1 occurs
9552 only for the referenced symbol. */
9553 sym->st_shndx = SHN_UNDEF;
9554
9555 /* The run-time linker uses the st_value field of the symbol
9556 to reset the global offset table entry for this external
9557 to its stub address when unlinking a shared object. */
9558 sym->st_value = (htab->sstubs->output_section->vma
9559 + htab->sstubs->output_offset
9560 + h->plt.offset);
9561 }
9562
9563 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9564 refer to the stub, since only the stub uses the standard calling
9565 conventions. */
9566 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9567 {
9568 BFD_ASSERT (hmips->need_fn_stub);
9569 sym->st_value = (hmips->fn_stub->output_section->vma
9570 + hmips->fn_stub->output_offset);
9571 sym->st_size = hmips->fn_stub->size;
9572 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9573 }
9574
9575 BFD_ASSERT (h->dynindx != -1
9576 || h->forced_local);
9577
9578 sgot = htab->sgot;
9579 g = htab->got_info;
9580 BFD_ASSERT (g != NULL);
9581
9582 /* Run through the global symbol table, creating GOT entries for all
9583 the symbols that need them. */
9584 if (hmips->global_got_area != GGA_NONE)
9585 {
9586 bfd_vma offset;
9587 bfd_vma value;
9588
9589 value = sym->st_value;
9590 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9591 R_MIPS_GOT16, info);
9592 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9593 }
9594
9595 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9596 {
9597 struct mips_got_entry e, *p;
9598 bfd_vma entry;
9599 bfd_vma offset;
9600
9601 gg = g;
9602
9603 e.abfd = output_bfd;
9604 e.symndx = -1;
9605 e.d.h = hmips;
9606 e.tls_type = 0;
9607
9608 for (g = g->next; g->next != gg; g = g->next)
9609 {
9610 if (g->got_entries
9611 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9612 &e)))
9613 {
9614 offset = p->gotidx;
9615 if (info->shared
9616 || (elf_hash_table (info)->dynamic_sections_created
9617 && p->d.h != NULL
9618 && p->d.h->root.def_dynamic
9619 && !p->d.h->root.def_regular))
9620 {
9621 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9622 the various compatibility problems, it's easier to mock
9623 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9624 mips_elf_create_dynamic_relocation to calculate the
9625 appropriate addend. */
9626 Elf_Internal_Rela rel[3];
9627
9628 memset (rel, 0, sizeof (rel));
9629 if (ABI_64_P (output_bfd))
9630 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9631 else
9632 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9633 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9634
9635 entry = 0;
9636 if (! (mips_elf_create_dynamic_relocation
9637 (output_bfd, info, rel,
9638 e.d.h, NULL, sym->st_value, &entry, sgot)))
9639 return FALSE;
9640 }
9641 else
9642 entry = sym->st_value;
9643 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9644 }
9645 }
9646 }
9647
9648 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9649 name = h->root.root.string;
9650 if (strcmp (name, "_DYNAMIC") == 0
9651 || h == elf_hash_table (info)->hgot)
9652 sym->st_shndx = SHN_ABS;
9653 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9654 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9655 {
9656 sym->st_shndx = SHN_ABS;
9657 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9658 sym->st_value = 1;
9659 }
9660 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9661 {
9662 sym->st_shndx = SHN_ABS;
9663 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9664 sym->st_value = elf_gp (output_bfd);
9665 }
9666 else if (SGI_COMPAT (output_bfd))
9667 {
9668 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9669 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9670 {
9671 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9672 sym->st_other = STO_PROTECTED;
9673 sym->st_value = 0;
9674 sym->st_shndx = SHN_MIPS_DATA;
9675 }
9676 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9677 {
9678 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9679 sym->st_other = STO_PROTECTED;
9680 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9681 sym->st_shndx = SHN_ABS;
9682 }
9683 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9684 {
9685 if (h->type == STT_FUNC)
9686 sym->st_shndx = SHN_MIPS_TEXT;
9687 else if (h->type == STT_OBJECT)
9688 sym->st_shndx = SHN_MIPS_DATA;
9689 }
9690 }
9691
9692 /* Emit a copy reloc, if needed. */
9693 if (h->needs_copy)
9694 {
9695 asection *s;
9696 bfd_vma symval;
9697
9698 BFD_ASSERT (h->dynindx != -1);
9699 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9700
9701 s = mips_elf_rel_dyn_section (info, FALSE);
9702 symval = (h->root.u.def.section->output_section->vma
9703 + h->root.u.def.section->output_offset
9704 + h->root.u.def.value);
9705 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9706 h->dynindx, R_MIPS_COPY, symval);
9707 }
9708
9709 /* Handle the IRIX6-specific symbols. */
9710 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9711 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9712
9713 if (! info->shared)
9714 {
9715 if (! mips_elf_hash_table (info)->use_rld_obj_head
9716 && (strcmp (name, "__rld_map") == 0
9717 || strcmp (name, "__RLD_MAP") == 0))
9718 {
9719 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9720 BFD_ASSERT (s != NULL);
9721 sym->st_value = s->output_section->vma + s->output_offset;
9722 bfd_put_32 (output_bfd, 0, s->contents);
9723 if (mips_elf_hash_table (info)->rld_value == 0)
9724 mips_elf_hash_table (info)->rld_value = sym->st_value;
9725 }
9726 else if (mips_elf_hash_table (info)->use_rld_obj_head
9727 && strcmp (name, "__rld_obj_head") == 0)
9728 {
9729 /* IRIX6 does not use a .rld_map section. */
9730 if (IRIX_COMPAT (output_bfd) == ict_irix5
9731 || IRIX_COMPAT (output_bfd) == ict_none)
9732 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9733 != NULL);
9734 mips_elf_hash_table (info)->rld_value = sym->st_value;
9735 }
9736 }
9737
9738 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9739 treat MIPS16 symbols like any other. */
9740 if (ELF_ST_IS_MIPS16 (sym->st_other))
9741 {
9742 BFD_ASSERT (sym->st_value & 1);
9743 sym->st_other -= STO_MIPS16;
9744 }
9745
9746 return TRUE;
9747}
9748
9749/* Likewise, for VxWorks. */
9750
9751bfd_boolean
9752_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9753 struct bfd_link_info *info,
9754 struct elf_link_hash_entry *h,
9755 Elf_Internal_Sym *sym)
9756{
9757 bfd *dynobj;
9758 asection *sgot;
9759 struct mips_got_info *g;
9760 struct mips_elf_link_hash_table *htab;
9761 struct mips_elf_link_hash_entry *hmips;
9762
9763 htab = mips_elf_hash_table (info);
9764 BFD_ASSERT (htab != NULL);
9765 dynobj = elf_hash_table (info)->dynobj;
9766 hmips = (struct mips_elf_link_hash_entry *) h;
9767
9768 if (h->plt.offset != (bfd_vma) -1)
9769 {
9770 bfd_byte *loc;
9771 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9772 Elf_Internal_Rela rel;
9773 static const bfd_vma *plt_entry;
9774
9775 BFD_ASSERT (h->dynindx != -1);
9776 BFD_ASSERT (htab->splt != NULL);
9777 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9778
9779 /* Calculate the address of the .plt entry. */
9780 plt_address = (htab->splt->output_section->vma
9781 + htab->splt->output_offset
9782 + h->plt.offset);
9783
9784 /* Calculate the index of the entry. */
9785 plt_index = ((h->plt.offset - htab->plt_header_size)
9786 / htab->plt_entry_size);
9787
9788 /* Calculate the address of the .got.plt entry. */
9789 got_address = (htab->sgotplt->output_section->vma
9790 + htab->sgotplt->output_offset
9791 + plt_index * 4);
9792
9793 /* Calculate the offset of the .got.plt entry from
9794 _GLOBAL_OFFSET_TABLE_. */
9795 got_offset = mips_elf_gotplt_index (info, h);
9796
9797 /* Calculate the offset for the branch at the start of the PLT
9798 entry. The branch jumps to the beginning of .plt. */
9799 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9800
9801 /* Fill in the initial value of the .got.plt entry. */
9802 bfd_put_32 (output_bfd, plt_address,
9803 htab->sgotplt->contents + plt_index * 4);
9804
9805 /* Find out where the .plt entry should go. */
9806 loc = htab->splt->contents + h->plt.offset;
9807
9808 if (info->shared)
9809 {
9810 plt_entry = mips_vxworks_shared_plt_entry;
9811 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9812 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9813 }
9814 else
9815 {
9816 bfd_vma got_address_high, got_address_low;
9817
9818 plt_entry = mips_vxworks_exec_plt_entry;
9819 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9820 got_address_low = got_address & 0xffff;
9821
9822 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9823 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9824 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9825 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9826 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9827 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9828 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9829 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9830
9831 loc = (htab->srelplt2->contents
9832 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9833
9834 /* Emit a relocation for the .got.plt entry. */
9835 rel.r_offset = got_address;
9836 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9837 rel.r_addend = h->plt.offset;
9838 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9839
9840 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9841 loc += sizeof (Elf32_External_Rela);
9842 rel.r_offset = plt_address + 8;
9843 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9844 rel.r_addend = got_offset;
9845 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9846
9847 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9848 loc += sizeof (Elf32_External_Rela);
9849 rel.r_offset += 4;
9850 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9851 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9852 }
9853
9854 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9855 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9856 rel.r_offset = got_address;
9857 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9858 rel.r_addend = 0;
9859 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9860
9861 if (!h->def_regular)
9862 sym->st_shndx = SHN_UNDEF;
9863 }
9864
9865 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9866
9867 sgot = htab->sgot;
9868 g = htab->got_info;
9869 BFD_ASSERT (g != NULL);
9870
9871 /* See if this symbol has an entry in the GOT. */
9872 if (hmips->global_got_area != GGA_NONE)
9873 {
9874 bfd_vma offset;
9875 Elf_Internal_Rela outrel;
9876 bfd_byte *loc;
9877 asection *s;
9878
9879 /* Install the symbol value in the GOT. */
9880 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9881 R_MIPS_GOT16, info);
9882 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9883
9884 /* Add a dynamic relocation for it. */
9885 s = mips_elf_rel_dyn_section (info, FALSE);
9886 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9887 outrel.r_offset = (sgot->output_section->vma
9888 + sgot->output_offset
9889 + offset);
9890 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9891 outrel.r_addend = 0;
9892 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9893 }
9894
9895 /* Emit a copy reloc, if needed. */
9896 if (h->needs_copy)
9897 {
9898 Elf_Internal_Rela rel;
9899
9900 BFD_ASSERT (h->dynindx != -1);
9901
9902 rel.r_offset = (h->root.u.def.section->output_section->vma
9903 + h->root.u.def.section->output_offset
9904 + h->root.u.def.value);
9905 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9906 rel.r_addend = 0;
9907 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9908 htab->srelbss->contents
9909 + (htab->srelbss->reloc_count
9910 * sizeof (Elf32_External_Rela)));
9911 ++htab->srelbss->reloc_count;
9912 }
9913
9914 /* If this is a mips16 symbol, force the value to be even. */
9915 if (ELF_ST_IS_MIPS16 (sym->st_other))
9916 sym->st_value &= ~1;
9917
9918 return TRUE;
9919}
9920
9921/* Write out a plt0 entry to the beginning of .plt. */
9922
9923static void
9924mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9925{
9926 bfd_byte *loc;
9927 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9928 static const bfd_vma *plt_entry;
9929 struct mips_elf_link_hash_table *htab;
9930
9931 htab = mips_elf_hash_table (info);
9932 BFD_ASSERT (htab != NULL);
9933
9934 if (ABI_64_P (output_bfd))
9935 plt_entry = mips_n64_exec_plt0_entry;
9936 else if (ABI_N32_P (output_bfd))
9937 plt_entry = mips_n32_exec_plt0_entry;
9938 else
9939 plt_entry = mips_o32_exec_plt0_entry;
9940
9941 /* Calculate the value of .got.plt. */
9942 gotplt_value = (htab->sgotplt->output_section->vma
9943 + htab->sgotplt->output_offset);
9944 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9945 gotplt_value_low = gotplt_value & 0xffff;
9946
9947 /* The PLT sequence is not safe for N64 if .got.plt's address can
9948 not be loaded in two instructions. */
9949 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9950 || ~(gotplt_value | 0x7fffffff) == 0);
9951
9952 /* Install the PLT header. */
9953 loc = htab->splt->contents;
9954 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9955 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9956 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9957 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9958 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9959 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9960 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9961 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9962}
9963
9964/* Install the PLT header for a VxWorks executable and finalize the
9965 contents of .rela.plt.unloaded. */
9966
9967static void
9968mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9969{
9970 Elf_Internal_Rela rela;
9971 bfd_byte *loc;
9972 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9973 static const bfd_vma *plt_entry;
9974 struct mips_elf_link_hash_table *htab;
9975
9976 htab = mips_elf_hash_table (info);
9977 BFD_ASSERT (htab != NULL);
9978
9979 plt_entry = mips_vxworks_exec_plt0_entry;
9980
9981 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9982 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9983 + htab->root.hgot->root.u.def.section->output_offset
9984 + htab->root.hgot->root.u.def.value);
9985
9986 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9987 got_value_low = got_value & 0xffff;
9988
9989 /* Calculate the address of the PLT header. */
9990 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9991
9992 /* Install the PLT header. */
9993 loc = htab->splt->contents;
9994 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9995 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9996 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9997 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9998 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9999 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10000
10001 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10002 loc = htab->srelplt2->contents;
10003 rela.r_offset = plt_address;
10004 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10005 rela.r_addend = 0;
10006 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10007 loc += sizeof (Elf32_External_Rela);
10008
10009 /* Output the relocation for the following addiu of
10010 %lo(_GLOBAL_OFFSET_TABLE_). */
10011 rela.r_offset += 4;
10012 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10013 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10014 loc += sizeof (Elf32_External_Rela);
10015
10016 /* Fix up the remaining relocations. They may have the wrong
10017 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10018 in which symbols were output. */
10019 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10020 {
10021 Elf_Internal_Rela rel;
10022
10023 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10024 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10025 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10026 loc += sizeof (Elf32_External_Rela);
10027
10028 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10029 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10030 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10031 loc += sizeof (Elf32_External_Rela);
10032
10033 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10034 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10035 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10036 loc += sizeof (Elf32_External_Rela);
10037 }
10038}
10039
10040/* Install the PLT header for a VxWorks shared library. */
10041
10042static void
10043mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10044{
10045 unsigned int i;
10046 struct mips_elf_link_hash_table *htab;
10047
10048 htab = mips_elf_hash_table (info);
10049 BFD_ASSERT (htab != NULL);
10050
10051 /* We just need to copy the entry byte-by-byte. */
10052 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10053 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10054 htab->splt->contents + i * 4);
10055}
10056
10057/* Finish up the dynamic sections. */
10058
10059bfd_boolean
10060_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10061 struct bfd_link_info *info)
10062{
10063 bfd *dynobj;
10064 asection *sdyn;
10065 asection *sgot;
10066 struct mips_got_info *gg, *g;
10067 struct mips_elf_link_hash_table *htab;
10068
10069 htab = mips_elf_hash_table (info);
10070 BFD_ASSERT (htab != NULL);
10071
10072 dynobj = elf_hash_table (info)->dynobj;
10073
10074 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10075
10076 sgot = htab->sgot;
10077 gg = htab->got_info;
10078
10079 if (elf_hash_table (info)->dynamic_sections_created)
10080 {
10081 bfd_byte *b;
10082 int dyn_to_skip = 0, dyn_skipped = 0;
10083
10084 BFD_ASSERT (sdyn != NULL);
10085 BFD_ASSERT (gg != NULL);
10086
10087 g = mips_elf_got_for_ibfd (gg, output_bfd);
10088 BFD_ASSERT (g != NULL);
10089
10090 for (b = sdyn->contents;
10091 b < sdyn->contents + sdyn->size;
10092 b += MIPS_ELF_DYN_SIZE (dynobj))
10093 {
10094 Elf_Internal_Dyn dyn;
10095 const char *name;
10096 size_t elemsize;
10097 asection *s;
10098 bfd_boolean swap_out_p;
10099
10100 /* Read in the current dynamic entry. */
10101 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10102
10103 /* Assume that we're going to modify it and write it out. */
10104 swap_out_p = TRUE;
10105
10106 switch (dyn.d_tag)
10107 {
10108 case DT_RELENT:
10109 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10110 break;
10111
10112 case DT_RELAENT:
10113 BFD_ASSERT (htab->is_vxworks);
10114 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10115 break;
10116
10117 case DT_STRSZ:
10118 /* Rewrite DT_STRSZ. */
10119 dyn.d_un.d_val =
10120 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10121 break;
10122
10123 case DT_PLTGOT:
10124 s = htab->sgot;
10125 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10126 break;
10127
10128 case DT_MIPS_PLTGOT:
10129 s = htab->sgotplt;
10130 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10131 break;
10132
10133 case DT_MIPS_RLD_VERSION:
10134 dyn.d_un.d_val = 1; /* XXX */
10135 break;
10136
10137 case DT_MIPS_FLAGS:
10138 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10139 break;
10140
10141 case DT_MIPS_TIME_STAMP:
10142 {
10143 time_t t;
10144 time (&t);
10145 dyn.d_un.d_val = t;
10146 }
10147 break;
10148
10149 case DT_MIPS_ICHECKSUM:
10150 /* XXX FIXME: */
10151 swap_out_p = FALSE;
10152 break;
10153
10154 case DT_MIPS_IVERSION:
10155 /* XXX FIXME: */
10156 swap_out_p = FALSE;
10157 break;
10158
10159 case DT_MIPS_BASE_ADDRESS:
10160 s = output_bfd->sections;
10161 BFD_ASSERT (s != NULL);
10162 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10163 break;
10164
10165 case DT_MIPS_LOCAL_GOTNO:
10166 dyn.d_un.d_val = g->local_gotno;
10167 break;
10168
10169 case DT_MIPS_UNREFEXTNO:
10170 /* The index into the dynamic symbol table which is the
10171 entry of the first external symbol that is not
10172 referenced within the same object. */
10173 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10174 break;
10175
10176 case DT_MIPS_GOTSYM:
10177 if (gg->global_gotsym)
10178 {
10179 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10180 break;
10181 }
10182 /* In case if we don't have global got symbols we default
10183 to setting DT_MIPS_GOTSYM to the same value as
10184 DT_MIPS_SYMTABNO, so we just fall through. */
10185
10186 case DT_MIPS_SYMTABNO:
10187 name = ".dynsym";
10188 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10189 s = bfd_get_section_by_name (output_bfd, name);
10190 BFD_ASSERT (s != NULL);
10191
10192 dyn.d_un.d_val = s->size / elemsize;
10193 break;
10194
10195 case DT_MIPS_HIPAGENO:
10196 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10197 break;
10198
10199 case DT_MIPS_RLD_MAP:
10200 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10201 break;
10202
10203 case DT_MIPS_OPTIONS:
10204 s = (bfd_get_section_by_name
10205 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10206 dyn.d_un.d_ptr = s->vma;
10207 break;
10208
10209 case DT_RELASZ:
10210 BFD_ASSERT (htab->is_vxworks);
10211 /* The count does not include the JUMP_SLOT relocations. */
10212 if (htab->srelplt)
10213 dyn.d_un.d_val -= htab->srelplt->size;
10214 break;
10215
10216 case DT_PLTREL:
10217 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10218 if (htab->is_vxworks)
10219 dyn.d_un.d_val = DT_RELA;
10220 else
10221 dyn.d_un.d_val = DT_REL;
10222 break;
10223
10224 case DT_PLTRELSZ:
10225 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10226 dyn.d_un.d_val = htab->srelplt->size;
10227 break;
10228
10229 case DT_JMPREL:
10230 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10231 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10232 + htab->srelplt->output_offset);
10233 break;
10234
10235 case DT_TEXTREL:
10236 /* If we didn't need any text relocations after all, delete
10237 the dynamic tag. */
10238 if (!(info->flags & DF_TEXTREL))
10239 {
10240 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10241 swap_out_p = FALSE;
10242 }
10243 break;
10244
10245 case DT_FLAGS:
10246 /* If we didn't need any text relocations after all, clear
10247 DF_TEXTREL from DT_FLAGS. */
10248 if (!(info->flags & DF_TEXTREL))
10249 dyn.d_un.d_val &= ~DF_TEXTREL;
10250 else
10251 swap_out_p = FALSE;
10252 break;
10253
10254 default:
10255 swap_out_p = FALSE;
10256 if (htab->is_vxworks
10257 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10258 swap_out_p = TRUE;
10259 break;
10260 }
10261
10262 if (swap_out_p || dyn_skipped)
10263 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10264 (dynobj, &dyn, b - dyn_skipped);
10265
10266 if (dyn_to_skip)
10267 {
10268 dyn_skipped += dyn_to_skip;
10269 dyn_to_skip = 0;
10270 }
10271 }
10272
10273 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10274 if (dyn_skipped > 0)
10275 memset (b - dyn_skipped, 0, dyn_skipped);
10276 }
10277
10278 if (sgot != NULL && sgot->size > 0
10279 && !bfd_is_abs_section (sgot->output_section))
10280 {
10281 if (htab->is_vxworks)
10282 {
10283 /* The first entry of the global offset table points to the
10284 ".dynamic" section. The second is initialized by the
10285 loader and contains the shared library identifier.
10286 The third is also initialized by the loader and points
10287 to the lazy resolution stub. */
10288 MIPS_ELF_PUT_WORD (output_bfd,
10289 sdyn->output_offset + sdyn->output_section->vma,
10290 sgot->contents);
10291 MIPS_ELF_PUT_WORD (output_bfd, 0,
10292 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10293 MIPS_ELF_PUT_WORD (output_bfd, 0,
10294 sgot->contents
10295 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10296 }
10297 else
10298 {
10299 /* The first entry of the global offset table will be filled at
10300 runtime. The second entry will be used by some runtime loaders.
10301 This isn't the case of IRIX rld. */
10302 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10303 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10304 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10305 }
10306
10307 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10308 = MIPS_ELF_GOT_SIZE (output_bfd);
10309 }
10310
10311 /* Generate dynamic relocations for the non-primary gots. */
10312 if (gg != NULL && gg->next)
10313 {
10314 Elf_Internal_Rela rel[3];
10315 bfd_vma addend = 0;
10316
10317 memset (rel, 0, sizeof (rel));
10318 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10319
10320 for (g = gg->next; g->next != gg; g = g->next)
10321 {
10322 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10323 + g->next->tls_gotno;
10324
10325 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10326 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10327 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10328 sgot->contents
10329 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10330
10331 if (! info->shared)
10332 continue;
10333
10334 while (got_index < g->assigned_gotno)
10335 {
10336 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10337 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10338 if (!(mips_elf_create_dynamic_relocation
10339 (output_bfd, info, rel, NULL,
10340 bfd_abs_section_ptr,
10341 0, &addend, sgot)))
10342 return FALSE;
10343 BFD_ASSERT (addend == 0);
10344 }
10345 }
10346 }
10347
10348 /* The generation of dynamic relocations for the non-primary gots
10349 adds more dynamic relocations. We cannot count them until
10350 here. */
10351
10352 if (elf_hash_table (info)->dynamic_sections_created)
10353 {
10354 bfd_byte *b;
10355 bfd_boolean swap_out_p;
10356
10357 BFD_ASSERT (sdyn != NULL);
10358
10359 for (b = sdyn->contents;
10360 b < sdyn->contents + sdyn->size;
10361 b += MIPS_ELF_DYN_SIZE (dynobj))
10362 {
10363 Elf_Internal_Dyn dyn;
10364 asection *s;
10365
10366 /* Read in the current dynamic entry. */
10367 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10368
10369 /* Assume that we're going to modify it and write it out. */
10370 swap_out_p = TRUE;
10371
10372 switch (dyn.d_tag)
10373 {
10374 case DT_RELSZ:
10375 /* Reduce DT_RELSZ to account for any relocations we
10376 decided not to make. This is for the n64 irix rld,
10377 which doesn't seem to apply any relocations if there
10378 are trailing null entries. */
10379 s = mips_elf_rel_dyn_section (info, FALSE);
10380 dyn.d_un.d_val = (s->reloc_count
10381 * (ABI_64_P (output_bfd)
10382 ? sizeof (Elf64_Mips_External_Rel)
10383 : sizeof (Elf32_External_Rel)));
10384 /* Adjust the section size too. Tools like the prelinker
10385 can reasonably expect the values to the same. */
10386 elf_section_data (s->output_section)->this_hdr.sh_size
10387 = dyn.d_un.d_val;
10388 break;
10389
10390 default:
10391 swap_out_p = FALSE;
10392 break;
10393 }
10394
10395 if (swap_out_p)
10396 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10397 (dynobj, &dyn, b);
10398 }
10399 }
10400
10401 {
10402 asection *s;
10403 Elf32_compact_rel cpt;
10404
10405 if (SGI_COMPAT (output_bfd))
10406 {
10407 /* Write .compact_rel section out. */
10408 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10409 if (s != NULL)
10410 {
10411 cpt.id1 = 1;
10412 cpt.num = s->reloc_count;
10413 cpt.id2 = 2;
10414 cpt.offset = (s->output_section->filepos
10415 + sizeof (Elf32_External_compact_rel));
10416 cpt.reserved0 = 0;
10417 cpt.reserved1 = 0;
10418 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10419 ((Elf32_External_compact_rel *)
10420 s->contents));
10421
10422 /* Clean up a dummy stub function entry in .text. */
10423 if (htab->sstubs != NULL)
10424 {
10425 file_ptr dummy_offset;
10426
10427 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10428 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10429 memset (htab->sstubs->contents + dummy_offset, 0,
10430 htab->function_stub_size);
10431 }
10432 }
10433 }
10434
10435 /* The psABI says that the dynamic relocations must be sorted in
10436 increasing order of r_symndx. The VxWorks EABI doesn't require
10437 this, and because the code below handles REL rather than RELA
10438 relocations, using it for VxWorks would be outright harmful. */
10439 if (!htab->is_vxworks)
10440 {
10441 s = mips_elf_rel_dyn_section (info, FALSE);
10442 if (s != NULL
10443 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10444 {
10445 reldyn_sorting_bfd = output_bfd;
10446
10447 if (ABI_64_P (output_bfd))
10448 qsort ((Elf64_External_Rel *) s->contents + 1,
10449 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10450 sort_dynamic_relocs_64);
10451 else
10452 qsort ((Elf32_External_Rel *) s->contents + 1,
10453 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10454 sort_dynamic_relocs);
10455 }
10456 }
10457 }
10458
10459 if (htab->splt && htab->splt->size > 0)
10460 {
10461 if (htab->is_vxworks)
10462 {
10463 if (info->shared)
10464 mips_vxworks_finish_shared_plt (output_bfd, info);
10465 else
10466 mips_vxworks_finish_exec_plt (output_bfd, info);
10467 }
10468 else
10469 {
10470 BFD_ASSERT (!info->shared);
10471 mips_finish_exec_plt (output_bfd, info);
10472 }
10473 }
10474 return TRUE;
10475}
10476
10477
10478/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10479
10480static void
10481mips_set_isa_flags (bfd *abfd)
10482{
10483 flagword val;
10484
10485 switch (bfd_get_mach (abfd))
10486 {
10487 default:
10488 case bfd_mach_mips3000:
10489 val = E_MIPS_ARCH_1;
10490 break;
10491
10492 case bfd_mach_mips3900:
10493 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10494 break;
10495
10496 case bfd_mach_mips6000:
10497 val = E_MIPS_ARCH_2;
10498 break;
10499
10500 case bfd_mach_mips4000:
10501 case bfd_mach_mips4300:
10502 case bfd_mach_mips4400:
10503 case bfd_mach_mips4600:
10504 val = E_MIPS_ARCH_3;
10505 break;
10506
10507 case bfd_mach_mips4010:
10508 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10509 break;
10510
10511 case bfd_mach_mips4100:
10512 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10513 break;
10514
10515 case bfd_mach_mips4111:
10516 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10517 break;
10518
10519 case bfd_mach_mips4120:
10520 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10521 break;
10522
10523 case bfd_mach_mips4650:
10524 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10525 break;
10526
10527 case bfd_mach_mips5400:
10528 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10529 break;
10530
10531 case bfd_mach_mips5500:
10532 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10533 break;
10534
10535 case bfd_mach_mips9000:
10536 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10537 break;
10538
10539 case bfd_mach_mips5000:
10540 case bfd_mach_mips7000:
10541 case bfd_mach_mips8000:
10542 case bfd_mach_mips10000:
10543 case bfd_mach_mips12000:
10544 case bfd_mach_mips14000:
10545 case bfd_mach_mips16000:
10546 val = E_MIPS_ARCH_4;
10547 break;
10548
10549 case bfd_mach_mips5:
10550 val = E_MIPS_ARCH_5;
10551 break;
10552
10553 case bfd_mach_mips_loongson_2e:
10554 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10555 break;
10556
10557 case bfd_mach_mips_loongson_2f:
10558 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10559 break;
10560
10561 case bfd_mach_mips_sb1:
10562 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10563 break;
10564
10565 case bfd_mach_mips_loongson_3a:
10566 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10567 break;
10568
10569 case bfd_mach_mips_octeon:
10570 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10571 break;
10572
10573 case bfd_mach_mips_xlr:
10574 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10575 break;
10576
10577 case bfd_mach_mipsisa32:
10578 val = E_MIPS_ARCH_32;
10579 break;
10580
10581 case bfd_mach_mipsisa64:
10582 val = E_MIPS_ARCH_64;
10583 break;
10584
10585 case bfd_mach_mipsisa32r2:
10586 val = E_MIPS_ARCH_32R2;
10587 break;
10588
10589 case bfd_mach_mipsisa64r2:
10590 val = E_MIPS_ARCH_64R2;
10591 break;
10592 }
10593 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10594 elf_elfheader (abfd)->e_flags |= val;
10595
10596}
10597
10598
10599/* The final processing done just before writing out a MIPS ELF object
10600 file. This gets the MIPS architecture right based on the machine
10601 number. This is used by both the 32-bit and the 64-bit ABI. */
10602
10603void
10604_bfd_mips_elf_final_write_processing (bfd *abfd,
10605 bfd_boolean linker ATTRIBUTE_UNUSED)
10606{
10607 unsigned int i;
10608 Elf_Internal_Shdr **hdrpp;
10609 const char *name;
10610 asection *sec;
10611
10612 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10613 is nonzero. This is for compatibility with old objects, which used
10614 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10615 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10616 mips_set_isa_flags (abfd);
10617
10618 /* Set the sh_info field for .gptab sections and other appropriate
10619 info for each special section. */
10620 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10621 i < elf_numsections (abfd);
10622 i++, hdrpp++)
10623 {
10624 switch ((*hdrpp)->sh_type)
10625 {
10626 case SHT_MIPS_MSYM:
10627 case SHT_MIPS_LIBLIST:
10628 sec = bfd_get_section_by_name (abfd, ".dynstr");
10629 if (sec != NULL)
10630 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10631 break;
10632
10633 case SHT_MIPS_GPTAB:
10634 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10635 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10636 BFD_ASSERT (name != NULL
10637 && CONST_STRNEQ (name, ".gptab."));
10638 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10639 BFD_ASSERT (sec != NULL);
10640 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10641 break;
10642
10643 case SHT_MIPS_CONTENT:
10644 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10645 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10646 BFD_ASSERT (name != NULL
10647 && CONST_STRNEQ (name, ".MIPS.content"));
10648 sec = bfd_get_section_by_name (abfd,
10649 name + sizeof ".MIPS.content" - 1);
10650 BFD_ASSERT (sec != NULL);
10651 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10652 break;
10653
10654 case SHT_MIPS_SYMBOL_LIB:
10655 sec = bfd_get_section_by_name (abfd, ".dynsym");
10656 if (sec != NULL)
10657 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10658 sec = bfd_get_section_by_name (abfd, ".liblist");
10659 if (sec != NULL)
10660 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10661 break;
10662
10663 case SHT_MIPS_EVENTS:
10664 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10665 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10666 BFD_ASSERT (name != NULL);
10667 if (CONST_STRNEQ (name, ".MIPS.events"))
10668 sec = bfd_get_section_by_name (abfd,
10669 name + sizeof ".MIPS.events" - 1);
10670 else
10671 {
10672 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10673 sec = bfd_get_section_by_name (abfd,
10674 (name
10675 + sizeof ".MIPS.post_rel" - 1));
10676 }
10677 BFD_ASSERT (sec != NULL);
10678 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10679 break;
10680
10681 }
10682 }
10683}
10684\f
10685/* When creating an IRIX5 executable, we need REGINFO and RTPROC
10686 segments. */
10687
10688int
10689_bfd_mips_elf_additional_program_headers (bfd *abfd,
10690 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10691{
10692 asection *s;
10693 int ret = 0;
10694
10695 /* See if we need a PT_MIPS_REGINFO segment. */
10696 s = bfd_get_section_by_name (abfd, ".reginfo");
10697 if (s && (s->flags & SEC_LOAD))
10698 ++ret;
10699
10700 /* See if we need a PT_MIPS_OPTIONS segment. */
10701 if (IRIX_COMPAT (abfd) == ict_irix6
10702 && bfd_get_section_by_name (abfd,
10703 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10704 ++ret;
10705
10706 /* See if we need a PT_MIPS_RTPROC segment. */
10707 if (IRIX_COMPAT (abfd) == ict_irix5
10708 && bfd_get_section_by_name (abfd, ".dynamic")
10709 && bfd_get_section_by_name (abfd, ".mdebug"))
10710 ++ret;
10711
10712 /* Allocate a PT_NULL header in dynamic objects. See
10713 _bfd_mips_elf_modify_segment_map for details. */
10714 if (!SGI_COMPAT (abfd)
10715 && bfd_get_section_by_name (abfd, ".dynamic"))
10716 ++ret;
10717
10718 return ret;
10719}
10720
10721/* Modify the segment map for an IRIX5 executable. */
10722
10723bfd_boolean
10724_bfd_mips_elf_modify_segment_map (bfd *abfd,
10725 struct bfd_link_info *info)
10726{
10727 asection *s;
10728 struct elf_segment_map *m, **pm;
10729 bfd_size_type amt;
10730
10731 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10732 segment. */
10733 s = bfd_get_section_by_name (abfd, ".reginfo");
10734 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10735 {
10736 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10737 if (m->p_type == PT_MIPS_REGINFO)
10738 break;
10739 if (m == NULL)
10740 {
10741 amt = sizeof *m;
10742 m = bfd_zalloc (abfd, amt);
10743 if (m == NULL)
10744 return FALSE;
10745
10746 m->p_type = PT_MIPS_REGINFO;
10747 m->count = 1;
10748 m->sections[0] = s;
10749
10750 /* We want to put it after the PHDR and INTERP segments. */
10751 pm = &elf_tdata (abfd)->segment_map;
10752 while (*pm != NULL
10753 && ((*pm)->p_type == PT_PHDR
10754 || (*pm)->p_type == PT_INTERP))
10755 pm = &(*pm)->next;
10756
10757 m->next = *pm;
10758 *pm = m;
10759 }
10760 }
10761
10762 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10763 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10764 PT_MIPS_OPTIONS segment immediately following the program header
10765 table. */
10766 if (NEWABI_P (abfd)
10767 /* On non-IRIX6 new abi, we'll have already created a segment
10768 for this section, so don't create another. I'm not sure this
10769 is not also the case for IRIX 6, but I can't test it right
10770 now. */
10771 && IRIX_COMPAT (abfd) == ict_irix6)
10772 {
10773 for (s = abfd->sections; s; s = s->next)
10774 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10775 break;
10776
10777 if (s)
10778 {
10779 struct elf_segment_map *options_segment;
10780
10781 pm = &elf_tdata (abfd)->segment_map;
10782 while (*pm != NULL
10783 && ((*pm)->p_type == PT_PHDR
10784 || (*pm)->p_type == PT_INTERP))
10785 pm = &(*pm)->next;
10786
10787 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10788 {
10789 amt = sizeof (struct elf_segment_map);
10790 options_segment = bfd_zalloc (abfd, amt);
10791 options_segment->next = *pm;
10792 options_segment->p_type = PT_MIPS_OPTIONS;
10793 options_segment->p_flags = PF_R;
10794 options_segment->p_flags_valid = TRUE;
10795 options_segment->count = 1;
10796 options_segment->sections[0] = s;
10797 *pm = options_segment;
10798 }
10799 }
10800 }
10801 else
10802 {
10803 if (IRIX_COMPAT (abfd) == ict_irix5)
10804 {
10805 /* If there are .dynamic and .mdebug sections, we make a room
10806 for the RTPROC header. FIXME: Rewrite without section names. */
10807 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10808 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10809 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10810 {
10811 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10812 if (m->p_type == PT_MIPS_RTPROC)
10813 break;
10814 if (m == NULL)
10815 {
10816 amt = sizeof *m;
10817 m = bfd_zalloc (abfd, amt);
10818 if (m == NULL)
10819 return FALSE;
10820
10821 m->p_type = PT_MIPS_RTPROC;
10822
10823 s = bfd_get_section_by_name (abfd, ".rtproc");
10824 if (s == NULL)
10825 {
10826 m->count = 0;
10827 m->p_flags = 0;
10828 m->p_flags_valid = 1;
10829 }
10830 else
10831 {
10832 m->count = 1;
10833 m->sections[0] = s;
10834 }
10835
10836 /* We want to put it after the DYNAMIC segment. */
10837 pm = &elf_tdata (abfd)->segment_map;
10838 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10839 pm = &(*pm)->next;
10840 if (*pm != NULL)
10841 pm = &(*pm)->next;
10842
10843 m->next = *pm;
10844 *pm = m;
10845 }
10846 }
10847 }
10848 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10849 .dynstr, .dynsym, and .hash sections, and everything in
10850 between. */
10851 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10852 pm = &(*pm)->next)
10853 if ((*pm)->p_type == PT_DYNAMIC)
10854 break;
10855 m = *pm;
10856 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10857 {
10858 /* For a normal mips executable the permissions for the PT_DYNAMIC
10859 segment are read, write and execute. We do that here since
10860 the code in elf.c sets only the read permission. This matters
10861 sometimes for the dynamic linker. */
10862 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10863 {
10864 m->p_flags = PF_R | PF_W | PF_X;
10865 m->p_flags_valid = 1;
10866 }
10867 }
10868 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10869 glibc's dynamic linker has traditionally derived the number of
10870 tags from the p_filesz field, and sometimes allocates stack
10871 arrays of that size. An overly-big PT_DYNAMIC segment can
10872 be actively harmful in such cases. Making PT_DYNAMIC contain
10873 other sections can also make life hard for the prelinker,
10874 which might move one of the other sections to a different
10875 PT_LOAD segment. */
10876 if (SGI_COMPAT (abfd)
10877 && m != NULL
10878 && m->count == 1
10879 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10880 {
10881 static const char *sec_names[] =
10882 {
10883 ".dynamic", ".dynstr", ".dynsym", ".hash"
10884 };
10885 bfd_vma low, high;
10886 unsigned int i, c;
10887 struct elf_segment_map *n;
10888
10889 low = ~(bfd_vma) 0;
10890 high = 0;
10891 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10892 {
10893 s = bfd_get_section_by_name (abfd, sec_names[i]);
10894 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10895 {
10896 bfd_size_type sz;
10897
10898 if (low > s->vma)
10899 low = s->vma;
10900 sz = s->size;
10901 if (high < s->vma + sz)
10902 high = s->vma + sz;
10903 }
10904 }
10905
10906 c = 0;
10907 for (s = abfd->sections; s != NULL; s = s->next)
10908 if ((s->flags & SEC_LOAD) != 0
10909 && s->vma >= low
10910 && s->vma + s->size <= high)
10911 ++c;
10912
10913 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10914 n = bfd_zalloc (abfd, amt);
10915 if (n == NULL)
10916 return FALSE;
10917 *n = *m;
10918 n->count = c;
10919
10920 i = 0;
10921 for (s = abfd->sections; s != NULL; s = s->next)
10922 {
10923 if ((s->flags & SEC_LOAD) != 0
10924 && s->vma >= low
10925 && s->vma + s->size <= high)
10926 {
10927 n->sections[i] = s;
10928 ++i;
10929 }
10930 }
10931
10932 *pm = n;
10933 }
10934 }
10935
10936 /* Allocate a spare program header in dynamic objects so that tools
10937 like the prelinker can add an extra PT_LOAD entry.
10938
10939 If the prelinker needs to make room for a new PT_LOAD entry, its
10940 standard procedure is to move the first (read-only) sections into
10941 the new (writable) segment. However, the MIPS ABI requires
10942 .dynamic to be in a read-only segment, and the section will often
10943 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10944
10945 Although the prelinker could in principle move .dynamic to a
10946 writable segment, it seems better to allocate a spare program
10947 header instead, and avoid the need to move any sections.
10948 There is a long tradition of allocating spare dynamic tags,
10949 so allocating a spare program header seems like a natural
10950 extension.
10951
10952 If INFO is NULL, we may be copying an already prelinked binary
10953 with objcopy or strip, so do not add this header. */
10954 if (info != NULL
10955 && !SGI_COMPAT (abfd)
10956 && bfd_get_section_by_name (abfd, ".dynamic"))
10957 {
10958 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10959 if ((*pm)->p_type == PT_NULL)
10960 break;
10961 if (*pm == NULL)
10962 {
10963 m = bfd_zalloc (abfd, sizeof (*m));
10964 if (m == NULL)
10965 return FALSE;
10966
10967 m->p_type = PT_NULL;
10968 *pm = m;
10969 }
10970 }
10971
10972 return TRUE;
10973}
10974\f
10975/* Return the section that should be marked against GC for a given
10976 relocation. */
10977
10978asection *
10979_bfd_mips_elf_gc_mark_hook (asection *sec,
10980 struct bfd_link_info *info,
10981 Elf_Internal_Rela *rel,
10982 struct elf_link_hash_entry *h,
10983 Elf_Internal_Sym *sym)
10984{
10985 /* ??? Do mips16 stub sections need to be handled special? */
10986
10987 if (h != NULL)
10988 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10989 {
10990 case R_MIPS_GNU_VTINHERIT:
10991 case R_MIPS_GNU_VTENTRY:
10992 return NULL;
10993 }
10994
10995 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10996}
10997
10998/* Update the got entry reference counts for the section being removed. */
10999
11000bfd_boolean
11001_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11002 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11003 asection *sec ATTRIBUTE_UNUSED,
11004 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11005{
11006#if 0
11007 Elf_Internal_Shdr *symtab_hdr;
11008 struct elf_link_hash_entry **sym_hashes;
11009 bfd_signed_vma *local_got_refcounts;
11010 const Elf_Internal_Rela *rel, *relend;
11011 unsigned long r_symndx;
11012 struct elf_link_hash_entry *h;
11013
11014 if (info->relocatable)
11015 return TRUE;
11016
11017 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11018 sym_hashes = elf_sym_hashes (abfd);
11019 local_got_refcounts = elf_local_got_refcounts (abfd);
11020
11021 relend = relocs + sec->reloc_count;
11022 for (rel = relocs; rel < relend; rel++)
11023 switch (ELF_R_TYPE (abfd, rel->r_info))
11024 {
11025 case R_MIPS16_GOT16:
11026 case R_MIPS16_CALL16:
11027 case R_MIPS_GOT16:
11028 case R_MIPS_CALL16:
11029 case R_MIPS_CALL_HI16:
11030 case R_MIPS_CALL_LO16:
11031 case R_MIPS_GOT_HI16:
11032 case R_MIPS_GOT_LO16:
11033 case R_MIPS_GOT_DISP:
11034 case R_MIPS_GOT_PAGE:
11035 case R_MIPS_GOT_OFST:
11036 /* ??? It would seem that the existing MIPS code does no sort
11037 of reference counting or whatnot on its GOT and PLT entries,
11038 so it is not possible to garbage collect them at this time. */
11039 break;
11040
11041 default:
11042 break;
11043 }
11044#endif
11045
11046 return TRUE;
11047}
11048\f
11049/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11050 hiding the old indirect symbol. Process additional relocation
11051 information. Also called for weakdefs, in which case we just let
11052 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11053
11054void
11055_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11056 struct elf_link_hash_entry *dir,
11057 struct elf_link_hash_entry *ind)
11058{
11059 struct mips_elf_link_hash_entry *dirmips, *indmips;
11060
11061 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11062
11063 dirmips = (struct mips_elf_link_hash_entry *) dir;
11064 indmips = (struct mips_elf_link_hash_entry *) ind;
11065 /* Any absolute non-dynamic relocations against an indirect or weak
11066 definition will be against the target symbol. */
11067 if (indmips->has_static_relocs)
11068 dirmips->has_static_relocs = TRUE;
11069
11070 if (ind->root.type != bfd_link_hash_indirect)
11071 return;
11072
11073 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11074 if (indmips->readonly_reloc)
11075 dirmips->readonly_reloc = TRUE;
11076 if (indmips->no_fn_stub)
11077 dirmips->no_fn_stub = TRUE;
11078 if (indmips->fn_stub)
11079 {
11080 dirmips->fn_stub = indmips->fn_stub;
11081 indmips->fn_stub = NULL;
11082 }
11083 if (indmips->need_fn_stub)
11084 {
11085 dirmips->need_fn_stub = TRUE;
11086 indmips->need_fn_stub = FALSE;
11087 }
11088 if (indmips->call_stub)
11089 {
11090 dirmips->call_stub = indmips->call_stub;
11091 indmips->call_stub = NULL;
11092 }
11093 if (indmips->call_fp_stub)
11094 {
11095 dirmips->call_fp_stub = indmips->call_fp_stub;
11096 indmips->call_fp_stub = NULL;
11097 }
11098 if (indmips->global_got_area < dirmips->global_got_area)
11099 dirmips->global_got_area = indmips->global_got_area;
11100 if (indmips->global_got_area < GGA_NONE)
11101 indmips->global_got_area = GGA_NONE;
11102 if (indmips->has_nonpic_branches)
11103 dirmips->has_nonpic_branches = TRUE;
11104
11105 if (dirmips->tls_type == 0)
11106 dirmips->tls_type = indmips->tls_type;
11107}
11108\f
11109#define PDR_SIZE 32
11110
11111bfd_boolean
11112_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11113 struct bfd_link_info *info)
11114{
11115 asection *o;
11116 bfd_boolean ret = FALSE;
11117 unsigned char *tdata;
11118 size_t i, skip;
11119
11120 o = bfd_get_section_by_name (abfd, ".pdr");
11121 if (! o)
11122 return FALSE;
11123 if (o->size == 0)
11124 return FALSE;
11125 if (o->size % PDR_SIZE != 0)
11126 return FALSE;
11127 if (o->output_section != NULL
11128 && bfd_is_abs_section (o->output_section))
11129 return FALSE;
11130
11131 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11132 if (! tdata)
11133 return FALSE;
11134
11135 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11136 info->keep_memory);
11137 if (!cookie->rels)
11138 {
11139 free (tdata);
11140 return FALSE;
11141 }
11142
11143 cookie->rel = cookie->rels;
11144 cookie->relend = cookie->rels + o->reloc_count;
11145
11146 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11147 {
11148 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11149 {
11150 tdata[i] = 1;
11151 skip ++;
11152 }
11153 }
11154
11155 if (skip != 0)
11156 {
11157 mips_elf_section_data (o)->u.tdata = tdata;
11158 o->size -= skip * PDR_SIZE;
11159 ret = TRUE;
11160 }
11161 else
11162 free (tdata);
11163
11164 if (! info->keep_memory)
11165 free (cookie->rels);
11166
11167 return ret;
11168}
11169
11170bfd_boolean
11171_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11172{
11173 if (strcmp (sec->name, ".pdr") == 0)
11174 return TRUE;
11175 return FALSE;
11176}
11177
11178bfd_boolean
11179_bfd_mips_elf_write_section (bfd *output_bfd,
11180 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11181 asection *sec, bfd_byte *contents)
11182{
11183 bfd_byte *to, *from, *end;
11184 int i;
11185
11186 if (strcmp (sec->name, ".pdr") != 0)
11187 return FALSE;
11188
11189 if (mips_elf_section_data (sec)->u.tdata == NULL)
11190 return FALSE;
11191
11192 to = contents;
11193 end = contents + sec->size;
11194 for (from = contents, i = 0;
11195 from < end;
11196 from += PDR_SIZE, i++)
11197 {
11198 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11199 continue;
11200 if (to != from)
11201 memcpy (to, from, PDR_SIZE);
11202 to += PDR_SIZE;
11203 }
11204 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11205 sec->output_offset, sec->size);
11206 return TRUE;
11207}
11208\f
11209/* MIPS ELF uses a special find_nearest_line routine in order the
11210 handle the ECOFF debugging information. */
11211
11212struct mips_elf_find_line
11213{
11214 struct ecoff_debug_info d;
11215 struct ecoff_find_line i;
11216};
11217
11218bfd_boolean
11219_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11220 asymbol **symbols, bfd_vma offset,
11221 const char **filename_ptr,
11222 const char **functionname_ptr,
11223 unsigned int *line_ptr)
11224{
11225 asection *msec;
11226
11227 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11228 filename_ptr, functionname_ptr,
11229 line_ptr))
11230 return TRUE;
11231
11232 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11233 filename_ptr, functionname_ptr,
11234 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11235 &elf_tdata (abfd)->dwarf2_find_line_info))
11236 return TRUE;
11237
11238 msec = bfd_get_section_by_name (abfd, ".mdebug");
11239 if (msec != NULL)
11240 {
11241 flagword origflags;
11242 struct mips_elf_find_line *fi;
11243 const struct ecoff_debug_swap * const swap =
11244 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11245
11246 /* If we are called during a link, mips_elf_final_link may have
11247 cleared the SEC_HAS_CONTENTS field. We force it back on here
11248 if appropriate (which it normally will be). */
11249 origflags = msec->flags;
11250 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11251 msec->flags |= SEC_HAS_CONTENTS;
11252
11253 fi = elf_tdata (abfd)->find_line_info;
11254 if (fi == NULL)
11255 {
11256 bfd_size_type external_fdr_size;
11257 char *fraw_src;
11258 char *fraw_end;
11259 struct fdr *fdr_ptr;
11260 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11261
11262 fi = bfd_zalloc (abfd, amt);
11263 if (fi == NULL)
11264 {
11265 msec->flags = origflags;
11266 return FALSE;
11267 }
11268
11269 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11270 {
11271 msec->flags = origflags;
11272 return FALSE;
11273 }
11274
11275 /* Swap in the FDR information. */
11276 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11277 fi->d.fdr = bfd_alloc (abfd, amt);
11278 if (fi->d.fdr == NULL)
11279 {
11280 msec->flags = origflags;
11281 return FALSE;
11282 }
11283 external_fdr_size = swap->external_fdr_size;
11284 fdr_ptr = fi->d.fdr;
11285 fraw_src = (char *) fi->d.external_fdr;
11286 fraw_end = (fraw_src
11287 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11288 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11289 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11290
11291 elf_tdata (abfd)->find_line_info = fi;
11292
11293 /* Note that we don't bother to ever free this information.
11294 find_nearest_line is either called all the time, as in
11295 objdump -l, so the information should be saved, or it is
11296 rarely called, as in ld error messages, so the memory
11297 wasted is unimportant. Still, it would probably be a
11298 good idea for free_cached_info to throw it away. */
11299 }
11300
11301 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11302 &fi->i, filename_ptr, functionname_ptr,
11303 line_ptr))
11304 {
11305 msec->flags = origflags;
11306 return TRUE;
11307 }
11308
11309 msec->flags = origflags;
11310 }
11311
11312 /* Fall back on the generic ELF find_nearest_line routine. */
11313
11314 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11315 filename_ptr, functionname_ptr,
11316 line_ptr);
11317}
11318
11319bfd_boolean
11320_bfd_mips_elf_find_inliner_info (bfd *abfd,
11321 const char **filename_ptr,
11322 const char **functionname_ptr,
11323 unsigned int *line_ptr)
11324{
11325 bfd_boolean found;
11326 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11327 functionname_ptr, line_ptr,
11328 & elf_tdata (abfd)->dwarf2_find_line_info);
11329 return found;
11330}
11331
11332\f
11333/* When are writing out the .options or .MIPS.options section,
11334 remember the bytes we are writing out, so that we can install the
11335 GP value in the section_processing routine. */
11336
11337bfd_boolean
11338_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11339 const void *location,
11340 file_ptr offset, bfd_size_type count)
11341{
11342 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11343 {
11344 bfd_byte *c;
11345
11346 if (elf_section_data (section) == NULL)
11347 {
11348 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11349 section->used_by_bfd = bfd_zalloc (abfd, amt);
11350 if (elf_section_data (section) == NULL)
11351 return FALSE;
11352 }
11353 c = mips_elf_section_data (section)->u.tdata;
11354 if (c == NULL)
11355 {
11356 c = bfd_zalloc (abfd, section->size);
11357 if (c == NULL)
11358 return FALSE;
11359 mips_elf_section_data (section)->u.tdata = c;
11360 }
11361
11362 memcpy (c + offset, location, count);
11363 }
11364
11365 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11366 count);
11367}
11368
11369/* This is almost identical to bfd_generic_get_... except that some
11370 MIPS relocations need to be handled specially. Sigh. */
11371
11372bfd_byte *
11373_bfd_elf_mips_get_relocated_section_contents
11374 (bfd *abfd,
11375 struct bfd_link_info *link_info,
11376 struct bfd_link_order *link_order,
11377 bfd_byte *data,
11378 bfd_boolean relocatable,
11379 asymbol **symbols)
11380{
11381 /* Get enough memory to hold the stuff */
11382 bfd *input_bfd = link_order->u.indirect.section->owner;
11383 asection *input_section = link_order->u.indirect.section;
11384 bfd_size_type sz;
11385
11386 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11387 arelent **reloc_vector = NULL;
11388 long reloc_count;
11389
11390 if (reloc_size < 0)
11391 goto error_return;
11392
11393 reloc_vector = bfd_malloc (reloc_size);
11394 if (reloc_vector == NULL && reloc_size != 0)
11395 goto error_return;
11396
11397 /* read in the section */
11398 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11399 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11400 goto error_return;
11401
11402 reloc_count = bfd_canonicalize_reloc (input_bfd,
11403 input_section,
11404 reloc_vector,
11405 symbols);
11406 if (reloc_count < 0)
11407 goto error_return;
11408
11409 if (reloc_count > 0)
11410 {
11411 arelent **parent;
11412 /* for mips */
11413 int gp_found;
11414 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11415
11416 {
11417 struct bfd_hash_entry *h;
11418 struct bfd_link_hash_entry *lh;
11419 /* Skip all this stuff if we aren't mixing formats. */
11420 if (abfd && input_bfd
11421 && abfd->xvec == input_bfd->xvec)
11422 lh = 0;
11423 else
11424 {
11425 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11426 lh = (struct bfd_link_hash_entry *) h;
11427 }
11428 lookup:
11429 if (lh)
11430 {
11431 switch (lh->type)
11432 {
11433 case bfd_link_hash_undefined:
11434 case bfd_link_hash_undefweak:
11435 case bfd_link_hash_common:
11436 gp_found = 0;
11437 break;
11438 case bfd_link_hash_defined:
11439 case bfd_link_hash_defweak:
11440 gp_found = 1;
11441 gp = lh->u.def.value;
11442 break;
11443 case bfd_link_hash_indirect:
11444 case bfd_link_hash_warning:
11445 lh = lh->u.i.link;
11446 /* @@FIXME ignoring warning for now */
11447 goto lookup;
11448 case bfd_link_hash_new:
11449 default:
11450 abort ();
11451 }
11452 }
11453 else
11454 gp_found = 0;
11455 }
11456 /* end mips */
11457 for (parent = reloc_vector; *parent != NULL; parent++)
11458 {
11459 char *error_message = NULL;
11460 bfd_reloc_status_type r;
11461
11462 /* Specific to MIPS: Deal with relocation types that require
11463 knowing the gp of the output bfd. */
11464 asymbol *sym = *(*parent)->sym_ptr_ptr;
11465
11466 /* If we've managed to find the gp and have a special
11467 function for the relocation then go ahead, else default
11468 to the generic handling. */
11469 if (gp_found
11470 && (*parent)->howto->special_function
11471 == _bfd_mips_elf32_gprel16_reloc)
11472 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11473 input_section, relocatable,
11474 data, gp);
11475 else
11476 r = bfd_perform_relocation (input_bfd, *parent, data,
11477 input_section,
11478 relocatable ? abfd : NULL,
11479 &error_message);
11480
11481 if (relocatable)
11482 {
11483 asection *os = input_section->output_section;
11484
11485 /* A partial link, so keep the relocs */
11486 os->orelocation[os->reloc_count] = *parent;
11487 os->reloc_count++;
11488 }
11489
11490 if (r != bfd_reloc_ok)
11491 {
11492 switch (r)
11493 {
11494 case bfd_reloc_undefined:
11495 if (!((*link_info->callbacks->undefined_symbol)
11496 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11497 input_bfd, input_section, (*parent)->address, TRUE)))
11498 goto error_return;
11499 break;
11500 case bfd_reloc_dangerous:
11501 BFD_ASSERT (error_message != NULL);
11502 if (!((*link_info->callbacks->reloc_dangerous)
11503 (link_info, error_message, input_bfd, input_section,
11504 (*parent)->address)))
11505 goto error_return;
11506 break;
11507 case bfd_reloc_overflow:
11508 if (!((*link_info->callbacks->reloc_overflow)
11509 (link_info, NULL,
11510 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11511 (*parent)->howto->name, (*parent)->addend,
11512 input_bfd, input_section, (*parent)->address)))
11513 goto error_return;
11514 break;
11515 case bfd_reloc_outofrange:
11516 default:
11517 abort ();
11518 break;
11519 }
11520
11521 }
11522 }
11523 }
11524 if (reloc_vector != NULL)
11525 free (reloc_vector);
11526 return data;
11527
11528error_return:
11529 if (reloc_vector != NULL)
11530 free (reloc_vector);
11531 return NULL;
11532}
11533\f
11534/* Create a MIPS ELF linker hash table. */
11535
11536struct bfd_link_hash_table *
11537_bfd_mips_elf_link_hash_table_create (bfd *abfd)
11538{
11539 struct mips_elf_link_hash_table *ret;
11540 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11541
11542 ret = bfd_malloc (amt);
11543 if (ret == NULL)
11544 return NULL;
11545
11546 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11547 mips_elf_link_hash_newfunc,
11548 sizeof (struct mips_elf_link_hash_entry),
11549 MIPS_ELF_DATA))
11550 {
11551 free (ret);
11552 return NULL;
11553 }
11554
11555#if 0
11556 /* We no longer use this. */
11557 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11558 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11559#endif
11560 ret->procedure_count = 0;
11561 ret->compact_rel_size = 0;
11562 ret->use_rld_obj_head = FALSE;
11563 ret->rld_value = 0;
11564 ret->mips16_stubs_seen = FALSE;
11565 ret->use_plts_and_copy_relocs = FALSE;
11566 ret->is_vxworks = FALSE;
11567 ret->small_data_overflow_reported = FALSE;
11568 ret->srelbss = NULL;
11569 ret->sdynbss = NULL;
11570 ret->srelplt = NULL;
11571 ret->srelplt2 = NULL;
11572 ret->sgotplt = NULL;
11573 ret->splt = NULL;
11574 ret->sstubs = NULL;
11575 ret->sgot = NULL;
11576 ret->got_info = NULL;
11577 ret->plt_header_size = 0;
11578 ret->plt_entry_size = 0;
11579 ret->lazy_stub_count = 0;
11580 ret->function_stub_size = 0;
11581 ret->strampoline = NULL;
11582 ret->la25_stubs = NULL;
11583 ret->add_stub_section = NULL;
11584
11585 return &ret->root.root;
11586}
11587
11588/* Likewise, but indicate that the target is VxWorks. */
11589
11590struct bfd_link_hash_table *
11591_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11592{
11593 struct bfd_link_hash_table *ret;
11594
11595 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11596 if (ret)
11597 {
11598 struct mips_elf_link_hash_table *htab;
11599
11600 htab = (struct mips_elf_link_hash_table *) ret;
11601 htab->use_plts_and_copy_relocs = TRUE;
11602 htab->is_vxworks = TRUE;
11603 }
11604 return ret;
11605}
11606
11607/* A function that the linker calls if we are allowed to use PLTs
11608 and copy relocs. */
11609
11610void
11611_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11612{
11613 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11614}
11615\f
11616/* We need to use a special link routine to handle the .reginfo and
11617 the .mdebug sections. We need to merge all instances of these
11618 sections together, not write them all out sequentially. */
11619
11620bfd_boolean
11621_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11622{
11623 asection *o;
11624 struct bfd_link_order *p;
11625 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11626 asection *rtproc_sec;
11627 Elf32_RegInfo reginfo;
11628 struct ecoff_debug_info debug;
11629 struct mips_htab_traverse_info hti;
11630 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11631 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11632 HDRR *symhdr = &debug.symbolic_header;
11633 void *mdebug_handle = NULL;
11634 asection *s;
11635 EXTR esym;
11636 unsigned int i;
11637 bfd_size_type amt;
11638 struct mips_elf_link_hash_table *htab;
11639
11640 static const char * const secname[] =
11641 {
11642 ".text", ".init", ".fini", ".data",
11643 ".rodata", ".sdata", ".sbss", ".bss"
11644 };
11645 static const int sc[] =
11646 {
11647 scText, scInit, scFini, scData,
11648 scRData, scSData, scSBss, scBss
11649 };
11650
11651 /* Sort the dynamic symbols so that those with GOT entries come after
11652 those without. */
11653 htab = mips_elf_hash_table (info);
11654 BFD_ASSERT (htab != NULL);
11655
11656 if (!mips_elf_sort_hash_table (abfd, info))
11657 return FALSE;
11658
11659 /* Create any scheduled LA25 stubs. */
11660 hti.info = info;
11661 hti.output_bfd = abfd;
11662 hti.error = FALSE;
11663 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11664 if (hti.error)
11665 return FALSE;
11666
11667 /* Get a value for the GP register. */
11668 if (elf_gp (abfd) == 0)
11669 {
11670 struct bfd_link_hash_entry *h;
11671
11672 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11673 if (h != NULL && h->type == bfd_link_hash_defined)
11674 elf_gp (abfd) = (h->u.def.value
11675 + h->u.def.section->output_section->vma
11676 + h->u.def.section->output_offset);
11677 else if (htab->is_vxworks
11678 && (h = bfd_link_hash_lookup (info->hash,
11679 "_GLOBAL_OFFSET_TABLE_",
11680 FALSE, FALSE, TRUE))
11681 && h->type == bfd_link_hash_defined)
11682 elf_gp (abfd) = (h->u.def.section->output_section->vma
11683 + h->u.def.section->output_offset
11684 + h->u.def.value);
11685 else if (info->relocatable)
11686 {
11687 bfd_vma lo = MINUS_ONE;
11688
11689 /* Find the GP-relative section with the lowest offset. */
11690 for (o = abfd->sections; o != NULL; o = o->next)
11691 if (o->vma < lo
11692 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11693 lo = o->vma;
11694
11695 /* And calculate GP relative to that. */
11696 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11697 }
11698 else
11699 {
11700 /* If the relocate_section function needs to do a reloc
11701 involving the GP value, it should make a reloc_dangerous
11702 callback to warn that GP is not defined. */
11703 }
11704 }
11705
11706 /* Go through the sections and collect the .reginfo and .mdebug
11707 information. */
11708 reginfo_sec = NULL;
11709 mdebug_sec = NULL;
11710 gptab_data_sec = NULL;
11711 gptab_bss_sec = NULL;
11712 for (o = abfd->sections; o != NULL; o = o->next)
11713 {
11714 if (strcmp (o->name, ".reginfo") == 0)
11715 {
11716 memset (&reginfo, 0, sizeof reginfo);
11717
11718 /* We have found the .reginfo section in the output file.
11719 Look through all the link_orders comprising it and merge
11720 the information together. */
11721 for (p = o->map_head.link_order; p != NULL; p = p->next)
11722 {
11723 asection *input_section;
11724 bfd *input_bfd;
11725 Elf32_External_RegInfo ext;
11726 Elf32_RegInfo sub;
11727
11728 if (p->type != bfd_indirect_link_order)
11729 {
11730 if (p->type == bfd_data_link_order)
11731 continue;
11732 abort ();
11733 }
11734
11735 input_section = p->u.indirect.section;
11736 input_bfd = input_section->owner;
11737
11738 if (! bfd_get_section_contents (input_bfd, input_section,
11739 &ext, 0, sizeof ext))
11740 return FALSE;
11741
11742 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11743
11744 reginfo.ri_gprmask |= sub.ri_gprmask;
11745 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11746 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11747 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11748 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11749
11750 /* ri_gp_value is set by the function
11751 mips_elf32_section_processing when the section is
11752 finally written out. */
11753
11754 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11755 elf_link_input_bfd ignores this section. */
11756 input_section->flags &= ~SEC_HAS_CONTENTS;
11757 }
11758
11759 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11760 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11761
11762 /* Skip this section later on (I don't think this currently
11763 matters, but someday it might). */
11764 o->map_head.link_order = NULL;
11765
11766 reginfo_sec = o;
11767 }
11768
11769 if (strcmp (o->name, ".mdebug") == 0)
11770 {
11771 struct extsym_info einfo;
11772 bfd_vma last;
11773
11774 /* We have found the .mdebug section in the output file.
11775 Look through all the link_orders comprising it and merge
11776 the information together. */
11777 symhdr->magic = swap->sym_magic;
11778 /* FIXME: What should the version stamp be? */
11779 symhdr->vstamp = 0;
11780 symhdr->ilineMax = 0;
11781 symhdr->cbLine = 0;
11782 symhdr->idnMax = 0;
11783 symhdr->ipdMax = 0;
11784 symhdr->isymMax = 0;
11785 symhdr->ioptMax = 0;
11786 symhdr->iauxMax = 0;
11787 symhdr->issMax = 0;
11788 symhdr->issExtMax = 0;
11789 symhdr->ifdMax = 0;
11790 symhdr->crfd = 0;
11791 symhdr->iextMax = 0;
11792
11793 /* We accumulate the debugging information itself in the
11794 debug_info structure. */
11795 debug.line = NULL;
11796 debug.external_dnr = NULL;
11797 debug.external_pdr = NULL;
11798 debug.external_sym = NULL;
11799 debug.external_opt = NULL;
11800 debug.external_aux = NULL;
11801 debug.ss = NULL;
11802 debug.ssext = debug.ssext_end = NULL;
11803 debug.external_fdr = NULL;
11804 debug.external_rfd = NULL;
11805 debug.external_ext = debug.external_ext_end = NULL;
11806
11807 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11808 if (mdebug_handle == NULL)
11809 return FALSE;
11810
11811 esym.jmptbl = 0;
11812 esym.cobol_main = 0;
11813 esym.weakext = 0;
11814 esym.reserved = 0;
11815 esym.ifd = ifdNil;
11816 esym.asym.iss = issNil;
11817 esym.asym.st = stLocal;
11818 esym.asym.reserved = 0;
11819 esym.asym.index = indexNil;
11820 last = 0;
11821 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11822 {
11823 esym.asym.sc = sc[i];
11824 s = bfd_get_section_by_name (abfd, secname[i]);
11825 if (s != NULL)
11826 {
11827 esym.asym.value = s->vma;
11828 last = s->vma + s->size;
11829 }
11830 else
11831 esym.asym.value = last;
11832 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11833 secname[i], &esym))
11834 return FALSE;
11835 }
11836
11837 for (p = o->map_head.link_order; p != NULL; p = p->next)
11838 {
11839 asection *input_section;
11840 bfd *input_bfd;
11841 const struct ecoff_debug_swap *input_swap;
11842 struct ecoff_debug_info input_debug;
11843 char *eraw_src;
11844 char *eraw_end;
11845
11846 if (p->type != bfd_indirect_link_order)
11847 {
11848 if (p->type == bfd_data_link_order)
11849 continue;
11850 abort ();
11851 }
11852
11853 input_section = p->u.indirect.section;
11854 input_bfd = input_section->owner;
11855
11856 if (!is_mips_elf (input_bfd))
11857 {
11858 /* I don't know what a non MIPS ELF bfd would be
11859 doing with a .mdebug section, but I don't really
11860 want to deal with it. */
11861 continue;
11862 }
11863
11864 input_swap = (get_elf_backend_data (input_bfd)
11865 ->elf_backend_ecoff_debug_swap);
11866
11867 BFD_ASSERT (p->size == input_section->size);
11868
11869 /* The ECOFF linking code expects that we have already
11870 read in the debugging information and set up an
11871 ecoff_debug_info structure, so we do that now. */
11872 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11873 &input_debug))
11874 return FALSE;
11875
11876 if (! (bfd_ecoff_debug_accumulate
11877 (mdebug_handle, abfd, &debug, swap, input_bfd,
11878 &input_debug, input_swap, info)))
11879 return FALSE;
11880
11881 /* Loop through the external symbols. For each one with
11882 interesting information, try to find the symbol in
11883 the linker global hash table and save the information
11884 for the output external symbols. */
11885 eraw_src = input_debug.external_ext;
11886 eraw_end = (eraw_src
11887 + (input_debug.symbolic_header.iextMax
11888 * input_swap->external_ext_size));
11889 for (;
11890 eraw_src < eraw_end;
11891 eraw_src += input_swap->external_ext_size)
11892 {
11893 EXTR ext;
11894 const char *name;
11895 struct mips_elf_link_hash_entry *h;
11896
11897 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11898 if (ext.asym.sc == scNil
11899 || ext.asym.sc == scUndefined
11900 || ext.asym.sc == scSUndefined)
11901 continue;
11902
11903 name = input_debug.ssext + ext.asym.iss;
11904 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11905 name, FALSE, FALSE, TRUE);
11906 if (h == NULL || h->esym.ifd != -2)
11907 continue;
11908
11909 if (ext.ifd != -1)
11910 {
11911 BFD_ASSERT (ext.ifd
11912 < input_debug.symbolic_header.ifdMax);
11913 ext.ifd = input_debug.ifdmap[ext.ifd];
11914 }
11915
11916 h->esym = ext;
11917 }
11918
11919 /* Free up the information we just read. */
11920 free (input_debug.line);
11921 free (input_debug.external_dnr);
11922 free (input_debug.external_pdr);
11923 free (input_debug.external_sym);
11924 free (input_debug.external_opt);
11925 free (input_debug.external_aux);
11926 free (input_debug.ss);
11927 free (input_debug.ssext);
11928 free (input_debug.external_fdr);
11929 free (input_debug.external_rfd);
11930 free (input_debug.external_ext);
11931
11932 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11933 elf_link_input_bfd ignores this section. */
11934 input_section->flags &= ~SEC_HAS_CONTENTS;
11935 }
11936
11937 if (SGI_COMPAT (abfd) && info->shared)
11938 {
11939 /* Create .rtproc section. */
11940 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11941 if (rtproc_sec == NULL)
11942 {
11943 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11944 | SEC_LINKER_CREATED | SEC_READONLY);
11945
11946 rtproc_sec = bfd_make_section_with_flags (abfd,
11947 ".rtproc",
11948 flags);
11949 if (rtproc_sec == NULL
11950 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11951 return FALSE;
11952 }
11953
11954 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11955 info, rtproc_sec,
11956 &debug))
11957 return FALSE;
11958 }
11959
11960 /* Build the external symbol information. */
11961 einfo.abfd = abfd;
11962 einfo.info = info;
11963 einfo.debug = &debug;
11964 einfo.swap = swap;
11965 einfo.failed = FALSE;
11966 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11967 mips_elf_output_extsym, &einfo);
11968 if (einfo.failed)
11969 return FALSE;
11970
11971 /* Set the size of the .mdebug section. */
11972 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11973
11974 /* Skip this section later on (I don't think this currently
11975 matters, but someday it might). */
11976 o->map_head.link_order = NULL;
11977
11978 mdebug_sec = o;
11979 }
11980
11981 if (CONST_STRNEQ (o->name, ".gptab."))
11982 {
11983 const char *subname;
11984 unsigned int c;
11985 Elf32_gptab *tab;
11986 Elf32_External_gptab *ext_tab;
11987 unsigned int j;
11988
11989 /* The .gptab.sdata and .gptab.sbss sections hold
11990 information describing how the small data area would
11991 change depending upon the -G switch. These sections
11992 not used in executables files. */
11993 if (! info->relocatable)
11994 {
11995 for (p = o->map_head.link_order; p != NULL; p = p->next)
11996 {
11997 asection *input_section;
11998
11999 if (p->type != bfd_indirect_link_order)
12000 {
12001 if (p->type == bfd_data_link_order)
12002 continue;
12003 abort ();
12004 }
12005
12006 input_section = p->u.indirect.section;
12007
12008 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12009 elf_link_input_bfd ignores this section. */
12010 input_section->flags &= ~SEC_HAS_CONTENTS;
12011 }
12012
12013 /* Skip this section later on (I don't think this
12014 currently matters, but someday it might). */
12015 o->map_head.link_order = NULL;
12016
12017 /* Really remove the section. */
12018 bfd_section_list_remove (abfd, o);
12019 --abfd->section_count;
12020
12021 continue;
12022 }
12023
12024 /* There is one gptab for initialized data, and one for
12025 uninitialized data. */
12026 if (strcmp (o->name, ".gptab.sdata") == 0)
12027 gptab_data_sec = o;
12028 else if (strcmp (o->name, ".gptab.sbss") == 0)
12029 gptab_bss_sec = o;
12030 else
12031 {
12032 (*_bfd_error_handler)
12033 (_("%s: illegal section name `%s'"),
12034 bfd_get_filename (abfd), o->name);
12035 bfd_set_error (bfd_error_nonrepresentable_section);
12036 return FALSE;
12037 }
12038
12039 /* The linker script always combines .gptab.data and
12040 .gptab.sdata into .gptab.sdata, and likewise for
12041 .gptab.bss and .gptab.sbss. It is possible that there is
12042 no .sdata or .sbss section in the output file, in which
12043 case we must change the name of the output section. */
12044 subname = o->name + sizeof ".gptab" - 1;
12045 if (bfd_get_section_by_name (abfd, subname) == NULL)
12046 {
12047 if (o == gptab_data_sec)
12048 o->name = ".gptab.data";
12049 else
12050 o->name = ".gptab.bss";
12051 subname = o->name + sizeof ".gptab" - 1;
12052 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
12053 }
12054
12055 /* Set up the first entry. */
12056 c = 1;
12057 amt = c * sizeof (Elf32_gptab);
12058 tab = bfd_malloc (amt);
12059 if (tab == NULL)
12060 return FALSE;
12061 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
12062 tab[0].gt_header.gt_unused = 0;
12063
12064 /* Combine the input sections. */
12065 for (p = o->map_head.link_order; p != NULL; p = p->next)
12066 {
12067 asection *input_section;
12068 bfd *input_bfd;
12069 bfd_size_type size;
12070 unsigned long last;
12071 bfd_size_type gpentry;
12072
12073 if (p->type != bfd_indirect_link_order)
12074 {
12075 if (p->type == bfd_data_link_order)
12076 continue;
12077 abort ();
12078 }
12079
12080 input_section = p->u.indirect.section;
12081 input_bfd = input_section->owner;
12082
12083 /* Combine the gptab entries for this input section one
12084 by one. We know that the input gptab entries are
12085 sorted by ascending -G value. */
12086 size = input_section->size;
12087 last = 0;
12088 for (gpentry = sizeof (Elf32_External_gptab);
12089 gpentry < size;
12090 gpentry += sizeof (Elf32_External_gptab))
12091 {
12092 Elf32_External_gptab ext_gptab;
12093 Elf32_gptab int_gptab;
12094 unsigned long val;
12095 unsigned long add;
12096 bfd_boolean exact;
12097 unsigned int look;
12098
12099 if (! (bfd_get_section_contents
12100 (input_bfd, input_section, &ext_gptab, gpentry,
12101 sizeof (Elf32_External_gptab))))
12102 {
12103 free (tab);
12104 return FALSE;
12105 }
12106
12107 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12108 &int_gptab);
12109 val = int_gptab.gt_entry.gt_g_value;
12110 add = int_gptab.gt_entry.gt_bytes - last;
12111
12112 exact = FALSE;
12113 for (look = 1; look < c; look++)
12114 {
12115 if (tab[look].gt_entry.gt_g_value >= val)
12116 tab[look].gt_entry.gt_bytes += add;
12117
12118 if (tab[look].gt_entry.gt_g_value == val)
12119 exact = TRUE;
12120 }
12121
12122 if (! exact)
12123 {
12124 Elf32_gptab *new_tab;
12125 unsigned int max;
12126
12127 /* We need a new table entry. */
12128 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
12129 new_tab = bfd_realloc (tab, amt);
12130 if (new_tab == NULL)
12131 {
12132 free (tab);
12133 return FALSE;
12134 }
12135 tab = new_tab;
12136 tab[c].gt_entry.gt_g_value = val;
12137 tab[c].gt_entry.gt_bytes = add;
12138
12139 /* Merge in the size for the next smallest -G
12140 value, since that will be implied by this new
12141 value. */
12142 max = 0;
12143 for (look = 1; look < c; look++)
12144 {
12145 if (tab[look].gt_entry.gt_g_value < val
12146 && (max == 0
12147 || (tab[look].gt_entry.gt_g_value
12148 > tab[max].gt_entry.gt_g_value)))
12149 max = look;
12150 }
12151 if (max != 0)
12152 tab[c].gt_entry.gt_bytes +=
12153 tab[max].gt_entry.gt_bytes;
12154
12155 ++c;
12156 }
12157
12158 last = int_gptab.gt_entry.gt_bytes;
12159 }
12160
12161 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12162 elf_link_input_bfd ignores this section. */
12163 input_section->flags &= ~SEC_HAS_CONTENTS;
12164 }
12165
12166 /* The table must be sorted by -G value. */
12167 if (c > 2)
12168 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12169
12170 /* Swap out the table. */
12171 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12172 ext_tab = bfd_alloc (abfd, amt);
12173 if (ext_tab == NULL)
12174 {
12175 free (tab);
12176 return FALSE;
12177 }
12178
12179 for (j = 0; j < c; j++)
12180 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12181 free (tab);
12182
12183 o->size = c * sizeof (Elf32_External_gptab);
12184 o->contents = (bfd_byte *) ext_tab;
12185
12186 /* Skip this section later on (I don't think this currently
12187 matters, but someday it might). */
12188 o->map_head.link_order = NULL;
12189 }
12190 }
12191
12192 /* Invoke the regular ELF backend linker to do all the work. */
12193 if (!bfd_elf_final_link (abfd, info))
12194 return FALSE;
12195
12196 /* Now write out the computed sections. */
12197
12198 if (reginfo_sec != NULL)
12199 {
12200 Elf32_External_RegInfo ext;
12201
12202 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12203 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12204 return FALSE;
12205 }
12206
12207 if (mdebug_sec != NULL)
12208 {
12209 BFD_ASSERT (abfd->output_has_begun);
12210 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12211 swap, info,
12212 mdebug_sec->filepos))
12213 return FALSE;
12214
12215 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12216 }
12217
12218 if (gptab_data_sec != NULL)
12219 {
12220 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12221 gptab_data_sec->contents,
12222 0, gptab_data_sec->size))
12223 return FALSE;
12224 }
12225
12226 if (gptab_bss_sec != NULL)
12227 {
12228 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12229 gptab_bss_sec->contents,
12230 0, gptab_bss_sec->size))
12231 return FALSE;
12232 }
12233
12234 if (SGI_COMPAT (abfd))
12235 {
12236 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12237 if (rtproc_sec != NULL)
12238 {
12239 if (! bfd_set_section_contents (abfd, rtproc_sec,
12240 rtproc_sec->contents,
12241 0, rtproc_sec->size))
12242 return FALSE;
12243 }
12244 }
12245
12246 return TRUE;
12247}
12248\f
12249/* Structure for saying that BFD machine EXTENSION extends BASE. */
12250
12251struct mips_mach_extension {
12252 unsigned long extension, base;
12253};
12254
12255
12256/* An array describing how BFD machines relate to one another. The entries
12257 are ordered topologically with MIPS I extensions listed last. */
12258
12259static const struct mips_mach_extension mips_mach_extensions[] = {
12260 /* MIPS64r2 extensions. */
12261 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12262
12263 /* MIPS64 extensions. */
12264 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12265 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12266 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12267 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
12268
12269 /* MIPS V extensions. */
12270 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12271
12272 /* R10000 extensions. */
12273 { bfd_mach_mips12000, bfd_mach_mips10000 },
12274 { bfd_mach_mips14000, bfd_mach_mips10000 },
12275 { bfd_mach_mips16000, bfd_mach_mips10000 },
12276
12277 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12278 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12279 better to allow vr5400 and vr5500 code to be merged anyway, since
12280 many libraries will just use the core ISA. Perhaps we could add
12281 some sort of ASE flag if this ever proves a problem. */
12282 { bfd_mach_mips5500, bfd_mach_mips5400 },
12283 { bfd_mach_mips5400, bfd_mach_mips5000 },
12284
12285 /* MIPS IV extensions. */
12286 { bfd_mach_mips5, bfd_mach_mips8000 },
12287 { bfd_mach_mips10000, bfd_mach_mips8000 },
12288 { bfd_mach_mips5000, bfd_mach_mips8000 },
12289 { bfd_mach_mips7000, bfd_mach_mips8000 },
12290 { bfd_mach_mips9000, bfd_mach_mips8000 },
12291
12292 /* VR4100 extensions. */
12293 { bfd_mach_mips4120, bfd_mach_mips4100 },
12294 { bfd_mach_mips4111, bfd_mach_mips4100 },
12295
12296 /* MIPS III extensions. */
12297 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12298 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12299 { bfd_mach_mips8000, bfd_mach_mips4000 },
12300 { bfd_mach_mips4650, bfd_mach_mips4000 },
12301 { bfd_mach_mips4600, bfd_mach_mips4000 },
12302 { bfd_mach_mips4400, bfd_mach_mips4000 },
12303 { bfd_mach_mips4300, bfd_mach_mips4000 },
12304 { bfd_mach_mips4100, bfd_mach_mips4000 },
12305 { bfd_mach_mips4010, bfd_mach_mips4000 },
12306
12307 /* MIPS32 extensions. */
12308 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12309
12310 /* MIPS II extensions. */
12311 { bfd_mach_mips4000, bfd_mach_mips6000 },
12312 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12313
12314 /* MIPS I extensions. */
12315 { bfd_mach_mips6000, bfd_mach_mips3000 },
12316 { bfd_mach_mips3900, bfd_mach_mips3000 }
12317};
12318
12319
12320/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12321
12322static bfd_boolean
12323mips_mach_extends_p (unsigned long base, unsigned long extension)
12324{
12325 size_t i;
12326
12327 if (extension == base)
12328 return TRUE;
12329
12330 if (base == bfd_mach_mipsisa32
12331 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12332 return TRUE;
12333
12334 if (base == bfd_mach_mipsisa32r2
12335 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12336 return TRUE;
12337
12338 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12339 if (extension == mips_mach_extensions[i].extension)
12340 {
12341 extension = mips_mach_extensions[i].base;
12342 if (extension == base)
12343 return TRUE;
12344 }
12345
12346 return FALSE;
12347}
12348
12349
12350/* Return true if the given ELF header flags describe a 32-bit binary. */
12351
12352static bfd_boolean
12353mips_32bit_flags_p (flagword flags)
12354{
12355 return ((flags & EF_MIPS_32BITMODE) != 0
12356 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12357 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12358 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12359 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12360 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12361 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12362}
12363
12364
12365/* Merge object attributes from IBFD into OBFD. Raise an error if
12366 there are conflicting attributes. */
12367static bfd_boolean
12368mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12369{
12370 obj_attribute *in_attr;
12371 obj_attribute *out_attr;
12372
12373 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12374 {
12375 /* This is the first object. Copy the attributes. */
12376 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12377
12378 /* Use the Tag_null value to indicate the attributes have been
12379 initialized. */
12380 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12381
12382 return TRUE;
12383 }
12384
12385 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12386 non-conflicting ones. */
12387 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12388 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12389 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12390 {
12391 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12392 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12393 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12394 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12395 ;
12396 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12397 _bfd_error_handler
12398 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12399 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12400 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12401 _bfd_error_handler
12402 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12403 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12404 else
12405 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12406 {
12407 case 1:
12408 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12409 {
12410 case 2:
12411 _bfd_error_handler
12412 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12413 obfd, ibfd);
12414 break;
12415
12416 case 3:
12417 _bfd_error_handler
12418 (_("Warning: %B uses hard float, %B uses soft float"),
12419 obfd, ibfd);
12420 break;
12421
12422 case 4:
12423 _bfd_error_handler
12424 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12425 obfd, ibfd);
12426 break;
12427
12428 default:
12429 abort ();
12430 }
12431 break;
12432
12433 case 2:
12434 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12435 {
12436 case 1:
12437 _bfd_error_handler
12438 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12439 ibfd, obfd);
12440 break;
12441
12442 case 3:
12443 _bfd_error_handler
12444 (_("Warning: %B uses hard float, %B uses soft float"),
12445 obfd, ibfd);
12446 break;
12447
12448 case 4:
12449 _bfd_error_handler
12450 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12451 obfd, ibfd);
12452 break;
12453
12454 default:
12455 abort ();
12456 }
12457 break;
12458
12459 case 3:
12460 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12461 {
12462 case 1:
12463 case 2:
12464 case 4:
12465 _bfd_error_handler
12466 (_("Warning: %B uses hard float, %B uses soft float"),
12467 ibfd, obfd);
12468 break;
12469
12470 default:
12471 abort ();
12472 }
12473 break;
12474
12475 case 4:
12476 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12477 {
12478 case 1:
12479 _bfd_error_handler
12480 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12481 ibfd, obfd);
12482 break;
12483
12484 case 2:
12485 _bfd_error_handler
12486 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12487 ibfd, obfd);
12488 break;
12489
12490 case 3:
12491 _bfd_error_handler
12492 (_("Warning: %B uses hard float, %B uses soft float"),
12493 obfd, ibfd);
12494 break;
12495
12496 default:
12497 abort ();
12498 }
12499 break;
12500
12501 default:
12502 abort ();
12503 }
12504 }
12505
12506 /* Merge Tag_compatibility attributes and any common GNU ones. */
12507 _bfd_elf_merge_object_attributes (ibfd, obfd);
12508
12509 return TRUE;
12510}
12511
12512/* Merge backend specific data from an object file to the output
12513 object file when linking. */
12514
12515bfd_boolean
12516_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12517{
12518 flagword old_flags;
12519 flagword new_flags;
12520 bfd_boolean ok;
12521 bfd_boolean null_input_bfd = TRUE;
12522 asection *sec;
12523
12524 /* Check if we have the same endianness. */
12525 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12526 {
12527 (*_bfd_error_handler)
12528 (_("%B: endianness incompatible with that of the selected emulation"),
12529 ibfd);
12530 return FALSE;
12531 }
12532
12533 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12534 return TRUE;
12535
12536 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12537 {
12538 (*_bfd_error_handler)
12539 (_("%B: ABI is incompatible with that of the selected emulation"),
12540 ibfd);
12541 return FALSE;
12542 }
12543
12544 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12545 return FALSE;
12546
12547 new_flags = elf_elfheader (ibfd)->e_flags;
12548 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12549 old_flags = elf_elfheader (obfd)->e_flags;
12550
12551 if (! elf_flags_init (obfd))
12552 {
12553 elf_flags_init (obfd) = TRUE;
12554 elf_elfheader (obfd)->e_flags = new_flags;
12555 elf_elfheader (obfd)->e_ident[EI_CLASS]
12556 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12557
12558 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12559 && (bfd_get_arch_info (obfd)->the_default
12560 || mips_mach_extends_p (bfd_get_mach (obfd),
12561 bfd_get_mach (ibfd))))
12562 {
12563 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12564 bfd_get_mach (ibfd)))
12565 return FALSE;
12566 }
12567
12568 return TRUE;
12569 }
12570
12571 /* Check flag compatibility. */
12572
12573 new_flags &= ~EF_MIPS_NOREORDER;
12574 old_flags &= ~EF_MIPS_NOREORDER;
12575
12576 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12577 doesn't seem to matter. */
12578 new_flags &= ~EF_MIPS_XGOT;
12579 old_flags &= ~EF_MIPS_XGOT;
12580
12581 /* MIPSpro generates ucode info in n64 objects. Again, we should
12582 just be able to ignore this. */
12583 new_flags &= ~EF_MIPS_UCODE;
12584 old_flags &= ~EF_MIPS_UCODE;
12585
12586 /* DSOs should only be linked with CPIC code. */
12587 if ((ibfd->flags & DYNAMIC) != 0)
12588 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12589
12590 if (new_flags == old_flags)
12591 return TRUE;
12592
12593 /* Check to see if the input BFD actually contains any sections.
12594 If not, its flags may not have been initialised either, but it cannot
12595 actually cause any incompatibility. */
12596 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12597 {
12598 /* Ignore synthetic sections and empty .text, .data and .bss sections
12599 which are automatically generated by gas. Also ignore fake
12600 (s)common sections, since merely defining a common symbol does
12601 not affect compatibility. */
12602 if ((sec->flags & SEC_IS_COMMON) == 0
12603 && strcmp (sec->name, ".reginfo")
12604 && strcmp (sec->name, ".mdebug")
12605 && (sec->size != 0
12606 || (strcmp (sec->name, ".text")
12607 && strcmp (sec->name, ".data")
12608 && strcmp (sec->name, ".bss"))))
12609 {
12610 null_input_bfd = FALSE;
12611 break;
12612 }
12613 }
12614 if (null_input_bfd)
12615 return TRUE;
12616
12617 ok = TRUE;
12618
12619 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12620 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12621 {
12622 (*_bfd_error_handler)
12623 (_("%B: warning: linking abicalls files with non-abicalls files"),
12624 ibfd);
12625 ok = TRUE;
12626 }
12627
12628 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12629 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12630 if (! (new_flags & EF_MIPS_PIC))
12631 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12632
12633 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12634 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12635
12636 /* Compare the ISAs. */
12637 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12638 {
12639 (*_bfd_error_handler)
12640 (_("%B: linking 32-bit code with 64-bit code"),
12641 ibfd);
12642 ok = FALSE;
12643 }
12644 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12645 {
12646 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12647 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12648 {
12649 /* Copy the architecture info from IBFD to OBFD. Also copy
12650 the 32-bit flag (if set) so that we continue to recognise
12651 OBFD as a 32-bit binary. */
12652 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12653 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12654 elf_elfheader (obfd)->e_flags
12655 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12656
12657 /* Copy across the ABI flags if OBFD doesn't use them
12658 and if that was what caused us to treat IBFD as 32-bit. */
12659 if ((old_flags & EF_MIPS_ABI) == 0
12660 && mips_32bit_flags_p (new_flags)
12661 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12662 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12663 }
12664 else
12665 {
12666 /* The ISAs aren't compatible. */
12667 (*_bfd_error_handler)
12668 (_("%B: linking %s module with previous %s modules"),
12669 ibfd,
12670 bfd_printable_name (ibfd),
12671 bfd_printable_name (obfd));
12672 ok = FALSE;
12673 }
12674 }
12675
12676 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12677 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12678
12679 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12680 does set EI_CLASS differently from any 32-bit ABI. */
12681 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12682 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12683 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12684 {
12685 /* Only error if both are set (to different values). */
12686 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12687 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12688 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12689 {
12690 (*_bfd_error_handler)
12691 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12692 ibfd,
12693 elf_mips_abi_name (ibfd),
12694 elf_mips_abi_name (obfd));
12695 ok = FALSE;
12696 }
12697 new_flags &= ~EF_MIPS_ABI;
12698 old_flags &= ~EF_MIPS_ABI;
12699 }
12700
12701 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12702 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12703 {
12704 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12705
12706 new_flags &= ~ EF_MIPS_ARCH_ASE;
12707 old_flags &= ~ EF_MIPS_ARCH_ASE;
12708 }
12709
12710 /* Warn about any other mismatches */
12711 if (new_flags != old_flags)
12712 {
12713 (*_bfd_error_handler)
12714 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12715 ibfd, (unsigned long) new_flags,
12716 (unsigned long) old_flags);
12717 ok = FALSE;
12718 }
12719
12720 if (! ok)
12721 {
12722 bfd_set_error (bfd_error_bad_value);
12723 return FALSE;
12724 }
12725
12726 return TRUE;
12727}
12728
12729/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12730
12731bfd_boolean
12732_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12733{
12734 BFD_ASSERT (!elf_flags_init (abfd)
12735 || elf_elfheader (abfd)->e_flags == flags);
12736
12737 elf_elfheader (abfd)->e_flags = flags;
12738 elf_flags_init (abfd) = TRUE;
12739 return TRUE;
12740}
12741
12742char *
12743_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12744{
12745 switch (dtag)
12746 {
12747 default: return "";
12748 case DT_MIPS_RLD_VERSION:
12749 return "MIPS_RLD_VERSION";
12750 case DT_MIPS_TIME_STAMP:
12751 return "MIPS_TIME_STAMP";
12752 case DT_MIPS_ICHECKSUM:
12753 return "MIPS_ICHECKSUM";
12754 case DT_MIPS_IVERSION:
12755 return "MIPS_IVERSION";
12756 case DT_MIPS_FLAGS:
12757 return "MIPS_FLAGS";
12758 case DT_MIPS_BASE_ADDRESS:
12759 return "MIPS_BASE_ADDRESS";
12760 case DT_MIPS_MSYM:
12761 return "MIPS_MSYM";
12762 case DT_MIPS_CONFLICT:
12763 return "MIPS_CONFLICT";
12764 case DT_MIPS_LIBLIST:
12765 return "MIPS_LIBLIST";
12766 case DT_MIPS_LOCAL_GOTNO:
12767 return "MIPS_LOCAL_GOTNO";
12768 case DT_MIPS_CONFLICTNO:
12769 return "MIPS_CONFLICTNO";
12770 case DT_MIPS_LIBLISTNO:
12771 return "MIPS_LIBLISTNO";
12772 case DT_MIPS_SYMTABNO:
12773 return "MIPS_SYMTABNO";
12774 case DT_MIPS_UNREFEXTNO:
12775 return "MIPS_UNREFEXTNO";
12776 case DT_MIPS_GOTSYM:
12777 return "MIPS_GOTSYM";
12778 case DT_MIPS_HIPAGENO:
12779 return "MIPS_HIPAGENO";
12780 case DT_MIPS_RLD_MAP:
12781 return "MIPS_RLD_MAP";
12782 case DT_MIPS_DELTA_CLASS:
12783 return "MIPS_DELTA_CLASS";
12784 case DT_MIPS_DELTA_CLASS_NO:
12785 return "MIPS_DELTA_CLASS_NO";
12786 case DT_MIPS_DELTA_INSTANCE:
12787 return "MIPS_DELTA_INSTANCE";
12788 case DT_MIPS_DELTA_INSTANCE_NO:
12789 return "MIPS_DELTA_INSTANCE_NO";
12790 case DT_MIPS_DELTA_RELOC:
12791 return "MIPS_DELTA_RELOC";
12792 case DT_MIPS_DELTA_RELOC_NO:
12793 return "MIPS_DELTA_RELOC_NO";
12794 case DT_MIPS_DELTA_SYM:
12795 return "MIPS_DELTA_SYM";
12796 case DT_MIPS_DELTA_SYM_NO:
12797 return "MIPS_DELTA_SYM_NO";
12798 case DT_MIPS_DELTA_CLASSSYM:
12799 return "MIPS_DELTA_CLASSSYM";
12800 case DT_MIPS_DELTA_CLASSSYM_NO:
12801 return "MIPS_DELTA_CLASSSYM_NO";
12802 case DT_MIPS_CXX_FLAGS:
12803 return "MIPS_CXX_FLAGS";
12804 case DT_MIPS_PIXIE_INIT:
12805 return "MIPS_PIXIE_INIT";
12806 case DT_MIPS_SYMBOL_LIB:
12807 return "MIPS_SYMBOL_LIB";
12808 case DT_MIPS_LOCALPAGE_GOTIDX:
12809 return "MIPS_LOCALPAGE_GOTIDX";
12810 case DT_MIPS_LOCAL_GOTIDX:
12811 return "MIPS_LOCAL_GOTIDX";
12812 case DT_MIPS_HIDDEN_GOTIDX:
12813 return "MIPS_HIDDEN_GOTIDX";
12814 case DT_MIPS_PROTECTED_GOTIDX:
12815 return "MIPS_PROTECTED_GOT_IDX";
12816 case DT_MIPS_OPTIONS:
12817 return "MIPS_OPTIONS";
12818 case DT_MIPS_INTERFACE:
12819 return "MIPS_INTERFACE";
12820 case DT_MIPS_DYNSTR_ALIGN:
12821 return "DT_MIPS_DYNSTR_ALIGN";
12822 case DT_MIPS_INTERFACE_SIZE:
12823 return "DT_MIPS_INTERFACE_SIZE";
12824 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12825 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12826 case DT_MIPS_PERF_SUFFIX:
12827 return "DT_MIPS_PERF_SUFFIX";
12828 case DT_MIPS_COMPACT_SIZE:
12829 return "DT_MIPS_COMPACT_SIZE";
12830 case DT_MIPS_GP_VALUE:
12831 return "DT_MIPS_GP_VALUE";
12832 case DT_MIPS_AUX_DYNAMIC:
12833 return "DT_MIPS_AUX_DYNAMIC";
12834 case DT_MIPS_PLTGOT:
12835 return "DT_MIPS_PLTGOT";
12836 case DT_MIPS_RWPLT:
12837 return "DT_MIPS_RWPLT";
12838 }
12839}
12840
12841bfd_boolean
12842_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12843{
12844 FILE *file = ptr;
12845
12846 BFD_ASSERT (abfd != NULL && ptr != NULL);
12847
12848 /* Print normal ELF private data. */
12849 _bfd_elf_print_private_bfd_data (abfd, ptr);
12850
12851 /* xgettext:c-format */
12852 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12853
12854 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12855 fprintf (file, _(" [abi=O32]"));
12856 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12857 fprintf (file, _(" [abi=O64]"));
12858 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12859 fprintf (file, _(" [abi=EABI32]"));
12860 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12861 fprintf (file, _(" [abi=EABI64]"));
12862 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12863 fprintf (file, _(" [abi unknown]"));
12864 else if (ABI_N32_P (abfd))
12865 fprintf (file, _(" [abi=N32]"));
12866 else if (ABI_64_P (abfd))
12867 fprintf (file, _(" [abi=64]"));
12868 else
12869 fprintf (file, _(" [no abi set]"));
12870
12871 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12872 fprintf (file, " [mips1]");
12873 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12874 fprintf (file, " [mips2]");
12875 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12876 fprintf (file, " [mips3]");
12877 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12878 fprintf (file, " [mips4]");
12879 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12880 fprintf (file, " [mips5]");
12881 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12882 fprintf (file, " [mips32]");
12883 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12884 fprintf (file, " [mips64]");
12885 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12886 fprintf (file, " [mips32r2]");
12887 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12888 fprintf (file, " [mips64r2]");
12889 else
12890 fprintf (file, _(" [unknown ISA]"));
12891
12892 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12893 fprintf (file, " [mdmx]");
12894
12895 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12896 fprintf (file, " [mips16]");
12897
12898 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12899 fprintf (file, " [32bitmode]");
12900 else
12901 fprintf (file, _(" [not 32bitmode]"));
12902
12903 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12904 fprintf (file, " [noreorder]");
12905
12906 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12907 fprintf (file, " [PIC]");
12908
12909 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12910 fprintf (file, " [CPIC]");
12911
12912 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12913 fprintf (file, " [XGOT]");
12914
12915 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12916 fprintf (file, " [UCODE]");
12917
12918 fputc ('\n', file);
12919
12920 return TRUE;
12921}
12922
12923const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12924{
12925 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12926 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12927 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12928 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12929 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12930 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12931 { NULL, 0, 0, 0, 0 }
12932};
12933
12934/* Merge non visibility st_other attributes. Ensure that the
12935 STO_OPTIONAL flag is copied into h->other, even if this is not a
12936 definiton of the symbol. */
12937void
12938_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12939 const Elf_Internal_Sym *isym,
12940 bfd_boolean definition,
12941 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12942{
12943 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12944 {
12945 unsigned char other;
12946
12947 other = (definition ? isym->st_other : h->other);
12948 other &= ~ELF_ST_VISIBILITY (-1);
12949 h->other = other | ELF_ST_VISIBILITY (h->other);
12950 }
12951
12952 if (!definition
12953 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12954 h->other |= STO_OPTIONAL;
12955}
12956
12957/* Decide whether an undefined symbol is special and can be ignored.
12958 This is the case for OPTIONAL symbols on IRIX. */
12959bfd_boolean
12960_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12961{
12962 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12963}
12964
12965bfd_boolean
12966_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12967{
12968 return (sym->st_shndx == SHN_COMMON
12969 || sym->st_shndx == SHN_MIPS_ACOMMON
12970 || sym->st_shndx == SHN_MIPS_SCOMMON);
12971}
12972
12973/* Return address for Ith PLT stub in section PLT, for relocation REL
12974 or (bfd_vma) -1 if it should not be included. */
12975
12976bfd_vma
12977_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12978 const arelent *rel ATTRIBUTE_UNUSED)
12979{
12980 return (plt->vma
12981 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12982 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12983}
12984
12985void
12986_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12987{
12988 struct mips_elf_link_hash_table *htab;
12989 Elf_Internal_Ehdr *i_ehdrp;
12990
12991 i_ehdrp = elf_elfheader (abfd);
12992 if (link_info)
12993 {
12994 htab = mips_elf_hash_table (link_info);
12995 BFD_ASSERT (htab != NULL);
12996
12997 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12998 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12999 }
13000}
This page took 0.074536 seconds and 4 git commands to generate.