LD: Convert `%P: %H:' to `%H:' in error messages
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
... / ...
CommitLineData
1/* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
31#include "sysdep.h"
32#include "bfd.h"
33#include "libbfd.h"
34#include "libiberty.h"
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
38#include "elf-vxworks.h"
39#include "dwarf2.h"
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
47#include "hashtab.h"
48
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
57/* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75struct mips_got_entry
76{
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108};
109
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143struct mips_got_page_entry
144{
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
153/* This structure is used to hold .got information when linking. */
154
155struct mips_got_info
156{
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
187/* Structure passed when merging bfds' gots. */
188
189struct mips_elf_got_per_bfd_arg
190{
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212};
213
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217struct mips_elf_traverse_got_arg
218{
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222};
223
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324};
325
326/* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331struct plt_entry
332{
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350};
351
352/* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355struct mips_elf_link_hash_entry
356{
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419};
420
421/* MIPS ELF linker hash table. */
422
423struct mips_elf_link_hash_table
424{
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* True if we use the special `__gnu_absolute_zero' symbol. */
459 bfd_boolean use_absolute_zero;
460
461 /* True if we have been configured for a GNU target. */
462 bfd_boolean gnu_target;
463
464 /* Shortcuts to some dynamic sections, or NULL if they are not
465 being used. */
466 asection *srelplt2;
467 asection *sstubs;
468
469 /* The master GOT information. */
470 struct mips_got_info *got_info;
471
472 /* The global symbol in the GOT with the lowest index in the dynamic
473 symbol table. */
474 struct elf_link_hash_entry *global_gotsym;
475
476 /* The size of the PLT header in bytes. */
477 bfd_vma plt_header_size;
478
479 /* The size of a standard PLT entry in bytes. */
480 bfd_vma plt_mips_entry_size;
481
482 /* The size of a compressed PLT entry in bytes. */
483 bfd_vma plt_comp_entry_size;
484
485 /* The offset of the next standard PLT entry to create. */
486 bfd_vma plt_mips_offset;
487
488 /* The offset of the next compressed PLT entry to create. */
489 bfd_vma plt_comp_offset;
490
491 /* The index of the next .got.plt entry to create. */
492 bfd_vma plt_got_index;
493
494 /* The number of functions that need a lazy-binding stub. */
495 bfd_vma lazy_stub_count;
496
497 /* The size of a function stub entry in bytes. */
498 bfd_vma function_stub_size;
499
500 /* The number of reserved entries at the beginning of the GOT. */
501 unsigned int reserved_gotno;
502
503 /* The section used for mips_elf_la25_stub trampolines.
504 See the comment above that structure for details. */
505 asection *strampoline;
506
507 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
508 pairs. */
509 htab_t la25_stubs;
510
511 /* A function FN (NAME, IS, OS) that creates a new input section
512 called NAME and links it to output section OS. If IS is nonnull,
513 the new section should go immediately before it, otherwise it
514 should go at the (current) beginning of OS.
515
516 The function returns the new section on success, otherwise it
517 returns null. */
518 asection *(*add_stub_section) (const char *, asection *, asection *);
519
520 /* Small local sym cache. */
521 struct sym_cache sym_cache;
522
523 /* Is the PLT header compressed? */
524 unsigned int plt_header_is_comp : 1;
525};
526
527/* Get the MIPS ELF linker hash table from a link_info structure. */
528
529#define mips_elf_hash_table(p) \
530 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
531 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
532
533/* A structure used to communicate with htab_traverse callbacks. */
534struct mips_htab_traverse_info
535{
536 /* The usual link-wide information. */
537 struct bfd_link_info *info;
538 bfd *output_bfd;
539
540 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
541 bfd_boolean error;
542};
543
544/* MIPS ELF private object data. */
545
546struct mips_elf_obj_tdata
547{
548 /* Generic ELF private object data. */
549 struct elf_obj_tdata root;
550
551 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
552 bfd *abi_fp_bfd;
553
554 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
555 bfd *abi_msa_bfd;
556
557 /* The abiflags for this object. */
558 Elf_Internal_ABIFlags_v0 abiflags;
559 bfd_boolean abiflags_valid;
560
561 /* The GOT requirements of input bfds. */
562 struct mips_got_info *got;
563
564 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
565 included directly in this one, but there's no point to wasting
566 the memory just for the infrequently called find_nearest_line. */
567 struct mips_elf_find_line *find_line_info;
568
569 /* An array of stub sections indexed by symbol number. */
570 asection **local_stubs;
571 asection **local_call_stubs;
572
573 /* The Irix 5 support uses two virtual sections, which represent
574 text/data symbols defined in dynamic objects. */
575 asymbol *elf_data_symbol;
576 asymbol *elf_text_symbol;
577 asection *elf_data_section;
578 asection *elf_text_section;
579};
580
581/* Get MIPS ELF private object data from BFD's tdata. */
582
583#define mips_elf_tdata(bfd) \
584 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
585
586#define TLS_RELOC_P(r_type) \
587 (r_type == R_MIPS_TLS_DTPMOD32 \
588 || r_type == R_MIPS_TLS_DTPMOD64 \
589 || r_type == R_MIPS_TLS_DTPREL32 \
590 || r_type == R_MIPS_TLS_DTPREL64 \
591 || r_type == R_MIPS_TLS_GD \
592 || r_type == R_MIPS_TLS_LDM \
593 || r_type == R_MIPS_TLS_DTPREL_HI16 \
594 || r_type == R_MIPS_TLS_DTPREL_LO16 \
595 || r_type == R_MIPS_TLS_GOTTPREL \
596 || r_type == R_MIPS_TLS_TPREL32 \
597 || r_type == R_MIPS_TLS_TPREL64 \
598 || r_type == R_MIPS_TLS_TPREL_HI16 \
599 || r_type == R_MIPS_TLS_TPREL_LO16 \
600 || r_type == R_MIPS16_TLS_GD \
601 || r_type == R_MIPS16_TLS_LDM \
602 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
603 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
604 || r_type == R_MIPS16_TLS_GOTTPREL \
605 || r_type == R_MIPS16_TLS_TPREL_HI16 \
606 || r_type == R_MIPS16_TLS_TPREL_LO16 \
607 || r_type == R_MICROMIPS_TLS_GD \
608 || r_type == R_MICROMIPS_TLS_LDM \
609 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
610 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
611 || r_type == R_MICROMIPS_TLS_GOTTPREL \
612 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
613 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
614
615/* Structure used to pass information to mips_elf_output_extsym. */
616
617struct extsym_info
618{
619 bfd *abfd;
620 struct bfd_link_info *info;
621 struct ecoff_debug_info *debug;
622 const struct ecoff_debug_swap *swap;
623 bfd_boolean failed;
624};
625
626/* The names of the runtime procedure table symbols used on IRIX5. */
627
628static const char * const mips_elf_dynsym_rtproc_names[] =
629{
630 "_procedure_table",
631 "_procedure_string_table",
632 "_procedure_table_size",
633 NULL
634};
635
636/* These structures are used to generate the .compact_rel section on
637 IRIX5. */
638
639typedef struct
640{
641 unsigned long id1; /* Always one? */
642 unsigned long num; /* Number of compact relocation entries. */
643 unsigned long id2; /* Always two? */
644 unsigned long offset; /* The file offset of the first relocation. */
645 unsigned long reserved0; /* Zero? */
646 unsigned long reserved1; /* Zero? */
647} Elf32_compact_rel;
648
649typedef struct
650{
651 bfd_byte id1[4];
652 bfd_byte num[4];
653 bfd_byte id2[4];
654 bfd_byte offset[4];
655 bfd_byte reserved0[4];
656 bfd_byte reserved1[4];
657} Elf32_External_compact_rel;
658
659typedef struct
660{
661 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
662 unsigned int rtype : 4; /* Relocation types. See below. */
663 unsigned int dist2to : 8;
664 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
665 unsigned long konst; /* KONST field. See below. */
666 unsigned long vaddr; /* VADDR to be relocated. */
667} Elf32_crinfo;
668
669typedef struct
670{
671 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
672 unsigned int rtype : 4; /* Relocation types. See below. */
673 unsigned int dist2to : 8;
674 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
675 unsigned long konst; /* KONST field. See below. */
676} Elf32_crinfo2;
677
678typedef struct
679{
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 bfd_byte vaddr[4];
683} Elf32_External_crinfo;
684
685typedef struct
686{
687 bfd_byte info[4];
688 bfd_byte konst[4];
689} Elf32_External_crinfo2;
690
691/* These are the constants used to swap the bitfields in a crinfo. */
692
693#define CRINFO_CTYPE (0x1)
694#define CRINFO_CTYPE_SH (31)
695#define CRINFO_RTYPE (0xf)
696#define CRINFO_RTYPE_SH (27)
697#define CRINFO_DIST2TO (0xff)
698#define CRINFO_DIST2TO_SH (19)
699#define CRINFO_RELVADDR (0x7ffff)
700#define CRINFO_RELVADDR_SH (0)
701
702/* A compact relocation info has long (3 words) or short (2 words)
703 formats. A short format doesn't have VADDR field and relvaddr
704 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
705#define CRF_MIPS_LONG 1
706#define CRF_MIPS_SHORT 0
707
708/* There are 4 types of compact relocation at least. The value KONST
709 has different meaning for each type:
710
711 (type) (konst)
712 CT_MIPS_REL32 Address in data
713 CT_MIPS_WORD Address in word (XXX)
714 CT_MIPS_GPHI_LO GP - vaddr
715 CT_MIPS_JMPAD Address to jump
716 */
717
718#define CRT_MIPS_REL32 0xa
719#define CRT_MIPS_WORD 0xb
720#define CRT_MIPS_GPHI_LO 0xc
721#define CRT_MIPS_JMPAD 0xd
722
723#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
724#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
725#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
726#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
727\f
728/* The structure of the runtime procedure descriptor created by the
729 loader for use by the static exception system. */
730
731typedef struct runtime_pdr {
732 bfd_vma adr; /* Memory address of start of procedure. */
733 long regmask; /* Save register mask. */
734 long regoffset; /* Save register offset. */
735 long fregmask; /* Save floating point register mask. */
736 long fregoffset; /* Save floating point register offset. */
737 long frameoffset; /* Frame size. */
738 short framereg; /* Frame pointer register. */
739 short pcreg; /* Offset or reg of return pc. */
740 long irpss; /* Index into the runtime string table. */
741 long reserved;
742 struct exception_info *exception_info;/* Pointer to exception array. */
743} RPDR, *pRPDR;
744#define cbRPDR sizeof (RPDR)
745#define rpdNil ((pRPDR) 0)
746\f
747static struct mips_got_entry *mips_elf_create_local_got_entry
748 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
749 struct mips_elf_link_hash_entry *, int);
750static bfd_boolean mips_elf_sort_hash_table_f
751 (struct mips_elf_link_hash_entry *, void *);
752static bfd_vma mips_elf_high
753 (bfd_vma);
754static bfd_boolean mips_elf_create_dynamic_relocation
755 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
756 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
757 bfd_vma *, asection *);
758static bfd_vma mips_elf_adjust_gp
759 (bfd *, struct mips_got_info *, bfd *);
760
761/* This will be used when we sort the dynamic relocation records. */
762static bfd *reldyn_sorting_bfd;
763
764/* True if ABFD is for CPUs with load interlocking that include
765 non-MIPS1 CPUs and R3900. */
766#define LOAD_INTERLOCKS_P(abfd) \
767 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
768 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
769
770/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
771 This should be safe for all architectures. We enable this predicate
772 for RM9000 for now. */
773#define JAL_TO_BAL_P(abfd) \
774 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
775
776/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
777 This should be safe for all architectures. We enable this predicate for
778 all CPUs. */
779#define JALR_TO_BAL_P(abfd) 1
780
781/* True if ABFD is for CPUs that are faster if JR is converted to B.
782 This should be safe for all architectures. We enable this predicate for
783 all CPUs. */
784#define JR_TO_B_P(abfd) 1
785
786/* True if ABFD is a PIC object. */
787#define PIC_OBJECT_P(abfd) \
788 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
789
790/* Nonzero if ABFD is using the O32 ABI. */
791#define ABI_O32_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
793
794/* Nonzero if ABFD is using the N32 ABI. */
795#define ABI_N32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
797
798/* Nonzero if ABFD is using the N64 ABI. */
799#define ABI_64_P(abfd) \
800 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
801
802/* Nonzero if ABFD is using NewABI conventions. */
803#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
804
805/* Nonzero if ABFD has microMIPS code. */
806#define MICROMIPS_P(abfd) \
807 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
808
809/* Nonzero if ABFD is MIPS R6. */
810#define MIPSR6_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
812 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
813
814/* The IRIX compatibility level we are striving for. */
815#define IRIX_COMPAT(abfd) \
816 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
817
818/* Whether we are trying to be compatible with IRIX at all. */
819#define SGI_COMPAT(abfd) \
820 (IRIX_COMPAT (abfd) != ict_none)
821
822/* The name of the options section. */
823#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
824 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
825
826/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
827 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
828#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
829 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
830
831/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
832#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.abiflags") == 0)
834
835/* Whether the section is readonly. */
836#define MIPS_ELF_READONLY_SECTION(sec) \
837 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
838 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
839
840/* The name of the stub section. */
841#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
842
843/* The size of an external REL relocation. */
844#define MIPS_ELF_REL_SIZE(abfd) \
845 (get_elf_backend_data (abfd)->s->sizeof_rel)
846
847/* The size of an external RELA relocation. */
848#define MIPS_ELF_RELA_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rela)
850
851/* The size of an external dynamic table entry. */
852#define MIPS_ELF_DYN_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_dyn)
854
855/* The size of a GOT entry. */
856#define MIPS_ELF_GOT_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->arch_size / 8)
858
859/* The size of the .rld_map section. */
860#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
862
863/* The size of a symbol-table entry. */
864#define MIPS_ELF_SYM_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->sizeof_sym)
866
867/* The default alignment for sections, as a power of two. */
868#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
869 (get_elf_backend_data (abfd)->s->log_file_align)
870
871/* Get word-sized data. */
872#define MIPS_ELF_GET_WORD(abfd, ptr) \
873 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
874
875/* Put out word-sized data. */
876#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
877 (ABI_64_P (abfd) \
878 ? bfd_put_64 (abfd, val, ptr) \
879 : bfd_put_32 (abfd, val, ptr))
880
881/* The opcode for word-sized loads (LW or LD). */
882#define MIPS_ELF_LOAD_WORD(abfd) \
883 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
884
885/* Add a dynamic symbol table-entry. */
886#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
887 _bfd_elf_add_dynamic_entry (info, tag, val)
888
889#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
890 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
891
892/* The name of the dynamic relocation section. */
893#define MIPS_ELF_REL_DYN_NAME(INFO) \
894 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
895
896/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
897 from smaller values. Start with zero, widen, *then* decrement. */
898#define MINUS_ONE (((bfd_vma)0) - 1)
899#define MINUS_TWO (((bfd_vma)0) - 2)
900
901/* The value to write into got[1] for SVR4 targets, to identify it is
902 a GNU object. The dynamic linker can then use got[1] to store the
903 module pointer. */
904#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
905 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
906
907/* The offset of $gp from the beginning of the .got section. */
908#define ELF_MIPS_GP_OFFSET(INFO) \
909 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
910
911/* The maximum size of the GOT for it to be addressable using 16-bit
912 offsets from $gp. */
913#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
914
915/* Instructions which appear in a stub. */
916#define STUB_LW(abfd) \
917 ((ABI_64_P (abfd) \
918 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
919 : 0x8f998010)) /* lw t9,0x8010(gp) */
920#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
921#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
922#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
923#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
924#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
925#define STUB_LI16S(abfd, VAL) \
926 ((ABI_64_P (abfd) \
927 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
928 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
929
930/* Likewise for the microMIPS ASE. */
931#define STUB_LW_MICROMIPS(abfd) \
932 (ABI_64_P (abfd) \
933 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
934 : 0xff3c8010) /* lw t9,0x8010(gp) */
935#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
936#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
937#define STUB_LUI_MICROMIPS(VAL) \
938 (0x41b80000 + (VAL)) /* lui t8,VAL */
939#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
940#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
941#define STUB_ORI_MICROMIPS(VAL) \
942 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
943#define STUB_LI16U_MICROMIPS(VAL) \
944 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
945#define STUB_LI16S_MICROMIPS(abfd, VAL) \
946 (ABI_64_P (abfd) \
947 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
948 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
949
950#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
951#define MIPS_FUNCTION_STUB_BIG_SIZE 20
952#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
953#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
954#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
955#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
956
957/* The name of the dynamic interpreter. This is put in the .interp
958 section. */
959
960#define ELF_DYNAMIC_INTERPRETER(abfd) \
961 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
962 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
963 : "/usr/lib/libc.so.1")
964
965#ifdef BFD64
966#define MNAME(bfd,pre,pos) \
967 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
968#define ELF_R_SYM(bfd, i) \
969 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
970#define ELF_R_TYPE(bfd, i) \
971 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
972#define ELF_R_INFO(bfd, s, t) \
973 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
974#else
975#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
976#define ELF_R_SYM(bfd, i) \
977 (ELF32_R_SYM (i))
978#define ELF_R_TYPE(bfd, i) \
979 (ELF32_R_TYPE (i))
980#define ELF_R_INFO(bfd, s, t) \
981 (ELF32_R_INFO (s, t))
982#endif
983\f
984 /* The mips16 compiler uses a couple of special sections to handle
985 floating point arguments.
986
987 Section names that look like .mips16.fn.FNNAME contain stubs that
988 copy floating point arguments from the fp regs to the gp regs and
989 then jump to FNNAME. If any 32 bit function calls FNNAME, the
990 call should be redirected to the stub instead. If no 32 bit
991 function calls FNNAME, the stub should be discarded. We need to
992 consider any reference to the function, not just a call, because
993 if the address of the function is taken we will need the stub,
994 since the address might be passed to a 32 bit function.
995
996 Section names that look like .mips16.call.FNNAME contain stubs
997 that copy floating point arguments from the gp regs to the fp
998 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
999 then any 16 bit function that calls FNNAME should be redirected
1000 to the stub instead. If FNNAME is not a 32 bit function, the
1001 stub should be discarded.
1002
1003 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1004 which call FNNAME and then copy the return value from the fp regs
1005 to the gp regs. These stubs store the return value in $18 while
1006 calling FNNAME; any function which might call one of these stubs
1007 must arrange to save $18 around the call. (This case is not
1008 needed for 32 bit functions that call 16 bit functions, because
1009 16 bit functions always return floating point values in both
1010 $f0/$f1 and $2/$3.)
1011
1012 Note that in all cases FNNAME might be defined statically.
1013 Therefore, FNNAME is not used literally. Instead, the relocation
1014 information will indicate which symbol the section is for.
1015
1016 We record any stubs that we find in the symbol table. */
1017
1018#define FN_STUB ".mips16.fn."
1019#define CALL_STUB ".mips16.call."
1020#define CALL_FP_STUB ".mips16.call.fp."
1021
1022#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1023#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1024#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1025\f
1026/* The format of the first PLT entry in an O32 executable. */
1027static const bfd_vma mips_o32_exec_plt0_entry[] =
1028{
1029 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1030 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1031 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1032 0x031cc023, /* subu $24, $24, $28 */
1033 0x03e07825, /* or t7, ra, zero */
1034 0x0018c082, /* srl $24, $24, 2 */
1035 0x0320f809, /* jalr $25 */
1036 0x2718fffe /* subu $24, $24, 2 */
1037};
1038
1039/* The format of the first PLT entry in an N32 executable. Different
1040 because gp ($28) is not available; we use t2 ($14) instead. */
1041static const bfd_vma mips_n32_exec_plt0_entry[] =
1042{
1043 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1044 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1045 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1046 0x030ec023, /* subu $24, $24, $14 */
1047 0x03e07825, /* or t7, ra, zero */
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1051};
1052
1053/* The format of the first PLT entry in an N64 executable. Different
1054 from N32 because of the increased size of GOT entries. */
1055static const bfd_vma mips_n64_exec_plt0_entry[] =
1056{
1057 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1058 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1059 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1060 0x030ec023, /* subu $24, $24, $14 */
1061 0x03e07825, /* or t7, ra, zero */
1062 0x0018c0c2, /* srl $24, $24, 3 */
1063 0x0320f809, /* jalr $25 */
1064 0x2718fffe /* subu $24, $24, 2 */
1065};
1066
1067/* The format of the microMIPS first PLT entry in an O32 executable.
1068 We rely on v0 ($2) rather than t8 ($24) to contain the address
1069 of the GOTPLT entry handled, so this stub may only be used when
1070 all the subsequent PLT entries are microMIPS code too.
1071
1072 The trailing NOP is for alignment and correct disassembly only. */
1073static const bfd_vma micromips_o32_exec_plt0_entry[] =
1074{
1075 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1076 0xff23, 0x0000, /* lw $25, 0($3) */
1077 0x0535, /* subu $2, $2, $3 */
1078 0x2525, /* srl $2, $2, 2 */
1079 0x3302, 0xfffe, /* subu $24, $2, 2 */
1080 0x0dff, /* move $15, $31 */
1081 0x45f9, /* jalrs $25 */
1082 0x0f83, /* move $28, $3 */
1083 0x0c00 /* nop */
1084};
1085
1086/* The format of the microMIPS first PLT entry in an O32 executable
1087 in the insn32 mode. */
1088static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1089{
1090 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1091 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1092 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1093 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1094 0x001f, 0x7a90, /* or $15, $31, zero */
1095 0x0318, 0x1040, /* srl $24, $24, 2 */
1096 0x03f9, 0x0f3c, /* jalr $25 */
1097 0x3318, 0xfffe /* subu $24, $24, 2 */
1098};
1099
1100/* The format of subsequent standard PLT entries. */
1101static const bfd_vma mips_exec_plt_entry[] =
1102{
1103 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1104 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1105 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1106 0x03200008 /* jr $25 */
1107};
1108
1109/* In the following PLT entry the JR and ADDIU instructions will
1110 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1111 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1112static const bfd_vma mipsr6_exec_plt_entry[] =
1113{
1114 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1115 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1116 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1117 0x03200009 /* jr $25 */
1118};
1119
1120/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1121 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1122 directly addressable. */
1123static const bfd_vma mips16_o32_exec_plt_entry[] =
1124{
1125 0xb203, /* lw $2, 12($pc) */
1126 0x9a60, /* lw $3, 0($2) */
1127 0x651a, /* move $24, $2 */
1128 0xeb00, /* jr $3 */
1129 0x653b, /* move $25, $3 */
1130 0x6500, /* nop */
1131 0x0000, 0x0000 /* .word (.got.plt entry) */
1132};
1133
1134/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1135 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1136static const bfd_vma micromips_o32_exec_plt_entry[] =
1137{
1138 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1139 0xff22, 0x0000, /* lw $25, 0($2) */
1140 0x4599, /* jr $25 */
1141 0x0f02 /* move $24, $2 */
1142};
1143
1144/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1145static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1146{
1147 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1148 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1149 0x0019, 0x0f3c, /* jr $25 */
1150 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1151};
1152
1153/* The format of the first PLT entry in a VxWorks executable. */
1154static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1155{
1156 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1157 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1158 0x8f390008, /* lw t9, 8(t9) */
1159 0x00000000, /* nop */
1160 0x03200008, /* jr t9 */
1161 0x00000000 /* nop */
1162};
1163
1164/* The format of subsequent PLT entries. */
1165static const bfd_vma mips_vxworks_exec_plt_entry[] =
1166{
1167 0x10000000, /* b .PLT_resolver */
1168 0x24180000, /* li t8, <pltindex> */
1169 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1170 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1171 0x8f390000, /* lw t9, 0(t9) */
1172 0x00000000, /* nop */
1173 0x03200008, /* jr t9 */
1174 0x00000000 /* nop */
1175};
1176
1177/* The format of the first PLT entry in a VxWorks shared object. */
1178static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1179{
1180 0x8f990008, /* lw t9, 8(gp) */
1181 0x00000000, /* nop */
1182 0x03200008, /* jr t9 */
1183 0x00000000, /* nop */
1184 0x00000000, /* nop */
1185 0x00000000 /* nop */
1186};
1187
1188/* The format of subsequent PLT entries. */
1189static const bfd_vma mips_vxworks_shared_plt_entry[] =
1190{
1191 0x10000000, /* b .PLT_resolver */
1192 0x24180000 /* li t8, <pltindex> */
1193};
1194\f
1195/* microMIPS 32-bit opcode helper installer. */
1196
1197static void
1198bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1199{
1200 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1201 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1202}
1203
1204/* microMIPS 32-bit opcode helper retriever. */
1205
1206static bfd_vma
1207bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1208{
1209 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1210}
1211\f
1212/* Look up an entry in a MIPS ELF linker hash table. */
1213
1214#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1215 ((struct mips_elf_link_hash_entry *) \
1216 elf_link_hash_lookup (&(table)->root, (string), (create), \
1217 (copy), (follow)))
1218
1219/* Traverse a MIPS ELF linker hash table. */
1220
1221#define mips_elf_link_hash_traverse(table, func, info) \
1222 (elf_link_hash_traverse \
1223 (&(table)->root, \
1224 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1225 (info)))
1226
1227/* Find the base offsets for thread-local storage in this object,
1228 for GD/LD and IE/LE respectively. */
1229
1230#define TP_OFFSET 0x7000
1231#define DTP_OFFSET 0x8000
1232
1233static bfd_vma
1234dtprel_base (struct bfd_link_info *info)
1235{
1236 /* If tls_sec is NULL, we should have signalled an error already. */
1237 if (elf_hash_table (info)->tls_sec == NULL)
1238 return 0;
1239 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1240}
1241
1242static bfd_vma
1243tprel_base (struct bfd_link_info *info)
1244{
1245 /* If tls_sec is NULL, we should have signalled an error already. */
1246 if (elf_hash_table (info)->tls_sec == NULL)
1247 return 0;
1248 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1249}
1250
1251/* Create an entry in a MIPS ELF linker hash table. */
1252
1253static struct bfd_hash_entry *
1254mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1255 struct bfd_hash_table *table, const char *string)
1256{
1257 struct mips_elf_link_hash_entry *ret =
1258 (struct mips_elf_link_hash_entry *) entry;
1259
1260 /* Allocate the structure if it has not already been allocated by a
1261 subclass. */
1262 if (ret == NULL)
1263 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1264 if (ret == NULL)
1265 return (struct bfd_hash_entry *) ret;
1266
1267 /* Call the allocation method of the superclass. */
1268 ret = ((struct mips_elf_link_hash_entry *)
1269 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1270 table, string));
1271 if (ret != NULL)
1272 {
1273 /* Set local fields. */
1274 memset (&ret->esym, 0, sizeof (EXTR));
1275 /* We use -2 as a marker to indicate that the information has
1276 not been set. -1 means there is no associated ifd. */
1277 ret->esym.ifd = -2;
1278 ret->la25_stub = 0;
1279 ret->possibly_dynamic_relocs = 0;
1280 ret->fn_stub = NULL;
1281 ret->call_stub = NULL;
1282 ret->call_fp_stub = NULL;
1283 ret->global_got_area = GGA_NONE;
1284 ret->got_only_for_calls = TRUE;
1285 ret->readonly_reloc = FALSE;
1286 ret->has_static_relocs = FALSE;
1287 ret->no_fn_stub = FALSE;
1288 ret->need_fn_stub = FALSE;
1289 ret->has_nonpic_branches = FALSE;
1290 ret->needs_lazy_stub = FALSE;
1291 ret->use_plt_entry = FALSE;
1292 }
1293
1294 return (struct bfd_hash_entry *) ret;
1295}
1296
1297/* Allocate MIPS ELF private object data. */
1298
1299bfd_boolean
1300_bfd_mips_elf_mkobject (bfd *abfd)
1301{
1302 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1303 MIPS_ELF_DATA);
1304}
1305
1306bfd_boolean
1307_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1308{
1309 if (!sec->used_by_bfd)
1310 {
1311 struct _mips_elf_section_data *sdata;
1312 bfd_size_type amt = sizeof (*sdata);
1313
1314 sdata = bfd_zalloc (abfd, amt);
1315 if (sdata == NULL)
1316 return FALSE;
1317 sec->used_by_bfd = sdata;
1318 }
1319
1320 return _bfd_elf_new_section_hook (abfd, sec);
1321}
1322\f
1323/* Read ECOFF debugging information from a .mdebug section into a
1324 ecoff_debug_info structure. */
1325
1326bfd_boolean
1327_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1328 struct ecoff_debug_info *debug)
1329{
1330 HDRR *symhdr;
1331 const struct ecoff_debug_swap *swap;
1332 char *ext_hdr;
1333
1334 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1335 memset (debug, 0, sizeof (*debug));
1336
1337 ext_hdr = bfd_malloc (swap->external_hdr_size);
1338 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1339 goto error_return;
1340
1341 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1342 swap->external_hdr_size))
1343 goto error_return;
1344
1345 symhdr = &debug->symbolic_header;
1346 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1347
1348 /* The symbolic header contains absolute file offsets and sizes to
1349 read. */
1350#define READ(ptr, offset, count, size, type) \
1351 if (symhdr->count == 0) \
1352 debug->ptr = NULL; \
1353 else \
1354 { \
1355 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1356 debug->ptr = bfd_malloc (amt); \
1357 if (debug->ptr == NULL) \
1358 goto error_return; \
1359 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1360 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1361 goto error_return; \
1362 }
1363
1364 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1365 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1366 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1367 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1368 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1369 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1370 union aux_ext *);
1371 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1372 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1373 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1374 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1375 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1376#undef READ
1377
1378 debug->fdr = NULL;
1379
1380 return TRUE;
1381
1382 error_return:
1383 if (ext_hdr != NULL)
1384 free (ext_hdr);
1385 if (debug->line != NULL)
1386 free (debug->line);
1387 if (debug->external_dnr != NULL)
1388 free (debug->external_dnr);
1389 if (debug->external_pdr != NULL)
1390 free (debug->external_pdr);
1391 if (debug->external_sym != NULL)
1392 free (debug->external_sym);
1393 if (debug->external_opt != NULL)
1394 free (debug->external_opt);
1395 if (debug->external_aux != NULL)
1396 free (debug->external_aux);
1397 if (debug->ss != NULL)
1398 free (debug->ss);
1399 if (debug->ssext != NULL)
1400 free (debug->ssext);
1401 if (debug->external_fdr != NULL)
1402 free (debug->external_fdr);
1403 if (debug->external_rfd != NULL)
1404 free (debug->external_rfd);
1405 if (debug->external_ext != NULL)
1406 free (debug->external_ext);
1407 return FALSE;
1408}
1409\f
1410/* Swap RPDR (runtime procedure table entry) for output. */
1411
1412static void
1413ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1414{
1415 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1416 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1417 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1418 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1419 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1420 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1421
1422 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1423 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1424
1425 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1426}
1427
1428/* Create a runtime procedure table from the .mdebug section. */
1429
1430static bfd_boolean
1431mips_elf_create_procedure_table (void *handle, bfd *abfd,
1432 struct bfd_link_info *info, asection *s,
1433 struct ecoff_debug_info *debug)
1434{
1435 const struct ecoff_debug_swap *swap;
1436 HDRR *hdr = &debug->symbolic_header;
1437 RPDR *rpdr, *rp;
1438 struct rpdr_ext *erp;
1439 void *rtproc;
1440 struct pdr_ext *epdr;
1441 struct sym_ext *esym;
1442 char *ss, **sv;
1443 char *str;
1444 bfd_size_type size;
1445 bfd_size_type count;
1446 unsigned long sindex;
1447 unsigned long i;
1448 PDR pdr;
1449 SYMR sym;
1450 const char *no_name_func = _("static procedure (no name)");
1451
1452 epdr = NULL;
1453 rpdr = NULL;
1454 esym = NULL;
1455 ss = NULL;
1456 sv = NULL;
1457
1458 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1459
1460 sindex = strlen (no_name_func) + 1;
1461 count = hdr->ipdMax;
1462 if (count > 0)
1463 {
1464 size = swap->external_pdr_size;
1465
1466 epdr = bfd_malloc (size * count);
1467 if (epdr == NULL)
1468 goto error_return;
1469
1470 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1471 goto error_return;
1472
1473 size = sizeof (RPDR);
1474 rp = rpdr = bfd_malloc (size * count);
1475 if (rpdr == NULL)
1476 goto error_return;
1477
1478 size = sizeof (char *);
1479 sv = bfd_malloc (size * count);
1480 if (sv == NULL)
1481 goto error_return;
1482
1483 count = hdr->isymMax;
1484 size = swap->external_sym_size;
1485 esym = bfd_malloc (size * count);
1486 if (esym == NULL)
1487 goto error_return;
1488
1489 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1490 goto error_return;
1491
1492 count = hdr->issMax;
1493 ss = bfd_malloc (count);
1494 if (ss == NULL)
1495 goto error_return;
1496 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1497 goto error_return;
1498
1499 count = hdr->ipdMax;
1500 for (i = 0; i < (unsigned long) count; i++, rp++)
1501 {
1502 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1503 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1504 rp->adr = sym.value;
1505 rp->regmask = pdr.regmask;
1506 rp->regoffset = pdr.regoffset;
1507 rp->fregmask = pdr.fregmask;
1508 rp->fregoffset = pdr.fregoffset;
1509 rp->frameoffset = pdr.frameoffset;
1510 rp->framereg = pdr.framereg;
1511 rp->pcreg = pdr.pcreg;
1512 rp->irpss = sindex;
1513 sv[i] = ss + sym.iss;
1514 sindex += strlen (sv[i]) + 1;
1515 }
1516 }
1517
1518 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1519 size = BFD_ALIGN (size, 16);
1520 rtproc = bfd_alloc (abfd, size);
1521 if (rtproc == NULL)
1522 {
1523 mips_elf_hash_table (info)->procedure_count = 0;
1524 goto error_return;
1525 }
1526
1527 mips_elf_hash_table (info)->procedure_count = count + 2;
1528
1529 erp = rtproc;
1530 memset (erp, 0, sizeof (struct rpdr_ext));
1531 erp++;
1532 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1533 strcpy (str, no_name_func);
1534 str += strlen (no_name_func) + 1;
1535 for (i = 0; i < count; i++)
1536 {
1537 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1538 strcpy (str, sv[i]);
1539 str += strlen (sv[i]) + 1;
1540 }
1541 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1542
1543 /* Set the size and contents of .rtproc section. */
1544 s->size = size;
1545 s->contents = rtproc;
1546
1547 /* Skip this section later on (I don't think this currently
1548 matters, but someday it might). */
1549 s->map_head.link_order = NULL;
1550
1551 if (epdr != NULL)
1552 free (epdr);
1553 if (rpdr != NULL)
1554 free (rpdr);
1555 if (esym != NULL)
1556 free (esym);
1557 if (ss != NULL)
1558 free (ss);
1559 if (sv != NULL)
1560 free (sv);
1561
1562 return TRUE;
1563
1564 error_return:
1565 if (epdr != NULL)
1566 free (epdr);
1567 if (rpdr != NULL)
1568 free (rpdr);
1569 if (esym != NULL)
1570 free (esym);
1571 if (ss != NULL)
1572 free (ss);
1573 if (sv != NULL)
1574 free (sv);
1575 return FALSE;
1576}
1577\f
1578/* We're going to create a stub for H. Create a symbol for the stub's
1579 value and size, to help make the disassembly easier to read. */
1580
1581static bfd_boolean
1582mips_elf_create_stub_symbol (struct bfd_link_info *info,
1583 struct mips_elf_link_hash_entry *h,
1584 const char *prefix, asection *s, bfd_vma value,
1585 bfd_vma size)
1586{
1587 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1588 struct bfd_link_hash_entry *bh;
1589 struct elf_link_hash_entry *elfh;
1590 char *name;
1591 bfd_boolean res;
1592
1593 if (micromips_p)
1594 value |= 1;
1595
1596 /* Create a new symbol. */
1597 name = concat (prefix, h->root.root.root.string, NULL);
1598 bh = NULL;
1599 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1600 BSF_LOCAL, s, value, NULL,
1601 TRUE, FALSE, &bh);
1602 free (name);
1603 if (! res)
1604 return FALSE;
1605
1606 /* Make it a local function. */
1607 elfh = (struct elf_link_hash_entry *) bh;
1608 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1609 elfh->size = size;
1610 elfh->forced_local = 1;
1611 if (micromips_p)
1612 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1613 return TRUE;
1614}
1615
1616/* We're about to redefine H. Create a symbol to represent H's
1617 current value and size, to help make the disassembly easier
1618 to read. */
1619
1620static bfd_boolean
1621mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1622 struct mips_elf_link_hash_entry *h,
1623 const char *prefix)
1624{
1625 struct bfd_link_hash_entry *bh;
1626 struct elf_link_hash_entry *elfh;
1627 char *name;
1628 asection *s;
1629 bfd_vma value;
1630 bfd_boolean res;
1631
1632 /* Read the symbol's value. */
1633 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1634 || h->root.root.type == bfd_link_hash_defweak);
1635 s = h->root.root.u.def.section;
1636 value = h->root.root.u.def.value;
1637
1638 /* Create a new symbol. */
1639 name = concat (prefix, h->root.root.root.string, NULL);
1640 bh = NULL;
1641 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1642 BSF_LOCAL, s, value, NULL,
1643 TRUE, FALSE, &bh);
1644 free (name);
1645 if (! res)
1646 return FALSE;
1647
1648 /* Make it local and copy the other attributes from H. */
1649 elfh = (struct elf_link_hash_entry *) bh;
1650 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1651 elfh->other = h->root.other;
1652 elfh->size = h->root.size;
1653 elfh->forced_local = 1;
1654 return TRUE;
1655}
1656
1657/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1658 function rather than to a hard-float stub. */
1659
1660static bfd_boolean
1661section_allows_mips16_refs_p (asection *section)
1662{
1663 const char *name;
1664
1665 name = bfd_get_section_name (section->owner, section);
1666 return (FN_STUB_P (name)
1667 || CALL_STUB_P (name)
1668 || CALL_FP_STUB_P (name)
1669 || strcmp (name, ".pdr") == 0);
1670}
1671
1672/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1673 stub section of some kind. Return the R_SYMNDX of the target
1674 function, or 0 if we can't decide which function that is. */
1675
1676static unsigned long
1677mips16_stub_symndx (const struct elf_backend_data *bed,
1678 asection *sec ATTRIBUTE_UNUSED,
1679 const Elf_Internal_Rela *relocs,
1680 const Elf_Internal_Rela *relend)
1681{
1682 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1683 const Elf_Internal_Rela *rel;
1684
1685 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1686 one in a compound relocation. */
1687 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1688 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1689 return ELF_R_SYM (sec->owner, rel->r_info);
1690
1691 /* Otherwise trust the first relocation, whatever its kind. This is
1692 the traditional behavior. */
1693 if (relocs < relend)
1694 return ELF_R_SYM (sec->owner, relocs->r_info);
1695
1696 return 0;
1697}
1698
1699/* Check the mips16 stubs for a particular symbol, and see if we can
1700 discard them. */
1701
1702static void
1703mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1704 struct mips_elf_link_hash_entry *h)
1705{
1706 /* Dynamic symbols must use the standard call interface, in case other
1707 objects try to call them. */
1708 if (h->fn_stub != NULL
1709 && h->root.dynindx != -1)
1710 {
1711 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1712 h->need_fn_stub = TRUE;
1713 }
1714
1715 if (h->fn_stub != NULL
1716 && ! h->need_fn_stub)
1717 {
1718 /* We don't need the fn_stub; the only references to this symbol
1719 are 16 bit calls. Clobber the size to 0 to prevent it from
1720 being included in the link. */
1721 h->fn_stub->size = 0;
1722 h->fn_stub->flags &= ~SEC_RELOC;
1723 h->fn_stub->reloc_count = 0;
1724 h->fn_stub->flags |= SEC_EXCLUDE;
1725 h->fn_stub->output_section = bfd_abs_section_ptr;
1726 }
1727
1728 if (h->call_stub != NULL
1729 && ELF_ST_IS_MIPS16 (h->root.other))
1730 {
1731 /* We don't need the call_stub; this is a 16 bit function, so
1732 calls from other 16 bit functions are OK. Clobber the size
1733 to 0 to prevent it from being included in the link. */
1734 h->call_stub->size = 0;
1735 h->call_stub->flags &= ~SEC_RELOC;
1736 h->call_stub->reloc_count = 0;
1737 h->call_stub->flags |= SEC_EXCLUDE;
1738 h->call_stub->output_section = bfd_abs_section_ptr;
1739 }
1740
1741 if (h->call_fp_stub != NULL
1742 && ELF_ST_IS_MIPS16 (h->root.other))
1743 {
1744 /* We don't need the call_stub; this is a 16 bit function, so
1745 calls from other 16 bit functions are OK. Clobber the size
1746 to 0 to prevent it from being included in the link. */
1747 h->call_fp_stub->size = 0;
1748 h->call_fp_stub->flags &= ~SEC_RELOC;
1749 h->call_fp_stub->reloc_count = 0;
1750 h->call_fp_stub->flags |= SEC_EXCLUDE;
1751 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1752 }
1753}
1754
1755/* Hashtable callbacks for mips_elf_la25_stubs. */
1756
1757static hashval_t
1758mips_elf_la25_stub_hash (const void *entry_)
1759{
1760 const struct mips_elf_la25_stub *entry;
1761
1762 entry = (struct mips_elf_la25_stub *) entry_;
1763 return entry->h->root.root.u.def.section->id
1764 + entry->h->root.root.u.def.value;
1765}
1766
1767static int
1768mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1769{
1770 const struct mips_elf_la25_stub *entry1, *entry2;
1771
1772 entry1 = (struct mips_elf_la25_stub *) entry1_;
1773 entry2 = (struct mips_elf_la25_stub *) entry2_;
1774 return ((entry1->h->root.root.u.def.section
1775 == entry2->h->root.root.u.def.section)
1776 && (entry1->h->root.root.u.def.value
1777 == entry2->h->root.root.u.def.value));
1778}
1779
1780/* Called by the linker to set up the la25 stub-creation code. FN is
1781 the linker's implementation of add_stub_function. Return true on
1782 success. */
1783
1784bfd_boolean
1785_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1786 asection *(*fn) (const char *, asection *,
1787 asection *))
1788{
1789 struct mips_elf_link_hash_table *htab;
1790
1791 htab = mips_elf_hash_table (info);
1792 if (htab == NULL)
1793 return FALSE;
1794
1795 htab->add_stub_section = fn;
1796 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1797 mips_elf_la25_stub_eq, NULL);
1798 if (htab->la25_stubs == NULL)
1799 return FALSE;
1800
1801 return TRUE;
1802}
1803
1804/* Return true if H is a locally-defined PIC function, in the sense
1805 that it or its fn_stub might need $25 to be valid on entry.
1806 Note that MIPS16 functions set up $gp using PC-relative instructions,
1807 so they themselves never need $25 to be valid. Only non-MIPS16
1808 entry points are of interest here. */
1809
1810static bfd_boolean
1811mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1812{
1813 return ((h->root.root.type == bfd_link_hash_defined
1814 || h->root.root.type == bfd_link_hash_defweak)
1815 && h->root.def_regular
1816 && !bfd_is_abs_section (h->root.root.u.def.section)
1817 && !bfd_is_und_section (h->root.root.u.def.section)
1818 && (!ELF_ST_IS_MIPS16 (h->root.other)
1819 || (h->fn_stub && h->need_fn_stub))
1820 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1821 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1822}
1823
1824/* Set *SEC to the input section that contains the target of STUB.
1825 Return the offset of the target from the start of that section. */
1826
1827static bfd_vma
1828mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1829 asection **sec)
1830{
1831 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1832 {
1833 BFD_ASSERT (stub->h->need_fn_stub);
1834 *sec = stub->h->fn_stub;
1835 return 0;
1836 }
1837 else
1838 {
1839 *sec = stub->h->root.root.u.def.section;
1840 return stub->h->root.root.u.def.value;
1841 }
1842}
1843
1844/* STUB describes an la25 stub that we have decided to implement
1845 by inserting an LUI/ADDIU pair before the target function.
1846 Create the section and redirect the function symbol to it. */
1847
1848static bfd_boolean
1849mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1850 struct bfd_link_info *info)
1851{
1852 struct mips_elf_link_hash_table *htab;
1853 char *name;
1854 asection *s, *input_section;
1855 unsigned int align;
1856
1857 htab = mips_elf_hash_table (info);
1858 if (htab == NULL)
1859 return FALSE;
1860
1861 /* Create a unique name for the new section. */
1862 name = bfd_malloc (11 + sizeof (".text.stub."));
1863 if (name == NULL)
1864 return FALSE;
1865 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1866
1867 /* Create the section. */
1868 mips_elf_get_la25_target (stub, &input_section);
1869 s = htab->add_stub_section (name, input_section,
1870 input_section->output_section);
1871 if (s == NULL)
1872 return FALSE;
1873
1874 /* Make sure that any padding goes before the stub. */
1875 align = input_section->alignment_power;
1876 if (!bfd_set_section_alignment (s->owner, s, align))
1877 return FALSE;
1878 if (align > 3)
1879 s->size = (1 << align) - 8;
1880
1881 /* Create a symbol for the stub. */
1882 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1883 stub->stub_section = s;
1884 stub->offset = s->size;
1885
1886 /* Allocate room for it. */
1887 s->size += 8;
1888 return TRUE;
1889}
1890
1891/* STUB describes an la25 stub that we have decided to implement
1892 with a separate trampoline. Allocate room for it and redirect
1893 the function symbol to it. */
1894
1895static bfd_boolean
1896mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1897 struct bfd_link_info *info)
1898{
1899 struct mips_elf_link_hash_table *htab;
1900 asection *s;
1901
1902 htab = mips_elf_hash_table (info);
1903 if (htab == NULL)
1904 return FALSE;
1905
1906 /* Create a trampoline section, if we haven't already. */
1907 s = htab->strampoline;
1908 if (s == NULL)
1909 {
1910 asection *input_section = stub->h->root.root.u.def.section;
1911 s = htab->add_stub_section (".text", NULL,
1912 input_section->output_section);
1913 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1914 return FALSE;
1915 htab->strampoline = s;
1916 }
1917
1918 /* Create a symbol for the stub. */
1919 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1920 stub->stub_section = s;
1921 stub->offset = s->size;
1922
1923 /* Allocate room for it. */
1924 s->size += 16;
1925 return TRUE;
1926}
1927
1928/* H describes a symbol that needs an la25 stub. Make sure that an
1929 appropriate stub exists and point H at it. */
1930
1931static bfd_boolean
1932mips_elf_add_la25_stub (struct bfd_link_info *info,
1933 struct mips_elf_link_hash_entry *h)
1934{
1935 struct mips_elf_link_hash_table *htab;
1936 struct mips_elf_la25_stub search, *stub;
1937 bfd_boolean use_trampoline_p;
1938 asection *s;
1939 bfd_vma value;
1940 void **slot;
1941
1942 /* Describe the stub we want. */
1943 search.stub_section = NULL;
1944 search.offset = 0;
1945 search.h = h;
1946
1947 /* See if we've already created an equivalent stub. */
1948 htab = mips_elf_hash_table (info);
1949 if (htab == NULL)
1950 return FALSE;
1951
1952 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1953 if (slot == NULL)
1954 return FALSE;
1955
1956 stub = (struct mips_elf_la25_stub *) *slot;
1957 if (stub != NULL)
1958 {
1959 /* We can reuse the existing stub. */
1960 h->la25_stub = stub;
1961 return TRUE;
1962 }
1963
1964 /* Create a permanent copy of ENTRY and add it to the hash table. */
1965 stub = bfd_malloc (sizeof (search));
1966 if (stub == NULL)
1967 return FALSE;
1968 *stub = search;
1969 *slot = stub;
1970
1971 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1972 of the section and if we would need no more than 2 nops. */
1973 value = mips_elf_get_la25_target (stub, &s);
1974 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1975 value &= ~1;
1976 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1977
1978 h->la25_stub = stub;
1979 return (use_trampoline_p
1980 ? mips_elf_add_la25_trampoline (stub, info)
1981 : mips_elf_add_la25_intro (stub, info));
1982}
1983
1984/* A mips_elf_link_hash_traverse callback that is called before sizing
1985 sections. DATA points to a mips_htab_traverse_info structure. */
1986
1987static bfd_boolean
1988mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1989{
1990 struct mips_htab_traverse_info *hti;
1991
1992 hti = (struct mips_htab_traverse_info *) data;
1993 if (!bfd_link_relocatable (hti->info))
1994 mips_elf_check_mips16_stubs (hti->info, h);
1995
1996 if (mips_elf_local_pic_function_p (h))
1997 {
1998 /* PR 12845: If H is in a section that has been garbage
1999 collected it will have its output section set to *ABS*. */
2000 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2001 return TRUE;
2002
2003 /* H is a function that might need $25 to be valid on entry.
2004 If we're creating a non-PIC relocatable object, mark H as
2005 being PIC. If we're creating a non-relocatable object with
2006 non-PIC branches and jumps to H, make sure that H has an la25
2007 stub. */
2008 if (bfd_link_relocatable (hti->info))
2009 {
2010 if (!PIC_OBJECT_P (hti->output_bfd))
2011 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2012 }
2013 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2014 {
2015 hti->error = TRUE;
2016 return FALSE;
2017 }
2018 }
2019 return TRUE;
2020}
2021\f
2022/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2023 Most mips16 instructions are 16 bits, but these instructions
2024 are 32 bits.
2025
2026 The format of these instructions is:
2027
2028 +--------------+--------------------------------+
2029 | JALX | X| Imm 20:16 | Imm 25:21 |
2030 +--------------+--------------------------------+
2031 | Immediate 15:0 |
2032 +-----------------------------------------------+
2033
2034 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2035 Note that the immediate value in the first word is swapped.
2036
2037 When producing a relocatable object file, R_MIPS16_26 is
2038 handled mostly like R_MIPS_26. In particular, the addend is
2039 stored as a straight 26-bit value in a 32-bit instruction.
2040 (gas makes life simpler for itself by never adjusting a
2041 R_MIPS16_26 reloc to be against a section, so the addend is
2042 always zero). However, the 32 bit instruction is stored as 2
2043 16-bit values, rather than a single 32-bit value. In a
2044 big-endian file, the result is the same; in a little-endian
2045 file, the two 16-bit halves of the 32 bit value are swapped.
2046 This is so that a disassembler can recognize the jal
2047 instruction.
2048
2049 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2050 instruction stored as two 16-bit values. The addend A is the
2051 contents of the targ26 field. The calculation is the same as
2052 R_MIPS_26. When storing the calculated value, reorder the
2053 immediate value as shown above, and don't forget to store the
2054 value as two 16-bit values.
2055
2056 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2057 defined as
2058
2059 big-endian:
2060 +--------+----------------------+
2061 | | |
2062 | | targ26-16 |
2063 |31 26|25 0|
2064 +--------+----------------------+
2065
2066 little-endian:
2067 +----------+------+-------------+
2068 | | | |
2069 | sub1 | | sub2 |
2070 |0 9|10 15|16 31|
2071 +----------+--------------------+
2072 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2073 ((sub1 << 16) | sub2)).
2074
2075 When producing a relocatable object file, the calculation is
2076 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2077 When producing a fully linked file, the calculation is
2078 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2079 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2080
2081 The table below lists the other MIPS16 instruction relocations.
2082 Each one is calculated in the same way as the non-MIPS16 relocation
2083 given on the right, but using the extended MIPS16 layout of 16-bit
2084 immediate fields:
2085
2086 R_MIPS16_GPREL R_MIPS_GPREL16
2087 R_MIPS16_GOT16 R_MIPS_GOT16
2088 R_MIPS16_CALL16 R_MIPS_CALL16
2089 R_MIPS16_HI16 R_MIPS_HI16
2090 R_MIPS16_LO16 R_MIPS_LO16
2091
2092 A typical instruction will have a format like this:
2093
2094 +--------------+--------------------------------+
2095 | EXTEND | Imm 10:5 | Imm 15:11 |
2096 +--------------+--------------------------------+
2097 | Major | rx | ry | Imm 4:0 |
2098 +--------------+--------------------------------+
2099
2100 EXTEND is the five bit value 11110. Major is the instruction
2101 opcode.
2102
2103 All we need to do here is shuffle the bits appropriately.
2104 As above, the two 16-bit halves must be swapped on a
2105 little-endian system.
2106
2107 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2108 relocatable field is shifted by 1 rather than 2 and the same bit
2109 shuffling is done as with the relocations above. */
2110
2111static inline bfd_boolean
2112mips16_reloc_p (int r_type)
2113{
2114 switch (r_type)
2115 {
2116 case R_MIPS16_26:
2117 case R_MIPS16_GPREL:
2118 case R_MIPS16_GOT16:
2119 case R_MIPS16_CALL16:
2120 case R_MIPS16_HI16:
2121 case R_MIPS16_LO16:
2122 case R_MIPS16_TLS_GD:
2123 case R_MIPS16_TLS_LDM:
2124 case R_MIPS16_TLS_DTPREL_HI16:
2125 case R_MIPS16_TLS_DTPREL_LO16:
2126 case R_MIPS16_TLS_GOTTPREL:
2127 case R_MIPS16_TLS_TPREL_HI16:
2128 case R_MIPS16_TLS_TPREL_LO16:
2129 case R_MIPS16_PC16_S1:
2130 return TRUE;
2131
2132 default:
2133 return FALSE;
2134 }
2135}
2136
2137/* Check if a microMIPS reloc. */
2138
2139static inline bfd_boolean
2140micromips_reloc_p (unsigned int r_type)
2141{
2142 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2143}
2144
2145/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2146 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2147 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2148
2149static inline bfd_boolean
2150micromips_reloc_shuffle_p (unsigned int r_type)
2151{
2152 return (micromips_reloc_p (r_type)
2153 && r_type != R_MICROMIPS_PC7_S1
2154 && r_type != R_MICROMIPS_PC10_S1);
2155}
2156
2157static inline bfd_boolean
2158got16_reloc_p (int r_type)
2159{
2160 return (r_type == R_MIPS_GOT16
2161 || r_type == R_MIPS16_GOT16
2162 || r_type == R_MICROMIPS_GOT16);
2163}
2164
2165static inline bfd_boolean
2166call16_reloc_p (int r_type)
2167{
2168 return (r_type == R_MIPS_CALL16
2169 || r_type == R_MIPS16_CALL16
2170 || r_type == R_MICROMIPS_CALL16);
2171}
2172
2173static inline bfd_boolean
2174got_disp_reloc_p (unsigned int r_type)
2175{
2176 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2177}
2178
2179static inline bfd_boolean
2180got_page_reloc_p (unsigned int r_type)
2181{
2182 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2183}
2184
2185static inline bfd_boolean
2186got_lo16_reloc_p (unsigned int r_type)
2187{
2188 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2189}
2190
2191static inline bfd_boolean
2192call_hi16_reloc_p (unsigned int r_type)
2193{
2194 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2195}
2196
2197static inline bfd_boolean
2198call_lo16_reloc_p (unsigned int r_type)
2199{
2200 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2201}
2202
2203static inline bfd_boolean
2204hi16_reloc_p (int r_type)
2205{
2206 return (r_type == R_MIPS_HI16
2207 || r_type == R_MIPS16_HI16
2208 || r_type == R_MICROMIPS_HI16
2209 || r_type == R_MIPS_PCHI16);
2210}
2211
2212static inline bfd_boolean
2213lo16_reloc_p (int r_type)
2214{
2215 return (r_type == R_MIPS_LO16
2216 || r_type == R_MIPS16_LO16
2217 || r_type == R_MICROMIPS_LO16
2218 || r_type == R_MIPS_PCLO16);
2219}
2220
2221static inline bfd_boolean
2222mips16_call_reloc_p (int r_type)
2223{
2224 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2225}
2226
2227static inline bfd_boolean
2228jal_reloc_p (int r_type)
2229{
2230 return (r_type == R_MIPS_26
2231 || r_type == R_MIPS16_26
2232 || r_type == R_MICROMIPS_26_S1);
2233}
2234
2235static inline bfd_boolean
2236b_reloc_p (int r_type)
2237{
2238 return (r_type == R_MIPS_PC26_S2
2239 || r_type == R_MIPS_PC21_S2
2240 || r_type == R_MIPS_PC16
2241 || r_type == R_MIPS_GNU_REL16_S2
2242 || r_type == R_MIPS16_PC16_S1
2243 || r_type == R_MICROMIPS_PC16_S1
2244 || r_type == R_MICROMIPS_PC10_S1
2245 || r_type == R_MICROMIPS_PC7_S1);
2246}
2247
2248static inline bfd_boolean
2249aligned_pcrel_reloc_p (int r_type)
2250{
2251 return (r_type == R_MIPS_PC18_S3
2252 || r_type == R_MIPS_PC19_S2);
2253}
2254
2255static inline bfd_boolean
2256branch_reloc_p (int r_type)
2257{
2258 return (r_type == R_MIPS_26
2259 || r_type == R_MIPS_PC26_S2
2260 || r_type == R_MIPS_PC21_S2
2261 || r_type == R_MIPS_PC16
2262 || r_type == R_MIPS_GNU_REL16_S2);
2263}
2264
2265static inline bfd_boolean
2266mips16_branch_reloc_p (int r_type)
2267{
2268 return (r_type == R_MIPS16_26
2269 || r_type == R_MIPS16_PC16_S1);
2270}
2271
2272static inline bfd_boolean
2273micromips_branch_reloc_p (int r_type)
2274{
2275 return (r_type == R_MICROMIPS_26_S1
2276 || r_type == R_MICROMIPS_PC16_S1
2277 || r_type == R_MICROMIPS_PC10_S1
2278 || r_type == R_MICROMIPS_PC7_S1);
2279}
2280
2281static inline bfd_boolean
2282tls_gd_reloc_p (unsigned int r_type)
2283{
2284 return (r_type == R_MIPS_TLS_GD
2285 || r_type == R_MIPS16_TLS_GD
2286 || r_type == R_MICROMIPS_TLS_GD);
2287}
2288
2289static inline bfd_boolean
2290tls_ldm_reloc_p (unsigned int r_type)
2291{
2292 return (r_type == R_MIPS_TLS_LDM
2293 || r_type == R_MIPS16_TLS_LDM
2294 || r_type == R_MICROMIPS_TLS_LDM);
2295}
2296
2297static inline bfd_boolean
2298tls_gottprel_reloc_p (unsigned int r_type)
2299{
2300 return (r_type == R_MIPS_TLS_GOTTPREL
2301 || r_type == R_MIPS16_TLS_GOTTPREL
2302 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2303}
2304
2305void
2306_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2307 bfd_boolean jal_shuffle, bfd_byte *data)
2308{
2309 bfd_vma first, second, val;
2310
2311 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2312 return;
2313
2314 /* Pick up the first and second halfwords of the instruction. */
2315 first = bfd_get_16 (abfd, data);
2316 second = bfd_get_16 (abfd, data + 2);
2317 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2318 val = first << 16 | second;
2319 else if (r_type != R_MIPS16_26)
2320 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2321 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2322 else
2323 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2324 | ((first & 0x1f) << 21) | second);
2325 bfd_put_32 (abfd, val, data);
2326}
2327
2328void
2329_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2330 bfd_boolean jal_shuffle, bfd_byte *data)
2331{
2332 bfd_vma first, second, val;
2333
2334 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2335 return;
2336
2337 val = bfd_get_32 (abfd, data);
2338 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2339 {
2340 second = val & 0xffff;
2341 first = val >> 16;
2342 }
2343 else if (r_type != R_MIPS16_26)
2344 {
2345 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2346 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2347 }
2348 else
2349 {
2350 second = val & 0xffff;
2351 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2352 | ((val >> 21) & 0x1f);
2353 }
2354 bfd_put_16 (abfd, second, data + 2);
2355 bfd_put_16 (abfd, first, data);
2356}
2357
2358bfd_reloc_status_type
2359_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2360 arelent *reloc_entry, asection *input_section,
2361 bfd_boolean relocatable, void *data, bfd_vma gp)
2362{
2363 bfd_vma relocation;
2364 bfd_signed_vma val;
2365 bfd_reloc_status_type status;
2366
2367 if (bfd_is_com_section (symbol->section))
2368 relocation = 0;
2369 else
2370 relocation = symbol->value;
2371
2372 relocation += symbol->section->output_section->vma;
2373 relocation += symbol->section->output_offset;
2374
2375 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2376 return bfd_reloc_outofrange;
2377
2378 /* Set val to the offset into the section or symbol. */
2379 val = reloc_entry->addend;
2380
2381 _bfd_mips_elf_sign_extend (val, 16);
2382
2383 /* Adjust val for the final section location and GP value. If we
2384 are producing relocatable output, we don't want to do this for
2385 an external symbol. */
2386 if (! relocatable
2387 || (symbol->flags & BSF_SECTION_SYM) != 0)
2388 val += relocation - gp;
2389
2390 if (reloc_entry->howto->partial_inplace)
2391 {
2392 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2393 (bfd_byte *) data
2394 + reloc_entry->address);
2395 if (status != bfd_reloc_ok)
2396 return status;
2397 }
2398 else
2399 reloc_entry->addend = val;
2400
2401 if (relocatable)
2402 reloc_entry->address += input_section->output_offset;
2403
2404 return bfd_reloc_ok;
2405}
2406
2407/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2408 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2409 that contains the relocation field and DATA points to the start of
2410 INPUT_SECTION. */
2411
2412struct mips_hi16
2413{
2414 struct mips_hi16 *next;
2415 bfd_byte *data;
2416 asection *input_section;
2417 arelent rel;
2418};
2419
2420/* FIXME: This should not be a static variable. */
2421
2422static struct mips_hi16 *mips_hi16_list;
2423
2424/* A howto special_function for REL *HI16 relocations. We can only
2425 calculate the correct value once we've seen the partnering
2426 *LO16 relocation, so just save the information for later.
2427
2428 The ABI requires that the *LO16 immediately follow the *HI16.
2429 However, as a GNU extension, we permit an arbitrary number of
2430 *HI16s to be associated with a single *LO16. This significantly
2431 simplies the relocation handling in gcc. */
2432
2433bfd_reloc_status_type
2434_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2435 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2436 asection *input_section, bfd *output_bfd,
2437 char **error_message ATTRIBUTE_UNUSED)
2438{
2439 struct mips_hi16 *n;
2440
2441 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2442 return bfd_reloc_outofrange;
2443
2444 n = bfd_malloc (sizeof *n);
2445 if (n == NULL)
2446 return bfd_reloc_outofrange;
2447
2448 n->next = mips_hi16_list;
2449 n->data = data;
2450 n->input_section = input_section;
2451 n->rel = *reloc_entry;
2452 mips_hi16_list = n;
2453
2454 if (output_bfd != NULL)
2455 reloc_entry->address += input_section->output_offset;
2456
2457 return bfd_reloc_ok;
2458}
2459
2460/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2461 like any other 16-bit relocation when applied to global symbols, but is
2462 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2463
2464bfd_reloc_status_type
2465_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468{
2469 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2470 || bfd_is_und_section (bfd_get_section (symbol))
2471 || bfd_is_com_section (bfd_get_section (symbol)))
2472 /* The relocation is against a global symbol. */
2473 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd,
2475 error_message);
2476
2477 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2478 input_section, output_bfd, error_message);
2479}
2480
2481/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2482 is a straightforward 16 bit inplace relocation, but we must deal with
2483 any partnering high-part relocations as well. */
2484
2485bfd_reloc_status_type
2486_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2487 void *data, asection *input_section,
2488 bfd *output_bfd, char **error_message)
2489{
2490 bfd_vma vallo;
2491 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2492
2493 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2494 return bfd_reloc_outofrange;
2495
2496 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2497 location);
2498 vallo = bfd_get_32 (abfd, location);
2499 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2500 location);
2501
2502 while (mips_hi16_list != NULL)
2503 {
2504 bfd_reloc_status_type ret;
2505 struct mips_hi16 *hi;
2506
2507 hi = mips_hi16_list;
2508
2509 /* R_MIPS*_GOT16 relocations are something of a special case. We
2510 want to install the addend in the same way as for a R_MIPS*_HI16
2511 relocation (with a rightshift of 16). However, since GOT16
2512 relocations can also be used with global symbols, their howto
2513 has a rightshift of 0. */
2514 if (hi->rel.howto->type == R_MIPS_GOT16)
2515 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2516 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2517 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2518 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2519 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2520
2521 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2522 carry or borrow will induce a change of +1 or -1 in the high part. */
2523 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2524
2525 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2526 hi->input_section, output_bfd,
2527 error_message);
2528 if (ret != bfd_reloc_ok)
2529 return ret;
2530
2531 mips_hi16_list = hi->next;
2532 free (hi);
2533 }
2534
2535 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2536 input_section, output_bfd,
2537 error_message);
2538}
2539
2540/* A generic howto special_function. This calculates and installs the
2541 relocation itself, thus avoiding the oft-discussed problems in
2542 bfd_perform_relocation and bfd_install_relocation. */
2543
2544bfd_reloc_status_type
2545_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2546 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2547 asection *input_section, bfd *output_bfd,
2548 char **error_message ATTRIBUTE_UNUSED)
2549{
2550 bfd_signed_vma val;
2551 bfd_reloc_status_type status;
2552 bfd_boolean relocatable;
2553
2554 relocatable = (output_bfd != NULL);
2555
2556 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2557 return bfd_reloc_outofrange;
2558
2559 /* Build up the field adjustment in VAL. */
2560 val = 0;
2561 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2562 {
2563 /* Either we're calculating the final field value or we have a
2564 relocation against a section symbol. Add in the section's
2565 offset or address. */
2566 val += symbol->section->output_section->vma;
2567 val += symbol->section->output_offset;
2568 }
2569
2570 if (!relocatable)
2571 {
2572 /* We're calculating the final field value. Add in the symbol's value
2573 and, if pc-relative, subtract the address of the field itself. */
2574 val += symbol->value;
2575 if (reloc_entry->howto->pc_relative)
2576 {
2577 val -= input_section->output_section->vma;
2578 val -= input_section->output_offset;
2579 val -= reloc_entry->address;
2580 }
2581 }
2582
2583 /* VAL is now the final adjustment. If we're keeping this relocation
2584 in the output file, and if the relocation uses a separate addend,
2585 we just need to add VAL to that addend. Otherwise we need to add
2586 VAL to the relocation field itself. */
2587 if (relocatable && !reloc_entry->howto->partial_inplace)
2588 reloc_entry->addend += val;
2589 else
2590 {
2591 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2592
2593 /* Add in the separate addend, if any. */
2594 val += reloc_entry->addend;
2595
2596 /* Add VAL to the relocation field. */
2597 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2598 location);
2599 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2600 location);
2601 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2602 location);
2603
2604 if (status != bfd_reloc_ok)
2605 return status;
2606 }
2607
2608 if (relocatable)
2609 reloc_entry->address += input_section->output_offset;
2610
2611 return bfd_reloc_ok;
2612}
2613\f
2614/* Swap an entry in a .gptab section. Note that these routines rely
2615 on the equivalence of the two elements of the union. */
2616
2617static void
2618bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2619 Elf32_gptab *in)
2620{
2621 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2622 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2623}
2624
2625static void
2626bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2627 Elf32_External_gptab *ex)
2628{
2629 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2630 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2631}
2632
2633static void
2634bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2635 Elf32_External_compact_rel *ex)
2636{
2637 H_PUT_32 (abfd, in->id1, ex->id1);
2638 H_PUT_32 (abfd, in->num, ex->num);
2639 H_PUT_32 (abfd, in->id2, ex->id2);
2640 H_PUT_32 (abfd, in->offset, ex->offset);
2641 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2642 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2643}
2644
2645static void
2646bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2647 Elf32_External_crinfo *ex)
2648{
2649 unsigned long l;
2650
2651 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2652 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2653 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2654 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2655 H_PUT_32 (abfd, l, ex->info);
2656 H_PUT_32 (abfd, in->konst, ex->konst);
2657 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2658}
2659\f
2660/* A .reginfo section holds a single Elf32_RegInfo structure. These
2661 routines swap this structure in and out. They are used outside of
2662 BFD, so they are globally visible. */
2663
2664void
2665bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2666 Elf32_RegInfo *in)
2667{
2668 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2669 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2670 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2671 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2672 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2673 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2674}
2675
2676void
2677bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2678 Elf32_External_RegInfo *ex)
2679{
2680 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2681 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2682 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2683 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2684 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2685 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2686}
2687
2688/* In the 64 bit ABI, the .MIPS.options section holds register
2689 information in an Elf64_Reginfo structure. These routines swap
2690 them in and out. They are globally visible because they are used
2691 outside of BFD. These routines are here so that gas can call them
2692 without worrying about whether the 64 bit ABI has been included. */
2693
2694void
2695bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2696 Elf64_Internal_RegInfo *in)
2697{
2698 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2699 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2700 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2701 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2702 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2703 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2704 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2705}
2706
2707void
2708bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2709 Elf64_External_RegInfo *ex)
2710{
2711 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2712 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2713 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2714 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2715 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2716 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2717 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2718}
2719
2720/* Swap in an options header. */
2721
2722void
2723bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2724 Elf_Internal_Options *in)
2725{
2726 in->kind = H_GET_8 (abfd, ex->kind);
2727 in->size = H_GET_8 (abfd, ex->size);
2728 in->section = H_GET_16 (abfd, ex->section);
2729 in->info = H_GET_32 (abfd, ex->info);
2730}
2731
2732/* Swap out an options header. */
2733
2734void
2735bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2736 Elf_External_Options *ex)
2737{
2738 H_PUT_8 (abfd, in->kind, ex->kind);
2739 H_PUT_8 (abfd, in->size, ex->size);
2740 H_PUT_16 (abfd, in->section, ex->section);
2741 H_PUT_32 (abfd, in->info, ex->info);
2742}
2743
2744/* Swap in an abiflags structure. */
2745
2746void
2747bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2748 const Elf_External_ABIFlags_v0 *ex,
2749 Elf_Internal_ABIFlags_v0 *in)
2750{
2751 in->version = H_GET_16 (abfd, ex->version);
2752 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2753 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2754 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2755 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2756 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2757 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2758 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2759 in->ases = H_GET_32 (abfd, ex->ases);
2760 in->flags1 = H_GET_32 (abfd, ex->flags1);
2761 in->flags2 = H_GET_32 (abfd, ex->flags2);
2762}
2763
2764/* Swap out an abiflags structure. */
2765
2766void
2767bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2768 const Elf_Internal_ABIFlags_v0 *in,
2769 Elf_External_ABIFlags_v0 *ex)
2770{
2771 H_PUT_16 (abfd, in->version, ex->version);
2772 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2773 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2774 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2775 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2776 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2777 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2778 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2779 H_PUT_32 (abfd, in->ases, ex->ases);
2780 H_PUT_32 (abfd, in->flags1, ex->flags1);
2781 H_PUT_32 (abfd, in->flags2, ex->flags2);
2782}
2783\f
2784/* This function is called via qsort() to sort the dynamic relocation
2785 entries by increasing r_symndx value. */
2786
2787static int
2788sort_dynamic_relocs (const void *arg1, const void *arg2)
2789{
2790 Elf_Internal_Rela int_reloc1;
2791 Elf_Internal_Rela int_reloc2;
2792 int diff;
2793
2794 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2795 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2796
2797 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2798 if (diff != 0)
2799 return diff;
2800
2801 if (int_reloc1.r_offset < int_reloc2.r_offset)
2802 return -1;
2803 if (int_reloc1.r_offset > int_reloc2.r_offset)
2804 return 1;
2805 return 0;
2806}
2807
2808/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2809
2810static int
2811sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2812 const void *arg2 ATTRIBUTE_UNUSED)
2813{
2814#ifdef BFD64
2815 Elf_Internal_Rela int_reloc1[3];
2816 Elf_Internal_Rela int_reloc2[3];
2817
2818 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2819 (reldyn_sorting_bfd, arg1, int_reloc1);
2820 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2821 (reldyn_sorting_bfd, arg2, int_reloc2);
2822
2823 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2824 return -1;
2825 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2826 return 1;
2827
2828 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2829 return -1;
2830 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2831 return 1;
2832 return 0;
2833#else
2834 abort ();
2835#endif
2836}
2837
2838
2839/* This routine is used to write out ECOFF debugging external symbol
2840 information. It is called via mips_elf_link_hash_traverse. The
2841 ECOFF external symbol information must match the ELF external
2842 symbol information. Unfortunately, at this point we don't know
2843 whether a symbol is required by reloc information, so the two
2844 tables may wind up being different. We must sort out the external
2845 symbol information before we can set the final size of the .mdebug
2846 section, and we must set the size of the .mdebug section before we
2847 can relocate any sections, and we can't know which symbols are
2848 required by relocation until we relocate the sections.
2849 Fortunately, it is relatively unlikely that any symbol will be
2850 stripped but required by a reloc. In particular, it can not happen
2851 when generating a final executable. */
2852
2853static bfd_boolean
2854mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2855{
2856 struct extsym_info *einfo = data;
2857 bfd_boolean strip;
2858 asection *sec, *output_section;
2859
2860 if (h->root.indx == -2)
2861 strip = FALSE;
2862 else if ((h->root.def_dynamic
2863 || h->root.ref_dynamic
2864 || h->root.type == bfd_link_hash_new)
2865 && !h->root.def_regular
2866 && !h->root.ref_regular)
2867 strip = TRUE;
2868 else if (einfo->info->strip == strip_all
2869 || (einfo->info->strip == strip_some
2870 && bfd_hash_lookup (einfo->info->keep_hash,
2871 h->root.root.root.string,
2872 FALSE, FALSE) == NULL))
2873 strip = TRUE;
2874 else
2875 strip = FALSE;
2876
2877 if (strip)
2878 return TRUE;
2879
2880 if (h->esym.ifd == -2)
2881 {
2882 h->esym.jmptbl = 0;
2883 h->esym.cobol_main = 0;
2884 h->esym.weakext = 0;
2885 h->esym.reserved = 0;
2886 h->esym.ifd = ifdNil;
2887 h->esym.asym.value = 0;
2888 h->esym.asym.st = stGlobal;
2889
2890 if (h->root.root.type == bfd_link_hash_undefined
2891 || h->root.root.type == bfd_link_hash_undefweak)
2892 {
2893 const char *name;
2894
2895 /* Use undefined class. Also, set class and type for some
2896 special symbols. */
2897 name = h->root.root.root.string;
2898 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2899 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2900 {
2901 h->esym.asym.sc = scData;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value = 0;
2904 }
2905 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2906 {
2907 h->esym.asym.sc = scAbs;
2908 h->esym.asym.st = stLabel;
2909 h->esym.asym.value =
2910 mips_elf_hash_table (einfo->info)->procedure_count;
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016}
3017
3018/* A comparison routine used to sort .gptab entries. */
3019
3020static int
3021gptab_compare (const void *p1, const void *p2)
3022{
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027}
3028\f
3029/* Functions to manage the got entry hash table. */
3030
3031/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034static INLINE hashval_t
3035mips_elf_hash_bfd_vma (bfd_vma addr)
3036{
3037#ifdef BFD64
3038 return addr + (addr >> 32);
3039#else
3040 return addr;
3041#endif
3042}
3043
3044static hashval_t
3045mips_elf_got_entry_hash (const void *entry_)
3046{
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056}
3057
3058static int
3059mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060{
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071}
3072
3073static hashval_t
3074mips_got_page_ref_hash (const void *ref_)
3075{
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083}
3084
3085static int
3086mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087{
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097}
3098
3099static hashval_t
3100mips_got_page_entry_hash (const void *entry_)
3101{
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106}
3107
3108static int
3109mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110{
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116}
3117\f
3118/* Create and return a new mips_got_info structure. */
3119
3120static struct mips_got_info *
3121mips_elf_create_got_info (bfd *abfd)
3122{
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140}
3141
3142/* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145static struct mips_got_info *
3146mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147{
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157}
3158
3159/* Record that ABFD should use output GOT G. */
3160
3161static void
3162mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163{
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178}
3179
3180/* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184static asection *
3185mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186{
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209}
3210
3211/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213static int
3214mips_elf_reloc_tls_type (unsigned int r_type)
3215{
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226}
3227
3228/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230static int
3231mips_tls_got_entries (unsigned int type)
3232{
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246}
3247
3248/* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252static int
3253mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255{
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h != NULL
3261 && h->dynindx != -1
3262 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3263 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3264 indx = h->dynindx;
3265
3266 if ((bfd_link_dll (info) || indx != 0)
3267 && (h == NULL
3268 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3269 || h->root.type != bfd_link_hash_undefweak))
3270 need_relocs = TRUE;
3271
3272 if (!need_relocs)
3273 return 0;
3274
3275 switch (tls_type)
3276 {
3277 case GOT_TLS_GD:
3278 return indx != 0 ? 2 : 1;
3279
3280 case GOT_TLS_IE:
3281 return 1;
3282
3283 case GOT_TLS_LDM:
3284 return bfd_link_dll (info) ? 1 : 0;
3285
3286 default:
3287 return 0;
3288 }
3289}
3290
3291/* Add the number of GOT entries and TLS relocations required by ENTRY
3292 to G. */
3293
3294static void
3295mips_elf_count_got_entry (struct bfd_link_info *info,
3296 struct mips_got_info *g,
3297 struct mips_got_entry *entry)
3298{
3299 if (entry->tls_type)
3300 {
3301 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3302 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3303 entry->symndx < 0
3304 ? &entry->d.h->root : NULL);
3305 }
3306 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3307 g->local_gotno += 1;
3308 else
3309 g->global_gotno += 1;
3310}
3311
3312/* Output a simple dynamic relocation into SRELOC. */
3313
3314static void
3315mips_elf_output_dynamic_relocation (bfd *output_bfd,
3316 asection *sreloc,
3317 unsigned long reloc_index,
3318 unsigned long indx,
3319 int r_type,
3320 bfd_vma offset)
3321{
3322 Elf_Internal_Rela rel[3];
3323
3324 memset (rel, 0, sizeof (rel));
3325
3326 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3327 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3328
3329 if (ABI_64_P (output_bfd))
3330 {
3331 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
3334 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3335 }
3336 else
3337 bfd_elf32_swap_reloc_out
3338 (output_bfd, &rel[0],
3339 (sreloc->contents
3340 + reloc_index * sizeof (Elf32_External_Rel)));
3341}
3342
3343/* Initialize a set of TLS GOT entries for one symbol. */
3344
3345static void
3346mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3347 struct mips_got_entry *entry,
3348 struct mips_elf_link_hash_entry *h,
3349 bfd_vma value)
3350{
3351 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3352 struct mips_elf_link_hash_table *htab;
3353 int indx;
3354 asection *sreloc, *sgot;
3355 bfd_vma got_offset, got_offset2;
3356 bfd_boolean need_relocs = FALSE;
3357
3358 htab = mips_elf_hash_table (info);
3359 if (htab == NULL)
3360 return;
3361
3362 sgot = htab->root.sgot;
3363
3364 indx = 0;
3365 if (h != NULL
3366 && h->root.dynindx != -1
3367 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3368 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3369 indx = h->root.dynindx;
3370
3371 if (entry->tls_initialized)
3372 return;
3373
3374 if ((bfd_link_dll (info) || indx != 0)
3375 && (h == NULL
3376 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3377 || h->root.type != bfd_link_hash_undefweak))
3378 need_relocs = TRUE;
3379
3380 /* MINUS_ONE means the symbol is not defined in this object. It may not
3381 be defined at all; assume that the value doesn't matter in that
3382 case. Otherwise complain if we would use the value. */
3383 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3384 || h->root.root.type == bfd_link_hash_undefweak);
3385
3386 /* Emit necessary relocations. */
3387 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3388 got_offset = entry->gotidx;
3389
3390 switch (entry->tls_type)
3391 {
3392 case GOT_TLS_GD:
3393 /* General Dynamic. */
3394 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3395
3396 if (need_relocs)
3397 {
3398 mips_elf_output_dynamic_relocation
3399 (abfd, sreloc, sreloc->reloc_count++, indx,
3400 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3401 sgot->output_offset + sgot->output_section->vma + got_offset);
3402
3403 if (indx)
3404 mips_elf_output_dynamic_relocation
3405 (abfd, sreloc, sreloc->reloc_count++, indx,
3406 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3407 sgot->output_offset + sgot->output_section->vma + got_offset2);
3408 else
3409 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3410 sgot->contents + got_offset2);
3411 }
3412 else
3413 {
3414 MIPS_ELF_PUT_WORD (abfd, 1,
3415 sgot->contents + got_offset);
3416 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3417 sgot->contents + got_offset2);
3418 }
3419 break;
3420
3421 case GOT_TLS_IE:
3422 /* Initial Exec model. */
3423 if (need_relocs)
3424 {
3425 if (indx == 0)
3426 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3427 sgot->contents + got_offset);
3428 else
3429 MIPS_ELF_PUT_WORD (abfd, 0,
3430 sgot->contents + got_offset);
3431
3432 mips_elf_output_dynamic_relocation
3433 (abfd, sreloc, sreloc->reloc_count++, indx,
3434 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3435 sgot->output_offset + sgot->output_section->vma + got_offset);
3436 }
3437 else
3438 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3439 sgot->contents + got_offset);
3440 break;
3441
3442 case GOT_TLS_LDM:
3443 /* The initial offset is zero, and the LD offsets will include the
3444 bias by DTP_OFFSET. */
3445 MIPS_ELF_PUT_WORD (abfd, 0,
3446 sgot->contents + got_offset
3447 + MIPS_ELF_GOT_SIZE (abfd));
3448
3449 if (!bfd_link_dll (info))
3450 MIPS_ELF_PUT_WORD (abfd, 1,
3451 sgot->contents + got_offset);
3452 else
3453 mips_elf_output_dynamic_relocation
3454 (abfd, sreloc, sreloc->reloc_count++, indx,
3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3456 sgot->output_offset + sgot->output_section->vma + got_offset);
3457 break;
3458
3459 default:
3460 abort ();
3461 }
3462
3463 entry->tls_initialized = TRUE;
3464}
3465
3466/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3467 for global symbol H. .got.plt comes before the GOT, so the offset
3468 will be negative. */
3469
3470static bfd_vma
3471mips_elf_gotplt_index (struct bfd_link_info *info,
3472 struct elf_link_hash_entry *h)
3473{
3474 bfd_vma got_address, got_value;
3475 struct mips_elf_link_hash_table *htab;
3476
3477 htab = mips_elf_hash_table (info);
3478 BFD_ASSERT (htab != NULL);
3479
3480 BFD_ASSERT (h->plt.plist != NULL);
3481 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3482
3483 /* Calculate the address of the associated .got.plt entry. */
3484 got_address = (htab->root.sgotplt->output_section->vma
3485 + htab->root.sgotplt->output_offset
3486 + (h->plt.plist->gotplt_index
3487 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3488
3489 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3490 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3491 + htab->root.hgot->root.u.def.section->output_offset
3492 + htab->root.hgot->root.u.def.value);
3493
3494 return got_address - got_value;
3495}
3496
3497/* Return the GOT offset for address VALUE. If there is not yet a GOT
3498 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3499 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3500 offset can be found. */
3501
3502static bfd_vma
3503mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3504 bfd_vma value, unsigned long r_symndx,
3505 struct mips_elf_link_hash_entry *h, int r_type)
3506{
3507 struct mips_elf_link_hash_table *htab;
3508 struct mips_got_entry *entry;
3509
3510 htab = mips_elf_hash_table (info);
3511 BFD_ASSERT (htab != NULL);
3512
3513 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3514 r_symndx, h, r_type);
3515 if (!entry)
3516 return MINUS_ONE;
3517
3518 if (entry->tls_type)
3519 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3520 return entry->gotidx;
3521}
3522
3523/* Return the GOT index of global symbol H in the primary GOT. */
3524
3525static bfd_vma
3526mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3528{
3529 struct mips_elf_link_hash_table *htab;
3530 long global_got_dynindx;
3531 struct mips_got_info *g;
3532 bfd_vma got_index;
3533
3534 htab = mips_elf_hash_table (info);
3535 BFD_ASSERT (htab != NULL);
3536
3537 global_got_dynindx = 0;
3538 if (htab->global_gotsym != NULL)
3539 global_got_dynindx = htab->global_gotsym->dynindx;
3540
3541 /* Once we determine the global GOT entry with the lowest dynamic
3542 symbol table index, we must put all dynamic symbols with greater
3543 indices into the primary GOT. That makes it easy to calculate the
3544 GOT offset. */
3545 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3546 g = mips_elf_bfd_got (obfd, FALSE);
3547 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3548 * MIPS_ELF_GOT_SIZE (obfd));
3549 BFD_ASSERT (got_index < htab->root.sgot->size);
3550
3551 return got_index;
3552}
3553
3554/* Return the GOT index for the global symbol indicated by H, which is
3555 referenced by a relocation of type R_TYPE in IBFD. */
3556
3557static bfd_vma
3558mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3559 struct elf_link_hash_entry *h, int r_type)
3560{
3561 struct mips_elf_link_hash_table *htab;
3562 struct mips_got_info *g;
3563 struct mips_got_entry lookup, *entry;
3564 bfd_vma gotidx;
3565
3566 htab = mips_elf_hash_table (info);
3567 BFD_ASSERT (htab != NULL);
3568
3569 g = mips_elf_bfd_got (ibfd, FALSE);
3570 BFD_ASSERT (g);
3571
3572 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3573 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3574 return mips_elf_primary_global_got_index (obfd, info, h);
3575
3576 lookup.abfd = ibfd;
3577 lookup.symndx = -1;
3578 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3579 entry = htab_find (g->got_entries, &lookup);
3580 BFD_ASSERT (entry);
3581
3582 gotidx = entry->gotidx;
3583 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3584
3585 if (lookup.tls_type)
3586 {
3587 bfd_vma value = MINUS_ONE;
3588
3589 if ((h->root.type == bfd_link_hash_defined
3590 || h->root.type == bfd_link_hash_defweak)
3591 && h->root.u.def.section->output_section)
3592 value = (h->root.u.def.value
3593 + h->root.u.def.section->output_offset
3594 + h->root.u.def.section->output_section->vma);
3595
3596 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3597 }
3598 return gotidx;
3599}
3600
3601/* Find a GOT page entry that points to within 32KB of VALUE. These
3602 entries are supposed to be placed at small offsets in the GOT, i.e.,
3603 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3604 entry could be created. If OFFSETP is nonnull, use it to return the
3605 offset of the GOT entry from VALUE. */
3606
3607static bfd_vma
3608mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3609 bfd_vma value, bfd_vma *offsetp)
3610{
3611 bfd_vma page, got_index;
3612 struct mips_got_entry *entry;
3613
3614 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3615 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3616 NULL, R_MIPS_GOT_PAGE);
3617
3618 if (!entry)
3619 return MINUS_ONE;
3620
3621 got_index = entry->gotidx;
3622
3623 if (offsetp)
3624 *offsetp = value - entry->d.address;
3625
3626 return got_index;
3627}
3628
3629/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3630 EXTERNAL is true if the relocation was originally against a global
3631 symbol that binds locally. */
3632
3633static bfd_vma
3634mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3635 bfd_vma value, bfd_boolean external)
3636{
3637 struct mips_got_entry *entry;
3638
3639 /* GOT16 relocations against local symbols are followed by a LO16
3640 relocation; those against global symbols are not. Thus if the
3641 symbol was originally local, the GOT16 relocation should load the
3642 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3643 if (! external)
3644 value = mips_elf_high (value) << 16;
3645
3646 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3647 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3648 same in all cases. */
3649 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3650 NULL, R_MIPS_GOT16);
3651 if (entry)
3652 return entry->gotidx;
3653 else
3654 return MINUS_ONE;
3655}
3656
3657/* Returns the offset for the entry at the INDEXth position
3658 in the GOT. */
3659
3660static bfd_vma
3661mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3662 bfd *input_bfd, bfd_vma got_index)
3663{
3664 struct mips_elf_link_hash_table *htab;
3665 asection *sgot;
3666 bfd_vma gp;
3667
3668 htab = mips_elf_hash_table (info);
3669 BFD_ASSERT (htab != NULL);
3670
3671 sgot = htab->root.sgot;
3672 gp = _bfd_get_gp_value (output_bfd)
3673 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3674
3675 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3676}
3677
3678/* Create and return a local GOT entry for VALUE, which was calculated
3679 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3680 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3681 instead. */
3682
3683static struct mips_got_entry *
3684mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3685 bfd *ibfd, bfd_vma value,
3686 unsigned long r_symndx,
3687 struct mips_elf_link_hash_entry *h,
3688 int r_type)
3689{
3690 struct mips_got_entry lookup, *entry;
3691 void **loc;
3692 struct mips_got_info *g;
3693 struct mips_elf_link_hash_table *htab;
3694 bfd_vma gotidx;
3695
3696 htab = mips_elf_hash_table (info);
3697 BFD_ASSERT (htab != NULL);
3698
3699 g = mips_elf_bfd_got (ibfd, FALSE);
3700 if (g == NULL)
3701 {
3702 g = mips_elf_bfd_got (abfd, FALSE);
3703 BFD_ASSERT (g != NULL);
3704 }
3705
3706 /* This function shouldn't be called for symbols that live in the global
3707 area of the GOT. */
3708 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3709
3710 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3711 if (lookup.tls_type)
3712 {
3713 lookup.abfd = ibfd;
3714 if (tls_ldm_reloc_p (r_type))
3715 {
3716 lookup.symndx = 0;
3717 lookup.d.addend = 0;
3718 }
3719 else if (h == NULL)
3720 {
3721 lookup.symndx = r_symndx;
3722 lookup.d.addend = 0;
3723 }
3724 else
3725 {
3726 lookup.symndx = -1;
3727 lookup.d.h = h;
3728 }
3729
3730 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3731 BFD_ASSERT (entry);
3732
3733 gotidx = entry->gotidx;
3734 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3735
3736 return entry;
3737 }
3738
3739 lookup.abfd = NULL;
3740 lookup.symndx = -1;
3741 lookup.d.address = value;
3742 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3743 if (!loc)
3744 return NULL;
3745
3746 entry = (struct mips_got_entry *) *loc;
3747 if (entry)
3748 return entry;
3749
3750 if (g->assigned_low_gotno > g->assigned_high_gotno)
3751 {
3752 /* We didn't allocate enough space in the GOT. */
3753 _bfd_error_handler
3754 (_("not enough GOT space for local GOT entries"));
3755 bfd_set_error (bfd_error_bad_value);
3756 return NULL;
3757 }
3758
3759 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3760 if (!entry)
3761 return NULL;
3762
3763 if (got16_reloc_p (r_type)
3764 || call16_reloc_p (r_type)
3765 || got_page_reloc_p (r_type)
3766 || got_disp_reloc_p (r_type))
3767 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3768 else
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3770
3771 *entry = lookup;
3772 *loc = entry;
3773
3774 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3775
3776 /* These GOT entries need a dynamic relocation on VxWorks. */
3777 if (htab->is_vxworks)
3778 {
3779 Elf_Internal_Rela outrel;
3780 asection *s;
3781 bfd_byte *rloc;
3782 bfd_vma got_address;
3783
3784 s = mips_elf_rel_dyn_section (info, FALSE);
3785 got_address = (htab->root.sgot->output_section->vma
3786 + htab->root.sgot->output_offset
3787 + entry->gotidx);
3788
3789 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3790 outrel.r_offset = got_address;
3791 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3792 outrel.r_addend = value;
3793 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3794 }
3795
3796 return entry;
3797}
3798
3799/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3800 The number might be exact or a worst-case estimate, depending on how
3801 much information is available to elf_backend_omit_section_dynsym at
3802 the current linking stage. */
3803
3804static bfd_size_type
3805count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3806{
3807 bfd_size_type count;
3808
3809 count = 0;
3810 if (bfd_link_pic (info)
3811 || elf_hash_table (info)->is_relocatable_executable)
3812 {
3813 asection *p;
3814 const struct elf_backend_data *bed;
3815
3816 bed = get_elf_backend_data (output_bfd);
3817 for (p = output_bfd->sections; p ; p = p->next)
3818 if ((p->flags & SEC_EXCLUDE) == 0
3819 && (p->flags & SEC_ALLOC) != 0
3820 && elf_hash_table (info)->dynamic_relocs
3821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3822 ++count;
3823 }
3824 return count;
3825}
3826
3827/* Sort the dynamic symbol table so that symbols that need GOT entries
3828 appear towards the end. */
3829
3830static bfd_boolean
3831mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3832{
3833 struct mips_elf_link_hash_table *htab;
3834 struct mips_elf_hash_sort_data hsd;
3835 struct mips_got_info *g;
3836
3837 htab = mips_elf_hash_table (info);
3838 BFD_ASSERT (htab != NULL);
3839
3840 if (htab->root.dynsymcount == 0)
3841 return TRUE;
3842
3843 g = htab->got_info;
3844 if (g == NULL)
3845 return TRUE;
3846
3847 hsd.low = NULL;
3848 hsd.max_unref_got_dynindx
3849 = hsd.min_got_dynindx
3850 = (htab->root.dynsymcount - g->reloc_only_gotno);
3851 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3852 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3853 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3854 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3855 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3856
3857 /* There should have been enough room in the symbol table to
3858 accommodate both the GOT and non-GOT symbols. */
3859 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3860 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3861 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3862 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3863
3864 /* Now we know which dynamic symbol has the lowest dynamic symbol
3865 table index in the GOT. */
3866 htab->global_gotsym = hsd.low;
3867
3868 return TRUE;
3869}
3870
3871/* If H needs a GOT entry, assign it the highest available dynamic
3872 index. Otherwise, assign it the lowest available dynamic
3873 index. */
3874
3875static bfd_boolean
3876mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3877{
3878 struct mips_elf_hash_sort_data *hsd = data;
3879
3880 /* Symbols without dynamic symbol table entries aren't interesting
3881 at all. */
3882 if (h->root.dynindx == -1)
3883 return TRUE;
3884
3885 switch (h->global_got_area)
3886 {
3887 case GGA_NONE:
3888 if (h->root.forced_local)
3889 h->root.dynindx = hsd->max_local_dynindx++;
3890 else
3891 h->root.dynindx = hsd->max_non_got_dynindx++;
3892 break;
3893
3894 case GGA_NORMAL:
3895 h->root.dynindx = --hsd->min_got_dynindx;
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 break;
3898
3899 case GGA_RELOC_ONLY:
3900 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3901 hsd->low = (struct elf_link_hash_entry *) h;
3902 h->root.dynindx = hsd->max_unref_got_dynindx++;
3903 break;
3904 }
3905
3906 return TRUE;
3907}
3908
3909/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3910 (which is owned by the caller and shouldn't be added to the
3911 hash table directly). */
3912
3913static bfd_boolean
3914mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3915 struct mips_got_entry *lookup)
3916{
3917 struct mips_elf_link_hash_table *htab;
3918 struct mips_got_entry *entry;
3919 struct mips_got_info *g;
3920 void **loc, **bfd_loc;
3921
3922 /* Make sure there's a slot for this entry in the master GOT. */
3923 htab = mips_elf_hash_table (info);
3924 g = htab->got_info;
3925 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3926 if (!loc)
3927 return FALSE;
3928
3929 /* Populate the entry if it isn't already. */
3930 entry = (struct mips_got_entry *) *loc;
3931 if (!entry)
3932 {
3933 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3934 if (!entry)
3935 return FALSE;
3936
3937 lookup->tls_initialized = FALSE;
3938 lookup->gotidx = -1;
3939 *entry = *lookup;
3940 *loc = entry;
3941 }
3942
3943 /* Reuse the same GOT entry for the BFD's GOT. */
3944 g = mips_elf_bfd_got (abfd, TRUE);
3945 if (!g)
3946 return FALSE;
3947
3948 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3949 if (!bfd_loc)
3950 return FALSE;
3951
3952 if (!*bfd_loc)
3953 *bfd_loc = entry;
3954 return TRUE;
3955}
3956
3957/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3958 entry for it. FOR_CALL is true if the caller is only interested in
3959 using the GOT entry for calls. */
3960
3961static bfd_boolean
3962mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3963 bfd *abfd, struct bfd_link_info *info,
3964 bfd_boolean for_call, int r_type)
3965{
3966 struct mips_elf_link_hash_table *htab;
3967 struct mips_elf_link_hash_entry *hmips;
3968 struct mips_got_entry entry;
3969 unsigned char tls_type;
3970
3971 htab = mips_elf_hash_table (info);
3972 BFD_ASSERT (htab != NULL);
3973
3974 hmips = (struct mips_elf_link_hash_entry *) h;
3975 if (!for_call)
3976 hmips->got_only_for_calls = FALSE;
3977
3978 /* A global symbol in the GOT must also be in the dynamic symbol
3979 table. */
3980 if (h->dynindx == -1)
3981 {
3982 switch (ELF_ST_VISIBILITY (h->other))
3983 {
3984 case STV_INTERNAL:
3985 case STV_HIDDEN:
3986 _bfd_mips_elf_hide_symbol (info, h, TRUE);
3987 break;
3988 }
3989 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3990 return FALSE;
3991 }
3992
3993 tls_type = mips_elf_reloc_tls_type (r_type);
3994 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3995 hmips->global_got_area = GGA_NORMAL;
3996
3997 entry.abfd = abfd;
3998 entry.symndx = -1;
3999 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4000 entry.tls_type = tls_type;
4001 return mips_elf_record_got_entry (info, abfd, &entry);
4002}
4003
4004/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4005 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4006
4007static bfd_boolean
4008mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4009 struct bfd_link_info *info, int r_type)
4010{
4011 struct mips_elf_link_hash_table *htab;
4012 struct mips_got_info *g;
4013 struct mips_got_entry entry;
4014
4015 htab = mips_elf_hash_table (info);
4016 BFD_ASSERT (htab != NULL);
4017
4018 g = htab->got_info;
4019 BFD_ASSERT (g != NULL);
4020
4021 entry.abfd = abfd;
4022 entry.symndx = symndx;
4023 entry.d.addend = addend;
4024 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4025 return mips_elf_record_got_entry (info, abfd, &entry);
4026}
4027
4028/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4029 H is the symbol's hash table entry, or null if SYMNDX is local
4030 to ABFD. */
4031
4032static bfd_boolean
4033mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4034 long symndx, struct elf_link_hash_entry *h,
4035 bfd_signed_vma addend)
4036{
4037 struct mips_elf_link_hash_table *htab;
4038 struct mips_got_info *g1, *g2;
4039 struct mips_got_page_ref lookup, *entry;
4040 void **loc, **bfd_loc;
4041
4042 htab = mips_elf_hash_table (info);
4043 BFD_ASSERT (htab != NULL);
4044
4045 g1 = htab->got_info;
4046 BFD_ASSERT (g1 != NULL);
4047
4048 if (h)
4049 {
4050 lookup.symndx = -1;
4051 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4052 }
4053 else
4054 {
4055 lookup.symndx = symndx;
4056 lookup.u.abfd = abfd;
4057 }
4058 lookup.addend = addend;
4059 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4060 if (loc == NULL)
4061 return FALSE;
4062
4063 entry = (struct mips_got_page_ref *) *loc;
4064 if (!entry)
4065 {
4066 entry = bfd_alloc (abfd, sizeof (*entry));
4067 if (!entry)
4068 return FALSE;
4069
4070 *entry = lookup;
4071 *loc = entry;
4072 }
4073
4074 /* Add the same entry to the BFD's GOT. */
4075 g2 = mips_elf_bfd_got (abfd, TRUE);
4076 if (!g2)
4077 return FALSE;
4078
4079 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4080 if (!bfd_loc)
4081 return FALSE;
4082
4083 if (!*bfd_loc)
4084 *bfd_loc = entry;
4085
4086 return TRUE;
4087}
4088
4089/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4090
4091static void
4092mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4093 unsigned int n)
4094{
4095 asection *s;
4096 struct mips_elf_link_hash_table *htab;
4097
4098 htab = mips_elf_hash_table (info);
4099 BFD_ASSERT (htab != NULL);
4100
4101 s = mips_elf_rel_dyn_section (info, FALSE);
4102 BFD_ASSERT (s != NULL);
4103
4104 if (htab->is_vxworks)
4105 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4106 else
4107 {
4108 if (s->size == 0)
4109 {
4110 /* Make room for a null element. */
4111 s->size += MIPS_ELF_REL_SIZE (abfd);
4112 ++s->reloc_count;
4113 }
4114 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4115 }
4116}
4117\f
4118/* A htab_traverse callback for GOT entries, with DATA pointing to a
4119 mips_elf_traverse_got_arg structure. Count the number of GOT
4120 entries and TLS relocs. Set DATA->value to true if we need
4121 to resolve indirect or warning symbols and then recreate the GOT. */
4122
4123static int
4124mips_elf_check_recreate_got (void **entryp, void *data)
4125{
4126 struct mips_got_entry *entry;
4127 struct mips_elf_traverse_got_arg *arg;
4128
4129 entry = (struct mips_got_entry *) *entryp;
4130 arg = (struct mips_elf_traverse_got_arg *) data;
4131 if (entry->abfd != NULL && entry->symndx == -1)
4132 {
4133 struct mips_elf_link_hash_entry *h;
4134
4135 h = entry->d.h;
4136 if (h->root.root.type == bfd_link_hash_indirect
4137 || h->root.root.type == bfd_link_hash_warning)
4138 {
4139 arg->value = TRUE;
4140 return 0;
4141 }
4142 }
4143 mips_elf_count_got_entry (arg->info, arg->g, entry);
4144 return 1;
4145}
4146
4147/* A htab_traverse callback for GOT entries, with DATA pointing to a
4148 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4149 converting entries for indirect and warning symbols into entries
4150 for the target symbol. Set DATA->g to null on error. */
4151
4152static int
4153mips_elf_recreate_got (void **entryp, void *data)
4154{
4155 struct mips_got_entry new_entry, *entry;
4156 struct mips_elf_traverse_got_arg *arg;
4157 void **slot;
4158
4159 entry = (struct mips_got_entry *) *entryp;
4160 arg = (struct mips_elf_traverse_got_arg *) data;
4161 if (entry->abfd != NULL
4162 && entry->symndx == -1
4163 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4164 || entry->d.h->root.root.type == bfd_link_hash_warning))
4165 {
4166 struct mips_elf_link_hash_entry *h;
4167
4168 new_entry = *entry;
4169 entry = &new_entry;
4170 h = entry->d.h;
4171 do
4172 {
4173 BFD_ASSERT (h->global_got_area == GGA_NONE);
4174 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4175 }
4176 while (h->root.root.type == bfd_link_hash_indirect
4177 || h->root.root.type == bfd_link_hash_warning);
4178 entry->d.h = h;
4179 }
4180 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4181 if (slot == NULL)
4182 {
4183 arg->g = NULL;
4184 return 0;
4185 }
4186 if (*slot == NULL)
4187 {
4188 if (entry == &new_entry)
4189 {
4190 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4191 if (!entry)
4192 {
4193 arg->g = NULL;
4194 return 0;
4195 }
4196 *entry = new_entry;
4197 }
4198 *slot = entry;
4199 mips_elf_count_got_entry (arg->info, arg->g, entry);
4200 }
4201 return 1;
4202}
4203
4204/* Return the maximum number of GOT page entries required for RANGE. */
4205
4206static bfd_vma
4207mips_elf_pages_for_range (const struct mips_got_page_range *range)
4208{
4209 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4210}
4211
4212/* Record that G requires a page entry that can reach SEC + ADDEND. */
4213
4214static bfd_boolean
4215mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4216 asection *sec, bfd_signed_vma addend)
4217{
4218 struct mips_got_info *g = arg->g;
4219 struct mips_got_page_entry lookup, *entry;
4220 struct mips_got_page_range **range_ptr, *range;
4221 bfd_vma old_pages, new_pages;
4222 void **loc;
4223
4224 /* Find the mips_got_page_entry hash table entry for this section. */
4225 lookup.sec = sec;
4226 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4227 if (loc == NULL)
4228 return FALSE;
4229
4230 /* Create a mips_got_page_entry if this is the first time we've
4231 seen the section. */
4232 entry = (struct mips_got_page_entry *) *loc;
4233 if (!entry)
4234 {
4235 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4236 if (!entry)
4237 return FALSE;
4238
4239 entry->sec = sec;
4240 *loc = entry;
4241 }
4242
4243 /* Skip over ranges whose maximum extent cannot share a page entry
4244 with ADDEND. */
4245 range_ptr = &entry->ranges;
4246 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4247 range_ptr = &(*range_ptr)->next;
4248
4249 /* If we scanned to the end of the list, or found a range whose
4250 minimum extent cannot share a page entry with ADDEND, create
4251 a new singleton range. */
4252 range = *range_ptr;
4253 if (!range || addend < range->min_addend - 0xffff)
4254 {
4255 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4256 if (!range)
4257 return FALSE;
4258
4259 range->next = *range_ptr;
4260 range->min_addend = addend;
4261 range->max_addend = addend;
4262
4263 *range_ptr = range;
4264 entry->num_pages++;
4265 g->page_gotno++;
4266 return TRUE;
4267 }
4268
4269 /* Remember how many pages the old range contributed. */
4270 old_pages = mips_elf_pages_for_range (range);
4271
4272 /* Update the ranges. */
4273 if (addend < range->min_addend)
4274 range->min_addend = addend;
4275 else if (addend > range->max_addend)
4276 {
4277 if (range->next && addend >= range->next->min_addend - 0xffff)
4278 {
4279 old_pages += mips_elf_pages_for_range (range->next);
4280 range->max_addend = range->next->max_addend;
4281 range->next = range->next->next;
4282 }
4283 else
4284 range->max_addend = addend;
4285 }
4286
4287 /* Record any change in the total estimate. */
4288 new_pages = mips_elf_pages_for_range (range);
4289 if (old_pages != new_pages)
4290 {
4291 entry->num_pages += new_pages - old_pages;
4292 g->page_gotno += new_pages - old_pages;
4293 }
4294
4295 return TRUE;
4296}
4297
4298/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4299 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4300 whether the page reference described by *REFP needs a GOT page entry,
4301 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4302
4303static bfd_boolean
4304mips_elf_resolve_got_page_ref (void **refp, void *data)
4305{
4306 struct mips_got_page_ref *ref;
4307 struct mips_elf_traverse_got_arg *arg;
4308 struct mips_elf_link_hash_table *htab;
4309 asection *sec;
4310 bfd_vma addend;
4311
4312 ref = (struct mips_got_page_ref *) *refp;
4313 arg = (struct mips_elf_traverse_got_arg *) data;
4314 htab = mips_elf_hash_table (arg->info);
4315
4316 if (ref->symndx < 0)
4317 {
4318 struct mips_elf_link_hash_entry *h;
4319
4320 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4321 h = ref->u.h;
4322 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4323 return 1;
4324
4325 /* Ignore undefined symbols; we'll issue an error later if
4326 appropriate. */
4327 if (!((h->root.root.type == bfd_link_hash_defined
4328 || h->root.root.type == bfd_link_hash_defweak)
4329 && h->root.root.u.def.section))
4330 return 1;
4331
4332 sec = h->root.root.u.def.section;
4333 addend = h->root.root.u.def.value + ref->addend;
4334 }
4335 else
4336 {
4337 Elf_Internal_Sym *isym;
4338
4339 /* Read in the symbol. */
4340 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4341 ref->symndx);
4342 if (isym == NULL)
4343 {
4344 arg->g = NULL;
4345 return 0;
4346 }
4347
4348 /* Get the associated input section. */
4349 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4350 if (sec == NULL)
4351 {
4352 arg->g = NULL;
4353 return 0;
4354 }
4355
4356 /* If this is a mergable section, work out the section and offset
4357 of the merged data. For section symbols, the addend specifies
4358 of the offset _of_ the first byte in the data, otherwise it
4359 specifies the offset _from_ the first byte. */
4360 if (sec->flags & SEC_MERGE)
4361 {
4362 void *secinfo;
4363
4364 secinfo = elf_section_data (sec)->sec_info;
4365 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4366 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4367 isym->st_value + ref->addend);
4368 else
4369 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4370 isym->st_value) + ref->addend;
4371 }
4372 else
4373 addend = isym->st_value + ref->addend;
4374 }
4375 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4376 {
4377 arg->g = NULL;
4378 return 0;
4379 }
4380 return 1;
4381}
4382
4383/* If any entries in G->got_entries are for indirect or warning symbols,
4384 replace them with entries for the target symbol. Convert g->got_page_refs
4385 into got_page_entry structures and estimate the number of page entries
4386 that they require. */
4387
4388static bfd_boolean
4389mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4390 struct mips_got_info *g)
4391{
4392 struct mips_elf_traverse_got_arg tga;
4393 struct mips_got_info oldg;
4394
4395 oldg = *g;
4396
4397 tga.info = info;
4398 tga.g = g;
4399 tga.value = FALSE;
4400 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4401 if (tga.value)
4402 {
4403 *g = oldg;
4404 g->got_entries = htab_create (htab_size (oldg.got_entries),
4405 mips_elf_got_entry_hash,
4406 mips_elf_got_entry_eq, NULL);
4407 if (!g->got_entries)
4408 return FALSE;
4409
4410 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4411 if (!tga.g)
4412 return FALSE;
4413
4414 htab_delete (oldg.got_entries);
4415 }
4416
4417 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4418 mips_got_page_entry_eq, NULL);
4419 if (g->got_page_entries == NULL)
4420 return FALSE;
4421
4422 tga.info = info;
4423 tga.g = g;
4424 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4425
4426 return TRUE;
4427}
4428
4429/* Return true if a GOT entry for H should live in the local rather than
4430 global GOT area. */
4431
4432static bfd_boolean
4433mips_use_local_got_p (struct bfd_link_info *info,
4434 struct mips_elf_link_hash_entry *h)
4435{
4436 /* Symbols that aren't in the dynamic symbol table must live in the
4437 local GOT. This includes symbols that are completely undefined
4438 and which therefore don't bind locally. We'll report undefined
4439 symbols later if appropriate. */
4440 if (h->root.dynindx == -1)
4441 return TRUE;
4442
4443 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4444 to the local GOT, as they would be implicitly relocated by the
4445 base address by the dynamic loader. */
4446 if (bfd_is_abs_symbol (&h->root.root))
4447 return FALSE;
4448
4449 /* Symbols that bind locally can (and in the case of forced-local
4450 symbols, must) live in the local GOT. */
4451 if (h->got_only_for_calls
4452 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4453 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4454 return TRUE;
4455
4456 /* If this is an executable that must provide a definition of the symbol,
4457 either though PLTs or copy relocations, then that address should go in
4458 the local rather than global GOT. */
4459 if (bfd_link_executable (info) && h->has_static_relocs)
4460 return TRUE;
4461
4462 return FALSE;
4463}
4464
4465/* A mips_elf_link_hash_traverse callback for which DATA points to the
4466 link_info structure. Decide whether the hash entry needs an entry in
4467 the global part of the primary GOT, setting global_got_area accordingly.
4468 Count the number of global symbols that are in the primary GOT only
4469 because they have relocations against them (reloc_only_gotno). */
4470
4471static int
4472mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4473{
4474 struct bfd_link_info *info;
4475 struct mips_elf_link_hash_table *htab;
4476 struct mips_got_info *g;
4477
4478 info = (struct bfd_link_info *) data;
4479 htab = mips_elf_hash_table (info);
4480 g = htab->got_info;
4481 if (h->global_got_area != GGA_NONE)
4482 {
4483 /* Make a final decision about whether the symbol belongs in the
4484 local or global GOT. */
4485 if (mips_use_local_got_p (info, h))
4486 /* The symbol belongs in the local GOT. We no longer need this
4487 entry if it was only used for relocations; those relocations
4488 will be against the null or section symbol instead of H. */
4489 h->global_got_area = GGA_NONE;
4490 else if (htab->is_vxworks
4491 && h->got_only_for_calls
4492 && h->root.plt.plist->mips_offset != MINUS_ONE)
4493 /* On VxWorks, calls can refer directly to the .got.plt entry;
4494 they don't need entries in the regular GOT. .got.plt entries
4495 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4496 h->global_got_area = GGA_NONE;
4497 else if (h->global_got_area == GGA_RELOC_ONLY)
4498 {
4499 g->reloc_only_gotno++;
4500 g->global_gotno++;
4501 }
4502 }
4503 return 1;
4504}
4505\f
4506/* A htab_traverse callback for GOT entries. Add each one to the GOT
4507 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4508
4509static int
4510mips_elf_add_got_entry (void **entryp, void *data)
4511{
4512 struct mips_got_entry *entry;
4513 struct mips_elf_traverse_got_arg *arg;
4514 void **slot;
4515
4516 entry = (struct mips_got_entry *) *entryp;
4517 arg = (struct mips_elf_traverse_got_arg *) data;
4518 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4519 if (!slot)
4520 {
4521 arg->g = NULL;
4522 return 0;
4523 }
4524 if (!*slot)
4525 {
4526 *slot = entry;
4527 mips_elf_count_got_entry (arg->info, arg->g, entry);
4528 }
4529 return 1;
4530}
4531
4532/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4533 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4534
4535static int
4536mips_elf_add_got_page_entry (void **entryp, void *data)
4537{
4538 struct mips_got_page_entry *entry;
4539 struct mips_elf_traverse_got_arg *arg;
4540 void **slot;
4541
4542 entry = (struct mips_got_page_entry *) *entryp;
4543 arg = (struct mips_elf_traverse_got_arg *) data;
4544 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4545 if (!slot)
4546 {
4547 arg->g = NULL;
4548 return 0;
4549 }
4550 if (!*slot)
4551 {
4552 *slot = entry;
4553 arg->g->page_gotno += entry->num_pages;
4554 }
4555 return 1;
4556}
4557
4558/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4559 this would lead to overflow, 1 if they were merged successfully,
4560 and 0 if a merge failed due to lack of memory. (These values are chosen
4561 so that nonnegative return values can be returned by a htab_traverse
4562 callback.) */
4563
4564static int
4565mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4566 struct mips_got_info *to,
4567 struct mips_elf_got_per_bfd_arg *arg)
4568{
4569 struct mips_elf_traverse_got_arg tga;
4570 unsigned int estimate;
4571
4572 /* Work out how many page entries we would need for the combined GOT. */
4573 estimate = arg->max_pages;
4574 if (estimate >= from->page_gotno + to->page_gotno)
4575 estimate = from->page_gotno + to->page_gotno;
4576
4577 /* And conservatively estimate how many local and TLS entries
4578 would be needed. */
4579 estimate += from->local_gotno + to->local_gotno;
4580 estimate += from->tls_gotno + to->tls_gotno;
4581
4582 /* If we're merging with the primary got, any TLS relocations will
4583 come after the full set of global entries. Otherwise estimate those
4584 conservatively as well. */
4585 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4586 estimate += arg->global_count;
4587 else
4588 estimate += from->global_gotno + to->global_gotno;
4589
4590 /* Bail out if the combined GOT might be too big. */
4591 if (estimate > arg->max_count)
4592 return -1;
4593
4594 /* Transfer the bfd's got information from FROM to TO. */
4595 tga.info = arg->info;
4596 tga.g = to;
4597 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4598 if (!tga.g)
4599 return 0;
4600
4601 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4602 if (!tga.g)
4603 return 0;
4604
4605 mips_elf_replace_bfd_got (abfd, to);
4606 return 1;
4607}
4608
4609/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4610 as possible of the primary got, since it doesn't require explicit
4611 dynamic relocations, but don't use bfds that would reference global
4612 symbols out of the addressable range. Failing the primary got,
4613 attempt to merge with the current got, or finish the current got
4614 and then make make the new got current. */
4615
4616static bfd_boolean
4617mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4618 struct mips_elf_got_per_bfd_arg *arg)
4619{
4620 unsigned int estimate;
4621 int result;
4622
4623 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4624 return FALSE;
4625
4626 /* Work out the number of page, local and TLS entries. */
4627 estimate = arg->max_pages;
4628 if (estimate > g->page_gotno)
4629 estimate = g->page_gotno;
4630 estimate += g->local_gotno + g->tls_gotno;
4631
4632 /* We place TLS GOT entries after both locals and globals. The globals
4633 for the primary GOT may overflow the normal GOT size limit, so be
4634 sure not to merge a GOT which requires TLS with the primary GOT in that
4635 case. This doesn't affect non-primary GOTs. */
4636 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4637
4638 if (estimate <= arg->max_count)
4639 {
4640 /* If we don't have a primary GOT, use it as
4641 a starting point for the primary GOT. */
4642 if (!arg->primary)
4643 {
4644 arg->primary = g;
4645 return TRUE;
4646 }
4647
4648 /* Try merging with the primary GOT. */
4649 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4650 if (result >= 0)
4651 return result;
4652 }
4653
4654 /* If we can merge with the last-created got, do it. */
4655 if (arg->current)
4656 {
4657 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4658 if (result >= 0)
4659 return result;
4660 }
4661
4662 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4663 fits; if it turns out that it doesn't, we'll get relocation
4664 overflows anyway. */
4665 g->next = arg->current;
4666 arg->current = g;
4667
4668 return TRUE;
4669}
4670
4671/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4672 to GOTIDX, duplicating the entry if it has already been assigned
4673 an index in a different GOT. */
4674
4675static bfd_boolean
4676mips_elf_set_gotidx (void **entryp, long gotidx)
4677{
4678 struct mips_got_entry *entry;
4679
4680 entry = (struct mips_got_entry *) *entryp;
4681 if (entry->gotidx > 0)
4682 {
4683 struct mips_got_entry *new_entry;
4684
4685 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4686 if (!new_entry)
4687 return FALSE;
4688
4689 *new_entry = *entry;
4690 *entryp = new_entry;
4691 entry = new_entry;
4692 }
4693 entry->gotidx = gotidx;
4694 return TRUE;
4695}
4696
4697/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4698 mips_elf_traverse_got_arg in which DATA->value is the size of one
4699 GOT entry. Set DATA->g to null on failure. */
4700
4701static int
4702mips_elf_initialize_tls_index (void **entryp, void *data)
4703{
4704 struct mips_got_entry *entry;
4705 struct mips_elf_traverse_got_arg *arg;
4706
4707 /* We're only interested in TLS symbols. */
4708 entry = (struct mips_got_entry *) *entryp;
4709 if (entry->tls_type == GOT_TLS_NONE)
4710 return 1;
4711
4712 arg = (struct mips_elf_traverse_got_arg *) data;
4713 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4714 {
4715 arg->g = NULL;
4716 return 0;
4717 }
4718
4719 /* Account for the entries we've just allocated. */
4720 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4721 return 1;
4722}
4723
4724/* A htab_traverse callback for GOT entries, where DATA points to a
4725 mips_elf_traverse_got_arg. Set the global_got_area of each global
4726 symbol to DATA->value. */
4727
4728static int
4729mips_elf_set_global_got_area (void **entryp, void *data)
4730{
4731 struct mips_got_entry *entry;
4732 struct mips_elf_traverse_got_arg *arg;
4733
4734 entry = (struct mips_got_entry *) *entryp;
4735 arg = (struct mips_elf_traverse_got_arg *) data;
4736 if (entry->abfd != NULL
4737 && entry->symndx == -1
4738 && entry->d.h->global_got_area != GGA_NONE)
4739 entry->d.h->global_got_area = arg->value;
4740 return 1;
4741}
4742
4743/* A htab_traverse callback for secondary GOT entries, where DATA points
4744 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4745 and record the number of relocations they require. DATA->value is
4746 the size of one GOT entry. Set DATA->g to null on failure. */
4747
4748static int
4749mips_elf_set_global_gotidx (void **entryp, void *data)
4750{
4751 struct mips_got_entry *entry;
4752 struct mips_elf_traverse_got_arg *arg;
4753
4754 entry = (struct mips_got_entry *) *entryp;
4755 arg = (struct mips_elf_traverse_got_arg *) data;
4756 if (entry->abfd != NULL
4757 && entry->symndx == -1
4758 && entry->d.h->global_got_area != GGA_NONE)
4759 {
4760 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4761 {
4762 arg->g = NULL;
4763 return 0;
4764 }
4765 arg->g->assigned_low_gotno += 1;
4766
4767 if (bfd_link_pic (arg->info)
4768 || (elf_hash_table (arg->info)->dynamic_sections_created
4769 && entry->d.h->root.def_dynamic
4770 && !entry->d.h->root.def_regular))
4771 arg->g->relocs += 1;
4772 }
4773
4774 return 1;
4775}
4776
4777/* A htab_traverse callback for GOT entries for which DATA is the
4778 bfd_link_info. Forbid any global symbols from having traditional
4779 lazy-binding stubs. */
4780
4781static int
4782mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4783{
4784 struct bfd_link_info *info;
4785 struct mips_elf_link_hash_table *htab;
4786 struct mips_got_entry *entry;
4787
4788 entry = (struct mips_got_entry *) *entryp;
4789 info = (struct bfd_link_info *) data;
4790 htab = mips_elf_hash_table (info);
4791 BFD_ASSERT (htab != NULL);
4792
4793 if (entry->abfd != NULL
4794 && entry->symndx == -1
4795 && entry->d.h->needs_lazy_stub)
4796 {
4797 entry->d.h->needs_lazy_stub = FALSE;
4798 htab->lazy_stub_count--;
4799 }
4800
4801 return 1;
4802}
4803
4804/* Return the offset of an input bfd IBFD's GOT from the beginning of
4805 the primary GOT. */
4806static bfd_vma
4807mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4808{
4809 if (!g->next)
4810 return 0;
4811
4812 g = mips_elf_bfd_got (ibfd, FALSE);
4813 if (! g)
4814 return 0;
4815
4816 BFD_ASSERT (g->next);
4817
4818 g = g->next;
4819
4820 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4821 * MIPS_ELF_GOT_SIZE (abfd);
4822}
4823
4824/* Turn a single GOT that is too big for 16-bit addressing into
4825 a sequence of GOTs, each one 16-bit addressable. */
4826
4827static bfd_boolean
4828mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4829 asection *got, bfd_size_type pages)
4830{
4831 struct mips_elf_link_hash_table *htab;
4832 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4833 struct mips_elf_traverse_got_arg tga;
4834 struct mips_got_info *g, *gg;
4835 unsigned int assign, needed_relocs;
4836 bfd *dynobj, *ibfd;
4837
4838 dynobj = elf_hash_table (info)->dynobj;
4839 htab = mips_elf_hash_table (info);
4840 BFD_ASSERT (htab != NULL);
4841
4842 g = htab->got_info;
4843
4844 got_per_bfd_arg.obfd = abfd;
4845 got_per_bfd_arg.info = info;
4846 got_per_bfd_arg.current = NULL;
4847 got_per_bfd_arg.primary = NULL;
4848 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4849 / MIPS_ELF_GOT_SIZE (abfd))
4850 - htab->reserved_gotno);
4851 got_per_bfd_arg.max_pages = pages;
4852 /* The number of globals that will be included in the primary GOT.
4853 See the calls to mips_elf_set_global_got_area below for more
4854 information. */
4855 got_per_bfd_arg.global_count = g->global_gotno;
4856
4857 /* Try to merge the GOTs of input bfds together, as long as they
4858 don't seem to exceed the maximum GOT size, choosing one of them
4859 to be the primary GOT. */
4860 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4861 {
4862 gg = mips_elf_bfd_got (ibfd, FALSE);
4863 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4864 return FALSE;
4865 }
4866
4867 /* If we do not find any suitable primary GOT, create an empty one. */
4868 if (got_per_bfd_arg.primary == NULL)
4869 g->next = mips_elf_create_got_info (abfd);
4870 else
4871 g->next = got_per_bfd_arg.primary;
4872 g->next->next = got_per_bfd_arg.current;
4873
4874 /* GG is now the master GOT, and G is the primary GOT. */
4875 gg = g;
4876 g = g->next;
4877
4878 /* Map the output bfd to the primary got. That's what we're going
4879 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4880 didn't mark in check_relocs, and we want a quick way to find it.
4881 We can't just use gg->next because we're going to reverse the
4882 list. */
4883 mips_elf_replace_bfd_got (abfd, g);
4884
4885 /* Every symbol that is referenced in a dynamic relocation must be
4886 present in the primary GOT, so arrange for them to appear after
4887 those that are actually referenced. */
4888 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4889 g->global_gotno = gg->global_gotno;
4890
4891 tga.info = info;
4892 tga.value = GGA_RELOC_ONLY;
4893 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4894 tga.value = GGA_NORMAL;
4895 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4896
4897 /* Now go through the GOTs assigning them offset ranges.
4898 [assigned_low_gotno, local_gotno[ will be set to the range of local
4899 entries in each GOT. We can then compute the end of a GOT by
4900 adding local_gotno to global_gotno. We reverse the list and make
4901 it circular since then we'll be able to quickly compute the
4902 beginning of a GOT, by computing the end of its predecessor. To
4903 avoid special cases for the primary GOT, while still preserving
4904 assertions that are valid for both single- and multi-got links,
4905 we arrange for the main got struct to have the right number of
4906 global entries, but set its local_gotno such that the initial
4907 offset of the primary GOT is zero. Remember that the primary GOT
4908 will become the last item in the circular linked list, so it
4909 points back to the master GOT. */
4910 gg->local_gotno = -g->global_gotno;
4911 gg->global_gotno = g->global_gotno;
4912 gg->tls_gotno = 0;
4913 assign = 0;
4914 gg->next = gg;
4915
4916 do
4917 {
4918 struct mips_got_info *gn;
4919
4920 assign += htab->reserved_gotno;
4921 g->assigned_low_gotno = assign;
4922 g->local_gotno += assign;
4923 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4924 g->assigned_high_gotno = g->local_gotno - 1;
4925 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4926
4927 /* Take g out of the direct list, and push it onto the reversed
4928 list that gg points to. g->next is guaranteed to be nonnull after
4929 this operation, as required by mips_elf_initialize_tls_index. */
4930 gn = g->next;
4931 g->next = gg->next;
4932 gg->next = g;
4933
4934 /* Set up any TLS entries. We always place the TLS entries after
4935 all non-TLS entries. */
4936 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4937 tga.g = g;
4938 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4939 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4940 if (!tga.g)
4941 return FALSE;
4942 BFD_ASSERT (g->tls_assigned_gotno == assign);
4943
4944 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4945 g = gn;
4946
4947 /* Forbid global symbols in every non-primary GOT from having
4948 lazy-binding stubs. */
4949 if (g)
4950 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4951 }
4952 while (g);
4953
4954 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4955
4956 needed_relocs = 0;
4957 for (g = gg->next; g && g->next != gg; g = g->next)
4958 {
4959 unsigned int save_assign;
4960
4961 /* Assign offsets to global GOT entries and count how many
4962 relocations they need. */
4963 save_assign = g->assigned_low_gotno;
4964 g->assigned_low_gotno = g->local_gotno;
4965 tga.info = info;
4966 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4967 tga.g = g;
4968 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4969 if (!tga.g)
4970 return FALSE;
4971 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4972 g->assigned_low_gotno = save_assign;
4973
4974 if (bfd_link_pic (info))
4975 {
4976 g->relocs += g->local_gotno - g->assigned_low_gotno;
4977 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4978 + g->next->global_gotno
4979 + g->next->tls_gotno
4980 + htab->reserved_gotno);
4981 }
4982 needed_relocs += g->relocs;
4983 }
4984 needed_relocs += g->relocs;
4985
4986 if (needed_relocs)
4987 mips_elf_allocate_dynamic_relocations (dynobj, info,
4988 needed_relocs);
4989
4990 return TRUE;
4991}
4992
4993\f
4994/* Returns the first relocation of type r_type found, beginning with
4995 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4996
4997static const Elf_Internal_Rela *
4998mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4999 const Elf_Internal_Rela *relocation,
5000 const Elf_Internal_Rela *relend)
5001{
5002 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5003
5004 while (relocation < relend)
5005 {
5006 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5007 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5008 return relocation;
5009
5010 ++relocation;
5011 }
5012
5013 /* We didn't find it. */
5014 return NULL;
5015}
5016
5017/* Return whether an input relocation is against a local symbol. */
5018
5019static bfd_boolean
5020mips_elf_local_relocation_p (bfd *input_bfd,
5021 const Elf_Internal_Rela *relocation,
5022 asection **local_sections)
5023{
5024 unsigned long r_symndx;
5025 Elf_Internal_Shdr *symtab_hdr;
5026 size_t extsymoff;
5027
5028 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5030 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5031
5032 if (r_symndx < extsymoff)
5033 return TRUE;
5034 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5035 return TRUE;
5036
5037 return FALSE;
5038}
5039\f
5040/* Sign-extend VALUE, which has the indicated number of BITS. */
5041
5042bfd_vma
5043_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5044{
5045 if (value & ((bfd_vma) 1 << (bits - 1)))
5046 /* VALUE is negative. */
5047 value |= ((bfd_vma) - 1) << bits;
5048
5049 return value;
5050}
5051
5052/* Return non-zero if the indicated VALUE has overflowed the maximum
5053 range expressible by a signed number with the indicated number of
5054 BITS. */
5055
5056static bfd_boolean
5057mips_elf_overflow_p (bfd_vma value, int bits)
5058{
5059 bfd_signed_vma svalue = (bfd_signed_vma) value;
5060
5061 if (svalue > (1 << (bits - 1)) - 1)
5062 /* The value is too big. */
5063 return TRUE;
5064 else if (svalue < -(1 << (bits - 1)))
5065 /* The value is too small. */
5066 return TRUE;
5067
5068 /* All is well. */
5069 return FALSE;
5070}
5071
5072/* Calculate the %high function. */
5073
5074static bfd_vma
5075mips_elf_high (bfd_vma value)
5076{
5077 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5078}
5079
5080/* Calculate the %higher function. */
5081
5082static bfd_vma
5083mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5084{
5085#ifdef BFD64
5086 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5087#else
5088 abort ();
5089 return MINUS_ONE;
5090#endif
5091}
5092
5093/* Calculate the %highest function. */
5094
5095static bfd_vma
5096mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5097{
5098#ifdef BFD64
5099 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5100#else
5101 abort ();
5102 return MINUS_ONE;
5103#endif
5104}
5105\f
5106/* Create the .compact_rel section. */
5107
5108static bfd_boolean
5109mips_elf_create_compact_rel_section
5110 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5111{
5112 flagword flags;
5113 register asection *s;
5114
5115 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5116 {
5117 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5118 | SEC_READONLY);
5119
5120 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5121 if (s == NULL
5122 || ! bfd_set_section_alignment (abfd, s,
5123 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5124 return FALSE;
5125
5126 s->size = sizeof (Elf32_External_compact_rel);
5127 }
5128
5129 return TRUE;
5130}
5131
5132/* Create the .got section to hold the global offset table. */
5133
5134static bfd_boolean
5135mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5136{
5137 flagword flags;
5138 register asection *s;
5139 struct elf_link_hash_entry *h;
5140 struct bfd_link_hash_entry *bh;
5141 struct mips_elf_link_hash_table *htab;
5142
5143 htab = mips_elf_hash_table (info);
5144 BFD_ASSERT (htab != NULL);
5145
5146 /* This function may be called more than once. */
5147 if (htab->root.sgot)
5148 return TRUE;
5149
5150 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5151 | SEC_LINKER_CREATED);
5152
5153 /* We have to use an alignment of 2**4 here because this is hardcoded
5154 in the function stub generation and in the linker script. */
5155 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5156 if (s == NULL
5157 || ! bfd_set_section_alignment (abfd, s, 4))
5158 return FALSE;
5159 htab->root.sgot = s;
5160
5161 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5162 linker script because we don't want to define the symbol if we
5163 are not creating a global offset table. */
5164 bh = NULL;
5165 if (! (_bfd_generic_link_add_one_symbol
5166 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5167 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5168 return FALSE;
5169
5170 h = (struct elf_link_hash_entry *) bh;
5171 h->non_elf = 0;
5172 h->def_regular = 1;
5173 h->type = STT_OBJECT;
5174 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5175 elf_hash_table (info)->hgot = h;
5176
5177 if (bfd_link_pic (info)
5178 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5179 return FALSE;
5180
5181 htab->got_info = mips_elf_create_got_info (abfd);
5182 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5183 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5184
5185 /* We also need a .got.plt section when generating PLTs. */
5186 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5187 SEC_ALLOC | SEC_LOAD
5188 | SEC_HAS_CONTENTS
5189 | SEC_IN_MEMORY
5190 | SEC_LINKER_CREATED);
5191 if (s == NULL)
5192 return FALSE;
5193 htab->root.sgotplt = s;
5194
5195 return TRUE;
5196}
5197\f
5198/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5199 __GOTT_INDEX__ symbols. These symbols are only special for
5200 shared objects; they are not used in executables. */
5201
5202static bfd_boolean
5203is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5204{
5205 return (mips_elf_hash_table (info)->is_vxworks
5206 && bfd_link_pic (info)
5207 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5208 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5209}
5210
5211/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5212 require an la25 stub. See also mips_elf_local_pic_function_p,
5213 which determines whether the destination function ever requires a
5214 stub. */
5215
5216static bfd_boolean
5217mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5218 bfd_boolean target_is_16_bit_code_p)
5219{
5220 /* We specifically ignore branches and jumps from EF_PIC objects,
5221 where the onus is on the compiler or programmer to perform any
5222 necessary initialization of $25. Sometimes such initialization
5223 is unnecessary; for example, -mno-shared functions do not use
5224 the incoming value of $25, and may therefore be called directly. */
5225 if (PIC_OBJECT_P (input_bfd))
5226 return FALSE;
5227
5228 switch (r_type)
5229 {
5230 case R_MIPS_26:
5231 case R_MIPS_PC16:
5232 case R_MIPS_PC21_S2:
5233 case R_MIPS_PC26_S2:
5234 case R_MICROMIPS_26_S1:
5235 case R_MICROMIPS_PC7_S1:
5236 case R_MICROMIPS_PC10_S1:
5237 case R_MICROMIPS_PC16_S1:
5238 case R_MICROMIPS_PC23_S2:
5239 return TRUE;
5240
5241 case R_MIPS16_26:
5242 return !target_is_16_bit_code_p;
5243
5244 default:
5245 return FALSE;
5246 }
5247}
5248\f
5249/* Obtain the field relocated by RELOCATION. */
5250
5251static bfd_vma
5252mips_elf_obtain_contents (reloc_howto_type *howto,
5253 const Elf_Internal_Rela *relocation,
5254 bfd *input_bfd, bfd_byte *contents)
5255{
5256 bfd_vma x = 0;
5257 bfd_byte *location = contents + relocation->r_offset;
5258 unsigned int size = bfd_get_reloc_size (howto);
5259
5260 /* Obtain the bytes. */
5261 if (size != 0)
5262 x = bfd_get (8 * size, input_bfd, location);
5263
5264 return x;
5265}
5266
5267/* Store the field relocated by RELOCATION. */
5268
5269static void
5270mips_elf_store_contents (reloc_howto_type *howto,
5271 const Elf_Internal_Rela *relocation,
5272 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5273{
5274 bfd_byte *location = contents + relocation->r_offset;
5275 unsigned int size = bfd_get_reloc_size (howto);
5276
5277 /* Put the value into the output. */
5278 if (size != 0)
5279 bfd_put (8 * size, input_bfd, x, location);
5280}
5281
5282/* Try to patch a load from GOT instruction in CONTENTS pointed to by
5283 RELOCATION described by HOWTO, with a move of 0 to the load target
5284 register, returning TRUE if that is successful and FALSE otherwise.
5285 If DOIT is FALSE, then only determine it patching is possible and
5286 return status without actually changing CONTENTS.
5287*/
5288
5289static bfd_boolean
5290mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5291 const Elf_Internal_Rela *relocation,
5292 reloc_howto_type *howto, bfd_boolean doit)
5293{
5294 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5295 bfd_byte *location = contents + relocation->r_offset;
5296 bfd_boolean nullified = TRUE;
5297 bfd_vma x;
5298
5299 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5300
5301 /* Obtain the current value. */
5302 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5303
5304 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5305 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5306 if (mips16_reloc_p (r_type)
5307 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5308 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5309 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5310 else if (micromips_reloc_p (r_type)
5311 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5312 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5313 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5314 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5315 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5316 else
5317 nullified = FALSE;
5318
5319 /* Put the value into the output. */
5320 if (doit && nullified)
5321 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5322
5323 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5324
5325 return nullified;
5326}
5327
5328/* Calculate the value produced by the RELOCATION (which comes from
5329 the INPUT_BFD). The ADDEND is the addend to use for this
5330 RELOCATION; RELOCATION->R_ADDEND is ignored.
5331
5332 The result of the relocation calculation is stored in VALUEP.
5333 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5334 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5335
5336 This function returns bfd_reloc_continue if the caller need take no
5337 further action regarding this relocation, bfd_reloc_notsupported if
5338 something goes dramatically wrong, bfd_reloc_overflow if an
5339 overflow occurs, and bfd_reloc_ok to indicate success. */
5340
5341static bfd_reloc_status_type
5342mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5343 asection *input_section, bfd_byte *contents,
5344 struct bfd_link_info *info,
5345 const Elf_Internal_Rela *relocation,
5346 bfd_vma addend, reloc_howto_type *howto,
5347 Elf_Internal_Sym *local_syms,
5348 asection **local_sections, bfd_vma *valuep,
5349 const char **namep,
5350 bfd_boolean *cross_mode_jump_p,
5351 bfd_boolean save_addend)
5352{
5353 /* The eventual value we will return. */
5354 bfd_vma value;
5355 /* The address of the symbol against which the relocation is
5356 occurring. */
5357 bfd_vma symbol = 0;
5358 /* The final GP value to be used for the relocatable, executable, or
5359 shared object file being produced. */
5360 bfd_vma gp;
5361 /* The place (section offset or address) of the storage unit being
5362 relocated. */
5363 bfd_vma p;
5364 /* The value of GP used to create the relocatable object. */
5365 bfd_vma gp0;
5366 /* The offset into the global offset table at which the address of
5367 the relocation entry symbol, adjusted by the addend, resides
5368 during execution. */
5369 bfd_vma g = MINUS_ONE;
5370 /* The section in which the symbol referenced by the relocation is
5371 located. */
5372 asection *sec = NULL;
5373 struct mips_elf_link_hash_entry *h = NULL;
5374 /* TRUE if the symbol referred to by this relocation is a local
5375 symbol. */
5376 bfd_boolean local_p, was_local_p;
5377 /* TRUE if the symbol referred to by this relocation is a section
5378 symbol. */
5379 bfd_boolean section_p = FALSE;
5380 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5381 bfd_boolean gp_disp_p = FALSE;
5382 /* TRUE if the symbol referred to by this relocation is
5383 "__gnu_local_gp". */
5384 bfd_boolean gnu_local_gp_p = FALSE;
5385 Elf_Internal_Shdr *symtab_hdr;
5386 size_t extsymoff;
5387 unsigned long r_symndx;
5388 int r_type;
5389 /* TRUE if overflow occurred during the calculation of the
5390 relocation value. */
5391 bfd_boolean overflowed_p;
5392 /* TRUE if this relocation refers to a MIPS16 function. */
5393 bfd_boolean target_is_16_bit_code_p = FALSE;
5394 bfd_boolean target_is_micromips_code_p = FALSE;
5395 struct mips_elf_link_hash_table *htab;
5396 bfd *dynobj;
5397 bfd_boolean resolved_to_zero;
5398
5399 dynobj = elf_hash_table (info)->dynobj;
5400 htab = mips_elf_hash_table (info);
5401 BFD_ASSERT (htab != NULL);
5402
5403 /* Parse the relocation. */
5404 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5405 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5406 p = (input_section->output_section->vma
5407 + input_section->output_offset
5408 + relocation->r_offset);
5409
5410 /* Assume that there will be no overflow. */
5411 overflowed_p = FALSE;
5412
5413 /* Figure out whether or not the symbol is local, and get the offset
5414 used in the array of hash table entries. */
5415 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5416 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5417 local_sections);
5418 was_local_p = local_p;
5419 if (! elf_bad_symtab (input_bfd))
5420 extsymoff = symtab_hdr->sh_info;
5421 else
5422 {
5423 /* The symbol table does not follow the rule that local symbols
5424 must come before globals. */
5425 extsymoff = 0;
5426 }
5427
5428 /* Figure out the value of the symbol. */
5429 if (local_p)
5430 {
5431 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5432 Elf_Internal_Sym *sym;
5433
5434 sym = local_syms + r_symndx;
5435 sec = local_sections[r_symndx];
5436
5437 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5438
5439 symbol = sec->output_section->vma + sec->output_offset;
5440 if (!section_p || (sec->flags & SEC_MERGE))
5441 symbol += sym->st_value;
5442 if ((sec->flags & SEC_MERGE) && section_p)
5443 {
5444 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5445 addend -= symbol;
5446 addend += sec->output_section->vma + sec->output_offset;
5447 }
5448
5449 /* MIPS16/microMIPS text labels should be treated as odd. */
5450 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5451 ++symbol;
5452
5453 /* Record the name of this symbol, for our caller. */
5454 *namep = bfd_elf_string_from_elf_section (input_bfd,
5455 symtab_hdr->sh_link,
5456 sym->st_name);
5457 if (*namep == NULL || **namep == '\0')
5458 *namep = bfd_section_name (input_bfd, sec);
5459
5460 /* For relocations against a section symbol and ones against no
5461 symbol (absolute relocations) infer the ISA mode from the addend. */
5462 if (section_p || r_symndx == STN_UNDEF)
5463 {
5464 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5465 target_is_micromips_code_p = (addend & 1) && micromips_p;
5466 }
5467 /* For relocations against an absolute symbol infer the ISA mode
5468 from the value of the symbol plus addend. */
5469 else if (bfd_is_abs_section (sec))
5470 {
5471 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5472 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5473 }
5474 /* Otherwise just use the regular symbol annotation available. */
5475 else
5476 {
5477 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5478 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5479 }
5480 }
5481 else
5482 {
5483 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5484
5485 /* For global symbols we look up the symbol in the hash-table. */
5486 h = ((struct mips_elf_link_hash_entry *)
5487 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5488 /* Find the real hash-table entry for this symbol. */
5489 while (h->root.root.type == bfd_link_hash_indirect
5490 || h->root.root.type == bfd_link_hash_warning)
5491 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5492
5493 /* Record the name of this symbol, for our caller. */
5494 *namep = h->root.root.root.string;
5495
5496 /* See if this is the special _gp_disp symbol. Note that such a
5497 symbol must always be a global symbol. */
5498 if (strcmp (*namep, "_gp_disp") == 0
5499 && ! NEWABI_P (input_bfd))
5500 {
5501 /* Relocations against _gp_disp are permitted only with
5502 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5503 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5504 return bfd_reloc_notsupported;
5505
5506 gp_disp_p = TRUE;
5507 }
5508 /* See if this is the special _gp symbol. Note that such a
5509 symbol must always be a global symbol. */
5510 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5511 gnu_local_gp_p = TRUE;
5512
5513
5514 /* If this symbol is defined, calculate its address. Note that
5515 _gp_disp is a magic symbol, always implicitly defined by the
5516 linker, so it's inappropriate to check to see whether or not
5517 its defined. */
5518 else if ((h->root.root.type == bfd_link_hash_defined
5519 || h->root.root.type == bfd_link_hash_defweak)
5520 && h->root.root.u.def.section)
5521 {
5522 sec = h->root.root.u.def.section;
5523 if (sec->output_section)
5524 symbol = (h->root.root.u.def.value
5525 + sec->output_section->vma
5526 + sec->output_offset);
5527 else
5528 symbol = h->root.root.u.def.value;
5529 }
5530 else if (h->root.root.type == bfd_link_hash_undefweak)
5531 /* We allow relocations against undefined weak symbols, giving
5532 it the value zero, so that you can undefined weak functions
5533 and check to see if they exist by looking at their
5534 addresses. */
5535 symbol = 0;
5536 else if (info->unresolved_syms_in_objects == RM_IGNORE
5537 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5538 symbol = 0;
5539 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5540 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5541 {
5542 /* If this is a dynamic link, we should have created a
5543 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5544 in _bfd_mips_elf_create_dynamic_sections.
5545 Otherwise, we should define the symbol with a value of 0.
5546 FIXME: It should probably get into the symbol table
5547 somehow as well. */
5548 BFD_ASSERT (! bfd_link_pic (info));
5549 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5550 symbol = 0;
5551 }
5552 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5553 {
5554 /* This is an optional symbol - an Irix specific extension to the
5555 ELF spec. Ignore it for now.
5556 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5557 than simply ignoring them, but we do not handle this for now.
5558 For information see the "64-bit ELF Object File Specification"
5559 which is available from here:
5560 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5561 symbol = 0;
5562 }
5563 else
5564 {
5565 bfd_boolean reject_undefined
5566 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5567 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5568
5569 (*info->callbacks->undefined_symbol)
5570 (info, h->root.root.root.string, input_bfd,
5571 input_section, relocation->r_offset, reject_undefined);
5572
5573 if (reject_undefined)
5574 return bfd_reloc_undefined;
5575
5576 symbol = 0;
5577 }
5578
5579 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5580 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5581 }
5582
5583 /* If this is a reference to a 16-bit function with a stub, we need
5584 to redirect the relocation to the stub unless:
5585
5586 (a) the relocation is for a MIPS16 JAL;
5587
5588 (b) the relocation is for a MIPS16 PIC call, and there are no
5589 non-MIPS16 uses of the GOT slot; or
5590
5591 (c) the section allows direct references to MIPS16 functions. */
5592 if (r_type != R_MIPS16_26
5593 && !bfd_link_relocatable (info)
5594 && ((h != NULL
5595 && h->fn_stub != NULL
5596 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5597 || (local_p
5598 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5599 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5600 && !section_allows_mips16_refs_p (input_section))
5601 {
5602 /* This is a 32- or 64-bit call to a 16-bit function. We should
5603 have already noticed that we were going to need the
5604 stub. */
5605 if (local_p)
5606 {
5607 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5608 value = 0;
5609 }
5610 else
5611 {
5612 BFD_ASSERT (h->need_fn_stub);
5613 if (h->la25_stub)
5614 {
5615 /* If a LA25 header for the stub itself exists, point to the
5616 prepended LUI/ADDIU sequence. */
5617 sec = h->la25_stub->stub_section;
5618 value = h->la25_stub->offset;
5619 }
5620 else
5621 {
5622 sec = h->fn_stub;
5623 value = 0;
5624 }
5625 }
5626
5627 symbol = sec->output_section->vma + sec->output_offset + value;
5628 /* The target is 16-bit, but the stub isn't. */
5629 target_is_16_bit_code_p = FALSE;
5630 }
5631 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5632 to a standard MIPS function, we need to redirect the call to the stub.
5633 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5634 indirect calls should use an indirect stub instead. */
5635 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5636 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5637 || (local_p
5638 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5639 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5640 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5641 {
5642 if (local_p)
5643 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5644 else
5645 {
5646 /* If both call_stub and call_fp_stub are defined, we can figure
5647 out which one to use by checking which one appears in the input
5648 file. */
5649 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5650 {
5651 asection *o;
5652
5653 sec = NULL;
5654 for (o = input_bfd->sections; o != NULL; o = o->next)
5655 {
5656 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5657 {
5658 sec = h->call_fp_stub;
5659 break;
5660 }
5661 }
5662 if (sec == NULL)
5663 sec = h->call_stub;
5664 }
5665 else if (h->call_stub != NULL)
5666 sec = h->call_stub;
5667 else
5668 sec = h->call_fp_stub;
5669 }
5670
5671 BFD_ASSERT (sec->size > 0);
5672 symbol = sec->output_section->vma + sec->output_offset;
5673 }
5674 /* If this is a direct call to a PIC function, redirect to the
5675 non-PIC stub. */
5676 else if (h != NULL && h->la25_stub
5677 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5678 target_is_16_bit_code_p))
5679 {
5680 symbol = (h->la25_stub->stub_section->output_section->vma
5681 + h->la25_stub->stub_section->output_offset
5682 + h->la25_stub->offset);
5683 if (ELF_ST_IS_MICROMIPS (h->root.other))
5684 symbol |= 1;
5685 }
5686 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5687 entry is used if a standard PLT entry has also been made. In this
5688 case the symbol will have been set by mips_elf_set_plt_sym_value
5689 to point to the standard PLT entry, so redirect to the compressed
5690 one. */
5691 else if ((mips16_branch_reloc_p (r_type)
5692 || micromips_branch_reloc_p (r_type))
5693 && !bfd_link_relocatable (info)
5694 && h != NULL
5695 && h->use_plt_entry
5696 && h->root.plt.plist->comp_offset != MINUS_ONE
5697 && h->root.plt.plist->mips_offset != MINUS_ONE)
5698 {
5699 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5700
5701 sec = htab->root.splt;
5702 symbol = (sec->output_section->vma
5703 + sec->output_offset
5704 + htab->plt_header_size
5705 + htab->plt_mips_offset
5706 + h->root.plt.plist->comp_offset
5707 + 1);
5708
5709 target_is_16_bit_code_p = !micromips_p;
5710 target_is_micromips_code_p = micromips_p;
5711 }
5712
5713 /* Make sure MIPS16 and microMIPS are not used together. */
5714 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5715 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5716 {
5717 _bfd_error_handler
5718 (_("MIPS16 and microMIPS functions cannot call each other"));
5719 return bfd_reloc_notsupported;
5720 }
5721
5722 /* Calls from 16-bit code to 32-bit code and vice versa require the
5723 mode change. However, we can ignore calls to undefined weak symbols,
5724 which should never be executed at runtime. This exception is important
5725 because the assembly writer may have "known" that any definition of the
5726 symbol would be 16-bit code, and that direct jumps were therefore
5727 acceptable. */
5728 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5729 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5730 && ((mips16_branch_reloc_p (r_type)
5731 && !target_is_16_bit_code_p)
5732 || (micromips_branch_reloc_p (r_type)
5733 && !target_is_micromips_code_p)
5734 || ((branch_reloc_p (r_type)
5735 || r_type == R_MIPS_JALR)
5736 && (target_is_16_bit_code_p
5737 || target_is_micromips_code_p))));
5738
5739 resolved_to_zero = (h != NULL
5740 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5741
5742 switch (r_type)
5743 {
5744 case R_MIPS16_CALL16:
5745 case R_MIPS16_GOT16:
5746 case R_MIPS_CALL16:
5747 case R_MIPS_GOT16:
5748 case R_MIPS_GOT_PAGE:
5749 case R_MIPS_GOT_DISP:
5750 case R_MIPS_GOT_LO16:
5751 case R_MIPS_CALL_LO16:
5752 case R_MICROMIPS_CALL16:
5753 case R_MICROMIPS_GOT16:
5754 case R_MICROMIPS_GOT_PAGE:
5755 case R_MICROMIPS_GOT_DISP:
5756 case R_MICROMIPS_GOT_LO16:
5757 case R_MICROMIPS_CALL_LO16:
5758 if (resolved_to_zero
5759 && !bfd_link_relocatable (info)
5760 && mips_elf_nullify_got_load (input_bfd, contents,
5761 relocation, howto, TRUE))
5762 return bfd_reloc_continue;
5763
5764 /* Fall through. */
5765 case R_MIPS_GOT_HI16:
5766 case R_MIPS_CALL_HI16:
5767 case R_MICROMIPS_GOT_HI16:
5768 case R_MICROMIPS_CALL_HI16:
5769 if (resolved_to_zero
5770 && htab->use_absolute_zero
5771 && bfd_link_pic (info))
5772 {
5773 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5774 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5775 FALSE, FALSE, FALSE);
5776 BFD_ASSERT (h != NULL);
5777 }
5778 break;
5779 }
5780
5781 local_p = (h == NULL || mips_use_local_got_p (info, h));
5782
5783 gp0 = _bfd_get_gp_value (input_bfd);
5784 gp = _bfd_get_gp_value (abfd);
5785 if (htab->got_info)
5786 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5787
5788 if (gnu_local_gp_p)
5789 symbol = gp;
5790
5791 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5792 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5793 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5794 if (got_page_reloc_p (r_type) && !local_p)
5795 {
5796 r_type = (micromips_reloc_p (r_type)
5797 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5798 addend = 0;
5799 }
5800
5801 /* If we haven't already determined the GOT offset, and we're going
5802 to need it, get it now. */
5803 switch (r_type)
5804 {
5805 case R_MIPS16_CALL16:
5806 case R_MIPS16_GOT16:
5807 case R_MIPS_CALL16:
5808 case R_MIPS_GOT16:
5809 case R_MIPS_GOT_DISP:
5810 case R_MIPS_GOT_HI16:
5811 case R_MIPS_CALL_HI16:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_DISP:
5817 case R_MICROMIPS_GOT_HI16:
5818 case R_MICROMIPS_CALL_HI16:
5819 case R_MICROMIPS_GOT_LO16:
5820 case R_MICROMIPS_CALL_LO16:
5821 case R_MIPS_TLS_GD:
5822 case R_MIPS_TLS_GOTTPREL:
5823 case R_MIPS_TLS_LDM:
5824 case R_MIPS16_TLS_GD:
5825 case R_MIPS16_TLS_GOTTPREL:
5826 case R_MIPS16_TLS_LDM:
5827 case R_MICROMIPS_TLS_GD:
5828 case R_MICROMIPS_TLS_GOTTPREL:
5829 case R_MICROMIPS_TLS_LDM:
5830 /* Find the index into the GOT where this value is located. */
5831 if (tls_ldm_reloc_p (r_type))
5832 {
5833 g = mips_elf_local_got_index (abfd, input_bfd, info,
5834 0, 0, NULL, r_type);
5835 if (g == MINUS_ONE)
5836 return bfd_reloc_outofrange;
5837 }
5838 else if (!local_p)
5839 {
5840 /* On VxWorks, CALL relocations should refer to the .got.plt
5841 entry, which is initialized to point at the PLT stub. */
5842 if (htab->is_vxworks
5843 && (call_hi16_reloc_p (r_type)
5844 || call_lo16_reloc_p (r_type)
5845 || call16_reloc_p (r_type)))
5846 {
5847 BFD_ASSERT (addend == 0);
5848 BFD_ASSERT (h->root.needs_plt);
5849 g = mips_elf_gotplt_index (info, &h->root);
5850 }
5851 else
5852 {
5853 BFD_ASSERT (addend == 0);
5854 g = mips_elf_global_got_index (abfd, info, input_bfd,
5855 &h->root, r_type);
5856 if (!TLS_RELOC_P (r_type)
5857 && !elf_hash_table (info)->dynamic_sections_created)
5858 /* This is a static link. We must initialize the GOT entry. */
5859 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5860 }
5861 }
5862 else if (!htab->is_vxworks
5863 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5864 /* The calculation below does not involve "g". */
5865 break;
5866 else
5867 {
5868 g = mips_elf_local_got_index (abfd, input_bfd, info,
5869 symbol + addend, r_symndx, h, r_type);
5870 if (g == MINUS_ONE)
5871 return bfd_reloc_outofrange;
5872 }
5873
5874 /* Convert GOT indices to actual offsets. */
5875 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5876 break;
5877 }
5878
5879 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5880 symbols are resolved by the loader. Add them to .rela.dyn. */
5881 if (h != NULL && is_gott_symbol (info, &h->root))
5882 {
5883 Elf_Internal_Rela outrel;
5884 bfd_byte *loc;
5885 asection *s;
5886
5887 s = mips_elf_rel_dyn_section (info, FALSE);
5888 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5889
5890 outrel.r_offset = (input_section->output_section->vma
5891 + input_section->output_offset
5892 + relocation->r_offset);
5893 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5894 outrel.r_addend = addend;
5895 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5896
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5899 DT_TEXTREL tag. */
5900 if (MIPS_ELF_READONLY_SECTION (input_section))
5901 info->flags |= DF_TEXTREL;
5902
5903 *valuep = 0;
5904 return bfd_reloc_ok;
5905 }
5906
5907 /* Figure out what kind of relocation is being performed. */
5908 switch (r_type)
5909 {
5910 case R_MIPS_NONE:
5911 return bfd_reloc_continue;
5912
5913 case R_MIPS_16:
5914 if (howto->partial_inplace)
5915 addend = _bfd_mips_elf_sign_extend (addend, 16);
5916 value = symbol + addend;
5917 overflowed_p = mips_elf_overflow_p (value, 16);
5918 break;
5919
5920 case R_MIPS_32:
5921 case R_MIPS_REL32:
5922 case R_MIPS_64:
5923 if ((bfd_link_pic (info)
5924 || (htab->root.dynamic_sections_created
5925 && h != NULL
5926 && h->root.def_dynamic
5927 && !h->root.def_regular
5928 && !h->has_static_relocs))
5929 && r_symndx != STN_UNDEF
5930 && (h == NULL
5931 || h->root.root.type != bfd_link_hash_undefweak
5932 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5933 && !resolved_to_zero))
5934 && (input_section->flags & SEC_ALLOC) != 0)
5935 {
5936 /* If we're creating a shared library, then we can't know
5937 where the symbol will end up. So, we create a relocation
5938 record in the output, and leave the job up to the dynamic
5939 linker. We must do the same for executable references to
5940 shared library symbols, unless we've decided to use copy
5941 relocs or PLTs instead. */
5942 value = addend;
5943 if (!mips_elf_create_dynamic_relocation (abfd,
5944 info,
5945 relocation,
5946 h,
5947 sec,
5948 symbol,
5949 &value,
5950 input_section))
5951 return bfd_reloc_undefined;
5952 }
5953 else
5954 {
5955 if (r_type != R_MIPS_REL32)
5956 value = symbol + addend;
5957 else
5958 value = addend;
5959 }
5960 value &= howto->dst_mask;
5961 break;
5962
5963 case R_MIPS_PC32:
5964 value = symbol + addend - p;
5965 value &= howto->dst_mask;
5966 break;
5967
5968 case R_MIPS16_26:
5969 /* The calculation for R_MIPS16_26 is just the same as for an
5970 R_MIPS_26. It's only the storage of the relocated field into
5971 the output file that's different. That's handled in
5972 mips_elf_perform_relocation. So, we just fall through to the
5973 R_MIPS_26 case here. */
5974 case R_MIPS_26:
5975 case R_MICROMIPS_26_S1:
5976 {
5977 unsigned int shift;
5978
5979 /* Shift is 2, unusually, for microMIPS JALX. */
5980 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5981
5982 if (howto->partial_inplace && !section_p)
5983 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5984 else
5985 value = addend;
5986 value += symbol;
5987
5988 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5989 be the correct ISA mode selector except for weak undefined
5990 symbols. */
5991 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5992 && (*cross_mode_jump_p
5993 ? (value & 3) != (r_type == R_MIPS_26)
5994 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5995 return bfd_reloc_outofrange;
5996
5997 value >>= shift;
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6000 value &= howto->dst_mask;
6001 }
6002 break;
6003
6004 case R_MIPS_TLS_DTPREL_HI16:
6005 case R_MIPS16_TLS_DTPREL_HI16:
6006 case R_MICROMIPS_TLS_DTPREL_HI16:
6007 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6008 & howto->dst_mask);
6009 break;
6010
6011 case R_MIPS_TLS_DTPREL_LO16:
6012 case R_MIPS_TLS_DTPREL32:
6013 case R_MIPS_TLS_DTPREL64:
6014 case R_MIPS16_TLS_DTPREL_LO16:
6015 case R_MICROMIPS_TLS_DTPREL_LO16:
6016 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6017 break;
6018
6019 case R_MIPS_TLS_TPREL_HI16:
6020 case R_MIPS16_TLS_TPREL_HI16:
6021 case R_MICROMIPS_TLS_TPREL_HI16:
6022 value = (mips_elf_high (addend + symbol - tprel_base (info))
6023 & howto->dst_mask);
6024 break;
6025
6026 case R_MIPS_TLS_TPREL_LO16:
6027 case R_MIPS_TLS_TPREL32:
6028 case R_MIPS_TLS_TPREL64:
6029 case R_MIPS16_TLS_TPREL_LO16:
6030 case R_MICROMIPS_TLS_TPREL_LO16:
6031 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6032 break;
6033
6034 case R_MIPS_HI16:
6035 case R_MIPS16_HI16:
6036 case R_MICROMIPS_HI16:
6037 if (!gp_disp_p)
6038 {
6039 value = mips_elf_high (addend + symbol);
6040 value &= howto->dst_mask;
6041 }
6042 else
6043 {
6044 /* For MIPS16 ABI code we generate this sequence
6045 0: li $v0,%hi(_gp_disp)
6046 4: addiupc $v1,%lo(_gp_disp)
6047 8: sll $v0,16
6048 12: addu $v0,$v1
6049 14: move $gp,$v0
6050 So the offsets of hi and lo relocs are the same, but the
6051 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6052 ADDIUPC clears the low two bits of the instruction address,
6053 so the base is ($t9 + 4) & ~3. */
6054 if (r_type == R_MIPS16_HI16)
6055 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6056 /* The microMIPS .cpload sequence uses the same assembly
6057 instructions as the traditional psABI version, but the
6058 incoming $t9 has the low bit set. */
6059 else if (r_type == R_MICROMIPS_HI16)
6060 value = mips_elf_high (addend + gp - p - 1);
6061 else
6062 value = mips_elf_high (addend + gp - p);
6063 }
6064 break;
6065
6066 case R_MIPS_LO16:
6067 case R_MIPS16_LO16:
6068 case R_MICROMIPS_LO16:
6069 case R_MICROMIPS_HI0_LO16:
6070 if (!gp_disp_p)
6071 value = (symbol + addend) & howto->dst_mask;
6072 else
6073 {
6074 /* See the comment for R_MIPS16_HI16 above for the reason
6075 for this conditional. */
6076 if (r_type == R_MIPS16_LO16)
6077 value = addend + gp - (p & ~(bfd_vma) 0x3);
6078 else if (r_type == R_MICROMIPS_LO16
6079 || r_type == R_MICROMIPS_HI0_LO16)
6080 value = addend + gp - p + 3;
6081 else
6082 value = addend + gp - p + 4;
6083 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6084 for overflow. But, on, say, IRIX5, relocations against
6085 _gp_disp are normally generated from the .cpload
6086 pseudo-op. It generates code that normally looks like
6087 this:
6088
6089 lui $gp,%hi(_gp_disp)
6090 addiu $gp,$gp,%lo(_gp_disp)
6091 addu $gp,$gp,$t9
6092
6093 Here $t9 holds the address of the function being called,
6094 as required by the MIPS ELF ABI. The R_MIPS_LO16
6095 relocation can easily overflow in this situation, but the
6096 R_MIPS_HI16 relocation will handle the overflow.
6097 Therefore, we consider this a bug in the MIPS ABI, and do
6098 not check for overflow here. */
6099 }
6100 break;
6101
6102 case R_MIPS_LITERAL:
6103 case R_MICROMIPS_LITERAL:
6104 /* Because we don't merge literal sections, we can handle this
6105 just like R_MIPS_GPREL16. In the long run, we should merge
6106 shared literals, and then we will need to additional work
6107 here. */
6108
6109 /* Fall through. */
6110
6111 case R_MIPS16_GPREL:
6112 /* The R_MIPS16_GPREL performs the same calculation as
6113 R_MIPS_GPREL16, but stores the relocated bits in a different
6114 order. We don't need to do anything special here; the
6115 differences are handled in mips_elf_perform_relocation. */
6116 case R_MIPS_GPREL16:
6117 case R_MICROMIPS_GPREL7_S2:
6118 case R_MICROMIPS_GPREL16:
6119 /* Only sign-extend the addend if it was extracted from the
6120 instruction. If the addend was separate, leave it alone,
6121 otherwise we may lose significant bits. */
6122 if (howto->partial_inplace)
6123 addend = _bfd_mips_elf_sign_extend (addend, 16);
6124 value = symbol + addend - gp;
6125 /* If the symbol was local, any earlier relocatable links will
6126 have adjusted its addend with the gp offset, so compensate
6127 for that now. Don't do it for symbols forced local in this
6128 link, though, since they won't have had the gp offset applied
6129 to them before. */
6130 if (was_local_p)
6131 value += gp0;
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 16);
6134 break;
6135
6136 case R_MIPS16_GOT16:
6137 case R_MIPS16_CALL16:
6138 case R_MIPS_GOT16:
6139 case R_MIPS_CALL16:
6140 case R_MICROMIPS_GOT16:
6141 case R_MICROMIPS_CALL16:
6142 /* VxWorks does not have separate local and global semantics for
6143 R_MIPS*_GOT16; every relocation evaluates to "G". */
6144 if (!htab->is_vxworks && local_p)
6145 {
6146 value = mips_elf_got16_entry (abfd, input_bfd, info,
6147 symbol + addend, !was_local_p);
6148 if (value == MINUS_ONE)
6149 return bfd_reloc_outofrange;
6150 value
6151 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6152 overflowed_p = mips_elf_overflow_p (value, 16);
6153 break;
6154 }
6155
6156 /* Fall through. */
6157
6158 case R_MIPS_TLS_GD:
6159 case R_MIPS_TLS_GOTTPREL:
6160 case R_MIPS_TLS_LDM:
6161 case R_MIPS_GOT_DISP:
6162 case R_MIPS16_TLS_GD:
6163 case R_MIPS16_TLS_GOTTPREL:
6164 case R_MIPS16_TLS_LDM:
6165 case R_MICROMIPS_TLS_GD:
6166 case R_MICROMIPS_TLS_GOTTPREL:
6167 case R_MICROMIPS_TLS_LDM:
6168 case R_MICROMIPS_GOT_DISP:
6169 value = g;
6170 overflowed_p = mips_elf_overflow_p (value, 16);
6171 break;
6172
6173 case R_MIPS_GPREL32:
6174 value = (addend + symbol + gp0 - gp);
6175 if (!save_addend)
6176 value &= howto->dst_mask;
6177 break;
6178
6179 case R_MIPS_PC16:
6180 case R_MIPS_GNU_REL16_S2:
6181 if (howto->partial_inplace)
6182 addend = _bfd_mips_elf_sign_extend (addend, 18);
6183
6184 /* No need to exclude weak undefined symbols here as they resolve
6185 to 0 and never set `*cross_mode_jump_p', so this alignment check
6186 will never trigger for them. */
6187 if (*cross_mode_jump_p
6188 ? ((symbol + addend) & 3) != 1
6189 : ((symbol + addend) & 3) != 0)
6190 return bfd_reloc_outofrange;
6191
6192 value = symbol + addend - p;
6193 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6194 overflowed_p = mips_elf_overflow_p (value, 18);
6195 value >>= howto->rightshift;
6196 value &= howto->dst_mask;
6197 break;
6198
6199 case R_MIPS16_PC16_S1:
6200 if (howto->partial_inplace)
6201 addend = _bfd_mips_elf_sign_extend (addend, 17);
6202
6203 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 && (*cross_mode_jump_p
6205 ? ((symbol + addend) & 3) != 0
6206 : ((symbol + addend) & 1) == 0))
6207 return bfd_reloc_outofrange;
6208
6209 value = symbol + addend - p;
6210 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6211 overflowed_p = mips_elf_overflow_p (value, 17);
6212 value >>= howto->rightshift;
6213 value &= howto->dst_mask;
6214 break;
6215
6216 case R_MIPS_PC21_S2:
6217 if (howto->partial_inplace)
6218 addend = _bfd_mips_elf_sign_extend (addend, 23);
6219
6220 if ((symbol + addend) & 3)
6221 return bfd_reloc_outofrange;
6222
6223 value = symbol + addend - p;
6224 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6225 overflowed_p = mips_elf_overflow_p (value, 23);
6226 value >>= howto->rightshift;
6227 value &= howto->dst_mask;
6228 break;
6229
6230 case R_MIPS_PC26_S2:
6231 if (howto->partial_inplace)
6232 addend = _bfd_mips_elf_sign_extend (addend, 28);
6233
6234 if ((symbol + addend) & 3)
6235 return bfd_reloc_outofrange;
6236
6237 value = symbol + addend - p;
6238 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6239 overflowed_p = mips_elf_overflow_p (value, 28);
6240 value >>= howto->rightshift;
6241 value &= howto->dst_mask;
6242 break;
6243
6244 case R_MIPS_PC18_S3:
6245 if (howto->partial_inplace)
6246 addend = _bfd_mips_elf_sign_extend (addend, 21);
6247
6248 if ((symbol + addend) & 7)
6249 return bfd_reloc_outofrange;
6250
6251 value = symbol + addend - ((p | 7) ^ 7);
6252 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6253 overflowed_p = mips_elf_overflow_p (value, 21);
6254 value >>= howto->rightshift;
6255 value &= howto->dst_mask;
6256 break;
6257
6258 case R_MIPS_PC19_S2:
6259 if (howto->partial_inplace)
6260 addend = _bfd_mips_elf_sign_extend (addend, 21);
6261
6262 if ((symbol + addend) & 3)
6263 return bfd_reloc_outofrange;
6264
6265 value = symbol + addend - p;
6266 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6267 overflowed_p = mips_elf_overflow_p (value, 21);
6268 value >>= howto->rightshift;
6269 value &= howto->dst_mask;
6270 break;
6271
6272 case R_MIPS_PCHI16:
6273 value = mips_elf_high (symbol + addend - p);
6274 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6275 overflowed_p = mips_elf_overflow_p (value, 16);
6276 value &= howto->dst_mask;
6277 break;
6278
6279 case R_MIPS_PCLO16:
6280 if (howto->partial_inplace)
6281 addend = _bfd_mips_elf_sign_extend (addend, 16);
6282 value = symbol + addend - p;
6283 value &= howto->dst_mask;
6284 break;
6285
6286 case R_MICROMIPS_PC7_S1:
6287 if (howto->partial_inplace)
6288 addend = _bfd_mips_elf_sign_extend (addend, 8);
6289
6290 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6291 && (*cross_mode_jump_p
6292 ? ((symbol + addend + 2) & 3) != 0
6293 : ((symbol + addend + 2) & 1) == 0))
6294 return bfd_reloc_outofrange;
6295
6296 value = symbol + addend - p;
6297 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6298 overflowed_p = mips_elf_overflow_p (value, 8);
6299 value >>= howto->rightshift;
6300 value &= howto->dst_mask;
6301 break;
6302
6303 case R_MICROMIPS_PC10_S1:
6304 if (howto->partial_inplace)
6305 addend = _bfd_mips_elf_sign_extend (addend, 11);
6306
6307 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 && (*cross_mode_jump_p
6309 ? ((symbol + addend + 2) & 3) != 0
6310 : ((symbol + addend + 2) & 1) == 0))
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - p;
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 11);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MICROMIPS_PC16_S1:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 17);
6323
6324 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6325 && (*cross_mode_jump_p
6326 ? ((symbol + addend) & 3) != 0
6327 : ((symbol + addend) & 1) == 0))
6328 return bfd_reloc_outofrange;
6329
6330 value = symbol + addend - p;
6331 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6332 overflowed_p = mips_elf_overflow_p (value, 17);
6333 value >>= howto->rightshift;
6334 value &= howto->dst_mask;
6335 break;
6336
6337 case R_MICROMIPS_PC23_S2:
6338 if (howto->partial_inplace)
6339 addend = _bfd_mips_elf_sign_extend (addend, 25);
6340 value = symbol + addend - ((p | 3) ^ 3);
6341 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6342 overflowed_p = mips_elf_overflow_p (value, 25);
6343 value >>= howto->rightshift;
6344 value &= howto->dst_mask;
6345 break;
6346
6347 case R_MIPS_GOT_HI16:
6348 case R_MIPS_CALL_HI16:
6349 case R_MICROMIPS_GOT_HI16:
6350 case R_MICROMIPS_CALL_HI16:
6351 /* We're allowed to handle these two relocations identically.
6352 The dynamic linker is allowed to handle the CALL relocations
6353 differently by creating a lazy evaluation stub. */
6354 value = g;
6355 value = mips_elf_high (value);
6356 value &= howto->dst_mask;
6357 break;
6358
6359 case R_MIPS_GOT_LO16:
6360 case R_MIPS_CALL_LO16:
6361 case R_MICROMIPS_GOT_LO16:
6362 case R_MICROMIPS_CALL_LO16:
6363 value = g & howto->dst_mask;
6364 break;
6365
6366 case R_MIPS_GOT_PAGE:
6367 case R_MICROMIPS_GOT_PAGE:
6368 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6369 if (value == MINUS_ONE)
6370 return bfd_reloc_outofrange;
6371 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6372 overflowed_p = mips_elf_overflow_p (value, 16);
6373 break;
6374
6375 case R_MIPS_GOT_OFST:
6376 case R_MICROMIPS_GOT_OFST:
6377 if (local_p)
6378 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6379 else
6380 value = addend;
6381 overflowed_p = mips_elf_overflow_p (value, 16);
6382 break;
6383
6384 case R_MIPS_SUB:
6385 case R_MICROMIPS_SUB:
6386 value = symbol - addend;
6387 value &= howto->dst_mask;
6388 break;
6389
6390 case R_MIPS_HIGHER:
6391 case R_MICROMIPS_HIGHER:
6392 value = mips_elf_higher (addend + symbol);
6393 value &= howto->dst_mask;
6394 break;
6395
6396 case R_MIPS_HIGHEST:
6397 case R_MICROMIPS_HIGHEST:
6398 value = mips_elf_highest (addend + symbol);
6399 value &= howto->dst_mask;
6400 break;
6401
6402 case R_MIPS_SCN_DISP:
6403 case R_MICROMIPS_SCN_DISP:
6404 value = symbol + addend - sec->output_offset;
6405 value &= howto->dst_mask;
6406 break;
6407
6408 case R_MIPS_JALR:
6409 case R_MICROMIPS_JALR:
6410 /* This relocation is only a hint. In some cases, we optimize
6411 it into a bal instruction. But we don't try to optimize
6412 when the symbol does not resolve locally. */
6413 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6414 return bfd_reloc_continue;
6415 /* We can't optimize cross-mode jumps either. */
6416 if (*cross_mode_jump_p)
6417 return bfd_reloc_continue;
6418 value = symbol + addend;
6419 /* Neither we can non-instruction-aligned targets. */
6420 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6421 return bfd_reloc_continue;
6422 break;
6423
6424 case R_MIPS_PJUMP:
6425 case R_MIPS_GNU_VTINHERIT:
6426 case R_MIPS_GNU_VTENTRY:
6427 /* We don't do anything with these at present. */
6428 return bfd_reloc_continue;
6429
6430 default:
6431 /* An unrecognized relocation type. */
6432 return bfd_reloc_notsupported;
6433 }
6434
6435 /* Store the VALUE for our caller. */
6436 *valuep = value;
6437 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6438}
6439
6440/* It has been determined that the result of the RELOCATION is the
6441 VALUE. Use HOWTO to place VALUE into the output file at the
6442 appropriate position. The SECTION is the section to which the
6443 relocation applies.
6444 CROSS_MODE_JUMP_P is true if the relocation field
6445 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6446
6447 Returns FALSE if anything goes wrong. */
6448
6449static bfd_boolean
6450mips_elf_perform_relocation (struct bfd_link_info *info,
6451 reloc_howto_type *howto,
6452 const Elf_Internal_Rela *relocation,
6453 bfd_vma value, bfd *input_bfd,
6454 asection *input_section, bfd_byte *contents,
6455 bfd_boolean cross_mode_jump_p)
6456{
6457 bfd_vma x;
6458 bfd_byte *location;
6459 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6460
6461 /* Figure out where the relocation is occurring. */
6462 location = contents + relocation->r_offset;
6463
6464 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6465
6466 /* Obtain the current value. */
6467 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6468
6469 /* Clear the field we are setting. */
6470 x &= ~howto->dst_mask;
6471
6472 /* Set the field. */
6473 x |= (value & howto->dst_mask);
6474
6475 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6476 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6477 {
6478 bfd_vma opcode = x >> 26;
6479
6480 if (r_type == R_MIPS16_26 ? opcode == 0x7
6481 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6482 : opcode == 0x1d)
6483 {
6484 info->callbacks->einfo
6485 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6486 input_bfd, input_section, relocation->r_offset);
6487 return TRUE;
6488 }
6489 }
6490 if (cross_mode_jump_p && jal_reloc_p (r_type))
6491 {
6492 bfd_boolean ok;
6493 bfd_vma opcode = x >> 26;
6494 bfd_vma jalx_opcode;
6495
6496 /* Check to see if the opcode is already JAL or JALX. */
6497 if (r_type == R_MIPS16_26)
6498 {
6499 ok = ((opcode == 0x6) || (opcode == 0x7));
6500 jalx_opcode = 0x7;
6501 }
6502 else if (r_type == R_MICROMIPS_26_S1)
6503 {
6504 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6505 jalx_opcode = 0x3c;
6506 }
6507 else
6508 {
6509 ok = ((opcode == 0x3) || (opcode == 0x1d));
6510 jalx_opcode = 0x1d;
6511 }
6512
6513 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6514 convert J or JALS to JALX. */
6515 if (!ok)
6516 {
6517 info->callbacks->einfo
6518 (_("%X%H: unsupported jump between ISA modes; "
6519 "consider recompiling with interlinking enabled\n"),
6520 input_bfd, input_section, relocation->r_offset);
6521 return TRUE;
6522 }
6523
6524 /* Make this the JALX opcode. */
6525 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6526 }
6527 else if (cross_mode_jump_p && b_reloc_p (r_type))
6528 {
6529 bfd_boolean ok = FALSE;
6530 bfd_vma opcode = x >> 16;
6531 bfd_vma jalx_opcode = 0;
6532 bfd_vma sign_bit = 0;
6533 bfd_vma addr;
6534 bfd_vma dest;
6535
6536 if (r_type == R_MICROMIPS_PC16_S1)
6537 {
6538 ok = opcode == 0x4060;
6539 jalx_opcode = 0x3c;
6540 sign_bit = 0x10000;
6541 value <<= 1;
6542 }
6543 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6544 {
6545 ok = opcode == 0x411;
6546 jalx_opcode = 0x1d;
6547 sign_bit = 0x20000;
6548 value <<= 2;
6549 }
6550
6551 if (ok && !bfd_link_pic (info))
6552 {
6553 addr = (input_section->output_section->vma
6554 + input_section->output_offset
6555 + relocation->r_offset
6556 + 4);
6557 dest = (addr
6558 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6559
6560 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6561 {
6562 info->callbacks->einfo
6563 (_("%X%H: cannot convert branch between ISA modes "
6564 "to JALX: relocation out of range\n"),
6565 input_bfd, input_section, relocation->r_offset);
6566 return TRUE;
6567 }
6568
6569 /* Make this the JALX opcode. */
6570 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6571 }
6572 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6573 {
6574 info->callbacks->einfo
6575 (_("%X%H: unsupported branch between ISA modes\n"),
6576 input_bfd, input_section, relocation->r_offset);
6577 return TRUE;
6578 }
6579 }
6580
6581 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6582 range. */
6583 if (!bfd_link_relocatable (info)
6584 && !cross_mode_jump_p
6585 && ((JAL_TO_BAL_P (input_bfd)
6586 && r_type == R_MIPS_26
6587 && (x >> 26) == 0x3) /* jal addr */
6588 || (JALR_TO_BAL_P (input_bfd)
6589 && r_type == R_MIPS_JALR
6590 && x == 0x0320f809) /* jalr t9 */
6591 || (JR_TO_B_P (input_bfd)
6592 && r_type == R_MIPS_JALR
6593 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6594 {
6595 bfd_vma addr;
6596 bfd_vma dest;
6597 bfd_signed_vma off;
6598
6599 addr = (input_section->output_section->vma
6600 + input_section->output_offset
6601 + relocation->r_offset
6602 + 4);
6603 if (r_type == R_MIPS_26)
6604 dest = (value << 2) | ((addr >> 28) << 28);
6605 else
6606 dest = value;
6607 off = dest - addr;
6608 if (off <= 0x1ffff && off >= -0x20000)
6609 {
6610 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6611 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6612 else
6613 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6614 }
6615 }
6616
6617 /* Put the value into the output. */
6618 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6619
6620 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6621 location);
6622
6623 return TRUE;
6624}
6625\f
6626/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6627 is the original relocation, which is now being transformed into a
6628 dynamic relocation. The ADDENDP is adjusted if necessary; the
6629 caller should store the result in place of the original addend. */
6630
6631static bfd_boolean
6632mips_elf_create_dynamic_relocation (bfd *output_bfd,
6633 struct bfd_link_info *info,
6634 const Elf_Internal_Rela *rel,
6635 struct mips_elf_link_hash_entry *h,
6636 asection *sec, bfd_vma symbol,
6637 bfd_vma *addendp, asection *input_section)
6638{
6639 Elf_Internal_Rela outrel[3];
6640 asection *sreloc;
6641 bfd *dynobj;
6642 int r_type;
6643 long indx;
6644 bfd_boolean defined_p;
6645 struct mips_elf_link_hash_table *htab;
6646
6647 htab = mips_elf_hash_table (info);
6648 BFD_ASSERT (htab != NULL);
6649
6650 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6651 dynobj = elf_hash_table (info)->dynobj;
6652 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6653 BFD_ASSERT (sreloc != NULL);
6654 BFD_ASSERT (sreloc->contents != NULL);
6655 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6656 < sreloc->size);
6657
6658 outrel[0].r_offset =
6659 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6660 if (ABI_64_P (output_bfd))
6661 {
6662 outrel[1].r_offset =
6663 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6664 outrel[2].r_offset =
6665 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6666 }
6667
6668 if (outrel[0].r_offset == MINUS_ONE)
6669 /* The relocation field has been deleted. */
6670 return TRUE;
6671
6672 if (outrel[0].r_offset == MINUS_TWO)
6673 {
6674 /* The relocation field has been converted into a relative value of
6675 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6676 the field to be fully relocated, so add in the symbol's value. */
6677 *addendp += symbol;
6678 return TRUE;
6679 }
6680
6681 /* We must now calculate the dynamic symbol table index to use
6682 in the relocation. */
6683 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6684 {
6685 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6686 indx = h->root.dynindx;
6687 if (SGI_COMPAT (output_bfd))
6688 defined_p = h->root.def_regular;
6689 else
6690 /* ??? glibc's ld.so just adds the final GOT entry to the
6691 relocation field. It therefore treats relocs against
6692 defined symbols in the same way as relocs against
6693 undefined symbols. */
6694 defined_p = FALSE;
6695 }
6696 else
6697 {
6698 if (sec != NULL && bfd_is_abs_section (sec))
6699 indx = 0;
6700 else if (sec == NULL || sec->owner == NULL)
6701 {
6702 bfd_set_error (bfd_error_bad_value);
6703 return FALSE;
6704 }
6705 else
6706 {
6707 indx = elf_section_data (sec->output_section)->dynindx;
6708 if (indx == 0)
6709 {
6710 asection *osec = htab->root.text_index_section;
6711 indx = elf_section_data (osec)->dynindx;
6712 }
6713 if (indx == 0)
6714 abort ();
6715 }
6716
6717 /* Instead of generating a relocation using the section
6718 symbol, we may as well make it a fully relative
6719 relocation. We want to avoid generating relocations to
6720 local symbols because we used to generate them
6721 incorrectly, without adding the original symbol value,
6722 which is mandated by the ABI for section symbols. In
6723 order to give dynamic loaders and applications time to
6724 phase out the incorrect use, we refrain from emitting
6725 section-relative relocations. It's not like they're
6726 useful, after all. This should be a bit more efficient
6727 as well. */
6728 /* ??? Although this behavior is compatible with glibc's ld.so,
6729 the ABI says that relocations against STN_UNDEF should have
6730 a symbol value of 0. Irix rld honors this, so relocations
6731 against STN_UNDEF have no effect. */
6732 if (!SGI_COMPAT (output_bfd))
6733 indx = 0;
6734 defined_p = TRUE;
6735 }
6736
6737 /* If the relocation was previously an absolute relocation and
6738 this symbol will not be referred to by the relocation, we must
6739 adjust it by the value we give it in the dynamic symbol table.
6740 Otherwise leave the job up to the dynamic linker. */
6741 if (defined_p && r_type != R_MIPS_REL32)
6742 *addendp += symbol;
6743
6744 if (htab->is_vxworks)
6745 /* VxWorks uses non-relative relocations for this. */
6746 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6747 else
6748 /* The relocation is always an REL32 relocation because we don't
6749 know where the shared library will wind up at load-time. */
6750 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6751 R_MIPS_REL32);
6752
6753 /* For strict adherence to the ABI specification, we should
6754 generate a R_MIPS_64 relocation record by itself before the
6755 _REL32/_64 record as well, such that the addend is read in as
6756 a 64-bit value (REL32 is a 32-bit relocation, after all).
6757 However, since none of the existing ELF64 MIPS dynamic
6758 loaders seems to care, we don't waste space with these
6759 artificial relocations. If this turns out to not be true,
6760 mips_elf_allocate_dynamic_relocation() should be tweaked so
6761 as to make room for a pair of dynamic relocations per
6762 invocation if ABI_64_P, and here we should generate an
6763 additional relocation record with R_MIPS_64 by itself for a
6764 NULL symbol before this relocation record. */
6765 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6766 ABI_64_P (output_bfd)
6767 ? R_MIPS_64
6768 : R_MIPS_NONE);
6769 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6770
6771 /* Adjust the output offset of the relocation to reference the
6772 correct location in the output file. */
6773 outrel[0].r_offset += (input_section->output_section->vma
6774 + input_section->output_offset);
6775 outrel[1].r_offset += (input_section->output_section->vma
6776 + input_section->output_offset);
6777 outrel[2].r_offset += (input_section->output_section->vma
6778 + input_section->output_offset);
6779
6780 /* Put the relocation back out. We have to use the special
6781 relocation outputter in the 64-bit case since the 64-bit
6782 relocation format is non-standard. */
6783 if (ABI_64_P (output_bfd))
6784 {
6785 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6786 (output_bfd, &outrel[0],
6787 (sreloc->contents
6788 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6789 }
6790 else if (htab->is_vxworks)
6791 {
6792 /* VxWorks uses RELA rather than REL dynamic relocations. */
6793 outrel[0].r_addend = *addendp;
6794 bfd_elf32_swap_reloca_out
6795 (output_bfd, &outrel[0],
6796 (sreloc->contents
6797 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6798 }
6799 else
6800 bfd_elf32_swap_reloc_out
6801 (output_bfd, &outrel[0],
6802 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6803
6804 /* We've now added another relocation. */
6805 ++sreloc->reloc_count;
6806
6807 /* Make sure the output section is writable. The dynamic linker
6808 will be writing to it. */
6809 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6810 |= SHF_WRITE;
6811
6812 /* On IRIX5, make an entry of compact relocation info. */
6813 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6814 {
6815 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6816 bfd_byte *cr;
6817
6818 if (scpt)
6819 {
6820 Elf32_crinfo cptrel;
6821
6822 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6823 cptrel.vaddr = (rel->r_offset
6824 + input_section->output_section->vma
6825 + input_section->output_offset);
6826 if (r_type == R_MIPS_REL32)
6827 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6828 else
6829 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6830 mips_elf_set_cr_dist2to (cptrel, 0);
6831 cptrel.konst = *addendp;
6832
6833 cr = (scpt->contents
6834 + sizeof (Elf32_External_compact_rel));
6835 mips_elf_set_cr_relvaddr (cptrel, 0);
6836 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6837 ((Elf32_External_crinfo *) cr
6838 + scpt->reloc_count));
6839 ++scpt->reloc_count;
6840 }
6841 }
6842
6843 /* If we've written this relocation for a readonly section,
6844 we need to set DF_TEXTREL again, so that we do not delete the
6845 DT_TEXTREL tag. */
6846 if (MIPS_ELF_READONLY_SECTION (input_section))
6847 info->flags |= DF_TEXTREL;
6848
6849 return TRUE;
6850}
6851\f
6852/* Return the MACH for a MIPS e_flags value. */
6853
6854unsigned long
6855_bfd_elf_mips_mach (flagword flags)
6856{
6857 switch (flags & EF_MIPS_MACH)
6858 {
6859 case E_MIPS_MACH_3900:
6860 return bfd_mach_mips3900;
6861
6862 case E_MIPS_MACH_4010:
6863 return bfd_mach_mips4010;
6864
6865 case E_MIPS_MACH_4100:
6866 return bfd_mach_mips4100;
6867
6868 case E_MIPS_MACH_4111:
6869 return bfd_mach_mips4111;
6870
6871 case E_MIPS_MACH_4120:
6872 return bfd_mach_mips4120;
6873
6874 case E_MIPS_MACH_4650:
6875 return bfd_mach_mips4650;
6876
6877 case E_MIPS_MACH_5400:
6878 return bfd_mach_mips5400;
6879
6880 case E_MIPS_MACH_5500:
6881 return bfd_mach_mips5500;
6882
6883 case E_MIPS_MACH_5900:
6884 return bfd_mach_mips5900;
6885
6886 case E_MIPS_MACH_9000:
6887 return bfd_mach_mips9000;
6888
6889 case E_MIPS_MACH_SB1:
6890 return bfd_mach_mips_sb1;
6891
6892 case E_MIPS_MACH_LS2E:
6893 return bfd_mach_mips_loongson_2e;
6894
6895 case E_MIPS_MACH_LS2F:
6896 return bfd_mach_mips_loongson_2f;
6897
6898 case E_MIPS_MACH_GS464:
6899 return bfd_mach_mips_gs464;
6900
6901 case E_MIPS_MACH_GS464E:
6902 return bfd_mach_mips_gs464e;
6903
6904 case E_MIPS_MACH_GS264E:
6905 return bfd_mach_mips_gs264e;
6906
6907 case E_MIPS_MACH_OCTEON3:
6908 return bfd_mach_mips_octeon3;
6909
6910 case E_MIPS_MACH_OCTEON2:
6911 return bfd_mach_mips_octeon2;
6912
6913 case E_MIPS_MACH_OCTEON:
6914 return bfd_mach_mips_octeon;
6915
6916 case E_MIPS_MACH_XLR:
6917 return bfd_mach_mips_xlr;
6918
6919 case E_MIPS_MACH_IAMR2:
6920 return bfd_mach_mips_interaptiv_mr2;
6921
6922 default:
6923 switch (flags & EF_MIPS_ARCH)
6924 {
6925 default:
6926 case E_MIPS_ARCH_1:
6927 return bfd_mach_mips3000;
6928
6929 case E_MIPS_ARCH_2:
6930 return bfd_mach_mips6000;
6931
6932 case E_MIPS_ARCH_3:
6933 return bfd_mach_mips4000;
6934
6935 case E_MIPS_ARCH_4:
6936 return bfd_mach_mips8000;
6937
6938 case E_MIPS_ARCH_5:
6939 return bfd_mach_mips5;
6940
6941 case E_MIPS_ARCH_32:
6942 return bfd_mach_mipsisa32;
6943
6944 case E_MIPS_ARCH_64:
6945 return bfd_mach_mipsisa64;
6946
6947 case E_MIPS_ARCH_32R2:
6948 return bfd_mach_mipsisa32r2;
6949
6950 case E_MIPS_ARCH_64R2:
6951 return bfd_mach_mipsisa64r2;
6952
6953 case E_MIPS_ARCH_32R6:
6954 return bfd_mach_mipsisa32r6;
6955
6956 case E_MIPS_ARCH_64R6:
6957 return bfd_mach_mipsisa64r6;
6958 }
6959 }
6960
6961 return 0;
6962}
6963
6964/* Return printable name for ABI. */
6965
6966static INLINE char *
6967elf_mips_abi_name (bfd *abfd)
6968{
6969 flagword flags;
6970
6971 flags = elf_elfheader (abfd)->e_flags;
6972 switch (flags & EF_MIPS_ABI)
6973 {
6974 case 0:
6975 if (ABI_N32_P (abfd))
6976 return "N32";
6977 else if (ABI_64_P (abfd))
6978 return "64";
6979 else
6980 return "none";
6981 case E_MIPS_ABI_O32:
6982 return "O32";
6983 case E_MIPS_ABI_O64:
6984 return "O64";
6985 case E_MIPS_ABI_EABI32:
6986 return "EABI32";
6987 case E_MIPS_ABI_EABI64:
6988 return "EABI64";
6989 default:
6990 return "unknown abi";
6991 }
6992}
6993\f
6994/* MIPS ELF uses two common sections. One is the usual one, and the
6995 other is for small objects. All the small objects are kept
6996 together, and then referenced via the gp pointer, which yields
6997 faster assembler code. This is what we use for the small common
6998 section. This approach is copied from ecoff.c. */
6999static asection mips_elf_scom_section;
7000static asymbol mips_elf_scom_symbol;
7001static asymbol *mips_elf_scom_symbol_ptr;
7002
7003/* MIPS ELF also uses an acommon section, which represents an
7004 allocated common symbol which may be overridden by a
7005 definition in a shared library. */
7006static asection mips_elf_acom_section;
7007static asymbol mips_elf_acom_symbol;
7008static asymbol *mips_elf_acom_symbol_ptr;
7009
7010/* This is used for both the 32-bit and the 64-bit ABI. */
7011
7012void
7013_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7014{
7015 elf_symbol_type *elfsym;
7016
7017 /* Handle the special MIPS section numbers that a symbol may use. */
7018 elfsym = (elf_symbol_type *) asym;
7019 switch (elfsym->internal_elf_sym.st_shndx)
7020 {
7021 case SHN_MIPS_ACOMMON:
7022 /* This section is used in a dynamically linked executable file.
7023 It is an allocated common section. The dynamic linker can
7024 either resolve these symbols to something in a shared
7025 library, or it can just leave them here. For our purposes,
7026 we can consider these symbols to be in a new section. */
7027 if (mips_elf_acom_section.name == NULL)
7028 {
7029 /* Initialize the acommon section. */
7030 mips_elf_acom_section.name = ".acommon";
7031 mips_elf_acom_section.flags = SEC_ALLOC;
7032 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7033 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7034 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7035 mips_elf_acom_symbol.name = ".acommon";
7036 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7037 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7038 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7039 }
7040 asym->section = &mips_elf_acom_section;
7041 break;
7042
7043 case SHN_COMMON:
7044 /* Common symbols less than the GP size are automatically
7045 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7046 if (asym->value > elf_gp_size (abfd)
7047 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7048 || IRIX_COMPAT (abfd) == ict_irix6)
7049 break;
7050 /* Fall through. */
7051 case SHN_MIPS_SCOMMON:
7052 if (mips_elf_scom_section.name == NULL)
7053 {
7054 /* Initialize the small common section. */
7055 mips_elf_scom_section.name = ".scommon";
7056 mips_elf_scom_section.flags = SEC_IS_COMMON;
7057 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7058 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7059 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7060 mips_elf_scom_symbol.name = ".scommon";
7061 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7062 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7063 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7064 }
7065 asym->section = &mips_elf_scom_section;
7066 asym->value = elfsym->internal_elf_sym.st_size;
7067 break;
7068
7069 case SHN_MIPS_SUNDEFINED:
7070 asym->section = bfd_und_section_ptr;
7071 break;
7072
7073 case SHN_MIPS_TEXT:
7074 {
7075 asection *section = bfd_get_section_by_name (abfd, ".text");
7076
7077 if (section != NULL)
7078 {
7079 asym->section = section;
7080 /* MIPS_TEXT is a bit special, the address is not an offset
7081 to the base of the .text section. So subtract the section
7082 base address to make it an offset. */
7083 asym->value -= section->vma;
7084 }
7085 }
7086 break;
7087
7088 case SHN_MIPS_DATA:
7089 {
7090 asection *section = bfd_get_section_by_name (abfd, ".data");
7091
7092 if (section != NULL)
7093 {
7094 asym->section = section;
7095 /* MIPS_DATA is a bit special, the address is not an offset
7096 to the base of the .data section. So subtract the section
7097 base address to make it an offset. */
7098 asym->value -= section->vma;
7099 }
7100 }
7101 break;
7102 }
7103
7104 /* If this is an odd-valued function symbol, assume it's a MIPS16
7105 or microMIPS one. */
7106 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7107 && (asym->value & 1) != 0)
7108 {
7109 asym->value--;
7110 if (MICROMIPS_P (abfd))
7111 elfsym->internal_elf_sym.st_other
7112 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7113 else
7114 elfsym->internal_elf_sym.st_other
7115 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7116 }
7117}
7118\f
7119/* Implement elf_backend_eh_frame_address_size. This differs from
7120 the default in the way it handles EABI64.
7121
7122 EABI64 was originally specified as an LP64 ABI, and that is what
7123 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7124 historically accepted the combination of -mabi=eabi and -mlong32,
7125 and this ILP32 variation has become semi-official over time.
7126 Both forms use elf32 and have pointer-sized FDE addresses.
7127
7128 If an EABI object was generated by GCC 4.0 or above, it will have
7129 an empty .gcc_compiled_longXX section, where XX is the size of longs
7130 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7131 have no special marking to distinguish them from LP64 objects.
7132
7133 We don't want users of the official LP64 ABI to be punished for the
7134 existence of the ILP32 variant, but at the same time, we don't want
7135 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7136 We therefore take the following approach:
7137
7138 - If ABFD contains a .gcc_compiled_longXX section, use it to
7139 determine the pointer size.
7140
7141 - Otherwise check the type of the first relocation. Assume that
7142 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7143
7144 - Otherwise punt.
7145
7146 The second check is enough to detect LP64 objects generated by pre-4.0
7147 compilers because, in the kind of output generated by those compilers,
7148 the first relocation will be associated with either a CIE personality
7149 routine or an FDE start address. Furthermore, the compilers never
7150 used a special (non-pointer) encoding for this ABI.
7151
7152 Checking the relocation type should also be safe because there is no
7153 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7154 did so. */
7155
7156unsigned int
7157_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7158{
7159 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7160 return 8;
7161 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7162 {
7163 bfd_boolean long32_p, long64_p;
7164
7165 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7166 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7167 if (long32_p && long64_p)
7168 return 0;
7169 if (long32_p)
7170 return 4;
7171 if (long64_p)
7172 return 8;
7173
7174 if (sec->reloc_count > 0
7175 && elf_section_data (sec)->relocs != NULL
7176 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7177 == R_MIPS_64))
7178 return 8;
7179
7180 return 0;
7181 }
7182 return 4;
7183}
7184\f
7185/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7186 relocations against two unnamed section symbols to resolve to the
7187 same address. For example, if we have code like:
7188
7189 lw $4,%got_disp(.data)($gp)
7190 lw $25,%got_disp(.text)($gp)
7191 jalr $25
7192
7193 then the linker will resolve both relocations to .data and the program
7194 will jump there rather than to .text.
7195
7196 We can work around this problem by giving names to local section symbols.
7197 This is also what the MIPSpro tools do. */
7198
7199bfd_boolean
7200_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7201{
7202 return SGI_COMPAT (abfd);
7203}
7204\f
7205/* Work over a section just before writing it out. This routine is
7206 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7207 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7208 a better way. */
7209
7210bfd_boolean
7211_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7212{
7213 if (hdr->sh_type == SHT_MIPS_REGINFO
7214 && hdr->sh_size > 0)
7215 {
7216 bfd_byte buf[4];
7217
7218 BFD_ASSERT (hdr->contents == NULL);
7219
7220 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7221 {
7222 _bfd_error_handler
7223 (_("%pB: incorrect `.reginfo' section size; "
7224 "expected %" PRIu64 ", got %" PRIu64),
7225 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7226 (uint64_t) hdr->sh_size);
7227 bfd_set_error (bfd_error_bad_value);
7228 return FALSE;
7229 }
7230
7231 if (bfd_seek (abfd,
7232 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7233 SEEK_SET) != 0)
7234 return FALSE;
7235 H_PUT_32 (abfd, elf_gp (abfd), buf);
7236 if (bfd_bwrite (buf, 4, abfd) != 4)
7237 return FALSE;
7238 }
7239
7240 if (hdr->sh_type == SHT_MIPS_OPTIONS
7241 && hdr->bfd_section != NULL
7242 && mips_elf_section_data (hdr->bfd_section) != NULL
7243 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7244 {
7245 bfd_byte *contents, *l, *lend;
7246
7247 /* We stored the section contents in the tdata field in the
7248 set_section_contents routine. We save the section contents
7249 so that we don't have to read them again.
7250 At this point we know that elf_gp is set, so we can look
7251 through the section contents to see if there is an
7252 ODK_REGINFO structure. */
7253
7254 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7255 l = contents;
7256 lend = contents + hdr->sh_size;
7257 while (l + sizeof (Elf_External_Options) <= lend)
7258 {
7259 Elf_Internal_Options intopt;
7260
7261 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7262 &intopt);
7263 if (intopt.size < sizeof (Elf_External_Options))
7264 {
7265 _bfd_error_handler
7266 /* xgettext:c-format */
7267 (_("%pB: warning: bad `%s' option size %u smaller than"
7268 " its header"),
7269 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7270 break;
7271 }
7272 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7273 {
7274 bfd_byte buf[8];
7275
7276 if (bfd_seek (abfd,
7277 (hdr->sh_offset
7278 + (l - contents)
7279 + sizeof (Elf_External_Options)
7280 + (sizeof (Elf64_External_RegInfo) - 8)),
7281 SEEK_SET) != 0)
7282 return FALSE;
7283 H_PUT_64 (abfd, elf_gp (abfd), buf);
7284 if (bfd_bwrite (buf, 8, abfd) != 8)
7285 return FALSE;
7286 }
7287 else if (intopt.kind == ODK_REGINFO)
7288 {
7289 bfd_byte buf[4];
7290
7291 if (bfd_seek (abfd,
7292 (hdr->sh_offset
7293 + (l - contents)
7294 + sizeof (Elf_External_Options)
7295 + (sizeof (Elf32_External_RegInfo) - 4)),
7296 SEEK_SET) != 0)
7297 return FALSE;
7298 H_PUT_32 (abfd, elf_gp (abfd), buf);
7299 if (bfd_bwrite (buf, 4, abfd) != 4)
7300 return FALSE;
7301 }
7302 l += intopt.size;
7303 }
7304 }
7305
7306 if (hdr->bfd_section != NULL)
7307 {
7308 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7309
7310 /* .sbss is not handled specially here because the GNU/Linux
7311 prelinker can convert .sbss from NOBITS to PROGBITS and
7312 changing it back to NOBITS breaks the binary. The entry in
7313 _bfd_mips_elf_special_sections will ensure the correct flags
7314 are set on .sbss if BFD creates it without reading it from an
7315 input file, and without special handling here the flags set
7316 on it in an input file will be followed. */
7317 if (strcmp (name, ".sdata") == 0
7318 || strcmp (name, ".lit8") == 0
7319 || strcmp (name, ".lit4") == 0)
7320 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7321 else if (strcmp (name, ".srdata") == 0)
7322 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7323 else if (strcmp (name, ".compact_rel") == 0)
7324 hdr->sh_flags = 0;
7325 else if (strcmp (name, ".rtproc") == 0)
7326 {
7327 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7328 {
7329 unsigned int adjust;
7330
7331 adjust = hdr->sh_size % hdr->sh_addralign;
7332 if (adjust != 0)
7333 hdr->sh_size += hdr->sh_addralign - adjust;
7334 }
7335 }
7336 }
7337
7338 return TRUE;
7339}
7340
7341/* Handle a MIPS specific section when reading an object file. This
7342 is called when elfcode.h finds a section with an unknown type.
7343 This routine supports both the 32-bit and 64-bit ELF ABI.
7344
7345 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7346 how to. */
7347
7348bfd_boolean
7349_bfd_mips_elf_section_from_shdr (bfd *abfd,
7350 Elf_Internal_Shdr *hdr,
7351 const char *name,
7352 int shindex)
7353{
7354 flagword flags = 0;
7355
7356 /* There ought to be a place to keep ELF backend specific flags, but
7357 at the moment there isn't one. We just keep track of the
7358 sections by their name, instead. Fortunately, the ABI gives
7359 suggested names for all the MIPS specific sections, so we will
7360 probably get away with this. */
7361 switch (hdr->sh_type)
7362 {
7363 case SHT_MIPS_LIBLIST:
7364 if (strcmp (name, ".liblist") != 0)
7365 return FALSE;
7366 break;
7367 case SHT_MIPS_MSYM:
7368 if (strcmp (name, ".msym") != 0)
7369 return FALSE;
7370 break;
7371 case SHT_MIPS_CONFLICT:
7372 if (strcmp (name, ".conflict") != 0)
7373 return FALSE;
7374 break;
7375 case SHT_MIPS_GPTAB:
7376 if (! CONST_STRNEQ (name, ".gptab."))
7377 return FALSE;
7378 break;
7379 case SHT_MIPS_UCODE:
7380 if (strcmp (name, ".ucode") != 0)
7381 return FALSE;
7382 break;
7383 case SHT_MIPS_DEBUG:
7384 if (strcmp (name, ".mdebug") != 0)
7385 return FALSE;
7386 flags = SEC_DEBUGGING;
7387 break;
7388 case SHT_MIPS_REGINFO:
7389 if (strcmp (name, ".reginfo") != 0
7390 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7391 return FALSE;
7392 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7393 break;
7394 case SHT_MIPS_IFACE:
7395 if (strcmp (name, ".MIPS.interfaces") != 0)
7396 return FALSE;
7397 break;
7398 case SHT_MIPS_CONTENT:
7399 if (! CONST_STRNEQ (name, ".MIPS.content"))
7400 return FALSE;
7401 break;
7402 case SHT_MIPS_OPTIONS:
7403 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7404 return FALSE;
7405 break;
7406 case SHT_MIPS_ABIFLAGS:
7407 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7408 return FALSE;
7409 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7410 break;
7411 case SHT_MIPS_DWARF:
7412 if (! CONST_STRNEQ (name, ".debug_")
7413 && ! CONST_STRNEQ (name, ".zdebug_"))
7414 return FALSE;
7415 break;
7416 case SHT_MIPS_SYMBOL_LIB:
7417 if (strcmp (name, ".MIPS.symlib") != 0)
7418 return FALSE;
7419 break;
7420 case SHT_MIPS_EVENTS:
7421 if (! CONST_STRNEQ (name, ".MIPS.events")
7422 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7423 return FALSE;
7424 break;
7425 default:
7426 break;
7427 }
7428
7429 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7430 return FALSE;
7431
7432 if (flags)
7433 {
7434 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7435 (bfd_get_section_flags (abfd,
7436 hdr->bfd_section)
7437 | flags)))
7438 return FALSE;
7439 }
7440
7441 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7442 {
7443 Elf_External_ABIFlags_v0 ext;
7444
7445 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7446 &ext, 0, sizeof ext))
7447 return FALSE;
7448 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7449 &mips_elf_tdata (abfd)->abiflags);
7450 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7451 return FALSE;
7452 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7453 }
7454
7455 /* FIXME: We should record sh_info for a .gptab section. */
7456
7457 /* For a .reginfo section, set the gp value in the tdata information
7458 from the contents of this section. We need the gp value while
7459 processing relocs, so we just get it now. The .reginfo section
7460 is not used in the 64-bit MIPS ELF ABI. */
7461 if (hdr->sh_type == SHT_MIPS_REGINFO)
7462 {
7463 Elf32_External_RegInfo ext;
7464 Elf32_RegInfo s;
7465
7466 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7467 &ext, 0, sizeof ext))
7468 return FALSE;
7469 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7470 elf_gp (abfd) = s.ri_gp_value;
7471 }
7472
7473 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7474 set the gp value based on what we find. We may see both
7475 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7476 they should agree. */
7477 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7478 {
7479 bfd_byte *contents, *l, *lend;
7480
7481 contents = bfd_malloc (hdr->sh_size);
7482 if (contents == NULL)
7483 return FALSE;
7484 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7485 0, hdr->sh_size))
7486 {
7487 free (contents);
7488 return FALSE;
7489 }
7490 l = contents;
7491 lend = contents + hdr->sh_size;
7492 while (l + sizeof (Elf_External_Options) <= lend)
7493 {
7494 Elf_Internal_Options intopt;
7495
7496 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7497 &intopt);
7498 if (intopt.size < sizeof (Elf_External_Options))
7499 {
7500 _bfd_error_handler
7501 /* xgettext:c-format */
7502 (_("%pB: warning: bad `%s' option size %u smaller than"
7503 " its header"),
7504 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7505 break;
7506 }
7507 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7508 {
7509 Elf64_Internal_RegInfo intreg;
7510
7511 bfd_mips_elf64_swap_reginfo_in
7512 (abfd,
7513 ((Elf64_External_RegInfo *)
7514 (l + sizeof (Elf_External_Options))),
7515 &intreg);
7516 elf_gp (abfd) = intreg.ri_gp_value;
7517 }
7518 else if (intopt.kind == ODK_REGINFO)
7519 {
7520 Elf32_RegInfo intreg;
7521
7522 bfd_mips_elf32_swap_reginfo_in
7523 (abfd,
7524 ((Elf32_External_RegInfo *)
7525 (l + sizeof (Elf_External_Options))),
7526 &intreg);
7527 elf_gp (abfd) = intreg.ri_gp_value;
7528 }
7529 l += intopt.size;
7530 }
7531 free (contents);
7532 }
7533
7534 return TRUE;
7535}
7536
7537/* Set the correct type for a MIPS ELF section. We do this by the
7538 section name, which is a hack, but ought to work. This routine is
7539 used by both the 32-bit and the 64-bit ABI. */
7540
7541bfd_boolean
7542_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7543{
7544 const char *name = bfd_get_section_name (abfd, sec);
7545
7546 if (strcmp (name, ".liblist") == 0)
7547 {
7548 hdr->sh_type = SHT_MIPS_LIBLIST;
7549 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7550 /* The sh_link field is set in final_write_processing. */
7551 }
7552 else if (strcmp (name, ".conflict") == 0)
7553 hdr->sh_type = SHT_MIPS_CONFLICT;
7554 else if (CONST_STRNEQ (name, ".gptab."))
7555 {
7556 hdr->sh_type = SHT_MIPS_GPTAB;
7557 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7558 /* The sh_info field is set in final_write_processing. */
7559 }
7560 else if (strcmp (name, ".ucode") == 0)
7561 hdr->sh_type = SHT_MIPS_UCODE;
7562 else if (strcmp (name, ".mdebug") == 0)
7563 {
7564 hdr->sh_type = SHT_MIPS_DEBUG;
7565 /* In a shared object on IRIX 5.3, the .mdebug section has an
7566 entsize of 0. FIXME: Does this matter? */
7567 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7568 hdr->sh_entsize = 0;
7569 else
7570 hdr->sh_entsize = 1;
7571 }
7572 else if (strcmp (name, ".reginfo") == 0)
7573 {
7574 hdr->sh_type = SHT_MIPS_REGINFO;
7575 /* In a shared object on IRIX 5.3, the .reginfo section has an
7576 entsize of 0x18. FIXME: Does this matter? */
7577 if (SGI_COMPAT (abfd))
7578 {
7579 if ((abfd->flags & DYNAMIC) != 0)
7580 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7581 else
7582 hdr->sh_entsize = 1;
7583 }
7584 else
7585 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7586 }
7587 else if (SGI_COMPAT (abfd)
7588 && (strcmp (name, ".hash") == 0
7589 || strcmp (name, ".dynamic") == 0
7590 || strcmp (name, ".dynstr") == 0))
7591 {
7592 if (SGI_COMPAT (abfd))
7593 hdr->sh_entsize = 0;
7594#if 0
7595 /* This isn't how the IRIX6 linker behaves. */
7596 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7597#endif
7598 }
7599 else if (strcmp (name, ".got") == 0
7600 || strcmp (name, ".srdata") == 0
7601 || strcmp (name, ".sdata") == 0
7602 || strcmp (name, ".sbss") == 0
7603 || strcmp (name, ".lit4") == 0
7604 || strcmp (name, ".lit8") == 0)
7605 hdr->sh_flags |= SHF_MIPS_GPREL;
7606 else if (strcmp (name, ".MIPS.interfaces") == 0)
7607 {
7608 hdr->sh_type = SHT_MIPS_IFACE;
7609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7610 }
7611 else if (CONST_STRNEQ (name, ".MIPS.content"))
7612 {
7613 hdr->sh_type = SHT_MIPS_CONTENT;
7614 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7615 /* The sh_info field is set in final_write_processing. */
7616 }
7617 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7618 {
7619 hdr->sh_type = SHT_MIPS_OPTIONS;
7620 hdr->sh_entsize = 1;
7621 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7622 }
7623 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7624 {
7625 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7626 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7627 }
7628 else if (CONST_STRNEQ (name, ".debug_")
7629 || CONST_STRNEQ (name, ".zdebug_"))
7630 {
7631 hdr->sh_type = SHT_MIPS_DWARF;
7632
7633 /* Irix facilities such as libexc expect a single .debug_frame
7634 per executable, the system ones have NOSTRIP set and the linker
7635 doesn't merge sections with different flags so ... */
7636 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7637 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7638 }
7639 else if (strcmp (name, ".MIPS.symlib") == 0)
7640 {
7641 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7642 /* The sh_link and sh_info fields are set in
7643 final_write_processing. */
7644 }
7645 else if (CONST_STRNEQ (name, ".MIPS.events")
7646 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7647 {
7648 hdr->sh_type = SHT_MIPS_EVENTS;
7649 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7650 /* The sh_link field is set in final_write_processing. */
7651 }
7652 else if (strcmp (name, ".msym") == 0)
7653 {
7654 hdr->sh_type = SHT_MIPS_MSYM;
7655 hdr->sh_flags |= SHF_ALLOC;
7656 hdr->sh_entsize = 8;
7657 }
7658
7659 /* The generic elf_fake_sections will set up REL_HDR using the default
7660 kind of relocations. We used to set up a second header for the
7661 non-default kind of relocations here, but only NewABI would use
7662 these, and the IRIX ld doesn't like resulting empty RELA sections.
7663 Thus we create those header only on demand now. */
7664
7665 return TRUE;
7666}
7667
7668/* Given a BFD section, try to locate the corresponding ELF section
7669 index. This is used by both the 32-bit and the 64-bit ABI.
7670 Actually, it's not clear to me that the 64-bit ABI supports these,
7671 but for non-PIC objects we will certainly want support for at least
7672 the .scommon section. */
7673
7674bfd_boolean
7675_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7676 asection *sec, int *retval)
7677{
7678 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7679 {
7680 *retval = SHN_MIPS_SCOMMON;
7681 return TRUE;
7682 }
7683 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7684 {
7685 *retval = SHN_MIPS_ACOMMON;
7686 return TRUE;
7687 }
7688 return FALSE;
7689}
7690\f
7691/* Hook called by the linker routine which adds symbols from an object
7692 file. We must handle the special MIPS section numbers here. */
7693
7694bfd_boolean
7695_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7696 Elf_Internal_Sym *sym, const char **namep,
7697 flagword *flagsp ATTRIBUTE_UNUSED,
7698 asection **secp, bfd_vma *valp)
7699{
7700 if (SGI_COMPAT (abfd)
7701 && (abfd->flags & DYNAMIC) != 0
7702 && strcmp (*namep, "_rld_new_interface") == 0)
7703 {
7704 /* Skip IRIX5 rld entry name. */
7705 *namep = NULL;
7706 return TRUE;
7707 }
7708
7709 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7710 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7711 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7712 a magic symbol resolved by the linker, we ignore this bogus definition
7713 of _gp_disp. New ABI objects do not suffer from this problem so this
7714 is not done for them. */
7715 if (!NEWABI_P(abfd)
7716 && (sym->st_shndx == SHN_ABS)
7717 && (strcmp (*namep, "_gp_disp") == 0))
7718 {
7719 *namep = NULL;
7720 return TRUE;
7721 }
7722
7723 switch (sym->st_shndx)
7724 {
7725 case SHN_COMMON:
7726 /* Common symbols less than the GP size are automatically
7727 treated as SHN_MIPS_SCOMMON symbols. */
7728 if (sym->st_size > elf_gp_size (abfd)
7729 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7730 || IRIX_COMPAT (abfd) == ict_irix6)
7731 break;
7732 /* Fall through. */
7733 case SHN_MIPS_SCOMMON:
7734 *secp = bfd_make_section_old_way (abfd, ".scommon");
7735 (*secp)->flags |= SEC_IS_COMMON;
7736 *valp = sym->st_size;
7737 break;
7738
7739 case SHN_MIPS_TEXT:
7740 /* This section is used in a shared object. */
7741 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7742 {
7743 asymbol *elf_text_symbol;
7744 asection *elf_text_section;
7745 bfd_size_type amt = sizeof (asection);
7746
7747 elf_text_section = bfd_zalloc (abfd, amt);
7748 if (elf_text_section == NULL)
7749 return FALSE;
7750
7751 amt = sizeof (asymbol);
7752 elf_text_symbol = bfd_zalloc (abfd, amt);
7753 if (elf_text_symbol == NULL)
7754 return FALSE;
7755
7756 /* Initialize the section. */
7757
7758 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7759 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7760
7761 elf_text_section->symbol = elf_text_symbol;
7762 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7763
7764 elf_text_section->name = ".text";
7765 elf_text_section->flags = SEC_NO_FLAGS;
7766 elf_text_section->output_section = NULL;
7767 elf_text_section->owner = abfd;
7768 elf_text_symbol->name = ".text";
7769 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7770 elf_text_symbol->section = elf_text_section;
7771 }
7772 /* This code used to do *secp = bfd_und_section_ptr if
7773 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7774 so I took it out. */
7775 *secp = mips_elf_tdata (abfd)->elf_text_section;
7776 break;
7777
7778 case SHN_MIPS_ACOMMON:
7779 /* Fall through. XXX Can we treat this as allocated data? */
7780 case SHN_MIPS_DATA:
7781 /* This section is used in a shared object. */
7782 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7783 {
7784 asymbol *elf_data_symbol;
7785 asection *elf_data_section;
7786 bfd_size_type amt = sizeof (asection);
7787
7788 elf_data_section = bfd_zalloc (abfd, amt);
7789 if (elf_data_section == NULL)
7790 return FALSE;
7791
7792 amt = sizeof (asymbol);
7793 elf_data_symbol = bfd_zalloc (abfd, amt);
7794 if (elf_data_symbol == NULL)
7795 return FALSE;
7796
7797 /* Initialize the section. */
7798
7799 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7800 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7801
7802 elf_data_section->symbol = elf_data_symbol;
7803 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7804
7805 elf_data_section->name = ".data";
7806 elf_data_section->flags = SEC_NO_FLAGS;
7807 elf_data_section->output_section = NULL;
7808 elf_data_section->owner = abfd;
7809 elf_data_symbol->name = ".data";
7810 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7811 elf_data_symbol->section = elf_data_section;
7812 }
7813 /* This code used to do *secp = bfd_und_section_ptr if
7814 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7815 so I took it out. */
7816 *secp = mips_elf_tdata (abfd)->elf_data_section;
7817 break;
7818
7819 case SHN_MIPS_SUNDEFINED:
7820 *secp = bfd_und_section_ptr;
7821 break;
7822 }
7823
7824 if (SGI_COMPAT (abfd)
7825 && ! bfd_link_pic (info)
7826 && info->output_bfd->xvec == abfd->xvec
7827 && strcmp (*namep, "__rld_obj_head") == 0)
7828 {
7829 struct elf_link_hash_entry *h;
7830 struct bfd_link_hash_entry *bh;
7831
7832 /* Mark __rld_obj_head as dynamic. */
7833 bh = NULL;
7834 if (! (_bfd_generic_link_add_one_symbol
7835 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7836 get_elf_backend_data (abfd)->collect, &bh)))
7837 return FALSE;
7838
7839 h = (struct elf_link_hash_entry *) bh;
7840 h->non_elf = 0;
7841 h->def_regular = 1;
7842 h->type = STT_OBJECT;
7843
7844 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7845 return FALSE;
7846
7847 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7848 mips_elf_hash_table (info)->rld_symbol = h;
7849 }
7850
7851 /* If this is a mips16 text symbol, add 1 to the value to make it
7852 odd. This will cause something like .word SYM to come up with
7853 the right value when it is loaded into the PC. */
7854 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7855 ++*valp;
7856
7857 return TRUE;
7858}
7859
7860/* This hook function is called before the linker writes out a global
7861 symbol. We mark symbols as small common if appropriate. This is
7862 also where we undo the increment of the value for a mips16 symbol. */
7863
7864int
7865_bfd_mips_elf_link_output_symbol_hook
7866 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7867 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7868 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7869{
7870 /* If we see a common symbol, which implies a relocatable link, then
7871 if a symbol was small common in an input file, mark it as small
7872 common in the output file. */
7873 if (sym->st_shndx == SHN_COMMON
7874 && strcmp (input_sec->name, ".scommon") == 0)
7875 sym->st_shndx = SHN_MIPS_SCOMMON;
7876
7877 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7878 sym->st_value &= ~1;
7879
7880 return 1;
7881}
7882\f
7883/* Functions for the dynamic linker. */
7884
7885/* Create dynamic sections when linking against a dynamic object. */
7886
7887bfd_boolean
7888_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7889{
7890 struct elf_link_hash_entry *h;
7891 struct bfd_link_hash_entry *bh;
7892 flagword flags;
7893 register asection *s;
7894 const char * const *namep;
7895 struct mips_elf_link_hash_table *htab;
7896
7897 htab = mips_elf_hash_table (info);
7898 BFD_ASSERT (htab != NULL);
7899
7900 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7901 | SEC_LINKER_CREATED | SEC_READONLY);
7902
7903 /* The psABI requires a read-only .dynamic section, but the VxWorks
7904 EABI doesn't. */
7905 if (!htab->is_vxworks)
7906 {
7907 s = bfd_get_linker_section (abfd, ".dynamic");
7908 if (s != NULL)
7909 {
7910 if (! bfd_set_section_flags (abfd, s, flags))
7911 return FALSE;
7912 }
7913 }
7914
7915 /* We need to create .got section. */
7916 if (!mips_elf_create_got_section (abfd, info))
7917 return FALSE;
7918
7919 if (! mips_elf_rel_dyn_section (info, TRUE))
7920 return FALSE;
7921
7922 /* Create .stub section. */
7923 s = bfd_make_section_anyway_with_flags (abfd,
7924 MIPS_ELF_STUB_SECTION_NAME (abfd),
7925 flags | SEC_CODE);
7926 if (s == NULL
7927 || ! bfd_set_section_alignment (abfd, s,
7928 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7929 return FALSE;
7930 htab->sstubs = s;
7931
7932 if (!mips_elf_hash_table (info)->use_rld_obj_head
7933 && bfd_link_executable (info)
7934 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7935 {
7936 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7937 flags &~ (flagword) SEC_READONLY);
7938 if (s == NULL
7939 || ! bfd_set_section_alignment (abfd, s,
7940 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7941 return FALSE;
7942 }
7943
7944 /* On IRIX5, we adjust add some additional symbols and change the
7945 alignments of several sections. There is no ABI documentation
7946 indicating that this is necessary on IRIX6, nor any evidence that
7947 the linker takes such action. */
7948 if (IRIX_COMPAT (abfd) == ict_irix5)
7949 {
7950 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7951 {
7952 bh = NULL;
7953 if (! (_bfd_generic_link_add_one_symbol
7954 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7955 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7956 return FALSE;
7957
7958 h = (struct elf_link_hash_entry *) bh;
7959 h->mark = 1;
7960 h->non_elf = 0;
7961 h->def_regular = 1;
7962 h->type = STT_SECTION;
7963
7964 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7965 return FALSE;
7966 }
7967
7968 /* We need to create a .compact_rel section. */
7969 if (SGI_COMPAT (abfd))
7970 {
7971 if (!mips_elf_create_compact_rel_section (abfd, info))
7972 return FALSE;
7973 }
7974
7975 /* Change alignments of some sections. */
7976 s = bfd_get_linker_section (abfd, ".hash");
7977 if (s != NULL)
7978 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7979
7980 s = bfd_get_linker_section (abfd, ".dynsym");
7981 if (s != NULL)
7982 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7983
7984 s = bfd_get_linker_section (abfd, ".dynstr");
7985 if (s != NULL)
7986 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7987
7988 /* ??? */
7989 s = bfd_get_section_by_name (abfd, ".reginfo");
7990 if (s != NULL)
7991 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7992
7993 s = bfd_get_linker_section (abfd, ".dynamic");
7994 if (s != NULL)
7995 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7996 }
7997
7998 if (bfd_link_executable (info))
7999 {
8000 const char *name;
8001
8002 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8003 bh = NULL;
8004 if (!(_bfd_generic_link_add_one_symbol
8005 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8006 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8007 return FALSE;
8008
8009 h = (struct elf_link_hash_entry *) bh;
8010 h->non_elf = 0;
8011 h->def_regular = 1;
8012 h->type = STT_SECTION;
8013
8014 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8015 return FALSE;
8016
8017 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8018 {
8019 /* __rld_map is a four byte word located in the .data section
8020 and is filled in by the rtld to contain a pointer to
8021 the _r_debug structure. Its symbol value will be set in
8022 _bfd_mips_elf_finish_dynamic_symbol. */
8023 s = bfd_get_linker_section (abfd, ".rld_map");
8024 BFD_ASSERT (s != NULL);
8025
8026 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8027 bh = NULL;
8028 if (!(_bfd_generic_link_add_one_symbol
8029 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8030 get_elf_backend_data (abfd)->collect, &bh)))
8031 return FALSE;
8032
8033 h = (struct elf_link_hash_entry *) bh;
8034 h->non_elf = 0;
8035 h->def_regular = 1;
8036 h->type = STT_OBJECT;
8037
8038 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8039 return FALSE;
8040 mips_elf_hash_table (info)->rld_symbol = h;
8041 }
8042 }
8043
8044 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8045 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8046 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8047 return FALSE;
8048
8049 /* Do the usual VxWorks handling. */
8050 if (htab->is_vxworks
8051 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8052 return FALSE;
8053
8054 return TRUE;
8055}
8056\f
8057/* Return true if relocation REL against section SEC is a REL rather than
8058 RELA relocation. RELOCS is the first relocation in the section and
8059 ABFD is the bfd that contains SEC. */
8060
8061static bfd_boolean
8062mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8063 const Elf_Internal_Rela *relocs,
8064 const Elf_Internal_Rela *rel)
8065{
8066 Elf_Internal_Shdr *rel_hdr;
8067 const struct elf_backend_data *bed;
8068
8069 /* To determine which flavor of relocation this is, we depend on the
8070 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8071 rel_hdr = elf_section_data (sec)->rel.hdr;
8072 if (rel_hdr == NULL)
8073 return FALSE;
8074 bed = get_elf_backend_data (abfd);
8075 return ((size_t) (rel - relocs)
8076 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8077}
8078
8079/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8080 HOWTO is the relocation's howto and CONTENTS points to the contents
8081 of the section that REL is against. */
8082
8083static bfd_vma
8084mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8085 reloc_howto_type *howto, bfd_byte *contents)
8086{
8087 bfd_byte *location;
8088 unsigned int r_type;
8089 bfd_vma addend;
8090 bfd_vma bytes;
8091
8092 r_type = ELF_R_TYPE (abfd, rel->r_info);
8093 location = contents + rel->r_offset;
8094
8095 /* Get the addend, which is stored in the input file. */
8096 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8097 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8098 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8099
8100 addend = bytes & howto->src_mask;
8101
8102 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8103 accordingly. */
8104 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8105 addend <<= 1;
8106
8107 return addend;
8108}
8109
8110/* REL is a relocation in ABFD that needs a partnering LO16 relocation
8111 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8112 and update *ADDEND with the final addend. Return true on success
8113 or false if the LO16 could not be found. RELEND is the exclusive
8114 upper bound on the relocations for REL's section. */
8115
8116static bfd_boolean
8117mips_elf_add_lo16_rel_addend (bfd *abfd,
8118 const Elf_Internal_Rela *rel,
8119 const Elf_Internal_Rela *relend,
8120 bfd_byte *contents, bfd_vma *addend)
8121{
8122 unsigned int r_type, lo16_type;
8123 const Elf_Internal_Rela *lo16_relocation;
8124 reloc_howto_type *lo16_howto;
8125 bfd_vma l;
8126
8127 r_type = ELF_R_TYPE (abfd, rel->r_info);
8128 if (mips16_reloc_p (r_type))
8129 lo16_type = R_MIPS16_LO16;
8130 else if (micromips_reloc_p (r_type))
8131 lo16_type = R_MICROMIPS_LO16;
8132 else if (r_type == R_MIPS_PCHI16)
8133 lo16_type = R_MIPS_PCLO16;
8134 else
8135 lo16_type = R_MIPS_LO16;
8136
8137 /* The combined value is the sum of the HI16 addend, left-shifted by
8138 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8139 code does a `lui' of the HI16 value, and then an `addiu' of the
8140 LO16 value.)
8141
8142 Scan ahead to find a matching LO16 relocation.
8143
8144 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8145 be immediately following. However, for the IRIX6 ABI, the next
8146 relocation may be a composed relocation consisting of several
8147 relocations for the same address. In that case, the R_MIPS_LO16
8148 relocation may occur as one of these. We permit a similar
8149 extension in general, as that is useful for GCC.
8150
8151 In some cases GCC dead code elimination removes the LO16 but keeps
8152 the corresponding HI16. This is strictly speaking a violation of
8153 the ABI but not immediately harmful. */
8154 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8155 if (lo16_relocation == NULL)
8156 return FALSE;
8157
8158 /* Obtain the addend kept there. */
8159 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8160 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8161
8162 l <<= lo16_howto->rightshift;
8163 l = _bfd_mips_elf_sign_extend (l, 16);
8164
8165 *addend <<= 16;
8166 *addend += l;
8167 return TRUE;
8168}
8169
8170/* Try to read the contents of section SEC in bfd ABFD. Return true and
8171 store the contents in *CONTENTS on success. Assume that *CONTENTS
8172 already holds the contents if it is nonull on entry. */
8173
8174static bfd_boolean
8175mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8176{
8177 if (*contents)
8178 return TRUE;
8179
8180 /* Get cached copy if it exists. */
8181 if (elf_section_data (sec)->this_hdr.contents != NULL)
8182 {
8183 *contents = elf_section_data (sec)->this_hdr.contents;
8184 return TRUE;
8185 }
8186
8187 return bfd_malloc_and_get_section (abfd, sec, contents);
8188}
8189
8190/* Make a new PLT record to keep internal data. */
8191
8192static struct plt_entry *
8193mips_elf_make_plt_record (bfd *abfd)
8194{
8195 struct plt_entry *entry;
8196
8197 entry = bfd_zalloc (abfd, sizeof (*entry));
8198 if (entry == NULL)
8199 return NULL;
8200
8201 entry->stub_offset = MINUS_ONE;
8202 entry->mips_offset = MINUS_ONE;
8203 entry->comp_offset = MINUS_ONE;
8204 entry->gotplt_index = MINUS_ONE;
8205 return entry;
8206}
8207
8208/* Define the special `__gnu_absolute_zero' symbol. We only need this
8209 for PIC code, as otherwise there is no load-time relocation involved
8210 and local GOT entries whose value is zero at static link time will
8211 retain their value at load time. */
8212
8213static bfd_boolean
8214mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8215 struct mips_elf_link_hash_table *htab,
8216 unsigned int r_type)
8217{
8218 union
8219 {
8220 struct elf_link_hash_entry *eh;
8221 struct bfd_link_hash_entry *bh;
8222 }
8223 hzero;
8224
8225 BFD_ASSERT (!htab->use_absolute_zero);
8226 BFD_ASSERT (bfd_link_pic (info));
8227
8228 hzero.bh = NULL;
8229 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8230 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8231 NULL, FALSE, FALSE, &hzero.bh))
8232 return FALSE;
8233
8234 BFD_ASSERT (hzero.bh != NULL);
8235 hzero.eh->size = 0;
8236 hzero.eh->type = STT_NOTYPE;
8237 hzero.eh->other = STV_PROTECTED;
8238 hzero.eh->def_regular = 1;
8239 hzero.eh->non_elf = 0;
8240
8241 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8242 return FALSE;
8243
8244 htab->use_absolute_zero = TRUE;
8245
8246 return TRUE;
8247}
8248
8249/* Look through the relocs for a section during the first phase, and
8250 allocate space in the global offset table and record the need for
8251 standard MIPS and compressed procedure linkage table entries. */
8252
8253bfd_boolean
8254_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8255 asection *sec, const Elf_Internal_Rela *relocs)
8256{
8257 const char *name;
8258 bfd *dynobj;
8259 Elf_Internal_Shdr *symtab_hdr;
8260 struct elf_link_hash_entry **sym_hashes;
8261 size_t extsymoff;
8262 const Elf_Internal_Rela *rel;
8263 const Elf_Internal_Rela *rel_end;
8264 asection *sreloc;
8265 const struct elf_backend_data *bed;
8266 struct mips_elf_link_hash_table *htab;
8267 bfd_byte *contents;
8268 bfd_vma addend;
8269 reloc_howto_type *howto;
8270
8271 if (bfd_link_relocatable (info))
8272 return TRUE;
8273
8274 htab = mips_elf_hash_table (info);
8275 BFD_ASSERT (htab != NULL);
8276
8277 dynobj = elf_hash_table (info)->dynobj;
8278 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8279 sym_hashes = elf_sym_hashes (abfd);
8280 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8281
8282 bed = get_elf_backend_data (abfd);
8283 rel_end = relocs + sec->reloc_count;
8284
8285 /* Check for the mips16 stub sections. */
8286
8287 name = bfd_get_section_name (abfd, sec);
8288 if (FN_STUB_P (name))
8289 {
8290 unsigned long r_symndx;
8291
8292 /* Look at the relocation information to figure out which symbol
8293 this is for. */
8294
8295 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8296 if (r_symndx == 0)
8297 {
8298 _bfd_error_handler
8299 /* xgettext:c-format */
8300 (_("%pB: warning: cannot determine the target function for"
8301 " stub section `%s'"),
8302 abfd, name);
8303 bfd_set_error (bfd_error_bad_value);
8304 return FALSE;
8305 }
8306
8307 if (r_symndx < extsymoff
8308 || sym_hashes[r_symndx - extsymoff] == NULL)
8309 {
8310 asection *o;
8311
8312 /* This stub is for a local symbol. This stub will only be
8313 needed if there is some relocation in this BFD, other
8314 than a 16 bit function call, which refers to this symbol. */
8315 for (o = abfd->sections; o != NULL; o = o->next)
8316 {
8317 Elf_Internal_Rela *sec_relocs;
8318 const Elf_Internal_Rela *r, *rend;
8319
8320 /* We can ignore stub sections when looking for relocs. */
8321 if ((o->flags & SEC_RELOC) == 0
8322 || o->reloc_count == 0
8323 || section_allows_mips16_refs_p (o))
8324 continue;
8325
8326 sec_relocs
8327 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8328 info->keep_memory);
8329 if (sec_relocs == NULL)
8330 return FALSE;
8331
8332 rend = sec_relocs + o->reloc_count;
8333 for (r = sec_relocs; r < rend; r++)
8334 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8335 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8336 break;
8337
8338 if (elf_section_data (o)->relocs != sec_relocs)
8339 free (sec_relocs);
8340
8341 if (r < rend)
8342 break;
8343 }
8344
8345 if (o == NULL)
8346 {
8347 /* There is no non-call reloc for this stub, so we do
8348 not need it. Since this function is called before
8349 the linker maps input sections to output sections, we
8350 can easily discard it by setting the SEC_EXCLUDE
8351 flag. */
8352 sec->flags |= SEC_EXCLUDE;
8353 return TRUE;
8354 }
8355
8356 /* Record this stub in an array of local symbol stubs for
8357 this BFD. */
8358 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8359 {
8360 unsigned long symcount;
8361 asection **n;
8362 bfd_size_type amt;
8363
8364 if (elf_bad_symtab (abfd))
8365 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8366 else
8367 symcount = symtab_hdr->sh_info;
8368 amt = symcount * sizeof (asection *);
8369 n = bfd_zalloc (abfd, amt);
8370 if (n == NULL)
8371 return FALSE;
8372 mips_elf_tdata (abfd)->local_stubs = n;
8373 }
8374
8375 sec->flags |= SEC_KEEP;
8376 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8377
8378 /* We don't need to set mips16_stubs_seen in this case.
8379 That flag is used to see whether we need to look through
8380 the global symbol table for stubs. We don't need to set
8381 it here, because we just have a local stub. */
8382 }
8383 else
8384 {
8385 struct mips_elf_link_hash_entry *h;
8386
8387 h = ((struct mips_elf_link_hash_entry *)
8388 sym_hashes[r_symndx - extsymoff]);
8389
8390 while (h->root.root.type == bfd_link_hash_indirect
8391 || h->root.root.type == bfd_link_hash_warning)
8392 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8393
8394 /* H is the symbol this stub is for. */
8395
8396 /* If we already have an appropriate stub for this function, we
8397 don't need another one, so we can discard this one. Since
8398 this function is called before the linker maps input sections
8399 to output sections, we can easily discard it by setting the
8400 SEC_EXCLUDE flag. */
8401 if (h->fn_stub != NULL)
8402 {
8403 sec->flags |= SEC_EXCLUDE;
8404 return TRUE;
8405 }
8406
8407 sec->flags |= SEC_KEEP;
8408 h->fn_stub = sec;
8409 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8410 }
8411 }
8412 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8413 {
8414 unsigned long r_symndx;
8415 struct mips_elf_link_hash_entry *h;
8416 asection **loc;
8417
8418 /* Look at the relocation information to figure out which symbol
8419 this is for. */
8420
8421 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8422 if (r_symndx == 0)
8423 {
8424 _bfd_error_handler
8425 /* xgettext:c-format */
8426 (_("%pB: warning: cannot determine the target function for"
8427 " stub section `%s'"),
8428 abfd, name);
8429 bfd_set_error (bfd_error_bad_value);
8430 return FALSE;
8431 }
8432
8433 if (r_symndx < extsymoff
8434 || sym_hashes[r_symndx - extsymoff] == NULL)
8435 {
8436 asection *o;
8437
8438 /* This stub is for a local symbol. This stub will only be
8439 needed if there is some relocation (R_MIPS16_26) in this BFD
8440 that refers to this symbol. */
8441 for (o = abfd->sections; o != NULL; o = o->next)
8442 {
8443 Elf_Internal_Rela *sec_relocs;
8444 const Elf_Internal_Rela *r, *rend;
8445
8446 /* We can ignore stub sections when looking for relocs. */
8447 if ((o->flags & SEC_RELOC) == 0
8448 || o->reloc_count == 0
8449 || section_allows_mips16_refs_p (o))
8450 continue;
8451
8452 sec_relocs
8453 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8454 info->keep_memory);
8455 if (sec_relocs == NULL)
8456 return FALSE;
8457
8458 rend = sec_relocs + o->reloc_count;
8459 for (r = sec_relocs; r < rend; r++)
8460 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8461 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8462 break;
8463
8464 if (elf_section_data (o)->relocs != sec_relocs)
8465 free (sec_relocs);
8466
8467 if (r < rend)
8468 break;
8469 }
8470
8471 if (o == NULL)
8472 {
8473 /* There is no non-call reloc for this stub, so we do
8474 not need it. Since this function is called before
8475 the linker maps input sections to output sections, we
8476 can easily discard it by setting the SEC_EXCLUDE
8477 flag. */
8478 sec->flags |= SEC_EXCLUDE;
8479 return TRUE;
8480 }
8481
8482 /* Record this stub in an array of local symbol call_stubs for
8483 this BFD. */
8484 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8485 {
8486 unsigned long symcount;
8487 asection **n;
8488 bfd_size_type amt;
8489
8490 if (elf_bad_symtab (abfd))
8491 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8492 else
8493 symcount = symtab_hdr->sh_info;
8494 amt = symcount * sizeof (asection *);
8495 n = bfd_zalloc (abfd, amt);
8496 if (n == NULL)
8497 return FALSE;
8498 mips_elf_tdata (abfd)->local_call_stubs = n;
8499 }
8500
8501 sec->flags |= SEC_KEEP;
8502 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8503
8504 /* We don't need to set mips16_stubs_seen in this case.
8505 That flag is used to see whether we need to look through
8506 the global symbol table for stubs. We don't need to set
8507 it here, because we just have a local stub. */
8508 }
8509 else
8510 {
8511 h = ((struct mips_elf_link_hash_entry *)
8512 sym_hashes[r_symndx - extsymoff]);
8513
8514 /* H is the symbol this stub is for. */
8515
8516 if (CALL_FP_STUB_P (name))
8517 loc = &h->call_fp_stub;
8518 else
8519 loc = &h->call_stub;
8520
8521 /* If we already have an appropriate stub for this function, we
8522 don't need another one, so we can discard this one. Since
8523 this function is called before the linker maps input sections
8524 to output sections, we can easily discard it by setting the
8525 SEC_EXCLUDE flag. */
8526 if (*loc != NULL)
8527 {
8528 sec->flags |= SEC_EXCLUDE;
8529 return TRUE;
8530 }
8531
8532 sec->flags |= SEC_KEEP;
8533 *loc = sec;
8534 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8535 }
8536 }
8537
8538 sreloc = NULL;
8539 contents = NULL;
8540 for (rel = relocs; rel < rel_end; ++rel)
8541 {
8542 unsigned long r_symndx;
8543 unsigned int r_type;
8544 struct elf_link_hash_entry *h;
8545 bfd_boolean can_make_dynamic_p;
8546 bfd_boolean call_reloc_p;
8547 bfd_boolean constrain_symbol_p;
8548
8549 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8550 r_type = ELF_R_TYPE (abfd, rel->r_info);
8551
8552 if (r_symndx < extsymoff)
8553 h = NULL;
8554 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8555 {
8556 _bfd_error_handler
8557 /* xgettext:c-format */
8558 (_("%pB: malformed reloc detected for section %s"),
8559 abfd, name);
8560 bfd_set_error (bfd_error_bad_value);
8561 return FALSE;
8562 }
8563 else
8564 {
8565 h = sym_hashes[r_symndx - extsymoff];
8566 if (h != NULL)
8567 {
8568 while (h->root.type == bfd_link_hash_indirect
8569 || h->root.type == bfd_link_hash_warning)
8570 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8571 }
8572 }
8573
8574 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8575 relocation into a dynamic one. */
8576 can_make_dynamic_p = FALSE;
8577
8578 /* Set CALL_RELOC_P to true if the relocation is for a call,
8579 and if pointer equality therefore doesn't matter. */
8580 call_reloc_p = FALSE;
8581
8582 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8583 into account when deciding how to define the symbol.
8584 Relocations in nonallocatable sections such as .pdr and
8585 .debug* should have no effect. */
8586 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8587
8588 switch (r_type)
8589 {
8590 case R_MIPS_CALL16:
8591 case R_MIPS_CALL_HI16:
8592 case R_MIPS_CALL_LO16:
8593 case R_MIPS16_CALL16:
8594 case R_MICROMIPS_CALL16:
8595 case R_MICROMIPS_CALL_HI16:
8596 case R_MICROMIPS_CALL_LO16:
8597 call_reloc_p = TRUE;
8598 /* Fall through. */
8599
8600 case R_MIPS_GOT16:
8601 case R_MIPS_GOT_LO16:
8602 case R_MIPS_GOT_PAGE:
8603 case R_MIPS_GOT_DISP:
8604 case R_MIPS16_GOT16:
8605 case R_MICROMIPS_GOT16:
8606 case R_MICROMIPS_GOT_LO16:
8607 case R_MICROMIPS_GOT_PAGE:
8608 case R_MICROMIPS_GOT_DISP:
8609 /* If we have a symbol that will resolve to zero at static link
8610 time and it is used by a GOT relocation applied to code we
8611 cannot relax to an immediate zero load, then we will be using
8612 the special `__gnu_absolute_zero' symbol whose value is zero
8613 at dynamic load time. We ignore HI16-type GOT relocations at
8614 this stage, because their handling will depend entirely on
8615 the corresponding LO16-type GOT relocation. */
8616 if (!call_hi16_reloc_p (r_type)
8617 && h != NULL
8618 && bfd_link_pic (info)
8619 && !htab->use_absolute_zero
8620 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8621 {
8622 bfd_boolean rel_reloc;
8623
8624 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8625 return FALSE;
8626
8627 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8628 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8629
8630 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8631 FALSE))
8632 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8633 return FALSE;
8634 }
8635
8636 /* Fall through. */
8637 case R_MIPS_GOT_HI16:
8638 case R_MIPS_GOT_OFST:
8639 case R_MIPS_TLS_GOTTPREL:
8640 case R_MIPS_TLS_GD:
8641 case R_MIPS_TLS_LDM:
8642 case R_MIPS16_TLS_GOTTPREL:
8643 case R_MIPS16_TLS_GD:
8644 case R_MIPS16_TLS_LDM:
8645 case R_MICROMIPS_GOT_HI16:
8646 case R_MICROMIPS_GOT_OFST:
8647 case R_MICROMIPS_TLS_GOTTPREL:
8648 case R_MICROMIPS_TLS_GD:
8649 case R_MICROMIPS_TLS_LDM:
8650 if (dynobj == NULL)
8651 elf_hash_table (info)->dynobj = dynobj = abfd;
8652 if (!mips_elf_create_got_section (dynobj, info))
8653 return FALSE;
8654 if (htab->is_vxworks && !bfd_link_pic (info))
8655 {
8656 _bfd_error_handler
8657 /* xgettext:c-format */
8658 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8659 abfd, (uint64_t) rel->r_offset);
8660 bfd_set_error (bfd_error_bad_value);
8661 return FALSE;
8662 }
8663 can_make_dynamic_p = TRUE;
8664 break;
8665
8666 case R_MIPS_NONE:
8667 case R_MIPS_JALR:
8668 case R_MICROMIPS_JALR:
8669 /* These relocations have empty fields and are purely there to
8670 provide link information. The symbol value doesn't matter. */
8671 constrain_symbol_p = FALSE;
8672 break;
8673
8674 case R_MIPS_GPREL16:
8675 case R_MIPS_GPREL32:
8676 case R_MIPS16_GPREL:
8677 case R_MICROMIPS_GPREL16:
8678 /* GP-relative relocations always resolve to a definition in a
8679 regular input file, ignoring the one-definition rule. This is
8680 important for the GP setup sequence in NewABI code, which
8681 always resolves to a local function even if other relocations
8682 against the symbol wouldn't. */
8683 constrain_symbol_p = FALSE;
8684 break;
8685
8686 case R_MIPS_32:
8687 case R_MIPS_REL32:
8688 case R_MIPS_64:
8689 /* In VxWorks executables, references to external symbols
8690 must be handled using copy relocs or PLT entries; it is not
8691 possible to convert this relocation into a dynamic one.
8692
8693 For executables that use PLTs and copy-relocs, we have a
8694 choice between converting the relocation into a dynamic
8695 one or using copy relocations or PLT entries. It is
8696 usually better to do the former, unless the relocation is
8697 against a read-only section. */
8698 if ((bfd_link_pic (info)
8699 || (h != NULL
8700 && !htab->is_vxworks
8701 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8702 && !(!info->nocopyreloc
8703 && !PIC_OBJECT_P (abfd)
8704 && MIPS_ELF_READONLY_SECTION (sec))))
8705 && (sec->flags & SEC_ALLOC) != 0)
8706 {
8707 can_make_dynamic_p = TRUE;
8708 if (dynobj == NULL)
8709 elf_hash_table (info)->dynobj = dynobj = abfd;
8710 }
8711 break;
8712
8713 case R_MIPS_26:
8714 case R_MIPS_PC16:
8715 case R_MIPS_PC21_S2:
8716 case R_MIPS_PC26_S2:
8717 case R_MIPS16_26:
8718 case R_MIPS16_PC16_S1:
8719 case R_MICROMIPS_26_S1:
8720 case R_MICROMIPS_PC7_S1:
8721 case R_MICROMIPS_PC10_S1:
8722 case R_MICROMIPS_PC16_S1:
8723 case R_MICROMIPS_PC23_S2:
8724 call_reloc_p = TRUE;
8725 break;
8726 }
8727
8728 if (h)
8729 {
8730 if (constrain_symbol_p)
8731 {
8732 if (!can_make_dynamic_p)
8733 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8734
8735 if (!call_reloc_p)
8736 h->pointer_equality_needed = 1;
8737
8738 /* We must not create a stub for a symbol that has
8739 relocations related to taking the function's address.
8740 This doesn't apply to VxWorks, where CALL relocs refer
8741 to a .got.plt entry instead of a normal .got entry. */
8742 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8743 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8744 }
8745
8746 /* Relocations against the special VxWorks __GOTT_BASE__ and
8747 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8748 room for them in .rela.dyn. */
8749 if (is_gott_symbol (info, h))
8750 {
8751 if (sreloc == NULL)
8752 {
8753 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8754 if (sreloc == NULL)
8755 return FALSE;
8756 }
8757 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8758 if (MIPS_ELF_READONLY_SECTION (sec))
8759 /* We tell the dynamic linker that there are
8760 relocations against the text segment. */
8761 info->flags |= DF_TEXTREL;
8762 }
8763 }
8764 else if (call_lo16_reloc_p (r_type)
8765 || got_lo16_reloc_p (r_type)
8766 || got_disp_reloc_p (r_type)
8767 || (got16_reloc_p (r_type) && htab->is_vxworks))
8768 {
8769 /* We may need a local GOT entry for this relocation. We
8770 don't count R_MIPS_GOT_PAGE because we can estimate the
8771 maximum number of pages needed by looking at the size of
8772 the segment. Similar comments apply to R_MIPS*_GOT16 and
8773 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8774 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8775 R_MIPS_CALL_HI16 because these are always followed by an
8776 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8777 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8778 rel->r_addend, info, r_type))
8779 return FALSE;
8780 }
8781
8782 if (h != NULL
8783 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8784 ELF_ST_IS_MIPS16 (h->other)))
8785 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8786
8787 switch (r_type)
8788 {
8789 case R_MIPS_CALL16:
8790 case R_MIPS16_CALL16:
8791 case R_MICROMIPS_CALL16:
8792 if (h == NULL)
8793 {
8794 _bfd_error_handler
8795 /* xgettext:c-format */
8796 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8797 abfd, (uint64_t) rel->r_offset);
8798 bfd_set_error (bfd_error_bad_value);
8799 return FALSE;
8800 }
8801 /* Fall through. */
8802
8803 case R_MIPS_CALL_HI16:
8804 case R_MIPS_CALL_LO16:
8805 case R_MICROMIPS_CALL_HI16:
8806 case R_MICROMIPS_CALL_LO16:
8807 if (h != NULL)
8808 {
8809 /* Make sure there is room in the regular GOT to hold the
8810 function's address. We may eliminate it in favour of
8811 a .got.plt entry later; see mips_elf_count_got_symbols. */
8812 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8813 r_type))
8814 return FALSE;
8815
8816 /* We need a stub, not a plt entry for the undefined
8817 function. But we record it as if it needs plt. See
8818 _bfd_elf_adjust_dynamic_symbol. */
8819 h->needs_plt = 1;
8820 h->type = STT_FUNC;
8821 }
8822 break;
8823
8824 case R_MIPS_GOT_PAGE:
8825 case R_MICROMIPS_GOT_PAGE:
8826 case R_MIPS16_GOT16:
8827 case R_MIPS_GOT16:
8828 case R_MIPS_GOT_HI16:
8829 case R_MIPS_GOT_LO16:
8830 case R_MICROMIPS_GOT16:
8831 case R_MICROMIPS_GOT_HI16:
8832 case R_MICROMIPS_GOT_LO16:
8833 if (!h || got_page_reloc_p (r_type))
8834 {
8835 /* This relocation needs (or may need, if h != NULL) a
8836 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8837 know for sure until we know whether the symbol is
8838 preemptible. */
8839 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8840 {
8841 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8842 return FALSE;
8843 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8844 addend = mips_elf_read_rel_addend (abfd, rel,
8845 howto, contents);
8846 if (got16_reloc_p (r_type))
8847 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8848 contents, &addend);
8849 else
8850 addend <<= howto->rightshift;
8851 }
8852 else
8853 addend = rel->r_addend;
8854 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8855 h, addend))
8856 return FALSE;
8857
8858 if (h)
8859 {
8860 struct mips_elf_link_hash_entry *hmips =
8861 (struct mips_elf_link_hash_entry *) h;
8862
8863 /* This symbol is definitely not overridable. */
8864 if (hmips->root.def_regular
8865 && ! (bfd_link_pic (info) && ! info->symbolic
8866 && ! hmips->root.forced_local))
8867 h = NULL;
8868 }
8869 }
8870 /* If this is a global, overridable symbol, GOT_PAGE will
8871 decay to GOT_DISP, so we'll need a GOT entry for it. */
8872 /* Fall through. */
8873
8874 case R_MIPS_GOT_DISP:
8875 case R_MICROMIPS_GOT_DISP:
8876 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8877 FALSE, r_type))
8878 return FALSE;
8879 break;
8880
8881 case R_MIPS_TLS_GOTTPREL:
8882 case R_MIPS16_TLS_GOTTPREL:
8883 case R_MICROMIPS_TLS_GOTTPREL:
8884 if (bfd_link_pic (info))
8885 info->flags |= DF_STATIC_TLS;
8886 /* Fall through */
8887
8888 case R_MIPS_TLS_LDM:
8889 case R_MIPS16_TLS_LDM:
8890 case R_MICROMIPS_TLS_LDM:
8891 if (tls_ldm_reloc_p (r_type))
8892 {
8893 r_symndx = STN_UNDEF;
8894 h = NULL;
8895 }
8896 /* Fall through */
8897
8898 case R_MIPS_TLS_GD:
8899 case R_MIPS16_TLS_GD:
8900 case R_MICROMIPS_TLS_GD:
8901 /* This symbol requires a global offset table entry, or two
8902 for TLS GD relocations. */
8903 if (h != NULL)
8904 {
8905 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8906 FALSE, r_type))
8907 return FALSE;
8908 }
8909 else
8910 {
8911 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8912 rel->r_addend,
8913 info, r_type))
8914 return FALSE;
8915 }
8916 break;
8917
8918 case R_MIPS_32:
8919 case R_MIPS_REL32:
8920 case R_MIPS_64:
8921 /* In VxWorks executables, references to external symbols
8922 are handled using copy relocs or PLT stubs, so there's
8923 no need to add a .rela.dyn entry for this relocation. */
8924 if (can_make_dynamic_p)
8925 {
8926 if (sreloc == NULL)
8927 {
8928 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8929 if (sreloc == NULL)
8930 return FALSE;
8931 }
8932 if (bfd_link_pic (info) && h == NULL)
8933 {
8934 /* When creating a shared object, we must copy these
8935 reloc types into the output file as R_MIPS_REL32
8936 relocs. Make room for this reloc in .rel(a).dyn. */
8937 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8938 if (MIPS_ELF_READONLY_SECTION (sec))
8939 /* We tell the dynamic linker that there are
8940 relocations against the text segment. */
8941 info->flags |= DF_TEXTREL;
8942 }
8943 else
8944 {
8945 struct mips_elf_link_hash_entry *hmips;
8946
8947 /* For a shared object, we must copy this relocation
8948 unless the symbol turns out to be undefined and
8949 weak with non-default visibility, in which case
8950 it will be left as zero.
8951
8952 We could elide R_MIPS_REL32 for locally binding symbols
8953 in shared libraries, but do not yet do so.
8954
8955 For an executable, we only need to copy this
8956 reloc if the symbol is defined in a dynamic
8957 object. */
8958 hmips = (struct mips_elf_link_hash_entry *) h;
8959 ++hmips->possibly_dynamic_relocs;
8960 if (MIPS_ELF_READONLY_SECTION (sec))
8961 /* We need it to tell the dynamic linker if there
8962 are relocations against the text segment. */
8963 hmips->readonly_reloc = TRUE;
8964 }
8965 }
8966
8967 if (SGI_COMPAT (abfd))
8968 mips_elf_hash_table (info)->compact_rel_size +=
8969 sizeof (Elf32_External_crinfo);
8970 break;
8971
8972 case R_MIPS_26:
8973 case R_MIPS_GPREL16:
8974 case R_MIPS_LITERAL:
8975 case R_MIPS_GPREL32:
8976 case R_MICROMIPS_26_S1:
8977 case R_MICROMIPS_GPREL16:
8978 case R_MICROMIPS_LITERAL:
8979 case R_MICROMIPS_GPREL7_S2:
8980 if (SGI_COMPAT (abfd))
8981 mips_elf_hash_table (info)->compact_rel_size +=
8982 sizeof (Elf32_External_crinfo);
8983 break;
8984
8985 /* This relocation describes the C++ object vtable hierarchy.
8986 Reconstruct it for later use during GC. */
8987 case R_MIPS_GNU_VTINHERIT:
8988 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8989 return FALSE;
8990 break;
8991
8992 /* This relocation describes which C++ vtable entries are actually
8993 used. Record for later use during GC. */
8994 case R_MIPS_GNU_VTENTRY:
8995 BFD_ASSERT (h != NULL);
8996 if (h != NULL
8997 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8998 return FALSE;
8999 break;
9000
9001 default:
9002 break;
9003 }
9004
9005 /* Record the need for a PLT entry. At this point we don't know
9006 yet if we are going to create a PLT in the first place, but
9007 we only record whether the relocation requires a standard MIPS
9008 or a compressed code entry anyway. If we don't make a PLT after
9009 all, then we'll just ignore these arrangements. Likewise if
9010 a PLT entry is not created because the symbol is satisfied
9011 locally. */
9012 if (h != NULL
9013 && (branch_reloc_p (r_type)
9014 || mips16_branch_reloc_p (r_type)
9015 || micromips_branch_reloc_p (r_type))
9016 && !SYMBOL_CALLS_LOCAL (info, h))
9017 {
9018 if (h->plt.plist == NULL)
9019 h->plt.plist = mips_elf_make_plt_record (abfd);
9020 if (h->plt.plist == NULL)
9021 return FALSE;
9022
9023 if (branch_reloc_p (r_type))
9024 h->plt.plist->need_mips = TRUE;
9025 else
9026 h->plt.plist->need_comp = TRUE;
9027 }
9028
9029 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9030 if there is one. We only need to handle global symbols here;
9031 we decide whether to keep or delete stubs for local symbols
9032 when processing the stub's relocations. */
9033 if (h != NULL
9034 && !mips16_call_reloc_p (r_type)
9035 && !section_allows_mips16_refs_p (sec))
9036 {
9037 struct mips_elf_link_hash_entry *mh;
9038
9039 mh = (struct mips_elf_link_hash_entry *) h;
9040 mh->need_fn_stub = TRUE;
9041 }
9042
9043 /* Refuse some position-dependent relocations when creating a
9044 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9045 not PIC, but we can create dynamic relocations and the result
9046 will be fine. Also do not refuse R_MIPS_LO16, which can be
9047 combined with R_MIPS_GOT16. */
9048 if (bfd_link_pic (info))
9049 {
9050 switch (r_type)
9051 {
9052 case R_MIPS16_HI16:
9053 case R_MIPS_HI16:
9054 case R_MIPS_HIGHER:
9055 case R_MIPS_HIGHEST:
9056 case R_MICROMIPS_HI16:
9057 case R_MICROMIPS_HIGHER:
9058 case R_MICROMIPS_HIGHEST:
9059 /* Don't refuse a high part relocation if it's against
9060 no symbol (e.g. part of a compound relocation). */
9061 if (r_symndx == STN_UNDEF)
9062 break;
9063
9064 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9065 and has a special meaning. */
9066 if (!NEWABI_P (abfd) && h != NULL
9067 && strcmp (h->root.root.string, "_gp_disp") == 0)
9068 break;
9069
9070 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9071 if (is_gott_symbol (info, h))
9072 break;
9073
9074 /* FALLTHROUGH */
9075
9076 case R_MIPS16_26:
9077 case R_MIPS_26:
9078 case R_MICROMIPS_26_S1:
9079 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
9080 _bfd_error_handler
9081 /* xgettext:c-format */
9082 (_("%pB: relocation %s against `%s' can not be used"
9083 " when making a shared object; recompile with -fPIC"),
9084 abfd, howto->name,
9085 (h) ? h->root.root.string : "a local symbol");
9086 bfd_set_error (bfd_error_bad_value);
9087 return FALSE;
9088 default:
9089 break;
9090 }
9091 }
9092 }
9093
9094 return TRUE;
9095}
9096\f
9097/* Allocate space for global sym dynamic relocs. */
9098
9099static bfd_boolean
9100allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9101{
9102 struct bfd_link_info *info = inf;
9103 bfd *dynobj;
9104 struct mips_elf_link_hash_entry *hmips;
9105 struct mips_elf_link_hash_table *htab;
9106
9107 htab = mips_elf_hash_table (info);
9108 BFD_ASSERT (htab != NULL);
9109
9110 dynobj = elf_hash_table (info)->dynobj;
9111 hmips = (struct mips_elf_link_hash_entry *) h;
9112
9113 /* VxWorks executables are handled elsewhere; we only need to
9114 allocate relocations in shared objects. */
9115 if (htab->is_vxworks && !bfd_link_pic (info))
9116 return TRUE;
9117
9118 /* Ignore indirect symbols. All relocations against such symbols
9119 will be redirected to the target symbol. */
9120 if (h->root.type == bfd_link_hash_indirect)
9121 return TRUE;
9122
9123 /* If this symbol is defined in a dynamic object, or we are creating
9124 a shared library, we will need to copy any R_MIPS_32 or
9125 R_MIPS_REL32 relocs against it into the output file. */
9126 if (! bfd_link_relocatable (info)
9127 && hmips->possibly_dynamic_relocs != 0
9128 && (h->root.type == bfd_link_hash_defweak
9129 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9130 || bfd_link_pic (info)))
9131 {
9132 bfd_boolean do_copy = TRUE;
9133
9134 if (h->root.type == bfd_link_hash_undefweak)
9135 {
9136 /* Do not copy relocations for undefined weak symbols that
9137 we are not going to export. */
9138 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9139 do_copy = FALSE;
9140
9141 /* Make sure undefined weak symbols are output as a dynamic
9142 symbol in PIEs. */
9143 else if (h->dynindx == -1 && !h->forced_local)
9144 {
9145 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9146 return FALSE;
9147 }
9148 }
9149
9150 if (do_copy)
9151 {
9152 /* Even though we don't directly need a GOT entry for this symbol,
9153 the SVR4 psABI requires it to have a dynamic symbol table
9154 index greater that DT_MIPS_GOTSYM if there are dynamic
9155 relocations against it.
9156
9157 VxWorks does not enforce the same mapping between the GOT
9158 and the symbol table, so the same requirement does not
9159 apply there. */
9160 if (!htab->is_vxworks)
9161 {
9162 if (hmips->global_got_area > GGA_RELOC_ONLY)
9163 hmips->global_got_area = GGA_RELOC_ONLY;
9164 hmips->got_only_for_calls = FALSE;
9165 }
9166
9167 mips_elf_allocate_dynamic_relocations
9168 (dynobj, info, hmips->possibly_dynamic_relocs);
9169 if (hmips->readonly_reloc)
9170 /* We tell the dynamic linker that there are relocations
9171 against the text segment. */
9172 info->flags |= DF_TEXTREL;
9173 }
9174 }
9175
9176 return TRUE;
9177}
9178
9179/* Adjust a symbol defined by a dynamic object and referenced by a
9180 regular object. The current definition is in some section of the
9181 dynamic object, but we're not including those sections. We have to
9182 change the definition to something the rest of the link can
9183 understand. */
9184
9185bfd_boolean
9186_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9187 struct elf_link_hash_entry *h)
9188{
9189 bfd *dynobj;
9190 struct mips_elf_link_hash_entry *hmips;
9191 struct mips_elf_link_hash_table *htab;
9192 asection *s, *srel;
9193
9194 htab = mips_elf_hash_table (info);
9195 BFD_ASSERT (htab != NULL);
9196
9197 dynobj = elf_hash_table (info)->dynobj;
9198 hmips = (struct mips_elf_link_hash_entry *) h;
9199
9200 /* Make sure we know what is going on here. */
9201 BFD_ASSERT (dynobj != NULL
9202 && (h->needs_plt
9203 || h->is_weakalias
9204 || (h->def_dynamic
9205 && h->ref_regular
9206 && !h->def_regular)));
9207
9208 hmips = (struct mips_elf_link_hash_entry *) h;
9209
9210 /* If there are call relocations against an externally-defined symbol,
9211 see whether we can create a MIPS lazy-binding stub for it. We can
9212 only do this if all references to the function are through call
9213 relocations, and in that case, the traditional lazy-binding stubs
9214 are much more efficient than PLT entries.
9215
9216 Traditional stubs are only available on SVR4 psABI-based systems;
9217 VxWorks always uses PLTs instead. */
9218 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9219 {
9220 if (! elf_hash_table (info)->dynamic_sections_created)
9221 return TRUE;
9222
9223 /* If this symbol is not defined in a regular file, then set
9224 the symbol to the stub location. This is required to make
9225 function pointers compare as equal between the normal
9226 executable and the shared library. */
9227 if (!h->def_regular
9228 && !bfd_is_abs_section (htab->sstubs->output_section))
9229 {
9230 hmips->needs_lazy_stub = TRUE;
9231 htab->lazy_stub_count++;
9232 return TRUE;
9233 }
9234 }
9235 /* As above, VxWorks requires PLT entries for externally-defined
9236 functions that are only accessed through call relocations.
9237
9238 Both VxWorks and non-VxWorks targets also need PLT entries if there
9239 are static-only relocations against an externally-defined function.
9240 This can technically occur for shared libraries if there are
9241 branches to the symbol, although it is unlikely that this will be
9242 used in practice due to the short ranges involved. It can occur
9243 for any relative or absolute relocation in executables; in that
9244 case, the PLT entry becomes the function's canonical address. */
9245 else if (((h->needs_plt && !hmips->no_fn_stub)
9246 || (h->type == STT_FUNC && hmips->has_static_relocs))
9247 && htab->use_plts_and_copy_relocs
9248 && !SYMBOL_CALLS_LOCAL (info, h)
9249 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9250 && h->root.type == bfd_link_hash_undefweak))
9251 {
9252 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9253 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9254
9255 /* If this is the first symbol to need a PLT entry, then make some
9256 basic setup. Also work out PLT entry sizes. We'll need them
9257 for PLT offset calculations. */
9258 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9259 {
9260 BFD_ASSERT (htab->root.sgotplt->size == 0);
9261 BFD_ASSERT (htab->plt_got_index == 0);
9262
9263 /* If we're using the PLT additions to the psABI, each PLT
9264 entry is 16 bytes and the PLT0 entry is 32 bytes.
9265 Encourage better cache usage by aligning. We do this
9266 lazily to avoid pessimizing traditional objects. */
9267 if (!htab->is_vxworks
9268 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9269 return FALSE;
9270
9271 /* Make sure that .got.plt is word-aligned. We do this lazily
9272 for the same reason as above. */
9273 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9274 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9275 return FALSE;
9276
9277 /* On non-VxWorks targets, the first two entries in .got.plt
9278 are reserved. */
9279 if (!htab->is_vxworks)
9280 htab->plt_got_index
9281 += (get_elf_backend_data (dynobj)->got_header_size
9282 / MIPS_ELF_GOT_SIZE (dynobj));
9283
9284 /* On VxWorks, also allocate room for the header's
9285 .rela.plt.unloaded entries. */
9286 if (htab->is_vxworks && !bfd_link_pic (info))
9287 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9288
9289 /* Now work out the sizes of individual PLT entries. */
9290 if (htab->is_vxworks && bfd_link_pic (info))
9291 htab->plt_mips_entry_size
9292 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9293 else if (htab->is_vxworks)
9294 htab->plt_mips_entry_size
9295 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9296 else if (newabi_p)
9297 htab->plt_mips_entry_size
9298 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9299 else if (!micromips_p)
9300 {
9301 htab->plt_mips_entry_size
9302 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9303 htab->plt_comp_entry_size
9304 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9305 }
9306 else if (htab->insn32)
9307 {
9308 htab->plt_mips_entry_size
9309 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9310 htab->plt_comp_entry_size
9311 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9312 }
9313 else
9314 {
9315 htab->plt_mips_entry_size
9316 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9317 htab->plt_comp_entry_size
9318 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9319 }
9320 }
9321
9322 if (h->plt.plist == NULL)
9323 h->plt.plist = mips_elf_make_plt_record (dynobj);
9324 if (h->plt.plist == NULL)
9325 return FALSE;
9326
9327 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9328 n32 or n64, so always use a standard entry there.
9329
9330 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9331 all MIPS16 calls will go via that stub, and there is no benefit
9332 to having a MIPS16 entry. And in the case of call_stub a
9333 standard entry actually has to be used as the stub ends with a J
9334 instruction. */
9335 if (newabi_p
9336 || htab->is_vxworks
9337 || hmips->call_stub
9338 || hmips->call_fp_stub)
9339 {
9340 h->plt.plist->need_mips = TRUE;
9341 h->plt.plist->need_comp = FALSE;
9342 }
9343
9344 /* Otherwise, if there are no direct calls to the function, we
9345 have a free choice of whether to use standard or compressed
9346 entries. Prefer microMIPS entries if the object is known to
9347 contain microMIPS code, so that it becomes possible to create
9348 pure microMIPS binaries. Prefer standard entries otherwise,
9349 because MIPS16 ones are no smaller and are usually slower. */
9350 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9351 {
9352 if (micromips_p)
9353 h->plt.plist->need_comp = TRUE;
9354 else
9355 h->plt.plist->need_mips = TRUE;
9356 }
9357
9358 if (h->plt.plist->need_mips)
9359 {
9360 h->plt.plist->mips_offset = htab->plt_mips_offset;
9361 htab->plt_mips_offset += htab->plt_mips_entry_size;
9362 }
9363 if (h->plt.plist->need_comp)
9364 {
9365 h->plt.plist->comp_offset = htab->plt_comp_offset;
9366 htab->plt_comp_offset += htab->plt_comp_entry_size;
9367 }
9368
9369 /* Reserve the corresponding .got.plt entry now too. */
9370 h->plt.plist->gotplt_index = htab->plt_got_index++;
9371
9372 /* If the output file has no definition of the symbol, set the
9373 symbol's value to the address of the stub. */
9374 if (!bfd_link_pic (info) && !h->def_regular)
9375 hmips->use_plt_entry = TRUE;
9376
9377 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9378 htab->root.srelplt->size += (htab->is_vxworks
9379 ? MIPS_ELF_RELA_SIZE (dynobj)
9380 : MIPS_ELF_REL_SIZE (dynobj));
9381
9382 /* Make room for the .rela.plt.unloaded relocations. */
9383 if (htab->is_vxworks && !bfd_link_pic (info))
9384 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9385
9386 /* All relocations against this symbol that could have been made
9387 dynamic will now refer to the PLT entry instead. */
9388 hmips->possibly_dynamic_relocs = 0;
9389
9390 return TRUE;
9391 }
9392
9393 /* If this is a weak symbol, and there is a real definition, the
9394 processor independent code will have arranged for us to see the
9395 real definition first, and we can just use the same value. */
9396 if (h->is_weakalias)
9397 {
9398 struct elf_link_hash_entry *def = weakdef (h);
9399 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9400 h->root.u.def.section = def->root.u.def.section;
9401 h->root.u.def.value = def->root.u.def.value;
9402 return TRUE;
9403 }
9404
9405 /* Otherwise, there is nothing further to do for symbols defined
9406 in regular objects. */
9407 if (h->def_regular)
9408 return TRUE;
9409
9410 /* There's also nothing more to do if we'll convert all relocations
9411 against this symbol into dynamic relocations. */
9412 if (!hmips->has_static_relocs)
9413 return TRUE;
9414
9415 /* We're now relying on copy relocations. Complain if we have
9416 some that we can't convert. */
9417 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9418 {
9419 _bfd_error_handler (_("non-dynamic relocations refer to "
9420 "dynamic symbol %s"),
9421 h->root.root.string);
9422 bfd_set_error (bfd_error_bad_value);
9423 return FALSE;
9424 }
9425
9426 /* We must allocate the symbol in our .dynbss section, which will
9427 become part of the .bss section of the executable. There will be
9428 an entry for this symbol in the .dynsym section. The dynamic
9429 object will contain position independent code, so all references
9430 from the dynamic object to this symbol will go through the global
9431 offset table. The dynamic linker will use the .dynsym entry to
9432 determine the address it must put in the global offset table, so
9433 both the dynamic object and the regular object will refer to the
9434 same memory location for the variable. */
9435
9436 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9437 {
9438 s = htab->root.sdynrelro;
9439 srel = htab->root.sreldynrelro;
9440 }
9441 else
9442 {
9443 s = htab->root.sdynbss;
9444 srel = htab->root.srelbss;
9445 }
9446 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9447 {
9448 if (htab->is_vxworks)
9449 srel->size += sizeof (Elf32_External_Rela);
9450 else
9451 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9452 h->needs_copy = 1;
9453 }
9454
9455 /* All relocations against this symbol that could have been made
9456 dynamic will now refer to the local copy instead. */
9457 hmips->possibly_dynamic_relocs = 0;
9458
9459 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9460}
9461\f
9462/* This function is called after all the input files have been read,
9463 and the input sections have been assigned to output sections. We
9464 check for any mips16 stub sections that we can discard. */
9465
9466bfd_boolean
9467_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9468 struct bfd_link_info *info)
9469{
9470 asection *sect;
9471 struct mips_elf_link_hash_table *htab;
9472 struct mips_htab_traverse_info hti;
9473
9474 htab = mips_elf_hash_table (info);
9475 BFD_ASSERT (htab != NULL);
9476
9477 /* The .reginfo section has a fixed size. */
9478 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9479 if (sect != NULL)
9480 {
9481 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9482 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9483 }
9484
9485 /* The .MIPS.abiflags section has a fixed size. */
9486 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9487 if (sect != NULL)
9488 {
9489 bfd_set_section_size (output_bfd, sect,
9490 sizeof (Elf_External_ABIFlags_v0));
9491 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9492 }
9493
9494 hti.info = info;
9495 hti.output_bfd = output_bfd;
9496 hti.error = FALSE;
9497 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9498 mips_elf_check_symbols, &hti);
9499 if (hti.error)
9500 return FALSE;
9501
9502 return TRUE;
9503}
9504
9505/* If the link uses a GOT, lay it out and work out its size. */
9506
9507static bfd_boolean
9508mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9509{
9510 bfd *dynobj;
9511 asection *s;
9512 struct mips_got_info *g;
9513 bfd_size_type loadable_size = 0;
9514 bfd_size_type page_gotno;
9515 bfd *ibfd;
9516 struct mips_elf_traverse_got_arg tga;
9517 struct mips_elf_link_hash_table *htab;
9518
9519 htab = mips_elf_hash_table (info);
9520 BFD_ASSERT (htab != NULL);
9521
9522 s = htab->root.sgot;
9523 if (s == NULL)
9524 return TRUE;
9525
9526 dynobj = elf_hash_table (info)->dynobj;
9527 g = htab->got_info;
9528
9529 /* Allocate room for the reserved entries. VxWorks always reserves
9530 3 entries; other objects only reserve 2 entries. */
9531 BFD_ASSERT (g->assigned_low_gotno == 0);
9532 if (htab->is_vxworks)
9533 htab->reserved_gotno = 3;
9534 else
9535 htab->reserved_gotno = 2;
9536 g->local_gotno += htab->reserved_gotno;
9537 g->assigned_low_gotno = htab->reserved_gotno;
9538
9539 /* Decide which symbols need to go in the global part of the GOT and
9540 count the number of reloc-only GOT symbols. */
9541 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9542
9543 if (!mips_elf_resolve_final_got_entries (info, g))
9544 return FALSE;
9545
9546 /* Calculate the total loadable size of the output. That
9547 will give us the maximum number of GOT_PAGE entries
9548 required. */
9549 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9550 {
9551 asection *subsection;
9552
9553 for (subsection = ibfd->sections;
9554 subsection;
9555 subsection = subsection->next)
9556 {
9557 if ((subsection->flags & SEC_ALLOC) == 0)
9558 continue;
9559 loadable_size += ((subsection->size + 0xf)
9560 &~ (bfd_size_type) 0xf);
9561 }
9562 }
9563
9564 if (htab->is_vxworks)
9565 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9566 relocations against local symbols evaluate to "G", and the EABI does
9567 not include R_MIPS_GOT_PAGE. */
9568 page_gotno = 0;
9569 else
9570 /* Assume there are two loadable segments consisting of contiguous
9571 sections. Is 5 enough? */
9572 page_gotno = (loadable_size >> 16) + 5;
9573
9574 /* Choose the smaller of the two page estimates; both are intended to be
9575 conservative. */
9576 if (page_gotno > g->page_gotno)
9577 page_gotno = g->page_gotno;
9578
9579 g->local_gotno += page_gotno;
9580 g->assigned_high_gotno = g->local_gotno - 1;
9581
9582 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9583 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9584 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9585
9586 /* VxWorks does not support multiple GOTs. It initializes $gp to
9587 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9588 dynamic loader. */
9589 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9590 {
9591 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9592 return FALSE;
9593 }
9594 else
9595 {
9596 /* Record that all bfds use G. This also has the effect of freeing
9597 the per-bfd GOTs, which we no longer need. */
9598 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9599 if (mips_elf_bfd_got (ibfd, FALSE))
9600 mips_elf_replace_bfd_got (ibfd, g);
9601 mips_elf_replace_bfd_got (output_bfd, g);
9602
9603 /* Set up TLS entries. */
9604 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9605 tga.info = info;
9606 tga.g = g;
9607 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9608 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9609 if (!tga.g)
9610 return FALSE;
9611 BFD_ASSERT (g->tls_assigned_gotno
9612 == g->global_gotno + g->local_gotno + g->tls_gotno);
9613
9614 /* Each VxWorks GOT entry needs an explicit relocation. */
9615 if (htab->is_vxworks && bfd_link_pic (info))
9616 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9617
9618 /* Allocate room for the TLS relocations. */
9619 if (g->relocs)
9620 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9621 }
9622
9623 return TRUE;
9624}
9625
9626/* Estimate the size of the .MIPS.stubs section. */
9627
9628static void
9629mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9630{
9631 struct mips_elf_link_hash_table *htab;
9632 bfd_size_type dynsymcount;
9633
9634 htab = mips_elf_hash_table (info);
9635 BFD_ASSERT (htab != NULL);
9636
9637 if (htab->lazy_stub_count == 0)
9638 return;
9639
9640 /* IRIX rld assumes that a function stub isn't at the end of the .text
9641 section, so add a dummy entry to the end. */
9642 htab->lazy_stub_count++;
9643
9644 /* Get a worst-case estimate of the number of dynamic symbols needed.
9645 At this point, dynsymcount does not account for section symbols
9646 and count_section_dynsyms may overestimate the number that will
9647 be needed. */
9648 dynsymcount = (elf_hash_table (info)->dynsymcount
9649 + count_section_dynsyms (output_bfd, info));
9650
9651 /* Determine the size of one stub entry. There's no disadvantage
9652 from using microMIPS code here, so for the sake of pure-microMIPS
9653 binaries we prefer it whenever there's any microMIPS code in
9654 output produced at all. This has a benefit of stubs being
9655 shorter by 4 bytes each too, unless in the insn32 mode. */
9656 if (!MICROMIPS_P (output_bfd))
9657 htab->function_stub_size = (dynsymcount > 0x10000
9658 ? MIPS_FUNCTION_STUB_BIG_SIZE
9659 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9660 else if (htab->insn32)
9661 htab->function_stub_size = (dynsymcount > 0x10000
9662 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9663 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9664 else
9665 htab->function_stub_size = (dynsymcount > 0x10000
9666 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9667 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9668
9669 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9670}
9671
9672/* A mips_elf_link_hash_traverse callback for which DATA points to a
9673 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9674 stub, allocate an entry in the stubs section. */
9675
9676static bfd_boolean
9677mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9678{
9679 struct mips_htab_traverse_info *hti = data;
9680 struct mips_elf_link_hash_table *htab;
9681 struct bfd_link_info *info;
9682 bfd *output_bfd;
9683
9684 info = hti->info;
9685 output_bfd = hti->output_bfd;
9686 htab = mips_elf_hash_table (info);
9687 BFD_ASSERT (htab != NULL);
9688
9689 if (h->needs_lazy_stub)
9690 {
9691 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9692 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9693 bfd_vma isa_bit = micromips_p;
9694
9695 BFD_ASSERT (htab->root.dynobj != NULL);
9696 if (h->root.plt.plist == NULL)
9697 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9698 if (h->root.plt.plist == NULL)
9699 {
9700 hti->error = TRUE;
9701 return FALSE;
9702 }
9703 h->root.root.u.def.section = htab->sstubs;
9704 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9705 h->root.plt.plist->stub_offset = htab->sstubs->size;
9706 h->root.other = other;
9707 htab->sstubs->size += htab->function_stub_size;
9708 }
9709 return TRUE;
9710}
9711
9712/* Allocate offsets in the stubs section to each symbol that needs one.
9713 Set the final size of the .MIPS.stub section. */
9714
9715static bfd_boolean
9716mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9717{
9718 bfd *output_bfd = info->output_bfd;
9719 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9720 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9721 bfd_vma isa_bit = micromips_p;
9722 struct mips_elf_link_hash_table *htab;
9723 struct mips_htab_traverse_info hti;
9724 struct elf_link_hash_entry *h;
9725 bfd *dynobj;
9726
9727 htab = mips_elf_hash_table (info);
9728 BFD_ASSERT (htab != NULL);
9729
9730 if (htab->lazy_stub_count == 0)
9731 return TRUE;
9732
9733 htab->sstubs->size = 0;
9734 hti.info = info;
9735 hti.output_bfd = output_bfd;
9736 hti.error = FALSE;
9737 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9738 if (hti.error)
9739 return FALSE;
9740 htab->sstubs->size += htab->function_stub_size;
9741 BFD_ASSERT (htab->sstubs->size
9742 == htab->lazy_stub_count * htab->function_stub_size);
9743
9744 dynobj = elf_hash_table (info)->dynobj;
9745 BFD_ASSERT (dynobj != NULL);
9746 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9747 if (h == NULL)
9748 return FALSE;
9749 h->root.u.def.value = isa_bit;
9750 h->other = other;
9751 h->type = STT_FUNC;
9752
9753 return TRUE;
9754}
9755
9756/* A mips_elf_link_hash_traverse callback for which DATA points to a
9757 bfd_link_info. If H uses the address of a PLT entry as the value
9758 of the symbol, then set the entry in the symbol table now. Prefer
9759 a standard MIPS PLT entry. */
9760
9761static bfd_boolean
9762mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9763{
9764 struct bfd_link_info *info = data;
9765 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9766 struct mips_elf_link_hash_table *htab;
9767 unsigned int other;
9768 bfd_vma isa_bit;
9769 bfd_vma val;
9770
9771 htab = mips_elf_hash_table (info);
9772 BFD_ASSERT (htab != NULL);
9773
9774 if (h->use_plt_entry)
9775 {
9776 BFD_ASSERT (h->root.plt.plist != NULL);
9777 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9778 || h->root.plt.plist->comp_offset != MINUS_ONE);
9779
9780 val = htab->plt_header_size;
9781 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9782 {
9783 isa_bit = 0;
9784 val += h->root.plt.plist->mips_offset;
9785 other = 0;
9786 }
9787 else
9788 {
9789 isa_bit = 1;
9790 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9791 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9792 }
9793 val += isa_bit;
9794 /* For VxWorks, point at the PLT load stub rather than the lazy
9795 resolution stub; this stub will become the canonical function
9796 address. */
9797 if (htab->is_vxworks)
9798 val += 8;
9799
9800 h->root.root.u.def.section = htab->root.splt;
9801 h->root.root.u.def.value = val;
9802 h->root.other = other;
9803 }
9804
9805 return TRUE;
9806}
9807
9808/* Set the sizes of the dynamic sections. */
9809
9810bfd_boolean
9811_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9812 struct bfd_link_info *info)
9813{
9814 bfd *dynobj;
9815 asection *s, *sreldyn;
9816 bfd_boolean reltext;
9817 struct mips_elf_link_hash_table *htab;
9818
9819 htab = mips_elf_hash_table (info);
9820 BFD_ASSERT (htab != NULL);
9821 dynobj = elf_hash_table (info)->dynobj;
9822 BFD_ASSERT (dynobj != NULL);
9823
9824 if (elf_hash_table (info)->dynamic_sections_created)
9825 {
9826 /* Set the contents of the .interp section to the interpreter. */
9827 if (bfd_link_executable (info) && !info->nointerp)
9828 {
9829 s = bfd_get_linker_section (dynobj, ".interp");
9830 BFD_ASSERT (s != NULL);
9831 s->size
9832 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9833 s->contents
9834 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9835 }
9836
9837 /* Figure out the size of the PLT header if we know that we
9838 are using it. For the sake of cache alignment always use
9839 a standard header whenever any standard entries are present
9840 even if microMIPS entries are present as well. This also
9841 lets the microMIPS header rely on the value of $v0 only set
9842 by microMIPS entries, for a small size reduction.
9843
9844 Set symbol table entry values for symbols that use the
9845 address of their PLT entry now that we can calculate it.
9846
9847 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9848 haven't already in _bfd_elf_create_dynamic_sections. */
9849 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9850 {
9851 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9852 && !htab->plt_mips_offset);
9853 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9854 bfd_vma isa_bit = micromips_p;
9855 struct elf_link_hash_entry *h;
9856 bfd_vma size;
9857
9858 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9859 BFD_ASSERT (htab->root.sgotplt->size == 0);
9860 BFD_ASSERT (htab->root.splt->size == 0);
9861
9862 if (htab->is_vxworks && bfd_link_pic (info))
9863 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9864 else if (htab->is_vxworks)
9865 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9866 else if (ABI_64_P (output_bfd))
9867 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9868 else if (ABI_N32_P (output_bfd))
9869 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9870 else if (!micromips_p)
9871 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9872 else if (htab->insn32)
9873 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9874 else
9875 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9876
9877 htab->plt_header_is_comp = micromips_p;
9878 htab->plt_header_size = size;
9879 htab->root.splt->size = (size
9880 + htab->plt_mips_offset
9881 + htab->plt_comp_offset);
9882 htab->root.sgotplt->size = (htab->plt_got_index
9883 * MIPS_ELF_GOT_SIZE (dynobj));
9884
9885 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9886
9887 if (htab->root.hplt == NULL)
9888 {
9889 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9890 "_PROCEDURE_LINKAGE_TABLE_");
9891 htab->root.hplt = h;
9892 if (h == NULL)
9893 return FALSE;
9894 }
9895
9896 h = htab->root.hplt;
9897 h->root.u.def.value = isa_bit;
9898 h->other = other;
9899 h->type = STT_FUNC;
9900 }
9901 }
9902
9903 /* Allocate space for global sym dynamic relocs. */
9904 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9905
9906 mips_elf_estimate_stub_size (output_bfd, info);
9907
9908 if (!mips_elf_lay_out_got (output_bfd, info))
9909 return FALSE;
9910
9911 mips_elf_lay_out_lazy_stubs (info);
9912
9913 /* The check_relocs and adjust_dynamic_symbol entry points have
9914 determined the sizes of the various dynamic sections. Allocate
9915 memory for them. */
9916 reltext = FALSE;
9917 for (s = dynobj->sections; s != NULL; s = s->next)
9918 {
9919 const char *name;
9920
9921 /* It's OK to base decisions on the section name, because none
9922 of the dynobj section names depend upon the input files. */
9923 name = bfd_get_section_name (dynobj, s);
9924
9925 if ((s->flags & SEC_LINKER_CREATED) == 0)
9926 continue;
9927
9928 if (CONST_STRNEQ (name, ".rel"))
9929 {
9930 if (s->size != 0)
9931 {
9932 const char *outname;
9933 asection *target;
9934
9935 /* If this relocation section applies to a read only
9936 section, then we probably need a DT_TEXTREL entry.
9937 If the relocation section is .rel(a).dyn, we always
9938 assert a DT_TEXTREL entry rather than testing whether
9939 there exists a relocation to a read only section or
9940 not. */
9941 outname = bfd_get_section_name (output_bfd,
9942 s->output_section);
9943 target = bfd_get_section_by_name (output_bfd, outname + 4);
9944 if ((target != NULL
9945 && (target->flags & SEC_READONLY) != 0
9946 && (target->flags & SEC_ALLOC) != 0)
9947 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9948 reltext = TRUE;
9949
9950 /* We use the reloc_count field as a counter if we need
9951 to copy relocs into the output file. */
9952 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9953 s->reloc_count = 0;
9954
9955 /* If combreloc is enabled, elf_link_sort_relocs() will
9956 sort relocations, but in a different way than we do,
9957 and before we're done creating relocations. Also, it
9958 will move them around between input sections'
9959 relocation's contents, so our sorting would be
9960 broken, so don't let it run. */
9961 info->combreloc = 0;
9962 }
9963 }
9964 else if (bfd_link_executable (info)
9965 && ! mips_elf_hash_table (info)->use_rld_obj_head
9966 && CONST_STRNEQ (name, ".rld_map"))
9967 {
9968 /* We add a room for __rld_map. It will be filled in by the
9969 rtld to contain a pointer to the _r_debug structure. */
9970 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9971 }
9972 else if (SGI_COMPAT (output_bfd)
9973 && CONST_STRNEQ (name, ".compact_rel"))
9974 s->size += mips_elf_hash_table (info)->compact_rel_size;
9975 else if (s == htab->root.splt)
9976 {
9977 /* If the last PLT entry has a branch delay slot, allocate
9978 room for an extra nop to fill the delay slot. This is
9979 for CPUs without load interlocking. */
9980 if (! LOAD_INTERLOCKS_P (output_bfd)
9981 && ! htab->is_vxworks && s->size > 0)
9982 s->size += 4;
9983 }
9984 else if (! CONST_STRNEQ (name, ".init")
9985 && s != htab->root.sgot
9986 && s != htab->root.sgotplt
9987 && s != htab->sstubs
9988 && s != htab->root.sdynbss
9989 && s != htab->root.sdynrelro)
9990 {
9991 /* It's not one of our sections, so don't allocate space. */
9992 continue;
9993 }
9994
9995 if (s->size == 0)
9996 {
9997 s->flags |= SEC_EXCLUDE;
9998 continue;
9999 }
10000
10001 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10002 continue;
10003
10004 /* Allocate memory for the section contents. */
10005 s->contents = bfd_zalloc (dynobj, s->size);
10006 if (s->contents == NULL)
10007 {
10008 bfd_set_error (bfd_error_no_memory);
10009 return FALSE;
10010 }
10011 }
10012
10013 if (elf_hash_table (info)->dynamic_sections_created)
10014 {
10015 /* Add some entries to the .dynamic section. We fill in the
10016 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10017 must add the entries now so that we get the correct size for
10018 the .dynamic section. */
10019
10020 /* SGI object has the equivalence of DT_DEBUG in the
10021 DT_MIPS_RLD_MAP entry. This must come first because glibc
10022 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10023 may only look at the first one they see. */
10024 if (!bfd_link_pic (info)
10025 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10026 return FALSE;
10027
10028 if (bfd_link_executable (info)
10029 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10030 return FALSE;
10031
10032 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10033 used by the debugger. */
10034 if (bfd_link_executable (info)
10035 && !SGI_COMPAT (output_bfd)
10036 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10037 return FALSE;
10038
10039 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10040 info->flags |= DF_TEXTREL;
10041
10042 if ((info->flags & DF_TEXTREL) != 0)
10043 {
10044 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10045 return FALSE;
10046
10047 /* Clear the DF_TEXTREL flag. It will be set again if we
10048 write out an actual text relocation; we may not, because
10049 at this point we do not know whether e.g. any .eh_frame
10050 absolute relocations have been converted to PC-relative. */
10051 info->flags &= ~DF_TEXTREL;
10052 }
10053
10054 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10055 return FALSE;
10056
10057 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10058 if (htab->is_vxworks)
10059 {
10060 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10061 use any of the DT_MIPS_* tags. */
10062 if (sreldyn && sreldyn->size > 0)
10063 {
10064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10065 return FALSE;
10066
10067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10068 return FALSE;
10069
10070 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10071 return FALSE;
10072 }
10073 }
10074 else
10075 {
10076 if (sreldyn && sreldyn->size > 0
10077 && !bfd_is_abs_section (sreldyn->output_section))
10078 {
10079 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10080 return FALSE;
10081
10082 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10083 return FALSE;
10084
10085 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10086 return FALSE;
10087 }
10088
10089 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10090 return FALSE;
10091
10092 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10093 return FALSE;
10094
10095 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10096 return FALSE;
10097
10098 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10099 return FALSE;
10100
10101 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10102 return FALSE;
10103
10104 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10105 return FALSE;
10106
10107 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10108 return FALSE;
10109
10110 if (IRIX_COMPAT (dynobj) == ict_irix5
10111 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10112 return FALSE;
10113
10114 if (IRIX_COMPAT (dynobj) == ict_irix6
10115 && (bfd_get_section_by_name
10116 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10117 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10118 return FALSE;
10119 }
10120 if (htab->root.splt->size > 0)
10121 {
10122 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10123 return FALSE;
10124
10125 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10126 return FALSE;
10127
10128 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10129 return FALSE;
10130
10131 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10132 return FALSE;
10133 }
10134 if (htab->is_vxworks
10135 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10136 return FALSE;
10137 }
10138
10139 return TRUE;
10140}
10141\f
10142/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10143 Adjust its R_ADDEND field so that it is correct for the output file.
10144 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10145 and sections respectively; both use symbol indexes. */
10146
10147static void
10148mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10149 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10150 asection **local_sections, Elf_Internal_Rela *rel)
10151{
10152 unsigned int r_type, r_symndx;
10153 Elf_Internal_Sym *sym;
10154 asection *sec;
10155
10156 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10157 {
10158 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10159 if (gprel16_reloc_p (r_type)
10160 || r_type == R_MIPS_GPREL32
10161 || literal_reloc_p (r_type))
10162 {
10163 rel->r_addend += _bfd_get_gp_value (input_bfd);
10164 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10165 }
10166
10167 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10168 sym = local_syms + r_symndx;
10169
10170 /* Adjust REL's addend to account for section merging. */
10171 if (!bfd_link_relocatable (info))
10172 {
10173 sec = local_sections[r_symndx];
10174 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10175 }
10176
10177 /* This would normally be done by the rela_normal code in elflink.c. */
10178 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10179 rel->r_addend += local_sections[r_symndx]->output_offset;
10180 }
10181}
10182
10183/* Handle relocations against symbols from removed linkonce sections,
10184 or sections discarded by a linker script. We use this wrapper around
10185 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10186 on 64-bit ELF targets. In this case for any relocation handled, which
10187 always be the first in a triplet, the remaining two have to be processed
10188 together with the first, even if they are R_MIPS_NONE. It is the symbol
10189 index referred by the first reloc that applies to all the three and the
10190 remaining two never refer to an object symbol. And it is the final
10191 relocation (the last non-null one) that determines the output field of
10192 the whole relocation so retrieve the corresponding howto structure for
10193 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10194
10195 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10196 and therefore requires to be pasted in a loop. It also defines a block
10197 and does not protect any of its arguments, hence the extra brackets. */
10198
10199static void
10200mips_reloc_against_discarded_section (bfd *output_bfd,
10201 struct bfd_link_info *info,
10202 bfd *input_bfd, asection *input_section,
10203 Elf_Internal_Rela **rel,
10204 const Elf_Internal_Rela **relend,
10205 bfd_boolean rel_reloc,
10206 reloc_howto_type *howto,
10207 bfd_byte *contents)
10208{
10209 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10210 int count = bed->s->int_rels_per_ext_rel;
10211 unsigned int r_type;
10212 int i;
10213
10214 for (i = count - 1; i > 0; i--)
10215 {
10216 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10217 if (r_type != R_MIPS_NONE)
10218 {
10219 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10220 break;
10221 }
10222 }
10223 do
10224 {
10225 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10226 (*rel), count, (*relend),
10227 howto, i, contents);
10228 }
10229 while (0);
10230}
10231
10232/* Relocate a MIPS ELF section. */
10233
10234bfd_boolean
10235_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10236 bfd *input_bfd, asection *input_section,
10237 bfd_byte *contents, Elf_Internal_Rela *relocs,
10238 Elf_Internal_Sym *local_syms,
10239 asection **local_sections)
10240{
10241 Elf_Internal_Rela *rel;
10242 const Elf_Internal_Rela *relend;
10243 bfd_vma addend = 0;
10244 bfd_boolean use_saved_addend_p = FALSE;
10245
10246 relend = relocs + input_section->reloc_count;
10247 for (rel = relocs; rel < relend; ++rel)
10248 {
10249 const char *name;
10250 bfd_vma value = 0;
10251 reloc_howto_type *howto;
10252 bfd_boolean cross_mode_jump_p = FALSE;
10253 /* TRUE if the relocation is a RELA relocation, rather than a
10254 REL relocation. */
10255 bfd_boolean rela_relocation_p = TRUE;
10256 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10257 const char *msg;
10258 unsigned long r_symndx;
10259 asection *sec;
10260 Elf_Internal_Shdr *symtab_hdr;
10261 struct elf_link_hash_entry *h;
10262 bfd_boolean rel_reloc;
10263
10264 rel_reloc = (NEWABI_P (input_bfd)
10265 && mips_elf_rel_relocation_p (input_bfd, input_section,
10266 relocs, rel));
10267 /* Find the relocation howto for this relocation. */
10268 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10269
10270 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10271 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10272 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10273 {
10274 sec = local_sections[r_symndx];
10275 h = NULL;
10276 }
10277 else
10278 {
10279 unsigned long extsymoff;
10280
10281 extsymoff = 0;
10282 if (!elf_bad_symtab (input_bfd))
10283 extsymoff = symtab_hdr->sh_info;
10284 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10285 while (h->root.type == bfd_link_hash_indirect
10286 || h->root.type == bfd_link_hash_warning)
10287 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10288
10289 sec = NULL;
10290 if (h->root.type == bfd_link_hash_defined
10291 || h->root.type == bfd_link_hash_defweak)
10292 sec = h->root.u.def.section;
10293 }
10294
10295 if (sec != NULL && discarded_section (sec))
10296 {
10297 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10298 input_section, &rel, &relend,
10299 rel_reloc, howto, contents);
10300 continue;
10301 }
10302
10303 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10304 {
10305 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10306 64-bit code, but make sure all their addresses are in the
10307 lowermost or uppermost 32-bit section of the 64-bit address
10308 space. Thus, when they use an R_MIPS_64 they mean what is
10309 usually meant by R_MIPS_32, with the exception that the
10310 stored value is sign-extended to 64 bits. */
10311 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10312
10313 /* On big-endian systems, we need to lie about the position
10314 of the reloc. */
10315 if (bfd_big_endian (input_bfd))
10316 rel->r_offset += 4;
10317 }
10318
10319 if (!use_saved_addend_p)
10320 {
10321 /* If these relocations were originally of the REL variety,
10322 we must pull the addend out of the field that will be
10323 relocated. Otherwise, we simply use the contents of the
10324 RELA relocation. */
10325 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10326 relocs, rel))
10327 {
10328 rela_relocation_p = FALSE;
10329 addend = mips_elf_read_rel_addend (input_bfd, rel,
10330 howto, contents);
10331 if (hi16_reloc_p (r_type)
10332 || (got16_reloc_p (r_type)
10333 && mips_elf_local_relocation_p (input_bfd, rel,
10334 local_sections)))
10335 {
10336 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10337 contents, &addend))
10338 {
10339 if (h)
10340 name = h->root.root.string;
10341 else
10342 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10343 local_syms + r_symndx,
10344 sec);
10345 _bfd_error_handler
10346 /* xgettext:c-format */
10347 (_("%pB: can't find matching LO16 reloc against `%s'"
10348 " for %s at %#" PRIx64 " in section `%pA'"),
10349 input_bfd, name,
10350 howto->name, (uint64_t) rel->r_offset, input_section);
10351 }
10352 }
10353 else
10354 addend <<= howto->rightshift;
10355 }
10356 else
10357 addend = rel->r_addend;
10358 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10359 local_syms, local_sections, rel);
10360 }
10361
10362 if (bfd_link_relocatable (info))
10363 {
10364 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10365 && bfd_big_endian (input_bfd))
10366 rel->r_offset -= 4;
10367
10368 if (!rela_relocation_p && rel->r_addend)
10369 {
10370 addend += rel->r_addend;
10371 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10372 addend = mips_elf_high (addend);
10373 else if (r_type == R_MIPS_HIGHER)
10374 addend = mips_elf_higher (addend);
10375 else if (r_type == R_MIPS_HIGHEST)
10376 addend = mips_elf_highest (addend);
10377 else
10378 addend >>= howto->rightshift;
10379
10380 /* We use the source mask, rather than the destination
10381 mask because the place to which we are writing will be
10382 source of the addend in the final link. */
10383 addend &= howto->src_mask;
10384
10385 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10386 /* See the comment above about using R_MIPS_64 in the 32-bit
10387 ABI. Here, we need to update the addend. It would be
10388 possible to get away with just using the R_MIPS_32 reloc
10389 but for endianness. */
10390 {
10391 bfd_vma sign_bits;
10392 bfd_vma low_bits;
10393 bfd_vma high_bits;
10394
10395 if (addend & ((bfd_vma) 1 << 31))
10396#ifdef BFD64
10397 sign_bits = ((bfd_vma) 1 << 32) - 1;
10398#else
10399 sign_bits = -1;
10400#endif
10401 else
10402 sign_bits = 0;
10403
10404 /* If we don't know that we have a 64-bit type,
10405 do two separate stores. */
10406 if (bfd_big_endian (input_bfd))
10407 {
10408 /* Store the sign-bits (which are most significant)
10409 first. */
10410 low_bits = sign_bits;
10411 high_bits = addend;
10412 }
10413 else
10414 {
10415 low_bits = addend;
10416 high_bits = sign_bits;
10417 }
10418 bfd_put_32 (input_bfd, low_bits,
10419 contents + rel->r_offset);
10420 bfd_put_32 (input_bfd, high_bits,
10421 contents + rel->r_offset + 4);
10422 continue;
10423 }
10424
10425 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10426 input_bfd, input_section,
10427 contents, FALSE))
10428 return FALSE;
10429 }
10430
10431 /* Go on to the next relocation. */
10432 continue;
10433 }
10434
10435 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10436 relocations for the same offset. In that case we are
10437 supposed to treat the output of each relocation as the addend
10438 for the next. */
10439 if (rel + 1 < relend
10440 && rel->r_offset == rel[1].r_offset
10441 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10442 use_saved_addend_p = TRUE;
10443 else
10444 use_saved_addend_p = FALSE;
10445
10446 /* Figure out what value we are supposed to relocate. */
10447 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10448 input_section, contents,
10449 info, rel, addend, howto,
10450 local_syms, local_sections,
10451 &value, &name, &cross_mode_jump_p,
10452 use_saved_addend_p))
10453 {
10454 case bfd_reloc_continue:
10455 /* There's nothing to do. */
10456 continue;
10457
10458 case bfd_reloc_undefined:
10459 /* mips_elf_calculate_relocation already called the
10460 undefined_symbol callback. There's no real point in
10461 trying to perform the relocation at this point, so we
10462 just skip ahead to the next relocation. */
10463 continue;
10464
10465 case bfd_reloc_notsupported:
10466 msg = _("internal error: unsupported relocation error");
10467 info->callbacks->warning
10468 (info, msg, name, input_bfd, input_section, rel->r_offset);
10469 return FALSE;
10470
10471 case bfd_reloc_overflow:
10472 if (use_saved_addend_p)
10473 /* Ignore overflow until we reach the last relocation for
10474 a given location. */
10475 ;
10476 else
10477 {
10478 struct mips_elf_link_hash_table *htab;
10479
10480 htab = mips_elf_hash_table (info);
10481 BFD_ASSERT (htab != NULL);
10482 BFD_ASSERT (name != NULL);
10483 if (!htab->small_data_overflow_reported
10484 && (gprel16_reloc_p (howto->type)
10485 || literal_reloc_p (howto->type)))
10486 {
10487 msg = _("small-data section exceeds 64KB;"
10488 " lower small-data size limit (see option -G)");
10489
10490 htab->small_data_overflow_reported = TRUE;
10491 (*info->callbacks->einfo) ("%P: %s\n", msg);
10492 }
10493 (*info->callbacks->reloc_overflow)
10494 (info, NULL, name, howto->name, (bfd_vma) 0,
10495 input_bfd, input_section, rel->r_offset);
10496 }
10497 break;
10498
10499 case bfd_reloc_ok:
10500 break;
10501
10502 case bfd_reloc_outofrange:
10503 msg = NULL;
10504 if (jal_reloc_p (howto->type))
10505 msg = (cross_mode_jump_p
10506 ? _("cannot convert a jump to JALX "
10507 "for a non-word-aligned address")
10508 : (howto->type == R_MIPS16_26
10509 ? _("jump to a non-word-aligned address")
10510 : _("jump to a non-instruction-aligned address")));
10511 else if (b_reloc_p (howto->type))
10512 msg = (cross_mode_jump_p
10513 ? _("cannot convert a branch to JALX "
10514 "for a non-word-aligned address")
10515 : _("branch to a non-instruction-aligned address"));
10516 else if (aligned_pcrel_reloc_p (howto->type))
10517 msg = _("PC-relative load from unaligned address");
10518 if (msg)
10519 {
10520 info->callbacks->einfo
10521 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10522 break;
10523 }
10524 /* Fall through. */
10525
10526 default:
10527 abort ();
10528 break;
10529 }
10530
10531 /* If we've got another relocation for the address, keep going
10532 until we reach the last one. */
10533 if (use_saved_addend_p)
10534 {
10535 addend = value;
10536 continue;
10537 }
10538
10539 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10540 /* See the comment above about using R_MIPS_64 in the 32-bit
10541 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10542 that calculated the right value. Now, however, we
10543 sign-extend the 32-bit result to 64-bits, and store it as a
10544 64-bit value. We are especially generous here in that we
10545 go to extreme lengths to support this usage on systems with
10546 only a 32-bit VMA. */
10547 {
10548 bfd_vma sign_bits;
10549 bfd_vma low_bits;
10550 bfd_vma high_bits;
10551
10552 if (value & ((bfd_vma) 1 << 31))
10553#ifdef BFD64
10554 sign_bits = ((bfd_vma) 1 << 32) - 1;
10555#else
10556 sign_bits = -1;
10557#endif
10558 else
10559 sign_bits = 0;
10560
10561 /* If we don't know that we have a 64-bit type,
10562 do two separate stores. */
10563 if (bfd_big_endian (input_bfd))
10564 {
10565 /* Undo what we did above. */
10566 rel->r_offset -= 4;
10567 /* Store the sign-bits (which are most significant)
10568 first. */
10569 low_bits = sign_bits;
10570 high_bits = value;
10571 }
10572 else
10573 {
10574 low_bits = value;
10575 high_bits = sign_bits;
10576 }
10577 bfd_put_32 (input_bfd, low_bits,
10578 contents + rel->r_offset);
10579 bfd_put_32 (input_bfd, high_bits,
10580 contents + rel->r_offset + 4);
10581 continue;
10582 }
10583
10584 /* Actually perform the relocation. */
10585 if (! mips_elf_perform_relocation (info, howto, rel, value,
10586 input_bfd, input_section,
10587 contents, cross_mode_jump_p))
10588 return FALSE;
10589 }
10590
10591 return TRUE;
10592}
10593\f
10594/* A function that iterates over each entry in la25_stubs and fills
10595 in the code for each one. DATA points to a mips_htab_traverse_info. */
10596
10597static int
10598mips_elf_create_la25_stub (void **slot, void *data)
10599{
10600 struct mips_htab_traverse_info *hti;
10601 struct mips_elf_link_hash_table *htab;
10602 struct mips_elf_la25_stub *stub;
10603 asection *s;
10604 bfd_byte *loc;
10605 bfd_vma offset, target, target_high, target_low;
10606
10607 stub = (struct mips_elf_la25_stub *) *slot;
10608 hti = (struct mips_htab_traverse_info *) data;
10609 htab = mips_elf_hash_table (hti->info);
10610 BFD_ASSERT (htab != NULL);
10611
10612 /* Create the section contents, if we haven't already. */
10613 s = stub->stub_section;
10614 loc = s->contents;
10615 if (loc == NULL)
10616 {
10617 loc = bfd_malloc (s->size);
10618 if (loc == NULL)
10619 {
10620 hti->error = TRUE;
10621 return FALSE;
10622 }
10623 s->contents = loc;
10624 }
10625
10626 /* Work out where in the section this stub should go. */
10627 offset = stub->offset;
10628
10629 /* Work out the target address. */
10630 target = mips_elf_get_la25_target (stub, &s);
10631 target += s->output_section->vma + s->output_offset;
10632
10633 target_high = ((target + 0x8000) >> 16) & 0xffff;
10634 target_low = (target & 0xffff);
10635
10636 if (stub->stub_section != htab->strampoline)
10637 {
10638 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10639 of the section and write the two instructions at the end. */
10640 memset (loc, 0, offset);
10641 loc += offset;
10642 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10643 {
10644 bfd_put_micromips_32 (hti->output_bfd,
10645 LA25_LUI_MICROMIPS (target_high),
10646 loc);
10647 bfd_put_micromips_32 (hti->output_bfd,
10648 LA25_ADDIU_MICROMIPS (target_low),
10649 loc + 4);
10650 }
10651 else
10652 {
10653 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10654 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10655 }
10656 }
10657 else
10658 {
10659 /* This is trampoline. */
10660 loc += offset;
10661 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10662 {
10663 bfd_put_micromips_32 (hti->output_bfd,
10664 LA25_LUI_MICROMIPS (target_high), loc);
10665 bfd_put_micromips_32 (hti->output_bfd,
10666 LA25_J_MICROMIPS (target), loc + 4);
10667 bfd_put_micromips_32 (hti->output_bfd,
10668 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10669 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10670 }
10671 else
10672 {
10673 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10674 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10675 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10676 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10677 }
10678 }
10679 return TRUE;
10680}
10681
10682/* If NAME is one of the special IRIX6 symbols defined by the linker,
10683 adjust it appropriately now. */
10684
10685static void
10686mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10687 const char *name, Elf_Internal_Sym *sym)
10688{
10689 /* The linker script takes care of providing names and values for
10690 these, but we must place them into the right sections. */
10691 static const char* const text_section_symbols[] = {
10692 "_ftext",
10693 "_etext",
10694 "__dso_displacement",
10695 "__elf_header",
10696 "__program_header_table",
10697 NULL
10698 };
10699
10700 static const char* const data_section_symbols[] = {
10701 "_fdata",
10702 "_edata",
10703 "_end",
10704 "_fbss",
10705 NULL
10706 };
10707
10708 const char* const *p;
10709 int i;
10710
10711 for (i = 0; i < 2; ++i)
10712 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10713 *p;
10714 ++p)
10715 if (strcmp (*p, name) == 0)
10716 {
10717 /* All of these symbols are given type STT_SECTION by the
10718 IRIX6 linker. */
10719 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10720 sym->st_other = STO_PROTECTED;
10721
10722 /* The IRIX linker puts these symbols in special sections. */
10723 if (i == 0)
10724 sym->st_shndx = SHN_MIPS_TEXT;
10725 else
10726 sym->st_shndx = SHN_MIPS_DATA;
10727
10728 break;
10729 }
10730}
10731
10732/* Finish up dynamic symbol handling. We set the contents of various
10733 dynamic sections here. */
10734
10735bfd_boolean
10736_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10737 struct bfd_link_info *info,
10738 struct elf_link_hash_entry *h,
10739 Elf_Internal_Sym *sym)
10740{
10741 bfd *dynobj;
10742 asection *sgot;
10743 struct mips_got_info *g, *gg;
10744 const char *name;
10745 int idx;
10746 struct mips_elf_link_hash_table *htab;
10747 struct mips_elf_link_hash_entry *hmips;
10748
10749 htab = mips_elf_hash_table (info);
10750 BFD_ASSERT (htab != NULL);
10751 dynobj = elf_hash_table (info)->dynobj;
10752 hmips = (struct mips_elf_link_hash_entry *) h;
10753
10754 BFD_ASSERT (!htab->is_vxworks);
10755
10756 if (h->plt.plist != NULL
10757 && (h->plt.plist->mips_offset != MINUS_ONE
10758 || h->plt.plist->comp_offset != MINUS_ONE))
10759 {
10760 /* We've decided to create a PLT entry for this symbol. */
10761 bfd_byte *loc;
10762 bfd_vma header_address, got_address;
10763 bfd_vma got_address_high, got_address_low, load;
10764 bfd_vma got_index;
10765 bfd_vma isa_bit;
10766
10767 got_index = h->plt.plist->gotplt_index;
10768
10769 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10770 BFD_ASSERT (h->dynindx != -1);
10771 BFD_ASSERT (htab->root.splt != NULL);
10772 BFD_ASSERT (got_index != MINUS_ONE);
10773 BFD_ASSERT (!h->def_regular);
10774
10775 /* Calculate the address of the PLT header. */
10776 isa_bit = htab->plt_header_is_comp;
10777 header_address = (htab->root.splt->output_section->vma
10778 + htab->root.splt->output_offset + isa_bit);
10779
10780 /* Calculate the address of the .got.plt entry. */
10781 got_address = (htab->root.sgotplt->output_section->vma
10782 + htab->root.sgotplt->output_offset
10783 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10784
10785 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10786 got_address_low = got_address & 0xffff;
10787
10788 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10789 cannot be loaded in two instructions. */
10790 if (ABI_64_P (output_bfd)
10791 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10792 {
10793 _bfd_error_handler
10794 /* xgettext:c-format */
10795 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10796 "supported; consider using `-Ttext-segment=...'"),
10797 output_bfd,
10798 htab->root.sgotplt->output_section,
10799 (int64_t) got_address);
10800 bfd_set_error (bfd_error_no_error);
10801 return FALSE;
10802 }
10803
10804 /* Initially point the .got.plt entry at the PLT header. */
10805 loc = (htab->root.sgotplt->contents
10806 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10807 if (ABI_64_P (output_bfd))
10808 bfd_put_64 (output_bfd, header_address, loc);
10809 else
10810 bfd_put_32 (output_bfd, header_address, loc);
10811
10812 /* Now handle the PLT itself. First the standard entry (the order
10813 does not matter, we just have to pick one). */
10814 if (h->plt.plist->mips_offset != MINUS_ONE)
10815 {
10816 const bfd_vma *plt_entry;
10817 bfd_vma plt_offset;
10818
10819 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10820
10821 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10822
10823 /* Find out where the .plt entry should go. */
10824 loc = htab->root.splt->contents + plt_offset;
10825
10826 /* Pick the load opcode. */
10827 load = MIPS_ELF_LOAD_WORD (output_bfd);
10828
10829 /* Fill in the PLT entry itself. */
10830
10831 if (MIPSR6_P (output_bfd))
10832 plt_entry = mipsr6_exec_plt_entry;
10833 else
10834 plt_entry = mips_exec_plt_entry;
10835 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10836 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10837 loc + 4);
10838
10839 if (! LOAD_INTERLOCKS_P (output_bfd))
10840 {
10841 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10842 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10843 }
10844 else
10845 {
10846 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10847 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10848 loc + 12);
10849 }
10850 }
10851
10852 /* Now the compressed entry. They come after any standard ones. */
10853 if (h->plt.plist->comp_offset != MINUS_ONE)
10854 {
10855 bfd_vma plt_offset;
10856
10857 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10858 + h->plt.plist->comp_offset);
10859
10860 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10861
10862 /* Find out where the .plt entry should go. */
10863 loc = htab->root.splt->contents + plt_offset;
10864
10865 /* Fill in the PLT entry itself. */
10866 if (!MICROMIPS_P (output_bfd))
10867 {
10868 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10869
10870 bfd_put_16 (output_bfd, plt_entry[0], loc);
10871 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10872 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10873 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10874 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10875 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10876 bfd_put_32 (output_bfd, got_address, loc + 12);
10877 }
10878 else if (htab->insn32)
10879 {
10880 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10881
10882 bfd_put_16 (output_bfd, plt_entry[0], loc);
10883 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10884 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10885 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10886 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10887 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10888 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10889 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10890 }
10891 else
10892 {
10893 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10894 bfd_signed_vma gotpc_offset;
10895 bfd_vma loc_address;
10896
10897 BFD_ASSERT (got_address % 4 == 0);
10898
10899 loc_address = (htab->root.splt->output_section->vma
10900 + htab->root.splt->output_offset + plt_offset);
10901 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10902
10903 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10904 if (gotpc_offset + 0x1000000 >= 0x2000000)
10905 {
10906 _bfd_error_handler
10907 /* xgettext:c-format */
10908 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10909 "beyond the range of ADDIUPC"),
10910 output_bfd,
10911 htab->root.sgotplt->output_section,
10912 (int64_t) gotpc_offset,
10913 htab->root.splt->output_section);
10914 bfd_set_error (bfd_error_no_error);
10915 return FALSE;
10916 }
10917 bfd_put_16 (output_bfd,
10918 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10919 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10920 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10921 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10922 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10923 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10924 }
10925 }
10926
10927 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10928 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10929 got_index - 2, h->dynindx,
10930 R_MIPS_JUMP_SLOT, got_address);
10931
10932 /* We distinguish between PLT entries and lazy-binding stubs by
10933 giving the former an st_other value of STO_MIPS_PLT. Set the
10934 flag and leave the value if there are any relocations in the
10935 binary where pointer equality matters. */
10936 sym->st_shndx = SHN_UNDEF;
10937 if (h->pointer_equality_needed)
10938 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10939 else
10940 {
10941 sym->st_value = 0;
10942 sym->st_other = 0;
10943 }
10944 }
10945
10946 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10947 {
10948 /* We've decided to create a lazy-binding stub. */
10949 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10950 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10951 bfd_vma stub_size = htab->function_stub_size;
10952 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10953 bfd_vma isa_bit = micromips_p;
10954 bfd_vma stub_big_size;
10955
10956 if (!micromips_p)
10957 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10958 else if (htab->insn32)
10959 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10960 else
10961 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10962
10963 /* This symbol has a stub. Set it up. */
10964
10965 BFD_ASSERT (h->dynindx != -1);
10966
10967 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10968
10969 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10970 sign extension at runtime in the stub, resulting in a negative
10971 index value. */
10972 if (h->dynindx & ~0x7fffffff)
10973 return FALSE;
10974
10975 /* Fill the stub. */
10976 if (micromips_p)
10977 {
10978 idx = 0;
10979 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10980 stub + idx);
10981 idx += 4;
10982 if (htab->insn32)
10983 {
10984 bfd_put_micromips_32 (output_bfd,
10985 STUB_MOVE32_MICROMIPS, stub + idx);
10986 idx += 4;
10987 }
10988 else
10989 {
10990 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10991 idx += 2;
10992 }
10993 if (stub_size == stub_big_size)
10994 {
10995 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10996
10997 bfd_put_micromips_32 (output_bfd,
10998 STUB_LUI_MICROMIPS (dynindx_hi),
10999 stub + idx);
11000 idx += 4;
11001 }
11002 if (htab->insn32)
11003 {
11004 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11005 stub + idx);
11006 idx += 4;
11007 }
11008 else
11009 {
11010 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11011 idx += 2;
11012 }
11013
11014 /* If a large stub is not required and sign extension is not a
11015 problem, then use legacy code in the stub. */
11016 if (stub_size == stub_big_size)
11017 bfd_put_micromips_32 (output_bfd,
11018 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11019 stub + idx);
11020 else if (h->dynindx & ~0x7fff)
11021 bfd_put_micromips_32 (output_bfd,
11022 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11023 stub + idx);
11024 else
11025 bfd_put_micromips_32 (output_bfd,
11026 STUB_LI16S_MICROMIPS (output_bfd,
11027 h->dynindx),
11028 stub + idx);
11029 }
11030 else
11031 {
11032 idx = 0;
11033 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11034 idx += 4;
11035 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11036 idx += 4;
11037 if (stub_size == stub_big_size)
11038 {
11039 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11040 stub + idx);
11041 idx += 4;
11042 }
11043 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11044 idx += 4;
11045
11046 /* If a large stub is not required and sign extension is not a
11047 problem, then use legacy code in the stub. */
11048 if (stub_size == stub_big_size)
11049 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11050 stub + idx);
11051 else if (h->dynindx & ~0x7fff)
11052 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11053 stub + idx);
11054 else
11055 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11056 stub + idx);
11057 }
11058
11059 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11060 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11061 stub, stub_size);
11062
11063 /* Mark the symbol as undefined. stub_offset != -1 occurs
11064 only for the referenced symbol. */
11065 sym->st_shndx = SHN_UNDEF;
11066
11067 /* The run-time linker uses the st_value field of the symbol
11068 to reset the global offset table entry for this external
11069 to its stub address when unlinking a shared object. */
11070 sym->st_value = (htab->sstubs->output_section->vma
11071 + htab->sstubs->output_offset
11072 + h->plt.plist->stub_offset
11073 + isa_bit);
11074 sym->st_other = other;
11075 }
11076
11077 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11078 refer to the stub, since only the stub uses the standard calling
11079 conventions. */
11080 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11081 {
11082 BFD_ASSERT (hmips->need_fn_stub);
11083 sym->st_value = (hmips->fn_stub->output_section->vma
11084 + hmips->fn_stub->output_offset);
11085 sym->st_size = hmips->fn_stub->size;
11086 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11087 }
11088
11089 BFD_ASSERT (h->dynindx != -1
11090 || h->forced_local);
11091
11092 sgot = htab->root.sgot;
11093 g = htab->got_info;
11094 BFD_ASSERT (g != NULL);
11095
11096 /* Run through the global symbol table, creating GOT entries for all
11097 the symbols that need them. */
11098 if (hmips->global_got_area != GGA_NONE)
11099 {
11100 bfd_vma offset;
11101 bfd_vma value;
11102
11103 value = sym->st_value;
11104 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11105 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11106 }
11107
11108 if (hmips->global_got_area != GGA_NONE && g->next)
11109 {
11110 struct mips_got_entry e, *p;
11111 bfd_vma entry;
11112 bfd_vma offset;
11113
11114 gg = g;
11115
11116 e.abfd = output_bfd;
11117 e.symndx = -1;
11118 e.d.h = hmips;
11119 e.tls_type = GOT_TLS_NONE;
11120
11121 for (g = g->next; g->next != gg; g = g->next)
11122 {
11123 if (g->got_entries
11124 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11125 &e)))
11126 {
11127 offset = p->gotidx;
11128 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11129 if (bfd_link_pic (info)
11130 || (elf_hash_table (info)->dynamic_sections_created
11131 && p->d.h != NULL
11132 && p->d.h->root.def_dynamic
11133 && !p->d.h->root.def_regular))
11134 {
11135 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11136 the various compatibility problems, it's easier to mock
11137 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11138 mips_elf_create_dynamic_relocation to calculate the
11139 appropriate addend. */
11140 Elf_Internal_Rela rel[3];
11141
11142 memset (rel, 0, sizeof (rel));
11143 if (ABI_64_P (output_bfd))
11144 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11145 else
11146 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11147 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11148
11149 entry = 0;
11150 if (! (mips_elf_create_dynamic_relocation
11151 (output_bfd, info, rel,
11152 e.d.h, NULL, sym->st_value, &entry, sgot)))
11153 return FALSE;
11154 }
11155 else
11156 entry = sym->st_value;
11157 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11158 }
11159 }
11160 }
11161
11162 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11163 name = h->root.root.string;
11164 if (h == elf_hash_table (info)->hdynamic
11165 || h == elf_hash_table (info)->hgot)
11166 sym->st_shndx = SHN_ABS;
11167 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11168 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11169 {
11170 sym->st_shndx = SHN_ABS;
11171 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11172 sym->st_value = 1;
11173 }
11174 else if (SGI_COMPAT (output_bfd))
11175 {
11176 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11177 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11178 {
11179 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11180 sym->st_other = STO_PROTECTED;
11181 sym->st_value = 0;
11182 sym->st_shndx = SHN_MIPS_DATA;
11183 }
11184 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11185 {
11186 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11187 sym->st_other = STO_PROTECTED;
11188 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11189 sym->st_shndx = SHN_ABS;
11190 }
11191 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11192 {
11193 if (h->type == STT_FUNC)
11194 sym->st_shndx = SHN_MIPS_TEXT;
11195 else if (h->type == STT_OBJECT)
11196 sym->st_shndx = SHN_MIPS_DATA;
11197 }
11198 }
11199
11200 /* Emit a copy reloc, if needed. */
11201 if (h->needs_copy)
11202 {
11203 asection *s;
11204 bfd_vma symval;
11205
11206 BFD_ASSERT (h->dynindx != -1);
11207 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11208
11209 s = mips_elf_rel_dyn_section (info, FALSE);
11210 symval = (h->root.u.def.section->output_section->vma
11211 + h->root.u.def.section->output_offset
11212 + h->root.u.def.value);
11213 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11214 h->dynindx, R_MIPS_COPY, symval);
11215 }
11216
11217 /* Handle the IRIX6-specific symbols. */
11218 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11219 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11220
11221 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11222 to treat compressed symbols like any other. */
11223 if (ELF_ST_IS_MIPS16 (sym->st_other))
11224 {
11225 BFD_ASSERT (sym->st_value & 1);
11226 sym->st_other -= STO_MIPS16;
11227 }
11228 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11229 {
11230 BFD_ASSERT (sym->st_value & 1);
11231 sym->st_other -= STO_MICROMIPS;
11232 }
11233
11234 return TRUE;
11235}
11236
11237/* Likewise, for VxWorks. */
11238
11239bfd_boolean
11240_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11241 struct bfd_link_info *info,
11242 struct elf_link_hash_entry *h,
11243 Elf_Internal_Sym *sym)
11244{
11245 bfd *dynobj;
11246 asection *sgot;
11247 struct mips_got_info *g;
11248 struct mips_elf_link_hash_table *htab;
11249 struct mips_elf_link_hash_entry *hmips;
11250
11251 htab = mips_elf_hash_table (info);
11252 BFD_ASSERT (htab != NULL);
11253 dynobj = elf_hash_table (info)->dynobj;
11254 hmips = (struct mips_elf_link_hash_entry *) h;
11255
11256 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11257 {
11258 bfd_byte *loc;
11259 bfd_vma plt_address, got_address, got_offset, branch_offset;
11260 Elf_Internal_Rela rel;
11261 static const bfd_vma *plt_entry;
11262 bfd_vma gotplt_index;
11263 bfd_vma plt_offset;
11264
11265 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11266 gotplt_index = h->plt.plist->gotplt_index;
11267
11268 BFD_ASSERT (h->dynindx != -1);
11269 BFD_ASSERT (htab->root.splt != NULL);
11270 BFD_ASSERT (gotplt_index != MINUS_ONE);
11271 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11272
11273 /* Calculate the address of the .plt entry. */
11274 plt_address = (htab->root.splt->output_section->vma
11275 + htab->root.splt->output_offset
11276 + plt_offset);
11277
11278 /* Calculate the address of the .got.plt entry. */
11279 got_address = (htab->root.sgotplt->output_section->vma
11280 + htab->root.sgotplt->output_offset
11281 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11282
11283 /* Calculate the offset of the .got.plt entry from
11284 _GLOBAL_OFFSET_TABLE_. */
11285 got_offset = mips_elf_gotplt_index (info, h);
11286
11287 /* Calculate the offset for the branch at the start of the PLT
11288 entry. The branch jumps to the beginning of .plt. */
11289 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11290
11291 /* Fill in the initial value of the .got.plt entry. */
11292 bfd_put_32 (output_bfd, plt_address,
11293 (htab->root.sgotplt->contents
11294 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11295
11296 /* Find out where the .plt entry should go. */
11297 loc = htab->root.splt->contents + plt_offset;
11298
11299 if (bfd_link_pic (info))
11300 {
11301 plt_entry = mips_vxworks_shared_plt_entry;
11302 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11303 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11304 }
11305 else
11306 {
11307 bfd_vma got_address_high, got_address_low;
11308
11309 plt_entry = mips_vxworks_exec_plt_entry;
11310 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11311 got_address_low = got_address & 0xffff;
11312
11313 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11314 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11315 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11316 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11317 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11318 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11319 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11320 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11321
11322 loc = (htab->srelplt2->contents
11323 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11324
11325 /* Emit a relocation for the .got.plt entry. */
11326 rel.r_offset = got_address;
11327 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11328 rel.r_addend = plt_offset;
11329 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11330
11331 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11332 loc += sizeof (Elf32_External_Rela);
11333 rel.r_offset = plt_address + 8;
11334 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11335 rel.r_addend = got_offset;
11336 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11337
11338 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11339 loc += sizeof (Elf32_External_Rela);
11340 rel.r_offset += 4;
11341 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11342 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11343 }
11344
11345 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11346 loc = (htab->root.srelplt->contents
11347 + gotplt_index * sizeof (Elf32_External_Rela));
11348 rel.r_offset = got_address;
11349 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11350 rel.r_addend = 0;
11351 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11352
11353 if (!h->def_regular)
11354 sym->st_shndx = SHN_UNDEF;
11355 }
11356
11357 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11358
11359 sgot = htab->root.sgot;
11360 g = htab->got_info;
11361 BFD_ASSERT (g != NULL);
11362
11363 /* See if this symbol has an entry in the GOT. */
11364 if (hmips->global_got_area != GGA_NONE)
11365 {
11366 bfd_vma offset;
11367 Elf_Internal_Rela outrel;
11368 bfd_byte *loc;
11369 asection *s;
11370
11371 /* Install the symbol value in the GOT. */
11372 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11373 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11374
11375 /* Add a dynamic relocation for it. */
11376 s = mips_elf_rel_dyn_section (info, FALSE);
11377 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11378 outrel.r_offset = (sgot->output_section->vma
11379 + sgot->output_offset
11380 + offset);
11381 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11382 outrel.r_addend = 0;
11383 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11384 }
11385
11386 /* Emit a copy reloc, if needed. */
11387 if (h->needs_copy)
11388 {
11389 Elf_Internal_Rela rel;
11390 asection *srel;
11391 bfd_byte *loc;
11392
11393 BFD_ASSERT (h->dynindx != -1);
11394
11395 rel.r_offset = (h->root.u.def.section->output_section->vma
11396 + h->root.u.def.section->output_offset
11397 + h->root.u.def.value);
11398 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11399 rel.r_addend = 0;
11400 if (h->root.u.def.section == htab->root.sdynrelro)
11401 srel = htab->root.sreldynrelro;
11402 else
11403 srel = htab->root.srelbss;
11404 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11405 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11406 ++srel->reloc_count;
11407 }
11408
11409 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11410 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11411 sym->st_value &= ~1;
11412
11413 return TRUE;
11414}
11415
11416/* Write out a plt0 entry to the beginning of .plt. */
11417
11418static bfd_boolean
11419mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11420{
11421 bfd_byte *loc;
11422 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11423 static const bfd_vma *plt_entry;
11424 struct mips_elf_link_hash_table *htab;
11425
11426 htab = mips_elf_hash_table (info);
11427 BFD_ASSERT (htab != NULL);
11428
11429 if (ABI_64_P (output_bfd))
11430 plt_entry = mips_n64_exec_plt0_entry;
11431 else if (ABI_N32_P (output_bfd))
11432 plt_entry = mips_n32_exec_plt0_entry;
11433 else if (!htab->plt_header_is_comp)
11434 plt_entry = mips_o32_exec_plt0_entry;
11435 else if (htab->insn32)
11436 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11437 else
11438 plt_entry = micromips_o32_exec_plt0_entry;
11439
11440 /* Calculate the value of .got.plt. */
11441 gotplt_value = (htab->root.sgotplt->output_section->vma
11442 + htab->root.sgotplt->output_offset);
11443 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11444 gotplt_value_low = gotplt_value & 0xffff;
11445
11446 /* The PLT sequence is not safe for N64 if .got.plt's address can
11447 not be loaded in two instructions. */
11448 if (ABI_64_P (output_bfd)
11449 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11450 {
11451 _bfd_error_handler
11452 /* xgettext:c-format */
11453 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11454 "supported; consider using `-Ttext-segment=...'"),
11455 output_bfd,
11456 htab->root.sgotplt->output_section,
11457 (int64_t) gotplt_value);
11458 bfd_set_error (bfd_error_no_error);
11459 return FALSE;
11460 }
11461
11462 /* Install the PLT header. */
11463 loc = htab->root.splt->contents;
11464 if (plt_entry == micromips_o32_exec_plt0_entry)
11465 {
11466 bfd_vma gotpc_offset;
11467 bfd_vma loc_address;
11468 size_t i;
11469
11470 BFD_ASSERT (gotplt_value % 4 == 0);
11471
11472 loc_address = (htab->root.splt->output_section->vma
11473 + htab->root.splt->output_offset);
11474 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11475
11476 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11477 if (gotpc_offset + 0x1000000 >= 0x2000000)
11478 {
11479 _bfd_error_handler
11480 /* xgettext:c-format */
11481 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11482 "beyond the range of ADDIUPC"),
11483 output_bfd,
11484 htab->root.sgotplt->output_section,
11485 (int64_t) gotpc_offset,
11486 htab->root.splt->output_section);
11487 bfd_set_error (bfd_error_no_error);
11488 return FALSE;
11489 }
11490 bfd_put_16 (output_bfd,
11491 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11492 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11493 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11494 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11495 }
11496 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11497 {
11498 size_t i;
11499
11500 bfd_put_16 (output_bfd, plt_entry[0], loc);
11501 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11502 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11503 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11504 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11505 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11506 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11507 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11508 }
11509 else
11510 {
11511 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11512 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11513 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11514 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11515 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11516 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11517 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11518 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11519 }
11520
11521 return TRUE;
11522}
11523
11524/* Install the PLT header for a VxWorks executable and finalize the
11525 contents of .rela.plt.unloaded. */
11526
11527static void
11528mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11529{
11530 Elf_Internal_Rela rela;
11531 bfd_byte *loc;
11532 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11533 static const bfd_vma *plt_entry;
11534 struct mips_elf_link_hash_table *htab;
11535
11536 htab = mips_elf_hash_table (info);
11537 BFD_ASSERT (htab != NULL);
11538
11539 plt_entry = mips_vxworks_exec_plt0_entry;
11540
11541 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11542 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11543 + htab->root.hgot->root.u.def.section->output_offset
11544 + htab->root.hgot->root.u.def.value);
11545
11546 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11547 got_value_low = got_value & 0xffff;
11548
11549 /* Calculate the address of the PLT header. */
11550 plt_address = (htab->root.splt->output_section->vma
11551 + htab->root.splt->output_offset);
11552
11553 /* Install the PLT header. */
11554 loc = htab->root.splt->contents;
11555 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11556 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11557 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11558 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11559 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11560 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11561
11562 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11563 loc = htab->srelplt2->contents;
11564 rela.r_offset = plt_address;
11565 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11566 rela.r_addend = 0;
11567 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11568 loc += sizeof (Elf32_External_Rela);
11569
11570 /* Output the relocation for the following addiu of
11571 %lo(_GLOBAL_OFFSET_TABLE_). */
11572 rela.r_offset += 4;
11573 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11574 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11575 loc += sizeof (Elf32_External_Rela);
11576
11577 /* Fix up the remaining relocations. They may have the wrong
11578 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11579 in which symbols were output. */
11580 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11581 {
11582 Elf_Internal_Rela rel;
11583
11584 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11585 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11586 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11587 loc += sizeof (Elf32_External_Rela);
11588
11589 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11590 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11591 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11592 loc += sizeof (Elf32_External_Rela);
11593
11594 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11595 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11596 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11597 loc += sizeof (Elf32_External_Rela);
11598 }
11599}
11600
11601/* Install the PLT header for a VxWorks shared library. */
11602
11603static void
11604mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11605{
11606 unsigned int i;
11607 struct mips_elf_link_hash_table *htab;
11608
11609 htab = mips_elf_hash_table (info);
11610 BFD_ASSERT (htab != NULL);
11611
11612 /* We just need to copy the entry byte-by-byte. */
11613 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11614 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11615 htab->root.splt->contents + i * 4);
11616}
11617
11618/* Finish up the dynamic sections. */
11619
11620bfd_boolean
11621_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11622 struct bfd_link_info *info)
11623{
11624 bfd *dynobj;
11625 asection *sdyn;
11626 asection *sgot;
11627 struct mips_got_info *gg, *g;
11628 struct mips_elf_link_hash_table *htab;
11629
11630 htab = mips_elf_hash_table (info);
11631 BFD_ASSERT (htab != NULL);
11632
11633 dynobj = elf_hash_table (info)->dynobj;
11634
11635 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11636
11637 sgot = htab->root.sgot;
11638 gg = htab->got_info;
11639
11640 if (elf_hash_table (info)->dynamic_sections_created)
11641 {
11642 bfd_byte *b;
11643 int dyn_to_skip = 0, dyn_skipped = 0;
11644
11645 BFD_ASSERT (sdyn != NULL);
11646 BFD_ASSERT (gg != NULL);
11647
11648 g = mips_elf_bfd_got (output_bfd, FALSE);
11649 BFD_ASSERT (g != NULL);
11650
11651 for (b = sdyn->contents;
11652 b < sdyn->contents + sdyn->size;
11653 b += MIPS_ELF_DYN_SIZE (dynobj))
11654 {
11655 Elf_Internal_Dyn dyn;
11656 const char *name;
11657 size_t elemsize;
11658 asection *s;
11659 bfd_boolean swap_out_p;
11660
11661 /* Read in the current dynamic entry. */
11662 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11663
11664 /* Assume that we're going to modify it and write it out. */
11665 swap_out_p = TRUE;
11666
11667 switch (dyn.d_tag)
11668 {
11669 case DT_RELENT:
11670 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11671 break;
11672
11673 case DT_RELAENT:
11674 BFD_ASSERT (htab->is_vxworks);
11675 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11676 break;
11677
11678 case DT_STRSZ:
11679 /* Rewrite DT_STRSZ. */
11680 dyn.d_un.d_val =
11681 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11682 break;
11683
11684 case DT_PLTGOT:
11685 s = htab->root.sgot;
11686 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11687 break;
11688
11689 case DT_MIPS_PLTGOT:
11690 s = htab->root.sgotplt;
11691 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11692 break;
11693
11694 case DT_MIPS_RLD_VERSION:
11695 dyn.d_un.d_val = 1; /* XXX */
11696 break;
11697
11698 case DT_MIPS_FLAGS:
11699 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11700 break;
11701
11702 case DT_MIPS_TIME_STAMP:
11703 {
11704 time_t t;
11705 time (&t);
11706 dyn.d_un.d_val = t;
11707 }
11708 break;
11709
11710 case DT_MIPS_ICHECKSUM:
11711 /* XXX FIXME: */
11712 swap_out_p = FALSE;
11713 break;
11714
11715 case DT_MIPS_IVERSION:
11716 /* XXX FIXME: */
11717 swap_out_p = FALSE;
11718 break;
11719
11720 case DT_MIPS_BASE_ADDRESS:
11721 s = output_bfd->sections;
11722 BFD_ASSERT (s != NULL);
11723 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11724 break;
11725
11726 case DT_MIPS_LOCAL_GOTNO:
11727 dyn.d_un.d_val = g->local_gotno;
11728 break;
11729
11730 case DT_MIPS_UNREFEXTNO:
11731 /* The index into the dynamic symbol table which is the
11732 entry of the first external symbol that is not
11733 referenced within the same object. */
11734 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11735 break;
11736
11737 case DT_MIPS_GOTSYM:
11738 if (htab->global_gotsym)
11739 {
11740 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11741 break;
11742 }
11743 /* In case if we don't have global got symbols we default
11744 to setting DT_MIPS_GOTSYM to the same value as
11745 DT_MIPS_SYMTABNO. */
11746 /* Fall through. */
11747
11748 case DT_MIPS_SYMTABNO:
11749 name = ".dynsym";
11750 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11751 s = bfd_get_linker_section (dynobj, name);
11752
11753 if (s != NULL)
11754 dyn.d_un.d_val = s->size / elemsize;
11755 else
11756 dyn.d_un.d_val = 0;
11757 break;
11758
11759 case DT_MIPS_HIPAGENO:
11760 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11761 break;
11762
11763 case DT_MIPS_RLD_MAP:
11764 {
11765 struct elf_link_hash_entry *h;
11766 h = mips_elf_hash_table (info)->rld_symbol;
11767 if (!h)
11768 {
11769 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11770 swap_out_p = FALSE;
11771 break;
11772 }
11773 s = h->root.u.def.section;
11774
11775 /* The MIPS_RLD_MAP tag stores the absolute address of the
11776 debug pointer. */
11777 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11778 + h->root.u.def.value);
11779 }
11780 break;
11781
11782 case DT_MIPS_RLD_MAP_REL:
11783 {
11784 struct elf_link_hash_entry *h;
11785 bfd_vma dt_addr, rld_addr;
11786 h = mips_elf_hash_table (info)->rld_symbol;
11787 if (!h)
11788 {
11789 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11790 swap_out_p = FALSE;
11791 break;
11792 }
11793 s = h->root.u.def.section;
11794
11795 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11796 pointer, relative to the address of the tag. */
11797 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11798 + (b - sdyn->contents));
11799 rld_addr = (s->output_section->vma + s->output_offset
11800 + h->root.u.def.value);
11801 dyn.d_un.d_ptr = rld_addr - dt_addr;
11802 }
11803 break;
11804
11805 case DT_MIPS_OPTIONS:
11806 s = (bfd_get_section_by_name
11807 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11808 dyn.d_un.d_ptr = s->vma;
11809 break;
11810
11811 case DT_PLTREL:
11812 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11813 if (htab->is_vxworks)
11814 dyn.d_un.d_val = DT_RELA;
11815 else
11816 dyn.d_un.d_val = DT_REL;
11817 break;
11818
11819 case DT_PLTRELSZ:
11820 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11821 dyn.d_un.d_val = htab->root.srelplt->size;
11822 break;
11823
11824 case DT_JMPREL:
11825 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11826 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11827 + htab->root.srelplt->output_offset);
11828 break;
11829
11830 case DT_TEXTREL:
11831 /* If we didn't need any text relocations after all, delete
11832 the dynamic tag. */
11833 if (!(info->flags & DF_TEXTREL))
11834 {
11835 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11836 swap_out_p = FALSE;
11837 }
11838 break;
11839
11840 case DT_FLAGS:
11841 /* If we didn't need any text relocations after all, clear
11842 DF_TEXTREL from DT_FLAGS. */
11843 if (!(info->flags & DF_TEXTREL))
11844 dyn.d_un.d_val &= ~DF_TEXTREL;
11845 else
11846 swap_out_p = FALSE;
11847 break;
11848
11849 default:
11850 swap_out_p = FALSE;
11851 if (htab->is_vxworks
11852 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11853 swap_out_p = TRUE;
11854 break;
11855 }
11856
11857 if (swap_out_p || dyn_skipped)
11858 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11859 (dynobj, &dyn, b - dyn_skipped);
11860
11861 if (dyn_to_skip)
11862 {
11863 dyn_skipped += dyn_to_skip;
11864 dyn_to_skip = 0;
11865 }
11866 }
11867
11868 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11869 if (dyn_skipped > 0)
11870 memset (b - dyn_skipped, 0, dyn_skipped);
11871 }
11872
11873 if (sgot != NULL && sgot->size > 0
11874 && !bfd_is_abs_section (sgot->output_section))
11875 {
11876 if (htab->is_vxworks)
11877 {
11878 /* The first entry of the global offset table points to the
11879 ".dynamic" section. The second is initialized by the
11880 loader and contains the shared library identifier.
11881 The third is also initialized by the loader and points
11882 to the lazy resolution stub. */
11883 MIPS_ELF_PUT_WORD (output_bfd,
11884 sdyn->output_offset + sdyn->output_section->vma,
11885 sgot->contents);
11886 MIPS_ELF_PUT_WORD (output_bfd, 0,
11887 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11888 MIPS_ELF_PUT_WORD (output_bfd, 0,
11889 sgot->contents
11890 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11891 }
11892 else
11893 {
11894 /* The first entry of the global offset table will be filled at
11895 runtime. The second entry will be used by some runtime loaders.
11896 This isn't the case of IRIX rld. */
11897 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11898 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11899 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11900 }
11901
11902 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11903 = MIPS_ELF_GOT_SIZE (output_bfd);
11904 }
11905
11906 /* Generate dynamic relocations for the non-primary gots. */
11907 if (gg != NULL && gg->next)
11908 {
11909 Elf_Internal_Rela rel[3];
11910 bfd_vma addend = 0;
11911
11912 memset (rel, 0, sizeof (rel));
11913 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11914
11915 for (g = gg->next; g->next != gg; g = g->next)
11916 {
11917 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11918 + g->next->tls_gotno;
11919
11920 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11921 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11922 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11923 sgot->contents
11924 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11925
11926 if (! bfd_link_pic (info))
11927 continue;
11928
11929 for (; got_index < g->local_gotno; got_index++)
11930 {
11931 if (got_index >= g->assigned_low_gotno
11932 && got_index <= g->assigned_high_gotno)
11933 continue;
11934
11935 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11936 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11937 if (!(mips_elf_create_dynamic_relocation
11938 (output_bfd, info, rel, NULL,
11939 bfd_abs_section_ptr,
11940 0, &addend, sgot)))
11941 return FALSE;
11942 BFD_ASSERT (addend == 0);
11943 }
11944 }
11945 }
11946
11947 /* The generation of dynamic relocations for the non-primary gots
11948 adds more dynamic relocations. We cannot count them until
11949 here. */
11950
11951 if (elf_hash_table (info)->dynamic_sections_created)
11952 {
11953 bfd_byte *b;
11954 bfd_boolean swap_out_p;
11955
11956 BFD_ASSERT (sdyn != NULL);
11957
11958 for (b = sdyn->contents;
11959 b < sdyn->contents + sdyn->size;
11960 b += MIPS_ELF_DYN_SIZE (dynobj))
11961 {
11962 Elf_Internal_Dyn dyn;
11963 asection *s;
11964
11965 /* Read in the current dynamic entry. */
11966 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11967
11968 /* Assume that we're going to modify it and write it out. */
11969 swap_out_p = TRUE;
11970
11971 switch (dyn.d_tag)
11972 {
11973 case DT_RELSZ:
11974 /* Reduce DT_RELSZ to account for any relocations we
11975 decided not to make. This is for the n64 irix rld,
11976 which doesn't seem to apply any relocations if there
11977 are trailing null entries. */
11978 s = mips_elf_rel_dyn_section (info, FALSE);
11979 dyn.d_un.d_val = (s->reloc_count
11980 * (ABI_64_P (output_bfd)
11981 ? sizeof (Elf64_Mips_External_Rel)
11982 : sizeof (Elf32_External_Rel)));
11983 /* Adjust the section size too. Tools like the prelinker
11984 can reasonably expect the values to the same. */
11985 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
11986 elf_section_data (s->output_section)->this_hdr.sh_size
11987 = dyn.d_un.d_val;
11988 break;
11989
11990 default:
11991 swap_out_p = FALSE;
11992 break;
11993 }
11994
11995 if (swap_out_p)
11996 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11997 (dynobj, &dyn, b);
11998 }
11999 }
12000
12001 {
12002 asection *s;
12003 Elf32_compact_rel cpt;
12004
12005 if (SGI_COMPAT (output_bfd))
12006 {
12007 /* Write .compact_rel section out. */
12008 s = bfd_get_linker_section (dynobj, ".compact_rel");
12009 if (s != NULL)
12010 {
12011 cpt.id1 = 1;
12012 cpt.num = s->reloc_count;
12013 cpt.id2 = 2;
12014 cpt.offset = (s->output_section->filepos
12015 + sizeof (Elf32_External_compact_rel));
12016 cpt.reserved0 = 0;
12017 cpt.reserved1 = 0;
12018 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12019 ((Elf32_External_compact_rel *)
12020 s->contents));
12021
12022 /* Clean up a dummy stub function entry in .text. */
12023 if (htab->sstubs != NULL)
12024 {
12025 file_ptr dummy_offset;
12026
12027 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12028 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12029 memset (htab->sstubs->contents + dummy_offset, 0,
12030 htab->function_stub_size);
12031 }
12032 }
12033 }
12034
12035 /* The psABI says that the dynamic relocations must be sorted in
12036 increasing order of r_symndx. The VxWorks EABI doesn't require
12037 this, and because the code below handles REL rather than RELA
12038 relocations, using it for VxWorks would be outright harmful. */
12039 if (!htab->is_vxworks)
12040 {
12041 s = mips_elf_rel_dyn_section (info, FALSE);
12042 if (s != NULL
12043 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12044 {
12045 reldyn_sorting_bfd = output_bfd;
12046
12047 if (ABI_64_P (output_bfd))
12048 qsort ((Elf64_External_Rel *) s->contents + 1,
12049 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12050 sort_dynamic_relocs_64);
12051 else
12052 qsort ((Elf32_External_Rel *) s->contents + 1,
12053 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12054 sort_dynamic_relocs);
12055 }
12056 }
12057 }
12058
12059 if (htab->root.splt && htab->root.splt->size > 0)
12060 {
12061 if (htab->is_vxworks)
12062 {
12063 if (bfd_link_pic (info))
12064 mips_vxworks_finish_shared_plt (output_bfd, info);
12065 else
12066 mips_vxworks_finish_exec_plt (output_bfd, info);
12067 }
12068 else
12069 {
12070 BFD_ASSERT (!bfd_link_pic (info));
12071 if (!mips_finish_exec_plt (output_bfd, info))
12072 return FALSE;
12073 }
12074 }
12075 return TRUE;
12076}
12077
12078
12079/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12080
12081static void
12082mips_set_isa_flags (bfd *abfd)
12083{
12084 flagword val;
12085
12086 switch (bfd_get_mach (abfd))
12087 {
12088 default:
12089 case bfd_mach_mips3000:
12090 val = E_MIPS_ARCH_1;
12091 break;
12092
12093 case bfd_mach_mips3900:
12094 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12095 break;
12096
12097 case bfd_mach_mips6000:
12098 val = E_MIPS_ARCH_2;
12099 break;
12100
12101 case bfd_mach_mips4010:
12102 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12103 break;
12104
12105 case bfd_mach_mips4000:
12106 case bfd_mach_mips4300:
12107 case bfd_mach_mips4400:
12108 case bfd_mach_mips4600:
12109 val = E_MIPS_ARCH_3;
12110 break;
12111
12112 case bfd_mach_mips4100:
12113 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12114 break;
12115
12116 case bfd_mach_mips4111:
12117 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12118 break;
12119
12120 case bfd_mach_mips4120:
12121 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12122 break;
12123
12124 case bfd_mach_mips4650:
12125 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12126 break;
12127
12128 case bfd_mach_mips5400:
12129 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12130 break;
12131
12132 case bfd_mach_mips5500:
12133 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12134 break;
12135
12136 case bfd_mach_mips5900:
12137 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12138 break;
12139
12140 case bfd_mach_mips9000:
12141 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12142 break;
12143
12144 case bfd_mach_mips5000:
12145 case bfd_mach_mips7000:
12146 case bfd_mach_mips8000:
12147 case bfd_mach_mips10000:
12148 case bfd_mach_mips12000:
12149 case bfd_mach_mips14000:
12150 case bfd_mach_mips16000:
12151 val = E_MIPS_ARCH_4;
12152 break;
12153
12154 case bfd_mach_mips5:
12155 val = E_MIPS_ARCH_5;
12156 break;
12157
12158 case bfd_mach_mips_loongson_2e:
12159 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12160 break;
12161
12162 case bfd_mach_mips_loongson_2f:
12163 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12164 break;
12165
12166 case bfd_mach_mips_sb1:
12167 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12168 break;
12169
12170 case bfd_mach_mips_gs464:
12171 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12172 break;
12173
12174 case bfd_mach_mips_gs464e:
12175 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12176 break;
12177
12178 case bfd_mach_mips_gs264e:
12179 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12180 break;
12181
12182 case bfd_mach_mips_octeon:
12183 case bfd_mach_mips_octeonp:
12184 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12185 break;
12186
12187 case bfd_mach_mips_octeon3:
12188 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12189 break;
12190
12191 case bfd_mach_mips_xlr:
12192 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12193 break;
12194
12195 case bfd_mach_mips_octeon2:
12196 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12197 break;
12198
12199 case bfd_mach_mipsisa32:
12200 val = E_MIPS_ARCH_32;
12201 break;
12202
12203 case bfd_mach_mipsisa64:
12204 val = E_MIPS_ARCH_64;
12205 break;
12206
12207 case bfd_mach_mipsisa32r2:
12208 case bfd_mach_mipsisa32r3:
12209 case bfd_mach_mipsisa32r5:
12210 val = E_MIPS_ARCH_32R2;
12211 break;
12212
12213 case bfd_mach_mips_interaptiv_mr2:
12214 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12215 break;
12216
12217 case bfd_mach_mipsisa64r2:
12218 case bfd_mach_mipsisa64r3:
12219 case bfd_mach_mipsisa64r5:
12220 val = E_MIPS_ARCH_64R2;
12221 break;
12222
12223 case bfd_mach_mipsisa32r6:
12224 val = E_MIPS_ARCH_32R6;
12225 break;
12226
12227 case bfd_mach_mipsisa64r6:
12228 val = E_MIPS_ARCH_64R6;
12229 break;
12230 }
12231 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12232 elf_elfheader (abfd)->e_flags |= val;
12233
12234}
12235
12236
12237/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12238 Don't do so for code sections. We want to keep ordering of HI16/LO16
12239 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12240 relocs to be sorted. */
12241
12242bfd_boolean
12243_bfd_mips_elf_sort_relocs_p (asection *sec)
12244{
12245 return (sec->flags & SEC_CODE) == 0;
12246}
12247
12248
12249/* The final processing done just before writing out a MIPS ELF object
12250 file. This gets the MIPS architecture right based on the machine
12251 number. This is used by both the 32-bit and the 64-bit ABI. */
12252
12253void
12254_bfd_mips_elf_final_write_processing (bfd *abfd,
12255 bfd_boolean linker ATTRIBUTE_UNUSED)
12256{
12257 unsigned int i;
12258 Elf_Internal_Shdr **hdrpp;
12259 const char *name;
12260 asection *sec;
12261
12262 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12263 is nonzero. This is for compatibility with old objects, which used
12264 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12265 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12266 mips_set_isa_flags (abfd);
12267
12268 /* Set the sh_info field for .gptab sections and other appropriate
12269 info for each special section. */
12270 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12271 i < elf_numsections (abfd);
12272 i++, hdrpp++)
12273 {
12274 switch ((*hdrpp)->sh_type)
12275 {
12276 case SHT_MIPS_MSYM:
12277 case SHT_MIPS_LIBLIST:
12278 sec = bfd_get_section_by_name (abfd, ".dynstr");
12279 if (sec != NULL)
12280 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12281 break;
12282
12283 case SHT_MIPS_GPTAB:
12284 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12285 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12286 BFD_ASSERT (name != NULL
12287 && CONST_STRNEQ (name, ".gptab."));
12288 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12289 BFD_ASSERT (sec != NULL);
12290 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12291 break;
12292
12293 case SHT_MIPS_CONTENT:
12294 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12295 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12296 BFD_ASSERT (name != NULL
12297 && CONST_STRNEQ (name, ".MIPS.content"));
12298 sec = bfd_get_section_by_name (abfd,
12299 name + sizeof ".MIPS.content" - 1);
12300 BFD_ASSERT (sec != NULL);
12301 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12302 break;
12303
12304 case SHT_MIPS_SYMBOL_LIB:
12305 sec = bfd_get_section_by_name (abfd, ".dynsym");
12306 if (sec != NULL)
12307 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12308 sec = bfd_get_section_by_name (abfd, ".liblist");
12309 if (sec != NULL)
12310 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12311 break;
12312
12313 case SHT_MIPS_EVENTS:
12314 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12315 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12316 BFD_ASSERT (name != NULL);
12317 if (CONST_STRNEQ (name, ".MIPS.events"))
12318 sec = bfd_get_section_by_name (abfd,
12319 name + sizeof ".MIPS.events" - 1);
12320 else
12321 {
12322 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12323 sec = bfd_get_section_by_name (abfd,
12324 (name
12325 + sizeof ".MIPS.post_rel" - 1));
12326 }
12327 BFD_ASSERT (sec != NULL);
12328 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12329 break;
12330
12331 }
12332 }
12333}
12334\f
12335/* When creating an IRIX5 executable, we need REGINFO and RTPROC
12336 segments. */
12337
12338int
12339_bfd_mips_elf_additional_program_headers (bfd *abfd,
12340 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12341{
12342 asection *s;
12343 int ret = 0;
12344
12345 /* See if we need a PT_MIPS_REGINFO segment. */
12346 s = bfd_get_section_by_name (abfd, ".reginfo");
12347 if (s && (s->flags & SEC_LOAD))
12348 ++ret;
12349
12350 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12351 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12352 ++ret;
12353
12354 /* See if we need a PT_MIPS_OPTIONS segment. */
12355 if (IRIX_COMPAT (abfd) == ict_irix6
12356 && bfd_get_section_by_name (abfd,
12357 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12358 ++ret;
12359
12360 /* See if we need a PT_MIPS_RTPROC segment. */
12361 if (IRIX_COMPAT (abfd) == ict_irix5
12362 && bfd_get_section_by_name (abfd, ".dynamic")
12363 && bfd_get_section_by_name (abfd, ".mdebug"))
12364 ++ret;
12365
12366 /* Allocate a PT_NULL header in dynamic objects. See
12367 _bfd_mips_elf_modify_segment_map for details. */
12368 if (!SGI_COMPAT (abfd)
12369 && bfd_get_section_by_name (abfd, ".dynamic"))
12370 ++ret;
12371
12372 return ret;
12373}
12374
12375/* Modify the segment map for an IRIX5 executable. */
12376
12377bfd_boolean
12378_bfd_mips_elf_modify_segment_map (bfd *abfd,
12379 struct bfd_link_info *info)
12380{
12381 asection *s;
12382 struct elf_segment_map *m, **pm;
12383 bfd_size_type amt;
12384
12385 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12386 segment. */
12387 s = bfd_get_section_by_name (abfd, ".reginfo");
12388 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12389 {
12390 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12391 if (m->p_type == PT_MIPS_REGINFO)
12392 break;
12393 if (m == NULL)
12394 {
12395 amt = sizeof *m;
12396 m = bfd_zalloc (abfd, amt);
12397 if (m == NULL)
12398 return FALSE;
12399
12400 m->p_type = PT_MIPS_REGINFO;
12401 m->count = 1;
12402 m->sections[0] = s;
12403
12404 /* We want to put it after the PHDR and INTERP segments. */
12405 pm = &elf_seg_map (abfd);
12406 while (*pm != NULL
12407 && ((*pm)->p_type == PT_PHDR
12408 || (*pm)->p_type == PT_INTERP))
12409 pm = &(*pm)->next;
12410
12411 m->next = *pm;
12412 *pm = m;
12413 }
12414 }
12415
12416 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12417 segment. */
12418 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12419 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12420 {
12421 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12422 if (m->p_type == PT_MIPS_ABIFLAGS)
12423 break;
12424 if (m == NULL)
12425 {
12426 amt = sizeof *m;
12427 m = bfd_zalloc (abfd, amt);
12428 if (m == NULL)
12429 return FALSE;
12430
12431 m->p_type = PT_MIPS_ABIFLAGS;
12432 m->count = 1;
12433 m->sections[0] = s;
12434
12435 /* We want to put it after the PHDR and INTERP segments. */
12436 pm = &elf_seg_map (abfd);
12437 while (*pm != NULL
12438 && ((*pm)->p_type == PT_PHDR
12439 || (*pm)->p_type == PT_INTERP))
12440 pm = &(*pm)->next;
12441
12442 m->next = *pm;
12443 *pm = m;
12444 }
12445 }
12446
12447 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12448 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12449 PT_MIPS_OPTIONS segment immediately following the program header
12450 table. */
12451 if (NEWABI_P (abfd)
12452 /* On non-IRIX6 new abi, we'll have already created a segment
12453 for this section, so don't create another. I'm not sure this
12454 is not also the case for IRIX 6, but I can't test it right
12455 now. */
12456 && IRIX_COMPAT (abfd) == ict_irix6)
12457 {
12458 for (s = abfd->sections; s; s = s->next)
12459 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12460 break;
12461
12462 if (s)
12463 {
12464 struct elf_segment_map *options_segment;
12465
12466 pm = &elf_seg_map (abfd);
12467 while (*pm != NULL
12468 && ((*pm)->p_type == PT_PHDR
12469 || (*pm)->p_type == PT_INTERP))
12470 pm = &(*pm)->next;
12471
12472 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12473 {
12474 amt = sizeof (struct elf_segment_map);
12475 options_segment = bfd_zalloc (abfd, amt);
12476 options_segment->next = *pm;
12477 options_segment->p_type = PT_MIPS_OPTIONS;
12478 options_segment->p_flags = PF_R;
12479 options_segment->p_flags_valid = TRUE;
12480 options_segment->count = 1;
12481 options_segment->sections[0] = s;
12482 *pm = options_segment;
12483 }
12484 }
12485 }
12486 else
12487 {
12488 if (IRIX_COMPAT (abfd) == ict_irix5)
12489 {
12490 /* If there are .dynamic and .mdebug sections, we make a room
12491 for the RTPROC header. FIXME: Rewrite without section names. */
12492 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12493 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12494 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12495 {
12496 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12497 if (m->p_type == PT_MIPS_RTPROC)
12498 break;
12499 if (m == NULL)
12500 {
12501 amt = sizeof *m;
12502 m = bfd_zalloc (abfd, amt);
12503 if (m == NULL)
12504 return FALSE;
12505
12506 m->p_type = PT_MIPS_RTPROC;
12507
12508 s = bfd_get_section_by_name (abfd, ".rtproc");
12509 if (s == NULL)
12510 {
12511 m->count = 0;
12512 m->p_flags = 0;
12513 m->p_flags_valid = 1;
12514 }
12515 else
12516 {
12517 m->count = 1;
12518 m->sections[0] = s;
12519 }
12520
12521 /* We want to put it after the DYNAMIC segment. */
12522 pm = &elf_seg_map (abfd);
12523 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12524 pm = &(*pm)->next;
12525 if (*pm != NULL)
12526 pm = &(*pm)->next;
12527
12528 m->next = *pm;
12529 *pm = m;
12530 }
12531 }
12532 }
12533 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12534 .dynstr, .dynsym, and .hash sections, and everything in
12535 between. */
12536 for (pm = &elf_seg_map (abfd); *pm != NULL;
12537 pm = &(*pm)->next)
12538 if ((*pm)->p_type == PT_DYNAMIC)
12539 break;
12540 m = *pm;
12541 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12542 glibc's dynamic linker has traditionally derived the number of
12543 tags from the p_filesz field, and sometimes allocates stack
12544 arrays of that size. An overly-big PT_DYNAMIC segment can
12545 be actively harmful in such cases. Making PT_DYNAMIC contain
12546 other sections can also make life hard for the prelinker,
12547 which might move one of the other sections to a different
12548 PT_LOAD segment. */
12549 if (SGI_COMPAT (abfd)
12550 && m != NULL
12551 && m->count == 1
12552 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12553 {
12554 static const char *sec_names[] =
12555 {
12556 ".dynamic", ".dynstr", ".dynsym", ".hash"
12557 };
12558 bfd_vma low, high;
12559 unsigned int i, c;
12560 struct elf_segment_map *n;
12561
12562 low = ~(bfd_vma) 0;
12563 high = 0;
12564 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12565 {
12566 s = bfd_get_section_by_name (abfd, sec_names[i]);
12567 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12568 {
12569 bfd_size_type sz;
12570
12571 if (low > s->vma)
12572 low = s->vma;
12573 sz = s->size;
12574 if (high < s->vma + sz)
12575 high = s->vma + sz;
12576 }
12577 }
12578
12579 c = 0;
12580 for (s = abfd->sections; s != NULL; s = s->next)
12581 if ((s->flags & SEC_LOAD) != 0
12582 && s->vma >= low
12583 && s->vma + s->size <= high)
12584 ++c;
12585
12586 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12587 n = bfd_zalloc (abfd, amt);
12588 if (n == NULL)
12589 return FALSE;
12590 *n = *m;
12591 n->count = c;
12592
12593 i = 0;
12594 for (s = abfd->sections; s != NULL; s = s->next)
12595 {
12596 if ((s->flags & SEC_LOAD) != 0
12597 && s->vma >= low
12598 && s->vma + s->size <= high)
12599 {
12600 n->sections[i] = s;
12601 ++i;
12602 }
12603 }
12604
12605 *pm = n;
12606 }
12607 }
12608
12609 /* Allocate a spare program header in dynamic objects so that tools
12610 like the prelinker can add an extra PT_LOAD entry.
12611
12612 If the prelinker needs to make room for a new PT_LOAD entry, its
12613 standard procedure is to move the first (read-only) sections into
12614 the new (writable) segment. However, the MIPS ABI requires
12615 .dynamic to be in a read-only segment, and the section will often
12616 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12617
12618 Although the prelinker could in principle move .dynamic to a
12619 writable segment, it seems better to allocate a spare program
12620 header instead, and avoid the need to move any sections.
12621 There is a long tradition of allocating spare dynamic tags,
12622 so allocating a spare program header seems like a natural
12623 extension.
12624
12625 If INFO is NULL, we may be copying an already prelinked binary
12626 with objcopy or strip, so do not add this header. */
12627 if (info != NULL
12628 && !SGI_COMPAT (abfd)
12629 && bfd_get_section_by_name (abfd, ".dynamic"))
12630 {
12631 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12632 if ((*pm)->p_type == PT_NULL)
12633 break;
12634 if (*pm == NULL)
12635 {
12636 m = bfd_zalloc (abfd, sizeof (*m));
12637 if (m == NULL)
12638 return FALSE;
12639
12640 m->p_type = PT_NULL;
12641 *pm = m;
12642 }
12643 }
12644
12645 return TRUE;
12646}
12647\f
12648/* Return the section that should be marked against GC for a given
12649 relocation. */
12650
12651asection *
12652_bfd_mips_elf_gc_mark_hook (asection *sec,
12653 struct bfd_link_info *info,
12654 Elf_Internal_Rela *rel,
12655 struct elf_link_hash_entry *h,
12656 Elf_Internal_Sym *sym)
12657{
12658 /* ??? Do mips16 stub sections need to be handled special? */
12659
12660 if (h != NULL)
12661 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12662 {
12663 case R_MIPS_GNU_VTINHERIT:
12664 case R_MIPS_GNU_VTENTRY:
12665 return NULL;
12666 }
12667
12668 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12669}
12670
12671/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12672
12673bfd_boolean
12674_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12675 elf_gc_mark_hook_fn gc_mark_hook)
12676{
12677 bfd *sub;
12678
12679 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12680
12681 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12682 {
12683 asection *o;
12684
12685 if (! is_mips_elf (sub))
12686 continue;
12687
12688 for (o = sub->sections; o != NULL; o = o->next)
12689 if (!o->gc_mark
12690 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12691 (bfd_get_section_name (sub, o)))
12692 {
12693 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12694 return FALSE;
12695 }
12696 }
12697
12698 return TRUE;
12699}
12700\f
12701/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12702 hiding the old indirect symbol. Process additional relocation
12703 information. Also called for weakdefs, in which case we just let
12704 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12705
12706void
12707_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12708 struct elf_link_hash_entry *dir,
12709 struct elf_link_hash_entry *ind)
12710{
12711 struct mips_elf_link_hash_entry *dirmips, *indmips;
12712
12713 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12714
12715 dirmips = (struct mips_elf_link_hash_entry *) dir;
12716 indmips = (struct mips_elf_link_hash_entry *) ind;
12717 /* Any absolute non-dynamic relocations against an indirect or weak
12718 definition will be against the target symbol. */
12719 if (indmips->has_static_relocs)
12720 dirmips->has_static_relocs = TRUE;
12721
12722 if (ind->root.type != bfd_link_hash_indirect)
12723 return;
12724
12725 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12726 if (indmips->readonly_reloc)
12727 dirmips->readonly_reloc = TRUE;
12728 if (indmips->no_fn_stub)
12729 dirmips->no_fn_stub = TRUE;
12730 if (indmips->fn_stub)
12731 {
12732 dirmips->fn_stub = indmips->fn_stub;
12733 indmips->fn_stub = NULL;
12734 }
12735 if (indmips->need_fn_stub)
12736 {
12737 dirmips->need_fn_stub = TRUE;
12738 indmips->need_fn_stub = FALSE;
12739 }
12740 if (indmips->call_stub)
12741 {
12742 dirmips->call_stub = indmips->call_stub;
12743 indmips->call_stub = NULL;
12744 }
12745 if (indmips->call_fp_stub)
12746 {
12747 dirmips->call_fp_stub = indmips->call_fp_stub;
12748 indmips->call_fp_stub = NULL;
12749 }
12750 if (indmips->global_got_area < dirmips->global_got_area)
12751 dirmips->global_got_area = indmips->global_got_area;
12752 if (indmips->global_got_area < GGA_NONE)
12753 indmips->global_got_area = GGA_NONE;
12754 if (indmips->has_nonpic_branches)
12755 dirmips->has_nonpic_branches = TRUE;
12756}
12757
12758/* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12759 to hide it. It has to remain global (it will also be protected) so as to
12760 be assigned a global GOT entry, which will then remain unchanged at load
12761 time. */
12762
12763void
12764_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12765 struct elf_link_hash_entry *entry,
12766 bfd_boolean force_local)
12767{
12768 struct mips_elf_link_hash_table *htab;
12769
12770 htab = mips_elf_hash_table (info);
12771 BFD_ASSERT (htab != NULL);
12772 if (htab->use_absolute_zero
12773 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12774 return;
12775
12776 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12777}
12778\f
12779#define PDR_SIZE 32
12780
12781bfd_boolean
12782_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12783 struct bfd_link_info *info)
12784{
12785 asection *o;
12786 bfd_boolean ret = FALSE;
12787 unsigned char *tdata;
12788 size_t i, skip;
12789
12790 o = bfd_get_section_by_name (abfd, ".pdr");
12791 if (! o)
12792 return FALSE;
12793 if (o->size == 0)
12794 return FALSE;
12795 if (o->size % PDR_SIZE != 0)
12796 return FALSE;
12797 if (o->output_section != NULL
12798 && bfd_is_abs_section (o->output_section))
12799 return FALSE;
12800
12801 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12802 if (! tdata)
12803 return FALSE;
12804
12805 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12806 info->keep_memory);
12807 if (!cookie->rels)
12808 {
12809 free (tdata);
12810 return FALSE;
12811 }
12812
12813 cookie->rel = cookie->rels;
12814 cookie->relend = cookie->rels + o->reloc_count;
12815
12816 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12817 {
12818 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12819 {
12820 tdata[i] = 1;
12821 skip ++;
12822 }
12823 }
12824
12825 if (skip != 0)
12826 {
12827 mips_elf_section_data (o)->u.tdata = tdata;
12828 if (o->rawsize == 0)
12829 o->rawsize = o->size;
12830 o->size -= skip * PDR_SIZE;
12831 ret = TRUE;
12832 }
12833 else
12834 free (tdata);
12835
12836 if (! info->keep_memory)
12837 free (cookie->rels);
12838
12839 return ret;
12840}
12841
12842bfd_boolean
12843_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12844{
12845 if (strcmp (sec->name, ".pdr") == 0)
12846 return TRUE;
12847 return FALSE;
12848}
12849
12850bfd_boolean
12851_bfd_mips_elf_write_section (bfd *output_bfd,
12852 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12853 asection *sec, bfd_byte *contents)
12854{
12855 bfd_byte *to, *from, *end;
12856 int i;
12857
12858 if (strcmp (sec->name, ".pdr") != 0)
12859 return FALSE;
12860
12861 if (mips_elf_section_data (sec)->u.tdata == NULL)
12862 return FALSE;
12863
12864 to = contents;
12865 end = contents + sec->size;
12866 for (from = contents, i = 0;
12867 from < end;
12868 from += PDR_SIZE, i++)
12869 {
12870 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12871 continue;
12872 if (to != from)
12873 memcpy (to, from, PDR_SIZE);
12874 to += PDR_SIZE;
12875 }
12876 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12877 sec->output_offset, sec->size);
12878 return TRUE;
12879}
12880\f
12881/* microMIPS code retains local labels for linker relaxation. Omit them
12882 from output by default for clarity. */
12883
12884bfd_boolean
12885_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12886{
12887 return _bfd_elf_is_local_label_name (abfd, sym->name);
12888}
12889
12890/* MIPS ELF uses a special find_nearest_line routine in order the
12891 handle the ECOFF debugging information. */
12892
12893struct mips_elf_find_line
12894{
12895 struct ecoff_debug_info d;
12896 struct ecoff_find_line i;
12897};
12898
12899bfd_boolean
12900_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12901 asection *section, bfd_vma offset,
12902 const char **filename_ptr,
12903 const char **functionname_ptr,
12904 unsigned int *line_ptr,
12905 unsigned int *discriminator_ptr)
12906{
12907 asection *msec;
12908
12909 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12910 filename_ptr, functionname_ptr,
12911 line_ptr, discriminator_ptr,
12912 dwarf_debug_sections,
12913 ABI_64_P (abfd) ? 8 : 0,
12914 &elf_tdata (abfd)->dwarf2_find_line_info)
12915 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12916 filename_ptr, functionname_ptr,
12917 line_ptr))
12918 {
12919 /* PR 22789: If the function name or filename was not found through
12920 the debug information, then try an ordinary lookup instead. */
12921 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12922 || (filename_ptr != NULL && *filename_ptr == NULL))
12923 {
12924 /* Do not override already discovered names. */
12925 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12926 functionname_ptr = NULL;
12927
12928 if (filename_ptr != NULL && *filename_ptr != NULL)
12929 filename_ptr = NULL;
12930
12931 _bfd_elf_find_function (abfd, symbols, section, offset,
12932 filename_ptr, functionname_ptr);
12933 }
12934
12935 return TRUE;
12936 }
12937
12938 msec = bfd_get_section_by_name (abfd, ".mdebug");
12939 if (msec != NULL)
12940 {
12941 flagword origflags;
12942 struct mips_elf_find_line *fi;
12943 const struct ecoff_debug_swap * const swap =
12944 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12945
12946 /* If we are called during a link, mips_elf_final_link may have
12947 cleared the SEC_HAS_CONTENTS field. We force it back on here
12948 if appropriate (which it normally will be). */
12949 origflags = msec->flags;
12950 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12951 msec->flags |= SEC_HAS_CONTENTS;
12952
12953 fi = mips_elf_tdata (abfd)->find_line_info;
12954 if (fi == NULL)
12955 {
12956 bfd_size_type external_fdr_size;
12957 char *fraw_src;
12958 char *fraw_end;
12959 struct fdr *fdr_ptr;
12960 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12961
12962 fi = bfd_zalloc (abfd, amt);
12963 if (fi == NULL)
12964 {
12965 msec->flags = origflags;
12966 return FALSE;
12967 }
12968
12969 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12970 {
12971 msec->flags = origflags;
12972 return FALSE;
12973 }
12974
12975 /* Swap in the FDR information. */
12976 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12977 fi->d.fdr = bfd_alloc (abfd, amt);
12978 if (fi->d.fdr == NULL)
12979 {
12980 msec->flags = origflags;
12981 return FALSE;
12982 }
12983 external_fdr_size = swap->external_fdr_size;
12984 fdr_ptr = fi->d.fdr;
12985 fraw_src = (char *) fi->d.external_fdr;
12986 fraw_end = (fraw_src
12987 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12988 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12989 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12990
12991 mips_elf_tdata (abfd)->find_line_info = fi;
12992
12993 /* Note that we don't bother to ever free this information.
12994 find_nearest_line is either called all the time, as in
12995 objdump -l, so the information should be saved, or it is
12996 rarely called, as in ld error messages, so the memory
12997 wasted is unimportant. Still, it would probably be a
12998 good idea for free_cached_info to throw it away. */
12999 }
13000
13001 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13002 &fi->i, filename_ptr, functionname_ptr,
13003 line_ptr))
13004 {
13005 msec->flags = origflags;
13006 return TRUE;
13007 }
13008
13009 msec->flags = origflags;
13010 }
13011
13012 /* Fall back on the generic ELF find_nearest_line routine. */
13013
13014 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13015 filename_ptr, functionname_ptr,
13016 line_ptr, discriminator_ptr);
13017}
13018
13019bfd_boolean
13020_bfd_mips_elf_find_inliner_info (bfd *abfd,
13021 const char **filename_ptr,
13022 const char **functionname_ptr,
13023 unsigned int *line_ptr)
13024{
13025 bfd_boolean found;
13026 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13027 functionname_ptr, line_ptr,
13028 & elf_tdata (abfd)->dwarf2_find_line_info);
13029 return found;
13030}
13031
13032\f
13033/* When are writing out the .options or .MIPS.options section,
13034 remember the bytes we are writing out, so that we can install the
13035 GP value in the section_processing routine. */
13036
13037bfd_boolean
13038_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13039 const void *location,
13040 file_ptr offset, bfd_size_type count)
13041{
13042 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13043 {
13044 bfd_byte *c;
13045
13046 if (elf_section_data (section) == NULL)
13047 {
13048 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13049 section->used_by_bfd = bfd_zalloc (abfd, amt);
13050 if (elf_section_data (section) == NULL)
13051 return FALSE;
13052 }
13053 c = mips_elf_section_data (section)->u.tdata;
13054 if (c == NULL)
13055 {
13056 c = bfd_zalloc (abfd, section->size);
13057 if (c == NULL)
13058 return FALSE;
13059 mips_elf_section_data (section)->u.tdata = c;
13060 }
13061
13062 memcpy (c + offset, location, count);
13063 }
13064
13065 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13066 count);
13067}
13068
13069/* This is almost identical to bfd_generic_get_... except that some
13070 MIPS relocations need to be handled specially. Sigh. */
13071
13072bfd_byte *
13073_bfd_elf_mips_get_relocated_section_contents
13074 (bfd *abfd,
13075 struct bfd_link_info *link_info,
13076 struct bfd_link_order *link_order,
13077 bfd_byte *data,
13078 bfd_boolean relocatable,
13079 asymbol **symbols)
13080{
13081 /* Get enough memory to hold the stuff */
13082 bfd *input_bfd = link_order->u.indirect.section->owner;
13083 asection *input_section = link_order->u.indirect.section;
13084 bfd_size_type sz;
13085
13086 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13087 arelent **reloc_vector = NULL;
13088 long reloc_count;
13089
13090 if (reloc_size < 0)
13091 goto error_return;
13092
13093 reloc_vector = bfd_malloc (reloc_size);
13094 if (reloc_vector == NULL && reloc_size != 0)
13095 goto error_return;
13096
13097 /* read in the section */
13098 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13099 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13100 goto error_return;
13101
13102 reloc_count = bfd_canonicalize_reloc (input_bfd,
13103 input_section,
13104 reloc_vector,
13105 symbols);
13106 if (reloc_count < 0)
13107 goto error_return;
13108
13109 if (reloc_count > 0)
13110 {
13111 arelent **parent;
13112 /* for mips */
13113 int gp_found;
13114 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13115
13116 {
13117 struct bfd_hash_entry *h;
13118 struct bfd_link_hash_entry *lh;
13119 /* Skip all this stuff if we aren't mixing formats. */
13120 if (abfd && input_bfd
13121 && abfd->xvec == input_bfd->xvec)
13122 lh = 0;
13123 else
13124 {
13125 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13126 lh = (struct bfd_link_hash_entry *) h;
13127 }
13128 lookup:
13129 if (lh)
13130 {
13131 switch (lh->type)
13132 {
13133 case bfd_link_hash_undefined:
13134 case bfd_link_hash_undefweak:
13135 case bfd_link_hash_common:
13136 gp_found = 0;
13137 break;
13138 case bfd_link_hash_defined:
13139 case bfd_link_hash_defweak:
13140 gp_found = 1;
13141 gp = lh->u.def.value;
13142 break;
13143 case bfd_link_hash_indirect:
13144 case bfd_link_hash_warning:
13145 lh = lh->u.i.link;
13146 /* @@FIXME ignoring warning for now */
13147 goto lookup;
13148 case bfd_link_hash_new:
13149 default:
13150 abort ();
13151 }
13152 }
13153 else
13154 gp_found = 0;
13155 }
13156 /* end mips */
13157 for (parent = reloc_vector; *parent != NULL; parent++)
13158 {
13159 char *error_message = NULL;
13160 bfd_reloc_status_type r;
13161
13162 /* Specific to MIPS: Deal with relocation types that require
13163 knowing the gp of the output bfd. */
13164 asymbol *sym = *(*parent)->sym_ptr_ptr;
13165
13166 /* If we've managed to find the gp and have a special
13167 function for the relocation then go ahead, else default
13168 to the generic handling. */
13169 if (gp_found
13170 && (*parent)->howto->special_function
13171 == _bfd_mips_elf32_gprel16_reloc)
13172 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13173 input_section, relocatable,
13174 data, gp);
13175 else
13176 r = bfd_perform_relocation (input_bfd, *parent, data,
13177 input_section,
13178 relocatable ? abfd : NULL,
13179 &error_message);
13180
13181 if (relocatable)
13182 {
13183 asection *os = input_section->output_section;
13184
13185 /* A partial link, so keep the relocs */
13186 os->orelocation[os->reloc_count] = *parent;
13187 os->reloc_count++;
13188 }
13189
13190 if (r != bfd_reloc_ok)
13191 {
13192 switch (r)
13193 {
13194 case bfd_reloc_undefined:
13195 (*link_info->callbacks->undefined_symbol)
13196 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13197 input_bfd, input_section, (*parent)->address, TRUE);
13198 break;
13199 case bfd_reloc_dangerous:
13200 BFD_ASSERT (error_message != NULL);
13201 (*link_info->callbacks->reloc_dangerous)
13202 (link_info, error_message,
13203 input_bfd, input_section, (*parent)->address);
13204 break;
13205 case bfd_reloc_overflow:
13206 (*link_info->callbacks->reloc_overflow)
13207 (link_info, NULL,
13208 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13209 (*parent)->howto->name, (*parent)->addend,
13210 input_bfd, input_section, (*parent)->address);
13211 break;
13212 case bfd_reloc_outofrange:
13213 default:
13214 abort ();
13215 break;
13216 }
13217
13218 }
13219 }
13220 }
13221 if (reloc_vector != NULL)
13222 free (reloc_vector);
13223 return data;
13224
13225error_return:
13226 if (reloc_vector != NULL)
13227 free (reloc_vector);
13228 return NULL;
13229}
13230\f
13231static bfd_boolean
13232mips_elf_relax_delete_bytes (bfd *abfd,
13233 asection *sec, bfd_vma addr, int count)
13234{
13235 Elf_Internal_Shdr *symtab_hdr;
13236 unsigned int sec_shndx;
13237 bfd_byte *contents;
13238 Elf_Internal_Rela *irel, *irelend;
13239 Elf_Internal_Sym *isym;
13240 Elf_Internal_Sym *isymend;
13241 struct elf_link_hash_entry **sym_hashes;
13242 struct elf_link_hash_entry **end_hashes;
13243 struct elf_link_hash_entry **start_hashes;
13244 unsigned int symcount;
13245
13246 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13247 contents = elf_section_data (sec)->this_hdr.contents;
13248
13249 irel = elf_section_data (sec)->relocs;
13250 irelend = irel + sec->reloc_count;
13251
13252 /* Actually delete the bytes. */
13253 memmove (contents + addr, contents + addr + count,
13254 (size_t) (sec->size - addr - count));
13255 sec->size -= count;
13256
13257 /* Adjust all the relocs. */
13258 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13259 {
13260 /* Get the new reloc address. */
13261 if (irel->r_offset > addr)
13262 irel->r_offset -= count;
13263 }
13264
13265 BFD_ASSERT (addr % 2 == 0);
13266 BFD_ASSERT (count % 2 == 0);
13267
13268 /* Adjust the local symbols defined in this section. */
13269 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13270 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13271 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13272 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13273 isym->st_value -= count;
13274
13275 /* Now adjust the global symbols defined in this section. */
13276 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13277 - symtab_hdr->sh_info);
13278 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13279 end_hashes = sym_hashes + symcount;
13280
13281 for (; sym_hashes < end_hashes; sym_hashes++)
13282 {
13283 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13284
13285 if ((sym_hash->root.type == bfd_link_hash_defined
13286 || sym_hash->root.type == bfd_link_hash_defweak)
13287 && sym_hash->root.u.def.section == sec)
13288 {
13289 bfd_vma value = sym_hash->root.u.def.value;
13290
13291 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13292 value &= MINUS_TWO;
13293 if (value > addr)
13294 sym_hash->root.u.def.value -= count;
13295 }
13296 }
13297
13298 return TRUE;
13299}
13300
13301
13302/* Opcodes needed for microMIPS relaxation as found in
13303 opcodes/micromips-opc.c. */
13304
13305struct opcode_descriptor {
13306 unsigned long match;
13307 unsigned long mask;
13308};
13309
13310/* The $ra register aka $31. */
13311
13312#define RA 31
13313
13314/* 32-bit instruction format register fields. */
13315
13316#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13317#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13318
13319/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13320
13321#define OP16_VALID_REG(r) \
13322 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13323
13324
13325/* 32-bit and 16-bit branches. */
13326
13327static const struct opcode_descriptor b_insns_32[] = {
13328 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13329 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13330 { 0, 0 } /* End marker for find_match(). */
13331};
13332
13333static const struct opcode_descriptor bc_insn_32 =
13334 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13335
13336static const struct opcode_descriptor bz_insn_32 =
13337 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13338
13339static const struct opcode_descriptor bzal_insn_32 =
13340 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13341
13342static const struct opcode_descriptor beq_insn_32 =
13343 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13344
13345static const struct opcode_descriptor b_insn_16 =
13346 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13347
13348static const struct opcode_descriptor bz_insn_16 =
13349 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13350
13351
13352/* 32-bit and 16-bit branch EQ and NE zero. */
13353
13354/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13355 eq and second the ne. This convention is used when replacing a
13356 32-bit BEQ/BNE with the 16-bit version. */
13357
13358#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13359
13360static const struct opcode_descriptor bz_rs_insns_32[] = {
13361 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13362 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13363 { 0, 0 } /* End marker for find_match(). */
13364};
13365
13366static const struct opcode_descriptor bz_rt_insns_32[] = {
13367 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13368 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13369 { 0, 0 } /* End marker for find_match(). */
13370};
13371
13372static const struct opcode_descriptor bzc_insns_32[] = {
13373 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13374 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13375 { 0, 0 } /* End marker for find_match(). */
13376};
13377
13378static const struct opcode_descriptor bz_insns_16[] = {
13379 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13380 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13381 { 0, 0 } /* End marker for find_match(). */
13382};
13383
13384/* Switch between a 5-bit register index and its 3-bit shorthand. */
13385
13386#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13387#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13388
13389
13390/* 32-bit instructions with a delay slot. */
13391
13392static const struct opcode_descriptor jal_insn_32_bd16 =
13393 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13394
13395static const struct opcode_descriptor jal_insn_32_bd32 =
13396 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13397
13398static const struct opcode_descriptor jal_x_insn_32_bd32 =
13399 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13400
13401static const struct opcode_descriptor j_insn_32 =
13402 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13403
13404static const struct opcode_descriptor jalr_insn_32 =
13405 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13406
13407/* This table can be compacted, because no opcode replacement is made. */
13408
13409static const struct opcode_descriptor ds_insns_32_bd16[] = {
13410 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13411
13412 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13413 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13414
13415 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13416 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13417 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13418 { 0, 0 } /* End marker for find_match(). */
13419};
13420
13421/* This table can be compacted, because no opcode replacement is made. */
13422
13423static const struct opcode_descriptor ds_insns_32_bd32[] = {
13424 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13425
13426 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13427 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13428 { 0, 0 } /* End marker for find_match(). */
13429};
13430
13431
13432/* 16-bit instructions with a delay slot. */
13433
13434static const struct opcode_descriptor jalr_insn_16_bd16 =
13435 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13436
13437static const struct opcode_descriptor jalr_insn_16_bd32 =
13438 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13439
13440static const struct opcode_descriptor jr_insn_16 =
13441 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13442
13443#define JR16_REG(opcode) ((opcode) & 0x1f)
13444
13445/* This table can be compacted, because no opcode replacement is made. */
13446
13447static const struct opcode_descriptor ds_insns_16_bd16[] = {
13448 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13449
13450 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13451 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13452 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13453 { 0, 0 } /* End marker for find_match(). */
13454};
13455
13456
13457/* LUI instruction. */
13458
13459static const struct opcode_descriptor lui_insn =
13460 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13461
13462
13463/* ADDIU instruction. */
13464
13465static const struct opcode_descriptor addiu_insn =
13466 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13467
13468static const struct opcode_descriptor addiupc_insn =
13469 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13470
13471#define ADDIUPC_REG_FIELD(r) \
13472 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13473
13474
13475/* Relaxable instructions in a JAL delay slot: MOVE. */
13476
13477/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13478 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13479#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13480#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13481
13482#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13483#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13484
13485static const struct opcode_descriptor move_insns_32[] = {
13486 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13487 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13488 { 0, 0 } /* End marker for find_match(). */
13489};
13490
13491static const struct opcode_descriptor move_insn_16 =
13492 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13493
13494
13495/* NOP instructions. */
13496
13497static const struct opcode_descriptor nop_insn_32 =
13498 { /* "nop", "", */ 0x00000000, 0xffffffff };
13499
13500static const struct opcode_descriptor nop_insn_16 =
13501 { /* "nop", "", */ 0x0c00, 0xffff };
13502
13503
13504/* Instruction match support. */
13505
13506#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13507
13508static int
13509find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13510{
13511 unsigned long indx;
13512
13513 for (indx = 0; insn[indx].mask != 0; indx++)
13514 if (MATCH (opcode, insn[indx]))
13515 return indx;
13516
13517 return -1;
13518}
13519
13520
13521/* Branch and delay slot decoding support. */
13522
13523/* If PTR points to what *might* be a 16-bit branch or jump, then
13524 return the minimum length of its delay slot, otherwise return 0.
13525 Non-zero results are not definitive as we might be checking against
13526 the second half of another instruction. */
13527
13528static int
13529check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13530{
13531 unsigned long opcode;
13532 int bdsize;
13533
13534 opcode = bfd_get_16 (abfd, ptr);
13535 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13536 /* 16-bit branch/jump with a 32-bit delay slot. */
13537 bdsize = 4;
13538 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13539 || find_match (opcode, ds_insns_16_bd16) >= 0)
13540 /* 16-bit branch/jump with a 16-bit delay slot. */
13541 bdsize = 2;
13542 else
13543 /* No delay slot. */
13544 bdsize = 0;
13545
13546 return bdsize;
13547}
13548
13549/* If PTR points to what *might* be a 32-bit branch or jump, then
13550 return the minimum length of its delay slot, otherwise return 0.
13551 Non-zero results are not definitive as we might be checking against
13552 the second half of another instruction. */
13553
13554static int
13555check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13556{
13557 unsigned long opcode;
13558 int bdsize;
13559
13560 opcode = bfd_get_micromips_32 (abfd, ptr);
13561 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13562 /* 32-bit branch/jump with a 32-bit delay slot. */
13563 bdsize = 4;
13564 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13565 /* 32-bit branch/jump with a 16-bit delay slot. */
13566 bdsize = 2;
13567 else
13568 /* No delay slot. */
13569 bdsize = 0;
13570
13571 return bdsize;
13572}
13573
13574/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13575 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13576
13577static bfd_boolean
13578check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13579{
13580 unsigned long opcode;
13581
13582 opcode = bfd_get_16 (abfd, ptr);
13583 if (MATCH (opcode, b_insn_16)
13584 /* B16 */
13585 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13586 /* JR16 */
13587 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13588 /* BEQZ16, BNEZ16 */
13589 || (MATCH (opcode, jalr_insn_16_bd32)
13590 /* JALR16 */
13591 && reg != JR16_REG (opcode) && reg != RA))
13592 return TRUE;
13593
13594 return FALSE;
13595}
13596
13597/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13598 then return TRUE, otherwise FALSE. */
13599
13600static bfd_boolean
13601check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13602{
13603 unsigned long opcode;
13604
13605 opcode = bfd_get_micromips_32 (abfd, ptr);
13606 if (MATCH (opcode, j_insn_32)
13607 /* J */
13608 || MATCH (opcode, bc_insn_32)
13609 /* BC1F, BC1T, BC2F, BC2T */
13610 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13611 /* JAL, JALX */
13612 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13613 /* BGEZ, BGTZ, BLEZ, BLTZ */
13614 || (MATCH (opcode, bzal_insn_32)
13615 /* BGEZAL, BLTZAL */
13616 && reg != OP32_SREG (opcode) && reg != RA)
13617 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13618 /* JALR, JALR.HB, BEQ, BNE */
13619 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13620 return TRUE;
13621
13622 return FALSE;
13623}
13624
13625/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13626 IRELEND) at OFFSET indicate that there must be a compact branch there,
13627 then return TRUE, otherwise FALSE. */
13628
13629static bfd_boolean
13630check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13631 const Elf_Internal_Rela *internal_relocs,
13632 const Elf_Internal_Rela *irelend)
13633{
13634 const Elf_Internal_Rela *irel;
13635 unsigned long opcode;
13636
13637 opcode = bfd_get_micromips_32 (abfd, ptr);
13638 if (find_match (opcode, bzc_insns_32) < 0)
13639 return FALSE;
13640
13641 for (irel = internal_relocs; irel < irelend; irel++)
13642 if (irel->r_offset == offset
13643 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13644 return TRUE;
13645
13646 return FALSE;
13647}
13648
13649/* Bitsize checking. */
13650#define IS_BITSIZE(val, N) \
13651 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13652 - (1ULL << ((N) - 1))) == (val))
13653
13654\f
13655bfd_boolean
13656_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13657 struct bfd_link_info *link_info,
13658 bfd_boolean *again)
13659{
13660 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13661 Elf_Internal_Shdr *symtab_hdr;
13662 Elf_Internal_Rela *internal_relocs;
13663 Elf_Internal_Rela *irel, *irelend;
13664 bfd_byte *contents = NULL;
13665 Elf_Internal_Sym *isymbuf = NULL;
13666
13667 /* Assume nothing changes. */
13668 *again = FALSE;
13669
13670 /* We don't have to do anything for a relocatable link, if
13671 this section does not have relocs, or if this is not a
13672 code section. */
13673
13674 if (bfd_link_relocatable (link_info)
13675 || (sec->flags & SEC_RELOC) == 0
13676 || sec->reloc_count == 0
13677 || (sec->flags & SEC_CODE) == 0)
13678 return TRUE;
13679
13680 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13681
13682 /* Get a copy of the native relocations. */
13683 internal_relocs = (_bfd_elf_link_read_relocs
13684 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13685 link_info->keep_memory));
13686 if (internal_relocs == NULL)
13687 goto error_return;
13688
13689 /* Walk through them looking for relaxing opportunities. */
13690 irelend = internal_relocs + sec->reloc_count;
13691 for (irel = internal_relocs; irel < irelend; irel++)
13692 {
13693 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13694 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13695 bfd_boolean target_is_micromips_code_p;
13696 unsigned long opcode;
13697 bfd_vma symval;
13698 bfd_vma pcrval;
13699 bfd_byte *ptr;
13700 int fndopc;
13701
13702 /* The number of bytes to delete for relaxation and from where
13703 to delete these bytes starting at irel->r_offset. */
13704 int delcnt = 0;
13705 int deloff = 0;
13706
13707 /* If this isn't something that can be relaxed, then ignore
13708 this reloc. */
13709 if (r_type != R_MICROMIPS_HI16
13710 && r_type != R_MICROMIPS_PC16_S1
13711 && r_type != R_MICROMIPS_26_S1)
13712 continue;
13713
13714 /* Get the section contents if we haven't done so already. */
13715 if (contents == NULL)
13716 {
13717 /* Get cached copy if it exists. */
13718 if (elf_section_data (sec)->this_hdr.contents != NULL)
13719 contents = elf_section_data (sec)->this_hdr.contents;
13720 /* Go get them off disk. */
13721 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13722 goto error_return;
13723 }
13724 ptr = contents + irel->r_offset;
13725
13726 /* Read this BFD's local symbols if we haven't done so already. */
13727 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13728 {
13729 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13730 if (isymbuf == NULL)
13731 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13732 symtab_hdr->sh_info, 0,
13733 NULL, NULL, NULL);
13734 if (isymbuf == NULL)
13735 goto error_return;
13736 }
13737
13738 /* Get the value of the symbol referred to by the reloc. */
13739 if (r_symndx < symtab_hdr->sh_info)
13740 {
13741 /* A local symbol. */
13742 Elf_Internal_Sym *isym;
13743 asection *sym_sec;
13744
13745 isym = isymbuf + r_symndx;
13746 if (isym->st_shndx == SHN_UNDEF)
13747 sym_sec = bfd_und_section_ptr;
13748 else if (isym->st_shndx == SHN_ABS)
13749 sym_sec = bfd_abs_section_ptr;
13750 else if (isym->st_shndx == SHN_COMMON)
13751 sym_sec = bfd_com_section_ptr;
13752 else
13753 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13754 symval = (isym->st_value
13755 + sym_sec->output_section->vma
13756 + sym_sec->output_offset);
13757 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13758 }
13759 else
13760 {
13761 unsigned long indx;
13762 struct elf_link_hash_entry *h;
13763
13764 /* An external symbol. */
13765 indx = r_symndx - symtab_hdr->sh_info;
13766 h = elf_sym_hashes (abfd)[indx];
13767 BFD_ASSERT (h != NULL);
13768
13769 if (h->root.type != bfd_link_hash_defined
13770 && h->root.type != bfd_link_hash_defweak)
13771 /* This appears to be a reference to an undefined
13772 symbol. Just ignore it -- it will be caught by the
13773 regular reloc processing. */
13774 continue;
13775
13776 symval = (h->root.u.def.value
13777 + h->root.u.def.section->output_section->vma
13778 + h->root.u.def.section->output_offset);
13779 target_is_micromips_code_p = (!h->needs_plt
13780 && ELF_ST_IS_MICROMIPS (h->other));
13781 }
13782
13783
13784 /* For simplicity of coding, we are going to modify the
13785 section contents, the section relocs, and the BFD symbol
13786 table. We must tell the rest of the code not to free up this
13787 information. It would be possible to instead create a table
13788 of changes which have to be made, as is done in coff-mips.c;
13789 that would be more work, but would require less memory when
13790 the linker is run. */
13791
13792 /* Only 32-bit instructions relaxed. */
13793 if (irel->r_offset + 4 > sec->size)
13794 continue;
13795
13796 opcode = bfd_get_micromips_32 (abfd, ptr);
13797
13798 /* This is the pc-relative distance from the instruction the
13799 relocation is applied to, to the symbol referred. */
13800 pcrval = (symval
13801 - (sec->output_section->vma + sec->output_offset)
13802 - irel->r_offset);
13803
13804 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13805 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13806 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13807
13808 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13809
13810 where pcrval has first to be adjusted to apply against the LO16
13811 location (we make the adjustment later on, when we have figured
13812 out the offset). */
13813 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13814 {
13815 bfd_boolean bzc = FALSE;
13816 unsigned long nextopc;
13817 unsigned long reg;
13818 bfd_vma offset;
13819
13820 /* Give up if the previous reloc was a HI16 against this symbol
13821 too. */
13822 if (irel > internal_relocs
13823 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13824 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13825 continue;
13826
13827 /* Or if the next reloc is not a LO16 against this symbol. */
13828 if (irel + 1 >= irelend
13829 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13830 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13831 continue;
13832
13833 /* Or if the second next reloc is a LO16 against this symbol too. */
13834 if (irel + 2 >= irelend
13835 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13836 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13837 continue;
13838
13839 /* See if the LUI instruction *might* be in a branch delay slot.
13840 We check whether what looks like a 16-bit branch or jump is
13841 actually an immediate argument to a compact branch, and let
13842 it through if so. */
13843 if (irel->r_offset >= 2
13844 && check_br16_dslot (abfd, ptr - 2)
13845 && !(irel->r_offset >= 4
13846 && (bzc = check_relocated_bzc (abfd,
13847 ptr - 4, irel->r_offset - 4,
13848 internal_relocs, irelend))))
13849 continue;
13850 if (irel->r_offset >= 4
13851 && !bzc
13852 && check_br32_dslot (abfd, ptr - 4))
13853 continue;
13854
13855 reg = OP32_SREG (opcode);
13856
13857 /* We only relax adjacent instructions or ones separated with
13858 a branch or jump that has a delay slot. The branch or jump
13859 must not fiddle with the register used to hold the address.
13860 Subtract 4 for the LUI itself. */
13861 offset = irel[1].r_offset - irel[0].r_offset;
13862 switch (offset - 4)
13863 {
13864 case 0:
13865 break;
13866 case 2:
13867 if (check_br16 (abfd, ptr + 4, reg))
13868 break;
13869 continue;
13870 case 4:
13871 if (check_br32 (abfd, ptr + 4, reg))
13872 break;
13873 continue;
13874 default:
13875 continue;
13876 }
13877
13878 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13879
13880 /* Give up unless the same register is used with both
13881 relocations. */
13882 if (OP32_SREG (nextopc) != reg)
13883 continue;
13884
13885 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13886 and rounding up to take masking of the two LSBs into account. */
13887 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13888
13889 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13890 if (IS_BITSIZE (symval, 16))
13891 {
13892 /* Fix the relocation's type. */
13893 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13894
13895 /* Instructions using R_MICROMIPS_LO16 have the base or
13896 source register in bits 20:16. This register becomes $0
13897 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13898 nextopc &= ~0x001f0000;
13899 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13900 contents + irel[1].r_offset);
13901 }
13902
13903 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13904 We add 4 to take LUI deletion into account while checking
13905 the PC-relative distance. */
13906 else if (symval % 4 == 0
13907 && IS_BITSIZE (pcrval + 4, 25)
13908 && MATCH (nextopc, addiu_insn)
13909 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13910 && OP16_VALID_REG (OP32_TREG (nextopc)))
13911 {
13912 /* Fix the relocation's type. */
13913 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13914
13915 /* Replace ADDIU with the ADDIUPC version. */
13916 nextopc = (addiupc_insn.match
13917 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13918
13919 bfd_put_micromips_32 (abfd, nextopc,
13920 contents + irel[1].r_offset);
13921 }
13922
13923 /* Can't do anything, give up, sigh... */
13924 else
13925 continue;
13926
13927 /* Fix the relocation's type. */
13928 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13929
13930 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13931 delcnt = 4;
13932 deloff = 0;
13933 }
13934
13935 /* Compact branch relaxation -- due to the multitude of macros
13936 employed by the compiler/assembler, compact branches are not
13937 always generated. Obviously, this can/will be fixed elsewhere,
13938 but there is no drawback in double checking it here. */
13939 else if (r_type == R_MICROMIPS_PC16_S1
13940 && irel->r_offset + 5 < sec->size
13941 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13942 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13943 && ((!insn32
13944 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13945 nop_insn_16) ? 2 : 0))
13946 || (irel->r_offset + 7 < sec->size
13947 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13948 ptr + 4),
13949 nop_insn_32) ? 4 : 0))))
13950 {
13951 unsigned long reg;
13952
13953 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13954
13955 /* Replace BEQZ/BNEZ with the compact version. */
13956 opcode = (bzc_insns_32[fndopc].match
13957 | BZC32_REG_FIELD (reg)
13958 | (opcode & 0xffff)); /* Addend value. */
13959
13960 bfd_put_micromips_32 (abfd, opcode, ptr);
13961
13962 /* Delete the delay slot NOP: two or four bytes from
13963 irel->offset + 4; delcnt has already been set above. */
13964 deloff = 4;
13965 }
13966
13967 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13968 to check the distance from the next instruction, so subtract 2. */
13969 else if (!insn32
13970 && r_type == R_MICROMIPS_PC16_S1
13971 && IS_BITSIZE (pcrval - 2, 11)
13972 && find_match (opcode, b_insns_32) >= 0)
13973 {
13974 /* Fix the relocation's type. */
13975 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13976
13977 /* Replace the 32-bit opcode with a 16-bit opcode. */
13978 bfd_put_16 (abfd,
13979 (b_insn_16.match
13980 | (opcode & 0x3ff)), /* Addend value. */
13981 ptr);
13982
13983 /* Delete 2 bytes from irel->r_offset + 2. */
13984 delcnt = 2;
13985 deloff = 2;
13986 }
13987
13988 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13989 to check the distance from the next instruction, so subtract 2. */
13990 else if (!insn32
13991 && r_type == R_MICROMIPS_PC16_S1
13992 && IS_BITSIZE (pcrval - 2, 8)
13993 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13994 && OP16_VALID_REG (OP32_SREG (opcode)))
13995 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13996 && OP16_VALID_REG (OP32_TREG (opcode)))))
13997 {
13998 unsigned long reg;
13999
14000 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14001
14002 /* Fix the relocation's type. */
14003 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14004
14005 /* Replace the 32-bit opcode with a 16-bit opcode. */
14006 bfd_put_16 (abfd,
14007 (bz_insns_16[fndopc].match
14008 | BZ16_REG_FIELD (reg)
14009 | (opcode & 0x7f)), /* Addend value. */
14010 ptr);
14011
14012 /* Delete 2 bytes from irel->r_offset + 2. */
14013 delcnt = 2;
14014 deloff = 2;
14015 }
14016
14017 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14018 else if (!insn32
14019 && r_type == R_MICROMIPS_26_S1
14020 && target_is_micromips_code_p
14021 && irel->r_offset + 7 < sec->size
14022 && MATCH (opcode, jal_insn_32_bd32))
14023 {
14024 unsigned long n32opc;
14025 bfd_boolean relaxed = FALSE;
14026
14027 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14028
14029 if (MATCH (n32opc, nop_insn_32))
14030 {
14031 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14032 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14033
14034 relaxed = TRUE;
14035 }
14036 else if (find_match (n32opc, move_insns_32) >= 0)
14037 {
14038 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14039 bfd_put_16 (abfd,
14040 (move_insn_16.match
14041 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14042 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14043 ptr + 4);
14044
14045 relaxed = TRUE;
14046 }
14047 /* Other 32-bit instructions relaxable to 16-bit
14048 instructions will be handled here later. */
14049
14050 if (relaxed)
14051 {
14052 /* JAL with 32-bit delay slot that is changed to a JALS
14053 with 16-bit delay slot. */
14054 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14055
14056 /* Delete 2 bytes from irel->r_offset + 6. */
14057 delcnt = 2;
14058 deloff = 6;
14059 }
14060 }
14061
14062 if (delcnt != 0)
14063 {
14064 /* Note that we've changed the relocs, section contents, etc. */
14065 elf_section_data (sec)->relocs = internal_relocs;
14066 elf_section_data (sec)->this_hdr.contents = contents;
14067 symtab_hdr->contents = (unsigned char *) isymbuf;
14068
14069 /* Delete bytes depending on the delcnt and deloff. */
14070 if (!mips_elf_relax_delete_bytes (abfd, sec,
14071 irel->r_offset + deloff, delcnt))
14072 goto error_return;
14073
14074 /* That will change things, so we should relax again.
14075 Note that this is not required, and it may be slow. */
14076 *again = TRUE;
14077 }
14078 }
14079
14080 if (isymbuf != NULL
14081 && symtab_hdr->contents != (unsigned char *) isymbuf)
14082 {
14083 if (! link_info->keep_memory)
14084 free (isymbuf);
14085 else
14086 {
14087 /* Cache the symbols for elf_link_input_bfd. */
14088 symtab_hdr->contents = (unsigned char *) isymbuf;
14089 }
14090 }
14091
14092 if (contents != NULL
14093 && elf_section_data (sec)->this_hdr.contents != contents)
14094 {
14095 if (! link_info->keep_memory)
14096 free (contents);
14097 else
14098 {
14099 /* Cache the section contents for elf_link_input_bfd. */
14100 elf_section_data (sec)->this_hdr.contents = contents;
14101 }
14102 }
14103
14104 if (internal_relocs != NULL
14105 && elf_section_data (sec)->relocs != internal_relocs)
14106 free (internal_relocs);
14107
14108 return TRUE;
14109
14110 error_return:
14111 if (isymbuf != NULL
14112 && symtab_hdr->contents != (unsigned char *) isymbuf)
14113 free (isymbuf);
14114 if (contents != NULL
14115 && elf_section_data (sec)->this_hdr.contents != contents)
14116 free (contents);
14117 if (internal_relocs != NULL
14118 && elf_section_data (sec)->relocs != internal_relocs)
14119 free (internal_relocs);
14120
14121 return FALSE;
14122}
14123\f
14124/* Create a MIPS ELF linker hash table. */
14125
14126struct bfd_link_hash_table *
14127_bfd_mips_elf_link_hash_table_create (bfd *abfd)
14128{
14129 struct mips_elf_link_hash_table *ret;
14130 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14131
14132 ret = bfd_zmalloc (amt);
14133 if (ret == NULL)
14134 return NULL;
14135
14136 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14137 mips_elf_link_hash_newfunc,
14138 sizeof (struct mips_elf_link_hash_entry),
14139 MIPS_ELF_DATA))
14140 {
14141 free (ret);
14142 return NULL;
14143 }
14144 ret->root.init_plt_refcount.plist = NULL;
14145 ret->root.init_plt_offset.plist = NULL;
14146
14147 return &ret->root.root;
14148}
14149
14150/* Likewise, but indicate that the target is VxWorks. */
14151
14152struct bfd_link_hash_table *
14153_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14154{
14155 struct bfd_link_hash_table *ret;
14156
14157 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14158 if (ret)
14159 {
14160 struct mips_elf_link_hash_table *htab;
14161
14162 htab = (struct mips_elf_link_hash_table *) ret;
14163 htab->use_plts_and_copy_relocs = TRUE;
14164 htab->is_vxworks = TRUE;
14165 }
14166 return ret;
14167}
14168
14169/* A function that the linker calls if we are allowed to use PLTs
14170 and copy relocs. */
14171
14172void
14173_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14174{
14175 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14176}
14177
14178/* A function that the linker calls to select between all or only
14179 32-bit microMIPS instructions, and between making or ignoring
14180 branch relocation checks for invalid transitions between ISA modes.
14181 Also record whether we have been configured for a GNU target. */
14182
14183void
14184_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14185 bfd_boolean ignore_branch_isa,
14186 bfd_boolean gnu_target)
14187{
14188 mips_elf_hash_table (info)->insn32 = insn32;
14189 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14190 mips_elf_hash_table (info)->gnu_target = gnu_target;
14191}
14192\f
14193/* Structure for saying that BFD machine EXTENSION extends BASE. */
14194
14195struct mips_mach_extension
14196{
14197 unsigned long extension, base;
14198};
14199
14200
14201/* An array describing how BFD machines relate to one another. The entries
14202 are ordered topologically with MIPS I extensions listed last. */
14203
14204static const struct mips_mach_extension mips_mach_extensions[] =
14205{
14206 /* MIPS64r2 extensions. */
14207 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14208 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14209 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14210 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14211 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14212 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14213 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14214
14215 /* MIPS64 extensions. */
14216 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14217 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14218 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14219
14220 /* MIPS V extensions. */
14221 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14222
14223 /* R10000 extensions. */
14224 { bfd_mach_mips12000, bfd_mach_mips10000 },
14225 { bfd_mach_mips14000, bfd_mach_mips10000 },
14226 { bfd_mach_mips16000, bfd_mach_mips10000 },
14227
14228 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14229 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14230 better to allow vr5400 and vr5500 code to be merged anyway, since
14231 many libraries will just use the core ISA. Perhaps we could add
14232 some sort of ASE flag if this ever proves a problem. */
14233 { bfd_mach_mips5500, bfd_mach_mips5400 },
14234 { bfd_mach_mips5400, bfd_mach_mips5000 },
14235
14236 /* MIPS IV extensions. */
14237 { bfd_mach_mips5, bfd_mach_mips8000 },
14238 { bfd_mach_mips10000, bfd_mach_mips8000 },
14239 { bfd_mach_mips5000, bfd_mach_mips8000 },
14240 { bfd_mach_mips7000, bfd_mach_mips8000 },
14241 { bfd_mach_mips9000, bfd_mach_mips8000 },
14242
14243 /* VR4100 extensions. */
14244 { bfd_mach_mips4120, bfd_mach_mips4100 },
14245 { bfd_mach_mips4111, bfd_mach_mips4100 },
14246
14247 /* MIPS III extensions. */
14248 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14249 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14250 { bfd_mach_mips8000, bfd_mach_mips4000 },
14251 { bfd_mach_mips4650, bfd_mach_mips4000 },
14252 { bfd_mach_mips4600, bfd_mach_mips4000 },
14253 { bfd_mach_mips4400, bfd_mach_mips4000 },
14254 { bfd_mach_mips4300, bfd_mach_mips4000 },
14255 { bfd_mach_mips4100, bfd_mach_mips4000 },
14256 { bfd_mach_mips5900, bfd_mach_mips4000 },
14257
14258 /* MIPS32r3 extensions. */
14259 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14260
14261 /* MIPS32r2 extensions. */
14262 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14263
14264 /* MIPS32 extensions. */
14265 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14266
14267 /* MIPS II extensions. */
14268 { bfd_mach_mips4000, bfd_mach_mips6000 },
14269 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14270 { bfd_mach_mips4010, bfd_mach_mips6000 },
14271
14272 /* MIPS I extensions. */
14273 { bfd_mach_mips6000, bfd_mach_mips3000 },
14274 { bfd_mach_mips3900, bfd_mach_mips3000 }
14275};
14276
14277/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14278
14279static bfd_boolean
14280mips_mach_extends_p (unsigned long base, unsigned long extension)
14281{
14282 size_t i;
14283
14284 if (extension == base)
14285 return TRUE;
14286
14287 if (base == bfd_mach_mipsisa32
14288 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14289 return TRUE;
14290
14291 if (base == bfd_mach_mipsisa32r2
14292 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14293 return TRUE;
14294
14295 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14296 if (extension == mips_mach_extensions[i].extension)
14297 {
14298 extension = mips_mach_extensions[i].base;
14299 if (extension == base)
14300 return TRUE;
14301 }
14302
14303 return FALSE;
14304}
14305
14306/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14307
14308static unsigned long
14309bfd_mips_isa_ext_mach (unsigned int isa_ext)
14310{
14311 switch (isa_ext)
14312 {
14313 case AFL_EXT_3900: return bfd_mach_mips3900;
14314 case AFL_EXT_4010: return bfd_mach_mips4010;
14315 case AFL_EXT_4100: return bfd_mach_mips4100;
14316 case AFL_EXT_4111: return bfd_mach_mips4111;
14317 case AFL_EXT_4120: return bfd_mach_mips4120;
14318 case AFL_EXT_4650: return bfd_mach_mips4650;
14319 case AFL_EXT_5400: return bfd_mach_mips5400;
14320 case AFL_EXT_5500: return bfd_mach_mips5500;
14321 case AFL_EXT_5900: return bfd_mach_mips5900;
14322 case AFL_EXT_10000: return bfd_mach_mips10000;
14323 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14324 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14325 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14326 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14327 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14328 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14329 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14330 default: return bfd_mach_mips3000;
14331 }
14332}
14333
14334/* Return the .MIPS.abiflags value representing each ISA Extension. */
14335
14336unsigned int
14337bfd_mips_isa_ext (bfd *abfd)
14338{
14339 switch (bfd_get_mach (abfd))
14340 {
14341 case bfd_mach_mips3900: return AFL_EXT_3900;
14342 case bfd_mach_mips4010: return AFL_EXT_4010;
14343 case bfd_mach_mips4100: return AFL_EXT_4100;
14344 case bfd_mach_mips4111: return AFL_EXT_4111;
14345 case bfd_mach_mips4120: return AFL_EXT_4120;
14346 case bfd_mach_mips4650: return AFL_EXT_4650;
14347 case bfd_mach_mips5400: return AFL_EXT_5400;
14348 case bfd_mach_mips5500: return AFL_EXT_5500;
14349 case bfd_mach_mips5900: return AFL_EXT_5900;
14350 case bfd_mach_mips10000: return AFL_EXT_10000;
14351 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14352 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14353 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14354 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14355 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14356 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14357 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14358 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14359 case bfd_mach_mips_interaptiv_mr2:
14360 return AFL_EXT_INTERAPTIV_MR2;
14361 default: return 0;
14362 }
14363}
14364
14365/* Encode ISA level and revision as a single value. */
14366#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14367
14368/* Decode a single value into level and revision. */
14369#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14370#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14371
14372/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14373
14374static void
14375update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14376{
14377 int new_isa = 0;
14378 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14379 {
14380 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14381 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14382 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14383 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14384 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14385 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14386 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14387 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14388 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14389 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14390 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14391 default:
14392 _bfd_error_handler
14393 /* xgettext:c-format */
14394 (_("%pB: unknown architecture %s"),
14395 abfd, bfd_printable_name (abfd));
14396 }
14397
14398 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14399 {
14400 abiflags->isa_level = ISA_LEVEL (new_isa);
14401 abiflags->isa_rev = ISA_REV (new_isa);
14402 }
14403
14404 /* Update the isa_ext if ABFD describes a further extension. */
14405 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14406 bfd_get_mach (abfd)))
14407 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14408}
14409
14410/* Return true if the given ELF header flags describe a 32-bit binary. */
14411
14412static bfd_boolean
14413mips_32bit_flags_p (flagword flags)
14414{
14415 return ((flags & EF_MIPS_32BITMODE) != 0
14416 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14417 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14418 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14419 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14420 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14421 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14422 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14423}
14424
14425/* Infer the content of the ABI flags based on the elf header. */
14426
14427static void
14428infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14429{
14430 obj_attribute *in_attr;
14431
14432 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14433 update_mips_abiflags_isa (abfd, abiflags);
14434
14435 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14436 abiflags->gpr_size = AFL_REG_32;
14437 else
14438 abiflags->gpr_size = AFL_REG_64;
14439
14440 abiflags->cpr1_size = AFL_REG_NONE;
14441
14442 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14443 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14444
14445 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14446 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14447 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14448 && abiflags->gpr_size == AFL_REG_32))
14449 abiflags->cpr1_size = AFL_REG_32;
14450 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14451 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14452 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14453 abiflags->cpr1_size = AFL_REG_64;
14454
14455 abiflags->cpr2_size = AFL_REG_NONE;
14456
14457 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14458 abiflags->ases |= AFL_ASE_MDMX;
14459 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14460 abiflags->ases |= AFL_ASE_MIPS16;
14461 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14462 abiflags->ases |= AFL_ASE_MICROMIPS;
14463
14464 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14465 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14466 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14467 && abiflags->isa_level >= 32
14468 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14469 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14470}
14471
14472/* We need to use a special link routine to handle the .reginfo and
14473 the .mdebug sections. We need to merge all instances of these
14474 sections together, not write them all out sequentially. */
14475
14476bfd_boolean
14477_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14478{
14479 asection *o;
14480 struct bfd_link_order *p;
14481 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14482 asection *rtproc_sec, *abiflags_sec;
14483 Elf32_RegInfo reginfo;
14484 struct ecoff_debug_info debug;
14485 struct mips_htab_traverse_info hti;
14486 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14487 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14488 HDRR *symhdr = &debug.symbolic_header;
14489 void *mdebug_handle = NULL;
14490 asection *s;
14491 EXTR esym;
14492 unsigned int i;
14493 bfd_size_type amt;
14494 struct mips_elf_link_hash_table *htab;
14495
14496 static const char * const secname[] =
14497 {
14498 ".text", ".init", ".fini", ".data",
14499 ".rodata", ".sdata", ".sbss", ".bss"
14500 };
14501 static const int sc[] =
14502 {
14503 scText, scInit, scFini, scData,
14504 scRData, scSData, scSBss, scBss
14505 };
14506
14507 htab = mips_elf_hash_table (info);
14508 BFD_ASSERT (htab != NULL);
14509
14510 /* Sort the dynamic symbols so that those with GOT entries come after
14511 those without. */
14512 if (!mips_elf_sort_hash_table (abfd, info))
14513 return FALSE;
14514
14515 /* Create any scheduled LA25 stubs. */
14516 hti.info = info;
14517 hti.output_bfd = abfd;
14518 hti.error = FALSE;
14519 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14520 if (hti.error)
14521 return FALSE;
14522
14523 /* Get a value for the GP register. */
14524 if (elf_gp (abfd) == 0)
14525 {
14526 struct bfd_link_hash_entry *h;
14527
14528 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14529 if (h != NULL && h->type == bfd_link_hash_defined)
14530 elf_gp (abfd) = (h->u.def.value
14531 + h->u.def.section->output_section->vma
14532 + h->u.def.section->output_offset);
14533 else if (htab->is_vxworks
14534 && (h = bfd_link_hash_lookup (info->hash,
14535 "_GLOBAL_OFFSET_TABLE_",
14536 FALSE, FALSE, TRUE))
14537 && h->type == bfd_link_hash_defined)
14538 elf_gp (abfd) = (h->u.def.section->output_section->vma
14539 + h->u.def.section->output_offset
14540 + h->u.def.value);
14541 else if (bfd_link_relocatable (info))
14542 {
14543 bfd_vma lo = MINUS_ONE;
14544
14545 /* Find the GP-relative section with the lowest offset. */
14546 for (o = abfd->sections; o != NULL; o = o->next)
14547 if (o->vma < lo
14548 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14549 lo = o->vma;
14550
14551 /* And calculate GP relative to that. */
14552 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14553 }
14554 else
14555 {
14556 /* If the relocate_section function needs to do a reloc
14557 involving the GP value, it should make a reloc_dangerous
14558 callback to warn that GP is not defined. */
14559 }
14560 }
14561
14562 /* Go through the sections and collect the .reginfo and .mdebug
14563 information. */
14564 abiflags_sec = NULL;
14565 reginfo_sec = NULL;
14566 mdebug_sec = NULL;
14567 gptab_data_sec = NULL;
14568 gptab_bss_sec = NULL;
14569 for (o = abfd->sections; o != NULL; o = o->next)
14570 {
14571 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14572 {
14573 /* We have found the .MIPS.abiflags section in the output file.
14574 Look through all the link_orders comprising it and remove them.
14575 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14576 for (p = o->map_head.link_order; p != NULL; p = p->next)
14577 {
14578 asection *input_section;
14579
14580 if (p->type != bfd_indirect_link_order)
14581 {
14582 if (p->type == bfd_data_link_order)
14583 continue;
14584 abort ();
14585 }
14586
14587 input_section = p->u.indirect.section;
14588
14589 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14590 elf_link_input_bfd ignores this section. */
14591 input_section->flags &= ~SEC_HAS_CONTENTS;
14592 }
14593
14594 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14595 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14596
14597 /* Skip this section later on (I don't think this currently
14598 matters, but someday it might). */
14599 o->map_head.link_order = NULL;
14600
14601 abiflags_sec = o;
14602 }
14603
14604 if (strcmp (o->name, ".reginfo") == 0)
14605 {
14606 memset (&reginfo, 0, sizeof reginfo);
14607
14608 /* We have found the .reginfo section in the output file.
14609 Look through all the link_orders comprising it and merge
14610 the information together. */
14611 for (p = o->map_head.link_order; p != NULL; p = p->next)
14612 {
14613 asection *input_section;
14614 bfd *input_bfd;
14615 Elf32_External_RegInfo ext;
14616 Elf32_RegInfo sub;
14617 bfd_size_type sz;
14618
14619 if (p->type != bfd_indirect_link_order)
14620 {
14621 if (p->type == bfd_data_link_order)
14622 continue;
14623 abort ();
14624 }
14625
14626 input_section = p->u.indirect.section;
14627 input_bfd = input_section->owner;
14628
14629 sz = (input_section->size < sizeof (ext)
14630 ? input_section->size : sizeof (ext));
14631 memset (&ext, 0, sizeof (ext));
14632 if (! bfd_get_section_contents (input_bfd, input_section,
14633 &ext, 0, sz))
14634 return FALSE;
14635
14636 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14637
14638 reginfo.ri_gprmask |= sub.ri_gprmask;
14639 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14640 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14641 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14642 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14643
14644 /* ri_gp_value is set by the function
14645 `_bfd_mips_elf_section_processing' when the section is
14646 finally written out. */
14647
14648 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14649 elf_link_input_bfd ignores this section. */
14650 input_section->flags &= ~SEC_HAS_CONTENTS;
14651 }
14652
14653 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14654 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14655
14656 /* Skip this section later on (I don't think this currently
14657 matters, but someday it might). */
14658 o->map_head.link_order = NULL;
14659
14660 reginfo_sec = o;
14661 }
14662
14663 if (strcmp (o->name, ".mdebug") == 0)
14664 {
14665 struct extsym_info einfo;
14666 bfd_vma last;
14667
14668 /* We have found the .mdebug section in the output file.
14669 Look through all the link_orders comprising it and merge
14670 the information together. */
14671 symhdr->magic = swap->sym_magic;
14672 /* FIXME: What should the version stamp be? */
14673 symhdr->vstamp = 0;
14674 symhdr->ilineMax = 0;
14675 symhdr->cbLine = 0;
14676 symhdr->idnMax = 0;
14677 symhdr->ipdMax = 0;
14678 symhdr->isymMax = 0;
14679 symhdr->ioptMax = 0;
14680 symhdr->iauxMax = 0;
14681 symhdr->issMax = 0;
14682 symhdr->issExtMax = 0;
14683 symhdr->ifdMax = 0;
14684 symhdr->crfd = 0;
14685 symhdr->iextMax = 0;
14686
14687 /* We accumulate the debugging information itself in the
14688 debug_info structure. */
14689 debug.line = NULL;
14690 debug.external_dnr = NULL;
14691 debug.external_pdr = NULL;
14692 debug.external_sym = NULL;
14693 debug.external_opt = NULL;
14694 debug.external_aux = NULL;
14695 debug.ss = NULL;
14696 debug.ssext = debug.ssext_end = NULL;
14697 debug.external_fdr = NULL;
14698 debug.external_rfd = NULL;
14699 debug.external_ext = debug.external_ext_end = NULL;
14700
14701 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14702 if (mdebug_handle == NULL)
14703 return FALSE;
14704
14705 esym.jmptbl = 0;
14706 esym.cobol_main = 0;
14707 esym.weakext = 0;
14708 esym.reserved = 0;
14709 esym.ifd = ifdNil;
14710 esym.asym.iss = issNil;
14711 esym.asym.st = stLocal;
14712 esym.asym.reserved = 0;
14713 esym.asym.index = indexNil;
14714 last = 0;
14715 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14716 {
14717 esym.asym.sc = sc[i];
14718 s = bfd_get_section_by_name (abfd, secname[i]);
14719 if (s != NULL)
14720 {
14721 esym.asym.value = s->vma;
14722 last = s->vma + s->size;
14723 }
14724 else
14725 esym.asym.value = last;
14726 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14727 secname[i], &esym))
14728 return FALSE;
14729 }
14730
14731 for (p = o->map_head.link_order; p != NULL; p = p->next)
14732 {
14733 asection *input_section;
14734 bfd *input_bfd;
14735 const struct ecoff_debug_swap *input_swap;
14736 struct ecoff_debug_info input_debug;
14737 char *eraw_src;
14738 char *eraw_end;
14739
14740 if (p->type != bfd_indirect_link_order)
14741 {
14742 if (p->type == bfd_data_link_order)
14743 continue;
14744 abort ();
14745 }
14746
14747 input_section = p->u.indirect.section;
14748 input_bfd = input_section->owner;
14749
14750 if (!is_mips_elf (input_bfd))
14751 {
14752 /* I don't know what a non MIPS ELF bfd would be
14753 doing with a .mdebug section, but I don't really
14754 want to deal with it. */
14755 continue;
14756 }
14757
14758 input_swap = (get_elf_backend_data (input_bfd)
14759 ->elf_backend_ecoff_debug_swap);
14760
14761 BFD_ASSERT (p->size == input_section->size);
14762
14763 /* The ECOFF linking code expects that we have already
14764 read in the debugging information and set up an
14765 ecoff_debug_info structure, so we do that now. */
14766 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14767 &input_debug))
14768 return FALSE;
14769
14770 if (! (bfd_ecoff_debug_accumulate
14771 (mdebug_handle, abfd, &debug, swap, input_bfd,
14772 &input_debug, input_swap, info)))
14773 return FALSE;
14774
14775 /* Loop through the external symbols. For each one with
14776 interesting information, try to find the symbol in
14777 the linker global hash table and save the information
14778 for the output external symbols. */
14779 eraw_src = input_debug.external_ext;
14780 eraw_end = (eraw_src
14781 + (input_debug.symbolic_header.iextMax
14782 * input_swap->external_ext_size));
14783 for (;
14784 eraw_src < eraw_end;
14785 eraw_src += input_swap->external_ext_size)
14786 {
14787 EXTR ext;
14788 const char *name;
14789 struct mips_elf_link_hash_entry *h;
14790
14791 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14792 if (ext.asym.sc == scNil
14793 || ext.asym.sc == scUndefined
14794 || ext.asym.sc == scSUndefined)
14795 continue;
14796
14797 name = input_debug.ssext + ext.asym.iss;
14798 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14799 name, FALSE, FALSE, TRUE);
14800 if (h == NULL || h->esym.ifd != -2)
14801 continue;
14802
14803 if (ext.ifd != -1)
14804 {
14805 BFD_ASSERT (ext.ifd
14806 < input_debug.symbolic_header.ifdMax);
14807 ext.ifd = input_debug.ifdmap[ext.ifd];
14808 }
14809
14810 h->esym = ext;
14811 }
14812
14813 /* Free up the information we just read. */
14814 free (input_debug.line);
14815 free (input_debug.external_dnr);
14816 free (input_debug.external_pdr);
14817 free (input_debug.external_sym);
14818 free (input_debug.external_opt);
14819 free (input_debug.external_aux);
14820 free (input_debug.ss);
14821 free (input_debug.ssext);
14822 free (input_debug.external_fdr);
14823 free (input_debug.external_rfd);
14824 free (input_debug.external_ext);
14825
14826 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14827 elf_link_input_bfd ignores this section. */
14828 input_section->flags &= ~SEC_HAS_CONTENTS;
14829 }
14830
14831 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14832 {
14833 /* Create .rtproc section. */
14834 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14835 if (rtproc_sec == NULL)
14836 {
14837 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14838 | SEC_LINKER_CREATED | SEC_READONLY);
14839
14840 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14841 ".rtproc",
14842 flags);
14843 if (rtproc_sec == NULL
14844 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14845 return FALSE;
14846 }
14847
14848 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14849 info, rtproc_sec,
14850 &debug))
14851 return FALSE;
14852 }
14853
14854 /* Build the external symbol information. */
14855 einfo.abfd = abfd;
14856 einfo.info = info;
14857 einfo.debug = &debug;
14858 einfo.swap = swap;
14859 einfo.failed = FALSE;
14860 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14861 mips_elf_output_extsym, &einfo);
14862 if (einfo.failed)
14863 return FALSE;
14864
14865 /* Set the size of the .mdebug section. */
14866 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14867
14868 /* Skip this section later on (I don't think this currently
14869 matters, but someday it might). */
14870 o->map_head.link_order = NULL;
14871
14872 mdebug_sec = o;
14873 }
14874
14875 if (CONST_STRNEQ (o->name, ".gptab."))
14876 {
14877 const char *subname;
14878 unsigned int c;
14879 Elf32_gptab *tab;
14880 Elf32_External_gptab *ext_tab;
14881 unsigned int j;
14882
14883 /* The .gptab.sdata and .gptab.sbss sections hold
14884 information describing how the small data area would
14885 change depending upon the -G switch. These sections
14886 not used in executables files. */
14887 if (! bfd_link_relocatable (info))
14888 {
14889 for (p = o->map_head.link_order; p != NULL; p = p->next)
14890 {
14891 asection *input_section;
14892
14893 if (p->type != bfd_indirect_link_order)
14894 {
14895 if (p->type == bfd_data_link_order)
14896 continue;
14897 abort ();
14898 }
14899
14900 input_section = p->u.indirect.section;
14901
14902 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14903 elf_link_input_bfd ignores this section. */
14904 input_section->flags &= ~SEC_HAS_CONTENTS;
14905 }
14906
14907 /* Skip this section later on (I don't think this
14908 currently matters, but someday it might). */
14909 o->map_head.link_order = NULL;
14910
14911 /* Really remove the section. */
14912 bfd_section_list_remove (abfd, o);
14913 --abfd->section_count;
14914
14915 continue;
14916 }
14917
14918 /* There is one gptab for initialized data, and one for
14919 uninitialized data. */
14920 if (strcmp (o->name, ".gptab.sdata") == 0)
14921 gptab_data_sec = o;
14922 else if (strcmp (o->name, ".gptab.sbss") == 0)
14923 gptab_bss_sec = o;
14924 else
14925 {
14926 _bfd_error_handler
14927 /* xgettext:c-format */
14928 (_("%pB: illegal section name `%pA'"), abfd, o);
14929 bfd_set_error (bfd_error_nonrepresentable_section);
14930 return FALSE;
14931 }
14932
14933 /* The linker script always combines .gptab.data and
14934 .gptab.sdata into .gptab.sdata, and likewise for
14935 .gptab.bss and .gptab.sbss. It is possible that there is
14936 no .sdata or .sbss section in the output file, in which
14937 case we must change the name of the output section. */
14938 subname = o->name + sizeof ".gptab" - 1;
14939 if (bfd_get_section_by_name (abfd, subname) == NULL)
14940 {
14941 if (o == gptab_data_sec)
14942 o->name = ".gptab.data";
14943 else
14944 o->name = ".gptab.bss";
14945 subname = o->name + sizeof ".gptab" - 1;
14946 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14947 }
14948
14949 /* Set up the first entry. */
14950 c = 1;
14951 amt = c * sizeof (Elf32_gptab);
14952 tab = bfd_malloc (amt);
14953 if (tab == NULL)
14954 return FALSE;
14955 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14956 tab[0].gt_header.gt_unused = 0;
14957
14958 /* Combine the input sections. */
14959 for (p = o->map_head.link_order; p != NULL; p = p->next)
14960 {
14961 asection *input_section;
14962 bfd *input_bfd;
14963 bfd_size_type size;
14964 unsigned long last;
14965 bfd_size_type gpentry;
14966
14967 if (p->type != bfd_indirect_link_order)
14968 {
14969 if (p->type == bfd_data_link_order)
14970 continue;
14971 abort ();
14972 }
14973
14974 input_section = p->u.indirect.section;
14975 input_bfd = input_section->owner;
14976
14977 /* Combine the gptab entries for this input section one
14978 by one. We know that the input gptab entries are
14979 sorted by ascending -G value. */
14980 size = input_section->size;
14981 last = 0;
14982 for (gpentry = sizeof (Elf32_External_gptab);
14983 gpentry < size;
14984 gpentry += sizeof (Elf32_External_gptab))
14985 {
14986 Elf32_External_gptab ext_gptab;
14987 Elf32_gptab int_gptab;
14988 unsigned long val;
14989 unsigned long add;
14990 bfd_boolean exact;
14991 unsigned int look;
14992
14993 if (! (bfd_get_section_contents
14994 (input_bfd, input_section, &ext_gptab, gpentry,
14995 sizeof (Elf32_External_gptab))))
14996 {
14997 free (tab);
14998 return FALSE;
14999 }
15000
15001 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15002 &int_gptab);
15003 val = int_gptab.gt_entry.gt_g_value;
15004 add = int_gptab.gt_entry.gt_bytes - last;
15005
15006 exact = FALSE;
15007 for (look = 1; look < c; look++)
15008 {
15009 if (tab[look].gt_entry.gt_g_value >= val)
15010 tab[look].gt_entry.gt_bytes += add;
15011
15012 if (tab[look].gt_entry.gt_g_value == val)
15013 exact = TRUE;
15014 }
15015
15016 if (! exact)
15017 {
15018 Elf32_gptab *new_tab;
15019 unsigned int max;
15020
15021 /* We need a new table entry. */
15022 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15023 new_tab = bfd_realloc (tab, amt);
15024 if (new_tab == NULL)
15025 {
15026 free (tab);
15027 return FALSE;
15028 }
15029 tab = new_tab;
15030 tab[c].gt_entry.gt_g_value = val;
15031 tab[c].gt_entry.gt_bytes = add;
15032
15033 /* Merge in the size for the next smallest -G
15034 value, since that will be implied by this new
15035 value. */
15036 max = 0;
15037 for (look = 1; look < c; look++)
15038 {
15039 if (tab[look].gt_entry.gt_g_value < val
15040 && (max == 0
15041 || (tab[look].gt_entry.gt_g_value
15042 > tab[max].gt_entry.gt_g_value)))
15043 max = look;
15044 }
15045 if (max != 0)
15046 tab[c].gt_entry.gt_bytes +=
15047 tab[max].gt_entry.gt_bytes;
15048
15049 ++c;
15050 }
15051
15052 last = int_gptab.gt_entry.gt_bytes;
15053 }
15054
15055 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15056 elf_link_input_bfd ignores this section. */
15057 input_section->flags &= ~SEC_HAS_CONTENTS;
15058 }
15059
15060 /* The table must be sorted by -G value. */
15061 if (c > 2)
15062 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15063
15064 /* Swap out the table. */
15065 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15066 ext_tab = bfd_alloc (abfd, amt);
15067 if (ext_tab == NULL)
15068 {
15069 free (tab);
15070 return FALSE;
15071 }
15072
15073 for (j = 0; j < c; j++)
15074 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15075 free (tab);
15076
15077 o->size = c * sizeof (Elf32_External_gptab);
15078 o->contents = (bfd_byte *) ext_tab;
15079
15080 /* Skip this section later on (I don't think this currently
15081 matters, but someday it might). */
15082 o->map_head.link_order = NULL;
15083 }
15084 }
15085
15086 /* Invoke the regular ELF backend linker to do all the work. */
15087 if (!bfd_elf_final_link (abfd, info))
15088 return FALSE;
15089
15090 /* Now write out the computed sections. */
15091
15092 if (abiflags_sec != NULL)
15093 {
15094 Elf_External_ABIFlags_v0 ext;
15095 Elf_Internal_ABIFlags_v0 *abiflags;
15096
15097 abiflags = &mips_elf_tdata (abfd)->abiflags;
15098
15099 /* Set up the abiflags if no valid input sections were found. */
15100 if (!mips_elf_tdata (abfd)->abiflags_valid)
15101 {
15102 infer_mips_abiflags (abfd, abiflags);
15103 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15104 }
15105 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15106 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15107 return FALSE;
15108 }
15109
15110 if (reginfo_sec != NULL)
15111 {
15112 Elf32_External_RegInfo ext;
15113
15114 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15115 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15116 return FALSE;
15117 }
15118
15119 if (mdebug_sec != NULL)
15120 {
15121 BFD_ASSERT (abfd->output_has_begun);
15122 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15123 swap, info,
15124 mdebug_sec->filepos))
15125 return FALSE;
15126
15127 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15128 }
15129
15130 if (gptab_data_sec != NULL)
15131 {
15132 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15133 gptab_data_sec->contents,
15134 0, gptab_data_sec->size))
15135 return FALSE;
15136 }
15137
15138 if (gptab_bss_sec != NULL)
15139 {
15140 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15141 gptab_bss_sec->contents,
15142 0, gptab_bss_sec->size))
15143 return FALSE;
15144 }
15145
15146 if (SGI_COMPAT (abfd))
15147 {
15148 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15149 if (rtproc_sec != NULL)
15150 {
15151 if (! bfd_set_section_contents (abfd, rtproc_sec,
15152 rtproc_sec->contents,
15153 0, rtproc_sec->size))
15154 return FALSE;
15155 }
15156 }
15157
15158 return TRUE;
15159}
15160\f
15161/* Merge object file header flags from IBFD into OBFD. Raise an error
15162 if there are conflicting settings. */
15163
15164static bfd_boolean
15165mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15166{
15167 bfd *obfd = info->output_bfd;
15168 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15169 flagword old_flags;
15170 flagword new_flags;
15171 bfd_boolean ok;
15172
15173 new_flags = elf_elfheader (ibfd)->e_flags;
15174 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15175 old_flags = elf_elfheader (obfd)->e_flags;
15176
15177 /* Check flag compatibility. */
15178
15179 new_flags &= ~EF_MIPS_NOREORDER;
15180 old_flags &= ~EF_MIPS_NOREORDER;
15181
15182 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15183 doesn't seem to matter. */
15184 new_flags &= ~EF_MIPS_XGOT;
15185 old_flags &= ~EF_MIPS_XGOT;
15186
15187 /* MIPSpro generates ucode info in n64 objects. Again, we should
15188 just be able to ignore this. */
15189 new_flags &= ~EF_MIPS_UCODE;
15190 old_flags &= ~EF_MIPS_UCODE;
15191
15192 /* DSOs should only be linked with CPIC code. */
15193 if ((ibfd->flags & DYNAMIC) != 0)
15194 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15195
15196 if (new_flags == old_flags)
15197 return TRUE;
15198
15199 ok = TRUE;
15200
15201 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15202 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15203 {
15204 _bfd_error_handler
15205 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15206 ibfd);
15207 ok = TRUE;
15208 }
15209
15210 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15211 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15212 if (! (new_flags & EF_MIPS_PIC))
15213 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15214
15215 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15216 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15217
15218 /* Compare the ISAs. */
15219 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15220 {
15221 _bfd_error_handler
15222 (_("%pB: linking 32-bit code with 64-bit code"),
15223 ibfd);
15224 ok = FALSE;
15225 }
15226 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15227 {
15228 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15229 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15230 {
15231 /* Copy the architecture info from IBFD to OBFD. Also copy
15232 the 32-bit flag (if set) so that we continue to recognise
15233 OBFD as a 32-bit binary. */
15234 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15235 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15236 elf_elfheader (obfd)->e_flags
15237 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15238
15239 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15240 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15241
15242 /* Copy across the ABI flags if OBFD doesn't use them
15243 and if that was what caused us to treat IBFD as 32-bit. */
15244 if ((old_flags & EF_MIPS_ABI) == 0
15245 && mips_32bit_flags_p (new_flags)
15246 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15247 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15248 }
15249 else
15250 {
15251 /* The ISAs aren't compatible. */
15252 _bfd_error_handler
15253 /* xgettext:c-format */
15254 (_("%pB: linking %s module with previous %s modules"),
15255 ibfd,
15256 bfd_printable_name (ibfd),
15257 bfd_printable_name (obfd));
15258 ok = FALSE;
15259 }
15260 }
15261
15262 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15263 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15264
15265 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15266 does set EI_CLASS differently from any 32-bit ABI. */
15267 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15268 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15269 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15270 {
15271 /* Only error if both are set (to different values). */
15272 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15273 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15274 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15275 {
15276 _bfd_error_handler
15277 /* xgettext:c-format */
15278 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15279 ibfd,
15280 elf_mips_abi_name (ibfd),
15281 elf_mips_abi_name (obfd));
15282 ok = FALSE;
15283 }
15284 new_flags &= ~EF_MIPS_ABI;
15285 old_flags &= ~EF_MIPS_ABI;
15286 }
15287
15288 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15289 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15290 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15291 {
15292 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15293 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15294 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15295 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15296 int micro_mis = old_m16 && new_micro;
15297 int m16_mis = old_micro && new_m16;
15298
15299 if (m16_mis || micro_mis)
15300 {
15301 _bfd_error_handler
15302 /* xgettext:c-format */
15303 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15304 ibfd,
15305 m16_mis ? "MIPS16" : "microMIPS",
15306 m16_mis ? "microMIPS" : "MIPS16");
15307 ok = FALSE;
15308 }
15309
15310 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15311
15312 new_flags &= ~ EF_MIPS_ARCH_ASE;
15313 old_flags &= ~ EF_MIPS_ARCH_ASE;
15314 }
15315
15316 /* Compare NaN encodings. */
15317 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15318 {
15319 /* xgettext:c-format */
15320 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15321 ibfd,
15322 (new_flags & EF_MIPS_NAN2008
15323 ? "-mnan=2008" : "-mnan=legacy"),
15324 (old_flags & EF_MIPS_NAN2008
15325 ? "-mnan=2008" : "-mnan=legacy"));
15326 ok = FALSE;
15327 new_flags &= ~EF_MIPS_NAN2008;
15328 old_flags &= ~EF_MIPS_NAN2008;
15329 }
15330
15331 /* Compare FP64 state. */
15332 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15333 {
15334 /* xgettext:c-format */
15335 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15336 ibfd,
15337 (new_flags & EF_MIPS_FP64
15338 ? "-mfp64" : "-mfp32"),
15339 (old_flags & EF_MIPS_FP64
15340 ? "-mfp64" : "-mfp32"));
15341 ok = FALSE;
15342 new_flags &= ~EF_MIPS_FP64;
15343 old_flags &= ~EF_MIPS_FP64;
15344 }
15345
15346 /* Warn about any other mismatches */
15347 if (new_flags != old_flags)
15348 {
15349 /* xgettext:c-format */
15350 _bfd_error_handler
15351 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15352 "(%#x)"),
15353 ibfd, new_flags, old_flags);
15354 ok = FALSE;
15355 }
15356
15357 return ok;
15358}
15359
15360/* Merge object attributes from IBFD into OBFD. Raise an error if
15361 there are conflicting attributes. */
15362static bfd_boolean
15363mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15364{
15365 bfd *obfd = info->output_bfd;
15366 obj_attribute *in_attr;
15367 obj_attribute *out_attr;
15368 bfd *abi_fp_bfd;
15369 bfd *abi_msa_bfd;
15370
15371 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15372 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15373 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15374 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15375
15376 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15377 if (!abi_msa_bfd
15378 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15379 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15380
15381 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15382 {
15383 /* This is the first object. Copy the attributes. */
15384 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15385
15386 /* Use the Tag_null value to indicate the attributes have been
15387 initialized. */
15388 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15389
15390 return TRUE;
15391 }
15392
15393 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15394 non-conflicting ones. */
15395 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15396 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15397 {
15398 int out_fp, in_fp;
15399
15400 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15401 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15402 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15403 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15404 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15405 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15406 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15407 || in_fp == Val_GNU_MIPS_ABI_FP_64
15408 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15409 {
15410 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15411 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15412 }
15413 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15414 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15415 || out_fp == Val_GNU_MIPS_ABI_FP_64
15416 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15417 /* Keep the current setting. */;
15418 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15419 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15420 {
15421 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15422 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15423 }
15424 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15425 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15426 /* Keep the current setting. */;
15427 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15428 {
15429 const char *out_string, *in_string;
15430
15431 out_string = _bfd_mips_fp_abi_string (out_fp);
15432 in_string = _bfd_mips_fp_abi_string (in_fp);
15433 /* First warn about cases involving unrecognised ABIs. */
15434 if (!out_string && !in_string)
15435 /* xgettext:c-format */
15436 _bfd_error_handler
15437 (_("warning: %pB uses unknown floating point ABI %d "
15438 "(set by %pB), %pB uses unknown floating point ABI %d"),
15439 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15440 else if (!out_string)
15441 _bfd_error_handler
15442 /* xgettext:c-format */
15443 (_("warning: %pB uses unknown floating point ABI %d "
15444 "(set by %pB), %pB uses %s"),
15445 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15446 else if (!in_string)
15447 _bfd_error_handler
15448 /* xgettext:c-format */
15449 (_("warning: %pB uses %s (set by %pB), "
15450 "%pB uses unknown floating point ABI %d"),
15451 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15452 else
15453 {
15454 /* If one of the bfds is soft-float, the other must be
15455 hard-float. The exact choice of hard-float ABI isn't
15456 really relevant to the error message. */
15457 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15458 out_string = "-mhard-float";
15459 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15460 in_string = "-mhard-float";
15461 _bfd_error_handler
15462 /* xgettext:c-format */
15463 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15464 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15465 }
15466 }
15467 }
15468
15469 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15470 non-conflicting ones. */
15471 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15472 {
15473 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15474 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15475 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15476 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15477 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15478 {
15479 case Val_GNU_MIPS_ABI_MSA_128:
15480 _bfd_error_handler
15481 /* xgettext:c-format */
15482 (_("warning: %pB uses %s (set by %pB), "
15483 "%pB uses unknown MSA ABI %d"),
15484 obfd, "-mmsa", abi_msa_bfd,
15485 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15486 break;
15487
15488 default:
15489 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15490 {
15491 case Val_GNU_MIPS_ABI_MSA_128:
15492 _bfd_error_handler
15493 /* xgettext:c-format */
15494 (_("warning: %pB uses unknown MSA ABI %d "
15495 "(set by %pB), %pB uses %s"),
15496 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15497 abi_msa_bfd, ibfd, "-mmsa");
15498 break;
15499
15500 default:
15501 _bfd_error_handler
15502 /* xgettext:c-format */
15503 (_("warning: %pB uses unknown MSA ABI %d "
15504 "(set by %pB), %pB uses unknown MSA ABI %d"),
15505 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15506 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15507 break;
15508 }
15509 }
15510 }
15511
15512 /* Merge Tag_compatibility attributes and any common GNU ones. */
15513 return _bfd_elf_merge_object_attributes (ibfd, info);
15514}
15515
15516/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15517 there are conflicting settings. */
15518
15519static bfd_boolean
15520mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15521{
15522 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15523 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15524 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15525
15526 /* Update the output abiflags fp_abi using the computed fp_abi. */
15527 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15528
15529#define max(a, b) ((a) > (b) ? (a) : (b))
15530 /* Merge abiflags. */
15531 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15532 in_tdata->abiflags.isa_level);
15533 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15534 in_tdata->abiflags.isa_rev);
15535 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15536 in_tdata->abiflags.gpr_size);
15537 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15538 in_tdata->abiflags.cpr1_size);
15539 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15540 in_tdata->abiflags.cpr2_size);
15541#undef max
15542 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15543 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15544
15545 return TRUE;
15546}
15547
15548/* Merge backend specific data from an object file to the output
15549 object file when linking. */
15550
15551bfd_boolean
15552_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15553{
15554 bfd *obfd = info->output_bfd;
15555 struct mips_elf_obj_tdata *out_tdata;
15556 struct mips_elf_obj_tdata *in_tdata;
15557 bfd_boolean null_input_bfd = TRUE;
15558 asection *sec;
15559 bfd_boolean ok;
15560
15561 /* Check if we have the same endianness. */
15562 if (! _bfd_generic_verify_endian_match (ibfd, info))
15563 {
15564 _bfd_error_handler
15565 (_("%pB: endianness incompatible with that of the selected emulation"),
15566 ibfd);
15567 return FALSE;
15568 }
15569
15570 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15571 return TRUE;
15572
15573 in_tdata = mips_elf_tdata (ibfd);
15574 out_tdata = mips_elf_tdata (obfd);
15575
15576 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15577 {
15578 _bfd_error_handler
15579 (_("%pB: ABI is incompatible with that of the selected emulation"),
15580 ibfd);
15581 return FALSE;
15582 }
15583
15584 /* Check to see if the input BFD actually contains any sections. If not,
15585 then it has no attributes, and its flags may not have been initialized
15586 either, but it cannot actually cause any incompatibility. */
15587 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15588 {
15589 /* Ignore synthetic sections and empty .text, .data and .bss sections
15590 which are automatically generated by gas. Also ignore fake
15591 (s)common sections, since merely defining a common symbol does
15592 not affect compatibility. */
15593 if ((sec->flags & SEC_IS_COMMON) == 0
15594 && strcmp (sec->name, ".reginfo")
15595 && strcmp (sec->name, ".mdebug")
15596 && (sec->size != 0
15597 || (strcmp (sec->name, ".text")
15598 && strcmp (sec->name, ".data")
15599 && strcmp (sec->name, ".bss"))))
15600 {
15601 null_input_bfd = FALSE;
15602 break;
15603 }
15604 }
15605 if (null_input_bfd)
15606 return TRUE;
15607
15608 /* Populate abiflags using existing information. */
15609 if (in_tdata->abiflags_valid)
15610 {
15611 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15612 Elf_Internal_ABIFlags_v0 in_abiflags;
15613 Elf_Internal_ABIFlags_v0 abiflags;
15614
15615 /* Set up the FP ABI attribute from the abiflags if it is not already
15616 set. */
15617 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15618 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15619
15620 infer_mips_abiflags (ibfd, &abiflags);
15621 in_abiflags = in_tdata->abiflags;
15622
15623 /* It is not possible to infer the correct ISA revision
15624 for R3 or R5 so drop down to R2 for the checks. */
15625 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15626 in_abiflags.isa_rev = 2;
15627
15628 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15629 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15630 _bfd_error_handler
15631 (_("%pB: warning: inconsistent ISA between e_flags and "
15632 ".MIPS.abiflags"), ibfd);
15633 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15634 && in_abiflags.fp_abi != abiflags.fp_abi)
15635 _bfd_error_handler
15636 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15637 ".MIPS.abiflags"), ibfd);
15638 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15639 _bfd_error_handler
15640 (_("%pB: warning: inconsistent ASEs between e_flags and "
15641 ".MIPS.abiflags"), ibfd);
15642 /* The isa_ext is allowed to be an extension of what can be inferred
15643 from e_flags. */
15644 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15645 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15646 _bfd_error_handler
15647 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15648 ".MIPS.abiflags"), ibfd);
15649 if (in_abiflags.flags2 != 0)
15650 _bfd_error_handler
15651 (_("%pB: warning: unexpected flag in the flags2 field of "
15652 ".MIPS.abiflags (0x%lx)"), ibfd,
15653 in_abiflags.flags2);
15654 }
15655 else
15656 {
15657 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15658 in_tdata->abiflags_valid = TRUE;
15659 }
15660
15661 if (!out_tdata->abiflags_valid)
15662 {
15663 /* Copy input abiflags if output abiflags are not already valid. */
15664 out_tdata->abiflags = in_tdata->abiflags;
15665 out_tdata->abiflags_valid = TRUE;
15666 }
15667
15668 if (! elf_flags_init (obfd))
15669 {
15670 elf_flags_init (obfd) = TRUE;
15671 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15672 elf_elfheader (obfd)->e_ident[EI_CLASS]
15673 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15674
15675 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15676 && (bfd_get_arch_info (obfd)->the_default
15677 || mips_mach_extends_p (bfd_get_mach (obfd),
15678 bfd_get_mach (ibfd))))
15679 {
15680 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15681 bfd_get_mach (ibfd)))
15682 return FALSE;
15683
15684 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15685 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15686 }
15687
15688 ok = TRUE;
15689 }
15690 else
15691 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15692
15693 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15694
15695 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15696
15697 if (!ok)
15698 {
15699 bfd_set_error (bfd_error_bad_value);
15700 return FALSE;
15701 }
15702
15703 return TRUE;
15704}
15705
15706/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15707
15708bfd_boolean
15709_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15710{
15711 BFD_ASSERT (!elf_flags_init (abfd)
15712 || elf_elfheader (abfd)->e_flags == flags);
15713
15714 elf_elfheader (abfd)->e_flags = flags;
15715 elf_flags_init (abfd) = TRUE;
15716 return TRUE;
15717}
15718
15719char *
15720_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15721{
15722 switch (dtag)
15723 {
15724 default: return "";
15725 case DT_MIPS_RLD_VERSION:
15726 return "MIPS_RLD_VERSION";
15727 case DT_MIPS_TIME_STAMP:
15728 return "MIPS_TIME_STAMP";
15729 case DT_MIPS_ICHECKSUM:
15730 return "MIPS_ICHECKSUM";
15731 case DT_MIPS_IVERSION:
15732 return "MIPS_IVERSION";
15733 case DT_MIPS_FLAGS:
15734 return "MIPS_FLAGS";
15735 case DT_MIPS_BASE_ADDRESS:
15736 return "MIPS_BASE_ADDRESS";
15737 case DT_MIPS_MSYM:
15738 return "MIPS_MSYM";
15739 case DT_MIPS_CONFLICT:
15740 return "MIPS_CONFLICT";
15741 case DT_MIPS_LIBLIST:
15742 return "MIPS_LIBLIST";
15743 case DT_MIPS_LOCAL_GOTNO:
15744 return "MIPS_LOCAL_GOTNO";
15745 case DT_MIPS_CONFLICTNO:
15746 return "MIPS_CONFLICTNO";
15747 case DT_MIPS_LIBLISTNO:
15748 return "MIPS_LIBLISTNO";
15749 case DT_MIPS_SYMTABNO:
15750 return "MIPS_SYMTABNO";
15751 case DT_MIPS_UNREFEXTNO:
15752 return "MIPS_UNREFEXTNO";
15753 case DT_MIPS_GOTSYM:
15754 return "MIPS_GOTSYM";
15755 case DT_MIPS_HIPAGENO:
15756 return "MIPS_HIPAGENO";
15757 case DT_MIPS_RLD_MAP:
15758 return "MIPS_RLD_MAP";
15759 case DT_MIPS_RLD_MAP_REL:
15760 return "MIPS_RLD_MAP_REL";
15761 case DT_MIPS_DELTA_CLASS:
15762 return "MIPS_DELTA_CLASS";
15763 case DT_MIPS_DELTA_CLASS_NO:
15764 return "MIPS_DELTA_CLASS_NO";
15765 case DT_MIPS_DELTA_INSTANCE:
15766 return "MIPS_DELTA_INSTANCE";
15767 case DT_MIPS_DELTA_INSTANCE_NO:
15768 return "MIPS_DELTA_INSTANCE_NO";
15769 case DT_MIPS_DELTA_RELOC:
15770 return "MIPS_DELTA_RELOC";
15771 case DT_MIPS_DELTA_RELOC_NO:
15772 return "MIPS_DELTA_RELOC_NO";
15773 case DT_MIPS_DELTA_SYM:
15774 return "MIPS_DELTA_SYM";
15775 case DT_MIPS_DELTA_SYM_NO:
15776 return "MIPS_DELTA_SYM_NO";
15777 case DT_MIPS_DELTA_CLASSSYM:
15778 return "MIPS_DELTA_CLASSSYM";
15779 case DT_MIPS_DELTA_CLASSSYM_NO:
15780 return "MIPS_DELTA_CLASSSYM_NO";
15781 case DT_MIPS_CXX_FLAGS:
15782 return "MIPS_CXX_FLAGS";
15783 case DT_MIPS_PIXIE_INIT:
15784 return "MIPS_PIXIE_INIT";
15785 case DT_MIPS_SYMBOL_LIB:
15786 return "MIPS_SYMBOL_LIB";
15787 case DT_MIPS_LOCALPAGE_GOTIDX:
15788 return "MIPS_LOCALPAGE_GOTIDX";
15789 case DT_MIPS_LOCAL_GOTIDX:
15790 return "MIPS_LOCAL_GOTIDX";
15791 case DT_MIPS_HIDDEN_GOTIDX:
15792 return "MIPS_HIDDEN_GOTIDX";
15793 case DT_MIPS_PROTECTED_GOTIDX:
15794 return "MIPS_PROTECTED_GOT_IDX";
15795 case DT_MIPS_OPTIONS:
15796 return "MIPS_OPTIONS";
15797 case DT_MIPS_INTERFACE:
15798 return "MIPS_INTERFACE";
15799 case DT_MIPS_DYNSTR_ALIGN:
15800 return "DT_MIPS_DYNSTR_ALIGN";
15801 case DT_MIPS_INTERFACE_SIZE:
15802 return "DT_MIPS_INTERFACE_SIZE";
15803 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15804 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15805 case DT_MIPS_PERF_SUFFIX:
15806 return "DT_MIPS_PERF_SUFFIX";
15807 case DT_MIPS_COMPACT_SIZE:
15808 return "DT_MIPS_COMPACT_SIZE";
15809 case DT_MIPS_GP_VALUE:
15810 return "DT_MIPS_GP_VALUE";
15811 case DT_MIPS_AUX_DYNAMIC:
15812 return "DT_MIPS_AUX_DYNAMIC";
15813 case DT_MIPS_PLTGOT:
15814 return "DT_MIPS_PLTGOT";
15815 case DT_MIPS_RWPLT:
15816 return "DT_MIPS_RWPLT";
15817 }
15818}
15819
15820/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15821 not known. */
15822
15823const char *
15824_bfd_mips_fp_abi_string (int fp)
15825{
15826 switch (fp)
15827 {
15828 /* These strings aren't translated because they're simply
15829 option lists. */
15830 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15831 return "-mdouble-float";
15832
15833 case Val_GNU_MIPS_ABI_FP_SINGLE:
15834 return "-msingle-float";
15835
15836 case Val_GNU_MIPS_ABI_FP_SOFT:
15837 return "-msoft-float";
15838
15839 case Val_GNU_MIPS_ABI_FP_OLD_64:
15840 return _("-mips32r2 -mfp64 (12 callee-saved)");
15841
15842 case Val_GNU_MIPS_ABI_FP_XX:
15843 return "-mfpxx";
15844
15845 case Val_GNU_MIPS_ABI_FP_64:
15846 return "-mgp32 -mfp64";
15847
15848 case Val_GNU_MIPS_ABI_FP_64A:
15849 return "-mgp32 -mfp64 -mno-odd-spreg";
15850
15851 default:
15852 return 0;
15853 }
15854}
15855
15856static void
15857print_mips_ases (FILE *file, unsigned int mask)
15858{
15859 if (mask & AFL_ASE_DSP)
15860 fputs ("\n\tDSP ASE", file);
15861 if (mask & AFL_ASE_DSPR2)
15862 fputs ("\n\tDSP R2 ASE", file);
15863 if (mask & AFL_ASE_DSPR3)
15864 fputs ("\n\tDSP R3 ASE", file);
15865 if (mask & AFL_ASE_EVA)
15866 fputs ("\n\tEnhanced VA Scheme", file);
15867 if (mask & AFL_ASE_MCU)
15868 fputs ("\n\tMCU (MicroController) ASE", file);
15869 if (mask & AFL_ASE_MDMX)
15870 fputs ("\n\tMDMX ASE", file);
15871 if (mask & AFL_ASE_MIPS3D)
15872 fputs ("\n\tMIPS-3D ASE", file);
15873 if (mask & AFL_ASE_MT)
15874 fputs ("\n\tMT ASE", file);
15875 if (mask & AFL_ASE_SMARTMIPS)
15876 fputs ("\n\tSmartMIPS ASE", file);
15877 if (mask & AFL_ASE_VIRT)
15878 fputs ("\n\tVZ ASE", file);
15879 if (mask & AFL_ASE_MSA)
15880 fputs ("\n\tMSA ASE", file);
15881 if (mask & AFL_ASE_MIPS16)
15882 fputs ("\n\tMIPS16 ASE", file);
15883 if (mask & AFL_ASE_MICROMIPS)
15884 fputs ("\n\tMICROMIPS ASE", file);
15885 if (mask & AFL_ASE_XPA)
15886 fputs ("\n\tXPA ASE", file);
15887 if (mask & AFL_ASE_MIPS16E2)
15888 fputs ("\n\tMIPS16e2 ASE", file);
15889 if (mask & AFL_ASE_CRC)
15890 fputs ("\n\tCRC ASE", file);
15891 if (mask & AFL_ASE_GINV)
15892 fputs ("\n\tGINV ASE", file);
15893 if (mask & AFL_ASE_LOONGSON_MMI)
15894 fputs ("\n\tLoongson MMI ASE", file);
15895 if (mask & AFL_ASE_LOONGSON_CAM)
15896 fputs ("\n\tLoongson CAM ASE", file);
15897 if (mask & AFL_ASE_LOONGSON_EXT)
15898 fputs ("\n\tLoongson EXT ASE", file);
15899 if (mask & AFL_ASE_LOONGSON_EXT2)
15900 fputs ("\n\tLoongson EXT2 ASE", file);
15901 if (mask == 0)
15902 fprintf (file, "\n\t%s", _("None"));
15903 else if ((mask & ~AFL_ASE_MASK) != 0)
15904 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15905}
15906
15907static void
15908print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15909{
15910 switch (isa_ext)
15911 {
15912 case 0:
15913 fputs (_("None"), file);
15914 break;
15915 case AFL_EXT_XLR:
15916 fputs ("RMI XLR", file);
15917 break;
15918 case AFL_EXT_OCTEON3:
15919 fputs ("Cavium Networks Octeon3", file);
15920 break;
15921 case AFL_EXT_OCTEON2:
15922 fputs ("Cavium Networks Octeon2", file);
15923 break;
15924 case AFL_EXT_OCTEONP:
15925 fputs ("Cavium Networks OcteonP", file);
15926 break;
15927 case AFL_EXT_OCTEON:
15928 fputs ("Cavium Networks Octeon", file);
15929 break;
15930 case AFL_EXT_5900:
15931 fputs ("Toshiba R5900", file);
15932 break;
15933 case AFL_EXT_4650:
15934 fputs ("MIPS R4650", file);
15935 break;
15936 case AFL_EXT_4010:
15937 fputs ("LSI R4010", file);
15938 break;
15939 case AFL_EXT_4100:
15940 fputs ("NEC VR4100", file);
15941 break;
15942 case AFL_EXT_3900:
15943 fputs ("Toshiba R3900", file);
15944 break;
15945 case AFL_EXT_10000:
15946 fputs ("MIPS R10000", file);
15947 break;
15948 case AFL_EXT_SB1:
15949 fputs ("Broadcom SB-1", file);
15950 break;
15951 case AFL_EXT_4111:
15952 fputs ("NEC VR4111/VR4181", file);
15953 break;
15954 case AFL_EXT_4120:
15955 fputs ("NEC VR4120", file);
15956 break;
15957 case AFL_EXT_5400:
15958 fputs ("NEC VR5400", file);
15959 break;
15960 case AFL_EXT_5500:
15961 fputs ("NEC VR5500", file);
15962 break;
15963 case AFL_EXT_LOONGSON_2E:
15964 fputs ("ST Microelectronics Loongson 2E", file);
15965 break;
15966 case AFL_EXT_LOONGSON_2F:
15967 fputs ("ST Microelectronics Loongson 2F", file);
15968 break;
15969 case AFL_EXT_INTERAPTIV_MR2:
15970 fputs ("Imagination interAptiv MR2", file);
15971 break;
15972 default:
15973 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15974 break;
15975 }
15976}
15977
15978static void
15979print_mips_fp_abi_value (FILE *file, int val)
15980{
15981 switch (val)
15982 {
15983 case Val_GNU_MIPS_ABI_FP_ANY:
15984 fprintf (file, _("Hard or soft float\n"));
15985 break;
15986 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15987 fprintf (file, _("Hard float (double precision)\n"));
15988 break;
15989 case Val_GNU_MIPS_ABI_FP_SINGLE:
15990 fprintf (file, _("Hard float (single precision)\n"));
15991 break;
15992 case Val_GNU_MIPS_ABI_FP_SOFT:
15993 fprintf (file, _("Soft float\n"));
15994 break;
15995 case Val_GNU_MIPS_ABI_FP_OLD_64:
15996 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15997 break;
15998 case Val_GNU_MIPS_ABI_FP_XX:
15999 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16000 break;
16001 case Val_GNU_MIPS_ABI_FP_64:
16002 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16003 break;
16004 case Val_GNU_MIPS_ABI_FP_64A:
16005 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16006 break;
16007 default:
16008 fprintf (file, "??? (%d)\n", val);
16009 break;
16010 }
16011}
16012
16013static int
16014get_mips_reg_size (int reg_size)
16015{
16016 return (reg_size == AFL_REG_NONE) ? 0
16017 : (reg_size == AFL_REG_32) ? 32
16018 : (reg_size == AFL_REG_64) ? 64
16019 : (reg_size == AFL_REG_128) ? 128
16020 : -1;
16021}
16022
16023bfd_boolean
16024_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16025{
16026 FILE *file = ptr;
16027
16028 BFD_ASSERT (abfd != NULL && ptr != NULL);
16029
16030 /* Print normal ELF private data. */
16031 _bfd_elf_print_private_bfd_data (abfd, ptr);
16032
16033 /* xgettext:c-format */
16034 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16035
16036 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16037 fprintf (file, _(" [abi=O32]"));
16038 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16039 fprintf (file, _(" [abi=O64]"));
16040 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16041 fprintf (file, _(" [abi=EABI32]"));
16042 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16043 fprintf (file, _(" [abi=EABI64]"));
16044 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16045 fprintf (file, _(" [abi unknown]"));
16046 else if (ABI_N32_P (abfd))
16047 fprintf (file, _(" [abi=N32]"));
16048 else if (ABI_64_P (abfd))
16049 fprintf (file, _(" [abi=64]"));
16050 else
16051 fprintf (file, _(" [no abi set]"));
16052
16053 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16054 fprintf (file, " [mips1]");
16055 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16056 fprintf (file, " [mips2]");
16057 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16058 fprintf (file, " [mips3]");
16059 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16060 fprintf (file, " [mips4]");
16061 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16062 fprintf (file, " [mips5]");
16063 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16064 fprintf (file, " [mips32]");
16065 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16066 fprintf (file, " [mips64]");
16067 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16068 fprintf (file, " [mips32r2]");
16069 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16070 fprintf (file, " [mips64r2]");
16071 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16072 fprintf (file, " [mips32r6]");
16073 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16074 fprintf (file, " [mips64r6]");
16075 else
16076 fprintf (file, _(" [unknown ISA]"));
16077
16078 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16079 fprintf (file, " [mdmx]");
16080
16081 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16082 fprintf (file, " [mips16]");
16083
16084 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16085 fprintf (file, " [micromips]");
16086
16087 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16088 fprintf (file, " [nan2008]");
16089
16090 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16091 fprintf (file, " [old fp64]");
16092
16093 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16094 fprintf (file, " [32bitmode]");
16095 else
16096 fprintf (file, _(" [not 32bitmode]"));
16097
16098 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16099 fprintf (file, " [noreorder]");
16100
16101 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16102 fprintf (file, " [PIC]");
16103
16104 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16105 fprintf (file, " [CPIC]");
16106
16107 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16108 fprintf (file, " [XGOT]");
16109
16110 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16111 fprintf (file, " [UCODE]");
16112
16113 fputc ('\n', file);
16114
16115 if (mips_elf_tdata (abfd)->abiflags_valid)
16116 {
16117 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16118 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16119 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16120 if (abiflags->isa_rev > 1)
16121 fprintf (file, "r%d", abiflags->isa_rev);
16122 fprintf (file, "\nGPR size: %d",
16123 get_mips_reg_size (abiflags->gpr_size));
16124 fprintf (file, "\nCPR1 size: %d",
16125 get_mips_reg_size (abiflags->cpr1_size));
16126 fprintf (file, "\nCPR2 size: %d",
16127 get_mips_reg_size (abiflags->cpr2_size));
16128 fputs ("\nFP ABI: ", file);
16129 print_mips_fp_abi_value (file, abiflags->fp_abi);
16130 fputs ("ISA Extension: ", file);
16131 print_mips_isa_ext (file, abiflags->isa_ext);
16132 fputs ("\nASEs:", file);
16133 print_mips_ases (file, abiflags->ases);
16134 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16135 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16136 fputc ('\n', file);
16137 }
16138
16139 return TRUE;
16140}
16141
16142const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16143{
16144 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16145 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16146 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16147 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16148 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16149 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16150 { NULL, 0, 0, 0, 0 }
16151};
16152
16153/* Merge non visibility st_other attributes. Ensure that the
16154 STO_OPTIONAL flag is copied into h->other, even if this is not a
16155 definiton of the symbol. */
16156void
16157_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16158 const Elf_Internal_Sym *isym,
16159 bfd_boolean definition,
16160 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16161{
16162 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16163 {
16164 unsigned char other;
16165
16166 other = (definition ? isym->st_other : h->other);
16167 other &= ~ELF_ST_VISIBILITY (-1);
16168 h->other = other | ELF_ST_VISIBILITY (h->other);
16169 }
16170
16171 if (!definition
16172 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16173 h->other |= STO_OPTIONAL;
16174}
16175
16176/* Decide whether an undefined symbol is special and can be ignored.
16177 This is the case for OPTIONAL symbols on IRIX. */
16178bfd_boolean
16179_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16180{
16181 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16182}
16183
16184bfd_boolean
16185_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16186{
16187 return (sym->st_shndx == SHN_COMMON
16188 || sym->st_shndx == SHN_MIPS_ACOMMON
16189 || sym->st_shndx == SHN_MIPS_SCOMMON);
16190}
16191
16192/* Return address for Ith PLT stub in section PLT, for relocation REL
16193 or (bfd_vma) -1 if it should not be included. */
16194
16195bfd_vma
16196_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16197 const arelent *rel ATTRIBUTE_UNUSED)
16198{
16199 return (plt->vma
16200 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16201 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16202}
16203
16204/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16205 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16206 and .got.plt and also the slots may be of a different size each we walk
16207 the PLT manually fetching instructions and matching them against known
16208 patterns. To make things easier standard MIPS slots, if any, always come
16209 first. As we don't create proper ELF symbols we use the UDATA.I member
16210 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16211 with the ST_OTHER member of the ELF symbol. */
16212
16213long
16214_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16215 long symcount ATTRIBUTE_UNUSED,
16216 asymbol **syms ATTRIBUTE_UNUSED,
16217 long dynsymcount, asymbol **dynsyms,
16218 asymbol **ret)
16219{
16220 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16221 static const char microsuffix[] = "@micromipsplt";
16222 static const char m16suffix[] = "@mips16plt";
16223 static const char mipssuffix[] = "@plt";
16224
16225 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16226 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16227 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16228 Elf_Internal_Shdr *hdr;
16229 bfd_byte *plt_data;
16230 bfd_vma plt_offset;
16231 unsigned int other;
16232 bfd_vma entry_size;
16233 bfd_vma plt0_size;
16234 asection *relplt;
16235 bfd_vma opcode;
16236 asection *plt;
16237 asymbol *send;
16238 size_t size;
16239 char *names;
16240 long counti;
16241 arelent *p;
16242 asymbol *s;
16243 char *nend;
16244 long count;
16245 long pi;
16246 long i;
16247 long n;
16248
16249 *ret = NULL;
16250
16251 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16252 return 0;
16253
16254 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16255 if (relplt == NULL)
16256 return 0;
16257
16258 hdr = &elf_section_data (relplt)->this_hdr;
16259 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16260 return 0;
16261
16262 plt = bfd_get_section_by_name (abfd, ".plt");
16263 if (plt == NULL)
16264 return 0;
16265
16266 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16267 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16268 return -1;
16269 p = relplt->relocation;
16270
16271 /* Calculating the exact amount of space required for symbols would
16272 require two passes over the PLT, so just pessimise assuming two
16273 PLT slots per relocation. */
16274 count = relplt->size / hdr->sh_entsize;
16275 counti = count * bed->s->int_rels_per_ext_rel;
16276 size = 2 * count * sizeof (asymbol);
16277 size += count * (sizeof (mipssuffix) +
16278 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16279 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16280 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16281
16282 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16283 size += sizeof (asymbol) + sizeof (pltname);
16284
16285 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16286 return -1;
16287
16288 if (plt->size < 16)
16289 return -1;
16290
16291 s = *ret = bfd_malloc (size);
16292 if (s == NULL)
16293 return -1;
16294 send = s + 2 * count + 1;
16295
16296 names = (char *) send;
16297 nend = (char *) s + size;
16298 n = 0;
16299
16300 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16301 if (opcode == 0x3302fffe)
16302 {
16303 if (!micromips_p)
16304 return -1;
16305 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16306 other = STO_MICROMIPS;
16307 }
16308 else if (opcode == 0x0398c1d0)
16309 {
16310 if (!micromips_p)
16311 return -1;
16312 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16313 other = STO_MICROMIPS;
16314 }
16315 else
16316 {
16317 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16318 other = 0;
16319 }
16320
16321 s->the_bfd = abfd;
16322 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16323 s->section = plt;
16324 s->value = 0;
16325 s->name = names;
16326 s->udata.i = other;
16327 memcpy (names, pltname, sizeof (pltname));
16328 names += sizeof (pltname);
16329 ++s, ++n;
16330
16331 pi = 0;
16332 for (plt_offset = plt0_size;
16333 plt_offset + 8 <= plt->size && s < send;
16334 plt_offset += entry_size)
16335 {
16336 bfd_vma gotplt_addr;
16337 const char *suffix;
16338 bfd_vma gotplt_hi;
16339 bfd_vma gotplt_lo;
16340 size_t suffixlen;
16341
16342 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16343
16344 /* Check if the second word matches the expected MIPS16 instruction. */
16345 if (opcode == 0x651aeb00)
16346 {
16347 if (micromips_p)
16348 return -1;
16349 /* Truncated table??? */
16350 if (plt_offset + 16 > plt->size)
16351 break;
16352 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16353 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16354 suffixlen = sizeof (m16suffix);
16355 suffix = m16suffix;
16356 other = STO_MIPS16;
16357 }
16358 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16359 else if (opcode == 0xff220000)
16360 {
16361 if (!micromips_p)
16362 return -1;
16363 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16364 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16365 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16366 gotplt_lo <<= 2;
16367 gotplt_addr = gotplt_hi + gotplt_lo;
16368 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16369 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16370 suffixlen = sizeof (microsuffix);
16371 suffix = microsuffix;
16372 other = STO_MICROMIPS;
16373 }
16374 /* Likewise the expected microMIPS instruction (insn32 mode). */
16375 else if ((opcode & 0xffff0000) == 0xff2f0000)
16376 {
16377 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16378 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16379 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16380 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16381 gotplt_addr = gotplt_hi + gotplt_lo;
16382 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16383 suffixlen = sizeof (microsuffix);
16384 suffix = microsuffix;
16385 other = STO_MICROMIPS;
16386 }
16387 /* Otherwise assume standard MIPS code. */
16388 else
16389 {
16390 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16391 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16392 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16393 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16394 gotplt_addr = gotplt_hi + gotplt_lo;
16395 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16396 suffixlen = sizeof (mipssuffix);
16397 suffix = mipssuffix;
16398 other = 0;
16399 }
16400 /* Truncated table??? */
16401 if (plt_offset + entry_size > plt->size)
16402 break;
16403
16404 for (i = 0;
16405 i < count && p[pi].address != gotplt_addr;
16406 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16407
16408 if (i < count)
16409 {
16410 size_t namelen;
16411 size_t len;
16412
16413 *s = **p[pi].sym_ptr_ptr;
16414 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16415 we are defining a symbol, ensure one of them is set. */
16416 if ((s->flags & BSF_LOCAL) == 0)
16417 s->flags |= BSF_GLOBAL;
16418 s->flags |= BSF_SYNTHETIC;
16419 s->section = plt;
16420 s->value = plt_offset;
16421 s->name = names;
16422 s->udata.i = other;
16423
16424 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16425 namelen = len + suffixlen;
16426 if (names + namelen > nend)
16427 break;
16428
16429 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16430 names += len;
16431 memcpy (names, suffix, suffixlen);
16432 names += suffixlen;
16433
16434 ++s, ++n;
16435 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16436 }
16437 }
16438
16439 free (plt_data);
16440
16441 return n;
16442}
16443
16444/* Return the ABI flags associated with ABFD if available. */
16445
16446Elf_Internal_ABIFlags_v0 *
16447bfd_mips_elf_get_abiflags (bfd *abfd)
16448{
16449 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16450
16451 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16452}
16453
16454/* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16455 field. Taken from `libc-abis.h' generated at GNU libc build time.
16456 Using a MIPS_ prefix as other libc targets use different values. */
16457enum
16458{
16459 MIPS_LIBC_ABI_DEFAULT = 0,
16460 MIPS_LIBC_ABI_MIPS_PLT,
16461 MIPS_LIBC_ABI_UNIQUE,
16462 MIPS_LIBC_ABI_MIPS_O32_FP64,
16463 MIPS_LIBC_ABI_ABSOLUTE,
16464 MIPS_LIBC_ABI_MAX
16465};
16466
16467void
16468_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16469{
16470 struct mips_elf_link_hash_table *htab = NULL;
16471 Elf_Internal_Ehdr *i_ehdrp;
16472
16473 i_ehdrp = elf_elfheader (abfd);
16474 if (link_info)
16475 {
16476 htab = mips_elf_hash_table (link_info);
16477 BFD_ASSERT (htab != NULL);
16478 }
16479
16480 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16481 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16482
16483 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16484 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16485 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16486
16487 /* Mark that we need support for absolute symbols in the dynamic loader. */
16488 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16489 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16490
16491 _bfd_elf_post_process_headers (abfd, link_info);
16492}
16493
16494int
16495_bfd_mips_elf_compact_eh_encoding
16496 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16497{
16498 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16499}
16500
16501/* Return the opcode for can't unwind. */
16502
16503int
16504_bfd_mips_elf_cant_unwind_opcode
16505 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16506{
16507 return COMPACT_EH_CANT_UNWIND_OPCODE;
16508}
This page took 0.08023 seconds and 4 git commands to generate.