Enable VREX for all AVX512 directives
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
... / ...
CommitLineData
1/* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
31#include "sysdep.h"
32#include "bfd.h"
33#include "libbfd.h"
34#include "libiberty.h"
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
38#include "elf-vxworks.h"
39#include "dwarf2.h"
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
47#include "hashtab.h"
48
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
57/* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75struct mips_got_entry
76{
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108};
109
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143struct mips_got_page_entry
144{
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
153/* This structure is used to hold .got information when linking. */
154
155struct mips_got_info
156{
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
187/* Structure passed when merging bfds' gots. */
188
189struct mips_elf_got_per_bfd_arg
190{
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212};
213
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217struct mips_elf_traverse_got_arg
218{
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222};
223
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321};
322
323/* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328struct plt_entry
329{
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347};
348
349/* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352struct mips_elf_link_hash_entry
353{
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416};
417
418/* MIPS ELF linker hash table. */
419
420struct mips_elf_link_hash_table
421{
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519};
520
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527/* A structure used to communicate with htab_traverse callbacks. */
528struct mips_htab_traverse_info
529{
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536};
537
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618};
619
620/* The names of the runtime procedure table symbols used on IRIX5. */
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
741static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746static bfd_vma mips_elf_high
747 (bfd_vma);
748static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788/* Nonzero if ABFD is using the N32 ABI. */
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792/* Nonzero if ABFD is using the N64 ABI. */
793#define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808/* The IRIX compatibility level we are striving for. */
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834/* The name of the stub section. */
835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879/* Add a dynamic symbol table-entry. */
880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
893#define MINUS_TWO (((bfd_vma)0) - 2)
894
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901/* The offset of $gp from the beginning of the .got section. */
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909/* Instructions which appear in a stub. */
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916#define STUB_JALR 0x0320f809 /* jalr t9,ra */
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019\f
1020/* The format of the first PLT entry in an O32 executable. */
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1094/* The format of subsequent standard PLT entries. */
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
1147/* The format of the first PLT entry in a VxWorks executable. */
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
1290
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
1300bfd_boolean
1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302{
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320bfd_boolean
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370#undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
1424static bfd_boolean
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570}
1571\f
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605}
1606
1607/* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611static bfd_boolean
1612mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615{
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646}
1647
1648/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651static bfd_boolean
1652section_allows_mips16_refs_p (asection *section)
1653{
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661}
1662
1663/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667static unsigned long
1668mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672{
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688}
1689
1690/* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693static void
1694mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696{
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744}
1745
1746/* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748static hashval_t
1749mips_elf_la25_stub_hash (const void *entry_)
1750{
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756}
1757
1758static int
1759mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760{
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769}
1770
1771/* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775bfd_boolean
1776_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779{
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793}
1794
1795/* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801static bfd_boolean
1802mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803{
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812}
1813
1814/* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817static bfd_vma
1818mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820{
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832}
1833
1834/* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838static bfd_boolean
1839mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841{
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879}
1880
1881/* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885static bfd_boolean
1886mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888{
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916}
1917
1918/* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921static bfd_boolean
1922mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924{
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970}
1971
1972/* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975static bfd_boolean
1976mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977{
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008}
2009\f
2010/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system. */
2094
2095static inline bfd_boolean
2096mips16_reloc_p (int r_type)
2097{
2098 switch (r_type)
2099 {
2100 case R_MIPS16_26:
2101 case R_MIPS16_GPREL:
2102 case R_MIPS16_GOT16:
2103 case R_MIPS16_CALL16:
2104 case R_MIPS16_HI16:
2105 case R_MIPS16_LO16:
2106 case R_MIPS16_TLS_GD:
2107 case R_MIPS16_TLS_LDM:
2108 case R_MIPS16_TLS_DTPREL_HI16:
2109 case R_MIPS16_TLS_DTPREL_LO16:
2110 case R_MIPS16_TLS_GOTTPREL:
2111 case R_MIPS16_TLS_TPREL_HI16:
2112 case R_MIPS16_TLS_TPREL_LO16:
2113 return TRUE;
2114
2115 default:
2116 return FALSE;
2117 }
2118}
2119
2120/* Check if a microMIPS reloc. */
2121
2122static inline bfd_boolean
2123micromips_reloc_p (unsigned int r_type)
2124{
2125 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2126}
2127
2128/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2129 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2130 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2131
2132static inline bfd_boolean
2133micromips_reloc_shuffle_p (unsigned int r_type)
2134{
2135 return (micromips_reloc_p (r_type)
2136 && r_type != R_MICROMIPS_PC7_S1
2137 && r_type != R_MICROMIPS_PC10_S1);
2138}
2139
2140static inline bfd_boolean
2141got16_reloc_p (int r_type)
2142{
2143 return (r_type == R_MIPS_GOT16
2144 || r_type == R_MIPS16_GOT16
2145 || r_type == R_MICROMIPS_GOT16);
2146}
2147
2148static inline bfd_boolean
2149call16_reloc_p (int r_type)
2150{
2151 return (r_type == R_MIPS_CALL16
2152 || r_type == R_MIPS16_CALL16
2153 || r_type == R_MICROMIPS_CALL16);
2154}
2155
2156static inline bfd_boolean
2157got_disp_reloc_p (unsigned int r_type)
2158{
2159 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2160}
2161
2162static inline bfd_boolean
2163got_page_reloc_p (unsigned int r_type)
2164{
2165 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2166}
2167
2168static inline bfd_boolean
2169got_lo16_reloc_p (unsigned int r_type)
2170{
2171 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2172}
2173
2174static inline bfd_boolean
2175call_hi16_reloc_p (unsigned int r_type)
2176{
2177 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2178}
2179
2180static inline bfd_boolean
2181call_lo16_reloc_p (unsigned int r_type)
2182{
2183 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2184}
2185
2186static inline bfd_boolean
2187hi16_reloc_p (int r_type)
2188{
2189 return (r_type == R_MIPS_HI16
2190 || r_type == R_MIPS16_HI16
2191 || r_type == R_MICROMIPS_HI16
2192 || r_type == R_MIPS_PCHI16);
2193}
2194
2195static inline bfd_boolean
2196lo16_reloc_p (int r_type)
2197{
2198 return (r_type == R_MIPS_LO16
2199 || r_type == R_MIPS16_LO16
2200 || r_type == R_MICROMIPS_LO16
2201 || r_type == R_MIPS_PCLO16);
2202}
2203
2204static inline bfd_boolean
2205mips16_call_reloc_p (int r_type)
2206{
2207 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2208}
2209
2210static inline bfd_boolean
2211jal_reloc_p (int r_type)
2212{
2213 return (r_type == R_MIPS_26
2214 || r_type == R_MIPS16_26
2215 || r_type == R_MICROMIPS_26_S1);
2216}
2217
2218static inline bfd_boolean
2219aligned_pcrel_reloc_p (int r_type)
2220{
2221 return (r_type == R_MIPS_PC18_S3
2222 || r_type == R_MIPS_PC19_S2);
2223}
2224
2225static inline bfd_boolean
2226micromips_branch_reloc_p (int r_type)
2227{
2228 return (r_type == R_MICROMIPS_26_S1
2229 || r_type == R_MICROMIPS_PC16_S1
2230 || r_type == R_MICROMIPS_PC10_S1
2231 || r_type == R_MICROMIPS_PC7_S1);
2232}
2233
2234static inline bfd_boolean
2235tls_gd_reloc_p (unsigned int r_type)
2236{
2237 return (r_type == R_MIPS_TLS_GD
2238 || r_type == R_MIPS16_TLS_GD
2239 || r_type == R_MICROMIPS_TLS_GD);
2240}
2241
2242static inline bfd_boolean
2243tls_ldm_reloc_p (unsigned int r_type)
2244{
2245 return (r_type == R_MIPS_TLS_LDM
2246 || r_type == R_MIPS16_TLS_LDM
2247 || r_type == R_MICROMIPS_TLS_LDM);
2248}
2249
2250static inline bfd_boolean
2251tls_gottprel_reloc_p (unsigned int r_type)
2252{
2253 return (r_type == R_MIPS_TLS_GOTTPREL
2254 || r_type == R_MIPS16_TLS_GOTTPREL
2255 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2256}
2257
2258void
2259_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2260 bfd_boolean jal_shuffle, bfd_byte *data)
2261{
2262 bfd_vma first, second, val;
2263
2264 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2265 return;
2266
2267 /* Pick up the first and second halfwords of the instruction. */
2268 first = bfd_get_16 (abfd, data);
2269 second = bfd_get_16 (abfd, data + 2);
2270 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2271 val = first << 16 | second;
2272 else if (r_type != R_MIPS16_26)
2273 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2274 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2275 else
2276 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2277 | ((first & 0x1f) << 21) | second);
2278 bfd_put_32 (abfd, val, data);
2279}
2280
2281void
2282_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2283 bfd_boolean jal_shuffle, bfd_byte *data)
2284{
2285 bfd_vma first, second, val;
2286
2287 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2288 return;
2289
2290 val = bfd_get_32 (abfd, data);
2291 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2292 {
2293 second = val & 0xffff;
2294 first = val >> 16;
2295 }
2296 else if (r_type != R_MIPS16_26)
2297 {
2298 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2299 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2300 }
2301 else
2302 {
2303 second = val & 0xffff;
2304 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2305 | ((val >> 21) & 0x1f);
2306 }
2307 bfd_put_16 (abfd, second, data + 2);
2308 bfd_put_16 (abfd, first, data);
2309}
2310
2311bfd_reloc_status_type
2312_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2313 arelent *reloc_entry, asection *input_section,
2314 bfd_boolean relocatable, void *data, bfd_vma gp)
2315{
2316 bfd_vma relocation;
2317 bfd_signed_vma val;
2318 bfd_reloc_status_type status;
2319
2320 if (bfd_is_com_section (symbol->section))
2321 relocation = 0;
2322 else
2323 relocation = symbol->value;
2324
2325 relocation += symbol->section->output_section->vma;
2326 relocation += symbol->section->output_offset;
2327
2328 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2329 return bfd_reloc_outofrange;
2330
2331 /* Set val to the offset into the section or symbol. */
2332 val = reloc_entry->addend;
2333
2334 _bfd_mips_elf_sign_extend (val, 16);
2335
2336 /* Adjust val for the final section location and GP value. If we
2337 are producing relocatable output, we don't want to do this for
2338 an external symbol. */
2339 if (! relocatable
2340 || (symbol->flags & BSF_SECTION_SYM) != 0)
2341 val += relocation - gp;
2342
2343 if (reloc_entry->howto->partial_inplace)
2344 {
2345 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2346 (bfd_byte *) data
2347 + reloc_entry->address);
2348 if (status != bfd_reloc_ok)
2349 return status;
2350 }
2351 else
2352 reloc_entry->addend = val;
2353
2354 if (relocatable)
2355 reloc_entry->address += input_section->output_offset;
2356
2357 return bfd_reloc_ok;
2358}
2359
2360/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2361 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2362 that contains the relocation field and DATA points to the start of
2363 INPUT_SECTION. */
2364
2365struct mips_hi16
2366{
2367 struct mips_hi16 *next;
2368 bfd_byte *data;
2369 asection *input_section;
2370 arelent rel;
2371};
2372
2373/* FIXME: This should not be a static variable. */
2374
2375static struct mips_hi16 *mips_hi16_list;
2376
2377/* A howto special_function for REL *HI16 relocations. We can only
2378 calculate the correct value once we've seen the partnering
2379 *LO16 relocation, so just save the information for later.
2380
2381 The ABI requires that the *LO16 immediately follow the *HI16.
2382 However, as a GNU extension, we permit an arbitrary number of
2383 *HI16s to be associated with a single *LO16. This significantly
2384 simplies the relocation handling in gcc. */
2385
2386bfd_reloc_status_type
2387_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2388 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2389 asection *input_section, bfd *output_bfd,
2390 char **error_message ATTRIBUTE_UNUSED)
2391{
2392 struct mips_hi16 *n;
2393
2394 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2395 return bfd_reloc_outofrange;
2396
2397 n = bfd_malloc (sizeof *n);
2398 if (n == NULL)
2399 return bfd_reloc_outofrange;
2400
2401 n->next = mips_hi16_list;
2402 n->data = data;
2403 n->input_section = input_section;
2404 n->rel = *reloc_entry;
2405 mips_hi16_list = n;
2406
2407 if (output_bfd != NULL)
2408 reloc_entry->address += input_section->output_offset;
2409
2410 return bfd_reloc_ok;
2411}
2412
2413/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2414 like any other 16-bit relocation when applied to global symbols, but is
2415 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2416
2417bfd_reloc_status_type
2418_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2419 void *data, asection *input_section,
2420 bfd *output_bfd, char **error_message)
2421{
2422 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2423 || bfd_is_und_section (bfd_get_section (symbol))
2424 || bfd_is_com_section (bfd_get_section (symbol)))
2425 /* The relocation is against a global symbol. */
2426 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2427 input_section, output_bfd,
2428 error_message);
2429
2430 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2431 input_section, output_bfd, error_message);
2432}
2433
2434/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2435 is a straightforward 16 bit inplace relocation, but we must deal with
2436 any partnering high-part relocations as well. */
2437
2438bfd_reloc_status_type
2439_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2440 void *data, asection *input_section,
2441 bfd *output_bfd, char **error_message)
2442{
2443 bfd_vma vallo;
2444 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2445
2446 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2447 return bfd_reloc_outofrange;
2448
2449 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2450 location);
2451 vallo = bfd_get_32 (abfd, location);
2452 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2453 location);
2454
2455 while (mips_hi16_list != NULL)
2456 {
2457 bfd_reloc_status_type ret;
2458 struct mips_hi16 *hi;
2459
2460 hi = mips_hi16_list;
2461
2462 /* R_MIPS*_GOT16 relocations are something of a special case. We
2463 want to install the addend in the same way as for a R_MIPS*_HI16
2464 relocation (with a rightshift of 16). However, since GOT16
2465 relocations can also be used with global symbols, their howto
2466 has a rightshift of 0. */
2467 if (hi->rel.howto->type == R_MIPS_GOT16)
2468 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2469 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2470 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2471 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2472 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2473
2474 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2475 carry or borrow will induce a change of +1 or -1 in the high part. */
2476 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2477
2478 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2479 hi->input_section, output_bfd,
2480 error_message);
2481 if (ret != bfd_reloc_ok)
2482 return ret;
2483
2484 mips_hi16_list = hi->next;
2485 free (hi);
2486 }
2487
2488 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2489 input_section, output_bfd,
2490 error_message);
2491}
2492
2493/* A generic howto special_function. This calculates and installs the
2494 relocation itself, thus avoiding the oft-discussed problems in
2495 bfd_perform_relocation and bfd_install_relocation. */
2496
2497bfd_reloc_status_type
2498_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2499 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2500 asection *input_section, bfd *output_bfd,
2501 char **error_message ATTRIBUTE_UNUSED)
2502{
2503 bfd_signed_vma val;
2504 bfd_reloc_status_type status;
2505 bfd_boolean relocatable;
2506
2507 relocatable = (output_bfd != NULL);
2508
2509 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2510 return bfd_reloc_outofrange;
2511
2512 /* Build up the field adjustment in VAL. */
2513 val = 0;
2514 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2515 {
2516 /* Either we're calculating the final field value or we have a
2517 relocation against a section symbol. Add in the section's
2518 offset or address. */
2519 val += symbol->section->output_section->vma;
2520 val += symbol->section->output_offset;
2521 }
2522
2523 if (!relocatable)
2524 {
2525 /* We're calculating the final field value. Add in the symbol's value
2526 and, if pc-relative, subtract the address of the field itself. */
2527 val += symbol->value;
2528 if (reloc_entry->howto->pc_relative)
2529 {
2530 val -= input_section->output_section->vma;
2531 val -= input_section->output_offset;
2532 val -= reloc_entry->address;
2533 }
2534 }
2535
2536 /* VAL is now the final adjustment. If we're keeping this relocation
2537 in the output file, and if the relocation uses a separate addend,
2538 we just need to add VAL to that addend. Otherwise we need to add
2539 VAL to the relocation field itself. */
2540 if (relocatable && !reloc_entry->howto->partial_inplace)
2541 reloc_entry->addend += val;
2542 else
2543 {
2544 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2545
2546 /* Add in the separate addend, if any. */
2547 val += reloc_entry->addend;
2548
2549 /* Add VAL to the relocation field. */
2550 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2551 location);
2552 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2553 location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
2556
2557 if (status != bfd_reloc_ok)
2558 return status;
2559 }
2560
2561 if (relocatable)
2562 reloc_entry->address += input_section->output_offset;
2563
2564 return bfd_reloc_ok;
2565}
2566\f
2567/* Swap an entry in a .gptab section. Note that these routines rely
2568 on the equivalence of the two elements of the union. */
2569
2570static void
2571bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2572 Elf32_gptab *in)
2573{
2574 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2575 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2576}
2577
2578static void
2579bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2580 Elf32_External_gptab *ex)
2581{
2582 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2583 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2584}
2585
2586static void
2587bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2588 Elf32_External_compact_rel *ex)
2589{
2590 H_PUT_32 (abfd, in->id1, ex->id1);
2591 H_PUT_32 (abfd, in->num, ex->num);
2592 H_PUT_32 (abfd, in->id2, ex->id2);
2593 H_PUT_32 (abfd, in->offset, ex->offset);
2594 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2595 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2596}
2597
2598static void
2599bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2600 Elf32_External_crinfo *ex)
2601{
2602 unsigned long l;
2603
2604 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2605 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2606 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2607 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2608 H_PUT_32 (abfd, l, ex->info);
2609 H_PUT_32 (abfd, in->konst, ex->konst);
2610 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2611}
2612\f
2613/* A .reginfo section holds a single Elf32_RegInfo structure. These
2614 routines swap this structure in and out. They are used outside of
2615 BFD, so they are globally visible. */
2616
2617void
2618bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2619 Elf32_RegInfo *in)
2620{
2621 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2626 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2627}
2628
2629void
2630bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2631 Elf32_External_RegInfo *ex)
2632{
2633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2634 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2635 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2636 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2637 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2638 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2639}
2640
2641/* In the 64 bit ABI, the .MIPS.options section holds register
2642 information in an Elf64_Reginfo structure. These routines swap
2643 them in and out. They are globally visible because they are used
2644 outside of BFD. These routines are here so that gas can call them
2645 without worrying about whether the 64 bit ABI has been included. */
2646
2647void
2648bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2649 Elf64_Internal_RegInfo *in)
2650{
2651 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2652 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2653 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2654 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2655 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2656 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2657 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2658}
2659
2660void
2661bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2662 Elf64_External_RegInfo *ex)
2663{
2664 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2665 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2670 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2671}
2672
2673/* Swap in an options header. */
2674
2675void
2676bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2677 Elf_Internal_Options *in)
2678{
2679 in->kind = H_GET_8 (abfd, ex->kind);
2680 in->size = H_GET_8 (abfd, ex->size);
2681 in->section = H_GET_16 (abfd, ex->section);
2682 in->info = H_GET_32 (abfd, ex->info);
2683}
2684
2685/* Swap out an options header. */
2686
2687void
2688bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2689 Elf_External_Options *ex)
2690{
2691 H_PUT_8 (abfd, in->kind, ex->kind);
2692 H_PUT_8 (abfd, in->size, ex->size);
2693 H_PUT_16 (abfd, in->section, ex->section);
2694 H_PUT_32 (abfd, in->info, ex->info);
2695}
2696
2697/* Swap in an abiflags structure. */
2698
2699void
2700bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2701 const Elf_External_ABIFlags_v0 *ex,
2702 Elf_Internal_ABIFlags_v0 *in)
2703{
2704 in->version = H_GET_16 (abfd, ex->version);
2705 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2706 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2707 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2708 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2709 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2710 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2711 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2712 in->ases = H_GET_32 (abfd, ex->ases);
2713 in->flags1 = H_GET_32 (abfd, ex->flags1);
2714 in->flags2 = H_GET_32 (abfd, ex->flags2);
2715}
2716
2717/* Swap out an abiflags structure. */
2718
2719void
2720bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2721 const Elf_Internal_ABIFlags_v0 *in,
2722 Elf_External_ABIFlags_v0 *ex)
2723{
2724 H_PUT_16 (abfd, in->version, ex->version);
2725 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2726 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2727 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2728 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2729 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2730 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2731 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2732 H_PUT_32 (abfd, in->ases, ex->ases);
2733 H_PUT_32 (abfd, in->flags1, ex->flags1);
2734 H_PUT_32 (abfd, in->flags2, ex->flags2);
2735}
2736\f
2737/* This function is called via qsort() to sort the dynamic relocation
2738 entries by increasing r_symndx value. */
2739
2740static int
2741sort_dynamic_relocs (const void *arg1, const void *arg2)
2742{
2743 Elf_Internal_Rela int_reloc1;
2744 Elf_Internal_Rela int_reloc2;
2745 int diff;
2746
2747 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2748 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2749
2750 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2751 if (diff != 0)
2752 return diff;
2753
2754 if (int_reloc1.r_offset < int_reloc2.r_offset)
2755 return -1;
2756 if (int_reloc1.r_offset > int_reloc2.r_offset)
2757 return 1;
2758 return 0;
2759}
2760
2761/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2762
2763static int
2764sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2765 const void *arg2 ATTRIBUTE_UNUSED)
2766{
2767#ifdef BFD64
2768 Elf_Internal_Rela int_reloc1[3];
2769 Elf_Internal_Rela int_reloc2[3];
2770
2771 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2772 (reldyn_sorting_bfd, arg1, int_reloc1);
2773 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2774 (reldyn_sorting_bfd, arg2, int_reloc2);
2775
2776 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2777 return -1;
2778 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2779 return 1;
2780
2781 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2782 return -1;
2783 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2784 return 1;
2785 return 0;
2786#else
2787 abort ();
2788#endif
2789}
2790
2791
2792/* This routine is used to write out ECOFF debugging external symbol
2793 information. It is called via mips_elf_link_hash_traverse. The
2794 ECOFF external symbol information must match the ELF external
2795 symbol information. Unfortunately, at this point we don't know
2796 whether a symbol is required by reloc information, so the two
2797 tables may wind up being different. We must sort out the external
2798 symbol information before we can set the final size of the .mdebug
2799 section, and we must set the size of the .mdebug section before we
2800 can relocate any sections, and we can't know which symbols are
2801 required by relocation until we relocate the sections.
2802 Fortunately, it is relatively unlikely that any symbol will be
2803 stripped but required by a reloc. In particular, it can not happen
2804 when generating a final executable. */
2805
2806static bfd_boolean
2807mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2808{
2809 struct extsym_info *einfo = data;
2810 bfd_boolean strip;
2811 asection *sec, *output_section;
2812
2813 if (h->root.indx == -2)
2814 strip = FALSE;
2815 else if ((h->root.def_dynamic
2816 || h->root.ref_dynamic
2817 || h->root.type == bfd_link_hash_new)
2818 && !h->root.def_regular
2819 && !h->root.ref_regular)
2820 strip = TRUE;
2821 else if (einfo->info->strip == strip_all
2822 || (einfo->info->strip == strip_some
2823 && bfd_hash_lookup (einfo->info->keep_hash,
2824 h->root.root.root.string,
2825 FALSE, FALSE) == NULL))
2826 strip = TRUE;
2827 else
2828 strip = FALSE;
2829
2830 if (strip)
2831 return TRUE;
2832
2833 if (h->esym.ifd == -2)
2834 {
2835 h->esym.jmptbl = 0;
2836 h->esym.cobol_main = 0;
2837 h->esym.weakext = 0;
2838 h->esym.reserved = 0;
2839 h->esym.ifd = ifdNil;
2840 h->esym.asym.value = 0;
2841 h->esym.asym.st = stGlobal;
2842
2843 if (h->root.root.type == bfd_link_hash_undefined
2844 || h->root.root.type == bfd_link_hash_undefweak)
2845 {
2846 const char *name;
2847
2848 /* Use undefined class. Also, set class and type for some
2849 special symbols. */
2850 name = h->root.root.root.string;
2851 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2852 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2853 {
2854 h->esym.asym.sc = scData;
2855 h->esym.asym.st = stLabel;
2856 h->esym.asym.value = 0;
2857 }
2858 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2859 {
2860 h->esym.asym.sc = scAbs;
2861 h->esym.asym.st = stLabel;
2862 h->esym.asym.value =
2863 mips_elf_hash_table (einfo->info)->procedure_count;
2864 }
2865 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2866 {
2867 h->esym.asym.sc = scAbs;
2868 h->esym.asym.st = stLabel;
2869 h->esym.asym.value = elf_gp (einfo->abfd);
2870 }
2871 else
2872 h->esym.asym.sc = scUndefined;
2873 }
2874 else if (h->root.root.type != bfd_link_hash_defined
2875 && h->root.root.type != bfd_link_hash_defweak)
2876 h->esym.asym.sc = scAbs;
2877 else
2878 {
2879 const char *name;
2880
2881 sec = h->root.root.u.def.section;
2882 output_section = sec->output_section;
2883
2884 /* When making a shared library and symbol h is the one from
2885 the another shared library, OUTPUT_SECTION may be null. */
2886 if (output_section == NULL)
2887 h->esym.asym.sc = scUndefined;
2888 else
2889 {
2890 name = bfd_section_name (output_section->owner, output_section);
2891
2892 if (strcmp (name, ".text") == 0)
2893 h->esym.asym.sc = scText;
2894 else if (strcmp (name, ".data") == 0)
2895 h->esym.asym.sc = scData;
2896 else if (strcmp (name, ".sdata") == 0)
2897 h->esym.asym.sc = scSData;
2898 else if (strcmp (name, ".rodata") == 0
2899 || strcmp (name, ".rdata") == 0)
2900 h->esym.asym.sc = scRData;
2901 else if (strcmp (name, ".bss") == 0)
2902 h->esym.asym.sc = scBss;
2903 else if (strcmp (name, ".sbss") == 0)
2904 h->esym.asym.sc = scSBss;
2905 else if (strcmp (name, ".init") == 0)
2906 h->esym.asym.sc = scInit;
2907 else if (strcmp (name, ".fini") == 0)
2908 h->esym.asym.sc = scFini;
2909 else
2910 h->esym.asym.sc = scAbs;
2911 }
2912 }
2913
2914 h->esym.asym.reserved = 0;
2915 h->esym.asym.index = indexNil;
2916 }
2917
2918 if (h->root.root.type == bfd_link_hash_common)
2919 h->esym.asym.value = h->root.root.u.c.size;
2920 else if (h->root.root.type == bfd_link_hash_defined
2921 || h->root.root.type == bfd_link_hash_defweak)
2922 {
2923 if (h->esym.asym.sc == scCommon)
2924 h->esym.asym.sc = scBss;
2925 else if (h->esym.asym.sc == scSCommon)
2926 h->esym.asym.sc = scSBss;
2927
2928 sec = h->root.root.u.def.section;
2929 output_section = sec->output_section;
2930 if (output_section != NULL)
2931 h->esym.asym.value = (h->root.root.u.def.value
2932 + sec->output_offset
2933 + output_section->vma);
2934 else
2935 h->esym.asym.value = 0;
2936 }
2937 else
2938 {
2939 struct mips_elf_link_hash_entry *hd = h;
2940
2941 while (hd->root.root.type == bfd_link_hash_indirect)
2942 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2943
2944 if (hd->needs_lazy_stub)
2945 {
2946 BFD_ASSERT (hd->root.plt.plist != NULL);
2947 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2948 /* Set type and value for a symbol with a function stub. */
2949 h->esym.asym.st = stProc;
2950 sec = hd->root.root.u.def.section;
2951 if (sec == NULL)
2952 h->esym.asym.value = 0;
2953 else
2954 {
2955 output_section = sec->output_section;
2956 if (output_section != NULL)
2957 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2958 + sec->output_offset
2959 + output_section->vma);
2960 else
2961 h->esym.asym.value = 0;
2962 }
2963 }
2964 }
2965
2966 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2967 h->root.root.root.string,
2968 &h->esym))
2969 {
2970 einfo->failed = TRUE;
2971 return FALSE;
2972 }
2973
2974 return TRUE;
2975}
2976
2977/* A comparison routine used to sort .gptab entries. */
2978
2979static int
2980gptab_compare (const void *p1, const void *p2)
2981{
2982 const Elf32_gptab *a1 = p1;
2983 const Elf32_gptab *a2 = p2;
2984
2985 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2986}
2987\f
2988/* Functions to manage the got entry hash table. */
2989
2990/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2991 hash number. */
2992
2993static INLINE hashval_t
2994mips_elf_hash_bfd_vma (bfd_vma addr)
2995{
2996#ifdef BFD64
2997 return addr + (addr >> 32);
2998#else
2999 return addr;
3000#endif
3001}
3002
3003static hashval_t
3004mips_elf_got_entry_hash (const void *entry_)
3005{
3006 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3007
3008 return (entry->symndx
3009 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3010 + (entry->tls_type == GOT_TLS_LDM ? 0
3011 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3012 : entry->symndx >= 0 ? (entry->abfd->id
3013 + mips_elf_hash_bfd_vma (entry->d.addend))
3014 : entry->d.h->root.root.root.hash));
3015}
3016
3017static int
3018mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3019{
3020 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3021 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3022
3023 return (e1->symndx == e2->symndx
3024 && e1->tls_type == e2->tls_type
3025 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3026 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3027 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3028 && e1->d.addend == e2->d.addend)
3029 : e2->abfd && e1->d.h == e2->d.h));
3030}
3031
3032static hashval_t
3033mips_got_page_ref_hash (const void *ref_)
3034{
3035 const struct mips_got_page_ref *ref;
3036
3037 ref = (const struct mips_got_page_ref *) ref_;
3038 return ((ref->symndx >= 0
3039 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3040 : ref->u.h->root.root.root.hash)
3041 + mips_elf_hash_bfd_vma (ref->addend));
3042}
3043
3044static int
3045mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3046{
3047 const struct mips_got_page_ref *ref1, *ref2;
3048
3049 ref1 = (const struct mips_got_page_ref *) ref1_;
3050 ref2 = (const struct mips_got_page_ref *) ref2_;
3051 return (ref1->symndx == ref2->symndx
3052 && (ref1->symndx < 0
3053 ? ref1->u.h == ref2->u.h
3054 : ref1->u.abfd == ref2->u.abfd)
3055 && ref1->addend == ref2->addend);
3056}
3057
3058static hashval_t
3059mips_got_page_entry_hash (const void *entry_)
3060{
3061 const struct mips_got_page_entry *entry;
3062
3063 entry = (const struct mips_got_page_entry *) entry_;
3064 return entry->sec->id;
3065}
3066
3067static int
3068mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3069{
3070 const struct mips_got_page_entry *entry1, *entry2;
3071
3072 entry1 = (const struct mips_got_page_entry *) entry1_;
3073 entry2 = (const struct mips_got_page_entry *) entry2_;
3074 return entry1->sec == entry2->sec;
3075}
3076\f
3077/* Create and return a new mips_got_info structure. */
3078
3079static struct mips_got_info *
3080mips_elf_create_got_info (bfd *abfd)
3081{
3082 struct mips_got_info *g;
3083
3084 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3085 if (g == NULL)
3086 return NULL;
3087
3088 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3089 mips_elf_got_entry_eq, NULL);
3090 if (g->got_entries == NULL)
3091 return NULL;
3092
3093 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3094 mips_got_page_ref_eq, NULL);
3095 if (g->got_page_refs == NULL)
3096 return NULL;
3097
3098 return g;
3099}
3100
3101/* Return the GOT info for input bfd ABFD, trying to create a new one if
3102 CREATE_P and if ABFD doesn't already have a GOT. */
3103
3104static struct mips_got_info *
3105mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3106{
3107 struct mips_elf_obj_tdata *tdata;
3108
3109 if (!is_mips_elf (abfd))
3110 return NULL;
3111
3112 tdata = mips_elf_tdata (abfd);
3113 if (!tdata->got && create_p)
3114 tdata->got = mips_elf_create_got_info (abfd);
3115 return tdata->got;
3116}
3117
3118/* Record that ABFD should use output GOT G. */
3119
3120static void
3121mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3122{
3123 struct mips_elf_obj_tdata *tdata;
3124
3125 BFD_ASSERT (is_mips_elf (abfd));
3126 tdata = mips_elf_tdata (abfd);
3127 if (tdata->got)
3128 {
3129 /* The GOT structure itself and the hash table entries are
3130 allocated to a bfd, but the hash tables aren't. */
3131 htab_delete (tdata->got->got_entries);
3132 htab_delete (tdata->got->got_page_refs);
3133 if (tdata->got->got_page_entries)
3134 htab_delete (tdata->got->got_page_entries);
3135 }
3136 tdata->got = g;
3137}
3138
3139/* Return the dynamic relocation section. If it doesn't exist, try to
3140 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3141 if creation fails. */
3142
3143static asection *
3144mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3145{
3146 const char *dname;
3147 asection *sreloc;
3148 bfd *dynobj;
3149
3150 dname = MIPS_ELF_REL_DYN_NAME (info);
3151 dynobj = elf_hash_table (info)->dynobj;
3152 sreloc = bfd_get_linker_section (dynobj, dname);
3153 if (sreloc == NULL && create_p)
3154 {
3155 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3156 (SEC_ALLOC
3157 | SEC_LOAD
3158 | SEC_HAS_CONTENTS
3159 | SEC_IN_MEMORY
3160 | SEC_LINKER_CREATED
3161 | SEC_READONLY));
3162 if (sreloc == NULL
3163 || ! bfd_set_section_alignment (dynobj, sreloc,
3164 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3165 return NULL;
3166 }
3167 return sreloc;
3168}
3169
3170/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3171
3172static int
3173mips_elf_reloc_tls_type (unsigned int r_type)
3174{
3175 if (tls_gd_reloc_p (r_type))
3176 return GOT_TLS_GD;
3177
3178 if (tls_ldm_reloc_p (r_type))
3179 return GOT_TLS_LDM;
3180
3181 if (tls_gottprel_reloc_p (r_type))
3182 return GOT_TLS_IE;
3183
3184 return GOT_TLS_NONE;
3185}
3186
3187/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3188
3189static int
3190mips_tls_got_entries (unsigned int type)
3191{
3192 switch (type)
3193 {
3194 case GOT_TLS_GD:
3195 case GOT_TLS_LDM:
3196 return 2;
3197
3198 case GOT_TLS_IE:
3199 return 1;
3200
3201 case GOT_TLS_NONE:
3202 return 0;
3203 }
3204 abort ();
3205}
3206
3207/* Count the number of relocations needed for a TLS GOT entry, with
3208 access types from TLS_TYPE, and symbol H (or a local symbol if H
3209 is NULL). */
3210
3211static int
3212mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3213 struct elf_link_hash_entry *h)
3214{
3215 int indx = 0;
3216 bfd_boolean need_relocs = FALSE;
3217 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3218
3219 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3220 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3221 indx = h->dynindx;
3222
3223 if ((bfd_link_pic (info) || indx != 0)
3224 && (h == NULL
3225 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3226 || h->root.type != bfd_link_hash_undefweak))
3227 need_relocs = TRUE;
3228
3229 if (!need_relocs)
3230 return 0;
3231
3232 switch (tls_type)
3233 {
3234 case GOT_TLS_GD:
3235 return indx != 0 ? 2 : 1;
3236
3237 case GOT_TLS_IE:
3238 return 1;
3239
3240 case GOT_TLS_LDM:
3241 return bfd_link_pic (info) ? 1 : 0;
3242
3243 default:
3244 return 0;
3245 }
3246}
3247
3248/* Add the number of GOT entries and TLS relocations required by ENTRY
3249 to G. */
3250
3251static void
3252mips_elf_count_got_entry (struct bfd_link_info *info,
3253 struct mips_got_info *g,
3254 struct mips_got_entry *entry)
3255{
3256 if (entry->tls_type)
3257 {
3258 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3259 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3260 entry->symndx < 0
3261 ? &entry->d.h->root : NULL);
3262 }
3263 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3264 g->local_gotno += 1;
3265 else
3266 g->global_gotno += 1;
3267}
3268
3269/* Output a simple dynamic relocation into SRELOC. */
3270
3271static void
3272mips_elf_output_dynamic_relocation (bfd *output_bfd,
3273 asection *sreloc,
3274 unsigned long reloc_index,
3275 unsigned long indx,
3276 int r_type,
3277 bfd_vma offset)
3278{
3279 Elf_Internal_Rela rel[3];
3280
3281 memset (rel, 0, sizeof (rel));
3282
3283 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3284 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3285
3286 if (ABI_64_P (output_bfd))
3287 {
3288 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3289 (output_bfd, &rel[0],
3290 (sreloc->contents
3291 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3292 }
3293 else
3294 bfd_elf32_swap_reloc_out
3295 (output_bfd, &rel[0],
3296 (sreloc->contents
3297 + reloc_index * sizeof (Elf32_External_Rel)));
3298}
3299
3300/* Initialize a set of TLS GOT entries for one symbol. */
3301
3302static void
3303mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3304 struct mips_got_entry *entry,
3305 struct mips_elf_link_hash_entry *h,
3306 bfd_vma value)
3307{
3308 struct mips_elf_link_hash_table *htab;
3309 int indx;
3310 asection *sreloc, *sgot;
3311 bfd_vma got_offset, got_offset2;
3312 bfd_boolean need_relocs = FALSE;
3313
3314 htab = mips_elf_hash_table (info);
3315 if (htab == NULL)
3316 return;
3317
3318 sgot = htab->sgot;
3319
3320 indx = 0;
3321 if (h != NULL)
3322 {
3323 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3324
3325 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3326 &h->root)
3327 && (!bfd_link_pic (info)
3328 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3329 indx = h->root.dynindx;
3330 }
3331
3332 if (entry->tls_initialized)
3333 return;
3334
3335 if ((bfd_link_pic (info) || indx != 0)
3336 && (h == NULL
3337 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3338 || h->root.type != bfd_link_hash_undefweak))
3339 need_relocs = TRUE;
3340
3341 /* MINUS_ONE means the symbol is not defined in this object. It may not
3342 be defined at all; assume that the value doesn't matter in that
3343 case. Otherwise complain if we would use the value. */
3344 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3345 || h->root.root.type == bfd_link_hash_undefweak);
3346
3347 /* Emit necessary relocations. */
3348 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3349 got_offset = entry->gotidx;
3350
3351 switch (entry->tls_type)
3352 {
3353 case GOT_TLS_GD:
3354 /* General Dynamic. */
3355 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3356
3357 if (need_relocs)
3358 {
3359 mips_elf_output_dynamic_relocation
3360 (abfd, sreloc, sreloc->reloc_count++, indx,
3361 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3362 sgot->output_offset + sgot->output_section->vma + got_offset);
3363
3364 if (indx)
3365 mips_elf_output_dynamic_relocation
3366 (abfd, sreloc, sreloc->reloc_count++, indx,
3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3368 sgot->output_offset + sgot->output_section->vma + got_offset2);
3369 else
3370 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3371 sgot->contents + got_offset2);
3372 }
3373 else
3374 {
3375 MIPS_ELF_PUT_WORD (abfd, 1,
3376 sgot->contents + got_offset);
3377 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3378 sgot->contents + got_offset2);
3379 }
3380 break;
3381
3382 case GOT_TLS_IE:
3383 /* Initial Exec model. */
3384 if (need_relocs)
3385 {
3386 if (indx == 0)
3387 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3388 sgot->contents + got_offset);
3389 else
3390 MIPS_ELF_PUT_WORD (abfd, 0,
3391 sgot->contents + got_offset);
3392
3393 mips_elf_output_dynamic_relocation
3394 (abfd, sreloc, sreloc->reloc_count++, indx,
3395 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3396 sgot->output_offset + sgot->output_section->vma + got_offset);
3397 }
3398 else
3399 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3400 sgot->contents + got_offset);
3401 break;
3402
3403 case GOT_TLS_LDM:
3404 /* The initial offset is zero, and the LD offsets will include the
3405 bias by DTP_OFFSET. */
3406 MIPS_ELF_PUT_WORD (abfd, 0,
3407 sgot->contents + got_offset
3408 + MIPS_ELF_GOT_SIZE (abfd));
3409
3410 if (!bfd_link_pic (info))
3411 MIPS_ELF_PUT_WORD (abfd, 1,
3412 sgot->contents + got_offset);
3413 else
3414 mips_elf_output_dynamic_relocation
3415 (abfd, sreloc, sreloc->reloc_count++, indx,
3416 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3417 sgot->output_offset + sgot->output_section->vma + got_offset);
3418 break;
3419
3420 default:
3421 abort ();
3422 }
3423
3424 entry->tls_initialized = TRUE;
3425}
3426
3427/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3428 for global symbol H. .got.plt comes before the GOT, so the offset
3429 will be negative. */
3430
3431static bfd_vma
3432mips_elf_gotplt_index (struct bfd_link_info *info,
3433 struct elf_link_hash_entry *h)
3434{
3435 bfd_vma got_address, got_value;
3436 struct mips_elf_link_hash_table *htab;
3437
3438 htab = mips_elf_hash_table (info);
3439 BFD_ASSERT (htab != NULL);
3440
3441 BFD_ASSERT (h->plt.plist != NULL);
3442 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3443
3444 /* Calculate the address of the associated .got.plt entry. */
3445 got_address = (htab->sgotplt->output_section->vma
3446 + htab->sgotplt->output_offset
3447 + (h->plt.plist->gotplt_index
3448 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3449
3450 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3451 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3452 + htab->root.hgot->root.u.def.section->output_offset
3453 + htab->root.hgot->root.u.def.value);
3454
3455 return got_address - got_value;
3456}
3457
3458/* Return the GOT offset for address VALUE. If there is not yet a GOT
3459 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3460 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3461 offset can be found. */
3462
3463static bfd_vma
3464mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3465 bfd_vma value, unsigned long r_symndx,
3466 struct mips_elf_link_hash_entry *h, int r_type)
3467{
3468 struct mips_elf_link_hash_table *htab;
3469 struct mips_got_entry *entry;
3470
3471 htab = mips_elf_hash_table (info);
3472 BFD_ASSERT (htab != NULL);
3473
3474 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3475 r_symndx, h, r_type);
3476 if (!entry)
3477 return MINUS_ONE;
3478
3479 if (entry->tls_type)
3480 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3481 return entry->gotidx;
3482}
3483
3484/* Return the GOT index of global symbol H in the primary GOT. */
3485
3486static bfd_vma
3487mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3488 struct elf_link_hash_entry *h)
3489{
3490 struct mips_elf_link_hash_table *htab;
3491 long global_got_dynindx;
3492 struct mips_got_info *g;
3493 bfd_vma got_index;
3494
3495 htab = mips_elf_hash_table (info);
3496 BFD_ASSERT (htab != NULL);
3497
3498 global_got_dynindx = 0;
3499 if (htab->global_gotsym != NULL)
3500 global_got_dynindx = htab->global_gotsym->dynindx;
3501
3502 /* Once we determine the global GOT entry with the lowest dynamic
3503 symbol table index, we must put all dynamic symbols with greater
3504 indices into the primary GOT. That makes it easy to calculate the
3505 GOT offset. */
3506 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3507 g = mips_elf_bfd_got (obfd, FALSE);
3508 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3509 * MIPS_ELF_GOT_SIZE (obfd));
3510 BFD_ASSERT (got_index < htab->sgot->size);
3511
3512 return got_index;
3513}
3514
3515/* Return the GOT index for the global symbol indicated by H, which is
3516 referenced by a relocation of type R_TYPE in IBFD. */
3517
3518static bfd_vma
3519mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3520 struct elf_link_hash_entry *h, int r_type)
3521{
3522 struct mips_elf_link_hash_table *htab;
3523 struct mips_got_info *g;
3524 struct mips_got_entry lookup, *entry;
3525 bfd_vma gotidx;
3526
3527 htab = mips_elf_hash_table (info);
3528 BFD_ASSERT (htab != NULL);
3529
3530 g = mips_elf_bfd_got (ibfd, FALSE);
3531 BFD_ASSERT (g);
3532
3533 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3534 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3535 return mips_elf_primary_global_got_index (obfd, info, h);
3536
3537 lookup.abfd = ibfd;
3538 lookup.symndx = -1;
3539 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3540 entry = htab_find (g->got_entries, &lookup);
3541 BFD_ASSERT (entry);
3542
3543 gotidx = entry->gotidx;
3544 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3545
3546 if (lookup.tls_type)
3547 {
3548 bfd_vma value = MINUS_ONE;
3549
3550 if ((h->root.type == bfd_link_hash_defined
3551 || h->root.type == bfd_link_hash_defweak)
3552 && h->root.u.def.section->output_section)
3553 value = (h->root.u.def.value
3554 + h->root.u.def.section->output_offset
3555 + h->root.u.def.section->output_section->vma);
3556
3557 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3558 }
3559 return gotidx;
3560}
3561
3562/* Find a GOT page entry that points to within 32KB of VALUE. These
3563 entries are supposed to be placed at small offsets in the GOT, i.e.,
3564 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3565 entry could be created. If OFFSETP is nonnull, use it to return the
3566 offset of the GOT entry from VALUE. */
3567
3568static bfd_vma
3569mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3570 bfd_vma value, bfd_vma *offsetp)
3571{
3572 bfd_vma page, got_index;
3573 struct mips_got_entry *entry;
3574
3575 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3576 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3577 NULL, R_MIPS_GOT_PAGE);
3578
3579 if (!entry)
3580 return MINUS_ONE;
3581
3582 got_index = entry->gotidx;
3583
3584 if (offsetp)
3585 *offsetp = value - entry->d.address;
3586
3587 return got_index;
3588}
3589
3590/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3591 EXTERNAL is true if the relocation was originally against a global
3592 symbol that binds locally. */
3593
3594static bfd_vma
3595mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3596 bfd_vma value, bfd_boolean external)
3597{
3598 struct mips_got_entry *entry;
3599
3600 /* GOT16 relocations against local symbols are followed by a LO16
3601 relocation; those against global symbols are not. Thus if the
3602 symbol was originally local, the GOT16 relocation should load the
3603 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3604 if (! external)
3605 value = mips_elf_high (value) << 16;
3606
3607 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3608 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3609 same in all cases. */
3610 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3611 NULL, R_MIPS_GOT16);
3612 if (entry)
3613 return entry->gotidx;
3614 else
3615 return MINUS_ONE;
3616}
3617
3618/* Returns the offset for the entry at the INDEXth position
3619 in the GOT. */
3620
3621static bfd_vma
3622mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3623 bfd *input_bfd, bfd_vma got_index)
3624{
3625 struct mips_elf_link_hash_table *htab;
3626 asection *sgot;
3627 bfd_vma gp;
3628
3629 htab = mips_elf_hash_table (info);
3630 BFD_ASSERT (htab != NULL);
3631
3632 sgot = htab->sgot;
3633 gp = _bfd_get_gp_value (output_bfd)
3634 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3635
3636 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3637}
3638
3639/* Create and return a local GOT entry for VALUE, which was calculated
3640 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3641 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3642 instead. */
3643
3644static struct mips_got_entry *
3645mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3646 bfd *ibfd, bfd_vma value,
3647 unsigned long r_symndx,
3648 struct mips_elf_link_hash_entry *h,
3649 int r_type)
3650{
3651 struct mips_got_entry lookup, *entry;
3652 void **loc;
3653 struct mips_got_info *g;
3654 struct mips_elf_link_hash_table *htab;
3655 bfd_vma gotidx;
3656
3657 htab = mips_elf_hash_table (info);
3658 BFD_ASSERT (htab != NULL);
3659
3660 g = mips_elf_bfd_got (ibfd, FALSE);
3661 if (g == NULL)
3662 {
3663 g = mips_elf_bfd_got (abfd, FALSE);
3664 BFD_ASSERT (g != NULL);
3665 }
3666
3667 /* This function shouldn't be called for symbols that live in the global
3668 area of the GOT. */
3669 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3670
3671 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3672 if (lookup.tls_type)
3673 {
3674 lookup.abfd = ibfd;
3675 if (tls_ldm_reloc_p (r_type))
3676 {
3677 lookup.symndx = 0;
3678 lookup.d.addend = 0;
3679 }
3680 else if (h == NULL)
3681 {
3682 lookup.symndx = r_symndx;
3683 lookup.d.addend = 0;
3684 }
3685 else
3686 {
3687 lookup.symndx = -1;
3688 lookup.d.h = h;
3689 }
3690
3691 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3692 BFD_ASSERT (entry);
3693
3694 gotidx = entry->gotidx;
3695 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3696
3697 return entry;
3698 }
3699
3700 lookup.abfd = NULL;
3701 lookup.symndx = -1;
3702 lookup.d.address = value;
3703 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3704 if (!loc)
3705 return NULL;
3706
3707 entry = (struct mips_got_entry *) *loc;
3708 if (entry)
3709 return entry;
3710
3711 if (g->assigned_low_gotno > g->assigned_high_gotno)
3712 {
3713 /* We didn't allocate enough space in the GOT. */
3714 (*_bfd_error_handler)
3715 (_("not enough GOT space for local GOT entries"));
3716 bfd_set_error (bfd_error_bad_value);
3717 return NULL;
3718 }
3719
3720 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3721 if (!entry)
3722 return NULL;
3723
3724 if (got16_reloc_p (r_type)
3725 || call16_reloc_p (r_type)
3726 || got_page_reloc_p (r_type)
3727 || got_disp_reloc_p (r_type))
3728 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3729 else
3730 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3731
3732 *entry = lookup;
3733 *loc = entry;
3734
3735 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3736
3737 /* These GOT entries need a dynamic relocation on VxWorks. */
3738 if (htab->is_vxworks)
3739 {
3740 Elf_Internal_Rela outrel;
3741 asection *s;
3742 bfd_byte *rloc;
3743 bfd_vma got_address;
3744
3745 s = mips_elf_rel_dyn_section (info, FALSE);
3746 got_address = (htab->sgot->output_section->vma
3747 + htab->sgot->output_offset
3748 + entry->gotidx);
3749
3750 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3751 outrel.r_offset = got_address;
3752 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3753 outrel.r_addend = value;
3754 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3755 }
3756
3757 return entry;
3758}
3759
3760/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3761 The number might be exact or a worst-case estimate, depending on how
3762 much information is available to elf_backend_omit_section_dynsym at
3763 the current linking stage. */
3764
3765static bfd_size_type
3766count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3767{
3768 bfd_size_type count;
3769
3770 count = 0;
3771 if (bfd_link_pic (info)
3772 || elf_hash_table (info)->is_relocatable_executable)
3773 {
3774 asection *p;
3775 const struct elf_backend_data *bed;
3776
3777 bed = get_elf_backend_data (output_bfd);
3778 for (p = output_bfd->sections; p ; p = p->next)
3779 if ((p->flags & SEC_EXCLUDE) == 0
3780 && (p->flags & SEC_ALLOC) != 0
3781 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3782 ++count;
3783 }
3784 return count;
3785}
3786
3787/* Sort the dynamic symbol table so that symbols that need GOT entries
3788 appear towards the end. */
3789
3790static bfd_boolean
3791mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3792{
3793 struct mips_elf_link_hash_table *htab;
3794 struct mips_elf_hash_sort_data hsd;
3795 struct mips_got_info *g;
3796
3797 if (elf_hash_table (info)->dynsymcount == 0)
3798 return TRUE;
3799
3800 htab = mips_elf_hash_table (info);
3801 BFD_ASSERT (htab != NULL);
3802
3803 g = htab->got_info;
3804 if (g == NULL)
3805 return TRUE;
3806
3807 hsd.low = NULL;
3808 hsd.max_unref_got_dynindx
3809 = hsd.min_got_dynindx
3810 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3811 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3812 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3813 elf_hash_table (info)),
3814 mips_elf_sort_hash_table_f,
3815 &hsd);
3816
3817 /* There should have been enough room in the symbol table to
3818 accommodate both the GOT and non-GOT symbols. */
3819 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3820 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3821 == elf_hash_table (info)->dynsymcount);
3822 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3823 == g->global_gotno);
3824
3825 /* Now we know which dynamic symbol has the lowest dynamic symbol
3826 table index in the GOT. */
3827 htab->global_gotsym = hsd.low;
3828
3829 return TRUE;
3830}
3831
3832/* If H needs a GOT entry, assign it the highest available dynamic
3833 index. Otherwise, assign it the lowest available dynamic
3834 index. */
3835
3836static bfd_boolean
3837mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3838{
3839 struct mips_elf_hash_sort_data *hsd = data;
3840
3841 /* Symbols without dynamic symbol table entries aren't interesting
3842 at all. */
3843 if (h->root.dynindx == -1)
3844 return TRUE;
3845
3846 switch (h->global_got_area)
3847 {
3848 case GGA_NONE:
3849 h->root.dynindx = hsd->max_non_got_dynindx++;
3850 break;
3851
3852 case GGA_NORMAL:
3853 h->root.dynindx = --hsd->min_got_dynindx;
3854 hsd->low = (struct elf_link_hash_entry *) h;
3855 break;
3856
3857 case GGA_RELOC_ONLY:
3858 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 h->root.dynindx = hsd->max_unref_got_dynindx++;
3861 break;
3862 }
3863
3864 return TRUE;
3865}
3866
3867/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3868 (which is owned by the caller and shouldn't be added to the
3869 hash table directly). */
3870
3871static bfd_boolean
3872mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3873 struct mips_got_entry *lookup)
3874{
3875 struct mips_elf_link_hash_table *htab;
3876 struct mips_got_entry *entry;
3877 struct mips_got_info *g;
3878 void **loc, **bfd_loc;
3879
3880 /* Make sure there's a slot for this entry in the master GOT. */
3881 htab = mips_elf_hash_table (info);
3882 g = htab->got_info;
3883 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3884 if (!loc)
3885 return FALSE;
3886
3887 /* Populate the entry if it isn't already. */
3888 entry = (struct mips_got_entry *) *loc;
3889 if (!entry)
3890 {
3891 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3892 if (!entry)
3893 return FALSE;
3894
3895 lookup->tls_initialized = FALSE;
3896 lookup->gotidx = -1;
3897 *entry = *lookup;
3898 *loc = entry;
3899 }
3900
3901 /* Reuse the same GOT entry for the BFD's GOT. */
3902 g = mips_elf_bfd_got (abfd, TRUE);
3903 if (!g)
3904 return FALSE;
3905
3906 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3907 if (!bfd_loc)
3908 return FALSE;
3909
3910 if (!*bfd_loc)
3911 *bfd_loc = entry;
3912 return TRUE;
3913}
3914
3915/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3916 entry for it. FOR_CALL is true if the caller is only interested in
3917 using the GOT entry for calls. */
3918
3919static bfd_boolean
3920mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3921 bfd *abfd, struct bfd_link_info *info,
3922 bfd_boolean for_call, int r_type)
3923{
3924 struct mips_elf_link_hash_table *htab;
3925 struct mips_elf_link_hash_entry *hmips;
3926 struct mips_got_entry entry;
3927 unsigned char tls_type;
3928
3929 htab = mips_elf_hash_table (info);
3930 BFD_ASSERT (htab != NULL);
3931
3932 hmips = (struct mips_elf_link_hash_entry *) h;
3933 if (!for_call)
3934 hmips->got_only_for_calls = FALSE;
3935
3936 /* A global symbol in the GOT must also be in the dynamic symbol
3937 table. */
3938 if (h->dynindx == -1)
3939 {
3940 switch (ELF_ST_VISIBILITY (h->other))
3941 {
3942 case STV_INTERNAL:
3943 case STV_HIDDEN:
3944 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3945 break;
3946 }
3947 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3948 return FALSE;
3949 }
3950
3951 tls_type = mips_elf_reloc_tls_type (r_type);
3952 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3953 hmips->global_got_area = GGA_NORMAL;
3954
3955 entry.abfd = abfd;
3956 entry.symndx = -1;
3957 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3958 entry.tls_type = tls_type;
3959 return mips_elf_record_got_entry (info, abfd, &entry);
3960}
3961
3962/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3963 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3964
3965static bfd_boolean
3966mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3967 struct bfd_link_info *info, int r_type)
3968{
3969 struct mips_elf_link_hash_table *htab;
3970 struct mips_got_info *g;
3971 struct mips_got_entry entry;
3972
3973 htab = mips_elf_hash_table (info);
3974 BFD_ASSERT (htab != NULL);
3975
3976 g = htab->got_info;
3977 BFD_ASSERT (g != NULL);
3978
3979 entry.abfd = abfd;
3980 entry.symndx = symndx;
3981 entry.d.addend = addend;
3982 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3983 return mips_elf_record_got_entry (info, abfd, &entry);
3984}
3985
3986/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3987 H is the symbol's hash table entry, or null if SYMNDX is local
3988 to ABFD. */
3989
3990static bfd_boolean
3991mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3992 long symndx, struct elf_link_hash_entry *h,
3993 bfd_signed_vma addend)
3994{
3995 struct mips_elf_link_hash_table *htab;
3996 struct mips_got_info *g1, *g2;
3997 struct mips_got_page_ref lookup, *entry;
3998 void **loc, **bfd_loc;
3999
4000 htab = mips_elf_hash_table (info);
4001 BFD_ASSERT (htab != NULL);
4002
4003 g1 = htab->got_info;
4004 BFD_ASSERT (g1 != NULL);
4005
4006 if (h)
4007 {
4008 lookup.symndx = -1;
4009 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4010 }
4011 else
4012 {
4013 lookup.symndx = symndx;
4014 lookup.u.abfd = abfd;
4015 }
4016 lookup.addend = addend;
4017 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4018 if (loc == NULL)
4019 return FALSE;
4020
4021 entry = (struct mips_got_page_ref *) *loc;
4022 if (!entry)
4023 {
4024 entry = bfd_alloc (abfd, sizeof (*entry));
4025 if (!entry)
4026 return FALSE;
4027
4028 *entry = lookup;
4029 *loc = entry;
4030 }
4031
4032 /* Add the same entry to the BFD's GOT. */
4033 g2 = mips_elf_bfd_got (abfd, TRUE);
4034 if (!g2)
4035 return FALSE;
4036
4037 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4038 if (!bfd_loc)
4039 return FALSE;
4040
4041 if (!*bfd_loc)
4042 *bfd_loc = entry;
4043
4044 return TRUE;
4045}
4046
4047/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4048
4049static void
4050mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4051 unsigned int n)
4052{
4053 asection *s;
4054 struct mips_elf_link_hash_table *htab;
4055
4056 htab = mips_elf_hash_table (info);
4057 BFD_ASSERT (htab != NULL);
4058
4059 s = mips_elf_rel_dyn_section (info, FALSE);
4060 BFD_ASSERT (s != NULL);
4061
4062 if (htab->is_vxworks)
4063 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4064 else
4065 {
4066 if (s->size == 0)
4067 {
4068 /* Make room for a null element. */
4069 s->size += MIPS_ELF_REL_SIZE (abfd);
4070 ++s->reloc_count;
4071 }
4072 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4073 }
4074}
4075\f
4076/* A htab_traverse callback for GOT entries, with DATA pointing to a
4077 mips_elf_traverse_got_arg structure. Count the number of GOT
4078 entries and TLS relocs. Set DATA->value to true if we need
4079 to resolve indirect or warning symbols and then recreate the GOT. */
4080
4081static int
4082mips_elf_check_recreate_got (void **entryp, void *data)
4083{
4084 struct mips_got_entry *entry;
4085 struct mips_elf_traverse_got_arg *arg;
4086
4087 entry = (struct mips_got_entry *) *entryp;
4088 arg = (struct mips_elf_traverse_got_arg *) data;
4089 if (entry->abfd != NULL && entry->symndx == -1)
4090 {
4091 struct mips_elf_link_hash_entry *h;
4092
4093 h = entry->d.h;
4094 if (h->root.root.type == bfd_link_hash_indirect
4095 || h->root.root.type == bfd_link_hash_warning)
4096 {
4097 arg->value = TRUE;
4098 return 0;
4099 }
4100 }
4101 mips_elf_count_got_entry (arg->info, arg->g, entry);
4102 return 1;
4103}
4104
4105/* A htab_traverse callback for GOT entries, with DATA pointing to a
4106 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4107 converting entries for indirect and warning symbols into entries
4108 for the target symbol. Set DATA->g to null on error. */
4109
4110static int
4111mips_elf_recreate_got (void **entryp, void *data)
4112{
4113 struct mips_got_entry new_entry, *entry;
4114 struct mips_elf_traverse_got_arg *arg;
4115 void **slot;
4116
4117 entry = (struct mips_got_entry *) *entryp;
4118 arg = (struct mips_elf_traverse_got_arg *) data;
4119 if (entry->abfd != NULL
4120 && entry->symndx == -1
4121 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4122 || entry->d.h->root.root.type == bfd_link_hash_warning))
4123 {
4124 struct mips_elf_link_hash_entry *h;
4125
4126 new_entry = *entry;
4127 entry = &new_entry;
4128 h = entry->d.h;
4129 do
4130 {
4131 BFD_ASSERT (h->global_got_area == GGA_NONE);
4132 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4133 }
4134 while (h->root.root.type == bfd_link_hash_indirect
4135 || h->root.root.type == bfd_link_hash_warning);
4136 entry->d.h = h;
4137 }
4138 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4139 if (slot == NULL)
4140 {
4141 arg->g = NULL;
4142 return 0;
4143 }
4144 if (*slot == NULL)
4145 {
4146 if (entry == &new_entry)
4147 {
4148 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4149 if (!entry)
4150 {
4151 arg->g = NULL;
4152 return 0;
4153 }
4154 *entry = new_entry;
4155 }
4156 *slot = entry;
4157 mips_elf_count_got_entry (arg->info, arg->g, entry);
4158 }
4159 return 1;
4160}
4161
4162/* Return the maximum number of GOT page entries required for RANGE. */
4163
4164static bfd_vma
4165mips_elf_pages_for_range (const struct mips_got_page_range *range)
4166{
4167 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4168}
4169
4170/* Record that G requires a page entry that can reach SEC + ADDEND. */
4171
4172static bfd_boolean
4173mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4174 asection *sec, bfd_signed_vma addend)
4175{
4176 struct mips_got_info *g = arg->g;
4177 struct mips_got_page_entry lookup, *entry;
4178 struct mips_got_page_range **range_ptr, *range;
4179 bfd_vma old_pages, new_pages;
4180 void **loc;
4181
4182 /* Find the mips_got_page_entry hash table entry for this section. */
4183 lookup.sec = sec;
4184 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4185 if (loc == NULL)
4186 return FALSE;
4187
4188 /* Create a mips_got_page_entry if this is the first time we've
4189 seen the section. */
4190 entry = (struct mips_got_page_entry *) *loc;
4191 if (!entry)
4192 {
4193 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4194 if (!entry)
4195 return FALSE;
4196
4197 entry->sec = sec;
4198 *loc = entry;
4199 }
4200
4201 /* Skip over ranges whose maximum extent cannot share a page entry
4202 with ADDEND. */
4203 range_ptr = &entry->ranges;
4204 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4205 range_ptr = &(*range_ptr)->next;
4206
4207 /* If we scanned to the end of the list, or found a range whose
4208 minimum extent cannot share a page entry with ADDEND, create
4209 a new singleton range. */
4210 range = *range_ptr;
4211 if (!range || addend < range->min_addend - 0xffff)
4212 {
4213 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4214 if (!range)
4215 return FALSE;
4216
4217 range->next = *range_ptr;
4218 range->min_addend = addend;
4219 range->max_addend = addend;
4220
4221 *range_ptr = range;
4222 entry->num_pages++;
4223 g->page_gotno++;
4224 return TRUE;
4225 }
4226
4227 /* Remember how many pages the old range contributed. */
4228 old_pages = mips_elf_pages_for_range (range);
4229
4230 /* Update the ranges. */
4231 if (addend < range->min_addend)
4232 range->min_addend = addend;
4233 else if (addend > range->max_addend)
4234 {
4235 if (range->next && addend >= range->next->min_addend - 0xffff)
4236 {
4237 old_pages += mips_elf_pages_for_range (range->next);
4238 range->max_addend = range->next->max_addend;
4239 range->next = range->next->next;
4240 }
4241 else
4242 range->max_addend = addend;
4243 }
4244
4245 /* Record any change in the total estimate. */
4246 new_pages = mips_elf_pages_for_range (range);
4247 if (old_pages != new_pages)
4248 {
4249 entry->num_pages += new_pages - old_pages;
4250 g->page_gotno += new_pages - old_pages;
4251 }
4252
4253 return TRUE;
4254}
4255
4256/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4257 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4258 whether the page reference described by *REFP needs a GOT page entry,
4259 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4260
4261static bfd_boolean
4262mips_elf_resolve_got_page_ref (void **refp, void *data)
4263{
4264 struct mips_got_page_ref *ref;
4265 struct mips_elf_traverse_got_arg *arg;
4266 struct mips_elf_link_hash_table *htab;
4267 asection *sec;
4268 bfd_vma addend;
4269
4270 ref = (struct mips_got_page_ref *) *refp;
4271 arg = (struct mips_elf_traverse_got_arg *) data;
4272 htab = mips_elf_hash_table (arg->info);
4273
4274 if (ref->symndx < 0)
4275 {
4276 struct mips_elf_link_hash_entry *h;
4277
4278 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4279 h = ref->u.h;
4280 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4281 return 1;
4282
4283 /* Ignore undefined symbols; we'll issue an error later if
4284 appropriate. */
4285 if (!((h->root.root.type == bfd_link_hash_defined
4286 || h->root.root.type == bfd_link_hash_defweak)
4287 && h->root.root.u.def.section))
4288 return 1;
4289
4290 sec = h->root.root.u.def.section;
4291 addend = h->root.root.u.def.value + ref->addend;
4292 }
4293 else
4294 {
4295 Elf_Internal_Sym *isym;
4296
4297 /* Read in the symbol. */
4298 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4299 ref->symndx);
4300 if (isym == NULL)
4301 {
4302 arg->g = NULL;
4303 return 0;
4304 }
4305
4306 /* Get the associated input section. */
4307 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4308 if (sec == NULL)
4309 {
4310 arg->g = NULL;
4311 return 0;
4312 }
4313
4314 /* If this is a mergable section, work out the section and offset
4315 of the merged data. For section symbols, the addend specifies
4316 of the offset _of_ the first byte in the data, otherwise it
4317 specifies the offset _from_ the first byte. */
4318 if (sec->flags & SEC_MERGE)
4319 {
4320 void *secinfo;
4321
4322 secinfo = elf_section_data (sec)->sec_info;
4323 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4324 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4325 isym->st_value + ref->addend);
4326 else
4327 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4328 isym->st_value) + ref->addend;
4329 }
4330 else
4331 addend = isym->st_value + ref->addend;
4332 }
4333 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4334 {
4335 arg->g = NULL;
4336 return 0;
4337 }
4338 return 1;
4339}
4340
4341/* If any entries in G->got_entries are for indirect or warning symbols,
4342 replace them with entries for the target symbol. Convert g->got_page_refs
4343 into got_page_entry structures and estimate the number of page entries
4344 that they require. */
4345
4346static bfd_boolean
4347mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4348 struct mips_got_info *g)
4349{
4350 struct mips_elf_traverse_got_arg tga;
4351 struct mips_got_info oldg;
4352
4353 oldg = *g;
4354
4355 tga.info = info;
4356 tga.g = g;
4357 tga.value = FALSE;
4358 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4359 if (tga.value)
4360 {
4361 *g = oldg;
4362 g->got_entries = htab_create (htab_size (oldg.got_entries),
4363 mips_elf_got_entry_hash,
4364 mips_elf_got_entry_eq, NULL);
4365 if (!g->got_entries)
4366 return FALSE;
4367
4368 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4369 if (!tga.g)
4370 return FALSE;
4371
4372 htab_delete (oldg.got_entries);
4373 }
4374
4375 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4376 mips_got_page_entry_eq, NULL);
4377 if (g->got_page_entries == NULL)
4378 return FALSE;
4379
4380 tga.info = info;
4381 tga.g = g;
4382 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4383
4384 return TRUE;
4385}
4386
4387/* Return true if a GOT entry for H should live in the local rather than
4388 global GOT area. */
4389
4390static bfd_boolean
4391mips_use_local_got_p (struct bfd_link_info *info,
4392 struct mips_elf_link_hash_entry *h)
4393{
4394 /* Symbols that aren't in the dynamic symbol table must live in the
4395 local GOT. This includes symbols that are completely undefined
4396 and which therefore don't bind locally. We'll report undefined
4397 symbols later if appropriate. */
4398 if (h->root.dynindx == -1)
4399 return TRUE;
4400
4401 /* Symbols that bind locally can (and in the case of forced-local
4402 symbols, must) live in the local GOT. */
4403 if (h->got_only_for_calls
4404 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4405 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4406 return TRUE;
4407
4408 /* If this is an executable that must provide a definition of the symbol,
4409 either though PLTs or copy relocations, then that address should go in
4410 the local rather than global GOT. */
4411 if (bfd_link_executable (info) && h->has_static_relocs)
4412 return TRUE;
4413
4414 return FALSE;
4415}
4416
4417/* A mips_elf_link_hash_traverse callback for which DATA points to the
4418 link_info structure. Decide whether the hash entry needs an entry in
4419 the global part of the primary GOT, setting global_got_area accordingly.
4420 Count the number of global symbols that are in the primary GOT only
4421 because they have relocations against them (reloc_only_gotno). */
4422
4423static int
4424mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4425{
4426 struct bfd_link_info *info;
4427 struct mips_elf_link_hash_table *htab;
4428 struct mips_got_info *g;
4429
4430 info = (struct bfd_link_info *) data;
4431 htab = mips_elf_hash_table (info);
4432 g = htab->got_info;
4433 if (h->global_got_area != GGA_NONE)
4434 {
4435 /* Make a final decision about whether the symbol belongs in the
4436 local or global GOT. */
4437 if (mips_use_local_got_p (info, h))
4438 /* The symbol belongs in the local GOT. We no longer need this
4439 entry if it was only used for relocations; those relocations
4440 will be against the null or section symbol instead of H. */
4441 h->global_got_area = GGA_NONE;
4442 else if (htab->is_vxworks
4443 && h->got_only_for_calls
4444 && h->root.plt.plist->mips_offset != MINUS_ONE)
4445 /* On VxWorks, calls can refer directly to the .got.plt entry;
4446 they don't need entries in the regular GOT. .got.plt entries
4447 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4448 h->global_got_area = GGA_NONE;
4449 else if (h->global_got_area == GGA_RELOC_ONLY)
4450 {
4451 g->reloc_only_gotno++;
4452 g->global_gotno++;
4453 }
4454 }
4455 return 1;
4456}
4457\f
4458/* A htab_traverse callback for GOT entries. Add each one to the GOT
4459 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4460
4461static int
4462mips_elf_add_got_entry (void **entryp, void *data)
4463{
4464 struct mips_got_entry *entry;
4465 struct mips_elf_traverse_got_arg *arg;
4466 void **slot;
4467
4468 entry = (struct mips_got_entry *) *entryp;
4469 arg = (struct mips_elf_traverse_got_arg *) data;
4470 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4471 if (!slot)
4472 {
4473 arg->g = NULL;
4474 return 0;
4475 }
4476 if (!*slot)
4477 {
4478 *slot = entry;
4479 mips_elf_count_got_entry (arg->info, arg->g, entry);
4480 }
4481 return 1;
4482}
4483
4484/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4485 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4486
4487static int
4488mips_elf_add_got_page_entry (void **entryp, void *data)
4489{
4490 struct mips_got_page_entry *entry;
4491 struct mips_elf_traverse_got_arg *arg;
4492 void **slot;
4493
4494 entry = (struct mips_got_page_entry *) *entryp;
4495 arg = (struct mips_elf_traverse_got_arg *) data;
4496 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4497 if (!slot)
4498 {
4499 arg->g = NULL;
4500 return 0;
4501 }
4502 if (!*slot)
4503 {
4504 *slot = entry;
4505 arg->g->page_gotno += entry->num_pages;
4506 }
4507 return 1;
4508}
4509
4510/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4511 this would lead to overflow, 1 if they were merged successfully,
4512 and 0 if a merge failed due to lack of memory. (These values are chosen
4513 so that nonnegative return values can be returned by a htab_traverse
4514 callback.) */
4515
4516static int
4517mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4518 struct mips_got_info *to,
4519 struct mips_elf_got_per_bfd_arg *arg)
4520{
4521 struct mips_elf_traverse_got_arg tga;
4522 unsigned int estimate;
4523
4524 /* Work out how many page entries we would need for the combined GOT. */
4525 estimate = arg->max_pages;
4526 if (estimate >= from->page_gotno + to->page_gotno)
4527 estimate = from->page_gotno + to->page_gotno;
4528
4529 /* And conservatively estimate how many local and TLS entries
4530 would be needed. */
4531 estimate += from->local_gotno + to->local_gotno;
4532 estimate += from->tls_gotno + to->tls_gotno;
4533
4534 /* If we're merging with the primary got, any TLS relocations will
4535 come after the full set of global entries. Otherwise estimate those
4536 conservatively as well. */
4537 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4538 estimate += arg->global_count;
4539 else
4540 estimate += from->global_gotno + to->global_gotno;
4541
4542 /* Bail out if the combined GOT might be too big. */
4543 if (estimate > arg->max_count)
4544 return -1;
4545
4546 /* Transfer the bfd's got information from FROM to TO. */
4547 tga.info = arg->info;
4548 tga.g = to;
4549 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4550 if (!tga.g)
4551 return 0;
4552
4553 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4554 if (!tga.g)
4555 return 0;
4556
4557 mips_elf_replace_bfd_got (abfd, to);
4558 return 1;
4559}
4560
4561/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4562 as possible of the primary got, since it doesn't require explicit
4563 dynamic relocations, but don't use bfds that would reference global
4564 symbols out of the addressable range. Failing the primary got,
4565 attempt to merge with the current got, or finish the current got
4566 and then make make the new got current. */
4567
4568static bfd_boolean
4569mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4570 struct mips_elf_got_per_bfd_arg *arg)
4571{
4572 unsigned int estimate;
4573 int result;
4574
4575 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4576 return FALSE;
4577
4578 /* Work out the number of page, local and TLS entries. */
4579 estimate = arg->max_pages;
4580 if (estimate > g->page_gotno)
4581 estimate = g->page_gotno;
4582 estimate += g->local_gotno + g->tls_gotno;
4583
4584 /* We place TLS GOT entries after both locals and globals. The globals
4585 for the primary GOT may overflow the normal GOT size limit, so be
4586 sure not to merge a GOT which requires TLS with the primary GOT in that
4587 case. This doesn't affect non-primary GOTs. */
4588 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4589
4590 if (estimate <= arg->max_count)
4591 {
4592 /* If we don't have a primary GOT, use it as
4593 a starting point for the primary GOT. */
4594 if (!arg->primary)
4595 {
4596 arg->primary = g;
4597 return TRUE;
4598 }
4599
4600 /* Try merging with the primary GOT. */
4601 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4602 if (result >= 0)
4603 return result;
4604 }
4605
4606 /* If we can merge with the last-created got, do it. */
4607 if (arg->current)
4608 {
4609 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4610 if (result >= 0)
4611 return result;
4612 }
4613
4614 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4615 fits; if it turns out that it doesn't, we'll get relocation
4616 overflows anyway. */
4617 g->next = arg->current;
4618 arg->current = g;
4619
4620 return TRUE;
4621}
4622
4623/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4624 to GOTIDX, duplicating the entry if it has already been assigned
4625 an index in a different GOT. */
4626
4627static bfd_boolean
4628mips_elf_set_gotidx (void **entryp, long gotidx)
4629{
4630 struct mips_got_entry *entry;
4631
4632 entry = (struct mips_got_entry *) *entryp;
4633 if (entry->gotidx > 0)
4634 {
4635 struct mips_got_entry *new_entry;
4636
4637 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4638 if (!new_entry)
4639 return FALSE;
4640
4641 *new_entry = *entry;
4642 *entryp = new_entry;
4643 entry = new_entry;
4644 }
4645 entry->gotidx = gotidx;
4646 return TRUE;
4647}
4648
4649/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4650 mips_elf_traverse_got_arg in which DATA->value is the size of one
4651 GOT entry. Set DATA->g to null on failure. */
4652
4653static int
4654mips_elf_initialize_tls_index (void **entryp, void *data)
4655{
4656 struct mips_got_entry *entry;
4657 struct mips_elf_traverse_got_arg *arg;
4658
4659 /* We're only interested in TLS symbols. */
4660 entry = (struct mips_got_entry *) *entryp;
4661 if (entry->tls_type == GOT_TLS_NONE)
4662 return 1;
4663
4664 arg = (struct mips_elf_traverse_got_arg *) data;
4665 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4666 {
4667 arg->g = NULL;
4668 return 0;
4669 }
4670
4671 /* Account for the entries we've just allocated. */
4672 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4673 return 1;
4674}
4675
4676/* A htab_traverse callback for GOT entries, where DATA points to a
4677 mips_elf_traverse_got_arg. Set the global_got_area of each global
4678 symbol to DATA->value. */
4679
4680static int
4681mips_elf_set_global_got_area (void **entryp, void *data)
4682{
4683 struct mips_got_entry *entry;
4684 struct mips_elf_traverse_got_arg *arg;
4685
4686 entry = (struct mips_got_entry *) *entryp;
4687 arg = (struct mips_elf_traverse_got_arg *) data;
4688 if (entry->abfd != NULL
4689 && entry->symndx == -1
4690 && entry->d.h->global_got_area != GGA_NONE)
4691 entry->d.h->global_got_area = arg->value;
4692 return 1;
4693}
4694
4695/* A htab_traverse callback for secondary GOT entries, where DATA points
4696 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4697 and record the number of relocations they require. DATA->value is
4698 the size of one GOT entry. Set DATA->g to null on failure. */
4699
4700static int
4701mips_elf_set_global_gotidx (void **entryp, void *data)
4702{
4703 struct mips_got_entry *entry;
4704 struct mips_elf_traverse_got_arg *arg;
4705
4706 entry = (struct mips_got_entry *) *entryp;
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (entry->abfd != NULL
4709 && entry->symndx == -1
4710 && entry->d.h->global_got_area != GGA_NONE)
4711 {
4712 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4713 {
4714 arg->g = NULL;
4715 return 0;
4716 }
4717 arg->g->assigned_low_gotno += 1;
4718
4719 if (bfd_link_pic (arg->info)
4720 || (elf_hash_table (arg->info)->dynamic_sections_created
4721 && entry->d.h->root.def_dynamic
4722 && !entry->d.h->root.def_regular))
4723 arg->g->relocs += 1;
4724 }
4725
4726 return 1;
4727}
4728
4729/* A htab_traverse callback for GOT entries for which DATA is the
4730 bfd_link_info. Forbid any global symbols from having traditional
4731 lazy-binding stubs. */
4732
4733static int
4734mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4735{
4736 struct bfd_link_info *info;
4737 struct mips_elf_link_hash_table *htab;
4738 struct mips_got_entry *entry;
4739
4740 entry = (struct mips_got_entry *) *entryp;
4741 info = (struct bfd_link_info *) data;
4742 htab = mips_elf_hash_table (info);
4743 BFD_ASSERT (htab != NULL);
4744
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->needs_lazy_stub)
4748 {
4749 entry->d.h->needs_lazy_stub = FALSE;
4750 htab->lazy_stub_count--;
4751 }
4752
4753 return 1;
4754}
4755
4756/* Return the offset of an input bfd IBFD's GOT from the beginning of
4757 the primary GOT. */
4758static bfd_vma
4759mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4760{
4761 if (!g->next)
4762 return 0;
4763
4764 g = mips_elf_bfd_got (ibfd, FALSE);
4765 if (! g)
4766 return 0;
4767
4768 BFD_ASSERT (g->next);
4769
4770 g = g->next;
4771
4772 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4773 * MIPS_ELF_GOT_SIZE (abfd);
4774}
4775
4776/* Turn a single GOT that is too big for 16-bit addressing into
4777 a sequence of GOTs, each one 16-bit addressable. */
4778
4779static bfd_boolean
4780mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4781 asection *got, bfd_size_type pages)
4782{
4783 struct mips_elf_link_hash_table *htab;
4784 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4785 struct mips_elf_traverse_got_arg tga;
4786 struct mips_got_info *g, *gg;
4787 unsigned int assign, needed_relocs;
4788 bfd *dynobj, *ibfd;
4789
4790 dynobj = elf_hash_table (info)->dynobj;
4791 htab = mips_elf_hash_table (info);
4792 BFD_ASSERT (htab != NULL);
4793
4794 g = htab->got_info;
4795
4796 got_per_bfd_arg.obfd = abfd;
4797 got_per_bfd_arg.info = info;
4798 got_per_bfd_arg.current = NULL;
4799 got_per_bfd_arg.primary = NULL;
4800 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4801 / MIPS_ELF_GOT_SIZE (abfd))
4802 - htab->reserved_gotno);
4803 got_per_bfd_arg.max_pages = pages;
4804 /* The number of globals that will be included in the primary GOT.
4805 See the calls to mips_elf_set_global_got_area below for more
4806 information. */
4807 got_per_bfd_arg.global_count = g->global_gotno;
4808
4809 /* Try to merge the GOTs of input bfds together, as long as they
4810 don't seem to exceed the maximum GOT size, choosing one of them
4811 to be the primary GOT. */
4812 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4813 {
4814 gg = mips_elf_bfd_got (ibfd, FALSE);
4815 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4816 return FALSE;
4817 }
4818
4819 /* If we do not find any suitable primary GOT, create an empty one. */
4820 if (got_per_bfd_arg.primary == NULL)
4821 g->next = mips_elf_create_got_info (abfd);
4822 else
4823 g->next = got_per_bfd_arg.primary;
4824 g->next->next = got_per_bfd_arg.current;
4825
4826 /* GG is now the master GOT, and G is the primary GOT. */
4827 gg = g;
4828 g = g->next;
4829
4830 /* Map the output bfd to the primary got. That's what we're going
4831 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4832 didn't mark in check_relocs, and we want a quick way to find it.
4833 We can't just use gg->next because we're going to reverse the
4834 list. */
4835 mips_elf_replace_bfd_got (abfd, g);
4836
4837 /* Every symbol that is referenced in a dynamic relocation must be
4838 present in the primary GOT, so arrange for them to appear after
4839 those that are actually referenced. */
4840 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4841 g->global_gotno = gg->global_gotno;
4842
4843 tga.info = info;
4844 tga.value = GGA_RELOC_ONLY;
4845 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4846 tga.value = GGA_NORMAL;
4847 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4848
4849 /* Now go through the GOTs assigning them offset ranges.
4850 [assigned_low_gotno, local_gotno[ will be set to the range of local
4851 entries in each GOT. We can then compute the end of a GOT by
4852 adding local_gotno to global_gotno. We reverse the list and make
4853 it circular since then we'll be able to quickly compute the
4854 beginning of a GOT, by computing the end of its predecessor. To
4855 avoid special cases for the primary GOT, while still preserving
4856 assertions that are valid for both single- and multi-got links,
4857 we arrange for the main got struct to have the right number of
4858 global entries, but set its local_gotno such that the initial
4859 offset of the primary GOT is zero. Remember that the primary GOT
4860 will become the last item in the circular linked list, so it
4861 points back to the master GOT. */
4862 gg->local_gotno = -g->global_gotno;
4863 gg->global_gotno = g->global_gotno;
4864 gg->tls_gotno = 0;
4865 assign = 0;
4866 gg->next = gg;
4867
4868 do
4869 {
4870 struct mips_got_info *gn;
4871
4872 assign += htab->reserved_gotno;
4873 g->assigned_low_gotno = assign;
4874 g->local_gotno += assign;
4875 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4876 g->assigned_high_gotno = g->local_gotno - 1;
4877 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4878
4879 /* Take g out of the direct list, and push it onto the reversed
4880 list that gg points to. g->next is guaranteed to be nonnull after
4881 this operation, as required by mips_elf_initialize_tls_index. */
4882 gn = g->next;
4883 g->next = gg->next;
4884 gg->next = g;
4885
4886 /* Set up any TLS entries. We always place the TLS entries after
4887 all non-TLS entries. */
4888 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4889 tga.g = g;
4890 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4891 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4892 if (!tga.g)
4893 return FALSE;
4894 BFD_ASSERT (g->tls_assigned_gotno == assign);
4895
4896 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4897 g = gn;
4898
4899 /* Forbid global symbols in every non-primary GOT from having
4900 lazy-binding stubs. */
4901 if (g)
4902 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4903 }
4904 while (g);
4905
4906 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4907
4908 needed_relocs = 0;
4909 for (g = gg->next; g && g->next != gg; g = g->next)
4910 {
4911 unsigned int save_assign;
4912
4913 /* Assign offsets to global GOT entries and count how many
4914 relocations they need. */
4915 save_assign = g->assigned_low_gotno;
4916 g->assigned_low_gotno = g->local_gotno;
4917 tga.info = info;
4918 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4919 tga.g = g;
4920 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4921 if (!tga.g)
4922 return FALSE;
4923 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4924 g->assigned_low_gotno = save_assign;
4925
4926 if (bfd_link_pic (info))
4927 {
4928 g->relocs += g->local_gotno - g->assigned_low_gotno;
4929 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4930 + g->next->global_gotno
4931 + g->next->tls_gotno
4932 + htab->reserved_gotno);
4933 }
4934 needed_relocs += g->relocs;
4935 }
4936 needed_relocs += g->relocs;
4937
4938 if (needed_relocs)
4939 mips_elf_allocate_dynamic_relocations (dynobj, info,
4940 needed_relocs);
4941
4942 return TRUE;
4943}
4944
4945\f
4946/* Returns the first relocation of type r_type found, beginning with
4947 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4948
4949static const Elf_Internal_Rela *
4950mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4951 const Elf_Internal_Rela *relocation,
4952 const Elf_Internal_Rela *relend)
4953{
4954 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4955
4956 while (relocation < relend)
4957 {
4958 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4959 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4960 return relocation;
4961
4962 ++relocation;
4963 }
4964
4965 /* We didn't find it. */
4966 return NULL;
4967}
4968
4969/* Return whether an input relocation is against a local symbol. */
4970
4971static bfd_boolean
4972mips_elf_local_relocation_p (bfd *input_bfd,
4973 const Elf_Internal_Rela *relocation,
4974 asection **local_sections)
4975{
4976 unsigned long r_symndx;
4977 Elf_Internal_Shdr *symtab_hdr;
4978 size_t extsymoff;
4979
4980 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4981 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4982 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4983
4984 if (r_symndx < extsymoff)
4985 return TRUE;
4986 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4987 return TRUE;
4988
4989 return FALSE;
4990}
4991\f
4992/* Sign-extend VALUE, which has the indicated number of BITS. */
4993
4994bfd_vma
4995_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4996{
4997 if (value & ((bfd_vma) 1 << (bits - 1)))
4998 /* VALUE is negative. */
4999 value |= ((bfd_vma) - 1) << bits;
5000
5001 return value;
5002}
5003
5004/* Return non-zero if the indicated VALUE has overflowed the maximum
5005 range expressible by a signed number with the indicated number of
5006 BITS. */
5007
5008static bfd_boolean
5009mips_elf_overflow_p (bfd_vma value, int bits)
5010{
5011 bfd_signed_vma svalue = (bfd_signed_vma) value;
5012
5013 if (svalue > (1 << (bits - 1)) - 1)
5014 /* The value is too big. */
5015 return TRUE;
5016 else if (svalue < -(1 << (bits - 1)))
5017 /* The value is too small. */
5018 return TRUE;
5019
5020 /* All is well. */
5021 return FALSE;
5022}
5023
5024/* Calculate the %high function. */
5025
5026static bfd_vma
5027mips_elf_high (bfd_vma value)
5028{
5029 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5030}
5031
5032/* Calculate the %higher function. */
5033
5034static bfd_vma
5035mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5036{
5037#ifdef BFD64
5038 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5039#else
5040 abort ();
5041 return MINUS_ONE;
5042#endif
5043}
5044
5045/* Calculate the %highest function. */
5046
5047static bfd_vma
5048mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5049{
5050#ifdef BFD64
5051 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5052#else
5053 abort ();
5054 return MINUS_ONE;
5055#endif
5056}
5057\f
5058/* Create the .compact_rel section. */
5059
5060static bfd_boolean
5061mips_elf_create_compact_rel_section
5062 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5063{
5064 flagword flags;
5065 register asection *s;
5066
5067 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5068 {
5069 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5070 | SEC_READONLY);
5071
5072 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5073 if (s == NULL
5074 || ! bfd_set_section_alignment (abfd, s,
5075 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5076 return FALSE;
5077
5078 s->size = sizeof (Elf32_External_compact_rel);
5079 }
5080
5081 return TRUE;
5082}
5083
5084/* Create the .got section to hold the global offset table. */
5085
5086static bfd_boolean
5087mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5088{
5089 flagword flags;
5090 register asection *s;
5091 struct elf_link_hash_entry *h;
5092 struct bfd_link_hash_entry *bh;
5093 struct mips_elf_link_hash_table *htab;
5094
5095 htab = mips_elf_hash_table (info);
5096 BFD_ASSERT (htab != NULL);
5097
5098 /* This function may be called more than once. */
5099 if (htab->sgot)
5100 return TRUE;
5101
5102 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5103 | SEC_LINKER_CREATED);
5104
5105 /* We have to use an alignment of 2**4 here because this is hardcoded
5106 in the function stub generation and in the linker script. */
5107 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5108 if (s == NULL
5109 || ! bfd_set_section_alignment (abfd, s, 4))
5110 return FALSE;
5111 htab->sgot = s;
5112
5113 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5114 linker script because we don't want to define the symbol if we
5115 are not creating a global offset table. */
5116 bh = NULL;
5117 if (! (_bfd_generic_link_add_one_symbol
5118 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5119 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5120 return FALSE;
5121
5122 h = (struct elf_link_hash_entry *) bh;
5123 h->non_elf = 0;
5124 h->def_regular = 1;
5125 h->type = STT_OBJECT;
5126 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5127 elf_hash_table (info)->hgot = h;
5128
5129 if (bfd_link_pic (info)
5130 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5131 return FALSE;
5132
5133 htab->got_info = mips_elf_create_got_info (abfd);
5134 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5135 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5136
5137 /* We also need a .got.plt section when generating PLTs. */
5138 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5139 SEC_ALLOC | SEC_LOAD
5140 | SEC_HAS_CONTENTS
5141 | SEC_IN_MEMORY
5142 | SEC_LINKER_CREATED);
5143 if (s == NULL)
5144 return FALSE;
5145 htab->sgotplt = s;
5146
5147 return TRUE;
5148}
5149\f
5150/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5151 __GOTT_INDEX__ symbols. These symbols are only special for
5152 shared objects; they are not used in executables. */
5153
5154static bfd_boolean
5155is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5156{
5157 return (mips_elf_hash_table (info)->is_vxworks
5158 && bfd_link_pic (info)
5159 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5160 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5161}
5162
5163/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5164 require an la25 stub. See also mips_elf_local_pic_function_p,
5165 which determines whether the destination function ever requires a
5166 stub. */
5167
5168static bfd_boolean
5169mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5170 bfd_boolean target_is_16_bit_code_p)
5171{
5172 /* We specifically ignore branches and jumps from EF_PIC objects,
5173 where the onus is on the compiler or programmer to perform any
5174 necessary initialization of $25. Sometimes such initialization
5175 is unnecessary; for example, -mno-shared functions do not use
5176 the incoming value of $25, and may therefore be called directly. */
5177 if (PIC_OBJECT_P (input_bfd))
5178 return FALSE;
5179
5180 switch (r_type)
5181 {
5182 case R_MIPS_26:
5183 case R_MIPS_PC16:
5184 case R_MIPS_PC21_S2:
5185 case R_MIPS_PC26_S2:
5186 case R_MICROMIPS_26_S1:
5187 case R_MICROMIPS_PC7_S1:
5188 case R_MICROMIPS_PC10_S1:
5189 case R_MICROMIPS_PC16_S1:
5190 case R_MICROMIPS_PC23_S2:
5191 return TRUE;
5192
5193 case R_MIPS16_26:
5194 return !target_is_16_bit_code_p;
5195
5196 default:
5197 return FALSE;
5198 }
5199}
5200\f
5201/* Calculate the value produced by the RELOCATION (which comes from
5202 the INPUT_BFD). The ADDEND is the addend to use for this
5203 RELOCATION; RELOCATION->R_ADDEND is ignored.
5204
5205 The result of the relocation calculation is stored in VALUEP.
5206 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5207 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5208
5209 This function returns bfd_reloc_continue if the caller need take no
5210 further action regarding this relocation, bfd_reloc_notsupported if
5211 something goes dramatically wrong, bfd_reloc_overflow if an
5212 overflow occurs, and bfd_reloc_ok to indicate success. */
5213
5214static bfd_reloc_status_type
5215mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5216 asection *input_section,
5217 struct bfd_link_info *info,
5218 const Elf_Internal_Rela *relocation,
5219 bfd_vma addend, reloc_howto_type *howto,
5220 Elf_Internal_Sym *local_syms,
5221 asection **local_sections, bfd_vma *valuep,
5222 const char **namep,
5223 bfd_boolean *cross_mode_jump_p,
5224 bfd_boolean save_addend)
5225{
5226 /* The eventual value we will return. */
5227 bfd_vma value;
5228 /* The address of the symbol against which the relocation is
5229 occurring. */
5230 bfd_vma symbol = 0;
5231 /* The final GP value to be used for the relocatable, executable, or
5232 shared object file being produced. */
5233 bfd_vma gp;
5234 /* The place (section offset or address) of the storage unit being
5235 relocated. */
5236 bfd_vma p;
5237 /* The value of GP used to create the relocatable object. */
5238 bfd_vma gp0;
5239 /* The offset into the global offset table at which the address of
5240 the relocation entry symbol, adjusted by the addend, resides
5241 during execution. */
5242 bfd_vma g = MINUS_ONE;
5243 /* The section in which the symbol referenced by the relocation is
5244 located. */
5245 asection *sec = NULL;
5246 struct mips_elf_link_hash_entry *h = NULL;
5247 /* TRUE if the symbol referred to by this relocation is a local
5248 symbol. */
5249 bfd_boolean local_p, was_local_p;
5250 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5251 bfd_boolean gp_disp_p = FALSE;
5252 /* TRUE if the symbol referred to by this relocation is
5253 "__gnu_local_gp". */
5254 bfd_boolean gnu_local_gp_p = FALSE;
5255 Elf_Internal_Shdr *symtab_hdr;
5256 size_t extsymoff;
5257 unsigned long r_symndx;
5258 int r_type;
5259 /* TRUE if overflow occurred during the calculation of the
5260 relocation value. */
5261 bfd_boolean overflowed_p;
5262 /* TRUE if this relocation refers to a MIPS16 function. */
5263 bfd_boolean target_is_16_bit_code_p = FALSE;
5264 bfd_boolean target_is_micromips_code_p = FALSE;
5265 struct mips_elf_link_hash_table *htab;
5266 bfd *dynobj;
5267
5268 dynobj = elf_hash_table (info)->dynobj;
5269 htab = mips_elf_hash_table (info);
5270 BFD_ASSERT (htab != NULL);
5271
5272 /* Parse the relocation. */
5273 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5274 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5275 p = (input_section->output_section->vma
5276 + input_section->output_offset
5277 + relocation->r_offset);
5278
5279 /* Assume that there will be no overflow. */
5280 overflowed_p = FALSE;
5281
5282 /* Figure out whether or not the symbol is local, and get the offset
5283 used in the array of hash table entries. */
5284 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5285 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5286 local_sections);
5287 was_local_p = local_p;
5288 if (! elf_bad_symtab (input_bfd))
5289 extsymoff = symtab_hdr->sh_info;
5290 else
5291 {
5292 /* The symbol table does not follow the rule that local symbols
5293 must come before globals. */
5294 extsymoff = 0;
5295 }
5296
5297 /* Figure out the value of the symbol. */
5298 if (local_p)
5299 {
5300 Elf_Internal_Sym *sym;
5301
5302 sym = local_syms + r_symndx;
5303 sec = local_sections[r_symndx];
5304
5305 symbol = sec->output_section->vma + sec->output_offset;
5306 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5307 || (sec->flags & SEC_MERGE))
5308 symbol += sym->st_value;
5309 if ((sec->flags & SEC_MERGE)
5310 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5311 {
5312 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5313 addend -= symbol;
5314 addend += sec->output_section->vma + sec->output_offset;
5315 }
5316
5317 /* MIPS16/microMIPS text labels should be treated as odd. */
5318 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5319 ++symbol;
5320
5321 /* Record the name of this symbol, for our caller. */
5322 *namep = bfd_elf_string_from_elf_section (input_bfd,
5323 symtab_hdr->sh_link,
5324 sym->st_name);
5325 if (*namep == '\0')
5326 *namep = bfd_section_name (input_bfd, sec);
5327
5328 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5329 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5330 }
5331 else
5332 {
5333 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5334
5335 /* For global symbols we look up the symbol in the hash-table. */
5336 h = ((struct mips_elf_link_hash_entry *)
5337 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5338 /* Find the real hash-table entry for this symbol. */
5339 while (h->root.root.type == bfd_link_hash_indirect
5340 || h->root.root.type == bfd_link_hash_warning)
5341 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5342
5343 /* Record the name of this symbol, for our caller. */
5344 *namep = h->root.root.root.string;
5345
5346 /* See if this is the special _gp_disp symbol. Note that such a
5347 symbol must always be a global symbol. */
5348 if (strcmp (*namep, "_gp_disp") == 0
5349 && ! NEWABI_P (input_bfd))
5350 {
5351 /* Relocations against _gp_disp are permitted only with
5352 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5353 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5354 return bfd_reloc_notsupported;
5355
5356 gp_disp_p = TRUE;
5357 }
5358 /* See if this is the special _gp symbol. Note that such a
5359 symbol must always be a global symbol. */
5360 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5361 gnu_local_gp_p = TRUE;
5362
5363
5364 /* If this symbol is defined, calculate its address. Note that
5365 _gp_disp is a magic symbol, always implicitly defined by the
5366 linker, so it's inappropriate to check to see whether or not
5367 its defined. */
5368 else if ((h->root.root.type == bfd_link_hash_defined
5369 || h->root.root.type == bfd_link_hash_defweak)
5370 && h->root.root.u.def.section)
5371 {
5372 sec = h->root.root.u.def.section;
5373 if (sec->output_section)
5374 symbol = (h->root.root.u.def.value
5375 + sec->output_section->vma
5376 + sec->output_offset);
5377 else
5378 symbol = h->root.root.u.def.value;
5379 }
5380 else if (h->root.root.type == bfd_link_hash_undefweak)
5381 /* We allow relocations against undefined weak symbols, giving
5382 it the value zero, so that you can undefined weak functions
5383 and check to see if they exist by looking at their
5384 addresses. */
5385 symbol = 0;
5386 else if (info->unresolved_syms_in_objects == RM_IGNORE
5387 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5388 symbol = 0;
5389 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5390 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5391 {
5392 /* If this is a dynamic link, we should have created a
5393 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5394 in in _bfd_mips_elf_create_dynamic_sections.
5395 Otherwise, we should define the symbol with a value of 0.
5396 FIXME: It should probably get into the symbol table
5397 somehow as well. */
5398 BFD_ASSERT (! bfd_link_pic (info));
5399 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5400 symbol = 0;
5401 }
5402 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5403 {
5404 /* This is an optional symbol - an Irix specific extension to the
5405 ELF spec. Ignore it for now.
5406 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5407 than simply ignoring them, but we do not handle this for now.
5408 For information see the "64-bit ELF Object File Specification"
5409 which is available from here:
5410 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5411 symbol = 0;
5412 }
5413 else if ((*info->callbacks->undefined_symbol)
5414 (info, h->root.root.root.string, input_bfd,
5415 input_section, relocation->r_offset,
5416 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5417 || ELF_ST_VISIBILITY (h->root.other)))
5418 {
5419 return bfd_reloc_undefined;
5420 }
5421 else
5422 {
5423 return bfd_reloc_notsupported;
5424 }
5425
5426 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5427 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5428 }
5429
5430 /* If this is a reference to a 16-bit function with a stub, we need
5431 to redirect the relocation to the stub unless:
5432
5433 (a) the relocation is for a MIPS16 JAL;
5434
5435 (b) the relocation is for a MIPS16 PIC call, and there are no
5436 non-MIPS16 uses of the GOT slot; or
5437
5438 (c) the section allows direct references to MIPS16 functions. */
5439 if (r_type != R_MIPS16_26
5440 && !bfd_link_relocatable (info)
5441 && ((h != NULL
5442 && h->fn_stub != NULL
5443 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5444 || (local_p
5445 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5446 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5447 && !section_allows_mips16_refs_p (input_section))
5448 {
5449 /* This is a 32- or 64-bit call to a 16-bit function. We should
5450 have already noticed that we were going to need the
5451 stub. */
5452 if (local_p)
5453 {
5454 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5455 value = 0;
5456 }
5457 else
5458 {
5459 BFD_ASSERT (h->need_fn_stub);
5460 if (h->la25_stub)
5461 {
5462 /* If a LA25 header for the stub itself exists, point to the
5463 prepended LUI/ADDIU sequence. */
5464 sec = h->la25_stub->stub_section;
5465 value = h->la25_stub->offset;
5466 }
5467 else
5468 {
5469 sec = h->fn_stub;
5470 value = 0;
5471 }
5472 }
5473
5474 symbol = sec->output_section->vma + sec->output_offset + value;
5475 /* The target is 16-bit, but the stub isn't. */
5476 target_is_16_bit_code_p = FALSE;
5477 }
5478 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5479 to a standard MIPS function, we need to redirect the call to the stub.
5480 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5481 indirect calls should use an indirect stub instead. */
5482 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5483 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5484 || (local_p
5485 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5486 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5487 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5488 {
5489 if (local_p)
5490 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5491 else
5492 {
5493 /* If both call_stub and call_fp_stub are defined, we can figure
5494 out which one to use by checking which one appears in the input
5495 file. */
5496 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5497 {
5498 asection *o;
5499
5500 sec = NULL;
5501 for (o = input_bfd->sections; o != NULL; o = o->next)
5502 {
5503 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5504 {
5505 sec = h->call_fp_stub;
5506 break;
5507 }
5508 }
5509 if (sec == NULL)
5510 sec = h->call_stub;
5511 }
5512 else if (h->call_stub != NULL)
5513 sec = h->call_stub;
5514 else
5515 sec = h->call_fp_stub;
5516 }
5517
5518 BFD_ASSERT (sec->size > 0);
5519 symbol = sec->output_section->vma + sec->output_offset;
5520 }
5521 /* If this is a direct call to a PIC function, redirect to the
5522 non-PIC stub. */
5523 else if (h != NULL && h->la25_stub
5524 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5525 target_is_16_bit_code_p))
5526 symbol = (h->la25_stub->stub_section->output_section->vma
5527 + h->la25_stub->stub_section->output_offset
5528 + h->la25_stub->offset);
5529 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5530 entry is used if a standard PLT entry has also been made. In this
5531 case the symbol will have been set by mips_elf_set_plt_sym_value
5532 to point to the standard PLT entry, so redirect to the compressed
5533 one. */
5534 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5535 && !bfd_link_relocatable (info)
5536 && h != NULL
5537 && h->use_plt_entry
5538 && h->root.plt.plist->comp_offset != MINUS_ONE
5539 && h->root.plt.plist->mips_offset != MINUS_ONE)
5540 {
5541 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5542
5543 sec = htab->splt;
5544 symbol = (sec->output_section->vma
5545 + sec->output_offset
5546 + htab->plt_header_size
5547 + htab->plt_mips_offset
5548 + h->root.plt.plist->comp_offset
5549 + 1);
5550
5551 target_is_16_bit_code_p = !micromips_p;
5552 target_is_micromips_code_p = micromips_p;
5553 }
5554
5555 /* Make sure MIPS16 and microMIPS are not used together. */
5556 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5557 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5558 {
5559 (*_bfd_error_handler)
5560 (_("MIPS16 and microMIPS functions cannot call each other"));
5561 return bfd_reloc_notsupported;
5562 }
5563
5564 /* Calls from 16-bit code to 32-bit code and vice versa require the
5565 mode change. However, we can ignore calls to undefined weak symbols,
5566 which should never be executed at runtime. This exception is important
5567 because the assembly writer may have "known" that any definition of the
5568 symbol would be 16-bit code, and that direct jumps were therefore
5569 acceptable. */
5570 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5571 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5572 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5573 || (r_type == R_MICROMIPS_26_S1
5574 && !target_is_micromips_code_p)
5575 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5576 && (target_is_16_bit_code_p
5577 || target_is_micromips_code_p))));
5578
5579 local_p = (h == NULL || mips_use_local_got_p (info, h));
5580
5581 gp0 = _bfd_get_gp_value (input_bfd);
5582 gp = _bfd_get_gp_value (abfd);
5583 if (htab->got_info)
5584 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5585
5586 if (gnu_local_gp_p)
5587 symbol = gp;
5588
5589 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5590 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5591 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5592 if (got_page_reloc_p (r_type) && !local_p)
5593 {
5594 r_type = (micromips_reloc_p (r_type)
5595 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5596 addend = 0;
5597 }
5598
5599 /* If we haven't already determined the GOT offset, and we're going
5600 to need it, get it now. */
5601 switch (r_type)
5602 {
5603 case R_MIPS16_CALL16:
5604 case R_MIPS16_GOT16:
5605 case R_MIPS_CALL16:
5606 case R_MIPS_GOT16:
5607 case R_MIPS_GOT_DISP:
5608 case R_MIPS_GOT_HI16:
5609 case R_MIPS_CALL_HI16:
5610 case R_MIPS_GOT_LO16:
5611 case R_MIPS_CALL_LO16:
5612 case R_MICROMIPS_CALL16:
5613 case R_MICROMIPS_GOT16:
5614 case R_MICROMIPS_GOT_DISP:
5615 case R_MICROMIPS_GOT_HI16:
5616 case R_MICROMIPS_CALL_HI16:
5617 case R_MICROMIPS_GOT_LO16:
5618 case R_MICROMIPS_CALL_LO16:
5619 case R_MIPS_TLS_GD:
5620 case R_MIPS_TLS_GOTTPREL:
5621 case R_MIPS_TLS_LDM:
5622 case R_MIPS16_TLS_GD:
5623 case R_MIPS16_TLS_GOTTPREL:
5624 case R_MIPS16_TLS_LDM:
5625 case R_MICROMIPS_TLS_GD:
5626 case R_MICROMIPS_TLS_GOTTPREL:
5627 case R_MICROMIPS_TLS_LDM:
5628 /* Find the index into the GOT where this value is located. */
5629 if (tls_ldm_reloc_p (r_type))
5630 {
5631 g = mips_elf_local_got_index (abfd, input_bfd, info,
5632 0, 0, NULL, r_type);
5633 if (g == MINUS_ONE)
5634 return bfd_reloc_outofrange;
5635 }
5636 else if (!local_p)
5637 {
5638 /* On VxWorks, CALL relocations should refer to the .got.plt
5639 entry, which is initialized to point at the PLT stub. */
5640 if (htab->is_vxworks
5641 && (call_hi16_reloc_p (r_type)
5642 || call_lo16_reloc_p (r_type)
5643 || call16_reloc_p (r_type)))
5644 {
5645 BFD_ASSERT (addend == 0);
5646 BFD_ASSERT (h->root.needs_plt);
5647 g = mips_elf_gotplt_index (info, &h->root);
5648 }
5649 else
5650 {
5651 BFD_ASSERT (addend == 0);
5652 g = mips_elf_global_got_index (abfd, info, input_bfd,
5653 &h->root, r_type);
5654 if (!TLS_RELOC_P (r_type)
5655 && !elf_hash_table (info)->dynamic_sections_created)
5656 /* This is a static link. We must initialize the GOT entry. */
5657 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5658 }
5659 }
5660 else if (!htab->is_vxworks
5661 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5662 /* The calculation below does not involve "g". */
5663 break;
5664 else
5665 {
5666 g = mips_elf_local_got_index (abfd, input_bfd, info,
5667 symbol + addend, r_symndx, h, r_type);
5668 if (g == MINUS_ONE)
5669 return bfd_reloc_outofrange;
5670 }
5671
5672 /* Convert GOT indices to actual offsets. */
5673 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5674 break;
5675 }
5676
5677 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5678 symbols are resolved by the loader. Add them to .rela.dyn. */
5679 if (h != NULL && is_gott_symbol (info, &h->root))
5680 {
5681 Elf_Internal_Rela outrel;
5682 bfd_byte *loc;
5683 asection *s;
5684
5685 s = mips_elf_rel_dyn_section (info, FALSE);
5686 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5687
5688 outrel.r_offset = (input_section->output_section->vma
5689 + input_section->output_offset
5690 + relocation->r_offset);
5691 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5692 outrel.r_addend = addend;
5693 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5694
5695 /* If we've written this relocation for a readonly section,
5696 we need to set DF_TEXTREL again, so that we do not delete the
5697 DT_TEXTREL tag. */
5698 if (MIPS_ELF_READONLY_SECTION (input_section))
5699 info->flags |= DF_TEXTREL;
5700
5701 *valuep = 0;
5702 return bfd_reloc_ok;
5703 }
5704
5705 /* Figure out what kind of relocation is being performed. */
5706 switch (r_type)
5707 {
5708 case R_MIPS_NONE:
5709 return bfd_reloc_continue;
5710
5711 case R_MIPS_16:
5712 if (howto->partial_inplace)
5713 addend = _bfd_mips_elf_sign_extend (addend, 16);
5714 value = symbol + addend;
5715 overflowed_p = mips_elf_overflow_p (value, 16);
5716 break;
5717
5718 case R_MIPS_32:
5719 case R_MIPS_REL32:
5720 case R_MIPS_64:
5721 if ((bfd_link_pic (info)
5722 || (htab->root.dynamic_sections_created
5723 && h != NULL
5724 && h->root.def_dynamic
5725 && !h->root.def_regular
5726 && !h->has_static_relocs))
5727 && r_symndx != STN_UNDEF
5728 && (h == NULL
5729 || h->root.root.type != bfd_link_hash_undefweak
5730 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5731 && (input_section->flags & SEC_ALLOC) != 0)
5732 {
5733 /* If we're creating a shared library, then we can't know
5734 where the symbol will end up. So, we create a relocation
5735 record in the output, and leave the job up to the dynamic
5736 linker. We must do the same for executable references to
5737 shared library symbols, unless we've decided to use copy
5738 relocs or PLTs instead. */
5739 value = addend;
5740 if (!mips_elf_create_dynamic_relocation (abfd,
5741 info,
5742 relocation,
5743 h,
5744 sec,
5745 symbol,
5746 &value,
5747 input_section))
5748 return bfd_reloc_undefined;
5749 }
5750 else
5751 {
5752 if (r_type != R_MIPS_REL32)
5753 value = symbol + addend;
5754 else
5755 value = addend;
5756 }
5757 value &= howto->dst_mask;
5758 break;
5759
5760 case R_MIPS_PC32:
5761 value = symbol + addend - p;
5762 value &= howto->dst_mask;
5763 break;
5764
5765 case R_MIPS16_26:
5766 /* The calculation for R_MIPS16_26 is just the same as for an
5767 R_MIPS_26. It's only the storage of the relocated field into
5768 the output file that's different. That's handled in
5769 mips_elf_perform_relocation. So, we just fall through to the
5770 R_MIPS_26 case here. */
5771 case R_MIPS_26:
5772 case R_MICROMIPS_26_S1:
5773 {
5774 unsigned int shift;
5775
5776 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5777 the correct ISA mode selector and bit 1 must be 0. */
5778 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5779 return bfd_reloc_outofrange;
5780
5781 /* Shift is 2, unusually, for microMIPS JALX. */
5782 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5783
5784 if (was_local_p)
5785 value = addend | ((p + 4) & (0xfc000000 << shift));
5786 else if (howto->partial_inplace)
5787 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5788 else
5789 value = addend;
5790 value = (value + symbol) >> shift;
5791 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5792 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5793 value &= howto->dst_mask;
5794 }
5795 break;
5796
5797 case R_MIPS_TLS_DTPREL_HI16:
5798 case R_MIPS16_TLS_DTPREL_HI16:
5799 case R_MICROMIPS_TLS_DTPREL_HI16:
5800 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5801 & howto->dst_mask);
5802 break;
5803
5804 case R_MIPS_TLS_DTPREL_LO16:
5805 case R_MIPS_TLS_DTPREL32:
5806 case R_MIPS_TLS_DTPREL64:
5807 case R_MIPS16_TLS_DTPREL_LO16:
5808 case R_MICROMIPS_TLS_DTPREL_LO16:
5809 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_TLS_TPREL_HI16:
5813 case R_MIPS16_TLS_TPREL_HI16:
5814 case R_MICROMIPS_TLS_TPREL_HI16:
5815 value = (mips_elf_high (addend + symbol - tprel_base (info))
5816 & howto->dst_mask);
5817 break;
5818
5819 case R_MIPS_TLS_TPREL_LO16:
5820 case R_MIPS_TLS_TPREL32:
5821 case R_MIPS_TLS_TPREL64:
5822 case R_MIPS16_TLS_TPREL_LO16:
5823 case R_MICROMIPS_TLS_TPREL_LO16:
5824 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5825 break;
5826
5827 case R_MIPS_HI16:
5828 case R_MIPS16_HI16:
5829 case R_MICROMIPS_HI16:
5830 if (!gp_disp_p)
5831 {
5832 value = mips_elf_high (addend + symbol);
5833 value &= howto->dst_mask;
5834 }
5835 else
5836 {
5837 /* For MIPS16 ABI code we generate this sequence
5838 0: li $v0,%hi(_gp_disp)
5839 4: addiupc $v1,%lo(_gp_disp)
5840 8: sll $v0,16
5841 12: addu $v0,$v1
5842 14: move $gp,$v0
5843 So the offsets of hi and lo relocs are the same, but the
5844 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5845 ADDIUPC clears the low two bits of the instruction address,
5846 so the base is ($t9 + 4) & ~3. */
5847 if (r_type == R_MIPS16_HI16)
5848 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5849 /* The microMIPS .cpload sequence uses the same assembly
5850 instructions as the traditional psABI version, but the
5851 incoming $t9 has the low bit set. */
5852 else if (r_type == R_MICROMIPS_HI16)
5853 value = mips_elf_high (addend + gp - p - 1);
5854 else
5855 value = mips_elf_high (addend + gp - p);
5856 overflowed_p = mips_elf_overflow_p (value, 16);
5857 }
5858 break;
5859
5860 case R_MIPS_LO16:
5861 case R_MIPS16_LO16:
5862 case R_MICROMIPS_LO16:
5863 case R_MICROMIPS_HI0_LO16:
5864 if (!gp_disp_p)
5865 value = (symbol + addend) & howto->dst_mask;
5866 else
5867 {
5868 /* See the comment for R_MIPS16_HI16 above for the reason
5869 for this conditional. */
5870 if (r_type == R_MIPS16_LO16)
5871 value = addend + gp - (p & ~(bfd_vma) 0x3);
5872 else if (r_type == R_MICROMIPS_LO16
5873 || r_type == R_MICROMIPS_HI0_LO16)
5874 value = addend + gp - p + 3;
5875 else
5876 value = addend + gp - p + 4;
5877 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5878 for overflow. But, on, say, IRIX5, relocations against
5879 _gp_disp are normally generated from the .cpload
5880 pseudo-op. It generates code that normally looks like
5881 this:
5882
5883 lui $gp,%hi(_gp_disp)
5884 addiu $gp,$gp,%lo(_gp_disp)
5885 addu $gp,$gp,$t9
5886
5887 Here $t9 holds the address of the function being called,
5888 as required by the MIPS ELF ABI. The R_MIPS_LO16
5889 relocation can easily overflow in this situation, but the
5890 R_MIPS_HI16 relocation will handle the overflow.
5891 Therefore, we consider this a bug in the MIPS ABI, and do
5892 not check for overflow here. */
5893 }
5894 break;
5895
5896 case R_MIPS_LITERAL:
5897 case R_MICROMIPS_LITERAL:
5898 /* Because we don't merge literal sections, we can handle this
5899 just like R_MIPS_GPREL16. In the long run, we should merge
5900 shared literals, and then we will need to additional work
5901 here. */
5902
5903 /* Fall through. */
5904
5905 case R_MIPS16_GPREL:
5906 /* The R_MIPS16_GPREL performs the same calculation as
5907 R_MIPS_GPREL16, but stores the relocated bits in a different
5908 order. We don't need to do anything special here; the
5909 differences are handled in mips_elf_perform_relocation. */
5910 case R_MIPS_GPREL16:
5911 case R_MICROMIPS_GPREL7_S2:
5912 case R_MICROMIPS_GPREL16:
5913 /* Only sign-extend the addend if it was extracted from the
5914 instruction. If the addend was separate, leave it alone,
5915 otherwise we may lose significant bits. */
5916 if (howto->partial_inplace)
5917 addend = _bfd_mips_elf_sign_extend (addend, 16);
5918 value = symbol + addend - gp;
5919 /* If the symbol was local, any earlier relocatable links will
5920 have adjusted its addend with the gp offset, so compensate
5921 for that now. Don't do it for symbols forced local in this
5922 link, though, since they won't have had the gp offset applied
5923 to them before. */
5924 if (was_local_p)
5925 value += gp0;
5926 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5927 overflowed_p = mips_elf_overflow_p (value, 16);
5928 break;
5929
5930 case R_MIPS16_GOT16:
5931 case R_MIPS16_CALL16:
5932 case R_MIPS_GOT16:
5933 case R_MIPS_CALL16:
5934 case R_MICROMIPS_GOT16:
5935 case R_MICROMIPS_CALL16:
5936 /* VxWorks does not have separate local and global semantics for
5937 R_MIPS*_GOT16; every relocation evaluates to "G". */
5938 if (!htab->is_vxworks && local_p)
5939 {
5940 value = mips_elf_got16_entry (abfd, input_bfd, info,
5941 symbol + addend, !was_local_p);
5942 if (value == MINUS_ONE)
5943 return bfd_reloc_outofrange;
5944 value
5945 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5946 overflowed_p = mips_elf_overflow_p (value, 16);
5947 break;
5948 }
5949
5950 /* Fall through. */
5951
5952 case R_MIPS_TLS_GD:
5953 case R_MIPS_TLS_GOTTPREL:
5954 case R_MIPS_TLS_LDM:
5955 case R_MIPS_GOT_DISP:
5956 case R_MIPS16_TLS_GD:
5957 case R_MIPS16_TLS_GOTTPREL:
5958 case R_MIPS16_TLS_LDM:
5959 case R_MICROMIPS_TLS_GD:
5960 case R_MICROMIPS_TLS_GOTTPREL:
5961 case R_MICROMIPS_TLS_LDM:
5962 case R_MICROMIPS_GOT_DISP:
5963 value = g;
5964 overflowed_p = mips_elf_overflow_p (value, 16);
5965 break;
5966
5967 case R_MIPS_GPREL32:
5968 value = (addend + symbol + gp0 - gp);
5969 if (!save_addend)
5970 value &= howto->dst_mask;
5971 break;
5972
5973 case R_MIPS_PC16:
5974 case R_MIPS_GNU_REL16_S2:
5975 if (howto->partial_inplace)
5976 addend = _bfd_mips_elf_sign_extend (addend, 18);
5977
5978 if ((symbol + addend) & 3)
5979 return bfd_reloc_outofrange;
5980
5981 value = symbol + addend - p;
5982 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5983 overflowed_p = mips_elf_overflow_p (value, 18);
5984 value >>= howto->rightshift;
5985 value &= howto->dst_mask;
5986 break;
5987
5988 case R_MIPS_PC21_S2:
5989 if (howto->partial_inplace)
5990 addend = _bfd_mips_elf_sign_extend (addend, 23);
5991
5992 if ((symbol + addend) & 3)
5993 return bfd_reloc_outofrange;
5994
5995 value = symbol + addend - p;
5996 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5997 overflowed_p = mips_elf_overflow_p (value, 23);
5998 value >>= howto->rightshift;
5999 value &= howto->dst_mask;
6000 break;
6001
6002 case R_MIPS_PC26_S2:
6003 if (howto->partial_inplace)
6004 addend = _bfd_mips_elf_sign_extend (addend, 28);
6005
6006 if ((symbol + addend) & 3)
6007 return bfd_reloc_outofrange;
6008
6009 value = symbol + addend - p;
6010 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6011 overflowed_p = mips_elf_overflow_p (value, 28);
6012 value >>= howto->rightshift;
6013 value &= howto->dst_mask;
6014 break;
6015
6016 case R_MIPS_PC18_S3:
6017 if (howto->partial_inplace)
6018 addend = _bfd_mips_elf_sign_extend (addend, 21);
6019
6020 if ((symbol + addend) & 7)
6021 return bfd_reloc_outofrange;
6022
6023 value = symbol + addend - ((p | 7) ^ 7);
6024 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6025 overflowed_p = mips_elf_overflow_p (value, 21);
6026 value >>= howto->rightshift;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS_PC19_S2:
6031 if (howto->partial_inplace)
6032 addend = _bfd_mips_elf_sign_extend (addend, 21);
6033
6034 if ((symbol + addend) & 3)
6035 return bfd_reloc_outofrange;
6036
6037 value = symbol + addend - p;
6038 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6039 overflowed_p = mips_elf_overflow_p (value, 21);
6040 value >>= howto->rightshift;
6041 value &= howto->dst_mask;
6042 break;
6043
6044 case R_MIPS_PCHI16:
6045 value = mips_elf_high (symbol + addend - p);
6046 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 overflowed_p = mips_elf_overflow_p (value, 16);
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PCLO16:
6052 if (howto->partial_inplace)
6053 addend = _bfd_mips_elf_sign_extend (addend, 16);
6054 value = symbol + addend - p;
6055 value &= howto->dst_mask;
6056 break;
6057
6058 case R_MICROMIPS_PC7_S1:
6059 if (howto->partial_inplace)
6060 addend = _bfd_mips_elf_sign_extend (addend, 8);
6061 value = symbol + addend - p;
6062 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6063 overflowed_p = mips_elf_overflow_p (value, 8);
6064 value >>= howto->rightshift;
6065 value &= howto->dst_mask;
6066 break;
6067
6068 case R_MICROMIPS_PC10_S1:
6069 if (howto->partial_inplace)
6070 addend = _bfd_mips_elf_sign_extend (addend, 11);
6071 value = symbol + addend - p;
6072 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6073 overflowed_p = mips_elf_overflow_p (value, 11);
6074 value >>= howto->rightshift;
6075 value &= howto->dst_mask;
6076 break;
6077
6078 case R_MICROMIPS_PC16_S1:
6079 if (howto->partial_inplace)
6080 addend = _bfd_mips_elf_sign_extend (addend, 17);
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MICROMIPS_PC23_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 25);
6091 value = symbol + addend - ((p | 3) ^ 3);
6092 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6093 overflowed_p = mips_elf_overflow_p (value, 25);
6094 value >>= howto->rightshift;
6095 value &= howto->dst_mask;
6096 break;
6097
6098 case R_MIPS_GOT_HI16:
6099 case R_MIPS_CALL_HI16:
6100 case R_MICROMIPS_GOT_HI16:
6101 case R_MICROMIPS_CALL_HI16:
6102 /* We're allowed to handle these two relocations identically.
6103 The dynamic linker is allowed to handle the CALL relocations
6104 differently by creating a lazy evaluation stub. */
6105 value = g;
6106 value = mips_elf_high (value);
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_GOT_LO16:
6111 case R_MIPS_CALL_LO16:
6112 case R_MICROMIPS_GOT_LO16:
6113 case R_MICROMIPS_CALL_LO16:
6114 value = g & howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_GOT_PAGE:
6118 case R_MICROMIPS_GOT_PAGE:
6119 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6120 if (value == MINUS_ONE)
6121 return bfd_reloc_outofrange;
6122 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6123 overflowed_p = mips_elf_overflow_p (value, 16);
6124 break;
6125
6126 case R_MIPS_GOT_OFST:
6127 case R_MICROMIPS_GOT_OFST:
6128 if (local_p)
6129 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6130 else
6131 value = addend;
6132 overflowed_p = mips_elf_overflow_p (value, 16);
6133 break;
6134
6135 case R_MIPS_SUB:
6136 case R_MICROMIPS_SUB:
6137 value = symbol - addend;
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MIPS_HIGHER:
6142 case R_MICROMIPS_HIGHER:
6143 value = mips_elf_higher (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_HIGHEST:
6148 case R_MICROMIPS_HIGHEST:
6149 value = mips_elf_highest (addend + symbol);
6150 value &= howto->dst_mask;
6151 break;
6152
6153 case R_MIPS_SCN_DISP:
6154 case R_MICROMIPS_SCN_DISP:
6155 value = symbol + addend - sec->output_offset;
6156 value &= howto->dst_mask;
6157 break;
6158
6159 case R_MIPS_JALR:
6160 case R_MICROMIPS_JALR:
6161 /* This relocation is only a hint. In some cases, we optimize
6162 it into a bal instruction. But we don't try to optimize
6163 when the symbol does not resolve locally. */
6164 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6165 return bfd_reloc_continue;
6166 value = symbol + addend;
6167 break;
6168
6169 case R_MIPS_PJUMP:
6170 case R_MIPS_GNU_VTINHERIT:
6171 case R_MIPS_GNU_VTENTRY:
6172 /* We don't do anything with these at present. */
6173 return bfd_reloc_continue;
6174
6175 default:
6176 /* An unrecognized relocation type. */
6177 return bfd_reloc_notsupported;
6178 }
6179
6180 /* Store the VALUE for our caller. */
6181 *valuep = value;
6182 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6183}
6184
6185/* Obtain the field relocated by RELOCATION. */
6186
6187static bfd_vma
6188mips_elf_obtain_contents (reloc_howto_type *howto,
6189 const Elf_Internal_Rela *relocation,
6190 bfd *input_bfd, bfd_byte *contents)
6191{
6192 bfd_vma x = 0;
6193 bfd_byte *location = contents + relocation->r_offset;
6194 unsigned int size = bfd_get_reloc_size (howto);
6195
6196 /* Obtain the bytes. */
6197 if (size != 0)
6198 x = bfd_get (8 * size, input_bfd, location);
6199
6200 return x;
6201}
6202
6203/* It has been determined that the result of the RELOCATION is the
6204 VALUE. Use HOWTO to place VALUE into the output file at the
6205 appropriate position. The SECTION is the section to which the
6206 relocation applies.
6207 CROSS_MODE_JUMP_P is true if the relocation field
6208 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6209
6210 Returns FALSE if anything goes wrong. */
6211
6212static bfd_boolean
6213mips_elf_perform_relocation (struct bfd_link_info *info,
6214 reloc_howto_type *howto,
6215 const Elf_Internal_Rela *relocation,
6216 bfd_vma value, bfd *input_bfd,
6217 asection *input_section, bfd_byte *contents,
6218 bfd_boolean cross_mode_jump_p)
6219{
6220 bfd_vma x;
6221 bfd_byte *location;
6222 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6223 unsigned int size;
6224
6225 /* Figure out where the relocation is occurring. */
6226 location = contents + relocation->r_offset;
6227
6228 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6229
6230 /* Obtain the current value. */
6231 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6232
6233 /* Clear the field we are setting. */
6234 x &= ~howto->dst_mask;
6235
6236 /* Set the field. */
6237 x |= (value & howto->dst_mask);
6238
6239 /* If required, turn JAL into JALX. */
6240 if (cross_mode_jump_p && jal_reloc_p (r_type))
6241 {
6242 bfd_boolean ok;
6243 bfd_vma opcode = x >> 26;
6244 bfd_vma jalx_opcode;
6245
6246 /* Check to see if the opcode is already JAL or JALX. */
6247 if (r_type == R_MIPS16_26)
6248 {
6249 ok = ((opcode == 0x6) || (opcode == 0x7));
6250 jalx_opcode = 0x7;
6251 }
6252 else if (r_type == R_MICROMIPS_26_S1)
6253 {
6254 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6255 jalx_opcode = 0x3c;
6256 }
6257 else
6258 {
6259 ok = ((opcode == 0x3) || (opcode == 0x1d));
6260 jalx_opcode = 0x1d;
6261 }
6262
6263 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6264 convert J or JALS to JALX. */
6265 if (!ok)
6266 {
6267 (*_bfd_error_handler)
6268 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6269 input_bfd,
6270 input_section,
6271 (unsigned long) relocation->r_offset);
6272 bfd_set_error (bfd_error_bad_value);
6273 return FALSE;
6274 }
6275
6276 /* Make this the JALX opcode. */
6277 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6278 }
6279
6280 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6281 range. */
6282 if (!bfd_link_relocatable (info)
6283 && !cross_mode_jump_p
6284 && ((JAL_TO_BAL_P (input_bfd)
6285 && r_type == R_MIPS_26
6286 && (x >> 26) == 0x3) /* jal addr */
6287 || (JALR_TO_BAL_P (input_bfd)
6288 && r_type == R_MIPS_JALR
6289 && x == 0x0320f809) /* jalr t9 */
6290 || (JR_TO_B_P (input_bfd)
6291 && r_type == R_MIPS_JALR
6292 && x == 0x03200008))) /* jr t9 */
6293 {
6294 bfd_vma addr;
6295 bfd_vma dest;
6296 bfd_signed_vma off;
6297
6298 addr = (input_section->output_section->vma
6299 + input_section->output_offset
6300 + relocation->r_offset
6301 + 4);
6302 if (r_type == R_MIPS_26)
6303 dest = (value << 2) | ((addr >> 28) << 28);
6304 else
6305 dest = value;
6306 off = dest - addr;
6307 if (off <= 0x1ffff && off >= -0x20000)
6308 {
6309 if (x == 0x03200008) /* jr t9 */
6310 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6311 else
6312 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6313 }
6314 }
6315
6316 /* Put the value into the output. */
6317 size = bfd_get_reloc_size (howto);
6318 if (size != 0)
6319 bfd_put (8 * size, input_bfd, x, location);
6320
6321 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6322 location);
6323
6324 return TRUE;
6325}
6326\f
6327/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6328 is the original relocation, which is now being transformed into a
6329 dynamic relocation. The ADDENDP is adjusted if necessary; the
6330 caller should store the result in place of the original addend. */
6331
6332static bfd_boolean
6333mips_elf_create_dynamic_relocation (bfd *output_bfd,
6334 struct bfd_link_info *info,
6335 const Elf_Internal_Rela *rel,
6336 struct mips_elf_link_hash_entry *h,
6337 asection *sec, bfd_vma symbol,
6338 bfd_vma *addendp, asection *input_section)
6339{
6340 Elf_Internal_Rela outrel[3];
6341 asection *sreloc;
6342 bfd *dynobj;
6343 int r_type;
6344 long indx;
6345 bfd_boolean defined_p;
6346 struct mips_elf_link_hash_table *htab;
6347
6348 htab = mips_elf_hash_table (info);
6349 BFD_ASSERT (htab != NULL);
6350
6351 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6352 dynobj = elf_hash_table (info)->dynobj;
6353 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6354 BFD_ASSERT (sreloc != NULL);
6355 BFD_ASSERT (sreloc->contents != NULL);
6356 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6357 < sreloc->size);
6358
6359 outrel[0].r_offset =
6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6361 if (ABI_64_P (output_bfd))
6362 {
6363 outrel[1].r_offset =
6364 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6365 outrel[2].r_offset =
6366 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6367 }
6368
6369 if (outrel[0].r_offset == MINUS_ONE)
6370 /* The relocation field has been deleted. */
6371 return TRUE;
6372
6373 if (outrel[0].r_offset == MINUS_TWO)
6374 {
6375 /* The relocation field has been converted into a relative value of
6376 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6377 the field to be fully relocated, so add in the symbol's value. */
6378 *addendp += symbol;
6379 return TRUE;
6380 }
6381
6382 /* We must now calculate the dynamic symbol table index to use
6383 in the relocation. */
6384 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6385 {
6386 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6387 indx = h->root.dynindx;
6388 if (SGI_COMPAT (output_bfd))
6389 defined_p = h->root.def_regular;
6390 else
6391 /* ??? glibc's ld.so just adds the final GOT entry to the
6392 relocation field. It therefore treats relocs against
6393 defined symbols in the same way as relocs against
6394 undefined symbols. */
6395 defined_p = FALSE;
6396 }
6397 else
6398 {
6399 if (sec != NULL && bfd_is_abs_section (sec))
6400 indx = 0;
6401 else if (sec == NULL || sec->owner == NULL)
6402 {
6403 bfd_set_error (bfd_error_bad_value);
6404 return FALSE;
6405 }
6406 else
6407 {
6408 indx = elf_section_data (sec->output_section)->dynindx;
6409 if (indx == 0)
6410 {
6411 asection *osec = htab->root.text_index_section;
6412 indx = elf_section_data (osec)->dynindx;
6413 }
6414 if (indx == 0)
6415 abort ();
6416 }
6417
6418 /* Instead of generating a relocation using the section
6419 symbol, we may as well make it a fully relative
6420 relocation. We want to avoid generating relocations to
6421 local symbols because we used to generate them
6422 incorrectly, without adding the original symbol value,
6423 which is mandated by the ABI for section symbols. In
6424 order to give dynamic loaders and applications time to
6425 phase out the incorrect use, we refrain from emitting
6426 section-relative relocations. It's not like they're
6427 useful, after all. This should be a bit more efficient
6428 as well. */
6429 /* ??? Although this behavior is compatible with glibc's ld.so,
6430 the ABI says that relocations against STN_UNDEF should have
6431 a symbol value of 0. Irix rld honors this, so relocations
6432 against STN_UNDEF have no effect. */
6433 if (!SGI_COMPAT (output_bfd))
6434 indx = 0;
6435 defined_p = TRUE;
6436 }
6437
6438 /* If the relocation was previously an absolute relocation and
6439 this symbol will not be referred to by the relocation, we must
6440 adjust it by the value we give it in the dynamic symbol table.
6441 Otherwise leave the job up to the dynamic linker. */
6442 if (defined_p && r_type != R_MIPS_REL32)
6443 *addendp += symbol;
6444
6445 if (htab->is_vxworks)
6446 /* VxWorks uses non-relative relocations for this. */
6447 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6448 else
6449 /* The relocation is always an REL32 relocation because we don't
6450 know where the shared library will wind up at load-time. */
6451 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6452 R_MIPS_REL32);
6453
6454 /* For strict adherence to the ABI specification, we should
6455 generate a R_MIPS_64 relocation record by itself before the
6456 _REL32/_64 record as well, such that the addend is read in as
6457 a 64-bit value (REL32 is a 32-bit relocation, after all).
6458 However, since none of the existing ELF64 MIPS dynamic
6459 loaders seems to care, we don't waste space with these
6460 artificial relocations. If this turns out to not be true,
6461 mips_elf_allocate_dynamic_relocation() should be tweaked so
6462 as to make room for a pair of dynamic relocations per
6463 invocation if ABI_64_P, and here we should generate an
6464 additional relocation record with R_MIPS_64 by itself for a
6465 NULL symbol before this relocation record. */
6466 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6467 ABI_64_P (output_bfd)
6468 ? R_MIPS_64
6469 : R_MIPS_NONE);
6470 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6471
6472 /* Adjust the output offset of the relocation to reference the
6473 correct location in the output file. */
6474 outrel[0].r_offset += (input_section->output_section->vma
6475 + input_section->output_offset);
6476 outrel[1].r_offset += (input_section->output_section->vma
6477 + input_section->output_offset);
6478 outrel[2].r_offset += (input_section->output_section->vma
6479 + input_section->output_offset);
6480
6481 /* Put the relocation back out. We have to use the special
6482 relocation outputter in the 64-bit case since the 64-bit
6483 relocation format is non-standard. */
6484 if (ABI_64_P (output_bfd))
6485 {
6486 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6487 (output_bfd, &outrel[0],
6488 (sreloc->contents
6489 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6490 }
6491 else if (htab->is_vxworks)
6492 {
6493 /* VxWorks uses RELA rather than REL dynamic relocations. */
6494 outrel[0].r_addend = *addendp;
6495 bfd_elf32_swap_reloca_out
6496 (output_bfd, &outrel[0],
6497 (sreloc->contents
6498 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6499 }
6500 else
6501 bfd_elf32_swap_reloc_out
6502 (output_bfd, &outrel[0],
6503 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6504
6505 /* We've now added another relocation. */
6506 ++sreloc->reloc_count;
6507
6508 /* Make sure the output section is writable. The dynamic linker
6509 will be writing to it. */
6510 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6511 |= SHF_WRITE;
6512
6513 /* On IRIX5, make an entry of compact relocation info. */
6514 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6515 {
6516 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6517 bfd_byte *cr;
6518
6519 if (scpt)
6520 {
6521 Elf32_crinfo cptrel;
6522
6523 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6524 cptrel.vaddr = (rel->r_offset
6525 + input_section->output_section->vma
6526 + input_section->output_offset);
6527 if (r_type == R_MIPS_REL32)
6528 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6529 else
6530 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6531 mips_elf_set_cr_dist2to (cptrel, 0);
6532 cptrel.konst = *addendp;
6533
6534 cr = (scpt->contents
6535 + sizeof (Elf32_External_compact_rel));
6536 mips_elf_set_cr_relvaddr (cptrel, 0);
6537 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6538 ((Elf32_External_crinfo *) cr
6539 + scpt->reloc_count));
6540 ++scpt->reloc_count;
6541 }
6542 }
6543
6544 /* If we've written this relocation for a readonly section,
6545 we need to set DF_TEXTREL again, so that we do not delete the
6546 DT_TEXTREL tag. */
6547 if (MIPS_ELF_READONLY_SECTION (input_section))
6548 info->flags |= DF_TEXTREL;
6549
6550 return TRUE;
6551}
6552\f
6553/* Return the MACH for a MIPS e_flags value. */
6554
6555unsigned long
6556_bfd_elf_mips_mach (flagword flags)
6557{
6558 switch (flags & EF_MIPS_MACH)
6559 {
6560 case E_MIPS_MACH_3900:
6561 return bfd_mach_mips3900;
6562
6563 case E_MIPS_MACH_4010:
6564 return bfd_mach_mips4010;
6565
6566 case E_MIPS_MACH_4100:
6567 return bfd_mach_mips4100;
6568
6569 case E_MIPS_MACH_4111:
6570 return bfd_mach_mips4111;
6571
6572 case E_MIPS_MACH_4120:
6573 return bfd_mach_mips4120;
6574
6575 case E_MIPS_MACH_4650:
6576 return bfd_mach_mips4650;
6577
6578 case E_MIPS_MACH_5400:
6579 return bfd_mach_mips5400;
6580
6581 case E_MIPS_MACH_5500:
6582 return bfd_mach_mips5500;
6583
6584 case E_MIPS_MACH_5900:
6585 return bfd_mach_mips5900;
6586
6587 case E_MIPS_MACH_9000:
6588 return bfd_mach_mips9000;
6589
6590 case E_MIPS_MACH_SB1:
6591 return bfd_mach_mips_sb1;
6592
6593 case E_MIPS_MACH_LS2E:
6594 return bfd_mach_mips_loongson_2e;
6595
6596 case E_MIPS_MACH_LS2F:
6597 return bfd_mach_mips_loongson_2f;
6598
6599 case E_MIPS_MACH_LS3A:
6600 return bfd_mach_mips_loongson_3a;
6601
6602 case E_MIPS_MACH_OCTEON3:
6603 return bfd_mach_mips_octeon3;
6604
6605 case E_MIPS_MACH_OCTEON2:
6606 return bfd_mach_mips_octeon2;
6607
6608 case E_MIPS_MACH_OCTEON:
6609 return bfd_mach_mips_octeon;
6610
6611 case E_MIPS_MACH_XLR:
6612 return bfd_mach_mips_xlr;
6613
6614 default:
6615 switch (flags & EF_MIPS_ARCH)
6616 {
6617 default:
6618 case E_MIPS_ARCH_1:
6619 return bfd_mach_mips3000;
6620
6621 case E_MIPS_ARCH_2:
6622 return bfd_mach_mips6000;
6623
6624 case E_MIPS_ARCH_3:
6625 return bfd_mach_mips4000;
6626
6627 case E_MIPS_ARCH_4:
6628 return bfd_mach_mips8000;
6629
6630 case E_MIPS_ARCH_5:
6631 return bfd_mach_mips5;
6632
6633 case E_MIPS_ARCH_32:
6634 return bfd_mach_mipsisa32;
6635
6636 case E_MIPS_ARCH_64:
6637 return bfd_mach_mipsisa64;
6638
6639 case E_MIPS_ARCH_32R2:
6640 return bfd_mach_mipsisa32r2;
6641
6642 case E_MIPS_ARCH_64R2:
6643 return bfd_mach_mipsisa64r2;
6644
6645 case E_MIPS_ARCH_32R6:
6646 return bfd_mach_mipsisa32r6;
6647
6648 case E_MIPS_ARCH_64R6:
6649 return bfd_mach_mipsisa64r6;
6650 }
6651 }
6652
6653 return 0;
6654}
6655
6656/* Return printable name for ABI. */
6657
6658static INLINE char *
6659elf_mips_abi_name (bfd *abfd)
6660{
6661 flagword flags;
6662
6663 flags = elf_elfheader (abfd)->e_flags;
6664 switch (flags & EF_MIPS_ABI)
6665 {
6666 case 0:
6667 if (ABI_N32_P (abfd))
6668 return "N32";
6669 else if (ABI_64_P (abfd))
6670 return "64";
6671 else
6672 return "none";
6673 case E_MIPS_ABI_O32:
6674 return "O32";
6675 case E_MIPS_ABI_O64:
6676 return "O64";
6677 case E_MIPS_ABI_EABI32:
6678 return "EABI32";
6679 case E_MIPS_ABI_EABI64:
6680 return "EABI64";
6681 default:
6682 return "unknown abi";
6683 }
6684}
6685\f
6686/* MIPS ELF uses two common sections. One is the usual one, and the
6687 other is for small objects. All the small objects are kept
6688 together, and then referenced via the gp pointer, which yields
6689 faster assembler code. This is what we use for the small common
6690 section. This approach is copied from ecoff.c. */
6691static asection mips_elf_scom_section;
6692static asymbol mips_elf_scom_symbol;
6693static asymbol *mips_elf_scom_symbol_ptr;
6694
6695/* MIPS ELF also uses an acommon section, which represents an
6696 allocated common symbol which may be overridden by a
6697 definition in a shared library. */
6698static asection mips_elf_acom_section;
6699static asymbol mips_elf_acom_symbol;
6700static asymbol *mips_elf_acom_symbol_ptr;
6701
6702/* This is used for both the 32-bit and the 64-bit ABI. */
6703
6704void
6705_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6706{
6707 elf_symbol_type *elfsym;
6708
6709 /* Handle the special MIPS section numbers that a symbol may use. */
6710 elfsym = (elf_symbol_type *) asym;
6711 switch (elfsym->internal_elf_sym.st_shndx)
6712 {
6713 case SHN_MIPS_ACOMMON:
6714 /* This section is used in a dynamically linked executable file.
6715 It is an allocated common section. The dynamic linker can
6716 either resolve these symbols to something in a shared
6717 library, or it can just leave them here. For our purposes,
6718 we can consider these symbols to be in a new section. */
6719 if (mips_elf_acom_section.name == NULL)
6720 {
6721 /* Initialize the acommon section. */
6722 mips_elf_acom_section.name = ".acommon";
6723 mips_elf_acom_section.flags = SEC_ALLOC;
6724 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6725 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6726 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6727 mips_elf_acom_symbol.name = ".acommon";
6728 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6729 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6730 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6731 }
6732 asym->section = &mips_elf_acom_section;
6733 break;
6734
6735 case SHN_COMMON:
6736 /* Common symbols less than the GP size are automatically
6737 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6738 if (asym->value > elf_gp_size (abfd)
6739 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6740 || IRIX_COMPAT (abfd) == ict_irix6)
6741 break;
6742 /* Fall through. */
6743 case SHN_MIPS_SCOMMON:
6744 if (mips_elf_scom_section.name == NULL)
6745 {
6746 /* Initialize the small common section. */
6747 mips_elf_scom_section.name = ".scommon";
6748 mips_elf_scom_section.flags = SEC_IS_COMMON;
6749 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6750 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6751 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6752 mips_elf_scom_symbol.name = ".scommon";
6753 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6754 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6755 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6756 }
6757 asym->section = &mips_elf_scom_section;
6758 asym->value = elfsym->internal_elf_sym.st_size;
6759 break;
6760
6761 case SHN_MIPS_SUNDEFINED:
6762 asym->section = bfd_und_section_ptr;
6763 break;
6764
6765 case SHN_MIPS_TEXT:
6766 {
6767 asection *section = bfd_get_section_by_name (abfd, ".text");
6768
6769 if (section != NULL)
6770 {
6771 asym->section = section;
6772 /* MIPS_TEXT is a bit special, the address is not an offset
6773 to the base of the .text section. So substract the section
6774 base address to make it an offset. */
6775 asym->value -= section->vma;
6776 }
6777 }
6778 break;
6779
6780 case SHN_MIPS_DATA:
6781 {
6782 asection *section = bfd_get_section_by_name (abfd, ".data");
6783
6784 if (section != NULL)
6785 {
6786 asym->section = section;
6787 /* MIPS_DATA is a bit special, the address is not an offset
6788 to the base of the .data section. So substract the section
6789 base address to make it an offset. */
6790 asym->value -= section->vma;
6791 }
6792 }
6793 break;
6794 }
6795
6796 /* If this is an odd-valued function symbol, assume it's a MIPS16
6797 or microMIPS one. */
6798 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6799 && (asym->value & 1) != 0)
6800 {
6801 asym->value--;
6802 if (MICROMIPS_P (abfd))
6803 elfsym->internal_elf_sym.st_other
6804 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6805 else
6806 elfsym->internal_elf_sym.st_other
6807 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6808 }
6809}
6810\f
6811/* Implement elf_backend_eh_frame_address_size. This differs from
6812 the default in the way it handles EABI64.
6813
6814 EABI64 was originally specified as an LP64 ABI, and that is what
6815 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6816 historically accepted the combination of -mabi=eabi and -mlong32,
6817 and this ILP32 variation has become semi-official over time.
6818 Both forms use elf32 and have pointer-sized FDE addresses.
6819
6820 If an EABI object was generated by GCC 4.0 or above, it will have
6821 an empty .gcc_compiled_longXX section, where XX is the size of longs
6822 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6823 have no special marking to distinguish them from LP64 objects.
6824
6825 We don't want users of the official LP64 ABI to be punished for the
6826 existence of the ILP32 variant, but at the same time, we don't want
6827 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6828 We therefore take the following approach:
6829
6830 - If ABFD contains a .gcc_compiled_longXX section, use it to
6831 determine the pointer size.
6832
6833 - Otherwise check the type of the first relocation. Assume that
6834 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6835
6836 - Otherwise punt.
6837
6838 The second check is enough to detect LP64 objects generated by pre-4.0
6839 compilers because, in the kind of output generated by those compilers,
6840 the first relocation will be associated with either a CIE personality
6841 routine or an FDE start address. Furthermore, the compilers never
6842 used a special (non-pointer) encoding for this ABI.
6843
6844 Checking the relocation type should also be safe because there is no
6845 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6846 did so. */
6847
6848unsigned int
6849_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6850{
6851 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6852 return 8;
6853 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6854 {
6855 bfd_boolean long32_p, long64_p;
6856
6857 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6858 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6859 if (long32_p && long64_p)
6860 return 0;
6861 if (long32_p)
6862 return 4;
6863 if (long64_p)
6864 return 8;
6865
6866 if (sec->reloc_count > 0
6867 && elf_section_data (sec)->relocs != NULL
6868 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6869 == R_MIPS_64))
6870 return 8;
6871
6872 return 0;
6873 }
6874 return 4;
6875}
6876\f
6877/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6878 relocations against two unnamed section symbols to resolve to the
6879 same address. For example, if we have code like:
6880
6881 lw $4,%got_disp(.data)($gp)
6882 lw $25,%got_disp(.text)($gp)
6883 jalr $25
6884
6885 then the linker will resolve both relocations to .data and the program
6886 will jump there rather than to .text.
6887
6888 We can work around this problem by giving names to local section symbols.
6889 This is also what the MIPSpro tools do. */
6890
6891bfd_boolean
6892_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6893{
6894 return SGI_COMPAT (abfd);
6895}
6896\f
6897/* Work over a section just before writing it out. This routine is
6898 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6899 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6900 a better way. */
6901
6902bfd_boolean
6903_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6904{
6905 if (hdr->sh_type == SHT_MIPS_REGINFO
6906 && hdr->sh_size > 0)
6907 {
6908 bfd_byte buf[4];
6909
6910 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6911 BFD_ASSERT (hdr->contents == NULL);
6912
6913 if (bfd_seek (abfd,
6914 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6915 SEEK_SET) != 0)
6916 return FALSE;
6917 H_PUT_32 (abfd, elf_gp (abfd), buf);
6918 if (bfd_bwrite (buf, 4, abfd) != 4)
6919 return FALSE;
6920 }
6921
6922 if (hdr->sh_type == SHT_MIPS_OPTIONS
6923 && hdr->bfd_section != NULL
6924 && mips_elf_section_data (hdr->bfd_section) != NULL
6925 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6926 {
6927 bfd_byte *contents, *l, *lend;
6928
6929 /* We stored the section contents in the tdata field in the
6930 set_section_contents routine. We save the section contents
6931 so that we don't have to read them again.
6932 At this point we know that elf_gp is set, so we can look
6933 through the section contents to see if there is an
6934 ODK_REGINFO structure. */
6935
6936 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6937 l = contents;
6938 lend = contents + hdr->sh_size;
6939 while (l + sizeof (Elf_External_Options) <= lend)
6940 {
6941 Elf_Internal_Options intopt;
6942
6943 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6944 &intopt);
6945 if (intopt.size < sizeof (Elf_External_Options))
6946 {
6947 (*_bfd_error_handler)
6948 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6949 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6950 break;
6951 }
6952 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6953 {
6954 bfd_byte buf[8];
6955
6956 if (bfd_seek (abfd,
6957 (hdr->sh_offset
6958 + (l - contents)
6959 + sizeof (Elf_External_Options)
6960 + (sizeof (Elf64_External_RegInfo) - 8)),
6961 SEEK_SET) != 0)
6962 return FALSE;
6963 H_PUT_64 (abfd, elf_gp (abfd), buf);
6964 if (bfd_bwrite (buf, 8, abfd) != 8)
6965 return FALSE;
6966 }
6967 else if (intopt.kind == ODK_REGINFO)
6968 {
6969 bfd_byte buf[4];
6970
6971 if (bfd_seek (abfd,
6972 (hdr->sh_offset
6973 + (l - contents)
6974 + sizeof (Elf_External_Options)
6975 + (sizeof (Elf32_External_RegInfo) - 4)),
6976 SEEK_SET) != 0)
6977 return FALSE;
6978 H_PUT_32 (abfd, elf_gp (abfd), buf);
6979 if (bfd_bwrite (buf, 4, abfd) != 4)
6980 return FALSE;
6981 }
6982 l += intopt.size;
6983 }
6984 }
6985
6986 if (hdr->bfd_section != NULL)
6987 {
6988 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6989
6990 /* .sbss is not handled specially here because the GNU/Linux
6991 prelinker can convert .sbss from NOBITS to PROGBITS and
6992 changing it back to NOBITS breaks the binary. The entry in
6993 _bfd_mips_elf_special_sections will ensure the correct flags
6994 are set on .sbss if BFD creates it without reading it from an
6995 input file, and without special handling here the flags set
6996 on it in an input file will be followed. */
6997 if (strcmp (name, ".sdata") == 0
6998 || strcmp (name, ".lit8") == 0
6999 || strcmp (name, ".lit4") == 0)
7000 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7001 else if (strcmp (name, ".srdata") == 0)
7002 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7003 else if (strcmp (name, ".compact_rel") == 0)
7004 hdr->sh_flags = 0;
7005 else if (strcmp (name, ".rtproc") == 0)
7006 {
7007 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7008 {
7009 unsigned int adjust;
7010
7011 adjust = hdr->sh_size % hdr->sh_addralign;
7012 if (adjust != 0)
7013 hdr->sh_size += hdr->sh_addralign - adjust;
7014 }
7015 }
7016 }
7017
7018 return TRUE;
7019}
7020
7021/* Handle a MIPS specific section when reading an object file. This
7022 is called when elfcode.h finds a section with an unknown type.
7023 This routine supports both the 32-bit and 64-bit ELF ABI.
7024
7025 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7026 how to. */
7027
7028bfd_boolean
7029_bfd_mips_elf_section_from_shdr (bfd *abfd,
7030 Elf_Internal_Shdr *hdr,
7031 const char *name,
7032 int shindex)
7033{
7034 flagword flags = 0;
7035
7036 /* There ought to be a place to keep ELF backend specific flags, but
7037 at the moment there isn't one. We just keep track of the
7038 sections by their name, instead. Fortunately, the ABI gives
7039 suggested names for all the MIPS specific sections, so we will
7040 probably get away with this. */
7041 switch (hdr->sh_type)
7042 {
7043 case SHT_MIPS_LIBLIST:
7044 if (strcmp (name, ".liblist") != 0)
7045 return FALSE;
7046 break;
7047 case SHT_MIPS_MSYM:
7048 if (strcmp (name, ".msym") != 0)
7049 return FALSE;
7050 break;
7051 case SHT_MIPS_CONFLICT:
7052 if (strcmp (name, ".conflict") != 0)
7053 return FALSE;
7054 break;
7055 case SHT_MIPS_GPTAB:
7056 if (! CONST_STRNEQ (name, ".gptab."))
7057 return FALSE;
7058 break;
7059 case SHT_MIPS_UCODE:
7060 if (strcmp (name, ".ucode") != 0)
7061 return FALSE;
7062 break;
7063 case SHT_MIPS_DEBUG:
7064 if (strcmp (name, ".mdebug") != 0)
7065 return FALSE;
7066 flags = SEC_DEBUGGING;
7067 break;
7068 case SHT_MIPS_REGINFO:
7069 if (strcmp (name, ".reginfo") != 0
7070 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7071 return FALSE;
7072 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7073 break;
7074 case SHT_MIPS_IFACE:
7075 if (strcmp (name, ".MIPS.interfaces") != 0)
7076 return FALSE;
7077 break;
7078 case SHT_MIPS_CONTENT:
7079 if (! CONST_STRNEQ (name, ".MIPS.content"))
7080 return FALSE;
7081 break;
7082 case SHT_MIPS_OPTIONS:
7083 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7084 return FALSE;
7085 break;
7086 case SHT_MIPS_ABIFLAGS:
7087 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7088 return FALSE;
7089 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7090 break;
7091 case SHT_MIPS_DWARF:
7092 if (! CONST_STRNEQ (name, ".debug_")
7093 && ! CONST_STRNEQ (name, ".zdebug_"))
7094 return FALSE;
7095 break;
7096 case SHT_MIPS_SYMBOL_LIB:
7097 if (strcmp (name, ".MIPS.symlib") != 0)
7098 return FALSE;
7099 break;
7100 case SHT_MIPS_EVENTS:
7101 if (! CONST_STRNEQ (name, ".MIPS.events")
7102 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7103 return FALSE;
7104 break;
7105 default:
7106 break;
7107 }
7108
7109 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7110 return FALSE;
7111
7112 if (flags)
7113 {
7114 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7115 (bfd_get_section_flags (abfd,
7116 hdr->bfd_section)
7117 | flags)))
7118 return FALSE;
7119 }
7120
7121 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7122 {
7123 Elf_External_ABIFlags_v0 ext;
7124
7125 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7126 &ext, 0, sizeof ext))
7127 return FALSE;
7128 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7129 &mips_elf_tdata (abfd)->abiflags);
7130 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7131 return FALSE;
7132 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7133 }
7134
7135 /* FIXME: We should record sh_info for a .gptab section. */
7136
7137 /* For a .reginfo section, set the gp value in the tdata information
7138 from the contents of this section. We need the gp value while
7139 processing relocs, so we just get it now. The .reginfo section
7140 is not used in the 64-bit MIPS ELF ABI. */
7141 if (hdr->sh_type == SHT_MIPS_REGINFO)
7142 {
7143 Elf32_External_RegInfo ext;
7144 Elf32_RegInfo s;
7145
7146 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7147 &ext, 0, sizeof ext))
7148 return FALSE;
7149 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7150 elf_gp (abfd) = s.ri_gp_value;
7151 }
7152
7153 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7154 set the gp value based on what we find. We may see both
7155 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7156 they should agree. */
7157 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7158 {
7159 bfd_byte *contents, *l, *lend;
7160
7161 contents = bfd_malloc (hdr->sh_size);
7162 if (contents == NULL)
7163 return FALSE;
7164 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7165 0, hdr->sh_size))
7166 {
7167 free (contents);
7168 return FALSE;
7169 }
7170 l = contents;
7171 lend = contents + hdr->sh_size;
7172 while (l + sizeof (Elf_External_Options) <= lend)
7173 {
7174 Elf_Internal_Options intopt;
7175
7176 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7177 &intopt);
7178 if (intopt.size < sizeof (Elf_External_Options))
7179 {
7180 (*_bfd_error_handler)
7181 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7182 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7183 break;
7184 }
7185 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7186 {
7187 Elf64_Internal_RegInfo intreg;
7188
7189 bfd_mips_elf64_swap_reginfo_in
7190 (abfd,
7191 ((Elf64_External_RegInfo *)
7192 (l + sizeof (Elf_External_Options))),
7193 &intreg);
7194 elf_gp (abfd) = intreg.ri_gp_value;
7195 }
7196 else if (intopt.kind == ODK_REGINFO)
7197 {
7198 Elf32_RegInfo intreg;
7199
7200 bfd_mips_elf32_swap_reginfo_in
7201 (abfd,
7202 ((Elf32_External_RegInfo *)
7203 (l + sizeof (Elf_External_Options))),
7204 &intreg);
7205 elf_gp (abfd) = intreg.ri_gp_value;
7206 }
7207 l += intopt.size;
7208 }
7209 free (contents);
7210 }
7211
7212 return TRUE;
7213}
7214
7215/* Set the correct type for a MIPS ELF section. We do this by the
7216 section name, which is a hack, but ought to work. This routine is
7217 used by both the 32-bit and the 64-bit ABI. */
7218
7219bfd_boolean
7220_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7221{
7222 const char *name = bfd_get_section_name (abfd, sec);
7223
7224 if (strcmp (name, ".liblist") == 0)
7225 {
7226 hdr->sh_type = SHT_MIPS_LIBLIST;
7227 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7228 /* The sh_link field is set in final_write_processing. */
7229 }
7230 else if (strcmp (name, ".conflict") == 0)
7231 hdr->sh_type = SHT_MIPS_CONFLICT;
7232 else if (CONST_STRNEQ (name, ".gptab."))
7233 {
7234 hdr->sh_type = SHT_MIPS_GPTAB;
7235 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7236 /* The sh_info field is set in final_write_processing. */
7237 }
7238 else if (strcmp (name, ".ucode") == 0)
7239 hdr->sh_type = SHT_MIPS_UCODE;
7240 else if (strcmp (name, ".mdebug") == 0)
7241 {
7242 hdr->sh_type = SHT_MIPS_DEBUG;
7243 /* In a shared object on IRIX 5.3, the .mdebug section has an
7244 entsize of 0. FIXME: Does this matter? */
7245 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7246 hdr->sh_entsize = 0;
7247 else
7248 hdr->sh_entsize = 1;
7249 }
7250 else if (strcmp (name, ".reginfo") == 0)
7251 {
7252 hdr->sh_type = SHT_MIPS_REGINFO;
7253 /* In a shared object on IRIX 5.3, the .reginfo section has an
7254 entsize of 0x18. FIXME: Does this matter? */
7255 if (SGI_COMPAT (abfd))
7256 {
7257 if ((abfd->flags & DYNAMIC) != 0)
7258 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7259 else
7260 hdr->sh_entsize = 1;
7261 }
7262 else
7263 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7264 }
7265 else if (SGI_COMPAT (abfd)
7266 && (strcmp (name, ".hash") == 0
7267 || strcmp (name, ".dynamic") == 0
7268 || strcmp (name, ".dynstr") == 0))
7269 {
7270 if (SGI_COMPAT (abfd))
7271 hdr->sh_entsize = 0;
7272#if 0
7273 /* This isn't how the IRIX6 linker behaves. */
7274 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7275#endif
7276 }
7277 else if (strcmp (name, ".got") == 0
7278 || strcmp (name, ".srdata") == 0
7279 || strcmp (name, ".sdata") == 0
7280 || strcmp (name, ".sbss") == 0
7281 || strcmp (name, ".lit4") == 0
7282 || strcmp (name, ".lit8") == 0)
7283 hdr->sh_flags |= SHF_MIPS_GPREL;
7284 else if (strcmp (name, ".MIPS.interfaces") == 0)
7285 {
7286 hdr->sh_type = SHT_MIPS_IFACE;
7287 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7288 }
7289 else if (CONST_STRNEQ (name, ".MIPS.content"))
7290 {
7291 hdr->sh_type = SHT_MIPS_CONTENT;
7292 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7293 /* The sh_info field is set in final_write_processing. */
7294 }
7295 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7296 {
7297 hdr->sh_type = SHT_MIPS_OPTIONS;
7298 hdr->sh_entsize = 1;
7299 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7300 }
7301 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7302 {
7303 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7304 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7305 }
7306 else if (CONST_STRNEQ (name, ".debug_")
7307 || CONST_STRNEQ (name, ".zdebug_"))
7308 {
7309 hdr->sh_type = SHT_MIPS_DWARF;
7310
7311 /* Irix facilities such as libexc expect a single .debug_frame
7312 per executable, the system ones have NOSTRIP set and the linker
7313 doesn't merge sections with different flags so ... */
7314 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7315 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7316 }
7317 else if (strcmp (name, ".MIPS.symlib") == 0)
7318 {
7319 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7320 /* The sh_link and sh_info fields are set in
7321 final_write_processing. */
7322 }
7323 else if (CONST_STRNEQ (name, ".MIPS.events")
7324 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7325 {
7326 hdr->sh_type = SHT_MIPS_EVENTS;
7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7328 /* The sh_link field is set in final_write_processing. */
7329 }
7330 else if (strcmp (name, ".msym") == 0)
7331 {
7332 hdr->sh_type = SHT_MIPS_MSYM;
7333 hdr->sh_flags |= SHF_ALLOC;
7334 hdr->sh_entsize = 8;
7335 }
7336
7337 /* The generic elf_fake_sections will set up REL_HDR using the default
7338 kind of relocations. We used to set up a second header for the
7339 non-default kind of relocations here, but only NewABI would use
7340 these, and the IRIX ld doesn't like resulting empty RELA sections.
7341 Thus we create those header only on demand now. */
7342
7343 return TRUE;
7344}
7345
7346/* Given a BFD section, try to locate the corresponding ELF section
7347 index. This is used by both the 32-bit and the 64-bit ABI.
7348 Actually, it's not clear to me that the 64-bit ABI supports these,
7349 but for non-PIC objects we will certainly want support for at least
7350 the .scommon section. */
7351
7352bfd_boolean
7353_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7354 asection *sec, int *retval)
7355{
7356 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7357 {
7358 *retval = SHN_MIPS_SCOMMON;
7359 return TRUE;
7360 }
7361 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7362 {
7363 *retval = SHN_MIPS_ACOMMON;
7364 return TRUE;
7365 }
7366 return FALSE;
7367}
7368\f
7369/* Hook called by the linker routine which adds symbols from an object
7370 file. We must handle the special MIPS section numbers here. */
7371
7372bfd_boolean
7373_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7374 Elf_Internal_Sym *sym, const char **namep,
7375 flagword *flagsp ATTRIBUTE_UNUSED,
7376 asection **secp, bfd_vma *valp)
7377{
7378 if (SGI_COMPAT (abfd)
7379 && (abfd->flags & DYNAMIC) != 0
7380 && strcmp (*namep, "_rld_new_interface") == 0)
7381 {
7382 /* Skip IRIX5 rld entry name. */
7383 *namep = NULL;
7384 return TRUE;
7385 }
7386
7387 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7388 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7389 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7390 a magic symbol resolved by the linker, we ignore this bogus definition
7391 of _gp_disp. New ABI objects do not suffer from this problem so this
7392 is not done for them. */
7393 if (!NEWABI_P(abfd)
7394 && (sym->st_shndx == SHN_ABS)
7395 && (strcmp (*namep, "_gp_disp") == 0))
7396 {
7397 *namep = NULL;
7398 return TRUE;
7399 }
7400
7401 switch (sym->st_shndx)
7402 {
7403 case SHN_COMMON:
7404 /* Common symbols less than the GP size are automatically
7405 treated as SHN_MIPS_SCOMMON symbols. */
7406 if (sym->st_size > elf_gp_size (abfd)
7407 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7408 || IRIX_COMPAT (abfd) == ict_irix6)
7409 break;
7410 /* Fall through. */
7411 case SHN_MIPS_SCOMMON:
7412 *secp = bfd_make_section_old_way (abfd, ".scommon");
7413 (*secp)->flags |= SEC_IS_COMMON;
7414 *valp = sym->st_size;
7415 break;
7416
7417 case SHN_MIPS_TEXT:
7418 /* This section is used in a shared object. */
7419 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7420 {
7421 asymbol *elf_text_symbol;
7422 asection *elf_text_section;
7423 bfd_size_type amt = sizeof (asection);
7424
7425 elf_text_section = bfd_zalloc (abfd, amt);
7426 if (elf_text_section == NULL)
7427 return FALSE;
7428
7429 amt = sizeof (asymbol);
7430 elf_text_symbol = bfd_zalloc (abfd, amt);
7431 if (elf_text_symbol == NULL)
7432 return FALSE;
7433
7434 /* Initialize the section. */
7435
7436 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7437 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7438
7439 elf_text_section->symbol = elf_text_symbol;
7440 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7441
7442 elf_text_section->name = ".text";
7443 elf_text_section->flags = SEC_NO_FLAGS;
7444 elf_text_section->output_section = NULL;
7445 elf_text_section->owner = abfd;
7446 elf_text_symbol->name = ".text";
7447 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7448 elf_text_symbol->section = elf_text_section;
7449 }
7450 /* This code used to do *secp = bfd_und_section_ptr if
7451 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7452 so I took it out. */
7453 *secp = mips_elf_tdata (abfd)->elf_text_section;
7454 break;
7455
7456 case SHN_MIPS_ACOMMON:
7457 /* Fall through. XXX Can we treat this as allocated data? */
7458 case SHN_MIPS_DATA:
7459 /* This section is used in a shared object. */
7460 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7461 {
7462 asymbol *elf_data_symbol;
7463 asection *elf_data_section;
7464 bfd_size_type amt = sizeof (asection);
7465
7466 elf_data_section = bfd_zalloc (abfd, amt);
7467 if (elf_data_section == NULL)
7468 return FALSE;
7469
7470 amt = sizeof (asymbol);
7471 elf_data_symbol = bfd_zalloc (abfd, amt);
7472 if (elf_data_symbol == NULL)
7473 return FALSE;
7474
7475 /* Initialize the section. */
7476
7477 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7478 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7479
7480 elf_data_section->symbol = elf_data_symbol;
7481 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7482
7483 elf_data_section->name = ".data";
7484 elf_data_section->flags = SEC_NO_FLAGS;
7485 elf_data_section->output_section = NULL;
7486 elf_data_section->owner = abfd;
7487 elf_data_symbol->name = ".data";
7488 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7489 elf_data_symbol->section = elf_data_section;
7490 }
7491 /* This code used to do *secp = bfd_und_section_ptr if
7492 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7493 so I took it out. */
7494 *secp = mips_elf_tdata (abfd)->elf_data_section;
7495 break;
7496
7497 case SHN_MIPS_SUNDEFINED:
7498 *secp = bfd_und_section_ptr;
7499 break;
7500 }
7501
7502 if (SGI_COMPAT (abfd)
7503 && ! bfd_link_pic (info)
7504 && info->output_bfd->xvec == abfd->xvec
7505 && strcmp (*namep, "__rld_obj_head") == 0)
7506 {
7507 struct elf_link_hash_entry *h;
7508 struct bfd_link_hash_entry *bh;
7509
7510 /* Mark __rld_obj_head as dynamic. */
7511 bh = NULL;
7512 if (! (_bfd_generic_link_add_one_symbol
7513 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7514 get_elf_backend_data (abfd)->collect, &bh)))
7515 return FALSE;
7516
7517 h = (struct elf_link_hash_entry *) bh;
7518 h->non_elf = 0;
7519 h->def_regular = 1;
7520 h->type = STT_OBJECT;
7521
7522 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7523 return FALSE;
7524
7525 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7526 mips_elf_hash_table (info)->rld_symbol = h;
7527 }
7528
7529 /* If this is a mips16 text symbol, add 1 to the value to make it
7530 odd. This will cause something like .word SYM to come up with
7531 the right value when it is loaded into the PC. */
7532 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7533 ++*valp;
7534
7535 return TRUE;
7536}
7537
7538/* This hook function is called before the linker writes out a global
7539 symbol. We mark symbols as small common if appropriate. This is
7540 also where we undo the increment of the value for a mips16 symbol. */
7541
7542int
7543_bfd_mips_elf_link_output_symbol_hook
7544 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7545 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7546 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7547{
7548 /* If we see a common symbol, which implies a relocatable link, then
7549 if a symbol was small common in an input file, mark it as small
7550 common in the output file. */
7551 if (sym->st_shndx == SHN_COMMON
7552 && strcmp (input_sec->name, ".scommon") == 0)
7553 sym->st_shndx = SHN_MIPS_SCOMMON;
7554
7555 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7556 sym->st_value &= ~1;
7557
7558 return 1;
7559}
7560\f
7561/* Functions for the dynamic linker. */
7562
7563/* Create dynamic sections when linking against a dynamic object. */
7564
7565bfd_boolean
7566_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7567{
7568 struct elf_link_hash_entry *h;
7569 struct bfd_link_hash_entry *bh;
7570 flagword flags;
7571 register asection *s;
7572 const char * const *namep;
7573 struct mips_elf_link_hash_table *htab;
7574
7575 htab = mips_elf_hash_table (info);
7576 BFD_ASSERT (htab != NULL);
7577
7578 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7579 | SEC_LINKER_CREATED | SEC_READONLY);
7580
7581 /* The psABI requires a read-only .dynamic section, but the VxWorks
7582 EABI doesn't. */
7583 if (!htab->is_vxworks)
7584 {
7585 s = bfd_get_linker_section (abfd, ".dynamic");
7586 if (s != NULL)
7587 {
7588 if (! bfd_set_section_flags (abfd, s, flags))
7589 return FALSE;
7590 }
7591 }
7592
7593 /* We need to create .got section. */
7594 if (!mips_elf_create_got_section (abfd, info))
7595 return FALSE;
7596
7597 if (! mips_elf_rel_dyn_section (info, TRUE))
7598 return FALSE;
7599
7600 /* Create .stub section. */
7601 s = bfd_make_section_anyway_with_flags (abfd,
7602 MIPS_ELF_STUB_SECTION_NAME (abfd),
7603 flags | SEC_CODE);
7604 if (s == NULL
7605 || ! bfd_set_section_alignment (abfd, s,
7606 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7607 return FALSE;
7608 htab->sstubs = s;
7609
7610 if (!mips_elf_hash_table (info)->use_rld_obj_head
7611 && bfd_link_executable (info)
7612 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7613 {
7614 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7615 flags &~ (flagword) SEC_READONLY);
7616 if (s == NULL
7617 || ! bfd_set_section_alignment (abfd, s,
7618 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7619 return FALSE;
7620 }
7621
7622 /* On IRIX5, we adjust add some additional symbols and change the
7623 alignments of several sections. There is no ABI documentation
7624 indicating that this is necessary on IRIX6, nor any evidence that
7625 the linker takes such action. */
7626 if (IRIX_COMPAT (abfd) == ict_irix5)
7627 {
7628 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7629 {
7630 bh = NULL;
7631 if (! (_bfd_generic_link_add_one_symbol
7632 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7633 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7634 return FALSE;
7635
7636 h = (struct elf_link_hash_entry *) bh;
7637 h->non_elf = 0;
7638 h->def_regular = 1;
7639 h->type = STT_SECTION;
7640
7641 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7642 return FALSE;
7643 }
7644
7645 /* We need to create a .compact_rel section. */
7646 if (SGI_COMPAT (abfd))
7647 {
7648 if (!mips_elf_create_compact_rel_section (abfd, info))
7649 return FALSE;
7650 }
7651
7652 /* Change alignments of some sections. */
7653 s = bfd_get_linker_section (abfd, ".hash");
7654 if (s != NULL)
7655 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7656
7657 s = bfd_get_linker_section (abfd, ".dynsym");
7658 if (s != NULL)
7659 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7660
7661 s = bfd_get_linker_section (abfd, ".dynstr");
7662 if (s != NULL)
7663 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664
7665 /* ??? */
7666 s = bfd_get_section_by_name (abfd, ".reginfo");
7667 if (s != NULL)
7668 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669
7670 s = bfd_get_linker_section (abfd, ".dynamic");
7671 if (s != NULL)
7672 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7673 }
7674
7675 if (bfd_link_executable (info))
7676 {
7677 const char *name;
7678
7679 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7680 bh = NULL;
7681 if (!(_bfd_generic_link_add_one_symbol
7682 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7683 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7684 return FALSE;
7685
7686 h = (struct elf_link_hash_entry *) bh;
7687 h->non_elf = 0;
7688 h->def_regular = 1;
7689 h->type = STT_SECTION;
7690
7691 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7692 return FALSE;
7693
7694 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7695 {
7696 /* __rld_map is a four byte word located in the .data section
7697 and is filled in by the rtld to contain a pointer to
7698 the _r_debug structure. Its symbol value will be set in
7699 _bfd_mips_elf_finish_dynamic_symbol. */
7700 s = bfd_get_linker_section (abfd, ".rld_map");
7701 BFD_ASSERT (s != NULL);
7702
7703 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7704 bh = NULL;
7705 if (!(_bfd_generic_link_add_one_symbol
7706 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7707 get_elf_backend_data (abfd)->collect, &bh)))
7708 return FALSE;
7709
7710 h = (struct elf_link_hash_entry *) bh;
7711 h->non_elf = 0;
7712 h->def_regular = 1;
7713 h->type = STT_OBJECT;
7714
7715 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7716 return FALSE;
7717 mips_elf_hash_table (info)->rld_symbol = h;
7718 }
7719 }
7720
7721 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7722 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7723 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7724 return FALSE;
7725
7726 /* Cache the sections created above. */
7727 htab->splt = bfd_get_linker_section (abfd, ".plt");
7728 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7729 if (htab->is_vxworks)
7730 {
7731 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7732 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7733 }
7734 else
7735 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7736 if (!htab->sdynbss
7737 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7738 || !htab->srelplt
7739 || !htab->splt)
7740 abort ();
7741
7742 /* Do the usual VxWorks handling. */
7743 if (htab->is_vxworks
7744 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7745 return FALSE;
7746
7747 return TRUE;
7748}
7749\f
7750/* Return true if relocation REL against section SEC is a REL rather than
7751 RELA relocation. RELOCS is the first relocation in the section and
7752 ABFD is the bfd that contains SEC. */
7753
7754static bfd_boolean
7755mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7756 const Elf_Internal_Rela *relocs,
7757 const Elf_Internal_Rela *rel)
7758{
7759 Elf_Internal_Shdr *rel_hdr;
7760 const struct elf_backend_data *bed;
7761
7762 /* To determine which flavor of relocation this is, we depend on the
7763 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7764 rel_hdr = elf_section_data (sec)->rel.hdr;
7765 if (rel_hdr == NULL)
7766 return FALSE;
7767 bed = get_elf_backend_data (abfd);
7768 return ((size_t) (rel - relocs)
7769 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7770}
7771
7772/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7773 HOWTO is the relocation's howto and CONTENTS points to the contents
7774 of the section that REL is against. */
7775
7776static bfd_vma
7777mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7778 reloc_howto_type *howto, bfd_byte *contents)
7779{
7780 bfd_byte *location;
7781 unsigned int r_type;
7782 bfd_vma addend;
7783 bfd_vma bytes;
7784
7785 r_type = ELF_R_TYPE (abfd, rel->r_info);
7786 location = contents + rel->r_offset;
7787
7788 /* Get the addend, which is stored in the input file. */
7789 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7790 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7791 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7792
7793 addend = bytes & howto->src_mask;
7794
7795 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7796 accordingly. */
7797 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7798 addend <<= 1;
7799
7800 return addend;
7801}
7802
7803/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7804 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7805 and update *ADDEND with the final addend. Return true on success
7806 or false if the LO16 could not be found. RELEND is the exclusive
7807 upper bound on the relocations for REL's section. */
7808
7809static bfd_boolean
7810mips_elf_add_lo16_rel_addend (bfd *abfd,
7811 const Elf_Internal_Rela *rel,
7812 const Elf_Internal_Rela *relend,
7813 bfd_byte *contents, bfd_vma *addend)
7814{
7815 unsigned int r_type, lo16_type;
7816 const Elf_Internal_Rela *lo16_relocation;
7817 reloc_howto_type *lo16_howto;
7818 bfd_vma l;
7819
7820 r_type = ELF_R_TYPE (abfd, rel->r_info);
7821 if (mips16_reloc_p (r_type))
7822 lo16_type = R_MIPS16_LO16;
7823 else if (micromips_reloc_p (r_type))
7824 lo16_type = R_MICROMIPS_LO16;
7825 else if (r_type == R_MIPS_PCHI16)
7826 lo16_type = R_MIPS_PCLO16;
7827 else
7828 lo16_type = R_MIPS_LO16;
7829
7830 /* The combined value is the sum of the HI16 addend, left-shifted by
7831 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7832 code does a `lui' of the HI16 value, and then an `addiu' of the
7833 LO16 value.)
7834
7835 Scan ahead to find a matching LO16 relocation.
7836
7837 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7838 be immediately following. However, for the IRIX6 ABI, the next
7839 relocation may be a composed relocation consisting of several
7840 relocations for the same address. In that case, the R_MIPS_LO16
7841 relocation may occur as one of these. We permit a similar
7842 extension in general, as that is useful for GCC.
7843
7844 In some cases GCC dead code elimination removes the LO16 but keeps
7845 the corresponding HI16. This is strictly speaking a violation of
7846 the ABI but not immediately harmful. */
7847 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7848 if (lo16_relocation == NULL)
7849 return FALSE;
7850
7851 /* Obtain the addend kept there. */
7852 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7853 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7854
7855 l <<= lo16_howto->rightshift;
7856 l = _bfd_mips_elf_sign_extend (l, 16);
7857
7858 *addend <<= 16;
7859 *addend += l;
7860 return TRUE;
7861}
7862
7863/* Try to read the contents of section SEC in bfd ABFD. Return true and
7864 store the contents in *CONTENTS on success. Assume that *CONTENTS
7865 already holds the contents if it is nonull on entry. */
7866
7867static bfd_boolean
7868mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7869{
7870 if (*contents)
7871 return TRUE;
7872
7873 /* Get cached copy if it exists. */
7874 if (elf_section_data (sec)->this_hdr.contents != NULL)
7875 {
7876 *contents = elf_section_data (sec)->this_hdr.contents;
7877 return TRUE;
7878 }
7879
7880 return bfd_malloc_and_get_section (abfd, sec, contents);
7881}
7882
7883/* Make a new PLT record to keep internal data. */
7884
7885static struct plt_entry *
7886mips_elf_make_plt_record (bfd *abfd)
7887{
7888 struct plt_entry *entry;
7889
7890 entry = bfd_zalloc (abfd, sizeof (*entry));
7891 if (entry == NULL)
7892 return NULL;
7893
7894 entry->stub_offset = MINUS_ONE;
7895 entry->mips_offset = MINUS_ONE;
7896 entry->comp_offset = MINUS_ONE;
7897 entry->gotplt_index = MINUS_ONE;
7898 return entry;
7899}
7900
7901/* Look through the relocs for a section during the first phase, and
7902 allocate space in the global offset table and record the need for
7903 standard MIPS and compressed procedure linkage table entries. */
7904
7905bfd_boolean
7906_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7907 asection *sec, const Elf_Internal_Rela *relocs)
7908{
7909 const char *name;
7910 bfd *dynobj;
7911 Elf_Internal_Shdr *symtab_hdr;
7912 struct elf_link_hash_entry **sym_hashes;
7913 size_t extsymoff;
7914 const Elf_Internal_Rela *rel;
7915 const Elf_Internal_Rela *rel_end;
7916 asection *sreloc;
7917 const struct elf_backend_data *bed;
7918 struct mips_elf_link_hash_table *htab;
7919 bfd_byte *contents;
7920 bfd_vma addend;
7921 reloc_howto_type *howto;
7922
7923 if (bfd_link_relocatable (info))
7924 return TRUE;
7925
7926 htab = mips_elf_hash_table (info);
7927 BFD_ASSERT (htab != NULL);
7928
7929 dynobj = elf_hash_table (info)->dynobj;
7930 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7931 sym_hashes = elf_sym_hashes (abfd);
7932 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7933
7934 bed = get_elf_backend_data (abfd);
7935 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7936
7937 /* Check for the mips16 stub sections. */
7938
7939 name = bfd_get_section_name (abfd, sec);
7940 if (FN_STUB_P (name))
7941 {
7942 unsigned long r_symndx;
7943
7944 /* Look at the relocation information to figure out which symbol
7945 this is for. */
7946
7947 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7948 if (r_symndx == 0)
7949 {
7950 (*_bfd_error_handler)
7951 (_("%B: Warning: cannot determine the target function for"
7952 " stub section `%s'"),
7953 abfd, name);
7954 bfd_set_error (bfd_error_bad_value);
7955 return FALSE;
7956 }
7957
7958 if (r_symndx < extsymoff
7959 || sym_hashes[r_symndx - extsymoff] == NULL)
7960 {
7961 asection *o;
7962
7963 /* This stub is for a local symbol. This stub will only be
7964 needed if there is some relocation in this BFD, other
7965 than a 16 bit function call, which refers to this symbol. */
7966 for (o = abfd->sections; o != NULL; o = o->next)
7967 {
7968 Elf_Internal_Rela *sec_relocs;
7969 const Elf_Internal_Rela *r, *rend;
7970
7971 /* We can ignore stub sections when looking for relocs. */
7972 if ((o->flags & SEC_RELOC) == 0
7973 || o->reloc_count == 0
7974 || section_allows_mips16_refs_p (o))
7975 continue;
7976
7977 sec_relocs
7978 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7979 info->keep_memory);
7980 if (sec_relocs == NULL)
7981 return FALSE;
7982
7983 rend = sec_relocs + o->reloc_count;
7984 for (r = sec_relocs; r < rend; r++)
7985 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7986 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7987 break;
7988
7989 if (elf_section_data (o)->relocs != sec_relocs)
7990 free (sec_relocs);
7991
7992 if (r < rend)
7993 break;
7994 }
7995
7996 if (o == NULL)
7997 {
7998 /* There is no non-call reloc for this stub, so we do
7999 not need it. Since this function is called before
8000 the linker maps input sections to output sections, we
8001 can easily discard it by setting the SEC_EXCLUDE
8002 flag. */
8003 sec->flags |= SEC_EXCLUDE;
8004 return TRUE;
8005 }
8006
8007 /* Record this stub in an array of local symbol stubs for
8008 this BFD. */
8009 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8010 {
8011 unsigned long symcount;
8012 asection **n;
8013 bfd_size_type amt;
8014
8015 if (elf_bad_symtab (abfd))
8016 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8017 else
8018 symcount = symtab_hdr->sh_info;
8019 amt = symcount * sizeof (asection *);
8020 n = bfd_zalloc (abfd, amt);
8021 if (n == NULL)
8022 return FALSE;
8023 mips_elf_tdata (abfd)->local_stubs = n;
8024 }
8025
8026 sec->flags |= SEC_KEEP;
8027 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8028
8029 /* We don't need to set mips16_stubs_seen in this case.
8030 That flag is used to see whether we need to look through
8031 the global symbol table for stubs. We don't need to set
8032 it here, because we just have a local stub. */
8033 }
8034 else
8035 {
8036 struct mips_elf_link_hash_entry *h;
8037
8038 h = ((struct mips_elf_link_hash_entry *)
8039 sym_hashes[r_symndx - extsymoff]);
8040
8041 while (h->root.root.type == bfd_link_hash_indirect
8042 || h->root.root.type == bfd_link_hash_warning)
8043 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8044
8045 /* H is the symbol this stub is for. */
8046
8047 /* If we already have an appropriate stub for this function, we
8048 don't need another one, so we can discard this one. Since
8049 this function is called before the linker maps input sections
8050 to output sections, we can easily discard it by setting the
8051 SEC_EXCLUDE flag. */
8052 if (h->fn_stub != NULL)
8053 {
8054 sec->flags |= SEC_EXCLUDE;
8055 return TRUE;
8056 }
8057
8058 sec->flags |= SEC_KEEP;
8059 h->fn_stub = sec;
8060 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8061 }
8062 }
8063 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8064 {
8065 unsigned long r_symndx;
8066 struct mips_elf_link_hash_entry *h;
8067 asection **loc;
8068
8069 /* Look at the relocation information to figure out which symbol
8070 this is for. */
8071
8072 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8073 if (r_symndx == 0)
8074 {
8075 (*_bfd_error_handler)
8076 (_("%B: Warning: cannot determine the target function for"
8077 " stub section `%s'"),
8078 abfd, name);
8079 bfd_set_error (bfd_error_bad_value);
8080 return FALSE;
8081 }
8082
8083 if (r_symndx < extsymoff
8084 || sym_hashes[r_symndx - extsymoff] == NULL)
8085 {
8086 asection *o;
8087
8088 /* This stub is for a local symbol. This stub will only be
8089 needed if there is some relocation (R_MIPS16_26) in this BFD
8090 that refers to this symbol. */
8091 for (o = abfd->sections; o != NULL; o = o->next)
8092 {
8093 Elf_Internal_Rela *sec_relocs;
8094 const Elf_Internal_Rela *r, *rend;
8095
8096 /* We can ignore stub sections when looking for relocs. */
8097 if ((o->flags & SEC_RELOC) == 0
8098 || o->reloc_count == 0
8099 || section_allows_mips16_refs_p (o))
8100 continue;
8101
8102 sec_relocs
8103 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8104 info->keep_memory);
8105 if (sec_relocs == NULL)
8106 return FALSE;
8107
8108 rend = sec_relocs + o->reloc_count;
8109 for (r = sec_relocs; r < rend; r++)
8110 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8111 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8112 break;
8113
8114 if (elf_section_data (o)->relocs != sec_relocs)
8115 free (sec_relocs);
8116
8117 if (r < rend)
8118 break;
8119 }
8120
8121 if (o == NULL)
8122 {
8123 /* There is no non-call reloc for this stub, so we do
8124 not need it. Since this function is called before
8125 the linker maps input sections to output sections, we
8126 can easily discard it by setting the SEC_EXCLUDE
8127 flag. */
8128 sec->flags |= SEC_EXCLUDE;
8129 return TRUE;
8130 }
8131
8132 /* Record this stub in an array of local symbol call_stubs for
8133 this BFD. */
8134 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8135 {
8136 unsigned long symcount;
8137 asection **n;
8138 bfd_size_type amt;
8139
8140 if (elf_bad_symtab (abfd))
8141 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8142 else
8143 symcount = symtab_hdr->sh_info;
8144 amt = symcount * sizeof (asection *);
8145 n = bfd_zalloc (abfd, amt);
8146 if (n == NULL)
8147 return FALSE;
8148 mips_elf_tdata (abfd)->local_call_stubs = n;
8149 }
8150
8151 sec->flags |= SEC_KEEP;
8152 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8153
8154 /* We don't need to set mips16_stubs_seen in this case.
8155 That flag is used to see whether we need to look through
8156 the global symbol table for stubs. We don't need to set
8157 it here, because we just have a local stub. */
8158 }
8159 else
8160 {
8161 h = ((struct mips_elf_link_hash_entry *)
8162 sym_hashes[r_symndx - extsymoff]);
8163
8164 /* H is the symbol this stub is for. */
8165
8166 if (CALL_FP_STUB_P (name))
8167 loc = &h->call_fp_stub;
8168 else
8169 loc = &h->call_stub;
8170
8171 /* If we already have an appropriate stub for this function, we
8172 don't need another one, so we can discard this one. Since
8173 this function is called before the linker maps input sections
8174 to output sections, we can easily discard it by setting the
8175 SEC_EXCLUDE flag. */
8176 if (*loc != NULL)
8177 {
8178 sec->flags |= SEC_EXCLUDE;
8179 return TRUE;
8180 }
8181
8182 sec->flags |= SEC_KEEP;
8183 *loc = sec;
8184 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8185 }
8186 }
8187
8188 sreloc = NULL;
8189 contents = NULL;
8190 for (rel = relocs; rel < rel_end; ++rel)
8191 {
8192 unsigned long r_symndx;
8193 unsigned int r_type;
8194 struct elf_link_hash_entry *h;
8195 bfd_boolean can_make_dynamic_p;
8196 bfd_boolean call_reloc_p;
8197 bfd_boolean constrain_symbol_p;
8198
8199 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8200 r_type = ELF_R_TYPE (abfd, rel->r_info);
8201
8202 if (r_symndx < extsymoff)
8203 h = NULL;
8204 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8205 {
8206 (*_bfd_error_handler)
8207 (_("%B: Malformed reloc detected for section %s"),
8208 abfd, name);
8209 bfd_set_error (bfd_error_bad_value);
8210 return FALSE;
8211 }
8212 else
8213 {
8214 h = sym_hashes[r_symndx - extsymoff];
8215 if (h != NULL)
8216 {
8217 while (h->root.type == bfd_link_hash_indirect
8218 || h->root.type == bfd_link_hash_warning)
8219 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8220
8221 /* PR15323, ref flags aren't set for references in the
8222 same object. */
8223 h->root.non_ir_ref = 1;
8224 }
8225 }
8226
8227 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8228 relocation into a dynamic one. */
8229 can_make_dynamic_p = FALSE;
8230
8231 /* Set CALL_RELOC_P to true if the relocation is for a call,
8232 and if pointer equality therefore doesn't matter. */
8233 call_reloc_p = FALSE;
8234
8235 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8236 into account when deciding how to define the symbol.
8237 Relocations in nonallocatable sections such as .pdr and
8238 .debug* should have no effect. */
8239 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8240
8241 switch (r_type)
8242 {
8243 case R_MIPS_CALL16:
8244 case R_MIPS_CALL_HI16:
8245 case R_MIPS_CALL_LO16:
8246 case R_MIPS16_CALL16:
8247 case R_MICROMIPS_CALL16:
8248 case R_MICROMIPS_CALL_HI16:
8249 case R_MICROMIPS_CALL_LO16:
8250 call_reloc_p = TRUE;
8251 /* Fall through. */
8252
8253 case R_MIPS_GOT16:
8254 case R_MIPS_GOT_HI16:
8255 case R_MIPS_GOT_LO16:
8256 case R_MIPS_GOT_PAGE:
8257 case R_MIPS_GOT_OFST:
8258 case R_MIPS_GOT_DISP:
8259 case R_MIPS_TLS_GOTTPREL:
8260 case R_MIPS_TLS_GD:
8261 case R_MIPS_TLS_LDM:
8262 case R_MIPS16_GOT16:
8263 case R_MIPS16_TLS_GOTTPREL:
8264 case R_MIPS16_TLS_GD:
8265 case R_MIPS16_TLS_LDM:
8266 case R_MICROMIPS_GOT16:
8267 case R_MICROMIPS_GOT_HI16:
8268 case R_MICROMIPS_GOT_LO16:
8269 case R_MICROMIPS_GOT_PAGE:
8270 case R_MICROMIPS_GOT_OFST:
8271 case R_MICROMIPS_GOT_DISP:
8272 case R_MICROMIPS_TLS_GOTTPREL:
8273 case R_MICROMIPS_TLS_GD:
8274 case R_MICROMIPS_TLS_LDM:
8275 if (dynobj == NULL)
8276 elf_hash_table (info)->dynobj = dynobj = abfd;
8277 if (!mips_elf_create_got_section (dynobj, info))
8278 return FALSE;
8279 if (htab->is_vxworks && !bfd_link_pic (info))
8280 {
8281 (*_bfd_error_handler)
8282 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8283 abfd, (unsigned long) rel->r_offset);
8284 bfd_set_error (bfd_error_bad_value);
8285 return FALSE;
8286 }
8287 can_make_dynamic_p = TRUE;
8288 break;
8289
8290 case R_MIPS_NONE:
8291 case R_MIPS_JALR:
8292 case R_MICROMIPS_JALR:
8293 /* These relocations have empty fields and are purely there to
8294 provide link information. The symbol value doesn't matter. */
8295 constrain_symbol_p = FALSE;
8296 break;
8297
8298 case R_MIPS_GPREL16:
8299 case R_MIPS_GPREL32:
8300 case R_MIPS16_GPREL:
8301 case R_MICROMIPS_GPREL16:
8302 /* GP-relative relocations always resolve to a definition in a
8303 regular input file, ignoring the one-definition rule. This is
8304 important for the GP setup sequence in NewABI code, which
8305 always resolves to a local function even if other relocations
8306 against the symbol wouldn't. */
8307 constrain_symbol_p = FALSE;
8308 break;
8309
8310 case R_MIPS_32:
8311 case R_MIPS_REL32:
8312 case R_MIPS_64:
8313 /* In VxWorks executables, references to external symbols
8314 must be handled using copy relocs or PLT entries; it is not
8315 possible to convert this relocation into a dynamic one.
8316
8317 For executables that use PLTs and copy-relocs, we have a
8318 choice between converting the relocation into a dynamic
8319 one or using copy relocations or PLT entries. It is
8320 usually better to do the former, unless the relocation is
8321 against a read-only section. */
8322 if ((bfd_link_pic (info)
8323 || (h != NULL
8324 && !htab->is_vxworks
8325 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8326 && !(!info->nocopyreloc
8327 && !PIC_OBJECT_P (abfd)
8328 && MIPS_ELF_READONLY_SECTION (sec))))
8329 && (sec->flags & SEC_ALLOC) != 0)
8330 {
8331 can_make_dynamic_p = TRUE;
8332 if (dynobj == NULL)
8333 elf_hash_table (info)->dynobj = dynobj = abfd;
8334 }
8335 break;
8336
8337 case R_MIPS_26:
8338 case R_MIPS_PC16:
8339 case R_MIPS_PC21_S2:
8340 case R_MIPS_PC26_S2:
8341 case R_MIPS16_26:
8342 case R_MICROMIPS_26_S1:
8343 case R_MICROMIPS_PC7_S1:
8344 case R_MICROMIPS_PC10_S1:
8345 case R_MICROMIPS_PC16_S1:
8346 case R_MICROMIPS_PC23_S2:
8347 call_reloc_p = TRUE;
8348 break;
8349 }
8350
8351 if (h)
8352 {
8353 if (constrain_symbol_p)
8354 {
8355 if (!can_make_dynamic_p)
8356 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8357
8358 if (!call_reloc_p)
8359 h->pointer_equality_needed = 1;
8360
8361 /* We must not create a stub for a symbol that has
8362 relocations related to taking the function's address.
8363 This doesn't apply to VxWorks, where CALL relocs refer
8364 to a .got.plt entry instead of a normal .got entry. */
8365 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8366 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8367 }
8368
8369 /* Relocations against the special VxWorks __GOTT_BASE__ and
8370 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8371 room for them in .rela.dyn. */
8372 if (is_gott_symbol (info, h))
8373 {
8374 if (sreloc == NULL)
8375 {
8376 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8377 if (sreloc == NULL)
8378 return FALSE;
8379 }
8380 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8381 if (MIPS_ELF_READONLY_SECTION (sec))
8382 /* We tell the dynamic linker that there are
8383 relocations against the text segment. */
8384 info->flags |= DF_TEXTREL;
8385 }
8386 }
8387 else if (call_lo16_reloc_p (r_type)
8388 || got_lo16_reloc_p (r_type)
8389 || got_disp_reloc_p (r_type)
8390 || (got16_reloc_p (r_type) && htab->is_vxworks))
8391 {
8392 /* We may need a local GOT entry for this relocation. We
8393 don't count R_MIPS_GOT_PAGE because we can estimate the
8394 maximum number of pages needed by looking at the size of
8395 the segment. Similar comments apply to R_MIPS*_GOT16 and
8396 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8397 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8398 R_MIPS_CALL_HI16 because these are always followed by an
8399 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8400 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8401 rel->r_addend, info, r_type))
8402 return FALSE;
8403 }
8404
8405 if (h != NULL
8406 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8407 ELF_ST_IS_MIPS16 (h->other)))
8408 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8409
8410 switch (r_type)
8411 {
8412 case R_MIPS_CALL16:
8413 case R_MIPS16_CALL16:
8414 case R_MICROMIPS_CALL16:
8415 if (h == NULL)
8416 {
8417 (*_bfd_error_handler)
8418 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8419 abfd, (unsigned long) rel->r_offset);
8420 bfd_set_error (bfd_error_bad_value);
8421 return FALSE;
8422 }
8423 /* Fall through. */
8424
8425 case R_MIPS_CALL_HI16:
8426 case R_MIPS_CALL_LO16:
8427 case R_MICROMIPS_CALL_HI16:
8428 case R_MICROMIPS_CALL_LO16:
8429 if (h != NULL)
8430 {
8431 /* Make sure there is room in the regular GOT to hold the
8432 function's address. We may eliminate it in favour of
8433 a .got.plt entry later; see mips_elf_count_got_symbols. */
8434 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8435 r_type))
8436 return FALSE;
8437
8438 /* We need a stub, not a plt entry for the undefined
8439 function. But we record it as if it needs plt. See
8440 _bfd_elf_adjust_dynamic_symbol. */
8441 h->needs_plt = 1;
8442 h->type = STT_FUNC;
8443 }
8444 break;
8445
8446 case R_MIPS_GOT_PAGE:
8447 case R_MICROMIPS_GOT_PAGE:
8448 case R_MIPS16_GOT16:
8449 case R_MIPS_GOT16:
8450 case R_MIPS_GOT_HI16:
8451 case R_MIPS_GOT_LO16:
8452 case R_MICROMIPS_GOT16:
8453 case R_MICROMIPS_GOT_HI16:
8454 case R_MICROMIPS_GOT_LO16:
8455 if (!h || got_page_reloc_p (r_type))
8456 {
8457 /* This relocation needs (or may need, if h != NULL) a
8458 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8459 know for sure until we know whether the symbol is
8460 preemptible. */
8461 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8462 {
8463 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8464 return FALSE;
8465 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8466 addend = mips_elf_read_rel_addend (abfd, rel,
8467 howto, contents);
8468 if (got16_reloc_p (r_type))
8469 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8470 contents, &addend);
8471 else
8472 addend <<= howto->rightshift;
8473 }
8474 else
8475 addend = rel->r_addend;
8476 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8477 h, addend))
8478 return FALSE;
8479
8480 if (h)
8481 {
8482 struct mips_elf_link_hash_entry *hmips =
8483 (struct mips_elf_link_hash_entry *) h;
8484
8485 /* This symbol is definitely not overridable. */
8486 if (hmips->root.def_regular
8487 && ! (bfd_link_pic (info) && ! info->symbolic
8488 && ! hmips->root.forced_local))
8489 h = NULL;
8490 }
8491 }
8492 /* If this is a global, overridable symbol, GOT_PAGE will
8493 decay to GOT_DISP, so we'll need a GOT entry for it. */
8494 /* Fall through. */
8495
8496 case R_MIPS_GOT_DISP:
8497 case R_MICROMIPS_GOT_DISP:
8498 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8499 FALSE, r_type))
8500 return FALSE;
8501 break;
8502
8503 case R_MIPS_TLS_GOTTPREL:
8504 case R_MIPS16_TLS_GOTTPREL:
8505 case R_MICROMIPS_TLS_GOTTPREL:
8506 if (bfd_link_pic (info))
8507 info->flags |= DF_STATIC_TLS;
8508 /* Fall through */
8509
8510 case R_MIPS_TLS_LDM:
8511 case R_MIPS16_TLS_LDM:
8512 case R_MICROMIPS_TLS_LDM:
8513 if (tls_ldm_reloc_p (r_type))
8514 {
8515 r_symndx = STN_UNDEF;
8516 h = NULL;
8517 }
8518 /* Fall through */
8519
8520 case R_MIPS_TLS_GD:
8521 case R_MIPS16_TLS_GD:
8522 case R_MICROMIPS_TLS_GD:
8523 /* This symbol requires a global offset table entry, or two
8524 for TLS GD relocations. */
8525 if (h != NULL)
8526 {
8527 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8528 FALSE, r_type))
8529 return FALSE;
8530 }
8531 else
8532 {
8533 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8534 rel->r_addend,
8535 info, r_type))
8536 return FALSE;
8537 }
8538 break;
8539
8540 case R_MIPS_32:
8541 case R_MIPS_REL32:
8542 case R_MIPS_64:
8543 /* In VxWorks executables, references to external symbols
8544 are handled using copy relocs or PLT stubs, so there's
8545 no need to add a .rela.dyn entry for this relocation. */
8546 if (can_make_dynamic_p)
8547 {
8548 if (sreloc == NULL)
8549 {
8550 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8551 if (sreloc == NULL)
8552 return FALSE;
8553 }
8554 if (bfd_link_pic (info) && h == NULL)
8555 {
8556 /* When creating a shared object, we must copy these
8557 reloc types into the output file as R_MIPS_REL32
8558 relocs. Make room for this reloc in .rel(a).dyn. */
8559 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8560 if (MIPS_ELF_READONLY_SECTION (sec))
8561 /* We tell the dynamic linker that there are
8562 relocations against the text segment. */
8563 info->flags |= DF_TEXTREL;
8564 }
8565 else
8566 {
8567 struct mips_elf_link_hash_entry *hmips;
8568
8569 /* For a shared object, we must copy this relocation
8570 unless the symbol turns out to be undefined and
8571 weak with non-default visibility, in which case
8572 it will be left as zero.
8573
8574 We could elide R_MIPS_REL32 for locally binding symbols
8575 in shared libraries, but do not yet do so.
8576
8577 For an executable, we only need to copy this
8578 reloc if the symbol is defined in a dynamic
8579 object. */
8580 hmips = (struct mips_elf_link_hash_entry *) h;
8581 ++hmips->possibly_dynamic_relocs;
8582 if (MIPS_ELF_READONLY_SECTION (sec))
8583 /* We need it to tell the dynamic linker if there
8584 are relocations against the text segment. */
8585 hmips->readonly_reloc = TRUE;
8586 }
8587 }
8588
8589 if (SGI_COMPAT (abfd))
8590 mips_elf_hash_table (info)->compact_rel_size +=
8591 sizeof (Elf32_External_crinfo);
8592 break;
8593
8594 case R_MIPS_26:
8595 case R_MIPS_GPREL16:
8596 case R_MIPS_LITERAL:
8597 case R_MIPS_GPREL32:
8598 case R_MICROMIPS_26_S1:
8599 case R_MICROMIPS_GPREL16:
8600 case R_MICROMIPS_LITERAL:
8601 case R_MICROMIPS_GPREL7_S2:
8602 if (SGI_COMPAT (abfd))
8603 mips_elf_hash_table (info)->compact_rel_size +=
8604 sizeof (Elf32_External_crinfo);
8605 break;
8606
8607 /* This relocation describes the C++ object vtable hierarchy.
8608 Reconstruct it for later use during GC. */
8609 case R_MIPS_GNU_VTINHERIT:
8610 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8611 return FALSE;
8612 break;
8613
8614 /* This relocation describes which C++ vtable entries are actually
8615 used. Record for later use during GC. */
8616 case R_MIPS_GNU_VTENTRY:
8617 BFD_ASSERT (h != NULL);
8618 if (h != NULL
8619 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8620 return FALSE;
8621 break;
8622
8623 default:
8624 break;
8625 }
8626
8627 /* Record the need for a PLT entry. At this point we don't know
8628 yet if we are going to create a PLT in the first place, but
8629 we only record whether the relocation requires a standard MIPS
8630 or a compressed code entry anyway. If we don't make a PLT after
8631 all, then we'll just ignore these arrangements. Likewise if
8632 a PLT entry is not created because the symbol is satisfied
8633 locally. */
8634 if (h != NULL
8635 && jal_reloc_p (r_type)
8636 && !SYMBOL_CALLS_LOCAL (info, h))
8637 {
8638 if (h->plt.plist == NULL)
8639 h->plt.plist = mips_elf_make_plt_record (abfd);
8640 if (h->plt.plist == NULL)
8641 return FALSE;
8642
8643 if (r_type == R_MIPS_26)
8644 h->plt.plist->need_mips = TRUE;
8645 else
8646 h->plt.plist->need_comp = TRUE;
8647 }
8648
8649 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8650 if there is one. We only need to handle global symbols here;
8651 we decide whether to keep or delete stubs for local symbols
8652 when processing the stub's relocations. */
8653 if (h != NULL
8654 && !mips16_call_reloc_p (r_type)
8655 && !section_allows_mips16_refs_p (sec))
8656 {
8657 struct mips_elf_link_hash_entry *mh;
8658
8659 mh = (struct mips_elf_link_hash_entry *) h;
8660 mh->need_fn_stub = TRUE;
8661 }
8662
8663 /* Refuse some position-dependent relocations when creating a
8664 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8665 not PIC, but we can create dynamic relocations and the result
8666 will be fine. Also do not refuse R_MIPS_LO16, which can be
8667 combined with R_MIPS_GOT16. */
8668 if (bfd_link_pic (info))
8669 {
8670 switch (r_type)
8671 {
8672 case R_MIPS16_HI16:
8673 case R_MIPS_HI16:
8674 case R_MIPS_HIGHER:
8675 case R_MIPS_HIGHEST:
8676 case R_MICROMIPS_HI16:
8677 case R_MICROMIPS_HIGHER:
8678 case R_MICROMIPS_HIGHEST:
8679 /* Don't refuse a high part relocation if it's against
8680 no symbol (e.g. part of a compound relocation). */
8681 if (r_symndx == STN_UNDEF)
8682 break;
8683
8684 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8685 and has a special meaning. */
8686 if (!NEWABI_P (abfd) && h != NULL
8687 && strcmp (h->root.root.string, "_gp_disp") == 0)
8688 break;
8689
8690 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8691 if (is_gott_symbol (info, h))
8692 break;
8693
8694 /* FALLTHROUGH */
8695
8696 case R_MIPS16_26:
8697 case R_MIPS_26:
8698 case R_MICROMIPS_26_S1:
8699 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8700 (*_bfd_error_handler)
8701 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8702 abfd, howto->name,
8703 (h) ? h->root.root.string : "a local symbol");
8704 bfd_set_error (bfd_error_bad_value);
8705 return FALSE;
8706 default:
8707 break;
8708 }
8709 }
8710 }
8711
8712 return TRUE;
8713}
8714\f
8715bfd_boolean
8716_bfd_mips_relax_section (bfd *abfd, asection *sec,
8717 struct bfd_link_info *link_info,
8718 bfd_boolean *again)
8719{
8720 Elf_Internal_Rela *internal_relocs;
8721 Elf_Internal_Rela *irel, *irelend;
8722 Elf_Internal_Shdr *symtab_hdr;
8723 bfd_byte *contents = NULL;
8724 size_t extsymoff;
8725 bfd_boolean changed_contents = FALSE;
8726 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8727 Elf_Internal_Sym *isymbuf = NULL;
8728
8729 /* We are not currently changing any sizes, so only one pass. */
8730 *again = FALSE;
8731
8732 if (bfd_link_relocatable (link_info))
8733 return TRUE;
8734
8735 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8736 link_info->keep_memory);
8737 if (internal_relocs == NULL)
8738 return TRUE;
8739
8740 irelend = internal_relocs + sec->reloc_count
8741 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8742 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8743 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8744
8745 for (irel = internal_relocs; irel < irelend; irel++)
8746 {
8747 bfd_vma symval;
8748 bfd_signed_vma sym_offset;
8749 unsigned int r_type;
8750 unsigned long r_symndx;
8751 asection *sym_sec;
8752 unsigned long instruction;
8753
8754 /* Turn jalr into bgezal, and jr into beq, if they're marked
8755 with a JALR relocation, that indicate where they jump to.
8756 This saves some pipeline bubbles. */
8757 r_type = ELF_R_TYPE (abfd, irel->r_info);
8758 if (r_type != R_MIPS_JALR)
8759 continue;
8760
8761 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8762 /* Compute the address of the jump target. */
8763 if (r_symndx >= extsymoff)
8764 {
8765 struct mips_elf_link_hash_entry *h
8766 = ((struct mips_elf_link_hash_entry *)
8767 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8768
8769 while (h->root.root.type == bfd_link_hash_indirect
8770 || h->root.root.type == bfd_link_hash_warning)
8771 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8772
8773 /* If a symbol is undefined, or if it may be overridden,
8774 skip it. */
8775 if (! ((h->root.root.type == bfd_link_hash_defined
8776 || h->root.root.type == bfd_link_hash_defweak)
8777 && h->root.root.u.def.section)
8778 || (bfd_link_pic (link_info) && ! link_info->symbolic
8779 && !h->root.forced_local))
8780 continue;
8781
8782 sym_sec = h->root.root.u.def.section;
8783 if (sym_sec->output_section)
8784 symval = (h->root.root.u.def.value
8785 + sym_sec->output_section->vma
8786 + sym_sec->output_offset);
8787 else
8788 symval = h->root.root.u.def.value;
8789 }
8790 else
8791 {
8792 Elf_Internal_Sym *isym;
8793
8794 /* Read this BFD's symbols if we haven't done so already. */
8795 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8796 {
8797 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8798 if (isymbuf == NULL)
8799 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8800 symtab_hdr->sh_info, 0,
8801 NULL, NULL, NULL);
8802 if (isymbuf == NULL)
8803 goto relax_return;
8804 }
8805
8806 isym = isymbuf + r_symndx;
8807 if (isym->st_shndx == SHN_UNDEF)
8808 continue;
8809 else if (isym->st_shndx == SHN_ABS)
8810 sym_sec = bfd_abs_section_ptr;
8811 else if (isym->st_shndx == SHN_COMMON)
8812 sym_sec = bfd_com_section_ptr;
8813 else
8814 sym_sec
8815 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8816 symval = isym->st_value
8817 + sym_sec->output_section->vma
8818 + sym_sec->output_offset;
8819 }
8820
8821 /* Compute branch offset, from delay slot of the jump to the
8822 branch target. */
8823 sym_offset = (symval + irel->r_addend)
8824 - (sec_start + irel->r_offset + 4);
8825
8826 /* Branch offset must be properly aligned. */
8827 if ((sym_offset & 3) != 0)
8828 continue;
8829
8830 sym_offset >>= 2;
8831
8832 /* Check that it's in range. */
8833 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8834 continue;
8835
8836 /* Get the section contents if we haven't done so already. */
8837 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8838 goto relax_return;
8839
8840 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8841
8842 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8843 if ((instruction & 0xfc1fffff) == 0x0000f809)
8844 instruction = 0x04110000;
8845 /* If it was jr <reg>, turn it into b <target>. */
8846 else if ((instruction & 0xfc1fffff) == 0x00000008)
8847 instruction = 0x10000000;
8848 else
8849 continue;
8850
8851 instruction |= (sym_offset & 0xffff);
8852 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8853 changed_contents = TRUE;
8854 }
8855
8856 if (contents != NULL
8857 && elf_section_data (sec)->this_hdr.contents != contents)
8858 {
8859 if (!changed_contents && !link_info->keep_memory)
8860 free (contents);
8861 else
8862 {
8863 /* Cache the section contents for elf_link_input_bfd. */
8864 elf_section_data (sec)->this_hdr.contents = contents;
8865 }
8866 }
8867 return TRUE;
8868
8869 relax_return:
8870 if (contents != NULL
8871 && elf_section_data (sec)->this_hdr.contents != contents)
8872 free (contents);
8873 return FALSE;
8874}
8875\f
8876/* Allocate space for global sym dynamic relocs. */
8877
8878static bfd_boolean
8879allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8880{
8881 struct bfd_link_info *info = inf;
8882 bfd *dynobj;
8883 struct mips_elf_link_hash_entry *hmips;
8884 struct mips_elf_link_hash_table *htab;
8885
8886 htab = mips_elf_hash_table (info);
8887 BFD_ASSERT (htab != NULL);
8888
8889 dynobj = elf_hash_table (info)->dynobj;
8890 hmips = (struct mips_elf_link_hash_entry *) h;
8891
8892 /* VxWorks executables are handled elsewhere; we only need to
8893 allocate relocations in shared objects. */
8894 if (htab->is_vxworks && !bfd_link_pic (info))
8895 return TRUE;
8896
8897 /* Ignore indirect symbols. All relocations against such symbols
8898 will be redirected to the target symbol. */
8899 if (h->root.type == bfd_link_hash_indirect)
8900 return TRUE;
8901
8902 /* If this symbol is defined in a dynamic object, or we are creating
8903 a shared library, we will need to copy any R_MIPS_32 or
8904 R_MIPS_REL32 relocs against it into the output file. */
8905 if (! bfd_link_relocatable (info)
8906 && hmips->possibly_dynamic_relocs != 0
8907 && (h->root.type == bfd_link_hash_defweak
8908 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8909 || bfd_link_pic (info)))
8910 {
8911 bfd_boolean do_copy = TRUE;
8912
8913 if (h->root.type == bfd_link_hash_undefweak)
8914 {
8915 /* Do not copy relocations for undefined weak symbols with
8916 non-default visibility. */
8917 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8918 do_copy = FALSE;
8919
8920 /* Make sure undefined weak symbols are output as a dynamic
8921 symbol in PIEs. */
8922 else if (h->dynindx == -1 && !h->forced_local)
8923 {
8924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8925 return FALSE;
8926 }
8927 }
8928
8929 if (do_copy)
8930 {
8931 /* Even though we don't directly need a GOT entry for this symbol,
8932 the SVR4 psABI requires it to have a dynamic symbol table
8933 index greater that DT_MIPS_GOTSYM if there are dynamic
8934 relocations against it.
8935
8936 VxWorks does not enforce the same mapping between the GOT
8937 and the symbol table, so the same requirement does not
8938 apply there. */
8939 if (!htab->is_vxworks)
8940 {
8941 if (hmips->global_got_area > GGA_RELOC_ONLY)
8942 hmips->global_got_area = GGA_RELOC_ONLY;
8943 hmips->got_only_for_calls = FALSE;
8944 }
8945
8946 mips_elf_allocate_dynamic_relocations
8947 (dynobj, info, hmips->possibly_dynamic_relocs);
8948 if (hmips->readonly_reloc)
8949 /* We tell the dynamic linker that there are relocations
8950 against the text segment. */
8951 info->flags |= DF_TEXTREL;
8952 }
8953 }
8954
8955 return TRUE;
8956}
8957
8958/* Adjust a symbol defined by a dynamic object and referenced by a
8959 regular object. The current definition is in some section of the
8960 dynamic object, but we're not including those sections. We have to
8961 change the definition to something the rest of the link can
8962 understand. */
8963
8964bfd_boolean
8965_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8966 struct elf_link_hash_entry *h)
8967{
8968 bfd *dynobj;
8969 struct mips_elf_link_hash_entry *hmips;
8970 struct mips_elf_link_hash_table *htab;
8971
8972 htab = mips_elf_hash_table (info);
8973 BFD_ASSERT (htab != NULL);
8974
8975 dynobj = elf_hash_table (info)->dynobj;
8976 hmips = (struct mips_elf_link_hash_entry *) h;
8977
8978 /* Make sure we know what is going on here. */
8979 BFD_ASSERT (dynobj != NULL
8980 && (h->needs_plt
8981 || h->u.weakdef != NULL
8982 || (h->def_dynamic
8983 && h->ref_regular
8984 && !h->def_regular)));
8985
8986 hmips = (struct mips_elf_link_hash_entry *) h;
8987
8988 /* If there are call relocations against an externally-defined symbol,
8989 see whether we can create a MIPS lazy-binding stub for it. We can
8990 only do this if all references to the function are through call
8991 relocations, and in that case, the traditional lazy-binding stubs
8992 are much more efficient than PLT entries.
8993
8994 Traditional stubs are only available on SVR4 psABI-based systems;
8995 VxWorks always uses PLTs instead. */
8996 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8997 {
8998 if (! elf_hash_table (info)->dynamic_sections_created)
8999 return TRUE;
9000
9001 /* If this symbol is not defined in a regular file, then set
9002 the symbol to the stub location. This is required to make
9003 function pointers compare as equal between the normal
9004 executable and the shared library. */
9005 if (!h->def_regular)
9006 {
9007 hmips->needs_lazy_stub = TRUE;
9008 htab->lazy_stub_count++;
9009 return TRUE;
9010 }
9011 }
9012 /* As above, VxWorks requires PLT entries for externally-defined
9013 functions that are only accessed through call relocations.
9014
9015 Both VxWorks and non-VxWorks targets also need PLT entries if there
9016 are static-only relocations against an externally-defined function.
9017 This can technically occur for shared libraries if there are
9018 branches to the symbol, although it is unlikely that this will be
9019 used in practice due to the short ranges involved. It can occur
9020 for any relative or absolute relocation in executables; in that
9021 case, the PLT entry becomes the function's canonical address. */
9022 else if (((h->needs_plt && !hmips->no_fn_stub)
9023 || (h->type == STT_FUNC && hmips->has_static_relocs))
9024 && htab->use_plts_and_copy_relocs
9025 && !SYMBOL_CALLS_LOCAL (info, h)
9026 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9027 && h->root.type == bfd_link_hash_undefweak))
9028 {
9029 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9030 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9031
9032 /* If this is the first symbol to need a PLT entry, then make some
9033 basic setup. Also work out PLT entry sizes. We'll need them
9034 for PLT offset calculations. */
9035 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9036 {
9037 BFD_ASSERT (htab->sgotplt->size == 0);
9038 BFD_ASSERT (htab->plt_got_index == 0);
9039
9040 /* If we're using the PLT additions to the psABI, each PLT
9041 entry is 16 bytes and the PLT0 entry is 32 bytes.
9042 Encourage better cache usage by aligning. We do this
9043 lazily to avoid pessimizing traditional objects. */
9044 if (!htab->is_vxworks
9045 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9046 return FALSE;
9047
9048 /* Make sure that .got.plt is word-aligned. We do this lazily
9049 for the same reason as above. */
9050 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9051 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9052 return FALSE;
9053
9054 /* On non-VxWorks targets, the first two entries in .got.plt
9055 are reserved. */
9056 if (!htab->is_vxworks)
9057 htab->plt_got_index
9058 += (get_elf_backend_data (dynobj)->got_header_size
9059 / MIPS_ELF_GOT_SIZE (dynobj));
9060
9061 /* On VxWorks, also allocate room for the header's
9062 .rela.plt.unloaded entries. */
9063 if (htab->is_vxworks && !bfd_link_pic (info))
9064 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9065
9066 /* Now work out the sizes of individual PLT entries. */
9067 if (htab->is_vxworks && bfd_link_pic (info))
9068 htab->plt_mips_entry_size
9069 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9070 else if (htab->is_vxworks)
9071 htab->plt_mips_entry_size
9072 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9073 else if (newabi_p)
9074 htab->plt_mips_entry_size
9075 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9076 else if (!micromips_p)
9077 {
9078 htab->plt_mips_entry_size
9079 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9080 htab->plt_comp_entry_size
9081 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9082 }
9083 else if (htab->insn32)
9084 {
9085 htab->plt_mips_entry_size
9086 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9087 htab->plt_comp_entry_size
9088 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9089 }
9090 else
9091 {
9092 htab->plt_mips_entry_size
9093 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9094 htab->plt_comp_entry_size
9095 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9096 }
9097 }
9098
9099 if (h->plt.plist == NULL)
9100 h->plt.plist = mips_elf_make_plt_record (dynobj);
9101 if (h->plt.plist == NULL)
9102 return FALSE;
9103
9104 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9105 n32 or n64, so always use a standard entry there.
9106
9107 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9108 all MIPS16 calls will go via that stub, and there is no benefit
9109 to having a MIPS16 entry. And in the case of call_stub a
9110 standard entry actually has to be used as the stub ends with a J
9111 instruction. */
9112 if (newabi_p
9113 || htab->is_vxworks
9114 || hmips->call_stub
9115 || hmips->call_fp_stub)
9116 {
9117 h->plt.plist->need_mips = TRUE;
9118 h->plt.plist->need_comp = FALSE;
9119 }
9120
9121 /* Otherwise, if there are no direct calls to the function, we
9122 have a free choice of whether to use standard or compressed
9123 entries. Prefer microMIPS entries if the object is known to
9124 contain microMIPS code, so that it becomes possible to create
9125 pure microMIPS binaries. Prefer standard entries otherwise,
9126 because MIPS16 ones are no smaller and are usually slower. */
9127 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9128 {
9129 if (micromips_p)
9130 h->plt.plist->need_comp = TRUE;
9131 else
9132 h->plt.plist->need_mips = TRUE;
9133 }
9134
9135 if (h->plt.plist->need_mips)
9136 {
9137 h->plt.plist->mips_offset = htab->plt_mips_offset;
9138 htab->plt_mips_offset += htab->plt_mips_entry_size;
9139 }
9140 if (h->plt.plist->need_comp)
9141 {
9142 h->plt.plist->comp_offset = htab->plt_comp_offset;
9143 htab->plt_comp_offset += htab->plt_comp_entry_size;
9144 }
9145
9146 /* Reserve the corresponding .got.plt entry now too. */
9147 h->plt.plist->gotplt_index = htab->plt_got_index++;
9148
9149 /* If the output file has no definition of the symbol, set the
9150 symbol's value to the address of the stub. */
9151 if (!bfd_link_pic (info) && !h->def_regular)
9152 hmips->use_plt_entry = TRUE;
9153
9154 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9155 htab->srelplt->size += (htab->is_vxworks
9156 ? MIPS_ELF_RELA_SIZE (dynobj)
9157 : MIPS_ELF_REL_SIZE (dynobj));
9158
9159 /* Make room for the .rela.plt.unloaded relocations. */
9160 if (htab->is_vxworks && !bfd_link_pic (info))
9161 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9162
9163 /* All relocations against this symbol that could have been made
9164 dynamic will now refer to the PLT entry instead. */
9165 hmips->possibly_dynamic_relocs = 0;
9166
9167 return TRUE;
9168 }
9169
9170 /* If this is a weak symbol, and there is a real definition, the
9171 processor independent code will have arranged for us to see the
9172 real definition first, and we can just use the same value. */
9173 if (h->u.weakdef != NULL)
9174 {
9175 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9176 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9177 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9178 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9179 return TRUE;
9180 }
9181
9182 /* Otherwise, there is nothing further to do for symbols defined
9183 in regular objects. */
9184 if (h->def_regular)
9185 return TRUE;
9186
9187 /* There's also nothing more to do if we'll convert all relocations
9188 against this symbol into dynamic relocations. */
9189 if (!hmips->has_static_relocs)
9190 return TRUE;
9191
9192 /* We're now relying on copy relocations. Complain if we have
9193 some that we can't convert. */
9194 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9195 {
9196 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9197 "dynamic symbol %s"),
9198 h->root.root.string);
9199 bfd_set_error (bfd_error_bad_value);
9200 return FALSE;
9201 }
9202
9203 /* We must allocate the symbol in our .dynbss section, which will
9204 become part of the .bss section of the executable. There will be
9205 an entry for this symbol in the .dynsym section. The dynamic
9206 object will contain position independent code, so all references
9207 from the dynamic object to this symbol will go through the global
9208 offset table. The dynamic linker will use the .dynsym entry to
9209 determine the address it must put in the global offset table, so
9210 both the dynamic object and the regular object will refer to the
9211 same memory location for the variable. */
9212
9213 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9214 {
9215 if (htab->is_vxworks)
9216 htab->srelbss->size += sizeof (Elf32_External_Rela);
9217 else
9218 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9219 h->needs_copy = 1;
9220 }
9221
9222 /* All relocations against this symbol that could have been made
9223 dynamic will now refer to the local copy instead. */
9224 hmips->possibly_dynamic_relocs = 0;
9225
9226 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9227}
9228\f
9229/* This function is called after all the input files have been read,
9230 and the input sections have been assigned to output sections. We
9231 check for any mips16 stub sections that we can discard. */
9232
9233bfd_boolean
9234_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9235 struct bfd_link_info *info)
9236{
9237 asection *sect;
9238 struct mips_elf_link_hash_table *htab;
9239 struct mips_htab_traverse_info hti;
9240
9241 htab = mips_elf_hash_table (info);
9242 BFD_ASSERT (htab != NULL);
9243
9244 /* The .reginfo section has a fixed size. */
9245 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9246 if (sect != NULL)
9247 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9248
9249 /* The .MIPS.abiflags section has a fixed size. */
9250 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9251 if (sect != NULL)
9252 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9253
9254 hti.info = info;
9255 hti.output_bfd = output_bfd;
9256 hti.error = FALSE;
9257 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9258 mips_elf_check_symbols, &hti);
9259 if (hti.error)
9260 return FALSE;
9261
9262 return TRUE;
9263}
9264
9265/* If the link uses a GOT, lay it out and work out its size. */
9266
9267static bfd_boolean
9268mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9269{
9270 bfd *dynobj;
9271 asection *s;
9272 struct mips_got_info *g;
9273 bfd_size_type loadable_size = 0;
9274 bfd_size_type page_gotno;
9275 bfd *ibfd;
9276 struct mips_elf_traverse_got_arg tga;
9277 struct mips_elf_link_hash_table *htab;
9278
9279 htab = mips_elf_hash_table (info);
9280 BFD_ASSERT (htab != NULL);
9281
9282 s = htab->sgot;
9283 if (s == NULL)
9284 return TRUE;
9285
9286 dynobj = elf_hash_table (info)->dynobj;
9287 g = htab->got_info;
9288
9289 /* Allocate room for the reserved entries. VxWorks always reserves
9290 3 entries; other objects only reserve 2 entries. */
9291 BFD_ASSERT (g->assigned_low_gotno == 0);
9292 if (htab->is_vxworks)
9293 htab->reserved_gotno = 3;
9294 else
9295 htab->reserved_gotno = 2;
9296 g->local_gotno += htab->reserved_gotno;
9297 g->assigned_low_gotno = htab->reserved_gotno;
9298
9299 /* Decide which symbols need to go in the global part of the GOT and
9300 count the number of reloc-only GOT symbols. */
9301 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9302
9303 if (!mips_elf_resolve_final_got_entries (info, g))
9304 return FALSE;
9305
9306 /* Calculate the total loadable size of the output. That
9307 will give us the maximum number of GOT_PAGE entries
9308 required. */
9309 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9310 {
9311 asection *subsection;
9312
9313 for (subsection = ibfd->sections;
9314 subsection;
9315 subsection = subsection->next)
9316 {
9317 if ((subsection->flags & SEC_ALLOC) == 0)
9318 continue;
9319 loadable_size += ((subsection->size + 0xf)
9320 &~ (bfd_size_type) 0xf);
9321 }
9322 }
9323
9324 if (htab->is_vxworks)
9325 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9326 relocations against local symbols evaluate to "G", and the EABI does
9327 not include R_MIPS_GOT_PAGE. */
9328 page_gotno = 0;
9329 else
9330 /* Assume there are two loadable segments consisting of contiguous
9331 sections. Is 5 enough? */
9332 page_gotno = (loadable_size >> 16) + 5;
9333
9334 /* Choose the smaller of the two page estimates; both are intended to be
9335 conservative. */
9336 if (page_gotno > g->page_gotno)
9337 page_gotno = g->page_gotno;
9338
9339 g->local_gotno += page_gotno;
9340 g->assigned_high_gotno = g->local_gotno - 1;
9341
9342 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9343 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9344 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9345
9346 /* VxWorks does not support multiple GOTs. It initializes $gp to
9347 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9348 dynamic loader. */
9349 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9350 {
9351 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9352 return FALSE;
9353 }
9354 else
9355 {
9356 /* Record that all bfds use G. This also has the effect of freeing
9357 the per-bfd GOTs, which we no longer need. */
9358 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9359 if (mips_elf_bfd_got (ibfd, FALSE))
9360 mips_elf_replace_bfd_got (ibfd, g);
9361 mips_elf_replace_bfd_got (output_bfd, g);
9362
9363 /* Set up TLS entries. */
9364 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9365 tga.info = info;
9366 tga.g = g;
9367 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9368 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9369 if (!tga.g)
9370 return FALSE;
9371 BFD_ASSERT (g->tls_assigned_gotno
9372 == g->global_gotno + g->local_gotno + g->tls_gotno);
9373
9374 /* Each VxWorks GOT entry needs an explicit relocation. */
9375 if (htab->is_vxworks && bfd_link_pic (info))
9376 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9377
9378 /* Allocate room for the TLS relocations. */
9379 if (g->relocs)
9380 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9381 }
9382
9383 return TRUE;
9384}
9385
9386/* Estimate the size of the .MIPS.stubs section. */
9387
9388static void
9389mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9390{
9391 struct mips_elf_link_hash_table *htab;
9392 bfd_size_type dynsymcount;
9393
9394 htab = mips_elf_hash_table (info);
9395 BFD_ASSERT (htab != NULL);
9396
9397 if (htab->lazy_stub_count == 0)
9398 return;
9399
9400 /* IRIX rld assumes that a function stub isn't at the end of the .text
9401 section, so add a dummy entry to the end. */
9402 htab->lazy_stub_count++;
9403
9404 /* Get a worst-case estimate of the number of dynamic symbols needed.
9405 At this point, dynsymcount does not account for section symbols
9406 and count_section_dynsyms may overestimate the number that will
9407 be needed. */
9408 dynsymcount = (elf_hash_table (info)->dynsymcount
9409 + count_section_dynsyms (output_bfd, info));
9410
9411 /* Determine the size of one stub entry. There's no disadvantage
9412 from using microMIPS code here, so for the sake of pure-microMIPS
9413 binaries we prefer it whenever there's any microMIPS code in
9414 output produced at all. This has a benefit of stubs being
9415 shorter by 4 bytes each too, unless in the insn32 mode. */
9416 if (!MICROMIPS_P (output_bfd))
9417 htab->function_stub_size = (dynsymcount > 0x10000
9418 ? MIPS_FUNCTION_STUB_BIG_SIZE
9419 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9420 else if (htab->insn32)
9421 htab->function_stub_size = (dynsymcount > 0x10000
9422 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9423 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9424 else
9425 htab->function_stub_size = (dynsymcount > 0x10000
9426 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9427 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9428
9429 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9430}
9431
9432/* A mips_elf_link_hash_traverse callback for which DATA points to a
9433 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9434 stub, allocate an entry in the stubs section. */
9435
9436static bfd_boolean
9437mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9438{
9439 struct mips_htab_traverse_info *hti = data;
9440 struct mips_elf_link_hash_table *htab;
9441 struct bfd_link_info *info;
9442 bfd *output_bfd;
9443
9444 info = hti->info;
9445 output_bfd = hti->output_bfd;
9446 htab = mips_elf_hash_table (info);
9447 BFD_ASSERT (htab != NULL);
9448
9449 if (h->needs_lazy_stub)
9450 {
9451 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9452 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9453 bfd_vma isa_bit = micromips_p;
9454
9455 BFD_ASSERT (htab->root.dynobj != NULL);
9456 if (h->root.plt.plist == NULL)
9457 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9458 if (h->root.plt.plist == NULL)
9459 {
9460 hti->error = TRUE;
9461 return FALSE;
9462 }
9463 h->root.root.u.def.section = htab->sstubs;
9464 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9465 h->root.plt.plist->stub_offset = htab->sstubs->size;
9466 h->root.other = other;
9467 htab->sstubs->size += htab->function_stub_size;
9468 }
9469 return TRUE;
9470}
9471
9472/* Allocate offsets in the stubs section to each symbol that needs one.
9473 Set the final size of the .MIPS.stub section. */
9474
9475static bfd_boolean
9476mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9477{
9478 bfd *output_bfd = info->output_bfd;
9479 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9480 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9481 bfd_vma isa_bit = micromips_p;
9482 struct mips_elf_link_hash_table *htab;
9483 struct mips_htab_traverse_info hti;
9484 struct elf_link_hash_entry *h;
9485 bfd *dynobj;
9486
9487 htab = mips_elf_hash_table (info);
9488 BFD_ASSERT (htab != NULL);
9489
9490 if (htab->lazy_stub_count == 0)
9491 return TRUE;
9492
9493 htab->sstubs->size = 0;
9494 hti.info = info;
9495 hti.output_bfd = output_bfd;
9496 hti.error = FALSE;
9497 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9498 if (hti.error)
9499 return FALSE;
9500 htab->sstubs->size += htab->function_stub_size;
9501 BFD_ASSERT (htab->sstubs->size
9502 == htab->lazy_stub_count * htab->function_stub_size);
9503
9504 dynobj = elf_hash_table (info)->dynobj;
9505 BFD_ASSERT (dynobj != NULL);
9506 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9507 if (h == NULL)
9508 return FALSE;
9509 h->root.u.def.value = isa_bit;
9510 h->other = other;
9511 h->type = STT_FUNC;
9512
9513 return TRUE;
9514}
9515
9516/* A mips_elf_link_hash_traverse callback for which DATA points to a
9517 bfd_link_info. If H uses the address of a PLT entry as the value
9518 of the symbol, then set the entry in the symbol table now. Prefer
9519 a standard MIPS PLT entry. */
9520
9521static bfd_boolean
9522mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9523{
9524 struct bfd_link_info *info = data;
9525 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9526 struct mips_elf_link_hash_table *htab;
9527 unsigned int other;
9528 bfd_vma isa_bit;
9529 bfd_vma val;
9530
9531 htab = mips_elf_hash_table (info);
9532 BFD_ASSERT (htab != NULL);
9533
9534 if (h->use_plt_entry)
9535 {
9536 BFD_ASSERT (h->root.plt.plist != NULL);
9537 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9538 || h->root.plt.plist->comp_offset != MINUS_ONE);
9539
9540 val = htab->plt_header_size;
9541 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9542 {
9543 isa_bit = 0;
9544 val += h->root.plt.plist->mips_offset;
9545 other = 0;
9546 }
9547 else
9548 {
9549 isa_bit = 1;
9550 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9551 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9552 }
9553 val += isa_bit;
9554 /* For VxWorks, point at the PLT load stub rather than the lazy
9555 resolution stub; this stub will become the canonical function
9556 address. */
9557 if (htab->is_vxworks)
9558 val += 8;
9559
9560 h->root.root.u.def.section = htab->splt;
9561 h->root.root.u.def.value = val;
9562 h->root.other = other;
9563 }
9564
9565 return TRUE;
9566}
9567
9568/* Set the sizes of the dynamic sections. */
9569
9570bfd_boolean
9571_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9572 struct bfd_link_info *info)
9573{
9574 bfd *dynobj;
9575 asection *s, *sreldyn;
9576 bfd_boolean reltext;
9577 struct mips_elf_link_hash_table *htab;
9578
9579 htab = mips_elf_hash_table (info);
9580 BFD_ASSERT (htab != NULL);
9581 dynobj = elf_hash_table (info)->dynobj;
9582 BFD_ASSERT (dynobj != NULL);
9583
9584 if (elf_hash_table (info)->dynamic_sections_created)
9585 {
9586 /* Set the contents of the .interp section to the interpreter. */
9587 if (bfd_link_executable (info) && !info->nointerp)
9588 {
9589 s = bfd_get_linker_section (dynobj, ".interp");
9590 BFD_ASSERT (s != NULL);
9591 s->size
9592 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9593 s->contents
9594 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9595 }
9596
9597 /* Figure out the size of the PLT header if we know that we
9598 are using it. For the sake of cache alignment always use
9599 a standard header whenever any standard entries are present
9600 even if microMIPS entries are present as well. This also
9601 lets the microMIPS header rely on the value of $v0 only set
9602 by microMIPS entries, for a small size reduction.
9603
9604 Set symbol table entry values for symbols that use the
9605 address of their PLT entry now that we can calculate it.
9606
9607 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9608 haven't already in _bfd_elf_create_dynamic_sections. */
9609 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9610 {
9611 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9612 && !htab->plt_mips_offset);
9613 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9614 bfd_vma isa_bit = micromips_p;
9615 struct elf_link_hash_entry *h;
9616 bfd_vma size;
9617
9618 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9619 BFD_ASSERT (htab->sgotplt->size == 0);
9620 BFD_ASSERT (htab->splt->size == 0);
9621
9622 if (htab->is_vxworks && bfd_link_pic (info))
9623 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9624 else if (htab->is_vxworks)
9625 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9626 else if (ABI_64_P (output_bfd))
9627 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9628 else if (ABI_N32_P (output_bfd))
9629 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9630 else if (!micromips_p)
9631 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9632 else if (htab->insn32)
9633 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9634 else
9635 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9636
9637 htab->plt_header_is_comp = micromips_p;
9638 htab->plt_header_size = size;
9639 htab->splt->size = (size
9640 + htab->plt_mips_offset
9641 + htab->plt_comp_offset);
9642 htab->sgotplt->size = (htab->plt_got_index
9643 * MIPS_ELF_GOT_SIZE (dynobj));
9644
9645 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9646
9647 if (htab->root.hplt == NULL)
9648 {
9649 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9650 "_PROCEDURE_LINKAGE_TABLE_");
9651 htab->root.hplt = h;
9652 if (h == NULL)
9653 return FALSE;
9654 }
9655
9656 h = htab->root.hplt;
9657 h->root.u.def.value = isa_bit;
9658 h->other = other;
9659 h->type = STT_FUNC;
9660 }
9661 }
9662
9663 /* Allocate space for global sym dynamic relocs. */
9664 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9665
9666 mips_elf_estimate_stub_size (output_bfd, info);
9667
9668 if (!mips_elf_lay_out_got (output_bfd, info))
9669 return FALSE;
9670
9671 mips_elf_lay_out_lazy_stubs (info);
9672
9673 /* The check_relocs and adjust_dynamic_symbol entry points have
9674 determined the sizes of the various dynamic sections. Allocate
9675 memory for them. */
9676 reltext = FALSE;
9677 for (s = dynobj->sections; s != NULL; s = s->next)
9678 {
9679 const char *name;
9680
9681 /* It's OK to base decisions on the section name, because none
9682 of the dynobj section names depend upon the input files. */
9683 name = bfd_get_section_name (dynobj, s);
9684
9685 if ((s->flags & SEC_LINKER_CREATED) == 0)
9686 continue;
9687
9688 if (CONST_STRNEQ (name, ".rel"))
9689 {
9690 if (s->size != 0)
9691 {
9692 const char *outname;
9693 asection *target;
9694
9695 /* If this relocation section applies to a read only
9696 section, then we probably need a DT_TEXTREL entry.
9697 If the relocation section is .rel(a).dyn, we always
9698 assert a DT_TEXTREL entry rather than testing whether
9699 there exists a relocation to a read only section or
9700 not. */
9701 outname = bfd_get_section_name (output_bfd,
9702 s->output_section);
9703 target = bfd_get_section_by_name (output_bfd, outname + 4);
9704 if ((target != NULL
9705 && (target->flags & SEC_READONLY) != 0
9706 && (target->flags & SEC_ALLOC) != 0)
9707 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9708 reltext = TRUE;
9709
9710 /* We use the reloc_count field as a counter if we need
9711 to copy relocs into the output file. */
9712 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9713 s->reloc_count = 0;
9714
9715 /* If combreloc is enabled, elf_link_sort_relocs() will
9716 sort relocations, but in a different way than we do,
9717 and before we're done creating relocations. Also, it
9718 will move them around between input sections'
9719 relocation's contents, so our sorting would be
9720 broken, so don't let it run. */
9721 info->combreloc = 0;
9722 }
9723 }
9724 else if (bfd_link_executable (info)
9725 && ! mips_elf_hash_table (info)->use_rld_obj_head
9726 && CONST_STRNEQ (name, ".rld_map"))
9727 {
9728 /* We add a room for __rld_map. It will be filled in by the
9729 rtld to contain a pointer to the _r_debug structure. */
9730 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9731 }
9732 else if (SGI_COMPAT (output_bfd)
9733 && CONST_STRNEQ (name, ".compact_rel"))
9734 s->size += mips_elf_hash_table (info)->compact_rel_size;
9735 else if (s == htab->splt)
9736 {
9737 /* If the last PLT entry has a branch delay slot, allocate
9738 room for an extra nop to fill the delay slot. This is
9739 for CPUs without load interlocking. */
9740 if (! LOAD_INTERLOCKS_P (output_bfd)
9741 && ! htab->is_vxworks && s->size > 0)
9742 s->size += 4;
9743 }
9744 else if (! CONST_STRNEQ (name, ".init")
9745 && s != htab->sgot
9746 && s != htab->sgotplt
9747 && s != htab->sstubs
9748 && s != htab->sdynbss)
9749 {
9750 /* It's not one of our sections, so don't allocate space. */
9751 continue;
9752 }
9753
9754 if (s->size == 0)
9755 {
9756 s->flags |= SEC_EXCLUDE;
9757 continue;
9758 }
9759
9760 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9761 continue;
9762
9763 /* Allocate memory for the section contents. */
9764 s->contents = bfd_zalloc (dynobj, s->size);
9765 if (s->contents == NULL)
9766 {
9767 bfd_set_error (bfd_error_no_memory);
9768 return FALSE;
9769 }
9770 }
9771
9772 if (elf_hash_table (info)->dynamic_sections_created)
9773 {
9774 /* Add some entries to the .dynamic section. We fill in the
9775 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9776 must add the entries now so that we get the correct size for
9777 the .dynamic section. */
9778
9779 /* SGI object has the equivalence of DT_DEBUG in the
9780 DT_MIPS_RLD_MAP entry. This must come first because glibc
9781 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9782 may only look at the first one they see. */
9783 if (!bfd_link_pic (info)
9784 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9785 return FALSE;
9786
9787 if (bfd_link_executable (info)
9788 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9789 return FALSE;
9790
9791 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9792 used by the debugger. */
9793 if (bfd_link_executable (info)
9794 && !SGI_COMPAT (output_bfd)
9795 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9796 return FALSE;
9797
9798 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9799 info->flags |= DF_TEXTREL;
9800
9801 if ((info->flags & DF_TEXTREL) != 0)
9802 {
9803 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9804 return FALSE;
9805
9806 /* Clear the DF_TEXTREL flag. It will be set again if we
9807 write out an actual text relocation; we may not, because
9808 at this point we do not know whether e.g. any .eh_frame
9809 absolute relocations have been converted to PC-relative. */
9810 info->flags &= ~DF_TEXTREL;
9811 }
9812
9813 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9814 return FALSE;
9815
9816 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9817 if (htab->is_vxworks)
9818 {
9819 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9820 use any of the DT_MIPS_* tags. */
9821 if (sreldyn && sreldyn->size > 0)
9822 {
9823 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9824 return FALSE;
9825
9826 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9827 return FALSE;
9828
9829 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9830 return FALSE;
9831 }
9832 }
9833 else
9834 {
9835 if (sreldyn && sreldyn->size > 0)
9836 {
9837 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9838 return FALSE;
9839
9840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9841 return FALSE;
9842
9843 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9844 return FALSE;
9845 }
9846
9847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9848 return FALSE;
9849
9850 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9851 return FALSE;
9852
9853 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9854 return FALSE;
9855
9856 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9857 return FALSE;
9858
9859 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9860 return FALSE;
9861
9862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9863 return FALSE;
9864
9865 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9866 return FALSE;
9867
9868 if (IRIX_COMPAT (dynobj) == ict_irix5
9869 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9870 return FALSE;
9871
9872 if (IRIX_COMPAT (dynobj) == ict_irix6
9873 && (bfd_get_section_by_name
9874 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9875 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9876 return FALSE;
9877 }
9878 if (htab->splt->size > 0)
9879 {
9880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9881 return FALSE;
9882
9883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9884 return FALSE;
9885
9886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9887 return FALSE;
9888
9889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9890 return FALSE;
9891 }
9892 if (htab->is_vxworks
9893 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9894 return FALSE;
9895 }
9896
9897 return TRUE;
9898}
9899\f
9900/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9901 Adjust its R_ADDEND field so that it is correct for the output file.
9902 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9903 and sections respectively; both use symbol indexes. */
9904
9905static void
9906mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9907 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9908 asection **local_sections, Elf_Internal_Rela *rel)
9909{
9910 unsigned int r_type, r_symndx;
9911 Elf_Internal_Sym *sym;
9912 asection *sec;
9913
9914 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9915 {
9916 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9917 if (gprel16_reloc_p (r_type)
9918 || r_type == R_MIPS_GPREL32
9919 || literal_reloc_p (r_type))
9920 {
9921 rel->r_addend += _bfd_get_gp_value (input_bfd);
9922 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9923 }
9924
9925 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9926 sym = local_syms + r_symndx;
9927
9928 /* Adjust REL's addend to account for section merging. */
9929 if (!bfd_link_relocatable (info))
9930 {
9931 sec = local_sections[r_symndx];
9932 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9933 }
9934
9935 /* This would normally be done by the rela_normal code in elflink.c. */
9936 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9937 rel->r_addend += local_sections[r_symndx]->output_offset;
9938 }
9939}
9940
9941/* Handle relocations against symbols from removed linkonce sections,
9942 or sections discarded by a linker script. We use this wrapper around
9943 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9944 on 64-bit ELF targets. In this case for any relocation handled, which
9945 always be the first in a triplet, the remaining two have to be processed
9946 together with the first, even if they are R_MIPS_NONE. It is the symbol
9947 index referred by the first reloc that applies to all the three and the
9948 remaining two never refer to an object symbol. And it is the final
9949 relocation (the last non-null one) that determines the output field of
9950 the whole relocation so retrieve the corresponding howto structure for
9951 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9952
9953 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9954 and therefore requires to be pasted in a loop. It also defines a block
9955 and does not protect any of its arguments, hence the extra brackets. */
9956
9957static void
9958mips_reloc_against_discarded_section (bfd *output_bfd,
9959 struct bfd_link_info *info,
9960 bfd *input_bfd, asection *input_section,
9961 Elf_Internal_Rela **rel,
9962 const Elf_Internal_Rela **relend,
9963 bfd_boolean rel_reloc,
9964 reloc_howto_type *howto,
9965 bfd_byte *contents)
9966{
9967 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9968 int count = bed->s->int_rels_per_ext_rel;
9969 unsigned int r_type;
9970 int i;
9971
9972 for (i = count - 1; i > 0; i--)
9973 {
9974 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9975 if (r_type != R_MIPS_NONE)
9976 {
9977 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9978 break;
9979 }
9980 }
9981 do
9982 {
9983 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9984 (*rel), count, (*relend),
9985 howto, i, contents);
9986 }
9987 while (0);
9988}
9989
9990/* Relocate a MIPS ELF section. */
9991
9992bfd_boolean
9993_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9994 bfd *input_bfd, asection *input_section,
9995 bfd_byte *contents, Elf_Internal_Rela *relocs,
9996 Elf_Internal_Sym *local_syms,
9997 asection **local_sections)
9998{
9999 Elf_Internal_Rela *rel;
10000 const Elf_Internal_Rela *relend;
10001 bfd_vma addend = 0;
10002 bfd_boolean use_saved_addend_p = FALSE;
10003 const struct elf_backend_data *bed;
10004
10005 bed = get_elf_backend_data (output_bfd);
10006 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10007 for (rel = relocs; rel < relend; ++rel)
10008 {
10009 const char *name;
10010 bfd_vma value = 0;
10011 reloc_howto_type *howto;
10012 bfd_boolean cross_mode_jump_p = FALSE;
10013 /* TRUE if the relocation is a RELA relocation, rather than a
10014 REL relocation. */
10015 bfd_boolean rela_relocation_p = TRUE;
10016 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10017 const char *msg;
10018 unsigned long r_symndx;
10019 asection *sec;
10020 Elf_Internal_Shdr *symtab_hdr;
10021 struct elf_link_hash_entry *h;
10022 bfd_boolean rel_reloc;
10023
10024 rel_reloc = (NEWABI_P (input_bfd)
10025 && mips_elf_rel_relocation_p (input_bfd, input_section,
10026 relocs, rel));
10027 /* Find the relocation howto for this relocation. */
10028 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10029
10030 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10031 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10032 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10033 {
10034 sec = local_sections[r_symndx];
10035 h = NULL;
10036 }
10037 else
10038 {
10039 unsigned long extsymoff;
10040
10041 extsymoff = 0;
10042 if (!elf_bad_symtab (input_bfd))
10043 extsymoff = symtab_hdr->sh_info;
10044 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10045 while (h->root.type == bfd_link_hash_indirect
10046 || h->root.type == bfd_link_hash_warning)
10047 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10048
10049 sec = NULL;
10050 if (h->root.type == bfd_link_hash_defined
10051 || h->root.type == bfd_link_hash_defweak)
10052 sec = h->root.u.def.section;
10053 }
10054
10055 if (sec != NULL && discarded_section (sec))
10056 {
10057 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10058 input_section, &rel, &relend,
10059 rel_reloc, howto, contents);
10060 continue;
10061 }
10062
10063 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10064 {
10065 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10066 64-bit code, but make sure all their addresses are in the
10067 lowermost or uppermost 32-bit section of the 64-bit address
10068 space. Thus, when they use an R_MIPS_64 they mean what is
10069 usually meant by R_MIPS_32, with the exception that the
10070 stored value is sign-extended to 64 bits. */
10071 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10072
10073 /* On big-endian systems, we need to lie about the position
10074 of the reloc. */
10075 if (bfd_big_endian (input_bfd))
10076 rel->r_offset += 4;
10077 }
10078
10079 if (!use_saved_addend_p)
10080 {
10081 /* If these relocations were originally of the REL variety,
10082 we must pull the addend out of the field that will be
10083 relocated. Otherwise, we simply use the contents of the
10084 RELA relocation. */
10085 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10086 relocs, rel))
10087 {
10088 rela_relocation_p = FALSE;
10089 addend = mips_elf_read_rel_addend (input_bfd, rel,
10090 howto, contents);
10091 if (hi16_reloc_p (r_type)
10092 || (got16_reloc_p (r_type)
10093 && mips_elf_local_relocation_p (input_bfd, rel,
10094 local_sections)))
10095 {
10096 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10097 contents, &addend))
10098 {
10099 if (h)
10100 name = h->root.root.string;
10101 else
10102 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10103 local_syms + r_symndx,
10104 sec);
10105 (*_bfd_error_handler)
10106 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10107 input_bfd, input_section, name, howto->name,
10108 rel->r_offset);
10109 }
10110 }
10111 else
10112 addend <<= howto->rightshift;
10113 }
10114 else
10115 addend = rel->r_addend;
10116 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10117 local_syms, local_sections, rel);
10118 }
10119
10120 if (bfd_link_relocatable (info))
10121 {
10122 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10123 && bfd_big_endian (input_bfd))
10124 rel->r_offset -= 4;
10125
10126 if (!rela_relocation_p && rel->r_addend)
10127 {
10128 addend += rel->r_addend;
10129 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10130 addend = mips_elf_high (addend);
10131 else if (r_type == R_MIPS_HIGHER)
10132 addend = mips_elf_higher (addend);
10133 else if (r_type == R_MIPS_HIGHEST)
10134 addend = mips_elf_highest (addend);
10135 else
10136 addend >>= howto->rightshift;
10137
10138 /* We use the source mask, rather than the destination
10139 mask because the place to which we are writing will be
10140 source of the addend in the final link. */
10141 addend &= howto->src_mask;
10142
10143 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10144 /* See the comment above about using R_MIPS_64 in the 32-bit
10145 ABI. Here, we need to update the addend. It would be
10146 possible to get away with just using the R_MIPS_32 reloc
10147 but for endianness. */
10148 {
10149 bfd_vma sign_bits;
10150 bfd_vma low_bits;
10151 bfd_vma high_bits;
10152
10153 if (addend & ((bfd_vma) 1 << 31))
10154#ifdef BFD64
10155 sign_bits = ((bfd_vma) 1 << 32) - 1;
10156#else
10157 sign_bits = -1;
10158#endif
10159 else
10160 sign_bits = 0;
10161
10162 /* If we don't know that we have a 64-bit type,
10163 do two separate stores. */
10164 if (bfd_big_endian (input_bfd))
10165 {
10166 /* Store the sign-bits (which are most significant)
10167 first. */
10168 low_bits = sign_bits;
10169 high_bits = addend;
10170 }
10171 else
10172 {
10173 low_bits = addend;
10174 high_bits = sign_bits;
10175 }
10176 bfd_put_32 (input_bfd, low_bits,
10177 contents + rel->r_offset);
10178 bfd_put_32 (input_bfd, high_bits,
10179 contents + rel->r_offset + 4);
10180 continue;
10181 }
10182
10183 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10184 input_bfd, input_section,
10185 contents, FALSE))
10186 return FALSE;
10187 }
10188
10189 /* Go on to the next relocation. */
10190 continue;
10191 }
10192
10193 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10194 relocations for the same offset. In that case we are
10195 supposed to treat the output of each relocation as the addend
10196 for the next. */
10197 if (rel + 1 < relend
10198 && rel->r_offset == rel[1].r_offset
10199 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10200 use_saved_addend_p = TRUE;
10201 else
10202 use_saved_addend_p = FALSE;
10203
10204 /* Figure out what value we are supposed to relocate. */
10205 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10206 input_section, info, rel,
10207 addend, howto, local_syms,
10208 local_sections, &value,
10209 &name, &cross_mode_jump_p,
10210 use_saved_addend_p))
10211 {
10212 case bfd_reloc_continue:
10213 /* There's nothing to do. */
10214 continue;
10215
10216 case bfd_reloc_undefined:
10217 /* mips_elf_calculate_relocation already called the
10218 undefined_symbol callback. There's no real point in
10219 trying to perform the relocation at this point, so we
10220 just skip ahead to the next relocation. */
10221 continue;
10222
10223 case bfd_reloc_notsupported:
10224 msg = _("internal error: unsupported relocation error");
10225 info->callbacks->warning
10226 (info, msg, name, input_bfd, input_section, rel->r_offset);
10227 return FALSE;
10228
10229 case bfd_reloc_overflow:
10230 if (use_saved_addend_p)
10231 /* Ignore overflow until we reach the last relocation for
10232 a given location. */
10233 ;
10234 else
10235 {
10236 struct mips_elf_link_hash_table *htab;
10237
10238 htab = mips_elf_hash_table (info);
10239 BFD_ASSERT (htab != NULL);
10240 BFD_ASSERT (name != NULL);
10241 if (!htab->small_data_overflow_reported
10242 && (gprel16_reloc_p (howto->type)
10243 || literal_reloc_p (howto->type)))
10244 {
10245 msg = _("small-data section exceeds 64KB;"
10246 " lower small-data size limit (see option -G)");
10247
10248 htab->small_data_overflow_reported = TRUE;
10249 (*info->callbacks->einfo) ("%P: %s\n", msg);
10250 }
10251 if (! ((*info->callbacks->reloc_overflow)
10252 (info, NULL, name, howto->name, (bfd_vma) 0,
10253 input_bfd, input_section, rel->r_offset)))
10254 return FALSE;
10255 }
10256 break;
10257
10258 case bfd_reloc_ok:
10259 break;
10260
10261 case bfd_reloc_outofrange:
10262 msg = NULL;
10263 if (jal_reloc_p (howto->type))
10264 msg = _("JALX to a non-word-aligned address");
10265 else if (aligned_pcrel_reloc_p (howto->type))
10266 msg = _("PC-relative load from unaligned address");
10267 if (msg)
10268 {
10269 info->callbacks->warning
10270 (info, msg, name, input_bfd, input_section, rel->r_offset);
10271 return FALSE;
10272 }
10273 /* Fall through. */
10274
10275 default:
10276 abort ();
10277 break;
10278 }
10279
10280 /* If we've got another relocation for the address, keep going
10281 until we reach the last one. */
10282 if (use_saved_addend_p)
10283 {
10284 addend = value;
10285 continue;
10286 }
10287
10288 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10289 /* See the comment above about using R_MIPS_64 in the 32-bit
10290 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10291 that calculated the right value. Now, however, we
10292 sign-extend the 32-bit result to 64-bits, and store it as a
10293 64-bit value. We are especially generous here in that we
10294 go to extreme lengths to support this usage on systems with
10295 only a 32-bit VMA. */
10296 {
10297 bfd_vma sign_bits;
10298 bfd_vma low_bits;
10299 bfd_vma high_bits;
10300
10301 if (value & ((bfd_vma) 1 << 31))
10302#ifdef BFD64
10303 sign_bits = ((bfd_vma) 1 << 32) - 1;
10304#else
10305 sign_bits = -1;
10306#endif
10307 else
10308 sign_bits = 0;
10309
10310 /* If we don't know that we have a 64-bit type,
10311 do two separate stores. */
10312 if (bfd_big_endian (input_bfd))
10313 {
10314 /* Undo what we did above. */
10315 rel->r_offset -= 4;
10316 /* Store the sign-bits (which are most significant)
10317 first. */
10318 low_bits = sign_bits;
10319 high_bits = value;
10320 }
10321 else
10322 {
10323 low_bits = value;
10324 high_bits = sign_bits;
10325 }
10326 bfd_put_32 (input_bfd, low_bits,
10327 contents + rel->r_offset);
10328 bfd_put_32 (input_bfd, high_bits,
10329 contents + rel->r_offset + 4);
10330 continue;
10331 }
10332
10333 /* Actually perform the relocation. */
10334 if (! mips_elf_perform_relocation (info, howto, rel, value,
10335 input_bfd, input_section,
10336 contents, cross_mode_jump_p))
10337 return FALSE;
10338 }
10339
10340 return TRUE;
10341}
10342\f
10343/* A function that iterates over each entry in la25_stubs and fills
10344 in the code for each one. DATA points to a mips_htab_traverse_info. */
10345
10346static int
10347mips_elf_create_la25_stub (void **slot, void *data)
10348{
10349 struct mips_htab_traverse_info *hti;
10350 struct mips_elf_link_hash_table *htab;
10351 struct mips_elf_la25_stub *stub;
10352 asection *s;
10353 bfd_byte *loc;
10354 bfd_vma offset, target, target_high, target_low;
10355
10356 stub = (struct mips_elf_la25_stub *) *slot;
10357 hti = (struct mips_htab_traverse_info *) data;
10358 htab = mips_elf_hash_table (hti->info);
10359 BFD_ASSERT (htab != NULL);
10360
10361 /* Create the section contents, if we haven't already. */
10362 s = stub->stub_section;
10363 loc = s->contents;
10364 if (loc == NULL)
10365 {
10366 loc = bfd_malloc (s->size);
10367 if (loc == NULL)
10368 {
10369 hti->error = TRUE;
10370 return FALSE;
10371 }
10372 s->contents = loc;
10373 }
10374
10375 /* Work out where in the section this stub should go. */
10376 offset = stub->offset;
10377
10378 /* Work out the target address. */
10379 target = mips_elf_get_la25_target (stub, &s);
10380 target += s->output_section->vma + s->output_offset;
10381
10382 target_high = ((target + 0x8000) >> 16) & 0xffff;
10383 target_low = (target & 0xffff);
10384
10385 if (stub->stub_section != htab->strampoline)
10386 {
10387 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10388 of the section and write the two instructions at the end. */
10389 memset (loc, 0, offset);
10390 loc += offset;
10391 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10392 {
10393 bfd_put_micromips_32 (hti->output_bfd,
10394 LA25_LUI_MICROMIPS (target_high),
10395 loc);
10396 bfd_put_micromips_32 (hti->output_bfd,
10397 LA25_ADDIU_MICROMIPS (target_low),
10398 loc + 4);
10399 }
10400 else
10401 {
10402 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10403 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10404 }
10405 }
10406 else
10407 {
10408 /* This is trampoline. */
10409 loc += offset;
10410 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10411 {
10412 bfd_put_micromips_32 (hti->output_bfd,
10413 LA25_LUI_MICROMIPS (target_high), loc);
10414 bfd_put_micromips_32 (hti->output_bfd,
10415 LA25_J_MICROMIPS (target), loc + 4);
10416 bfd_put_micromips_32 (hti->output_bfd,
10417 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10418 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10419 }
10420 else
10421 {
10422 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10423 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10424 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10425 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10426 }
10427 }
10428 return TRUE;
10429}
10430
10431/* If NAME is one of the special IRIX6 symbols defined by the linker,
10432 adjust it appropriately now. */
10433
10434static void
10435mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10436 const char *name, Elf_Internal_Sym *sym)
10437{
10438 /* The linker script takes care of providing names and values for
10439 these, but we must place them into the right sections. */
10440 static const char* const text_section_symbols[] = {
10441 "_ftext",
10442 "_etext",
10443 "__dso_displacement",
10444 "__elf_header",
10445 "__program_header_table",
10446 NULL
10447 };
10448
10449 static const char* const data_section_symbols[] = {
10450 "_fdata",
10451 "_edata",
10452 "_end",
10453 "_fbss",
10454 NULL
10455 };
10456
10457 const char* const *p;
10458 int i;
10459
10460 for (i = 0; i < 2; ++i)
10461 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10462 *p;
10463 ++p)
10464 if (strcmp (*p, name) == 0)
10465 {
10466 /* All of these symbols are given type STT_SECTION by the
10467 IRIX6 linker. */
10468 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10469 sym->st_other = STO_PROTECTED;
10470
10471 /* The IRIX linker puts these symbols in special sections. */
10472 if (i == 0)
10473 sym->st_shndx = SHN_MIPS_TEXT;
10474 else
10475 sym->st_shndx = SHN_MIPS_DATA;
10476
10477 break;
10478 }
10479}
10480
10481/* Finish up dynamic symbol handling. We set the contents of various
10482 dynamic sections here. */
10483
10484bfd_boolean
10485_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10486 struct bfd_link_info *info,
10487 struct elf_link_hash_entry *h,
10488 Elf_Internal_Sym *sym)
10489{
10490 bfd *dynobj;
10491 asection *sgot;
10492 struct mips_got_info *g, *gg;
10493 const char *name;
10494 int idx;
10495 struct mips_elf_link_hash_table *htab;
10496 struct mips_elf_link_hash_entry *hmips;
10497
10498 htab = mips_elf_hash_table (info);
10499 BFD_ASSERT (htab != NULL);
10500 dynobj = elf_hash_table (info)->dynobj;
10501 hmips = (struct mips_elf_link_hash_entry *) h;
10502
10503 BFD_ASSERT (!htab->is_vxworks);
10504
10505 if (h->plt.plist != NULL
10506 && (h->plt.plist->mips_offset != MINUS_ONE
10507 || h->plt.plist->comp_offset != MINUS_ONE))
10508 {
10509 /* We've decided to create a PLT entry for this symbol. */
10510 bfd_byte *loc;
10511 bfd_vma header_address, got_address;
10512 bfd_vma got_address_high, got_address_low, load;
10513 bfd_vma got_index;
10514 bfd_vma isa_bit;
10515
10516 got_index = h->plt.plist->gotplt_index;
10517
10518 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10519 BFD_ASSERT (h->dynindx != -1);
10520 BFD_ASSERT (htab->splt != NULL);
10521 BFD_ASSERT (got_index != MINUS_ONE);
10522 BFD_ASSERT (!h->def_regular);
10523
10524 /* Calculate the address of the PLT header. */
10525 isa_bit = htab->plt_header_is_comp;
10526 header_address = (htab->splt->output_section->vma
10527 + htab->splt->output_offset + isa_bit);
10528
10529 /* Calculate the address of the .got.plt entry. */
10530 got_address = (htab->sgotplt->output_section->vma
10531 + htab->sgotplt->output_offset
10532 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10533
10534 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10535 got_address_low = got_address & 0xffff;
10536
10537 /* Initially point the .got.plt entry at the PLT header. */
10538 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10539 if (ABI_64_P (output_bfd))
10540 bfd_put_64 (output_bfd, header_address, loc);
10541 else
10542 bfd_put_32 (output_bfd, header_address, loc);
10543
10544 /* Now handle the PLT itself. First the standard entry (the order
10545 does not matter, we just have to pick one). */
10546 if (h->plt.plist->mips_offset != MINUS_ONE)
10547 {
10548 const bfd_vma *plt_entry;
10549 bfd_vma plt_offset;
10550
10551 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10552
10553 BFD_ASSERT (plt_offset <= htab->splt->size);
10554
10555 /* Find out where the .plt entry should go. */
10556 loc = htab->splt->contents + plt_offset;
10557
10558 /* Pick the load opcode. */
10559 load = MIPS_ELF_LOAD_WORD (output_bfd);
10560
10561 /* Fill in the PLT entry itself. */
10562
10563 if (MIPSR6_P (output_bfd))
10564 plt_entry = mipsr6_exec_plt_entry;
10565 else
10566 plt_entry = mips_exec_plt_entry;
10567 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10568 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10569 loc + 4);
10570
10571 if (! LOAD_INTERLOCKS_P (output_bfd))
10572 {
10573 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10574 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10575 }
10576 else
10577 {
10578 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10579 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10580 loc + 12);
10581 }
10582 }
10583
10584 /* Now the compressed entry. They come after any standard ones. */
10585 if (h->plt.plist->comp_offset != MINUS_ONE)
10586 {
10587 bfd_vma plt_offset;
10588
10589 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10590 + h->plt.plist->comp_offset);
10591
10592 BFD_ASSERT (plt_offset <= htab->splt->size);
10593
10594 /* Find out where the .plt entry should go. */
10595 loc = htab->splt->contents + plt_offset;
10596
10597 /* Fill in the PLT entry itself. */
10598 if (!MICROMIPS_P (output_bfd))
10599 {
10600 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10601
10602 bfd_put_16 (output_bfd, plt_entry[0], loc);
10603 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10604 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10605 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10606 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10607 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10608 bfd_put_32 (output_bfd, got_address, loc + 12);
10609 }
10610 else if (htab->insn32)
10611 {
10612 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10613
10614 bfd_put_16 (output_bfd, plt_entry[0], loc);
10615 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10616 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10617 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10618 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10619 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10620 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10621 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10622 }
10623 else
10624 {
10625 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10626 bfd_signed_vma gotpc_offset;
10627 bfd_vma loc_address;
10628
10629 BFD_ASSERT (got_address % 4 == 0);
10630
10631 loc_address = (htab->splt->output_section->vma
10632 + htab->splt->output_offset + plt_offset);
10633 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10634
10635 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10636 if (gotpc_offset + 0x1000000 >= 0x2000000)
10637 {
10638 (*_bfd_error_handler)
10639 (_("%B: `%A' offset of %ld from `%A' "
10640 "beyond the range of ADDIUPC"),
10641 output_bfd,
10642 htab->sgotplt->output_section,
10643 htab->splt->output_section,
10644 (long) gotpc_offset);
10645 bfd_set_error (bfd_error_no_error);
10646 return FALSE;
10647 }
10648 bfd_put_16 (output_bfd,
10649 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10650 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10651 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10652 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10653 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10654 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10655 }
10656 }
10657
10658 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10659 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10660 got_index - 2, h->dynindx,
10661 R_MIPS_JUMP_SLOT, got_address);
10662
10663 /* We distinguish between PLT entries and lazy-binding stubs by
10664 giving the former an st_other value of STO_MIPS_PLT. Set the
10665 flag and leave the value if there are any relocations in the
10666 binary where pointer equality matters. */
10667 sym->st_shndx = SHN_UNDEF;
10668 if (h->pointer_equality_needed)
10669 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10670 else
10671 {
10672 sym->st_value = 0;
10673 sym->st_other = 0;
10674 }
10675 }
10676
10677 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10678 {
10679 /* We've decided to create a lazy-binding stub. */
10680 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10681 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10682 bfd_vma stub_size = htab->function_stub_size;
10683 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10684 bfd_vma isa_bit = micromips_p;
10685 bfd_vma stub_big_size;
10686
10687 if (!micromips_p)
10688 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10689 else if (htab->insn32)
10690 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10691 else
10692 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10693
10694 /* This symbol has a stub. Set it up. */
10695
10696 BFD_ASSERT (h->dynindx != -1);
10697
10698 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10699
10700 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10701 sign extension at runtime in the stub, resulting in a negative
10702 index value. */
10703 if (h->dynindx & ~0x7fffffff)
10704 return FALSE;
10705
10706 /* Fill the stub. */
10707 if (micromips_p)
10708 {
10709 idx = 0;
10710 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10711 stub + idx);
10712 idx += 4;
10713 if (htab->insn32)
10714 {
10715 bfd_put_micromips_32 (output_bfd,
10716 STUB_MOVE32_MICROMIPS, stub + idx);
10717 idx += 4;
10718 }
10719 else
10720 {
10721 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10722 idx += 2;
10723 }
10724 if (stub_size == stub_big_size)
10725 {
10726 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10727
10728 bfd_put_micromips_32 (output_bfd,
10729 STUB_LUI_MICROMIPS (dynindx_hi),
10730 stub + idx);
10731 idx += 4;
10732 }
10733 if (htab->insn32)
10734 {
10735 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10736 stub + idx);
10737 idx += 4;
10738 }
10739 else
10740 {
10741 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10742 idx += 2;
10743 }
10744
10745 /* If a large stub is not required and sign extension is not a
10746 problem, then use legacy code in the stub. */
10747 if (stub_size == stub_big_size)
10748 bfd_put_micromips_32 (output_bfd,
10749 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10750 stub + idx);
10751 else if (h->dynindx & ~0x7fff)
10752 bfd_put_micromips_32 (output_bfd,
10753 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10754 stub + idx);
10755 else
10756 bfd_put_micromips_32 (output_bfd,
10757 STUB_LI16S_MICROMIPS (output_bfd,
10758 h->dynindx),
10759 stub + idx);
10760 }
10761 else
10762 {
10763 idx = 0;
10764 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10765 idx += 4;
10766 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10767 idx += 4;
10768 if (stub_size == stub_big_size)
10769 {
10770 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10771 stub + idx);
10772 idx += 4;
10773 }
10774 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10775 idx += 4;
10776
10777 /* If a large stub is not required and sign extension is not a
10778 problem, then use legacy code in the stub. */
10779 if (stub_size == stub_big_size)
10780 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10781 stub + idx);
10782 else if (h->dynindx & ~0x7fff)
10783 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10784 stub + idx);
10785 else
10786 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10787 stub + idx);
10788 }
10789
10790 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10791 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10792 stub, stub_size);
10793
10794 /* Mark the symbol as undefined. stub_offset != -1 occurs
10795 only for the referenced symbol. */
10796 sym->st_shndx = SHN_UNDEF;
10797
10798 /* The run-time linker uses the st_value field of the symbol
10799 to reset the global offset table entry for this external
10800 to its stub address when unlinking a shared object. */
10801 sym->st_value = (htab->sstubs->output_section->vma
10802 + htab->sstubs->output_offset
10803 + h->plt.plist->stub_offset
10804 + isa_bit);
10805 sym->st_other = other;
10806 }
10807
10808 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10809 refer to the stub, since only the stub uses the standard calling
10810 conventions. */
10811 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10812 {
10813 BFD_ASSERT (hmips->need_fn_stub);
10814 sym->st_value = (hmips->fn_stub->output_section->vma
10815 + hmips->fn_stub->output_offset);
10816 sym->st_size = hmips->fn_stub->size;
10817 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10818 }
10819
10820 BFD_ASSERT (h->dynindx != -1
10821 || h->forced_local);
10822
10823 sgot = htab->sgot;
10824 g = htab->got_info;
10825 BFD_ASSERT (g != NULL);
10826
10827 /* Run through the global symbol table, creating GOT entries for all
10828 the symbols that need them. */
10829 if (hmips->global_got_area != GGA_NONE)
10830 {
10831 bfd_vma offset;
10832 bfd_vma value;
10833
10834 value = sym->st_value;
10835 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10836 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10837 }
10838
10839 if (hmips->global_got_area != GGA_NONE && g->next)
10840 {
10841 struct mips_got_entry e, *p;
10842 bfd_vma entry;
10843 bfd_vma offset;
10844
10845 gg = g;
10846
10847 e.abfd = output_bfd;
10848 e.symndx = -1;
10849 e.d.h = hmips;
10850 e.tls_type = GOT_TLS_NONE;
10851
10852 for (g = g->next; g->next != gg; g = g->next)
10853 {
10854 if (g->got_entries
10855 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10856 &e)))
10857 {
10858 offset = p->gotidx;
10859 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10860 if (bfd_link_pic (info)
10861 || (elf_hash_table (info)->dynamic_sections_created
10862 && p->d.h != NULL
10863 && p->d.h->root.def_dynamic
10864 && !p->d.h->root.def_regular))
10865 {
10866 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10867 the various compatibility problems, it's easier to mock
10868 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10869 mips_elf_create_dynamic_relocation to calculate the
10870 appropriate addend. */
10871 Elf_Internal_Rela rel[3];
10872
10873 memset (rel, 0, sizeof (rel));
10874 if (ABI_64_P (output_bfd))
10875 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10876 else
10877 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10878 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10879
10880 entry = 0;
10881 if (! (mips_elf_create_dynamic_relocation
10882 (output_bfd, info, rel,
10883 e.d.h, NULL, sym->st_value, &entry, sgot)))
10884 return FALSE;
10885 }
10886 else
10887 entry = sym->st_value;
10888 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10889 }
10890 }
10891 }
10892
10893 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10894 name = h->root.root.string;
10895 if (h == elf_hash_table (info)->hdynamic
10896 || h == elf_hash_table (info)->hgot)
10897 sym->st_shndx = SHN_ABS;
10898 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10899 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10900 {
10901 sym->st_shndx = SHN_ABS;
10902 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10903 sym->st_value = 1;
10904 }
10905 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10906 {
10907 sym->st_shndx = SHN_ABS;
10908 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10909 sym->st_value = elf_gp (output_bfd);
10910 }
10911 else if (SGI_COMPAT (output_bfd))
10912 {
10913 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10914 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10915 {
10916 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10917 sym->st_other = STO_PROTECTED;
10918 sym->st_value = 0;
10919 sym->st_shndx = SHN_MIPS_DATA;
10920 }
10921 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10922 {
10923 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10924 sym->st_other = STO_PROTECTED;
10925 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10926 sym->st_shndx = SHN_ABS;
10927 }
10928 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10929 {
10930 if (h->type == STT_FUNC)
10931 sym->st_shndx = SHN_MIPS_TEXT;
10932 else if (h->type == STT_OBJECT)
10933 sym->st_shndx = SHN_MIPS_DATA;
10934 }
10935 }
10936
10937 /* Emit a copy reloc, if needed. */
10938 if (h->needs_copy)
10939 {
10940 asection *s;
10941 bfd_vma symval;
10942
10943 BFD_ASSERT (h->dynindx != -1);
10944 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10945
10946 s = mips_elf_rel_dyn_section (info, FALSE);
10947 symval = (h->root.u.def.section->output_section->vma
10948 + h->root.u.def.section->output_offset
10949 + h->root.u.def.value);
10950 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10951 h->dynindx, R_MIPS_COPY, symval);
10952 }
10953
10954 /* Handle the IRIX6-specific symbols. */
10955 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10956 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10957
10958 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10959 to treat compressed symbols like any other. */
10960 if (ELF_ST_IS_MIPS16 (sym->st_other))
10961 {
10962 BFD_ASSERT (sym->st_value & 1);
10963 sym->st_other -= STO_MIPS16;
10964 }
10965 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10966 {
10967 BFD_ASSERT (sym->st_value & 1);
10968 sym->st_other -= STO_MICROMIPS;
10969 }
10970
10971 return TRUE;
10972}
10973
10974/* Likewise, for VxWorks. */
10975
10976bfd_boolean
10977_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10978 struct bfd_link_info *info,
10979 struct elf_link_hash_entry *h,
10980 Elf_Internal_Sym *sym)
10981{
10982 bfd *dynobj;
10983 asection *sgot;
10984 struct mips_got_info *g;
10985 struct mips_elf_link_hash_table *htab;
10986 struct mips_elf_link_hash_entry *hmips;
10987
10988 htab = mips_elf_hash_table (info);
10989 BFD_ASSERT (htab != NULL);
10990 dynobj = elf_hash_table (info)->dynobj;
10991 hmips = (struct mips_elf_link_hash_entry *) h;
10992
10993 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10994 {
10995 bfd_byte *loc;
10996 bfd_vma plt_address, got_address, got_offset, branch_offset;
10997 Elf_Internal_Rela rel;
10998 static const bfd_vma *plt_entry;
10999 bfd_vma gotplt_index;
11000 bfd_vma plt_offset;
11001
11002 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11003 gotplt_index = h->plt.plist->gotplt_index;
11004
11005 BFD_ASSERT (h->dynindx != -1);
11006 BFD_ASSERT (htab->splt != NULL);
11007 BFD_ASSERT (gotplt_index != MINUS_ONE);
11008 BFD_ASSERT (plt_offset <= htab->splt->size);
11009
11010 /* Calculate the address of the .plt entry. */
11011 plt_address = (htab->splt->output_section->vma
11012 + htab->splt->output_offset
11013 + plt_offset);
11014
11015 /* Calculate the address of the .got.plt entry. */
11016 got_address = (htab->sgotplt->output_section->vma
11017 + htab->sgotplt->output_offset
11018 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11019
11020 /* Calculate the offset of the .got.plt entry from
11021 _GLOBAL_OFFSET_TABLE_. */
11022 got_offset = mips_elf_gotplt_index (info, h);
11023
11024 /* Calculate the offset for the branch at the start of the PLT
11025 entry. The branch jumps to the beginning of .plt. */
11026 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11027
11028 /* Fill in the initial value of the .got.plt entry. */
11029 bfd_put_32 (output_bfd, plt_address,
11030 (htab->sgotplt->contents
11031 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11032
11033 /* Find out where the .plt entry should go. */
11034 loc = htab->splt->contents + plt_offset;
11035
11036 if (bfd_link_pic (info))
11037 {
11038 plt_entry = mips_vxworks_shared_plt_entry;
11039 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11040 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11041 }
11042 else
11043 {
11044 bfd_vma got_address_high, got_address_low;
11045
11046 plt_entry = mips_vxworks_exec_plt_entry;
11047 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11048 got_address_low = got_address & 0xffff;
11049
11050 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11051 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11052 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11053 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11054 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11055 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11056 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11057 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11058
11059 loc = (htab->srelplt2->contents
11060 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11061
11062 /* Emit a relocation for the .got.plt entry. */
11063 rel.r_offset = got_address;
11064 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11065 rel.r_addend = plt_offset;
11066 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11067
11068 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11069 loc += sizeof (Elf32_External_Rela);
11070 rel.r_offset = plt_address + 8;
11071 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11072 rel.r_addend = got_offset;
11073 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11074
11075 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11076 loc += sizeof (Elf32_External_Rela);
11077 rel.r_offset += 4;
11078 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11079 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11080 }
11081
11082 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11083 loc = (htab->srelplt->contents
11084 + gotplt_index * sizeof (Elf32_External_Rela));
11085 rel.r_offset = got_address;
11086 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11087 rel.r_addend = 0;
11088 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11089
11090 if (!h->def_regular)
11091 sym->st_shndx = SHN_UNDEF;
11092 }
11093
11094 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11095
11096 sgot = htab->sgot;
11097 g = htab->got_info;
11098 BFD_ASSERT (g != NULL);
11099
11100 /* See if this symbol has an entry in the GOT. */
11101 if (hmips->global_got_area != GGA_NONE)
11102 {
11103 bfd_vma offset;
11104 Elf_Internal_Rela outrel;
11105 bfd_byte *loc;
11106 asection *s;
11107
11108 /* Install the symbol value in the GOT. */
11109 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11110 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11111
11112 /* Add a dynamic relocation for it. */
11113 s = mips_elf_rel_dyn_section (info, FALSE);
11114 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11115 outrel.r_offset = (sgot->output_section->vma
11116 + sgot->output_offset
11117 + offset);
11118 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11119 outrel.r_addend = 0;
11120 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11121 }
11122
11123 /* Emit a copy reloc, if needed. */
11124 if (h->needs_copy)
11125 {
11126 Elf_Internal_Rela rel;
11127
11128 BFD_ASSERT (h->dynindx != -1);
11129
11130 rel.r_offset = (h->root.u.def.section->output_section->vma
11131 + h->root.u.def.section->output_offset
11132 + h->root.u.def.value);
11133 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11134 rel.r_addend = 0;
11135 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11136 htab->srelbss->contents
11137 + (htab->srelbss->reloc_count
11138 * sizeof (Elf32_External_Rela)));
11139 ++htab->srelbss->reloc_count;
11140 }
11141
11142 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11143 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11144 sym->st_value &= ~1;
11145
11146 return TRUE;
11147}
11148
11149/* Write out a plt0 entry to the beginning of .plt. */
11150
11151static bfd_boolean
11152mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11153{
11154 bfd_byte *loc;
11155 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11156 static const bfd_vma *plt_entry;
11157 struct mips_elf_link_hash_table *htab;
11158
11159 htab = mips_elf_hash_table (info);
11160 BFD_ASSERT (htab != NULL);
11161
11162 if (ABI_64_P (output_bfd))
11163 plt_entry = mips_n64_exec_plt0_entry;
11164 else if (ABI_N32_P (output_bfd))
11165 plt_entry = mips_n32_exec_plt0_entry;
11166 else if (!htab->plt_header_is_comp)
11167 plt_entry = mips_o32_exec_plt0_entry;
11168 else if (htab->insn32)
11169 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11170 else
11171 plt_entry = micromips_o32_exec_plt0_entry;
11172
11173 /* Calculate the value of .got.plt. */
11174 gotplt_value = (htab->sgotplt->output_section->vma
11175 + htab->sgotplt->output_offset);
11176 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11177 gotplt_value_low = gotplt_value & 0xffff;
11178
11179 /* The PLT sequence is not safe for N64 if .got.plt's address can
11180 not be loaded in two instructions. */
11181 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11182 || ~(gotplt_value | 0x7fffffff) == 0);
11183
11184 /* Install the PLT header. */
11185 loc = htab->splt->contents;
11186 if (plt_entry == micromips_o32_exec_plt0_entry)
11187 {
11188 bfd_vma gotpc_offset;
11189 bfd_vma loc_address;
11190 size_t i;
11191
11192 BFD_ASSERT (gotplt_value % 4 == 0);
11193
11194 loc_address = (htab->splt->output_section->vma
11195 + htab->splt->output_offset);
11196 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11197
11198 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11199 if (gotpc_offset + 0x1000000 >= 0x2000000)
11200 {
11201 (*_bfd_error_handler)
11202 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11203 output_bfd,
11204 htab->sgotplt->output_section,
11205 htab->splt->output_section,
11206 (long) gotpc_offset);
11207 bfd_set_error (bfd_error_no_error);
11208 return FALSE;
11209 }
11210 bfd_put_16 (output_bfd,
11211 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11212 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11213 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11214 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11215 }
11216 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11217 {
11218 size_t i;
11219
11220 bfd_put_16 (output_bfd, plt_entry[0], loc);
11221 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11222 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11223 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11224 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11225 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11226 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11227 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11228 }
11229 else
11230 {
11231 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11232 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11233 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11234 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11235 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11236 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11237 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11238 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11239 }
11240
11241 return TRUE;
11242}
11243
11244/* Install the PLT header for a VxWorks executable and finalize the
11245 contents of .rela.plt.unloaded. */
11246
11247static void
11248mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11249{
11250 Elf_Internal_Rela rela;
11251 bfd_byte *loc;
11252 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11253 static const bfd_vma *plt_entry;
11254 struct mips_elf_link_hash_table *htab;
11255
11256 htab = mips_elf_hash_table (info);
11257 BFD_ASSERT (htab != NULL);
11258
11259 plt_entry = mips_vxworks_exec_plt0_entry;
11260
11261 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11262 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11263 + htab->root.hgot->root.u.def.section->output_offset
11264 + htab->root.hgot->root.u.def.value);
11265
11266 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11267 got_value_low = got_value & 0xffff;
11268
11269 /* Calculate the address of the PLT header. */
11270 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11271
11272 /* Install the PLT header. */
11273 loc = htab->splt->contents;
11274 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11275 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11276 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11277 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11278 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11279 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11280
11281 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11282 loc = htab->srelplt2->contents;
11283 rela.r_offset = plt_address;
11284 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11285 rela.r_addend = 0;
11286 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11287 loc += sizeof (Elf32_External_Rela);
11288
11289 /* Output the relocation for the following addiu of
11290 %lo(_GLOBAL_OFFSET_TABLE_). */
11291 rela.r_offset += 4;
11292 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11293 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11294 loc += sizeof (Elf32_External_Rela);
11295
11296 /* Fix up the remaining relocations. They may have the wrong
11297 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11298 in which symbols were output. */
11299 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11300 {
11301 Elf_Internal_Rela rel;
11302
11303 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11304 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11305 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11306 loc += sizeof (Elf32_External_Rela);
11307
11308 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11309 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11310 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11311 loc += sizeof (Elf32_External_Rela);
11312
11313 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11314 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11315 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11316 loc += sizeof (Elf32_External_Rela);
11317 }
11318}
11319
11320/* Install the PLT header for a VxWorks shared library. */
11321
11322static void
11323mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11324{
11325 unsigned int i;
11326 struct mips_elf_link_hash_table *htab;
11327
11328 htab = mips_elf_hash_table (info);
11329 BFD_ASSERT (htab != NULL);
11330
11331 /* We just need to copy the entry byte-by-byte. */
11332 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11333 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11334 htab->splt->contents + i * 4);
11335}
11336
11337/* Finish up the dynamic sections. */
11338
11339bfd_boolean
11340_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11341 struct bfd_link_info *info)
11342{
11343 bfd *dynobj;
11344 asection *sdyn;
11345 asection *sgot;
11346 struct mips_got_info *gg, *g;
11347 struct mips_elf_link_hash_table *htab;
11348
11349 htab = mips_elf_hash_table (info);
11350 BFD_ASSERT (htab != NULL);
11351
11352 dynobj = elf_hash_table (info)->dynobj;
11353
11354 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11355
11356 sgot = htab->sgot;
11357 gg = htab->got_info;
11358
11359 if (elf_hash_table (info)->dynamic_sections_created)
11360 {
11361 bfd_byte *b;
11362 int dyn_to_skip = 0, dyn_skipped = 0;
11363
11364 BFD_ASSERT (sdyn != NULL);
11365 BFD_ASSERT (gg != NULL);
11366
11367 g = mips_elf_bfd_got (output_bfd, FALSE);
11368 BFD_ASSERT (g != NULL);
11369
11370 for (b = sdyn->contents;
11371 b < sdyn->contents + sdyn->size;
11372 b += MIPS_ELF_DYN_SIZE (dynobj))
11373 {
11374 Elf_Internal_Dyn dyn;
11375 const char *name;
11376 size_t elemsize;
11377 asection *s;
11378 bfd_boolean swap_out_p;
11379
11380 /* Read in the current dynamic entry. */
11381 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11382
11383 /* Assume that we're going to modify it and write it out. */
11384 swap_out_p = TRUE;
11385
11386 switch (dyn.d_tag)
11387 {
11388 case DT_RELENT:
11389 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11390 break;
11391
11392 case DT_RELAENT:
11393 BFD_ASSERT (htab->is_vxworks);
11394 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11395 break;
11396
11397 case DT_STRSZ:
11398 /* Rewrite DT_STRSZ. */
11399 dyn.d_un.d_val =
11400 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11401 break;
11402
11403 case DT_PLTGOT:
11404 s = htab->sgot;
11405 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11406 break;
11407
11408 case DT_MIPS_PLTGOT:
11409 s = htab->sgotplt;
11410 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11411 break;
11412
11413 case DT_MIPS_RLD_VERSION:
11414 dyn.d_un.d_val = 1; /* XXX */
11415 break;
11416
11417 case DT_MIPS_FLAGS:
11418 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11419 break;
11420
11421 case DT_MIPS_TIME_STAMP:
11422 {
11423 time_t t;
11424 time (&t);
11425 dyn.d_un.d_val = t;
11426 }
11427 break;
11428
11429 case DT_MIPS_ICHECKSUM:
11430 /* XXX FIXME: */
11431 swap_out_p = FALSE;
11432 break;
11433
11434 case DT_MIPS_IVERSION:
11435 /* XXX FIXME: */
11436 swap_out_p = FALSE;
11437 break;
11438
11439 case DT_MIPS_BASE_ADDRESS:
11440 s = output_bfd->sections;
11441 BFD_ASSERT (s != NULL);
11442 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11443 break;
11444
11445 case DT_MIPS_LOCAL_GOTNO:
11446 dyn.d_un.d_val = g->local_gotno;
11447 break;
11448
11449 case DT_MIPS_UNREFEXTNO:
11450 /* The index into the dynamic symbol table which is the
11451 entry of the first external symbol that is not
11452 referenced within the same object. */
11453 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11454 break;
11455
11456 case DT_MIPS_GOTSYM:
11457 if (htab->global_gotsym)
11458 {
11459 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11460 break;
11461 }
11462 /* In case if we don't have global got symbols we default
11463 to setting DT_MIPS_GOTSYM to the same value as
11464 DT_MIPS_SYMTABNO, so we just fall through. */
11465
11466 case DT_MIPS_SYMTABNO:
11467 name = ".dynsym";
11468 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11469 s = bfd_get_linker_section (dynobj, name);
11470
11471 if (s != NULL)
11472 dyn.d_un.d_val = s->size / elemsize;
11473 else
11474 dyn.d_un.d_val = 0;
11475 break;
11476
11477 case DT_MIPS_HIPAGENO:
11478 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11479 break;
11480
11481 case DT_MIPS_RLD_MAP:
11482 {
11483 struct elf_link_hash_entry *h;
11484 h = mips_elf_hash_table (info)->rld_symbol;
11485 if (!h)
11486 {
11487 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11488 swap_out_p = FALSE;
11489 break;
11490 }
11491 s = h->root.u.def.section;
11492
11493 /* The MIPS_RLD_MAP tag stores the absolute address of the
11494 debug pointer. */
11495 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11496 + h->root.u.def.value);
11497 }
11498 break;
11499
11500 case DT_MIPS_RLD_MAP_REL:
11501 {
11502 struct elf_link_hash_entry *h;
11503 bfd_vma dt_addr, rld_addr;
11504 h = mips_elf_hash_table (info)->rld_symbol;
11505 if (!h)
11506 {
11507 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11508 swap_out_p = FALSE;
11509 break;
11510 }
11511 s = h->root.u.def.section;
11512
11513 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11514 pointer, relative to the address of the tag. */
11515 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11516 + (b - sdyn->contents));
11517 rld_addr = (s->output_section->vma + s->output_offset
11518 + h->root.u.def.value);
11519 dyn.d_un.d_ptr = rld_addr - dt_addr;
11520 }
11521 break;
11522
11523 case DT_MIPS_OPTIONS:
11524 s = (bfd_get_section_by_name
11525 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11526 dyn.d_un.d_ptr = s->vma;
11527 break;
11528
11529 case DT_RELASZ:
11530 BFD_ASSERT (htab->is_vxworks);
11531 /* The count does not include the JUMP_SLOT relocations. */
11532 if (htab->srelplt)
11533 dyn.d_un.d_val -= htab->srelplt->size;
11534 break;
11535
11536 case DT_PLTREL:
11537 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11538 if (htab->is_vxworks)
11539 dyn.d_un.d_val = DT_RELA;
11540 else
11541 dyn.d_un.d_val = DT_REL;
11542 break;
11543
11544 case DT_PLTRELSZ:
11545 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11546 dyn.d_un.d_val = htab->srelplt->size;
11547 break;
11548
11549 case DT_JMPREL:
11550 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11551 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11552 + htab->srelplt->output_offset);
11553 break;
11554
11555 case DT_TEXTREL:
11556 /* If we didn't need any text relocations after all, delete
11557 the dynamic tag. */
11558 if (!(info->flags & DF_TEXTREL))
11559 {
11560 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11561 swap_out_p = FALSE;
11562 }
11563 break;
11564
11565 case DT_FLAGS:
11566 /* If we didn't need any text relocations after all, clear
11567 DF_TEXTREL from DT_FLAGS. */
11568 if (!(info->flags & DF_TEXTREL))
11569 dyn.d_un.d_val &= ~DF_TEXTREL;
11570 else
11571 swap_out_p = FALSE;
11572 break;
11573
11574 default:
11575 swap_out_p = FALSE;
11576 if (htab->is_vxworks
11577 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11578 swap_out_p = TRUE;
11579 break;
11580 }
11581
11582 if (swap_out_p || dyn_skipped)
11583 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11584 (dynobj, &dyn, b - dyn_skipped);
11585
11586 if (dyn_to_skip)
11587 {
11588 dyn_skipped += dyn_to_skip;
11589 dyn_to_skip = 0;
11590 }
11591 }
11592
11593 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11594 if (dyn_skipped > 0)
11595 memset (b - dyn_skipped, 0, dyn_skipped);
11596 }
11597
11598 if (sgot != NULL && sgot->size > 0
11599 && !bfd_is_abs_section (sgot->output_section))
11600 {
11601 if (htab->is_vxworks)
11602 {
11603 /* The first entry of the global offset table points to the
11604 ".dynamic" section. The second is initialized by the
11605 loader and contains the shared library identifier.
11606 The third is also initialized by the loader and points
11607 to the lazy resolution stub. */
11608 MIPS_ELF_PUT_WORD (output_bfd,
11609 sdyn->output_offset + sdyn->output_section->vma,
11610 sgot->contents);
11611 MIPS_ELF_PUT_WORD (output_bfd, 0,
11612 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11613 MIPS_ELF_PUT_WORD (output_bfd, 0,
11614 sgot->contents
11615 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11616 }
11617 else
11618 {
11619 /* The first entry of the global offset table will be filled at
11620 runtime. The second entry will be used by some runtime loaders.
11621 This isn't the case of IRIX rld. */
11622 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11623 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11624 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11625 }
11626
11627 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11628 = MIPS_ELF_GOT_SIZE (output_bfd);
11629 }
11630
11631 /* Generate dynamic relocations for the non-primary gots. */
11632 if (gg != NULL && gg->next)
11633 {
11634 Elf_Internal_Rela rel[3];
11635 bfd_vma addend = 0;
11636
11637 memset (rel, 0, sizeof (rel));
11638 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11639
11640 for (g = gg->next; g->next != gg; g = g->next)
11641 {
11642 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11643 + g->next->tls_gotno;
11644
11645 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11646 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11647 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11648 sgot->contents
11649 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11650
11651 if (! bfd_link_pic (info))
11652 continue;
11653
11654 for (; got_index < g->local_gotno; got_index++)
11655 {
11656 if (got_index >= g->assigned_low_gotno
11657 && got_index <= g->assigned_high_gotno)
11658 continue;
11659
11660 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11661 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11662 if (!(mips_elf_create_dynamic_relocation
11663 (output_bfd, info, rel, NULL,
11664 bfd_abs_section_ptr,
11665 0, &addend, sgot)))
11666 return FALSE;
11667 BFD_ASSERT (addend == 0);
11668 }
11669 }
11670 }
11671
11672 /* The generation of dynamic relocations for the non-primary gots
11673 adds more dynamic relocations. We cannot count them until
11674 here. */
11675
11676 if (elf_hash_table (info)->dynamic_sections_created)
11677 {
11678 bfd_byte *b;
11679 bfd_boolean swap_out_p;
11680
11681 BFD_ASSERT (sdyn != NULL);
11682
11683 for (b = sdyn->contents;
11684 b < sdyn->contents + sdyn->size;
11685 b += MIPS_ELF_DYN_SIZE (dynobj))
11686 {
11687 Elf_Internal_Dyn dyn;
11688 asection *s;
11689
11690 /* Read in the current dynamic entry. */
11691 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11692
11693 /* Assume that we're going to modify it and write it out. */
11694 swap_out_p = TRUE;
11695
11696 switch (dyn.d_tag)
11697 {
11698 case DT_RELSZ:
11699 /* Reduce DT_RELSZ to account for any relocations we
11700 decided not to make. This is for the n64 irix rld,
11701 which doesn't seem to apply any relocations if there
11702 are trailing null entries. */
11703 s = mips_elf_rel_dyn_section (info, FALSE);
11704 dyn.d_un.d_val = (s->reloc_count
11705 * (ABI_64_P (output_bfd)
11706 ? sizeof (Elf64_Mips_External_Rel)
11707 : sizeof (Elf32_External_Rel)));
11708 /* Adjust the section size too. Tools like the prelinker
11709 can reasonably expect the values to the same. */
11710 elf_section_data (s->output_section)->this_hdr.sh_size
11711 = dyn.d_un.d_val;
11712 break;
11713
11714 default:
11715 swap_out_p = FALSE;
11716 break;
11717 }
11718
11719 if (swap_out_p)
11720 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11721 (dynobj, &dyn, b);
11722 }
11723 }
11724
11725 {
11726 asection *s;
11727 Elf32_compact_rel cpt;
11728
11729 if (SGI_COMPAT (output_bfd))
11730 {
11731 /* Write .compact_rel section out. */
11732 s = bfd_get_linker_section (dynobj, ".compact_rel");
11733 if (s != NULL)
11734 {
11735 cpt.id1 = 1;
11736 cpt.num = s->reloc_count;
11737 cpt.id2 = 2;
11738 cpt.offset = (s->output_section->filepos
11739 + sizeof (Elf32_External_compact_rel));
11740 cpt.reserved0 = 0;
11741 cpt.reserved1 = 0;
11742 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11743 ((Elf32_External_compact_rel *)
11744 s->contents));
11745
11746 /* Clean up a dummy stub function entry in .text. */
11747 if (htab->sstubs != NULL)
11748 {
11749 file_ptr dummy_offset;
11750
11751 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11752 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11753 memset (htab->sstubs->contents + dummy_offset, 0,
11754 htab->function_stub_size);
11755 }
11756 }
11757 }
11758
11759 /* The psABI says that the dynamic relocations must be sorted in
11760 increasing order of r_symndx. The VxWorks EABI doesn't require
11761 this, and because the code below handles REL rather than RELA
11762 relocations, using it for VxWorks would be outright harmful. */
11763 if (!htab->is_vxworks)
11764 {
11765 s = mips_elf_rel_dyn_section (info, FALSE);
11766 if (s != NULL
11767 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11768 {
11769 reldyn_sorting_bfd = output_bfd;
11770
11771 if (ABI_64_P (output_bfd))
11772 qsort ((Elf64_External_Rel *) s->contents + 1,
11773 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11774 sort_dynamic_relocs_64);
11775 else
11776 qsort ((Elf32_External_Rel *) s->contents + 1,
11777 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11778 sort_dynamic_relocs);
11779 }
11780 }
11781 }
11782
11783 if (htab->splt && htab->splt->size > 0)
11784 {
11785 if (htab->is_vxworks)
11786 {
11787 if (bfd_link_pic (info))
11788 mips_vxworks_finish_shared_plt (output_bfd, info);
11789 else
11790 mips_vxworks_finish_exec_plt (output_bfd, info);
11791 }
11792 else
11793 {
11794 BFD_ASSERT (!bfd_link_pic (info));
11795 if (!mips_finish_exec_plt (output_bfd, info))
11796 return FALSE;
11797 }
11798 }
11799 return TRUE;
11800}
11801
11802
11803/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11804
11805static void
11806mips_set_isa_flags (bfd *abfd)
11807{
11808 flagword val;
11809
11810 switch (bfd_get_mach (abfd))
11811 {
11812 default:
11813 case bfd_mach_mips3000:
11814 val = E_MIPS_ARCH_1;
11815 break;
11816
11817 case bfd_mach_mips3900:
11818 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11819 break;
11820
11821 case bfd_mach_mips6000:
11822 val = E_MIPS_ARCH_2;
11823 break;
11824
11825 case bfd_mach_mips4000:
11826 case bfd_mach_mips4300:
11827 case bfd_mach_mips4400:
11828 case bfd_mach_mips4600:
11829 val = E_MIPS_ARCH_3;
11830 break;
11831
11832 case bfd_mach_mips4010:
11833 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11834 break;
11835
11836 case bfd_mach_mips4100:
11837 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11838 break;
11839
11840 case bfd_mach_mips4111:
11841 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11842 break;
11843
11844 case bfd_mach_mips4120:
11845 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11846 break;
11847
11848 case bfd_mach_mips4650:
11849 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11850 break;
11851
11852 case bfd_mach_mips5400:
11853 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11854 break;
11855
11856 case bfd_mach_mips5500:
11857 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11858 break;
11859
11860 case bfd_mach_mips5900:
11861 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11862 break;
11863
11864 case bfd_mach_mips9000:
11865 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11866 break;
11867
11868 case bfd_mach_mips5000:
11869 case bfd_mach_mips7000:
11870 case bfd_mach_mips8000:
11871 case bfd_mach_mips10000:
11872 case bfd_mach_mips12000:
11873 case bfd_mach_mips14000:
11874 case bfd_mach_mips16000:
11875 val = E_MIPS_ARCH_4;
11876 break;
11877
11878 case bfd_mach_mips5:
11879 val = E_MIPS_ARCH_5;
11880 break;
11881
11882 case bfd_mach_mips_loongson_2e:
11883 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11884 break;
11885
11886 case bfd_mach_mips_loongson_2f:
11887 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11888 break;
11889
11890 case bfd_mach_mips_sb1:
11891 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11892 break;
11893
11894 case bfd_mach_mips_loongson_3a:
11895 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11896 break;
11897
11898 case bfd_mach_mips_octeon:
11899 case bfd_mach_mips_octeonp:
11900 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11901 break;
11902
11903 case bfd_mach_mips_octeon3:
11904 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11905 break;
11906
11907 case bfd_mach_mips_xlr:
11908 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11909 break;
11910
11911 case bfd_mach_mips_octeon2:
11912 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11913 break;
11914
11915 case bfd_mach_mipsisa32:
11916 val = E_MIPS_ARCH_32;
11917 break;
11918
11919 case bfd_mach_mipsisa64:
11920 val = E_MIPS_ARCH_64;
11921 break;
11922
11923 case bfd_mach_mipsisa32r2:
11924 case bfd_mach_mipsisa32r3:
11925 case bfd_mach_mipsisa32r5:
11926 val = E_MIPS_ARCH_32R2;
11927 break;
11928
11929 case bfd_mach_mipsisa64r2:
11930 case bfd_mach_mipsisa64r3:
11931 case bfd_mach_mipsisa64r5:
11932 val = E_MIPS_ARCH_64R2;
11933 break;
11934
11935 case bfd_mach_mipsisa32r6:
11936 val = E_MIPS_ARCH_32R6;
11937 break;
11938
11939 case bfd_mach_mipsisa64r6:
11940 val = E_MIPS_ARCH_64R6;
11941 break;
11942 }
11943 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11944 elf_elfheader (abfd)->e_flags |= val;
11945
11946}
11947
11948
11949/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11950 Don't do so for code sections. We want to keep ordering of HI16/LO16
11951 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11952 relocs to be sorted. */
11953
11954bfd_boolean
11955_bfd_mips_elf_sort_relocs_p (asection *sec)
11956{
11957 return (sec->flags & SEC_CODE) == 0;
11958}
11959
11960
11961/* The final processing done just before writing out a MIPS ELF object
11962 file. This gets the MIPS architecture right based on the machine
11963 number. This is used by both the 32-bit and the 64-bit ABI. */
11964
11965void
11966_bfd_mips_elf_final_write_processing (bfd *abfd,
11967 bfd_boolean linker ATTRIBUTE_UNUSED)
11968{
11969 unsigned int i;
11970 Elf_Internal_Shdr **hdrpp;
11971 const char *name;
11972 asection *sec;
11973
11974 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11975 is nonzero. This is for compatibility with old objects, which used
11976 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11977 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11978 mips_set_isa_flags (abfd);
11979
11980 /* Set the sh_info field for .gptab sections and other appropriate
11981 info for each special section. */
11982 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11983 i < elf_numsections (abfd);
11984 i++, hdrpp++)
11985 {
11986 switch ((*hdrpp)->sh_type)
11987 {
11988 case SHT_MIPS_MSYM:
11989 case SHT_MIPS_LIBLIST:
11990 sec = bfd_get_section_by_name (abfd, ".dynstr");
11991 if (sec != NULL)
11992 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11993 break;
11994
11995 case SHT_MIPS_GPTAB:
11996 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11997 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11998 BFD_ASSERT (name != NULL
11999 && CONST_STRNEQ (name, ".gptab."));
12000 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12001 BFD_ASSERT (sec != NULL);
12002 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12003 break;
12004
12005 case SHT_MIPS_CONTENT:
12006 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12007 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12008 BFD_ASSERT (name != NULL
12009 && CONST_STRNEQ (name, ".MIPS.content"));
12010 sec = bfd_get_section_by_name (abfd,
12011 name + sizeof ".MIPS.content" - 1);
12012 BFD_ASSERT (sec != NULL);
12013 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12014 break;
12015
12016 case SHT_MIPS_SYMBOL_LIB:
12017 sec = bfd_get_section_by_name (abfd, ".dynsym");
12018 if (sec != NULL)
12019 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12020 sec = bfd_get_section_by_name (abfd, ".liblist");
12021 if (sec != NULL)
12022 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12023 break;
12024
12025 case SHT_MIPS_EVENTS:
12026 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12027 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12028 BFD_ASSERT (name != NULL);
12029 if (CONST_STRNEQ (name, ".MIPS.events"))
12030 sec = bfd_get_section_by_name (abfd,
12031 name + sizeof ".MIPS.events" - 1);
12032 else
12033 {
12034 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12035 sec = bfd_get_section_by_name (abfd,
12036 (name
12037 + sizeof ".MIPS.post_rel" - 1));
12038 }
12039 BFD_ASSERT (sec != NULL);
12040 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12041 break;
12042
12043 }
12044 }
12045}
12046\f
12047/* When creating an IRIX5 executable, we need REGINFO and RTPROC
12048 segments. */
12049
12050int
12051_bfd_mips_elf_additional_program_headers (bfd *abfd,
12052 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12053{
12054 asection *s;
12055 int ret = 0;
12056
12057 /* See if we need a PT_MIPS_REGINFO segment. */
12058 s = bfd_get_section_by_name (abfd, ".reginfo");
12059 if (s && (s->flags & SEC_LOAD))
12060 ++ret;
12061
12062 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12063 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12064 ++ret;
12065
12066 /* See if we need a PT_MIPS_OPTIONS segment. */
12067 if (IRIX_COMPAT (abfd) == ict_irix6
12068 && bfd_get_section_by_name (abfd,
12069 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12070 ++ret;
12071
12072 /* See if we need a PT_MIPS_RTPROC segment. */
12073 if (IRIX_COMPAT (abfd) == ict_irix5
12074 && bfd_get_section_by_name (abfd, ".dynamic")
12075 && bfd_get_section_by_name (abfd, ".mdebug"))
12076 ++ret;
12077
12078 /* Allocate a PT_NULL header in dynamic objects. See
12079 _bfd_mips_elf_modify_segment_map for details. */
12080 if (!SGI_COMPAT (abfd)
12081 && bfd_get_section_by_name (abfd, ".dynamic"))
12082 ++ret;
12083
12084 return ret;
12085}
12086
12087/* Modify the segment map for an IRIX5 executable. */
12088
12089bfd_boolean
12090_bfd_mips_elf_modify_segment_map (bfd *abfd,
12091 struct bfd_link_info *info)
12092{
12093 asection *s;
12094 struct elf_segment_map *m, **pm;
12095 bfd_size_type amt;
12096
12097 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12098 segment. */
12099 s = bfd_get_section_by_name (abfd, ".reginfo");
12100 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12101 {
12102 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12103 if (m->p_type == PT_MIPS_REGINFO)
12104 break;
12105 if (m == NULL)
12106 {
12107 amt = sizeof *m;
12108 m = bfd_zalloc (abfd, amt);
12109 if (m == NULL)
12110 return FALSE;
12111
12112 m->p_type = PT_MIPS_REGINFO;
12113 m->count = 1;
12114 m->sections[0] = s;
12115
12116 /* We want to put it after the PHDR and INTERP segments. */
12117 pm = &elf_seg_map (abfd);
12118 while (*pm != NULL
12119 && ((*pm)->p_type == PT_PHDR
12120 || (*pm)->p_type == PT_INTERP))
12121 pm = &(*pm)->next;
12122
12123 m->next = *pm;
12124 *pm = m;
12125 }
12126 }
12127
12128 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12129 segment. */
12130 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12131 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12132 {
12133 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12134 if (m->p_type == PT_MIPS_ABIFLAGS)
12135 break;
12136 if (m == NULL)
12137 {
12138 amt = sizeof *m;
12139 m = bfd_zalloc (abfd, amt);
12140 if (m == NULL)
12141 return FALSE;
12142
12143 m->p_type = PT_MIPS_ABIFLAGS;
12144 m->count = 1;
12145 m->sections[0] = s;
12146
12147 /* We want to put it after the PHDR and INTERP segments. */
12148 pm = &elf_seg_map (abfd);
12149 while (*pm != NULL
12150 && ((*pm)->p_type == PT_PHDR
12151 || (*pm)->p_type == PT_INTERP))
12152 pm = &(*pm)->next;
12153
12154 m->next = *pm;
12155 *pm = m;
12156 }
12157 }
12158
12159 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12160 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12161 PT_MIPS_OPTIONS segment immediately following the program header
12162 table. */
12163 if (NEWABI_P (abfd)
12164 /* On non-IRIX6 new abi, we'll have already created a segment
12165 for this section, so don't create another. I'm not sure this
12166 is not also the case for IRIX 6, but I can't test it right
12167 now. */
12168 && IRIX_COMPAT (abfd) == ict_irix6)
12169 {
12170 for (s = abfd->sections; s; s = s->next)
12171 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12172 break;
12173
12174 if (s)
12175 {
12176 struct elf_segment_map *options_segment;
12177
12178 pm = &elf_seg_map (abfd);
12179 while (*pm != NULL
12180 && ((*pm)->p_type == PT_PHDR
12181 || (*pm)->p_type == PT_INTERP))
12182 pm = &(*pm)->next;
12183
12184 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12185 {
12186 amt = sizeof (struct elf_segment_map);
12187 options_segment = bfd_zalloc (abfd, amt);
12188 options_segment->next = *pm;
12189 options_segment->p_type = PT_MIPS_OPTIONS;
12190 options_segment->p_flags = PF_R;
12191 options_segment->p_flags_valid = TRUE;
12192 options_segment->count = 1;
12193 options_segment->sections[0] = s;
12194 *pm = options_segment;
12195 }
12196 }
12197 }
12198 else
12199 {
12200 if (IRIX_COMPAT (abfd) == ict_irix5)
12201 {
12202 /* If there are .dynamic and .mdebug sections, we make a room
12203 for the RTPROC header. FIXME: Rewrite without section names. */
12204 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12205 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12206 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12207 {
12208 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12209 if (m->p_type == PT_MIPS_RTPROC)
12210 break;
12211 if (m == NULL)
12212 {
12213 amt = sizeof *m;
12214 m = bfd_zalloc (abfd, amt);
12215 if (m == NULL)
12216 return FALSE;
12217
12218 m->p_type = PT_MIPS_RTPROC;
12219
12220 s = bfd_get_section_by_name (abfd, ".rtproc");
12221 if (s == NULL)
12222 {
12223 m->count = 0;
12224 m->p_flags = 0;
12225 m->p_flags_valid = 1;
12226 }
12227 else
12228 {
12229 m->count = 1;
12230 m->sections[0] = s;
12231 }
12232
12233 /* We want to put it after the DYNAMIC segment. */
12234 pm = &elf_seg_map (abfd);
12235 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12236 pm = &(*pm)->next;
12237 if (*pm != NULL)
12238 pm = &(*pm)->next;
12239
12240 m->next = *pm;
12241 *pm = m;
12242 }
12243 }
12244 }
12245 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12246 .dynstr, .dynsym, and .hash sections, and everything in
12247 between. */
12248 for (pm = &elf_seg_map (abfd); *pm != NULL;
12249 pm = &(*pm)->next)
12250 if ((*pm)->p_type == PT_DYNAMIC)
12251 break;
12252 m = *pm;
12253 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12254 glibc's dynamic linker has traditionally derived the number of
12255 tags from the p_filesz field, and sometimes allocates stack
12256 arrays of that size. An overly-big PT_DYNAMIC segment can
12257 be actively harmful in such cases. Making PT_DYNAMIC contain
12258 other sections can also make life hard for the prelinker,
12259 which might move one of the other sections to a different
12260 PT_LOAD segment. */
12261 if (SGI_COMPAT (abfd)
12262 && m != NULL
12263 && m->count == 1
12264 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12265 {
12266 static const char *sec_names[] =
12267 {
12268 ".dynamic", ".dynstr", ".dynsym", ".hash"
12269 };
12270 bfd_vma low, high;
12271 unsigned int i, c;
12272 struct elf_segment_map *n;
12273
12274 low = ~(bfd_vma) 0;
12275 high = 0;
12276 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12277 {
12278 s = bfd_get_section_by_name (abfd, sec_names[i]);
12279 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12280 {
12281 bfd_size_type sz;
12282
12283 if (low > s->vma)
12284 low = s->vma;
12285 sz = s->size;
12286 if (high < s->vma + sz)
12287 high = s->vma + sz;
12288 }
12289 }
12290
12291 c = 0;
12292 for (s = abfd->sections; s != NULL; s = s->next)
12293 if ((s->flags & SEC_LOAD) != 0
12294 && s->vma >= low
12295 && s->vma + s->size <= high)
12296 ++c;
12297
12298 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12299 n = bfd_zalloc (abfd, amt);
12300 if (n == NULL)
12301 return FALSE;
12302 *n = *m;
12303 n->count = c;
12304
12305 i = 0;
12306 for (s = abfd->sections; s != NULL; s = s->next)
12307 {
12308 if ((s->flags & SEC_LOAD) != 0
12309 && s->vma >= low
12310 && s->vma + s->size <= high)
12311 {
12312 n->sections[i] = s;
12313 ++i;
12314 }
12315 }
12316
12317 *pm = n;
12318 }
12319 }
12320
12321 /* Allocate a spare program header in dynamic objects so that tools
12322 like the prelinker can add an extra PT_LOAD entry.
12323
12324 If the prelinker needs to make room for a new PT_LOAD entry, its
12325 standard procedure is to move the first (read-only) sections into
12326 the new (writable) segment. However, the MIPS ABI requires
12327 .dynamic to be in a read-only segment, and the section will often
12328 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12329
12330 Although the prelinker could in principle move .dynamic to a
12331 writable segment, it seems better to allocate a spare program
12332 header instead, and avoid the need to move any sections.
12333 There is a long tradition of allocating spare dynamic tags,
12334 so allocating a spare program header seems like a natural
12335 extension.
12336
12337 If INFO is NULL, we may be copying an already prelinked binary
12338 with objcopy or strip, so do not add this header. */
12339 if (info != NULL
12340 && !SGI_COMPAT (abfd)
12341 && bfd_get_section_by_name (abfd, ".dynamic"))
12342 {
12343 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12344 if ((*pm)->p_type == PT_NULL)
12345 break;
12346 if (*pm == NULL)
12347 {
12348 m = bfd_zalloc (abfd, sizeof (*m));
12349 if (m == NULL)
12350 return FALSE;
12351
12352 m->p_type = PT_NULL;
12353 *pm = m;
12354 }
12355 }
12356
12357 return TRUE;
12358}
12359\f
12360/* Return the section that should be marked against GC for a given
12361 relocation. */
12362
12363asection *
12364_bfd_mips_elf_gc_mark_hook (asection *sec,
12365 struct bfd_link_info *info,
12366 Elf_Internal_Rela *rel,
12367 struct elf_link_hash_entry *h,
12368 Elf_Internal_Sym *sym)
12369{
12370 /* ??? Do mips16 stub sections need to be handled special? */
12371
12372 if (h != NULL)
12373 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12374 {
12375 case R_MIPS_GNU_VTINHERIT:
12376 case R_MIPS_GNU_VTENTRY:
12377 return NULL;
12378 }
12379
12380 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12381}
12382
12383/* Update the got entry reference counts for the section being removed. */
12384
12385bfd_boolean
12386_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12387 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12388 asection *sec ATTRIBUTE_UNUSED,
12389 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12390{
12391#if 0
12392 Elf_Internal_Shdr *symtab_hdr;
12393 struct elf_link_hash_entry **sym_hashes;
12394 bfd_signed_vma *local_got_refcounts;
12395 const Elf_Internal_Rela *rel, *relend;
12396 unsigned long r_symndx;
12397 struct elf_link_hash_entry *h;
12398
12399 if (bfd_link_relocatable (info))
12400 return TRUE;
12401
12402 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12403 sym_hashes = elf_sym_hashes (abfd);
12404 local_got_refcounts = elf_local_got_refcounts (abfd);
12405
12406 relend = relocs + sec->reloc_count;
12407 for (rel = relocs; rel < relend; rel++)
12408 switch (ELF_R_TYPE (abfd, rel->r_info))
12409 {
12410 case R_MIPS16_GOT16:
12411 case R_MIPS16_CALL16:
12412 case R_MIPS_GOT16:
12413 case R_MIPS_CALL16:
12414 case R_MIPS_CALL_HI16:
12415 case R_MIPS_CALL_LO16:
12416 case R_MIPS_GOT_HI16:
12417 case R_MIPS_GOT_LO16:
12418 case R_MIPS_GOT_DISP:
12419 case R_MIPS_GOT_PAGE:
12420 case R_MIPS_GOT_OFST:
12421 case R_MICROMIPS_GOT16:
12422 case R_MICROMIPS_CALL16:
12423 case R_MICROMIPS_CALL_HI16:
12424 case R_MICROMIPS_CALL_LO16:
12425 case R_MICROMIPS_GOT_HI16:
12426 case R_MICROMIPS_GOT_LO16:
12427 case R_MICROMIPS_GOT_DISP:
12428 case R_MICROMIPS_GOT_PAGE:
12429 case R_MICROMIPS_GOT_OFST:
12430 /* ??? It would seem that the existing MIPS code does no sort
12431 of reference counting or whatnot on its GOT and PLT entries,
12432 so it is not possible to garbage collect them at this time. */
12433 break;
12434
12435 default:
12436 break;
12437 }
12438#endif
12439
12440 return TRUE;
12441}
12442
12443/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12444
12445bfd_boolean
12446_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12447 elf_gc_mark_hook_fn gc_mark_hook)
12448{
12449 bfd *sub;
12450
12451 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12452
12453 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12454 {
12455 asection *o;
12456
12457 if (! is_mips_elf (sub))
12458 continue;
12459
12460 for (o = sub->sections; o != NULL; o = o->next)
12461 if (!o->gc_mark
12462 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12463 (bfd_get_section_name (sub, o)))
12464 {
12465 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12466 return FALSE;
12467 }
12468 }
12469
12470 return TRUE;
12471}
12472\f
12473/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12474 hiding the old indirect symbol. Process additional relocation
12475 information. Also called for weakdefs, in which case we just let
12476 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12477
12478void
12479_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12480 struct elf_link_hash_entry *dir,
12481 struct elf_link_hash_entry *ind)
12482{
12483 struct mips_elf_link_hash_entry *dirmips, *indmips;
12484
12485 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12486
12487 dirmips = (struct mips_elf_link_hash_entry *) dir;
12488 indmips = (struct mips_elf_link_hash_entry *) ind;
12489 /* Any absolute non-dynamic relocations against an indirect or weak
12490 definition will be against the target symbol. */
12491 if (indmips->has_static_relocs)
12492 dirmips->has_static_relocs = TRUE;
12493
12494 if (ind->root.type != bfd_link_hash_indirect)
12495 return;
12496
12497 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12498 if (indmips->readonly_reloc)
12499 dirmips->readonly_reloc = TRUE;
12500 if (indmips->no_fn_stub)
12501 dirmips->no_fn_stub = TRUE;
12502 if (indmips->fn_stub)
12503 {
12504 dirmips->fn_stub = indmips->fn_stub;
12505 indmips->fn_stub = NULL;
12506 }
12507 if (indmips->need_fn_stub)
12508 {
12509 dirmips->need_fn_stub = TRUE;
12510 indmips->need_fn_stub = FALSE;
12511 }
12512 if (indmips->call_stub)
12513 {
12514 dirmips->call_stub = indmips->call_stub;
12515 indmips->call_stub = NULL;
12516 }
12517 if (indmips->call_fp_stub)
12518 {
12519 dirmips->call_fp_stub = indmips->call_fp_stub;
12520 indmips->call_fp_stub = NULL;
12521 }
12522 if (indmips->global_got_area < dirmips->global_got_area)
12523 dirmips->global_got_area = indmips->global_got_area;
12524 if (indmips->global_got_area < GGA_NONE)
12525 indmips->global_got_area = GGA_NONE;
12526 if (indmips->has_nonpic_branches)
12527 dirmips->has_nonpic_branches = TRUE;
12528}
12529\f
12530#define PDR_SIZE 32
12531
12532bfd_boolean
12533_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12534 struct bfd_link_info *info)
12535{
12536 asection *o;
12537 bfd_boolean ret = FALSE;
12538 unsigned char *tdata;
12539 size_t i, skip;
12540
12541 o = bfd_get_section_by_name (abfd, ".pdr");
12542 if (! o)
12543 return FALSE;
12544 if (o->size == 0)
12545 return FALSE;
12546 if (o->size % PDR_SIZE != 0)
12547 return FALSE;
12548 if (o->output_section != NULL
12549 && bfd_is_abs_section (o->output_section))
12550 return FALSE;
12551
12552 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12553 if (! tdata)
12554 return FALSE;
12555
12556 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12557 info->keep_memory);
12558 if (!cookie->rels)
12559 {
12560 free (tdata);
12561 return FALSE;
12562 }
12563
12564 cookie->rel = cookie->rels;
12565 cookie->relend = cookie->rels + o->reloc_count;
12566
12567 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12568 {
12569 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12570 {
12571 tdata[i] = 1;
12572 skip ++;
12573 }
12574 }
12575
12576 if (skip != 0)
12577 {
12578 mips_elf_section_data (o)->u.tdata = tdata;
12579 if (o->rawsize == 0)
12580 o->rawsize = o->size;
12581 o->size -= skip * PDR_SIZE;
12582 ret = TRUE;
12583 }
12584 else
12585 free (tdata);
12586
12587 if (! info->keep_memory)
12588 free (cookie->rels);
12589
12590 return ret;
12591}
12592
12593bfd_boolean
12594_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12595{
12596 if (strcmp (sec->name, ".pdr") == 0)
12597 return TRUE;
12598 return FALSE;
12599}
12600
12601bfd_boolean
12602_bfd_mips_elf_write_section (bfd *output_bfd,
12603 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12604 asection *sec, bfd_byte *contents)
12605{
12606 bfd_byte *to, *from, *end;
12607 int i;
12608
12609 if (strcmp (sec->name, ".pdr") != 0)
12610 return FALSE;
12611
12612 if (mips_elf_section_data (sec)->u.tdata == NULL)
12613 return FALSE;
12614
12615 to = contents;
12616 end = contents + sec->size;
12617 for (from = contents, i = 0;
12618 from < end;
12619 from += PDR_SIZE, i++)
12620 {
12621 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12622 continue;
12623 if (to != from)
12624 memcpy (to, from, PDR_SIZE);
12625 to += PDR_SIZE;
12626 }
12627 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12628 sec->output_offset, sec->size);
12629 return TRUE;
12630}
12631\f
12632/* microMIPS code retains local labels for linker relaxation. Omit them
12633 from output by default for clarity. */
12634
12635bfd_boolean
12636_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12637{
12638 return _bfd_elf_is_local_label_name (abfd, sym->name);
12639}
12640
12641/* MIPS ELF uses a special find_nearest_line routine in order the
12642 handle the ECOFF debugging information. */
12643
12644struct mips_elf_find_line
12645{
12646 struct ecoff_debug_info d;
12647 struct ecoff_find_line i;
12648};
12649
12650bfd_boolean
12651_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12652 asection *section, bfd_vma offset,
12653 const char **filename_ptr,
12654 const char **functionname_ptr,
12655 unsigned int *line_ptr,
12656 unsigned int *discriminator_ptr)
12657{
12658 asection *msec;
12659
12660 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12661 filename_ptr, functionname_ptr,
12662 line_ptr, discriminator_ptr,
12663 dwarf_debug_sections,
12664 ABI_64_P (abfd) ? 8 : 0,
12665 &elf_tdata (abfd)->dwarf2_find_line_info))
12666 return TRUE;
12667
12668 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12669 filename_ptr, functionname_ptr,
12670 line_ptr))
12671 return TRUE;
12672
12673 msec = bfd_get_section_by_name (abfd, ".mdebug");
12674 if (msec != NULL)
12675 {
12676 flagword origflags;
12677 struct mips_elf_find_line *fi;
12678 const struct ecoff_debug_swap * const swap =
12679 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12680
12681 /* If we are called during a link, mips_elf_final_link may have
12682 cleared the SEC_HAS_CONTENTS field. We force it back on here
12683 if appropriate (which it normally will be). */
12684 origflags = msec->flags;
12685 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12686 msec->flags |= SEC_HAS_CONTENTS;
12687
12688 fi = mips_elf_tdata (abfd)->find_line_info;
12689 if (fi == NULL)
12690 {
12691 bfd_size_type external_fdr_size;
12692 char *fraw_src;
12693 char *fraw_end;
12694 struct fdr *fdr_ptr;
12695 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12696
12697 fi = bfd_zalloc (abfd, amt);
12698 if (fi == NULL)
12699 {
12700 msec->flags = origflags;
12701 return FALSE;
12702 }
12703
12704 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12705 {
12706 msec->flags = origflags;
12707 return FALSE;
12708 }
12709
12710 /* Swap in the FDR information. */
12711 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12712 fi->d.fdr = bfd_alloc (abfd, amt);
12713 if (fi->d.fdr == NULL)
12714 {
12715 msec->flags = origflags;
12716 return FALSE;
12717 }
12718 external_fdr_size = swap->external_fdr_size;
12719 fdr_ptr = fi->d.fdr;
12720 fraw_src = (char *) fi->d.external_fdr;
12721 fraw_end = (fraw_src
12722 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12723 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12724 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12725
12726 mips_elf_tdata (abfd)->find_line_info = fi;
12727
12728 /* Note that we don't bother to ever free this information.
12729 find_nearest_line is either called all the time, as in
12730 objdump -l, so the information should be saved, or it is
12731 rarely called, as in ld error messages, so the memory
12732 wasted is unimportant. Still, it would probably be a
12733 good idea for free_cached_info to throw it away. */
12734 }
12735
12736 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12737 &fi->i, filename_ptr, functionname_ptr,
12738 line_ptr))
12739 {
12740 msec->flags = origflags;
12741 return TRUE;
12742 }
12743
12744 msec->flags = origflags;
12745 }
12746
12747 /* Fall back on the generic ELF find_nearest_line routine. */
12748
12749 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12750 filename_ptr, functionname_ptr,
12751 line_ptr, discriminator_ptr);
12752}
12753
12754bfd_boolean
12755_bfd_mips_elf_find_inliner_info (bfd *abfd,
12756 const char **filename_ptr,
12757 const char **functionname_ptr,
12758 unsigned int *line_ptr)
12759{
12760 bfd_boolean found;
12761 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12762 functionname_ptr, line_ptr,
12763 & elf_tdata (abfd)->dwarf2_find_line_info);
12764 return found;
12765}
12766
12767\f
12768/* When are writing out the .options or .MIPS.options section,
12769 remember the bytes we are writing out, so that we can install the
12770 GP value in the section_processing routine. */
12771
12772bfd_boolean
12773_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12774 const void *location,
12775 file_ptr offset, bfd_size_type count)
12776{
12777 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12778 {
12779 bfd_byte *c;
12780
12781 if (elf_section_data (section) == NULL)
12782 {
12783 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12784 section->used_by_bfd = bfd_zalloc (abfd, amt);
12785 if (elf_section_data (section) == NULL)
12786 return FALSE;
12787 }
12788 c = mips_elf_section_data (section)->u.tdata;
12789 if (c == NULL)
12790 {
12791 c = bfd_zalloc (abfd, section->size);
12792 if (c == NULL)
12793 return FALSE;
12794 mips_elf_section_data (section)->u.tdata = c;
12795 }
12796
12797 memcpy (c + offset, location, count);
12798 }
12799
12800 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12801 count);
12802}
12803
12804/* This is almost identical to bfd_generic_get_... except that some
12805 MIPS relocations need to be handled specially. Sigh. */
12806
12807bfd_byte *
12808_bfd_elf_mips_get_relocated_section_contents
12809 (bfd *abfd,
12810 struct bfd_link_info *link_info,
12811 struct bfd_link_order *link_order,
12812 bfd_byte *data,
12813 bfd_boolean relocatable,
12814 asymbol **symbols)
12815{
12816 /* Get enough memory to hold the stuff */
12817 bfd *input_bfd = link_order->u.indirect.section->owner;
12818 asection *input_section = link_order->u.indirect.section;
12819 bfd_size_type sz;
12820
12821 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12822 arelent **reloc_vector = NULL;
12823 long reloc_count;
12824
12825 if (reloc_size < 0)
12826 goto error_return;
12827
12828 reloc_vector = bfd_malloc (reloc_size);
12829 if (reloc_vector == NULL && reloc_size != 0)
12830 goto error_return;
12831
12832 /* read in the section */
12833 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12834 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12835 goto error_return;
12836
12837 reloc_count = bfd_canonicalize_reloc (input_bfd,
12838 input_section,
12839 reloc_vector,
12840 symbols);
12841 if (reloc_count < 0)
12842 goto error_return;
12843
12844 if (reloc_count > 0)
12845 {
12846 arelent **parent;
12847 /* for mips */
12848 int gp_found;
12849 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12850
12851 {
12852 struct bfd_hash_entry *h;
12853 struct bfd_link_hash_entry *lh;
12854 /* Skip all this stuff if we aren't mixing formats. */
12855 if (abfd && input_bfd
12856 && abfd->xvec == input_bfd->xvec)
12857 lh = 0;
12858 else
12859 {
12860 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12861 lh = (struct bfd_link_hash_entry *) h;
12862 }
12863 lookup:
12864 if (lh)
12865 {
12866 switch (lh->type)
12867 {
12868 case bfd_link_hash_undefined:
12869 case bfd_link_hash_undefweak:
12870 case bfd_link_hash_common:
12871 gp_found = 0;
12872 break;
12873 case bfd_link_hash_defined:
12874 case bfd_link_hash_defweak:
12875 gp_found = 1;
12876 gp = lh->u.def.value;
12877 break;
12878 case bfd_link_hash_indirect:
12879 case bfd_link_hash_warning:
12880 lh = lh->u.i.link;
12881 /* @@FIXME ignoring warning for now */
12882 goto lookup;
12883 case bfd_link_hash_new:
12884 default:
12885 abort ();
12886 }
12887 }
12888 else
12889 gp_found = 0;
12890 }
12891 /* end mips */
12892 for (parent = reloc_vector; *parent != NULL; parent++)
12893 {
12894 char *error_message = NULL;
12895 bfd_reloc_status_type r;
12896
12897 /* Specific to MIPS: Deal with relocation types that require
12898 knowing the gp of the output bfd. */
12899 asymbol *sym = *(*parent)->sym_ptr_ptr;
12900
12901 /* If we've managed to find the gp and have a special
12902 function for the relocation then go ahead, else default
12903 to the generic handling. */
12904 if (gp_found
12905 && (*parent)->howto->special_function
12906 == _bfd_mips_elf32_gprel16_reloc)
12907 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12908 input_section, relocatable,
12909 data, gp);
12910 else
12911 r = bfd_perform_relocation (input_bfd, *parent, data,
12912 input_section,
12913 relocatable ? abfd : NULL,
12914 &error_message);
12915
12916 if (relocatable)
12917 {
12918 asection *os = input_section->output_section;
12919
12920 /* A partial link, so keep the relocs */
12921 os->orelocation[os->reloc_count] = *parent;
12922 os->reloc_count++;
12923 }
12924
12925 if (r != bfd_reloc_ok)
12926 {
12927 switch (r)
12928 {
12929 case bfd_reloc_undefined:
12930 if (!((*link_info->callbacks->undefined_symbol)
12931 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12932 input_bfd, input_section, (*parent)->address, TRUE)))
12933 goto error_return;
12934 break;
12935 case bfd_reloc_dangerous:
12936 BFD_ASSERT (error_message != NULL);
12937 if (!((*link_info->callbacks->reloc_dangerous)
12938 (link_info, error_message, input_bfd, input_section,
12939 (*parent)->address)))
12940 goto error_return;
12941 break;
12942 case bfd_reloc_overflow:
12943 if (!((*link_info->callbacks->reloc_overflow)
12944 (link_info, NULL,
12945 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12946 (*parent)->howto->name, (*parent)->addend,
12947 input_bfd, input_section, (*parent)->address)))
12948 goto error_return;
12949 break;
12950 case bfd_reloc_outofrange:
12951 default:
12952 abort ();
12953 break;
12954 }
12955
12956 }
12957 }
12958 }
12959 if (reloc_vector != NULL)
12960 free (reloc_vector);
12961 return data;
12962
12963error_return:
12964 if (reloc_vector != NULL)
12965 free (reloc_vector);
12966 return NULL;
12967}
12968\f
12969static bfd_boolean
12970mips_elf_relax_delete_bytes (bfd *abfd,
12971 asection *sec, bfd_vma addr, int count)
12972{
12973 Elf_Internal_Shdr *symtab_hdr;
12974 unsigned int sec_shndx;
12975 bfd_byte *contents;
12976 Elf_Internal_Rela *irel, *irelend;
12977 Elf_Internal_Sym *isym;
12978 Elf_Internal_Sym *isymend;
12979 struct elf_link_hash_entry **sym_hashes;
12980 struct elf_link_hash_entry **end_hashes;
12981 struct elf_link_hash_entry **start_hashes;
12982 unsigned int symcount;
12983
12984 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12985 contents = elf_section_data (sec)->this_hdr.contents;
12986
12987 irel = elf_section_data (sec)->relocs;
12988 irelend = irel + sec->reloc_count;
12989
12990 /* Actually delete the bytes. */
12991 memmove (contents + addr, contents + addr + count,
12992 (size_t) (sec->size - addr - count));
12993 sec->size -= count;
12994
12995 /* Adjust all the relocs. */
12996 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12997 {
12998 /* Get the new reloc address. */
12999 if (irel->r_offset > addr)
13000 irel->r_offset -= count;
13001 }
13002
13003 BFD_ASSERT (addr % 2 == 0);
13004 BFD_ASSERT (count % 2 == 0);
13005
13006 /* Adjust the local symbols defined in this section. */
13007 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13008 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13009 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13010 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13011 isym->st_value -= count;
13012
13013 /* Now adjust the global symbols defined in this section. */
13014 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13015 - symtab_hdr->sh_info);
13016 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13017 end_hashes = sym_hashes + symcount;
13018
13019 for (; sym_hashes < end_hashes; sym_hashes++)
13020 {
13021 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13022
13023 if ((sym_hash->root.type == bfd_link_hash_defined
13024 || sym_hash->root.type == bfd_link_hash_defweak)
13025 && sym_hash->root.u.def.section == sec)
13026 {
13027 bfd_vma value = sym_hash->root.u.def.value;
13028
13029 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13030 value &= MINUS_TWO;
13031 if (value > addr)
13032 sym_hash->root.u.def.value -= count;
13033 }
13034 }
13035
13036 return TRUE;
13037}
13038
13039
13040/* Opcodes needed for microMIPS relaxation as found in
13041 opcodes/micromips-opc.c. */
13042
13043struct opcode_descriptor {
13044 unsigned long match;
13045 unsigned long mask;
13046};
13047
13048/* The $ra register aka $31. */
13049
13050#define RA 31
13051
13052/* 32-bit instruction format register fields. */
13053
13054#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13055#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13056
13057/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13058
13059#define OP16_VALID_REG(r) \
13060 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13061
13062
13063/* 32-bit and 16-bit branches. */
13064
13065static const struct opcode_descriptor b_insns_32[] = {
13066 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13067 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13068 { 0, 0 } /* End marker for find_match(). */
13069};
13070
13071static const struct opcode_descriptor bc_insn_32 =
13072 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13073
13074static const struct opcode_descriptor bz_insn_32 =
13075 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13076
13077static const struct opcode_descriptor bzal_insn_32 =
13078 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13079
13080static const struct opcode_descriptor beq_insn_32 =
13081 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13082
13083static const struct opcode_descriptor b_insn_16 =
13084 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13085
13086static const struct opcode_descriptor bz_insn_16 =
13087 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13088
13089
13090/* 32-bit and 16-bit branch EQ and NE zero. */
13091
13092/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13093 eq and second the ne. This convention is used when replacing a
13094 32-bit BEQ/BNE with the 16-bit version. */
13095
13096#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13097
13098static const struct opcode_descriptor bz_rs_insns_32[] = {
13099 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13100 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13101 { 0, 0 } /* End marker for find_match(). */
13102};
13103
13104static const struct opcode_descriptor bz_rt_insns_32[] = {
13105 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13106 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13107 { 0, 0 } /* End marker for find_match(). */
13108};
13109
13110static const struct opcode_descriptor bzc_insns_32[] = {
13111 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13112 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13113 { 0, 0 } /* End marker for find_match(). */
13114};
13115
13116static const struct opcode_descriptor bz_insns_16[] = {
13117 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13118 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13119 { 0, 0 } /* End marker for find_match(). */
13120};
13121
13122/* Switch between a 5-bit register index and its 3-bit shorthand. */
13123
13124#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13125#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13126
13127
13128/* 32-bit instructions with a delay slot. */
13129
13130static const struct opcode_descriptor jal_insn_32_bd16 =
13131 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13132
13133static const struct opcode_descriptor jal_insn_32_bd32 =
13134 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13135
13136static const struct opcode_descriptor jal_x_insn_32_bd32 =
13137 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13138
13139static const struct opcode_descriptor j_insn_32 =
13140 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13141
13142static const struct opcode_descriptor jalr_insn_32 =
13143 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13144
13145/* This table can be compacted, because no opcode replacement is made. */
13146
13147static const struct opcode_descriptor ds_insns_32_bd16[] = {
13148 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13149
13150 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13151 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13152
13153 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13154 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13155 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13156 { 0, 0 } /* End marker for find_match(). */
13157};
13158
13159/* This table can be compacted, because no opcode replacement is made. */
13160
13161static const struct opcode_descriptor ds_insns_32_bd32[] = {
13162 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13163
13164 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13165 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13166 { 0, 0 } /* End marker for find_match(). */
13167};
13168
13169
13170/* 16-bit instructions with a delay slot. */
13171
13172static const struct opcode_descriptor jalr_insn_16_bd16 =
13173 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13174
13175static const struct opcode_descriptor jalr_insn_16_bd32 =
13176 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13177
13178static const struct opcode_descriptor jr_insn_16 =
13179 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13180
13181#define JR16_REG(opcode) ((opcode) & 0x1f)
13182
13183/* This table can be compacted, because no opcode replacement is made. */
13184
13185static const struct opcode_descriptor ds_insns_16_bd16[] = {
13186 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13187
13188 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13189 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13190 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13191 { 0, 0 } /* End marker for find_match(). */
13192};
13193
13194
13195/* LUI instruction. */
13196
13197static const struct opcode_descriptor lui_insn =
13198 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13199
13200
13201/* ADDIU instruction. */
13202
13203static const struct opcode_descriptor addiu_insn =
13204 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13205
13206static const struct opcode_descriptor addiupc_insn =
13207 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13208
13209#define ADDIUPC_REG_FIELD(r) \
13210 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13211
13212
13213/* Relaxable instructions in a JAL delay slot: MOVE. */
13214
13215/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13216 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13217#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13218#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13219
13220#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13221#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13222
13223static const struct opcode_descriptor move_insns_32[] = {
13224 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13225 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13226 { 0, 0 } /* End marker for find_match(). */
13227};
13228
13229static const struct opcode_descriptor move_insn_16 =
13230 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13231
13232
13233/* NOP instructions. */
13234
13235static const struct opcode_descriptor nop_insn_32 =
13236 { /* "nop", "", */ 0x00000000, 0xffffffff };
13237
13238static const struct opcode_descriptor nop_insn_16 =
13239 { /* "nop", "", */ 0x0c00, 0xffff };
13240
13241
13242/* Instruction match support. */
13243
13244#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13245
13246static int
13247find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13248{
13249 unsigned long indx;
13250
13251 for (indx = 0; insn[indx].mask != 0; indx++)
13252 if (MATCH (opcode, insn[indx]))
13253 return indx;
13254
13255 return -1;
13256}
13257
13258
13259/* Branch and delay slot decoding support. */
13260
13261/* If PTR points to what *might* be a 16-bit branch or jump, then
13262 return the minimum length of its delay slot, otherwise return 0.
13263 Non-zero results are not definitive as we might be checking against
13264 the second half of another instruction. */
13265
13266static int
13267check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13268{
13269 unsigned long opcode;
13270 int bdsize;
13271
13272 opcode = bfd_get_16 (abfd, ptr);
13273 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13274 /* 16-bit branch/jump with a 32-bit delay slot. */
13275 bdsize = 4;
13276 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13277 || find_match (opcode, ds_insns_16_bd16) >= 0)
13278 /* 16-bit branch/jump with a 16-bit delay slot. */
13279 bdsize = 2;
13280 else
13281 /* No delay slot. */
13282 bdsize = 0;
13283
13284 return bdsize;
13285}
13286
13287/* If PTR points to what *might* be a 32-bit branch or jump, then
13288 return the minimum length of its delay slot, otherwise return 0.
13289 Non-zero results are not definitive as we might be checking against
13290 the second half of another instruction. */
13291
13292static int
13293check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13294{
13295 unsigned long opcode;
13296 int bdsize;
13297
13298 opcode = bfd_get_micromips_32 (abfd, ptr);
13299 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13300 /* 32-bit branch/jump with a 32-bit delay slot. */
13301 bdsize = 4;
13302 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13303 /* 32-bit branch/jump with a 16-bit delay slot. */
13304 bdsize = 2;
13305 else
13306 /* No delay slot. */
13307 bdsize = 0;
13308
13309 return bdsize;
13310}
13311
13312/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13313 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13314
13315static bfd_boolean
13316check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13317{
13318 unsigned long opcode;
13319
13320 opcode = bfd_get_16 (abfd, ptr);
13321 if (MATCH (opcode, b_insn_16)
13322 /* B16 */
13323 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13324 /* JR16 */
13325 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13326 /* BEQZ16, BNEZ16 */
13327 || (MATCH (opcode, jalr_insn_16_bd32)
13328 /* JALR16 */
13329 && reg != JR16_REG (opcode) && reg != RA))
13330 return TRUE;
13331
13332 return FALSE;
13333}
13334
13335/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13336 then return TRUE, otherwise FALSE. */
13337
13338static bfd_boolean
13339check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13340{
13341 unsigned long opcode;
13342
13343 opcode = bfd_get_micromips_32 (abfd, ptr);
13344 if (MATCH (opcode, j_insn_32)
13345 /* J */
13346 || MATCH (opcode, bc_insn_32)
13347 /* BC1F, BC1T, BC2F, BC2T */
13348 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13349 /* JAL, JALX */
13350 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13351 /* BGEZ, BGTZ, BLEZ, BLTZ */
13352 || (MATCH (opcode, bzal_insn_32)
13353 /* BGEZAL, BLTZAL */
13354 && reg != OP32_SREG (opcode) && reg != RA)
13355 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13356 /* JALR, JALR.HB, BEQ, BNE */
13357 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13358 return TRUE;
13359
13360 return FALSE;
13361}
13362
13363/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13364 IRELEND) at OFFSET indicate that there must be a compact branch there,
13365 then return TRUE, otherwise FALSE. */
13366
13367static bfd_boolean
13368check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13369 const Elf_Internal_Rela *internal_relocs,
13370 const Elf_Internal_Rela *irelend)
13371{
13372 const Elf_Internal_Rela *irel;
13373 unsigned long opcode;
13374
13375 opcode = bfd_get_micromips_32 (abfd, ptr);
13376 if (find_match (opcode, bzc_insns_32) < 0)
13377 return FALSE;
13378
13379 for (irel = internal_relocs; irel < irelend; irel++)
13380 if (irel->r_offset == offset
13381 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13382 return TRUE;
13383
13384 return FALSE;
13385}
13386
13387/* Bitsize checking. */
13388#define IS_BITSIZE(val, N) \
13389 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13390 - (1ULL << ((N) - 1))) == (val))
13391
13392\f
13393bfd_boolean
13394_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13395 struct bfd_link_info *link_info,
13396 bfd_boolean *again)
13397{
13398 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13399 Elf_Internal_Shdr *symtab_hdr;
13400 Elf_Internal_Rela *internal_relocs;
13401 Elf_Internal_Rela *irel, *irelend;
13402 bfd_byte *contents = NULL;
13403 Elf_Internal_Sym *isymbuf = NULL;
13404
13405 /* Assume nothing changes. */
13406 *again = FALSE;
13407
13408 /* We don't have to do anything for a relocatable link, if
13409 this section does not have relocs, or if this is not a
13410 code section. */
13411
13412 if (bfd_link_relocatable (link_info)
13413 || (sec->flags & SEC_RELOC) == 0
13414 || sec->reloc_count == 0
13415 || (sec->flags & SEC_CODE) == 0)
13416 return TRUE;
13417
13418 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13419
13420 /* Get a copy of the native relocations. */
13421 internal_relocs = (_bfd_elf_link_read_relocs
13422 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13423 link_info->keep_memory));
13424 if (internal_relocs == NULL)
13425 goto error_return;
13426
13427 /* Walk through them looking for relaxing opportunities. */
13428 irelend = internal_relocs + sec->reloc_count;
13429 for (irel = internal_relocs; irel < irelend; irel++)
13430 {
13431 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13432 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13433 bfd_boolean target_is_micromips_code_p;
13434 unsigned long opcode;
13435 bfd_vma symval;
13436 bfd_vma pcrval;
13437 bfd_byte *ptr;
13438 int fndopc;
13439
13440 /* The number of bytes to delete for relaxation and from where
13441 to delete these bytes starting at irel->r_offset. */
13442 int delcnt = 0;
13443 int deloff = 0;
13444
13445 /* If this isn't something that can be relaxed, then ignore
13446 this reloc. */
13447 if (r_type != R_MICROMIPS_HI16
13448 && r_type != R_MICROMIPS_PC16_S1
13449 && r_type != R_MICROMIPS_26_S1)
13450 continue;
13451
13452 /* Get the section contents if we haven't done so already. */
13453 if (contents == NULL)
13454 {
13455 /* Get cached copy if it exists. */
13456 if (elf_section_data (sec)->this_hdr.contents != NULL)
13457 contents = elf_section_data (sec)->this_hdr.contents;
13458 /* Go get them off disk. */
13459 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13460 goto error_return;
13461 }
13462 ptr = contents + irel->r_offset;
13463
13464 /* Read this BFD's local symbols if we haven't done so already. */
13465 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13466 {
13467 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13468 if (isymbuf == NULL)
13469 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13470 symtab_hdr->sh_info, 0,
13471 NULL, NULL, NULL);
13472 if (isymbuf == NULL)
13473 goto error_return;
13474 }
13475
13476 /* Get the value of the symbol referred to by the reloc. */
13477 if (r_symndx < symtab_hdr->sh_info)
13478 {
13479 /* A local symbol. */
13480 Elf_Internal_Sym *isym;
13481 asection *sym_sec;
13482
13483 isym = isymbuf + r_symndx;
13484 if (isym->st_shndx == SHN_UNDEF)
13485 sym_sec = bfd_und_section_ptr;
13486 else if (isym->st_shndx == SHN_ABS)
13487 sym_sec = bfd_abs_section_ptr;
13488 else if (isym->st_shndx == SHN_COMMON)
13489 sym_sec = bfd_com_section_ptr;
13490 else
13491 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13492 symval = (isym->st_value
13493 + sym_sec->output_section->vma
13494 + sym_sec->output_offset);
13495 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13496 }
13497 else
13498 {
13499 unsigned long indx;
13500 struct elf_link_hash_entry *h;
13501
13502 /* An external symbol. */
13503 indx = r_symndx - symtab_hdr->sh_info;
13504 h = elf_sym_hashes (abfd)[indx];
13505 BFD_ASSERT (h != NULL);
13506
13507 if (h->root.type != bfd_link_hash_defined
13508 && h->root.type != bfd_link_hash_defweak)
13509 /* This appears to be a reference to an undefined
13510 symbol. Just ignore it -- it will be caught by the
13511 regular reloc processing. */
13512 continue;
13513
13514 symval = (h->root.u.def.value
13515 + h->root.u.def.section->output_section->vma
13516 + h->root.u.def.section->output_offset);
13517 target_is_micromips_code_p = (!h->needs_plt
13518 && ELF_ST_IS_MICROMIPS (h->other));
13519 }
13520
13521
13522 /* For simplicity of coding, we are going to modify the
13523 section contents, the section relocs, and the BFD symbol
13524 table. We must tell the rest of the code not to free up this
13525 information. It would be possible to instead create a table
13526 of changes which have to be made, as is done in coff-mips.c;
13527 that would be more work, but would require less memory when
13528 the linker is run. */
13529
13530 /* Only 32-bit instructions relaxed. */
13531 if (irel->r_offset + 4 > sec->size)
13532 continue;
13533
13534 opcode = bfd_get_micromips_32 (abfd, ptr);
13535
13536 /* This is the pc-relative distance from the instruction the
13537 relocation is applied to, to the symbol referred. */
13538 pcrval = (symval
13539 - (sec->output_section->vma + sec->output_offset)
13540 - irel->r_offset);
13541
13542 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13543 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13544 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13545
13546 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13547
13548 where pcrval has first to be adjusted to apply against the LO16
13549 location (we make the adjustment later on, when we have figured
13550 out the offset). */
13551 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13552 {
13553 bfd_boolean bzc = FALSE;
13554 unsigned long nextopc;
13555 unsigned long reg;
13556 bfd_vma offset;
13557
13558 /* Give up if the previous reloc was a HI16 against this symbol
13559 too. */
13560 if (irel > internal_relocs
13561 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13562 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13563 continue;
13564
13565 /* Or if the next reloc is not a LO16 against this symbol. */
13566 if (irel + 1 >= irelend
13567 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13568 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13569 continue;
13570
13571 /* Or if the second next reloc is a LO16 against this symbol too. */
13572 if (irel + 2 >= irelend
13573 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13574 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13575 continue;
13576
13577 /* See if the LUI instruction *might* be in a branch delay slot.
13578 We check whether what looks like a 16-bit branch or jump is
13579 actually an immediate argument to a compact branch, and let
13580 it through if so. */
13581 if (irel->r_offset >= 2
13582 && check_br16_dslot (abfd, ptr - 2)
13583 && !(irel->r_offset >= 4
13584 && (bzc = check_relocated_bzc (abfd,
13585 ptr - 4, irel->r_offset - 4,
13586 internal_relocs, irelend))))
13587 continue;
13588 if (irel->r_offset >= 4
13589 && !bzc
13590 && check_br32_dslot (abfd, ptr - 4))
13591 continue;
13592
13593 reg = OP32_SREG (opcode);
13594
13595 /* We only relax adjacent instructions or ones separated with
13596 a branch or jump that has a delay slot. The branch or jump
13597 must not fiddle with the register used to hold the address.
13598 Subtract 4 for the LUI itself. */
13599 offset = irel[1].r_offset - irel[0].r_offset;
13600 switch (offset - 4)
13601 {
13602 case 0:
13603 break;
13604 case 2:
13605 if (check_br16 (abfd, ptr + 4, reg))
13606 break;
13607 continue;
13608 case 4:
13609 if (check_br32 (abfd, ptr + 4, reg))
13610 break;
13611 continue;
13612 default:
13613 continue;
13614 }
13615
13616 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13617
13618 /* Give up unless the same register is used with both
13619 relocations. */
13620 if (OP32_SREG (nextopc) != reg)
13621 continue;
13622
13623 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13624 and rounding up to take masking of the two LSBs into account. */
13625 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13626
13627 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13628 if (IS_BITSIZE (symval, 16))
13629 {
13630 /* Fix the relocation's type. */
13631 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13632
13633 /* Instructions using R_MICROMIPS_LO16 have the base or
13634 source register in bits 20:16. This register becomes $0
13635 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13636 nextopc &= ~0x001f0000;
13637 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13638 contents + irel[1].r_offset);
13639 }
13640
13641 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13642 We add 4 to take LUI deletion into account while checking
13643 the PC-relative distance. */
13644 else if (symval % 4 == 0
13645 && IS_BITSIZE (pcrval + 4, 25)
13646 && MATCH (nextopc, addiu_insn)
13647 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13648 && OP16_VALID_REG (OP32_TREG (nextopc)))
13649 {
13650 /* Fix the relocation's type. */
13651 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13652
13653 /* Replace ADDIU with the ADDIUPC version. */
13654 nextopc = (addiupc_insn.match
13655 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13656
13657 bfd_put_micromips_32 (abfd, nextopc,
13658 contents + irel[1].r_offset);
13659 }
13660
13661 /* Can't do anything, give up, sigh... */
13662 else
13663 continue;
13664
13665 /* Fix the relocation's type. */
13666 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13667
13668 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13669 delcnt = 4;
13670 deloff = 0;
13671 }
13672
13673 /* Compact branch relaxation -- due to the multitude of macros
13674 employed by the compiler/assembler, compact branches are not
13675 always generated. Obviously, this can/will be fixed elsewhere,
13676 but there is no drawback in double checking it here. */
13677 else if (r_type == R_MICROMIPS_PC16_S1
13678 && irel->r_offset + 5 < sec->size
13679 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13680 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13681 && ((!insn32
13682 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13683 nop_insn_16) ? 2 : 0))
13684 || (irel->r_offset + 7 < sec->size
13685 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13686 ptr + 4),
13687 nop_insn_32) ? 4 : 0))))
13688 {
13689 unsigned long reg;
13690
13691 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13692
13693 /* Replace BEQZ/BNEZ with the compact version. */
13694 opcode = (bzc_insns_32[fndopc].match
13695 | BZC32_REG_FIELD (reg)
13696 | (opcode & 0xffff)); /* Addend value. */
13697
13698 bfd_put_micromips_32 (abfd, opcode, ptr);
13699
13700 /* Delete the delay slot NOP: two or four bytes from
13701 irel->offset + 4; delcnt has already been set above. */
13702 deloff = 4;
13703 }
13704
13705 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13706 to check the distance from the next instruction, so subtract 2. */
13707 else if (!insn32
13708 && r_type == R_MICROMIPS_PC16_S1
13709 && IS_BITSIZE (pcrval - 2, 11)
13710 && find_match (opcode, b_insns_32) >= 0)
13711 {
13712 /* Fix the relocation's type. */
13713 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13714
13715 /* Replace the 32-bit opcode with a 16-bit opcode. */
13716 bfd_put_16 (abfd,
13717 (b_insn_16.match
13718 | (opcode & 0x3ff)), /* Addend value. */
13719 ptr);
13720
13721 /* Delete 2 bytes from irel->r_offset + 2. */
13722 delcnt = 2;
13723 deloff = 2;
13724 }
13725
13726 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13727 to check the distance from the next instruction, so subtract 2. */
13728 else if (!insn32
13729 && r_type == R_MICROMIPS_PC16_S1
13730 && IS_BITSIZE (pcrval - 2, 8)
13731 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13732 && OP16_VALID_REG (OP32_SREG (opcode)))
13733 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13734 && OP16_VALID_REG (OP32_TREG (opcode)))))
13735 {
13736 unsigned long reg;
13737
13738 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13739
13740 /* Fix the relocation's type. */
13741 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13742
13743 /* Replace the 32-bit opcode with a 16-bit opcode. */
13744 bfd_put_16 (abfd,
13745 (bz_insns_16[fndopc].match
13746 | BZ16_REG_FIELD (reg)
13747 | (opcode & 0x7f)), /* Addend value. */
13748 ptr);
13749
13750 /* Delete 2 bytes from irel->r_offset + 2. */
13751 delcnt = 2;
13752 deloff = 2;
13753 }
13754
13755 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13756 else if (!insn32
13757 && r_type == R_MICROMIPS_26_S1
13758 && target_is_micromips_code_p
13759 && irel->r_offset + 7 < sec->size
13760 && MATCH (opcode, jal_insn_32_bd32))
13761 {
13762 unsigned long n32opc;
13763 bfd_boolean relaxed = FALSE;
13764
13765 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13766
13767 if (MATCH (n32opc, nop_insn_32))
13768 {
13769 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13770 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13771
13772 relaxed = TRUE;
13773 }
13774 else if (find_match (n32opc, move_insns_32) >= 0)
13775 {
13776 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13777 bfd_put_16 (abfd,
13778 (move_insn_16.match
13779 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13780 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13781 ptr + 4);
13782
13783 relaxed = TRUE;
13784 }
13785 /* Other 32-bit instructions relaxable to 16-bit
13786 instructions will be handled here later. */
13787
13788 if (relaxed)
13789 {
13790 /* JAL with 32-bit delay slot that is changed to a JALS
13791 with 16-bit delay slot. */
13792 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13793
13794 /* Delete 2 bytes from irel->r_offset + 6. */
13795 delcnt = 2;
13796 deloff = 6;
13797 }
13798 }
13799
13800 if (delcnt != 0)
13801 {
13802 /* Note that we've changed the relocs, section contents, etc. */
13803 elf_section_data (sec)->relocs = internal_relocs;
13804 elf_section_data (sec)->this_hdr.contents = contents;
13805 symtab_hdr->contents = (unsigned char *) isymbuf;
13806
13807 /* Delete bytes depending on the delcnt and deloff. */
13808 if (!mips_elf_relax_delete_bytes (abfd, sec,
13809 irel->r_offset + deloff, delcnt))
13810 goto error_return;
13811
13812 /* That will change things, so we should relax again.
13813 Note that this is not required, and it may be slow. */
13814 *again = TRUE;
13815 }
13816 }
13817
13818 if (isymbuf != NULL
13819 && symtab_hdr->contents != (unsigned char *) isymbuf)
13820 {
13821 if (! link_info->keep_memory)
13822 free (isymbuf);
13823 else
13824 {
13825 /* Cache the symbols for elf_link_input_bfd. */
13826 symtab_hdr->contents = (unsigned char *) isymbuf;
13827 }
13828 }
13829
13830 if (contents != NULL
13831 && elf_section_data (sec)->this_hdr.contents != contents)
13832 {
13833 if (! link_info->keep_memory)
13834 free (contents);
13835 else
13836 {
13837 /* Cache the section contents for elf_link_input_bfd. */
13838 elf_section_data (sec)->this_hdr.contents = contents;
13839 }
13840 }
13841
13842 if (internal_relocs != NULL
13843 && elf_section_data (sec)->relocs != internal_relocs)
13844 free (internal_relocs);
13845
13846 return TRUE;
13847
13848 error_return:
13849 if (isymbuf != NULL
13850 && symtab_hdr->contents != (unsigned char *) isymbuf)
13851 free (isymbuf);
13852 if (contents != NULL
13853 && elf_section_data (sec)->this_hdr.contents != contents)
13854 free (contents);
13855 if (internal_relocs != NULL
13856 && elf_section_data (sec)->relocs != internal_relocs)
13857 free (internal_relocs);
13858
13859 return FALSE;
13860}
13861\f
13862/* Create a MIPS ELF linker hash table. */
13863
13864struct bfd_link_hash_table *
13865_bfd_mips_elf_link_hash_table_create (bfd *abfd)
13866{
13867 struct mips_elf_link_hash_table *ret;
13868 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13869
13870 ret = bfd_zmalloc (amt);
13871 if (ret == NULL)
13872 return NULL;
13873
13874 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13875 mips_elf_link_hash_newfunc,
13876 sizeof (struct mips_elf_link_hash_entry),
13877 MIPS_ELF_DATA))
13878 {
13879 free (ret);
13880 return NULL;
13881 }
13882 ret->root.init_plt_refcount.plist = NULL;
13883 ret->root.init_plt_offset.plist = NULL;
13884
13885 return &ret->root.root;
13886}
13887
13888/* Likewise, but indicate that the target is VxWorks. */
13889
13890struct bfd_link_hash_table *
13891_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13892{
13893 struct bfd_link_hash_table *ret;
13894
13895 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13896 if (ret)
13897 {
13898 struct mips_elf_link_hash_table *htab;
13899
13900 htab = (struct mips_elf_link_hash_table *) ret;
13901 htab->use_plts_and_copy_relocs = TRUE;
13902 htab->is_vxworks = TRUE;
13903 }
13904 return ret;
13905}
13906
13907/* A function that the linker calls if we are allowed to use PLTs
13908 and copy relocs. */
13909
13910void
13911_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13912{
13913 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13914}
13915
13916/* A function that the linker calls to select between all or only
13917 32-bit microMIPS instructions. */
13918
13919void
13920_bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13921{
13922 mips_elf_hash_table (info)->insn32 = on;
13923}
13924\f
13925/* Structure for saying that BFD machine EXTENSION extends BASE. */
13926
13927struct mips_mach_extension
13928{
13929 unsigned long extension, base;
13930};
13931
13932
13933/* An array describing how BFD machines relate to one another. The entries
13934 are ordered topologically with MIPS I extensions listed last. */
13935
13936static const struct mips_mach_extension mips_mach_extensions[] =
13937{
13938 /* MIPS64r2 extensions. */
13939 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13940 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13941 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13942 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13943 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13944
13945 /* MIPS64 extensions. */
13946 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13947 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13948 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13949
13950 /* MIPS V extensions. */
13951 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13952
13953 /* R10000 extensions. */
13954 { bfd_mach_mips12000, bfd_mach_mips10000 },
13955 { bfd_mach_mips14000, bfd_mach_mips10000 },
13956 { bfd_mach_mips16000, bfd_mach_mips10000 },
13957
13958 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13959 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13960 better to allow vr5400 and vr5500 code to be merged anyway, since
13961 many libraries will just use the core ISA. Perhaps we could add
13962 some sort of ASE flag if this ever proves a problem. */
13963 { bfd_mach_mips5500, bfd_mach_mips5400 },
13964 { bfd_mach_mips5400, bfd_mach_mips5000 },
13965
13966 /* MIPS IV extensions. */
13967 { bfd_mach_mips5, bfd_mach_mips8000 },
13968 { bfd_mach_mips10000, bfd_mach_mips8000 },
13969 { bfd_mach_mips5000, bfd_mach_mips8000 },
13970 { bfd_mach_mips7000, bfd_mach_mips8000 },
13971 { bfd_mach_mips9000, bfd_mach_mips8000 },
13972
13973 /* VR4100 extensions. */
13974 { bfd_mach_mips4120, bfd_mach_mips4100 },
13975 { bfd_mach_mips4111, bfd_mach_mips4100 },
13976
13977 /* MIPS III extensions. */
13978 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13979 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13980 { bfd_mach_mips8000, bfd_mach_mips4000 },
13981 { bfd_mach_mips4650, bfd_mach_mips4000 },
13982 { bfd_mach_mips4600, bfd_mach_mips4000 },
13983 { bfd_mach_mips4400, bfd_mach_mips4000 },
13984 { bfd_mach_mips4300, bfd_mach_mips4000 },
13985 { bfd_mach_mips4100, bfd_mach_mips4000 },
13986 { bfd_mach_mips4010, bfd_mach_mips4000 },
13987 { bfd_mach_mips5900, bfd_mach_mips4000 },
13988
13989 /* MIPS32 extensions. */
13990 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13991
13992 /* MIPS II extensions. */
13993 { bfd_mach_mips4000, bfd_mach_mips6000 },
13994 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13995
13996 /* MIPS I extensions. */
13997 { bfd_mach_mips6000, bfd_mach_mips3000 },
13998 { bfd_mach_mips3900, bfd_mach_mips3000 }
13999};
14000
14001/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14002
14003static bfd_boolean
14004mips_mach_extends_p (unsigned long base, unsigned long extension)
14005{
14006 size_t i;
14007
14008 if (extension == base)
14009 return TRUE;
14010
14011 if (base == bfd_mach_mipsisa32
14012 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14013 return TRUE;
14014
14015 if (base == bfd_mach_mipsisa32r2
14016 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14017 return TRUE;
14018
14019 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14020 if (extension == mips_mach_extensions[i].extension)
14021 {
14022 extension = mips_mach_extensions[i].base;
14023 if (extension == base)
14024 return TRUE;
14025 }
14026
14027 return FALSE;
14028}
14029
14030/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14031
14032static unsigned long
14033bfd_mips_isa_ext_mach (unsigned int isa_ext)
14034{
14035 switch (isa_ext)
14036 {
14037 case AFL_EXT_3900: return bfd_mach_mips3900;
14038 case AFL_EXT_4010: return bfd_mach_mips4010;
14039 case AFL_EXT_4100: return bfd_mach_mips4100;
14040 case AFL_EXT_4111: return bfd_mach_mips4111;
14041 case AFL_EXT_4120: return bfd_mach_mips4120;
14042 case AFL_EXT_4650: return bfd_mach_mips4650;
14043 case AFL_EXT_5400: return bfd_mach_mips5400;
14044 case AFL_EXT_5500: return bfd_mach_mips5500;
14045 case AFL_EXT_5900: return bfd_mach_mips5900;
14046 case AFL_EXT_10000: return bfd_mach_mips10000;
14047 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14048 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14049 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14050 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14051 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14052 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14053 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14054 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14055 default: return bfd_mach_mips3000;
14056 }
14057}
14058
14059/* Return the .MIPS.abiflags value representing each ISA Extension. */
14060
14061unsigned int
14062bfd_mips_isa_ext (bfd *abfd)
14063{
14064 switch (bfd_get_mach (abfd))
14065 {
14066 case bfd_mach_mips3900: return AFL_EXT_3900;
14067 case bfd_mach_mips4010: return AFL_EXT_4010;
14068 case bfd_mach_mips4100: return AFL_EXT_4100;
14069 case bfd_mach_mips4111: return AFL_EXT_4111;
14070 case bfd_mach_mips4120: return AFL_EXT_4120;
14071 case bfd_mach_mips4650: return AFL_EXT_4650;
14072 case bfd_mach_mips5400: return AFL_EXT_5400;
14073 case bfd_mach_mips5500: return AFL_EXT_5500;
14074 case bfd_mach_mips5900: return AFL_EXT_5900;
14075 case bfd_mach_mips10000: return AFL_EXT_10000;
14076 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14077 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14078 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14079 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14080 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14081 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14082 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14083 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14084 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14085 default: return 0;
14086 }
14087}
14088
14089/* Encode ISA level and revision as a single value. */
14090#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14091
14092/* Decode a single value into level and revision. */
14093#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14094#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14095
14096/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14097
14098static void
14099update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14100{
14101 int new_isa = 0;
14102 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14103 {
14104 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14105 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14106 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14107 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14108 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14109 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14110 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14111 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14112 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14113 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14114 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14115 default:
14116 (*_bfd_error_handler)
14117 (_("%B: Unknown architecture %s"),
14118 abfd, bfd_printable_name (abfd));
14119 }
14120
14121 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14122 {
14123 abiflags->isa_level = ISA_LEVEL (new_isa);
14124 abiflags->isa_rev = ISA_REV (new_isa);
14125 }
14126
14127 /* Update the isa_ext if ABFD describes a further extension. */
14128 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14129 bfd_get_mach (abfd)))
14130 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14131}
14132
14133/* Return true if the given ELF header flags describe a 32-bit binary. */
14134
14135static bfd_boolean
14136mips_32bit_flags_p (flagword flags)
14137{
14138 return ((flags & EF_MIPS_32BITMODE) != 0
14139 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14140 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14141 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14142 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14143 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14144 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14145 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14146}
14147
14148/* Infer the content of the ABI flags based on the elf header. */
14149
14150static void
14151infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14152{
14153 obj_attribute *in_attr;
14154
14155 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14156 update_mips_abiflags_isa (abfd, abiflags);
14157
14158 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14159 abiflags->gpr_size = AFL_REG_32;
14160 else
14161 abiflags->gpr_size = AFL_REG_64;
14162
14163 abiflags->cpr1_size = AFL_REG_NONE;
14164
14165 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14166 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14167
14168 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14169 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14170 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14171 && abiflags->gpr_size == AFL_REG_32))
14172 abiflags->cpr1_size = AFL_REG_32;
14173 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14174 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14175 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14176 abiflags->cpr1_size = AFL_REG_64;
14177
14178 abiflags->cpr2_size = AFL_REG_NONE;
14179
14180 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14181 abiflags->ases |= AFL_ASE_MDMX;
14182 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14183 abiflags->ases |= AFL_ASE_MIPS16;
14184 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14185 abiflags->ases |= AFL_ASE_MICROMIPS;
14186
14187 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14188 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14189 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14190 && abiflags->isa_level >= 32
14191 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14192 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14193}
14194
14195/* We need to use a special link routine to handle the .reginfo and
14196 the .mdebug sections. We need to merge all instances of these
14197 sections together, not write them all out sequentially. */
14198
14199bfd_boolean
14200_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14201{
14202 asection *o;
14203 struct bfd_link_order *p;
14204 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14205 asection *rtproc_sec, *abiflags_sec;
14206 Elf32_RegInfo reginfo;
14207 struct ecoff_debug_info debug;
14208 struct mips_htab_traverse_info hti;
14209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14210 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14211 HDRR *symhdr = &debug.symbolic_header;
14212 void *mdebug_handle = NULL;
14213 asection *s;
14214 EXTR esym;
14215 unsigned int i;
14216 bfd_size_type amt;
14217 struct mips_elf_link_hash_table *htab;
14218
14219 static const char * const secname[] =
14220 {
14221 ".text", ".init", ".fini", ".data",
14222 ".rodata", ".sdata", ".sbss", ".bss"
14223 };
14224 static const int sc[] =
14225 {
14226 scText, scInit, scFini, scData,
14227 scRData, scSData, scSBss, scBss
14228 };
14229
14230 /* Sort the dynamic symbols so that those with GOT entries come after
14231 those without. */
14232 htab = mips_elf_hash_table (info);
14233 BFD_ASSERT (htab != NULL);
14234
14235 if (!mips_elf_sort_hash_table (abfd, info))
14236 return FALSE;
14237
14238 /* Create any scheduled LA25 stubs. */
14239 hti.info = info;
14240 hti.output_bfd = abfd;
14241 hti.error = FALSE;
14242 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14243 if (hti.error)
14244 return FALSE;
14245
14246 /* Get a value for the GP register. */
14247 if (elf_gp (abfd) == 0)
14248 {
14249 struct bfd_link_hash_entry *h;
14250
14251 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14252 if (h != NULL && h->type == bfd_link_hash_defined)
14253 elf_gp (abfd) = (h->u.def.value
14254 + h->u.def.section->output_section->vma
14255 + h->u.def.section->output_offset);
14256 else if (htab->is_vxworks
14257 && (h = bfd_link_hash_lookup (info->hash,
14258 "_GLOBAL_OFFSET_TABLE_",
14259 FALSE, FALSE, TRUE))
14260 && h->type == bfd_link_hash_defined)
14261 elf_gp (abfd) = (h->u.def.section->output_section->vma
14262 + h->u.def.section->output_offset
14263 + h->u.def.value);
14264 else if (bfd_link_relocatable (info))
14265 {
14266 bfd_vma lo = MINUS_ONE;
14267
14268 /* Find the GP-relative section with the lowest offset. */
14269 for (o = abfd->sections; o != NULL; o = o->next)
14270 if (o->vma < lo
14271 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14272 lo = o->vma;
14273
14274 /* And calculate GP relative to that. */
14275 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14276 }
14277 else
14278 {
14279 /* If the relocate_section function needs to do a reloc
14280 involving the GP value, it should make a reloc_dangerous
14281 callback to warn that GP is not defined. */
14282 }
14283 }
14284
14285 /* Go through the sections and collect the .reginfo and .mdebug
14286 information. */
14287 abiflags_sec = NULL;
14288 reginfo_sec = NULL;
14289 mdebug_sec = NULL;
14290 gptab_data_sec = NULL;
14291 gptab_bss_sec = NULL;
14292 for (o = abfd->sections; o != NULL; o = o->next)
14293 {
14294 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14295 {
14296 /* We have found the .MIPS.abiflags section in the output file.
14297 Look through all the link_orders comprising it and remove them.
14298 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14299 for (p = o->map_head.link_order; p != NULL; p = p->next)
14300 {
14301 asection *input_section;
14302
14303 if (p->type != bfd_indirect_link_order)
14304 {
14305 if (p->type == bfd_data_link_order)
14306 continue;
14307 abort ();
14308 }
14309
14310 input_section = p->u.indirect.section;
14311
14312 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14313 elf_link_input_bfd ignores this section. */
14314 input_section->flags &= ~SEC_HAS_CONTENTS;
14315 }
14316
14317 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14318 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14319
14320 /* Skip this section later on (I don't think this currently
14321 matters, but someday it might). */
14322 o->map_head.link_order = NULL;
14323
14324 abiflags_sec = o;
14325 }
14326
14327 if (strcmp (o->name, ".reginfo") == 0)
14328 {
14329 memset (&reginfo, 0, sizeof reginfo);
14330
14331 /* We have found the .reginfo section in the output file.
14332 Look through all the link_orders comprising it and merge
14333 the information together. */
14334 for (p = o->map_head.link_order; p != NULL; p = p->next)
14335 {
14336 asection *input_section;
14337 bfd *input_bfd;
14338 Elf32_External_RegInfo ext;
14339 Elf32_RegInfo sub;
14340
14341 if (p->type != bfd_indirect_link_order)
14342 {
14343 if (p->type == bfd_data_link_order)
14344 continue;
14345 abort ();
14346 }
14347
14348 input_section = p->u.indirect.section;
14349 input_bfd = input_section->owner;
14350
14351 if (! bfd_get_section_contents (input_bfd, input_section,
14352 &ext, 0, sizeof ext))
14353 return FALSE;
14354
14355 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14356
14357 reginfo.ri_gprmask |= sub.ri_gprmask;
14358 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14359 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14360 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14361 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14362
14363 /* ri_gp_value is set by the function
14364 mips_elf32_section_processing when the section is
14365 finally written out. */
14366
14367 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14368 elf_link_input_bfd ignores this section. */
14369 input_section->flags &= ~SEC_HAS_CONTENTS;
14370 }
14371
14372 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14373 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14374
14375 /* Skip this section later on (I don't think this currently
14376 matters, but someday it might). */
14377 o->map_head.link_order = NULL;
14378
14379 reginfo_sec = o;
14380 }
14381
14382 if (strcmp (o->name, ".mdebug") == 0)
14383 {
14384 struct extsym_info einfo;
14385 bfd_vma last;
14386
14387 /* We have found the .mdebug section in the output file.
14388 Look through all the link_orders comprising it and merge
14389 the information together. */
14390 symhdr->magic = swap->sym_magic;
14391 /* FIXME: What should the version stamp be? */
14392 symhdr->vstamp = 0;
14393 symhdr->ilineMax = 0;
14394 symhdr->cbLine = 0;
14395 symhdr->idnMax = 0;
14396 symhdr->ipdMax = 0;
14397 symhdr->isymMax = 0;
14398 symhdr->ioptMax = 0;
14399 symhdr->iauxMax = 0;
14400 symhdr->issMax = 0;
14401 symhdr->issExtMax = 0;
14402 symhdr->ifdMax = 0;
14403 symhdr->crfd = 0;
14404 symhdr->iextMax = 0;
14405
14406 /* We accumulate the debugging information itself in the
14407 debug_info structure. */
14408 debug.line = NULL;
14409 debug.external_dnr = NULL;
14410 debug.external_pdr = NULL;
14411 debug.external_sym = NULL;
14412 debug.external_opt = NULL;
14413 debug.external_aux = NULL;
14414 debug.ss = NULL;
14415 debug.ssext = debug.ssext_end = NULL;
14416 debug.external_fdr = NULL;
14417 debug.external_rfd = NULL;
14418 debug.external_ext = debug.external_ext_end = NULL;
14419
14420 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14421 if (mdebug_handle == NULL)
14422 return FALSE;
14423
14424 esym.jmptbl = 0;
14425 esym.cobol_main = 0;
14426 esym.weakext = 0;
14427 esym.reserved = 0;
14428 esym.ifd = ifdNil;
14429 esym.asym.iss = issNil;
14430 esym.asym.st = stLocal;
14431 esym.asym.reserved = 0;
14432 esym.asym.index = indexNil;
14433 last = 0;
14434 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14435 {
14436 esym.asym.sc = sc[i];
14437 s = bfd_get_section_by_name (abfd, secname[i]);
14438 if (s != NULL)
14439 {
14440 esym.asym.value = s->vma;
14441 last = s->vma + s->size;
14442 }
14443 else
14444 esym.asym.value = last;
14445 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14446 secname[i], &esym))
14447 return FALSE;
14448 }
14449
14450 for (p = o->map_head.link_order; p != NULL; p = p->next)
14451 {
14452 asection *input_section;
14453 bfd *input_bfd;
14454 const struct ecoff_debug_swap *input_swap;
14455 struct ecoff_debug_info input_debug;
14456 char *eraw_src;
14457 char *eraw_end;
14458
14459 if (p->type != bfd_indirect_link_order)
14460 {
14461 if (p->type == bfd_data_link_order)
14462 continue;
14463 abort ();
14464 }
14465
14466 input_section = p->u.indirect.section;
14467 input_bfd = input_section->owner;
14468
14469 if (!is_mips_elf (input_bfd))
14470 {
14471 /* I don't know what a non MIPS ELF bfd would be
14472 doing with a .mdebug section, but I don't really
14473 want to deal with it. */
14474 continue;
14475 }
14476
14477 input_swap = (get_elf_backend_data (input_bfd)
14478 ->elf_backend_ecoff_debug_swap);
14479
14480 BFD_ASSERT (p->size == input_section->size);
14481
14482 /* The ECOFF linking code expects that we have already
14483 read in the debugging information and set up an
14484 ecoff_debug_info structure, so we do that now. */
14485 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14486 &input_debug))
14487 return FALSE;
14488
14489 if (! (bfd_ecoff_debug_accumulate
14490 (mdebug_handle, abfd, &debug, swap, input_bfd,
14491 &input_debug, input_swap, info)))
14492 return FALSE;
14493
14494 /* Loop through the external symbols. For each one with
14495 interesting information, try to find the symbol in
14496 the linker global hash table and save the information
14497 for the output external symbols. */
14498 eraw_src = input_debug.external_ext;
14499 eraw_end = (eraw_src
14500 + (input_debug.symbolic_header.iextMax
14501 * input_swap->external_ext_size));
14502 for (;
14503 eraw_src < eraw_end;
14504 eraw_src += input_swap->external_ext_size)
14505 {
14506 EXTR ext;
14507 const char *name;
14508 struct mips_elf_link_hash_entry *h;
14509
14510 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14511 if (ext.asym.sc == scNil
14512 || ext.asym.sc == scUndefined
14513 || ext.asym.sc == scSUndefined)
14514 continue;
14515
14516 name = input_debug.ssext + ext.asym.iss;
14517 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14518 name, FALSE, FALSE, TRUE);
14519 if (h == NULL || h->esym.ifd != -2)
14520 continue;
14521
14522 if (ext.ifd != -1)
14523 {
14524 BFD_ASSERT (ext.ifd
14525 < input_debug.symbolic_header.ifdMax);
14526 ext.ifd = input_debug.ifdmap[ext.ifd];
14527 }
14528
14529 h->esym = ext;
14530 }
14531
14532 /* Free up the information we just read. */
14533 free (input_debug.line);
14534 free (input_debug.external_dnr);
14535 free (input_debug.external_pdr);
14536 free (input_debug.external_sym);
14537 free (input_debug.external_opt);
14538 free (input_debug.external_aux);
14539 free (input_debug.ss);
14540 free (input_debug.ssext);
14541 free (input_debug.external_fdr);
14542 free (input_debug.external_rfd);
14543 free (input_debug.external_ext);
14544
14545 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14546 elf_link_input_bfd ignores this section. */
14547 input_section->flags &= ~SEC_HAS_CONTENTS;
14548 }
14549
14550 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14551 {
14552 /* Create .rtproc section. */
14553 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14554 if (rtproc_sec == NULL)
14555 {
14556 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14557 | SEC_LINKER_CREATED | SEC_READONLY);
14558
14559 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14560 ".rtproc",
14561 flags);
14562 if (rtproc_sec == NULL
14563 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14564 return FALSE;
14565 }
14566
14567 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14568 info, rtproc_sec,
14569 &debug))
14570 return FALSE;
14571 }
14572
14573 /* Build the external symbol information. */
14574 einfo.abfd = abfd;
14575 einfo.info = info;
14576 einfo.debug = &debug;
14577 einfo.swap = swap;
14578 einfo.failed = FALSE;
14579 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14580 mips_elf_output_extsym, &einfo);
14581 if (einfo.failed)
14582 return FALSE;
14583
14584 /* Set the size of the .mdebug section. */
14585 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14586
14587 /* Skip this section later on (I don't think this currently
14588 matters, but someday it might). */
14589 o->map_head.link_order = NULL;
14590
14591 mdebug_sec = o;
14592 }
14593
14594 if (CONST_STRNEQ (o->name, ".gptab."))
14595 {
14596 const char *subname;
14597 unsigned int c;
14598 Elf32_gptab *tab;
14599 Elf32_External_gptab *ext_tab;
14600 unsigned int j;
14601
14602 /* The .gptab.sdata and .gptab.sbss sections hold
14603 information describing how the small data area would
14604 change depending upon the -G switch. These sections
14605 not used in executables files. */
14606 if (! bfd_link_relocatable (info))
14607 {
14608 for (p = o->map_head.link_order; p != NULL; p = p->next)
14609 {
14610 asection *input_section;
14611
14612 if (p->type != bfd_indirect_link_order)
14613 {
14614 if (p->type == bfd_data_link_order)
14615 continue;
14616 abort ();
14617 }
14618
14619 input_section = p->u.indirect.section;
14620
14621 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14622 elf_link_input_bfd ignores this section. */
14623 input_section->flags &= ~SEC_HAS_CONTENTS;
14624 }
14625
14626 /* Skip this section later on (I don't think this
14627 currently matters, but someday it might). */
14628 o->map_head.link_order = NULL;
14629
14630 /* Really remove the section. */
14631 bfd_section_list_remove (abfd, o);
14632 --abfd->section_count;
14633
14634 continue;
14635 }
14636
14637 /* There is one gptab for initialized data, and one for
14638 uninitialized data. */
14639 if (strcmp (o->name, ".gptab.sdata") == 0)
14640 gptab_data_sec = o;
14641 else if (strcmp (o->name, ".gptab.sbss") == 0)
14642 gptab_bss_sec = o;
14643 else
14644 {
14645 (*_bfd_error_handler)
14646 (_("%s: illegal section name `%s'"),
14647 bfd_get_filename (abfd), o->name);
14648 bfd_set_error (bfd_error_nonrepresentable_section);
14649 return FALSE;
14650 }
14651
14652 /* The linker script always combines .gptab.data and
14653 .gptab.sdata into .gptab.sdata, and likewise for
14654 .gptab.bss and .gptab.sbss. It is possible that there is
14655 no .sdata or .sbss section in the output file, in which
14656 case we must change the name of the output section. */
14657 subname = o->name + sizeof ".gptab" - 1;
14658 if (bfd_get_section_by_name (abfd, subname) == NULL)
14659 {
14660 if (o == gptab_data_sec)
14661 o->name = ".gptab.data";
14662 else
14663 o->name = ".gptab.bss";
14664 subname = o->name + sizeof ".gptab" - 1;
14665 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14666 }
14667
14668 /* Set up the first entry. */
14669 c = 1;
14670 amt = c * sizeof (Elf32_gptab);
14671 tab = bfd_malloc (amt);
14672 if (tab == NULL)
14673 return FALSE;
14674 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14675 tab[0].gt_header.gt_unused = 0;
14676
14677 /* Combine the input sections. */
14678 for (p = o->map_head.link_order; p != NULL; p = p->next)
14679 {
14680 asection *input_section;
14681 bfd *input_bfd;
14682 bfd_size_type size;
14683 unsigned long last;
14684 bfd_size_type gpentry;
14685
14686 if (p->type != bfd_indirect_link_order)
14687 {
14688 if (p->type == bfd_data_link_order)
14689 continue;
14690 abort ();
14691 }
14692
14693 input_section = p->u.indirect.section;
14694 input_bfd = input_section->owner;
14695
14696 /* Combine the gptab entries for this input section one
14697 by one. We know that the input gptab entries are
14698 sorted by ascending -G value. */
14699 size = input_section->size;
14700 last = 0;
14701 for (gpentry = sizeof (Elf32_External_gptab);
14702 gpentry < size;
14703 gpentry += sizeof (Elf32_External_gptab))
14704 {
14705 Elf32_External_gptab ext_gptab;
14706 Elf32_gptab int_gptab;
14707 unsigned long val;
14708 unsigned long add;
14709 bfd_boolean exact;
14710 unsigned int look;
14711
14712 if (! (bfd_get_section_contents
14713 (input_bfd, input_section, &ext_gptab, gpentry,
14714 sizeof (Elf32_External_gptab))))
14715 {
14716 free (tab);
14717 return FALSE;
14718 }
14719
14720 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14721 &int_gptab);
14722 val = int_gptab.gt_entry.gt_g_value;
14723 add = int_gptab.gt_entry.gt_bytes - last;
14724
14725 exact = FALSE;
14726 for (look = 1; look < c; look++)
14727 {
14728 if (tab[look].gt_entry.gt_g_value >= val)
14729 tab[look].gt_entry.gt_bytes += add;
14730
14731 if (tab[look].gt_entry.gt_g_value == val)
14732 exact = TRUE;
14733 }
14734
14735 if (! exact)
14736 {
14737 Elf32_gptab *new_tab;
14738 unsigned int max;
14739
14740 /* We need a new table entry. */
14741 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14742 new_tab = bfd_realloc (tab, amt);
14743 if (new_tab == NULL)
14744 {
14745 free (tab);
14746 return FALSE;
14747 }
14748 tab = new_tab;
14749 tab[c].gt_entry.gt_g_value = val;
14750 tab[c].gt_entry.gt_bytes = add;
14751
14752 /* Merge in the size for the next smallest -G
14753 value, since that will be implied by this new
14754 value. */
14755 max = 0;
14756 for (look = 1; look < c; look++)
14757 {
14758 if (tab[look].gt_entry.gt_g_value < val
14759 && (max == 0
14760 || (tab[look].gt_entry.gt_g_value
14761 > tab[max].gt_entry.gt_g_value)))
14762 max = look;
14763 }
14764 if (max != 0)
14765 tab[c].gt_entry.gt_bytes +=
14766 tab[max].gt_entry.gt_bytes;
14767
14768 ++c;
14769 }
14770
14771 last = int_gptab.gt_entry.gt_bytes;
14772 }
14773
14774 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14775 elf_link_input_bfd ignores this section. */
14776 input_section->flags &= ~SEC_HAS_CONTENTS;
14777 }
14778
14779 /* The table must be sorted by -G value. */
14780 if (c > 2)
14781 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14782
14783 /* Swap out the table. */
14784 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14785 ext_tab = bfd_alloc (abfd, amt);
14786 if (ext_tab == NULL)
14787 {
14788 free (tab);
14789 return FALSE;
14790 }
14791
14792 for (j = 0; j < c; j++)
14793 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14794 free (tab);
14795
14796 o->size = c * sizeof (Elf32_External_gptab);
14797 o->contents = (bfd_byte *) ext_tab;
14798
14799 /* Skip this section later on (I don't think this currently
14800 matters, but someday it might). */
14801 o->map_head.link_order = NULL;
14802 }
14803 }
14804
14805 /* Invoke the regular ELF backend linker to do all the work. */
14806 if (!bfd_elf_final_link (abfd, info))
14807 return FALSE;
14808
14809 /* Now write out the computed sections. */
14810
14811 if (abiflags_sec != NULL)
14812 {
14813 Elf_External_ABIFlags_v0 ext;
14814 Elf_Internal_ABIFlags_v0 *abiflags;
14815
14816 abiflags = &mips_elf_tdata (abfd)->abiflags;
14817
14818 /* Set up the abiflags if no valid input sections were found. */
14819 if (!mips_elf_tdata (abfd)->abiflags_valid)
14820 {
14821 infer_mips_abiflags (abfd, abiflags);
14822 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14823 }
14824 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14825 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14826 return FALSE;
14827 }
14828
14829 if (reginfo_sec != NULL)
14830 {
14831 Elf32_External_RegInfo ext;
14832
14833 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14834 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14835 return FALSE;
14836 }
14837
14838 if (mdebug_sec != NULL)
14839 {
14840 BFD_ASSERT (abfd->output_has_begun);
14841 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14842 swap, info,
14843 mdebug_sec->filepos))
14844 return FALSE;
14845
14846 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14847 }
14848
14849 if (gptab_data_sec != NULL)
14850 {
14851 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14852 gptab_data_sec->contents,
14853 0, gptab_data_sec->size))
14854 return FALSE;
14855 }
14856
14857 if (gptab_bss_sec != NULL)
14858 {
14859 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14860 gptab_bss_sec->contents,
14861 0, gptab_bss_sec->size))
14862 return FALSE;
14863 }
14864
14865 if (SGI_COMPAT (abfd))
14866 {
14867 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14868 if (rtproc_sec != NULL)
14869 {
14870 if (! bfd_set_section_contents (abfd, rtproc_sec,
14871 rtproc_sec->contents,
14872 0, rtproc_sec->size))
14873 return FALSE;
14874 }
14875 }
14876
14877 return TRUE;
14878}
14879\f
14880/* Merge object file header flags from IBFD into OBFD. Raise an error
14881 if there are conflicting settings. */
14882
14883static bfd_boolean
14884mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
14885{
14886 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14887 flagword old_flags;
14888 flagword new_flags;
14889 bfd_boolean ok;
14890
14891 new_flags = elf_elfheader (ibfd)->e_flags;
14892 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14893 old_flags = elf_elfheader (obfd)->e_flags;
14894
14895 /* Check flag compatibility. */
14896
14897 new_flags &= ~EF_MIPS_NOREORDER;
14898 old_flags &= ~EF_MIPS_NOREORDER;
14899
14900 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14901 doesn't seem to matter. */
14902 new_flags &= ~EF_MIPS_XGOT;
14903 old_flags &= ~EF_MIPS_XGOT;
14904
14905 /* MIPSpro generates ucode info in n64 objects. Again, we should
14906 just be able to ignore this. */
14907 new_flags &= ~EF_MIPS_UCODE;
14908 old_flags &= ~EF_MIPS_UCODE;
14909
14910 /* DSOs should only be linked with CPIC code. */
14911 if ((ibfd->flags & DYNAMIC) != 0)
14912 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14913
14914 if (new_flags == old_flags)
14915 return TRUE;
14916
14917 ok = TRUE;
14918
14919 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14920 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14921 {
14922 (*_bfd_error_handler)
14923 (_("%B: warning: linking abicalls files with non-abicalls files"),
14924 ibfd);
14925 ok = TRUE;
14926 }
14927
14928 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14929 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14930 if (! (new_flags & EF_MIPS_PIC))
14931 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14932
14933 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14934 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14935
14936 /* Compare the ISAs. */
14937 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14938 {
14939 (*_bfd_error_handler)
14940 (_("%B: linking 32-bit code with 64-bit code"),
14941 ibfd);
14942 ok = FALSE;
14943 }
14944 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14945 {
14946 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14947 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14948 {
14949 /* Copy the architecture info from IBFD to OBFD. Also copy
14950 the 32-bit flag (if set) so that we continue to recognise
14951 OBFD as a 32-bit binary. */
14952 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14953 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14954 elf_elfheader (obfd)->e_flags
14955 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14956
14957 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14958 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14959
14960 /* Copy across the ABI flags if OBFD doesn't use them
14961 and if that was what caused us to treat IBFD as 32-bit. */
14962 if ((old_flags & EF_MIPS_ABI) == 0
14963 && mips_32bit_flags_p (new_flags)
14964 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14965 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14966 }
14967 else
14968 {
14969 /* The ISAs aren't compatible. */
14970 (*_bfd_error_handler)
14971 (_("%B: linking %s module with previous %s modules"),
14972 ibfd,
14973 bfd_printable_name (ibfd),
14974 bfd_printable_name (obfd));
14975 ok = FALSE;
14976 }
14977 }
14978
14979 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14980 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14981
14982 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14983 does set EI_CLASS differently from any 32-bit ABI. */
14984 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14985 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14986 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14987 {
14988 /* Only error if both are set (to different values). */
14989 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14990 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14991 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14992 {
14993 (*_bfd_error_handler)
14994 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14995 ibfd,
14996 elf_mips_abi_name (ibfd),
14997 elf_mips_abi_name (obfd));
14998 ok = FALSE;
14999 }
15000 new_flags &= ~EF_MIPS_ABI;
15001 old_flags &= ~EF_MIPS_ABI;
15002 }
15003
15004 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15005 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15006 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15007 {
15008 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15009 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15010 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15011 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15012 int micro_mis = old_m16 && new_micro;
15013 int m16_mis = old_micro && new_m16;
15014
15015 if (m16_mis || micro_mis)
15016 {
15017 (*_bfd_error_handler)
15018 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15019 ibfd,
15020 m16_mis ? "MIPS16" : "microMIPS",
15021 m16_mis ? "microMIPS" : "MIPS16");
15022 ok = FALSE;
15023 }
15024
15025 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15026
15027 new_flags &= ~ EF_MIPS_ARCH_ASE;
15028 old_flags &= ~ EF_MIPS_ARCH_ASE;
15029 }
15030
15031 /* Compare NaN encodings. */
15032 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15033 {
15034 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15035 ibfd,
15036 (new_flags & EF_MIPS_NAN2008
15037 ? "-mnan=2008" : "-mnan=legacy"),
15038 (old_flags & EF_MIPS_NAN2008
15039 ? "-mnan=2008" : "-mnan=legacy"));
15040 ok = FALSE;
15041 new_flags &= ~EF_MIPS_NAN2008;
15042 old_flags &= ~EF_MIPS_NAN2008;
15043 }
15044
15045 /* Compare FP64 state. */
15046 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15047 {
15048 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15049 ibfd,
15050 (new_flags & EF_MIPS_FP64
15051 ? "-mfp64" : "-mfp32"),
15052 (old_flags & EF_MIPS_FP64
15053 ? "-mfp64" : "-mfp32"));
15054 ok = FALSE;
15055 new_flags &= ~EF_MIPS_FP64;
15056 old_flags &= ~EF_MIPS_FP64;
15057 }
15058
15059 /* Warn about any other mismatches */
15060 if (new_flags != old_flags)
15061 {
15062 (*_bfd_error_handler)
15063 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15064 "(0x%lx)"),
15065 ibfd, (unsigned long) new_flags,
15066 (unsigned long) old_flags);
15067 ok = FALSE;
15068 }
15069
15070 return ok;
15071}
15072
15073/* Merge object attributes from IBFD into OBFD. Raise an error if
15074 there are conflicting attributes. */
15075static bfd_boolean
15076mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15077{
15078 obj_attribute *in_attr;
15079 obj_attribute *out_attr;
15080 bfd *abi_fp_bfd;
15081 bfd *abi_msa_bfd;
15082
15083 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15084 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15085 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15086 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15087
15088 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15089 if (!abi_msa_bfd
15090 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15091 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15092
15093 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15094 {
15095 /* This is the first object. Copy the attributes. */
15096 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15097
15098 /* Use the Tag_null value to indicate the attributes have been
15099 initialized. */
15100 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15101
15102 return TRUE;
15103 }
15104
15105 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15106 non-conflicting ones. */
15107 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15108 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15109 {
15110 int out_fp, in_fp;
15111
15112 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15113 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15114 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15115 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15116 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15117 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15118 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15119 || in_fp == Val_GNU_MIPS_ABI_FP_64
15120 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15121 {
15122 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15123 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15124 }
15125 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15126 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15127 || out_fp == Val_GNU_MIPS_ABI_FP_64
15128 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15129 /* Keep the current setting. */;
15130 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15131 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15132 {
15133 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15134 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15135 }
15136 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15137 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15138 /* Keep the current setting. */;
15139 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15140 {
15141 const char *out_string, *in_string;
15142
15143 out_string = _bfd_mips_fp_abi_string (out_fp);
15144 in_string = _bfd_mips_fp_abi_string (in_fp);
15145 /* First warn about cases involving unrecognised ABIs. */
15146 if (!out_string && !in_string)
15147 _bfd_error_handler
15148 (_("Warning: %B uses unknown floating point ABI %d "
15149 "(set by %B), %B uses unknown floating point ABI %d"),
15150 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15151 else if (!out_string)
15152 _bfd_error_handler
15153 (_("Warning: %B uses unknown floating point ABI %d "
15154 "(set by %B), %B uses %s"),
15155 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15156 else if (!in_string)
15157 _bfd_error_handler
15158 (_("Warning: %B uses %s (set by %B), "
15159 "%B uses unknown floating point ABI %d"),
15160 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15161 else
15162 {
15163 /* If one of the bfds is soft-float, the other must be
15164 hard-float. The exact choice of hard-float ABI isn't
15165 really relevant to the error message. */
15166 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15167 out_string = "-mhard-float";
15168 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15169 in_string = "-mhard-float";
15170 _bfd_error_handler
15171 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15172 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15173 }
15174 }
15175 }
15176
15177 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15178 non-conflicting ones. */
15179 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15180 {
15181 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15182 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15183 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15184 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15185 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15186 {
15187 case Val_GNU_MIPS_ABI_MSA_128:
15188 _bfd_error_handler
15189 (_("Warning: %B uses %s (set by %B), "
15190 "%B uses unknown MSA ABI %d"),
15191 obfd, abi_msa_bfd, ibfd,
15192 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15193 break;
15194
15195 default:
15196 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15197 {
15198 case Val_GNU_MIPS_ABI_MSA_128:
15199 _bfd_error_handler
15200 (_("Warning: %B uses unknown MSA ABI %d "
15201 "(set by %B), %B uses %s"),
15202 obfd, abi_msa_bfd, ibfd,
15203 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15204 break;
15205
15206 default:
15207 _bfd_error_handler
15208 (_("Warning: %B uses unknown MSA ABI %d "
15209 "(set by %B), %B uses unknown MSA ABI %d"),
15210 obfd, abi_msa_bfd, ibfd,
15211 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15212 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15213 break;
15214 }
15215 }
15216 }
15217
15218 /* Merge Tag_compatibility attributes and any common GNU ones. */
15219 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15220}
15221
15222/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15223 there are conflicting settings. */
15224
15225static bfd_boolean
15226mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15227{
15228 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15229 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15230 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15231
15232 /* Update the output abiflags fp_abi using the computed fp_abi. */
15233 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15234
15235#define max(a, b) ((a) > (b) ? (a) : (b))
15236 /* Merge abiflags. */
15237 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15238 in_tdata->abiflags.isa_level);
15239 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15240 in_tdata->abiflags.isa_rev);
15241 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15242 in_tdata->abiflags.gpr_size);
15243 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15244 in_tdata->abiflags.cpr1_size);
15245 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15246 in_tdata->abiflags.cpr2_size);
15247#undef max
15248 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15249 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15250
15251 return TRUE;
15252}
15253
15254/* Merge backend specific data from an object file to the output
15255 object file when linking. */
15256
15257bfd_boolean
15258_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15259{
15260 struct mips_elf_obj_tdata *out_tdata;
15261 struct mips_elf_obj_tdata *in_tdata;
15262 bfd_boolean null_input_bfd = TRUE;
15263 asection *sec;
15264 bfd_boolean ok;
15265
15266 /* Check if we have the same endianness. */
15267 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15268 {
15269 (*_bfd_error_handler)
15270 (_("%B: endianness incompatible with that of the selected emulation"),
15271 ibfd);
15272 return FALSE;
15273 }
15274
15275 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15276 return TRUE;
15277
15278 in_tdata = mips_elf_tdata (ibfd);
15279 out_tdata = mips_elf_tdata (obfd);
15280
15281 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15282 {
15283 (*_bfd_error_handler)
15284 (_("%B: ABI is incompatible with that of the selected emulation"),
15285 ibfd);
15286 return FALSE;
15287 }
15288
15289 /* Check to see if the input BFD actually contains any sections. If not,
15290 then it has no attributes, and its flags may not have been initialized
15291 either, but it cannot actually cause any incompatibility. */
15292 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15293 {
15294 /* Ignore synthetic sections and empty .text, .data and .bss sections
15295 which are automatically generated by gas. Also ignore fake
15296 (s)common sections, since merely defining a common symbol does
15297 not affect compatibility. */
15298 if ((sec->flags & SEC_IS_COMMON) == 0
15299 && strcmp (sec->name, ".reginfo")
15300 && strcmp (sec->name, ".mdebug")
15301 && (sec->size != 0
15302 || (strcmp (sec->name, ".text")
15303 && strcmp (sec->name, ".data")
15304 && strcmp (sec->name, ".bss"))))
15305 {
15306 null_input_bfd = FALSE;
15307 break;
15308 }
15309 }
15310 if (null_input_bfd)
15311 return TRUE;
15312
15313 /* Populate abiflags using existing information. */
15314 if (in_tdata->abiflags_valid)
15315 {
15316 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15317 Elf_Internal_ABIFlags_v0 in_abiflags;
15318 Elf_Internal_ABIFlags_v0 abiflags;
15319
15320 /* Set up the FP ABI attribute from the abiflags if it is not already
15321 set. */
15322 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15323 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15324
15325 infer_mips_abiflags (ibfd, &abiflags);
15326 in_abiflags = in_tdata->abiflags;
15327
15328 /* It is not possible to infer the correct ISA revision
15329 for R3 or R5 so drop down to R2 for the checks. */
15330 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15331 in_abiflags.isa_rev = 2;
15332
15333 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15334 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15335 (*_bfd_error_handler)
15336 (_("%B: warning: Inconsistent ISA between e_flags and "
15337 ".MIPS.abiflags"), ibfd);
15338 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15339 && in_abiflags.fp_abi != abiflags.fp_abi)
15340 (*_bfd_error_handler)
15341 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15342 ".MIPS.abiflags"), ibfd);
15343 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15344 (*_bfd_error_handler)
15345 (_("%B: warning: Inconsistent ASEs between e_flags and "
15346 ".MIPS.abiflags"), ibfd);
15347 /* The isa_ext is allowed to be an extension of what can be inferred
15348 from e_flags. */
15349 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15350 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15351 (*_bfd_error_handler)
15352 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15353 ".MIPS.abiflags"), ibfd);
15354 if (in_abiflags.flags2 != 0)
15355 (*_bfd_error_handler)
15356 (_("%B: warning: Unexpected flag in the flags2 field of "
15357 ".MIPS.abiflags (0x%lx)"), ibfd,
15358 (unsigned long) in_abiflags.flags2);
15359 }
15360 else
15361 {
15362 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15363 in_tdata->abiflags_valid = TRUE;
15364 }
15365
15366 if (!out_tdata->abiflags_valid)
15367 {
15368 /* Copy input abiflags if output abiflags are not already valid. */
15369 out_tdata->abiflags = in_tdata->abiflags;
15370 out_tdata->abiflags_valid = TRUE;
15371 }
15372
15373 if (! elf_flags_init (obfd))
15374 {
15375 elf_flags_init (obfd) = TRUE;
15376 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15377 elf_elfheader (obfd)->e_ident[EI_CLASS]
15378 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15379
15380 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15381 && (bfd_get_arch_info (obfd)->the_default
15382 || mips_mach_extends_p (bfd_get_mach (obfd),
15383 bfd_get_mach (ibfd))))
15384 {
15385 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15386 bfd_get_mach (ibfd)))
15387 return FALSE;
15388
15389 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15390 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15391 }
15392
15393 ok = TRUE;
15394 }
15395 else
15396 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15397
15398 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15399
15400 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15401
15402 if (!ok)
15403 {
15404 bfd_set_error (bfd_error_bad_value);
15405 return FALSE;
15406 }
15407
15408 return TRUE;
15409}
15410
15411/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15412
15413bfd_boolean
15414_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15415{
15416 BFD_ASSERT (!elf_flags_init (abfd)
15417 || elf_elfheader (abfd)->e_flags == flags);
15418
15419 elf_elfheader (abfd)->e_flags = flags;
15420 elf_flags_init (abfd) = TRUE;
15421 return TRUE;
15422}
15423
15424char *
15425_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15426{
15427 switch (dtag)
15428 {
15429 default: return "";
15430 case DT_MIPS_RLD_VERSION:
15431 return "MIPS_RLD_VERSION";
15432 case DT_MIPS_TIME_STAMP:
15433 return "MIPS_TIME_STAMP";
15434 case DT_MIPS_ICHECKSUM:
15435 return "MIPS_ICHECKSUM";
15436 case DT_MIPS_IVERSION:
15437 return "MIPS_IVERSION";
15438 case DT_MIPS_FLAGS:
15439 return "MIPS_FLAGS";
15440 case DT_MIPS_BASE_ADDRESS:
15441 return "MIPS_BASE_ADDRESS";
15442 case DT_MIPS_MSYM:
15443 return "MIPS_MSYM";
15444 case DT_MIPS_CONFLICT:
15445 return "MIPS_CONFLICT";
15446 case DT_MIPS_LIBLIST:
15447 return "MIPS_LIBLIST";
15448 case DT_MIPS_LOCAL_GOTNO:
15449 return "MIPS_LOCAL_GOTNO";
15450 case DT_MIPS_CONFLICTNO:
15451 return "MIPS_CONFLICTNO";
15452 case DT_MIPS_LIBLISTNO:
15453 return "MIPS_LIBLISTNO";
15454 case DT_MIPS_SYMTABNO:
15455 return "MIPS_SYMTABNO";
15456 case DT_MIPS_UNREFEXTNO:
15457 return "MIPS_UNREFEXTNO";
15458 case DT_MIPS_GOTSYM:
15459 return "MIPS_GOTSYM";
15460 case DT_MIPS_HIPAGENO:
15461 return "MIPS_HIPAGENO";
15462 case DT_MIPS_RLD_MAP:
15463 return "MIPS_RLD_MAP";
15464 case DT_MIPS_RLD_MAP_REL:
15465 return "MIPS_RLD_MAP_REL";
15466 case DT_MIPS_DELTA_CLASS:
15467 return "MIPS_DELTA_CLASS";
15468 case DT_MIPS_DELTA_CLASS_NO:
15469 return "MIPS_DELTA_CLASS_NO";
15470 case DT_MIPS_DELTA_INSTANCE:
15471 return "MIPS_DELTA_INSTANCE";
15472 case DT_MIPS_DELTA_INSTANCE_NO:
15473 return "MIPS_DELTA_INSTANCE_NO";
15474 case DT_MIPS_DELTA_RELOC:
15475 return "MIPS_DELTA_RELOC";
15476 case DT_MIPS_DELTA_RELOC_NO:
15477 return "MIPS_DELTA_RELOC_NO";
15478 case DT_MIPS_DELTA_SYM:
15479 return "MIPS_DELTA_SYM";
15480 case DT_MIPS_DELTA_SYM_NO:
15481 return "MIPS_DELTA_SYM_NO";
15482 case DT_MIPS_DELTA_CLASSSYM:
15483 return "MIPS_DELTA_CLASSSYM";
15484 case DT_MIPS_DELTA_CLASSSYM_NO:
15485 return "MIPS_DELTA_CLASSSYM_NO";
15486 case DT_MIPS_CXX_FLAGS:
15487 return "MIPS_CXX_FLAGS";
15488 case DT_MIPS_PIXIE_INIT:
15489 return "MIPS_PIXIE_INIT";
15490 case DT_MIPS_SYMBOL_LIB:
15491 return "MIPS_SYMBOL_LIB";
15492 case DT_MIPS_LOCALPAGE_GOTIDX:
15493 return "MIPS_LOCALPAGE_GOTIDX";
15494 case DT_MIPS_LOCAL_GOTIDX:
15495 return "MIPS_LOCAL_GOTIDX";
15496 case DT_MIPS_HIDDEN_GOTIDX:
15497 return "MIPS_HIDDEN_GOTIDX";
15498 case DT_MIPS_PROTECTED_GOTIDX:
15499 return "MIPS_PROTECTED_GOT_IDX";
15500 case DT_MIPS_OPTIONS:
15501 return "MIPS_OPTIONS";
15502 case DT_MIPS_INTERFACE:
15503 return "MIPS_INTERFACE";
15504 case DT_MIPS_DYNSTR_ALIGN:
15505 return "DT_MIPS_DYNSTR_ALIGN";
15506 case DT_MIPS_INTERFACE_SIZE:
15507 return "DT_MIPS_INTERFACE_SIZE";
15508 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15509 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15510 case DT_MIPS_PERF_SUFFIX:
15511 return "DT_MIPS_PERF_SUFFIX";
15512 case DT_MIPS_COMPACT_SIZE:
15513 return "DT_MIPS_COMPACT_SIZE";
15514 case DT_MIPS_GP_VALUE:
15515 return "DT_MIPS_GP_VALUE";
15516 case DT_MIPS_AUX_DYNAMIC:
15517 return "DT_MIPS_AUX_DYNAMIC";
15518 case DT_MIPS_PLTGOT:
15519 return "DT_MIPS_PLTGOT";
15520 case DT_MIPS_RWPLT:
15521 return "DT_MIPS_RWPLT";
15522 }
15523}
15524
15525/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15526 not known. */
15527
15528const char *
15529_bfd_mips_fp_abi_string (int fp)
15530{
15531 switch (fp)
15532 {
15533 /* These strings aren't translated because they're simply
15534 option lists. */
15535 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15536 return "-mdouble-float";
15537
15538 case Val_GNU_MIPS_ABI_FP_SINGLE:
15539 return "-msingle-float";
15540
15541 case Val_GNU_MIPS_ABI_FP_SOFT:
15542 return "-msoft-float";
15543
15544 case Val_GNU_MIPS_ABI_FP_OLD_64:
15545 return _("-mips32r2 -mfp64 (12 callee-saved)");
15546
15547 case Val_GNU_MIPS_ABI_FP_XX:
15548 return "-mfpxx";
15549
15550 case Val_GNU_MIPS_ABI_FP_64:
15551 return "-mgp32 -mfp64";
15552
15553 case Val_GNU_MIPS_ABI_FP_64A:
15554 return "-mgp32 -mfp64 -mno-odd-spreg";
15555
15556 default:
15557 return 0;
15558 }
15559}
15560
15561static void
15562print_mips_ases (FILE *file, unsigned int mask)
15563{
15564 if (mask & AFL_ASE_DSP)
15565 fputs ("\n\tDSP ASE", file);
15566 if (mask & AFL_ASE_DSPR2)
15567 fputs ("\n\tDSP R2 ASE", file);
15568 if (mask & AFL_ASE_DSPR3)
15569 fputs ("\n\tDSP R3 ASE", file);
15570 if (mask & AFL_ASE_EVA)
15571 fputs ("\n\tEnhanced VA Scheme", file);
15572 if (mask & AFL_ASE_MCU)
15573 fputs ("\n\tMCU (MicroController) ASE", file);
15574 if (mask & AFL_ASE_MDMX)
15575 fputs ("\n\tMDMX ASE", file);
15576 if (mask & AFL_ASE_MIPS3D)
15577 fputs ("\n\tMIPS-3D ASE", file);
15578 if (mask & AFL_ASE_MT)
15579 fputs ("\n\tMT ASE", file);
15580 if (mask & AFL_ASE_SMARTMIPS)
15581 fputs ("\n\tSmartMIPS ASE", file);
15582 if (mask & AFL_ASE_VIRT)
15583 fputs ("\n\tVZ ASE", file);
15584 if (mask & AFL_ASE_MSA)
15585 fputs ("\n\tMSA ASE", file);
15586 if (mask & AFL_ASE_MIPS16)
15587 fputs ("\n\tMIPS16 ASE", file);
15588 if (mask & AFL_ASE_MICROMIPS)
15589 fputs ("\n\tMICROMIPS ASE", file);
15590 if (mask & AFL_ASE_XPA)
15591 fputs ("\n\tXPA ASE", file);
15592 if (mask == 0)
15593 fprintf (file, "\n\t%s", _("None"));
15594 else if ((mask & ~AFL_ASE_MASK) != 0)
15595 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15596}
15597
15598static void
15599print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15600{
15601 switch (isa_ext)
15602 {
15603 case 0:
15604 fputs (_("None"), file);
15605 break;
15606 case AFL_EXT_XLR:
15607 fputs ("RMI XLR", file);
15608 break;
15609 case AFL_EXT_OCTEON3:
15610 fputs ("Cavium Networks Octeon3", file);
15611 break;
15612 case AFL_EXT_OCTEON2:
15613 fputs ("Cavium Networks Octeon2", file);
15614 break;
15615 case AFL_EXT_OCTEONP:
15616 fputs ("Cavium Networks OcteonP", file);
15617 break;
15618 case AFL_EXT_LOONGSON_3A:
15619 fputs ("Loongson 3A", file);
15620 break;
15621 case AFL_EXT_OCTEON:
15622 fputs ("Cavium Networks Octeon", file);
15623 break;
15624 case AFL_EXT_5900:
15625 fputs ("Toshiba R5900", file);
15626 break;
15627 case AFL_EXT_4650:
15628 fputs ("MIPS R4650", file);
15629 break;
15630 case AFL_EXT_4010:
15631 fputs ("LSI R4010", file);
15632 break;
15633 case AFL_EXT_4100:
15634 fputs ("NEC VR4100", file);
15635 break;
15636 case AFL_EXT_3900:
15637 fputs ("Toshiba R3900", file);
15638 break;
15639 case AFL_EXT_10000:
15640 fputs ("MIPS R10000", file);
15641 break;
15642 case AFL_EXT_SB1:
15643 fputs ("Broadcom SB-1", file);
15644 break;
15645 case AFL_EXT_4111:
15646 fputs ("NEC VR4111/VR4181", file);
15647 break;
15648 case AFL_EXT_4120:
15649 fputs ("NEC VR4120", file);
15650 break;
15651 case AFL_EXT_5400:
15652 fputs ("NEC VR5400", file);
15653 break;
15654 case AFL_EXT_5500:
15655 fputs ("NEC VR5500", file);
15656 break;
15657 case AFL_EXT_LOONGSON_2E:
15658 fputs ("ST Microelectronics Loongson 2E", file);
15659 break;
15660 case AFL_EXT_LOONGSON_2F:
15661 fputs ("ST Microelectronics Loongson 2F", file);
15662 break;
15663 default:
15664 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15665 break;
15666 }
15667}
15668
15669static void
15670print_mips_fp_abi_value (FILE *file, int val)
15671{
15672 switch (val)
15673 {
15674 case Val_GNU_MIPS_ABI_FP_ANY:
15675 fprintf (file, _("Hard or soft float\n"));
15676 break;
15677 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15678 fprintf (file, _("Hard float (double precision)\n"));
15679 break;
15680 case Val_GNU_MIPS_ABI_FP_SINGLE:
15681 fprintf (file, _("Hard float (single precision)\n"));
15682 break;
15683 case Val_GNU_MIPS_ABI_FP_SOFT:
15684 fprintf (file, _("Soft float\n"));
15685 break;
15686 case Val_GNU_MIPS_ABI_FP_OLD_64:
15687 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15688 break;
15689 case Val_GNU_MIPS_ABI_FP_XX:
15690 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15691 break;
15692 case Val_GNU_MIPS_ABI_FP_64:
15693 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15694 break;
15695 case Val_GNU_MIPS_ABI_FP_64A:
15696 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15697 break;
15698 default:
15699 fprintf (file, "??? (%d)\n", val);
15700 break;
15701 }
15702}
15703
15704static int
15705get_mips_reg_size (int reg_size)
15706{
15707 return (reg_size == AFL_REG_NONE) ? 0
15708 : (reg_size == AFL_REG_32) ? 32
15709 : (reg_size == AFL_REG_64) ? 64
15710 : (reg_size == AFL_REG_128) ? 128
15711 : -1;
15712}
15713
15714bfd_boolean
15715_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15716{
15717 FILE *file = ptr;
15718
15719 BFD_ASSERT (abfd != NULL && ptr != NULL);
15720
15721 /* Print normal ELF private data. */
15722 _bfd_elf_print_private_bfd_data (abfd, ptr);
15723
15724 /* xgettext:c-format */
15725 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15726
15727 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15728 fprintf (file, _(" [abi=O32]"));
15729 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15730 fprintf (file, _(" [abi=O64]"));
15731 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15732 fprintf (file, _(" [abi=EABI32]"));
15733 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15734 fprintf (file, _(" [abi=EABI64]"));
15735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15736 fprintf (file, _(" [abi unknown]"));
15737 else if (ABI_N32_P (abfd))
15738 fprintf (file, _(" [abi=N32]"));
15739 else if (ABI_64_P (abfd))
15740 fprintf (file, _(" [abi=64]"));
15741 else
15742 fprintf (file, _(" [no abi set]"));
15743
15744 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15745 fprintf (file, " [mips1]");
15746 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15747 fprintf (file, " [mips2]");
15748 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15749 fprintf (file, " [mips3]");
15750 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15751 fprintf (file, " [mips4]");
15752 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15753 fprintf (file, " [mips5]");
15754 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15755 fprintf (file, " [mips32]");
15756 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15757 fprintf (file, " [mips64]");
15758 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15759 fprintf (file, " [mips32r2]");
15760 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15761 fprintf (file, " [mips64r2]");
15762 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15763 fprintf (file, " [mips32r6]");
15764 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15765 fprintf (file, " [mips64r6]");
15766 else
15767 fprintf (file, _(" [unknown ISA]"));
15768
15769 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15770 fprintf (file, " [mdmx]");
15771
15772 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15773 fprintf (file, " [mips16]");
15774
15775 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15776 fprintf (file, " [micromips]");
15777
15778 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15779 fprintf (file, " [nan2008]");
15780
15781 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15782 fprintf (file, " [old fp64]");
15783
15784 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15785 fprintf (file, " [32bitmode]");
15786 else
15787 fprintf (file, _(" [not 32bitmode]"));
15788
15789 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15790 fprintf (file, " [noreorder]");
15791
15792 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15793 fprintf (file, " [PIC]");
15794
15795 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15796 fprintf (file, " [CPIC]");
15797
15798 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15799 fprintf (file, " [XGOT]");
15800
15801 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15802 fprintf (file, " [UCODE]");
15803
15804 fputc ('\n', file);
15805
15806 if (mips_elf_tdata (abfd)->abiflags_valid)
15807 {
15808 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15809 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15810 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15811 if (abiflags->isa_rev > 1)
15812 fprintf (file, "r%d", abiflags->isa_rev);
15813 fprintf (file, "\nGPR size: %d",
15814 get_mips_reg_size (abiflags->gpr_size));
15815 fprintf (file, "\nCPR1 size: %d",
15816 get_mips_reg_size (abiflags->cpr1_size));
15817 fprintf (file, "\nCPR2 size: %d",
15818 get_mips_reg_size (abiflags->cpr2_size));
15819 fputs ("\nFP ABI: ", file);
15820 print_mips_fp_abi_value (file, abiflags->fp_abi);
15821 fputs ("ISA Extension: ", file);
15822 print_mips_isa_ext (file, abiflags->isa_ext);
15823 fputs ("\nASEs:", file);
15824 print_mips_ases (file, abiflags->ases);
15825 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15826 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15827 fputc ('\n', file);
15828 }
15829
15830 return TRUE;
15831}
15832
15833const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15834{
15835 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15836 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15837 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15838 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15839 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15840 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15841 { NULL, 0, 0, 0, 0 }
15842};
15843
15844/* Merge non visibility st_other attributes. Ensure that the
15845 STO_OPTIONAL flag is copied into h->other, even if this is not a
15846 definiton of the symbol. */
15847void
15848_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15849 const Elf_Internal_Sym *isym,
15850 bfd_boolean definition,
15851 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15852{
15853 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15854 {
15855 unsigned char other;
15856
15857 other = (definition ? isym->st_other : h->other);
15858 other &= ~ELF_ST_VISIBILITY (-1);
15859 h->other = other | ELF_ST_VISIBILITY (h->other);
15860 }
15861
15862 if (!definition
15863 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15864 h->other |= STO_OPTIONAL;
15865}
15866
15867/* Decide whether an undefined symbol is special and can be ignored.
15868 This is the case for OPTIONAL symbols on IRIX. */
15869bfd_boolean
15870_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15871{
15872 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15873}
15874
15875bfd_boolean
15876_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15877{
15878 return (sym->st_shndx == SHN_COMMON
15879 || sym->st_shndx == SHN_MIPS_ACOMMON
15880 || sym->st_shndx == SHN_MIPS_SCOMMON);
15881}
15882
15883/* Return address for Ith PLT stub in section PLT, for relocation REL
15884 or (bfd_vma) -1 if it should not be included. */
15885
15886bfd_vma
15887_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15888 const arelent *rel ATTRIBUTE_UNUSED)
15889{
15890 return (plt->vma
15891 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15892 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15893}
15894
15895/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15896 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15897 and .got.plt and also the slots may be of a different size each we walk
15898 the PLT manually fetching instructions and matching them against known
15899 patterns. To make things easier standard MIPS slots, if any, always come
15900 first. As we don't create proper ELF symbols we use the UDATA.I member
15901 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15902 with the ST_OTHER member of the ELF symbol. */
15903
15904long
15905_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15906 long symcount ATTRIBUTE_UNUSED,
15907 asymbol **syms ATTRIBUTE_UNUSED,
15908 long dynsymcount, asymbol **dynsyms,
15909 asymbol **ret)
15910{
15911 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15912 static const char microsuffix[] = "@micromipsplt";
15913 static const char m16suffix[] = "@mips16plt";
15914 static const char mipssuffix[] = "@plt";
15915
15916 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15917 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15918 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15919 Elf_Internal_Shdr *hdr;
15920 bfd_byte *plt_data;
15921 bfd_vma plt_offset;
15922 unsigned int other;
15923 bfd_vma entry_size;
15924 bfd_vma plt0_size;
15925 asection *relplt;
15926 bfd_vma opcode;
15927 asection *plt;
15928 asymbol *send;
15929 size_t size;
15930 char *names;
15931 long counti;
15932 arelent *p;
15933 asymbol *s;
15934 char *nend;
15935 long count;
15936 long pi;
15937 long i;
15938 long n;
15939
15940 *ret = NULL;
15941
15942 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15943 return 0;
15944
15945 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15946 if (relplt == NULL)
15947 return 0;
15948
15949 hdr = &elf_section_data (relplt)->this_hdr;
15950 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15951 return 0;
15952
15953 plt = bfd_get_section_by_name (abfd, ".plt");
15954 if (plt == NULL)
15955 return 0;
15956
15957 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15958 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15959 return -1;
15960 p = relplt->relocation;
15961
15962 /* Calculating the exact amount of space required for symbols would
15963 require two passes over the PLT, so just pessimise assuming two
15964 PLT slots per relocation. */
15965 count = relplt->size / hdr->sh_entsize;
15966 counti = count * bed->s->int_rels_per_ext_rel;
15967 size = 2 * count * sizeof (asymbol);
15968 size += count * (sizeof (mipssuffix) +
15969 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15970 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15971 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15972
15973 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15974 size += sizeof (asymbol) + sizeof (pltname);
15975
15976 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15977 return -1;
15978
15979 if (plt->size < 16)
15980 return -1;
15981
15982 s = *ret = bfd_malloc (size);
15983 if (s == NULL)
15984 return -1;
15985 send = s + 2 * count + 1;
15986
15987 names = (char *) send;
15988 nend = (char *) s + size;
15989 n = 0;
15990
15991 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15992 if (opcode == 0x3302fffe)
15993 {
15994 if (!micromips_p)
15995 return -1;
15996 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15997 other = STO_MICROMIPS;
15998 }
15999 else if (opcode == 0x0398c1d0)
16000 {
16001 if (!micromips_p)
16002 return -1;
16003 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16004 other = STO_MICROMIPS;
16005 }
16006 else
16007 {
16008 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16009 other = 0;
16010 }
16011
16012 s->the_bfd = abfd;
16013 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16014 s->section = plt;
16015 s->value = 0;
16016 s->name = names;
16017 s->udata.i = other;
16018 memcpy (names, pltname, sizeof (pltname));
16019 names += sizeof (pltname);
16020 ++s, ++n;
16021
16022 pi = 0;
16023 for (plt_offset = plt0_size;
16024 plt_offset + 8 <= plt->size && s < send;
16025 plt_offset += entry_size)
16026 {
16027 bfd_vma gotplt_addr;
16028 const char *suffix;
16029 bfd_vma gotplt_hi;
16030 bfd_vma gotplt_lo;
16031 size_t suffixlen;
16032
16033 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16034
16035 /* Check if the second word matches the expected MIPS16 instruction. */
16036 if (opcode == 0x651aeb00)
16037 {
16038 if (micromips_p)
16039 return -1;
16040 /* Truncated table??? */
16041 if (plt_offset + 16 > plt->size)
16042 break;
16043 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16044 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16045 suffixlen = sizeof (m16suffix);
16046 suffix = m16suffix;
16047 other = STO_MIPS16;
16048 }
16049 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16050 else if (opcode == 0xff220000)
16051 {
16052 if (!micromips_p)
16053 return -1;
16054 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16055 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16056 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16057 gotplt_lo <<= 2;
16058 gotplt_addr = gotplt_hi + gotplt_lo;
16059 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16060 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16061 suffixlen = sizeof (microsuffix);
16062 suffix = microsuffix;
16063 other = STO_MICROMIPS;
16064 }
16065 /* Likewise the expected microMIPS instruction (insn32 mode). */
16066 else if ((opcode & 0xffff0000) == 0xff2f0000)
16067 {
16068 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16069 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16070 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16071 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16072 gotplt_addr = gotplt_hi + gotplt_lo;
16073 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16074 suffixlen = sizeof (microsuffix);
16075 suffix = microsuffix;
16076 other = STO_MICROMIPS;
16077 }
16078 /* Otherwise assume standard MIPS code. */
16079 else
16080 {
16081 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16082 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16083 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16084 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16085 gotplt_addr = gotplt_hi + gotplt_lo;
16086 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16087 suffixlen = sizeof (mipssuffix);
16088 suffix = mipssuffix;
16089 other = 0;
16090 }
16091 /* Truncated table??? */
16092 if (plt_offset + entry_size > plt->size)
16093 break;
16094
16095 for (i = 0;
16096 i < count && p[pi].address != gotplt_addr;
16097 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16098
16099 if (i < count)
16100 {
16101 size_t namelen;
16102 size_t len;
16103
16104 *s = **p[pi].sym_ptr_ptr;
16105 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16106 we are defining a symbol, ensure one of them is set. */
16107 if ((s->flags & BSF_LOCAL) == 0)
16108 s->flags |= BSF_GLOBAL;
16109 s->flags |= BSF_SYNTHETIC;
16110 s->section = plt;
16111 s->value = plt_offset;
16112 s->name = names;
16113 s->udata.i = other;
16114
16115 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16116 namelen = len + suffixlen;
16117 if (names + namelen > nend)
16118 break;
16119
16120 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16121 names += len;
16122 memcpy (names, suffix, suffixlen);
16123 names += suffixlen;
16124
16125 ++s, ++n;
16126 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16127 }
16128 }
16129
16130 free (plt_data);
16131
16132 return n;
16133}
16134
16135void
16136_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16137{
16138 struct mips_elf_link_hash_table *htab;
16139 Elf_Internal_Ehdr *i_ehdrp;
16140
16141 i_ehdrp = elf_elfheader (abfd);
16142 if (link_info)
16143 {
16144 htab = mips_elf_hash_table (link_info);
16145 BFD_ASSERT (htab != NULL);
16146
16147 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16148 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16149 }
16150
16151 _bfd_elf_post_process_headers (abfd, link_info);
16152
16153 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16154 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16155 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16156
16157 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16158 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16159}
16160
16161int
16162_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16163{
16164 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16165}
16166
16167/* Return the opcode for can't unwind. */
16168
16169int
16170_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16171{
16172 return COMPACT_EH_CANT_UNWIND_OPCODE;
16173}
This page took 0.077404 seconds and 4 git commands to generate.