* elf.c (_bfd_elf_init_private_section_data): Comment typo.
[deliverable/binutils-gdb.git] / bfd / hash.c
... / ...
CommitLineData
1/* hash.c -- hash table routines for BFD
2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
4 Written by Steve Chamberlain <sac@cygnus.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22#include "bfd.h"
23#include "sysdep.h"
24#include "libbfd.h"
25#include "objalloc.h"
26#include "libiberty.h"
27
28/*
29SECTION
30 Hash Tables
31
32@cindex Hash tables
33 BFD provides a simple set of hash table functions. Routines
34 are provided to initialize a hash table, to free a hash table,
35 to look up a string in a hash table and optionally create an
36 entry for it, and to traverse a hash table. There is
37 currently no routine to delete an string from a hash table.
38
39 The basic hash table does not permit any data to be stored
40 with a string. However, a hash table is designed to present a
41 base class from which other types of hash tables may be
42 derived. These derived types may store additional information
43 with the string. Hash tables were implemented in this way,
44 rather than simply providing a data pointer in a hash table
45 entry, because they were designed for use by the linker back
46 ends. The linker may create thousands of hash table entries,
47 and the overhead of allocating private data and storing and
48 following pointers becomes noticeable.
49
50 The basic hash table code is in <<hash.c>>.
51
52@menu
53@* Creating and Freeing a Hash Table::
54@* Looking Up or Entering a String::
55@* Traversing a Hash Table::
56@* Deriving a New Hash Table Type::
57@end menu
58
59INODE
60Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61SUBSECTION
62 Creating and freeing a hash table
63
64@findex bfd_hash_table_init
65@findex bfd_hash_table_init_n
66 To create a hash table, create an instance of a <<struct
67 bfd_hash_table>> (defined in <<bfd.h>>) and call
68 <<bfd_hash_table_init>> (if you know approximately how many
69 entries you will need, the function <<bfd_hash_table_init_n>>,
70 which takes a @var{size} argument, may be used).
71 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 error occurs.
73
74@findex bfd_hash_newfunc
75 The function <<bfd_hash_table_init>> take as an argument a
76 function to use to create new entries. For a basic hash
77 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
78 a New Hash Table Type}, for why you would want to use a
79 different value for this argument.
80
81@findex bfd_hash_allocate
82 <<bfd_hash_table_init>> will create an objalloc which will be
83 used to allocate new entries. You may allocate memory on this
84 objalloc using <<bfd_hash_allocate>>.
85
86@findex bfd_hash_table_free
87 Use <<bfd_hash_table_free>> to free up all the memory that has
88 been allocated for a hash table. This will not free up the
89 <<struct bfd_hash_table>> itself, which you must provide.
90
91@findex bfd_hash_set_default_size
92 Use <<bfd_hash_set_default_size>> to set the default size of
93 hash table to use.
94
95INODE
96Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97SUBSECTION
98 Looking up or entering a string
99
100@findex bfd_hash_lookup
101 The function <<bfd_hash_lookup>> is used both to look up a
102 string in the hash table and to create a new entry.
103
104 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 will look up a string. If the string is found, it will
106 returns a pointer to a <<struct bfd_hash_entry>>. If the
107 string is not found in the table <<bfd_hash_lookup>> will
108 return <<NULL>>. You should not modify any of the fields in
109 the returns <<struct bfd_hash_entry>>.
110
111 If the @var{create} argument is <<TRUE>>, the string will be
112 entered into the hash table if it is not already there.
113 Either way a pointer to a <<struct bfd_hash_entry>> will be
114 returned, either to the existing structure or to a newly
115 created one. In this case, a <<NULL>> return means that an
116 error occurred.
117
118 If the @var{create} argument is <<TRUE>>, and a new entry is
119 created, the @var{copy} argument is used to decide whether to
120 copy the string onto the hash table objalloc or not. If
121 @var{copy} is passed as <<FALSE>>, you must be careful not to
122 deallocate or modify the string as long as the hash table
123 exists.
124
125INODE
126Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127SUBSECTION
128 Traversing a hash table
129
130@findex bfd_hash_traverse
131 The function <<bfd_hash_traverse>> may be used to traverse a
132 hash table, calling a function on each element. The traversal
133 is done in a random order.
134
135 <<bfd_hash_traverse>> takes as arguments a function and a
136 generic <<void *>> pointer. The function is called with a
137 hash table entry (a <<struct bfd_hash_entry *>>) and the
138 generic pointer passed to <<bfd_hash_traverse>>. The function
139 must return a <<boolean>> value, which indicates whether to
140 continue traversing the hash table. If the function returns
141 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 return immediately.
143
144INODE
145Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146SUBSECTION
147 Deriving a new hash table type
148
149 Many uses of hash tables want to store additional information
150 which each entry in the hash table. Some also find it
151 convenient to store additional information with the hash table
152 itself. This may be done using a derived hash table.
153
154 Since C is not an object oriented language, creating a derived
155 hash table requires sticking together some boilerplate
156 routines with a few differences specific to the type of hash
157 table you want to create.
158
159 An example of a derived hash table is the linker hash table.
160 The structures for this are defined in <<bfdlink.h>>. The
161 functions are in <<linker.c>>.
162
163 You may also derive a hash table from an already derived hash
164 table. For example, the a.out linker backend code uses a hash
165 table derived from the linker hash table.
166
167@menu
168@* Define the Derived Structures::
169@* Write the Derived Creation Routine::
170@* Write Other Derived Routines::
171@end menu
172
173INODE
174Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175SUBSUBSECTION
176 Define the derived structures
177
178 You must define a structure for an entry in the hash table,
179 and a structure for the hash table itself.
180
181 The first field in the structure for an entry in the hash
182 table must be of the type used for an entry in the hash table
183 you are deriving from. If you are deriving from a basic hash
184 table this is <<struct bfd_hash_entry>>, which is defined in
185 <<bfd.h>>. The first field in the structure for the hash
186 table itself must be of the type of the hash table you are
187 deriving from itself. If you are deriving from a basic hash
188 table, this is <<struct bfd_hash_table>>.
189
190 For example, the linker hash table defines <<struct
191 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
192 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
193 the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 is of type <<struct bfd_hash_table>>.
195
196INODE
197Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198SUBSUBSECTION
199 Write the derived creation routine
200
201 You must write a routine which will create and initialize an
202 entry in the hash table. This routine is passed as the
203 function argument to <<bfd_hash_table_init>>.
204
205 In order to permit other hash tables to be derived from the
206 hash table you are creating, this routine must be written in a
207 standard way.
208
209 The first argument to the creation routine is a pointer to a
210 hash table entry. This may be <<NULL>>, in which case the
211 routine should allocate the right amount of space. Otherwise
212 the space has already been allocated by a hash table type
213 derived from this one.
214
215 After allocating space, the creation routine must call the
216 creation routine of the hash table type it is derived from,
217 passing in a pointer to the space it just allocated. This
218 will initialize any fields used by the base hash table.
219
220 Finally the creation routine must initialize any local fields
221 for the new hash table type.
222
223 Here is a boilerplate example of a creation routine.
224 @var{function_name} is the name of the routine.
225 @var{entry_type} is the type of an entry in the hash table you
226 are creating. @var{base_newfunc} is the name of the creation
227 routine of the hash table type your hash table is derived
228 from.
229
230EXAMPLE
231
232.struct bfd_hash_entry *
233.@var{function_name} (struct bfd_hash_entry *entry,
234. struct bfd_hash_table *table,
235. const char *string)
236.{
237. struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238.
239. {* Allocate the structure if it has not already been allocated by a
240. derived class. *}
241. if (ret == NULL)
242. {
243. ret = bfd_hash_allocate (table, sizeof (* ret));
244. if (ret == NULL)
245. return NULL;
246. }
247.
248. {* Call the allocation method of the base class. *}
249. ret = ((@var{entry_type} *)
250. @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251.
252. {* Initialize the local fields here. *}
253.
254. return (struct bfd_hash_entry *) ret;
255.}
256
257DESCRIPTION
258 The creation routine for the linker hash table, which is in
259 <<linker.c>>, looks just like this example.
260 @var{function_name} is <<_bfd_link_hash_newfunc>>.
261 @var{entry_type} is <<struct bfd_link_hash_entry>>.
262 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 routine for a basic hash table.
264
265 <<_bfd_link_hash_newfunc>> also initializes the local fields
266 in a linker hash table entry: <<type>>, <<written>> and
267 <<next>>.
268
269INODE
270Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271SUBSUBSECTION
272 Write other derived routines
273
274 You will want to write other routines for your new hash table,
275 as well.
276
277 You will want an initialization routine which calls the
278 initialization routine of the hash table you are deriving from
279 and initializes any other local fields. For the linker hash
280 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281
282 You will want a lookup routine which calls the lookup routine
283 of the hash table you are deriving from and casts the result.
284 The linker hash table uses <<bfd_link_hash_lookup>> in
285 <<linker.c>> (this actually takes an additional argument which
286 it uses to decide how to return the looked up value).
287
288 You may want a traversal routine. This should just call the
289 traversal routine of the hash table you are deriving from with
290 appropriate casts. The linker hash table uses
291 <<bfd_link_hash_traverse>> in <<linker.c>>.
292
293 These routines may simply be defined as macros. For example,
294 the a.out backend linker hash table, which is derived from the
295 linker hash table, uses macros for the lookup and traversal
296 routines. These are <<aout_link_hash_lookup>> and
297 <<aout_link_hash_traverse>> in aoutx.h.
298*/
299
300/* The default number of entries to use when creating a hash table. */
301#define DEFAULT_SIZE 4051
302
303/* The following function returns a nearest prime number which is
304 greater than N, and near a power of two. Copied from libiberty.
305 Returns zero for ridiculously large N to signify an error. */
306
307static unsigned long
308higher_prime_number (unsigned long n)
309{
310 /* These are primes that are near, but slightly smaller than, a
311 power of two. */
312 static const unsigned long primes[] = {
313 (unsigned long) 127,
314 (unsigned long) 2039,
315 (unsigned long) 32749,
316 (unsigned long) 65521,
317 (unsigned long) 131071,
318 (unsigned long) 262139,
319 (unsigned long) 524287,
320 (unsigned long) 1048573,
321 (unsigned long) 2097143,
322 (unsigned long) 4194301,
323 (unsigned long) 8388593,
324 (unsigned long) 16777213,
325 (unsigned long) 33554393,
326 (unsigned long) 67108859,
327 (unsigned long) 134217689,
328 (unsigned long) 268435399,
329 (unsigned long) 536870909,
330 (unsigned long) 1073741789,
331 (unsigned long) 2147483647,
332 /* 4294967291L */
333 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
334 };
335
336 const unsigned long *low = &primes[0];
337 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
338
339 while (low != high)
340 {
341 const unsigned long *mid = low + (high - low) / 2;
342 if (n >= *mid)
343 low = mid + 1;
344 else
345 high = mid;
346 }
347
348 if (n >= *low)
349 return 0;
350
351 return *low;
352}
353
354static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
355
356/* Create a new hash table, given a number of entries. */
357
358bfd_boolean
359bfd_hash_table_init_n (struct bfd_hash_table *table,
360 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
361 struct bfd_hash_table *,
362 const char *),
363 unsigned int entsize,
364 unsigned int size)
365{
366 unsigned int alloc;
367
368 alloc = size * sizeof (struct bfd_hash_entry *);
369
370 table->memory = (void *) objalloc_create ();
371 if (table->memory == NULL)
372 {
373 bfd_set_error (bfd_error_no_memory);
374 return FALSE;
375 }
376 table->table = objalloc_alloc ((struct objalloc *) table->memory, alloc);
377 if (table->table == NULL)
378 {
379 bfd_set_error (bfd_error_no_memory);
380 return FALSE;
381 }
382 memset ((void *) table->table, 0, alloc);
383 table->size = size;
384 table->entsize = entsize;
385 table->count = 0;
386 table->newfunc = newfunc;
387 return TRUE;
388}
389
390/* Create a new hash table with the default number of entries. */
391
392bfd_boolean
393bfd_hash_table_init (struct bfd_hash_table *table,
394 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
395 struct bfd_hash_table *,
396 const char *),
397 unsigned int entsize)
398{
399 return bfd_hash_table_init_n (table, newfunc, entsize,
400 bfd_default_hash_table_size);
401}
402
403/* Free a hash table. */
404
405void
406bfd_hash_table_free (struct bfd_hash_table *table)
407{
408 objalloc_free (table->memory);
409 table->memory = NULL;
410}
411
412/* Look up a string in a hash table. */
413
414struct bfd_hash_entry *
415bfd_hash_lookup (struct bfd_hash_table *table,
416 const char *string,
417 bfd_boolean create,
418 bfd_boolean copy)
419{
420 const unsigned char *s;
421 unsigned long hash;
422 unsigned int c;
423 struct bfd_hash_entry *hashp;
424 unsigned int len;
425 unsigned int index;
426
427 hash = 0;
428 len = 0;
429 s = (const unsigned char *) string;
430 while ((c = *s++) != '\0')
431 {
432 hash += c + (c << 17);
433 hash ^= hash >> 2;
434 }
435 len = (s - (const unsigned char *) string) - 1;
436 hash += len + (len << 17);
437 hash ^= hash >> 2;
438
439 index = hash % table->size;
440 for (hashp = table->table[index];
441 hashp != NULL;
442 hashp = hashp->next)
443 {
444 if (hashp->hash == hash
445 && strcmp (hashp->string, string) == 0)
446 return hashp;
447 }
448
449 if (! create)
450 return NULL;
451
452 hashp = (*table->newfunc) (NULL, table, string);
453 if (hashp == NULL)
454 return NULL;
455 if (copy)
456 {
457 char *new;
458 table->count ++;
459
460 new = objalloc_alloc ((struct objalloc *) table->memory, len + 1);
461 if (!new)
462 {
463 bfd_set_error (bfd_error_no_memory);
464 return NULL;
465 }
466 memcpy (new, string, len + 1);
467 string = new;
468 }
469 hashp->string = string;
470 hashp->hash = hash;
471 hashp->next = table->table[index];
472 table->table[index] = hashp;
473
474 if (table->count > table->size * 3 / 4)
475 {
476 unsigned long newsize = higher_prime_number (table->size);
477 struct bfd_hash_entry **newtable;
478 unsigned int hi;
479 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
480
481 /* If we can't find a higher prime, or we can't possibly alloc
482 that much memory, don't try to grow the table. */
483 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
484 {
485 /* Lie. Stops us trying to grow again for a while. */
486 table->count = 0;
487 return hashp;
488 }
489
490 newtable = ((struct bfd_hash_entry **)
491 objalloc_alloc ((struct objalloc *) table->memory, alloc));
492 memset ((PTR) newtable, 0, alloc);
493
494 for (hi = 0; hi < table->size; hi ++)
495 while (table->table[hi])
496 {
497 struct bfd_hash_entry *chain = table->table[hi];
498 struct bfd_hash_entry *chain_end = chain;
499 int index;
500
501 while (chain_end->next && chain_end->next->hash == chain->hash)
502 chain_end = chain_end->next;
503
504 table->table[hi] = chain_end->next;
505 index = chain->hash % newsize;
506 chain_end->next = newtable[index];
507 newtable[index] = chain;
508 }
509 table->table = newtable;
510 table->size = newsize;
511 }
512
513 return hashp;
514}
515
516/* Replace an entry in a hash table. */
517
518void
519bfd_hash_replace (struct bfd_hash_table *table,
520 struct bfd_hash_entry *old,
521 struct bfd_hash_entry *nw)
522{
523 unsigned int index;
524 struct bfd_hash_entry **pph;
525
526 index = old->hash % table->size;
527 for (pph = &table->table[index];
528 (*pph) != NULL;
529 pph = &(*pph)->next)
530 {
531 if (*pph == old)
532 {
533 *pph = nw;
534 return;
535 }
536 }
537
538 abort ();
539}
540
541/* Allocate space in a hash table. */
542
543void *
544bfd_hash_allocate (struct bfd_hash_table *table,
545 unsigned int size)
546{
547 void * ret;
548
549 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
550 if (ret == NULL && size != 0)
551 bfd_set_error (bfd_error_no_memory);
552 return ret;
553}
554
555/* Base method for creating a new hash table entry. */
556
557struct bfd_hash_entry *
558bfd_hash_newfunc (struct bfd_hash_entry *entry,
559 struct bfd_hash_table *table,
560 const char *string ATTRIBUTE_UNUSED)
561{
562 if (entry == NULL)
563 entry = bfd_hash_allocate (table, sizeof (* entry));
564 return entry;
565}
566
567/* Traverse a hash table. */
568
569void
570bfd_hash_traverse (struct bfd_hash_table *table,
571 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
572 void * info)
573{
574 unsigned int i;
575
576 for (i = 0; i < table->size; i++)
577 {
578 struct bfd_hash_entry *p;
579
580 for (p = table->table[i]; p != NULL; p = p->next)
581 if (! (*func) (p, info))
582 return;
583 }
584}
585\f
586void
587bfd_hash_set_default_size (bfd_size_type hash_size)
588{
589 /* Extend this prime list if you want more granularity of hash table size. */
590 static const bfd_size_type hash_size_primes[] =
591 {
592 251, 509, 1021, 2039, 4051, 8599, 16699, 32749
593 };
594 size_t index;
595
596 /* Work out best prime number near the hash_size. */
597 for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
598 if (hash_size <= hash_size_primes[index])
599 break;
600
601 bfd_default_hash_table_size = hash_size_primes[index];
602}
603\f
604/* A few different object file formats (a.out, COFF, ELF) use a string
605 table. These functions support adding strings to a string table,
606 returning the byte offset, and writing out the table.
607
608 Possible improvements:
609 + look for strings matching trailing substrings of other strings
610 + better data structures? balanced trees?
611 + look at reducing memory use elsewhere -- maybe if we didn't have
612 to construct the entire symbol table at once, we could get by
613 with smaller amounts of VM? (What effect does that have on the
614 string table reductions?) */
615
616/* An entry in the strtab hash table. */
617
618struct strtab_hash_entry
619{
620 struct bfd_hash_entry root;
621 /* Index in string table. */
622 bfd_size_type index;
623 /* Next string in strtab. */
624 struct strtab_hash_entry *next;
625};
626
627/* The strtab hash table. */
628
629struct bfd_strtab_hash
630{
631 struct bfd_hash_table table;
632 /* Size of strtab--also next available index. */
633 bfd_size_type size;
634 /* First string in strtab. */
635 struct strtab_hash_entry *first;
636 /* Last string in strtab. */
637 struct strtab_hash_entry *last;
638 /* Whether to precede strings with a two byte length, as in the
639 XCOFF .debug section. */
640 bfd_boolean xcoff;
641};
642
643/* Routine to create an entry in a strtab. */
644
645static struct bfd_hash_entry *
646strtab_hash_newfunc (struct bfd_hash_entry *entry,
647 struct bfd_hash_table *table,
648 const char *string)
649{
650 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
651
652 /* Allocate the structure if it has not already been allocated by a
653 subclass. */
654 if (ret == NULL)
655 ret = bfd_hash_allocate (table, sizeof (* ret));
656 if (ret == NULL)
657 return NULL;
658
659 /* Call the allocation method of the superclass. */
660 ret = (struct strtab_hash_entry *)
661 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
662
663 if (ret)
664 {
665 /* Initialize the local fields. */
666 ret->index = (bfd_size_type) -1;
667 ret->next = NULL;
668 }
669
670 return (struct bfd_hash_entry *) ret;
671}
672
673/* Look up an entry in an strtab. */
674
675#define strtab_hash_lookup(t, string, create, copy) \
676 ((struct strtab_hash_entry *) \
677 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
678
679/* Create a new strtab. */
680
681struct bfd_strtab_hash *
682_bfd_stringtab_init (void)
683{
684 struct bfd_strtab_hash *table;
685 bfd_size_type amt = sizeof (* table);
686
687 table = bfd_malloc (amt);
688 if (table == NULL)
689 return NULL;
690
691 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
692 sizeof (struct strtab_hash_entry)))
693 {
694 free (table);
695 return NULL;
696 }
697
698 table->size = 0;
699 table->first = NULL;
700 table->last = NULL;
701 table->xcoff = FALSE;
702
703 return table;
704}
705
706/* Create a new strtab in which the strings are output in the format
707 used in the XCOFF .debug section: a two byte length precedes each
708 string. */
709
710struct bfd_strtab_hash *
711_bfd_xcoff_stringtab_init (void)
712{
713 struct bfd_strtab_hash *ret;
714
715 ret = _bfd_stringtab_init ();
716 if (ret != NULL)
717 ret->xcoff = TRUE;
718 return ret;
719}
720
721/* Free a strtab. */
722
723void
724_bfd_stringtab_free (struct bfd_strtab_hash *table)
725{
726 bfd_hash_table_free (&table->table);
727 free (table);
728}
729
730/* Get the index of a string in a strtab, adding it if it is not
731 already present. If HASH is FALSE, we don't really use the hash
732 table, and we don't eliminate duplicate strings. */
733
734bfd_size_type
735_bfd_stringtab_add (struct bfd_strtab_hash *tab,
736 const char *str,
737 bfd_boolean hash,
738 bfd_boolean copy)
739{
740 struct strtab_hash_entry *entry;
741
742 if (hash)
743 {
744 entry = strtab_hash_lookup (tab, str, TRUE, copy);
745 if (entry == NULL)
746 return (bfd_size_type) -1;
747 }
748 else
749 {
750 entry = bfd_hash_allocate (&tab->table, sizeof (* entry));
751 if (entry == NULL)
752 return (bfd_size_type) -1;
753 if (! copy)
754 entry->root.string = str;
755 else
756 {
757 char *n;
758
759 n = bfd_hash_allocate (&tab->table, strlen (str) + 1);
760 if (n == NULL)
761 return (bfd_size_type) -1;
762 entry->root.string = n;
763 }
764 entry->index = (bfd_size_type) -1;
765 entry->next = NULL;
766 }
767
768 if (entry->index == (bfd_size_type) -1)
769 {
770 entry->index = tab->size;
771 tab->size += strlen (str) + 1;
772 if (tab->xcoff)
773 {
774 entry->index += 2;
775 tab->size += 2;
776 }
777 if (tab->first == NULL)
778 tab->first = entry;
779 else
780 tab->last->next = entry;
781 tab->last = entry;
782 }
783
784 return entry->index;
785}
786
787/* Get the number of bytes in a strtab. */
788
789bfd_size_type
790_bfd_stringtab_size (struct bfd_strtab_hash *tab)
791{
792 return tab->size;
793}
794
795/* Write out a strtab. ABFD must already be at the right location in
796 the file. */
797
798bfd_boolean
799_bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
800{
801 bfd_boolean xcoff;
802 struct strtab_hash_entry *entry;
803
804 xcoff = tab->xcoff;
805
806 for (entry = tab->first; entry != NULL; entry = entry->next)
807 {
808 const char *str;
809 size_t len;
810
811 str = entry->root.string;
812 len = strlen (str) + 1;
813
814 if (xcoff)
815 {
816 bfd_byte buf[2];
817
818 /* The output length includes the null byte. */
819 bfd_put_16 (abfd, (bfd_vma) len, buf);
820 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
821 return FALSE;
822 }
823
824 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
825 return FALSE;
826 }
827
828 return TRUE;
829}
This page took 0.028143 seconds and 4 git commands to generate.