sata_mv fix SOC flags, enable NCQ on SOC
[deliverable/linux.git] / drivers / ata / sata_mv.c
... / ...
CommitLineData
1/*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 *
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24
25/*
26 sata_mv TODO list:
27
28 1) Needs a full errata audit for all chipsets. I implemented most
29 of the errata workarounds found in the Marvell vendor driver, but
30 I distinctly remember a couple workarounds (one related to PCI-X)
31 are still needed.
32
33 2) Improve/fix IRQ and error handling sequences.
34
35 3) ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36
37 4) Think about TCQ support here, and for libata in general
38 with controllers that suppport it via host-queuing hardware
39 (a software-only implementation could be a nightmare).
40
41 5) Investigate problems with PCI Message Signalled Interrupts (MSI).
42
43 6) Add port multiplier support (intermediate)
44
45 7) Fix/reenable hot plug/unplug (should happen as a side-effect of (2) above).
46
47 8) Develop a low-power-consumption strategy, and implement it.
48
49 9) [Experiment, low priority] See if ATAPI can be supported using
50 "unknown FIS" or "vendor-specific FIS" support, or something creative
51 like that.
52
53 10) [Experiment, low priority] Investigate interrupt coalescing.
54 Quite often, especially with PCI Message Signalled Interrupts (MSI),
55 the overhead reduced by interrupt mitigation is quite often not
56 worth the latency cost.
57
58 11) [Experiment, Marvell value added] Is it possible to use target
59 mode to cross-connect two Linux boxes with Marvell cards? If so,
60 creating LibATA target mode support would be very interesting.
61
62 Target mode, for those without docs, is the ability to directly
63 connect two SATA controllers.
64
65*/
66
67#include <linux/kernel.h>
68#include <linux/module.h>
69#include <linux/pci.h>
70#include <linux/init.h>
71#include <linux/blkdev.h>
72#include <linux/delay.h>
73#include <linux/interrupt.h>
74#include <linux/dmapool.h>
75#include <linux/dma-mapping.h>
76#include <linux/device.h>
77#include <linux/platform_device.h>
78#include <linux/ata_platform.h>
79#include <scsi/scsi_host.h>
80#include <scsi/scsi_cmnd.h>
81#include <scsi/scsi_device.h>
82#include <linux/libata.h>
83
84#define DRV_NAME "sata_mv"
85#define DRV_VERSION "1.20"
86
87enum {
88 /* BAR's are enumerated in terms of pci_resource_start() terms */
89 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
90 MV_IO_BAR = 2, /* offset 0x18: IO space */
91 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
92
93 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
94 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
95
96 MV_PCI_REG_BASE = 0,
97 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
98 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
99 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
100 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
101 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
102 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
103
104 MV_SATAHC0_REG_BASE = 0x20000,
105 MV_FLASH_CTL = 0x1046c,
106 MV_GPIO_PORT_CTL = 0x104f0,
107 MV_RESET_CFG = 0x180d8,
108
109 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
110 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
111 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
112 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
113
114 MV_MAX_Q_DEPTH = 32,
115 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
116
117 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
118 * CRPB needs alignment on a 256B boundary. Size == 256B
119 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
120 */
121 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
122 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
123 MV_MAX_SG_CT = 256,
124 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
125
126 MV_PORTS_PER_HC = 4,
127 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
128 MV_PORT_HC_SHIFT = 2,
129 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
130 MV_PORT_MASK = 3,
131
132 /* Host Flags */
133 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
134 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
135 /* SoC integrated controllers, no PCI interface */
136 MV_FLAG_SOC = (1 << 28),
137
138 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
139 ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
140 ATA_FLAG_PIO_POLLING,
141 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
142
143 CRQB_FLAG_READ = (1 << 0),
144 CRQB_TAG_SHIFT = 1,
145 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
146 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
147 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
148 CRQB_CMD_ADDR_SHIFT = 8,
149 CRQB_CMD_CS = (0x2 << 11),
150 CRQB_CMD_LAST = (1 << 15),
151
152 CRPB_FLAG_STATUS_SHIFT = 8,
153 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
154 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
155
156 EPRD_FLAG_END_OF_TBL = (1 << 31),
157
158 /* PCI interface registers */
159
160 PCI_COMMAND_OFS = 0xc00,
161
162 PCI_MAIN_CMD_STS_OFS = 0xd30,
163 STOP_PCI_MASTER = (1 << 2),
164 PCI_MASTER_EMPTY = (1 << 3),
165 GLOB_SFT_RST = (1 << 4),
166
167 MV_PCI_MODE = 0xd00,
168 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
169 MV_PCI_DISC_TIMER = 0xd04,
170 MV_PCI_MSI_TRIGGER = 0xc38,
171 MV_PCI_SERR_MASK = 0xc28,
172 MV_PCI_XBAR_TMOUT = 0x1d04,
173 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
174 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
175 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
176 MV_PCI_ERR_COMMAND = 0x1d50,
177
178 PCI_IRQ_CAUSE_OFS = 0x1d58,
179 PCI_IRQ_MASK_OFS = 0x1d5c,
180 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
181
182 PCIE_IRQ_CAUSE_OFS = 0x1900,
183 PCIE_IRQ_MASK_OFS = 0x1910,
184 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
185
186 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
187 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
188 HC_SOC_MAIN_IRQ_CAUSE_OFS = 0x20020,
189 HC_SOC_MAIN_IRQ_MASK_OFS = 0x20024,
190 PORT0_ERR = (1 << 0), /* shift by port # */
191 PORT0_DONE = (1 << 1), /* shift by port # */
192 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
193 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
194 PCI_ERR = (1 << 18),
195 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
196 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
197 PORTS_0_3_COAL_DONE = (1 << 8),
198 PORTS_4_7_COAL_DONE = (1 << 17),
199 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
200 GPIO_INT = (1 << 22),
201 SELF_INT = (1 << 23),
202 TWSI_INT = (1 << 24),
203 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
204 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
205 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
206 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
207 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
208 HC_MAIN_RSVD),
209 HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
210 HC_MAIN_RSVD_5),
211 HC_MAIN_MASKED_IRQS_SOC = (PORTS_0_3_COAL_DONE | HC_MAIN_RSVD_SOC),
212
213 /* SATAHC registers */
214 HC_CFG_OFS = 0,
215
216 HC_IRQ_CAUSE_OFS = 0x14,
217 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
218 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
219 DEV_IRQ = (1 << 8), /* shift by port # */
220
221 /* Shadow block registers */
222 SHD_BLK_OFS = 0x100,
223 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
224
225 /* SATA registers */
226 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
227 SATA_ACTIVE_OFS = 0x350,
228 SATA_FIS_IRQ_CAUSE_OFS = 0x364,
229
230 LTMODE_OFS = 0x30c,
231 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
232
233 PHY_MODE3 = 0x310,
234 PHY_MODE4 = 0x314,
235 PHY_MODE2 = 0x330,
236 SATA_IFCTL_OFS = 0x344,
237 SATA_IFSTAT_OFS = 0x34c,
238 VENDOR_UNIQUE_FIS_OFS = 0x35c,
239
240 FIS_CFG_OFS = 0x360,
241 FIS_CFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
242
243 MV5_PHY_MODE = 0x74,
244 MV5_LT_MODE = 0x30,
245 MV5_PHY_CTL = 0x0C,
246 SATA_INTERFACE_CFG = 0x050,
247
248 MV_M2_PREAMP_MASK = 0x7e0,
249
250 /* Port registers */
251 EDMA_CFG_OFS = 0,
252 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
253 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
254 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
255 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
256 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
257 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
258 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
259
260 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
261 EDMA_ERR_IRQ_MASK_OFS = 0xc,
262 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
263 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
264 EDMA_ERR_DEV = (1 << 2), /* device error */
265 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
266 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
267 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
268 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
269 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
270 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
271 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
272 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
273 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
274 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
275 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
276
277 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
278 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
279 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
280 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
281 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
282
283 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
284
285 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
286 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
287 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
288 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
289 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
290 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
291
292 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
293
294 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
295 EDMA_ERR_OVERRUN_5 = (1 << 5),
296 EDMA_ERR_UNDERRUN_5 = (1 << 6),
297
298 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
299 EDMA_ERR_LNK_CTRL_RX_1 |
300 EDMA_ERR_LNK_CTRL_RX_3 |
301 EDMA_ERR_LNK_CTRL_TX |
302 /* temporary, until we fix hotplug: */
303 (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON),
304
305 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
306 EDMA_ERR_PRD_PAR |
307 EDMA_ERR_DEV_DCON |
308 EDMA_ERR_DEV_CON |
309 EDMA_ERR_SERR |
310 EDMA_ERR_SELF_DIS |
311 EDMA_ERR_CRQB_PAR |
312 EDMA_ERR_CRPB_PAR |
313 EDMA_ERR_INTRL_PAR |
314 EDMA_ERR_IORDY |
315 EDMA_ERR_LNK_CTRL_RX_2 |
316 EDMA_ERR_LNK_DATA_RX |
317 EDMA_ERR_LNK_DATA_TX |
318 EDMA_ERR_TRANS_PROTO,
319
320 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
321 EDMA_ERR_PRD_PAR |
322 EDMA_ERR_DEV_DCON |
323 EDMA_ERR_DEV_CON |
324 EDMA_ERR_OVERRUN_5 |
325 EDMA_ERR_UNDERRUN_5 |
326 EDMA_ERR_SELF_DIS_5 |
327 EDMA_ERR_CRQB_PAR |
328 EDMA_ERR_CRPB_PAR |
329 EDMA_ERR_INTRL_PAR |
330 EDMA_ERR_IORDY,
331
332 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
333 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
334
335 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
336 EDMA_REQ_Q_PTR_SHIFT = 5,
337
338 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
339 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
340 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
341 EDMA_RSP_Q_PTR_SHIFT = 3,
342
343 EDMA_CMD_OFS = 0x28, /* EDMA command register */
344 EDMA_EN = (1 << 0), /* enable EDMA */
345 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
346 ATA_RST = (1 << 2), /* reset trans/link/phy */
347
348 EDMA_IORDY_TMOUT = 0x34,
349 EDMA_ARB_CFG = 0x38,
350
351 /* Host private flags (hp_flags) */
352 MV_HP_FLAG_MSI = (1 << 0),
353 MV_HP_ERRATA_50XXB0 = (1 << 1),
354 MV_HP_ERRATA_50XXB2 = (1 << 2),
355 MV_HP_ERRATA_60X1B2 = (1 << 3),
356 MV_HP_ERRATA_60X1C0 = (1 << 4),
357 MV_HP_ERRATA_XX42A0 = (1 << 5),
358 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
359 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
360 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
361 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
362
363 /* Port private flags (pp_flags) */
364 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
365 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
366};
367
368#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
369#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
370#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
371#define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
372
373enum {
374 /* DMA boundary 0xffff is required by the s/g splitting
375 * we need on /length/ in mv_fill-sg().
376 */
377 MV_DMA_BOUNDARY = 0xffffU,
378
379 /* mask of register bits containing lower 32 bits
380 * of EDMA request queue DMA address
381 */
382 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
383
384 /* ditto, for response queue */
385 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
386};
387
388enum chip_type {
389 chip_504x,
390 chip_508x,
391 chip_5080,
392 chip_604x,
393 chip_608x,
394 chip_6042,
395 chip_7042,
396 chip_soc,
397};
398
399/* Command ReQuest Block: 32B */
400struct mv_crqb {
401 __le32 sg_addr;
402 __le32 sg_addr_hi;
403 __le16 ctrl_flags;
404 __le16 ata_cmd[11];
405};
406
407struct mv_crqb_iie {
408 __le32 addr;
409 __le32 addr_hi;
410 __le32 flags;
411 __le32 len;
412 __le32 ata_cmd[4];
413};
414
415/* Command ResPonse Block: 8B */
416struct mv_crpb {
417 __le16 id;
418 __le16 flags;
419 __le32 tmstmp;
420};
421
422/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
423struct mv_sg {
424 __le32 addr;
425 __le32 flags_size;
426 __le32 addr_hi;
427 __le32 reserved;
428};
429
430struct mv_port_priv {
431 struct mv_crqb *crqb;
432 dma_addr_t crqb_dma;
433 struct mv_crpb *crpb;
434 dma_addr_t crpb_dma;
435 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
436 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
437
438 unsigned int req_idx;
439 unsigned int resp_idx;
440
441 u32 pp_flags;
442};
443
444struct mv_port_signal {
445 u32 amps;
446 u32 pre;
447};
448
449struct mv_host_priv {
450 u32 hp_flags;
451 struct mv_port_signal signal[8];
452 const struct mv_hw_ops *ops;
453 int n_ports;
454 void __iomem *base;
455 void __iomem *main_cause_reg_addr;
456 void __iomem *main_mask_reg_addr;
457 u32 irq_cause_ofs;
458 u32 irq_mask_ofs;
459 u32 unmask_all_irqs;
460 /*
461 * These consistent DMA memory pools give us guaranteed
462 * alignment for hardware-accessed data structures,
463 * and less memory waste in accomplishing the alignment.
464 */
465 struct dma_pool *crqb_pool;
466 struct dma_pool *crpb_pool;
467 struct dma_pool *sg_tbl_pool;
468};
469
470struct mv_hw_ops {
471 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
472 unsigned int port);
473 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
474 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
475 void __iomem *mmio);
476 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
477 unsigned int n_hc);
478 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
479 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
480};
481
482static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
483static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
484static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
485static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
486static int mv_port_start(struct ata_port *ap);
487static void mv_port_stop(struct ata_port *ap);
488static void mv_qc_prep(struct ata_queued_cmd *qc);
489static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
490static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
491static int mv_hardreset(struct ata_link *link, unsigned int *class,
492 unsigned long deadline);
493static void mv_eh_freeze(struct ata_port *ap);
494static void mv_eh_thaw(struct ata_port *ap);
495static void mv6_dev_config(struct ata_device *dev);
496
497static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
498 unsigned int port);
499static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
500static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
501 void __iomem *mmio);
502static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
503 unsigned int n_hc);
504static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
505static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
506
507static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
508 unsigned int port);
509static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
510static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
511 void __iomem *mmio);
512static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
513 unsigned int n_hc);
514static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
515static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
516 void __iomem *mmio);
517static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
518 void __iomem *mmio);
519static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
520 void __iomem *mmio, unsigned int n_hc);
521static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
522 void __iomem *mmio);
523static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
524static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
525static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
526 unsigned int port_no);
527static int mv_stop_edma(struct ata_port *ap);
528static int mv_stop_edma_engine(void __iomem *port_mmio);
529static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
530
531/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
532 * because we have to allow room for worst case splitting of
533 * PRDs for 64K boundaries in mv_fill_sg().
534 */
535static struct scsi_host_template mv5_sht = {
536 ATA_BASE_SHT(DRV_NAME),
537 .sg_tablesize = MV_MAX_SG_CT / 2,
538 .dma_boundary = MV_DMA_BOUNDARY,
539};
540
541static struct scsi_host_template mv6_sht = {
542 ATA_NCQ_SHT(DRV_NAME),
543 .can_queue = MV_MAX_Q_DEPTH - 1,
544 .sg_tablesize = MV_MAX_SG_CT / 2,
545 .dma_boundary = MV_DMA_BOUNDARY,
546};
547
548static struct ata_port_operations mv5_ops = {
549 .inherits = &ata_sff_port_ops,
550
551 .qc_prep = mv_qc_prep,
552 .qc_issue = mv_qc_issue,
553
554 .freeze = mv_eh_freeze,
555 .thaw = mv_eh_thaw,
556 .hardreset = mv_hardreset,
557 .error_handler = ata_std_error_handler, /* avoid SFF EH */
558 .post_internal_cmd = ATA_OP_NULL,
559
560 .scr_read = mv5_scr_read,
561 .scr_write = mv5_scr_write,
562
563 .port_start = mv_port_start,
564 .port_stop = mv_port_stop,
565};
566
567static struct ata_port_operations mv6_ops = {
568 .inherits = &mv5_ops,
569 .qc_defer = ata_std_qc_defer,
570 .dev_config = mv6_dev_config,
571 .scr_read = mv_scr_read,
572 .scr_write = mv_scr_write,
573};
574
575static struct ata_port_operations mv_iie_ops = {
576 .inherits = &mv6_ops,
577 .dev_config = ATA_OP_NULL,
578 .qc_prep = mv_qc_prep_iie,
579};
580
581static const struct ata_port_info mv_port_info[] = {
582 { /* chip_504x */
583 .flags = MV_COMMON_FLAGS,
584 .pio_mask = 0x1f, /* pio0-4 */
585 .udma_mask = ATA_UDMA6,
586 .port_ops = &mv5_ops,
587 },
588 { /* chip_508x */
589 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
590 .pio_mask = 0x1f, /* pio0-4 */
591 .udma_mask = ATA_UDMA6,
592 .port_ops = &mv5_ops,
593 },
594 { /* chip_5080 */
595 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
596 .pio_mask = 0x1f, /* pio0-4 */
597 .udma_mask = ATA_UDMA6,
598 .port_ops = &mv5_ops,
599 },
600 { /* chip_604x */
601 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
602 ATA_FLAG_NCQ,
603 .pio_mask = 0x1f, /* pio0-4 */
604 .udma_mask = ATA_UDMA6,
605 .port_ops = &mv6_ops,
606 },
607 { /* chip_608x */
608 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
609 ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
610 .pio_mask = 0x1f, /* pio0-4 */
611 .udma_mask = ATA_UDMA6,
612 .port_ops = &mv6_ops,
613 },
614 { /* chip_6042 */
615 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
616 ATA_FLAG_NCQ,
617 .pio_mask = 0x1f, /* pio0-4 */
618 .udma_mask = ATA_UDMA6,
619 .port_ops = &mv_iie_ops,
620 },
621 { /* chip_7042 */
622 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
623 ATA_FLAG_NCQ,
624 .pio_mask = 0x1f, /* pio0-4 */
625 .udma_mask = ATA_UDMA6,
626 .port_ops = &mv_iie_ops,
627 },
628 { /* chip_soc */
629 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
630 ATA_FLAG_NCQ | MV_FLAG_SOC,
631 .pio_mask = 0x1f, /* pio0-4 */
632 .udma_mask = ATA_UDMA6,
633 .port_ops = &mv_iie_ops,
634 },
635};
636
637static const struct pci_device_id mv_pci_tbl[] = {
638 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
639 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
640 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
641 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
642 /* RocketRAID 1740/174x have different identifiers */
643 { PCI_VDEVICE(TTI, 0x1740), chip_508x },
644 { PCI_VDEVICE(TTI, 0x1742), chip_508x },
645
646 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
647 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
648 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
649 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
650 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
651
652 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
653
654 /* Adaptec 1430SA */
655 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
656
657 /* Marvell 7042 support */
658 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
659
660 /* Highpoint RocketRAID PCIe series */
661 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
662 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
663
664 { } /* terminate list */
665};
666
667static const struct mv_hw_ops mv5xxx_ops = {
668 .phy_errata = mv5_phy_errata,
669 .enable_leds = mv5_enable_leds,
670 .read_preamp = mv5_read_preamp,
671 .reset_hc = mv5_reset_hc,
672 .reset_flash = mv5_reset_flash,
673 .reset_bus = mv5_reset_bus,
674};
675
676static const struct mv_hw_ops mv6xxx_ops = {
677 .phy_errata = mv6_phy_errata,
678 .enable_leds = mv6_enable_leds,
679 .read_preamp = mv6_read_preamp,
680 .reset_hc = mv6_reset_hc,
681 .reset_flash = mv6_reset_flash,
682 .reset_bus = mv_reset_pci_bus,
683};
684
685static const struct mv_hw_ops mv_soc_ops = {
686 .phy_errata = mv6_phy_errata,
687 .enable_leds = mv_soc_enable_leds,
688 .read_preamp = mv_soc_read_preamp,
689 .reset_hc = mv_soc_reset_hc,
690 .reset_flash = mv_soc_reset_flash,
691 .reset_bus = mv_soc_reset_bus,
692};
693
694/*
695 * Functions
696 */
697
698static inline void writelfl(unsigned long data, void __iomem *addr)
699{
700 writel(data, addr);
701 (void) readl(addr); /* flush to avoid PCI posted write */
702}
703
704static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
705{
706 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
707}
708
709static inline unsigned int mv_hc_from_port(unsigned int port)
710{
711 return port >> MV_PORT_HC_SHIFT;
712}
713
714static inline unsigned int mv_hardport_from_port(unsigned int port)
715{
716 return port & MV_PORT_MASK;
717}
718
719static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
720 unsigned int port)
721{
722 return mv_hc_base(base, mv_hc_from_port(port));
723}
724
725static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
726{
727 return mv_hc_base_from_port(base, port) +
728 MV_SATAHC_ARBTR_REG_SZ +
729 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
730}
731
732static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
733{
734 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
735 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
736
737 return hc_mmio + ofs;
738}
739
740static inline void __iomem *mv_host_base(struct ata_host *host)
741{
742 struct mv_host_priv *hpriv = host->private_data;
743 return hpriv->base;
744}
745
746static inline void __iomem *mv_ap_base(struct ata_port *ap)
747{
748 return mv_port_base(mv_host_base(ap->host), ap->port_no);
749}
750
751static inline int mv_get_hc_count(unsigned long port_flags)
752{
753 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
754}
755
756static void mv_set_edma_ptrs(void __iomem *port_mmio,
757 struct mv_host_priv *hpriv,
758 struct mv_port_priv *pp)
759{
760 u32 index;
761
762 /*
763 * initialize request queue
764 */
765 index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
766
767 WARN_ON(pp->crqb_dma & 0x3ff);
768 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
769 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
770 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
771
772 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
773 writelfl((pp->crqb_dma & 0xffffffff) | index,
774 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
775 else
776 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
777
778 /*
779 * initialize response queue
780 */
781 index = (pp->resp_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_RSP_Q_PTR_SHIFT;
782
783 WARN_ON(pp->crpb_dma & 0xff);
784 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
785
786 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
787 writelfl((pp->crpb_dma & 0xffffffff) | index,
788 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
789 else
790 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
791
792 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
793 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
794}
795
796/**
797 * mv_start_dma - Enable eDMA engine
798 * @base: port base address
799 * @pp: port private data
800 *
801 * Verify the local cache of the eDMA state is accurate with a
802 * WARN_ON.
803 *
804 * LOCKING:
805 * Inherited from caller.
806 */
807static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
808 struct mv_port_priv *pp, u8 protocol)
809{
810 int want_ncq = (protocol == ATA_PROT_NCQ);
811
812 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
813 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
814 if (want_ncq != using_ncq)
815 mv_stop_edma(ap);
816 }
817 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
818 struct mv_host_priv *hpriv = ap->host->private_data;
819 int hard_port = mv_hardport_from_port(ap->port_no);
820 void __iomem *hc_mmio = mv_hc_base_from_port(
821 mv_host_base(ap->host), hard_port);
822 u32 hc_irq_cause, ipending;
823
824 /* clear EDMA event indicators, if any */
825 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
826
827 /* clear EDMA interrupt indicator, if any */
828 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
829 ipending = (DEV_IRQ << hard_port) |
830 (CRPB_DMA_DONE << hard_port);
831 if (hc_irq_cause & ipending) {
832 writelfl(hc_irq_cause & ~ipending,
833 hc_mmio + HC_IRQ_CAUSE_OFS);
834 }
835
836 mv_edma_cfg(ap, want_ncq);
837
838 /* clear FIS IRQ Cause */
839 writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
840
841 mv_set_edma_ptrs(port_mmio, hpriv, pp);
842
843 writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
844 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
845 }
846 WARN_ON(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
847}
848
849/**
850 * mv_stop_edma_engine - Disable eDMA engine
851 * @port_mmio: io base address
852 *
853 * LOCKING:
854 * Inherited from caller.
855 */
856static int mv_stop_edma_engine(void __iomem *port_mmio)
857{
858 int i;
859
860 /* Disable eDMA. The disable bit auto clears. */
861 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
862
863 /* Wait for the chip to confirm eDMA is off. */
864 for (i = 10000; i > 0; i--) {
865 u32 reg = readl(port_mmio + EDMA_CMD_OFS);
866 if (!(reg & EDMA_EN))
867 return 0;
868 udelay(10);
869 }
870 return -EIO;
871}
872
873static int mv_stop_edma(struct ata_port *ap)
874{
875 void __iomem *port_mmio = mv_ap_base(ap);
876 struct mv_port_priv *pp = ap->private_data;
877
878 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
879 return 0;
880 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
881 if (mv_stop_edma_engine(port_mmio)) {
882 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
883 return -EIO;
884 }
885 return 0;
886}
887
888#ifdef ATA_DEBUG
889static void mv_dump_mem(void __iomem *start, unsigned bytes)
890{
891 int b, w;
892 for (b = 0; b < bytes; ) {
893 DPRINTK("%p: ", start + b);
894 for (w = 0; b < bytes && w < 4; w++) {
895 printk("%08x ", readl(start + b));
896 b += sizeof(u32);
897 }
898 printk("\n");
899 }
900}
901#endif
902
903static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
904{
905#ifdef ATA_DEBUG
906 int b, w;
907 u32 dw;
908 for (b = 0; b < bytes; ) {
909 DPRINTK("%02x: ", b);
910 for (w = 0; b < bytes && w < 4; w++) {
911 (void) pci_read_config_dword(pdev, b, &dw);
912 printk("%08x ", dw);
913 b += sizeof(u32);
914 }
915 printk("\n");
916 }
917#endif
918}
919static void mv_dump_all_regs(void __iomem *mmio_base, int port,
920 struct pci_dev *pdev)
921{
922#ifdef ATA_DEBUG
923 void __iomem *hc_base = mv_hc_base(mmio_base,
924 port >> MV_PORT_HC_SHIFT);
925 void __iomem *port_base;
926 int start_port, num_ports, p, start_hc, num_hcs, hc;
927
928 if (0 > port) {
929 start_hc = start_port = 0;
930 num_ports = 8; /* shld be benign for 4 port devs */
931 num_hcs = 2;
932 } else {
933 start_hc = port >> MV_PORT_HC_SHIFT;
934 start_port = port;
935 num_ports = num_hcs = 1;
936 }
937 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
938 num_ports > 1 ? num_ports - 1 : start_port);
939
940 if (NULL != pdev) {
941 DPRINTK("PCI config space regs:\n");
942 mv_dump_pci_cfg(pdev, 0x68);
943 }
944 DPRINTK("PCI regs:\n");
945 mv_dump_mem(mmio_base+0xc00, 0x3c);
946 mv_dump_mem(mmio_base+0xd00, 0x34);
947 mv_dump_mem(mmio_base+0xf00, 0x4);
948 mv_dump_mem(mmio_base+0x1d00, 0x6c);
949 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
950 hc_base = mv_hc_base(mmio_base, hc);
951 DPRINTK("HC regs (HC %i):\n", hc);
952 mv_dump_mem(hc_base, 0x1c);
953 }
954 for (p = start_port; p < start_port + num_ports; p++) {
955 port_base = mv_port_base(mmio_base, p);
956 DPRINTK("EDMA regs (port %i):\n", p);
957 mv_dump_mem(port_base, 0x54);
958 DPRINTK("SATA regs (port %i):\n", p);
959 mv_dump_mem(port_base+0x300, 0x60);
960 }
961#endif
962}
963
964static unsigned int mv_scr_offset(unsigned int sc_reg_in)
965{
966 unsigned int ofs;
967
968 switch (sc_reg_in) {
969 case SCR_STATUS:
970 case SCR_CONTROL:
971 case SCR_ERROR:
972 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
973 break;
974 case SCR_ACTIVE:
975 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
976 break;
977 default:
978 ofs = 0xffffffffU;
979 break;
980 }
981 return ofs;
982}
983
984static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
985{
986 unsigned int ofs = mv_scr_offset(sc_reg_in);
987
988 if (ofs != 0xffffffffU) {
989 *val = readl(mv_ap_base(ap) + ofs);
990 return 0;
991 } else
992 return -EINVAL;
993}
994
995static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
996{
997 unsigned int ofs = mv_scr_offset(sc_reg_in);
998
999 if (ofs != 0xffffffffU) {
1000 writelfl(val, mv_ap_base(ap) + ofs);
1001 return 0;
1002 } else
1003 return -EINVAL;
1004}
1005
1006static void mv6_dev_config(struct ata_device *adev)
1007{
1008 /*
1009 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1010 * See mv_qc_prep() for more info.
1011 */
1012 if (adev->flags & ATA_DFLAG_NCQ)
1013 if (adev->max_sectors > ATA_MAX_SECTORS)
1014 adev->max_sectors = ATA_MAX_SECTORS;
1015}
1016
1017static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1018{
1019 u32 cfg;
1020 struct mv_port_priv *pp = ap->private_data;
1021 struct mv_host_priv *hpriv = ap->host->private_data;
1022 void __iomem *port_mmio = mv_ap_base(ap);
1023
1024 /* set up non-NCQ EDMA configuration */
1025 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1026
1027 if (IS_GEN_I(hpriv))
1028 cfg |= (1 << 8); /* enab config burst size mask */
1029
1030 else if (IS_GEN_II(hpriv))
1031 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1032
1033 else if (IS_GEN_IIE(hpriv)) {
1034 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1035 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1036 cfg |= (1 << 18); /* enab early completion */
1037 cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */
1038 }
1039
1040 if (want_ncq) {
1041 cfg |= EDMA_CFG_NCQ;
1042 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1043 } else
1044 pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1045
1046 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1047}
1048
1049static void mv_port_free_dma_mem(struct ata_port *ap)
1050{
1051 struct mv_host_priv *hpriv = ap->host->private_data;
1052 struct mv_port_priv *pp = ap->private_data;
1053 int tag;
1054
1055 if (pp->crqb) {
1056 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1057 pp->crqb = NULL;
1058 }
1059 if (pp->crpb) {
1060 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1061 pp->crpb = NULL;
1062 }
1063 /*
1064 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1065 * For later hardware, we have one unique sg_tbl per NCQ tag.
1066 */
1067 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1068 if (pp->sg_tbl[tag]) {
1069 if (tag == 0 || !IS_GEN_I(hpriv))
1070 dma_pool_free(hpriv->sg_tbl_pool,
1071 pp->sg_tbl[tag],
1072 pp->sg_tbl_dma[tag]);
1073 pp->sg_tbl[tag] = NULL;
1074 }
1075 }
1076}
1077
1078/**
1079 * mv_port_start - Port specific init/start routine.
1080 * @ap: ATA channel to manipulate
1081 *
1082 * Allocate and point to DMA memory, init port private memory,
1083 * zero indices.
1084 *
1085 * LOCKING:
1086 * Inherited from caller.
1087 */
1088static int mv_port_start(struct ata_port *ap)
1089{
1090 struct device *dev = ap->host->dev;
1091 struct mv_host_priv *hpriv = ap->host->private_data;
1092 struct mv_port_priv *pp;
1093 void __iomem *port_mmio = mv_ap_base(ap);
1094 unsigned long flags;
1095 int tag;
1096
1097 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1098 if (!pp)
1099 return -ENOMEM;
1100 ap->private_data = pp;
1101
1102 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1103 if (!pp->crqb)
1104 return -ENOMEM;
1105 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1106
1107 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1108 if (!pp->crpb)
1109 goto out_port_free_dma_mem;
1110 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1111
1112 /*
1113 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1114 * For later hardware, we need one unique sg_tbl per NCQ tag.
1115 */
1116 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1117 if (tag == 0 || !IS_GEN_I(hpriv)) {
1118 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1119 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1120 if (!pp->sg_tbl[tag])
1121 goto out_port_free_dma_mem;
1122 } else {
1123 pp->sg_tbl[tag] = pp->sg_tbl[0];
1124 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1125 }
1126 }
1127
1128 spin_lock_irqsave(&ap->host->lock, flags);
1129
1130 mv_edma_cfg(ap, 0);
1131 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1132
1133 spin_unlock_irqrestore(&ap->host->lock, flags);
1134
1135 /* Don't turn on EDMA here...do it before DMA commands only. Else
1136 * we'll be unable to send non-data, PIO, etc due to restricted access
1137 * to shadow regs.
1138 */
1139 return 0;
1140
1141out_port_free_dma_mem:
1142 mv_port_free_dma_mem(ap);
1143 return -ENOMEM;
1144}
1145
1146/**
1147 * mv_port_stop - Port specific cleanup/stop routine.
1148 * @ap: ATA channel to manipulate
1149 *
1150 * Stop DMA, cleanup port memory.
1151 *
1152 * LOCKING:
1153 * This routine uses the host lock to protect the DMA stop.
1154 */
1155static void mv_port_stop(struct ata_port *ap)
1156{
1157 mv_stop_edma(ap);
1158 mv_port_free_dma_mem(ap);
1159}
1160
1161/**
1162 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1163 * @qc: queued command whose SG list to source from
1164 *
1165 * Populate the SG list and mark the last entry.
1166 *
1167 * LOCKING:
1168 * Inherited from caller.
1169 */
1170static void mv_fill_sg(struct ata_queued_cmd *qc)
1171{
1172 struct mv_port_priv *pp = qc->ap->private_data;
1173 struct scatterlist *sg;
1174 struct mv_sg *mv_sg, *last_sg = NULL;
1175 unsigned int si;
1176
1177 mv_sg = pp->sg_tbl[qc->tag];
1178 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1179 dma_addr_t addr = sg_dma_address(sg);
1180 u32 sg_len = sg_dma_len(sg);
1181
1182 while (sg_len) {
1183 u32 offset = addr & 0xffff;
1184 u32 len = sg_len;
1185
1186 if ((offset + sg_len > 0x10000))
1187 len = 0x10000 - offset;
1188
1189 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1190 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1191 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1192
1193 sg_len -= len;
1194 addr += len;
1195
1196 last_sg = mv_sg;
1197 mv_sg++;
1198 }
1199 }
1200
1201 if (likely(last_sg))
1202 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1203}
1204
1205static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1206{
1207 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1208 (last ? CRQB_CMD_LAST : 0);
1209 *cmdw = cpu_to_le16(tmp);
1210}
1211
1212/**
1213 * mv_qc_prep - Host specific command preparation.
1214 * @qc: queued command to prepare
1215 *
1216 * This routine simply redirects to the general purpose routine
1217 * if command is not DMA. Else, it handles prep of the CRQB
1218 * (command request block), does some sanity checking, and calls
1219 * the SG load routine.
1220 *
1221 * LOCKING:
1222 * Inherited from caller.
1223 */
1224static void mv_qc_prep(struct ata_queued_cmd *qc)
1225{
1226 struct ata_port *ap = qc->ap;
1227 struct mv_port_priv *pp = ap->private_data;
1228 __le16 *cw;
1229 struct ata_taskfile *tf;
1230 u16 flags = 0;
1231 unsigned in_index;
1232
1233 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1234 (qc->tf.protocol != ATA_PROT_NCQ))
1235 return;
1236
1237 /* Fill in command request block
1238 */
1239 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1240 flags |= CRQB_FLAG_READ;
1241 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1242 flags |= qc->tag << CRQB_TAG_SHIFT;
1243
1244 /* get current queue index from software */
1245 in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
1246
1247 pp->crqb[in_index].sg_addr =
1248 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1249 pp->crqb[in_index].sg_addr_hi =
1250 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1251 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1252
1253 cw = &pp->crqb[in_index].ata_cmd[0];
1254 tf = &qc->tf;
1255
1256 /* Sadly, the CRQB cannot accomodate all registers--there are
1257 * only 11 bytes...so we must pick and choose required
1258 * registers based on the command. So, we drop feature and
1259 * hob_feature for [RW] DMA commands, but they are needed for
1260 * NCQ. NCQ will drop hob_nsect.
1261 */
1262 switch (tf->command) {
1263 case ATA_CMD_READ:
1264 case ATA_CMD_READ_EXT:
1265 case ATA_CMD_WRITE:
1266 case ATA_CMD_WRITE_EXT:
1267 case ATA_CMD_WRITE_FUA_EXT:
1268 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1269 break;
1270 case ATA_CMD_FPDMA_READ:
1271 case ATA_CMD_FPDMA_WRITE:
1272 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1273 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1274 break;
1275 default:
1276 /* The only other commands EDMA supports in non-queued and
1277 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1278 * of which are defined/used by Linux. If we get here, this
1279 * driver needs work.
1280 *
1281 * FIXME: modify libata to give qc_prep a return value and
1282 * return error here.
1283 */
1284 BUG_ON(tf->command);
1285 break;
1286 }
1287 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1288 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1289 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1290 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1291 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1292 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1293 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1294 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1295 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1296
1297 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1298 return;
1299 mv_fill_sg(qc);
1300}
1301
1302/**
1303 * mv_qc_prep_iie - Host specific command preparation.
1304 * @qc: queued command to prepare
1305 *
1306 * This routine simply redirects to the general purpose routine
1307 * if command is not DMA. Else, it handles prep of the CRQB
1308 * (command request block), does some sanity checking, and calls
1309 * the SG load routine.
1310 *
1311 * LOCKING:
1312 * Inherited from caller.
1313 */
1314static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1315{
1316 struct ata_port *ap = qc->ap;
1317 struct mv_port_priv *pp = ap->private_data;
1318 struct mv_crqb_iie *crqb;
1319 struct ata_taskfile *tf;
1320 unsigned in_index;
1321 u32 flags = 0;
1322
1323 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1324 (qc->tf.protocol != ATA_PROT_NCQ))
1325 return;
1326
1327 /* Fill in Gen IIE command request block */
1328 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1329 flags |= CRQB_FLAG_READ;
1330
1331 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1332 flags |= qc->tag << CRQB_TAG_SHIFT;
1333 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1334
1335 /* get current queue index from software */
1336 in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
1337
1338 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1339 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1340 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1341 crqb->flags = cpu_to_le32(flags);
1342
1343 tf = &qc->tf;
1344 crqb->ata_cmd[0] = cpu_to_le32(
1345 (tf->command << 16) |
1346 (tf->feature << 24)
1347 );
1348 crqb->ata_cmd[1] = cpu_to_le32(
1349 (tf->lbal << 0) |
1350 (tf->lbam << 8) |
1351 (tf->lbah << 16) |
1352 (tf->device << 24)
1353 );
1354 crqb->ata_cmd[2] = cpu_to_le32(
1355 (tf->hob_lbal << 0) |
1356 (tf->hob_lbam << 8) |
1357 (tf->hob_lbah << 16) |
1358 (tf->hob_feature << 24)
1359 );
1360 crqb->ata_cmd[3] = cpu_to_le32(
1361 (tf->nsect << 0) |
1362 (tf->hob_nsect << 8)
1363 );
1364
1365 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1366 return;
1367 mv_fill_sg(qc);
1368}
1369
1370/**
1371 * mv_qc_issue - Initiate a command to the host
1372 * @qc: queued command to start
1373 *
1374 * This routine simply redirects to the general purpose routine
1375 * if command is not DMA. Else, it sanity checks our local
1376 * caches of the request producer/consumer indices then enables
1377 * DMA and bumps the request producer index.
1378 *
1379 * LOCKING:
1380 * Inherited from caller.
1381 */
1382static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1383{
1384 struct ata_port *ap = qc->ap;
1385 void __iomem *port_mmio = mv_ap_base(ap);
1386 struct mv_port_priv *pp = ap->private_data;
1387 u32 in_index;
1388
1389 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1390 (qc->tf.protocol != ATA_PROT_NCQ)) {
1391 /*
1392 * We're about to send a non-EDMA capable command to the
1393 * port. Turn off EDMA so there won't be problems accessing
1394 * shadow block, etc registers.
1395 */
1396 mv_stop_edma(ap);
1397 return ata_sff_qc_issue(qc);
1398 }
1399
1400 mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1401
1402 pp->req_idx++;
1403
1404 in_index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
1405
1406 /* and write the request in pointer to kick the EDMA to life */
1407 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1408 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1409
1410 return 0;
1411}
1412
1413/**
1414 * mv_err_intr - Handle error interrupts on the port
1415 * @ap: ATA channel to manipulate
1416 * @reset_allowed: bool: 0 == don't trigger from reset here
1417 *
1418 * In most cases, just clear the interrupt and move on. However,
1419 * some cases require an eDMA reset, which also performs a COMRESET.
1420 * The SERR case requires a clear of pending errors in the SATA
1421 * SERROR register. Finally, if the port disabled DMA,
1422 * update our cached copy to match.
1423 *
1424 * LOCKING:
1425 * Inherited from caller.
1426 */
1427static void mv_err_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1428{
1429 void __iomem *port_mmio = mv_ap_base(ap);
1430 u32 edma_err_cause, eh_freeze_mask, serr = 0;
1431 struct mv_port_priv *pp = ap->private_data;
1432 struct mv_host_priv *hpriv = ap->host->private_data;
1433 unsigned int edma_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
1434 unsigned int action = 0, err_mask = 0;
1435 struct ata_eh_info *ehi = &ap->link.eh_info;
1436
1437 ata_ehi_clear_desc(ehi);
1438
1439 if (!edma_enabled) {
1440 /* just a guess: do we need to do this? should we
1441 * expand this, and do it in all cases?
1442 */
1443 sata_scr_read(&ap->link, SCR_ERROR, &serr);
1444 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1445 }
1446
1447 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1448
1449 ata_ehi_push_desc(ehi, "edma_err 0x%08x", edma_err_cause);
1450
1451 /*
1452 * all generations share these EDMA error cause bits
1453 */
1454
1455 if (edma_err_cause & EDMA_ERR_DEV)
1456 err_mask |= AC_ERR_DEV;
1457 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1458 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1459 EDMA_ERR_INTRL_PAR)) {
1460 err_mask |= AC_ERR_ATA_BUS;
1461 action |= ATA_EH_RESET;
1462 ata_ehi_push_desc(ehi, "parity error");
1463 }
1464 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1465 ata_ehi_hotplugged(ehi);
1466 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1467 "dev disconnect" : "dev connect");
1468 action |= ATA_EH_RESET;
1469 }
1470
1471 if (IS_GEN_I(hpriv)) {
1472 eh_freeze_mask = EDMA_EH_FREEZE_5;
1473
1474 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1475 pp = ap->private_data;
1476 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1477 ata_ehi_push_desc(ehi, "EDMA self-disable");
1478 }
1479 } else {
1480 eh_freeze_mask = EDMA_EH_FREEZE;
1481
1482 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1483 pp = ap->private_data;
1484 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1485 ata_ehi_push_desc(ehi, "EDMA self-disable");
1486 }
1487
1488 if (edma_err_cause & EDMA_ERR_SERR) {
1489 sata_scr_read(&ap->link, SCR_ERROR, &serr);
1490 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1491 err_mask = AC_ERR_ATA_BUS;
1492 action |= ATA_EH_RESET;
1493 }
1494 }
1495
1496 /* Clear EDMA now that SERR cleanup done */
1497 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1498
1499 if (!err_mask) {
1500 err_mask = AC_ERR_OTHER;
1501 action |= ATA_EH_RESET;
1502 }
1503
1504 ehi->serror |= serr;
1505 ehi->action |= action;
1506
1507 if (qc)
1508 qc->err_mask |= err_mask;
1509 else
1510 ehi->err_mask |= err_mask;
1511
1512 if (edma_err_cause & eh_freeze_mask)
1513 ata_port_freeze(ap);
1514 else
1515 ata_port_abort(ap);
1516}
1517
1518static void mv_intr_pio(struct ata_port *ap)
1519{
1520 struct ata_queued_cmd *qc;
1521 u8 ata_status;
1522
1523 /* ignore spurious intr if drive still BUSY */
1524 ata_status = readb(ap->ioaddr.status_addr);
1525 if (unlikely(ata_status & ATA_BUSY))
1526 return;
1527
1528 /* get active ATA command */
1529 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1530 if (unlikely(!qc)) /* no active tag */
1531 return;
1532 if (qc->tf.flags & ATA_TFLAG_POLLING) /* polling; we don't own qc */
1533 return;
1534
1535 /* and finally, complete the ATA command */
1536 qc->err_mask |= ac_err_mask(ata_status);
1537 ata_qc_complete(qc);
1538}
1539
1540static void mv_intr_edma(struct ata_port *ap)
1541{
1542 void __iomem *port_mmio = mv_ap_base(ap);
1543 struct mv_host_priv *hpriv = ap->host->private_data;
1544 struct mv_port_priv *pp = ap->private_data;
1545 struct ata_queued_cmd *qc;
1546 u32 out_index, in_index;
1547 bool work_done = false;
1548
1549 /* get h/w response queue pointer */
1550 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1551 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1552
1553 while (1) {
1554 u16 status;
1555 unsigned int tag;
1556
1557 /* get s/w response queue last-read pointer, and compare */
1558 out_index = pp->resp_idx & MV_MAX_Q_DEPTH_MASK;
1559 if (in_index == out_index)
1560 break;
1561
1562 /* 50xx: get active ATA command */
1563 if (IS_GEN_I(hpriv))
1564 tag = ap->link.active_tag;
1565
1566 /* Gen II/IIE: get active ATA command via tag, to enable
1567 * support for queueing. this works transparently for
1568 * queued and non-queued modes.
1569 */
1570 else
1571 tag = le16_to_cpu(pp->crpb[out_index].id) & 0x1f;
1572
1573 qc = ata_qc_from_tag(ap, tag);
1574
1575 /* For non-NCQ mode, the lower 8 bits of status
1576 * are from EDMA_ERR_IRQ_CAUSE_OFS,
1577 * which should be zero if all went well.
1578 */
1579 status = le16_to_cpu(pp->crpb[out_index].flags);
1580 if ((status & 0xff) && !(pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1581 mv_err_intr(ap, qc);
1582 return;
1583 }
1584
1585 /* and finally, complete the ATA command */
1586 if (qc) {
1587 qc->err_mask |=
1588 ac_err_mask(status >> CRPB_FLAG_STATUS_SHIFT);
1589 ata_qc_complete(qc);
1590 }
1591
1592 /* advance software response queue pointer, to
1593 * indicate (after the loop completes) to hardware
1594 * that we have consumed a response queue entry.
1595 */
1596 work_done = true;
1597 pp->resp_idx++;
1598 }
1599
1600 if (work_done)
1601 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
1602 (out_index << EDMA_RSP_Q_PTR_SHIFT),
1603 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1604}
1605
1606/**
1607 * mv_host_intr - Handle all interrupts on the given host controller
1608 * @host: host specific structure
1609 * @relevant: port error bits relevant to this host controller
1610 * @hc: which host controller we're to look at
1611 *
1612 * Read then write clear the HC interrupt status then walk each
1613 * port connected to the HC and see if it needs servicing. Port
1614 * success ints are reported in the HC interrupt status reg, the
1615 * port error ints are reported in the higher level main
1616 * interrupt status register and thus are passed in via the
1617 * 'relevant' argument.
1618 *
1619 * LOCKING:
1620 * Inherited from caller.
1621 */
1622static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
1623{
1624 struct mv_host_priv *hpriv = host->private_data;
1625 void __iomem *mmio = hpriv->base;
1626 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1627 u32 hc_irq_cause;
1628 int port, port0, last_port;
1629
1630 if (hc == 0)
1631 port0 = 0;
1632 else
1633 port0 = MV_PORTS_PER_HC;
1634
1635 if (HAS_PCI(host))
1636 last_port = port0 + MV_PORTS_PER_HC;
1637 else
1638 last_port = port0 + hpriv->n_ports;
1639 /* we'll need the HC success int register in most cases */
1640 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1641 if (!hc_irq_cause)
1642 return;
1643
1644 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1645
1646 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1647 hc, relevant, hc_irq_cause);
1648
1649 for (port = port0; port < last_port; port++) {
1650 struct ata_port *ap = host->ports[port];
1651 struct mv_port_priv *pp;
1652 int have_err_bits, hard_port, shift;
1653
1654 if ((!ap) || (ap->flags & ATA_FLAG_DISABLED))
1655 continue;
1656
1657 pp = ap->private_data;
1658
1659 shift = port << 1; /* (port * 2) */
1660 if (port >= MV_PORTS_PER_HC)
1661 shift++; /* skip bit 8 in the HC Main IRQ reg */
1662
1663 have_err_bits = ((PORT0_ERR << shift) & relevant);
1664
1665 if (unlikely(have_err_bits)) {
1666 struct ata_queued_cmd *qc;
1667
1668 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1669 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1670 continue;
1671
1672 mv_err_intr(ap, qc);
1673 continue;
1674 }
1675
1676 hard_port = mv_hardport_from_port(port); /* range 0..3 */
1677
1678 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1679 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause)
1680 mv_intr_edma(ap);
1681 } else {
1682 if ((DEV_IRQ << hard_port) & hc_irq_cause)
1683 mv_intr_pio(ap);
1684 }
1685 }
1686 VPRINTK("EXIT\n");
1687}
1688
1689static void mv_pci_error(struct ata_host *host, void __iomem *mmio)
1690{
1691 struct mv_host_priv *hpriv = host->private_data;
1692 struct ata_port *ap;
1693 struct ata_queued_cmd *qc;
1694 struct ata_eh_info *ehi;
1695 unsigned int i, err_mask, printed = 0;
1696 u32 err_cause;
1697
1698 err_cause = readl(mmio + hpriv->irq_cause_ofs);
1699
1700 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
1701 err_cause);
1702
1703 DPRINTK("All regs @ PCI error\n");
1704 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1705
1706 writelfl(0, mmio + hpriv->irq_cause_ofs);
1707
1708 for (i = 0; i < host->n_ports; i++) {
1709 ap = host->ports[i];
1710 if (!ata_link_offline(&ap->link)) {
1711 ehi = &ap->link.eh_info;
1712 ata_ehi_clear_desc(ehi);
1713 if (!printed++)
1714 ata_ehi_push_desc(ehi,
1715 "PCI err cause 0x%08x", err_cause);
1716 err_mask = AC_ERR_HOST_BUS;
1717 ehi->action = ATA_EH_RESET;
1718 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1719 if (qc)
1720 qc->err_mask |= err_mask;
1721 else
1722 ehi->err_mask |= err_mask;
1723
1724 ata_port_freeze(ap);
1725 }
1726 }
1727}
1728
1729/**
1730 * mv_interrupt - Main interrupt event handler
1731 * @irq: unused
1732 * @dev_instance: private data; in this case the host structure
1733 *
1734 * Read the read only register to determine if any host
1735 * controllers have pending interrupts. If so, call lower level
1736 * routine to handle. Also check for PCI errors which are only
1737 * reported here.
1738 *
1739 * LOCKING:
1740 * This routine holds the host lock while processing pending
1741 * interrupts.
1742 */
1743static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1744{
1745 struct ata_host *host = dev_instance;
1746 struct mv_host_priv *hpriv = host->private_data;
1747 unsigned int hc, handled = 0, n_hcs;
1748 void __iomem *mmio = hpriv->base;
1749 u32 irq_stat, irq_mask;
1750
1751 /* Note to self: &host->lock == &ap->host->lock == ap->lock */
1752 spin_lock(&host->lock);
1753
1754 irq_stat = readl(hpriv->main_cause_reg_addr);
1755 irq_mask = readl(hpriv->main_mask_reg_addr);
1756
1757 /* check the cases where we either have nothing pending or have read
1758 * a bogus register value which can indicate HW removal or PCI fault
1759 */
1760 if (!(irq_stat & irq_mask) || (0xffffffffU == irq_stat))
1761 goto out_unlock;
1762
1763 n_hcs = mv_get_hc_count(host->ports[0]->flags);
1764
1765 if (unlikely((irq_stat & PCI_ERR) && HAS_PCI(host))) {
1766 mv_pci_error(host, mmio);
1767 handled = 1;
1768 goto out_unlock; /* skip all other HC irq handling */
1769 }
1770
1771 for (hc = 0; hc < n_hcs; hc++) {
1772 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1773 if (relevant) {
1774 mv_host_intr(host, relevant, hc);
1775 handled = 1;
1776 }
1777 }
1778
1779out_unlock:
1780 spin_unlock(&host->lock);
1781
1782 return IRQ_RETVAL(handled);
1783}
1784
1785static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1786{
1787 unsigned int ofs;
1788
1789 switch (sc_reg_in) {
1790 case SCR_STATUS:
1791 case SCR_ERROR:
1792 case SCR_CONTROL:
1793 ofs = sc_reg_in * sizeof(u32);
1794 break;
1795 default:
1796 ofs = 0xffffffffU;
1797 break;
1798 }
1799 return ofs;
1800}
1801
1802static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1803{
1804 struct mv_host_priv *hpriv = ap->host->private_data;
1805 void __iomem *mmio = hpriv->base;
1806 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1807 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1808
1809 if (ofs != 0xffffffffU) {
1810 *val = readl(addr + ofs);
1811 return 0;
1812 } else
1813 return -EINVAL;
1814}
1815
1816static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1817{
1818 struct mv_host_priv *hpriv = ap->host->private_data;
1819 void __iomem *mmio = hpriv->base;
1820 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1821 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1822
1823 if (ofs != 0xffffffffU) {
1824 writelfl(val, addr + ofs);
1825 return 0;
1826 } else
1827 return -EINVAL;
1828}
1829
1830static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
1831{
1832 struct pci_dev *pdev = to_pci_dev(host->dev);
1833 int early_5080;
1834
1835 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
1836
1837 if (!early_5080) {
1838 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1839 tmp |= (1 << 0);
1840 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1841 }
1842
1843 mv_reset_pci_bus(host, mmio);
1844}
1845
1846static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1847{
1848 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1849}
1850
1851static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1852 void __iomem *mmio)
1853{
1854 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1855 u32 tmp;
1856
1857 tmp = readl(phy_mmio + MV5_PHY_MODE);
1858
1859 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1860 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1861}
1862
1863static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1864{
1865 u32 tmp;
1866
1867 writel(0, mmio + MV_GPIO_PORT_CTL);
1868
1869 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1870
1871 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1872 tmp |= ~(1 << 0);
1873 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1874}
1875
1876static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1877 unsigned int port)
1878{
1879 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1880 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1881 u32 tmp;
1882 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1883
1884 if (fix_apm_sq) {
1885 tmp = readl(phy_mmio + MV5_LT_MODE);
1886 tmp |= (1 << 19);
1887 writel(tmp, phy_mmio + MV5_LT_MODE);
1888
1889 tmp = readl(phy_mmio + MV5_PHY_CTL);
1890 tmp &= ~0x3;
1891 tmp |= 0x1;
1892 writel(tmp, phy_mmio + MV5_PHY_CTL);
1893 }
1894
1895 tmp = readl(phy_mmio + MV5_PHY_MODE);
1896 tmp &= ~mask;
1897 tmp |= hpriv->signal[port].pre;
1898 tmp |= hpriv->signal[port].amps;
1899 writel(tmp, phy_mmio + MV5_PHY_MODE);
1900}
1901
1902
1903#undef ZERO
1904#define ZERO(reg) writel(0, port_mmio + (reg))
1905static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1906 unsigned int port)
1907{
1908 void __iomem *port_mmio = mv_port_base(mmio, port);
1909
1910 /*
1911 * The datasheet warns against setting ATA_RST when EDMA is active
1912 * (but doesn't say what the problem might be). So we first try
1913 * to disable the EDMA engine before doing the ATA_RST operation.
1914 */
1915 mv_reset_channel(hpriv, mmio, port);
1916
1917 ZERO(0x028); /* command */
1918 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1919 ZERO(0x004); /* timer */
1920 ZERO(0x008); /* irq err cause */
1921 ZERO(0x00c); /* irq err mask */
1922 ZERO(0x010); /* rq bah */
1923 ZERO(0x014); /* rq inp */
1924 ZERO(0x018); /* rq outp */
1925 ZERO(0x01c); /* respq bah */
1926 ZERO(0x024); /* respq outp */
1927 ZERO(0x020); /* respq inp */
1928 ZERO(0x02c); /* test control */
1929 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1930}
1931#undef ZERO
1932
1933#define ZERO(reg) writel(0, hc_mmio + (reg))
1934static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1935 unsigned int hc)
1936{
1937 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1938 u32 tmp;
1939
1940 ZERO(0x00c);
1941 ZERO(0x010);
1942 ZERO(0x014);
1943 ZERO(0x018);
1944
1945 tmp = readl(hc_mmio + 0x20);
1946 tmp &= 0x1c1c1c1c;
1947 tmp |= 0x03030303;
1948 writel(tmp, hc_mmio + 0x20);
1949}
1950#undef ZERO
1951
1952static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1953 unsigned int n_hc)
1954{
1955 unsigned int hc, port;
1956
1957 for (hc = 0; hc < n_hc; hc++) {
1958 for (port = 0; port < MV_PORTS_PER_HC; port++)
1959 mv5_reset_hc_port(hpriv, mmio,
1960 (hc * MV_PORTS_PER_HC) + port);
1961
1962 mv5_reset_one_hc(hpriv, mmio, hc);
1963 }
1964
1965 return 0;
1966}
1967
1968#undef ZERO
1969#define ZERO(reg) writel(0, mmio + (reg))
1970static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
1971{
1972 struct mv_host_priv *hpriv = host->private_data;
1973 u32 tmp;
1974
1975 tmp = readl(mmio + MV_PCI_MODE);
1976 tmp &= 0xff00ffff;
1977 writel(tmp, mmio + MV_PCI_MODE);
1978
1979 ZERO(MV_PCI_DISC_TIMER);
1980 ZERO(MV_PCI_MSI_TRIGGER);
1981 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1982 ZERO(HC_MAIN_IRQ_MASK_OFS);
1983 ZERO(MV_PCI_SERR_MASK);
1984 ZERO(hpriv->irq_cause_ofs);
1985 ZERO(hpriv->irq_mask_ofs);
1986 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1987 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1988 ZERO(MV_PCI_ERR_ATTRIBUTE);
1989 ZERO(MV_PCI_ERR_COMMAND);
1990}
1991#undef ZERO
1992
1993static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1994{
1995 u32 tmp;
1996
1997 mv5_reset_flash(hpriv, mmio);
1998
1999 tmp = readl(mmio + MV_GPIO_PORT_CTL);
2000 tmp &= 0x3;
2001 tmp |= (1 << 5) | (1 << 6);
2002 writel(tmp, mmio + MV_GPIO_PORT_CTL);
2003}
2004
2005/**
2006 * mv6_reset_hc - Perform the 6xxx global soft reset
2007 * @mmio: base address of the HBA
2008 *
2009 * This routine only applies to 6xxx parts.
2010 *
2011 * LOCKING:
2012 * Inherited from caller.
2013 */
2014static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2015 unsigned int n_hc)
2016{
2017 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2018 int i, rc = 0;
2019 u32 t;
2020
2021 /* Following procedure defined in PCI "main command and status
2022 * register" table.
2023 */
2024 t = readl(reg);
2025 writel(t | STOP_PCI_MASTER, reg);
2026
2027 for (i = 0; i < 1000; i++) {
2028 udelay(1);
2029 t = readl(reg);
2030 if (PCI_MASTER_EMPTY & t)
2031 break;
2032 }
2033 if (!(PCI_MASTER_EMPTY & t)) {
2034 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2035 rc = 1;
2036 goto done;
2037 }
2038
2039 /* set reset */
2040 i = 5;
2041 do {
2042 writel(t | GLOB_SFT_RST, reg);
2043 t = readl(reg);
2044 udelay(1);
2045 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
2046
2047 if (!(GLOB_SFT_RST & t)) {
2048 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2049 rc = 1;
2050 goto done;
2051 }
2052
2053 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2054 i = 5;
2055 do {
2056 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2057 t = readl(reg);
2058 udelay(1);
2059 } while ((GLOB_SFT_RST & t) && (i-- > 0));
2060
2061 if (GLOB_SFT_RST & t) {
2062 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2063 rc = 1;
2064 }
2065done:
2066 return rc;
2067}
2068
2069static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2070 void __iomem *mmio)
2071{
2072 void __iomem *port_mmio;
2073 u32 tmp;
2074
2075 tmp = readl(mmio + MV_RESET_CFG);
2076 if ((tmp & (1 << 0)) == 0) {
2077 hpriv->signal[idx].amps = 0x7 << 8;
2078 hpriv->signal[idx].pre = 0x1 << 5;
2079 return;
2080 }
2081
2082 port_mmio = mv_port_base(mmio, idx);
2083 tmp = readl(port_mmio + PHY_MODE2);
2084
2085 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2086 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2087}
2088
2089static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2090{
2091 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
2092}
2093
2094static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2095 unsigned int port)
2096{
2097 void __iomem *port_mmio = mv_port_base(mmio, port);
2098
2099 u32 hp_flags = hpriv->hp_flags;
2100 int fix_phy_mode2 =
2101 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2102 int fix_phy_mode4 =
2103 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2104 u32 m2, tmp;
2105
2106 if (fix_phy_mode2) {
2107 m2 = readl(port_mmio + PHY_MODE2);
2108 m2 &= ~(1 << 16);
2109 m2 |= (1 << 31);
2110 writel(m2, port_mmio + PHY_MODE2);
2111
2112 udelay(200);
2113
2114 m2 = readl(port_mmio + PHY_MODE2);
2115 m2 &= ~((1 << 16) | (1 << 31));
2116 writel(m2, port_mmio + PHY_MODE2);
2117
2118 udelay(200);
2119 }
2120
2121 /* who knows what this magic does */
2122 tmp = readl(port_mmio + PHY_MODE3);
2123 tmp &= ~0x7F800000;
2124 tmp |= 0x2A800000;
2125 writel(tmp, port_mmio + PHY_MODE3);
2126
2127 if (fix_phy_mode4) {
2128 u32 m4;
2129
2130 m4 = readl(port_mmio + PHY_MODE4);
2131
2132 if (hp_flags & MV_HP_ERRATA_60X1B2)
2133 tmp = readl(port_mmio + PHY_MODE3);
2134
2135 /* workaround for errata FEr SATA#10 (part 1) */
2136 m4 = (m4 & ~(1 << 1)) | (1 << 0);
2137
2138 writel(m4, port_mmio + PHY_MODE4);
2139
2140 if (hp_flags & MV_HP_ERRATA_60X1B2)
2141 writel(tmp, port_mmio + PHY_MODE3);
2142 }
2143
2144 /* Revert values of pre-emphasis and signal amps to the saved ones */
2145 m2 = readl(port_mmio + PHY_MODE2);
2146
2147 m2 &= ~MV_M2_PREAMP_MASK;
2148 m2 |= hpriv->signal[port].amps;
2149 m2 |= hpriv->signal[port].pre;
2150 m2 &= ~(1 << 16);
2151
2152 /* according to mvSata 3.6.1, some IIE values are fixed */
2153 if (IS_GEN_IIE(hpriv)) {
2154 m2 &= ~0xC30FF01F;
2155 m2 |= 0x0000900F;
2156 }
2157
2158 writel(m2, port_mmio + PHY_MODE2);
2159}
2160
2161/* TODO: use the generic LED interface to configure the SATA Presence */
2162/* & Acitivy LEDs on the board */
2163static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2164 void __iomem *mmio)
2165{
2166 return;
2167}
2168
2169static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2170 void __iomem *mmio)
2171{
2172 void __iomem *port_mmio;
2173 u32 tmp;
2174
2175 port_mmio = mv_port_base(mmio, idx);
2176 tmp = readl(port_mmio + PHY_MODE2);
2177
2178 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2179 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2180}
2181
2182#undef ZERO
2183#define ZERO(reg) writel(0, port_mmio + (reg))
2184static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2185 void __iomem *mmio, unsigned int port)
2186{
2187 void __iomem *port_mmio = mv_port_base(mmio, port);
2188
2189 /*
2190 * The datasheet warns against setting ATA_RST when EDMA is active
2191 * (but doesn't say what the problem might be). So we first try
2192 * to disable the EDMA engine before doing the ATA_RST operation.
2193 */
2194 mv_reset_channel(hpriv, mmio, port);
2195
2196 ZERO(0x028); /* command */
2197 writel(0x101f, port_mmio + EDMA_CFG_OFS);
2198 ZERO(0x004); /* timer */
2199 ZERO(0x008); /* irq err cause */
2200 ZERO(0x00c); /* irq err mask */
2201 ZERO(0x010); /* rq bah */
2202 ZERO(0x014); /* rq inp */
2203 ZERO(0x018); /* rq outp */
2204 ZERO(0x01c); /* respq bah */
2205 ZERO(0x024); /* respq outp */
2206 ZERO(0x020); /* respq inp */
2207 ZERO(0x02c); /* test control */
2208 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
2209}
2210
2211#undef ZERO
2212
2213#define ZERO(reg) writel(0, hc_mmio + (reg))
2214static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2215 void __iomem *mmio)
2216{
2217 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2218
2219 ZERO(0x00c);
2220 ZERO(0x010);
2221 ZERO(0x014);
2222
2223}
2224
2225#undef ZERO
2226
2227static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2228 void __iomem *mmio, unsigned int n_hc)
2229{
2230 unsigned int port;
2231
2232 for (port = 0; port < hpriv->n_ports; port++)
2233 mv_soc_reset_hc_port(hpriv, mmio, port);
2234
2235 mv_soc_reset_one_hc(hpriv, mmio);
2236
2237 return 0;
2238}
2239
2240static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2241 void __iomem *mmio)
2242{
2243 return;
2244}
2245
2246static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2247{
2248 return;
2249}
2250
2251static void mv_setup_ifctl(void __iomem *port_mmio, int want_gen2i)
2252{
2253 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CFG);
2254
2255 ifctl = (ifctl & 0xf7f) | 0x9b1000; /* from chip spec */
2256 if (want_gen2i)
2257 ifctl |= (1 << 7); /* enable gen2i speed */
2258 writelfl(ifctl, port_mmio + SATA_INTERFACE_CFG);
2259}
2260
2261/*
2262 * Caller must ensure that EDMA is not active,
2263 * by first doing mv_stop_edma() where needed.
2264 */
2265static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2266 unsigned int port_no)
2267{
2268 void __iomem *port_mmio = mv_port_base(mmio, port_no);
2269
2270 mv_stop_edma_engine(port_mmio);
2271 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
2272
2273 if (!IS_GEN_I(hpriv)) {
2274 /* Enable 3.0gb/s link speed */
2275 mv_setup_ifctl(port_mmio, 1);
2276 }
2277 /*
2278 * Strobing ATA_RST here causes a hard reset of the SATA transport,
2279 * link, and physical layers. It resets all SATA interface registers
2280 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2281 */
2282 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
2283 udelay(25); /* allow reset propagation */
2284 writelfl(0, port_mmio + EDMA_CMD_OFS);
2285
2286 hpriv->ops->phy_errata(hpriv, mmio, port_no);
2287
2288 if (IS_GEN_I(hpriv))
2289 mdelay(1);
2290}
2291
2292static int mv_hardreset(struct ata_link *link, unsigned int *class,
2293 unsigned long deadline)
2294{
2295 struct ata_port *ap = link->ap;
2296 struct mv_host_priv *hpriv = ap->host->private_data;
2297 struct mv_port_priv *pp = ap->private_data;
2298 void __iomem *mmio = hpriv->base;
2299 int rc, attempts = 0, extra = 0;
2300 u32 sstatus;
2301 bool online;
2302
2303 mv_reset_channel(hpriv, mmio, ap->port_no);
2304 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2305
2306 /* Workaround for errata FEr SATA#10 (part 2) */
2307 do {
2308 const unsigned long *timing =
2309 sata_ehc_deb_timing(&link->eh_context);
2310
2311 rc = sata_link_hardreset(link, timing, deadline + extra,
2312 &online, NULL);
2313 if (rc)
2314 return rc;
2315 sata_scr_read(link, SCR_STATUS, &sstatus);
2316 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2317 /* Force 1.5gb/s link speed and try again */
2318 mv_setup_ifctl(mv_ap_base(ap), 0);
2319 if (time_after(jiffies + HZ, deadline))
2320 extra = HZ; /* only extend it once, max */
2321 }
2322 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2323
2324 return rc;
2325}
2326
2327static void mv_eh_freeze(struct ata_port *ap)
2328{
2329 struct mv_host_priv *hpriv = ap->host->private_data;
2330 unsigned int hc = (ap->port_no > 3) ? 1 : 0;
2331 u32 tmp, mask;
2332 unsigned int shift;
2333
2334 /* FIXME: handle coalescing completion events properly */
2335
2336 shift = ap->port_no * 2;
2337 if (hc > 0)
2338 shift++;
2339
2340 mask = 0x3 << shift;
2341
2342 /* disable assertion of portN err, done events */
2343 tmp = readl(hpriv->main_mask_reg_addr);
2344 writelfl(tmp & ~mask, hpriv->main_mask_reg_addr);
2345}
2346
2347static void mv_eh_thaw(struct ata_port *ap)
2348{
2349 struct mv_host_priv *hpriv = ap->host->private_data;
2350 void __iomem *mmio = hpriv->base;
2351 unsigned int hc = (ap->port_no > 3) ? 1 : 0;
2352 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2353 void __iomem *port_mmio = mv_ap_base(ap);
2354 u32 tmp, mask, hc_irq_cause;
2355 unsigned int shift, hc_port_no = ap->port_no;
2356
2357 /* FIXME: handle coalescing completion events properly */
2358
2359 shift = ap->port_no * 2;
2360 if (hc > 0) {
2361 shift++;
2362 hc_port_no -= 4;
2363 }
2364
2365 mask = 0x3 << shift;
2366
2367 /* clear EDMA errors on this port */
2368 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2369
2370 /* clear pending irq events */
2371 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2372 hc_irq_cause &= ~(1 << hc_port_no); /* clear CRPB-done */
2373 hc_irq_cause &= ~(1 << (hc_port_no + 8)); /* clear Device int */
2374 writel(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2375
2376 /* enable assertion of portN err, done events */
2377 tmp = readl(hpriv->main_mask_reg_addr);
2378 writelfl(tmp | mask, hpriv->main_mask_reg_addr);
2379}
2380
2381/**
2382 * mv_port_init - Perform some early initialization on a single port.
2383 * @port: libata data structure storing shadow register addresses
2384 * @port_mmio: base address of the port
2385 *
2386 * Initialize shadow register mmio addresses, clear outstanding
2387 * interrupts on the port, and unmask interrupts for the future
2388 * start of the port.
2389 *
2390 * LOCKING:
2391 * Inherited from caller.
2392 */
2393static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2394{
2395 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2396 unsigned serr_ofs;
2397
2398 /* PIO related setup
2399 */
2400 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2401 port->error_addr =
2402 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2403 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2404 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2405 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2406 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2407 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2408 port->status_addr =
2409 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2410 /* special case: control/altstatus doesn't have ATA_REG_ address */
2411 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2412
2413 /* unused: */
2414 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2415
2416 /* Clear any currently outstanding port interrupt conditions */
2417 serr_ofs = mv_scr_offset(SCR_ERROR);
2418 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2419 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2420
2421 /* unmask all non-transient EDMA error interrupts */
2422 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2423
2424 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2425 readl(port_mmio + EDMA_CFG_OFS),
2426 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2427 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2428}
2429
2430static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2431{
2432 struct pci_dev *pdev = to_pci_dev(host->dev);
2433 struct mv_host_priv *hpriv = host->private_data;
2434 u32 hp_flags = hpriv->hp_flags;
2435
2436 switch (board_idx) {
2437 case chip_5080:
2438 hpriv->ops = &mv5xxx_ops;
2439 hp_flags |= MV_HP_GEN_I;
2440
2441 switch (pdev->revision) {
2442 case 0x1:
2443 hp_flags |= MV_HP_ERRATA_50XXB0;
2444 break;
2445 case 0x3:
2446 hp_flags |= MV_HP_ERRATA_50XXB2;
2447 break;
2448 default:
2449 dev_printk(KERN_WARNING, &pdev->dev,
2450 "Applying 50XXB2 workarounds to unknown rev\n");
2451 hp_flags |= MV_HP_ERRATA_50XXB2;
2452 break;
2453 }
2454 break;
2455
2456 case chip_504x:
2457 case chip_508x:
2458 hpriv->ops = &mv5xxx_ops;
2459 hp_flags |= MV_HP_GEN_I;
2460
2461 switch (pdev->revision) {
2462 case 0x0:
2463 hp_flags |= MV_HP_ERRATA_50XXB0;
2464 break;
2465 case 0x3:
2466 hp_flags |= MV_HP_ERRATA_50XXB2;
2467 break;
2468 default:
2469 dev_printk(KERN_WARNING, &pdev->dev,
2470 "Applying B2 workarounds to unknown rev\n");
2471 hp_flags |= MV_HP_ERRATA_50XXB2;
2472 break;
2473 }
2474 break;
2475
2476 case chip_604x:
2477 case chip_608x:
2478 hpriv->ops = &mv6xxx_ops;
2479 hp_flags |= MV_HP_GEN_II;
2480
2481 switch (pdev->revision) {
2482 case 0x7:
2483 hp_flags |= MV_HP_ERRATA_60X1B2;
2484 break;
2485 case 0x9:
2486 hp_flags |= MV_HP_ERRATA_60X1C0;
2487 break;
2488 default:
2489 dev_printk(KERN_WARNING, &pdev->dev,
2490 "Applying B2 workarounds to unknown rev\n");
2491 hp_flags |= MV_HP_ERRATA_60X1B2;
2492 break;
2493 }
2494 break;
2495
2496 case chip_7042:
2497 hp_flags |= MV_HP_PCIE;
2498 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2499 (pdev->device == 0x2300 || pdev->device == 0x2310))
2500 {
2501 /*
2502 * Highpoint RocketRAID PCIe 23xx series cards:
2503 *
2504 * Unconfigured drives are treated as "Legacy"
2505 * by the BIOS, and it overwrites sector 8 with
2506 * a "Lgcy" metadata block prior to Linux boot.
2507 *
2508 * Configured drives (RAID or JBOD) leave sector 8
2509 * alone, but instead overwrite a high numbered
2510 * sector for the RAID metadata. This sector can
2511 * be determined exactly, by truncating the physical
2512 * drive capacity to a nice even GB value.
2513 *
2514 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2515 *
2516 * Warn the user, lest they think we're just buggy.
2517 */
2518 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2519 " BIOS CORRUPTS DATA on all attached drives,"
2520 " regardless of if/how they are configured."
2521 " BEWARE!\n");
2522 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
2523 " use sectors 8-9 on \"Legacy\" drives,"
2524 " and avoid the final two gigabytes on"
2525 " all RocketRAID BIOS initialized drives.\n");
2526 }
2527 case chip_6042:
2528 hpriv->ops = &mv6xxx_ops;
2529 hp_flags |= MV_HP_GEN_IIE;
2530
2531 switch (pdev->revision) {
2532 case 0x0:
2533 hp_flags |= MV_HP_ERRATA_XX42A0;
2534 break;
2535 case 0x1:
2536 hp_flags |= MV_HP_ERRATA_60X1C0;
2537 break;
2538 default:
2539 dev_printk(KERN_WARNING, &pdev->dev,
2540 "Applying 60X1C0 workarounds to unknown rev\n");
2541 hp_flags |= MV_HP_ERRATA_60X1C0;
2542 break;
2543 }
2544 break;
2545 case chip_soc:
2546 hpriv->ops = &mv_soc_ops;
2547 hp_flags |= MV_HP_ERRATA_60X1C0;
2548 break;
2549
2550 default:
2551 dev_printk(KERN_ERR, host->dev,
2552 "BUG: invalid board index %u\n", board_idx);
2553 return 1;
2554 }
2555
2556 hpriv->hp_flags = hp_flags;
2557 if (hp_flags & MV_HP_PCIE) {
2558 hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
2559 hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
2560 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
2561 } else {
2562 hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
2563 hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
2564 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
2565 }
2566
2567 return 0;
2568}
2569
2570/**
2571 * mv_init_host - Perform some early initialization of the host.
2572 * @host: ATA host to initialize
2573 * @board_idx: controller index
2574 *
2575 * If possible, do an early global reset of the host. Then do
2576 * our port init and clear/unmask all/relevant host interrupts.
2577 *
2578 * LOCKING:
2579 * Inherited from caller.
2580 */
2581static int mv_init_host(struct ata_host *host, unsigned int board_idx)
2582{
2583 int rc = 0, n_hc, port, hc;
2584 struct mv_host_priv *hpriv = host->private_data;
2585 void __iomem *mmio = hpriv->base;
2586
2587 rc = mv_chip_id(host, board_idx);
2588 if (rc)
2589 goto done;
2590
2591 if (HAS_PCI(host)) {
2592 hpriv->main_cause_reg_addr = hpriv->base +
2593 HC_MAIN_IRQ_CAUSE_OFS;
2594 hpriv->main_mask_reg_addr = hpriv->base + HC_MAIN_IRQ_MASK_OFS;
2595 } else {
2596 hpriv->main_cause_reg_addr = hpriv->base +
2597 HC_SOC_MAIN_IRQ_CAUSE_OFS;
2598 hpriv->main_mask_reg_addr = hpriv->base +
2599 HC_SOC_MAIN_IRQ_MASK_OFS;
2600 }
2601 /* global interrupt mask */
2602 writel(0, hpriv->main_mask_reg_addr);
2603
2604 n_hc = mv_get_hc_count(host->ports[0]->flags);
2605
2606 for (port = 0; port < host->n_ports; port++)
2607 hpriv->ops->read_preamp(hpriv, port, mmio);
2608
2609 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2610 if (rc)
2611 goto done;
2612
2613 hpriv->ops->reset_flash(hpriv, mmio);
2614 hpriv->ops->reset_bus(host, mmio);
2615 hpriv->ops->enable_leds(hpriv, mmio);
2616
2617 for (port = 0; port < host->n_ports; port++) {
2618 struct ata_port *ap = host->ports[port];
2619 void __iomem *port_mmio = mv_port_base(mmio, port);
2620
2621 mv_port_init(&ap->ioaddr, port_mmio);
2622
2623#ifdef CONFIG_PCI
2624 if (HAS_PCI(host)) {
2625 unsigned int offset = port_mmio - mmio;
2626 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
2627 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
2628 }
2629#endif
2630 }
2631
2632 for (hc = 0; hc < n_hc; hc++) {
2633 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2634
2635 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2636 "(before clear)=0x%08x\n", hc,
2637 readl(hc_mmio + HC_CFG_OFS),
2638 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2639
2640 /* Clear any currently outstanding hc interrupt conditions */
2641 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2642 }
2643
2644 if (HAS_PCI(host)) {
2645 /* Clear any currently outstanding host interrupt conditions */
2646 writelfl(0, mmio + hpriv->irq_cause_ofs);
2647
2648 /* and unmask interrupt generation for host regs */
2649 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
2650 if (IS_GEN_I(hpriv))
2651 writelfl(~HC_MAIN_MASKED_IRQS_5,
2652 hpriv->main_mask_reg_addr);
2653 else
2654 writelfl(~HC_MAIN_MASKED_IRQS,
2655 hpriv->main_mask_reg_addr);
2656
2657 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2658 "PCI int cause/mask=0x%08x/0x%08x\n",
2659 readl(hpriv->main_cause_reg_addr),
2660 readl(hpriv->main_mask_reg_addr),
2661 readl(mmio + hpriv->irq_cause_ofs),
2662 readl(mmio + hpriv->irq_mask_ofs));
2663 } else {
2664 writelfl(~HC_MAIN_MASKED_IRQS_SOC,
2665 hpriv->main_mask_reg_addr);
2666 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n",
2667 readl(hpriv->main_cause_reg_addr),
2668 readl(hpriv->main_mask_reg_addr));
2669 }
2670done:
2671 return rc;
2672}
2673
2674static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
2675{
2676 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
2677 MV_CRQB_Q_SZ, 0);
2678 if (!hpriv->crqb_pool)
2679 return -ENOMEM;
2680
2681 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
2682 MV_CRPB_Q_SZ, 0);
2683 if (!hpriv->crpb_pool)
2684 return -ENOMEM;
2685
2686 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
2687 MV_SG_TBL_SZ, 0);
2688 if (!hpriv->sg_tbl_pool)
2689 return -ENOMEM;
2690
2691 return 0;
2692}
2693
2694/**
2695 * mv_platform_probe - handle a positive probe of an soc Marvell
2696 * host
2697 * @pdev: platform device found
2698 *
2699 * LOCKING:
2700 * Inherited from caller.
2701 */
2702static int mv_platform_probe(struct platform_device *pdev)
2703{
2704 static int printed_version;
2705 const struct mv_sata_platform_data *mv_platform_data;
2706 const struct ata_port_info *ppi[] =
2707 { &mv_port_info[chip_soc], NULL };
2708 struct ata_host *host;
2709 struct mv_host_priv *hpriv;
2710 struct resource *res;
2711 int n_ports, rc;
2712
2713 if (!printed_version++)
2714 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2715
2716 /*
2717 * Simple resource validation ..
2718 */
2719 if (unlikely(pdev->num_resources != 2)) {
2720 dev_err(&pdev->dev, "invalid number of resources\n");
2721 return -EINVAL;
2722 }
2723
2724 /*
2725 * Get the register base first
2726 */
2727 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2728 if (res == NULL)
2729 return -EINVAL;
2730
2731 /* allocate host */
2732 mv_platform_data = pdev->dev.platform_data;
2733 n_ports = mv_platform_data->n_ports;
2734
2735 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
2736 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2737
2738 if (!host || !hpriv)
2739 return -ENOMEM;
2740 host->private_data = hpriv;
2741 hpriv->n_ports = n_ports;
2742
2743 host->iomap = NULL;
2744 hpriv->base = devm_ioremap(&pdev->dev, res->start,
2745 res->end - res->start + 1);
2746 hpriv->base -= MV_SATAHC0_REG_BASE;
2747
2748 rc = mv_create_dma_pools(hpriv, &pdev->dev);
2749 if (rc)
2750 return rc;
2751
2752 /* initialize adapter */
2753 rc = mv_init_host(host, chip_soc);
2754 if (rc)
2755 return rc;
2756
2757 dev_printk(KERN_INFO, &pdev->dev,
2758 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
2759 host->n_ports);
2760
2761 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
2762 IRQF_SHARED, &mv6_sht);
2763}
2764
2765/*
2766 *
2767 * mv_platform_remove - unplug a platform interface
2768 * @pdev: platform device
2769 *
2770 * A platform bus SATA device has been unplugged. Perform the needed
2771 * cleanup. Also called on module unload for any active devices.
2772 */
2773static int __devexit mv_platform_remove(struct platform_device *pdev)
2774{
2775 struct device *dev = &pdev->dev;
2776 struct ata_host *host = dev_get_drvdata(dev);
2777
2778 ata_host_detach(host);
2779 return 0;
2780}
2781
2782static struct platform_driver mv_platform_driver = {
2783 .probe = mv_platform_probe,
2784 .remove = __devexit_p(mv_platform_remove),
2785 .driver = {
2786 .name = DRV_NAME,
2787 .owner = THIS_MODULE,
2788 },
2789};
2790
2791
2792#ifdef CONFIG_PCI
2793static int mv_pci_init_one(struct pci_dev *pdev,
2794 const struct pci_device_id *ent);
2795
2796
2797static struct pci_driver mv_pci_driver = {
2798 .name = DRV_NAME,
2799 .id_table = mv_pci_tbl,
2800 .probe = mv_pci_init_one,
2801 .remove = ata_pci_remove_one,
2802};
2803
2804/*
2805 * module options
2806 */
2807static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
2808
2809
2810/* move to PCI layer or libata core? */
2811static int pci_go_64(struct pci_dev *pdev)
2812{
2813 int rc;
2814
2815 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
2816 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
2817 if (rc) {
2818 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2819 if (rc) {
2820 dev_printk(KERN_ERR, &pdev->dev,
2821 "64-bit DMA enable failed\n");
2822 return rc;
2823 }
2824 }
2825 } else {
2826 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2827 if (rc) {
2828 dev_printk(KERN_ERR, &pdev->dev,
2829 "32-bit DMA enable failed\n");
2830 return rc;
2831 }
2832 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2833 if (rc) {
2834 dev_printk(KERN_ERR, &pdev->dev,
2835 "32-bit consistent DMA enable failed\n");
2836 return rc;
2837 }
2838 }
2839
2840 return rc;
2841}
2842
2843/**
2844 * mv_print_info - Dump key info to kernel log for perusal.
2845 * @host: ATA host to print info about
2846 *
2847 * FIXME: complete this.
2848 *
2849 * LOCKING:
2850 * Inherited from caller.
2851 */
2852static void mv_print_info(struct ata_host *host)
2853{
2854 struct pci_dev *pdev = to_pci_dev(host->dev);
2855 struct mv_host_priv *hpriv = host->private_data;
2856 u8 scc;
2857 const char *scc_s, *gen;
2858
2859 /* Use this to determine the HW stepping of the chip so we know
2860 * what errata to workaround
2861 */
2862 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2863 if (scc == 0)
2864 scc_s = "SCSI";
2865 else if (scc == 0x01)
2866 scc_s = "RAID";
2867 else
2868 scc_s = "?";
2869
2870 if (IS_GEN_I(hpriv))
2871 gen = "I";
2872 else if (IS_GEN_II(hpriv))
2873 gen = "II";
2874 else if (IS_GEN_IIE(hpriv))
2875 gen = "IIE";
2876 else
2877 gen = "?";
2878
2879 dev_printk(KERN_INFO, &pdev->dev,
2880 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
2881 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
2882 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2883}
2884
2885/**
2886 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
2887 * @pdev: PCI device found
2888 * @ent: PCI device ID entry for the matched host
2889 *
2890 * LOCKING:
2891 * Inherited from caller.
2892 */
2893static int mv_pci_init_one(struct pci_dev *pdev,
2894 const struct pci_device_id *ent)
2895{
2896 static int printed_version;
2897 unsigned int board_idx = (unsigned int)ent->driver_data;
2898 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
2899 struct ata_host *host;
2900 struct mv_host_priv *hpriv;
2901 int n_ports, rc;
2902
2903 if (!printed_version++)
2904 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2905
2906 /* allocate host */
2907 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
2908
2909 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
2910 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2911 if (!host || !hpriv)
2912 return -ENOMEM;
2913 host->private_data = hpriv;
2914 hpriv->n_ports = n_ports;
2915
2916 /* acquire resources */
2917 rc = pcim_enable_device(pdev);
2918 if (rc)
2919 return rc;
2920
2921 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
2922 if (rc == -EBUSY)
2923 pcim_pin_device(pdev);
2924 if (rc)
2925 return rc;
2926 host->iomap = pcim_iomap_table(pdev);
2927 hpriv->base = host->iomap[MV_PRIMARY_BAR];
2928
2929 rc = pci_go_64(pdev);
2930 if (rc)
2931 return rc;
2932
2933 rc = mv_create_dma_pools(hpriv, &pdev->dev);
2934 if (rc)
2935 return rc;
2936
2937 /* initialize adapter */
2938 rc = mv_init_host(host, board_idx);
2939 if (rc)
2940 return rc;
2941
2942 /* Enable interrupts */
2943 if (msi && pci_enable_msi(pdev))
2944 pci_intx(pdev, 1);
2945
2946 mv_dump_pci_cfg(pdev, 0x68);
2947 mv_print_info(host);
2948
2949 pci_set_master(pdev);
2950 pci_try_set_mwi(pdev);
2951 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
2952 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
2953}
2954#endif
2955
2956static int mv_platform_probe(struct platform_device *pdev);
2957static int __devexit mv_platform_remove(struct platform_device *pdev);
2958
2959static int __init mv_init(void)
2960{
2961 int rc = -ENODEV;
2962#ifdef CONFIG_PCI
2963 rc = pci_register_driver(&mv_pci_driver);
2964 if (rc < 0)
2965 return rc;
2966#endif
2967 rc = platform_driver_register(&mv_platform_driver);
2968
2969#ifdef CONFIG_PCI
2970 if (rc < 0)
2971 pci_unregister_driver(&mv_pci_driver);
2972#endif
2973 return rc;
2974}
2975
2976static void __exit mv_exit(void)
2977{
2978#ifdef CONFIG_PCI
2979 pci_unregister_driver(&mv_pci_driver);
2980#endif
2981 platform_driver_unregister(&mv_platform_driver);
2982}
2983
2984MODULE_AUTHOR("Brett Russ");
2985MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2986MODULE_LICENSE("GPL");
2987MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2988MODULE_VERSION(DRV_VERSION);
2989MODULE_ALIAS("platform:" DRV_NAME);
2990
2991#ifdef CONFIG_PCI
2992module_param(msi, int, 0444);
2993MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2994#endif
2995
2996module_init(mv_init);
2997module_exit(mv_exit);
This page took 0.033435 seconds and 5 git commands to generate.