| 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel(R) Gigabit Ethernet Linux driver |
| 4 | Copyright(c) 2007 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 25 | |
| 26 | *******************************************************************************/ |
| 27 | |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/types.h> |
| 30 | #include <linux/init.h> |
| 31 | #include <linux/vmalloc.h> |
| 32 | #include <linux/pagemap.h> |
| 33 | #include <linux/netdevice.h> |
| 34 | #include <linux/ipv6.h> |
| 35 | #include <net/checksum.h> |
| 36 | #include <net/ip6_checksum.h> |
| 37 | #include <linux/mii.h> |
| 38 | #include <linux/ethtool.h> |
| 39 | #include <linux/if_vlan.h> |
| 40 | #include <linux/pci.h> |
| 41 | #include <linux/pci-aspm.h> |
| 42 | #include <linux/delay.h> |
| 43 | #include <linux/interrupt.h> |
| 44 | #include <linux/if_ether.h> |
| 45 | #include <linux/aer.h> |
| 46 | #ifdef CONFIG_IGB_DCA |
| 47 | #include <linux/dca.h> |
| 48 | #endif |
| 49 | #include "igb.h" |
| 50 | |
| 51 | #define DRV_VERSION "1.2.45-k2" |
| 52 | char igb_driver_name[] = "igb"; |
| 53 | char igb_driver_version[] = DRV_VERSION; |
| 54 | static const char igb_driver_string[] = |
| 55 | "Intel(R) Gigabit Ethernet Network Driver"; |
| 56 | static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation."; |
| 57 | |
| 58 | static const struct e1000_info *igb_info_tbl[] = { |
| 59 | [board_82575] = &e1000_82575_info, |
| 60 | }; |
| 61 | |
| 62 | static struct pci_device_id igb_pci_tbl[] = { |
| 63 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, |
| 64 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, |
| 65 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, |
| 66 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, |
| 67 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, |
| 68 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, |
| 69 | /* required last entry */ |
| 70 | {0, } |
| 71 | }; |
| 72 | |
| 73 | MODULE_DEVICE_TABLE(pci, igb_pci_tbl); |
| 74 | |
| 75 | void igb_reset(struct igb_adapter *); |
| 76 | static int igb_setup_all_tx_resources(struct igb_adapter *); |
| 77 | static int igb_setup_all_rx_resources(struct igb_adapter *); |
| 78 | static void igb_free_all_tx_resources(struct igb_adapter *); |
| 79 | static void igb_free_all_rx_resources(struct igb_adapter *); |
| 80 | void igb_update_stats(struct igb_adapter *); |
| 81 | static int igb_probe(struct pci_dev *, const struct pci_device_id *); |
| 82 | static void __devexit igb_remove(struct pci_dev *pdev); |
| 83 | static int igb_sw_init(struct igb_adapter *); |
| 84 | static int igb_open(struct net_device *); |
| 85 | static int igb_close(struct net_device *); |
| 86 | static void igb_configure_tx(struct igb_adapter *); |
| 87 | static void igb_configure_rx(struct igb_adapter *); |
| 88 | static void igb_setup_rctl(struct igb_adapter *); |
| 89 | static void igb_clean_all_tx_rings(struct igb_adapter *); |
| 90 | static void igb_clean_all_rx_rings(struct igb_adapter *); |
| 91 | static void igb_clean_tx_ring(struct igb_ring *); |
| 92 | static void igb_clean_rx_ring(struct igb_ring *); |
| 93 | static void igb_set_multi(struct net_device *); |
| 94 | static void igb_update_phy_info(unsigned long); |
| 95 | static void igb_watchdog(unsigned long); |
| 96 | static void igb_watchdog_task(struct work_struct *); |
| 97 | static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *, |
| 98 | struct igb_ring *); |
| 99 | static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *); |
| 100 | static struct net_device_stats *igb_get_stats(struct net_device *); |
| 101 | static int igb_change_mtu(struct net_device *, int); |
| 102 | static int igb_set_mac(struct net_device *, void *); |
| 103 | static irqreturn_t igb_intr(int irq, void *); |
| 104 | static irqreturn_t igb_intr_msi(int irq, void *); |
| 105 | static irqreturn_t igb_msix_other(int irq, void *); |
| 106 | static irqreturn_t igb_msix_rx(int irq, void *); |
| 107 | static irqreturn_t igb_msix_tx(int irq, void *); |
| 108 | static int igb_clean_rx_ring_msix(struct napi_struct *, int); |
| 109 | #ifdef CONFIG_IGB_DCA |
| 110 | static void igb_update_rx_dca(struct igb_ring *); |
| 111 | static void igb_update_tx_dca(struct igb_ring *); |
| 112 | static void igb_setup_dca(struct igb_adapter *); |
| 113 | #endif /* CONFIG_IGB_DCA */ |
| 114 | static bool igb_clean_tx_irq(struct igb_ring *); |
| 115 | static int igb_poll(struct napi_struct *, int); |
| 116 | static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int); |
| 117 | static void igb_alloc_rx_buffers_adv(struct igb_ring *, int); |
| 118 | static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); |
| 119 | static void igb_tx_timeout(struct net_device *); |
| 120 | static void igb_reset_task(struct work_struct *); |
| 121 | static void igb_vlan_rx_register(struct net_device *, struct vlan_group *); |
| 122 | static void igb_vlan_rx_add_vid(struct net_device *, u16); |
| 123 | static void igb_vlan_rx_kill_vid(struct net_device *, u16); |
| 124 | static void igb_restore_vlan(struct igb_adapter *); |
| 125 | |
| 126 | static int igb_suspend(struct pci_dev *, pm_message_t); |
| 127 | #ifdef CONFIG_PM |
| 128 | static int igb_resume(struct pci_dev *); |
| 129 | #endif |
| 130 | static void igb_shutdown(struct pci_dev *); |
| 131 | #ifdef CONFIG_IGB_DCA |
| 132 | static int igb_notify_dca(struct notifier_block *, unsigned long, void *); |
| 133 | static struct notifier_block dca_notifier = { |
| 134 | .notifier_call = igb_notify_dca, |
| 135 | .next = NULL, |
| 136 | .priority = 0 |
| 137 | }; |
| 138 | #endif |
| 139 | |
| 140 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 141 | /* for netdump / net console */ |
| 142 | static void igb_netpoll(struct net_device *); |
| 143 | #endif |
| 144 | |
| 145 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *, |
| 146 | pci_channel_state_t); |
| 147 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); |
| 148 | static void igb_io_resume(struct pci_dev *); |
| 149 | |
| 150 | static struct pci_error_handlers igb_err_handler = { |
| 151 | .error_detected = igb_io_error_detected, |
| 152 | .slot_reset = igb_io_slot_reset, |
| 153 | .resume = igb_io_resume, |
| 154 | }; |
| 155 | |
| 156 | |
| 157 | static struct pci_driver igb_driver = { |
| 158 | .name = igb_driver_name, |
| 159 | .id_table = igb_pci_tbl, |
| 160 | .probe = igb_probe, |
| 161 | .remove = __devexit_p(igb_remove), |
| 162 | #ifdef CONFIG_PM |
| 163 | /* Power Managment Hooks */ |
| 164 | .suspend = igb_suspend, |
| 165 | .resume = igb_resume, |
| 166 | #endif |
| 167 | .shutdown = igb_shutdown, |
| 168 | .err_handler = &igb_err_handler |
| 169 | }; |
| 170 | |
| 171 | static int global_quad_port_a; /* global quad port a indication */ |
| 172 | |
| 173 | MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); |
| 174 | MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); |
| 175 | MODULE_LICENSE("GPL"); |
| 176 | MODULE_VERSION(DRV_VERSION); |
| 177 | |
| 178 | #ifdef DEBUG |
| 179 | /** |
| 180 | * igb_get_hw_dev_name - return device name string |
| 181 | * used by hardware layer to print debugging information |
| 182 | **/ |
| 183 | char *igb_get_hw_dev_name(struct e1000_hw *hw) |
| 184 | { |
| 185 | struct igb_adapter *adapter = hw->back; |
| 186 | return adapter->netdev->name; |
| 187 | } |
| 188 | #endif |
| 189 | |
| 190 | /** |
| 191 | * igb_init_module - Driver Registration Routine |
| 192 | * |
| 193 | * igb_init_module is the first routine called when the driver is |
| 194 | * loaded. All it does is register with the PCI subsystem. |
| 195 | **/ |
| 196 | static int __init igb_init_module(void) |
| 197 | { |
| 198 | int ret; |
| 199 | printk(KERN_INFO "%s - version %s\n", |
| 200 | igb_driver_string, igb_driver_version); |
| 201 | |
| 202 | printk(KERN_INFO "%s\n", igb_copyright); |
| 203 | |
| 204 | global_quad_port_a = 0; |
| 205 | |
| 206 | ret = pci_register_driver(&igb_driver); |
| 207 | #ifdef CONFIG_IGB_DCA |
| 208 | dca_register_notify(&dca_notifier); |
| 209 | #endif |
| 210 | return ret; |
| 211 | } |
| 212 | |
| 213 | module_init(igb_init_module); |
| 214 | |
| 215 | /** |
| 216 | * igb_exit_module - Driver Exit Cleanup Routine |
| 217 | * |
| 218 | * igb_exit_module is called just before the driver is removed |
| 219 | * from memory. |
| 220 | **/ |
| 221 | static void __exit igb_exit_module(void) |
| 222 | { |
| 223 | #ifdef CONFIG_IGB_DCA |
| 224 | dca_unregister_notify(&dca_notifier); |
| 225 | #endif |
| 226 | pci_unregister_driver(&igb_driver); |
| 227 | } |
| 228 | |
| 229 | module_exit(igb_exit_module); |
| 230 | |
| 231 | #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) |
| 232 | /** |
| 233 | * igb_cache_ring_register - Descriptor ring to register mapping |
| 234 | * @adapter: board private structure to initialize |
| 235 | * |
| 236 | * Once we know the feature-set enabled for the device, we'll cache |
| 237 | * the register offset the descriptor ring is assigned to. |
| 238 | **/ |
| 239 | static void igb_cache_ring_register(struct igb_adapter *adapter) |
| 240 | { |
| 241 | int i; |
| 242 | |
| 243 | switch (adapter->hw.mac.type) { |
| 244 | case e1000_82576: |
| 245 | /* The queues are allocated for virtualization such that VF 0 |
| 246 | * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. |
| 247 | * In order to avoid collision we start at the first free queue |
| 248 | * and continue consuming queues in the same sequence |
| 249 | */ |
| 250 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 251 | adapter->rx_ring[i].reg_idx = Q_IDX_82576(i); |
| 252 | for (i = 0; i < adapter->num_tx_queues; i++) |
| 253 | adapter->tx_ring[i].reg_idx = Q_IDX_82576(i); |
| 254 | break; |
| 255 | case e1000_82575: |
| 256 | default: |
| 257 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 258 | adapter->rx_ring[i].reg_idx = i; |
| 259 | for (i = 0; i < adapter->num_tx_queues; i++) |
| 260 | adapter->tx_ring[i].reg_idx = i; |
| 261 | break; |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | /** |
| 266 | * igb_alloc_queues - Allocate memory for all rings |
| 267 | * @adapter: board private structure to initialize |
| 268 | * |
| 269 | * We allocate one ring per queue at run-time since we don't know the |
| 270 | * number of queues at compile-time. |
| 271 | **/ |
| 272 | static int igb_alloc_queues(struct igb_adapter *adapter) |
| 273 | { |
| 274 | int i; |
| 275 | |
| 276 | adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
| 277 | sizeof(struct igb_ring), GFP_KERNEL); |
| 278 | if (!adapter->tx_ring) |
| 279 | return -ENOMEM; |
| 280 | |
| 281 | adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
| 282 | sizeof(struct igb_ring), GFP_KERNEL); |
| 283 | if (!adapter->rx_ring) { |
| 284 | kfree(adapter->tx_ring); |
| 285 | return -ENOMEM; |
| 286 | } |
| 287 | |
| 288 | adapter->rx_ring->buddy = adapter->tx_ring; |
| 289 | |
| 290 | for (i = 0; i < adapter->num_tx_queues; i++) { |
| 291 | struct igb_ring *ring = &(adapter->tx_ring[i]); |
| 292 | ring->count = adapter->tx_ring_count; |
| 293 | ring->adapter = adapter; |
| 294 | ring->queue_index = i; |
| 295 | } |
| 296 | for (i = 0; i < adapter->num_rx_queues; i++) { |
| 297 | struct igb_ring *ring = &(adapter->rx_ring[i]); |
| 298 | ring->count = adapter->rx_ring_count; |
| 299 | ring->adapter = adapter; |
| 300 | ring->queue_index = i; |
| 301 | ring->itr_register = E1000_ITR; |
| 302 | |
| 303 | /* set a default napi handler for each rx_ring */ |
| 304 | netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64); |
| 305 | } |
| 306 | |
| 307 | igb_cache_ring_register(adapter); |
| 308 | return 0; |
| 309 | } |
| 310 | |
| 311 | static void igb_free_queues(struct igb_adapter *adapter) |
| 312 | { |
| 313 | int i; |
| 314 | |
| 315 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 316 | netif_napi_del(&adapter->rx_ring[i].napi); |
| 317 | |
| 318 | kfree(adapter->tx_ring); |
| 319 | kfree(adapter->rx_ring); |
| 320 | } |
| 321 | |
| 322 | #define IGB_N0_QUEUE -1 |
| 323 | static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue, |
| 324 | int tx_queue, int msix_vector) |
| 325 | { |
| 326 | u32 msixbm = 0; |
| 327 | struct e1000_hw *hw = &adapter->hw; |
| 328 | u32 ivar, index; |
| 329 | |
| 330 | switch (hw->mac.type) { |
| 331 | case e1000_82575: |
| 332 | /* The 82575 assigns vectors using a bitmask, which matches the |
| 333 | bitmask for the EICR/EIMS/EIMC registers. To assign one |
| 334 | or more queues to a vector, we write the appropriate bits |
| 335 | into the MSIXBM register for that vector. */ |
| 336 | if (rx_queue > IGB_N0_QUEUE) { |
| 337 | msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; |
| 338 | adapter->rx_ring[rx_queue].eims_value = msixbm; |
| 339 | } |
| 340 | if (tx_queue > IGB_N0_QUEUE) { |
| 341 | msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; |
| 342 | adapter->tx_ring[tx_queue].eims_value = |
| 343 | E1000_EICR_TX_QUEUE0 << tx_queue; |
| 344 | } |
| 345 | array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); |
| 346 | break; |
| 347 | case e1000_82576: |
| 348 | /* 82576 uses a table-based method for assigning vectors. |
| 349 | Each queue has a single entry in the table to which we write |
| 350 | a vector number along with a "valid" bit. Sadly, the layout |
| 351 | of the table is somewhat counterintuitive. */ |
| 352 | if (rx_queue > IGB_N0_QUEUE) { |
| 353 | index = (rx_queue >> 1); |
| 354 | ivar = array_rd32(E1000_IVAR0, index); |
| 355 | if (rx_queue & 0x1) { |
| 356 | /* vector goes into third byte of register */ |
| 357 | ivar = ivar & 0xFF00FFFF; |
| 358 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; |
| 359 | } else { |
| 360 | /* vector goes into low byte of register */ |
| 361 | ivar = ivar & 0xFFFFFF00; |
| 362 | ivar |= msix_vector | E1000_IVAR_VALID; |
| 363 | } |
| 364 | adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector; |
| 365 | array_wr32(E1000_IVAR0, index, ivar); |
| 366 | } |
| 367 | if (tx_queue > IGB_N0_QUEUE) { |
| 368 | index = (tx_queue >> 1); |
| 369 | ivar = array_rd32(E1000_IVAR0, index); |
| 370 | if (tx_queue & 0x1) { |
| 371 | /* vector goes into high byte of register */ |
| 372 | ivar = ivar & 0x00FFFFFF; |
| 373 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; |
| 374 | } else { |
| 375 | /* vector goes into second byte of register */ |
| 376 | ivar = ivar & 0xFFFF00FF; |
| 377 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; |
| 378 | } |
| 379 | adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector; |
| 380 | array_wr32(E1000_IVAR0, index, ivar); |
| 381 | } |
| 382 | break; |
| 383 | default: |
| 384 | BUG(); |
| 385 | break; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | /** |
| 390 | * igb_configure_msix - Configure MSI-X hardware |
| 391 | * |
| 392 | * igb_configure_msix sets up the hardware to properly |
| 393 | * generate MSI-X interrupts. |
| 394 | **/ |
| 395 | static void igb_configure_msix(struct igb_adapter *adapter) |
| 396 | { |
| 397 | u32 tmp; |
| 398 | int i, vector = 0; |
| 399 | struct e1000_hw *hw = &adapter->hw; |
| 400 | |
| 401 | adapter->eims_enable_mask = 0; |
| 402 | if (hw->mac.type == e1000_82576) |
| 403 | /* Turn on MSI-X capability first, or our settings |
| 404 | * won't stick. And it will take days to debug. */ |
| 405 | wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | |
| 406 | E1000_GPIE_PBA | E1000_GPIE_EIAME | |
| 407 | E1000_GPIE_NSICR); |
| 408 | |
| 409 | for (i = 0; i < adapter->num_tx_queues; i++) { |
| 410 | struct igb_ring *tx_ring = &adapter->tx_ring[i]; |
| 411 | igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++); |
| 412 | adapter->eims_enable_mask |= tx_ring->eims_value; |
| 413 | if (tx_ring->itr_val) |
| 414 | writel(tx_ring->itr_val, |
| 415 | hw->hw_addr + tx_ring->itr_register); |
| 416 | else |
| 417 | writel(1, hw->hw_addr + tx_ring->itr_register); |
| 418 | } |
| 419 | |
| 420 | for (i = 0; i < adapter->num_rx_queues; i++) { |
| 421 | struct igb_ring *rx_ring = &adapter->rx_ring[i]; |
| 422 | rx_ring->buddy = NULL; |
| 423 | igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++); |
| 424 | adapter->eims_enable_mask |= rx_ring->eims_value; |
| 425 | if (rx_ring->itr_val) |
| 426 | writel(rx_ring->itr_val, |
| 427 | hw->hw_addr + rx_ring->itr_register); |
| 428 | else |
| 429 | writel(1, hw->hw_addr + rx_ring->itr_register); |
| 430 | } |
| 431 | |
| 432 | |
| 433 | /* set vector for other causes, i.e. link changes */ |
| 434 | switch (hw->mac.type) { |
| 435 | case e1000_82575: |
| 436 | array_wr32(E1000_MSIXBM(0), vector++, |
| 437 | E1000_EIMS_OTHER); |
| 438 | |
| 439 | tmp = rd32(E1000_CTRL_EXT); |
| 440 | /* enable MSI-X PBA support*/ |
| 441 | tmp |= E1000_CTRL_EXT_PBA_CLR; |
| 442 | |
| 443 | /* Auto-Mask interrupts upon ICR read. */ |
| 444 | tmp |= E1000_CTRL_EXT_EIAME; |
| 445 | tmp |= E1000_CTRL_EXT_IRCA; |
| 446 | |
| 447 | wr32(E1000_CTRL_EXT, tmp); |
| 448 | adapter->eims_enable_mask |= E1000_EIMS_OTHER; |
| 449 | adapter->eims_other = E1000_EIMS_OTHER; |
| 450 | |
| 451 | break; |
| 452 | |
| 453 | case e1000_82576: |
| 454 | tmp = (vector++ | E1000_IVAR_VALID) << 8; |
| 455 | wr32(E1000_IVAR_MISC, tmp); |
| 456 | |
| 457 | adapter->eims_enable_mask = (1 << (vector)) - 1; |
| 458 | adapter->eims_other = 1 << (vector - 1); |
| 459 | break; |
| 460 | default: |
| 461 | /* do nothing, since nothing else supports MSI-X */ |
| 462 | break; |
| 463 | } /* switch (hw->mac.type) */ |
| 464 | wrfl(); |
| 465 | } |
| 466 | |
| 467 | /** |
| 468 | * igb_request_msix - Initialize MSI-X interrupts |
| 469 | * |
| 470 | * igb_request_msix allocates MSI-X vectors and requests interrupts from the |
| 471 | * kernel. |
| 472 | **/ |
| 473 | static int igb_request_msix(struct igb_adapter *adapter) |
| 474 | { |
| 475 | struct net_device *netdev = adapter->netdev; |
| 476 | int i, err = 0, vector = 0; |
| 477 | |
| 478 | vector = 0; |
| 479 | |
| 480 | for (i = 0; i < adapter->num_tx_queues; i++) { |
| 481 | struct igb_ring *ring = &(adapter->tx_ring[i]); |
| 482 | sprintf(ring->name, "%s-tx-%d", netdev->name, i); |
| 483 | err = request_irq(adapter->msix_entries[vector].vector, |
| 484 | &igb_msix_tx, 0, ring->name, |
| 485 | &(adapter->tx_ring[i])); |
| 486 | if (err) |
| 487 | goto out; |
| 488 | ring->itr_register = E1000_EITR(0) + (vector << 2); |
| 489 | ring->itr_val = 976; /* ~4000 ints/sec */ |
| 490 | vector++; |
| 491 | } |
| 492 | for (i = 0; i < adapter->num_rx_queues; i++) { |
| 493 | struct igb_ring *ring = &(adapter->rx_ring[i]); |
| 494 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
| 495 | sprintf(ring->name, "%s-rx-%d", netdev->name, i); |
| 496 | else |
| 497 | memcpy(ring->name, netdev->name, IFNAMSIZ); |
| 498 | err = request_irq(adapter->msix_entries[vector].vector, |
| 499 | &igb_msix_rx, 0, ring->name, |
| 500 | &(adapter->rx_ring[i])); |
| 501 | if (err) |
| 502 | goto out; |
| 503 | ring->itr_register = E1000_EITR(0) + (vector << 2); |
| 504 | ring->itr_val = adapter->itr; |
| 505 | /* overwrite the poll routine for MSIX, we've already done |
| 506 | * netif_napi_add */ |
| 507 | ring->napi.poll = &igb_clean_rx_ring_msix; |
| 508 | vector++; |
| 509 | } |
| 510 | |
| 511 | err = request_irq(adapter->msix_entries[vector].vector, |
| 512 | &igb_msix_other, 0, netdev->name, netdev); |
| 513 | if (err) |
| 514 | goto out; |
| 515 | |
| 516 | igb_configure_msix(adapter); |
| 517 | return 0; |
| 518 | out: |
| 519 | return err; |
| 520 | } |
| 521 | |
| 522 | static void igb_reset_interrupt_capability(struct igb_adapter *adapter) |
| 523 | { |
| 524 | if (adapter->msix_entries) { |
| 525 | pci_disable_msix(adapter->pdev); |
| 526 | kfree(adapter->msix_entries); |
| 527 | adapter->msix_entries = NULL; |
| 528 | } else if (adapter->flags & IGB_FLAG_HAS_MSI) |
| 529 | pci_disable_msi(adapter->pdev); |
| 530 | return; |
| 531 | } |
| 532 | |
| 533 | |
| 534 | /** |
| 535 | * igb_set_interrupt_capability - set MSI or MSI-X if supported |
| 536 | * |
| 537 | * Attempt to configure interrupts using the best available |
| 538 | * capabilities of the hardware and kernel. |
| 539 | **/ |
| 540 | static void igb_set_interrupt_capability(struct igb_adapter *adapter) |
| 541 | { |
| 542 | int err; |
| 543 | int numvecs, i; |
| 544 | |
| 545 | numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1; |
| 546 | adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), |
| 547 | GFP_KERNEL); |
| 548 | if (!adapter->msix_entries) |
| 549 | goto msi_only; |
| 550 | |
| 551 | for (i = 0; i < numvecs; i++) |
| 552 | adapter->msix_entries[i].entry = i; |
| 553 | |
| 554 | err = pci_enable_msix(adapter->pdev, |
| 555 | adapter->msix_entries, |
| 556 | numvecs); |
| 557 | if (err == 0) |
| 558 | goto out; |
| 559 | |
| 560 | igb_reset_interrupt_capability(adapter); |
| 561 | |
| 562 | /* If we can't do MSI-X, try MSI */ |
| 563 | msi_only: |
| 564 | adapter->num_rx_queues = 1; |
| 565 | adapter->num_tx_queues = 1; |
| 566 | if (!pci_enable_msi(adapter->pdev)) |
| 567 | adapter->flags |= IGB_FLAG_HAS_MSI; |
| 568 | out: |
| 569 | /* Notify the stack of the (possibly) reduced Tx Queue count. */ |
| 570 | adapter->netdev->real_num_tx_queues = adapter->num_tx_queues; |
| 571 | return; |
| 572 | } |
| 573 | |
| 574 | /** |
| 575 | * igb_request_irq - initialize interrupts |
| 576 | * |
| 577 | * Attempts to configure interrupts using the best available |
| 578 | * capabilities of the hardware and kernel. |
| 579 | **/ |
| 580 | static int igb_request_irq(struct igb_adapter *adapter) |
| 581 | { |
| 582 | struct net_device *netdev = adapter->netdev; |
| 583 | struct e1000_hw *hw = &adapter->hw; |
| 584 | int err = 0; |
| 585 | |
| 586 | if (adapter->msix_entries) { |
| 587 | err = igb_request_msix(adapter); |
| 588 | if (!err) |
| 589 | goto request_done; |
| 590 | /* fall back to MSI */ |
| 591 | igb_reset_interrupt_capability(adapter); |
| 592 | if (!pci_enable_msi(adapter->pdev)) |
| 593 | adapter->flags |= IGB_FLAG_HAS_MSI; |
| 594 | igb_free_all_tx_resources(adapter); |
| 595 | igb_free_all_rx_resources(adapter); |
| 596 | adapter->num_rx_queues = 1; |
| 597 | igb_alloc_queues(adapter); |
| 598 | } else { |
| 599 | switch (hw->mac.type) { |
| 600 | case e1000_82575: |
| 601 | wr32(E1000_MSIXBM(0), |
| 602 | (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER)); |
| 603 | break; |
| 604 | case e1000_82576: |
| 605 | wr32(E1000_IVAR0, E1000_IVAR_VALID); |
| 606 | break; |
| 607 | default: |
| 608 | break; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | if (adapter->flags & IGB_FLAG_HAS_MSI) { |
| 613 | err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0, |
| 614 | netdev->name, netdev); |
| 615 | if (!err) |
| 616 | goto request_done; |
| 617 | /* fall back to legacy interrupts */ |
| 618 | igb_reset_interrupt_capability(adapter); |
| 619 | adapter->flags &= ~IGB_FLAG_HAS_MSI; |
| 620 | } |
| 621 | |
| 622 | err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED, |
| 623 | netdev->name, netdev); |
| 624 | |
| 625 | if (err) |
| 626 | dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n", |
| 627 | err); |
| 628 | |
| 629 | request_done: |
| 630 | return err; |
| 631 | } |
| 632 | |
| 633 | static void igb_free_irq(struct igb_adapter *adapter) |
| 634 | { |
| 635 | struct net_device *netdev = adapter->netdev; |
| 636 | |
| 637 | if (adapter->msix_entries) { |
| 638 | int vector = 0, i; |
| 639 | |
| 640 | for (i = 0; i < adapter->num_tx_queues; i++) |
| 641 | free_irq(adapter->msix_entries[vector++].vector, |
| 642 | &(adapter->tx_ring[i])); |
| 643 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 644 | free_irq(adapter->msix_entries[vector++].vector, |
| 645 | &(adapter->rx_ring[i])); |
| 646 | |
| 647 | free_irq(adapter->msix_entries[vector++].vector, netdev); |
| 648 | return; |
| 649 | } |
| 650 | |
| 651 | free_irq(adapter->pdev->irq, netdev); |
| 652 | } |
| 653 | |
| 654 | /** |
| 655 | * igb_irq_disable - Mask off interrupt generation on the NIC |
| 656 | * @adapter: board private structure |
| 657 | **/ |
| 658 | static void igb_irq_disable(struct igb_adapter *adapter) |
| 659 | { |
| 660 | struct e1000_hw *hw = &adapter->hw; |
| 661 | |
| 662 | if (adapter->msix_entries) { |
| 663 | wr32(E1000_EIAM, 0); |
| 664 | wr32(E1000_EIMC, ~0); |
| 665 | wr32(E1000_EIAC, 0); |
| 666 | } |
| 667 | |
| 668 | wr32(E1000_IAM, 0); |
| 669 | wr32(E1000_IMC, ~0); |
| 670 | wrfl(); |
| 671 | synchronize_irq(adapter->pdev->irq); |
| 672 | } |
| 673 | |
| 674 | /** |
| 675 | * igb_irq_enable - Enable default interrupt generation settings |
| 676 | * @adapter: board private structure |
| 677 | **/ |
| 678 | static void igb_irq_enable(struct igb_adapter *adapter) |
| 679 | { |
| 680 | struct e1000_hw *hw = &adapter->hw; |
| 681 | |
| 682 | if (adapter->msix_entries) { |
| 683 | wr32(E1000_EIAC, adapter->eims_enable_mask); |
| 684 | wr32(E1000_EIAM, adapter->eims_enable_mask); |
| 685 | wr32(E1000_EIMS, adapter->eims_enable_mask); |
| 686 | wr32(E1000_IMS, E1000_IMS_LSC); |
| 687 | } else { |
| 688 | wr32(E1000_IMS, IMS_ENABLE_MASK); |
| 689 | wr32(E1000_IAM, IMS_ENABLE_MASK); |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | static void igb_update_mng_vlan(struct igb_adapter *adapter) |
| 694 | { |
| 695 | struct net_device *netdev = adapter->netdev; |
| 696 | u16 vid = adapter->hw.mng_cookie.vlan_id; |
| 697 | u16 old_vid = adapter->mng_vlan_id; |
| 698 | if (adapter->vlgrp) { |
| 699 | if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
| 700 | if (adapter->hw.mng_cookie.status & |
| 701 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { |
| 702 | igb_vlan_rx_add_vid(netdev, vid); |
| 703 | adapter->mng_vlan_id = vid; |
| 704 | } else |
| 705 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; |
| 706 | |
| 707 | if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && |
| 708 | (vid != old_vid) && |
| 709 | !vlan_group_get_device(adapter->vlgrp, old_vid)) |
| 710 | igb_vlan_rx_kill_vid(netdev, old_vid); |
| 711 | } else |
| 712 | adapter->mng_vlan_id = vid; |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | /** |
| 717 | * igb_release_hw_control - release control of the h/w to f/w |
| 718 | * @adapter: address of board private structure |
| 719 | * |
| 720 | * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. |
| 721 | * For ASF and Pass Through versions of f/w this means that the |
| 722 | * driver is no longer loaded. |
| 723 | * |
| 724 | **/ |
| 725 | static void igb_release_hw_control(struct igb_adapter *adapter) |
| 726 | { |
| 727 | struct e1000_hw *hw = &adapter->hw; |
| 728 | u32 ctrl_ext; |
| 729 | |
| 730 | /* Let firmware take over control of h/w */ |
| 731 | ctrl_ext = rd32(E1000_CTRL_EXT); |
| 732 | wr32(E1000_CTRL_EXT, |
| 733 | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
| 734 | } |
| 735 | |
| 736 | |
| 737 | /** |
| 738 | * igb_get_hw_control - get control of the h/w from f/w |
| 739 | * @adapter: address of board private structure |
| 740 | * |
| 741 | * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. |
| 742 | * For ASF and Pass Through versions of f/w this means that |
| 743 | * the driver is loaded. |
| 744 | * |
| 745 | **/ |
| 746 | static void igb_get_hw_control(struct igb_adapter *adapter) |
| 747 | { |
| 748 | struct e1000_hw *hw = &adapter->hw; |
| 749 | u32 ctrl_ext; |
| 750 | |
| 751 | /* Let firmware know the driver has taken over */ |
| 752 | ctrl_ext = rd32(E1000_CTRL_EXT); |
| 753 | wr32(E1000_CTRL_EXT, |
| 754 | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
| 755 | } |
| 756 | |
| 757 | /** |
| 758 | * igb_configure - configure the hardware for RX and TX |
| 759 | * @adapter: private board structure |
| 760 | **/ |
| 761 | static void igb_configure(struct igb_adapter *adapter) |
| 762 | { |
| 763 | struct net_device *netdev = adapter->netdev; |
| 764 | int i; |
| 765 | |
| 766 | igb_get_hw_control(adapter); |
| 767 | igb_set_multi(netdev); |
| 768 | |
| 769 | igb_restore_vlan(adapter); |
| 770 | |
| 771 | igb_configure_tx(adapter); |
| 772 | igb_setup_rctl(adapter); |
| 773 | igb_configure_rx(adapter); |
| 774 | |
| 775 | igb_rx_fifo_flush_82575(&adapter->hw); |
| 776 | |
| 777 | /* call IGB_DESC_UNUSED which always leaves |
| 778 | * at least 1 descriptor unused to make sure |
| 779 | * next_to_use != next_to_clean */ |
| 780 | for (i = 0; i < adapter->num_rx_queues; i++) { |
| 781 | struct igb_ring *ring = &adapter->rx_ring[i]; |
| 782 | igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring)); |
| 783 | } |
| 784 | |
| 785 | |
| 786 | adapter->tx_queue_len = netdev->tx_queue_len; |
| 787 | } |
| 788 | |
| 789 | |
| 790 | /** |
| 791 | * igb_up - Open the interface and prepare it to handle traffic |
| 792 | * @adapter: board private structure |
| 793 | **/ |
| 794 | |
| 795 | int igb_up(struct igb_adapter *adapter) |
| 796 | { |
| 797 | struct e1000_hw *hw = &adapter->hw; |
| 798 | int i; |
| 799 | |
| 800 | /* hardware has been reset, we need to reload some things */ |
| 801 | igb_configure(adapter); |
| 802 | |
| 803 | clear_bit(__IGB_DOWN, &adapter->state); |
| 804 | |
| 805 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 806 | napi_enable(&adapter->rx_ring[i].napi); |
| 807 | if (adapter->msix_entries) |
| 808 | igb_configure_msix(adapter); |
| 809 | |
| 810 | /* Clear any pending interrupts. */ |
| 811 | rd32(E1000_ICR); |
| 812 | igb_irq_enable(adapter); |
| 813 | |
| 814 | /* Fire a link change interrupt to start the watchdog. */ |
| 815 | wr32(E1000_ICS, E1000_ICS_LSC); |
| 816 | return 0; |
| 817 | } |
| 818 | |
| 819 | void igb_down(struct igb_adapter *adapter) |
| 820 | { |
| 821 | struct e1000_hw *hw = &adapter->hw; |
| 822 | struct net_device *netdev = adapter->netdev; |
| 823 | u32 tctl, rctl; |
| 824 | int i; |
| 825 | |
| 826 | /* signal that we're down so the interrupt handler does not |
| 827 | * reschedule our watchdog timer */ |
| 828 | set_bit(__IGB_DOWN, &adapter->state); |
| 829 | |
| 830 | /* disable receives in the hardware */ |
| 831 | rctl = rd32(E1000_RCTL); |
| 832 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); |
| 833 | /* flush and sleep below */ |
| 834 | |
| 835 | netif_tx_stop_all_queues(netdev); |
| 836 | |
| 837 | /* disable transmits in the hardware */ |
| 838 | tctl = rd32(E1000_TCTL); |
| 839 | tctl &= ~E1000_TCTL_EN; |
| 840 | wr32(E1000_TCTL, tctl); |
| 841 | /* flush both disables and wait for them to finish */ |
| 842 | wrfl(); |
| 843 | msleep(10); |
| 844 | |
| 845 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 846 | napi_disable(&adapter->rx_ring[i].napi); |
| 847 | |
| 848 | igb_irq_disable(adapter); |
| 849 | |
| 850 | del_timer_sync(&adapter->watchdog_timer); |
| 851 | del_timer_sync(&adapter->phy_info_timer); |
| 852 | |
| 853 | netdev->tx_queue_len = adapter->tx_queue_len; |
| 854 | netif_carrier_off(netdev); |
| 855 | adapter->link_speed = 0; |
| 856 | adapter->link_duplex = 0; |
| 857 | |
| 858 | if (!pci_channel_offline(adapter->pdev)) |
| 859 | igb_reset(adapter); |
| 860 | igb_clean_all_tx_rings(adapter); |
| 861 | igb_clean_all_rx_rings(adapter); |
| 862 | } |
| 863 | |
| 864 | void igb_reinit_locked(struct igb_adapter *adapter) |
| 865 | { |
| 866 | WARN_ON(in_interrupt()); |
| 867 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) |
| 868 | msleep(1); |
| 869 | igb_down(adapter); |
| 870 | igb_up(adapter); |
| 871 | clear_bit(__IGB_RESETTING, &adapter->state); |
| 872 | } |
| 873 | |
| 874 | void igb_reset(struct igb_adapter *adapter) |
| 875 | { |
| 876 | struct e1000_hw *hw = &adapter->hw; |
| 877 | struct e1000_mac_info *mac = &hw->mac; |
| 878 | struct e1000_fc_info *fc = &hw->fc; |
| 879 | u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
| 880 | u16 hwm; |
| 881 | |
| 882 | /* Repartition Pba for greater than 9k mtu |
| 883 | * To take effect CTRL.RST is required. |
| 884 | */ |
| 885 | if (mac->type != e1000_82576) { |
| 886 | pba = E1000_PBA_34K; |
| 887 | } |
| 888 | else { |
| 889 | pba = E1000_PBA_64K; |
| 890 | } |
| 891 | |
| 892 | if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && |
| 893 | (mac->type < e1000_82576)) { |
| 894 | /* adjust PBA for jumbo frames */ |
| 895 | wr32(E1000_PBA, pba); |
| 896 | |
| 897 | /* To maintain wire speed transmits, the Tx FIFO should be |
| 898 | * large enough to accommodate two full transmit packets, |
| 899 | * rounded up to the next 1KB and expressed in KB. Likewise, |
| 900 | * the Rx FIFO should be large enough to accommodate at least |
| 901 | * one full receive packet and is similarly rounded up and |
| 902 | * expressed in KB. */ |
| 903 | pba = rd32(E1000_PBA); |
| 904 | /* upper 16 bits has Tx packet buffer allocation size in KB */ |
| 905 | tx_space = pba >> 16; |
| 906 | /* lower 16 bits has Rx packet buffer allocation size in KB */ |
| 907 | pba &= 0xffff; |
| 908 | /* the tx fifo also stores 16 bytes of information about the tx |
| 909 | * but don't include ethernet FCS because hardware appends it */ |
| 910 | min_tx_space = (adapter->max_frame_size + |
| 911 | sizeof(struct e1000_tx_desc) - |
| 912 | ETH_FCS_LEN) * 2; |
| 913 | min_tx_space = ALIGN(min_tx_space, 1024); |
| 914 | min_tx_space >>= 10; |
| 915 | /* software strips receive CRC, so leave room for it */ |
| 916 | min_rx_space = adapter->max_frame_size; |
| 917 | min_rx_space = ALIGN(min_rx_space, 1024); |
| 918 | min_rx_space >>= 10; |
| 919 | |
| 920 | /* If current Tx allocation is less than the min Tx FIFO size, |
| 921 | * and the min Tx FIFO size is less than the current Rx FIFO |
| 922 | * allocation, take space away from current Rx allocation */ |
| 923 | if (tx_space < min_tx_space && |
| 924 | ((min_tx_space - tx_space) < pba)) { |
| 925 | pba = pba - (min_tx_space - tx_space); |
| 926 | |
| 927 | /* if short on rx space, rx wins and must trump tx |
| 928 | * adjustment */ |
| 929 | if (pba < min_rx_space) |
| 930 | pba = min_rx_space; |
| 931 | } |
| 932 | wr32(E1000_PBA, pba); |
| 933 | } |
| 934 | |
| 935 | /* flow control settings */ |
| 936 | /* The high water mark must be low enough to fit one full frame |
| 937 | * (or the size used for early receive) above it in the Rx FIFO. |
| 938 | * Set it to the lower of: |
| 939 | * - 90% of the Rx FIFO size, or |
| 940 | * - the full Rx FIFO size minus one full frame */ |
| 941 | hwm = min(((pba << 10) * 9 / 10), |
| 942 | ((pba << 10) - 2 * adapter->max_frame_size)); |
| 943 | |
| 944 | if (mac->type < e1000_82576) { |
| 945 | fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */ |
| 946 | fc->low_water = fc->high_water - 8; |
| 947 | } else { |
| 948 | fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */ |
| 949 | fc->low_water = fc->high_water - 16; |
| 950 | } |
| 951 | fc->pause_time = 0xFFFF; |
| 952 | fc->send_xon = 1; |
| 953 | fc->type = fc->original_type; |
| 954 | |
| 955 | /* Allow time for pending master requests to run */ |
| 956 | adapter->hw.mac.ops.reset_hw(&adapter->hw); |
| 957 | wr32(E1000_WUC, 0); |
| 958 | |
| 959 | if (adapter->hw.mac.ops.init_hw(&adapter->hw)) |
| 960 | dev_err(&adapter->pdev->dev, "Hardware Error\n"); |
| 961 | |
| 962 | igb_update_mng_vlan(adapter); |
| 963 | |
| 964 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
| 965 | wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); |
| 966 | |
| 967 | igb_reset_adaptive(&adapter->hw); |
| 968 | igb_get_phy_info(&adapter->hw); |
| 969 | } |
| 970 | |
| 971 | /** |
| 972 | * igb_is_need_ioport - determine if an adapter needs ioport resources or not |
| 973 | * @pdev: PCI device information struct |
| 974 | * |
| 975 | * Returns true if an adapter needs ioport resources |
| 976 | **/ |
| 977 | static int igb_is_need_ioport(struct pci_dev *pdev) |
| 978 | { |
| 979 | switch (pdev->device) { |
| 980 | /* Currently there are no adapters that need ioport resources */ |
| 981 | default: |
| 982 | return false; |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | static const struct net_device_ops igb_netdev_ops = { |
| 987 | .ndo_open = igb_open, |
| 988 | .ndo_stop = igb_close, |
| 989 | .ndo_start_xmit = igb_xmit_frame_adv, |
| 990 | .ndo_get_stats = igb_get_stats, |
| 991 | .ndo_set_multicast_list = igb_set_multi, |
| 992 | .ndo_set_mac_address = igb_set_mac, |
| 993 | .ndo_change_mtu = igb_change_mtu, |
| 994 | .ndo_do_ioctl = igb_ioctl, |
| 995 | .ndo_tx_timeout = igb_tx_timeout, |
| 996 | .ndo_validate_addr = eth_validate_addr, |
| 997 | .ndo_vlan_rx_register = igb_vlan_rx_register, |
| 998 | .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, |
| 999 | .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, |
| 1000 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 1001 | .ndo_poll_controller = igb_netpoll, |
| 1002 | #endif |
| 1003 | }; |
| 1004 | |
| 1005 | /** |
| 1006 | * igb_probe - Device Initialization Routine |
| 1007 | * @pdev: PCI device information struct |
| 1008 | * @ent: entry in igb_pci_tbl |
| 1009 | * |
| 1010 | * Returns 0 on success, negative on failure |
| 1011 | * |
| 1012 | * igb_probe initializes an adapter identified by a pci_dev structure. |
| 1013 | * The OS initialization, configuring of the adapter private structure, |
| 1014 | * and a hardware reset occur. |
| 1015 | **/ |
| 1016 | static int __devinit igb_probe(struct pci_dev *pdev, |
| 1017 | const struct pci_device_id *ent) |
| 1018 | { |
| 1019 | struct net_device *netdev; |
| 1020 | struct igb_adapter *adapter; |
| 1021 | struct e1000_hw *hw; |
| 1022 | struct pci_dev *us_dev; |
| 1023 | const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; |
| 1024 | unsigned long mmio_start, mmio_len; |
| 1025 | int i, err, pci_using_dac, pos; |
| 1026 | u16 eeprom_data = 0, state = 0; |
| 1027 | u16 eeprom_apme_mask = IGB_EEPROM_APME; |
| 1028 | u32 part_num; |
| 1029 | int bars, need_ioport; |
| 1030 | |
| 1031 | /* do not allocate ioport bars when not needed */ |
| 1032 | need_ioport = igb_is_need_ioport(pdev); |
| 1033 | if (need_ioport) { |
| 1034 | bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); |
| 1035 | err = pci_enable_device(pdev); |
| 1036 | } else { |
| 1037 | bars = pci_select_bars(pdev, IORESOURCE_MEM); |
| 1038 | err = pci_enable_device_mem(pdev); |
| 1039 | } |
| 1040 | if (err) |
| 1041 | return err; |
| 1042 | |
| 1043 | pci_using_dac = 0; |
| 1044 | err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); |
| 1045 | if (!err) { |
| 1046 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); |
| 1047 | if (!err) |
| 1048 | pci_using_dac = 1; |
| 1049 | } else { |
| 1050 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| 1051 | if (err) { |
| 1052 | err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
| 1053 | if (err) { |
| 1054 | dev_err(&pdev->dev, "No usable DMA " |
| 1055 | "configuration, aborting\n"); |
| 1056 | goto err_dma; |
| 1057 | } |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | /* 82575 requires that the pci-e link partner disable the L0s state */ |
| 1062 | switch (pdev->device) { |
| 1063 | case E1000_DEV_ID_82575EB_COPPER: |
| 1064 | case E1000_DEV_ID_82575EB_FIBER_SERDES: |
| 1065 | case E1000_DEV_ID_82575GB_QUAD_COPPER: |
| 1066 | us_dev = pdev->bus->self; |
| 1067 | pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP); |
| 1068 | if (pos) { |
| 1069 | pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL, |
| 1070 | &state); |
| 1071 | state &= ~PCIE_LINK_STATE_L0S; |
| 1072 | pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL, |
| 1073 | state); |
| 1074 | dev_info(&pdev->dev, |
| 1075 | "Disabling ASPM L0s upstream switch port %s\n", |
| 1076 | pci_name(us_dev)); |
| 1077 | } |
| 1078 | default: |
| 1079 | break; |
| 1080 | } |
| 1081 | |
| 1082 | err = pci_request_selected_regions(pdev, bars, igb_driver_name); |
| 1083 | if (err) |
| 1084 | goto err_pci_reg; |
| 1085 | |
| 1086 | err = pci_enable_pcie_error_reporting(pdev); |
| 1087 | if (err) { |
| 1088 | dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed " |
| 1089 | "0x%x\n", err); |
| 1090 | /* non-fatal, continue */ |
| 1091 | } |
| 1092 | |
| 1093 | pci_set_master(pdev); |
| 1094 | pci_save_state(pdev); |
| 1095 | |
| 1096 | err = -ENOMEM; |
| 1097 | netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES); |
| 1098 | if (!netdev) |
| 1099 | goto err_alloc_etherdev; |
| 1100 | |
| 1101 | SET_NETDEV_DEV(netdev, &pdev->dev); |
| 1102 | |
| 1103 | pci_set_drvdata(pdev, netdev); |
| 1104 | adapter = netdev_priv(netdev); |
| 1105 | adapter->netdev = netdev; |
| 1106 | adapter->pdev = pdev; |
| 1107 | hw = &adapter->hw; |
| 1108 | hw->back = adapter; |
| 1109 | adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
| 1110 | adapter->bars = bars; |
| 1111 | adapter->need_ioport = need_ioport; |
| 1112 | |
| 1113 | mmio_start = pci_resource_start(pdev, 0); |
| 1114 | mmio_len = pci_resource_len(pdev, 0); |
| 1115 | |
| 1116 | err = -EIO; |
| 1117 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); |
| 1118 | if (!adapter->hw.hw_addr) |
| 1119 | goto err_ioremap; |
| 1120 | |
| 1121 | netdev->netdev_ops = &igb_netdev_ops; |
| 1122 | igb_set_ethtool_ops(netdev); |
| 1123 | netdev->watchdog_timeo = 5 * HZ; |
| 1124 | |
| 1125 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
| 1126 | |
| 1127 | netdev->mem_start = mmio_start; |
| 1128 | netdev->mem_end = mmio_start + mmio_len; |
| 1129 | |
| 1130 | /* PCI config space info */ |
| 1131 | hw->vendor_id = pdev->vendor; |
| 1132 | hw->device_id = pdev->device; |
| 1133 | hw->revision_id = pdev->revision; |
| 1134 | hw->subsystem_vendor_id = pdev->subsystem_vendor; |
| 1135 | hw->subsystem_device_id = pdev->subsystem_device; |
| 1136 | |
| 1137 | /* setup the private structure */ |
| 1138 | hw->back = adapter; |
| 1139 | /* Copy the default MAC, PHY and NVM function pointers */ |
| 1140 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
| 1141 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); |
| 1142 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); |
| 1143 | /* Initialize skew-specific constants */ |
| 1144 | err = ei->get_invariants(hw); |
| 1145 | if (err) |
| 1146 | goto err_hw_init; |
| 1147 | |
| 1148 | err = igb_sw_init(adapter); |
| 1149 | if (err) |
| 1150 | goto err_sw_init; |
| 1151 | |
| 1152 | igb_get_bus_info_pcie(hw); |
| 1153 | |
| 1154 | /* set flags */ |
| 1155 | switch (hw->mac.type) { |
| 1156 | case e1000_82576: |
| 1157 | case e1000_82575: |
| 1158 | adapter->flags |= IGB_FLAG_HAS_DCA; |
| 1159 | adapter->flags |= IGB_FLAG_NEED_CTX_IDX; |
| 1160 | break; |
| 1161 | default: |
| 1162 | break; |
| 1163 | } |
| 1164 | |
| 1165 | hw->phy.autoneg_wait_to_complete = false; |
| 1166 | hw->mac.adaptive_ifs = true; |
| 1167 | |
| 1168 | /* Copper options */ |
| 1169 | if (hw->phy.media_type == e1000_media_type_copper) { |
| 1170 | hw->phy.mdix = AUTO_ALL_MODES; |
| 1171 | hw->phy.disable_polarity_correction = false; |
| 1172 | hw->phy.ms_type = e1000_ms_hw_default; |
| 1173 | } |
| 1174 | |
| 1175 | if (igb_check_reset_block(hw)) |
| 1176 | dev_info(&pdev->dev, |
| 1177 | "PHY reset is blocked due to SOL/IDER session.\n"); |
| 1178 | |
| 1179 | netdev->features = NETIF_F_SG | |
| 1180 | NETIF_F_HW_CSUM | |
| 1181 | NETIF_F_HW_VLAN_TX | |
| 1182 | NETIF_F_HW_VLAN_RX | |
| 1183 | NETIF_F_HW_VLAN_FILTER; |
| 1184 | |
| 1185 | netdev->features |= NETIF_F_TSO; |
| 1186 | netdev->features |= NETIF_F_TSO6; |
| 1187 | |
| 1188 | #ifdef CONFIG_IGB_LRO |
| 1189 | netdev->features |= NETIF_F_GRO; |
| 1190 | #endif |
| 1191 | |
| 1192 | netdev->vlan_features |= NETIF_F_TSO; |
| 1193 | netdev->vlan_features |= NETIF_F_TSO6; |
| 1194 | netdev->vlan_features |= NETIF_F_HW_CSUM; |
| 1195 | netdev->vlan_features |= NETIF_F_SG; |
| 1196 | |
| 1197 | if (pci_using_dac) |
| 1198 | netdev->features |= NETIF_F_HIGHDMA; |
| 1199 | |
| 1200 | adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw); |
| 1201 | |
| 1202 | /* before reading the NVM, reset the controller to put the device in a |
| 1203 | * known good starting state */ |
| 1204 | hw->mac.ops.reset_hw(hw); |
| 1205 | |
| 1206 | /* make sure the NVM is good */ |
| 1207 | if (igb_validate_nvm_checksum(hw) < 0) { |
| 1208 | dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); |
| 1209 | err = -EIO; |
| 1210 | goto err_eeprom; |
| 1211 | } |
| 1212 | |
| 1213 | /* copy the MAC address out of the NVM */ |
| 1214 | if (hw->mac.ops.read_mac_addr(hw)) |
| 1215 | dev_err(&pdev->dev, "NVM Read Error\n"); |
| 1216 | |
| 1217 | memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); |
| 1218 | memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); |
| 1219 | |
| 1220 | if (!is_valid_ether_addr(netdev->perm_addr)) { |
| 1221 | dev_err(&pdev->dev, "Invalid MAC Address\n"); |
| 1222 | err = -EIO; |
| 1223 | goto err_eeprom; |
| 1224 | } |
| 1225 | |
| 1226 | init_timer(&adapter->watchdog_timer); |
| 1227 | adapter->watchdog_timer.function = &igb_watchdog; |
| 1228 | adapter->watchdog_timer.data = (unsigned long) adapter; |
| 1229 | |
| 1230 | init_timer(&adapter->phy_info_timer); |
| 1231 | adapter->phy_info_timer.function = &igb_update_phy_info; |
| 1232 | adapter->phy_info_timer.data = (unsigned long) adapter; |
| 1233 | |
| 1234 | INIT_WORK(&adapter->reset_task, igb_reset_task); |
| 1235 | INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); |
| 1236 | |
| 1237 | /* Initialize link & ring properties that are user-changeable */ |
| 1238 | adapter->tx_ring->count = 256; |
| 1239 | for (i = 0; i < adapter->num_tx_queues; i++) |
| 1240 | adapter->tx_ring[i].count = adapter->tx_ring->count; |
| 1241 | adapter->rx_ring->count = 256; |
| 1242 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 1243 | adapter->rx_ring[i].count = adapter->rx_ring->count; |
| 1244 | |
| 1245 | adapter->fc_autoneg = true; |
| 1246 | hw->mac.autoneg = true; |
| 1247 | hw->phy.autoneg_advertised = 0x2f; |
| 1248 | |
| 1249 | hw->fc.original_type = e1000_fc_default; |
| 1250 | hw->fc.type = e1000_fc_default; |
| 1251 | |
| 1252 | adapter->itr_setting = 3; |
| 1253 | adapter->itr = IGB_START_ITR; |
| 1254 | |
| 1255 | igb_validate_mdi_setting(hw); |
| 1256 | |
| 1257 | adapter->rx_csum = 1; |
| 1258 | |
| 1259 | /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM, |
| 1260 | * enable the ACPI Magic Packet filter |
| 1261 | */ |
| 1262 | |
| 1263 | if (hw->bus.func == 0 || |
| 1264 | hw->device_id == E1000_DEV_ID_82575EB_COPPER) |
| 1265 | hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1, |
| 1266 | &eeprom_data); |
| 1267 | |
| 1268 | if (eeprom_data & eeprom_apme_mask) |
| 1269 | adapter->eeprom_wol |= E1000_WUFC_MAG; |
| 1270 | |
| 1271 | /* now that we have the eeprom settings, apply the special cases where |
| 1272 | * the eeprom may be wrong or the board simply won't support wake on |
| 1273 | * lan on a particular port */ |
| 1274 | switch (pdev->device) { |
| 1275 | case E1000_DEV_ID_82575GB_QUAD_COPPER: |
| 1276 | adapter->eeprom_wol = 0; |
| 1277 | break; |
| 1278 | case E1000_DEV_ID_82575EB_FIBER_SERDES: |
| 1279 | case E1000_DEV_ID_82576_FIBER: |
| 1280 | case E1000_DEV_ID_82576_SERDES: |
| 1281 | /* Wake events only supported on port A for dual fiber |
| 1282 | * regardless of eeprom setting */ |
| 1283 | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) |
| 1284 | adapter->eeprom_wol = 0; |
| 1285 | break; |
| 1286 | } |
| 1287 | |
| 1288 | /* initialize the wol settings based on the eeprom settings */ |
| 1289 | adapter->wol = adapter->eeprom_wol; |
| 1290 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
| 1291 | |
| 1292 | /* reset the hardware with the new settings */ |
| 1293 | igb_reset(adapter); |
| 1294 | |
| 1295 | /* let the f/w know that the h/w is now under the control of the |
| 1296 | * driver. */ |
| 1297 | igb_get_hw_control(adapter); |
| 1298 | |
| 1299 | /* tell the stack to leave us alone until igb_open() is called */ |
| 1300 | netif_carrier_off(netdev); |
| 1301 | netif_tx_stop_all_queues(netdev); |
| 1302 | |
| 1303 | strcpy(netdev->name, "eth%d"); |
| 1304 | err = register_netdev(netdev); |
| 1305 | if (err) |
| 1306 | goto err_register; |
| 1307 | |
| 1308 | #ifdef CONFIG_IGB_DCA |
| 1309 | if ((adapter->flags & IGB_FLAG_HAS_DCA) && |
| 1310 | (dca_add_requester(&pdev->dev) == 0)) { |
| 1311 | adapter->flags |= IGB_FLAG_DCA_ENABLED; |
| 1312 | dev_info(&pdev->dev, "DCA enabled\n"); |
| 1313 | /* Always use CB2 mode, difference is masked |
| 1314 | * in the CB driver. */ |
| 1315 | wr32(E1000_DCA_CTRL, 2); |
| 1316 | igb_setup_dca(adapter); |
| 1317 | } |
| 1318 | #endif |
| 1319 | |
| 1320 | dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); |
| 1321 | /* print bus type/speed/width info */ |
| 1322 | dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", |
| 1323 | netdev->name, |
| 1324 | ((hw->bus.speed == e1000_bus_speed_2500) |
| 1325 | ? "2.5Gb/s" : "unknown"), |
| 1326 | ((hw->bus.width == e1000_bus_width_pcie_x4) |
| 1327 | ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1) |
| 1328 | ? "Width x1" : "unknown"), |
| 1329 | netdev->dev_addr); |
| 1330 | |
| 1331 | igb_read_part_num(hw, &part_num); |
| 1332 | dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name, |
| 1333 | (part_num >> 8), (part_num & 0xff)); |
| 1334 | |
| 1335 | dev_info(&pdev->dev, |
| 1336 | "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", |
| 1337 | adapter->msix_entries ? "MSI-X" : |
| 1338 | (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", |
| 1339 | adapter->num_rx_queues, adapter->num_tx_queues); |
| 1340 | |
| 1341 | return 0; |
| 1342 | |
| 1343 | err_register: |
| 1344 | igb_release_hw_control(adapter); |
| 1345 | err_eeprom: |
| 1346 | if (!igb_check_reset_block(hw)) |
| 1347 | igb_reset_phy(hw); |
| 1348 | |
| 1349 | if (hw->flash_address) |
| 1350 | iounmap(hw->flash_address); |
| 1351 | |
| 1352 | igb_remove_device(hw); |
| 1353 | igb_free_queues(adapter); |
| 1354 | err_sw_init: |
| 1355 | err_hw_init: |
| 1356 | iounmap(hw->hw_addr); |
| 1357 | err_ioremap: |
| 1358 | free_netdev(netdev); |
| 1359 | err_alloc_etherdev: |
| 1360 | pci_release_selected_regions(pdev, bars); |
| 1361 | err_pci_reg: |
| 1362 | err_dma: |
| 1363 | pci_disable_device(pdev); |
| 1364 | return err; |
| 1365 | } |
| 1366 | |
| 1367 | /** |
| 1368 | * igb_remove - Device Removal Routine |
| 1369 | * @pdev: PCI device information struct |
| 1370 | * |
| 1371 | * igb_remove is called by the PCI subsystem to alert the driver |
| 1372 | * that it should release a PCI device. The could be caused by a |
| 1373 | * Hot-Plug event, or because the driver is going to be removed from |
| 1374 | * memory. |
| 1375 | **/ |
| 1376 | static void __devexit igb_remove(struct pci_dev *pdev) |
| 1377 | { |
| 1378 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 1379 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 1380 | #ifdef CONFIG_IGB_DCA |
| 1381 | struct e1000_hw *hw = &adapter->hw; |
| 1382 | #endif |
| 1383 | int err; |
| 1384 | |
| 1385 | /* flush_scheduled work may reschedule our watchdog task, so |
| 1386 | * explicitly disable watchdog tasks from being rescheduled */ |
| 1387 | set_bit(__IGB_DOWN, &adapter->state); |
| 1388 | del_timer_sync(&adapter->watchdog_timer); |
| 1389 | del_timer_sync(&adapter->phy_info_timer); |
| 1390 | |
| 1391 | flush_scheduled_work(); |
| 1392 | |
| 1393 | #ifdef CONFIG_IGB_DCA |
| 1394 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { |
| 1395 | dev_info(&pdev->dev, "DCA disabled\n"); |
| 1396 | dca_remove_requester(&pdev->dev); |
| 1397 | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; |
| 1398 | wr32(E1000_DCA_CTRL, 1); |
| 1399 | } |
| 1400 | #endif |
| 1401 | |
| 1402 | /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| 1403 | * would have already happened in close and is redundant. */ |
| 1404 | igb_release_hw_control(adapter); |
| 1405 | |
| 1406 | unregister_netdev(netdev); |
| 1407 | |
| 1408 | if (!igb_check_reset_block(&adapter->hw)) |
| 1409 | igb_reset_phy(&adapter->hw); |
| 1410 | |
| 1411 | igb_remove_device(&adapter->hw); |
| 1412 | igb_reset_interrupt_capability(adapter); |
| 1413 | |
| 1414 | igb_free_queues(adapter); |
| 1415 | |
| 1416 | iounmap(adapter->hw.hw_addr); |
| 1417 | if (adapter->hw.flash_address) |
| 1418 | iounmap(adapter->hw.flash_address); |
| 1419 | pci_release_selected_regions(pdev, adapter->bars); |
| 1420 | |
| 1421 | free_netdev(netdev); |
| 1422 | |
| 1423 | err = pci_disable_pcie_error_reporting(pdev); |
| 1424 | if (err) |
| 1425 | dev_err(&pdev->dev, |
| 1426 | "pci_disable_pcie_error_reporting failed 0x%x\n", err); |
| 1427 | |
| 1428 | pci_disable_device(pdev); |
| 1429 | } |
| 1430 | |
| 1431 | /** |
| 1432 | * igb_sw_init - Initialize general software structures (struct igb_adapter) |
| 1433 | * @adapter: board private structure to initialize |
| 1434 | * |
| 1435 | * igb_sw_init initializes the Adapter private data structure. |
| 1436 | * Fields are initialized based on PCI device information and |
| 1437 | * OS network device settings (MTU size). |
| 1438 | **/ |
| 1439 | static int __devinit igb_sw_init(struct igb_adapter *adapter) |
| 1440 | { |
| 1441 | struct e1000_hw *hw = &adapter->hw; |
| 1442 | struct net_device *netdev = adapter->netdev; |
| 1443 | struct pci_dev *pdev = adapter->pdev; |
| 1444 | |
| 1445 | pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); |
| 1446 | |
| 1447 | adapter->tx_ring_count = IGB_DEFAULT_TXD; |
| 1448 | adapter->rx_ring_count = IGB_DEFAULT_RXD; |
| 1449 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
| 1450 | adapter->rx_ps_hdr_size = 0; /* disable packet split */ |
| 1451 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; |
| 1452 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; |
| 1453 | |
| 1454 | /* Number of supported queues. */ |
| 1455 | /* Having more queues than CPUs doesn't make sense. */ |
| 1456 | adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus()); |
| 1457 | adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus()); |
| 1458 | |
| 1459 | /* This call may decrease the number of queues depending on |
| 1460 | * interrupt mode. */ |
| 1461 | igb_set_interrupt_capability(adapter); |
| 1462 | |
| 1463 | if (igb_alloc_queues(adapter)) { |
| 1464 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); |
| 1465 | return -ENOMEM; |
| 1466 | } |
| 1467 | |
| 1468 | /* Explicitly disable IRQ since the NIC can be in any state. */ |
| 1469 | igb_irq_disable(adapter); |
| 1470 | |
| 1471 | set_bit(__IGB_DOWN, &adapter->state); |
| 1472 | return 0; |
| 1473 | } |
| 1474 | |
| 1475 | /** |
| 1476 | * igb_open - Called when a network interface is made active |
| 1477 | * @netdev: network interface device structure |
| 1478 | * |
| 1479 | * Returns 0 on success, negative value on failure |
| 1480 | * |
| 1481 | * The open entry point is called when a network interface is made |
| 1482 | * active by the system (IFF_UP). At this point all resources needed |
| 1483 | * for transmit and receive operations are allocated, the interrupt |
| 1484 | * handler is registered with the OS, the watchdog timer is started, |
| 1485 | * and the stack is notified that the interface is ready. |
| 1486 | **/ |
| 1487 | static int igb_open(struct net_device *netdev) |
| 1488 | { |
| 1489 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 1490 | struct e1000_hw *hw = &adapter->hw; |
| 1491 | int err; |
| 1492 | int i; |
| 1493 | |
| 1494 | /* disallow open during test */ |
| 1495 | if (test_bit(__IGB_TESTING, &adapter->state)) |
| 1496 | return -EBUSY; |
| 1497 | |
| 1498 | /* allocate transmit descriptors */ |
| 1499 | err = igb_setup_all_tx_resources(adapter); |
| 1500 | if (err) |
| 1501 | goto err_setup_tx; |
| 1502 | |
| 1503 | /* allocate receive descriptors */ |
| 1504 | err = igb_setup_all_rx_resources(adapter); |
| 1505 | if (err) |
| 1506 | goto err_setup_rx; |
| 1507 | |
| 1508 | /* e1000_power_up_phy(adapter); */ |
| 1509 | |
| 1510 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; |
| 1511 | if ((adapter->hw.mng_cookie.status & |
| 1512 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) |
| 1513 | igb_update_mng_vlan(adapter); |
| 1514 | |
| 1515 | /* before we allocate an interrupt, we must be ready to handle it. |
| 1516 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
| 1517 | * as soon as we call pci_request_irq, so we have to setup our |
| 1518 | * clean_rx handler before we do so. */ |
| 1519 | igb_configure(adapter); |
| 1520 | |
| 1521 | err = igb_request_irq(adapter); |
| 1522 | if (err) |
| 1523 | goto err_req_irq; |
| 1524 | |
| 1525 | /* From here on the code is the same as igb_up() */ |
| 1526 | clear_bit(__IGB_DOWN, &adapter->state); |
| 1527 | |
| 1528 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 1529 | napi_enable(&adapter->rx_ring[i].napi); |
| 1530 | |
| 1531 | /* Clear any pending interrupts. */ |
| 1532 | rd32(E1000_ICR); |
| 1533 | |
| 1534 | igb_irq_enable(adapter); |
| 1535 | |
| 1536 | netif_tx_start_all_queues(netdev); |
| 1537 | |
| 1538 | /* Fire a link status change interrupt to start the watchdog. */ |
| 1539 | wr32(E1000_ICS, E1000_ICS_LSC); |
| 1540 | |
| 1541 | return 0; |
| 1542 | |
| 1543 | err_req_irq: |
| 1544 | igb_release_hw_control(adapter); |
| 1545 | /* e1000_power_down_phy(adapter); */ |
| 1546 | igb_free_all_rx_resources(adapter); |
| 1547 | err_setup_rx: |
| 1548 | igb_free_all_tx_resources(adapter); |
| 1549 | err_setup_tx: |
| 1550 | igb_reset(adapter); |
| 1551 | |
| 1552 | return err; |
| 1553 | } |
| 1554 | |
| 1555 | /** |
| 1556 | * igb_close - Disables a network interface |
| 1557 | * @netdev: network interface device structure |
| 1558 | * |
| 1559 | * Returns 0, this is not allowed to fail |
| 1560 | * |
| 1561 | * The close entry point is called when an interface is de-activated |
| 1562 | * by the OS. The hardware is still under the driver's control, but |
| 1563 | * needs to be disabled. A global MAC reset is issued to stop the |
| 1564 | * hardware, and all transmit and receive resources are freed. |
| 1565 | **/ |
| 1566 | static int igb_close(struct net_device *netdev) |
| 1567 | { |
| 1568 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 1569 | |
| 1570 | WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); |
| 1571 | igb_down(adapter); |
| 1572 | |
| 1573 | igb_free_irq(adapter); |
| 1574 | |
| 1575 | igb_free_all_tx_resources(adapter); |
| 1576 | igb_free_all_rx_resources(adapter); |
| 1577 | |
| 1578 | /* kill manageability vlan ID if supported, but not if a vlan with |
| 1579 | * the same ID is registered on the host OS (let 8021q kill it) */ |
| 1580 | if ((adapter->hw.mng_cookie.status & |
| 1581 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| 1582 | !(adapter->vlgrp && |
| 1583 | vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) |
| 1584 | igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
| 1585 | |
| 1586 | return 0; |
| 1587 | } |
| 1588 | |
| 1589 | /** |
| 1590 | * igb_setup_tx_resources - allocate Tx resources (Descriptors) |
| 1591 | * @adapter: board private structure |
| 1592 | * @tx_ring: tx descriptor ring (for a specific queue) to setup |
| 1593 | * |
| 1594 | * Return 0 on success, negative on failure |
| 1595 | **/ |
| 1596 | |
| 1597 | int igb_setup_tx_resources(struct igb_adapter *adapter, |
| 1598 | struct igb_ring *tx_ring) |
| 1599 | { |
| 1600 | struct pci_dev *pdev = adapter->pdev; |
| 1601 | int size; |
| 1602 | |
| 1603 | size = sizeof(struct igb_buffer) * tx_ring->count; |
| 1604 | tx_ring->buffer_info = vmalloc(size); |
| 1605 | if (!tx_ring->buffer_info) |
| 1606 | goto err; |
| 1607 | memset(tx_ring->buffer_info, 0, size); |
| 1608 | |
| 1609 | /* round up to nearest 4K */ |
| 1610 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
| 1611 | tx_ring->size = ALIGN(tx_ring->size, 4096); |
| 1612 | |
| 1613 | tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size, |
| 1614 | &tx_ring->dma); |
| 1615 | |
| 1616 | if (!tx_ring->desc) |
| 1617 | goto err; |
| 1618 | |
| 1619 | tx_ring->adapter = adapter; |
| 1620 | tx_ring->next_to_use = 0; |
| 1621 | tx_ring->next_to_clean = 0; |
| 1622 | return 0; |
| 1623 | |
| 1624 | err: |
| 1625 | vfree(tx_ring->buffer_info); |
| 1626 | dev_err(&adapter->pdev->dev, |
| 1627 | "Unable to allocate memory for the transmit descriptor ring\n"); |
| 1628 | return -ENOMEM; |
| 1629 | } |
| 1630 | |
| 1631 | /** |
| 1632 | * igb_setup_all_tx_resources - wrapper to allocate Tx resources |
| 1633 | * (Descriptors) for all queues |
| 1634 | * @adapter: board private structure |
| 1635 | * |
| 1636 | * Return 0 on success, negative on failure |
| 1637 | **/ |
| 1638 | static int igb_setup_all_tx_resources(struct igb_adapter *adapter) |
| 1639 | { |
| 1640 | int i, err = 0; |
| 1641 | int r_idx; |
| 1642 | |
| 1643 | for (i = 0; i < adapter->num_tx_queues; i++) { |
| 1644 | err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
| 1645 | if (err) { |
| 1646 | dev_err(&adapter->pdev->dev, |
| 1647 | "Allocation for Tx Queue %u failed\n", i); |
| 1648 | for (i--; i >= 0; i--) |
| 1649 | igb_free_tx_resources(&adapter->tx_ring[i]); |
| 1650 | break; |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | for (i = 0; i < IGB_MAX_TX_QUEUES; i++) { |
| 1655 | r_idx = i % adapter->num_tx_queues; |
| 1656 | adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx]; |
| 1657 | } |
| 1658 | return err; |
| 1659 | } |
| 1660 | |
| 1661 | /** |
| 1662 | * igb_configure_tx - Configure transmit Unit after Reset |
| 1663 | * @adapter: board private structure |
| 1664 | * |
| 1665 | * Configure the Tx unit of the MAC after a reset. |
| 1666 | **/ |
| 1667 | static void igb_configure_tx(struct igb_adapter *adapter) |
| 1668 | { |
| 1669 | u64 tdba; |
| 1670 | struct e1000_hw *hw = &adapter->hw; |
| 1671 | u32 tctl; |
| 1672 | u32 txdctl, txctrl; |
| 1673 | int i, j; |
| 1674 | |
| 1675 | for (i = 0; i < adapter->num_tx_queues; i++) { |
| 1676 | struct igb_ring *ring = &(adapter->tx_ring[i]); |
| 1677 | j = ring->reg_idx; |
| 1678 | wr32(E1000_TDLEN(j), |
| 1679 | ring->count * sizeof(struct e1000_tx_desc)); |
| 1680 | tdba = ring->dma; |
| 1681 | wr32(E1000_TDBAL(j), |
| 1682 | tdba & 0x00000000ffffffffULL); |
| 1683 | wr32(E1000_TDBAH(j), tdba >> 32); |
| 1684 | |
| 1685 | ring->head = E1000_TDH(j); |
| 1686 | ring->tail = E1000_TDT(j); |
| 1687 | writel(0, hw->hw_addr + ring->tail); |
| 1688 | writel(0, hw->hw_addr + ring->head); |
| 1689 | txdctl = rd32(E1000_TXDCTL(j)); |
| 1690 | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; |
| 1691 | wr32(E1000_TXDCTL(j), txdctl); |
| 1692 | |
| 1693 | /* Turn off Relaxed Ordering on head write-backs. The |
| 1694 | * writebacks MUST be delivered in order or it will |
| 1695 | * completely screw up our bookeeping. |
| 1696 | */ |
| 1697 | txctrl = rd32(E1000_DCA_TXCTRL(j)); |
| 1698 | txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; |
| 1699 | wr32(E1000_DCA_TXCTRL(j), txctrl); |
| 1700 | } |
| 1701 | |
| 1702 | |
| 1703 | |
| 1704 | /* Use the default values for the Tx Inter Packet Gap (IPG) timer */ |
| 1705 | |
| 1706 | /* Program the Transmit Control Register */ |
| 1707 | |
| 1708 | tctl = rd32(E1000_TCTL); |
| 1709 | tctl &= ~E1000_TCTL_CT; |
| 1710 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
| 1711 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| 1712 | |
| 1713 | igb_config_collision_dist(hw); |
| 1714 | |
| 1715 | /* Setup Transmit Descriptor Settings for eop descriptor */ |
| 1716 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS; |
| 1717 | |
| 1718 | /* Enable transmits */ |
| 1719 | tctl |= E1000_TCTL_EN; |
| 1720 | |
| 1721 | wr32(E1000_TCTL, tctl); |
| 1722 | } |
| 1723 | |
| 1724 | /** |
| 1725 | * igb_setup_rx_resources - allocate Rx resources (Descriptors) |
| 1726 | * @adapter: board private structure |
| 1727 | * @rx_ring: rx descriptor ring (for a specific queue) to setup |
| 1728 | * |
| 1729 | * Returns 0 on success, negative on failure |
| 1730 | **/ |
| 1731 | |
| 1732 | int igb_setup_rx_resources(struct igb_adapter *adapter, |
| 1733 | struct igb_ring *rx_ring) |
| 1734 | { |
| 1735 | struct pci_dev *pdev = adapter->pdev; |
| 1736 | int size, desc_len; |
| 1737 | |
| 1738 | size = sizeof(struct igb_buffer) * rx_ring->count; |
| 1739 | rx_ring->buffer_info = vmalloc(size); |
| 1740 | if (!rx_ring->buffer_info) |
| 1741 | goto err; |
| 1742 | memset(rx_ring->buffer_info, 0, size); |
| 1743 | |
| 1744 | desc_len = sizeof(union e1000_adv_rx_desc); |
| 1745 | |
| 1746 | /* Round up to nearest 4K */ |
| 1747 | rx_ring->size = rx_ring->count * desc_len; |
| 1748 | rx_ring->size = ALIGN(rx_ring->size, 4096); |
| 1749 | |
| 1750 | rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size, |
| 1751 | &rx_ring->dma); |
| 1752 | |
| 1753 | if (!rx_ring->desc) |
| 1754 | goto err; |
| 1755 | |
| 1756 | rx_ring->next_to_clean = 0; |
| 1757 | rx_ring->next_to_use = 0; |
| 1758 | |
| 1759 | rx_ring->adapter = adapter; |
| 1760 | |
| 1761 | return 0; |
| 1762 | |
| 1763 | err: |
| 1764 | vfree(rx_ring->buffer_info); |
| 1765 | dev_err(&adapter->pdev->dev, "Unable to allocate memory for " |
| 1766 | "the receive descriptor ring\n"); |
| 1767 | return -ENOMEM; |
| 1768 | } |
| 1769 | |
| 1770 | /** |
| 1771 | * igb_setup_all_rx_resources - wrapper to allocate Rx resources |
| 1772 | * (Descriptors) for all queues |
| 1773 | * @adapter: board private structure |
| 1774 | * |
| 1775 | * Return 0 on success, negative on failure |
| 1776 | **/ |
| 1777 | static int igb_setup_all_rx_resources(struct igb_adapter *adapter) |
| 1778 | { |
| 1779 | int i, err = 0; |
| 1780 | |
| 1781 | for (i = 0; i < adapter->num_rx_queues; i++) { |
| 1782 | err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
| 1783 | if (err) { |
| 1784 | dev_err(&adapter->pdev->dev, |
| 1785 | "Allocation for Rx Queue %u failed\n", i); |
| 1786 | for (i--; i >= 0; i--) |
| 1787 | igb_free_rx_resources(&adapter->rx_ring[i]); |
| 1788 | break; |
| 1789 | } |
| 1790 | } |
| 1791 | |
| 1792 | return err; |
| 1793 | } |
| 1794 | |
| 1795 | /** |
| 1796 | * igb_setup_rctl - configure the receive control registers |
| 1797 | * @adapter: Board private structure |
| 1798 | **/ |
| 1799 | static void igb_setup_rctl(struct igb_adapter *adapter) |
| 1800 | { |
| 1801 | struct e1000_hw *hw = &adapter->hw; |
| 1802 | u32 rctl; |
| 1803 | u32 srrctl = 0; |
| 1804 | int i, j; |
| 1805 | |
| 1806 | rctl = rd32(E1000_RCTL); |
| 1807 | |
| 1808 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| 1809 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
| 1810 | |
| 1811 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | |
| 1812 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| 1813 | |
| 1814 | /* |
| 1815 | * enable stripping of CRC. It's unlikely this will break BMC |
| 1816 | * redirection as it did with e1000. Newer features require |
| 1817 | * that the HW strips the CRC. |
| 1818 | */ |
| 1819 | rctl |= E1000_RCTL_SECRC; |
| 1820 | |
| 1821 | /* |
| 1822 | * disable store bad packets, long packet enable, and clear size bits. |
| 1823 | */ |
| 1824 | rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_LPE | E1000_RCTL_SZ_256); |
| 1825 | |
| 1826 | if (adapter->netdev->mtu > ETH_DATA_LEN) |
| 1827 | rctl |= E1000_RCTL_LPE; |
| 1828 | |
| 1829 | /* Setup buffer sizes */ |
| 1830 | switch (adapter->rx_buffer_len) { |
| 1831 | case IGB_RXBUFFER_256: |
| 1832 | rctl |= E1000_RCTL_SZ_256; |
| 1833 | break; |
| 1834 | case IGB_RXBUFFER_512: |
| 1835 | rctl |= E1000_RCTL_SZ_512; |
| 1836 | break; |
| 1837 | default: |
| 1838 | srrctl = ALIGN(adapter->rx_buffer_len, 1024) |
| 1839 | >> E1000_SRRCTL_BSIZEPKT_SHIFT; |
| 1840 | break; |
| 1841 | } |
| 1842 | |
| 1843 | /* 82575 and greater support packet-split where the protocol |
| 1844 | * header is placed in skb->data and the packet data is |
| 1845 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
| 1846 | * In the case of a non-split, skb->data is linearly filled, |
| 1847 | * followed by the page buffers. Therefore, skb->data is |
| 1848 | * sized to hold the largest protocol header. |
| 1849 | */ |
| 1850 | /* allocations using alloc_page take too long for regular MTU |
| 1851 | * so only enable packet split for jumbo frames */ |
| 1852 | if (rctl & E1000_RCTL_LPE) { |
| 1853 | adapter->rx_ps_hdr_size = IGB_RXBUFFER_128; |
| 1854 | srrctl |= adapter->rx_ps_hdr_size << |
| 1855 | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; |
| 1856 | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; |
| 1857 | } else { |
| 1858 | adapter->rx_ps_hdr_size = 0; |
| 1859 | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; |
| 1860 | } |
| 1861 | |
| 1862 | for (i = 0; i < adapter->num_rx_queues; i++) { |
| 1863 | j = adapter->rx_ring[i].reg_idx; |
| 1864 | wr32(E1000_SRRCTL(j), srrctl); |
| 1865 | } |
| 1866 | |
| 1867 | wr32(E1000_RCTL, rctl); |
| 1868 | } |
| 1869 | |
| 1870 | /** |
| 1871 | * igb_configure_rx - Configure receive Unit after Reset |
| 1872 | * @adapter: board private structure |
| 1873 | * |
| 1874 | * Configure the Rx unit of the MAC after a reset. |
| 1875 | **/ |
| 1876 | static void igb_configure_rx(struct igb_adapter *adapter) |
| 1877 | { |
| 1878 | u64 rdba; |
| 1879 | struct e1000_hw *hw = &adapter->hw; |
| 1880 | u32 rctl, rxcsum; |
| 1881 | u32 rxdctl; |
| 1882 | int i, j; |
| 1883 | |
| 1884 | /* disable receives while setting up the descriptors */ |
| 1885 | rctl = rd32(E1000_RCTL); |
| 1886 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); |
| 1887 | wrfl(); |
| 1888 | mdelay(10); |
| 1889 | |
| 1890 | if (adapter->itr_setting > 3) |
| 1891 | wr32(E1000_ITR, adapter->itr); |
| 1892 | |
| 1893 | /* Setup the HW Rx Head and Tail Descriptor Pointers and |
| 1894 | * the Base and Length of the Rx Descriptor Ring */ |
| 1895 | for (i = 0; i < adapter->num_rx_queues; i++) { |
| 1896 | struct igb_ring *ring = &(adapter->rx_ring[i]); |
| 1897 | j = ring->reg_idx; |
| 1898 | rdba = ring->dma; |
| 1899 | wr32(E1000_RDBAL(j), |
| 1900 | rdba & 0x00000000ffffffffULL); |
| 1901 | wr32(E1000_RDBAH(j), rdba >> 32); |
| 1902 | wr32(E1000_RDLEN(j), |
| 1903 | ring->count * sizeof(union e1000_adv_rx_desc)); |
| 1904 | |
| 1905 | ring->head = E1000_RDH(j); |
| 1906 | ring->tail = E1000_RDT(j); |
| 1907 | writel(0, hw->hw_addr + ring->tail); |
| 1908 | writel(0, hw->hw_addr + ring->head); |
| 1909 | |
| 1910 | rxdctl = rd32(E1000_RXDCTL(j)); |
| 1911 | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; |
| 1912 | rxdctl &= 0xFFF00000; |
| 1913 | rxdctl |= IGB_RX_PTHRESH; |
| 1914 | rxdctl |= IGB_RX_HTHRESH << 8; |
| 1915 | rxdctl |= IGB_RX_WTHRESH << 16; |
| 1916 | wr32(E1000_RXDCTL(j), rxdctl); |
| 1917 | } |
| 1918 | |
| 1919 | if (adapter->num_rx_queues > 1) { |
| 1920 | u32 random[10]; |
| 1921 | u32 mrqc; |
| 1922 | u32 j, shift; |
| 1923 | union e1000_reta { |
| 1924 | u32 dword; |
| 1925 | u8 bytes[4]; |
| 1926 | } reta; |
| 1927 | |
| 1928 | get_random_bytes(&random[0], 40); |
| 1929 | |
| 1930 | if (hw->mac.type >= e1000_82576) |
| 1931 | shift = 0; |
| 1932 | else |
| 1933 | shift = 6; |
| 1934 | for (j = 0; j < (32 * 4); j++) { |
| 1935 | reta.bytes[j & 3] = |
| 1936 | adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift; |
| 1937 | if ((j & 3) == 3) |
| 1938 | writel(reta.dword, |
| 1939 | hw->hw_addr + E1000_RETA(0) + (j & ~3)); |
| 1940 | } |
| 1941 | mrqc = E1000_MRQC_ENABLE_RSS_4Q; |
| 1942 | |
| 1943 | /* Fill out hash function seeds */ |
| 1944 | for (j = 0; j < 10; j++) |
| 1945 | array_wr32(E1000_RSSRK(0), j, random[j]); |
| 1946 | |
| 1947 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | |
| 1948 | E1000_MRQC_RSS_FIELD_IPV4_TCP); |
| 1949 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | |
| 1950 | E1000_MRQC_RSS_FIELD_IPV6_TCP); |
| 1951 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP | |
| 1952 | E1000_MRQC_RSS_FIELD_IPV6_UDP); |
| 1953 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | |
| 1954 | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); |
| 1955 | |
| 1956 | |
| 1957 | wr32(E1000_MRQC, mrqc); |
| 1958 | |
| 1959 | /* Multiqueue and raw packet checksumming are mutually |
| 1960 | * exclusive. Note that this not the same as TCP/IP |
| 1961 | * checksumming, which works fine. */ |
| 1962 | rxcsum = rd32(E1000_RXCSUM); |
| 1963 | rxcsum |= E1000_RXCSUM_PCSD; |
| 1964 | wr32(E1000_RXCSUM, rxcsum); |
| 1965 | } else { |
| 1966 | /* Enable Receive Checksum Offload for TCP and UDP */ |
| 1967 | rxcsum = rd32(E1000_RXCSUM); |
| 1968 | if (adapter->rx_csum) { |
| 1969 | rxcsum |= E1000_RXCSUM_TUOFL; |
| 1970 | |
| 1971 | /* Enable IPv4 payload checksum for UDP fragments |
| 1972 | * Must be used in conjunction with packet-split. */ |
| 1973 | if (adapter->rx_ps_hdr_size) |
| 1974 | rxcsum |= E1000_RXCSUM_IPPCSE; |
| 1975 | } else { |
| 1976 | rxcsum &= ~E1000_RXCSUM_TUOFL; |
| 1977 | /* don't need to clear IPPCSE as it defaults to 0 */ |
| 1978 | } |
| 1979 | wr32(E1000_RXCSUM, rxcsum); |
| 1980 | } |
| 1981 | |
| 1982 | if (adapter->vlgrp) |
| 1983 | wr32(E1000_RLPML, |
| 1984 | adapter->max_frame_size + VLAN_TAG_SIZE); |
| 1985 | else |
| 1986 | wr32(E1000_RLPML, adapter->max_frame_size); |
| 1987 | |
| 1988 | /* Enable Receives */ |
| 1989 | wr32(E1000_RCTL, rctl); |
| 1990 | } |
| 1991 | |
| 1992 | /** |
| 1993 | * igb_free_tx_resources - Free Tx Resources per Queue |
| 1994 | * @tx_ring: Tx descriptor ring for a specific queue |
| 1995 | * |
| 1996 | * Free all transmit software resources |
| 1997 | **/ |
| 1998 | void igb_free_tx_resources(struct igb_ring *tx_ring) |
| 1999 | { |
| 2000 | struct pci_dev *pdev = tx_ring->adapter->pdev; |
| 2001 | |
| 2002 | igb_clean_tx_ring(tx_ring); |
| 2003 | |
| 2004 | vfree(tx_ring->buffer_info); |
| 2005 | tx_ring->buffer_info = NULL; |
| 2006 | |
| 2007 | pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); |
| 2008 | |
| 2009 | tx_ring->desc = NULL; |
| 2010 | } |
| 2011 | |
| 2012 | /** |
| 2013 | * igb_free_all_tx_resources - Free Tx Resources for All Queues |
| 2014 | * @adapter: board private structure |
| 2015 | * |
| 2016 | * Free all transmit software resources |
| 2017 | **/ |
| 2018 | static void igb_free_all_tx_resources(struct igb_adapter *adapter) |
| 2019 | { |
| 2020 | int i; |
| 2021 | |
| 2022 | for (i = 0; i < adapter->num_tx_queues; i++) |
| 2023 | igb_free_tx_resources(&adapter->tx_ring[i]); |
| 2024 | } |
| 2025 | |
| 2026 | static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter, |
| 2027 | struct igb_buffer *buffer_info) |
| 2028 | { |
| 2029 | if (buffer_info->dma) { |
| 2030 | pci_unmap_page(adapter->pdev, |
| 2031 | buffer_info->dma, |
| 2032 | buffer_info->length, |
| 2033 | PCI_DMA_TODEVICE); |
| 2034 | buffer_info->dma = 0; |
| 2035 | } |
| 2036 | if (buffer_info->skb) { |
| 2037 | dev_kfree_skb_any(buffer_info->skb); |
| 2038 | buffer_info->skb = NULL; |
| 2039 | } |
| 2040 | buffer_info->time_stamp = 0; |
| 2041 | /* buffer_info must be completely set up in the transmit path */ |
| 2042 | } |
| 2043 | |
| 2044 | /** |
| 2045 | * igb_clean_tx_ring - Free Tx Buffers |
| 2046 | * @tx_ring: ring to be cleaned |
| 2047 | **/ |
| 2048 | static void igb_clean_tx_ring(struct igb_ring *tx_ring) |
| 2049 | { |
| 2050 | struct igb_adapter *adapter = tx_ring->adapter; |
| 2051 | struct igb_buffer *buffer_info; |
| 2052 | unsigned long size; |
| 2053 | unsigned int i; |
| 2054 | |
| 2055 | if (!tx_ring->buffer_info) |
| 2056 | return; |
| 2057 | /* Free all the Tx ring sk_buffs */ |
| 2058 | |
| 2059 | for (i = 0; i < tx_ring->count; i++) { |
| 2060 | buffer_info = &tx_ring->buffer_info[i]; |
| 2061 | igb_unmap_and_free_tx_resource(adapter, buffer_info); |
| 2062 | } |
| 2063 | |
| 2064 | size = sizeof(struct igb_buffer) * tx_ring->count; |
| 2065 | memset(tx_ring->buffer_info, 0, size); |
| 2066 | |
| 2067 | /* Zero out the descriptor ring */ |
| 2068 | |
| 2069 | memset(tx_ring->desc, 0, tx_ring->size); |
| 2070 | |
| 2071 | tx_ring->next_to_use = 0; |
| 2072 | tx_ring->next_to_clean = 0; |
| 2073 | |
| 2074 | writel(0, adapter->hw.hw_addr + tx_ring->head); |
| 2075 | writel(0, adapter->hw.hw_addr + tx_ring->tail); |
| 2076 | } |
| 2077 | |
| 2078 | /** |
| 2079 | * igb_clean_all_tx_rings - Free Tx Buffers for all queues |
| 2080 | * @adapter: board private structure |
| 2081 | **/ |
| 2082 | static void igb_clean_all_tx_rings(struct igb_adapter *adapter) |
| 2083 | { |
| 2084 | int i; |
| 2085 | |
| 2086 | for (i = 0; i < adapter->num_tx_queues; i++) |
| 2087 | igb_clean_tx_ring(&adapter->tx_ring[i]); |
| 2088 | } |
| 2089 | |
| 2090 | /** |
| 2091 | * igb_free_rx_resources - Free Rx Resources |
| 2092 | * @rx_ring: ring to clean the resources from |
| 2093 | * |
| 2094 | * Free all receive software resources |
| 2095 | **/ |
| 2096 | void igb_free_rx_resources(struct igb_ring *rx_ring) |
| 2097 | { |
| 2098 | struct pci_dev *pdev = rx_ring->adapter->pdev; |
| 2099 | |
| 2100 | igb_clean_rx_ring(rx_ring); |
| 2101 | |
| 2102 | vfree(rx_ring->buffer_info); |
| 2103 | rx_ring->buffer_info = NULL; |
| 2104 | |
| 2105 | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); |
| 2106 | |
| 2107 | rx_ring->desc = NULL; |
| 2108 | } |
| 2109 | |
| 2110 | /** |
| 2111 | * igb_free_all_rx_resources - Free Rx Resources for All Queues |
| 2112 | * @adapter: board private structure |
| 2113 | * |
| 2114 | * Free all receive software resources |
| 2115 | **/ |
| 2116 | static void igb_free_all_rx_resources(struct igb_adapter *adapter) |
| 2117 | { |
| 2118 | int i; |
| 2119 | |
| 2120 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 2121 | igb_free_rx_resources(&adapter->rx_ring[i]); |
| 2122 | } |
| 2123 | |
| 2124 | /** |
| 2125 | * igb_clean_rx_ring - Free Rx Buffers per Queue |
| 2126 | * @rx_ring: ring to free buffers from |
| 2127 | **/ |
| 2128 | static void igb_clean_rx_ring(struct igb_ring *rx_ring) |
| 2129 | { |
| 2130 | struct igb_adapter *adapter = rx_ring->adapter; |
| 2131 | struct igb_buffer *buffer_info; |
| 2132 | struct pci_dev *pdev = adapter->pdev; |
| 2133 | unsigned long size; |
| 2134 | unsigned int i; |
| 2135 | |
| 2136 | if (!rx_ring->buffer_info) |
| 2137 | return; |
| 2138 | /* Free all the Rx ring sk_buffs */ |
| 2139 | for (i = 0; i < rx_ring->count; i++) { |
| 2140 | buffer_info = &rx_ring->buffer_info[i]; |
| 2141 | if (buffer_info->dma) { |
| 2142 | if (adapter->rx_ps_hdr_size) |
| 2143 | pci_unmap_single(pdev, buffer_info->dma, |
| 2144 | adapter->rx_ps_hdr_size, |
| 2145 | PCI_DMA_FROMDEVICE); |
| 2146 | else |
| 2147 | pci_unmap_single(pdev, buffer_info->dma, |
| 2148 | adapter->rx_buffer_len, |
| 2149 | PCI_DMA_FROMDEVICE); |
| 2150 | buffer_info->dma = 0; |
| 2151 | } |
| 2152 | |
| 2153 | if (buffer_info->skb) { |
| 2154 | dev_kfree_skb(buffer_info->skb); |
| 2155 | buffer_info->skb = NULL; |
| 2156 | } |
| 2157 | if (buffer_info->page) { |
| 2158 | if (buffer_info->page_dma) |
| 2159 | pci_unmap_page(pdev, buffer_info->page_dma, |
| 2160 | PAGE_SIZE / 2, |
| 2161 | PCI_DMA_FROMDEVICE); |
| 2162 | put_page(buffer_info->page); |
| 2163 | buffer_info->page = NULL; |
| 2164 | buffer_info->page_dma = 0; |
| 2165 | buffer_info->page_offset = 0; |
| 2166 | } |
| 2167 | } |
| 2168 | |
| 2169 | size = sizeof(struct igb_buffer) * rx_ring->count; |
| 2170 | memset(rx_ring->buffer_info, 0, size); |
| 2171 | |
| 2172 | /* Zero out the descriptor ring */ |
| 2173 | memset(rx_ring->desc, 0, rx_ring->size); |
| 2174 | |
| 2175 | rx_ring->next_to_clean = 0; |
| 2176 | rx_ring->next_to_use = 0; |
| 2177 | |
| 2178 | writel(0, adapter->hw.hw_addr + rx_ring->head); |
| 2179 | writel(0, adapter->hw.hw_addr + rx_ring->tail); |
| 2180 | } |
| 2181 | |
| 2182 | /** |
| 2183 | * igb_clean_all_rx_rings - Free Rx Buffers for all queues |
| 2184 | * @adapter: board private structure |
| 2185 | **/ |
| 2186 | static void igb_clean_all_rx_rings(struct igb_adapter *adapter) |
| 2187 | { |
| 2188 | int i; |
| 2189 | |
| 2190 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 2191 | igb_clean_rx_ring(&adapter->rx_ring[i]); |
| 2192 | } |
| 2193 | |
| 2194 | /** |
| 2195 | * igb_set_mac - Change the Ethernet Address of the NIC |
| 2196 | * @netdev: network interface device structure |
| 2197 | * @p: pointer to an address structure |
| 2198 | * |
| 2199 | * Returns 0 on success, negative on failure |
| 2200 | **/ |
| 2201 | static int igb_set_mac(struct net_device *netdev, void *p) |
| 2202 | { |
| 2203 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 2204 | struct sockaddr *addr = p; |
| 2205 | |
| 2206 | if (!is_valid_ether_addr(addr->sa_data)) |
| 2207 | return -EADDRNOTAVAIL; |
| 2208 | |
| 2209 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| 2210 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); |
| 2211 | |
| 2212 | adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); |
| 2213 | |
| 2214 | return 0; |
| 2215 | } |
| 2216 | |
| 2217 | /** |
| 2218 | * igb_set_multi - Multicast and Promiscuous mode set |
| 2219 | * @netdev: network interface device structure |
| 2220 | * |
| 2221 | * The set_multi entry point is called whenever the multicast address |
| 2222 | * list or the network interface flags are updated. This routine is |
| 2223 | * responsible for configuring the hardware for proper multicast, |
| 2224 | * promiscuous mode, and all-multi behavior. |
| 2225 | **/ |
| 2226 | static void igb_set_multi(struct net_device *netdev) |
| 2227 | { |
| 2228 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 2229 | struct e1000_hw *hw = &adapter->hw; |
| 2230 | struct e1000_mac_info *mac = &hw->mac; |
| 2231 | struct dev_mc_list *mc_ptr; |
| 2232 | u8 *mta_list; |
| 2233 | u32 rctl; |
| 2234 | int i; |
| 2235 | |
| 2236 | /* Check for Promiscuous and All Multicast modes */ |
| 2237 | |
| 2238 | rctl = rd32(E1000_RCTL); |
| 2239 | |
| 2240 | if (netdev->flags & IFF_PROMISC) { |
| 2241 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
| 2242 | rctl &= ~E1000_RCTL_VFE; |
| 2243 | } else { |
| 2244 | if (netdev->flags & IFF_ALLMULTI) { |
| 2245 | rctl |= E1000_RCTL_MPE; |
| 2246 | rctl &= ~E1000_RCTL_UPE; |
| 2247 | } else |
| 2248 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); |
| 2249 | rctl |= E1000_RCTL_VFE; |
| 2250 | } |
| 2251 | wr32(E1000_RCTL, rctl); |
| 2252 | |
| 2253 | if (!netdev->mc_count) { |
| 2254 | /* nothing to program, so clear mc list */ |
| 2255 | igb_update_mc_addr_list_82575(hw, NULL, 0, 1, |
| 2256 | mac->rar_entry_count); |
| 2257 | return; |
| 2258 | } |
| 2259 | |
| 2260 | mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC); |
| 2261 | if (!mta_list) |
| 2262 | return; |
| 2263 | |
| 2264 | /* The shared function expects a packed array of only addresses. */ |
| 2265 | mc_ptr = netdev->mc_list; |
| 2266 | |
| 2267 | for (i = 0; i < netdev->mc_count; i++) { |
| 2268 | if (!mc_ptr) |
| 2269 | break; |
| 2270 | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN); |
| 2271 | mc_ptr = mc_ptr->next; |
| 2272 | } |
| 2273 | igb_update_mc_addr_list_82575(hw, mta_list, i, 1, |
| 2274 | mac->rar_entry_count); |
| 2275 | kfree(mta_list); |
| 2276 | } |
| 2277 | |
| 2278 | /* Need to wait a few seconds after link up to get diagnostic information from |
| 2279 | * the phy */ |
| 2280 | static void igb_update_phy_info(unsigned long data) |
| 2281 | { |
| 2282 | struct igb_adapter *adapter = (struct igb_adapter *) data; |
| 2283 | igb_get_phy_info(&adapter->hw); |
| 2284 | } |
| 2285 | |
| 2286 | /** |
| 2287 | * igb_watchdog - Timer Call-back |
| 2288 | * @data: pointer to adapter cast into an unsigned long |
| 2289 | **/ |
| 2290 | static void igb_watchdog(unsigned long data) |
| 2291 | { |
| 2292 | struct igb_adapter *adapter = (struct igb_adapter *)data; |
| 2293 | /* Do the rest outside of interrupt context */ |
| 2294 | schedule_work(&adapter->watchdog_task); |
| 2295 | } |
| 2296 | |
| 2297 | static void igb_watchdog_task(struct work_struct *work) |
| 2298 | { |
| 2299 | struct igb_adapter *adapter = container_of(work, |
| 2300 | struct igb_adapter, watchdog_task); |
| 2301 | struct e1000_hw *hw = &adapter->hw; |
| 2302 | |
| 2303 | struct net_device *netdev = adapter->netdev; |
| 2304 | struct igb_ring *tx_ring = adapter->tx_ring; |
| 2305 | struct e1000_mac_info *mac = &adapter->hw.mac; |
| 2306 | u32 link; |
| 2307 | u32 eics = 0; |
| 2308 | s32 ret_val; |
| 2309 | int i; |
| 2310 | |
| 2311 | if ((netif_carrier_ok(netdev)) && |
| 2312 | (rd32(E1000_STATUS) & E1000_STATUS_LU)) |
| 2313 | goto link_up; |
| 2314 | |
| 2315 | ret_val = hw->mac.ops.check_for_link(&adapter->hw); |
| 2316 | if ((ret_val == E1000_ERR_PHY) && |
| 2317 | (hw->phy.type == e1000_phy_igp_3) && |
| 2318 | (rd32(E1000_CTRL) & |
| 2319 | E1000_PHY_CTRL_GBE_DISABLE)) |
| 2320 | dev_info(&adapter->pdev->dev, |
| 2321 | "Gigabit has been disabled, downgrading speed\n"); |
| 2322 | |
| 2323 | if ((hw->phy.media_type == e1000_media_type_internal_serdes) && |
| 2324 | !(rd32(E1000_TXCW) & E1000_TXCW_ANE)) |
| 2325 | link = mac->serdes_has_link; |
| 2326 | else |
| 2327 | link = rd32(E1000_STATUS) & |
| 2328 | E1000_STATUS_LU; |
| 2329 | |
| 2330 | if (link) { |
| 2331 | if (!netif_carrier_ok(netdev)) { |
| 2332 | u32 ctrl; |
| 2333 | hw->mac.ops.get_speed_and_duplex(&adapter->hw, |
| 2334 | &adapter->link_speed, |
| 2335 | &adapter->link_duplex); |
| 2336 | |
| 2337 | ctrl = rd32(E1000_CTRL); |
| 2338 | /* Links status message must follow this format */ |
| 2339 | printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, " |
| 2340 | "Flow Control: %s\n", |
| 2341 | netdev->name, |
| 2342 | adapter->link_speed, |
| 2343 | adapter->link_duplex == FULL_DUPLEX ? |
| 2344 | "Full Duplex" : "Half Duplex", |
| 2345 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
| 2346 | E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
| 2347 | E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
| 2348 | E1000_CTRL_TFCE) ? "TX" : "None"))); |
| 2349 | |
| 2350 | /* tweak tx_queue_len according to speed/duplex and |
| 2351 | * adjust the timeout factor */ |
| 2352 | netdev->tx_queue_len = adapter->tx_queue_len; |
| 2353 | adapter->tx_timeout_factor = 1; |
| 2354 | switch (adapter->link_speed) { |
| 2355 | case SPEED_10: |
| 2356 | netdev->tx_queue_len = 10; |
| 2357 | adapter->tx_timeout_factor = 14; |
| 2358 | break; |
| 2359 | case SPEED_100: |
| 2360 | netdev->tx_queue_len = 100; |
| 2361 | /* maybe add some timeout factor ? */ |
| 2362 | break; |
| 2363 | } |
| 2364 | |
| 2365 | netif_carrier_on(netdev); |
| 2366 | netif_tx_wake_all_queues(netdev); |
| 2367 | |
| 2368 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 2369 | mod_timer(&adapter->phy_info_timer, |
| 2370 | round_jiffies(jiffies + 2 * HZ)); |
| 2371 | } |
| 2372 | } else { |
| 2373 | if (netif_carrier_ok(netdev)) { |
| 2374 | adapter->link_speed = 0; |
| 2375 | adapter->link_duplex = 0; |
| 2376 | /* Links status message must follow this format */ |
| 2377 | printk(KERN_INFO "igb: %s NIC Link is Down\n", |
| 2378 | netdev->name); |
| 2379 | netif_carrier_off(netdev); |
| 2380 | netif_tx_stop_all_queues(netdev); |
| 2381 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 2382 | mod_timer(&adapter->phy_info_timer, |
| 2383 | round_jiffies(jiffies + 2 * HZ)); |
| 2384 | } |
| 2385 | } |
| 2386 | |
| 2387 | link_up: |
| 2388 | igb_update_stats(adapter); |
| 2389 | |
| 2390 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
| 2391 | adapter->tpt_old = adapter->stats.tpt; |
| 2392 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; |
| 2393 | adapter->colc_old = adapter->stats.colc; |
| 2394 | |
| 2395 | adapter->gorc = adapter->stats.gorc - adapter->gorc_old; |
| 2396 | adapter->gorc_old = adapter->stats.gorc; |
| 2397 | adapter->gotc = adapter->stats.gotc - adapter->gotc_old; |
| 2398 | adapter->gotc_old = adapter->stats.gotc; |
| 2399 | |
| 2400 | igb_update_adaptive(&adapter->hw); |
| 2401 | |
| 2402 | if (!netif_carrier_ok(netdev)) { |
| 2403 | if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) { |
| 2404 | /* We've lost link, so the controller stops DMA, |
| 2405 | * but we've got queued Tx work that's never going |
| 2406 | * to get done, so reset controller to flush Tx. |
| 2407 | * (Do the reset outside of interrupt context). */ |
| 2408 | adapter->tx_timeout_count++; |
| 2409 | schedule_work(&adapter->reset_task); |
| 2410 | } |
| 2411 | } |
| 2412 | |
| 2413 | /* Cause software interrupt to ensure rx ring is cleaned */ |
| 2414 | if (adapter->msix_entries) { |
| 2415 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 2416 | eics |= adapter->rx_ring[i].eims_value; |
| 2417 | wr32(E1000_EICS, eics); |
| 2418 | } else { |
| 2419 | wr32(E1000_ICS, E1000_ICS_RXDMT0); |
| 2420 | } |
| 2421 | |
| 2422 | /* Force detection of hung controller every watchdog period */ |
| 2423 | tx_ring->detect_tx_hung = true; |
| 2424 | |
| 2425 | /* Reset the timer */ |
| 2426 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 2427 | mod_timer(&adapter->watchdog_timer, |
| 2428 | round_jiffies(jiffies + 2 * HZ)); |
| 2429 | } |
| 2430 | |
| 2431 | enum latency_range { |
| 2432 | lowest_latency = 0, |
| 2433 | low_latency = 1, |
| 2434 | bulk_latency = 2, |
| 2435 | latency_invalid = 255 |
| 2436 | }; |
| 2437 | |
| 2438 | |
| 2439 | /** |
| 2440 | * igb_update_ring_itr - update the dynamic ITR value based on packet size |
| 2441 | * |
| 2442 | * Stores a new ITR value based on strictly on packet size. This |
| 2443 | * algorithm is less sophisticated than that used in igb_update_itr, |
| 2444 | * due to the difficulty of synchronizing statistics across multiple |
| 2445 | * receive rings. The divisors and thresholds used by this fuction |
| 2446 | * were determined based on theoretical maximum wire speed and testing |
| 2447 | * data, in order to minimize response time while increasing bulk |
| 2448 | * throughput. |
| 2449 | * This functionality is controlled by the InterruptThrottleRate module |
| 2450 | * parameter (see igb_param.c) |
| 2451 | * NOTE: This function is called only when operating in a multiqueue |
| 2452 | * receive environment. |
| 2453 | * @rx_ring: pointer to ring |
| 2454 | **/ |
| 2455 | static void igb_update_ring_itr(struct igb_ring *rx_ring) |
| 2456 | { |
| 2457 | int new_val = rx_ring->itr_val; |
| 2458 | int avg_wire_size = 0; |
| 2459 | struct igb_adapter *adapter = rx_ring->adapter; |
| 2460 | |
| 2461 | if (!rx_ring->total_packets) |
| 2462 | goto clear_counts; /* no packets, so don't do anything */ |
| 2463 | |
| 2464 | /* For non-gigabit speeds, just fix the interrupt rate at 4000 |
| 2465 | * ints/sec - ITR timer value of 120 ticks. |
| 2466 | */ |
| 2467 | if (adapter->link_speed != SPEED_1000) { |
| 2468 | new_val = 120; |
| 2469 | goto set_itr_val; |
| 2470 | } |
| 2471 | avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets; |
| 2472 | |
| 2473 | /* Add 24 bytes to size to account for CRC, preamble, and gap */ |
| 2474 | avg_wire_size += 24; |
| 2475 | |
| 2476 | /* Don't starve jumbo frames */ |
| 2477 | avg_wire_size = min(avg_wire_size, 3000); |
| 2478 | |
| 2479 | /* Give a little boost to mid-size frames */ |
| 2480 | if ((avg_wire_size > 300) && (avg_wire_size < 1200)) |
| 2481 | new_val = avg_wire_size / 3; |
| 2482 | else |
| 2483 | new_val = avg_wire_size / 2; |
| 2484 | |
| 2485 | set_itr_val: |
| 2486 | if (new_val != rx_ring->itr_val) { |
| 2487 | rx_ring->itr_val = new_val; |
| 2488 | rx_ring->set_itr = 1; |
| 2489 | } |
| 2490 | clear_counts: |
| 2491 | rx_ring->total_bytes = 0; |
| 2492 | rx_ring->total_packets = 0; |
| 2493 | } |
| 2494 | |
| 2495 | /** |
| 2496 | * igb_update_itr - update the dynamic ITR value based on statistics |
| 2497 | * Stores a new ITR value based on packets and byte |
| 2498 | * counts during the last interrupt. The advantage of per interrupt |
| 2499 | * computation is faster updates and more accurate ITR for the current |
| 2500 | * traffic pattern. Constants in this function were computed |
| 2501 | * based on theoretical maximum wire speed and thresholds were set based |
| 2502 | * on testing data as well as attempting to minimize response time |
| 2503 | * while increasing bulk throughput. |
| 2504 | * this functionality is controlled by the InterruptThrottleRate module |
| 2505 | * parameter (see igb_param.c) |
| 2506 | * NOTE: These calculations are only valid when operating in a single- |
| 2507 | * queue environment. |
| 2508 | * @adapter: pointer to adapter |
| 2509 | * @itr_setting: current adapter->itr |
| 2510 | * @packets: the number of packets during this measurement interval |
| 2511 | * @bytes: the number of bytes during this measurement interval |
| 2512 | **/ |
| 2513 | static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting, |
| 2514 | int packets, int bytes) |
| 2515 | { |
| 2516 | unsigned int retval = itr_setting; |
| 2517 | |
| 2518 | if (packets == 0) |
| 2519 | goto update_itr_done; |
| 2520 | |
| 2521 | switch (itr_setting) { |
| 2522 | case lowest_latency: |
| 2523 | /* handle TSO and jumbo frames */ |
| 2524 | if (bytes/packets > 8000) |
| 2525 | retval = bulk_latency; |
| 2526 | else if ((packets < 5) && (bytes > 512)) |
| 2527 | retval = low_latency; |
| 2528 | break; |
| 2529 | case low_latency: /* 50 usec aka 20000 ints/s */ |
| 2530 | if (bytes > 10000) { |
| 2531 | /* this if handles the TSO accounting */ |
| 2532 | if (bytes/packets > 8000) { |
| 2533 | retval = bulk_latency; |
| 2534 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { |
| 2535 | retval = bulk_latency; |
| 2536 | } else if ((packets > 35)) { |
| 2537 | retval = lowest_latency; |
| 2538 | } |
| 2539 | } else if (bytes/packets > 2000) { |
| 2540 | retval = bulk_latency; |
| 2541 | } else if (packets <= 2 && bytes < 512) { |
| 2542 | retval = lowest_latency; |
| 2543 | } |
| 2544 | break; |
| 2545 | case bulk_latency: /* 250 usec aka 4000 ints/s */ |
| 2546 | if (bytes > 25000) { |
| 2547 | if (packets > 35) |
| 2548 | retval = low_latency; |
| 2549 | } else if (bytes < 6000) { |
| 2550 | retval = low_latency; |
| 2551 | } |
| 2552 | break; |
| 2553 | } |
| 2554 | |
| 2555 | update_itr_done: |
| 2556 | return retval; |
| 2557 | } |
| 2558 | |
| 2559 | static void igb_set_itr(struct igb_adapter *adapter) |
| 2560 | { |
| 2561 | u16 current_itr; |
| 2562 | u32 new_itr = adapter->itr; |
| 2563 | |
| 2564 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
| 2565 | if (adapter->link_speed != SPEED_1000) { |
| 2566 | current_itr = 0; |
| 2567 | new_itr = 4000; |
| 2568 | goto set_itr_now; |
| 2569 | } |
| 2570 | |
| 2571 | adapter->rx_itr = igb_update_itr(adapter, |
| 2572 | adapter->rx_itr, |
| 2573 | adapter->rx_ring->total_packets, |
| 2574 | adapter->rx_ring->total_bytes); |
| 2575 | |
| 2576 | if (adapter->rx_ring->buddy) { |
| 2577 | adapter->tx_itr = igb_update_itr(adapter, |
| 2578 | adapter->tx_itr, |
| 2579 | adapter->tx_ring->total_packets, |
| 2580 | adapter->tx_ring->total_bytes); |
| 2581 | |
| 2582 | current_itr = max(adapter->rx_itr, adapter->tx_itr); |
| 2583 | } else { |
| 2584 | current_itr = adapter->rx_itr; |
| 2585 | } |
| 2586 | |
| 2587 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| 2588 | if (adapter->itr_setting == 3 && |
| 2589 | current_itr == lowest_latency) |
| 2590 | current_itr = low_latency; |
| 2591 | |
| 2592 | switch (current_itr) { |
| 2593 | /* counts and packets in update_itr are dependent on these numbers */ |
| 2594 | case lowest_latency: |
| 2595 | new_itr = 70000; |
| 2596 | break; |
| 2597 | case low_latency: |
| 2598 | new_itr = 20000; /* aka hwitr = ~200 */ |
| 2599 | break; |
| 2600 | case bulk_latency: |
| 2601 | new_itr = 4000; |
| 2602 | break; |
| 2603 | default: |
| 2604 | break; |
| 2605 | } |
| 2606 | |
| 2607 | set_itr_now: |
| 2608 | adapter->rx_ring->total_bytes = 0; |
| 2609 | adapter->rx_ring->total_packets = 0; |
| 2610 | if (adapter->rx_ring->buddy) { |
| 2611 | adapter->rx_ring->buddy->total_bytes = 0; |
| 2612 | adapter->rx_ring->buddy->total_packets = 0; |
| 2613 | } |
| 2614 | |
| 2615 | if (new_itr != adapter->itr) { |
| 2616 | /* this attempts to bias the interrupt rate towards Bulk |
| 2617 | * by adding intermediate steps when interrupt rate is |
| 2618 | * increasing */ |
| 2619 | new_itr = new_itr > adapter->itr ? |
| 2620 | min(adapter->itr + (new_itr >> 2), new_itr) : |
| 2621 | new_itr; |
| 2622 | /* Don't write the value here; it resets the adapter's |
| 2623 | * internal timer, and causes us to delay far longer than |
| 2624 | * we should between interrupts. Instead, we write the ITR |
| 2625 | * value at the beginning of the next interrupt so the timing |
| 2626 | * ends up being correct. |
| 2627 | */ |
| 2628 | adapter->itr = new_itr; |
| 2629 | adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256); |
| 2630 | adapter->rx_ring->set_itr = 1; |
| 2631 | } |
| 2632 | |
| 2633 | return; |
| 2634 | } |
| 2635 | |
| 2636 | |
| 2637 | #define IGB_TX_FLAGS_CSUM 0x00000001 |
| 2638 | #define IGB_TX_FLAGS_VLAN 0x00000002 |
| 2639 | #define IGB_TX_FLAGS_TSO 0x00000004 |
| 2640 | #define IGB_TX_FLAGS_IPV4 0x00000008 |
| 2641 | #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000 |
| 2642 | #define IGB_TX_FLAGS_VLAN_SHIFT 16 |
| 2643 | |
| 2644 | static inline int igb_tso_adv(struct igb_adapter *adapter, |
| 2645 | struct igb_ring *tx_ring, |
| 2646 | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) |
| 2647 | { |
| 2648 | struct e1000_adv_tx_context_desc *context_desc; |
| 2649 | unsigned int i; |
| 2650 | int err; |
| 2651 | struct igb_buffer *buffer_info; |
| 2652 | u32 info = 0, tu_cmd = 0; |
| 2653 | u32 mss_l4len_idx, l4len; |
| 2654 | *hdr_len = 0; |
| 2655 | |
| 2656 | if (skb_header_cloned(skb)) { |
| 2657 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
| 2658 | if (err) |
| 2659 | return err; |
| 2660 | } |
| 2661 | |
| 2662 | l4len = tcp_hdrlen(skb); |
| 2663 | *hdr_len += l4len; |
| 2664 | |
| 2665 | if (skb->protocol == htons(ETH_P_IP)) { |
| 2666 | struct iphdr *iph = ip_hdr(skb); |
| 2667 | iph->tot_len = 0; |
| 2668 | iph->check = 0; |
| 2669 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
| 2670 | iph->daddr, 0, |
| 2671 | IPPROTO_TCP, |
| 2672 | 0); |
| 2673 | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { |
| 2674 | ipv6_hdr(skb)->payload_len = 0; |
| 2675 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| 2676 | &ipv6_hdr(skb)->daddr, |
| 2677 | 0, IPPROTO_TCP, 0); |
| 2678 | } |
| 2679 | |
| 2680 | i = tx_ring->next_to_use; |
| 2681 | |
| 2682 | buffer_info = &tx_ring->buffer_info[i]; |
| 2683 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); |
| 2684 | /* VLAN MACLEN IPLEN */ |
| 2685 | if (tx_flags & IGB_TX_FLAGS_VLAN) |
| 2686 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); |
| 2687 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); |
| 2688 | *hdr_len += skb_network_offset(skb); |
| 2689 | info |= skb_network_header_len(skb); |
| 2690 | *hdr_len += skb_network_header_len(skb); |
| 2691 | context_desc->vlan_macip_lens = cpu_to_le32(info); |
| 2692 | |
| 2693 | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ |
| 2694 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); |
| 2695 | |
| 2696 | if (skb->protocol == htons(ETH_P_IP)) |
| 2697 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; |
| 2698 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; |
| 2699 | |
| 2700 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); |
| 2701 | |
| 2702 | /* MSS L4LEN IDX */ |
| 2703 | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); |
| 2704 | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); |
| 2705 | |
| 2706 | /* Context index must be unique per ring. */ |
| 2707 | if (adapter->flags & IGB_FLAG_NEED_CTX_IDX) |
| 2708 | mss_l4len_idx |= tx_ring->queue_index << 4; |
| 2709 | |
| 2710 | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); |
| 2711 | context_desc->seqnum_seed = 0; |
| 2712 | |
| 2713 | buffer_info->time_stamp = jiffies; |
| 2714 | buffer_info->next_to_watch = i; |
| 2715 | buffer_info->dma = 0; |
| 2716 | i++; |
| 2717 | if (i == tx_ring->count) |
| 2718 | i = 0; |
| 2719 | |
| 2720 | tx_ring->next_to_use = i; |
| 2721 | |
| 2722 | return true; |
| 2723 | } |
| 2724 | |
| 2725 | static inline bool igb_tx_csum_adv(struct igb_adapter *adapter, |
| 2726 | struct igb_ring *tx_ring, |
| 2727 | struct sk_buff *skb, u32 tx_flags) |
| 2728 | { |
| 2729 | struct e1000_adv_tx_context_desc *context_desc; |
| 2730 | unsigned int i; |
| 2731 | struct igb_buffer *buffer_info; |
| 2732 | u32 info = 0, tu_cmd = 0; |
| 2733 | |
| 2734 | if ((skb->ip_summed == CHECKSUM_PARTIAL) || |
| 2735 | (tx_flags & IGB_TX_FLAGS_VLAN)) { |
| 2736 | i = tx_ring->next_to_use; |
| 2737 | buffer_info = &tx_ring->buffer_info[i]; |
| 2738 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); |
| 2739 | |
| 2740 | if (tx_flags & IGB_TX_FLAGS_VLAN) |
| 2741 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); |
| 2742 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); |
| 2743 | if (skb->ip_summed == CHECKSUM_PARTIAL) |
| 2744 | info |= skb_network_header_len(skb); |
| 2745 | |
| 2746 | context_desc->vlan_macip_lens = cpu_to_le32(info); |
| 2747 | |
| 2748 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); |
| 2749 | |
| 2750 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| 2751 | switch (skb->protocol) { |
| 2752 | case __constant_htons(ETH_P_IP): |
| 2753 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; |
| 2754 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
| 2755 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; |
| 2756 | break; |
| 2757 | case __constant_htons(ETH_P_IPV6): |
| 2758 | /* XXX what about other V6 headers?? */ |
| 2759 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
| 2760 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; |
| 2761 | break; |
| 2762 | default: |
| 2763 | if (unlikely(net_ratelimit())) |
| 2764 | dev_warn(&adapter->pdev->dev, |
| 2765 | "partial checksum but proto=%x!\n", |
| 2766 | skb->protocol); |
| 2767 | break; |
| 2768 | } |
| 2769 | } |
| 2770 | |
| 2771 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); |
| 2772 | context_desc->seqnum_seed = 0; |
| 2773 | if (adapter->flags & IGB_FLAG_NEED_CTX_IDX) |
| 2774 | context_desc->mss_l4len_idx = |
| 2775 | cpu_to_le32(tx_ring->queue_index << 4); |
| 2776 | |
| 2777 | buffer_info->time_stamp = jiffies; |
| 2778 | buffer_info->next_to_watch = i; |
| 2779 | buffer_info->dma = 0; |
| 2780 | |
| 2781 | i++; |
| 2782 | if (i == tx_ring->count) |
| 2783 | i = 0; |
| 2784 | tx_ring->next_to_use = i; |
| 2785 | |
| 2786 | return true; |
| 2787 | } |
| 2788 | |
| 2789 | |
| 2790 | return false; |
| 2791 | } |
| 2792 | |
| 2793 | #define IGB_MAX_TXD_PWR 16 |
| 2794 | #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR) |
| 2795 | |
| 2796 | static inline int igb_tx_map_adv(struct igb_adapter *adapter, |
| 2797 | struct igb_ring *tx_ring, struct sk_buff *skb, |
| 2798 | unsigned int first) |
| 2799 | { |
| 2800 | struct igb_buffer *buffer_info; |
| 2801 | unsigned int len = skb_headlen(skb); |
| 2802 | unsigned int count = 0, i; |
| 2803 | unsigned int f; |
| 2804 | |
| 2805 | i = tx_ring->next_to_use; |
| 2806 | |
| 2807 | buffer_info = &tx_ring->buffer_info[i]; |
| 2808 | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); |
| 2809 | buffer_info->length = len; |
| 2810 | /* set time_stamp *before* dma to help avoid a possible race */ |
| 2811 | buffer_info->time_stamp = jiffies; |
| 2812 | buffer_info->next_to_watch = i; |
| 2813 | buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len, |
| 2814 | PCI_DMA_TODEVICE); |
| 2815 | count++; |
| 2816 | i++; |
| 2817 | if (i == tx_ring->count) |
| 2818 | i = 0; |
| 2819 | |
| 2820 | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { |
| 2821 | struct skb_frag_struct *frag; |
| 2822 | |
| 2823 | frag = &skb_shinfo(skb)->frags[f]; |
| 2824 | len = frag->size; |
| 2825 | |
| 2826 | buffer_info = &tx_ring->buffer_info[i]; |
| 2827 | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); |
| 2828 | buffer_info->length = len; |
| 2829 | buffer_info->time_stamp = jiffies; |
| 2830 | buffer_info->next_to_watch = i; |
| 2831 | buffer_info->dma = pci_map_page(adapter->pdev, |
| 2832 | frag->page, |
| 2833 | frag->page_offset, |
| 2834 | len, |
| 2835 | PCI_DMA_TODEVICE); |
| 2836 | |
| 2837 | count++; |
| 2838 | i++; |
| 2839 | if (i == tx_ring->count) |
| 2840 | i = 0; |
| 2841 | } |
| 2842 | |
| 2843 | i = ((i == 0) ? tx_ring->count - 1 : i - 1); |
| 2844 | tx_ring->buffer_info[i].skb = skb; |
| 2845 | tx_ring->buffer_info[first].next_to_watch = i; |
| 2846 | |
| 2847 | return count; |
| 2848 | } |
| 2849 | |
| 2850 | static inline void igb_tx_queue_adv(struct igb_adapter *adapter, |
| 2851 | struct igb_ring *tx_ring, |
| 2852 | int tx_flags, int count, u32 paylen, |
| 2853 | u8 hdr_len) |
| 2854 | { |
| 2855 | union e1000_adv_tx_desc *tx_desc = NULL; |
| 2856 | struct igb_buffer *buffer_info; |
| 2857 | u32 olinfo_status = 0, cmd_type_len; |
| 2858 | unsigned int i; |
| 2859 | |
| 2860 | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | |
| 2861 | E1000_ADVTXD_DCMD_DEXT); |
| 2862 | |
| 2863 | if (tx_flags & IGB_TX_FLAGS_VLAN) |
| 2864 | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; |
| 2865 | |
| 2866 | if (tx_flags & IGB_TX_FLAGS_TSO) { |
| 2867 | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; |
| 2868 | |
| 2869 | /* insert tcp checksum */ |
| 2870 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; |
| 2871 | |
| 2872 | /* insert ip checksum */ |
| 2873 | if (tx_flags & IGB_TX_FLAGS_IPV4) |
| 2874 | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; |
| 2875 | |
| 2876 | } else if (tx_flags & IGB_TX_FLAGS_CSUM) { |
| 2877 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; |
| 2878 | } |
| 2879 | |
| 2880 | if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) && |
| 2881 | (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO | |
| 2882 | IGB_TX_FLAGS_VLAN))) |
| 2883 | olinfo_status |= tx_ring->queue_index << 4; |
| 2884 | |
| 2885 | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); |
| 2886 | |
| 2887 | i = tx_ring->next_to_use; |
| 2888 | while (count--) { |
| 2889 | buffer_info = &tx_ring->buffer_info[i]; |
| 2890 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); |
| 2891 | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); |
| 2892 | tx_desc->read.cmd_type_len = |
| 2893 | cpu_to_le32(cmd_type_len | buffer_info->length); |
| 2894 | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); |
| 2895 | i++; |
| 2896 | if (i == tx_ring->count) |
| 2897 | i = 0; |
| 2898 | } |
| 2899 | |
| 2900 | tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); |
| 2901 | /* Force memory writes to complete before letting h/w |
| 2902 | * know there are new descriptors to fetch. (Only |
| 2903 | * applicable for weak-ordered memory model archs, |
| 2904 | * such as IA-64). */ |
| 2905 | wmb(); |
| 2906 | |
| 2907 | tx_ring->next_to_use = i; |
| 2908 | writel(i, adapter->hw.hw_addr + tx_ring->tail); |
| 2909 | /* we need this if more than one processor can write to our tail |
| 2910 | * at a time, it syncronizes IO on IA64/Altix systems */ |
| 2911 | mmiowb(); |
| 2912 | } |
| 2913 | |
| 2914 | static int __igb_maybe_stop_tx(struct net_device *netdev, |
| 2915 | struct igb_ring *tx_ring, int size) |
| 2916 | { |
| 2917 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 2918 | |
| 2919 | netif_stop_subqueue(netdev, tx_ring->queue_index); |
| 2920 | |
| 2921 | /* Herbert's original patch had: |
| 2922 | * smp_mb__after_netif_stop_queue(); |
| 2923 | * but since that doesn't exist yet, just open code it. */ |
| 2924 | smp_mb(); |
| 2925 | |
| 2926 | /* We need to check again in a case another CPU has just |
| 2927 | * made room available. */ |
| 2928 | if (IGB_DESC_UNUSED(tx_ring) < size) |
| 2929 | return -EBUSY; |
| 2930 | |
| 2931 | /* A reprieve! */ |
| 2932 | netif_wake_subqueue(netdev, tx_ring->queue_index); |
| 2933 | ++adapter->restart_queue; |
| 2934 | return 0; |
| 2935 | } |
| 2936 | |
| 2937 | static int igb_maybe_stop_tx(struct net_device *netdev, |
| 2938 | struct igb_ring *tx_ring, int size) |
| 2939 | { |
| 2940 | if (IGB_DESC_UNUSED(tx_ring) >= size) |
| 2941 | return 0; |
| 2942 | return __igb_maybe_stop_tx(netdev, tx_ring, size); |
| 2943 | } |
| 2944 | |
| 2945 | #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1) |
| 2946 | |
| 2947 | static int igb_xmit_frame_ring_adv(struct sk_buff *skb, |
| 2948 | struct net_device *netdev, |
| 2949 | struct igb_ring *tx_ring) |
| 2950 | { |
| 2951 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 2952 | unsigned int first; |
| 2953 | unsigned int tx_flags = 0; |
| 2954 | unsigned int len; |
| 2955 | u8 hdr_len = 0; |
| 2956 | int tso = 0; |
| 2957 | |
| 2958 | len = skb_headlen(skb); |
| 2959 | |
| 2960 | if (test_bit(__IGB_DOWN, &adapter->state)) { |
| 2961 | dev_kfree_skb_any(skb); |
| 2962 | return NETDEV_TX_OK; |
| 2963 | } |
| 2964 | |
| 2965 | if (skb->len <= 0) { |
| 2966 | dev_kfree_skb_any(skb); |
| 2967 | return NETDEV_TX_OK; |
| 2968 | } |
| 2969 | |
| 2970 | /* need: 1 descriptor per page, |
| 2971 | * + 2 desc gap to keep tail from touching head, |
| 2972 | * + 1 desc for skb->data, |
| 2973 | * + 1 desc for context descriptor, |
| 2974 | * otherwise try next time */ |
| 2975 | if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) { |
| 2976 | /* this is a hard error */ |
| 2977 | return NETDEV_TX_BUSY; |
| 2978 | } |
| 2979 | skb_orphan(skb); |
| 2980 | |
| 2981 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { |
| 2982 | tx_flags |= IGB_TX_FLAGS_VLAN; |
| 2983 | tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); |
| 2984 | } |
| 2985 | |
| 2986 | if (skb->protocol == htons(ETH_P_IP)) |
| 2987 | tx_flags |= IGB_TX_FLAGS_IPV4; |
| 2988 | |
| 2989 | first = tx_ring->next_to_use; |
| 2990 | |
| 2991 | tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags, |
| 2992 | &hdr_len) : 0; |
| 2993 | |
| 2994 | if (tso < 0) { |
| 2995 | dev_kfree_skb_any(skb); |
| 2996 | return NETDEV_TX_OK; |
| 2997 | } |
| 2998 | |
| 2999 | if (tso) |
| 3000 | tx_flags |= IGB_TX_FLAGS_TSO; |
| 3001 | else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags)) |
| 3002 | if (skb->ip_summed == CHECKSUM_PARTIAL) |
| 3003 | tx_flags |= IGB_TX_FLAGS_CSUM; |
| 3004 | |
| 3005 | igb_tx_queue_adv(adapter, tx_ring, tx_flags, |
| 3006 | igb_tx_map_adv(adapter, tx_ring, skb, first), |
| 3007 | skb->len, hdr_len); |
| 3008 | |
| 3009 | netdev->trans_start = jiffies; |
| 3010 | |
| 3011 | /* Make sure there is space in the ring for the next send. */ |
| 3012 | igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4); |
| 3013 | |
| 3014 | return NETDEV_TX_OK; |
| 3015 | } |
| 3016 | |
| 3017 | static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev) |
| 3018 | { |
| 3019 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 3020 | struct igb_ring *tx_ring; |
| 3021 | |
| 3022 | int r_idx = 0; |
| 3023 | r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1); |
| 3024 | tx_ring = adapter->multi_tx_table[r_idx]; |
| 3025 | |
| 3026 | /* This goes back to the question of how to logically map a tx queue |
| 3027 | * to a flow. Right now, performance is impacted slightly negatively |
| 3028 | * if using multiple tx queues. If the stack breaks away from a |
| 3029 | * single qdisc implementation, we can look at this again. */ |
| 3030 | return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring)); |
| 3031 | } |
| 3032 | |
| 3033 | /** |
| 3034 | * igb_tx_timeout - Respond to a Tx Hang |
| 3035 | * @netdev: network interface device structure |
| 3036 | **/ |
| 3037 | static void igb_tx_timeout(struct net_device *netdev) |
| 3038 | { |
| 3039 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 3040 | struct e1000_hw *hw = &adapter->hw; |
| 3041 | |
| 3042 | /* Do the reset outside of interrupt context */ |
| 3043 | adapter->tx_timeout_count++; |
| 3044 | schedule_work(&adapter->reset_task); |
| 3045 | wr32(E1000_EICS, adapter->eims_enable_mask & |
| 3046 | ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER)); |
| 3047 | } |
| 3048 | |
| 3049 | static void igb_reset_task(struct work_struct *work) |
| 3050 | { |
| 3051 | struct igb_adapter *adapter; |
| 3052 | adapter = container_of(work, struct igb_adapter, reset_task); |
| 3053 | |
| 3054 | igb_reinit_locked(adapter); |
| 3055 | } |
| 3056 | |
| 3057 | /** |
| 3058 | * igb_get_stats - Get System Network Statistics |
| 3059 | * @netdev: network interface device structure |
| 3060 | * |
| 3061 | * Returns the address of the device statistics structure. |
| 3062 | * The statistics are actually updated from the timer callback. |
| 3063 | **/ |
| 3064 | static struct net_device_stats * |
| 3065 | igb_get_stats(struct net_device *netdev) |
| 3066 | { |
| 3067 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 3068 | |
| 3069 | /* only return the current stats */ |
| 3070 | return &adapter->net_stats; |
| 3071 | } |
| 3072 | |
| 3073 | /** |
| 3074 | * igb_change_mtu - Change the Maximum Transfer Unit |
| 3075 | * @netdev: network interface device structure |
| 3076 | * @new_mtu: new value for maximum frame size |
| 3077 | * |
| 3078 | * Returns 0 on success, negative on failure |
| 3079 | **/ |
| 3080 | static int igb_change_mtu(struct net_device *netdev, int new_mtu) |
| 3081 | { |
| 3082 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 3083 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; |
| 3084 | |
| 3085 | if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || |
| 3086 | (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
| 3087 | dev_err(&adapter->pdev->dev, "Invalid MTU setting\n"); |
| 3088 | return -EINVAL; |
| 3089 | } |
| 3090 | |
| 3091 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 |
| 3092 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { |
| 3093 | dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); |
| 3094 | return -EINVAL; |
| 3095 | } |
| 3096 | |
| 3097 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) |
| 3098 | msleep(1); |
| 3099 | /* igb_down has a dependency on max_frame_size */ |
| 3100 | adapter->max_frame_size = max_frame; |
| 3101 | if (netif_running(netdev)) |
| 3102 | igb_down(adapter); |
| 3103 | |
| 3104 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
| 3105 | * means we reserve 2 more, this pushes us to allocate from the next |
| 3106 | * larger slab size. |
| 3107 | * i.e. RXBUFFER_2048 --> size-4096 slab |
| 3108 | */ |
| 3109 | |
| 3110 | if (max_frame <= IGB_RXBUFFER_256) |
| 3111 | adapter->rx_buffer_len = IGB_RXBUFFER_256; |
| 3112 | else if (max_frame <= IGB_RXBUFFER_512) |
| 3113 | adapter->rx_buffer_len = IGB_RXBUFFER_512; |
| 3114 | else if (max_frame <= IGB_RXBUFFER_1024) |
| 3115 | adapter->rx_buffer_len = IGB_RXBUFFER_1024; |
| 3116 | else if (max_frame <= IGB_RXBUFFER_2048) |
| 3117 | adapter->rx_buffer_len = IGB_RXBUFFER_2048; |
| 3118 | else |
| 3119 | #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384 |
| 3120 | adapter->rx_buffer_len = IGB_RXBUFFER_16384; |
| 3121 | #else |
| 3122 | adapter->rx_buffer_len = PAGE_SIZE / 2; |
| 3123 | #endif |
| 3124 | /* adjust allocation if LPE protects us, and we aren't using SBP */ |
| 3125 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || |
| 3126 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)) |
| 3127 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
| 3128 | |
| 3129 | dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", |
| 3130 | netdev->mtu, new_mtu); |
| 3131 | netdev->mtu = new_mtu; |
| 3132 | |
| 3133 | if (netif_running(netdev)) |
| 3134 | igb_up(adapter); |
| 3135 | else |
| 3136 | igb_reset(adapter); |
| 3137 | |
| 3138 | clear_bit(__IGB_RESETTING, &adapter->state); |
| 3139 | |
| 3140 | return 0; |
| 3141 | } |
| 3142 | |
| 3143 | /** |
| 3144 | * igb_update_stats - Update the board statistics counters |
| 3145 | * @adapter: board private structure |
| 3146 | **/ |
| 3147 | |
| 3148 | void igb_update_stats(struct igb_adapter *adapter) |
| 3149 | { |
| 3150 | struct e1000_hw *hw = &adapter->hw; |
| 3151 | struct pci_dev *pdev = adapter->pdev; |
| 3152 | u16 phy_tmp; |
| 3153 | |
| 3154 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
| 3155 | |
| 3156 | /* |
| 3157 | * Prevent stats update while adapter is being reset, or if the pci |
| 3158 | * connection is down. |
| 3159 | */ |
| 3160 | if (adapter->link_speed == 0) |
| 3161 | return; |
| 3162 | if (pci_channel_offline(pdev)) |
| 3163 | return; |
| 3164 | |
| 3165 | adapter->stats.crcerrs += rd32(E1000_CRCERRS); |
| 3166 | adapter->stats.gprc += rd32(E1000_GPRC); |
| 3167 | adapter->stats.gorc += rd32(E1000_GORCL); |
| 3168 | rd32(E1000_GORCH); /* clear GORCL */ |
| 3169 | adapter->stats.bprc += rd32(E1000_BPRC); |
| 3170 | adapter->stats.mprc += rd32(E1000_MPRC); |
| 3171 | adapter->stats.roc += rd32(E1000_ROC); |
| 3172 | |
| 3173 | adapter->stats.prc64 += rd32(E1000_PRC64); |
| 3174 | adapter->stats.prc127 += rd32(E1000_PRC127); |
| 3175 | adapter->stats.prc255 += rd32(E1000_PRC255); |
| 3176 | adapter->stats.prc511 += rd32(E1000_PRC511); |
| 3177 | adapter->stats.prc1023 += rd32(E1000_PRC1023); |
| 3178 | adapter->stats.prc1522 += rd32(E1000_PRC1522); |
| 3179 | adapter->stats.symerrs += rd32(E1000_SYMERRS); |
| 3180 | adapter->stats.sec += rd32(E1000_SEC); |
| 3181 | |
| 3182 | adapter->stats.mpc += rd32(E1000_MPC); |
| 3183 | adapter->stats.scc += rd32(E1000_SCC); |
| 3184 | adapter->stats.ecol += rd32(E1000_ECOL); |
| 3185 | adapter->stats.mcc += rd32(E1000_MCC); |
| 3186 | adapter->stats.latecol += rd32(E1000_LATECOL); |
| 3187 | adapter->stats.dc += rd32(E1000_DC); |
| 3188 | adapter->stats.rlec += rd32(E1000_RLEC); |
| 3189 | adapter->stats.xonrxc += rd32(E1000_XONRXC); |
| 3190 | adapter->stats.xontxc += rd32(E1000_XONTXC); |
| 3191 | adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); |
| 3192 | adapter->stats.xofftxc += rd32(E1000_XOFFTXC); |
| 3193 | adapter->stats.fcruc += rd32(E1000_FCRUC); |
| 3194 | adapter->stats.gptc += rd32(E1000_GPTC); |
| 3195 | adapter->stats.gotc += rd32(E1000_GOTCL); |
| 3196 | rd32(E1000_GOTCH); /* clear GOTCL */ |
| 3197 | adapter->stats.rnbc += rd32(E1000_RNBC); |
| 3198 | adapter->stats.ruc += rd32(E1000_RUC); |
| 3199 | adapter->stats.rfc += rd32(E1000_RFC); |
| 3200 | adapter->stats.rjc += rd32(E1000_RJC); |
| 3201 | adapter->stats.tor += rd32(E1000_TORH); |
| 3202 | adapter->stats.tot += rd32(E1000_TOTH); |
| 3203 | adapter->stats.tpr += rd32(E1000_TPR); |
| 3204 | |
| 3205 | adapter->stats.ptc64 += rd32(E1000_PTC64); |
| 3206 | adapter->stats.ptc127 += rd32(E1000_PTC127); |
| 3207 | adapter->stats.ptc255 += rd32(E1000_PTC255); |
| 3208 | adapter->stats.ptc511 += rd32(E1000_PTC511); |
| 3209 | adapter->stats.ptc1023 += rd32(E1000_PTC1023); |
| 3210 | adapter->stats.ptc1522 += rd32(E1000_PTC1522); |
| 3211 | |
| 3212 | adapter->stats.mptc += rd32(E1000_MPTC); |
| 3213 | adapter->stats.bptc += rd32(E1000_BPTC); |
| 3214 | |
| 3215 | /* used for adaptive IFS */ |
| 3216 | |
| 3217 | hw->mac.tx_packet_delta = rd32(E1000_TPT); |
| 3218 | adapter->stats.tpt += hw->mac.tx_packet_delta; |
| 3219 | hw->mac.collision_delta = rd32(E1000_COLC); |
| 3220 | adapter->stats.colc += hw->mac.collision_delta; |
| 3221 | |
| 3222 | adapter->stats.algnerrc += rd32(E1000_ALGNERRC); |
| 3223 | adapter->stats.rxerrc += rd32(E1000_RXERRC); |
| 3224 | adapter->stats.tncrs += rd32(E1000_TNCRS); |
| 3225 | adapter->stats.tsctc += rd32(E1000_TSCTC); |
| 3226 | adapter->stats.tsctfc += rd32(E1000_TSCTFC); |
| 3227 | |
| 3228 | adapter->stats.iac += rd32(E1000_IAC); |
| 3229 | adapter->stats.icrxoc += rd32(E1000_ICRXOC); |
| 3230 | adapter->stats.icrxptc += rd32(E1000_ICRXPTC); |
| 3231 | adapter->stats.icrxatc += rd32(E1000_ICRXATC); |
| 3232 | adapter->stats.ictxptc += rd32(E1000_ICTXPTC); |
| 3233 | adapter->stats.ictxatc += rd32(E1000_ICTXATC); |
| 3234 | adapter->stats.ictxqec += rd32(E1000_ICTXQEC); |
| 3235 | adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); |
| 3236 | adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); |
| 3237 | |
| 3238 | /* Fill out the OS statistics structure */ |
| 3239 | adapter->net_stats.multicast = adapter->stats.mprc; |
| 3240 | adapter->net_stats.collisions = adapter->stats.colc; |
| 3241 | |
| 3242 | /* Rx Errors */ |
| 3243 | |
| 3244 | /* RLEC on some newer hardware can be incorrect so build |
| 3245 | * our own version based on RUC and ROC */ |
| 3246 | adapter->net_stats.rx_errors = adapter->stats.rxerrc + |
| 3247 | adapter->stats.crcerrs + adapter->stats.algnerrc + |
| 3248 | adapter->stats.ruc + adapter->stats.roc + |
| 3249 | adapter->stats.cexterr; |
| 3250 | adapter->net_stats.rx_length_errors = adapter->stats.ruc + |
| 3251 | adapter->stats.roc; |
| 3252 | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; |
| 3253 | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; |
| 3254 | adapter->net_stats.rx_missed_errors = adapter->stats.mpc; |
| 3255 | |
| 3256 | /* Tx Errors */ |
| 3257 | adapter->net_stats.tx_errors = adapter->stats.ecol + |
| 3258 | adapter->stats.latecol; |
| 3259 | adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; |
| 3260 | adapter->net_stats.tx_window_errors = adapter->stats.latecol; |
| 3261 | adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; |
| 3262 | |
| 3263 | /* Tx Dropped needs to be maintained elsewhere */ |
| 3264 | |
| 3265 | /* Phy Stats */ |
| 3266 | if (hw->phy.media_type == e1000_media_type_copper) { |
| 3267 | if ((adapter->link_speed == SPEED_1000) && |
| 3268 | (!igb_read_phy_reg(hw, PHY_1000T_STATUS, |
| 3269 | &phy_tmp))) { |
| 3270 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
| 3271 | adapter->phy_stats.idle_errors += phy_tmp; |
| 3272 | } |
| 3273 | } |
| 3274 | |
| 3275 | /* Management Stats */ |
| 3276 | adapter->stats.mgptc += rd32(E1000_MGTPTC); |
| 3277 | adapter->stats.mgprc += rd32(E1000_MGTPRC); |
| 3278 | adapter->stats.mgpdc += rd32(E1000_MGTPDC); |
| 3279 | } |
| 3280 | |
| 3281 | |
| 3282 | static irqreturn_t igb_msix_other(int irq, void *data) |
| 3283 | { |
| 3284 | struct net_device *netdev = data; |
| 3285 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 3286 | struct e1000_hw *hw = &adapter->hw; |
| 3287 | u32 icr = rd32(E1000_ICR); |
| 3288 | |
| 3289 | /* reading ICR causes bit 31 of EICR to be cleared */ |
| 3290 | if (!(icr & E1000_ICR_LSC)) |
| 3291 | goto no_link_interrupt; |
| 3292 | hw->mac.get_link_status = 1; |
| 3293 | /* guard against interrupt when we're going down */ |
| 3294 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 3295 | mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| 3296 | |
| 3297 | no_link_interrupt: |
| 3298 | wr32(E1000_IMS, E1000_IMS_LSC); |
| 3299 | wr32(E1000_EIMS, adapter->eims_other); |
| 3300 | |
| 3301 | return IRQ_HANDLED; |
| 3302 | } |
| 3303 | |
| 3304 | static irqreturn_t igb_msix_tx(int irq, void *data) |
| 3305 | { |
| 3306 | struct igb_ring *tx_ring = data; |
| 3307 | struct igb_adapter *adapter = tx_ring->adapter; |
| 3308 | struct e1000_hw *hw = &adapter->hw; |
| 3309 | |
| 3310 | #ifdef CONFIG_IGB_DCA |
| 3311 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) |
| 3312 | igb_update_tx_dca(tx_ring); |
| 3313 | #endif |
| 3314 | tx_ring->total_bytes = 0; |
| 3315 | tx_ring->total_packets = 0; |
| 3316 | |
| 3317 | /* auto mask will automatically reenable the interrupt when we write |
| 3318 | * EICS */ |
| 3319 | if (!igb_clean_tx_irq(tx_ring)) |
| 3320 | /* Ring was not completely cleaned, so fire another interrupt */ |
| 3321 | wr32(E1000_EICS, tx_ring->eims_value); |
| 3322 | else |
| 3323 | wr32(E1000_EIMS, tx_ring->eims_value); |
| 3324 | |
| 3325 | return IRQ_HANDLED; |
| 3326 | } |
| 3327 | |
| 3328 | static void igb_write_itr(struct igb_ring *ring) |
| 3329 | { |
| 3330 | struct e1000_hw *hw = &ring->adapter->hw; |
| 3331 | if ((ring->adapter->itr_setting & 3) && ring->set_itr) { |
| 3332 | switch (hw->mac.type) { |
| 3333 | case e1000_82576: |
| 3334 | wr32(ring->itr_register, |
| 3335 | ring->itr_val | |
| 3336 | 0x80000000); |
| 3337 | break; |
| 3338 | default: |
| 3339 | wr32(ring->itr_register, |
| 3340 | ring->itr_val | |
| 3341 | (ring->itr_val << 16)); |
| 3342 | break; |
| 3343 | } |
| 3344 | ring->set_itr = 0; |
| 3345 | } |
| 3346 | } |
| 3347 | |
| 3348 | static irqreturn_t igb_msix_rx(int irq, void *data) |
| 3349 | { |
| 3350 | struct igb_ring *rx_ring = data; |
| 3351 | |
| 3352 | /* Write the ITR value calculated at the end of the |
| 3353 | * previous interrupt. |
| 3354 | */ |
| 3355 | |
| 3356 | igb_write_itr(rx_ring); |
| 3357 | |
| 3358 | if (napi_schedule_prep(&rx_ring->napi)) |
| 3359 | __napi_schedule(&rx_ring->napi); |
| 3360 | |
| 3361 | #ifdef CONFIG_IGB_DCA |
| 3362 | if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED) |
| 3363 | igb_update_rx_dca(rx_ring); |
| 3364 | #endif |
| 3365 | return IRQ_HANDLED; |
| 3366 | } |
| 3367 | |
| 3368 | #ifdef CONFIG_IGB_DCA |
| 3369 | static void igb_update_rx_dca(struct igb_ring *rx_ring) |
| 3370 | { |
| 3371 | u32 dca_rxctrl; |
| 3372 | struct igb_adapter *adapter = rx_ring->adapter; |
| 3373 | struct e1000_hw *hw = &adapter->hw; |
| 3374 | int cpu = get_cpu(); |
| 3375 | int q = rx_ring->reg_idx; |
| 3376 | |
| 3377 | if (rx_ring->cpu != cpu) { |
| 3378 | dca_rxctrl = rd32(E1000_DCA_RXCTRL(q)); |
| 3379 | if (hw->mac.type == e1000_82576) { |
| 3380 | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576; |
| 3381 | dca_rxctrl |= dca_get_tag(cpu) << |
| 3382 | E1000_DCA_RXCTRL_CPUID_SHIFT; |
| 3383 | } else { |
| 3384 | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK; |
| 3385 | dca_rxctrl |= dca_get_tag(cpu); |
| 3386 | } |
| 3387 | dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN; |
| 3388 | dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN; |
| 3389 | dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN; |
| 3390 | wr32(E1000_DCA_RXCTRL(q), dca_rxctrl); |
| 3391 | rx_ring->cpu = cpu; |
| 3392 | } |
| 3393 | put_cpu(); |
| 3394 | } |
| 3395 | |
| 3396 | static void igb_update_tx_dca(struct igb_ring *tx_ring) |
| 3397 | { |
| 3398 | u32 dca_txctrl; |
| 3399 | struct igb_adapter *adapter = tx_ring->adapter; |
| 3400 | struct e1000_hw *hw = &adapter->hw; |
| 3401 | int cpu = get_cpu(); |
| 3402 | int q = tx_ring->reg_idx; |
| 3403 | |
| 3404 | if (tx_ring->cpu != cpu) { |
| 3405 | dca_txctrl = rd32(E1000_DCA_TXCTRL(q)); |
| 3406 | if (hw->mac.type == e1000_82576) { |
| 3407 | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576; |
| 3408 | dca_txctrl |= dca_get_tag(cpu) << |
| 3409 | E1000_DCA_TXCTRL_CPUID_SHIFT; |
| 3410 | } else { |
| 3411 | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK; |
| 3412 | dca_txctrl |= dca_get_tag(cpu); |
| 3413 | } |
| 3414 | dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN; |
| 3415 | wr32(E1000_DCA_TXCTRL(q), dca_txctrl); |
| 3416 | tx_ring->cpu = cpu; |
| 3417 | } |
| 3418 | put_cpu(); |
| 3419 | } |
| 3420 | |
| 3421 | static void igb_setup_dca(struct igb_adapter *adapter) |
| 3422 | { |
| 3423 | int i; |
| 3424 | |
| 3425 | if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) |
| 3426 | return; |
| 3427 | |
| 3428 | for (i = 0; i < adapter->num_tx_queues; i++) { |
| 3429 | adapter->tx_ring[i].cpu = -1; |
| 3430 | igb_update_tx_dca(&adapter->tx_ring[i]); |
| 3431 | } |
| 3432 | for (i = 0; i < adapter->num_rx_queues; i++) { |
| 3433 | adapter->rx_ring[i].cpu = -1; |
| 3434 | igb_update_rx_dca(&adapter->rx_ring[i]); |
| 3435 | } |
| 3436 | } |
| 3437 | |
| 3438 | static int __igb_notify_dca(struct device *dev, void *data) |
| 3439 | { |
| 3440 | struct net_device *netdev = dev_get_drvdata(dev); |
| 3441 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 3442 | struct e1000_hw *hw = &adapter->hw; |
| 3443 | unsigned long event = *(unsigned long *)data; |
| 3444 | |
| 3445 | if (!(adapter->flags & IGB_FLAG_HAS_DCA)) |
| 3446 | goto out; |
| 3447 | |
| 3448 | switch (event) { |
| 3449 | case DCA_PROVIDER_ADD: |
| 3450 | /* if already enabled, don't do it again */ |
| 3451 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) |
| 3452 | break; |
| 3453 | adapter->flags |= IGB_FLAG_DCA_ENABLED; |
| 3454 | /* Always use CB2 mode, difference is masked |
| 3455 | * in the CB driver. */ |
| 3456 | wr32(E1000_DCA_CTRL, 2); |
| 3457 | if (dca_add_requester(dev) == 0) { |
| 3458 | dev_info(&adapter->pdev->dev, "DCA enabled\n"); |
| 3459 | igb_setup_dca(adapter); |
| 3460 | break; |
| 3461 | } |
| 3462 | /* Fall Through since DCA is disabled. */ |
| 3463 | case DCA_PROVIDER_REMOVE: |
| 3464 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { |
| 3465 | /* without this a class_device is left |
| 3466 | * hanging around in the sysfs model */ |
| 3467 | dca_remove_requester(dev); |
| 3468 | dev_info(&adapter->pdev->dev, "DCA disabled\n"); |
| 3469 | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; |
| 3470 | wr32(E1000_DCA_CTRL, 1); |
| 3471 | } |
| 3472 | break; |
| 3473 | } |
| 3474 | out: |
| 3475 | return 0; |
| 3476 | } |
| 3477 | |
| 3478 | static int igb_notify_dca(struct notifier_block *nb, unsigned long event, |
| 3479 | void *p) |
| 3480 | { |
| 3481 | int ret_val; |
| 3482 | |
| 3483 | ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, |
| 3484 | __igb_notify_dca); |
| 3485 | |
| 3486 | return ret_val ? NOTIFY_BAD : NOTIFY_DONE; |
| 3487 | } |
| 3488 | #endif /* CONFIG_IGB_DCA */ |
| 3489 | |
| 3490 | /** |
| 3491 | * igb_intr_msi - Interrupt Handler |
| 3492 | * @irq: interrupt number |
| 3493 | * @data: pointer to a network interface device structure |
| 3494 | **/ |
| 3495 | static irqreturn_t igb_intr_msi(int irq, void *data) |
| 3496 | { |
| 3497 | struct net_device *netdev = data; |
| 3498 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 3499 | struct e1000_hw *hw = &adapter->hw; |
| 3500 | /* read ICR disables interrupts using IAM */ |
| 3501 | u32 icr = rd32(E1000_ICR); |
| 3502 | |
| 3503 | igb_write_itr(adapter->rx_ring); |
| 3504 | |
| 3505 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
| 3506 | hw->mac.get_link_status = 1; |
| 3507 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 3508 | mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| 3509 | } |
| 3510 | |
| 3511 | napi_schedule(&adapter->rx_ring[0].napi); |
| 3512 | |
| 3513 | return IRQ_HANDLED; |
| 3514 | } |
| 3515 | |
| 3516 | /** |
| 3517 | * igb_intr - Interrupt Handler |
| 3518 | * @irq: interrupt number |
| 3519 | * @data: pointer to a network interface device structure |
| 3520 | **/ |
| 3521 | static irqreturn_t igb_intr(int irq, void *data) |
| 3522 | { |
| 3523 | struct net_device *netdev = data; |
| 3524 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 3525 | struct e1000_hw *hw = &adapter->hw; |
| 3526 | /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No |
| 3527 | * need for the IMC write */ |
| 3528 | u32 icr = rd32(E1000_ICR); |
| 3529 | u32 eicr = 0; |
| 3530 | if (!icr) |
| 3531 | return IRQ_NONE; /* Not our interrupt */ |
| 3532 | |
| 3533 | igb_write_itr(adapter->rx_ring); |
| 3534 | |
| 3535 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
| 3536 | * not set, then the adapter didn't send an interrupt */ |
| 3537 | if (!(icr & E1000_ICR_INT_ASSERTED)) |
| 3538 | return IRQ_NONE; |
| 3539 | |
| 3540 | eicr = rd32(E1000_EICR); |
| 3541 | |
| 3542 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
| 3543 | hw->mac.get_link_status = 1; |
| 3544 | /* guard against interrupt when we're going down */ |
| 3545 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 3546 | mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| 3547 | } |
| 3548 | |
| 3549 | napi_schedule(&adapter->rx_ring[0].napi); |
| 3550 | |
| 3551 | return IRQ_HANDLED; |
| 3552 | } |
| 3553 | |
| 3554 | /** |
| 3555 | * igb_poll - NAPI Rx polling callback |
| 3556 | * @napi: napi polling structure |
| 3557 | * @budget: count of how many packets we should handle |
| 3558 | **/ |
| 3559 | static int igb_poll(struct napi_struct *napi, int budget) |
| 3560 | { |
| 3561 | struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi); |
| 3562 | struct igb_adapter *adapter = rx_ring->adapter; |
| 3563 | struct net_device *netdev = adapter->netdev; |
| 3564 | int tx_clean_complete, work_done = 0; |
| 3565 | |
| 3566 | /* this poll routine only supports one tx and one rx queue */ |
| 3567 | #ifdef CONFIG_IGB_DCA |
| 3568 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) |
| 3569 | igb_update_tx_dca(&adapter->tx_ring[0]); |
| 3570 | #endif |
| 3571 | tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]); |
| 3572 | |
| 3573 | #ifdef CONFIG_IGB_DCA |
| 3574 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) |
| 3575 | igb_update_rx_dca(&adapter->rx_ring[0]); |
| 3576 | #endif |
| 3577 | igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget); |
| 3578 | |
| 3579 | /* If no Tx and not enough Rx work done, exit the polling mode */ |
| 3580 | if ((tx_clean_complete && (work_done < budget)) || |
| 3581 | !netif_running(netdev)) { |
| 3582 | if (adapter->itr_setting & 3) |
| 3583 | igb_set_itr(adapter); |
| 3584 | napi_complete(napi); |
| 3585 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 3586 | igb_irq_enable(adapter); |
| 3587 | return 0; |
| 3588 | } |
| 3589 | |
| 3590 | return 1; |
| 3591 | } |
| 3592 | |
| 3593 | static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget) |
| 3594 | { |
| 3595 | struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi); |
| 3596 | struct igb_adapter *adapter = rx_ring->adapter; |
| 3597 | struct e1000_hw *hw = &adapter->hw; |
| 3598 | struct net_device *netdev = adapter->netdev; |
| 3599 | int work_done = 0; |
| 3600 | |
| 3601 | #ifdef CONFIG_IGB_DCA |
| 3602 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) |
| 3603 | igb_update_rx_dca(rx_ring); |
| 3604 | #endif |
| 3605 | igb_clean_rx_irq_adv(rx_ring, &work_done, budget); |
| 3606 | |
| 3607 | |
| 3608 | /* If not enough Rx work done, exit the polling mode */ |
| 3609 | if ((work_done == 0) || !netif_running(netdev)) { |
| 3610 | napi_complete(napi); |
| 3611 | |
| 3612 | if (adapter->itr_setting & 3) { |
| 3613 | if (adapter->num_rx_queues == 1) |
| 3614 | igb_set_itr(adapter); |
| 3615 | else |
| 3616 | igb_update_ring_itr(rx_ring); |
| 3617 | } |
| 3618 | |
| 3619 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 3620 | wr32(E1000_EIMS, rx_ring->eims_value); |
| 3621 | |
| 3622 | return 0; |
| 3623 | } |
| 3624 | |
| 3625 | return 1; |
| 3626 | } |
| 3627 | |
| 3628 | /** |
| 3629 | * igb_clean_tx_irq - Reclaim resources after transmit completes |
| 3630 | * @adapter: board private structure |
| 3631 | * returns true if ring is completely cleaned |
| 3632 | **/ |
| 3633 | static bool igb_clean_tx_irq(struct igb_ring *tx_ring) |
| 3634 | { |
| 3635 | struct igb_adapter *adapter = tx_ring->adapter; |
| 3636 | struct net_device *netdev = adapter->netdev; |
| 3637 | struct e1000_hw *hw = &adapter->hw; |
| 3638 | struct igb_buffer *buffer_info; |
| 3639 | struct sk_buff *skb; |
| 3640 | union e1000_adv_tx_desc *tx_desc, *eop_desc; |
| 3641 | unsigned int total_bytes = 0, total_packets = 0; |
| 3642 | unsigned int i, eop, count = 0; |
| 3643 | bool cleaned = false; |
| 3644 | |
| 3645 | i = tx_ring->next_to_clean; |
| 3646 | eop = tx_ring->buffer_info[i].next_to_watch; |
| 3647 | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); |
| 3648 | |
| 3649 | while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && |
| 3650 | (count < tx_ring->count)) { |
| 3651 | for (cleaned = false; !cleaned; count++) { |
| 3652 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); |
| 3653 | buffer_info = &tx_ring->buffer_info[i]; |
| 3654 | cleaned = (i == eop); |
| 3655 | skb = buffer_info->skb; |
| 3656 | |
| 3657 | if (skb) { |
| 3658 | unsigned int segs, bytecount; |
| 3659 | /* gso_segs is currently only valid for tcp */ |
| 3660 | segs = skb_shinfo(skb)->gso_segs ?: 1; |
| 3661 | /* multiply data chunks by size of headers */ |
| 3662 | bytecount = ((segs - 1) * skb_headlen(skb)) + |
| 3663 | skb->len; |
| 3664 | total_packets += segs; |
| 3665 | total_bytes += bytecount; |
| 3666 | } |
| 3667 | |
| 3668 | igb_unmap_and_free_tx_resource(adapter, buffer_info); |
| 3669 | tx_desc->wb.status = 0; |
| 3670 | |
| 3671 | i++; |
| 3672 | if (i == tx_ring->count) |
| 3673 | i = 0; |
| 3674 | } |
| 3675 | |
| 3676 | eop = tx_ring->buffer_info[i].next_to_watch; |
| 3677 | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); |
| 3678 | } |
| 3679 | |
| 3680 | tx_ring->next_to_clean = i; |
| 3681 | |
| 3682 | if (unlikely(count && |
| 3683 | netif_carrier_ok(netdev) && |
| 3684 | IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) { |
| 3685 | /* Make sure that anybody stopping the queue after this |
| 3686 | * sees the new next_to_clean. |
| 3687 | */ |
| 3688 | smp_mb(); |
| 3689 | if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) && |
| 3690 | !(test_bit(__IGB_DOWN, &adapter->state))) { |
| 3691 | netif_wake_subqueue(netdev, tx_ring->queue_index); |
| 3692 | ++adapter->restart_queue; |
| 3693 | } |
| 3694 | } |
| 3695 | |
| 3696 | if (tx_ring->detect_tx_hung) { |
| 3697 | /* Detect a transmit hang in hardware, this serializes the |
| 3698 | * check with the clearing of time_stamp and movement of i */ |
| 3699 | tx_ring->detect_tx_hung = false; |
| 3700 | if (tx_ring->buffer_info[i].time_stamp && |
| 3701 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + |
| 3702 | (adapter->tx_timeout_factor * HZ)) |
| 3703 | && !(rd32(E1000_STATUS) & |
| 3704 | E1000_STATUS_TXOFF)) { |
| 3705 | |
| 3706 | /* detected Tx unit hang */ |
| 3707 | dev_err(&adapter->pdev->dev, |
| 3708 | "Detected Tx Unit Hang\n" |
| 3709 | " Tx Queue <%d>\n" |
| 3710 | " TDH <%x>\n" |
| 3711 | " TDT <%x>\n" |
| 3712 | " next_to_use <%x>\n" |
| 3713 | " next_to_clean <%x>\n" |
| 3714 | "buffer_info[next_to_clean]\n" |
| 3715 | " time_stamp <%lx>\n" |
| 3716 | " next_to_watch <%x>\n" |
| 3717 | " jiffies <%lx>\n" |
| 3718 | " desc.status <%x>\n", |
| 3719 | tx_ring->queue_index, |
| 3720 | readl(adapter->hw.hw_addr + tx_ring->head), |
| 3721 | readl(adapter->hw.hw_addr + tx_ring->tail), |
| 3722 | tx_ring->next_to_use, |
| 3723 | tx_ring->next_to_clean, |
| 3724 | tx_ring->buffer_info[i].time_stamp, |
| 3725 | eop, |
| 3726 | jiffies, |
| 3727 | eop_desc->wb.status); |
| 3728 | netif_stop_subqueue(netdev, tx_ring->queue_index); |
| 3729 | } |
| 3730 | } |
| 3731 | tx_ring->total_bytes += total_bytes; |
| 3732 | tx_ring->total_packets += total_packets; |
| 3733 | tx_ring->tx_stats.bytes += total_bytes; |
| 3734 | tx_ring->tx_stats.packets += total_packets; |
| 3735 | adapter->net_stats.tx_bytes += total_bytes; |
| 3736 | adapter->net_stats.tx_packets += total_packets; |
| 3737 | return (count < tx_ring->count); |
| 3738 | } |
| 3739 | |
| 3740 | /** |
| 3741 | * igb_receive_skb - helper function to handle rx indications |
| 3742 | * @ring: pointer to receive ring receving this packet |
| 3743 | * @status: descriptor status field as written by hardware |
| 3744 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
| 3745 | * @skb: pointer to sk_buff to be indicated to stack |
| 3746 | **/ |
| 3747 | static void igb_receive_skb(struct igb_ring *ring, u8 status, |
| 3748 | union e1000_adv_rx_desc * rx_desc, |
| 3749 | struct sk_buff *skb) |
| 3750 | { |
| 3751 | struct igb_adapter * adapter = ring->adapter; |
| 3752 | bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP)); |
| 3753 | |
| 3754 | skb_record_rx_queue(skb, ring->queue_index); |
| 3755 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
| 3756 | if (vlan_extracted) |
| 3757 | vlan_gro_receive(&ring->napi, adapter->vlgrp, |
| 3758 | le16_to_cpu(rx_desc->wb.upper.vlan), |
| 3759 | skb); |
| 3760 | else |
| 3761 | napi_gro_receive(&ring->napi, skb); |
| 3762 | } else { |
| 3763 | if (vlan_extracted) |
| 3764 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
| 3765 | le16_to_cpu(rx_desc->wb.upper.vlan)); |
| 3766 | else |
| 3767 | netif_receive_skb(skb); |
| 3768 | } |
| 3769 | } |
| 3770 | |
| 3771 | |
| 3772 | static inline void igb_rx_checksum_adv(struct igb_adapter *adapter, |
| 3773 | u32 status_err, struct sk_buff *skb) |
| 3774 | { |
| 3775 | skb->ip_summed = CHECKSUM_NONE; |
| 3776 | |
| 3777 | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ |
| 3778 | if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum) |
| 3779 | return; |
| 3780 | /* TCP/UDP checksum error bit is set */ |
| 3781 | if (status_err & |
| 3782 | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { |
| 3783 | /* let the stack verify checksum errors */ |
| 3784 | adapter->hw_csum_err++; |
| 3785 | return; |
| 3786 | } |
| 3787 | /* It must be a TCP or UDP packet with a valid checksum */ |
| 3788 | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) |
| 3789 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 3790 | |
| 3791 | adapter->hw_csum_good++; |
| 3792 | } |
| 3793 | |
| 3794 | static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring, |
| 3795 | int *work_done, int budget) |
| 3796 | { |
| 3797 | struct igb_adapter *adapter = rx_ring->adapter; |
| 3798 | struct net_device *netdev = adapter->netdev; |
| 3799 | struct pci_dev *pdev = adapter->pdev; |
| 3800 | union e1000_adv_rx_desc *rx_desc , *next_rxd; |
| 3801 | struct igb_buffer *buffer_info , *next_buffer; |
| 3802 | struct sk_buff *skb; |
| 3803 | unsigned int i; |
| 3804 | u32 length, hlen, staterr; |
| 3805 | bool cleaned = false; |
| 3806 | int cleaned_count = 0; |
| 3807 | unsigned int total_bytes = 0, total_packets = 0; |
| 3808 | |
| 3809 | i = rx_ring->next_to_clean; |
| 3810 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); |
| 3811 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| 3812 | |
| 3813 | while (staterr & E1000_RXD_STAT_DD) { |
| 3814 | if (*work_done >= budget) |
| 3815 | break; |
| 3816 | (*work_done)++; |
| 3817 | buffer_info = &rx_ring->buffer_info[i]; |
| 3818 | |
| 3819 | /* HW will not DMA in data larger than the given buffer, even |
| 3820 | * if it parses the (NFS, of course) header to be larger. In |
| 3821 | * that case, it fills the header buffer and spills the rest |
| 3822 | * into the page. |
| 3823 | */ |
| 3824 | hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) & |
| 3825 | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; |
| 3826 | if (hlen > adapter->rx_ps_hdr_size) |
| 3827 | hlen = adapter->rx_ps_hdr_size; |
| 3828 | |
| 3829 | length = le16_to_cpu(rx_desc->wb.upper.length); |
| 3830 | cleaned = true; |
| 3831 | cleaned_count++; |
| 3832 | |
| 3833 | skb = buffer_info->skb; |
| 3834 | prefetch(skb->data - NET_IP_ALIGN); |
| 3835 | buffer_info->skb = NULL; |
| 3836 | if (!adapter->rx_ps_hdr_size) { |
| 3837 | pci_unmap_single(pdev, buffer_info->dma, |
| 3838 | adapter->rx_buffer_len + |
| 3839 | NET_IP_ALIGN, |
| 3840 | PCI_DMA_FROMDEVICE); |
| 3841 | skb_put(skb, length); |
| 3842 | goto send_up; |
| 3843 | } |
| 3844 | |
| 3845 | if (!skb_shinfo(skb)->nr_frags) { |
| 3846 | pci_unmap_single(pdev, buffer_info->dma, |
| 3847 | adapter->rx_ps_hdr_size + |
| 3848 | NET_IP_ALIGN, |
| 3849 | PCI_DMA_FROMDEVICE); |
| 3850 | skb_put(skb, hlen); |
| 3851 | } |
| 3852 | |
| 3853 | if (length) { |
| 3854 | pci_unmap_page(pdev, buffer_info->page_dma, |
| 3855 | PAGE_SIZE / 2, PCI_DMA_FROMDEVICE); |
| 3856 | buffer_info->page_dma = 0; |
| 3857 | |
| 3858 | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, |
| 3859 | buffer_info->page, |
| 3860 | buffer_info->page_offset, |
| 3861 | length); |
| 3862 | |
| 3863 | if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || |
| 3864 | (page_count(buffer_info->page) != 1)) |
| 3865 | buffer_info->page = NULL; |
| 3866 | else |
| 3867 | get_page(buffer_info->page); |
| 3868 | |
| 3869 | skb->len += length; |
| 3870 | skb->data_len += length; |
| 3871 | |
| 3872 | skb->truesize += length; |
| 3873 | } |
| 3874 | send_up: |
| 3875 | i++; |
| 3876 | if (i == rx_ring->count) |
| 3877 | i = 0; |
| 3878 | next_rxd = E1000_RX_DESC_ADV(*rx_ring, i); |
| 3879 | prefetch(next_rxd); |
| 3880 | next_buffer = &rx_ring->buffer_info[i]; |
| 3881 | |
| 3882 | if (!(staterr & E1000_RXD_STAT_EOP)) { |
| 3883 | buffer_info->skb = next_buffer->skb; |
| 3884 | buffer_info->dma = next_buffer->dma; |
| 3885 | next_buffer->skb = skb; |
| 3886 | next_buffer->dma = 0; |
| 3887 | goto next_desc; |
| 3888 | } |
| 3889 | |
| 3890 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { |
| 3891 | dev_kfree_skb_irq(skb); |
| 3892 | goto next_desc; |
| 3893 | } |
| 3894 | |
| 3895 | total_bytes += skb->len; |
| 3896 | total_packets++; |
| 3897 | |
| 3898 | igb_rx_checksum_adv(adapter, staterr, skb); |
| 3899 | |
| 3900 | skb->protocol = eth_type_trans(skb, netdev); |
| 3901 | |
| 3902 | igb_receive_skb(rx_ring, staterr, rx_desc, skb); |
| 3903 | |
| 3904 | next_desc: |
| 3905 | rx_desc->wb.upper.status_error = 0; |
| 3906 | |
| 3907 | /* return some buffers to hardware, one at a time is too slow */ |
| 3908 | if (cleaned_count >= IGB_RX_BUFFER_WRITE) { |
| 3909 | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); |
| 3910 | cleaned_count = 0; |
| 3911 | } |
| 3912 | |
| 3913 | /* use prefetched values */ |
| 3914 | rx_desc = next_rxd; |
| 3915 | buffer_info = next_buffer; |
| 3916 | |
| 3917 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| 3918 | } |
| 3919 | |
| 3920 | rx_ring->next_to_clean = i; |
| 3921 | cleaned_count = IGB_DESC_UNUSED(rx_ring); |
| 3922 | |
| 3923 | if (cleaned_count) |
| 3924 | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); |
| 3925 | |
| 3926 | rx_ring->total_packets += total_packets; |
| 3927 | rx_ring->total_bytes += total_bytes; |
| 3928 | rx_ring->rx_stats.packets += total_packets; |
| 3929 | rx_ring->rx_stats.bytes += total_bytes; |
| 3930 | adapter->net_stats.rx_bytes += total_bytes; |
| 3931 | adapter->net_stats.rx_packets += total_packets; |
| 3932 | return cleaned; |
| 3933 | } |
| 3934 | |
| 3935 | |
| 3936 | /** |
| 3937 | * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split |
| 3938 | * @adapter: address of board private structure |
| 3939 | **/ |
| 3940 | static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, |
| 3941 | int cleaned_count) |
| 3942 | { |
| 3943 | struct igb_adapter *adapter = rx_ring->adapter; |
| 3944 | struct net_device *netdev = adapter->netdev; |
| 3945 | struct pci_dev *pdev = adapter->pdev; |
| 3946 | union e1000_adv_rx_desc *rx_desc; |
| 3947 | struct igb_buffer *buffer_info; |
| 3948 | struct sk_buff *skb; |
| 3949 | unsigned int i; |
| 3950 | |
| 3951 | i = rx_ring->next_to_use; |
| 3952 | buffer_info = &rx_ring->buffer_info[i]; |
| 3953 | |
| 3954 | while (cleaned_count--) { |
| 3955 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); |
| 3956 | |
| 3957 | if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { |
| 3958 | if (!buffer_info->page) { |
| 3959 | buffer_info->page = alloc_page(GFP_ATOMIC); |
| 3960 | if (!buffer_info->page) { |
| 3961 | adapter->alloc_rx_buff_failed++; |
| 3962 | goto no_buffers; |
| 3963 | } |
| 3964 | buffer_info->page_offset = 0; |
| 3965 | } else { |
| 3966 | buffer_info->page_offset ^= PAGE_SIZE / 2; |
| 3967 | } |
| 3968 | buffer_info->page_dma = |
| 3969 | pci_map_page(pdev, |
| 3970 | buffer_info->page, |
| 3971 | buffer_info->page_offset, |
| 3972 | PAGE_SIZE / 2, |
| 3973 | PCI_DMA_FROMDEVICE); |
| 3974 | } |
| 3975 | |
| 3976 | if (!buffer_info->skb) { |
| 3977 | int bufsz; |
| 3978 | |
| 3979 | if (adapter->rx_ps_hdr_size) |
| 3980 | bufsz = adapter->rx_ps_hdr_size; |
| 3981 | else |
| 3982 | bufsz = adapter->rx_buffer_len; |
| 3983 | bufsz += NET_IP_ALIGN; |
| 3984 | skb = netdev_alloc_skb(netdev, bufsz); |
| 3985 | |
| 3986 | if (!skb) { |
| 3987 | adapter->alloc_rx_buff_failed++; |
| 3988 | goto no_buffers; |
| 3989 | } |
| 3990 | |
| 3991 | /* Make buffer alignment 2 beyond a 16 byte boundary |
| 3992 | * this will result in a 16 byte aligned IP header after |
| 3993 | * the 14 byte MAC header is removed |
| 3994 | */ |
| 3995 | skb_reserve(skb, NET_IP_ALIGN); |
| 3996 | |
| 3997 | buffer_info->skb = skb; |
| 3998 | buffer_info->dma = pci_map_single(pdev, skb->data, |
| 3999 | bufsz, |
| 4000 | PCI_DMA_FROMDEVICE); |
| 4001 | |
| 4002 | } |
| 4003 | /* Refresh the desc even if buffer_addrs didn't change because |
| 4004 | * each write-back erases this info. */ |
| 4005 | if (adapter->rx_ps_hdr_size) { |
| 4006 | rx_desc->read.pkt_addr = |
| 4007 | cpu_to_le64(buffer_info->page_dma); |
| 4008 | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); |
| 4009 | } else { |
| 4010 | rx_desc->read.pkt_addr = |
| 4011 | cpu_to_le64(buffer_info->dma); |
| 4012 | rx_desc->read.hdr_addr = 0; |
| 4013 | } |
| 4014 | |
| 4015 | i++; |
| 4016 | if (i == rx_ring->count) |
| 4017 | i = 0; |
| 4018 | buffer_info = &rx_ring->buffer_info[i]; |
| 4019 | } |
| 4020 | |
| 4021 | no_buffers: |
| 4022 | if (rx_ring->next_to_use != i) { |
| 4023 | rx_ring->next_to_use = i; |
| 4024 | if (i == 0) |
| 4025 | i = (rx_ring->count - 1); |
| 4026 | else |
| 4027 | i--; |
| 4028 | |
| 4029 | /* Force memory writes to complete before letting h/w |
| 4030 | * know there are new descriptors to fetch. (Only |
| 4031 | * applicable for weak-ordered memory model archs, |
| 4032 | * such as IA-64). */ |
| 4033 | wmb(); |
| 4034 | writel(i, adapter->hw.hw_addr + rx_ring->tail); |
| 4035 | } |
| 4036 | } |
| 4037 | |
| 4038 | /** |
| 4039 | * igb_mii_ioctl - |
| 4040 | * @netdev: |
| 4041 | * @ifreq: |
| 4042 | * @cmd: |
| 4043 | **/ |
| 4044 | static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| 4045 | { |
| 4046 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4047 | struct mii_ioctl_data *data = if_mii(ifr); |
| 4048 | |
| 4049 | if (adapter->hw.phy.media_type != e1000_media_type_copper) |
| 4050 | return -EOPNOTSUPP; |
| 4051 | |
| 4052 | switch (cmd) { |
| 4053 | case SIOCGMIIPHY: |
| 4054 | data->phy_id = adapter->hw.phy.addr; |
| 4055 | break; |
| 4056 | case SIOCGMIIREG: |
| 4057 | if (!capable(CAP_NET_ADMIN)) |
| 4058 | return -EPERM; |
| 4059 | if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, |
| 4060 | &data->val_out)) |
| 4061 | return -EIO; |
| 4062 | break; |
| 4063 | case SIOCSMIIREG: |
| 4064 | default: |
| 4065 | return -EOPNOTSUPP; |
| 4066 | } |
| 4067 | return 0; |
| 4068 | } |
| 4069 | |
| 4070 | /** |
| 4071 | * igb_ioctl - |
| 4072 | * @netdev: |
| 4073 | * @ifreq: |
| 4074 | * @cmd: |
| 4075 | **/ |
| 4076 | static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| 4077 | { |
| 4078 | switch (cmd) { |
| 4079 | case SIOCGMIIPHY: |
| 4080 | case SIOCGMIIREG: |
| 4081 | case SIOCSMIIREG: |
| 4082 | return igb_mii_ioctl(netdev, ifr, cmd); |
| 4083 | default: |
| 4084 | return -EOPNOTSUPP; |
| 4085 | } |
| 4086 | } |
| 4087 | |
| 4088 | static void igb_vlan_rx_register(struct net_device *netdev, |
| 4089 | struct vlan_group *grp) |
| 4090 | { |
| 4091 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4092 | struct e1000_hw *hw = &adapter->hw; |
| 4093 | u32 ctrl, rctl; |
| 4094 | |
| 4095 | igb_irq_disable(adapter); |
| 4096 | adapter->vlgrp = grp; |
| 4097 | |
| 4098 | if (grp) { |
| 4099 | /* enable VLAN tag insert/strip */ |
| 4100 | ctrl = rd32(E1000_CTRL); |
| 4101 | ctrl |= E1000_CTRL_VME; |
| 4102 | wr32(E1000_CTRL, ctrl); |
| 4103 | |
| 4104 | /* enable VLAN receive filtering */ |
| 4105 | rctl = rd32(E1000_RCTL); |
| 4106 | rctl &= ~E1000_RCTL_CFIEN; |
| 4107 | wr32(E1000_RCTL, rctl); |
| 4108 | igb_update_mng_vlan(adapter); |
| 4109 | wr32(E1000_RLPML, |
| 4110 | adapter->max_frame_size + VLAN_TAG_SIZE); |
| 4111 | } else { |
| 4112 | /* disable VLAN tag insert/strip */ |
| 4113 | ctrl = rd32(E1000_CTRL); |
| 4114 | ctrl &= ~E1000_CTRL_VME; |
| 4115 | wr32(E1000_CTRL, ctrl); |
| 4116 | |
| 4117 | if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) { |
| 4118 | igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
| 4119 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; |
| 4120 | } |
| 4121 | wr32(E1000_RLPML, |
| 4122 | adapter->max_frame_size); |
| 4123 | } |
| 4124 | |
| 4125 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 4126 | igb_irq_enable(adapter); |
| 4127 | } |
| 4128 | |
| 4129 | static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
| 4130 | { |
| 4131 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4132 | struct e1000_hw *hw = &adapter->hw; |
| 4133 | u32 vfta, index; |
| 4134 | |
| 4135 | if ((adapter->hw.mng_cookie.status & |
| 4136 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| 4137 | (vid == adapter->mng_vlan_id)) |
| 4138 | return; |
| 4139 | /* add VID to filter table */ |
| 4140 | index = (vid >> 5) & 0x7F; |
| 4141 | vfta = array_rd32(E1000_VFTA, index); |
| 4142 | vfta |= (1 << (vid & 0x1F)); |
| 4143 | igb_write_vfta(&adapter->hw, index, vfta); |
| 4144 | } |
| 4145 | |
| 4146 | static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
| 4147 | { |
| 4148 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4149 | struct e1000_hw *hw = &adapter->hw; |
| 4150 | u32 vfta, index; |
| 4151 | |
| 4152 | igb_irq_disable(adapter); |
| 4153 | vlan_group_set_device(adapter->vlgrp, vid, NULL); |
| 4154 | |
| 4155 | if (!test_bit(__IGB_DOWN, &adapter->state)) |
| 4156 | igb_irq_enable(adapter); |
| 4157 | |
| 4158 | if ((adapter->hw.mng_cookie.status & |
| 4159 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| 4160 | (vid == adapter->mng_vlan_id)) { |
| 4161 | /* release control to f/w */ |
| 4162 | igb_release_hw_control(adapter); |
| 4163 | return; |
| 4164 | } |
| 4165 | |
| 4166 | /* remove VID from filter table */ |
| 4167 | index = (vid >> 5) & 0x7F; |
| 4168 | vfta = array_rd32(E1000_VFTA, index); |
| 4169 | vfta &= ~(1 << (vid & 0x1F)); |
| 4170 | igb_write_vfta(&adapter->hw, index, vfta); |
| 4171 | } |
| 4172 | |
| 4173 | static void igb_restore_vlan(struct igb_adapter *adapter) |
| 4174 | { |
| 4175 | igb_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
| 4176 | |
| 4177 | if (adapter->vlgrp) { |
| 4178 | u16 vid; |
| 4179 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
| 4180 | if (!vlan_group_get_device(adapter->vlgrp, vid)) |
| 4181 | continue; |
| 4182 | igb_vlan_rx_add_vid(adapter->netdev, vid); |
| 4183 | } |
| 4184 | } |
| 4185 | } |
| 4186 | |
| 4187 | int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx) |
| 4188 | { |
| 4189 | struct e1000_mac_info *mac = &adapter->hw.mac; |
| 4190 | |
| 4191 | mac->autoneg = 0; |
| 4192 | |
| 4193 | /* Fiber NICs only allow 1000 gbps Full duplex */ |
| 4194 | if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && |
| 4195 | spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
| 4196 | dev_err(&adapter->pdev->dev, |
| 4197 | "Unsupported Speed/Duplex configuration\n"); |
| 4198 | return -EINVAL; |
| 4199 | } |
| 4200 | |
| 4201 | switch (spddplx) { |
| 4202 | case SPEED_10 + DUPLEX_HALF: |
| 4203 | mac->forced_speed_duplex = ADVERTISE_10_HALF; |
| 4204 | break; |
| 4205 | case SPEED_10 + DUPLEX_FULL: |
| 4206 | mac->forced_speed_duplex = ADVERTISE_10_FULL; |
| 4207 | break; |
| 4208 | case SPEED_100 + DUPLEX_HALF: |
| 4209 | mac->forced_speed_duplex = ADVERTISE_100_HALF; |
| 4210 | break; |
| 4211 | case SPEED_100 + DUPLEX_FULL: |
| 4212 | mac->forced_speed_duplex = ADVERTISE_100_FULL; |
| 4213 | break; |
| 4214 | case SPEED_1000 + DUPLEX_FULL: |
| 4215 | mac->autoneg = 1; |
| 4216 | adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; |
| 4217 | break; |
| 4218 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
| 4219 | default: |
| 4220 | dev_err(&adapter->pdev->dev, |
| 4221 | "Unsupported Speed/Duplex configuration\n"); |
| 4222 | return -EINVAL; |
| 4223 | } |
| 4224 | return 0; |
| 4225 | } |
| 4226 | |
| 4227 | |
| 4228 | static int igb_suspend(struct pci_dev *pdev, pm_message_t state) |
| 4229 | { |
| 4230 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 4231 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4232 | struct e1000_hw *hw = &adapter->hw; |
| 4233 | u32 ctrl, rctl, status; |
| 4234 | u32 wufc = adapter->wol; |
| 4235 | #ifdef CONFIG_PM |
| 4236 | int retval = 0; |
| 4237 | #endif |
| 4238 | |
| 4239 | netif_device_detach(netdev); |
| 4240 | |
| 4241 | if (netif_running(netdev)) |
| 4242 | igb_close(netdev); |
| 4243 | |
| 4244 | igb_reset_interrupt_capability(adapter); |
| 4245 | |
| 4246 | igb_free_queues(adapter); |
| 4247 | |
| 4248 | #ifdef CONFIG_PM |
| 4249 | retval = pci_save_state(pdev); |
| 4250 | if (retval) |
| 4251 | return retval; |
| 4252 | #endif |
| 4253 | |
| 4254 | status = rd32(E1000_STATUS); |
| 4255 | if (status & E1000_STATUS_LU) |
| 4256 | wufc &= ~E1000_WUFC_LNKC; |
| 4257 | |
| 4258 | if (wufc) { |
| 4259 | igb_setup_rctl(adapter); |
| 4260 | igb_set_multi(netdev); |
| 4261 | |
| 4262 | /* turn on all-multi mode if wake on multicast is enabled */ |
| 4263 | if (wufc & E1000_WUFC_MC) { |
| 4264 | rctl = rd32(E1000_RCTL); |
| 4265 | rctl |= E1000_RCTL_MPE; |
| 4266 | wr32(E1000_RCTL, rctl); |
| 4267 | } |
| 4268 | |
| 4269 | ctrl = rd32(E1000_CTRL); |
| 4270 | /* advertise wake from D3Cold */ |
| 4271 | #define E1000_CTRL_ADVD3WUC 0x00100000 |
| 4272 | /* phy power management enable */ |
| 4273 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
| 4274 | ctrl |= E1000_CTRL_ADVD3WUC; |
| 4275 | wr32(E1000_CTRL, ctrl); |
| 4276 | |
| 4277 | /* Allow time for pending master requests to run */ |
| 4278 | igb_disable_pcie_master(&adapter->hw); |
| 4279 | |
| 4280 | wr32(E1000_WUC, E1000_WUC_PME_EN); |
| 4281 | wr32(E1000_WUFC, wufc); |
| 4282 | } else { |
| 4283 | wr32(E1000_WUC, 0); |
| 4284 | wr32(E1000_WUFC, 0); |
| 4285 | } |
| 4286 | |
| 4287 | /* make sure adapter isn't asleep if manageability/wol is enabled */ |
| 4288 | if (wufc || adapter->en_mng_pt) { |
| 4289 | pci_enable_wake(pdev, PCI_D3hot, 1); |
| 4290 | pci_enable_wake(pdev, PCI_D3cold, 1); |
| 4291 | } else { |
| 4292 | igb_shutdown_fiber_serdes_link_82575(hw); |
| 4293 | pci_enable_wake(pdev, PCI_D3hot, 0); |
| 4294 | pci_enable_wake(pdev, PCI_D3cold, 0); |
| 4295 | } |
| 4296 | |
| 4297 | /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| 4298 | * would have already happened in close and is redundant. */ |
| 4299 | igb_release_hw_control(adapter); |
| 4300 | |
| 4301 | pci_disable_device(pdev); |
| 4302 | |
| 4303 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
| 4304 | |
| 4305 | return 0; |
| 4306 | } |
| 4307 | |
| 4308 | #ifdef CONFIG_PM |
| 4309 | static int igb_resume(struct pci_dev *pdev) |
| 4310 | { |
| 4311 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 4312 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4313 | struct e1000_hw *hw = &adapter->hw; |
| 4314 | u32 err; |
| 4315 | |
| 4316 | pci_set_power_state(pdev, PCI_D0); |
| 4317 | pci_restore_state(pdev); |
| 4318 | |
| 4319 | if (adapter->need_ioport) |
| 4320 | err = pci_enable_device(pdev); |
| 4321 | else |
| 4322 | err = pci_enable_device_mem(pdev); |
| 4323 | if (err) { |
| 4324 | dev_err(&pdev->dev, |
| 4325 | "igb: Cannot enable PCI device from suspend\n"); |
| 4326 | return err; |
| 4327 | } |
| 4328 | pci_set_master(pdev); |
| 4329 | |
| 4330 | pci_enable_wake(pdev, PCI_D3hot, 0); |
| 4331 | pci_enable_wake(pdev, PCI_D3cold, 0); |
| 4332 | |
| 4333 | igb_set_interrupt_capability(adapter); |
| 4334 | |
| 4335 | if (igb_alloc_queues(adapter)) { |
| 4336 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); |
| 4337 | return -ENOMEM; |
| 4338 | } |
| 4339 | |
| 4340 | /* e1000_power_up_phy(adapter); */ |
| 4341 | |
| 4342 | igb_reset(adapter); |
| 4343 | wr32(E1000_WUS, ~0); |
| 4344 | |
| 4345 | if (netif_running(netdev)) { |
| 4346 | err = igb_open(netdev); |
| 4347 | if (err) |
| 4348 | return err; |
| 4349 | } |
| 4350 | |
| 4351 | netif_device_attach(netdev); |
| 4352 | |
| 4353 | /* let the f/w know that the h/w is now under the control of the |
| 4354 | * driver. */ |
| 4355 | igb_get_hw_control(adapter); |
| 4356 | |
| 4357 | return 0; |
| 4358 | } |
| 4359 | #endif |
| 4360 | |
| 4361 | static void igb_shutdown(struct pci_dev *pdev) |
| 4362 | { |
| 4363 | igb_suspend(pdev, PMSG_SUSPEND); |
| 4364 | } |
| 4365 | |
| 4366 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 4367 | /* |
| 4368 | * Polling 'interrupt' - used by things like netconsole to send skbs |
| 4369 | * without having to re-enable interrupts. It's not called while |
| 4370 | * the interrupt routine is executing. |
| 4371 | */ |
| 4372 | static void igb_netpoll(struct net_device *netdev) |
| 4373 | { |
| 4374 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4375 | int i; |
| 4376 | int work_done = 0; |
| 4377 | |
| 4378 | igb_irq_disable(adapter); |
| 4379 | adapter->flags |= IGB_FLAG_IN_NETPOLL; |
| 4380 | |
| 4381 | for (i = 0; i < adapter->num_tx_queues; i++) |
| 4382 | igb_clean_tx_irq(&adapter->tx_ring[i]); |
| 4383 | |
| 4384 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 4385 | igb_clean_rx_irq_adv(&adapter->rx_ring[i], |
| 4386 | &work_done, |
| 4387 | adapter->rx_ring[i].napi.weight); |
| 4388 | |
| 4389 | adapter->flags &= ~IGB_FLAG_IN_NETPOLL; |
| 4390 | igb_irq_enable(adapter); |
| 4391 | } |
| 4392 | #endif /* CONFIG_NET_POLL_CONTROLLER */ |
| 4393 | |
| 4394 | /** |
| 4395 | * igb_io_error_detected - called when PCI error is detected |
| 4396 | * @pdev: Pointer to PCI device |
| 4397 | * @state: The current pci connection state |
| 4398 | * |
| 4399 | * This function is called after a PCI bus error affecting |
| 4400 | * this device has been detected. |
| 4401 | */ |
| 4402 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, |
| 4403 | pci_channel_state_t state) |
| 4404 | { |
| 4405 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 4406 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4407 | |
| 4408 | netif_device_detach(netdev); |
| 4409 | |
| 4410 | if (netif_running(netdev)) |
| 4411 | igb_down(adapter); |
| 4412 | pci_disable_device(pdev); |
| 4413 | |
| 4414 | /* Request a slot slot reset. */ |
| 4415 | return PCI_ERS_RESULT_NEED_RESET; |
| 4416 | } |
| 4417 | |
| 4418 | /** |
| 4419 | * igb_io_slot_reset - called after the pci bus has been reset. |
| 4420 | * @pdev: Pointer to PCI device |
| 4421 | * |
| 4422 | * Restart the card from scratch, as if from a cold-boot. Implementation |
| 4423 | * resembles the first-half of the igb_resume routine. |
| 4424 | */ |
| 4425 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) |
| 4426 | { |
| 4427 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 4428 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4429 | struct e1000_hw *hw = &adapter->hw; |
| 4430 | pci_ers_result_t result; |
| 4431 | int err; |
| 4432 | |
| 4433 | if (adapter->need_ioport) |
| 4434 | err = pci_enable_device(pdev); |
| 4435 | else |
| 4436 | err = pci_enable_device_mem(pdev); |
| 4437 | |
| 4438 | if (err) { |
| 4439 | dev_err(&pdev->dev, |
| 4440 | "Cannot re-enable PCI device after reset.\n"); |
| 4441 | result = PCI_ERS_RESULT_DISCONNECT; |
| 4442 | } else { |
| 4443 | pci_set_master(pdev); |
| 4444 | pci_restore_state(pdev); |
| 4445 | |
| 4446 | pci_enable_wake(pdev, PCI_D3hot, 0); |
| 4447 | pci_enable_wake(pdev, PCI_D3cold, 0); |
| 4448 | |
| 4449 | igb_reset(adapter); |
| 4450 | wr32(E1000_WUS, ~0); |
| 4451 | result = PCI_ERS_RESULT_RECOVERED; |
| 4452 | } |
| 4453 | |
| 4454 | err = pci_cleanup_aer_uncorrect_error_status(pdev); |
| 4455 | if (err) { |
| 4456 | dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status " |
| 4457 | "failed 0x%0x\n", err); |
| 4458 | /* non-fatal, continue */ |
| 4459 | } |
| 4460 | |
| 4461 | return result; |
| 4462 | } |
| 4463 | |
| 4464 | /** |
| 4465 | * igb_io_resume - called when traffic can start flowing again. |
| 4466 | * @pdev: Pointer to PCI device |
| 4467 | * |
| 4468 | * This callback is called when the error recovery driver tells us that |
| 4469 | * its OK to resume normal operation. Implementation resembles the |
| 4470 | * second-half of the igb_resume routine. |
| 4471 | */ |
| 4472 | static void igb_io_resume(struct pci_dev *pdev) |
| 4473 | { |
| 4474 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 4475 | struct igb_adapter *adapter = netdev_priv(netdev); |
| 4476 | |
| 4477 | if (netif_running(netdev)) { |
| 4478 | if (igb_up(adapter)) { |
| 4479 | dev_err(&pdev->dev, "igb_up failed after reset\n"); |
| 4480 | return; |
| 4481 | } |
| 4482 | } |
| 4483 | |
| 4484 | netif_device_attach(netdev); |
| 4485 | |
| 4486 | /* let the f/w know that the h/w is now under the control of the |
| 4487 | * driver. */ |
| 4488 | igb_get_hw_control(adapter); |
| 4489 | } |
| 4490 | |
| 4491 | /* igb_main.c */ |