| 1 | /* |
| 2 | * Copyright (c) 2004 Video54 Technologies, Inc. |
| 3 | * Copyright (c) 2004-2008 Atheros Communications, Inc. |
| 4 | * |
| 5 | * Permission to use, copy, modify, and/or distribute this software for any |
| 6 | * purpose with or without fee is hereby granted, provided that the above |
| 7 | * copyright notice and this permission notice appear in all copies. |
| 8 | * |
| 9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 | */ |
| 17 | |
| 18 | /* |
| 19 | * Atheros rate control algorithm |
| 20 | */ |
| 21 | |
| 22 | #include "core.h" |
| 23 | /* FIXME: remove this include! */ |
| 24 | #include "../net/mac80211/rate.h" |
| 25 | |
| 26 | static u32 tx_triglevel_max; |
| 27 | |
| 28 | static struct ath_rate_table ar5416_11na_ratetable = { |
| 29 | 42, |
| 30 | { |
| 31 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 32 | 5400, 0x0b, 0x00, 12, |
| 33 | 0, 2, 1, 0, 0, 0, 0, 0 }, |
| 34 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 35 | 7800, 0x0f, 0x00, 18, |
| 36 | 0, 3, 1, 1, 1, 1, 1, 0 }, |
| 37 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 38 | 10000, 0x0a, 0x00, 24, |
| 39 | 2, 4, 2, 2, 2, 2, 2, 0 }, |
| 40 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 41 | 13900, 0x0e, 0x00, 36, |
| 42 | 2, 6, 2, 3, 3, 3, 3, 0 }, |
| 43 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 44 | 17300, 0x09, 0x00, 48, |
| 45 | 4, 10, 3, 4, 4, 4, 4, 0 }, |
| 46 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 47 | 23000, 0x0d, 0x00, 72, |
| 48 | 4, 14, 3, 5, 5, 5, 5, 0 }, |
| 49 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 50 | 27400, 0x08, 0x00, 96, |
| 51 | 4, 20, 3, 6, 6, 6, 6, 0 }, |
| 52 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 53 | 29300, 0x0c, 0x00, 108, |
| 54 | 4, 23, 3, 7, 7, 7, 7, 0 }, |
| 55 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 56 | 6400, 0x80, 0x00, 0, |
| 57 | 0, 2, 3, 8, 24, 8, 24, 3216 }, |
| 58 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 59 | 12700, 0x81, 0x00, 1, |
| 60 | 2, 4, 3, 9, 25, 9, 25, 6434 }, |
| 61 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 62 | 18800, 0x82, 0x00, 2, |
| 63 | 2, 6, 3, 10, 26, 10, 26, 9650 }, |
| 64 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 65 | 25000, 0x83, 0x00, 3, |
| 66 | 4, 10, 3, 11, 27, 11, 27, 12868 }, |
| 67 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 68 | 36700, 0x84, 0x00, 4, |
| 69 | 4, 14, 3, 12, 28, 12, 28, 19304 }, |
| 70 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 71 | 48100, 0x85, 0x00, 5, |
| 72 | 4, 20, 3, 13, 29, 13, 29, 25740 }, |
| 73 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 74 | 53500, 0x86, 0x00, 6, |
| 75 | 4, 23, 3, 14, 30, 14, 30, 28956 }, |
| 76 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 77 | 59000, 0x87, 0x00, 7, |
| 78 | 4, 25, 3, 15, 31, 15, 32, 32180 }, |
| 79 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 80 | 12700, 0x88, 0x00, |
| 81 | 8, 0, 2, 3, 16, 33, 16, 33, 6430 }, |
| 82 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 83 | 24800, 0x89, 0x00, 9, |
| 84 | 2, 4, 3, 17, 34, 17, 34, 12860 }, |
| 85 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 86 | 36600, 0x8a, 0x00, 10, |
| 87 | 2, 6, 3, 18, 35, 18, 35, 19300 }, |
| 88 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 89 | 48100, 0x8b, 0x00, 11, |
| 90 | 4, 10, 3, 19, 36, 19, 36, 25736 }, |
| 91 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 92 | 69500, 0x8c, 0x00, 12, |
| 93 | 4, 14, 3, 20, 37, 20, 37, 38600 }, |
| 94 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 95 | 89500, 0x8d, 0x00, 13, |
| 96 | 4, 20, 3, 21, 38, 21, 38, 51472 }, |
| 97 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 98 | 98900, 0x8e, 0x00, 14, |
| 99 | 4, 23, 3, 22, 39, 22, 39, 57890 }, |
| 100 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 101 | 108300, 0x8f, 0x00, 15, |
| 102 | 4, 25, 3, 23, 40, 23, 41, 64320 }, |
| 103 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 104 | 13200, 0x80, 0x00, 0, |
| 105 | 0, 2, 3, 8, 24, 24, 24, 6684 }, |
| 106 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 107 | 25900, 0x81, 0x00, 1, |
| 108 | 2, 4, 3, 9, 25, 25, 25, 13368 }, |
| 109 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 110 | 38600, 0x82, 0x00, 2, |
| 111 | 2, 6, 3, 10, 26, 26, 26, 20052 }, |
| 112 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 113 | 49800, 0x83, 0x00, 3, |
| 114 | 4, 10, 3, 11, 27, 27, 27, 26738 }, |
| 115 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 116 | 72200, 0x84, 0x00, 4, |
| 117 | 4, 14, 3, 12, 28, 28, 28, 40104 }, |
| 118 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 119 | 92900, 0x85, 0x00, 5, |
| 120 | 4, 20, 3, 13, 29, 29, 29, 53476 }, |
| 121 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ |
| 122 | 102700, 0x86, 0x00, 6, |
| 123 | 4, 23, 3, 14, 30, 30, 30, 60156 }, |
| 124 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 125 | 112000, 0x87, 0x00, 7, |
| 126 | 4, 25, 3, 15, 31, 32, 32, 66840 }, |
| 127 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ |
| 128 | 122000, 0x87, 0x00, 7, |
| 129 | 4, 25, 3, 15, 31, 32, 32, 74200 }, |
| 130 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 131 | 25800, 0x88, 0x00, 8, |
| 132 | 0, 2, 3, 16, 33, 33, 33, 13360 }, |
| 133 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 134 | 49800, 0x89, 0x00, 9, |
| 135 | 2, 4, 3, 17, 34, 34, 34, 26720 }, |
| 136 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 137 | 71900, 0x8a, 0x00, 10, |
| 138 | 2, 6, 3, 18, 35, 35, 35, 40080 }, |
| 139 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 140 | 92500, 0x8b, 0x00, 11, |
| 141 | 4, 10, 3, 19, 36, 36, 36, 53440 }, |
| 142 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 143 | 130300, 0x8c, 0x00, 12, |
| 144 | 4, 14, 3, 20, 37, 37, 37, 80160 }, |
| 145 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 146 | 162800, 0x8d, 0x00, 13, |
| 147 | 4, 20, 3, 21, 38, 38, 38, 106880 }, |
| 148 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 149 | 178200, 0x8e, 0x00, 14, |
| 150 | 4, 23, 3, 22, 39, 39, 39, 120240 }, |
| 151 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 152 | 192100, 0x8f, 0x00, 15, |
| 153 | 4, 25, 3, 23, 40, 41, 41, 133600 }, |
| 154 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ |
| 155 | 207000, 0x8f, 0x00, 15, |
| 156 | 4, 25, 3, 23, 40, 41, 41, 148400 }, |
| 157 | }, |
| 158 | 50, /* probe interval */ |
| 159 | 50, /* rssi reduce interval */ |
| 160 | WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| 161 | }; |
| 162 | |
| 163 | /* TRUE_ALL - valid for 20/40/Legacy, |
| 164 | * TRUE - Legacy only, |
| 165 | * TRUE_20 - HT 20 only, |
| 166 | * TRUE_40 - HT 40 only */ |
| 167 | |
| 168 | /* 4ms frame limit not used for NG mode. The values filled |
| 169 | * for HT are the 64K max aggregate limit */ |
| 170 | |
| 171 | static struct ath_rate_table ar5416_11ng_ratetable = { |
| 172 | 46, |
| 173 | { |
| 174 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */ |
| 175 | 900, 0x1b, 0x00, 2, |
| 176 | 0, 0, 1, 0, 0, 0, 0, 0 }, |
| 177 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */ |
| 178 | 1900, 0x1a, 0x04, 4, |
| 179 | 1, 1, 1, 1, 1, 1, 1, 0 }, |
| 180 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ |
| 181 | 4900, 0x19, 0x04, 11, |
| 182 | 2, 2, 2, 2, 2, 2, 2, 0 }, |
| 183 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */ |
| 184 | 8100, 0x18, 0x04, 22, |
| 185 | 3, 3, 2, 3, 3, 3, 3, 0 }, |
| 186 | { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 187 | 5400, 0x0b, 0x00, 12, |
| 188 | 4, 2, 1, 4, 4, 4, 4, 0 }, |
| 189 | { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 190 | 7800, 0x0f, 0x00, 18, |
| 191 | 4, 3, 1, 5, 5, 5, 5, 0 }, |
| 192 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 193 | 10100, 0x0a, 0x00, 24, |
| 194 | 6, 4, 1, 6, 6, 6, 6, 0 }, |
| 195 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 196 | 14100, 0x0e, 0x00, 36, |
| 197 | 6, 6, 2, 7, 7, 7, 7, 0 }, |
| 198 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 199 | 17700, 0x09, 0x00, 48, |
| 200 | 8, 10, 3, 8, 8, 8, 8, 0 }, |
| 201 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 202 | 23700, 0x0d, 0x00, 72, |
| 203 | 8, 14, 3, 9, 9, 9, 9, 0 }, |
| 204 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 205 | 27400, 0x08, 0x00, 96, |
| 206 | 8, 20, 3, 10, 10, 10, 10, 0 }, |
| 207 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 208 | 30900, 0x0c, 0x00, 108, |
| 209 | 8, 23, 3, 11, 11, 11, 11, 0 }, |
| 210 | { FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 211 | 6400, 0x80, 0x00, 0, |
| 212 | 4, 2, 3, 12, 28, 12, 28, 3216 }, |
| 213 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 214 | 12700, 0x81, 0x00, 1, |
| 215 | 6, 4, 3, 13, 29, 13, 29, 6434 }, |
| 216 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 217 | 18800, 0x82, 0x00, 2, |
| 218 | 6, 6, 3, 14, 30, 14, 30, 9650 }, |
| 219 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 220 | 25000, 0x83, 0x00, 3, |
| 221 | 8, 10, 3, 15, 31, 15, 31, 12868 }, |
| 222 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 223 | 36700, 0x84, 0x00, 4, |
| 224 | 8, 14, 3, 16, 32, 16, 32, 19304 }, |
| 225 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 226 | 48100, 0x85, 0x00, 5, |
| 227 | 8, 20, 3, 17, 33, 17, 33, 25740 }, |
| 228 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 229 | 53500, 0x86, 0x00, 6, |
| 230 | 8, 23, 3, 18, 34, 18, 34, 28956 }, |
| 231 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 232 | 59000, 0x87, 0x00, 7, |
| 233 | 8, 25, 3, 19, 35, 19, 36, 32180 }, |
| 234 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 235 | 12700, 0x88, 0x00, 8, |
| 236 | 4, 2, 3, 20, 37, 20, 37, 6430 }, |
| 237 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 238 | 24800, 0x89, 0x00, 9, |
| 239 | 6, 4, 3, 21, 38, 21, 38, 12860 }, |
| 240 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 241 | 36600, 0x8a, 0x00, 10, |
| 242 | 6, 6, 3, 22, 39, 22, 39, 19300 }, |
| 243 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 244 | 48100, 0x8b, 0x00, 11, |
| 245 | 8, 10, 3, 23, 40, 23, 40, 25736 }, |
| 246 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 247 | 69500, 0x8c, 0x00, 12, |
| 248 | 8, 14, 3, 24, 41, 24, 41, 38600 }, |
| 249 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 250 | 89500, 0x8d, 0x00, 13, |
| 251 | 8, 20, 3, 25, 42, 25, 42, 51472 }, |
| 252 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 253 | 98900, 0x8e, 0x00, 14, |
| 254 | 8, 23, 3, 26, 43, 26, 44, 57890 }, |
| 255 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 256 | 108300, 0x8f, 0x00, 15, |
| 257 | 8, 25, 3, 27, 44, 27, 45, 64320 }, |
| 258 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 259 | 13200, 0x80, 0x00, 0, |
| 260 | 8, 2, 3, 12, 28, 28, 28, 6684 }, |
| 261 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 262 | 25900, 0x81, 0x00, 1, |
| 263 | 8, 4, 3, 13, 29, 29, 29, 13368 }, |
| 264 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 265 | 38600, 0x82, 0x00, 2, |
| 266 | 8, 6, 3, 14, 30, 30, 30, 20052 }, |
| 267 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 268 | 49800, 0x83, 0x00, 3, |
| 269 | 8, 10, 3, 15, 31, 31, 31, 26738 }, |
| 270 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 271 | 72200, 0x84, 0x00, 4, |
| 272 | 8, 14, 3, 16, 32, 32, 32, 40104 }, |
| 273 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 274 | 92900, 0x85, 0x00, 5, |
| 275 | 8, 20, 3, 17, 33, 33, 33, 53476 }, |
| 276 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ |
| 277 | 102700, 0x86, 0x00, 6, |
| 278 | 8, 23, 3, 18, 34, 34, 34, 60156 }, |
| 279 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 280 | 112000, 0x87, 0x00, 7, |
| 281 | 8, 23, 3, 19, 35, 36, 36, 66840 }, |
| 282 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ |
| 283 | 122000, 0x87, 0x00, 7, |
| 284 | 8, 25, 3, 19, 35, 36, 36, 74200 }, |
| 285 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 286 | 25800, 0x88, 0x00, 8, |
| 287 | 8, 2, 3, 20, 37, 37, 37, 13360 }, |
| 288 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 289 | 49800, 0x89, 0x00, 9, |
| 290 | 8, 4, 3, 21, 38, 38, 38, 26720 }, |
| 291 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 292 | 71900, 0x8a, 0x00, 10, |
| 293 | 8, 6, 3, 22, 39, 39, 39, 40080 }, |
| 294 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 295 | 92500, 0x8b, 0x00, 11, |
| 296 | 8, 10, 3, 23, 40, 40, 40, 53440 }, |
| 297 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 298 | 130300, 0x8c, 0x00, 12, |
| 299 | 8, 14, 3, 24, 41, 41, 41, 80160 }, |
| 300 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 301 | 162800, 0x8d, 0x00, 13, |
| 302 | 8, 20, 3, 25, 42, 42, 42, 106880 }, |
| 303 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 304 | 178200, 0x8e, 0x00, 14, |
| 305 | 8, 23, 3, 26, 43, 43, 43, 120240 }, |
| 306 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 307 | 192100, 0x8f, 0x00, 15, |
| 308 | 8, 23, 3, 27, 44, 45, 45, 133600 }, |
| 309 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ |
| 310 | 207000, 0x8f, 0x00, 15, |
| 311 | 8, 25, 3, 27, 44, 45, 45, 148400 }, |
| 312 | }, |
| 313 | 50, /* probe interval */ |
| 314 | 50, /* rssi reduce interval */ |
| 315 | WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| 316 | }; |
| 317 | |
| 318 | static struct ath_rate_table ar5416_11a_ratetable = { |
| 319 | 8, |
| 320 | { |
| 321 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 322 | 5400, 0x0b, 0x00, (0x80|12), |
| 323 | 0, 2, 1, 0, 0 }, |
| 324 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 325 | 7800, 0x0f, 0x00, 18, |
| 326 | 0, 3, 1, 1, 0 }, |
| 327 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 328 | 10000, 0x0a, 0x00, (0x80|24), |
| 329 | 2, 4, 2, 2, 0 }, |
| 330 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 331 | 13900, 0x0e, 0x00, 36, |
| 332 | 2, 6, 2, 3, 0 }, |
| 333 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 334 | 17300, 0x09, 0x00, (0x80|48), |
| 335 | 4, 10, 3, 4, 0 }, |
| 336 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 337 | 23000, 0x0d, 0x00, 72, |
| 338 | 4, 14, 3, 5, 0 }, |
| 339 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 340 | 27400, 0x08, 0x00, 96, |
| 341 | 4, 19, 3, 6, 0 }, |
| 342 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 343 | 29300, 0x0c, 0x00, 108, |
| 344 | 4, 23, 3, 7, 0 }, |
| 345 | }, |
| 346 | 50, /* probe interval */ |
| 347 | 50, /* rssi reduce interval */ |
| 348 | 0, /* Phy rates allowed initially */ |
| 349 | }; |
| 350 | |
| 351 | static struct ath_rate_table ar5416_11g_ratetable = { |
| 352 | 12, |
| 353 | { |
| 354 | { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ |
| 355 | 900, 0x1b, 0x00, 2, |
| 356 | 0, 0, 1, 0, 0 }, |
| 357 | { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ |
| 358 | 1900, 0x1a, 0x04, 4, |
| 359 | 1, 1, 1, 1, 0 }, |
| 360 | { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ |
| 361 | 4900, 0x19, 0x04, 11, |
| 362 | 2, 2, 2, 2, 0 }, |
| 363 | { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ |
| 364 | 8100, 0x18, 0x04, 22, |
| 365 | 3, 3, 2, 3, 0 }, |
| 366 | { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 367 | 5400, 0x0b, 0x00, 12, |
| 368 | 4, 2, 1, 4, 0 }, |
| 369 | { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 370 | 7800, 0x0f, 0x00, 18, |
| 371 | 4, 3, 1, 5, 0 }, |
| 372 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 373 | 10000, 0x0a, 0x00, 24, |
| 374 | 6, 4, 1, 6, 0 }, |
| 375 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 376 | 13900, 0x0e, 0x00, 36, |
| 377 | 6, 6, 2, 7, 0 }, |
| 378 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 379 | 17300, 0x09, 0x00, 48, |
| 380 | 8, 10, 3, 8, 0 }, |
| 381 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 382 | 23000, 0x0d, 0x00, 72, |
| 383 | 8, 14, 3, 9, 0 }, |
| 384 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 385 | 27400, 0x08, 0x00, 96, |
| 386 | 8, 19, 3, 10, 0 }, |
| 387 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 388 | 29300, 0x0c, 0x00, 108, |
| 389 | 8, 23, 3, 11, 0 }, |
| 390 | }, |
| 391 | 50, /* probe interval */ |
| 392 | 50, /* rssi reduce interval */ |
| 393 | 0, /* Phy rates allowed initially */ |
| 394 | }; |
| 395 | |
| 396 | static struct ath_rate_table ar5416_11b_ratetable = { |
| 397 | 4, |
| 398 | { |
| 399 | { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ |
| 400 | 900, 0x1b, 0x00, (0x80|2), |
| 401 | 0, 0, 1, 0, 0 }, |
| 402 | { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ |
| 403 | 1800, 0x1a, 0x04, (0x80|4), |
| 404 | 1, 1, 1, 1, 0 }, |
| 405 | { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ |
| 406 | 4300, 0x19, 0x04, (0x80|11), |
| 407 | 1, 2, 2, 2, 0 }, |
| 408 | { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ |
| 409 | 7100, 0x18, 0x04, (0x80|22), |
| 410 | 1, 4, 100, 3, 0 }, |
| 411 | }, |
| 412 | 100, /* probe interval */ |
| 413 | 100, /* rssi reduce interval */ |
| 414 | 0, /* Phy rates allowed initially */ |
| 415 | }; |
| 416 | |
| 417 | /* |
| 418 | * Return the median of three numbers |
| 419 | */ |
| 420 | static inline int8_t median(int8_t a, int8_t b, int8_t c) |
| 421 | { |
| 422 | if (a >= b) { |
| 423 | if (b >= c) |
| 424 | return b; |
| 425 | else if (a > c) |
| 426 | return c; |
| 427 | else |
| 428 | return a; |
| 429 | } else { |
| 430 | if (a >= c) |
| 431 | return a; |
| 432 | else if (b >= c) |
| 433 | return c; |
| 434 | else |
| 435 | return b; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table, |
| 440 | struct ath_rate_node *ath_rc_priv) |
| 441 | { |
| 442 | u8 i, j, idx, idx_next; |
| 443 | |
| 444 | for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) { |
| 445 | for (j = 0; j <= i-1; j++) { |
| 446 | idx = ath_rc_priv->valid_rate_index[j]; |
| 447 | idx_next = ath_rc_priv->valid_rate_index[j+1]; |
| 448 | |
| 449 | if (rate_table->info[idx].ratekbps > |
| 450 | rate_table->info[idx_next].ratekbps) { |
| 451 | ath_rc_priv->valid_rate_index[j] = idx_next; |
| 452 | ath_rc_priv->valid_rate_index[j+1] = idx; |
| 453 | } |
| 454 | } |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | /* Access functions for valid_txrate_mask */ |
| 459 | |
| 460 | static void ath_rc_init_valid_txmask(struct ath_rate_node *ath_rc_priv) |
| 461 | { |
| 462 | u8 i; |
| 463 | |
| 464 | for (i = 0; i < ath_rc_priv->rate_table_size; i++) |
| 465 | ath_rc_priv->valid_rate_index[i] = FALSE; |
| 466 | } |
| 467 | |
| 468 | static inline void ath_rc_set_valid_txmask(struct ath_rate_node *ath_rc_priv, |
| 469 | u8 index, int valid_tx_rate) |
| 470 | { |
| 471 | ASSERT(index <= ath_rc_priv->rate_table_size); |
| 472 | ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE; |
| 473 | } |
| 474 | |
| 475 | static inline int ath_rc_isvalid_txmask(struct ath_rate_node *ath_rc_priv, |
| 476 | u8 index) |
| 477 | { |
| 478 | ASSERT(index <= ath_rc_priv->rate_table_size); |
| 479 | return ath_rc_priv->valid_rate_index[index]; |
| 480 | } |
| 481 | |
| 482 | /* Iterators for valid_txrate_mask */ |
| 483 | static inline int |
| 484 | ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table, |
| 485 | struct ath_rate_node *ath_rc_priv, |
| 486 | u8 cur_valid_txrate, |
| 487 | u8 *next_idx) |
| 488 | { |
| 489 | u8 i; |
| 490 | |
| 491 | for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) { |
| 492 | if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { |
| 493 | *next_idx = ath_rc_priv->valid_rate_index[i+1]; |
| 494 | return TRUE; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | /* No more valid rates */ |
| 499 | *next_idx = 0; |
| 500 | return FALSE; |
| 501 | } |
| 502 | |
| 503 | /* Return true only for single stream */ |
| 504 | |
| 505 | static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw) |
| 506 | { |
| 507 | if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG)) |
| 508 | return FALSE; |
| 509 | if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) |
| 510 | return FALSE; |
| 511 | if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) |
| 512 | return FALSE; |
| 513 | if (!ignore_cw && WLAN_RC_PHY_HT(phy)) |
| 514 | if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) |
| 515 | return FALSE; |
| 516 | if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG)) |
| 517 | return FALSE; |
| 518 | return TRUE; |
| 519 | } |
| 520 | |
| 521 | static inline int |
| 522 | ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table, |
| 523 | struct ath_rate_node *ath_rc_priv, |
| 524 | u8 cur_valid_txrate, u8 *next_idx) |
| 525 | { |
| 526 | int8_t i; |
| 527 | |
| 528 | for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) { |
| 529 | if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { |
| 530 | *next_idx = ath_rc_priv->valid_rate_index[i-1]; |
| 531 | return TRUE; |
| 532 | } |
| 533 | } |
| 534 | return FALSE; |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * Initialize the Valid Rate Index from valid entries in Rate Table |
| 539 | */ |
| 540 | static u8 |
| 541 | ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv, |
| 542 | const struct ath_rate_table *rate_table, |
| 543 | u32 capflag) |
| 544 | { |
| 545 | u8 i, hi = 0; |
| 546 | u32 valid; |
| 547 | |
| 548 | for (i = 0; i < rate_table->rate_cnt; i++) { |
| 549 | valid = (ath_rc_priv->single_stream ? |
| 550 | rate_table->info[i].valid_single_stream : |
| 551 | rate_table->info[i].valid); |
| 552 | if (valid == TRUE) { |
| 553 | u32 phy = rate_table->info[i].phy; |
| 554 | u8 valid_rate_count = 0; |
| 555 | |
| 556 | if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) |
| 557 | continue; |
| 558 | |
| 559 | valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy]; |
| 560 | |
| 561 | ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i; |
| 562 | ath_rc_priv->valid_phy_ratecnt[phy] += 1; |
| 563 | ath_rc_set_valid_txmask(ath_rc_priv, i, TRUE); |
| 564 | hi = A_MAX(hi, i); |
| 565 | } |
| 566 | } |
| 567 | return hi; |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * Initialize the Valid Rate Index from Rate Set |
| 572 | */ |
| 573 | static u8 |
| 574 | ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv, |
| 575 | const struct ath_rate_table *rate_table, |
| 576 | struct ath_rateset *rateset, |
| 577 | u32 capflag) |
| 578 | { |
| 579 | /* XXX: Clean me up and make identation friendly */ |
| 580 | u8 i, j, hi = 0; |
| 581 | |
| 582 | /* Use intersection of working rates and valid rates */ |
| 583 | for (i = 0; i < rateset->rs_nrates; i++) { |
| 584 | for (j = 0; j < rate_table->rate_cnt; j++) { |
| 585 | u32 phy = rate_table->info[j].phy; |
| 586 | u32 valid = (ath_rc_priv->single_stream ? |
| 587 | rate_table->info[j].valid_single_stream : |
| 588 | rate_table->info[j].valid); |
| 589 | |
| 590 | /* We allow a rate only if its valid and the |
| 591 | * capflag matches one of the validity |
| 592 | * (TRUE/TRUE_20/TRUE_40) flags */ |
| 593 | |
| 594 | /* XXX: catch the negative of this branch |
| 595 | * first and then continue */ |
| 596 | if (((rateset->rs_rates[i] & 0x7F) == |
| 597 | (rate_table->info[j].dot11rate & 0x7F)) && |
| 598 | ((valid & WLAN_RC_CAP_MODE(capflag)) == |
| 599 | WLAN_RC_CAP_MODE(capflag)) && |
| 600 | !WLAN_RC_PHY_HT(phy)) { |
| 601 | |
| 602 | u8 valid_rate_count = 0; |
| 603 | |
| 604 | if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) |
| 605 | continue; |
| 606 | |
| 607 | valid_rate_count = |
| 608 | ath_rc_priv->valid_phy_ratecnt[phy]; |
| 609 | |
| 610 | ath_rc_priv->valid_phy_rateidx[phy] |
| 611 | [valid_rate_count] = j; |
| 612 | ath_rc_priv->valid_phy_ratecnt[phy] += 1; |
| 613 | ath_rc_set_valid_txmask(ath_rc_priv, j, TRUE); |
| 614 | hi = A_MAX(hi, j); |
| 615 | } |
| 616 | } |
| 617 | } |
| 618 | return hi; |
| 619 | } |
| 620 | |
| 621 | static u8 |
| 622 | ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv, |
| 623 | const struct ath_rate_table *rate_table, |
| 624 | u8 *mcs_set, u32 capflag) |
| 625 | { |
| 626 | u8 i, j, hi = 0; |
| 627 | |
| 628 | /* Use intersection of working rates and valid rates */ |
| 629 | for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) { |
| 630 | for (j = 0; j < rate_table->rate_cnt; j++) { |
| 631 | u32 phy = rate_table->info[j].phy; |
| 632 | u32 valid = (ath_rc_priv->single_stream ? |
| 633 | rate_table->info[j].valid_single_stream : |
| 634 | rate_table->info[j].valid); |
| 635 | |
| 636 | if (((((struct ath_rateset *) |
| 637 | mcs_set)->rs_rates[i] & 0x7F) != |
| 638 | (rate_table->info[j].dot11rate & 0x7F)) || |
| 639 | !WLAN_RC_PHY_HT(phy) || |
| 640 | !WLAN_RC_PHY_HT_VALID(valid, capflag)) |
| 641 | continue; |
| 642 | |
| 643 | if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) |
| 644 | continue; |
| 645 | |
| 646 | ath_rc_priv->valid_phy_rateidx[phy] |
| 647 | [ath_rc_priv->valid_phy_ratecnt[phy]] = j; |
| 648 | ath_rc_priv->valid_phy_ratecnt[phy] += 1; |
| 649 | ath_rc_set_valid_txmask(ath_rc_priv, j, TRUE); |
| 650 | hi = A_MAX(hi, j); |
| 651 | } |
| 652 | } |
| 653 | return hi; |
| 654 | } |
| 655 | |
| 656 | struct ath_rate_softc *ath_rate_attach(struct ath_softc *sc) |
| 657 | { |
| 658 | struct ath_rate_softc *asc; |
| 659 | |
| 660 | asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL); |
| 661 | if (asc == NULL) |
| 662 | return NULL; |
| 663 | |
| 664 | asc->hw_rate_table[ATH9K_MODE_11B] = &ar5416_11b_ratetable; |
| 665 | asc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable; |
| 666 | asc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable; |
| 667 | |
| 668 | asc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable; |
| 669 | asc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable; |
| 670 | |
| 671 | asc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] = |
| 672 | &ar5416_11na_ratetable; |
| 673 | asc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] = |
| 674 | &ar5416_11na_ratetable; |
| 675 | asc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] = |
| 676 | &ar5416_11ng_ratetable; |
| 677 | asc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] = |
| 678 | &ar5416_11ng_ratetable; |
| 679 | |
| 680 | /* Save Maximum TX Trigger Level (used for 11n) */ |
| 681 | tx_triglevel_max = sc->sc_ah->ah_caps.tx_triglevel_max; |
| 682 | |
| 683 | return asc; |
| 684 | } |
| 685 | |
| 686 | void ath_rate_detach(struct ath_rate_softc *asc) |
| 687 | { |
| 688 | if (asc != NULL) |
| 689 | kfree(asc); |
| 690 | } |
| 691 | |
| 692 | u8 ath_rate_findrateix(struct ath_softc *sc, |
| 693 | u8 dot11rate) |
| 694 | { |
| 695 | const struct ath_rate_table *ratetable; |
| 696 | struct ath_rate_softc *rsc = sc->sc_rc; |
| 697 | int i; |
| 698 | |
| 699 | ratetable = rsc->hw_rate_table[sc->sc_curmode]; |
| 700 | |
| 701 | if (WARN_ON(!ratetable)) |
| 702 | return 0; |
| 703 | |
| 704 | for (i = 0; i < ratetable->rate_cnt; i++) { |
| 705 | if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f)) |
| 706 | return i; |
| 707 | } |
| 708 | |
| 709 | return 0; |
| 710 | } |
| 711 | |
| 712 | static u8 ath_rc_ratefind_ht(struct ath_softc *sc, |
| 713 | struct ath_rate_node *ath_rc_priv, |
| 714 | const struct ath_rate_table *rate_table, |
| 715 | int probe_allowed, int *is_probing, |
| 716 | int is_retry) |
| 717 | { |
| 718 | u32 dt, best_thruput, this_thruput, now_msec; |
| 719 | u8 rate, next_rate, best_rate, maxindex, minindex; |
| 720 | int8_t rssi_last, rssi_reduce = 0, index = 0; |
| 721 | |
| 722 | *is_probing = FALSE; |
| 723 | |
| 724 | rssi_last = median(ath_rc_priv->rssi_last, |
| 725 | ath_rc_priv->rssi_last_prev, |
| 726 | ath_rc_priv->rssi_last_prev2); |
| 727 | |
| 728 | /* |
| 729 | * Age (reduce) last ack rssi based on how old it is. |
| 730 | * The bizarre numbers are so the delta is 160msec, |
| 731 | * meaning we divide by 16. |
| 732 | * 0msec <= dt <= 25msec: don't derate |
| 733 | * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB |
| 734 | * 185msec <= dt: derate by 10dB |
| 735 | */ |
| 736 | |
| 737 | now_msec = jiffies_to_msecs(jiffies); |
| 738 | dt = now_msec - ath_rc_priv->rssi_time; |
| 739 | |
| 740 | if (dt >= 185) |
| 741 | rssi_reduce = 10; |
| 742 | else if (dt >= 25) |
| 743 | rssi_reduce = (u8)((dt - 25) >> 4); |
| 744 | |
| 745 | /* Now reduce rssi_last by rssi_reduce */ |
| 746 | if (rssi_last < rssi_reduce) |
| 747 | rssi_last = 0; |
| 748 | else |
| 749 | rssi_last -= rssi_reduce; |
| 750 | |
| 751 | /* |
| 752 | * Now look up the rate in the rssi table and return it. |
| 753 | * If no rates match then we return 0 (lowest rate) |
| 754 | */ |
| 755 | |
| 756 | best_thruput = 0; |
| 757 | maxindex = ath_rc_priv->max_valid_rate-1; |
| 758 | |
| 759 | minindex = 0; |
| 760 | best_rate = minindex; |
| 761 | |
| 762 | /* |
| 763 | * Try the higher rate first. It will reduce memory moving time |
| 764 | * if we have very good channel characteristics. |
| 765 | */ |
| 766 | for (index = maxindex; index >= minindex ; index--) { |
| 767 | u8 per_thres; |
| 768 | |
| 769 | rate = ath_rc_priv->valid_rate_index[index]; |
| 770 | if (rate > ath_rc_priv->rate_max_phy) |
| 771 | continue; |
| 772 | |
| 773 | /* |
| 774 | * For TCP the average collision rate is around 11%, |
| 775 | * so we ignore PERs less than this. This is to |
| 776 | * prevent the rate we are currently using (whose |
| 777 | * PER might be in the 10-15 range because of TCP |
| 778 | * collisions) looking worse than the next lower |
| 779 | * rate whose PER has decayed close to 0. If we |
| 780 | * used to next lower rate, its PER would grow to |
| 781 | * 10-15 and we would be worse off then staying |
| 782 | * at the current rate. |
| 783 | */ |
| 784 | per_thres = ath_rc_priv->state[rate].per; |
| 785 | if (per_thres < 12) |
| 786 | per_thres = 12; |
| 787 | |
| 788 | this_thruput = rate_table->info[rate].user_ratekbps * |
| 789 | (100 - per_thres); |
| 790 | |
| 791 | if (best_thruput <= this_thruput) { |
| 792 | best_thruput = this_thruput; |
| 793 | best_rate = rate; |
| 794 | } |
| 795 | } |
| 796 | |
| 797 | rate = best_rate; |
| 798 | |
| 799 | /* if we are retrying for more than half the number |
| 800 | * of max retries, use the min rate for the next retry |
| 801 | */ |
| 802 | if (is_retry) |
| 803 | rate = ath_rc_priv->valid_rate_index[minindex]; |
| 804 | |
| 805 | ath_rc_priv->rssi_last_lookup = rssi_last; |
| 806 | |
| 807 | /* |
| 808 | * Must check the actual rate (ratekbps) to account for |
| 809 | * non-monoticity of 11g's rate table |
| 810 | */ |
| 811 | |
| 812 | if (rate >= ath_rc_priv->rate_max_phy && probe_allowed) { |
| 813 | rate = ath_rc_priv->rate_max_phy; |
| 814 | |
| 815 | /* Probe the next allowed phy state */ |
| 816 | /* FIXME:XXXX Check to make sure ratMax is checked properly */ |
| 817 | if (ath_rc_get_nextvalid_txrate(rate_table, |
| 818 | ath_rc_priv, rate, &next_rate) && |
| 819 | (now_msec - ath_rc_priv->probe_time > |
| 820 | rate_table->probe_interval) && |
| 821 | (ath_rc_priv->hw_maxretry_pktcnt >= 1)) { |
| 822 | rate = next_rate; |
| 823 | ath_rc_priv->probe_rate = rate; |
| 824 | ath_rc_priv->probe_time = now_msec; |
| 825 | ath_rc_priv->hw_maxretry_pktcnt = 0; |
| 826 | *is_probing = TRUE; |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | /* |
| 831 | * Make sure rate is not higher than the allowed maximum. |
| 832 | * We should also enforce the min, but I suspect the min is |
| 833 | * normally 1 rather than 0 because of the rate 9 vs 6 issue |
| 834 | * in the old code. |
| 835 | */ |
| 836 | if (rate > (ath_rc_priv->rate_table_size - 1)) |
| 837 | rate = ath_rc_priv->rate_table_size - 1; |
| 838 | |
| 839 | ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) || |
| 840 | (rate_table->info[rate].valid_single_stream && |
| 841 | ath_rc_priv->single_stream)); |
| 842 | |
| 843 | return rate; |
| 844 | } |
| 845 | |
| 846 | static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table , |
| 847 | struct ath_rc_series *series, |
| 848 | u8 tries, |
| 849 | u8 rix, |
| 850 | int rtsctsenable) |
| 851 | { |
| 852 | series->tries = tries; |
| 853 | series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) | |
| 854 | (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ? |
| 855 | ATH_RC_DS_FLAG : 0) | |
| 856 | (WLAN_RC_PHY_40(rate_table->info[rix].phy) ? |
| 857 | ATH_RC_CW40_FLAG : 0) | |
| 858 | (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ? |
| 859 | ATH_RC_SGI_FLAG : 0); |
| 860 | |
| 861 | series->rix = rate_table->info[rix].base_index; |
| 862 | series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen; |
| 863 | } |
| 864 | |
| 865 | static u8 ath_rc_rate_getidx(struct ath_softc *sc, |
| 866 | struct ath_rate_node *ath_rc_priv, |
| 867 | const struct ath_rate_table *rate_table, |
| 868 | u8 rix, u16 stepdown, |
| 869 | u16 min_rate) |
| 870 | { |
| 871 | u32 j; |
| 872 | u8 nextindex; |
| 873 | |
| 874 | if (min_rate) { |
| 875 | for (j = RATE_TABLE_SIZE; j > 0; j--) { |
| 876 | if (ath_rc_get_nextlowervalid_txrate(rate_table, |
| 877 | ath_rc_priv, rix, &nextindex)) |
| 878 | rix = nextindex; |
| 879 | else |
| 880 | break; |
| 881 | } |
| 882 | } else { |
| 883 | for (j = stepdown; j > 0; j--) { |
| 884 | if (ath_rc_get_nextlowervalid_txrate(rate_table, |
| 885 | ath_rc_priv, rix, &nextindex)) |
| 886 | rix = nextindex; |
| 887 | else |
| 888 | break; |
| 889 | } |
| 890 | } |
| 891 | return rix; |
| 892 | } |
| 893 | |
| 894 | static void ath_rc_ratefind(struct ath_softc *sc, |
| 895 | struct ath_rate_node *ath_rc_priv, |
| 896 | int num_tries, int num_rates, unsigned int rcflag, |
| 897 | struct ath_rc_series series[], int *is_probe, |
| 898 | int is_retry) |
| 899 | { |
| 900 | u8 try_per_rate = 0, i = 0, rix, nrix; |
| 901 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| 902 | struct ath_rate_table *rate_table; |
| 903 | |
| 904 | rate_table = |
| 905 | (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; |
| 906 | rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, |
| 907 | (rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0, |
| 908 | is_probe, is_retry); |
| 909 | nrix = rix; |
| 910 | |
| 911 | if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) { |
| 912 | /* set one try for probe rates. For the |
| 913 | * probes don't enable rts */ |
| 914 | ath_rc_rate_set_series(rate_table, |
| 915 | &series[i++], 1, nrix, FALSE); |
| 916 | |
| 917 | try_per_rate = (num_tries/num_rates); |
| 918 | /* Get the next tried/allowed rate. No RTS for the next series |
| 919 | * after the probe rate |
| 920 | */ |
| 921 | nrix = ath_rc_rate_getidx(sc, |
| 922 | ath_rc_priv, rate_table, nrix, 1, FALSE); |
| 923 | ath_rc_rate_set_series(rate_table, |
| 924 | &series[i++], try_per_rate, nrix, 0); |
| 925 | } else { |
| 926 | try_per_rate = (num_tries/num_rates); |
| 927 | /* Set the choosen rate. No RTS for first series entry. */ |
| 928 | ath_rc_rate_set_series(rate_table, |
| 929 | &series[i++], try_per_rate, nrix, FALSE); |
| 930 | } |
| 931 | |
| 932 | /* Fill in the other rates for multirate retry */ |
| 933 | for ( ; i < num_rates; i++) { |
| 934 | u8 try_num; |
| 935 | u8 min_rate; |
| 936 | |
| 937 | try_num = ((i + 1) == num_rates) ? |
| 938 | num_tries - (try_per_rate * i) : try_per_rate ; |
| 939 | min_rate = (((i + 1) == num_rates) && |
| 940 | (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0; |
| 941 | |
| 942 | nrix = ath_rc_rate_getidx(sc, ath_rc_priv, |
| 943 | rate_table, nrix, 1, min_rate); |
| 944 | /* All other rates in the series have RTS enabled */ |
| 945 | ath_rc_rate_set_series(rate_table, |
| 946 | &series[i], try_num, nrix, TRUE); |
| 947 | } |
| 948 | |
| 949 | /* |
| 950 | * NB:Change rate series to enable aggregation when operating |
| 951 | * at lower MCS rates. When first rate in series is MCS2 |
| 952 | * in HT40 @ 2.4GHz, series should look like: |
| 953 | * |
| 954 | * {MCS2, MCS1, MCS0, MCS0}. |
| 955 | * |
| 956 | * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should |
| 957 | * look like: |
| 958 | * |
| 959 | * {MCS3, MCS2, MCS1, MCS1} |
| 960 | * |
| 961 | * So, set fourth rate in series to be same as third one for |
| 962 | * above conditions. |
| 963 | */ |
| 964 | if ((sc->sc_curmode == ATH9K_MODE_11NG_HT20) || |
| 965 | (sc->sc_curmode == ATH9K_MODE_11NG_HT40PLUS) || |
| 966 | (sc->sc_curmode == ATH9K_MODE_11NG_HT40MINUS)) { |
| 967 | u8 dot11rate = rate_table->info[rix].dot11rate; |
| 968 | u8 phy = rate_table->info[rix].phy; |
| 969 | if (i == 4 && |
| 970 | ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || |
| 971 | (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { |
| 972 | series[3].rix = series[2].rix; |
| 973 | series[3].flags = series[2].flags; |
| 974 | series[3].max_4ms_framelen = series[2].max_4ms_framelen; |
| 975 | } |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | /* |
| 980 | * Return the Tx rate series. |
| 981 | */ |
| 982 | static void ath_rate_findrate(struct ath_softc *sc, |
| 983 | struct ath_rate_node *ath_rc_priv, |
| 984 | int num_tries, |
| 985 | int num_rates, |
| 986 | unsigned int rcflag, |
| 987 | struct ath_rc_series series[], |
| 988 | int *is_probe, |
| 989 | int is_retry) |
| 990 | { |
| 991 | if (!num_rates || !num_tries) |
| 992 | return; |
| 993 | |
| 994 | ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates, |
| 995 | rcflag, series, is_probe, is_retry); |
| 996 | } |
| 997 | |
| 998 | static void ath_rc_update_ht(struct ath_softc *sc, |
| 999 | struct ath_rate_node *ath_rc_priv, |
| 1000 | struct ath_tx_info_priv *info_priv, |
| 1001 | int tx_rate, int xretries, int retries) |
| 1002 | { |
| 1003 | u32 now_msec = jiffies_to_msecs(jiffies); |
| 1004 | int state_change = FALSE, rate, count; |
| 1005 | u8 last_per; |
| 1006 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| 1007 | struct ath_rate_table *rate_table = |
| 1008 | (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; |
| 1009 | |
| 1010 | static u32 nretry_to_per_lookup[10] = { |
| 1011 | 100 * 0 / 1, |
| 1012 | 100 * 1 / 4, |
| 1013 | 100 * 1 / 2, |
| 1014 | 100 * 3 / 4, |
| 1015 | 100 * 4 / 5, |
| 1016 | 100 * 5 / 6, |
| 1017 | 100 * 6 / 7, |
| 1018 | 100 * 7 / 8, |
| 1019 | 100 * 8 / 9, |
| 1020 | 100 * 9 / 10 |
| 1021 | }; |
| 1022 | |
| 1023 | if (!ath_rc_priv) |
| 1024 | return; |
| 1025 | |
| 1026 | ASSERT(tx_rate >= 0); |
| 1027 | if (tx_rate < 0) |
| 1028 | return; |
| 1029 | |
| 1030 | /* To compensate for some imbalance between ctrl and ext. channel */ |
| 1031 | |
| 1032 | if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy)) |
| 1033 | info_priv->tx.ts_rssi = |
| 1034 | info_priv->tx.ts_rssi < 3 ? 0 : |
| 1035 | info_priv->tx.ts_rssi - 3; |
| 1036 | |
| 1037 | last_per = ath_rc_priv->state[tx_rate].per; |
| 1038 | |
| 1039 | if (xretries) { |
| 1040 | /* Update the PER. */ |
| 1041 | if (xretries == 1) { |
| 1042 | ath_rc_priv->state[tx_rate].per += 30; |
| 1043 | if (ath_rc_priv->state[tx_rate].per > 100) |
| 1044 | ath_rc_priv->state[tx_rate].per = 100; |
| 1045 | } else { |
| 1046 | /* xretries == 2 */ |
| 1047 | count = ARRAY_SIZE(nretry_to_per_lookup); |
| 1048 | if (retries >= count) |
| 1049 | retries = count - 1; |
| 1050 | /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ |
| 1051 | ath_rc_priv->state[tx_rate].per = |
| 1052 | (u8)(ath_rc_priv->state[tx_rate].per - |
| 1053 | (ath_rc_priv->state[tx_rate].per >> 3) + |
| 1054 | ((100) >> 3)); |
| 1055 | } |
| 1056 | |
| 1057 | /* xretries == 1 or 2 */ |
| 1058 | |
| 1059 | if (ath_rc_priv->probe_rate == tx_rate) |
| 1060 | ath_rc_priv->probe_rate = 0; |
| 1061 | |
| 1062 | } else { /* xretries == 0 */ |
| 1063 | /* Update the PER. */ |
| 1064 | /* Make sure it doesn't index out of array's bounds. */ |
| 1065 | count = ARRAY_SIZE(nretry_to_per_lookup); |
| 1066 | if (retries >= count) |
| 1067 | retries = count - 1; |
| 1068 | if (info_priv->n_bad_frames) { |
| 1069 | /* new_PER = 7/8*old_PER + 1/8*(currentPER) |
| 1070 | * Assuming that n_frames is not 0. The current PER |
| 1071 | * from the retries is 100 * retries / (retries+1), |
| 1072 | * since the first retries attempts failed, and the |
| 1073 | * next one worked. For the one that worked, |
| 1074 | * n_bad_frames subframes out of n_frames wored, |
| 1075 | * so the PER for that part is |
| 1076 | * 100 * n_bad_frames / n_frames, and it contributes |
| 1077 | * 100 * n_bad_frames / (n_frames * (retries+1)) to |
| 1078 | * the above PER. The expression below is a |
| 1079 | * simplified version of the sum of these two terms. |
| 1080 | */ |
| 1081 | if (info_priv->n_frames > 0) |
| 1082 | ath_rc_priv->state[tx_rate].per |
| 1083 | = (u8) |
| 1084 | (ath_rc_priv->state[tx_rate].per - |
| 1085 | (ath_rc_priv->state[tx_rate].per >> 3) + |
| 1086 | ((100*(retries*info_priv->n_frames + |
| 1087 | info_priv->n_bad_frames) / |
| 1088 | (info_priv->n_frames * |
| 1089 | (retries+1))) >> 3)); |
| 1090 | } else { |
| 1091 | /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ |
| 1092 | |
| 1093 | ath_rc_priv->state[tx_rate].per = (u8) |
| 1094 | (ath_rc_priv->state[tx_rate].per - |
| 1095 | (ath_rc_priv->state[tx_rate].per >> 3) + |
| 1096 | (nretry_to_per_lookup[retries] >> 3)); |
| 1097 | } |
| 1098 | |
| 1099 | ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev; |
| 1100 | ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last; |
| 1101 | ath_rc_priv->rssi_last = info_priv->tx.ts_rssi; |
| 1102 | ath_rc_priv->rssi_time = now_msec; |
| 1103 | |
| 1104 | /* |
| 1105 | * If we got at most one retry then increase the max rate if |
| 1106 | * this was a probe. Otherwise, ignore the probe. |
| 1107 | */ |
| 1108 | |
| 1109 | if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) { |
| 1110 | if (retries > 0 || 2 * info_priv->n_bad_frames > |
| 1111 | info_priv->n_frames) { |
| 1112 | /* |
| 1113 | * Since we probed with just a single attempt, |
| 1114 | * any retries means the probe failed. Also, |
| 1115 | * if the attempt worked, but more than half |
| 1116 | * the subframes were bad then also consider |
| 1117 | * the probe a failure. |
| 1118 | */ |
| 1119 | ath_rc_priv->probe_rate = 0; |
| 1120 | } else { |
| 1121 | u8 probe_rate = 0; |
| 1122 | |
| 1123 | ath_rc_priv->rate_max_phy = ath_rc_priv->probe_rate; |
| 1124 | probe_rate = ath_rc_priv->probe_rate; |
| 1125 | |
| 1126 | if (ath_rc_priv->state[probe_rate].per > 30) |
| 1127 | ath_rc_priv->state[probe_rate].per = 20; |
| 1128 | |
| 1129 | ath_rc_priv->probe_rate = 0; |
| 1130 | |
| 1131 | /* |
| 1132 | * Since this probe succeeded, we allow the next |
| 1133 | * probe twice as soon. This allows the maxRate |
| 1134 | * to move up faster if the probes are |
| 1135 | * succesful. |
| 1136 | */ |
| 1137 | ath_rc_priv->probe_time = now_msec - |
| 1138 | rate_table->probe_interval / 2; |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | if (retries > 0) { |
| 1143 | /* |
| 1144 | * Don't update anything. We don't know if |
| 1145 | * this was because of collisions or poor signal. |
| 1146 | * |
| 1147 | * Later: if rssi_ack is close to |
| 1148 | * ath_rc_priv->state[txRate].rssi_thres and we see lots |
| 1149 | * of retries, then we could increase |
| 1150 | * ath_rc_priv->state[txRate].rssi_thres. |
| 1151 | */ |
| 1152 | ath_rc_priv->hw_maxretry_pktcnt = 0; |
| 1153 | } else { |
| 1154 | /* |
| 1155 | * It worked with no retries. First ignore bogus (small) |
| 1156 | * rssi_ack values. |
| 1157 | */ |
| 1158 | if (tx_rate == ath_rc_priv->rate_max_phy && |
| 1159 | ath_rc_priv->hw_maxretry_pktcnt < 255) { |
| 1160 | ath_rc_priv->hw_maxretry_pktcnt++; |
| 1161 | } |
| 1162 | |
| 1163 | if (info_priv->tx.ts_rssi >= |
| 1164 | rate_table->info[tx_rate].rssi_ack_validmin) { |
| 1165 | /* Average the rssi */ |
| 1166 | if (tx_rate != ath_rc_priv->rssi_sum_rate) { |
| 1167 | ath_rc_priv->rssi_sum_rate = tx_rate; |
| 1168 | ath_rc_priv->rssi_sum = |
| 1169 | ath_rc_priv->rssi_sum_cnt = 0; |
| 1170 | } |
| 1171 | |
| 1172 | ath_rc_priv->rssi_sum += info_priv->tx.ts_rssi; |
| 1173 | ath_rc_priv->rssi_sum_cnt++; |
| 1174 | |
| 1175 | if (ath_rc_priv->rssi_sum_cnt > 4) { |
| 1176 | int32_t rssi_ackAvg = |
| 1177 | (ath_rc_priv->rssi_sum + 2) / 4; |
| 1178 | int8_t rssi_thres = |
| 1179 | ath_rc_priv->state[tx_rate]. |
| 1180 | rssi_thres; |
| 1181 | int8_t rssi_ack_vmin = |
| 1182 | rate_table->info[tx_rate]. |
| 1183 | rssi_ack_validmin; |
| 1184 | |
| 1185 | ath_rc_priv->rssi_sum = |
| 1186 | ath_rc_priv->rssi_sum_cnt = 0; |
| 1187 | |
| 1188 | /* Now reduce the current |
| 1189 | * rssi threshold. */ |
| 1190 | if ((rssi_ackAvg < rssi_thres + 2) && |
| 1191 | (rssi_thres > rssi_ack_vmin)) { |
| 1192 | ath_rc_priv->state[tx_rate]. |
| 1193 | rssi_thres--; |
| 1194 | } |
| 1195 | |
| 1196 | state_change = TRUE; |
| 1197 | } |
| 1198 | } |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | /* For all cases */ |
| 1203 | |
| 1204 | /* |
| 1205 | * If this rate looks bad (high PER) then stop using it for |
| 1206 | * a while (except if we are probing). |
| 1207 | */ |
| 1208 | if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 && |
| 1209 | rate_table->info[tx_rate].ratekbps <= |
| 1210 | rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) { |
| 1211 | ath_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv, |
| 1212 | (u8) tx_rate, &ath_rc_priv->rate_max_phy); |
| 1213 | |
| 1214 | /* Don't probe for a little while. */ |
| 1215 | ath_rc_priv->probe_time = now_msec; |
| 1216 | } |
| 1217 | |
| 1218 | if (state_change) { |
| 1219 | /* |
| 1220 | * Make sure the rates above this have higher rssi thresholds. |
| 1221 | * (Note: Monotonicity is kept within the OFDM rates and |
| 1222 | * within the CCK rates. However, no adjustment is |
| 1223 | * made to keep the rssi thresholds monotonically |
| 1224 | * increasing between the CCK and OFDM rates.) |
| 1225 | */ |
| 1226 | for (rate = tx_rate; rate < |
| 1227 | ath_rc_priv->rate_table_size - 1; rate++) { |
| 1228 | if (rate_table->info[rate+1].phy != |
| 1229 | rate_table->info[tx_rate].phy) |
| 1230 | break; |
| 1231 | |
| 1232 | if (ath_rc_priv->state[rate].rssi_thres + |
| 1233 | rate_table->info[rate].rssi_ack_deltamin > |
| 1234 | ath_rc_priv->state[rate+1].rssi_thres) { |
| 1235 | ath_rc_priv->state[rate+1].rssi_thres = |
| 1236 | ath_rc_priv->state[rate]. |
| 1237 | rssi_thres + |
| 1238 | rate_table->info[rate]. |
| 1239 | rssi_ack_deltamin; |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | /* Make sure the rates below this have lower rssi thresholds. */ |
| 1244 | for (rate = tx_rate - 1; rate >= 0; rate--) { |
| 1245 | if (rate_table->info[rate].phy != |
| 1246 | rate_table->info[tx_rate].phy) |
| 1247 | break; |
| 1248 | |
| 1249 | if (ath_rc_priv->state[rate].rssi_thres + |
| 1250 | rate_table->info[rate].rssi_ack_deltamin > |
| 1251 | ath_rc_priv->state[rate+1].rssi_thres) { |
| 1252 | if (ath_rc_priv->state[rate+1].rssi_thres < |
| 1253 | rate_table->info[rate]. |
| 1254 | rssi_ack_deltamin) |
| 1255 | ath_rc_priv->state[rate].rssi_thres = 0; |
| 1256 | else { |
| 1257 | ath_rc_priv->state[rate].rssi_thres = |
| 1258 | ath_rc_priv->state[rate+1]. |
| 1259 | rssi_thres - |
| 1260 | rate_table->info[rate]. |
| 1261 | rssi_ack_deltamin; |
| 1262 | } |
| 1263 | |
| 1264 | if (ath_rc_priv->state[rate].rssi_thres < |
| 1265 | rate_table->info[rate]. |
| 1266 | rssi_ack_validmin) { |
| 1267 | ath_rc_priv->state[rate].rssi_thres = |
| 1268 | rate_table->info[rate]. |
| 1269 | rssi_ack_validmin; |
| 1270 | } |
| 1271 | } |
| 1272 | } |
| 1273 | } |
| 1274 | |
| 1275 | /* Make sure the rates below this have lower PER */ |
| 1276 | /* Monotonicity is kept only for rates below the current rate. */ |
| 1277 | if (ath_rc_priv->state[tx_rate].per < last_per) { |
| 1278 | for (rate = tx_rate - 1; rate >= 0; rate--) { |
| 1279 | if (rate_table->info[rate].phy != |
| 1280 | rate_table->info[tx_rate].phy) |
| 1281 | break; |
| 1282 | |
| 1283 | if (ath_rc_priv->state[rate].per > |
| 1284 | ath_rc_priv->state[rate+1].per) { |
| 1285 | ath_rc_priv->state[rate].per = |
| 1286 | ath_rc_priv->state[rate+1].per; |
| 1287 | } |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | /* Maintain monotonicity for rates above the current rate */ |
| 1292 | for (rate = tx_rate; rate < ath_rc_priv->rate_table_size - 1; rate++) { |
| 1293 | if (ath_rc_priv->state[rate+1].per < ath_rc_priv->state[rate].per) |
| 1294 | ath_rc_priv->state[rate+1].per = |
| 1295 | ath_rc_priv->state[rate].per; |
| 1296 | } |
| 1297 | |
| 1298 | /* Every so often, we reduce the thresholds and |
| 1299 | * PER (different for CCK and OFDM). */ |
| 1300 | if (now_msec - ath_rc_priv->rssi_down_time >= |
| 1301 | rate_table->rssi_reduce_interval) { |
| 1302 | |
| 1303 | for (rate = 0; rate < ath_rc_priv->rate_table_size; rate++) { |
| 1304 | if (ath_rc_priv->state[rate].rssi_thres > |
| 1305 | rate_table->info[rate].rssi_ack_validmin) |
| 1306 | ath_rc_priv->state[rate].rssi_thres -= 1; |
| 1307 | } |
| 1308 | ath_rc_priv->rssi_down_time = now_msec; |
| 1309 | } |
| 1310 | |
| 1311 | /* Every so often, we reduce the thresholds |
| 1312 | * and PER (different for CCK and OFDM). */ |
| 1313 | if (now_msec - ath_rc_priv->per_down_time >= |
| 1314 | rate_table->rssi_reduce_interval) { |
| 1315 | for (rate = 0; rate < ath_rc_priv->rate_table_size; rate++) { |
| 1316 | ath_rc_priv->state[rate].per = |
| 1317 | 7 * ath_rc_priv->state[rate].per / 8; |
| 1318 | } |
| 1319 | |
| 1320 | ath_rc_priv->per_down_time = now_msec; |
| 1321 | } |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * This routine is called in rate control callback tx_status() to give |
| 1326 | * the status of previous frames. |
| 1327 | */ |
| 1328 | static void ath_rc_update(struct ath_softc *sc, |
| 1329 | struct ath_rate_node *ath_rc_priv, |
| 1330 | struct ath_tx_info_priv *info_priv, int final_ts_idx, |
| 1331 | int xretries, int long_retry) |
| 1332 | { |
| 1333 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| 1334 | struct ath_rate_table *rate_table; |
| 1335 | struct ath_rc_series rcs[4]; |
| 1336 | u8 flags; |
| 1337 | u32 series = 0, rix; |
| 1338 | |
| 1339 | memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0])); |
| 1340 | rate_table = (struct ath_rate_table *) |
| 1341 | asc->hw_rate_table[sc->sc_curmode]; |
| 1342 | ASSERT(rcs[0].tries != 0); |
| 1343 | |
| 1344 | /* |
| 1345 | * If the first rate is not the final index, there |
| 1346 | * are intermediate rate failures to be processed. |
| 1347 | */ |
| 1348 | if (final_ts_idx != 0) { |
| 1349 | /* Process intermediate rates that failed.*/ |
| 1350 | for (series = 0; series < final_ts_idx ; series++) { |
| 1351 | if (rcs[series].tries != 0) { |
| 1352 | flags = rcs[series].flags; |
| 1353 | /* If HT40 and we have switched mode from |
| 1354 | * 40 to 20 => don't update */ |
| 1355 | if ((flags & ATH_RC_CW40_FLAG) && |
| 1356 | (ath_rc_priv->rc_phy_mode != |
| 1357 | (flags & ATH_RC_CW40_FLAG))) |
| 1358 | return; |
| 1359 | if ((flags & ATH_RC_CW40_FLAG) && |
| 1360 | (flags & ATH_RC_SGI_FLAG)) |
| 1361 | rix = rate_table->info[ |
| 1362 | rcs[series].rix].ht_index; |
| 1363 | else if (flags & ATH_RC_SGI_FLAG) |
| 1364 | rix = rate_table->info[ |
| 1365 | rcs[series].rix].sgi_index; |
| 1366 | else if (flags & ATH_RC_CW40_FLAG) |
| 1367 | rix = rate_table->info[ |
| 1368 | rcs[series].rix].cw40index; |
| 1369 | else |
| 1370 | rix = rate_table->info[ |
| 1371 | rcs[series].rix].base_index; |
| 1372 | ath_rc_update_ht(sc, ath_rc_priv, |
| 1373 | info_priv, rix, |
| 1374 | xretries ? 1 : 2, |
| 1375 | rcs[series].tries); |
| 1376 | } |
| 1377 | } |
| 1378 | } else { |
| 1379 | /* |
| 1380 | * Handle the special case of MIMO PS burst, where the second |
| 1381 | * aggregate is sent out with only one rate and one try. |
| 1382 | * Treating it as an excessive retry penalizes the rate |
| 1383 | * inordinately. |
| 1384 | */ |
| 1385 | if (rcs[0].tries == 1 && xretries == 1) |
| 1386 | xretries = 2; |
| 1387 | } |
| 1388 | |
| 1389 | flags = rcs[series].flags; |
| 1390 | /* If HT40 and we have switched mode from 40 to 20 => don't update */ |
| 1391 | if ((flags & ATH_RC_CW40_FLAG) && |
| 1392 | (ath_rc_priv->rc_phy_mode != (flags & ATH_RC_CW40_FLAG))) |
| 1393 | return; |
| 1394 | |
| 1395 | if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG)) |
| 1396 | rix = rate_table->info[rcs[series].rix].ht_index; |
| 1397 | else if (flags & ATH_RC_SGI_FLAG) |
| 1398 | rix = rate_table->info[rcs[series].rix].sgi_index; |
| 1399 | else if (flags & ATH_RC_CW40_FLAG) |
| 1400 | rix = rate_table->info[rcs[series].rix].cw40index; |
| 1401 | else |
| 1402 | rix = rate_table->info[rcs[series].rix].base_index; |
| 1403 | |
| 1404 | ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix, |
| 1405 | xretries, long_retry); |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * Process a tx descriptor for a completed transmit (success or failure). |
| 1410 | */ |
| 1411 | static void ath_rate_tx_complete(struct ath_softc *sc, |
| 1412 | struct ath_node *an, |
| 1413 | struct ath_rate_node *rc_priv, |
| 1414 | struct ath_tx_info_priv *info_priv) |
| 1415 | { |
| 1416 | int final_ts_idx = info_priv->tx.ts_rateindex; |
| 1417 | int tx_status = 0, is_underrun = 0; |
| 1418 | |
| 1419 | if (info_priv->tx.ts_status & ATH9K_TXERR_FILT) |
| 1420 | return; |
| 1421 | |
| 1422 | if (info_priv->tx.ts_rssi > 0) { |
| 1423 | ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi, |
| 1424 | info_priv->tx.ts_rssi); |
| 1425 | } |
| 1426 | |
| 1427 | /* |
| 1428 | * If underrun error is seen assume it as an excessive retry only |
| 1429 | * if prefetch trigger level have reached the max (0x3f for 5416) |
| 1430 | * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY |
| 1431 | * times. This affects how ratectrl updates PER for the failed rate. |
| 1432 | */ |
| 1433 | if (info_priv->tx.ts_flags & |
| 1434 | (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) && |
| 1435 | ((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) { |
| 1436 | tx_status = 1; |
| 1437 | is_underrun = 1; |
| 1438 | } |
| 1439 | |
| 1440 | if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) || |
| 1441 | (info_priv->tx.ts_status & ATH9K_TXERR_FIFO)) |
| 1442 | tx_status = 1; |
| 1443 | |
| 1444 | ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status, |
| 1445 | (is_underrun) ? ATH_11N_TXMAXTRY : |
| 1446 | info_priv->tx.ts_longretry); |
| 1447 | } |
| 1448 | |
| 1449 | /* |
| 1450 | * Update the SIB's rate control information |
| 1451 | * |
| 1452 | * This should be called when the supported rates change |
| 1453 | * (e.g. SME operation, wireless mode change) |
| 1454 | * |
| 1455 | * It will determine which rates are valid for use. |
| 1456 | */ |
| 1457 | static void ath_rc_sib_update(struct ath_softc *sc, |
| 1458 | struct ath_rate_node *ath_rc_priv, |
| 1459 | u32 capflag, int keep_state, |
| 1460 | struct ath_rateset *negotiated_rates, |
| 1461 | struct ath_rateset *negotiated_htrates) |
| 1462 | { |
| 1463 | struct ath_rate_table *rate_table = NULL; |
| 1464 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| 1465 | struct ath_rateset *rateset = negotiated_rates; |
| 1466 | u8 *ht_mcs = (u8 *)negotiated_htrates; |
| 1467 | u8 i, j, k, hi = 0, hthi = 0; |
| 1468 | |
| 1469 | rate_table = (struct ath_rate_table *) |
| 1470 | asc->hw_rate_table[sc->sc_curmode]; |
| 1471 | |
| 1472 | /* Initial rate table size. Will change depending |
| 1473 | * on the working rate set */ |
| 1474 | ath_rc_priv->rate_table_size = MAX_TX_RATE_TBL; |
| 1475 | |
| 1476 | /* Initialize thresholds according to the global rate table */ |
| 1477 | for (i = 0 ; (i < ath_rc_priv->rate_table_size) && (!keep_state); i++) { |
| 1478 | ath_rc_priv->state[i].rssi_thres = |
| 1479 | rate_table->info[i].rssi_ack_validmin; |
| 1480 | ath_rc_priv->state[i].per = 0; |
| 1481 | } |
| 1482 | |
| 1483 | /* Determine the valid rates */ |
| 1484 | ath_rc_init_valid_txmask(ath_rc_priv); |
| 1485 | |
| 1486 | for (i = 0; i < WLAN_RC_PHY_MAX; i++) { |
| 1487 | for (j = 0; j < MAX_TX_RATE_PHY; j++) |
| 1488 | ath_rc_priv->valid_phy_rateidx[i][j] = 0; |
| 1489 | ath_rc_priv->valid_phy_ratecnt[i] = 0; |
| 1490 | } |
| 1491 | ath_rc_priv->rc_phy_mode = (capflag & WLAN_RC_40_FLAG); |
| 1492 | |
| 1493 | /* Set stream capability */ |
| 1494 | ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1; |
| 1495 | |
| 1496 | if (!rateset->rs_nrates) { |
| 1497 | /* No working rate, just initialize valid rates */ |
| 1498 | hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table, |
| 1499 | capflag); |
| 1500 | } else { |
| 1501 | /* Use intersection of working rates and valid rates */ |
| 1502 | hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table, |
| 1503 | rateset, capflag); |
| 1504 | if (capflag & WLAN_RC_HT_FLAG) { |
| 1505 | hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv, |
| 1506 | rate_table, |
| 1507 | ht_mcs, |
| 1508 | capflag); |
| 1509 | } |
| 1510 | hi = A_MAX(hi, hthi); |
| 1511 | } |
| 1512 | |
| 1513 | ath_rc_priv->rate_table_size = hi + 1; |
| 1514 | ath_rc_priv->rate_max_phy = 0; |
| 1515 | ASSERT(ath_rc_priv->rate_table_size <= MAX_TX_RATE_TBL); |
| 1516 | |
| 1517 | for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { |
| 1518 | for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) { |
| 1519 | ath_rc_priv->valid_rate_index[k++] = |
| 1520 | ath_rc_priv->valid_phy_rateidx[i][j]; |
| 1521 | } |
| 1522 | |
| 1523 | if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE) |
| 1524 | || !ath_rc_priv->valid_phy_ratecnt[i]) |
| 1525 | continue; |
| 1526 | |
| 1527 | ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1]; |
| 1528 | } |
| 1529 | ASSERT(ath_rc_priv->rate_table_size <= MAX_TX_RATE_TBL); |
| 1530 | ASSERT(k <= MAX_TX_RATE_TBL); |
| 1531 | |
| 1532 | ath_rc_priv->max_valid_rate = k; |
| 1533 | /* |
| 1534 | * Some third party vendors don't send the supported rate series in |
| 1535 | * order. So sorting to make sure its in order, otherwise our RateFind |
| 1536 | * Algo will select wrong rates |
| 1537 | */ |
| 1538 | ath_rc_sort_validrates(rate_table, ath_rc_priv); |
| 1539 | ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4]; |
| 1540 | } |
| 1541 | |
| 1542 | void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv) |
| 1543 | { |
| 1544 | struct ath_softc *sc = hw->priv; |
| 1545 | u32 capflag = 0; |
| 1546 | |
| 1547 | if (hw->conf.ht.enabled) { |
| 1548 | capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG; |
| 1549 | if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040) |
| 1550 | capflag |= ATH_RC_CW40_FLAG; |
| 1551 | } |
| 1552 | |
| 1553 | rc_priv->ht_cap = |
| 1554 | ((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) | |
| 1555 | ((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) | |
| 1556 | ((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) | |
| 1557 | ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0); |
| 1558 | |
| 1559 | |
| 1560 | ath_rc_sib_update(sc, rc_priv, rc_priv->ht_cap, 0, |
| 1561 | &rc_priv->neg_rates, |
| 1562 | &rc_priv->neg_ht_rates); |
| 1563 | } |
| 1564 | |
| 1565 | /* Rate Control callbacks */ |
| 1566 | static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband, |
| 1567 | struct ieee80211_sta *sta, void *priv_sta, |
| 1568 | struct sk_buff *skb) |
| 1569 | { |
| 1570 | struct ath_softc *sc = priv; |
| 1571 | struct ath_tx_info_priv *tx_info_priv; |
| 1572 | struct ath_node *an; |
| 1573 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| 1574 | struct ieee80211_hdr *hdr; |
| 1575 | __le16 fc; |
| 1576 | |
| 1577 | hdr = (struct ieee80211_hdr *)skb->data; |
| 1578 | fc = hdr->frame_control; |
| 1579 | /* XXX: UGLY HACK!! */ |
| 1580 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif; |
| 1581 | |
| 1582 | an = (struct ath_node *)sta->drv_priv; |
| 1583 | |
| 1584 | if (tx_info_priv == NULL) |
| 1585 | return; |
| 1586 | |
| 1587 | if (an && priv_sta && ieee80211_is_data(fc)) |
| 1588 | ath_rate_tx_complete(sc, an, priv_sta, tx_info_priv); |
| 1589 | |
| 1590 | kfree(tx_info_priv); |
| 1591 | tx_info->control.vif = NULL; |
| 1592 | } |
| 1593 | |
| 1594 | static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, |
| 1595 | struct ieee80211_tx_rate_control *txrc) |
| 1596 | { |
| 1597 | struct ieee80211_supported_band *sband = txrc->sband; |
| 1598 | struct sk_buff *skb = txrc->skb; |
| 1599 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| 1600 | struct ath_softc *sc = priv; |
| 1601 | struct ieee80211_hw *hw = sc->hw; |
| 1602 | struct ath_tx_info_priv *tx_info_priv; |
| 1603 | struct ath_rate_node *ath_rc_priv = priv_sta; |
| 1604 | struct ath_node *an; |
| 1605 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| 1606 | int is_probe = FALSE; |
| 1607 | s8 lowest_idx; |
| 1608 | __le16 fc = hdr->frame_control; |
| 1609 | u8 *qc, tid; |
| 1610 | |
| 1611 | DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); |
| 1612 | |
| 1613 | /* allocate driver private area of tx_info, XXX: UGLY HACK! */ |
| 1614 | tx_info->control.vif = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC); |
| 1615 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif; |
| 1616 | ASSERT(tx_info_priv != NULL); |
| 1617 | |
| 1618 | lowest_idx = rate_lowest_index(sband, sta); |
| 1619 | tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10; |
| 1620 | /* lowest rate for management and multicast/broadcast frames */ |
| 1621 | if (!ieee80211_is_data(fc) || |
| 1622 | is_multicast_ether_addr(hdr->addr1) || !sta) { |
| 1623 | tx_info->control.rates[0].idx = lowest_idx; |
| 1624 | return; |
| 1625 | } |
| 1626 | |
| 1627 | /* Find tx rate for unicast frames */ |
| 1628 | ath_rate_findrate(sc, ath_rc_priv, |
| 1629 | ATH_11N_TXMAXTRY, 4, |
| 1630 | ATH_RC_PROBE_ALLOWED, |
| 1631 | tx_info_priv->rcs, |
| 1632 | &is_probe, |
| 1633 | false); |
| 1634 | #if 0 |
| 1635 | if (is_probe) |
| 1636 | sel->probe_idx = ath_rc_priv->tx_ratectrl.probe_rate; |
| 1637 | #endif |
| 1638 | |
| 1639 | /* Ratecontrol sometimes returns invalid rate index */ |
| 1640 | if (tx_info_priv->rcs[0].rix != 0xff) |
| 1641 | ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix; |
| 1642 | else |
| 1643 | tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix; |
| 1644 | |
| 1645 | tx_info->control.rates[0].idx = tx_info_priv->rcs[0].rix; |
| 1646 | |
| 1647 | /* Check if aggregation has to be enabled for this tid */ |
| 1648 | |
| 1649 | if (hw->conf.ht.enabled) { |
| 1650 | if (ieee80211_is_data_qos(fc)) { |
| 1651 | qc = ieee80211_get_qos_ctl(hdr); |
| 1652 | tid = qc[0] & 0xf; |
| 1653 | an = (struct ath_node *)sta->drv_priv; |
| 1654 | |
| 1655 | if(ath_tx_aggr_check(sc, an, tid)) |
| 1656 | ieee80211_start_tx_ba_session(hw, hdr->addr1, tid); |
| 1657 | } |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband, |
| 1662 | struct ieee80211_sta *sta, void *priv_sta) |
| 1663 | { |
| 1664 | struct ath_softc *sc = priv; |
| 1665 | struct ath_rate_node *ath_rc_priv = priv_sta; |
| 1666 | int i, j = 0; |
| 1667 | |
| 1668 | for (i = 0; i < sband->n_bitrates; i++) { |
| 1669 | if (sta->supp_rates[sband->band] & BIT(i)) { |
| 1670 | ath_rc_priv->neg_rates.rs_rates[j] |
| 1671 | = (sband->bitrates[i].bitrate * 2) / 10; |
| 1672 | j++; |
| 1673 | } |
| 1674 | } |
| 1675 | ath_rc_priv->neg_rates.rs_nrates = j; |
| 1676 | |
| 1677 | if (sta->ht_cap.ht_supported) { |
| 1678 | for (i = 0, j = 0; i < 77; i++) { |
| 1679 | if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8))) |
| 1680 | ath_rc_priv->neg_ht_rates.rs_rates[j++] = i; |
| 1681 | if (j == ATH_RATE_MAX) |
| 1682 | break; |
| 1683 | } |
| 1684 | ath_rc_priv->neg_ht_rates.rs_nrates = j; |
| 1685 | } |
| 1686 | |
| 1687 | ath_rc_node_update(sc->hw, priv_sta); |
| 1688 | } |
| 1689 | |
| 1690 | static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) |
| 1691 | { |
| 1692 | return hw->priv; |
| 1693 | } |
| 1694 | |
| 1695 | static void ath_rate_free(void *priv) |
| 1696 | { |
| 1697 | return; |
| 1698 | } |
| 1699 | |
| 1700 | static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) |
| 1701 | { |
| 1702 | struct ieee80211_vif *vif; |
| 1703 | struct ath_softc *sc = priv; |
| 1704 | struct ath_vap *avp; |
| 1705 | struct ath_rate_node *rate_priv; |
| 1706 | |
| 1707 | vif = sc->sc_vaps[0]; |
| 1708 | ASSERT(vif); |
| 1709 | |
| 1710 | avp = (void *)vif->drv_priv; |
| 1711 | |
| 1712 | rate_priv = kzalloc(sizeof(struct ath_rate_node), gfp); |
| 1713 | if (!rate_priv) { |
| 1714 | DPRINTF(sc, ATH_DBG_FATAL, |
| 1715 | "%s: Unable to allocate private rc structure\n", |
| 1716 | __func__); |
| 1717 | return NULL; |
| 1718 | } |
| 1719 | |
| 1720 | rate_priv->avp = avp; |
| 1721 | rate_priv->asc = sc->sc_rc; |
| 1722 | avp->rc_node = rate_priv; |
| 1723 | rate_priv->rssi_down_time = jiffies_to_msecs(jiffies); |
| 1724 | |
| 1725 | return rate_priv; |
| 1726 | } |
| 1727 | |
| 1728 | static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta, |
| 1729 | void *priv_sta) |
| 1730 | { |
| 1731 | struct ath_rate_node *rate_priv = priv_sta; |
| 1732 | |
| 1733 | kfree(rate_priv); |
| 1734 | } |
| 1735 | |
| 1736 | static struct rate_control_ops ath_rate_ops = { |
| 1737 | .module = NULL, |
| 1738 | .name = "ath9k_rate_control", |
| 1739 | .tx_status = ath_tx_status, |
| 1740 | .get_rate = ath_get_rate, |
| 1741 | .rate_init = ath_rate_init, |
| 1742 | .alloc = ath_rate_alloc, |
| 1743 | .free = ath_rate_free, |
| 1744 | .alloc_sta = ath_rate_alloc_sta, |
| 1745 | .free_sta = ath_rate_free_sta, |
| 1746 | }; |
| 1747 | |
| 1748 | int ath_rate_control_register(void) |
| 1749 | { |
| 1750 | return ieee80211_rate_control_register(&ath_rate_ops); |
| 1751 | } |
| 1752 | |
| 1753 | void ath_rate_control_unregister(void) |
| 1754 | { |
| 1755 | ieee80211_rate_control_unregister(&ath_rate_ops); |
| 1756 | } |
| 1757 | |