btrfs: switch check_direct_IO() to iov_iter
[deliverable/linux.git] / fs / btrfs / file.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
27#include <linux/aio.h>
28#include <linux/falloc.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
31#include <linux/statfs.h>
32#include <linux/compat.h>
33#include <linux/slab.h>
34#include <linux/btrfs.h>
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "print-tree.h"
40#include "tree-log.h"
41#include "locking.h"
42#include "volumes.h"
43
44static struct kmem_cache *btrfs_inode_defrag_cachep;
45/*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68};
69
70static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72{
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83}
84
85/* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
94static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
96{
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
101 int ret;
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
110 p = &parent->rb_left;
111 else if (ret > 0)
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
122 return -EEXIST;
123 }
124 }
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 return 0;
129}
130
131static inline int __need_auto_defrag(struct btrfs_root *root)
132{
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
138
139 return 1;
140}
141
142/*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148{
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
151 u64 transid;
152 int ret;
153
154 if (!__need_auto_defrag(root))
155 return 0;
156
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 if (!defrag)
167 return -ENOMEM;
168
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 }
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
187 return 0;
188}
189
190/*
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194 */
195static void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
197{
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216}
217
218/*
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
221 */
222static struct inode_defrag *
223btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224{
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
233
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
242 p = parent->rb_left;
243 else if (ret > 0)
244 p = parent->rb_right;
245 else
246 goto out;
247 }
248
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
253 else
254 entry = NULL;
255 }
256out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
261}
262
263void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264{
265 struct inode_defrag *defrag;
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284}
285
286#define BTRFS_DEFRAG_BATCH 1024
287
288static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290{
291 struct btrfs_root *inode_root;
292 struct inode *inode;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
295 int num_defrag;
296 int index;
297 int ret;
298
299 /* get the inode */
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
303
304 index = srcu_read_lock(&fs_info->subvol_srcu);
305
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
308 ret = PTR_ERR(inode_root);
309 goto cleanup;
310 }
311
312 key.objectid = defrag->ino;
313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 key.offset = 0;
315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 if (IS_ERR(inode)) {
317 ret = PTR_ERR(inode);
318 goto cleanup;
319 }
320 srcu_read_unlock(&fs_info->subvol_srcu, index);
321
322 /* do a chunk of defrag */
323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324 memset(&range, 0, sizeof(range));
325 range.len = (u64)-1;
326 range.start = defrag->last_offset;
327
328 sb_start_write(fs_info->sb);
329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 BTRFS_DEFRAG_BATCH);
331 sb_end_write(fs_info->sb);
332 /*
333 * if we filled the whole defrag batch, there
334 * must be more work to do. Queue this defrag
335 * again
336 */
337 if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 defrag->last_offset = range.start;
339 btrfs_requeue_inode_defrag(inode, defrag);
340 } else if (defrag->last_offset && !defrag->cycled) {
341 /*
342 * we didn't fill our defrag batch, but
343 * we didn't start at zero. Make sure we loop
344 * around to the start of the file.
345 */
346 defrag->last_offset = 0;
347 defrag->cycled = 1;
348 btrfs_requeue_inode_defrag(inode, defrag);
349 } else {
350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 }
352
353 iput(inode);
354 return 0;
355cleanup:
356 srcu_read_unlock(&fs_info->subvol_srcu, index);
357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 return ret;
359}
360
361/*
362 * run through the list of inodes in the FS that need
363 * defragging
364 */
365int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366{
367 struct inode_defrag *defrag;
368 u64 first_ino = 0;
369 u64 root_objectid = 0;
370
371 atomic_inc(&fs_info->defrag_running);
372 while (1) {
373 /* Pause the auto defragger. */
374 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 &fs_info->fs_state))
376 break;
377
378 if (!__need_auto_defrag(fs_info->tree_root))
379 break;
380
381 /* find an inode to defrag */
382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 first_ino);
384 if (!defrag) {
385 if (root_objectid || first_ino) {
386 root_objectid = 0;
387 first_ino = 0;
388 continue;
389 } else {
390 break;
391 }
392 }
393
394 first_ino = defrag->ino + 1;
395 root_objectid = defrag->root;
396
397 __btrfs_run_defrag_inode(fs_info, defrag);
398 }
399 atomic_dec(&fs_info->defrag_running);
400
401 /*
402 * during unmount, we use the transaction_wait queue to
403 * wait for the defragger to stop
404 */
405 wake_up(&fs_info->transaction_wait);
406 return 0;
407}
408
409/* simple helper to fault in pages and copy. This should go away
410 * and be replaced with calls into generic code.
411 */
412static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413 size_t write_bytes,
414 struct page **prepared_pages,
415 struct iov_iter *i)
416{
417 size_t copied = 0;
418 size_t total_copied = 0;
419 int pg = 0;
420 int offset = pos & (PAGE_CACHE_SIZE - 1);
421
422 while (write_bytes > 0) {
423 size_t count = min_t(size_t,
424 PAGE_CACHE_SIZE - offset, write_bytes);
425 struct page *page = prepared_pages[pg];
426 /*
427 * Copy data from userspace to the current page
428 */
429 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
430
431 /* Flush processor's dcache for this page */
432 flush_dcache_page(page);
433
434 /*
435 * if we get a partial write, we can end up with
436 * partially up to date pages. These add
437 * a lot of complexity, so make sure they don't
438 * happen by forcing this copy to be retried.
439 *
440 * The rest of the btrfs_file_write code will fall
441 * back to page at a time copies after we return 0.
442 */
443 if (!PageUptodate(page) && copied < count)
444 copied = 0;
445
446 iov_iter_advance(i, copied);
447 write_bytes -= copied;
448 total_copied += copied;
449
450 /* Return to btrfs_file_aio_write to fault page */
451 if (unlikely(copied == 0))
452 break;
453
454 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
455 offset += copied;
456 } else {
457 pg++;
458 offset = 0;
459 }
460 }
461 return total_copied;
462}
463
464/*
465 * unlocks pages after btrfs_file_write is done with them
466 */
467static void btrfs_drop_pages(struct page **pages, size_t num_pages)
468{
469 size_t i;
470 for (i = 0; i < num_pages; i++) {
471 /* page checked is some magic around finding pages that
472 * have been modified without going through btrfs_set_page_dirty
473 * clear it here
474 */
475 ClearPageChecked(pages[i]);
476 unlock_page(pages[i]);
477 mark_page_accessed(pages[i]);
478 page_cache_release(pages[i]);
479 }
480}
481
482/*
483 * after copy_from_user, pages need to be dirtied and we need to make
484 * sure holes are created between the current EOF and the start of
485 * any next extents (if required).
486 *
487 * this also makes the decision about creating an inline extent vs
488 * doing real data extents, marking pages dirty and delalloc as required.
489 */
490int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
491 struct page **pages, size_t num_pages,
492 loff_t pos, size_t write_bytes,
493 struct extent_state **cached)
494{
495 int err = 0;
496 int i;
497 u64 num_bytes;
498 u64 start_pos;
499 u64 end_of_last_block;
500 u64 end_pos = pos + write_bytes;
501 loff_t isize = i_size_read(inode);
502
503 start_pos = pos & ~((u64)root->sectorsize - 1);
504 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
505
506 end_of_last_block = start_pos + num_bytes - 1;
507 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
508 cached);
509 if (err)
510 return err;
511
512 for (i = 0; i < num_pages; i++) {
513 struct page *p = pages[i];
514 SetPageUptodate(p);
515 ClearPageChecked(p);
516 set_page_dirty(p);
517 }
518
519 /*
520 * we've only changed i_size in ram, and we haven't updated
521 * the disk i_size. There is no need to log the inode
522 * at this time.
523 */
524 if (end_pos > isize)
525 i_size_write(inode, end_pos);
526 return 0;
527}
528
529/*
530 * this drops all the extents in the cache that intersect the range
531 * [start, end]. Existing extents are split as required.
532 */
533void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
534 int skip_pinned)
535{
536 struct extent_map *em;
537 struct extent_map *split = NULL;
538 struct extent_map *split2 = NULL;
539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 u64 len = end - start + 1;
541 u64 gen;
542 int ret;
543 int testend = 1;
544 unsigned long flags;
545 int compressed = 0;
546 bool modified;
547
548 WARN_ON(end < start);
549 if (end == (u64)-1) {
550 len = (u64)-1;
551 testend = 0;
552 }
553 while (1) {
554 int no_splits = 0;
555
556 modified = false;
557 if (!split)
558 split = alloc_extent_map();
559 if (!split2)
560 split2 = alloc_extent_map();
561 if (!split || !split2)
562 no_splits = 1;
563
564 write_lock(&em_tree->lock);
565 em = lookup_extent_mapping(em_tree, start, len);
566 if (!em) {
567 write_unlock(&em_tree->lock);
568 break;
569 }
570 flags = em->flags;
571 gen = em->generation;
572 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
573 if (testend && em->start + em->len >= start + len) {
574 free_extent_map(em);
575 write_unlock(&em_tree->lock);
576 break;
577 }
578 start = em->start + em->len;
579 if (testend)
580 len = start + len - (em->start + em->len);
581 free_extent_map(em);
582 write_unlock(&em_tree->lock);
583 continue;
584 }
585 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
586 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
587 clear_bit(EXTENT_FLAG_LOGGING, &flags);
588 modified = !list_empty(&em->list);
589 if (no_splits)
590 goto next;
591
592 if (em->start < start) {
593 split->start = em->start;
594 split->len = start - em->start;
595
596 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
597 split->orig_start = em->orig_start;
598 split->block_start = em->block_start;
599
600 if (compressed)
601 split->block_len = em->block_len;
602 else
603 split->block_len = split->len;
604 split->orig_block_len = max(split->block_len,
605 em->orig_block_len);
606 split->ram_bytes = em->ram_bytes;
607 } else {
608 split->orig_start = split->start;
609 split->block_len = 0;
610 split->block_start = em->block_start;
611 split->orig_block_len = 0;
612 split->ram_bytes = split->len;
613 }
614
615 split->generation = gen;
616 split->bdev = em->bdev;
617 split->flags = flags;
618 split->compress_type = em->compress_type;
619 replace_extent_mapping(em_tree, em, split, modified);
620 free_extent_map(split);
621 split = split2;
622 split2 = NULL;
623 }
624 if (testend && em->start + em->len > start + len) {
625 u64 diff = start + len - em->start;
626
627 split->start = start + len;
628 split->len = em->start + em->len - (start + len);
629 split->bdev = em->bdev;
630 split->flags = flags;
631 split->compress_type = em->compress_type;
632 split->generation = gen;
633
634 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
635 split->orig_block_len = max(em->block_len,
636 em->orig_block_len);
637
638 split->ram_bytes = em->ram_bytes;
639 if (compressed) {
640 split->block_len = em->block_len;
641 split->block_start = em->block_start;
642 split->orig_start = em->orig_start;
643 } else {
644 split->block_len = split->len;
645 split->block_start = em->block_start
646 + diff;
647 split->orig_start = em->orig_start;
648 }
649 } else {
650 split->ram_bytes = split->len;
651 split->orig_start = split->start;
652 split->block_len = 0;
653 split->block_start = em->block_start;
654 split->orig_block_len = 0;
655 }
656
657 if (extent_map_in_tree(em)) {
658 replace_extent_mapping(em_tree, em, split,
659 modified);
660 } else {
661 ret = add_extent_mapping(em_tree, split,
662 modified);
663 ASSERT(ret == 0); /* Logic error */
664 }
665 free_extent_map(split);
666 split = NULL;
667 }
668next:
669 if (extent_map_in_tree(em))
670 remove_extent_mapping(em_tree, em);
671 write_unlock(&em_tree->lock);
672
673 /* once for us */
674 free_extent_map(em);
675 /* once for the tree*/
676 free_extent_map(em);
677 }
678 if (split)
679 free_extent_map(split);
680 if (split2)
681 free_extent_map(split2);
682}
683
684/*
685 * this is very complex, but the basic idea is to drop all extents
686 * in the range start - end. hint_block is filled in with a block number
687 * that would be a good hint to the block allocator for this file.
688 *
689 * If an extent intersects the range but is not entirely inside the range
690 * it is either truncated or split. Anything entirely inside the range
691 * is deleted from the tree.
692 */
693int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694 struct btrfs_root *root, struct inode *inode,
695 struct btrfs_path *path, u64 start, u64 end,
696 u64 *drop_end, int drop_cache,
697 int replace_extent,
698 u32 extent_item_size,
699 int *key_inserted)
700{
701 struct extent_buffer *leaf;
702 struct btrfs_file_extent_item *fi;
703 struct btrfs_key key;
704 struct btrfs_key new_key;
705 u64 ino = btrfs_ino(inode);
706 u64 search_start = start;
707 u64 disk_bytenr = 0;
708 u64 num_bytes = 0;
709 u64 extent_offset = 0;
710 u64 extent_end = 0;
711 int del_nr = 0;
712 int del_slot = 0;
713 int extent_type;
714 int recow;
715 int ret;
716 int modify_tree = -1;
717 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
718 int found = 0;
719 int leafs_visited = 0;
720
721 if (drop_cache)
722 btrfs_drop_extent_cache(inode, start, end - 1, 0);
723
724 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
725 modify_tree = 0;
726
727 while (1) {
728 recow = 0;
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
731 if (ret < 0)
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
739 }
740 ret = 0;
741 leafs_visited++;
742next_slot:
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
752 }
753 leafs_visited++;
754 leaf = path->nodes[0];
755 recow = 1;
756 }
757
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 if (key.objectid > ino ||
760 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
761 break;
762
763 fi = btrfs_item_ptr(leaf, path->slots[0],
764 struct btrfs_file_extent_item);
765 extent_type = btrfs_file_extent_type(leaf, fi);
766
767 if (extent_type == BTRFS_FILE_EXTENT_REG ||
768 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
769 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
770 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
771 extent_offset = btrfs_file_extent_offset(leaf, fi);
772 extent_end = key.offset +
773 btrfs_file_extent_num_bytes(leaf, fi);
774 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
775 extent_end = key.offset +
776 btrfs_file_extent_inline_len(leaf,
777 path->slots[0], fi);
778 } else {
779 WARN_ON(1);
780 extent_end = search_start;
781 }
782
783 if (extent_end <= search_start) {
784 path->slots[0]++;
785 goto next_slot;
786 }
787
788 found = 1;
789 search_start = max(key.offset, start);
790 if (recow || !modify_tree) {
791 modify_tree = -1;
792 btrfs_release_path(path);
793 continue;
794 }
795
796 /*
797 * | - range to drop - |
798 * | -------- extent -------- |
799 */
800 if (start > key.offset && end < extent_end) {
801 BUG_ON(del_nr > 0);
802 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
803 ret = -EOPNOTSUPP;
804 break;
805 }
806
807 memcpy(&new_key, &key, sizeof(new_key));
808 new_key.offset = start;
809 ret = btrfs_duplicate_item(trans, root, path,
810 &new_key);
811 if (ret == -EAGAIN) {
812 btrfs_release_path(path);
813 continue;
814 }
815 if (ret < 0)
816 break;
817
818 leaf = path->nodes[0];
819 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
820 struct btrfs_file_extent_item);
821 btrfs_set_file_extent_num_bytes(leaf, fi,
822 start - key.offset);
823
824 fi = btrfs_item_ptr(leaf, path->slots[0],
825 struct btrfs_file_extent_item);
826
827 extent_offset += start - key.offset;
828 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
829 btrfs_set_file_extent_num_bytes(leaf, fi,
830 extent_end - start);
831 btrfs_mark_buffer_dirty(leaf);
832
833 if (update_refs && disk_bytenr > 0) {
834 ret = btrfs_inc_extent_ref(trans, root,
835 disk_bytenr, num_bytes, 0,
836 root->root_key.objectid,
837 new_key.objectid,
838 start - extent_offset, 0);
839 BUG_ON(ret); /* -ENOMEM */
840 }
841 key.offset = start;
842 }
843 /*
844 * | ---- range to drop ----- |
845 * | -------- extent -------- |
846 */
847 if (start <= key.offset && end < extent_end) {
848 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
849 ret = -EOPNOTSUPP;
850 break;
851 }
852
853 memcpy(&new_key, &key, sizeof(new_key));
854 new_key.offset = end;
855 btrfs_set_item_key_safe(root, path, &new_key);
856
857 extent_offset += end - key.offset;
858 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
859 btrfs_set_file_extent_num_bytes(leaf, fi,
860 extent_end - end);
861 btrfs_mark_buffer_dirty(leaf);
862 if (update_refs && disk_bytenr > 0)
863 inode_sub_bytes(inode, end - key.offset);
864 break;
865 }
866
867 search_start = extent_end;
868 /*
869 * | ---- range to drop ----- |
870 * | -------- extent -------- |
871 */
872 if (start > key.offset && end >= extent_end) {
873 BUG_ON(del_nr > 0);
874 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
875 ret = -EOPNOTSUPP;
876 break;
877 }
878
879 btrfs_set_file_extent_num_bytes(leaf, fi,
880 start - key.offset);
881 btrfs_mark_buffer_dirty(leaf);
882 if (update_refs && disk_bytenr > 0)
883 inode_sub_bytes(inode, extent_end - start);
884 if (end == extent_end)
885 break;
886
887 path->slots[0]++;
888 goto next_slot;
889 }
890
891 /*
892 * | ---- range to drop ----- |
893 * | ------ extent ------ |
894 */
895 if (start <= key.offset && end >= extent_end) {
896 if (del_nr == 0) {
897 del_slot = path->slots[0];
898 del_nr = 1;
899 } else {
900 BUG_ON(del_slot + del_nr != path->slots[0]);
901 del_nr++;
902 }
903
904 if (update_refs &&
905 extent_type == BTRFS_FILE_EXTENT_INLINE) {
906 inode_sub_bytes(inode,
907 extent_end - key.offset);
908 extent_end = ALIGN(extent_end,
909 root->sectorsize);
910 } else if (update_refs && disk_bytenr > 0) {
911 ret = btrfs_free_extent(trans, root,
912 disk_bytenr, num_bytes, 0,
913 root->root_key.objectid,
914 key.objectid, key.offset -
915 extent_offset, 0);
916 BUG_ON(ret); /* -ENOMEM */
917 inode_sub_bytes(inode,
918 extent_end - key.offset);
919 }
920
921 if (end == extent_end)
922 break;
923
924 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
925 path->slots[0]++;
926 goto next_slot;
927 }
928
929 ret = btrfs_del_items(trans, root, path, del_slot,
930 del_nr);
931 if (ret) {
932 btrfs_abort_transaction(trans, root, ret);
933 break;
934 }
935
936 del_nr = 0;
937 del_slot = 0;
938
939 btrfs_release_path(path);
940 continue;
941 }
942
943 BUG_ON(1);
944 }
945
946 if (!ret && del_nr > 0) {
947 /*
948 * Set path->slots[0] to first slot, so that after the delete
949 * if items are move off from our leaf to its immediate left or
950 * right neighbor leafs, we end up with a correct and adjusted
951 * path->slots[0] for our insertion (if replace_extent != 0).
952 */
953 path->slots[0] = del_slot;
954 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
955 if (ret)
956 btrfs_abort_transaction(trans, root, ret);
957 }
958
959 leaf = path->nodes[0];
960 /*
961 * If btrfs_del_items() was called, it might have deleted a leaf, in
962 * which case it unlocked our path, so check path->locks[0] matches a
963 * write lock.
964 */
965 if (!ret && replace_extent && leafs_visited == 1 &&
966 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
967 path->locks[0] == BTRFS_WRITE_LOCK) &&
968 btrfs_leaf_free_space(root, leaf) >=
969 sizeof(struct btrfs_item) + extent_item_size) {
970
971 key.objectid = ino;
972 key.type = BTRFS_EXTENT_DATA_KEY;
973 key.offset = start;
974 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
975 struct btrfs_key slot_key;
976
977 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
978 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
979 path->slots[0]++;
980 }
981 setup_items_for_insert(root, path, &key,
982 &extent_item_size,
983 extent_item_size,
984 sizeof(struct btrfs_item) +
985 extent_item_size, 1);
986 *key_inserted = 1;
987 }
988
989 if (!replace_extent || !(*key_inserted))
990 btrfs_release_path(path);
991 if (drop_end)
992 *drop_end = found ? min(end, extent_end) : end;
993 return ret;
994}
995
996int btrfs_drop_extents(struct btrfs_trans_handle *trans,
997 struct btrfs_root *root, struct inode *inode, u64 start,
998 u64 end, int drop_cache)
999{
1000 struct btrfs_path *path;
1001 int ret;
1002
1003 path = btrfs_alloc_path();
1004 if (!path)
1005 return -ENOMEM;
1006 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1007 drop_cache, 0, 0, NULL);
1008 btrfs_free_path(path);
1009 return ret;
1010}
1011
1012static int extent_mergeable(struct extent_buffer *leaf, int slot,
1013 u64 objectid, u64 bytenr, u64 orig_offset,
1014 u64 *start, u64 *end)
1015{
1016 struct btrfs_file_extent_item *fi;
1017 struct btrfs_key key;
1018 u64 extent_end;
1019
1020 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1021 return 0;
1022
1023 btrfs_item_key_to_cpu(leaf, &key, slot);
1024 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1025 return 0;
1026
1027 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1028 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1029 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1030 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1031 btrfs_file_extent_compression(leaf, fi) ||
1032 btrfs_file_extent_encryption(leaf, fi) ||
1033 btrfs_file_extent_other_encoding(leaf, fi))
1034 return 0;
1035
1036 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1037 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1038 return 0;
1039
1040 *start = key.offset;
1041 *end = extent_end;
1042 return 1;
1043}
1044
1045/*
1046 * Mark extent in the range start - end as written.
1047 *
1048 * This changes extent type from 'pre-allocated' to 'regular'. If only
1049 * part of extent is marked as written, the extent will be split into
1050 * two or three.
1051 */
1052int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1053 struct inode *inode, u64 start, u64 end)
1054{
1055 struct btrfs_root *root = BTRFS_I(inode)->root;
1056 struct extent_buffer *leaf;
1057 struct btrfs_path *path;
1058 struct btrfs_file_extent_item *fi;
1059 struct btrfs_key key;
1060 struct btrfs_key new_key;
1061 u64 bytenr;
1062 u64 num_bytes;
1063 u64 extent_end;
1064 u64 orig_offset;
1065 u64 other_start;
1066 u64 other_end;
1067 u64 split;
1068 int del_nr = 0;
1069 int del_slot = 0;
1070 int recow;
1071 int ret;
1072 u64 ino = btrfs_ino(inode);
1073
1074 path = btrfs_alloc_path();
1075 if (!path)
1076 return -ENOMEM;
1077again:
1078 recow = 0;
1079 split = start;
1080 key.objectid = ino;
1081 key.type = BTRFS_EXTENT_DATA_KEY;
1082 key.offset = split;
1083
1084 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1085 if (ret < 0)
1086 goto out;
1087 if (ret > 0 && path->slots[0] > 0)
1088 path->slots[0]--;
1089
1090 leaf = path->nodes[0];
1091 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1092 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1093 fi = btrfs_item_ptr(leaf, path->slots[0],
1094 struct btrfs_file_extent_item);
1095 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1096 BTRFS_FILE_EXTENT_PREALLOC);
1097 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1098 BUG_ON(key.offset > start || extent_end < end);
1099
1100 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1101 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1102 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1103 memcpy(&new_key, &key, sizeof(new_key));
1104
1105 if (start == key.offset && end < extent_end) {
1106 other_start = 0;
1107 other_end = start;
1108 if (extent_mergeable(leaf, path->slots[0] - 1,
1109 ino, bytenr, orig_offset,
1110 &other_start, &other_end)) {
1111 new_key.offset = end;
1112 btrfs_set_item_key_safe(root, path, &new_key);
1113 fi = btrfs_item_ptr(leaf, path->slots[0],
1114 struct btrfs_file_extent_item);
1115 btrfs_set_file_extent_generation(leaf, fi,
1116 trans->transid);
1117 btrfs_set_file_extent_num_bytes(leaf, fi,
1118 extent_end - end);
1119 btrfs_set_file_extent_offset(leaf, fi,
1120 end - orig_offset);
1121 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1122 struct btrfs_file_extent_item);
1123 btrfs_set_file_extent_generation(leaf, fi,
1124 trans->transid);
1125 btrfs_set_file_extent_num_bytes(leaf, fi,
1126 end - other_start);
1127 btrfs_mark_buffer_dirty(leaf);
1128 goto out;
1129 }
1130 }
1131
1132 if (start > key.offset && end == extent_end) {
1133 other_start = end;
1134 other_end = 0;
1135 if (extent_mergeable(leaf, path->slots[0] + 1,
1136 ino, bytenr, orig_offset,
1137 &other_start, &other_end)) {
1138 fi = btrfs_item_ptr(leaf, path->slots[0],
1139 struct btrfs_file_extent_item);
1140 btrfs_set_file_extent_num_bytes(leaf, fi,
1141 start - key.offset);
1142 btrfs_set_file_extent_generation(leaf, fi,
1143 trans->transid);
1144 path->slots[0]++;
1145 new_key.offset = start;
1146 btrfs_set_item_key_safe(root, path, &new_key);
1147
1148 fi = btrfs_item_ptr(leaf, path->slots[0],
1149 struct btrfs_file_extent_item);
1150 btrfs_set_file_extent_generation(leaf, fi,
1151 trans->transid);
1152 btrfs_set_file_extent_num_bytes(leaf, fi,
1153 other_end - start);
1154 btrfs_set_file_extent_offset(leaf, fi,
1155 start - orig_offset);
1156 btrfs_mark_buffer_dirty(leaf);
1157 goto out;
1158 }
1159 }
1160
1161 while (start > key.offset || end < extent_end) {
1162 if (key.offset == start)
1163 split = end;
1164
1165 new_key.offset = split;
1166 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1167 if (ret == -EAGAIN) {
1168 btrfs_release_path(path);
1169 goto again;
1170 }
1171 if (ret < 0) {
1172 btrfs_abort_transaction(trans, root, ret);
1173 goto out;
1174 }
1175
1176 leaf = path->nodes[0];
1177 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1178 struct btrfs_file_extent_item);
1179 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1180 btrfs_set_file_extent_num_bytes(leaf, fi,
1181 split - key.offset);
1182
1183 fi = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_file_extent_item);
1185
1186 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1187 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1188 btrfs_set_file_extent_num_bytes(leaf, fi,
1189 extent_end - split);
1190 btrfs_mark_buffer_dirty(leaf);
1191
1192 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1193 root->root_key.objectid,
1194 ino, orig_offset, 0);
1195 BUG_ON(ret); /* -ENOMEM */
1196
1197 if (split == start) {
1198 key.offset = start;
1199 } else {
1200 BUG_ON(start != key.offset);
1201 path->slots[0]--;
1202 extent_end = end;
1203 }
1204 recow = 1;
1205 }
1206
1207 other_start = end;
1208 other_end = 0;
1209 if (extent_mergeable(leaf, path->slots[0] + 1,
1210 ino, bytenr, orig_offset,
1211 &other_start, &other_end)) {
1212 if (recow) {
1213 btrfs_release_path(path);
1214 goto again;
1215 }
1216 extent_end = other_end;
1217 del_slot = path->slots[0] + 1;
1218 del_nr++;
1219 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1220 0, root->root_key.objectid,
1221 ino, orig_offset, 0);
1222 BUG_ON(ret); /* -ENOMEM */
1223 }
1224 other_start = 0;
1225 other_end = start;
1226 if (extent_mergeable(leaf, path->slots[0] - 1,
1227 ino, bytenr, orig_offset,
1228 &other_start, &other_end)) {
1229 if (recow) {
1230 btrfs_release_path(path);
1231 goto again;
1232 }
1233 key.offset = other_start;
1234 del_slot = path->slots[0];
1235 del_nr++;
1236 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1237 0, root->root_key.objectid,
1238 ino, orig_offset, 0);
1239 BUG_ON(ret); /* -ENOMEM */
1240 }
1241 if (del_nr == 0) {
1242 fi = btrfs_item_ptr(leaf, path->slots[0],
1243 struct btrfs_file_extent_item);
1244 btrfs_set_file_extent_type(leaf, fi,
1245 BTRFS_FILE_EXTENT_REG);
1246 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1247 btrfs_mark_buffer_dirty(leaf);
1248 } else {
1249 fi = btrfs_item_ptr(leaf, del_slot - 1,
1250 struct btrfs_file_extent_item);
1251 btrfs_set_file_extent_type(leaf, fi,
1252 BTRFS_FILE_EXTENT_REG);
1253 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1254 btrfs_set_file_extent_num_bytes(leaf, fi,
1255 extent_end - key.offset);
1256 btrfs_mark_buffer_dirty(leaf);
1257
1258 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1259 if (ret < 0) {
1260 btrfs_abort_transaction(trans, root, ret);
1261 goto out;
1262 }
1263 }
1264out:
1265 btrfs_free_path(path);
1266 return 0;
1267}
1268
1269/*
1270 * on error we return an unlocked page and the error value
1271 * on success we return a locked page and 0
1272 */
1273static int prepare_uptodate_page(struct page *page, u64 pos,
1274 bool force_uptodate)
1275{
1276 int ret = 0;
1277
1278 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1279 !PageUptodate(page)) {
1280 ret = btrfs_readpage(NULL, page);
1281 if (ret)
1282 return ret;
1283 lock_page(page);
1284 if (!PageUptodate(page)) {
1285 unlock_page(page);
1286 return -EIO;
1287 }
1288 }
1289 return 0;
1290}
1291
1292/*
1293 * this just gets pages into the page cache and locks them down.
1294 */
1295static noinline int prepare_pages(struct inode *inode, struct page **pages,
1296 size_t num_pages, loff_t pos,
1297 size_t write_bytes, bool force_uptodate)
1298{
1299 int i;
1300 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1301 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1302 int err = 0;
1303 int faili;
1304
1305 for (i = 0; i < num_pages; i++) {
1306 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1307 mask | __GFP_WRITE);
1308 if (!pages[i]) {
1309 faili = i - 1;
1310 err = -ENOMEM;
1311 goto fail;
1312 }
1313
1314 if (i == 0)
1315 err = prepare_uptodate_page(pages[i], pos,
1316 force_uptodate);
1317 if (i == num_pages - 1)
1318 err = prepare_uptodate_page(pages[i],
1319 pos + write_bytes, false);
1320 if (err) {
1321 page_cache_release(pages[i]);
1322 faili = i - 1;
1323 goto fail;
1324 }
1325 wait_on_page_writeback(pages[i]);
1326 }
1327
1328 return 0;
1329fail:
1330 while (faili >= 0) {
1331 unlock_page(pages[faili]);
1332 page_cache_release(pages[faili]);
1333 faili--;
1334 }
1335 return err;
1336
1337}
1338
1339/*
1340 * This function locks the extent and properly waits for data=ordered extents
1341 * to finish before allowing the pages to be modified if need.
1342 *
1343 * The return value:
1344 * 1 - the extent is locked
1345 * 0 - the extent is not locked, and everything is OK
1346 * -EAGAIN - need re-prepare the pages
1347 * the other < 0 number - Something wrong happens
1348 */
1349static noinline int
1350lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1351 size_t num_pages, loff_t pos,
1352 u64 *lockstart, u64 *lockend,
1353 struct extent_state **cached_state)
1354{
1355 u64 start_pos;
1356 u64 last_pos;
1357 int i;
1358 int ret = 0;
1359
1360 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1361 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1362
1363 if (start_pos < inode->i_size) {
1364 struct btrfs_ordered_extent *ordered;
1365 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1366 start_pos, last_pos, 0, cached_state);
1367 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1368 last_pos - start_pos + 1);
1369 if (ordered &&
1370 ordered->file_offset + ordered->len > start_pos &&
1371 ordered->file_offset <= last_pos) {
1372 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1373 start_pos, last_pos,
1374 cached_state, GFP_NOFS);
1375 for (i = 0; i < num_pages; i++) {
1376 unlock_page(pages[i]);
1377 page_cache_release(pages[i]);
1378 }
1379 btrfs_start_ordered_extent(inode, ordered, 1);
1380 btrfs_put_ordered_extent(ordered);
1381 return -EAGAIN;
1382 }
1383 if (ordered)
1384 btrfs_put_ordered_extent(ordered);
1385
1386 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1387 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1388 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1389 0, 0, cached_state, GFP_NOFS);
1390 *lockstart = start_pos;
1391 *lockend = last_pos;
1392 ret = 1;
1393 }
1394
1395 for (i = 0; i < num_pages; i++) {
1396 if (clear_page_dirty_for_io(pages[i]))
1397 account_page_redirty(pages[i]);
1398 set_page_extent_mapped(pages[i]);
1399 WARN_ON(!PageLocked(pages[i]));
1400 }
1401
1402 return ret;
1403}
1404
1405static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1406 size_t *write_bytes)
1407{
1408 struct btrfs_root *root = BTRFS_I(inode)->root;
1409 struct btrfs_ordered_extent *ordered;
1410 u64 lockstart, lockend;
1411 u64 num_bytes;
1412 int ret;
1413
1414 ret = btrfs_start_nocow_write(root);
1415 if (!ret)
1416 return -ENOSPC;
1417
1418 lockstart = round_down(pos, root->sectorsize);
1419 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1420
1421 while (1) {
1422 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1423 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1424 lockend - lockstart + 1);
1425 if (!ordered) {
1426 break;
1427 }
1428 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1429 btrfs_start_ordered_extent(inode, ordered, 1);
1430 btrfs_put_ordered_extent(ordered);
1431 }
1432
1433 num_bytes = lockend - lockstart + 1;
1434 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1435 if (ret <= 0) {
1436 ret = 0;
1437 btrfs_end_nocow_write(root);
1438 } else {
1439 *write_bytes = min_t(size_t, *write_bytes ,
1440 num_bytes - pos + lockstart);
1441 }
1442
1443 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1444
1445 return ret;
1446}
1447
1448static noinline ssize_t __btrfs_buffered_write(struct file *file,
1449 struct iov_iter *i,
1450 loff_t pos)
1451{
1452 struct inode *inode = file_inode(file);
1453 struct btrfs_root *root = BTRFS_I(inode)->root;
1454 struct page **pages = NULL;
1455 struct extent_state *cached_state = NULL;
1456 u64 release_bytes = 0;
1457 u64 lockstart;
1458 u64 lockend;
1459 unsigned long first_index;
1460 size_t num_written = 0;
1461 int nrptrs;
1462 int ret = 0;
1463 bool only_release_metadata = false;
1464 bool force_page_uptodate = false;
1465 bool need_unlock;
1466
1467 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1468 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1469 (sizeof(struct page *)));
1470 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1471 nrptrs = max(nrptrs, 8);
1472 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1473 if (!pages)
1474 return -ENOMEM;
1475
1476 first_index = pos >> PAGE_CACHE_SHIFT;
1477
1478 while (iov_iter_count(i) > 0) {
1479 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1480 size_t write_bytes = min(iov_iter_count(i),
1481 nrptrs * (size_t)PAGE_CACHE_SIZE -
1482 offset);
1483 size_t num_pages = (write_bytes + offset +
1484 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1485 size_t reserve_bytes;
1486 size_t dirty_pages;
1487 size_t copied;
1488
1489 WARN_ON(num_pages > nrptrs);
1490
1491 /*
1492 * Fault pages before locking them in prepare_pages
1493 * to avoid recursive lock
1494 */
1495 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1496 ret = -EFAULT;
1497 break;
1498 }
1499
1500 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1501 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1502 if (ret == -ENOSPC &&
1503 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1504 BTRFS_INODE_PREALLOC))) {
1505 ret = check_can_nocow(inode, pos, &write_bytes);
1506 if (ret > 0) {
1507 only_release_metadata = true;
1508 /*
1509 * our prealloc extent may be smaller than
1510 * write_bytes, so scale down.
1511 */
1512 num_pages = (write_bytes + offset +
1513 PAGE_CACHE_SIZE - 1) >>
1514 PAGE_CACHE_SHIFT;
1515 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1516 ret = 0;
1517 } else {
1518 ret = -ENOSPC;
1519 }
1520 }
1521
1522 if (ret)
1523 break;
1524
1525 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1526 if (ret) {
1527 if (!only_release_metadata)
1528 btrfs_free_reserved_data_space(inode,
1529 reserve_bytes);
1530 else
1531 btrfs_end_nocow_write(root);
1532 break;
1533 }
1534
1535 release_bytes = reserve_bytes;
1536 need_unlock = false;
1537again:
1538 /*
1539 * This is going to setup the pages array with the number of
1540 * pages we want, so we don't really need to worry about the
1541 * contents of pages from loop to loop
1542 */
1543 ret = prepare_pages(inode, pages, num_pages,
1544 pos, write_bytes,
1545 force_page_uptodate);
1546 if (ret)
1547 break;
1548
1549 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1550 pos, &lockstart, &lockend,
1551 &cached_state);
1552 if (ret < 0) {
1553 if (ret == -EAGAIN)
1554 goto again;
1555 break;
1556 } else if (ret > 0) {
1557 need_unlock = true;
1558 ret = 0;
1559 }
1560
1561 copied = btrfs_copy_from_user(pos, num_pages,
1562 write_bytes, pages, i);
1563
1564 /*
1565 * if we have trouble faulting in the pages, fall
1566 * back to one page at a time
1567 */
1568 if (copied < write_bytes)
1569 nrptrs = 1;
1570
1571 if (copied == 0) {
1572 force_page_uptodate = true;
1573 dirty_pages = 0;
1574 } else {
1575 force_page_uptodate = false;
1576 dirty_pages = (copied + offset +
1577 PAGE_CACHE_SIZE - 1) >>
1578 PAGE_CACHE_SHIFT;
1579 }
1580
1581 /*
1582 * If we had a short copy we need to release the excess delaloc
1583 * bytes we reserved. We need to increment outstanding_extents
1584 * because btrfs_delalloc_release_space will decrement it, but
1585 * we still have an outstanding extent for the chunk we actually
1586 * managed to copy.
1587 */
1588 if (num_pages > dirty_pages) {
1589 release_bytes = (num_pages - dirty_pages) <<
1590 PAGE_CACHE_SHIFT;
1591 if (copied > 0) {
1592 spin_lock(&BTRFS_I(inode)->lock);
1593 BTRFS_I(inode)->outstanding_extents++;
1594 spin_unlock(&BTRFS_I(inode)->lock);
1595 }
1596 if (only_release_metadata)
1597 btrfs_delalloc_release_metadata(inode,
1598 release_bytes);
1599 else
1600 btrfs_delalloc_release_space(inode,
1601 release_bytes);
1602 }
1603
1604 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1605
1606 if (copied > 0)
1607 ret = btrfs_dirty_pages(root, inode, pages,
1608 dirty_pages, pos, copied,
1609 NULL);
1610 if (need_unlock)
1611 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1612 lockstart, lockend, &cached_state,
1613 GFP_NOFS);
1614 if (ret) {
1615 btrfs_drop_pages(pages, num_pages);
1616 break;
1617 }
1618
1619 release_bytes = 0;
1620 if (only_release_metadata)
1621 btrfs_end_nocow_write(root);
1622
1623 if (only_release_metadata && copied > 0) {
1624 u64 lockstart = round_down(pos, root->sectorsize);
1625 u64 lockend = lockstart +
1626 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1627
1628 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1629 lockend, EXTENT_NORESERVE, NULL,
1630 NULL, GFP_NOFS);
1631 only_release_metadata = false;
1632 }
1633
1634 btrfs_drop_pages(pages, num_pages);
1635
1636 cond_resched();
1637
1638 balance_dirty_pages_ratelimited(inode->i_mapping);
1639 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1640 btrfs_btree_balance_dirty(root);
1641
1642 pos += copied;
1643 num_written += copied;
1644 }
1645
1646 kfree(pages);
1647
1648 if (release_bytes) {
1649 if (only_release_metadata) {
1650 btrfs_end_nocow_write(root);
1651 btrfs_delalloc_release_metadata(inode, release_bytes);
1652 } else {
1653 btrfs_delalloc_release_space(inode, release_bytes);
1654 }
1655 }
1656
1657 return num_written ? num_written : ret;
1658}
1659
1660static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1661 struct iov_iter *from,
1662 loff_t pos,
1663 size_t count, size_t ocount)
1664{
1665 struct file *file = iocb->ki_filp;
1666 ssize_t written;
1667 ssize_t written_buffered;
1668 loff_t endbyte;
1669 int err;
1670
1671 written = generic_file_direct_write(iocb, from, pos, count, ocount);
1672
1673 if (written < 0 || written == count)
1674 return written;
1675
1676 pos += written;
1677 written_buffered = __btrfs_buffered_write(file, from, pos);
1678 if (written_buffered < 0) {
1679 err = written_buffered;
1680 goto out;
1681 }
1682 endbyte = pos + written_buffered - 1;
1683 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1684 if (err)
1685 goto out;
1686 written += written_buffered;
1687 iocb->ki_pos = pos + written_buffered;
1688 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1689 endbyte >> PAGE_CACHE_SHIFT);
1690out:
1691 return written ? written : err;
1692}
1693
1694static void update_time_for_write(struct inode *inode)
1695{
1696 struct timespec now;
1697
1698 if (IS_NOCMTIME(inode))
1699 return;
1700
1701 now = current_fs_time(inode->i_sb);
1702 if (!timespec_equal(&inode->i_mtime, &now))
1703 inode->i_mtime = now;
1704
1705 if (!timespec_equal(&inode->i_ctime, &now))
1706 inode->i_ctime = now;
1707
1708 if (IS_I_VERSION(inode))
1709 inode_inc_iversion(inode);
1710}
1711
1712static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1713 const struct iovec *iov,
1714 unsigned long nr_segs, loff_t pos)
1715{
1716 struct file *file = iocb->ki_filp;
1717 struct inode *inode = file_inode(file);
1718 struct btrfs_root *root = BTRFS_I(inode)->root;
1719 u64 start_pos;
1720 u64 end_pos;
1721 ssize_t num_written = 0;
1722 ssize_t err = 0;
1723 size_t count, ocount;
1724 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1725 struct iov_iter i;
1726
1727 mutex_lock(&inode->i_mutex);
1728
1729 count = ocount = iov_length(iov, nr_segs);
1730
1731 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1732 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1733 if (err) {
1734 mutex_unlock(&inode->i_mutex);
1735 goto out;
1736 }
1737
1738 if (count == 0) {
1739 mutex_unlock(&inode->i_mutex);
1740 goto out;
1741 }
1742
1743 iov_iter_init(&i, WRITE, iov, nr_segs, count);
1744
1745 err = file_remove_suid(file);
1746 if (err) {
1747 mutex_unlock(&inode->i_mutex);
1748 goto out;
1749 }
1750
1751 /*
1752 * If BTRFS flips readonly due to some impossible error
1753 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1754 * although we have opened a file as writable, we have
1755 * to stop this write operation to ensure FS consistency.
1756 */
1757 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1758 mutex_unlock(&inode->i_mutex);
1759 err = -EROFS;
1760 goto out;
1761 }
1762
1763 /*
1764 * We reserve space for updating the inode when we reserve space for the
1765 * extent we are going to write, so we will enospc out there. We don't
1766 * need to start yet another transaction to update the inode as we will
1767 * update the inode when we finish writing whatever data we write.
1768 */
1769 update_time_for_write(inode);
1770
1771 start_pos = round_down(pos, root->sectorsize);
1772 if (start_pos > i_size_read(inode)) {
1773 /* Expand hole size to cover write data, preventing empty gap */
1774 end_pos = round_up(pos + count, root->sectorsize);
1775 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1776 if (err) {
1777 mutex_unlock(&inode->i_mutex);
1778 goto out;
1779 }
1780 }
1781
1782 if (sync)
1783 atomic_inc(&BTRFS_I(inode)->sync_writers);
1784
1785 if (unlikely(file->f_flags & O_DIRECT)) {
1786 num_written = __btrfs_direct_write(iocb, &i,
1787 pos, count, ocount);
1788 } else {
1789 num_written = __btrfs_buffered_write(file, &i, pos);
1790 if (num_written > 0)
1791 iocb->ki_pos = pos + num_written;
1792 }
1793
1794 mutex_unlock(&inode->i_mutex);
1795
1796 /*
1797 * we want to make sure fsync finds this change
1798 * but we haven't joined a transaction running right now.
1799 *
1800 * Later on, someone is sure to update the inode and get the
1801 * real transid recorded.
1802 *
1803 * We set last_trans now to the fs_info generation + 1,
1804 * this will either be one more than the running transaction
1805 * or the generation used for the next transaction if there isn't
1806 * one running right now.
1807 *
1808 * We also have to set last_sub_trans to the current log transid,
1809 * otherwise subsequent syncs to a file that's been synced in this
1810 * transaction will appear to have already occured.
1811 */
1812 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1813 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1814 if (num_written > 0) {
1815 err = generic_write_sync(file, pos, num_written);
1816 if (err < 0)
1817 num_written = err;
1818 }
1819
1820 if (sync)
1821 atomic_dec(&BTRFS_I(inode)->sync_writers);
1822out:
1823 current->backing_dev_info = NULL;
1824 return num_written ? num_written : err;
1825}
1826
1827int btrfs_release_file(struct inode *inode, struct file *filp)
1828{
1829 /*
1830 * ordered_data_close is set by settattr when we are about to truncate
1831 * a file from a non-zero size to a zero size. This tries to
1832 * flush down new bytes that may have been written if the
1833 * application were using truncate to replace a file in place.
1834 */
1835 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1836 &BTRFS_I(inode)->runtime_flags)) {
1837 struct btrfs_trans_handle *trans;
1838 struct btrfs_root *root = BTRFS_I(inode)->root;
1839
1840 /*
1841 * We need to block on a committing transaction to keep us from
1842 * throwing a ordered operation on to the list and causing
1843 * something like sync to deadlock trying to flush out this
1844 * inode.
1845 */
1846 trans = btrfs_start_transaction(root, 0);
1847 if (IS_ERR(trans))
1848 return PTR_ERR(trans);
1849 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1850 btrfs_end_transaction(trans, root);
1851 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1852 filemap_flush(inode->i_mapping);
1853 }
1854 if (filp->private_data)
1855 btrfs_ioctl_trans_end(filp);
1856 return 0;
1857}
1858
1859/*
1860 * fsync call for both files and directories. This logs the inode into
1861 * the tree log instead of forcing full commits whenever possible.
1862 *
1863 * It needs to call filemap_fdatawait so that all ordered extent updates are
1864 * in the metadata btree are up to date for copying to the log.
1865 *
1866 * It drops the inode mutex before doing the tree log commit. This is an
1867 * important optimization for directories because holding the mutex prevents
1868 * new operations on the dir while we write to disk.
1869 */
1870int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1871{
1872 struct dentry *dentry = file->f_path.dentry;
1873 struct inode *inode = dentry->d_inode;
1874 struct btrfs_root *root = BTRFS_I(inode)->root;
1875 struct btrfs_trans_handle *trans;
1876 struct btrfs_log_ctx ctx;
1877 int ret = 0;
1878 bool full_sync = 0;
1879
1880 trace_btrfs_sync_file(file, datasync);
1881
1882 /*
1883 * We write the dirty pages in the range and wait until they complete
1884 * out of the ->i_mutex. If so, we can flush the dirty pages by
1885 * multi-task, and make the performance up. See
1886 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1887 */
1888 atomic_inc(&BTRFS_I(inode)->sync_writers);
1889 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1890 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1891 &BTRFS_I(inode)->runtime_flags))
1892 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1893 atomic_dec(&BTRFS_I(inode)->sync_writers);
1894 if (ret)
1895 return ret;
1896
1897 mutex_lock(&inode->i_mutex);
1898
1899 /*
1900 * We flush the dirty pages again to avoid some dirty pages in the
1901 * range being left.
1902 */
1903 atomic_inc(&root->log_batch);
1904 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1905 &BTRFS_I(inode)->runtime_flags);
1906 if (full_sync) {
1907 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1908 if (ret) {
1909 mutex_unlock(&inode->i_mutex);
1910 goto out;
1911 }
1912 }
1913 atomic_inc(&root->log_batch);
1914
1915 /*
1916 * check the transaction that last modified this inode
1917 * and see if its already been committed
1918 */
1919 if (!BTRFS_I(inode)->last_trans) {
1920 mutex_unlock(&inode->i_mutex);
1921 goto out;
1922 }
1923
1924 /*
1925 * if the last transaction that changed this file was before
1926 * the current transaction, we can bail out now without any
1927 * syncing
1928 */
1929 smp_mb();
1930 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1931 BTRFS_I(inode)->last_trans <=
1932 root->fs_info->last_trans_committed) {
1933 BTRFS_I(inode)->last_trans = 0;
1934
1935 /*
1936 * We'v had everything committed since the last time we were
1937 * modified so clear this flag in case it was set for whatever
1938 * reason, it's no longer relevant.
1939 */
1940 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1941 &BTRFS_I(inode)->runtime_flags);
1942 mutex_unlock(&inode->i_mutex);
1943 goto out;
1944 }
1945
1946 /*
1947 * ok we haven't committed the transaction yet, lets do a commit
1948 */
1949 if (file->private_data)
1950 btrfs_ioctl_trans_end(file);
1951
1952 /*
1953 * We use start here because we will need to wait on the IO to complete
1954 * in btrfs_sync_log, which could require joining a transaction (for
1955 * example checking cross references in the nocow path). If we use join
1956 * here we could get into a situation where we're waiting on IO to
1957 * happen that is blocked on a transaction trying to commit. With start
1958 * we inc the extwriter counter, so we wait for all extwriters to exit
1959 * before we start blocking join'ers. This comment is to keep somebody
1960 * from thinking they are super smart and changing this to
1961 * btrfs_join_transaction *cough*Josef*cough*.
1962 */
1963 trans = btrfs_start_transaction(root, 0);
1964 if (IS_ERR(trans)) {
1965 ret = PTR_ERR(trans);
1966 mutex_unlock(&inode->i_mutex);
1967 goto out;
1968 }
1969 trans->sync = true;
1970
1971 btrfs_init_log_ctx(&ctx);
1972
1973 ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1974 if (ret < 0) {
1975 /* Fallthrough and commit/free transaction. */
1976 ret = 1;
1977 }
1978
1979 /* we've logged all the items and now have a consistent
1980 * version of the file in the log. It is possible that
1981 * someone will come in and modify the file, but that's
1982 * fine because the log is consistent on disk, and we
1983 * have references to all of the file's extents
1984 *
1985 * It is possible that someone will come in and log the
1986 * file again, but that will end up using the synchronization
1987 * inside btrfs_sync_log to keep things safe.
1988 */
1989 mutex_unlock(&inode->i_mutex);
1990
1991 if (ret != BTRFS_NO_LOG_SYNC) {
1992 if (!ret) {
1993 ret = btrfs_sync_log(trans, root, &ctx);
1994 if (!ret) {
1995 ret = btrfs_end_transaction(trans, root);
1996 goto out;
1997 }
1998 }
1999 if (!full_sync) {
2000 ret = btrfs_wait_ordered_range(inode, start,
2001 end - start + 1);
2002 if (ret)
2003 goto out;
2004 }
2005 ret = btrfs_commit_transaction(trans, root);
2006 } else {
2007 ret = btrfs_end_transaction(trans, root);
2008 }
2009out:
2010 return ret > 0 ? -EIO : ret;
2011}
2012
2013static const struct vm_operations_struct btrfs_file_vm_ops = {
2014 .fault = filemap_fault,
2015 .map_pages = filemap_map_pages,
2016 .page_mkwrite = btrfs_page_mkwrite,
2017 .remap_pages = generic_file_remap_pages,
2018};
2019
2020static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2021{
2022 struct address_space *mapping = filp->f_mapping;
2023
2024 if (!mapping->a_ops->readpage)
2025 return -ENOEXEC;
2026
2027 file_accessed(filp);
2028 vma->vm_ops = &btrfs_file_vm_ops;
2029
2030 return 0;
2031}
2032
2033static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2034 int slot, u64 start, u64 end)
2035{
2036 struct btrfs_file_extent_item *fi;
2037 struct btrfs_key key;
2038
2039 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2040 return 0;
2041
2042 btrfs_item_key_to_cpu(leaf, &key, slot);
2043 if (key.objectid != btrfs_ino(inode) ||
2044 key.type != BTRFS_EXTENT_DATA_KEY)
2045 return 0;
2046
2047 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2048
2049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2050 return 0;
2051
2052 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2053 return 0;
2054
2055 if (key.offset == end)
2056 return 1;
2057 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2058 return 1;
2059 return 0;
2060}
2061
2062static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2063 struct btrfs_path *path, u64 offset, u64 end)
2064{
2065 struct btrfs_root *root = BTRFS_I(inode)->root;
2066 struct extent_buffer *leaf;
2067 struct btrfs_file_extent_item *fi;
2068 struct extent_map *hole_em;
2069 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2070 struct btrfs_key key;
2071 int ret;
2072
2073 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2074 goto out;
2075
2076 key.objectid = btrfs_ino(inode);
2077 key.type = BTRFS_EXTENT_DATA_KEY;
2078 key.offset = offset;
2079
2080 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2081 if (ret < 0)
2082 return ret;
2083 BUG_ON(!ret);
2084
2085 leaf = path->nodes[0];
2086 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2087 u64 num_bytes;
2088
2089 path->slots[0]--;
2090 fi = btrfs_item_ptr(leaf, path->slots[0],
2091 struct btrfs_file_extent_item);
2092 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2093 end - offset;
2094 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2095 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2096 btrfs_set_file_extent_offset(leaf, fi, 0);
2097 btrfs_mark_buffer_dirty(leaf);
2098 goto out;
2099 }
2100
2101 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2102 u64 num_bytes;
2103
2104 path->slots[0]++;
2105 key.offset = offset;
2106 btrfs_set_item_key_safe(root, path, &key);
2107 fi = btrfs_item_ptr(leaf, path->slots[0],
2108 struct btrfs_file_extent_item);
2109 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2110 offset;
2111 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2112 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2113 btrfs_set_file_extent_offset(leaf, fi, 0);
2114 btrfs_mark_buffer_dirty(leaf);
2115 goto out;
2116 }
2117 btrfs_release_path(path);
2118
2119 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2120 0, 0, end - offset, 0, end - offset,
2121 0, 0, 0);
2122 if (ret)
2123 return ret;
2124
2125out:
2126 btrfs_release_path(path);
2127
2128 hole_em = alloc_extent_map();
2129 if (!hole_em) {
2130 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2131 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2132 &BTRFS_I(inode)->runtime_flags);
2133 } else {
2134 hole_em->start = offset;
2135 hole_em->len = end - offset;
2136 hole_em->ram_bytes = hole_em->len;
2137 hole_em->orig_start = offset;
2138
2139 hole_em->block_start = EXTENT_MAP_HOLE;
2140 hole_em->block_len = 0;
2141 hole_em->orig_block_len = 0;
2142 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2143 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2144 hole_em->generation = trans->transid;
2145
2146 do {
2147 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2148 write_lock(&em_tree->lock);
2149 ret = add_extent_mapping(em_tree, hole_em, 1);
2150 write_unlock(&em_tree->lock);
2151 } while (ret == -EEXIST);
2152 free_extent_map(hole_em);
2153 if (ret)
2154 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2155 &BTRFS_I(inode)->runtime_flags);
2156 }
2157
2158 return 0;
2159}
2160
2161static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2162{
2163 struct btrfs_root *root = BTRFS_I(inode)->root;
2164 struct extent_state *cached_state = NULL;
2165 struct btrfs_path *path;
2166 struct btrfs_block_rsv *rsv;
2167 struct btrfs_trans_handle *trans;
2168 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2169 u64 lockend = round_down(offset + len,
2170 BTRFS_I(inode)->root->sectorsize) - 1;
2171 u64 cur_offset = lockstart;
2172 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2173 u64 drop_end;
2174 int ret = 0;
2175 int err = 0;
2176 int rsv_count;
2177 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2178 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2179 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2180 u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2181
2182 ret = btrfs_wait_ordered_range(inode, offset, len);
2183 if (ret)
2184 return ret;
2185
2186 mutex_lock(&inode->i_mutex);
2187 /*
2188 * We needn't truncate any page which is beyond the end of the file
2189 * because we are sure there is no data there.
2190 */
2191 /*
2192 * Only do this if we are in the same page and we aren't doing the
2193 * entire page.
2194 */
2195 if (same_page && len < PAGE_CACHE_SIZE) {
2196 if (offset < ino_size)
2197 ret = btrfs_truncate_page(inode, offset, len, 0);
2198 mutex_unlock(&inode->i_mutex);
2199 return ret;
2200 }
2201
2202 /* zero back part of the first page */
2203 if (offset < ino_size) {
2204 ret = btrfs_truncate_page(inode, offset, 0, 0);
2205 if (ret) {
2206 mutex_unlock(&inode->i_mutex);
2207 return ret;
2208 }
2209 }
2210
2211 /* zero the front end of the last page */
2212 if (offset + len < ino_size) {
2213 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2214 if (ret) {
2215 mutex_unlock(&inode->i_mutex);
2216 return ret;
2217 }
2218 }
2219
2220 if (lockend < lockstart) {
2221 mutex_unlock(&inode->i_mutex);
2222 return 0;
2223 }
2224
2225 while (1) {
2226 struct btrfs_ordered_extent *ordered;
2227
2228 truncate_pagecache_range(inode, lockstart, lockend);
2229
2230 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2231 0, &cached_state);
2232 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2233
2234 /*
2235 * We need to make sure we have no ordered extents in this range
2236 * and nobody raced in and read a page in this range, if we did
2237 * we need to try again.
2238 */
2239 if ((!ordered ||
2240 (ordered->file_offset + ordered->len <= lockstart ||
2241 ordered->file_offset > lockend)) &&
2242 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2243 lockend, EXTENT_UPTODATE, 0,
2244 cached_state)) {
2245 if (ordered)
2246 btrfs_put_ordered_extent(ordered);
2247 break;
2248 }
2249 if (ordered)
2250 btrfs_put_ordered_extent(ordered);
2251 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2252 lockend, &cached_state, GFP_NOFS);
2253 ret = btrfs_wait_ordered_range(inode, lockstart,
2254 lockend - lockstart + 1);
2255 if (ret) {
2256 mutex_unlock(&inode->i_mutex);
2257 return ret;
2258 }
2259 }
2260
2261 path = btrfs_alloc_path();
2262 if (!path) {
2263 ret = -ENOMEM;
2264 goto out;
2265 }
2266
2267 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2268 if (!rsv) {
2269 ret = -ENOMEM;
2270 goto out_free;
2271 }
2272 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2273 rsv->failfast = 1;
2274
2275 /*
2276 * 1 - update the inode
2277 * 1 - removing the extents in the range
2278 * 1 - adding the hole extent if no_holes isn't set
2279 */
2280 rsv_count = no_holes ? 2 : 3;
2281 trans = btrfs_start_transaction(root, rsv_count);
2282 if (IS_ERR(trans)) {
2283 err = PTR_ERR(trans);
2284 goto out_free;
2285 }
2286
2287 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2288 min_size);
2289 BUG_ON(ret);
2290 trans->block_rsv = rsv;
2291
2292 while (cur_offset < lockend) {
2293 ret = __btrfs_drop_extents(trans, root, inode, path,
2294 cur_offset, lockend + 1,
2295 &drop_end, 1, 0, 0, NULL);
2296 if (ret != -ENOSPC)
2297 break;
2298
2299 trans->block_rsv = &root->fs_info->trans_block_rsv;
2300
2301 if (cur_offset < ino_size) {
2302 ret = fill_holes(trans, inode, path, cur_offset,
2303 drop_end);
2304 if (ret) {
2305 err = ret;
2306 break;
2307 }
2308 }
2309
2310 cur_offset = drop_end;
2311
2312 ret = btrfs_update_inode(trans, root, inode);
2313 if (ret) {
2314 err = ret;
2315 break;
2316 }
2317
2318 btrfs_end_transaction(trans, root);
2319 btrfs_btree_balance_dirty(root);
2320
2321 trans = btrfs_start_transaction(root, rsv_count);
2322 if (IS_ERR(trans)) {
2323 ret = PTR_ERR(trans);
2324 trans = NULL;
2325 break;
2326 }
2327
2328 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2329 rsv, min_size);
2330 BUG_ON(ret); /* shouldn't happen */
2331 trans->block_rsv = rsv;
2332 }
2333
2334 if (ret) {
2335 err = ret;
2336 goto out_trans;
2337 }
2338
2339 trans->block_rsv = &root->fs_info->trans_block_rsv;
2340 if (cur_offset < ino_size) {
2341 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2342 if (ret) {
2343 err = ret;
2344 goto out_trans;
2345 }
2346 }
2347
2348out_trans:
2349 if (!trans)
2350 goto out_free;
2351
2352 inode_inc_iversion(inode);
2353 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2354
2355 trans->block_rsv = &root->fs_info->trans_block_rsv;
2356 ret = btrfs_update_inode(trans, root, inode);
2357 btrfs_end_transaction(trans, root);
2358 btrfs_btree_balance_dirty(root);
2359out_free:
2360 btrfs_free_path(path);
2361 btrfs_free_block_rsv(root, rsv);
2362out:
2363 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2364 &cached_state, GFP_NOFS);
2365 mutex_unlock(&inode->i_mutex);
2366 if (ret && !err)
2367 err = ret;
2368 return err;
2369}
2370
2371static long btrfs_fallocate(struct file *file, int mode,
2372 loff_t offset, loff_t len)
2373{
2374 struct inode *inode = file_inode(file);
2375 struct extent_state *cached_state = NULL;
2376 struct btrfs_root *root = BTRFS_I(inode)->root;
2377 u64 cur_offset;
2378 u64 last_byte;
2379 u64 alloc_start;
2380 u64 alloc_end;
2381 u64 alloc_hint = 0;
2382 u64 locked_end;
2383 struct extent_map *em;
2384 int blocksize = BTRFS_I(inode)->root->sectorsize;
2385 int ret;
2386
2387 alloc_start = round_down(offset, blocksize);
2388 alloc_end = round_up(offset + len, blocksize);
2389
2390 /* Make sure we aren't being give some crap mode */
2391 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2392 return -EOPNOTSUPP;
2393
2394 if (mode & FALLOC_FL_PUNCH_HOLE)
2395 return btrfs_punch_hole(inode, offset, len);
2396
2397 /*
2398 * Make sure we have enough space before we do the
2399 * allocation.
2400 */
2401 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2402 if (ret)
2403 return ret;
2404 if (root->fs_info->quota_enabled) {
2405 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2406 if (ret)
2407 goto out_reserve_fail;
2408 }
2409
2410 mutex_lock(&inode->i_mutex);
2411 ret = inode_newsize_ok(inode, alloc_end);
2412 if (ret)
2413 goto out;
2414
2415 if (alloc_start > inode->i_size) {
2416 ret = btrfs_cont_expand(inode, i_size_read(inode),
2417 alloc_start);
2418 if (ret)
2419 goto out;
2420 } else {
2421 /*
2422 * If we are fallocating from the end of the file onward we
2423 * need to zero out the end of the page if i_size lands in the
2424 * middle of a page.
2425 */
2426 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2427 if (ret)
2428 goto out;
2429 }
2430
2431 /*
2432 * wait for ordered IO before we have any locks. We'll loop again
2433 * below with the locks held.
2434 */
2435 ret = btrfs_wait_ordered_range(inode, alloc_start,
2436 alloc_end - alloc_start);
2437 if (ret)
2438 goto out;
2439
2440 locked_end = alloc_end - 1;
2441 while (1) {
2442 struct btrfs_ordered_extent *ordered;
2443
2444 /* the extent lock is ordered inside the running
2445 * transaction
2446 */
2447 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2448 locked_end, 0, &cached_state);
2449 ordered = btrfs_lookup_first_ordered_extent(inode,
2450 alloc_end - 1);
2451 if (ordered &&
2452 ordered->file_offset + ordered->len > alloc_start &&
2453 ordered->file_offset < alloc_end) {
2454 btrfs_put_ordered_extent(ordered);
2455 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2456 alloc_start, locked_end,
2457 &cached_state, GFP_NOFS);
2458 /*
2459 * we can't wait on the range with the transaction
2460 * running or with the extent lock held
2461 */
2462 ret = btrfs_wait_ordered_range(inode, alloc_start,
2463 alloc_end - alloc_start);
2464 if (ret)
2465 goto out;
2466 } else {
2467 if (ordered)
2468 btrfs_put_ordered_extent(ordered);
2469 break;
2470 }
2471 }
2472
2473 cur_offset = alloc_start;
2474 while (1) {
2475 u64 actual_end;
2476
2477 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2478 alloc_end - cur_offset, 0);
2479 if (IS_ERR_OR_NULL(em)) {
2480 if (!em)
2481 ret = -ENOMEM;
2482 else
2483 ret = PTR_ERR(em);
2484 break;
2485 }
2486 last_byte = min(extent_map_end(em), alloc_end);
2487 actual_end = min_t(u64, extent_map_end(em), offset + len);
2488 last_byte = ALIGN(last_byte, blocksize);
2489
2490 if (em->block_start == EXTENT_MAP_HOLE ||
2491 (cur_offset >= inode->i_size &&
2492 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2493 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2494 last_byte - cur_offset,
2495 1 << inode->i_blkbits,
2496 offset + len,
2497 &alloc_hint);
2498
2499 if (ret < 0) {
2500 free_extent_map(em);
2501 break;
2502 }
2503 } else if (actual_end > inode->i_size &&
2504 !(mode & FALLOC_FL_KEEP_SIZE)) {
2505 /*
2506 * We didn't need to allocate any more space, but we
2507 * still extended the size of the file so we need to
2508 * update i_size.
2509 */
2510 inode->i_ctime = CURRENT_TIME;
2511 i_size_write(inode, actual_end);
2512 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2513 }
2514 free_extent_map(em);
2515
2516 cur_offset = last_byte;
2517 if (cur_offset >= alloc_end) {
2518 ret = 0;
2519 break;
2520 }
2521 }
2522 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2523 &cached_state, GFP_NOFS);
2524out:
2525 mutex_unlock(&inode->i_mutex);
2526 if (root->fs_info->quota_enabled)
2527 btrfs_qgroup_free(root, alloc_end - alloc_start);
2528out_reserve_fail:
2529 /* Let go of our reservation. */
2530 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2531 return ret;
2532}
2533
2534static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2535{
2536 struct btrfs_root *root = BTRFS_I(inode)->root;
2537 struct extent_map *em = NULL;
2538 struct extent_state *cached_state = NULL;
2539 u64 lockstart = *offset;
2540 u64 lockend = i_size_read(inode);
2541 u64 start = *offset;
2542 u64 len = i_size_read(inode);
2543 int ret = 0;
2544
2545 lockend = max_t(u64, root->sectorsize, lockend);
2546 if (lockend <= lockstart)
2547 lockend = lockstart + root->sectorsize;
2548
2549 lockend--;
2550 len = lockend - lockstart + 1;
2551
2552 len = max_t(u64, len, root->sectorsize);
2553 if (inode->i_size == 0)
2554 return -ENXIO;
2555
2556 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2557 &cached_state);
2558
2559 while (start < inode->i_size) {
2560 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2561 if (IS_ERR(em)) {
2562 ret = PTR_ERR(em);
2563 em = NULL;
2564 break;
2565 }
2566
2567 if (whence == SEEK_HOLE &&
2568 (em->block_start == EXTENT_MAP_HOLE ||
2569 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2570 break;
2571 else if (whence == SEEK_DATA &&
2572 (em->block_start != EXTENT_MAP_HOLE &&
2573 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2574 break;
2575
2576 start = em->start + em->len;
2577 free_extent_map(em);
2578 em = NULL;
2579 cond_resched();
2580 }
2581 free_extent_map(em);
2582 if (!ret) {
2583 if (whence == SEEK_DATA && start >= inode->i_size)
2584 ret = -ENXIO;
2585 else
2586 *offset = min_t(loff_t, start, inode->i_size);
2587 }
2588 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2589 &cached_state, GFP_NOFS);
2590 return ret;
2591}
2592
2593static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2594{
2595 struct inode *inode = file->f_mapping->host;
2596 int ret;
2597
2598 mutex_lock(&inode->i_mutex);
2599 switch (whence) {
2600 case SEEK_END:
2601 case SEEK_CUR:
2602 offset = generic_file_llseek(file, offset, whence);
2603 goto out;
2604 case SEEK_DATA:
2605 case SEEK_HOLE:
2606 if (offset >= i_size_read(inode)) {
2607 mutex_unlock(&inode->i_mutex);
2608 return -ENXIO;
2609 }
2610
2611 ret = find_desired_extent(inode, &offset, whence);
2612 if (ret) {
2613 mutex_unlock(&inode->i_mutex);
2614 return ret;
2615 }
2616 }
2617
2618 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2619out:
2620 mutex_unlock(&inode->i_mutex);
2621 return offset;
2622}
2623
2624const struct file_operations btrfs_file_operations = {
2625 .llseek = btrfs_file_llseek,
2626 .read = do_sync_read,
2627 .write = do_sync_write,
2628 .aio_read = generic_file_aio_read,
2629 .splice_read = generic_file_splice_read,
2630 .aio_write = btrfs_file_aio_write,
2631 .mmap = btrfs_file_mmap,
2632 .open = generic_file_open,
2633 .release = btrfs_release_file,
2634 .fsync = btrfs_sync_file,
2635 .fallocate = btrfs_fallocate,
2636 .unlocked_ioctl = btrfs_ioctl,
2637#ifdef CONFIG_COMPAT
2638 .compat_ioctl = btrfs_ioctl,
2639#endif
2640};
2641
2642void btrfs_auto_defrag_exit(void)
2643{
2644 if (btrfs_inode_defrag_cachep)
2645 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2646}
2647
2648int btrfs_auto_defrag_init(void)
2649{
2650 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2651 sizeof(struct inode_defrag), 0,
2652 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2653 NULL);
2654 if (!btrfs_inode_defrag_cachep)
2655 return -ENOMEM;
2656
2657 return 0;
2658}
This page took 0.034214 seconds and 5 git commands to generate.