btrfs: __add_reloc_root error push-up
[deliverable/linux.git] / fs / btrfs / super.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/module.h>
21#include <linux/buffer_head.h>
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mount.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
36#include <linux/parser.h>
37#include <linux/ctype.h>
38#include <linux/namei.h>
39#include <linux/miscdevice.h>
40#include <linux/magic.h>
41#include <linux/slab.h>
42#include <linux/cleancache.h>
43#include <linux/ratelimit.h>
44#include "compat.h"
45#include "delayed-inode.h"
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
50#include "ioctl.h"
51#include "print-tree.h"
52#include "xattr.h"
53#include "volumes.h"
54#include "version.h"
55#include "export.h"
56#include "compression.h"
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/btrfs.h>
60
61static const struct super_operations btrfs_super_ops;
62static struct file_system_type btrfs_fs_type;
63
64static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65 char nbuf[16])
66{
67 char *errstr = NULL;
68
69 switch (errno) {
70 case -EIO:
71 errstr = "IO failure";
72 break;
73 case -ENOMEM:
74 errstr = "Out of memory";
75 break;
76 case -EROFS:
77 errstr = "Readonly filesystem";
78 break;
79 case -EEXIST:
80 errstr = "Object already exists";
81 break;
82 default:
83 if (nbuf) {
84 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
85 errstr = nbuf;
86 }
87 break;
88 }
89
90 return errstr;
91}
92
93static void __save_error_info(struct btrfs_fs_info *fs_info)
94{
95 /*
96 * today we only save the error info into ram. Long term we'll
97 * also send it down to the disk
98 */
99 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
100}
101
102/* NOTE:
103 * We move write_super stuff at umount in order to avoid deadlock
104 * for umount hold all lock.
105 */
106static void save_error_info(struct btrfs_fs_info *fs_info)
107{
108 __save_error_info(fs_info);
109}
110
111/* btrfs handle error by forcing the filesystem readonly */
112static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
113{
114 struct super_block *sb = fs_info->sb;
115
116 if (sb->s_flags & MS_RDONLY)
117 return;
118
119 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
120 sb->s_flags |= MS_RDONLY;
121 printk(KERN_INFO "btrfs is forced readonly\n");
122 }
123}
124
125/*
126 * __btrfs_std_error decodes expected errors from the caller and
127 * invokes the approciate error response.
128 */
129void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
130 unsigned int line, int errno)
131{
132 struct super_block *sb = fs_info->sb;
133 char nbuf[16];
134 const char *errstr;
135
136 /*
137 * Special case: if the error is EROFS, and we're already
138 * under MS_RDONLY, then it is safe here.
139 */
140 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
141 return;
142
143 errstr = btrfs_decode_error(fs_info, errno, nbuf);
144 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
145 sb->s_id, function, line, errstr);
146 save_error_info(fs_info);
147
148 btrfs_handle_error(fs_info);
149}
150
151/*
152 * __btrfs_panic decodes unexpected, fatal errors from the caller,
153 * issues an alert, and either panics or BUGs, depending on mount options.
154 */
155void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
156 unsigned int line, int errno, const char *fmt, ...)
157{
158 char nbuf[16];
159 char *s_id = "<unknown>";
160 const char *errstr;
161 struct va_format vaf = { .fmt = fmt };
162 va_list args;
163
164 if (fs_info)
165 s_id = fs_info->sb->s_id;
166
167 va_start(args, fmt);
168 vaf.va = &args;
169
170 errstr = btrfs_decode_error(fs_info, errno, nbuf);
171 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
172 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
173 s_id, function, line, &vaf, errstr);
174
175 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
176 s_id, function, line, &vaf, errstr);
177 va_end(args);
178 /* Caller calls BUG() */
179}
180
181static void btrfs_put_super(struct super_block *sb)
182{
183 (void)close_ctree(btrfs_sb(sb)->tree_root);
184 /* FIXME: need to fix VFS to return error? */
185 /* AV: return it _where_? ->put_super() can be triggered by any number
186 * of async events, up to and including delivery of SIGKILL to the
187 * last process that kept it busy. Or segfault in the aforementioned
188 * process... Whom would you report that to?
189 */
190}
191
192enum {
193 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
194 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
195 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
196 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
197 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
198 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
199 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
200 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
201 Opt_check_integrity, Opt_check_integrity_including_extent_data,
202 Opt_check_integrity_print_mask, Opt_fatal_errors,
203 Opt_err,
204};
205
206static match_table_t tokens = {
207 {Opt_degraded, "degraded"},
208 {Opt_subvol, "subvol=%s"},
209 {Opt_subvolid, "subvolid=%d"},
210 {Opt_device, "device=%s"},
211 {Opt_nodatasum, "nodatasum"},
212 {Opt_nodatacow, "nodatacow"},
213 {Opt_nobarrier, "nobarrier"},
214 {Opt_max_inline, "max_inline=%s"},
215 {Opt_alloc_start, "alloc_start=%s"},
216 {Opt_thread_pool, "thread_pool=%d"},
217 {Opt_compress, "compress"},
218 {Opt_compress_type, "compress=%s"},
219 {Opt_compress_force, "compress-force"},
220 {Opt_compress_force_type, "compress-force=%s"},
221 {Opt_ssd, "ssd"},
222 {Opt_ssd_spread, "ssd_spread"},
223 {Opt_nossd, "nossd"},
224 {Opt_noacl, "noacl"},
225 {Opt_notreelog, "notreelog"},
226 {Opt_flushoncommit, "flushoncommit"},
227 {Opt_ratio, "metadata_ratio=%d"},
228 {Opt_discard, "discard"},
229 {Opt_space_cache, "space_cache"},
230 {Opt_clear_cache, "clear_cache"},
231 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
232 {Opt_enospc_debug, "enospc_debug"},
233 {Opt_subvolrootid, "subvolrootid=%d"},
234 {Opt_defrag, "autodefrag"},
235 {Opt_inode_cache, "inode_cache"},
236 {Opt_no_space_cache, "nospace_cache"},
237 {Opt_recovery, "recovery"},
238 {Opt_skip_balance, "skip_balance"},
239 {Opt_check_integrity, "check_int"},
240 {Opt_check_integrity_including_extent_data, "check_int_data"},
241 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
242 {Opt_fatal_errors, "fatal_errors=%s"},
243 {Opt_err, NULL},
244};
245
246/*
247 * Regular mount options parser. Everything that is needed only when
248 * reading in a new superblock is parsed here.
249 */
250int btrfs_parse_options(struct btrfs_root *root, char *options)
251{
252 struct btrfs_fs_info *info = root->fs_info;
253 substring_t args[MAX_OPT_ARGS];
254 char *p, *num, *orig = NULL;
255 u64 cache_gen;
256 int intarg;
257 int ret = 0;
258 char *compress_type;
259 bool compress_force = false;
260
261 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
262 if (cache_gen)
263 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
264
265 if (!options)
266 goto out;
267
268 /*
269 * strsep changes the string, duplicate it because parse_options
270 * gets called twice
271 */
272 options = kstrdup(options, GFP_NOFS);
273 if (!options)
274 return -ENOMEM;
275
276 orig = options;
277
278 while ((p = strsep(&options, ",")) != NULL) {
279 int token;
280 if (!*p)
281 continue;
282
283 token = match_token(p, tokens, args);
284 switch (token) {
285 case Opt_degraded:
286 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
287 btrfs_set_opt(info->mount_opt, DEGRADED);
288 break;
289 case Opt_subvol:
290 case Opt_subvolid:
291 case Opt_subvolrootid:
292 case Opt_device:
293 /*
294 * These are parsed by btrfs_parse_early_options
295 * and can be happily ignored here.
296 */
297 break;
298 case Opt_nodatasum:
299 printk(KERN_INFO "btrfs: setting nodatasum\n");
300 btrfs_set_opt(info->mount_opt, NODATASUM);
301 break;
302 case Opt_nodatacow:
303 printk(KERN_INFO "btrfs: setting nodatacow\n");
304 btrfs_set_opt(info->mount_opt, NODATACOW);
305 btrfs_set_opt(info->mount_opt, NODATASUM);
306 break;
307 case Opt_compress_force:
308 case Opt_compress_force_type:
309 compress_force = true;
310 case Opt_compress:
311 case Opt_compress_type:
312 if (token == Opt_compress ||
313 token == Opt_compress_force ||
314 strcmp(args[0].from, "zlib") == 0) {
315 compress_type = "zlib";
316 info->compress_type = BTRFS_COMPRESS_ZLIB;
317 } else if (strcmp(args[0].from, "lzo") == 0) {
318 compress_type = "lzo";
319 info->compress_type = BTRFS_COMPRESS_LZO;
320 } else {
321 ret = -EINVAL;
322 goto out;
323 }
324
325 btrfs_set_opt(info->mount_opt, COMPRESS);
326 if (compress_force) {
327 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
328 pr_info("btrfs: force %s compression\n",
329 compress_type);
330 } else
331 pr_info("btrfs: use %s compression\n",
332 compress_type);
333 break;
334 case Opt_ssd:
335 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
336 btrfs_set_opt(info->mount_opt, SSD);
337 break;
338 case Opt_ssd_spread:
339 printk(KERN_INFO "btrfs: use spread ssd "
340 "allocation scheme\n");
341 btrfs_set_opt(info->mount_opt, SSD);
342 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
343 break;
344 case Opt_nossd:
345 printk(KERN_INFO "btrfs: not using ssd allocation "
346 "scheme\n");
347 btrfs_set_opt(info->mount_opt, NOSSD);
348 btrfs_clear_opt(info->mount_opt, SSD);
349 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
350 break;
351 case Opt_nobarrier:
352 printk(KERN_INFO "btrfs: turning off barriers\n");
353 btrfs_set_opt(info->mount_opt, NOBARRIER);
354 break;
355 case Opt_thread_pool:
356 intarg = 0;
357 match_int(&args[0], &intarg);
358 if (intarg) {
359 info->thread_pool_size = intarg;
360 printk(KERN_INFO "btrfs: thread pool %d\n",
361 info->thread_pool_size);
362 }
363 break;
364 case Opt_max_inline:
365 num = match_strdup(&args[0]);
366 if (num) {
367 info->max_inline = memparse(num, NULL);
368 kfree(num);
369
370 if (info->max_inline) {
371 info->max_inline = max_t(u64,
372 info->max_inline,
373 root->sectorsize);
374 }
375 printk(KERN_INFO "btrfs: max_inline at %llu\n",
376 (unsigned long long)info->max_inline);
377 }
378 break;
379 case Opt_alloc_start:
380 num = match_strdup(&args[0]);
381 if (num) {
382 info->alloc_start = memparse(num, NULL);
383 kfree(num);
384 printk(KERN_INFO
385 "btrfs: allocations start at %llu\n",
386 (unsigned long long)info->alloc_start);
387 }
388 break;
389 case Opt_noacl:
390 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
391 break;
392 case Opt_notreelog:
393 printk(KERN_INFO "btrfs: disabling tree log\n");
394 btrfs_set_opt(info->mount_opt, NOTREELOG);
395 break;
396 case Opt_flushoncommit:
397 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
398 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
399 break;
400 case Opt_ratio:
401 intarg = 0;
402 match_int(&args[0], &intarg);
403 if (intarg) {
404 info->metadata_ratio = intarg;
405 printk(KERN_INFO "btrfs: metadata ratio %d\n",
406 info->metadata_ratio);
407 }
408 break;
409 case Opt_discard:
410 btrfs_set_opt(info->mount_opt, DISCARD);
411 break;
412 case Opt_space_cache:
413 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
414 break;
415 case Opt_no_space_cache:
416 printk(KERN_INFO "btrfs: disabling disk space caching\n");
417 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
418 break;
419 case Opt_inode_cache:
420 printk(KERN_INFO "btrfs: enabling inode map caching\n");
421 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
422 break;
423 case Opt_clear_cache:
424 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
425 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
426 break;
427 case Opt_user_subvol_rm_allowed:
428 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
429 break;
430 case Opt_enospc_debug:
431 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
432 break;
433 case Opt_defrag:
434 printk(KERN_INFO "btrfs: enabling auto defrag");
435 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
436 break;
437 case Opt_recovery:
438 printk(KERN_INFO "btrfs: enabling auto recovery");
439 btrfs_set_opt(info->mount_opt, RECOVERY);
440 break;
441 case Opt_skip_balance:
442 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
443 break;
444#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
445 case Opt_check_integrity_including_extent_data:
446 printk(KERN_INFO "btrfs: enabling check integrity"
447 " including extent data\n");
448 btrfs_set_opt(info->mount_opt,
449 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
450 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
451 break;
452 case Opt_check_integrity:
453 printk(KERN_INFO "btrfs: enabling check integrity\n");
454 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
455 break;
456 case Opt_check_integrity_print_mask:
457 intarg = 0;
458 match_int(&args[0], &intarg);
459 if (intarg) {
460 info->check_integrity_print_mask = intarg;
461 printk(KERN_INFO "btrfs:"
462 " check_integrity_print_mask 0x%x\n",
463 info->check_integrity_print_mask);
464 }
465 break;
466#else
467 case Opt_check_integrity_including_extent_data:
468 case Opt_check_integrity:
469 case Opt_check_integrity_print_mask:
470 printk(KERN_ERR "btrfs: support for check_integrity*"
471 " not compiled in!\n");
472 ret = -EINVAL;
473 goto out;
474#endif
475 case Opt_fatal_errors:
476 if (strcmp(args[0].from, "panic") == 0)
477 btrfs_set_opt(info->mount_opt,
478 PANIC_ON_FATAL_ERROR);
479 else if (strcmp(args[0].from, "bug") == 0)
480 btrfs_clear_opt(info->mount_opt,
481 PANIC_ON_FATAL_ERROR);
482 else {
483 ret = -EINVAL;
484 goto out;
485 }
486 break;
487 case Opt_err:
488 printk(KERN_INFO "btrfs: unrecognized mount option "
489 "'%s'\n", p);
490 ret = -EINVAL;
491 goto out;
492 default:
493 break;
494 }
495 }
496out:
497 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
498 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
499 kfree(orig);
500 return ret;
501}
502
503/*
504 * Parse mount options that are required early in the mount process.
505 *
506 * All other options will be parsed on much later in the mount process and
507 * only when we need to allocate a new super block.
508 */
509static int btrfs_parse_early_options(const char *options, fmode_t flags,
510 void *holder, char **subvol_name, u64 *subvol_objectid,
511 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
512{
513 substring_t args[MAX_OPT_ARGS];
514 char *device_name, *opts, *orig, *p;
515 int error = 0;
516 int intarg;
517
518 if (!options)
519 return 0;
520
521 /*
522 * strsep changes the string, duplicate it because parse_options
523 * gets called twice
524 */
525 opts = kstrdup(options, GFP_KERNEL);
526 if (!opts)
527 return -ENOMEM;
528 orig = opts;
529
530 while ((p = strsep(&opts, ",")) != NULL) {
531 int token;
532 if (!*p)
533 continue;
534
535 token = match_token(p, tokens, args);
536 switch (token) {
537 case Opt_subvol:
538 kfree(*subvol_name);
539 *subvol_name = match_strdup(&args[0]);
540 break;
541 case Opt_subvolid:
542 intarg = 0;
543 error = match_int(&args[0], &intarg);
544 if (!error) {
545 /* we want the original fs_tree */
546 if (!intarg)
547 *subvol_objectid =
548 BTRFS_FS_TREE_OBJECTID;
549 else
550 *subvol_objectid = intarg;
551 }
552 break;
553 case Opt_subvolrootid:
554 intarg = 0;
555 error = match_int(&args[0], &intarg);
556 if (!error) {
557 /* we want the original fs_tree */
558 if (!intarg)
559 *subvol_rootid =
560 BTRFS_FS_TREE_OBJECTID;
561 else
562 *subvol_rootid = intarg;
563 }
564 break;
565 case Opt_device:
566 device_name = match_strdup(&args[0]);
567 if (!device_name) {
568 error = -ENOMEM;
569 goto out;
570 }
571 error = btrfs_scan_one_device(device_name,
572 flags, holder, fs_devices);
573 kfree(device_name);
574 if (error)
575 goto out;
576 break;
577 default:
578 break;
579 }
580 }
581
582out:
583 kfree(orig);
584 return error;
585}
586
587static struct dentry *get_default_root(struct super_block *sb,
588 u64 subvol_objectid)
589{
590 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
591 struct btrfs_root *root = fs_info->tree_root;
592 struct btrfs_root *new_root;
593 struct btrfs_dir_item *di;
594 struct btrfs_path *path;
595 struct btrfs_key location;
596 struct inode *inode;
597 u64 dir_id;
598 int new = 0;
599
600 /*
601 * We have a specific subvol we want to mount, just setup location and
602 * go look up the root.
603 */
604 if (subvol_objectid) {
605 location.objectid = subvol_objectid;
606 location.type = BTRFS_ROOT_ITEM_KEY;
607 location.offset = (u64)-1;
608 goto find_root;
609 }
610
611 path = btrfs_alloc_path();
612 if (!path)
613 return ERR_PTR(-ENOMEM);
614 path->leave_spinning = 1;
615
616 /*
617 * Find the "default" dir item which points to the root item that we
618 * will mount by default if we haven't been given a specific subvolume
619 * to mount.
620 */
621 dir_id = btrfs_super_root_dir(fs_info->super_copy);
622 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
623 if (IS_ERR(di)) {
624 btrfs_free_path(path);
625 return ERR_CAST(di);
626 }
627 if (!di) {
628 /*
629 * Ok the default dir item isn't there. This is weird since
630 * it's always been there, but don't freak out, just try and
631 * mount to root most subvolume.
632 */
633 btrfs_free_path(path);
634 dir_id = BTRFS_FIRST_FREE_OBJECTID;
635 new_root = fs_info->fs_root;
636 goto setup_root;
637 }
638
639 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
640 btrfs_free_path(path);
641
642find_root:
643 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
644 if (IS_ERR(new_root))
645 return ERR_CAST(new_root);
646
647 if (btrfs_root_refs(&new_root->root_item) == 0)
648 return ERR_PTR(-ENOENT);
649
650 dir_id = btrfs_root_dirid(&new_root->root_item);
651setup_root:
652 location.objectid = dir_id;
653 location.type = BTRFS_INODE_ITEM_KEY;
654 location.offset = 0;
655
656 inode = btrfs_iget(sb, &location, new_root, &new);
657 if (IS_ERR(inode))
658 return ERR_CAST(inode);
659
660 /*
661 * If we're just mounting the root most subvol put the inode and return
662 * a reference to the dentry. We will have already gotten a reference
663 * to the inode in btrfs_fill_super so we're good to go.
664 */
665 if (!new && sb->s_root->d_inode == inode) {
666 iput(inode);
667 return dget(sb->s_root);
668 }
669
670 return d_obtain_alias(inode);
671}
672
673static int btrfs_fill_super(struct super_block *sb,
674 struct btrfs_fs_devices *fs_devices,
675 void *data, int silent)
676{
677 struct inode *inode;
678 struct dentry *root_dentry;
679 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
680 struct btrfs_key key;
681 int err;
682
683 sb->s_maxbytes = MAX_LFS_FILESIZE;
684 sb->s_magic = BTRFS_SUPER_MAGIC;
685 sb->s_op = &btrfs_super_ops;
686 sb->s_d_op = &btrfs_dentry_operations;
687 sb->s_export_op = &btrfs_export_ops;
688 sb->s_xattr = btrfs_xattr_handlers;
689 sb->s_time_gran = 1;
690#ifdef CONFIG_BTRFS_FS_POSIX_ACL
691 sb->s_flags |= MS_POSIXACL;
692#endif
693
694 err = open_ctree(sb, fs_devices, (char *)data);
695 if (err) {
696 printk("btrfs: open_ctree failed\n");
697 return err;
698 }
699
700 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
701 key.type = BTRFS_INODE_ITEM_KEY;
702 key.offset = 0;
703 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
704 if (IS_ERR(inode)) {
705 err = PTR_ERR(inode);
706 goto fail_close;
707 }
708
709 root_dentry = d_alloc_root(inode);
710 if (!root_dentry) {
711 iput(inode);
712 err = -ENOMEM;
713 goto fail_close;
714 }
715
716 sb->s_root = root_dentry;
717
718 save_mount_options(sb, data);
719 cleancache_init_fs(sb);
720 sb->s_flags |= MS_ACTIVE;
721 return 0;
722
723fail_close:
724 close_ctree(fs_info->tree_root);
725 return err;
726}
727
728int btrfs_sync_fs(struct super_block *sb, int wait)
729{
730 struct btrfs_trans_handle *trans;
731 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
732 struct btrfs_root *root = fs_info->tree_root;
733 int ret;
734
735 trace_btrfs_sync_fs(wait);
736
737 if (!wait) {
738 filemap_flush(fs_info->btree_inode->i_mapping);
739 return 0;
740 }
741
742 btrfs_start_delalloc_inodes(root, 0);
743 btrfs_wait_ordered_extents(root, 0, 0);
744
745 trans = btrfs_start_transaction(root, 0);
746 if (IS_ERR(trans))
747 return PTR_ERR(trans);
748 ret = btrfs_commit_transaction(trans, root);
749 return ret;
750}
751
752static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
753{
754 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
755 struct btrfs_root *root = info->tree_root;
756 char *compress_type;
757
758 if (btrfs_test_opt(root, DEGRADED))
759 seq_puts(seq, ",degraded");
760 if (btrfs_test_opt(root, NODATASUM))
761 seq_puts(seq, ",nodatasum");
762 if (btrfs_test_opt(root, NODATACOW))
763 seq_puts(seq, ",nodatacow");
764 if (btrfs_test_opt(root, NOBARRIER))
765 seq_puts(seq, ",nobarrier");
766 if (info->max_inline != 8192 * 1024)
767 seq_printf(seq, ",max_inline=%llu",
768 (unsigned long long)info->max_inline);
769 if (info->alloc_start != 0)
770 seq_printf(seq, ",alloc_start=%llu",
771 (unsigned long long)info->alloc_start);
772 if (info->thread_pool_size != min_t(unsigned long,
773 num_online_cpus() + 2, 8))
774 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
775 if (btrfs_test_opt(root, COMPRESS)) {
776 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
777 compress_type = "zlib";
778 else
779 compress_type = "lzo";
780 if (btrfs_test_opt(root, FORCE_COMPRESS))
781 seq_printf(seq, ",compress-force=%s", compress_type);
782 else
783 seq_printf(seq, ",compress=%s", compress_type);
784 }
785 if (btrfs_test_opt(root, NOSSD))
786 seq_puts(seq, ",nossd");
787 if (btrfs_test_opt(root, SSD_SPREAD))
788 seq_puts(seq, ",ssd_spread");
789 else if (btrfs_test_opt(root, SSD))
790 seq_puts(seq, ",ssd");
791 if (btrfs_test_opt(root, NOTREELOG))
792 seq_puts(seq, ",notreelog");
793 if (btrfs_test_opt(root, FLUSHONCOMMIT))
794 seq_puts(seq, ",flushoncommit");
795 if (btrfs_test_opt(root, DISCARD))
796 seq_puts(seq, ",discard");
797 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
798 seq_puts(seq, ",noacl");
799 if (btrfs_test_opt(root, SPACE_CACHE))
800 seq_puts(seq, ",space_cache");
801 else
802 seq_puts(seq, ",nospace_cache");
803 if (btrfs_test_opt(root, CLEAR_CACHE))
804 seq_puts(seq, ",clear_cache");
805 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
806 seq_puts(seq, ",user_subvol_rm_allowed");
807 if (btrfs_test_opt(root, ENOSPC_DEBUG))
808 seq_puts(seq, ",enospc_debug");
809 if (btrfs_test_opt(root, AUTO_DEFRAG))
810 seq_puts(seq, ",autodefrag");
811 if (btrfs_test_opt(root, INODE_MAP_CACHE))
812 seq_puts(seq, ",inode_cache");
813 if (btrfs_test_opt(root, SKIP_BALANCE))
814 seq_puts(seq, ",skip_balance");
815 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
816 seq_puts(seq, ",fatal_errors=panic");
817 return 0;
818}
819
820static int btrfs_test_super(struct super_block *s, void *data)
821{
822 struct btrfs_fs_info *p = data;
823 struct btrfs_fs_info *fs_info = btrfs_sb(s);
824
825 return fs_info->fs_devices == p->fs_devices;
826}
827
828static int btrfs_set_super(struct super_block *s, void *data)
829{
830 int err = set_anon_super(s, data);
831 if (!err)
832 s->s_fs_info = data;
833 return err;
834}
835
836/*
837 * subvolumes are identified by ino 256
838 */
839static inline int is_subvolume_inode(struct inode *inode)
840{
841 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
842 return 1;
843 return 0;
844}
845
846/*
847 * This will strip out the subvol=%s argument for an argument string and add
848 * subvolid=0 to make sure we get the actual tree root for path walking to the
849 * subvol we want.
850 */
851static char *setup_root_args(char *args)
852{
853 unsigned copied = 0;
854 unsigned len = strlen(args) + 2;
855 char *pos;
856 char *ret;
857
858 /*
859 * We need the same args as before, but minus
860 *
861 * subvol=a
862 *
863 * and add
864 *
865 * subvolid=0
866 *
867 * which is a difference of 2 characters, so we allocate strlen(args) +
868 * 2 characters.
869 */
870 ret = kzalloc(len * sizeof(char), GFP_NOFS);
871 if (!ret)
872 return NULL;
873 pos = strstr(args, "subvol=");
874
875 /* This shouldn't happen, but just in case.. */
876 if (!pos) {
877 kfree(ret);
878 return NULL;
879 }
880
881 /*
882 * The subvol=<> arg is not at the front of the string, copy everybody
883 * up to that into ret.
884 */
885 if (pos != args) {
886 *pos = '\0';
887 strcpy(ret, args);
888 copied += strlen(args);
889 pos++;
890 }
891
892 strncpy(ret + copied, "subvolid=0", len - copied);
893
894 /* Length of subvolid=0 */
895 copied += 10;
896
897 /*
898 * If there is no , after the subvol= option then we know there's no
899 * other options and we can just return.
900 */
901 pos = strchr(pos, ',');
902 if (!pos)
903 return ret;
904
905 /* Copy the rest of the arguments into our buffer */
906 strncpy(ret + copied, pos, len - copied);
907 copied += strlen(pos);
908
909 return ret;
910}
911
912static struct dentry *mount_subvol(const char *subvol_name, int flags,
913 const char *device_name, char *data)
914{
915 struct dentry *root;
916 struct vfsmount *mnt;
917 char *newargs;
918
919 newargs = setup_root_args(data);
920 if (!newargs)
921 return ERR_PTR(-ENOMEM);
922 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
923 newargs);
924 kfree(newargs);
925 if (IS_ERR(mnt))
926 return ERR_CAST(mnt);
927
928 root = mount_subtree(mnt, subvol_name);
929
930 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
931 struct super_block *s = root->d_sb;
932 dput(root);
933 root = ERR_PTR(-EINVAL);
934 deactivate_locked_super(s);
935 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
936 subvol_name);
937 }
938
939 return root;
940}
941
942/*
943 * Find a superblock for the given device / mount point.
944 *
945 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
946 * for multiple device setup. Make sure to keep it in sync.
947 */
948static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
949 const char *device_name, void *data)
950{
951 struct block_device *bdev = NULL;
952 struct super_block *s;
953 struct dentry *root;
954 struct btrfs_fs_devices *fs_devices = NULL;
955 struct btrfs_fs_info *fs_info = NULL;
956 fmode_t mode = FMODE_READ;
957 char *subvol_name = NULL;
958 u64 subvol_objectid = 0;
959 u64 subvol_rootid = 0;
960 int error = 0;
961
962 if (!(flags & MS_RDONLY))
963 mode |= FMODE_WRITE;
964
965 error = btrfs_parse_early_options(data, mode, fs_type,
966 &subvol_name, &subvol_objectid,
967 &subvol_rootid, &fs_devices);
968 if (error) {
969 kfree(subvol_name);
970 return ERR_PTR(error);
971 }
972
973 if (subvol_name) {
974 root = mount_subvol(subvol_name, flags, device_name, data);
975 kfree(subvol_name);
976 return root;
977 }
978
979 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
980 if (error)
981 return ERR_PTR(error);
982
983 /*
984 * Setup a dummy root and fs_info for test/set super. This is because
985 * we don't actually fill this stuff out until open_ctree, but we need
986 * it for searching for existing supers, so this lets us do that and
987 * then open_ctree will properly initialize everything later.
988 */
989 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
990 if (!fs_info)
991 return ERR_PTR(-ENOMEM);
992
993 fs_info->fs_devices = fs_devices;
994
995 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
996 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
997 if (!fs_info->super_copy || !fs_info->super_for_commit) {
998 error = -ENOMEM;
999 goto error_fs_info;
1000 }
1001
1002 error = btrfs_open_devices(fs_devices, mode, fs_type);
1003 if (error)
1004 goto error_fs_info;
1005
1006 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1007 error = -EACCES;
1008 goto error_close_devices;
1009 }
1010
1011 bdev = fs_devices->latest_bdev;
1012 s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1013 if (IS_ERR(s)) {
1014 error = PTR_ERR(s);
1015 goto error_close_devices;
1016 }
1017
1018 if (s->s_root) {
1019 btrfs_close_devices(fs_devices);
1020 free_fs_info(fs_info);
1021 if ((flags ^ s->s_flags) & MS_RDONLY)
1022 error = -EBUSY;
1023 } else {
1024 char b[BDEVNAME_SIZE];
1025
1026 s->s_flags = flags | MS_NOSEC;
1027 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1028 btrfs_sb(s)->bdev_holder = fs_type;
1029 error = btrfs_fill_super(s, fs_devices, data,
1030 flags & MS_SILENT ? 1 : 0);
1031 }
1032
1033 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1034 if (IS_ERR(root))
1035 deactivate_locked_super(s);
1036
1037 return root;
1038
1039error_close_devices:
1040 btrfs_close_devices(fs_devices);
1041error_fs_info:
1042 free_fs_info(fs_info);
1043 return ERR_PTR(error);
1044}
1045
1046static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1047{
1048 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1049 struct btrfs_root *root = fs_info->tree_root;
1050 int ret;
1051
1052 ret = btrfs_parse_options(root, data);
1053 if (ret)
1054 return -EINVAL;
1055
1056 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1057 return 0;
1058
1059 if (*flags & MS_RDONLY) {
1060 sb->s_flags |= MS_RDONLY;
1061
1062 ret = btrfs_commit_super(root);
1063 WARN_ON(ret);
1064 } else {
1065 if (fs_info->fs_devices->rw_devices == 0)
1066 return -EACCES;
1067
1068 if (btrfs_super_log_root(fs_info->super_copy) != 0)
1069 return -EINVAL;
1070
1071 ret = btrfs_cleanup_fs_roots(fs_info);
1072 WARN_ON(ret);
1073
1074 /* recover relocation */
1075 ret = btrfs_recover_relocation(root);
1076 WARN_ON(ret);
1077
1078 sb->s_flags &= ~MS_RDONLY;
1079 }
1080
1081 return 0;
1082}
1083
1084/* Used to sort the devices by max_avail(descending sort) */
1085static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1086 const void *dev_info2)
1087{
1088 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1089 ((struct btrfs_device_info *)dev_info2)->max_avail)
1090 return -1;
1091 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1092 ((struct btrfs_device_info *)dev_info2)->max_avail)
1093 return 1;
1094 else
1095 return 0;
1096}
1097
1098/*
1099 * sort the devices by max_avail, in which max free extent size of each device
1100 * is stored.(Descending Sort)
1101 */
1102static inline void btrfs_descending_sort_devices(
1103 struct btrfs_device_info *devices,
1104 size_t nr_devices)
1105{
1106 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1107 btrfs_cmp_device_free_bytes, NULL);
1108}
1109
1110/*
1111 * The helper to calc the free space on the devices that can be used to store
1112 * file data.
1113 */
1114static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1115{
1116 struct btrfs_fs_info *fs_info = root->fs_info;
1117 struct btrfs_device_info *devices_info;
1118 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1119 struct btrfs_device *device;
1120 u64 skip_space;
1121 u64 type;
1122 u64 avail_space;
1123 u64 used_space;
1124 u64 min_stripe_size;
1125 int min_stripes = 1, num_stripes = 1;
1126 int i = 0, nr_devices;
1127 int ret;
1128
1129 nr_devices = fs_info->fs_devices->open_devices;
1130 BUG_ON(!nr_devices);
1131
1132 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1133 GFP_NOFS);
1134 if (!devices_info)
1135 return -ENOMEM;
1136
1137 /* calc min stripe number for data space alloction */
1138 type = btrfs_get_alloc_profile(root, 1);
1139 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1140 min_stripes = 2;
1141 num_stripes = nr_devices;
1142 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1143 min_stripes = 2;
1144 num_stripes = 2;
1145 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1146 min_stripes = 4;
1147 num_stripes = 4;
1148 }
1149
1150 if (type & BTRFS_BLOCK_GROUP_DUP)
1151 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1152 else
1153 min_stripe_size = BTRFS_STRIPE_LEN;
1154
1155 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1156 if (!device->in_fs_metadata || !device->bdev)
1157 continue;
1158
1159 avail_space = device->total_bytes - device->bytes_used;
1160
1161 /* align with stripe_len */
1162 do_div(avail_space, BTRFS_STRIPE_LEN);
1163 avail_space *= BTRFS_STRIPE_LEN;
1164
1165 /*
1166 * In order to avoid overwritting the superblock on the drive,
1167 * btrfs starts at an offset of at least 1MB when doing chunk
1168 * allocation.
1169 */
1170 skip_space = 1024 * 1024;
1171
1172 /* user can set the offset in fs_info->alloc_start. */
1173 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1174 device->total_bytes)
1175 skip_space = max(fs_info->alloc_start, skip_space);
1176
1177 /*
1178 * btrfs can not use the free space in [0, skip_space - 1],
1179 * we must subtract it from the total. In order to implement
1180 * it, we account the used space in this range first.
1181 */
1182 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1183 &used_space);
1184 if (ret) {
1185 kfree(devices_info);
1186 return ret;
1187 }
1188
1189 /* calc the free space in [0, skip_space - 1] */
1190 skip_space -= used_space;
1191
1192 /*
1193 * we can use the free space in [0, skip_space - 1], subtract
1194 * it from the total.
1195 */
1196 if (avail_space && avail_space >= skip_space)
1197 avail_space -= skip_space;
1198 else
1199 avail_space = 0;
1200
1201 if (avail_space < min_stripe_size)
1202 continue;
1203
1204 devices_info[i].dev = device;
1205 devices_info[i].max_avail = avail_space;
1206
1207 i++;
1208 }
1209
1210 nr_devices = i;
1211
1212 btrfs_descending_sort_devices(devices_info, nr_devices);
1213
1214 i = nr_devices - 1;
1215 avail_space = 0;
1216 while (nr_devices >= min_stripes) {
1217 if (num_stripes > nr_devices)
1218 num_stripes = nr_devices;
1219
1220 if (devices_info[i].max_avail >= min_stripe_size) {
1221 int j;
1222 u64 alloc_size;
1223
1224 avail_space += devices_info[i].max_avail * num_stripes;
1225 alloc_size = devices_info[i].max_avail;
1226 for (j = i + 1 - num_stripes; j <= i; j++)
1227 devices_info[j].max_avail -= alloc_size;
1228 }
1229 i--;
1230 nr_devices--;
1231 }
1232
1233 kfree(devices_info);
1234 *free_bytes = avail_space;
1235 return 0;
1236}
1237
1238static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1239{
1240 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1241 struct btrfs_super_block *disk_super = fs_info->super_copy;
1242 struct list_head *head = &fs_info->space_info;
1243 struct btrfs_space_info *found;
1244 u64 total_used = 0;
1245 u64 total_free_data = 0;
1246 int bits = dentry->d_sb->s_blocksize_bits;
1247 __be32 *fsid = (__be32 *)fs_info->fsid;
1248 int ret;
1249
1250 /* holding chunk_muext to avoid allocating new chunks */
1251 mutex_lock(&fs_info->chunk_mutex);
1252 rcu_read_lock();
1253 list_for_each_entry_rcu(found, head, list) {
1254 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1255 total_free_data += found->disk_total - found->disk_used;
1256 total_free_data -=
1257 btrfs_account_ro_block_groups_free_space(found);
1258 }
1259
1260 total_used += found->disk_used;
1261 }
1262 rcu_read_unlock();
1263
1264 buf->f_namelen = BTRFS_NAME_LEN;
1265 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1266 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1267 buf->f_bsize = dentry->d_sb->s_blocksize;
1268 buf->f_type = BTRFS_SUPER_MAGIC;
1269 buf->f_bavail = total_free_data;
1270 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1271 if (ret) {
1272 mutex_unlock(&fs_info->chunk_mutex);
1273 return ret;
1274 }
1275 buf->f_bavail += total_free_data;
1276 buf->f_bavail = buf->f_bavail >> bits;
1277 mutex_unlock(&fs_info->chunk_mutex);
1278
1279 /* We treat it as constant endianness (it doesn't matter _which_)
1280 because we want the fsid to come out the same whether mounted
1281 on a big-endian or little-endian host */
1282 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1283 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1284 /* Mask in the root object ID too, to disambiguate subvols */
1285 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1286 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1287
1288 return 0;
1289}
1290
1291static void btrfs_kill_super(struct super_block *sb)
1292{
1293 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1294 kill_anon_super(sb);
1295 free_fs_info(fs_info);
1296}
1297
1298static struct file_system_type btrfs_fs_type = {
1299 .owner = THIS_MODULE,
1300 .name = "btrfs",
1301 .mount = btrfs_mount,
1302 .kill_sb = btrfs_kill_super,
1303 .fs_flags = FS_REQUIRES_DEV,
1304};
1305
1306/*
1307 * used by btrfsctl to scan devices when no FS is mounted
1308 */
1309static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1310 unsigned long arg)
1311{
1312 struct btrfs_ioctl_vol_args *vol;
1313 struct btrfs_fs_devices *fs_devices;
1314 int ret = -ENOTTY;
1315
1316 if (!capable(CAP_SYS_ADMIN))
1317 return -EPERM;
1318
1319 vol = memdup_user((void __user *)arg, sizeof(*vol));
1320 if (IS_ERR(vol))
1321 return PTR_ERR(vol);
1322
1323 switch (cmd) {
1324 case BTRFS_IOC_SCAN_DEV:
1325 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1326 &btrfs_fs_type, &fs_devices);
1327 break;
1328 }
1329
1330 kfree(vol);
1331 return ret;
1332}
1333
1334static int btrfs_freeze(struct super_block *sb)
1335{
1336 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1337 mutex_lock(&fs_info->transaction_kthread_mutex);
1338 mutex_lock(&fs_info->cleaner_mutex);
1339 return 0;
1340}
1341
1342static int btrfs_unfreeze(struct super_block *sb)
1343{
1344 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1345 mutex_unlock(&fs_info->cleaner_mutex);
1346 mutex_unlock(&fs_info->transaction_kthread_mutex);
1347 return 0;
1348}
1349
1350static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1351{
1352 int ret;
1353
1354 ret = btrfs_dirty_inode(inode);
1355 if (ret)
1356 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1357 "error %d\n", btrfs_ino(inode), ret);
1358}
1359
1360static const struct super_operations btrfs_super_ops = {
1361 .drop_inode = btrfs_drop_inode,
1362 .evict_inode = btrfs_evict_inode,
1363 .put_super = btrfs_put_super,
1364 .sync_fs = btrfs_sync_fs,
1365 .show_options = btrfs_show_options,
1366 .write_inode = btrfs_write_inode,
1367 .dirty_inode = btrfs_fs_dirty_inode,
1368 .alloc_inode = btrfs_alloc_inode,
1369 .destroy_inode = btrfs_destroy_inode,
1370 .statfs = btrfs_statfs,
1371 .remount_fs = btrfs_remount,
1372 .freeze_fs = btrfs_freeze,
1373 .unfreeze_fs = btrfs_unfreeze,
1374};
1375
1376static const struct file_operations btrfs_ctl_fops = {
1377 .unlocked_ioctl = btrfs_control_ioctl,
1378 .compat_ioctl = btrfs_control_ioctl,
1379 .owner = THIS_MODULE,
1380 .llseek = noop_llseek,
1381};
1382
1383static struct miscdevice btrfs_misc = {
1384 .minor = BTRFS_MINOR,
1385 .name = "btrfs-control",
1386 .fops = &btrfs_ctl_fops
1387};
1388
1389MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1390MODULE_ALIAS("devname:btrfs-control");
1391
1392static int btrfs_interface_init(void)
1393{
1394 return misc_register(&btrfs_misc);
1395}
1396
1397static void btrfs_interface_exit(void)
1398{
1399 if (misc_deregister(&btrfs_misc) < 0)
1400 printk(KERN_INFO "misc_deregister failed for control device");
1401}
1402
1403static int __init init_btrfs_fs(void)
1404{
1405 int err;
1406
1407 err = btrfs_init_sysfs();
1408 if (err)
1409 return err;
1410
1411 err = btrfs_init_compress();
1412 if (err)
1413 goto free_sysfs;
1414
1415 err = btrfs_init_cachep();
1416 if (err)
1417 goto free_compress;
1418
1419 err = extent_io_init();
1420 if (err)
1421 goto free_cachep;
1422
1423 err = extent_map_init();
1424 if (err)
1425 goto free_extent_io;
1426
1427 err = btrfs_delayed_inode_init();
1428 if (err)
1429 goto free_extent_map;
1430
1431 err = btrfs_interface_init();
1432 if (err)
1433 goto free_delayed_inode;
1434
1435 err = register_filesystem(&btrfs_fs_type);
1436 if (err)
1437 goto unregister_ioctl;
1438
1439 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1440 return 0;
1441
1442unregister_ioctl:
1443 btrfs_interface_exit();
1444free_delayed_inode:
1445 btrfs_delayed_inode_exit();
1446free_extent_map:
1447 extent_map_exit();
1448free_extent_io:
1449 extent_io_exit();
1450free_cachep:
1451 btrfs_destroy_cachep();
1452free_compress:
1453 btrfs_exit_compress();
1454free_sysfs:
1455 btrfs_exit_sysfs();
1456 return err;
1457}
1458
1459static void __exit exit_btrfs_fs(void)
1460{
1461 btrfs_destroy_cachep();
1462 btrfs_delayed_inode_exit();
1463 extent_map_exit();
1464 extent_io_exit();
1465 btrfs_interface_exit();
1466 unregister_filesystem(&btrfs_fs_type);
1467 btrfs_exit_sysfs();
1468 btrfs_cleanup_fs_uuids();
1469 btrfs_exit_compress();
1470}
1471
1472module_init(init_btrfs_fs)
1473module_exit(exit_btrfs_fs)
1474
1475MODULE_LICENSE("GPL");
This page took 0.029124 seconds and 5 git commands to generate.