Merge branch 'fix/rt5645' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / fs / f2fs / segment.c
... / ...
CommitLineData
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/kthread.h>
17#include <linux/vmalloc.h>
18#include <linux/swap.h>
19
20#include "f2fs.h"
21#include "segment.h"
22#include "node.h"
23#include "trace.h"
24#include <trace/events/f2fs.h>
25
26#define __reverse_ffz(x) __reverse_ffs(~(x))
27
28static struct kmem_cache *discard_entry_slab;
29static struct kmem_cache *sit_entry_set_slab;
30static struct kmem_cache *inmem_entry_slab;
31
32/*
33 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
34 * MSB and LSB are reversed in a byte by f2fs_set_bit.
35 */
36static inline unsigned long __reverse_ffs(unsigned long word)
37{
38 int num = 0;
39
40#if BITS_PER_LONG == 64
41 if ((word & 0xffffffff) == 0) {
42 num += 32;
43 word >>= 32;
44 }
45#endif
46 if ((word & 0xffff) == 0) {
47 num += 16;
48 word >>= 16;
49 }
50 if ((word & 0xff) == 0) {
51 num += 8;
52 word >>= 8;
53 }
54 if ((word & 0xf0) == 0)
55 num += 4;
56 else
57 word >>= 4;
58 if ((word & 0xc) == 0)
59 num += 2;
60 else
61 word >>= 2;
62 if ((word & 0x2) == 0)
63 num += 1;
64 return num;
65}
66
67/*
68 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
69 * f2fs_set_bit makes MSB and LSB reversed in a byte.
70 * Example:
71 * LSB <--> MSB
72 * f2fs_set_bit(0, bitmap) => 0000 0001
73 * f2fs_set_bit(7, bitmap) => 1000 0000
74 */
75static unsigned long __find_rev_next_bit(const unsigned long *addr,
76 unsigned long size, unsigned long offset)
77{
78 while (!f2fs_test_bit(offset, (unsigned char *)addr))
79 offset++;
80
81 if (offset > size)
82 offset = size;
83
84 return offset;
85#if 0
86 const unsigned long *p = addr + BIT_WORD(offset);
87 unsigned long result = offset & ~(BITS_PER_LONG - 1);
88 unsigned long tmp;
89 unsigned long mask, submask;
90 unsigned long quot, rest;
91
92 if (offset >= size)
93 return size;
94
95 size -= result;
96 offset %= BITS_PER_LONG;
97 if (!offset)
98 goto aligned;
99
100 tmp = *(p++);
101 quot = (offset >> 3) << 3;
102 rest = offset & 0x7;
103 mask = ~0UL << quot;
104 submask = (unsigned char)(0xff << rest) >> rest;
105 submask <<= quot;
106 mask &= submask;
107 tmp &= mask;
108 if (size < BITS_PER_LONG)
109 goto found_first;
110 if (tmp)
111 goto found_middle;
112
113 size -= BITS_PER_LONG;
114 result += BITS_PER_LONG;
115aligned:
116 while (size & ~(BITS_PER_LONG-1)) {
117 tmp = *(p++);
118 if (tmp)
119 goto found_middle;
120 result += BITS_PER_LONG;
121 size -= BITS_PER_LONG;
122 }
123 if (!size)
124 return result;
125 tmp = *p;
126found_first:
127 tmp &= (~0UL >> (BITS_PER_LONG - size));
128 if (tmp == 0UL) /* Are any bits set? */
129 return result + size; /* Nope. */
130found_middle:
131 return result + __reverse_ffs(tmp);
132#endif
133}
134
135static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
137{
138 while (f2fs_test_bit(offset, (unsigned char *)addr))
139 offset++;
140
141 if (offset > size)
142 offset = size;
143
144 return offset;
145#if 0
146 const unsigned long *p = addr + BIT_WORD(offset);
147 unsigned long result = offset & ~(BITS_PER_LONG - 1);
148 unsigned long tmp;
149 unsigned long mask, submask;
150 unsigned long quot, rest;
151
152 if (offset >= size)
153 return size;
154
155 size -= result;
156 offset %= BITS_PER_LONG;
157 if (!offset)
158 goto aligned;
159
160 tmp = *(p++);
161 quot = (offset >> 3) << 3;
162 rest = offset & 0x7;
163 mask = ~(~0UL << quot);
164 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
165 submask <<= quot;
166 mask += submask;
167 tmp |= mask;
168 if (size < BITS_PER_LONG)
169 goto found_first;
170 if (~tmp)
171 goto found_middle;
172
173 size -= BITS_PER_LONG;
174 result += BITS_PER_LONG;
175aligned:
176 while (size & ~(BITS_PER_LONG - 1)) {
177 tmp = *(p++);
178 if (~tmp)
179 goto found_middle;
180 result += BITS_PER_LONG;
181 size -= BITS_PER_LONG;
182 }
183 if (!size)
184 return result;
185 tmp = *p;
186
187found_first:
188 tmp |= ~0UL << size;
189 if (tmp == ~0UL) /* Are any bits zero? */
190 return result + size; /* Nope. */
191found_middle:
192 return result + __reverse_ffz(tmp);
193#endif
194}
195
196void register_inmem_page(struct inode *inode, struct page *page)
197{
198 struct f2fs_inode_info *fi = F2FS_I(inode);
199 struct inmem_pages *new;
200 int err;
201
202 SetPagePrivate(page);
203 f2fs_trace_pid(page);
204
205 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
206
207 /* add atomic page indices to the list */
208 new->page = page;
209 INIT_LIST_HEAD(&new->list);
210retry:
211 /* increase reference count with clean state */
212 mutex_lock(&fi->inmem_lock);
213 err = radix_tree_insert(&fi->inmem_root, page->index, new);
214 if (err == -EEXIST) {
215 mutex_unlock(&fi->inmem_lock);
216 kmem_cache_free(inmem_entry_slab, new);
217 return;
218 } else if (err) {
219 mutex_unlock(&fi->inmem_lock);
220 goto retry;
221 }
222 get_page(page);
223 list_add_tail(&new->list, &fi->inmem_pages);
224 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
225 mutex_unlock(&fi->inmem_lock);
226
227 trace_f2fs_register_inmem_page(page, INMEM);
228}
229
230void commit_inmem_pages(struct inode *inode, bool abort)
231{
232 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
233 struct f2fs_inode_info *fi = F2FS_I(inode);
234 struct inmem_pages *cur, *tmp;
235 bool submit_bio = false;
236 struct f2fs_io_info fio = {
237 .sbi = sbi,
238 .type = DATA,
239 .rw = WRITE_SYNC | REQ_PRIO,
240 .encrypted_page = NULL,
241 };
242
243 /*
244 * The abort is true only when f2fs_evict_inode is called.
245 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
246 * that we don't need to call f2fs_balance_fs.
247 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
248 * inode becomes free by iget_locked in f2fs_iget.
249 */
250 if (!abort) {
251 f2fs_balance_fs(sbi);
252 f2fs_lock_op(sbi);
253 }
254
255 mutex_lock(&fi->inmem_lock);
256 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
257 if (!abort) {
258 lock_page(cur->page);
259 if (cur->page->mapping == inode->i_mapping) {
260 set_page_dirty(cur->page);
261 f2fs_wait_on_page_writeback(cur->page, DATA);
262 if (clear_page_dirty_for_io(cur->page))
263 inode_dec_dirty_pages(inode);
264 trace_f2fs_commit_inmem_page(cur->page, INMEM);
265 fio.page = cur->page;
266 do_write_data_page(&fio);
267 submit_bio = true;
268 }
269 f2fs_put_page(cur->page, 1);
270 } else {
271 trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP);
272 put_page(cur->page);
273 }
274 radix_tree_delete(&fi->inmem_root, cur->page->index);
275 list_del(&cur->list);
276 kmem_cache_free(inmem_entry_slab, cur);
277 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
278 }
279 mutex_unlock(&fi->inmem_lock);
280
281 if (!abort) {
282 f2fs_unlock_op(sbi);
283 if (submit_bio)
284 f2fs_submit_merged_bio(sbi, DATA, WRITE);
285 }
286}
287
288/*
289 * This function balances dirty node and dentry pages.
290 * In addition, it controls garbage collection.
291 */
292void f2fs_balance_fs(struct f2fs_sb_info *sbi)
293{
294 /*
295 * We should do GC or end up with checkpoint, if there are so many dirty
296 * dir/node pages without enough free segments.
297 */
298 if (has_not_enough_free_secs(sbi, 0)) {
299 mutex_lock(&sbi->gc_mutex);
300 f2fs_gc(sbi);
301 }
302}
303
304void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
305{
306 /* try to shrink extent cache when there is no enough memory */
307 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
308
309 /* check the # of cached NAT entries and prefree segments */
310 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
311 excess_prefree_segs(sbi) ||
312 !available_free_memory(sbi, INO_ENTRIES))
313 f2fs_sync_fs(sbi->sb, true);
314}
315
316static int issue_flush_thread(void *data)
317{
318 struct f2fs_sb_info *sbi = data;
319 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
320 wait_queue_head_t *q = &fcc->flush_wait_queue;
321repeat:
322 if (kthread_should_stop())
323 return 0;
324
325 if (!llist_empty(&fcc->issue_list)) {
326 struct bio *bio = bio_alloc(GFP_NOIO, 0);
327 struct flush_cmd *cmd, *next;
328 int ret;
329
330 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
331 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
332
333 bio->bi_bdev = sbi->sb->s_bdev;
334 ret = submit_bio_wait(WRITE_FLUSH, bio);
335
336 llist_for_each_entry_safe(cmd, next,
337 fcc->dispatch_list, llnode) {
338 cmd->ret = ret;
339 complete(&cmd->wait);
340 }
341 bio_put(bio);
342 fcc->dispatch_list = NULL;
343 }
344
345 wait_event_interruptible(*q,
346 kthread_should_stop() || !llist_empty(&fcc->issue_list));
347 goto repeat;
348}
349
350int f2fs_issue_flush(struct f2fs_sb_info *sbi)
351{
352 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
353 struct flush_cmd cmd;
354
355 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
356 test_opt(sbi, FLUSH_MERGE));
357
358 if (test_opt(sbi, NOBARRIER))
359 return 0;
360
361 if (!test_opt(sbi, FLUSH_MERGE))
362 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
363
364 init_completion(&cmd.wait);
365
366 llist_add(&cmd.llnode, &fcc->issue_list);
367
368 if (!fcc->dispatch_list)
369 wake_up(&fcc->flush_wait_queue);
370
371 wait_for_completion(&cmd.wait);
372
373 return cmd.ret;
374}
375
376int create_flush_cmd_control(struct f2fs_sb_info *sbi)
377{
378 dev_t dev = sbi->sb->s_bdev->bd_dev;
379 struct flush_cmd_control *fcc;
380 int err = 0;
381
382 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
383 if (!fcc)
384 return -ENOMEM;
385 init_waitqueue_head(&fcc->flush_wait_queue);
386 init_llist_head(&fcc->issue_list);
387 SM_I(sbi)->cmd_control_info = fcc;
388 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
389 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
390 if (IS_ERR(fcc->f2fs_issue_flush)) {
391 err = PTR_ERR(fcc->f2fs_issue_flush);
392 kfree(fcc);
393 SM_I(sbi)->cmd_control_info = NULL;
394 return err;
395 }
396
397 return err;
398}
399
400void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
401{
402 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
403
404 if (fcc && fcc->f2fs_issue_flush)
405 kthread_stop(fcc->f2fs_issue_flush);
406 kfree(fcc);
407 SM_I(sbi)->cmd_control_info = NULL;
408}
409
410static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
411 enum dirty_type dirty_type)
412{
413 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
414
415 /* need not be added */
416 if (IS_CURSEG(sbi, segno))
417 return;
418
419 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
420 dirty_i->nr_dirty[dirty_type]++;
421
422 if (dirty_type == DIRTY) {
423 struct seg_entry *sentry = get_seg_entry(sbi, segno);
424 enum dirty_type t = sentry->type;
425
426 if (unlikely(t >= DIRTY)) {
427 f2fs_bug_on(sbi, 1);
428 return;
429 }
430 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
431 dirty_i->nr_dirty[t]++;
432 }
433}
434
435static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
436 enum dirty_type dirty_type)
437{
438 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
439
440 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
441 dirty_i->nr_dirty[dirty_type]--;
442
443 if (dirty_type == DIRTY) {
444 struct seg_entry *sentry = get_seg_entry(sbi, segno);
445 enum dirty_type t = sentry->type;
446
447 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
448 dirty_i->nr_dirty[t]--;
449
450 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
451 clear_bit(GET_SECNO(sbi, segno),
452 dirty_i->victim_secmap);
453 }
454}
455
456/*
457 * Should not occur error such as -ENOMEM.
458 * Adding dirty entry into seglist is not critical operation.
459 * If a given segment is one of current working segments, it won't be added.
460 */
461static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
462{
463 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
464 unsigned short valid_blocks;
465
466 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
467 return;
468
469 mutex_lock(&dirty_i->seglist_lock);
470
471 valid_blocks = get_valid_blocks(sbi, segno, 0);
472
473 if (valid_blocks == 0) {
474 __locate_dirty_segment(sbi, segno, PRE);
475 __remove_dirty_segment(sbi, segno, DIRTY);
476 } else if (valid_blocks < sbi->blocks_per_seg) {
477 __locate_dirty_segment(sbi, segno, DIRTY);
478 } else {
479 /* Recovery routine with SSR needs this */
480 __remove_dirty_segment(sbi, segno, DIRTY);
481 }
482
483 mutex_unlock(&dirty_i->seglist_lock);
484}
485
486static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
487 block_t blkstart, block_t blklen)
488{
489 sector_t start = SECTOR_FROM_BLOCK(blkstart);
490 sector_t len = SECTOR_FROM_BLOCK(blklen);
491 struct seg_entry *se;
492 unsigned int offset;
493 block_t i;
494
495 for (i = blkstart; i < blkstart + blklen; i++) {
496 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
497 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
498
499 if (!f2fs_test_and_set_bit(offset, se->discard_map))
500 sbi->discard_blks--;
501 }
502 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
503 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
504}
505
506void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
507{
508 int err = -ENOTSUPP;
509
510 if (test_opt(sbi, DISCARD)) {
511 struct seg_entry *se = get_seg_entry(sbi,
512 GET_SEGNO(sbi, blkaddr));
513 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
514
515 if (f2fs_test_bit(offset, se->discard_map))
516 return;
517
518 err = f2fs_issue_discard(sbi, blkaddr, 1);
519 }
520
521 if (err)
522 update_meta_page(sbi, NULL, blkaddr);
523}
524
525static void __add_discard_entry(struct f2fs_sb_info *sbi,
526 struct cp_control *cpc, struct seg_entry *se,
527 unsigned int start, unsigned int end)
528{
529 struct list_head *head = &SM_I(sbi)->discard_list;
530 struct discard_entry *new, *last;
531
532 if (!list_empty(head)) {
533 last = list_last_entry(head, struct discard_entry, list);
534 if (START_BLOCK(sbi, cpc->trim_start) + start ==
535 last->blkaddr + last->len) {
536 last->len += end - start;
537 goto done;
538 }
539 }
540
541 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
542 INIT_LIST_HEAD(&new->list);
543 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
544 new->len = end - start;
545 list_add_tail(&new->list, head);
546done:
547 SM_I(sbi)->nr_discards += end - start;
548}
549
550static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
551{
552 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
553 int max_blocks = sbi->blocks_per_seg;
554 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
555 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
556 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
557 unsigned long *discard_map = (unsigned long *)se->discard_map;
558 unsigned long *dmap = SIT_I(sbi)->tmp_map;
559 unsigned int start = 0, end = -1;
560 bool force = (cpc->reason == CP_DISCARD);
561 int i;
562
563 if (se->valid_blocks == max_blocks)
564 return;
565
566 if (!force) {
567 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
568 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
569 return;
570 }
571
572 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
573 for (i = 0; i < entries; i++)
574 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
575 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
576
577 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
578 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
579 if (start >= max_blocks)
580 break;
581
582 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
583 __add_discard_entry(sbi, cpc, se, start, end);
584 }
585}
586
587void release_discard_addrs(struct f2fs_sb_info *sbi)
588{
589 struct list_head *head = &(SM_I(sbi)->discard_list);
590 struct discard_entry *entry, *this;
591
592 /* drop caches */
593 list_for_each_entry_safe(entry, this, head, list) {
594 list_del(&entry->list);
595 kmem_cache_free(discard_entry_slab, entry);
596 }
597}
598
599/*
600 * Should call clear_prefree_segments after checkpoint is done.
601 */
602static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
603{
604 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
605 unsigned int segno;
606
607 mutex_lock(&dirty_i->seglist_lock);
608 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
609 __set_test_and_free(sbi, segno);
610 mutex_unlock(&dirty_i->seglist_lock);
611}
612
613void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
614{
615 struct list_head *head = &(SM_I(sbi)->discard_list);
616 struct discard_entry *entry, *this;
617 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
618 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
619 unsigned int start = 0, end = -1;
620
621 mutex_lock(&dirty_i->seglist_lock);
622
623 while (1) {
624 int i;
625 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
626 if (start >= MAIN_SEGS(sbi))
627 break;
628 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
629 start + 1);
630
631 for (i = start; i < end; i++)
632 clear_bit(i, prefree_map);
633
634 dirty_i->nr_dirty[PRE] -= end - start;
635
636 if (!test_opt(sbi, DISCARD))
637 continue;
638
639 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
640 (end - start) << sbi->log_blocks_per_seg);
641 }
642 mutex_unlock(&dirty_i->seglist_lock);
643
644 /* send small discards */
645 list_for_each_entry_safe(entry, this, head, list) {
646 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
647 goto skip;
648 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
649 cpc->trimmed += entry->len;
650skip:
651 list_del(&entry->list);
652 SM_I(sbi)->nr_discards -= entry->len;
653 kmem_cache_free(discard_entry_slab, entry);
654 }
655}
656
657static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
658{
659 struct sit_info *sit_i = SIT_I(sbi);
660
661 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
662 sit_i->dirty_sentries++;
663 return false;
664 }
665
666 return true;
667}
668
669static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
670 unsigned int segno, int modified)
671{
672 struct seg_entry *se = get_seg_entry(sbi, segno);
673 se->type = type;
674 if (modified)
675 __mark_sit_entry_dirty(sbi, segno);
676}
677
678static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
679{
680 struct seg_entry *se;
681 unsigned int segno, offset;
682 long int new_vblocks;
683
684 segno = GET_SEGNO(sbi, blkaddr);
685
686 se = get_seg_entry(sbi, segno);
687 new_vblocks = se->valid_blocks + del;
688 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
689
690 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
691 (new_vblocks > sbi->blocks_per_seg)));
692
693 se->valid_blocks = new_vblocks;
694 se->mtime = get_mtime(sbi);
695 SIT_I(sbi)->max_mtime = se->mtime;
696
697 /* Update valid block bitmap */
698 if (del > 0) {
699 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
700 f2fs_bug_on(sbi, 1);
701 if (!f2fs_test_and_set_bit(offset, se->discard_map))
702 sbi->discard_blks--;
703 } else {
704 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
705 f2fs_bug_on(sbi, 1);
706 if (f2fs_test_and_clear_bit(offset, se->discard_map))
707 sbi->discard_blks++;
708 }
709 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
710 se->ckpt_valid_blocks += del;
711
712 __mark_sit_entry_dirty(sbi, segno);
713
714 /* update total number of valid blocks to be written in ckpt area */
715 SIT_I(sbi)->written_valid_blocks += del;
716
717 if (sbi->segs_per_sec > 1)
718 get_sec_entry(sbi, segno)->valid_blocks += del;
719}
720
721void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
722{
723 update_sit_entry(sbi, new, 1);
724 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
725 update_sit_entry(sbi, old, -1);
726
727 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
728 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
729}
730
731void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
732{
733 unsigned int segno = GET_SEGNO(sbi, addr);
734 struct sit_info *sit_i = SIT_I(sbi);
735
736 f2fs_bug_on(sbi, addr == NULL_ADDR);
737 if (addr == NEW_ADDR)
738 return;
739
740 /* add it into sit main buffer */
741 mutex_lock(&sit_i->sentry_lock);
742
743 update_sit_entry(sbi, addr, -1);
744
745 /* add it into dirty seglist */
746 locate_dirty_segment(sbi, segno);
747
748 mutex_unlock(&sit_i->sentry_lock);
749}
750
751/*
752 * This function should be resided under the curseg_mutex lock
753 */
754static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
755 struct f2fs_summary *sum)
756{
757 struct curseg_info *curseg = CURSEG_I(sbi, type);
758 void *addr = curseg->sum_blk;
759 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
760 memcpy(addr, sum, sizeof(struct f2fs_summary));
761}
762
763/*
764 * Calculate the number of current summary pages for writing
765 */
766int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
767{
768 int valid_sum_count = 0;
769 int i, sum_in_page;
770
771 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
772 if (sbi->ckpt->alloc_type[i] == SSR)
773 valid_sum_count += sbi->blocks_per_seg;
774 else {
775 if (for_ra)
776 valid_sum_count += le16_to_cpu(
777 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
778 else
779 valid_sum_count += curseg_blkoff(sbi, i);
780 }
781 }
782
783 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
784 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
785 if (valid_sum_count <= sum_in_page)
786 return 1;
787 else if ((valid_sum_count - sum_in_page) <=
788 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
789 return 2;
790 return 3;
791}
792
793/*
794 * Caller should put this summary page
795 */
796struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
797{
798 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
799}
800
801void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
802{
803 struct page *page = grab_meta_page(sbi, blk_addr);
804 void *dst = page_address(page);
805
806 if (src)
807 memcpy(dst, src, PAGE_CACHE_SIZE);
808 else
809 memset(dst, 0, PAGE_CACHE_SIZE);
810 set_page_dirty(page);
811 f2fs_put_page(page, 1);
812}
813
814static void write_sum_page(struct f2fs_sb_info *sbi,
815 struct f2fs_summary_block *sum_blk, block_t blk_addr)
816{
817 update_meta_page(sbi, (void *)sum_blk, blk_addr);
818}
819
820static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
821{
822 struct curseg_info *curseg = CURSEG_I(sbi, type);
823 unsigned int segno = curseg->segno + 1;
824 struct free_segmap_info *free_i = FREE_I(sbi);
825
826 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
827 return !test_bit(segno, free_i->free_segmap);
828 return 0;
829}
830
831/*
832 * Find a new segment from the free segments bitmap to right order
833 * This function should be returned with success, otherwise BUG
834 */
835static void get_new_segment(struct f2fs_sb_info *sbi,
836 unsigned int *newseg, bool new_sec, int dir)
837{
838 struct free_segmap_info *free_i = FREE_I(sbi);
839 unsigned int segno, secno, zoneno;
840 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
841 unsigned int hint = *newseg / sbi->segs_per_sec;
842 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
843 unsigned int left_start = hint;
844 bool init = true;
845 int go_left = 0;
846 int i;
847
848 spin_lock(&free_i->segmap_lock);
849
850 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
851 segno = find_next_zero_bit(free_i->free_segmap,
852 MAIN_SEGS(sbi), *newseg + 1);
853 if (segno - *newseg < sbi->segs_per_sec -
854 (*newseg % sbi->segs_per_sec))
855 goto got_it;
856 }
857find_other_zone:
858 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
859 if (secno >= MAIN_SECS(sbi)) {
860 if (dir == ALLOC_RIGHT) {
861 secno = find_next_zero_bit(free_i->free_secmap,
862 MAIN_SECS(sbi), 0);
863 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
864 } else {
865 go_left = 1;
866 left_start = hint - 1;
867 }
868 }
869 if (go_left == 0)
870 goto skip_left;
871
872 while (test_bit(left_start, free_i->free_secmap)) {
873 if (left_start > 0) {
874 left_start--;
875 continue;
876 }
877 left_start = find_next_zero_bit(free_i->free_secmap,
878 MAIN_SECS(sbi), 0);
879 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
880 break;
881 }
882 secno = left_start;
883skip_left:
884 hint = secno;
885 segno = secno * sbi->segs_per_sec;
886 zoneno = secno / sbi->secs_per_zone;
887
888 /* give up on finding another zone */
889 if (!init)
890 goto got_it;
891 if (sbi->secs_per_zone == 1)
892 goto got_it;
893 if (zoneno == old_zoneno)
894 goto got_it;
895 if (dir == ALLOC_LEFT) {
896 if (!go_left && zoneno + 1 >= total_zones)
897 goto got_it;
898 if (go_left && zoneno == 0)
899 goto got_it;
900 }
901 for (i = 0; i < NR_CURSEG_TYPE; i++)
902 if (CURSEG_I(sbi, i)->zone == zoneno)
903 break;
904
905 if (i < NR_CURSEG_TYPE) {
906 /* zone is in user, try another */
907 if (go_left)
908 hint = zoneno * sbi->secs_per_zone - 1;
909 else if (zoneno + 1 >= total_zones)
910 hint = 0;
911 else
912 hint = (zoneno + 1) * sbi->secs_per_zone;
913 init = false;
914 goto find_other_zone;
915 }
916got_it:
917 /* set it as dirty segment in free segmap */
918 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
919 __set_inuse(sbi, segno);
920 *newseg = segno;
921 spin_unlock(&free_i->segmap_lock);
922}
923
924static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
925{
926 struct curseg_info *curseg = CURSEG_I(sbi, type);
927 struct summary_footer *sum_footer;
928
929 curseg->segno = curseg->next_segno;
930 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
931 curseg->next_blkoff = 0;
932 curseg->next_segno = NULL_SEGNO;
933
934 sum_footer = &(curseg->sum_blk->footer);
935 memset(sum_footer, 0, sizeof(struct summary_footer));
936 if (IS_DATASEG(type))
937 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
938 if (IS_NODESEG(type))
939 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
940 __set_sit_entry_type(sbi, type, curseg->segno, modified);
941}
942
943/*
944 * Allocate a current working segment.
945 * This function always allocates a free segment in LFS manner.
946 */
947static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
948{
949 struct curseg_info *curseg = CURSEG_I(sbi, type);
950 unsigned int segno = curseg->segno;
951 int dir = ALLOC_LEFT;
952
953 write_sum_page(sbi, curseg->sum_blk,
954 GET_SUM_BLOCK(sbi, segno));
955 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
956 dir = ALLOC_RIGHT;
957
958 if (test_opt(sbi, NOHEAP))
959 dir = ALLOC_RIGHT;
960
961 get_new_segment(sbi, &segno, new_sec, dir);
962 curseg->next_segno = segno;
963 reset_curseg(sbi, type, 1);
964 curseg->alloc_type = LFS;
965}
966
967static void __next_free_blkoff(struct f2fs_sb_info *sbi,
968 struct curseg_info *seg, block_t start)
969{
970 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
971 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
972 unsigned long *target_map = SIT_I(sbi)->tmp_map;
973 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
974 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
975 int i, pos;
976
977 for (i = 0; i < entries; i++)
978 target_map[i] = ckpt_map[i] | cur_map[i];
979
980 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
981
982 seg->next_blkoff = pos;
983}
984
985/*
986 * If a segment is written by LFS manner, next block offset is just obtained
987 * by increasing the current block offset. However, if a segment is written by
988 * SSR manner, next block offset obtained by calling __next_free_blkoff
989 */
990static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
991 struct curseg_info *seg)
992{
993 if (seg->alloc_type == SSR)
994 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
995 else
996 seg->next_blkoff++;
997}
998
999/*
1000 * This function always allocates a used segment(from dirty seglist) by SSR
1001 * manner, so it should recover the existing segment information of valid blocks
1002 */
1003static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1004{
1005 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1006 struct curseg_info *curseg = CURSEG_I(sbi, type);
1007 unsigned int new_segno = curseg->next_segno;
1008 struct f2fs_summary_block *sum_node;
1009 struct page *sum_page;
1010
1011 write_sum_page(sbi, curseg->sum_blk,
1012 GET_SUM_BLOCK(sbi, curseg->segno));
1013 __set_test_and_inuse(sbi, new_segno);
1014
1015 mutex_lock(&dirty_i->seglist_lock);
1016 __remove_dirty_segment(sbi, new_segno, PRE);
1017 __remove_dirty_segment(sbi, new_segno, DIRTY);
1018 mutex_unlock(&dirty_i->seglist_lock);
1019
1020 reset_curseg(sbi, type, 1);
1021 curseg->alloc_type = SSR;
1022 __next_free_blkoff(sbi, curseg, 0);
1023
1024 if (reuse) {
1025 sum_page = get_sum_page(sbi, new_segno);
1026 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1027 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1028 f2fs_put_page(sum_page, 1);
1029 }
1030}
1031
1032static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1033{
1034 struct curseg_info *curseg = CURSEG_I(sbi, type);
1035 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1036
1037 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1038 return v_ops->get_victim(sbi,
1039 &(curseg)->next_segno, BG_GC, type, SSR);
1040
1041 /* For data segments, let's do SSR more intensively */
1042 for (; type >= CURSEG_HOT_DATA; type--)
1043 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1044 BG_GC, type, SSR))
1045 return 1;
1046 return 0;
1047}
1048
1049/*
1050 * flush out current segment and replace it with new segment
1051 * This function should be returned with success, otherwise BUG
1052 */
1053static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1054 int type, bool force)
1055{
1056 struct curseg_info *curseg = CURSEG_I(sbi, type);
1057
1058 if (force)
1059 new_curseg(sbi, type, true);
1060 else if (type == CURSEG_WARM_NODE)
1061 new_curseg(sbi, type, false);
1062 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1063 new_curseg(sbi, type, false);
1064 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1065 change_curseg(sbi, type, true);
1066 else
1067 new_curseg(sbi, type, false);
1068
1069 stat_inc_seg_type(sbi, curseg);
1070}
1071
1072static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1073{
1074 struct curseg_info *curseg = CURSEG_I(sbi, type);
1075 unsigned int old_segno;
1076
1077 old_segno = curseg->segno;
1078 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1079 locate_dirty_segment(sbi, old_segno);
1080}
1081
1082void allocate_new_segments(struct f2fs_sb_info *sbi)
1083{
1084 int i;
1085
1086 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1087 __allocate_new_segments(sbi, i);
1088}
1089
1090static const struct segment_allocation default_salloc_ops = {
1091 .allocate_segment = allocate_segment_by_default,
1092};
1093
1094int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1095{
1096 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1097 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1098 unsigned int start_segno, end_segno;
1099 struct cp_control cpc;
1100
1101 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1102 return -EINVAL;
1103
1104 cpc.trimmed = 0;
1105 if (end <= MAIN_BLKADDR(sbi))
1106 goto out;
1107
1108 /* start/end segment number in main_area */
1109 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1110 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1111 GET_SEGNO(sbi, end);
1112 cpc.reason = CP_DISCARD;
1113 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1114
1115 /* do checkpoint to issue discard commands safely */
1116 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1117 cpc.trim_start = start_segno;
1118
1119 if (sbi->discard_blks == 0)
1120 break;
1121 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1122 cpc.trim_end = end_segno;
1123 else
1124 cpc.trim_end = min_t(unsigned int,
1125 rounddown(start_segno +
1126 BATCHED_TRIM_SEGMENTS(sbi),
1127 sbi->segs_per_sec) - 1, end_segno);
1128
1129 mutex_lock(&sbi->gc_mutex);
1130 write_checkpoint(sbi, &cpc);
1131 mutex_unlock(&sbi->gc_mutex);
1132 }
1133out:
1134 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1135 return 0;
1136}
1137
1138static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1139{
1140 struct curseg_info *curseg = CURSEG_I(sbi, type);
1141 if (curseg->next_blkoff < sbi->blocks_per_seg)
1142 return true;
1143 return false;
1144}
1145
1146static int __get_segment_type_2(struct page *page, enum page_type p_type)
1147{
1148 if (p_type == DATA)
1149 return CURSEG_HOT_DATA;
1150 else
1151 return CURSEG_HOT_NODE;
1152}
1153
1154static int __get_segment_type_4(struct page *page, enum page_type p_type)
1155{
1156 if (p_type == DATA) {
1157 struct inode *inode = page->mapping->host;
1158
1159 if (S_ISDIR(inode->i_mode))
1160 return CURSEG_HOT_DATA;
1161 else
1162 return CURSEG_COLD_DATA;
1163 } else {
1164 if (IS_DNODE(page) && is_cold_node(page))
1165 return CURSEG_WARM_NODE;
1166 else
1167 return CURSEG_COLD_NODE;
1168 }
1169}
1170
1171static int __get_segment_type_6(struct page *page, enum page_type p_type)
1172{
1173 if (p_type == DATA) {
1174 struct inode *inode = page->mapping->host;
1175
1176 if (S_ISDIR(inode->i_mode))
1177 return CURSEG_HOT_DATA;
1178 else if (is_cold_data(page) || file_is_cold(inode))
1179 return CURSEG_COLD_DATA;
1180 else
1181 return CURSEG_WARM_DATA;
1182 } else {
1183 if (IS_DNODE(page))
1184 return is_cold_node(page) ? CURSEG_WARM_NODE :
1185 CURSEG_HOT_NODE;
1186 else
1187 return CURSEG_COLD_NODE;
1188 }
1189}
1190
1191static int __get_segment_type(struct page *page, enum page_type p_type)
1192{
1193 switch (F2FS_P_SB(page)->active_logs) {
1194 case 2:
1195 return __get_segment_type_2(page, p_type);
1196 case 4:
1197 return __get_segment_type_4(page, p_type);
1198 }
1199 /* NR_CURSEG_TYPE(6) logs by default */
1200 f2fs_bug_on(F2FS_P_SB(page),
1201 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1202 return __get_segment_type_6(page, p_type);
1203}
1204
1205void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1206 block_t old_blkaddr, block_t *new_blkaddr,
1207 struct f2fs_summary *sum, int type)
1208{
1209 struct sit_info *sit_i = SIT_I(sbi);
1210 struct curseg_info *curseg;
1211 bool direct_io = (type == CURSEG_DIRECT_IO);
1212
1213 type = direct_io ? CURSEG_WARM_DATA : type;
1214
1215 curseg = CURSEG_I(sbi, type);
1216
1217 mutex_lock(&curseg->curseg_mutex);
1218 mutex_lock(&sit_i->sentry_lock);
1219
1220 /* direct_io'ed data is aligned to the segment for better performance */
1221 if (direct_io && curseg->next_blkoff)
1222 __allocate_new_segments(sbi, type);
1223
1224 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1225
1226 /*
1227 * __add_sum_entry should be resided under the curseg_mutex
1228 * because, this function updates a summary entry in the
1229 * current summary block.
1230 */
1231 __add_sum_entry(sbi, type, sum);
1232
1233 __refresh_next_blkoff(sbi, curseg);
1234
1235 stat_inc_block_count(sbi, curseg);
1236
1237 if (!__has_curseg_space(sbi, type))
1238 sit_i->s_ops->allocate_segment(sbi, type, false);
1239 /*
1240 * SIT information should be updated before segment allocation,
1241 * since SSR needs latest valid block information.
1242 */
1243 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1244
1245 mutex_unlock(&sit_i->sentry_lock);
1246
1247 if (page && IS_NODESEG(type))
1248 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1249
1250 mutex_unlock(&curseg->curseg_mutex);
1251}
1252
1253static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1254{
1255 int type = __get_segment_type(fio->page, fio->type);
1256
1257 allocate_data_block(fio->sbi, fio->page, fio->blk_addr,
1258 &fio->blk_addr, sum, type);
1259
1260 /* writeout dirty page into bdev */
1261 f2fs_submit_page_mbio(fio);
1262}
1263
1264void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1265{
1266 struct f2fs_io_info fio = {
1267 .sbi = sbi,
1268 .type = META,
1269 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1270 .blk_addr = page->index,
1271 .page = page,
1272 .encrypted_page = NULL,
1273 };
1274
1275 set_page_writeback(page);
1276 f2fs_submit_page_mbio(&fio);
1277}
1278
1279void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1280{
1281 struct f2fs_summary sum;
1282
1283 set_summary(&sum, nid, 0, 0);
1284 do_write_page(&sum, fio);
1285}
1286
1287void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1288{
1289 struct f2fs_sb_info *sbi = fio->sbi;
1290 struct f2fs_summary sum;
1291 struct node_info ni;
1292
1293 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1294 get_node_info(sbi, dn->nid, &ni);
1295 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1296 do_write_page(&sum, fio);
1297 dn->data_blkaddr = fio->blk_addr;
1298}
1299
1300void rewrite_data_page(struct f2fs_io_info *fio)
1301{
1302 stat_inc_inplace_blocks(fio->sbi);
1303 f2fs_submit_page_mbio(fio);
1304}
1305
1306static void __f2fs_replace_block(struct f2fs_sb_info *sbi,
1307 struct f2fs_summary *sum,
1308 block_t old_blkaddr, block_t new_blkaddr,
1309 bool recover_curseg)
1310{
1311 struct sit_info *sit_i = SIT_I(sbi);
1312 struct curseg_info *curseg;
1313 unsigned int segno, old_cursegno;
1314 struct seg_entry *se;
1315 int type;
1316 unsigned short old_blkoff;
1317
1318 segno = GET_SEGNO(sbi, new_blkaddr);
1319 se = get_seg_entry(sbi, segno);
1320 type = se->type;
1321
1322 if (!recover_curseg) {
1323 /* for recovery flow */
1324 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1325 if (old_blkaddr == NULL_ADDR)
1326 type = CURSEG_COLD_DATA;
1327 else
1328 type = CURSEG_WARM_DATA;
1329 }
1330 } else {
1331 if (!IS_CURSEG(sbi, segno))
1332 type = CURSEG_WARM_DATA;
1333 }
1334
1335 curseg = CURSEG_I(sbi, type);
1336
1337 mutex_lock(&curseg->curseg_mutex);
1338 mutex_lock(&sit_i->sentry_lock);
1339
1340 old_cursegno = curseg->segno;
1341 old_blkoff = curseg->next_blkoff;
1342
1343 /* change the current segment */
1344 if (segno != curseg->segno) {
1345 curseg->next_segno = segno;
1346 change_curseg(sbi, type, true);
1347 }
1348
1349 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1350 __add_sum_entry(sbi, type, sum);
1351
1352 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1353 locate_dirty_segment(sbi, old_cursegno);
1354
1355 if (recover_curseg) {
1356 if (old_cursegno != curseg->segno) {
1357 curseg->next_segno = old_cursegno;
1358 change_curseg(sbi, type, true);
1359 }
1360 curseg->next_blkoff = old_blkoff;
1361 }
1362
1363 mutex_unlock(&sit_i->sentry_lock);
1364 mutex_unlock(&curseg->curseg_mutex);
1365}
1366
1367void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1368 block_t old_addr, block_t new_addr,
1369 unsigned char version, bool recover_curseg)
1370{
1371 struct f2fs_summary sum;
1372
1373 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1374
1375 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg);
1376
1377 dn->data_blkaddr = new_addr;
1378 set_data_blkaddr(dn);
1379 f2fs_update_extent_cache(dn);
1380}
1381
1382static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1383 struct page *page, enum page_type type)
1384{
1385 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1386 struct f2fs_bio_info *io = &sbi->write_io[btype];
1387 struct bio_vec *bvec;
1388 struct page *target;
1389 int i;
1390
1391 down_read(&io->io_rwsem);
1392 if (!io->bio) {
1393 up_read(&io->io_rwsem);
1394 return false;
1395 }
1396
1397 bio_for_each_segment_all(bvec, io->bio, i) {
1398
1399 if (bvec->bv_page->mapping) {
1400 target = bvec->bv_page;
1401 } else {
1402 struct f2fs_crypto_ctx *ctx;
1403
1404 /* encrypted page */
1405 ctx = (struct f2fs_crypto_ctx *)page_private(
1406 bvec->bv_page);
1407 target = ctx->w.control_page;
1408 }
1409
1410 if (page == target) {
1411 up_read(&io->io_rwsem);
1412 return true;
1413 }
1414 }
1415
1416 up_read(&io->io_rwsem);
1417 return false;
1418}
1419
1420void f2fs_wait_on_page_writeback(struct page *page,
1421 enum page_type type)
1422{
1423 if (PageWriteback(page)) {
1424 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1425
1426 if (is_merged_page(sbi, page, type))
1427 f2fs_submit_merged_bio(sbi, type, WRITE);
1428 wait_on_page_writeback(page);
1429 }
1430}
1431
1432static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1433{
1434 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1435 struct curseg_info *seg_i;
1436 unsigned char *kaddr;
1437 struct page *page;
1438 block_t start;
1439 int i, j, offset;
1440
1441 start = start_sum_block(sbi);
1442
1443 page = get_meta_page(sbi, start++);
1444 kaddr = (unsigned char *)page_address(page);
1445
1446 /* Step 1: restore nat cache */
1447 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1448 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1449
1450 /* Step 2: restore sit cache */
1451 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1452 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1453 SUM_JOURNAL_SIZE);
1454 offset = 2 * SUM_JOURNAL_SIZE;
1455
1456 /* Step 3: restore summary entries */
1457 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1458 unsigned short blk_off;
1459 unsigned int segno;
1460
1461 seg_i = CURSEG_I(sbi, i);
1462 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1463 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1464 seg_i->next_segno = segno;
1465 reset_curseg(sbi, i, 0);
1466 seg_i->alloc_type = ckpt->alloc_type[i];
1467 seg_i->next_blkoff = blk_off;
1468
1469 if (seg_i->alloc_type == SSR)
1470 blk_off = sbi->blocks_per_seg;
1471
1472 for (j = 0; j < blk_off; j++) {
1473 struct f2fs_summary *s;
1474 s = (struct f2fs_summary *)(kaddr + offset);
1475 seg_i->sum_blk->entries[j] = *s;
1476 offset += SUMMARY_SIZE;
1477 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1478 SUM_FOOTER_SIZE)
1479 continue;
1480
1481 f2fs_put_page(page, 1);
1482 page = NULL;
1483
1484 page = get_meta_page(sbi, start++);
1485 kaddr = (unsigned char *)page_address(page);
1486 offset = 0;
1487 }
1488 }
1489 f2fs_put_page(page, 1);
1490 return 0;
1491}
1492
1493static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1494{
1495 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1496 struct f2fs_summary_block *sum;
1497 struct curseg_info *curseg;
1498 struct page *new;
1499 unsigned short blk_off;
1500 unsigned int segno = 0;
1501 block_t blk_addr = 0;
1502
1503 /* get segment number and block addr */
1504 if (IS_DATASEG(type)) {
1505 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1506 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1507 CURSEG_HOT_DATA]);
1508 if (__exist_node_summaries(sbi))
1509 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1510 else
1511 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1512 } else {
1513 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1514 CURSEG_HOT_NODE]);
1515 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1516 CURSEG_HOT_NODE]);
1517 if (__exist_node_summaries(sbi))
1518 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1519 type - CURSEG_HOT_NODE);
1520 else
1521 blk_addr = GET_SUM_BLOCK(sbi, segno);
1522 }
1523
1524 new = get_meta_page(sbi, blk_addr);
1525 sum = (struct f2fs_summary_block *)page_address(new);
1526
1527 if (IS_NODESEG(type)) {
1528 if (__exist_node_summaries(sbi)) {
1529 struct f2fs_summary *ns = &sum->entries[0];
1530 int i;
1531 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1532 ns->version = 0;
1533 ns->ofs_in_node = 0;
1534 }
1535 } else {
1536 int err;
1537
1538 err = restore_node_summary(sbi, segno, sum);
1539 if (err) {
1540 f2fs_put_page(new, 1);
1541 return err;
1542 }
1543 }
1544 }
1545
1546 /* set uncompleted segment to curseg */
1547 curseg = CURSEG_I(sbi, type);
1548 mutex_lock(&curseg->curseg_mutex);
1549 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1550 curseg->next_segno = segno;
1551 reset_curseg(sbi, type, 0);
1552 curseg->alloc_type = ckpt->alloc_type[type];
1553 curseg->next_blkoff = blk_off;
1554 mutex_unlock(&curseg->curseg_mutex);
1555 f2fs_put_page(new, 1);
1556 return 0;
1557}
1558
1559static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1560{
1561 int type = CURSEG_HOT_DATA;
1562 int err;
1563
1564 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1565 int npages = npages_for_summary_flush(sbi, true);
1566
1567 if (npages >= 2)
1568 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1569 META_CP);
1570
1571 /* restore for compacted data summary */
1572 if (read_compacted_summaries(sbi))
1573 return -EINVAL;
1574 type = CURSEG_HOT_NODE;
1575 }
1576
1577 if (__exist_node_summaries(sbi))
1578 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1579 NR_CURSEG_TYPE - type, META_CP);
1580
1581 for (; type <= CURSEG_COLD_NODE; type++) {
1582 err = read_normal_summaries(sbi, type);
1583 if (err)
1584 return err;
1585 }
1586
1587 return 0;
1588}
1589
1590static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1591{
1592 struct page *page;
1593 unsigned char *kaddr;
1594 struct f2fs_summary *summary;
1595 struct curseg_info *seg_i;
1596 int written_size = 0;
1597 int i, j;
1598
1599 page = grab_meta_page(sbi, blkaddr++);
1600 kaddr = (unsigned char *)page_address(page);
1601
1602 /* Step 1: write nat cache */
1603 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1604 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1605 written_size += SUM_JOURNAL_SIZE;
1606
1607 /* Step 2: write sit cache */
1608 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1609 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1610 SUM_JOURNAL_SIZE);
1611 written_size += SUM_JOURNAL_SIZE;
1612
1613 /* Step 3: write summary entries */
1614 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1615 unsigned short blkoff;
1616 seg_i = CURSEG_I(sbi, i);
1617 if (sbi->ckpt->alloc_type[i] == SSR)
1618 blkoff = sbi->blocks_per_seg;
1619 else
1620 blkoff = curseg_blkoff(sbi, i);
1621
1622 for (j = 0; j < blkoff; j++) {
1623 if (!page) {
1624 page = grab_meta_page(sbi, blkaddr++);
1625 kaddr = (unsigned char *)page_address(page);
1626 written_size = 0;
1627 }
1628 summary = (struct f2fs_summary *)(kaddr + written_size);
1629 *summary = seg_i->sum_blk->entries[j];
1630 written_size += SUMMARY_SIZE;
1631
1632 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1633 SUM_FOOTER_SIZE)
1634 continue;
1635
1636 set_page_dirty(page);
1637 f2fs_put_page(page, 1);
1638 page = NULL;
1639 }
1640 }
1641 if (page) {
1642 set_page_dirty(page);
1643 f2fs_put_page(page, 1);
1644 }
1645}
1646
1647static void write_normal_summaries(struct f2fs_sb_info *sbi,
1648 block_t blkaddr, int type)
1649{
1650 int i, end;
1651 if (IS_DATASEG(type))
1652 end = type + NR_CURSEG_DATA_TYPE;
1653 else
1654 end = type + NR_CURSEG_NODE_TYPE;
1655
1656 for (i = type; i < end; i++) {
1657 struct curseg_info *sum = CURSEG_I(sbi, i);
1658 mutex_lock(&sum->curseg_mutex);
1659 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1660 mutex_unlock(&sum->curseg_mutex);
1661 }
1662}
1663
1664void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1665{
1666 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1667 write_compacted_summaries(sbi, start_blk);
1668 else
1669 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1670}
1671
1672void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1673{
1674 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1675}
1676
1677int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1678 unsigned int val, int alloc)
1679{
1680 int i;
1681
1682 if (type == NAT_JOURNAL) {
1683 for (i = 0; i < nats_in_cursum(sum); i++) {
1684 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1685 return i;
1686 }
1687 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1688 return update_nats_in_cursum(sum, 1);
1689 } else if (type == SIT_JOURNAL) {
1690 for (i = 0; i < sits_in_cursum(sum); i++)
1691 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1692 return i;
1693 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1694 return update_sits_in_cursum(sum, 1);
1695 }
1696 return -1;
1697}
1698
1699static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1700 unsigned int segno)
1701{
1702 return get_meta_page(sbi, current_sit_addr(sbi, segno));
1703}
1704
1705static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1706 unsigned int start)
1707{
1708 struct sit_info *sit_i = SIT_I(sbi);
1709 struct page *src_page, *dst_page;
1710 pgoff_t src_off, dst_off;
1711 void *src_addr, *dst_addr;
1712
1713 src_off = current_sit_addr(sbi, start);
1714 dst_off = next_sit_addr(sbi, src_off);
1715
1716 /* get current sit block page without lock */
1717 src_page = get_meta_page(sbi, src_off);
1718 dst_page = grab_meta_page(sbi, dst_off);
1719 f2fs_bug_on(sbi, PageDirty(src_page));
1720
1721 src_addr = page_address(src_page);
1722 dst_addr = page_address(dst_page);
1723 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1724
1725 set_page_dirty(dst_page);
1726 f2fs_put_page(src_page, 1);
1727
1728 set_to_next_sit(sit_i, start);
1729
1730 return dst_page;
1731}
1732
1733static struct sit_entry_set *grab_sit_entry_set(void)
1734{
1735 struct sit_entry_set *ses =
1736 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1737
1738 ses->entry_cnt = 0;
1739 INIT_LIST_HEAD(&ses->set_list);
1740 return ses;
1741}
1742
1743static void release_sit_entry_set(struct sit_entry_set *ses)
1744{
1745 list_del(&ses->set_list);
1746 kmem_cache_free(sit_entry_set_slab, ses);
1747}
1748
1749static void adjust_sit_entry_set(struct sit_entry_set *ses,
1750 struct list_head *head)
1751{
1752 struct sit_entry_set *next = ses;
1753
1754 if (list_is_last(&ses->set_list, head))
1755 return;
1756
1757 list_for_each_entry_continue(next, head, set_list)
1758 if (ses->entry_cnt <= next->entry_cnt)
1759 break;
1760
1761 list_move_tail(&ses->set_list, &next->set_list);
1762}
1763
1764static void add_sit_entry(unsigned int segno, struct list_head *head)
1765{
1766 struct sit_entry_set *ses;
1767 unsigned int start_segno = START_SEGNO(segno);
1768
1769 list_for_each_entry(ses, head, set_list) {
1770 if (ses->start_segno == start_segno) {
1771 ses->entry_cnt++;
1772 adjust_sit_entry_set(ses, head);
1773 return;
1774 }
1775 }
1776
1777 ses = grab_sit_entry_set();
1778
1779 ses->start_segno = start_segno;
1780 ses->entry_cnt++;
1781 list_add(&ses->set_list, head);
1782}
1783
1784static void add_sits_in_set(struct f2fs_sb_info *sbi)
1785{
1786 struct f2fs_sm_info *sm_info = SM_I(sbi);
1787 struct list_head *set_list = &sm_info->sit_entry_set;
1788 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1789 unsigned int segno;
1790
1791 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1792 add_sit_entry(segno, set_list);
1793}
1794
1795static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1796{
1797 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1798 struct f2fs_summary_block *sum = curseg->sum_blk;
1799 int i;
1800
1801 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1802 unsigned int segno;
1803 bool dirtied;
1804
1805 segno = le32_to_cpu(segno_in_journal(sum, i));
1806 dirtied = __mark_sit_entry_dirty(sbi, segno);
1807
1808 if (!dirtied)
1809 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1810 }
1811 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1812}
1813
1814/*
1815 * CP calls this function, which flushes SIT entries including sit_journal,
1816 * and moves prefree segs to free segs.
1817 */
1818void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1819{
1820 struct sit_info *sit_i = SIT_I(sbi);
1821 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1822 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1823 struct f2fs_summary_block *sum = curseg->sum_blk;
1824 struct sit_entry_set *ses, *tmp;
1825 struct list_head *head = &SM_I(sbi)->sit_entry_set;
1826 bool to_journal = true;
1827 struct seg_entry *se;
1828
1829 mutex_lock(&curseg->curseg_mutex);
1830 mutex_lock(&sit_i->sentry_lock);
1831
1832 if (!sit_i->dirty_sentries)
1833 goto out;
1834
1835 /*
1836 * add and account sit entries of dirty bitmap in sit entry
1837 * set temporarily
1838 */
1839 add_sits_in_set(sbi);
1840
1841 /*
1842 * if there are no enough space in journal to store dirty sit
1843 * entries, remove all entries from journal and add and account
1844 * them in sit entry set.
1845 */
1846 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1847 remove_sits_in_journal(sbi);
1848
1849 /*
1850 * there are two steps to flush sit entries:
1851 * #1, flush sit entries to journal in current cold data summary block.
1852 * #2, flush sit entries to sit page.
1853 */
1854 list_for_each_entry_safe(ses, tmp, head, set_list) {
1855 struct page *page = NULL;
1856 struct f2fs_sit_block *raw_sit = NULL;
1857 unsigned int start_segno = ses->start_segno;
1858 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1859 (unsigned long)MAIN_SEGS(sbi));
1860 unsigned int segno = start_segno;
1861
1862 if (to_journal &&
1863 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1864 to_journal = false;
1865
1866 if (!to_journal) {
1867 page = get_next_sit_page(sbi, start_segno);
1868 raw_sit = page_address(page);
1869 }
1870
1871 /* flush dirty sit entries in region of current sit set */
1872 for_each_set_bit_from(segno, bitmap, end) {
1873 int offset, sit_offset;
1874
1875 se = get_seg_entry(sbi, segno);
1876
1877 /* add discard candidates */
1878 if (cpc->reason != CP_DISCARD) {
1879 cpc->trim_start = segno;
1880 add_discard_addrs(sbi, cpc);
1881 }
1882
1883 if (to_journal) {
1884 offset = lookup_journal_in_cursum(sum,
1885 SIT_JOURNAL, segno, 1);
1886 f2fs_bug_on(sbi, offset < 0);
1887 segno_in_journal(sum, offset) =
1888 cpu_to_le32(segno);
1889 seg_info_to_raw_sit(se,
1890 &sit_in_journal(sum, offset));
1891 } else {
1892 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1893 seg_info_to_raw_sit(se,
1894 &raw_sit->entries[sit_offset]);
1895 }
1896
1897 __clear_bit(segno, bitmap);
1898 sit_i->dirty_sentries--;
1899 ses->entry_cnt--;
1900 }
1901
1902 if (!to_journal)
1903 f2fs_put_page(page, 1);
1904
1905 f2fs_bug_on(sbi, ses->entry_cnt);
1906 release_sit_entry_set(ses);
1907 }
1908
1909 f2fs_bug_on(sbi, !list_empty(head));
1910 f2fs_bug_on(sbi, sit_i->dirty_sentries);
1911out:
1912 if (cpc->reason == CP_DISCARD) {
1913 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1914 add_discard_addrs(sbi, cpc);
1915 }
1916 mutex_unlock(&sit_i->sentry_lock);
1917 mutex_unlock(&curseg->curseg_mutex);
1918
1919 set_prefree_as_free_segments(sbi);
1920}
1921
1922static int build_sit_info(struct f2fs_sb_info *sbi)
1923{
1924 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1925 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1926 struct sit_info *sit_i;
1927 unsigned int sit_segs, start;
1928 char *src_bitmap, *dst_bitmap;
1929 unsigned int bitmap_size;
1930
1931 /* allocate memory for SIT information */
1932 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1933 if (!sit_i)
1934 return -ENOMEM;
1935
1936 SM_I(sbi)->sit_info = sit_i;
1937
1938 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1939 if (!sit_i->sentries)
1940 return -ENOMEM;
1941
1942 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1943 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1944 if (!sit_i->dirty_sentries_bitmap)
1945 return -ENOMEM;
1946
1947 for (start = 0; start < MAIN_SEGS(sbi); start++) {
1948 sit_i->sentries[start].cur_valid_map
1949 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1950 sit_i->sentries[start].ckpt_valid_map
1951 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1952 sit_i->sentries[start].discard_map
1953 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1954 if (!sit_i->sentries[start].cur_valid_map ||
1955 !sit_i->sentries[start].ckpt_valid_map ||
1956 !sit_i->sentries[start].discard_map)
1957 return -ENOMEM;
1958 }
1959
1960 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1961 if (!sit_i->tmp_map)
1962 return -ENOMEM;
1963
1964 if (sbi->segs_per_sec > 1) {
1965 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1966 sizeof(struct sec_entry));
1967 if (!sit_i->sec_entries)
1968 return -ENOMEM;
1969 }
1970
1971 /* get information related with SIT */
1972 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1973
1974 /* setup SIT bitmap from ckeckpoint pack */
1975 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1976 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1977
1978 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1979 if (!dst_bitmap)
1980 return -ENOMEM;
1981
1982 /* init SIT information */
1983 sit_i->s_ops = &default_salloc_ops;
1984
1985 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1986 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1987 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1988 sit_i->sit_bitmap = dst_bitmap;
1989 sit_i->bitmap_size = bitmap_size;
1990 sit_i->dirty_sentries = 0;
1991 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1992 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1993 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1994 mutex_init(&sit_i->sentry_lock);
1995 return 0;
1996}
1997
1998static int build_free_segmap(struct f2fs_sb_info *sbi)
1999{
2000 struct free_segmap_info *free_i;
2001 unsigned int bitmap_size, sec_bitmap_size;
2002
2003 /* allocate memory for free segmap information */
2004 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2005 if (!free_i)
2006 return -ENOMEM;
2007
2008 SM_I(sbi)->free_info = free_i;
2009
2010 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2011 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
2012 if (!free_i->free_segmap)
2013 return -ENOMEM;
2014
2015 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2016 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
2017 if (!free_i->free_secmap)
2018 return -ENOMEM;
2019
2020 /* set all segments as dirty temporarily */
2021 memset(free_i->free_segmap, 0xff, bitmap_size);
2022 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2023
2024 /* init free segmap information */
2025 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2026 free_i->free_segments = 0;
2027 free_i->free_sections = 0;
2028 spin_lock_init(&free_i->segmap_lock);
2029 return 0;
2030}
2031
2032static int build_curseg(struct f2fs_sb_info *sbi)
2033{
2034 struct curseg_info *array;
2035 int i;
2036
2037 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2038 if (!array)
2039 return -ENOMEM;
2040
2041 SM_I(sbi)->curseg_array = array;
2042
2043 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2044 mutex_init(&array[i].curseg_mutex);
2045 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
2046 if (!array[i].sum_blk)
2047 return -ENOMEM;
2048 array[i].segno = NULL_SEGNO;
2049 array[i].next_blkoff = 0;
2050 }
2051 return restore_curseg_summaries(sbi);
2052}
2053
2054static void build_sit_entries(struct f2fs_sb_info *sbi)
2055{
2056 struct sit_info *sit_i = SIT_I(sbi);
2057 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2058 struct f2fs_summary_block *sum = curseg->sum_blk;
2059 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2060 unsigned int i, start, end;
2061 unsigned int readed, start_blk = 0;
2062 int nrpages = MAX_BIO_BLOCKS(sbi);
2063
2064 do {
2065 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
2066
2067 start = start_blk * sit_i->sents_per_block;
2068 end = (start_blk + readed) * sit_i->sents_per_block;
2069
2070 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2071 struct seg_entry *se = &sit_i->sentries[start];
2072 struct f2fs_sit_block *sit_blk;
2073 struct f2fs_sit_entry sit;
2074 struct page *page;
2075
2076 mutex_lock(&curseg->curseg_mutex);
2077 for (i = 0; i < sits_in_cursum(sum); i++) {
2078 if (le32_to_cpu(segno_in_journal(sum, i))
2079 == start) {
2080 sit = sit_in_journal(sum, i);
2081 mutex_unlock(&curseg->curseg_mutex);
2082 goto got_it;
2083 }
2084 }
2085 mutex_unlock(&curseg->curseg_mutex);
2086
2087 page = get_current_sit_page(sbi, start);
2088 sit_blk = (struct f2fs_sit_block *)page_address(page);
2089 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2090 f2fs_put_page(page, 1);
2091got_it:
2092 check_block_count(sbi, start, &sit);
2093 seg_info_from_raw_sit(se, &sit);
2094
2095 /* build discard map only one time */
2096 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2097 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2098
2099 if (sbi->segs_per_sec > 1) {
2100 struct sec_entry *e = get_sec_entry(sbi, start);
2101 e->valid_blocks += se->valid_blocks;
2102 }
2103 }
2104 start_blk += readed;
2105 } while (start_blk < sit_blk_cnt);
2106}
2107
2108static void init_free_segmap(struct f2fs_sb_info *sbi)
2109{
2110 unsigned int start;
2111 int type;
2112
2113 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2114 struct seg_entry *sentry = get_seg_entry(sbi, start);
2115 if (!sentry->valid_blocks)
2116 __set_free(sbi, start);
2117 }
2118
2119 /* set use the current segments */
2120 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2121 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2122 __set_test_and_inuse(sbi, curseg_t->segno);
2123 }
2124}
2125
2126static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2127{
2128 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2129 struct free_segmap_info *free_i = FREE_I(sbi);
2130 unsigned int segno = 0, offset = 0;
2131 unsigned short valid_blocks;
2132
2133 while (1) {
2134 /* find dirty segment based on free segmap */
2135 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2136 if (segno >= MAIN_SEGS(sbi))
2137 break;
2138 offset = segno + 1;
2139 valid_blocks = get_valid_blocks(sbi, segno, 0);
2140 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2141 continue;
2142 if (valid_blocks > sbi->blocks_per_seg) {
2143 f2fs_bug_on(sbi, 1);
2144 continue;
2145 }
2146 mutex_lock(&dirty_i->seglist_lock);
2147 __locate_dirty_segment(sbi, segno, DIRTY);
2148 mutex_unlock(&dirty_i->seglist_lock);
2149 }
2150}
2151
2152static int init_victim_secmap(struct f2fs_sb_info *sbi)
2153{
2154 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2155 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2156
2157 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2158 if (!dirty_i->victim_secmap)
2159 return -ENOMEM;
2160 return 0;
2161}
2162
2163static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2164{
2165 struct dirty_seglist_info *dirty_i;
2166 unsigned int bitmap_size, i;
2167
2168 /* allocate memory for dirty segments list information */
2169 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2170 if (!dirty_i)
2171 return -ENOMEM;
2172
2173 SM_I(sbi)->dirty_info = dirty_i;
2174 mutex_init(&dirty_i->seglist_lock);
2175
2176 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2177
2178 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2179 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2180 if (!dirty_i->dirty_segmap[i])
2181 return -ENOMEM;
2182 }
2183
2184 init_dirty_segmap(sbi);
2185 return init_victim_secmap(sbi);
2186}
2187
2188/*
2189 * Update min, max modified time for cost-benefit GC algorithm
2190 */
2191static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2192{
2193 struct sit_info *sit_i = SIT_I(sbi);
2194 unsigned int segno;
2195
2196 mutex_lock(&sit_i->sentry_lock);
2197
2198 sit_i->min_mtime = LLONG_MAX;
2199
2200 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2201 unsigned int i;
2202 unsigned long long mtime = 0;
2203
2204 for (i = 0; i < sbi->segs_per_sec; i++)
2205 mtime += get_seg_entry(sbi, segno + i)->mtime;
2206
2207 mtime = div_u64(mtime, sbi->segs_per_sec);
2208
2209 if (sit_i->min_mtime > mtime)
2210 sit_i->min_mtime = mtime;
2211 }
2212 sit_i->max_mtime = get_mtime(sbi);
2213 mutex_unlock(&sit_i->sentry_lock);
2214}
2215
2216int build_segment_manager(struct f2fs_sb_info *sbi)
2217{
2218 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2219 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2220 struct f2fs_sm_info *sm_info;
2221 int err;
2222
2223 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2224 if (!sm_info)
2225 return -ENOMEM;
2226
2227 /* init sm info */
2228 sbi->sm_info = sm_info;
2229 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2230 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2231 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2232 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2233 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2234 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2235 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2236 sm_info->rec_prefree_segments = sm_info->main_segments *
2237 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2238 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2239 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2240 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2241
2242 INIT_LIST_HEAD(&sm_info->discard_list);
2243 sm_info->nr_discards = 0;
2244 sm_info->max_discards = 0;
2245
2246 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2247
2248 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2249
2250 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2251 err = create_flush_cmd_control(sbi);
2252 if (err)
2253 return err;
2254 }
2255
2256 err = build_sit_info(sbi);
2257 if (err)
2258 return err;
2259 err = build_free_segmap(sbi);
2260 if (err)
2261 return err;
2262 err = build_curseg(sbi);
2263 if (err)
2264 return err;
2265
2266 /* reinit free segmap based on SIT */
2267 build_sit_entries(sbi);
2268
2269 init_free_segmap(sbi);
2270 err = build_dirty_segmap(sbi);
2271 if (err)
2272 return err;
2273
2274 init_min_max_mtime(sbi);
2275 return 0;
2276}
2277
2278static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2279 enum dirty_type dirty_type)
2280{
2281 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2282
2283 mutex_lock(&dirty_i->seglist_lock);
2284 kfree(dirty_i->dirty_segmap[dirty_type]);
2285 dirty_i->nr_dirty[dirty_type] = 0;
2286 mutex_unlock(&dirty_i->seglist_lock);
2287}
2288
2289static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2290{
2291 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2292 kfree(dirty_i->victim_secmap);
2293}
2294
2295static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2296{
2297 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2298 int i;
2299
2300 if (!dirty_i)
2301 return;
2302
2303 /* discard pre-free/dirty segments list */
2304 for (i = 0; i < NR_DIRTY_TYPE; i++)
2305 discard_dirty_segmap(sbi, i);
2306
2307 destroy_victim_secmap(sbi);
2308 SM_I(sbi)->dirty_info = NULL;
2309 kfree(dirty_i);
2310}
2311
2312static void destroy_curseg(struct f2fs_sb_info *sbi)
2313{
2314 struct curseg_info *array = SM_I(sbi)->curseg_array;
2315 int i;
2316
2317 if (!array)
2318 return;
2319 SM_I(sbi)->curseg_array = NULL;
2320 for (i = 0; i < NR_CURSEG_TYPE; i++)
2321 kfree(array[i].sum_blk);
2322 kfree(array);
2323}
2324
2325static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2326{
2327 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2328 if (!free_i)
2329 return;
2330 SM_I(sbi)->free_info = NULL;
2331 kfree(free_i->free_segmap);
2332 kfree(free_i->free_secmap);
2333 kfree(free_i);
2334}
2335
2336static void destroy_sit_info(struct f2fs_sb_info *sbi)
2337{
2338 struct sit_info *sit_i = SIT_I(sbi);
2339 unsigned int start;
2340
2341 if (!sit_i)
2342 return;
2343
2344 if (sit_i->sentries) {
2345 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2346 kfree(sit_i->sentries[start].cur_valid_map);
2347 kfree(sit_i->sentries[start].ckpt_valid_map);
2348 kfree(sit_i->sentries[start].discard_map);
2349 }
2350 }
2351 kfree(sit_i->tmp_map);
2352
2353 vfree(sit_i->sentries);
2354 vfree(sit_i->sec_entries);
2355 kfree(sit_i->dirty_sentries_bitmap);
2356
2357 SM_I(sbi)->sit_info = NULL;
2358 kfree(sit_i->sit_bitmap);
2359 kfree(sit_i);
2360}
2361
2362void destroy_segment_manager(struct f2fs_sb_info *sbi)
2363{
2364 struct f2fs_sm_info *sm_info = SM_I(sbi);
2365
2366 if (!sm_info)
2367 return;
2368 destroy_flush_cmd_control(sbi);
2369 destroy_dirty_segmap(sbi);
2370 destroy_curseg(sbi);
2371 destroy_free_segmap(sbi);
2372 destroy_sit_info(sbi);
2373 sbi->sm_info = NULL;
2374 kfree(sm_info);
2375}
2376
2377int __init create_segment_manager_caches(void)
2378{
2379 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2380 sizeof(struct discard_entry));
2381 if (!discard_entry_slab)
2382 goto fail;
2383
2384 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2385 sizeof(struct sit_entry_set));
2386 if (!sit_entry_set_slab)
2387 goto destory_discard_entry;
2388
2389 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2390 sizeof(struct inmem_pages));
2391 if (!inmem_entry_slab)
2392 goto destroy_sit_entry_set;
2393 return 0;
2394
2395destroy_sit_entry_set:
2396 kmem_cache_destroy(sit_entry_set_slab);
2397destory_discard_entry:
2398 kmem_cache_destroy(discard_entry_slab);
2399fail:
2400 return -ENOMEM;
2401}
2402
2403void destroy_segment_manager_caches(void)
2404{
2405 kmem_cache_destroy(sit_entry_set_slab);
2406 kmem_cache_destroy(discard_entry_slab);
2407 kmem_cache_destroy(inmem_entry_slab);
2408}
This page took 0.038471 seconds and 5 git commands to generate.