udf: fix coding style
[deliverable/linux.git] / fs / udf / inode.c
... / ...
CommitLineData
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/smp_lock.h>
35#include <linux/module.h>
36#include <linux/pagemap.h>
37#include <linux/buffer_head.h>
38#include <linux/writeback.h>
39#include <linux/slab.h>
40
41#include "udf_i.h"
42#include "udf_sb.h"
43
44MODULE_AUTHOR("Ben Fennema");
45MODULE_DESCRIPTION("Universal Disk Format Filesystem");
46MODULE_LICENSE("GPL");
47
48#define EXTENT_MERGE_SIZE 5
49
50static mode_t udf_convert_permissions(struct fileEntry *);
51static int udf_update_inode(struct inode *, int);
52static void udf_fill_inode(struct inode *, struct buffer_head *);
53static int udf_alloc_i_data(struct inode *inode, size_t size);
54static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
55 long *, int *);
56static int8_t udf_insert_aext(struct inode *, struct extent_position,
57 kernel_lb_addr, uint32_t);
58static void udf_split_extents(struct inode *, int *, int, int,
59 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
60static void udf_prealloc_extents(struct inode *, int, int,
61 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62static void udf_merge_extents(struct inode *,
63 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64static void udf_update_extents(struct inode *,
65 kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
66 struct extent_position *);
67static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
68
69/*
70 * udf_delete_inode
71 *
72 * PURPOSE
73 * Clean-up before the specified inode is destroyed.
74 *
75 * DESCRIPTION
76 * This routine is called when the kernel destroys an inode structure
77 * ie. when iput() finds i_count == 0.
78 *
79 * HISTORY
80 * July 1, 1997 - Andrew E. Mileski
81 * Written, tested, and released.
82 *
83 * Called at the last iput() if i_nlink is zero.
84 */
85void udf_delete_inode(struct inode *inode)
86{
87 truncate_inode_pages(&inode->i_data, 0);
88
89 if (is_bad_inode(inode))
90 goto no_delete;
91
92 inode->i_size = 0;
93 udf_truncate(inode);
94 lock_kernel();
95
96 udf_update_inode(inode, IS_SYNC(inode));
97 udf_free_inode(inode);
98
99 unlock_kernel();
100 return;
101
102no_delete:
103 clear_inode(inode);
104}
105
106/*
107 * If we are going to release inode from memory, we discard preallocation and
108 * truncate last inode extent to proper length. We could use drop_inode() but
109 * it's called under inode_lock and thus we cannot mark inode dirty there. We
110 * use clear_inode() but we have to make sure to write inode as it's not written
111 * automatically.
112 */
113void udf_clear_inode(struct inode *inode)
114{
115 if (!(inode->i_sb->s_flags & MS_RDONLY)) {
116 lock_kernel();
117 /* Discard preallocation for directories, symlinks, etc. */
118 udf_discard_prealloc(inode);
119 udf_truncate_tail_extent(inode);
120 unlock_kernel();
121 write_inode_now(inode, 1);
122 }
123 kfree(UDF_I_DATA(inode));
124 UDF_I_DATA(inode) = NULL;
125}
126
127static int udf_writepage(struct page *page, struct writeback_control *wbc)
128{
129 return block_write_full_page(page, udf_get_block, wbc);
130}
131
132static int udf_readpage(struct file *file, struct page *page)
133{
134 return block_read_full_page(page, udf_get_block);
135}
136
137static int udf_write_begin(struct file *file, struct address_space *mapping,
138 loff_t pos, unsigned len, unsigned flags,
139 struct page **pagep, void **fsdata)
140{
141 *pagep = NULL;
142 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
143 udf_get_block);
144}
145
146static sector_t udf_bmap(struct address_space *mapping, sector_t block)
147{
148 return generic_block_bmap(mapping, block, udf_get_block);
149}
150
151const struct address_space_operations udf_aops = {
152 .readpage = udf_readpage,
153 .writepage = udf_writepage,
154 .sync_page = block_sync_page,
155 .write_begin = udf_write_begin,
156 .write_end = generic_write_end,
157 .bmap = udf_bmap,
158};
159
160void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
161{
162 struct page *page;
163 char *kaddr;
164 struct writeback_control udf_wbc = {
165 .sync_mode = WB_SYNC_NONE,
166 .nr_to_write = 1,
167 };
168
169 /* from now on we have normal address_space methods */
170 inode->i_data.a_ops = &udf_aops;
171
172 if (!UDF_I_LENALLOC(inode)) {
173 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
174 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
175 else
176 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
177 mark_inode_dirty(inode);
178 return;
179 }
180
181 page = grab_cache_page(inode->i_mapping, 0);
182 BUG_ON(!PageLocked(page));
183
184 if (!PageUptodate(page)) {
185 kaddr = kmap(page);
186 memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
187 PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
188 memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
189 UDF_I_LENALLOC(inode));
190 flush_dcache_page(page);
191 SetPageUptodate(page);
192 kunmap(page);
193 }
194 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
195 UDF_I_LENALLOC(inode));
196 UDF_I_LENALLOC(inode) = 0;
197 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
198 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
199 else
200 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
201
202 inode->i_data.a_ops->writepage(page, &udf_wbc);
203 page_cache_release(page);
204
205 mark_inode_dirty(inode);
206}
207
208struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
209 int *err)
210{
211 int newblock;
212 struct buffer_head *dbh = NULL;
213 kernel_lb_addr eloc;
214 uint32_t elen;
215 uint8_t alloctype;
216 struct extent_position epos;
217
218 struct udf_fileident_bh sfibh, dfibh;
219 loff_t f_pos = udf_ext0_offset(inode) >> 2;
220 int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
221 struct fileIdentDesc cfi, *sfi, *dfi;
222
223 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
224 alloctype = ICBTAG_FLAG_AD_SHORT;
225 else
226 alloctype = ICBTAG_FLAG_AD_LONG;
227
228 if (!inode->i_size) {
229 UDF_I_ALLOCTYPE(inode) = alloctype;
230 mark_inode_dirty(inode);
231 return NULL;
232 }
233
234 /* alloc block, and copy data to it */
235 *block = udf_new_block(inode->i_sb, inode,
236 UDF_I_LOCATION(inode).partitionReferenceNum,
237 UDF_I_LOCATION(inode).logicalBlockNum, err);
238 if (!(*block))
239 return NULL;
240 newblock = udf_get_pblock(inode->i_sb, *block,
241 UDF_I_LOCATION(inode).partitionReferenceNum,
242 0);
243 if (!newblock)
244 return NULL;
245 dbh = udf_tgetblk(inode->i_sb, newblock);
246 if (!dbh)
247 return NULL;
248 lock_buffer(dbh);
249 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
250 set_buffer_uptodate(dbh);
251 unlock_buffer(dbh);
252 mark_buffer_dirty_inode(dbh, inode);
253
254 sfibh.soffset = sfibh.eoffset =
255 (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
256 sfibh.sbh = sfibh.ebh = NULL;
257 dfibh.soffset = dfibh.eoffset = 0;
258 dfibh.sbh = dfibh.ebh = dbh;
259 while ((f_pos < size)) {
260 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
261 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
262 NULL, NULL, NULL);
263 if (!sfi) {
264 brelse(dbh);
265 return NULL;
266 }
267 UDF_I_ALLOCTYPE(inode) = alloctype;
268 sfi->descTag.tagLocation = cpu_to_le32(*block);
269 dfibh.soffset = dfibh.eoffset;
270 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
271 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
272 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
273 sfi->fileIdent +
274 le16_to_cpu(sfi->lengthOfImpUse))) {
275 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
276 brelse(dbh);
277 return NULL;
278 }
279 }
280 mark_buffer_dirty_inode(dbh, inode);
281
282 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0,
283 UDF_I_LENALLOC(inode));
284 UDF_I_LENALLOC(inode) = 0;
285 eloc.logicalBlockNum = *block;
286 eloc.partitionReferenceNum =
287 UDF_I_LOCATION(inode).partitionReferenceNum;
288 elen = inode->i_size;
289 UDF_I_LENEXTENTS(inode) = elen;
290 epos.bh = NULL;
291 epos.block = UDF_I_LOCATION(inode);
292 epos.offset = udf_file_entry_alloc_offset(inode);
293 udf_add_aext(inode, &epos, eloc, elen, 0);
294 /* UniqueID stuff */
295
296 brelse(epos.bh);
297 mark_inode_dirty(inode);
298 return dbh;
299}
300
301static int udf_get_block(struct inode *inode, sector_t block,
302 struct buffer_head *bh_result, int create)
303{
304 int err, new;
305 struct buffer_head *bh;
306 unsigned long phys;
307
308 if (!create) {
309 phys = udf_block_map(inode, block);
310 if (phys)
311 map_bh(bh_result, inode->i_sb, phys);
312 return 0;
313 }
314
315 err = -EIO;
316 new = 0;
317 bh = NULL;
318
319 lock_kernel();
320
321 if (block < 0)
322 goto abort_negative;
323
324 if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
325 UDF_I_NEXT_ALLOC_BLOCK(inode)++;
326 UDF_I_NEXT_ALLOC_GOAL(inode)++;
327 }
328
329 err = 0;
330
331 bh = inode_getblk(inode, block, &err, &phys, &new);
332 BUG_ON(bh);
333 if (err)
334 goto abort;
335 BUG_ON(!phys);
336
337 if (new)
338 set_buffer_new(bh_result);
339 map_bh(bh_result, inode->i_sb, phys);
340
341abort:
342 unlock_kernel();
343 return err;
344
345abort_negative:
346 udf_warning(inode->i_sb, "udf_get_block", "block < 0");
347 goto abort;
348}
349
350static struct buffer_head *udf_getblk(struct inode *inode, long block,
351 int create, int *err)
352{
353 struct buffer_head *bh;
354 struct buffer_head dummy;
355
356 dummy.b_state = 0;
357 dummy.b_blocknr = -1000;
358 *err = udf_get_block(inode, block, &dummy, create);
359 if (!*err && buffer_mapped(&dummy)) {
360 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
361 if (buffer_new(&dummy)) {
362 lock_buffer(bh);
363 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
364 set_buffer_uptodate(bh);
365 unlock_buffer(bh);
366 mark_buffer_dirty_inode(bh, inode);
367 }
368 return bh;
369 }
370
371 return NULL;
372}
373
374/* Extend the file by 'blocks' blocks, return the number of extents added */
375int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
376 kernel_long_ad *last_ext, sector_t blocks)
377{
378 sector_t add;
379 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
380 struct super_block *sb = inode->i_sb;
381 kernel_lb_addr prealloc_loc = {};
382 int prealloc_len = 0;
383
384 /* The previous extent is fake and we should not extend by anything
385 * - there's nothing to do... */
386 if (!blocks && fake)
387 return 0;
388
389 /* Round the last extent up to a multiple of block size */
390 if (last_ext->extLength & (sb->s_blocksize - 1)) {
391 last_ext->extLength =
392 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
393 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
394 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
395 UDF_I_LENEXTENTS(inode) =
396 (UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
397 ~(sb->s_blocksize - 1);
398 }
399
400 /* Last extent are just preallocated blocks? */
401 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
402 EXT_NOT_RECORDED_ALLOCATED) {
403 /* Save the extent so that we can reattach it to the end */
404 prealloc_loc = last_ext->extLocation;
405 prealloc_len = last_ext->extLength;
406 /* Mark the extent as a hole */
407 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
408 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
409 last_ext->extLocation.logicalBlockNum = 0;
410 last_ext->extLocation.partitionReferenceNum = 0;
411 }
412
413 /* Can we merge with the previous extent? */
414 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
415 EXT_NOT_RECORDED_NOT_ALLOCATED) {
416 add = ((1 << 30) - sb->s_blocksize -
417 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
418 sb->s_blocksize_bits;
419 if (add > blocks)
420 add = blocks;
421 blocks -= add;
422 last_ext->extLength += add << sb->s_blocksize_bits;
423 }
424
425 if (fake) {
426 udf_add_aext(inode, last_pos, last_ext->extLocation,
427 last_ext->extLength, 1);
428 count++;
429 } else
430 udf_write_aext(inode, last_pos, last_ext->extLocation,
431 last_ext->extLength, 1);
432
433 /* Managed to do everything necessary? */
434 if (!blocks)
435 goto out;
436
437 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
438 last_ext->extLocation.logicalBlockNum = 0;
439 last_ext->extLocation.partitionReferenceNum = 0;
440 add = (1 << (30-sb->s_blocksize_bits)) - 1;
441 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
442 (add << sb->s_blocksize_bits);
443
444 /* Create enough extents to cover the whole hole */
445 while (blocks > add) {
446 blocks -= add;
447 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
448 last_ext->extLength, 1) == -1)
449 return -1;
450 count++;
451 }
452 if (blocks) {
453 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
454 (blocks << sb->s_blocksize_bits);
455 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
456 last_ext->extLength, 1) == -1)
457 return -1;
458 count++;
459 }
460
461out:
462 /* Do we have some preallocated blocks saved? */
463 if (prealloc_len) {
464 if (udf_add_aext(inode, last_pos, prealloc_loc,
465 prealloc_len, 1) == -1)
466 return -1;
467 last_ext->extLocation = prealloc_loc;
468 last_ext->extLength = prealloc_len;
469 count++;
470 }
471
472 /* last_pos should point to the last written extent... */
473 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
474 last_pos->offset -= sizeof(short_ad);
475 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
476 last_pos->offset -= sizeof(long_ad);
477 else
478 return -1;
479
480 return count;
481}
482
483static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
484 int *err, long *phys, int *new)
485{
486 static sector_t last_block;
487 struct buffer_head *result = NULL;
488 kernel_long_ad laarr[EXTENT_MERGE_SIZE];
489 struct extent_position prev_epos, cur_epos, next_epos;
490 int count = 0, startnum = 0, endnum = 0;
491 uint32_t elen = 0, tmpelen;
492 kernel_lb_addr eloc, tmpeloc;
493 int c = 1;
494 loff_t lbcount = 0, b_off = 0;
495 uint32_t newblocknum, newblock;
496 sector_t offset = 0;
497 int8_t etype;
498 int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
499 int lastblock = 0;
500
501 prev_epos.offset = udf_file_entry_alloc_offset(inode);
502 prev_epos.block = UDF_I_LOCATION(inode);
503 prev_epos.bh = NULL;
504 cur_epos = next_epos = prev_epos;
505 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
506
507 /* find the extent which contains the block we are looking for.
508 alternate between laarr[0] and laarr[1] for locations of the
509 current extent, and the previous extent */
510 do {
511 if (prev_epos.bh != cur_epos.bh) {
512 brelse(prev_epos.bh);
513 get_bh(cur_epos.bh);
514 prev_epos.bh = cur_epos.bh;
515 }
516 if (cur_epos.bh != next_epos.bh) {
517 brelse(cur_epos.bh);
518 get_bh(next_epos.bh);
519 cur_epos.bh = next_epos.bh;
520 }
521
522 lbcount += elen;
523
524 prev_epos.block = cur_epos.block;
525 cur_epos.block = next_epos.block;
526
527 prev_epos.offset = cur_epos.offset;
528 cur_epos.offset = next_epos.offset;
529
530 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
531 if (etype == -1)
532 break;
533
534 c = !c;
535
536 laarr[c].extLength = (etype << 30) | elen;
537 laarr[c].extLocation = eloc;
538
539 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
540 pgoal = eloc.logicalBlockNum +
541 ((elen + inode->i_sb->s_blocksize - 1) >>
542 inode->i_sb->s_blocksize_bits);
543
544 count++;
545 } while (lbcount + elen <= b_off);
546
547 b_off -= lbcount;
548 offset = b_off >> inode->i_sb->s_blocksize_bits;
549 /*
550 * Move prev_epos and cur_epos into indirect extent if we are at
551 * the pointer to it
552 */
553 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
554 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
555
556 /* if the extent is allocated and recorded, return the block
557 if the extent is not a multiple of the blocksize, round up */
558
559 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
560 if (elen & (inode->i_sb->s_blocksize - 1)) {
561 elen = EXT_RECORDED_ALLOCATED |
562 ((elen + inode->i_sb->s_blocksize - 1) &
563 ~(inode->i_sb->s_blocksize - 1));
564 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
565 }
566 brelse(prev_epos.bh);
567 brelse(cur_epos.bh);
568 brelse(next_epos.bh);
569 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
570 *phys = newblock;
571 return NULL;
572 }
573
574 last_block = block;
575 /* Are we beyond EOF? */
576 if (etype == -1) {
577 int ret;
578
579 if (count) {
580 if (c)
581 laarr[0] = laarr[1];
582 startnum = 1;
583 } else {
584 /* Create a fake extent when there's not one */
585 memset(&laarr[0].extLocation, 0x00,
586 sizeof(kernel_lb_addr));
587 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
588 /* Will udf_extend_file() create real extent from
589 a fake one? */
590 startnum = (offset > 0);
591 }
592 /* Create extents for the hole between EOF and offset */
593 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
594 if (ret == -1) {
595 brelse(prev_epos.bh);
596 brelse(cur_epos.bh);
597 brelse(next_epos.bh);
598 /* We don't really know the error here so we just make
599 * something up */
600 *err = -ENOSPC;
601 return NULL;
602 }
603 c = 0;
604 offset = 0;
605 count += ret;
606 /* We are not covered by a preallocated extent? */
607 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
608 EXT_NOT_RECORDED_ALLOCATED) {
609 /* Is there any real extent? - otherwise we overwrite
610 * the fake one... */
611 if (count)
612 c = !c;
613 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
614 inode->i_sb->s_blocksize;
615 memset(&laarr[c].extLocation, 0x00,
616 sizeof(kernel_lb_addr));
617 count++;
618 endnum++;
619 }
620 endnum = c + 1;
621 lastblock = 1;
622 } else {
623 endnum = startnum = ((count > 2) ? 2 : count);
624
625 /* if the current extent is in position 0,
626 swap it with the previous */
627 if (!c && count != 1) {
628 laarr[2] = laarr[0];
629 laarr[0] = laarr[1];
630 laarr[1] = laarr[2];
631 c = 1;
632 }
633
634 /* if the current block is located in an extent,
635 read the next extent */
636 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
637 if (etype != -1) {
638 laarr[c + 1].extLength = (etype << 30) | elen;
639 laarr[c + 1].extLocation = eloc;
640 count++;
641 startnum++;
642 endnum++;
643 } else
644 lastblock = 1;
645 }
646
647 /* if the current extent is not recorded but allocated, get the
648 * block in the extent corresponding to the requested block */
649 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
650 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
651 else { /* otherwise, allocate a new block */
652 if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
653 goal = UDF_I_NEXT_ALLOC_GOAL(inode);
654
655 if (!goal) {
656 if (!(goal = pgoal)) /* XXX: what was intended here? */
657 goal = UDF_I_LOCATION(inode).logicalBlockNum+1;
658 }
659
660 newblocknum = udf_new_block(inode->i_sb, inode,
661 UDF_I_LOCATION(inode).partitionReferenceNum,
662 goal, err);
663 if (!newblocknum) {
664 brelse(prev_epos.bh);
665 *err = -ENOSPC;
666 return NULL;
667 }
668 UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
669 }
670
671 /* if the extent the requsted block is located in contains multiple
672 * blocks, split the extent into at most three extents. blocks prior
673 * to requested block, requested block, and blocks after requested
674 * block */
675 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
676
677#ifdef UDF_PREALLOCATE
678 /* preallocate blocks */
679 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
680#endif
681
682 /* merge any continuous blocks in laarr */
683 udf_merge_extents(inode, laarr, &endnum);
684
685 /* write back the new extents, inserting new extents if the new number
686 * of extents is greater than the old number, and deleting extents if
687 * the new number of extents is less than the old number */
688 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
689
690 brelse(prev_epos.bh);
691
692 newblock = udf_get_pblock(inode->i_sb, newblocknum,
693 UDF_I_LOCATION(inode).partitionReferenceNum, 0);
694 if (!newblock)
695 return NULL;
696 *phys = newblock;
697 *err = 0;
698 *new = 1;
699 UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
700 UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
701 inode->i_ctime = current_fs_time(inode->i_sb);
702
703 if (IS_SYNC(inode))
704 udf_sync_inode(inode);
705 else
706 mark_inode_dirty(inode);
707
708 return result;
709}
710
711static void udf_split_extents(struct inode *inode, int *c, int offset,
712 int newblocknum,
713 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
714 int *endnum)
715{
716 unsigned long blocksize = inode->i_sb->s_blocksize;
717 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
718
719 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
720 (laarr[*c].extLength >> 30) ==
721 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
722 int curr = *c;
723 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
724 blocksize - 1) >> blocksize_bits;
725 int8_t etype = (laarr[curr].extLength >> 30);
726
727 if (blen == 1)
728 ;
729 else if (!offset || blen == offset + 1) {
730 laarr[curr + 2] = laarr[curr + 1];
731 laarr[curr + 1] = laarr[curr];
732 } else {
733 laarr[curr + 3] = laarr[curr + 1];
734 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
735 }
736
737 if (offset) {
738 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
739 udf_free_blocks(inode->i_sb, inode,
740 laarr[curr].extLocation,
741 0, offset);
742 laarr[curr].extLength =
743 EXT_NOT_RECORDED_NOT_ALLOCATED |
744 (offset << blocksize_bits);
745 laarr[curr].extLocation.logicalBlockNum = 0;
746 laarr[curr].extLocation.
747 partitionReferenceNum = 0;
748 } else
749 laarr[curr].extLength = (etype << 30) |
750 (offset << blocksize_bits);
751 curr++;
752 (*c)++;
753 (*endnum)++;
754 }
755
756 laarr[curr].extLocation.logicalBlockNum = newblocknum;
757 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
758 laarr[curr].extLocation.partitionReferenceNum =
759 UDF_I_LOCATION(inode).partitionReferenceNum;
760 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
761 blocksize;
762 curr++;
763
764 if (blen != offset + 1) {
765 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
766 laarr[curr].extLocation.logicalBlockNum +=
767 offset + 1;
768 laarr[curr].extLength = (etype << 30) |
769 ((blen - (offset + 1)) << blocksize_bits);
770 curr++;
771 (*endnum)++;
772 }
773 }
774}
775
776static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
777 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
778 int *endnum)
779{
780 int start, length = 0, currlength = 0, i;
781
782 if (*endnum >= (c + 1)) {
783 if (!lastblock)
784 return;
785 else
786 start = c;
787 } else {
788 if ((laarr[c + 1].extLength >> 30) ==
789 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
790 start = c + 1;
791 length = currlength =
792 (((laarr[c + 1].extLength &
793 UDF_EXTENT_LENGTH_MASK) +
794 inode->i_sb->s_blocksize - 1) >>
795 inode->i_sb->s_blocksize_bits);
796 } else
797 start = c;
798 }
799
800 for (i = start + 1; i <= *endnum; i++) {
801 if (i == *endnum) {
802 if (lastblock)
803 length += UDF_DEFAULT_PREALLOC_BLOCKS;
804 } else if ((laarr[i].extLength >> 30) ==
805 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
806 length += (((laarr[i].extLength &
807 UDF_EXTENT_LENGTH_MASK) +
808 inode->i_sb->s_blocksize - 1) >>
809 inode->i_sb->s_blocksize_bits);
810 } else
811 break;
812 }
813
814 if (length) {
815 int next = laarr[start].extLocation.logicalBlockNum +
816 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
817 inode->i_sb->s_blocksize - 1) >>
818 inode->i_sb->s_blocksize_bits);
819 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
820 laarr[start].extLocation.partitionReferenceNum,
821 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
822 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
823 currlength);
824 if (numalloc) {
825 if (start == (c + 1))
826 laarr[start].extLength +=
827 (numalloc <<
828 inode->i_sb->s_blocksize_bits);
829 else {
830 memmove(&laarr[c + 2], &laarr[c + 1],
831 sizeof(long_ad) * (*endnum - (c + 1)));
832 (*endnum)++;
833 laarr[c + 1].extLocation.logicalBlockNum = next;
834 laarr[c + 1].extLocation.partitionReferenceNum =
835 laarr[c].extLocation.
836 partitionReferenceNum;
837 laarr[c + 1].extLength =
838 EXT_NOT_RECORDED_ALLOCATED |
839 (numalloc <<
840 inode->i_sb->s_blocksize_bits);
841 start = c + 1;
842 }
843
844 for (i = start + 1; numalloc && i < *endnum; i++) {
845 int elen = ((laarr[i].extLength &
846 UDF_EXTENT_LENGTH_MASK) +
847 inode->i_sb->s_blocksize - 1) >>
848 inode->i_sb->s_blocksize_bits;
849
850 if (elen > numalloc) {
851 laarr[i].extLength -=
852 (numalloc <<
853 inode->i_sb->s_blocksize_bits);
854 numalloc = 0;
855 } else {
856 numalloc -= elen;
857 if (*endnum > (i + 1))
858 memmove(&laarr[i],
859 &laarr[i + 1],
860 sizeof(long_ad) *
861 (*endnum - (i + 1)));
862 i--;
863 (*endnum)--;
864 }
865 }
866 UDF_I_LENEXTENTS(inode) +=
867 numalloc << inode->i_sb->s_blocksize_bits;
868 }
869 }
870}
871
872static void udf_merge_extents(struct inode *inode,
873 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
874 int *endnum)
875{
876 int i;
877 unsigned long blocksize = inode->i_sb->s_blocksize;
878 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
879
880 for (i = 0; i < (*endnum - 1); i++) {
881 kernel_long_ad *li /*l[i]*/ = &laarr[i];
882 kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
883
884 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
885 (((li->extLength >> 30) ==
886 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
887 ((lip1->extLocation.logicalBlockNum -
888 li->extLocation.logicalBlockNum) ==
889 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
890 blocksize - 1) >> blocksize_bits)))) {
891
892 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
893 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
894 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
895 lip1->extLength = (lip1->extLength -
896 (li->extLength &
897 UDF_EXTENT_LENGTH_MASK) +
898 UDF_EXTENT_LENGTH_MASK) &
899 ~(blocksize - 1);
900 li->extLength = (li->extLength &
901 UDF_EXTENT_FLAG_MASK) +
902 (UDF_EXTENT_LENGTH_MASK + 1) -
903 blocksize;
904 lip1->extLocation.logicalBlockNum =
905 li->extLocation.logicalBlockNum +
906 ((li->extLength &
907 UDF_EXTENT_LENGTH_MASK) >>
908 blocksize_bits);
909 } else {
910 li->extLength = lip1->extLength +
911 (((li->extLength &
912 UDF_EXTENT_LENGTH_MASK) +
913 blocksize - 1) & ~(blocksize - 1));
914 if (*endnum > (i + 2))
915 memmove(&laarr[i + 1], &laarr[i + 2],
916 sizeof(long_ad) *
917 (*endnum - (i + 2)));
918 i--;
919 (*endnum)--;
920 }
921 } else if (((li->extLength >> 30) ==
922 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
923 ((lip1->extLength >> 30) ==
924 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
925 udf_free_blocks(inode->i_sb, inode, li->extLocation, 0,
926 ((li->extLength &
927 UDF_EXTENT_LENGTH_MASK) +
928 blocksize - 1) >> blocksize_bits);
929 li->extLocation.logicalBlockNum = 0;
930 li->extLocation.partitionReferenceNum = 0;
931
932 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
933 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
934 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
935 lip1->extLength = (lip1->extLength -
936 (li->extLength &
937 UDF_EXTENT_LENGTH_MASK) +
938 UDF_EXTENT_LENGTH_MASK) &
939 ~(blocksize - 1);
940 li->extLength = (li->extLength &
941 UDF_EXTENT_FLAG_MASK) +
942 (UDF_EXTENT_LENGTH_MASK + 1) -
943 blocksize;
944 } else {
945 li->extLength = lip1->extLength +
946 (((li->extLength &
947 UDF_EXTENT_LENGTH_MASK) +
948 blocksize - 1) & ~(blocksize - 1));
949 if (*endnum > (i + 2))
950 memmove(&laarr[i + 1], &laarr[i + 2],
951 sizeof(long_ad) *
952 (*endnum - (i + 2)));
953 i--;
954 (*endnum)--;
955 }
956 } else if ((li->extLength >> 30) ==
957 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
958 udf_free_blocks(inode->i_sb, inode,
959 li->extLocation, 0,
960 ((li->extLength &
961 UDF_EXTENT_LENGTH_MASK) +
962 blocksize - 1) >> blocksize_bits);
963 li->extLocation.logicalBlockNum = 0;
964 li->extLocation.partitionReferenceNum = 0;
965 li->extLength = (li->extLength &
966 UDF_EXTENT_LENGTH_MASK) |
967 EXT_NOT_RECORDED_NOT_ALLOCATED;
968 }
969 }
970}
971
972static void udf_update_extents(struct inode *inode,
973 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
974 int startnum, int endnum,
975 struct extent_position *epos)
976{
977 int start = 0, i;
978 kernel_lb_addr tmploc;
979 uint32_t tmplen;
980
981 if (startnum > endnum) {
982 for (i = 0; i < (startnum - endnum); i++)
983 udf_delete_aext(inode, *epos, laarr[i].extLocation,
984 laarr[i].extLength);
985 } else if (startnum < endnum) {
986 for (i = 0; i < (endnum - startnum); i++) {
987 udf_insert_aext(inode, *epos, laarr[i].extLocation,
988 laarr[i].extLength);
989 udf_next_aext(inode, epos, &laarr[i].extLocation,
990 &laarr[i].extLength, 1);
991 start++;
992 }
993 }
994
995 for (i = start; i < endnum; i++) {
996 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
997 udf_write_aext(inode, epos, laarr[i].extLocation,
998 laarr[i].extLength, 1);
999 }
1000}
1001
1002struct buffer_head *udf_bread(struct inode *inode, int block,
1003 int create, int *err)
1004{
1005 struct buffer_head *bh = NULL;
1006
1007 bh = udf_getblk(inode, block, create, err);
1008 if (!bh)
1009 return NULL;
1010
1011 if (buffer_uptodate(bh))
1012 return bh;
1013
1014 ll_rw_block(READ, 1, &bh);
1015
1016 wait_on_buffer(bh);
1017 if (buffer_uptodate(bh))
1018 return bh;
1019
1020 brelse(bh);
1021 *err = -EIO;
1022 return NULL;
1023}
1024
1025void udf_truncate(struct inode *inode)
1026{
1027 int offset;
1028 int err;
1029
1030 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1031 S_ISLNK(inode->i_mode)))
1032 return;
1033 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1034 return;
1035
1036 lock_kernel();
1037 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
1038 if (inode->i_sb->s_blocksize <
1039 (udf_file_entry_alloc_offset(inode) +
1040 inode->i_size)) {
1041 udf_expand_file_adinicb(inode, inode->i_size, &err);
1042 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
1043 inode->i_size = UDF_I_LENALLOC(inode);
1044 unlock_kernel();
1045 return;
1046 } else
1047 udf_truncate_extents(inode);
1048 } else {
1049 offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1050 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) +
1051 offset, 0x00, inode->i_sb->s_blocksize -
1052 offset - udf_file_entry_alloc_offset(inode));
1053 UDF_I_LENALLOC(inode) = inode->i_size;
1054 }
1055 } else {
1056 block_truncate_page(inode->i_mapping, inode->i_size,
1057 udf_get_block);
1058 udf_truncate_extents(inode);
1059 }
1060
1061 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1062 if (IS_SYNC(inode))
1063 udf_sync_inode(inode);
1064 else
1065 mark_inode_dirty(inode);
1066 unlock_kernel();
1067}
1068
1069static void __udf_read_inode(struct inode *inode)
1070{
1071 struct buffer_head *bh = NULL;
1072 struct fileEntry *fe;
1073 uint16_t ident;
1074
1075 /*
1076 * Set defaults, but the inode is still incomplete!
1077 * Note: get_new_inode() sets the following on a new inode:
1078 * i_sb = sb
1079 * i_no = ino
1080 * i_flags = sb->s_flags
1081 * i_state = 0
1082 * clean_inode(): zero fills and sets
1083 * i_count = 1
1084 * i_nlink = 1
1085 * i_op = NULL;
1086 */
1087 bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
1088 if (!bh) {
1089 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1090 inode->i_ino);
1091 make_bad_inode(inode);
1092 return;
1093 }
1094
1095 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1096 ident != TAG_IDENT_USE) {
1097 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1098 "failed ident=%d\n", inode->i_ino, ident);
1099 brelse(bh);
1100 make_bad_inode(inode);
1101 return;
1102 }
1103
1104 fe = (struct fileEntry *)bh->b_data;
1105
1106 if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
1107 struct buffer_head *ibh = NULL, *nbh = NULL;
1108 struct indirectEntry *ie;
1109
1110 ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1,
1111 &ident);
1112 if (ident == TAG_IDENT_IE) {
1113 if (ibh) {
1114 kernel_lb_addr loc;
1115 ie = (struct indirectEntry *)ibh->b_data;
1116
1117 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1118
1119 if (ie->indirectICB.extLength &&
1120 (nbh = udf_read_ptagged(inode->i_sb, loc, 0,
1121 &ident))) {
1122 if (ident == TAG_IDENT_FE ||
1123 ident == TAG_IDENT_EFE) {
1124 memcpy(&UDF_I_LOCATION(inode),
1125 &loc,
1126 sizeof(kernel_lb_addr));
1127 brelse(bh);
1128 brelse(ibh);
1129 brelse(nbh);
1130 __udf_read_inode(inode);
1131 return;
1132 } else {
1133 brelse(nbh);
1134 brelse(ibh);
1135 }
1136 } else {
1137 brelse(ibh);
1138 }
1139 }
1140 } else {
1141 brelse(ibh);
1142 }
1143 } else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
1144 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1145 le16_to_cpu(fe->icbTag.strategyType));
1146 brelse(bh);
1147 make_bad_inode(inode);
1148 return;
1149 }
1150 udf_fill_inode(inode, bh);
1151
1152 brelse(bh);
1153}
1154
1155static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1156{
1157 struct fileEntry *fe;
1158 struct extendedFileEntry *efe;
1159 time_t convtime;
1160 long convtime_usec;
1161 int offset;
1162 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1163
1164 fe = (struct fileEntry *)bh->b_data;
1165 efe = (struct extendedFileEntry *)bh->b_data;
1166
1167 if (le16_to_cpu(fe->icbTag.strategyType) == 4)
1168 UDF_I_STRAT4096(inode) = 0;
1169 else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1170 UDF_I_STRAT4096(inode) = 1;
1171
1172 UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) &
1173 ICBTAG_FLAG_AD_MASK;
1174 UDF_I_UNIQUE(inode) = 0;
1175 UDF_I_LENEATTR(inode) = 0;
1176 UDF_I_LENEXTENTS(inode) = 0;
1177 UDF_I_LENALLOC(inode) = 0;
1178 UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
1179 UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
1180 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
1181 UDF_I_EFE(inode) = 1;
1182 UDF_I_USE(inode) = 0;
1183 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1184 sizeof(struct extendedFileEntry))) {
1185 make_bad_inode(inode);
1186 return;
1187 }
1188 memcpy(UDF_I_DATA(inode),
1189 bh->b_data + sizeof(struct extendedFileEntry),
1190 inode->i_sb->s_blocksize -
1191 sizeof(struct extendedFileEntry));
1192 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
1193 UDF_I_EFE(inode) = 0;
1194 UDF_I_USE(inode) = 0;
1195 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1196 sizeof(struct fileEntry))) {
1197 make_bad_inode(inode);
1198 return;
1199 }
1200 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
1201 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1202 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1203 UDF_I_EFE(inode) = 0;
1204 UDF_I_USE(inode) = 1;
1205 UDF_I_LENALLOC(inode) = le32_to_cpu(
1206 ((struct unallocSpaceEntry *)bh->b_data)->
1207 lengthAllocDescs);
1208 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1209 sizeof(struct unallocSpaceEntry))) {
1210 make_bad_inode(inode);
1211 return;
1212 }
1213 memcpy(UDF_I_DATA(inode),
1214 bh->b_data + sizeof(struct unallocSpaceEntry),
1215 inode->i_sb->s_blocksize -
1216 sizeof(struct unallocSpaceEntry));
1217 return;
1218 }
1219
1220 inode->i_uid = le32_to_cpu(fe->uid);
1221 if (inode->i_uid == -1 ||
1222 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1223 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1224 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1225
1226 inode->i_gid = le32_to_cpu(fe->gid);
1227 if (inode->i_gid == -1 ||
1228 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1229 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1230 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1231
1232 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1233 if (!inode->i_nlink)
1234 inode->i_nlink = 1;
1235
1236 inode->i_size = le64_to_cpu(fe->informationLength);
1237 UDF_I_LENEXTENTS(inode) = inode->i_size;
1238
1239 inode->i_mode = udf_convert_permissions(fe);
1240 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1241
1242 if (UDF_I_EFE(inode) == 0) {
1243 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1244 (inode->i_sb->s_blocksize_bits - 9);
1245
1246 if (udf_stamp_to_time(&convtime, &convtime_usec,
1247 lets_to_cpu(fe->accessTime))) {
1248 inode->i_atime.tv_sec = convtime;
1249 inode->i_atime.tv_nsec = convtime_usec * 1000;
1250 } else {
1251 inode->i_atime = sbi->s_record_time;
1252 }
1253
1254 if (udf_stamp_to_time(&convtime, &convtime_usec,
1255 lets_to_cpu(fe->modificationTime))) {
1256 inode->i_mtime.tv_sec = convtime;
1257 inode->i_mtime.tv_nsec = convtime_usec * 1000;
1258 } else {
1259 inode->i_mtime = sbi->s_record_time;
1260 }
1261
1262 if (udf_stamp_to_time(&convtime, &convtime_usec,
1263 lets_to_cpu(fe->attrTime))) {
1264 inode->i_ctime.tv_sec = convtime;
1265 inode->i_ctime.tv_nsec = convtime_usec * 1000;
1266 } else {
1267 inode->i_ctime = sbi->s_record_time;
1268 }
1269
1270 UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
1271 UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
1272 UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
1273 offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
1274 } else {
1275 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1276 (inode->i_sb->s_blocksize_bits - 9);
1277
1278 if (udf_stamp_to_time(&convtime, &convtime_usec,
1279 lets_to_cpu(efe->accessTime))) {
1280 inode->i_atime.tv_sec = convtime;
1281 inode->i_atime.tv_nsec = convtime_usec * 1000;
1282 } else {
1283 inode->i_atime = sbi->s_record_time;
1284 }
1285
1286 if (udf_stamp_to_time(&convtime, &convtime_usec,
1287 lets_to_cpu(efe->modificationTime))) {
1288 inode->i_mtime.tv_sec = convtime;
1289 inode->i_mtime.tv_nsec = convtime_usec * 1000;
1290 } else {
1291 inode->i_mtime = sbi->s_record_time;
1292 }
1293
1294 if (udf_stamp_to_time(&convtime, &convtime_usec,
1295 lets_to_cpu(efe->createTime))) {
1296 UDF_I_CRTIME(inode).tv_sec = convtime;
1297 UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
1298 } else {
1299 UDF_I_CRTIME(inode) = sbi->s_record_time;
1300 }
1301
1302 if (udf_stamp_to_time(&convtime, &convtime_usec,
1303 lets_to_cpu(efe->attrTime))) {
1304 inode->i_ctime.tv_sec = convtime;
1305 inode->i_ctime.tv_nsec = convtime_usec * 1000;
1306 } else {
1307 inode->i_ctime = sbi->s_record_time;
1308 }
1309
1310 UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
1311 UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
1312 UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
1313 offset = sizeof(struct extendedFileEntry) +
1314 UDF_I_LENEATTR(inode);
1315 }
1316
1317 switch (fe->icbTag.fileType) {
1318 case ICBTAG_FILE_TYPE_DIRECTORY:
1319 inode->i_op = &udf_dir_inode_operations;
1320 inode->i_fop = &udf_dir_operations;
1321 inode->i_mode |= S_IFDIR;
1322 inc_nlink(inode);
1323 break;
1324 case ICBTAG_FILE_TYPE_REALTIME:
1325 case ICBTAG_FILE_TYPE_REGULAR:
1326 case ICBTAG_FILE_TYPE_UNDEF:
1327 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
1328 inode->i_data.a_ops = &udf_adinicb_aops;
1329 else
1330 inode->i_data.a_ops = &udf_aops;
1331 inode->i_op = &udf_file_inode_operations;
1332 inode->i_fop = &udf_file_operations;
1333 inode->i_mode |= S_IFREG;
1334 break;
1335 case ICBTAG_FILE_TYPE_BLOCK:
1336 inode->i_mode |= S_IFBLK;
1337 break;
1338 case ICBTAG_FILE_TYPE_CHAR:
1339 inode->i_mode |= S_IFCHR;
1340 break;
1341 case ICBTAG_FILE_TYPE_FIFO:
1342 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1343 break;
1344 case ICBTAG_FILE_TYPE_SOCKET:
1345 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1346 break;
1347 case ICBTAG_FILE_TYPE_SYMLINK:
1348 inode->i_data.a_ops = &udf_symlink_aops;
1349 inode->i_op = &page_symlink_inode_operations;
1350 inode->i_mode = S_IFLNK | S_IRWXUGO;
1351 break;
1352 default:
1353 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1354 "file type=%d\n", inode->i_ino,
1355 fe->icbTag.fileType);
1356 make_bad_inode(inode);
1357 return;
1358 }
1359 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1360 struct deviceSpec *dsea =
1361 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1362 if (dsea) {
1363 init_special_inode(inode, inode->i_mode,
1364 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1365 le32_to_cpu(dsea->minorDeviceIdent)));
1366 /* Developer ID ??? */
1367 } else
1368 make_bad_inode(inode);
1369 }
1370}
1371
1372static int udf_alloc_i_data(struct inode *inode, size_t size)
1373{
1374 UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);
1375
1376 if (!UDF_I_DATA(inode)) {
1377 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1378 "no free memory\n", inode->i_ino);
1379 return -ENOMEM;
1380 }
1381
1382 return 0;
1383}
1384
1385static mode_t udf_convert_permissions(struct fileEntry *fe)
1386{
1387 mode_t mode;
1388 uint32_t permissions;
1389 uint32_t flags;
1390
1391 permissions = le32_to_cpu(fe->permissions);
1392 flags = le16_to_cpu(fe->icbTag.flags);
1393
1394 mode = ((permissions) & S_IRWXO) |
1395 ((permissions >> 2) & S_IRWXG) |
1396 ((permissions >> 4) & S_IRWXU) |
1397 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1398 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1399 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1400
1401 return mode;
1402}
1403
1404/*
1405 * udf_write_inode
1406 *
1407 * PURPOSE
1408 * Write out the specified inode.
1409 *
1410 * DESCRIPTION
1411 * This routine is called whenever an inode is synced.
1412 * Currently this routine is just a placeholder.
1413 *
1414 * HISTORY
1415 * July 1, 1997 - Andrew E. Mileski
1416 * Written, tested, and released.
1417 */
1418
1419int udf_write_inode(struct inode *inode, int sync)
1420{
1421 int ret;
1422
1423 lock_kernel();
1424 ret = udf_update_inode(inode, sync);
1425 unlock_kernel();
1426
1427 return ret;
1428}
1429
1430int udf_sync_inode(struct inode *inode)
1431{
1432 return udf_update_inode(inode, 1);
1433}
1434
1435static int udf_update_inode(struct inode *inode, int do_sync)
1436{
1437 struct buffer_head *bh = NULL;
1438 struct fileEntry *fe;
1439 struct extendedFileEntry *efe;
1440 uint32_t udfperms;
1441 uint16_t icbflags;
1442 uint16_t crclen;
1443 int i;
1444 kernel_timestamp cpu_time;
1445 int err = 0;
1446 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1447 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1448
1449 bh = udf_tread(inode->i_sb,
1450 udf_get_lb_pblock(inode->i_sb,
1451 UDF_I_LOCATION(inode), 0));
1452 if (!bh) {
1453 udf_debug("bread failure\n");
1454 return -EIO;
1455 }
1456
1457 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1458
1459 fe = (struct fileEntry *)bh->b_data;
1460 efe = (struct extendedFileEntry *)bh->b_data;
1461
1462 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1463 struct unallocSpaceEntry *use =
1464 (struct unallocSpaceEntry *)bh->b_data;
1465
1466 use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1467 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1468 UDF_I_DATA(inode), inode->i_sb->s_blocksize -
1469 sizeof(struct unallocSpaceEntry));
1470 crclen = sizeof(struct unallocSpaceEntry) +
1471 UDF_I_LENALLOC(inode) - sizeof(tag);
1472 use->descTag.tagLocation = cpu_to_le32(
1473 UDF_I_LOCATION(inode).
1474 logicalBlockNum);
1475 use->descTag.descCRCLength = cpu_to_le16(crclen);
1476 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use +
1477 sizeof(tag), crclen,
1478 0));
1479
1480 use->descTag.tagChecksum = 0;
1481 for (i = 0; i < 16; i++)
1482 if (i != 4)
1483 use->descTag.tagChecksum +=
1484 ((uint8_t *)&(use->descTag))[i];
1485
1486 mark_buffer_dirty(bh);
1487 brelse(bh);
1488 return err;
1489 }
1490
1491 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1492 fe->uid = cpu_to_le32(-1);
1493 else
1494 fe->uid = cpu_to_le32(inode->i_uid);
1495
1496 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1497 fe->gid = cpu_to_le32(-1);
1498 else
1499 fe->gid = cpu_to_le32(inode->i_gid);
1500
1501 udfperms = ((inode->i_mode & S_IRWXO)) |
1502 ((inode->i_mode & S_IRWXG) << 2) |
1503 ((inode->i_mode & S_IRWXU) << 4);
1504
1505 udfperms |= (le32_to_cpu(fe->permissions) &
1506 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1507 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1508 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1509 fe->permissions = cpu_to_le32(udfperms);
1510
1511 if (S_ISDIR(inode->i_mode))
1512 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1513 else
1514 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1515
1516 fe->informationLength = cpu_to_le64(inode->i_size);
1517
1518 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1519 regid *eid;
1520 struct deviceSpec *dsea =
1521 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1522 if (!dsea) {
1523 dsea = (struct deviceSpec *)
1524 udf_add_extendedattr(inode,
1525 sizeof(struct deviceSpec) +
1526 sizeof(regid), 12, 0x3);
1527 dsea->attrType = cpu_to_le32(12);
1528 dsea->attrSubtype = 1;
1529 dsea->attrLength = cpu_to_le32(
1530 sizeof(struct deviceSpec) +
1531 sizeof(regid));
1532 dsea->impUseLength = cpu_to_le32(sizeof(regid));
1533 }
1534 eid = (regid *)dsea->impUse;
1535 memset(eid, 0, sizeof(regid));
1536 strcpy(eid->ident, UDF_ID_DEVELOPER);
1537 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1538 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1539 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1540 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1541 }
1542
1543 if (UDF_I_EFE(inode) == 0) {
1544 memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
1545 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1546 fe->logicalBlocksRecorded = cpu_to_le64(
1547 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1548 (blocksize_bits - 9));
1549
1550 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1551 fe->accessTime = cpu_to_lets(cpu_time);
1552 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1553 fe->modificationTime = cpu_to_lets(cpu_time);
1554 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1555 fe->attrTime = cpu_to_lets(cpu_time);
1556 memset(&(fe->impIdent), 0, sizeof(regid));
1557 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1558 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1559 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1560 fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1561 fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1562 fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1563 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1564 crclen = sizeof(struct fileEntry);
1565 } else {
1566 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1567 UDF_I_DATA(inode),
1568 inode->i_sb->s_blocksize -
1569 sizeof(struct extendedFileEntry));
1570 efe->objectSize = cpu_to_le64(inode->i_size);
1571 efe->logicalBlocksRecorded = cpu_to_le64(
1572 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1573 (blocksize_bits - 9));
1574
1575 if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
1576 (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
1577 UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec))
1578 UDF_I_CRTIME(inode) = inode->i_atime;
1579
1580 if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
1581 (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
1582 UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec))
1583 UDF_I_CRTIME(inode) = inode->i_mtime;
1584
1585 if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
1586 (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
1587 UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec))
1588 UDF_I_CRTIME(inode) = inode->i_ctime;
1589
1590 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1591 efe->accessTime = cpu_to_lets(cpu_time);
1592 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1593 efe->modificationTime = cpu_to_lets(cpu_time);
1594 if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
1595 efe->createTime = cpu_to_lets(cpu_time);
1596 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1597 efe->attrTime = cpu_to_lets(cpu_time);
1598
1599 memset(&(efe->impIdent), 0, sizeof(regid));
1600 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1601 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1602 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1603 efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1604 efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1605 efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1606 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1607 crclen = sizeof(struct extendedFileEntry);
1608 }
1609 if (UDF_I_STRAT4096(inode)) {
1610 fe->icbTag.strategyType = cpu_to_le16(4096);
1611 fe->icbTag.strategyParameter = cpu_to_le16(1);
1612 fe->icbTag.numEntries = cpu_to_le16(2);
1613 } else {
1614 fe->icbTag.strategyType = cpu_to_le16(4);
1615 fe->icbTag.numEntries = cpu_to_le16(1);
1616 }
1617
1618 if (S_ISDIR(inode->i_mode))
1619 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1620 else if (S_ISREG(inode->i_mode))
1621 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1622 else if (S_ISLNK(inode->i_mode))
1623 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1624 else if (S_ISBLK(inode->i_mode))
1625 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1626 else if (S_ISCHR(inode->i_mode))
1627 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1628 else if (S_ISFIFO(inode->i_mode))
1629 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1630 else if (S_ISSOCK(inode->i_mode))
1631 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1632
1633 icbflags = UDF_I_ALLOCTYPE(inode) |
1634 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1635 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1636 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1637 (le16_to_cpu(fe->icbTag.flags) &
1638 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1639 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1640
1641 fe->icbTag.flags = cpu_to_le16(icbflags);
1642 if (sbi->s_udfrev >= 0x0200)
1643 fe->descTag.descVersion = cpu_to_le16(3);
1644 else
1645 fe->descTag.descVersion = cpu_to_le16(2);
1646 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1647 fe->descTag.tagLocation = cpu_to_le32(
1648 UDF_I_LOCATION(inode).logicalBlockNum);
1649 crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
1650 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1651 fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag),
1652 crclen, 0));
1653
1654 fe->descTag.tagChecksum = 0;
1655 for (i = 0; i < 16; i++)
1656 if (i != 4)
1657 fe->descTag.tagChecksum +=
1658 ((uint8_t *)&(fe->descTag))[i];
1659
1660 /* write the data blocks */
1661 mark_buffer_dirty(bh);
1662 if (do_sync) {
1663 sync_dirty_buffer(bh);
1664 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1665 printk(KERN_WARNING "IO error syncing udf inode "
1666 "[%s:%08lx]\n", inode->i_sb->s_id,
1667 inode->i_ino);
1668 err = -EIO;
1669 }
1670 }
1671 brelse(bh);
1672
1673 return err;
1674}
1675
1676struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1677{
1678 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1679 struct inode *inode = iget_locked(sb, block);
1680
1681 if (!inode)
1682 return NULL;
1683
1684 if (inode->i_state & I_NEW) {
1685 memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
1686 __udf_read_inode(inode);
1687 unlock_new_inode(inode);
1688 }
1689
1690 if (is_bad_inode(inode))
1691 goto out_iput;
1692
1693 if (ino.logicalBlockNum >= UDF_SB(sb)->
1694 s_partmaps[ino.partitionReferenceNum].s_partition_len) {
1695 udf_debug("block=%d, partition=%d out of range\n",
1696 ino.logicalBlockNum, ino.partitionReferenceNum);
1697 make_bad_inode(inode);
1698 goto out_iput;
1699 }
1700
1701 return inode;
1702
1703 out_iput:
1704 iput(inode);
1705 return NULL;
1706}
1707
1708int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1709 kernel_lb_addr eloc, uint32_t elen, int inc)
1710{
1711 int adsize;
1712 short_ad *sad = NULL;
1713 long_ad *lad = NULL;
1714 struct allocExtDesc *aed;
1715 int8_t etype;
1716 uint8_t *ptr;
1717
1718 if (!epos->bh)
1719 ptr = UDF_I_DATA(inode) + epos->offset -
1720 udf_file_entry_alloc_offset(inode) +
1721 UDF_I_LENEATTR(inode);
1722 else
1723 ptr = epos->bh->b_data + epos->offset;
1724
1725 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1726 adsize = sizeof(short_ad);
1727 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1728 adsize = sizeof(long_ad);
1729 else
1730 return -1;
1731
1732 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1733 char *sptr, *dptr;
1734 struct buffer_head *nbh;
1735 int err, loffset;
1736 kernel_lb_addr obloc = epos->block;
1737
1738 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1739 obloc.partitionReferenceNum,
1740 obloc.logicalBlockNum, &err);
1741 if (!epos->block.logicalBlockNum)
1742 return -1;
1743 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1744 epos->block,
1745 0));
1746 if (!nbh)
1747 return -1;
1748 lock_buffer(nbh);
1749 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1750 set_buffer_uptodate(nbh);
1751 unlock_buffer(nbh);
1752 mark_buffer_dirty_inode(nbh, inode);
1753
1754 aed = (struct allocExtDesc *)(nbh->b_data);
1755 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1756 aed->previousAllocExtLocation =
1757 cpu_to_le32(obloc.logicalBlockNum);
1758 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1759 loffset = epos->offset;
1760 aed->lengthAllocDescs = cpu_to_le32(adsize);
1761 sptr = ptr - adsize;
1762 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1763 memcpy(dptr, sptr, adsize);
1764 epos->offset = sizeof(struct allocExtDesc) + adsize;
1765 } else {
1766 loffset = epos->offset + adsize;
1767 aed->lengthAllocDescs = cpu_to_le32(0);
1768 sptr = ptr;
1769 epos->offset = sizeof(struct allocExtDesc);
1770
1771 if (epos->bh) {
1772 aed = (struct allocExtDesc *)epos->bh->b_data;
1773 aed->lengthAllocDescs =
1774 cpu_to_le32(le32_to_cpu(
1775 aed->lengthAllocDescs) + adsize);
1776 } else {
1777 UDF_I_LENALLOC(inode) += adsize;
1778 mark_inode_dirty(inode);
1779 }
1780 }
1781 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1782 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1783 epos->block.logicalBlockNum, sizeof(tag));
1784 else
1785 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1786 epos->block.logicalBlockNum, sizeof(tag));
1787 switch (UDF_I_ALLOCTYPE(inode)) {
1788 case ICBTAG_FLAG_AD_SHORT:
1789 sad = (short_ad *)sptr;
1790 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1791 inode->i_sb->s_blocksize);
1792 sad->extPosition =
1793 cpu_to_le32(epos->block.logicalBlockNum);
1794 break;
1795 case ICBTAG_FLAG_AD_LONG:
1796 lad = (long_ad *)sptr;
1797 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1798 inode->i_sb->s_blocksize);
1799 lad->extLocation = cpu_to_lelb(epos->block);
1800 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1801 break;
1802 }
1803 if (epos->bh) {
1804 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1805 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1806 udf_update_tag(epos->bh->b_data, loffset);
1807 else
1808 udf_update_tag(epos->bh->b_data,
1809 sizeof(struct allocExtDesc));
1810 mark_buffer_dirty_inode(epos->bh, inode);
1811 brelse(epos->bh);
1812 } else {
1813 mark_inode_dirty(inode);
1814 }
1815 epos->bh = nbh;
1816 }
1817
1818 etype = udf_write_aext(inode, epos, eloc, elen, inc);
1819
1820 if (!epos->bh) {
1821 UDF_I_LENALLOC(inode) += adsize;
1822 mark_inode_dirty(inode);
1823 } else {
1824 aed = (struct allocExtDesc *)epos->bh->b_data;
1825 aed->lengthAllocDescs =
1826 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) +
1827 adsize);
1828 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1829 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1830 udf_update_tag(epos->bh->b_data,
1831 epos->offset + (inc ? 0 : adsize));
1832 else
1833 udf_update_tag(epos->bh->b_data,
1834 sizeof(struct allocExtDesc));
1835 mark_buffer_dirty_inode(epos->bh, inode);
1836 }
1837
1838 return etype;
1839}
1840
1841int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1842 kernel_lb_addr eloc, uint32_t elen, int inc)
1843{
1844 int adsize;
1845 uint8_t *ptr;
1846 short_ad *sad;
1847 long_ad *lad;
1848
1849 if (!epos->bh)
1850 ptr = UDF_I_DATA(inode) + epos->offset -
1851 udf_file_entry_alloc_offset(inode) +
1852 UDF_I_LENEATTR(inode);
1853 else
1854 ptr = epos->bh->b_data + epos->offset;
1855
1856 switch (UDF_I_ALLOCTYPE(inode)) {
1857 case ICBTAG_FLAG_AD_SHORT:
1858 sad = (short_ad *)ptr;
1859 sad->extLength = cpu_to_le32(elen);
1860 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1861 adsize = sizeof(short_ad);
1862 break;
1863 case ICBTAG_FLAG_AD_LONG:
1864 lad = (long_ad *)ptr;
1865 lad->extLength = cpu_to_le32(elen);
1866 lad->extLocation = cpu_to_lelb(eloc);
1867 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1868 adsize = sizeof(long_ad);
1869 break;
1870 default:
1871 return -1;
1872 }
1873
1874 if (epos->bh) {
1875 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1876 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1877 struct allocExtDesc *aed =
1878 (struct allocExtDesc *)epos->bh->b_data;
1879 udf_update_tag(epos->bh->b_data,
1880 le32_to_cpu(aed->lengthAllocDescs) +
1881 sizeof(struct allocExtDesc));
1882 }
1883 mark_buffer_dirty_inode(epos->bh, inode);
1884 } else {
1885 mark_inode_dirty(inode);
1886 }
1887
1888 if (inc)
1889 epos->offset += adsize;
1890
1891 return (elen >> 30);
1892}
1893
1894int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1895 kernel_lb_addr *eloc, uint32_t *elen, int inc)
1896{
1897 int8_t etype;
1898
1899 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1900 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1901 int block;
1902 epos->block = *eloc;
1903 epos->offset = sizeof(struct allocExtDesc);
1904 brelse(epos->bh);
1905 block = udf_get_lb_pblock(inode->i_sb, epos->block, 0);
1906 epos->bh = udf_tread(inode->i_sb, block);
1907 if (!epos->bh) {
1908 udf_debug("reading block %d failed!\n", block);
1909 return -1;
1910 }
1911 }
1912
1913 return etype;
1914}
1915
1916int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1917 kernel_lb_addr *eloc, uint32_t *elen, int inc)
1918{
1919 int alen;
1920 int8_t etype;
1921 uint8_t *ptr;
1922 short_ad *sad;
1923 long_ad *lad;
1924
1925 if (!epos->bh) {
1926 if (!epos->offset)
1927 epos->offset = udf_file_entry_alloc_offset(inode);
1928 ptr = UDF_I_DATA(inode) + epos->offset -
1929 udf_file_entry_alloc_offset(inode) +
1930 UDF_I_LENEATTR(inode);
1931 alen = udf_file_entry_alloc_offset(inode) +
1932 UDF_I_LENALLOC(inode);
1933 } else {
1934 if (!epos->offset)
1935 epos->offset = sizeof(struct allocExtDesc);
1936 ptr = epos->bh->b_data + epos->offset;
1937 alen = sizeof(struct allocExtDesc) +
1938 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1939 lengthAllocDescs);
1940 }
1941
1942 switch (UDF_I_ALLOCTYPE(inode)) {
1943 case ICBTAG_FLAG_AD_SHORT:
1944 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1945 if (!sad)
1946 return -1;
1947 etype = le32_to_cpu(sad->extLength) >> 30;
1948 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1949 eloc->partitionReferenceNum =
1950 UDF_I_LOCATION(inode).partitionReferenceNum;
1951 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1952 break;
1953 case ICBTAG_FLAG_AD_LONG:
1954 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1955 if (!lad)
1956 return -1;
1957 etype = le32_to_cpu(lad->extLength) >> 30;
1958 *eloc = lelb_to_cpu(lad->extLocation);
1959 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1960 break;
1961 default:
1962 udf_debug("alloc_type = %d unsupported\n",
1963 UDF_I_ALLOCTYPE(inode));
1964 return -1;
1965 }
1966
1967 return etype;
1968}
1969
1970static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1971 kernel_lb_addr neloc, uint32_t nelen)
1972{
1973 kernel_lb_addr oeloc;
1974 uint32_t oelen;
1975 int8_t etype;
1976
1977 if (epos.bh)
1978 get_bh(epos.bh);
1979
1980 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1981 udf_write_aext(inode, &epos, neloc, nelen, 1);
1982 neloc = oeloc;
1983 nelen = (etype << 30) | oelen;
1984 }
1985 udf_add_aext(inode, &epos, neloc, nelen, 1);
1986 brelse(epos.bh);
1987
1988 return (nelen >> 30);
1989}
1990
1991int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1992 kernel_lb_addr eloc, uint32_t elen)
1993{
1994 struct extent_position oepos;
1995 int adsize;
1996 int8_t etype;
1997 struct allocExtDesc *aed;
1998
1999 if (epos.bh) {
2000 get_bh(epos.bh);
2001 get_bh(epos.bh);
2002 }
2003
2004 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
2005 adsize = sizeof(short_ad);
2006 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
2007 adsize = sizeof(long_ad);
2008 else
2009 adsize = 0;
2010
2011 oepos = epos;
2012 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2013 return -1;
2014
2015 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2016 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
2017 if (oepos.bh != epos.bh) {
2018 oepos.block = epos.block;
2019 brelse(oepos.bh);
2020 get_bh(epos.bh);
2021 oepos.bh = epos.bh;
2022 oepos.offset = epos.offset - adsize;
2023 }
2024 }
2025 memset(&eloc, 0x00, sizeof(kernel_lb_addr));
2026 elen = 0;
2027
2028 if (epos.bh != oepos.bh) {
2029 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
2030 udf_write_aext(inode, &oepos, eloc, elen, 1);
2031 udf_write_aext(inode, &oepos, eloc, elen, 1);
2032 if (!oepos.bh) {
2033 UDF_I_LENALLOC(inode) -= (adsize * 2);
2034 mark_inode_dirty(inode);
2035 } else {
2036 aed = (struct allocExtDesc *)oepos.bh->b_data;
2037 aed->lengthAllocDescs =
2038 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) -
2039 (2 * adsize));
2040 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2041 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2042 udf_update_tag(oepos.bh->b_data,
2043 oepos.offset - (2 * adsize));
2044 else
2045 udf_update_tag(oepos.bh->b_data,
2046 sizeof(struct allocExtDesc));
2047 mark_buffer_dirty_inode(oepos.bh, inode);
2048 }
2049 } else {
2050 udf_write_aext(inode, &oepos, eloc, elen, 1);
2051 if (!oepos.bh) {
2052 UDF_I_LENALLOC(inode) -= adsize;
2053 mark_inode_dirty(inode);
2054 } else {
2055 aed = (struct allocExtDesc *)oepos.bh->b_data;
2056 aed->lengthAllocDescs =
2057 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) -
2058 adsize);
2059 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2060 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2061 udf_update_tag(oepos.bh->b_data,
2062 epos.offset - adsize);
2063 else
2064 udf_update_tag(oepos.bh->b_data,
2065 sizeof(struct allocExtDesc));
2066 mark_buffer_dirty_inode(oepos.bh, inode);
2067 }
2068 }
2069
2070 brelse(epos.bh);
2071 brelse(oepos.bh);
2072
2073 return (elen >> 30);
2074}
2075
2076int8_t inode_bmap(struct inode *inode, sector_t block,
2077 struct extent_position *pos, kernel_lb_addr *eloc,
2078 uint32_t *elen, sector_t *offset)
2079{
2080 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2081 loff_t lbcount = 0, bcount =
2082 (loff_t) block << blocksize_bits;
2083 int8_t etype;
2084
2085 if (block < 0) {
2086 printk(KERN_ERR "udf: inode_bmap: block < 0\n");
2087 return -1;
2088 }
2089
2090 pos->offset = 0;
2091 pos->block = UDF_I_LOCATION(inode);
2092 pos->bh = NULL;
2093 *elen = 0;
2094
2095 do {
2096 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2097 if (etype == -1) {
2098 *offset = (bcount - lbcount) >> blocksize_bits;
2099 UDF_I_LENEXTENTS(inode) = lbcount;
2100 return -1;
2101 }
2102 lbcount += *elen;
2103 } while (lbcount <= bcount);
2104
2105 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2106
2107 return etype;
2108}
2109
2110long udf_block_map(struct inode *inode, sector_t block)
2111{
2112 kernel_lb_addr eloc;
2113 uint32_t elen;
2114 sector_t offset;
2115 struct extent_position epos = {};
2116 int ret;
2117
2118 lock_kernel();
2119
2120 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2121 (EXT_RECORDED_ALLOCATED >> 30))
2122 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
2123 else
2124 ret = 0;
2125
2126 unlock_kernel();
2127 brelse(epos.bh);
2128
2129 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2130 return udf_fixed_to_variable(ret);
2131 else
2132 return ret;
2133}
This page took 0.032919 seconds and 5 git commands to generate.