xfs: remove unused XFS_BMAPI_ flags
[deliverable/linux.git] / fs / xfs / xfs_inode.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include <linux/log2.h>
19
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_types.h"
23#include "xfs_bit.h"
24#include "xfs_log.h"
25#include "xfs_inum.h"
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
30#include "xfs_mount.h"
31#include "xfs_bmap_btree.h"
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
34#include "xfs_attr_sf.h"
35#include "xfs_dinode.h"
36#include "xfs_inode.h"
37#include "xfs_buf_item.h"
38#include "xfs_inode_item.h"
39#include "xfs_btree.h"
40#include "xfs_btree_trace.h"
41#include "xfs_alloc.h"
42#include "xfs_ialloc.h"
43#include "xfs_bmap.h"
44#include "xfs_error.h"
45#include "xfs_utils.h"
46#include "xfs_quota.h"
47#include "xfs_filestream.h"
48#include "xfs_vnodeops.h"
49#include "xfs_trace.h"
50
51kmem_zone_t *xfs_ifork_zone;
52kmem_zone_t *xfs_inode_zone;
53
54/*
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64
65#ifdef DEBUG
66/*
67 * Make sure that the extents in the given memory buffer
68 * are valid.
69 */
70STATIC void
71xfs_validate_extents(
72 xfs_ifork_t *ifp,
73 int nrecs,
74 xfs_exntfmt_t fmt)
75{
76 xfs_bmbt_irec_t irec;
77 xfs_bmbt_rec_host_t rec;
78 int i;
79
80 for (i = 0; i < nrecs; i++) {
81 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 rec.l0 = get_unaligned(&ep->l0);
83 rec.l1 = get_unaligned(&ep->l1);
84 xfs_bmbt_get_all(&rec, &irec);
85 if (fmt == XFS_EXTFMT_NOSTATE)
86 ASSERT(irec.br_state == XFS_EXT_NORM);
87 }
88}
89#else /* DEBUG */
90#define xfs_validate_extents(ifp, nrecs, fmt)
91#endif /* DEBUG */
92
93/*
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
96 */
97#if defined(DEBUG)
98void
99xfs_inobp_check(
100 xfs_mount_t *mp,
101 xfs_buf_t *bp)
102{
103 int i;
104 int j;
105 xfs_dinode_t *dip;
106
107 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108
109 for (i = 0; i < j; i++) {
110 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 i * mp->m_sb.sb_inodesize);
112 if (!dip->di_next_unlinked) {
113 xfs_fs_cmn_err(CE_ALERT, mp,
114 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
115 bp);
116 ASSERT(dip->di_next_unlinked);
117 }
118 }
119}
120#endif
121
122/*
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
126 */
127STATIC int
128xfs_imap_to_bp(
129 xfs_mount_t *mp,
130 xfs_trans_t *tp,
131 struct xfs_imap *imap,
132 xfs_buf_t **bpp,
133 uint buf_flags,
134 uint iget_flags)
135{
136 int error;
137 int i;
138 int ni;
139 xfs_buf_t *bp;
140
141 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
142 (int)imap->im_len, buf_flags, &bp);
143 if (error) {
144 if (error != EAGAIN) {
145 cmn_err(CE_WARN,
146 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
147 "an error %d on %s. Returning error.",
148 error, mp->m_fsname);
149 } else {
150 ASSERT(buf_flags & XBF_TRYLOCK);
151 }
152 return error;
153 }
154
155 /*
156 * Validate the magic number and version of every inode in the buffer
157 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 */
159#ifdef DEBUG
160 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
161#else /* usual case */
162 ni = 1;
163#endif
164
165 for (i = 0; i < ni; i++) {
166 int di_ok;
167 xfs_dinode_t *dip;
168
169 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
170 (i << mp->m_sb.sb_inodelog));
171 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
172 XFS_DINODE_GOOD_VERSION(dip->di_version);
173 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
174 XFS_ERRTAG_ITOBP_INOTOBP,
175 XFS_RANDOM_ITOBP_INOTOBP))) {
176 if (iget_flags & XFS_IGET_UNTRUSTED) {
177 xfs_trans_brelse(tp, bp);
178 return XFS_ERROR(EINVAL);
179 }
180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 XFS_ERRLEVEL_HIGH, mp, dip);
182#ifdef DEBUG
183 cmn_err(CE_PANIC,
184 "Device %s - bad inode magic/vsn "
185 "daddr %lld #%d (magic=%x)",
186 XFS_BUFTARG_NAME(mp->m_ddev_targp),
187 (unsigned long long)imap->im_blkno, i,
188 be16_to_cpu(dip->di_magic));
189#endif
190 xfs_trans_brelse(tp, bp);
191 return XFS_ERROR(EFSCORRUPTED);
192 }
193 }
194
195 xfs_inobp_check(mp, bp);
196
197 /*
198 * Mark the buffer as an inode buffer now that it looks good
199 */
200 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
201
202 *bpp = bp;
203 return 0;
204}
205
206/*
207 * This routine is called to map an inode number within a file
208 * system to the buffer containing the on-disk version of the
209 * inode. It returns a pointer to the buffer containing the
210 * on-disk inode in the bpp parameter, and in the dip parameter
211 * it returns a pointer to the on-disk inode within that buffer.
212 *
213 * If a non-zero error is returned, then the contents of bpp and
214 * dipp are undefined.
215 *
216 * Use xfs_imap() to determine the size and location of the
217 * buffer to read from disk.
218 */
219int
220xfs_inotobp(
221 xfs_mount_t *mp,
222 xfs_trans_t *tp,
223 xfs_ino_t ino,
224 xfs_dinode_t **dipp,
225 xfs_buf_t **bpp,
226 int *offset,
227 uint imap_flags)
228{
229 struct xfs_imap imap;
230 xfs_buf_t *bp;
231 int error;
232
233 imap.im_blkno = 0;
234 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
235 if (error)
236 return error;
237
238 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
239 if (error)
240 return error;
241
242 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
243 *bpp = bp;
244 *offset = imap.im_boffset;
245 return 0;
246}
247
248
249/*
250 * This routine is called to map an inode to the buffer containing
251 * the on-disk version of the inode. It returns a pointer to the
252 * buffer containing the on-disk inode in the bpp parameter, and in
253 * the dip parameter it returns a pointer to the on-disk inode within
254 * that buffer.
255 *
256 * If a non-zero error is returned, then the contents of bpp and
257 * dipp are undefined.
258 *
259 * The inode is expected to already been mapped to its buffer and read
260 * in once, thus we can use the mapping information stored in the inode
261 * rather than calling xfs_imap(). This allows us to avoid the overhead
262 * of looking at the inode btree for small block file systems
263 * (see xfs_imap()).
264 */
265int
266xfs_itobp(
267 xfs_mount_t *mp,
268 xfs_trans_t *tp,
269 xfs_inode_t *ip,
270 xfs_dinode_t **dipp,
271 xfs_buf_t **bpp,
272 uint buf_flags)
273{
274 xfs_buf_t *bp;
275 int error;
276
277 ASSERT(ip->i_imap.im_blkno != 0);
278
279 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
280 if (error)
281 return error;
282
283 if (!bp) {
284 ASSERT(buf_flags & XBF_TRYLOCK);
285 ASSERT(tp == NULL);
286 *bpp = NULL;
287 return EAGAIN;
288 }
289
290 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
291 *bpp = bp;
292 return 0;
293}
294
295/*
296 * Move inode type and inode format specific information from the
297 * on-disk inode to the in-core inode. For fifos, devs, and sockets
298 * this means set if_rdev to the proper value. For files, directories,
299 * and symlinks this means to bring in the in-line data or extent
300 * pointers. For a file in B-tree format, only the root is immediately
301 * brought in-core. The rest will be in-lined in if_extents when it
302 * is first referenced (see xfs_iread_extents()).
303 */
304STATIC int
305xfs_iformat(
306 xfs_inode_t *ip,
307 xfs_dinode_t *dip)
308{
309 xfs_attr_shortform_t *atp;
310 int size;
311 int error;
312 xfs_fsize_t di_size;
313 ip->i_df.if_ext_max =
314 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
315 error = 0;
316
317 if (unlikely(be32_to_cpu(dip->di_nextents) +
318 be16_to_cpu(dip->di_anextents) >
319 be64_to_cpu(dip->di_nblocks))) {
320 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
322 (unsigned long long)ip->i_ino,
323 (int)(be32_to_cpu(dip->di_nextents) +
324 be16_to_cpu(dip->di_anextents)),
325 (unsigned long long)
326 be64_to_cpu(dip->di_nblocks));
327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
328 ip->i_mount, dip);
329 return XFS_ERROR(EFSCORRUPTED);
330 }
331
332 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
333 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
334 "corrupt dinode %Lu, forkoff = 0x%x.",
335 (unsigned long long)ip->i_ino,
336 dip->di_forkoff);
337 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
338 ip->i_mount, dip);
339 return XFS_ERROR(EFSCORRUPTED);
340 }
341
342 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
343 !ip->i_mount->m_rtdev_targp)) {
344 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
345 "corrupt dinode %Lu, has realtime flag set.",
346 ip->i_ino);
347 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
348 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
349 return XFS_ERROR(EFSCORRUPTED);
350 }
351
352 switch (ip->i_d.di_mode & S_IFMT) {
353 case S_IFIFO:
354 case S_IFCHR:
355 case S_IFBLK:
356 case S_IFSOCK:
357 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
358 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
359 ip->i_mount, dip);
360 return XFS_ERROR(EFSCORRUPTED);
361 }
362 ip->i_d.di_size = 0;
363 ip->i_size = 0;
364 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
365 break;
366
367 case S_IFREG:
368 case S_IFLNK:
369 case S_IFDIR:
370 switch (dip->di_format) {
371 case XFS_DINODE_FMT_LOCAL:
372 /*
373 * no local regular files yet
374 */
375 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
376 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
377 "corrupt inode %Lu "
378 "(local format for regular file).",
379 (unsigned long long) ip->i_ino);
380 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
381 XFS_ERRLEVEL_LOW,
382 ip->i_mount, dip);
383 return XFS_ERROR(EFSCORRUPTED);
384 }
385
386 di_size = be64_to_cpu(dip->di_size);
387 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
388 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
389 "corrupt inode %Lu "
390 "(bad size %Ld for local inode).",
391 (unsigned long long) ip->i_ino,
392 (long long) di_size);
393 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
394 XFS_ERRLEVEL_LOW,
395 ip->i_mount, dip);
396 return XFS_ERROR(EFSCORRUPTED);
397 }
398
399 size = (int)di_size;
400 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
401 break;
402 case XFS_DINODE_FMT_EXTENTS:
403 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
404 break;
405 case XFS_DINODE_FMT_BTREE:
406 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
407 break;
408 default:
409 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
410 ip->i_mount);
411 return XFS_ERROR(EFSCORRUPTED);
412 }
413 break;
414
415 default:
416 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
417 return XFS_ERROR(EFSCORRUPTED);
418 }
419 if (error) {
420 return error;
421 }
422 if (!XFS_DFORK_Q(dip))
423 return 0;
424 ASSERT(ip->i_afp == NULL);
425 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
426 ip->i_afp->if_ext_max =
427 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
428 switch (dip->di_aformat) {
429 case XFS_DINODE_FMT_LOCAL:
430 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
431 size = be16_to_cpu(atp->hdr.totsize);
432
433 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
434 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
435 "corrupt inode %Lu "
436 "(bad attr fork size %Ld).",
437 (unsigned long long) ip->i_ino,
438 (long long) size);
439 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
440 XFS_ERRLEVEL_LOW,
441 ip->i_mount, dip);
442 return XFS_ERROR(EFSCORRUPTED);
443 }
444
445 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
446 break;
447 case XFS_DINODE_FMT_EXTENTS:
448 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
449 break;
450 case XFS_DINODE_FMT_BTREE:
451 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
452 break;
453 default:
454 error = XFS_ERROR(EFSCORRUPTED);
455 break;
456 }
457 if (error) {
458 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
459 ip->i_afp = NULL;
460 xfs_idestroy_fork(ip, XFS_DATA_FORK);
461 }
462 return error;
463}
464
465/*
466 * The file is in-lined in the on-disk inode.
467 * If it fits into if_inline_data, then copy
468 * it there, otherwise allocate a buffer for it
469 * and copy the data there. Either way, set
470 * if_data to point at the data.
471 * If we allocate a buffer for the data, make
472 * sure that its size is a multiple of 4 and
473 * record the real size in i_real_bytes.
474 */
475STATIC int
476xfs_iformat_local(
477 xfs_inode_t *ip,
478 xfs_dinode_t *dip,
479 int whichfork,
480 int size)
481{
482 xfs_ifork_t *ifp;
483 int real_size;
484
485 /*
486 * If the size is unreasonable, then something
487 * is wrong and we just bail out rather than crash in
488 * kmem_alloc() or memcpy() below.
489 */
490 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
491 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
492 "corrupt inode %Lu "
493 "(bad size %d for local fork, size = %d).",
494 (unsigned long long) ip->i_ino, size,
495 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
496 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
497 ip->i_mount, dip);
498 return XFS_ERROR(EFSCORRUPTED);
499 }
500 ifp = XFS_IFORK_PTR(ip, whichfork);
501 real_size = 0;
502 if (size == 0)
503 ifp->if_u1.if_data = NULL;
504 else if (size <= sizeof(ifp->if_u2.if_inline_data))
505 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
506 else {
507 real_size = roundup(size, 4);
508 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
509 }
510 ifp->if_bytes = size;
511 ifp->if_real_bytes = real_size;
512 if (size)
513 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
514 ifp->if_flags &= ~XFS_IFEXTENTS;
515 ifp->if_flags |= XFS_IFINLINE;
516 return 0;
517}
518
519/*
520 * The file consists of a set of extents all
521 * of which fit into the on-disk inode.
522 * If there are few enough extents to fit into
523 * the if_inline_ext, then copy them there.
524 * Otherwise allocate a buffer for them and copy
525 * them into it. Either way, set if_extents
526 * to point at the extents.
527 */
528STATIC int
529xfs_iformat_extents(
530 xfs_inode_t *ip,
531 xfs_dinode_t *dip,
532 int whichfork)
533{
534 xfs_bmbt_rec_t *dp;
535 xfs_ifork_t *ifp;
536 int nex;
537 int size;
538 int i;
539
540 ifp = XFS_IFORK_PTR(ip, whichfork);
541 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
542 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
543
544 /*
545 * If the number of extents is unreasonable, then something
546 * is wrong and we just bail out rather than crash in
547 * kmem_alloc() or memcpy() below.
548 */
549 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
550 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
551 "corrupt inode %Lu ((a)extents = %d).",
552 (unsigned long long) ip->i_ino, nex);
553 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
554 ip->i_mount, dip);
555 return XFS_ERROR(EFSCORRUPTED);
556 }
557
558 ifp->if_real_bytes = 0;
559 if (nex == 0)
560 ifp->if_u1.if_extents = NULL;
561 else if (nex <= XFS_INLINE_EXTS)
562 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
563 else
564 xfs_iext_add(ifp, 0, nex);
565
566 ifp->if_bytes = size;
567 if (size) {
568 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
569 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
570 for (i = 0; i < nex; i++, dp++) {
571 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
572 ep->l0 = get_unaligned_be64(&dp->l0);
573 ep->l1 = get_unaligned_be64(&dp->l1);
574 }
575 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
576 if (whichfork != XFS_DATA_FORK ||
577 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
578 if (unlikely(xfs_check_nostate_extents(
579 ifp, 0, nex))) {
580 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
581 XFS_ERRLEVEL_LOW,
582 ip->i_mount);
583 return XFS_ERROR(EFSCORRUPTED);
584 }
585 }
586 ifp->if_flags |= XFS_IFEXTENTS;
587 return 0;
588}
589
590/*
591 * The file has too many extents to fit into
592 * the inode, so they are in B-tree format.
593 * Allocate a buffer for the root of the B-tree
594 * and copy the root into it. The i_extents
595 * field will remain NULL until all of the
596 * extents are read in (when they are needed).
597 */
598STATIC int
599xfs_iformat_btree(
600 xfs_inode_t *ip,
601 xfs_dinode_t *dip,
602 int whichfork)
603{
604 xfs_bmdr_block_t *dfp;
605 xfs_ifork_t *ifp;
606 /* REFERENCED */
607 int nrecs;
608 int size;
609
610 ifp = XFS_IFORK_PTR(ip, whichfork);
611 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
612 size = XFS_BMAP_BROOT_SPACE(dfp);
613 nrecs = be16_to_cpu(dfp->bb_numrecs);
614
615 /*
616 * blow out if -- fork has less extents than can fit in
617 * fork (fork shouldn't be a btree format), root btree
618 * block has more records than can fit into the fork,
619 * or the number of extents is greater than the number of
620 * blocks.
621 */
622 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
623 || XFS_BMDR_SPACE_CALC(nrecs) >
624 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
625 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
626 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
627 "corrupt inode %Lu (btree).",
628 (unsigned long long) ip->i_ino);
629 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
630 ip->i_mount);
631 return XFS_ERROR(EFSCORRUPTED);
632 }
633
634 ifp->if_broot_bytes = size;
635 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
636 ASSERT(ifp->if_broot != NULL);
637 /*
638 * Copy and convert from the on-disk structure
639 * to the in-memory structure.
640 */
641 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
642 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
643 ifp->if_broot, size);
644 ifp->if_flags &= ~XFS_IFEXTENTS;
645 ifp->if_flags |= XFS_IFBROOT;
646
647 return 0;
648}
649
650STATIC void
651xfs_dinode_from_disk(
652 xfs_icdinode_t *to,
653 xfs_dinode_t *from)
654{
655 to->di_magic = be16_to_cpu(from->di_magic);
656 to->di_mode = be16_to_cpu(from->di_mode);
657 to->di_version = from ->di_version;
658 to->di_format = from->di_format;
659 to->di_onlink = be16_to_cpu(from->di_onlink);
660 to->di_uid = be32_to_cpu(from->di_uid);
661 to->di_gid = be32_to_cpu(from->di_gid);
662 to->di_nlink = be32_to_cpu(from->di_nlink);
663 to->di_projid = be16_to_cpu(from->di_projid);
664 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
665 to->di_flushiter = be16_to_cpu(from->di_flushiter);
666 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
667 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
668 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
669 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
670 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
671 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
672 to->di_size = be64_to_cpu(from->di_size);
673 to->di_nblocks = be64_to_cpu(from->di_nblocks);
674 to->di_extsize = be32_to_cpu(from->di_extsize);
675 to->di_nextents = be32_to_cpu(from->di_nextents);
676 to->di_anextents = be16_to_cpu(from->di_anextents);
677 to->di_forkoff = from->di_forkoff;
678 to->di_aformat = from->di_aformat;
679 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
680 to->di_dmstate = be16_to_cpu(from->di_dmstate);
681 to->di_flags = be16_to_cpu(from->di_flags);
682 to->di_gen = be32_to_cpu(from->di_gen);
683}
684
685void
686xfs_dinode_to_disk(
687 xfs_dinode_t *to,
688 xfs_icdinode_t *from)
689{
690 to->di_magic = cpu_to_be16(from->di_magic);
691 to->di_mode = cpu_to_be16(from->di_mode);
692 to->di_version = from ->di_version;
693 to->di_format = from->di_format;
694 to->di_onlink = cpu_to_be16(from->di_onlink);
695 to->di_uid = cpu_to_be32(from->di_uid);
696 to->di_gid = cpu_to_be32(from->di_gid);
697 to->di_nlink = cpu_to_be32(from->di_nlink);
698 to->di_projid = cpu_to_be16(from->di_projid);
699 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
700 to->di_flushiter = cpu_to_be16(from->di_flushiter);
701 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
702 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
703 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
704 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
705 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
706 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
707 to->di_size = cpu_to_be64(from->di_size);
708 to->di_nblocks = cpu_to_be64(from->di_nblocks);
709 to->di_extsize = cpu_to_be32(from->di_extsize);
710 to->di_nextents = cpu_to_be32(from->di_nextents);
711 to->di_anextents = cpu_to_be16(from->di_anextents);
712 to->di_forkoff = from->di_forkoff;
713 to->di_aformat = from->di_aformat;
714 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
715 to->di_dmstate = cpu_to_be16(from->di_dmstate);
716 to->di_flags = cpu_to_be16(from->di_flags);
717 to->di_gen = cpu_to_be32(from->di_gen);
718}
719
720STATIC uint
721_xfs_dic2xflags(
722 __uint16_t di_flags)
723{
724 uint flags = 0;
725
726 if (di_flags & XFS_DIFLAG_ANY) {
727 if (di_flags & XFS_DIFLAG_REALTIME)
728 flags |= XFS_XFLAG_REALTIME;
729 if (di_flags & XFS_DIFLAG_PREALLOC)
730 flags |= XFS_XFLAG_PREALLOC;
731 if (di_flags & XFS_DIFLAG_IMMUTABLE)
732 flags |= XFS_XFLAG_IMMUTABLE;
733 if (di_flags & XFS_DIFLAG_APPEND)
734 flags |= XFS_XFLAG_APPEND;
735 if (di_flags & XFS_DIFLAG_SYNC)
736 flags |= XFS_XFLAG_SYNC;
737 if (di_flags & XFS_DIFLAG_NOATIME)
738 flags |= XFS_XFLAG_NOATIME;
739 if (di_flags & XFS_DIFLAG_NODUMP)
740 flags |= XFS_XFLAG_NODUMP;
741 if (di_flags & XFS_DIFLAG_RTINHERIT)
742 flags |= XFS_XFLAG_RTINHERIT;
743 if (di_flags & XFS_DIFLAG_PROJINHERIT)
744 flags |= XFS_XFLAG_PROJINHERIT;
745 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
746 flags |= XFS_XFLAG_NOSYMLINKS;
747 if (di_flags & XFS_DIFLAG_EXTSIZE)
748 flags |= XFS_XFLAG_EXTSIZE;
749 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
750 flags |= XFS_XFLAG_EXTSZINHERIT;
751 if (di_flags & XFS_DIFLAG_NODEFRAG)
752 flags |= XFS_XFLAG_NODEFRAG;
753 if (di_flags & XFS_DIFLAG_FILESTREAM)
754 flags |= XFS_XFLAG_FILESTREAM;
755 }
756
757 return flags;
758}
759
760uint
761xfs_ip2xflags(
762 xfs_inode_t *ip)
763{
764 xfs_icdinode_t *dic = &ip->i_d;
765
766 return _xfs_dic2xflags(dic->di_flags) |
767 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
768}
769
770uint
771xfs_dic2xflags(
772 xfs_dinode_t *dip)
773{
774 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
775 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
776}
777
778/*
779 * Read the disk inode attributes into the in-core inode structure.
780 */
781int
782xfs_iread(
783 xfs_mount_t *mp,
784 xfs_trans_t *tp,
785 xfs_inode_t *ip,
786 uint iget_flags)
787{
788 xfs_buf_t *bp;
789 xfs_dinode_t *dip;
790 int error;
791
792 /*
793 * Fill in the location information in the in-core inode.
794 */
795 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
796 if (error)
797 return error;
798
799 /*
800 * Get pointers to the on-disk inode and the buffer containing it.
801 */
802 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
803 XBF_LOCK, iget_flags);
804 if (error)
805 return error;
806 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
807
808 /*
809 * If we got something that isn't an inode it means someone
810 * (nfs or dmi) has a stale handle.
811 */
812 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
813#ifdef DEBUG
814 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
815 "dip->di_magic (0x%x) != "
816 "XFS_DINODE_MAGIC (0x%x)",
817 be16_to_cpu(dip->di_magic),
818 XFS_DINODE_MAGIC);
819#endif /* DEBUG */
820 error = XFS_ERROR(EINVAL);
821 goto out_brelse;
822 }
823
824 /*
825 * If the on-disk inode is already linked to a directory
826 * entry, copy all of the inode into the in-core inode.
827 * xfs_iformat() handles copying in the inode format
828 * specific information.
829 * Otherwise, just get the truly permanent information.
830 */
831 if (dip->di_mode) {
832 xfs_dinode_from_disk(&ip->i_d, dip);
833 error = xfs_iformat(ip, dip);
834 if (error) {
835#ifdef DEBUG
836 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
837 "xfs_iformat() returned error %d",
838 error);
839#endif /* DEBUG */
840 goto out_brelse;
841 }
842 } else {
843 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
844 ip->i_d.di_version = dip->di_version;
845 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
846 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
847 /*
848 * Make sure to pull in the mode here as well in
849 * case the inode is released without being used.
850 * This ensures that xfs_inactive() will see that
851 * the inode is already free and not try to mess
852 * with the uninitialized part of it.
853 */
854 ip->i_d.di_mode = 0;
855 /*
856 * Initialize the per-fork minima and maxima for a new
857 * inode here. xfs_iformat will do it for old inodes.
858 */
859 ip->i_df.if_ext_max =
860 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
861 }
862
863 /*
864 * The inode format changed when we moved the link count and
865 * made it 32 bits long. If this is an old format inode,
866 * convert it in memory to look like a new one. If it gets
867 * flushed to disk we will convert back before flushing or
868 * logging it. We zero out the new projid field and the old link
869 * count field. We'll handle clearing the pad field (the remains
870 * of the old uuid field) when we actually convert the inode to
871 * the new format. We don't change the version number so that we
872 * can distinguish this from a real new format inode.
873 */
874 if (ip->i_d.di_version == 1) {
875 ip->i_d.di_nlink = ip->i_d.di_onlink;
876 ip->i_d.di_onlink = 0;
877 ip->i_d.di_projid = 0;
878 }
879
880 ip->i_delayed_blks = 0;
881 ip->i_size = ip->i_d.di_size;
882
883 /*
884 * Mark the buffer containing the inode as something to keep
885 * around for a while. This helps to keep recently accessed
886 * meta-data in-core longer.
887 */
888 XFS_BUF_SET_REF(bp, XFS_INO_REF);
889
890 /*
891 * Use xfs_trans_brelse() to release the buffer containing the
892 * on-disk inode, because it was acquired with xfs_trans_read_buf()
893 * in xfs_itobp() above. If tp is NULL, this is just a normal
894 * brelse(). If we're within a transaction, then xfs_trans_brelse()
895 * will only release the buffer if it is not dirty within the
896 * transaction. It will be OK to release the buffer in this case,
897 * because inodes on disk are never destroyed and we will be
898 * locking the new in-core inode before putting it in the hash
899 * table where other processes can find it. Thus we don't have
900 * to worry about the inode being changed just because we released
901 * the buffer.
902 */
903 out_brelse:
904 xfs_trans_brelse(tp, bp);
905 return error;
906}
907
908/*
909 * Read in extents from a btree-format inode.
910 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
911 */
912int
913xfs_iread_extents(
914 xfs_trans_t *tp,
915 xfs_inode_t *ip,
916 int whichfork)
917{
918 int error;
919 xfs_ifork_t *ifp;
920 xfs_extnum_t nextents;
921 size_t size;
922
923 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
924 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
925 ip->i_mount);
926 return XFS_ERROR(EFSCORRUPTED);
927 }
928 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
929 size = nextents * sizeof(xfs_bmbt_rec_t);
930 ifp = XFS_IFORK_PTR(ip, whichfork);
931
932 /*
933 * We know that the size is valid (it's checked in iformat_btree)
934 */
935 ifp->if_lastex = NULLEXTNUM;
936 ifp->if_bytes = ifp->if_real_bytes = 0;
937 ifp->if_flags |= XFS_IFEXTENTS;
938 xfs_iext_add(ifp, 0, nextents);
939 error = xfs_bmap_read_extents(tp, ip, whichfork);
940 if (error) {
941 xfs_iext_destroy(ifp);
942 ifp->if_flags &= ~XFS_IFEXTENTS;
943 return error;
944 }
945 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
946 return 0;
947}
948
949/*
950 * Allocate an inode on disk and return a copy of its in-core version.
951 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
952 * appropriately within the inode. The uid and gid for the inode are
953 * set according to the contents of the given cred structure.
954 *
955 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
956 * has a free inode available, call xfs_iget()
957 * to obtain the in-core version of the allocated inode. Finally,
958 * fill in the inode and log its initial contents. In this case,
959 * ialloc_context would be set to NULL and call_again set to false.
960 *
961 * If xfs_dialloc() does not have an available inode,
962 * it will replenish its supply by doing an allocation. Since we can
963 * only do one allocation within a transaction without deadlocks, we
964 * must commit the current transaction before returning the inode itself.
965 * In this case, therefore, we will set call_again to true and return.
966 * The caller should then commit the current transaction, start a new
967 * transaction, and call xfs_ialloc() again to actually get the inode.
968 *
969 * To ensure that some other process does not grab the inode that
970 * was allocated during the first call to xfs_ialloc(), this routine
971 * also returns the [locked] bp pointing to the head of the freelist
972 * as ialloc_context. The caller should hold this buffer across
973 * the commit and pass it back into this routine on the second call.
974 *
975 * If we are allocating quota inodes, we do not have a parent inode
976 * to attach to or associate with (i.e. pip == NULL) because they
977 * are not linked into the directory structure - they are attached
978 * directly to the superblock - and so have no parent.
979 */
980int
981xfs_ialloc(
982 xfs_trans_t *tp,
983 xfs_inode_t *pip,
984 mode_t mode,
985 xfs_nlink_t nlink,
986 xfs_dev_t rdev,
987 cred_t *cr,
988 xfs_prid_t prid,
989 int okalloc,
990 xfs_buf_t **ialloc_context,
991 boolean_t *call_again,
992 xfs_inode_t **ipp)
993{
994 xfs_ino_t ino;
995 xfs_inode_t *ip;
996 uint flags;
997 int error;
998 timespec_t tv;
999 int filestreams = 0;
1000
1001 /*
1002 * Call the space management code to pick
1003 * the on-disk inode to be allocated.
1004 */
1005 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1006 ialloc_context, call_again, &ino);
1007 if (error)
1008 return error;
1009 if (*call_again || ino == NULLFSINO) {
1010 *ipp = NULL;
1011 return 0;
1012 }
1013 ASSERT(*ialloc_context == NULL);
1014
1015 /*
1016 * Get the in-core inode with the lock held exclusively.
1017 * This is because we're setting fields here we need
1018 * to prevent others from looking at until we're done.
1019 */
1020 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1021 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1022 if (error)
1023 return error;
1024 ASSERT(ip != NULL);
1025
1026 ip->i_d.di_mode = (__uint16_t)mode;
1027 ip->i_d.di_onlink = 0;
1028 ip->i_d.di_nlink = nlink;
1029 ASSERT(ip->i_d.di_nlink == nlink);
1030 ip->i_d.di_uid = current_fsuid();
1031 ip->i_d.di_gid = current_fsgid();
1032 ip->i_d.di_projid = prid;
1033 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1034
1035 /*
1036 * If the superblock version is up to where we support new format
1037 * inodes and this is currently an old format inode, then change
1038 * the inode version number now. This way we only do the conversion
1039 * here rather than here and in the flush/logging code.
1040 */
1041 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1042 ip->i_d.di_version == 1) {
1043 ip->i_d.di_version = 2;
1044 /*
1045 * We've already zeroed the old link count, the projid field,
1046 * and the pad field.
1047 */
1048 }
1049
1050 /*
1051 * Project ids won't be stored on disk if we are using a version 1 inode.
1052 */
1053 if ((prid != 0) && (ip->i_d.di_version == 1))
1054 xfs_bump_ino_vers2(tp, ip);
1055
1056 if (pip && XFS_INHERIT_GID(pip)) {
1057 ip->i_d.di_gid = pip->i_d.di_gid;
1058 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1059 ip->i_d.di_mode |= S_ISGID;
1060 }
1061 }
1062
1063 /*
1064 * If the group ID of the new file does not match the effective group
1065 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1066 * (and only if the irix_sgid_inherit compatibility variable is set).
1067 */
1068 if ((irix_sgid_inherit) &&
1069 (ip->i_d.di_mode & S_ISGID) &&
1070 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1071 ip->i_d.di_mode &= ~S_ISGID;
1072 }
1073
1074 ip->i_d.di_size = 0;
1075 ip->i_size = 0;
1076 ip->i_d.di_nextents = 0;
1077 ASSERT(ip->i_d.di_nblocks == 0);
1078
1079 nanotime(&tv);
1080 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1081 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1082 ip->i_d.di_atime = ip->i_d.di_mtime;
1083 ip->i_d.di_ctime = ip->i_d.di_mtime;
1084
1085 /*
1086 * di_gen will have been taken care of in xfs_iread.
1087 */
1088 ip->i_d.di_extsize = 0;
1089 ip->i_d.di_dmevmask = 0;
1090 ip->i_d.di_dmstate = 0;
1091 ip->i_d.di_flags = 0;
1092 flags = XFS_ILOG_CORE;
1093 switch (mode & S_IFMT) {
1094 case S_IFIFO:
1095 case S_IFCHR:
1096 case S_IFBLK:
1097 case S_IFSOCK:
1098 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1099 ip->i_df.if_u2.if_rdev = rdev;
1100 ip->i_df.if_flags = 0;
1101 flags |= XFS_ILOG_DEV;
1102 break;
1103 case S_IFREG:
1104 /*
1105 * we can't set up filestreams until after the VFS inode
1106 * is set up properly.
1107 */
1108 if (pip && xfs_inode_is_filestream(pip))
1109 filestreams = 1;
1110 /* fall through */
1111 case S_IFDIR:
1112 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1113 uint di_flags = 0;
1114
1115 if ((mode & S_IFMT) == S_IFDIR) {
1116 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1117 di_flags |= XFS_DIFLAG_RTINHERIT;
1118 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1119 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1120 ip->i_d.di_extsize = pip->i_d.di_extsize;
1121 }
1122 } else if ((mode & S_IFMT) == S_IFREG) {
1123 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1124 di_flags |= XFS_DIFLAG_REALTIME;
1125 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1126 di_flags |= XFS_DIFLAG_EXTSIZE;
1127 ip->i_d.di_extsize = pip->i_d.di_extsize;
1128 }
1129 }
1130 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1131 xfs_inherit_noatime)
1132 di_flags |= XFS_DIFLAG_NOATIME;
1133 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1134 xfs_inherit_nodump)
1135 di_flags |= XFS_DIFLAG_NODUMP;
1136 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1137 xfs_inherit_sync)
1138 di_flags |= XFS_DIFLAG_SYNC;
1139 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1140 xfs_inherit_nosymlinks)
1141 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1142 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1143 di_flags |= XFS_DIFLAG_PROJINHERIT;
1144 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1145 xfs_inherit_nodefrag)
1146 di_flags |= XFS_DIFLAG_NODEFRAG;
1147 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1148 di_flags |= XFS_DIFLAG_FILESTREAM;
1149 ip->i_d.di_flags |= di_flags;
1150 }
1151 /* FALLTHROUGH */
1152 case S_IFLNK:
1153 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1154 ip->i_df.if_flags = XFS_IFEXTENTS;
1155 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1156 ip->i_df.if_u1.if_extents = NULL;
1157 break;
1158 default:
1159 ASSERT(0);
1160 }
1161 /*
1162 * Attribute fork settings for new inode.
1163 */
1164 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1165 ip->i_d.di_anextents = 0;
1166
1167 /*
1168 * Log the new values stuffed into the inode.
1169 */
1170 xfs_trans_log_inode(tp, ip, flags);
1171
1172 /* now that we have an i_mode we can setup inode ops and unlock */
1173 xfs_setup_inode(ip);
1174
1175 /* now we have set up the vfs inode we can associate the filestream */
1176 if (filestreams) {
1177 error = xfs_filestream_associate(pip, ip);
1178 if (error < 0)
1179 return -error;
1180 if (!error)
1181 xfs_iflags_set(ip, XFS_IFILESTREAM);
1182 }
1183
1184 *ipp = ip;
1185 return 0;
1186}
1187
1188/*
1189 * Check to make sure that there are no blocks allocated to the
1190 * file beyond the size of the file. We don't check this for
1191 * files with fixed size extents or real time extents, but we
1192 * at least do it for regular files.
1193 */
1194#ifdef DEBUG
1195void
1196xfs_isize_check(
1197 xfs_mount_t *mp,
1198 xfs_inode_t *ip,
1199 xfs_fsize_t isize)
1200{
1201 xfs_fileoff_t map_first;
1202 int nimaps;
1203 xfs_bmbt_irec_t imaps[2];
1204
1205 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1206 return;
1207
1208 if (XFS_IS_REALTIME_INODE(ip))
1209 return;
1210
1211 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1212 return;
1213
1214 nimaps = 2;
1215 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1216 /*
1217 * The filesystem could be shutting down, so bmapi may return
1218 * an error.
1219 */
1220 if (xfs_bmapi(NULL, ip, map_first,
1221 (XFS_B_TO_FSB(mp,
1222 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1223 map_first),
1224 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1225 NULL, NULL))
1226 return;
1227 ASSERT(nimaps == 1);
1228 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1229}
1230#endif /* DEBUG */
1231
1232/*
1233 * Calculate the last possible buffered byte in a file. This must
1234 * include data that was buffered beyond the EOF by the write code.
1235 * This also needs to deal with overflowing the xfs_fsize_t type
1236 * which can happen for sizes near the limit.
1237 *
1238 * We also need to take into account any blocks beyond the EOF. It
1239 * may be the case that they were buffered by a write which failed.
1240 * In that case the pages will still be in memory, but the inode size
1241 * will never have been updated.
1242 */
1243STATIC xfs_fsize_t
1244xfs_file_last_byte(
1245 xfs_inode_t *ip)
1246{
1247 xfs_mount_t *mp;
1248 xfs_fsize_t last_byte;
1249 xfs_fileoff_t last_block;
1250 xfs_fileoff_t size_last_block;
1251 int error;
1252
1253 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1254
1255 mp = ip->i_mount;
1256 /*
1257 * Only check for blocks beyond the EOF if the extents have
1258 * been read in. This eliminates the need for the inode lock,
1259 * and it also saves us from looking when it really isn't
1260 * necessary.
1261 */
1262 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1263 xfs_ilock(ip, XFS_ILOCK_SHARED);
1264 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1265 XFS_DATA_FORK);
1266 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1267 if (error) {
1268 last_block = 0;
1269 }
1270 } else {
1271 last_block = 0;
1272 }
1273 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1274 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1275
1276 last_byte = XFS_FSB_TO_B(mp, last_block);
1277 if (last_byte < 0) {
1278 return XFS_MAXIOFFSET(mp);
1279 }
1280 last_byte += (1 << mp->m_writeio_log);
1281 if (last_byte < 0) {
1282 return XFS_MAXIOFFSET(mp);
1283 }
1284 return last_byte;
1285}
1286
1287/*
1288 * Start the truncation of the file to new_size. The new size
1289 * must be smaller than the current size. This routine will
1290 * clear the buffer and page caches of file data in the removed
1291 * range, and xfs_itruncate_finish() will remove the underlying
1292 * disk blocks.
1293 *
1294 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1295 * must NOT have the inode lock held at all. This is because we're
1296 * calling into the buffer/page cache code and we can't hold the
1297 * inode lock when we do so.
1298 *
1299 * We need to wait for any direct I/Os in flight to complete before we
1300 * proceed with the truncate. This is needed to prevent the extents
1301 * being read or written by the direct I/Os from being removed while the
1302 * I/O is in flight as there is no other method of synchronising
1303 * direct I/O with the truncate operation. Also, because we hold
1304 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1305 * started until the truncate completes and drops the lock. Essentially,
1306 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1307 * ordering between direct I/Os and the truncate operation.
1308 *
1309 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1310 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1311 * in the case that the caller is locking things out of order and
1312 * may not be able to call xfs_itruncate_finish() with the inode lock
1313 * held without dropping the I/O lock. If the caller must drop the
1314 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1315 * must be called again with all the same restrictions as the initial
1316 * call.
1317 */
1318int
1319xfs_itruncate_start(
1320 xfs_inode_t *ip,
1321 uint flags,
1322 xfs_fsize_t new_size)
1323{
1324 xfs_fsize_t last_byte;
1325 xfs_off_t toss_start;
1326 xfs_mount_t *mp;
1327 int error = 0;
1328
1329 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1330 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1331 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1332 (flags == XFS_ITRUNC_MAYBE));
1333
1334 mp = ip->i_mount;
1335
1336 /* wait for the completion of any pending DIOs */
1337 if (new_size == 0 || new_size < ip->i_size)
1338 xfs_ioend_wait(ip);
1339
1340 /*
1341 * Call toss_pages or flushinval_pages to get rid of pages
1342 * overlapping the region being removed. We have to use
1343 * the less efficient flushinval_pages in the case that the
1344 * caller may not be able to finish the truncate without
1345 * dropping the inode's I/O lock. Make sure
1346 * to catch any pages brought in by buffers overlapping
1347 * the EOF by searching out beyond the isize by our
1348 * block size. We round new_size up to a block boundary
1349 * so that we don't toss things on the same block as
1350 * new_size but before it.
1351 *
1352 * Before calling toss_page or flushinval_pages, make sure to
1353 * call remapf() over the same region if the file is mapped.
1354 * This frees up mapped file references to the pages in the
1355 * given range and for the flushinval_pages case it ensures
1356 * that we get the latest mapped changes flushed out.
1357 */
1358 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1359 toss_start = XFS_FSB_TO_B(mp, toss_start);
1360 if (toss_start < 0) {
1361 /*
1362 * The place to start tossing is beyond our maximum
1363 * file size, so there is no way that the data extended
1364 * out there.
1365 */
1366 return 0;
1367 }
1368 last_byte = xfs_file_last_byte(ip);
1369 trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1370 if (last_byte > toss_start) {
1371 if (flags & XFS_ITRUNC_DEFINITE) {
1372 xfs_tosspages(ip, toss_start,
1373 -1, FI_REMAPF_LOCKED);
1374 } else {
1375 error = xfs_flushinval_pages(ip, toss_start,
1376 -1, FI_REMAPF_LOCKED);
1377 }
1378 }
1379
1380#ifdef DEBUG
1381 if (new_size == 0) {
1382 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1383 }
1384#endif
1385 return error;
1386}
1387
1388/*
1389 * Shrink the file to the given new_size. The new size must be smaller than
1390 * the current size. This will free up the underlying blocks in the removed
1391 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1392 *
1393 * The transaction passed to this routine must have made a permanent log
1394 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1395 * given transaction and start new ones, so make sure everything involved in
1396 * the transaction is tidy before calling here. Some transaction will be
1397 * returned to the caller to be committed. The incoming transaction must
1398 * already include the inode, and both inode locks must be held exclusively.
1399 * The inode must also be "held" within the transaction. On return the inode
1400 * will be "held" within the returned transaction. This routine does NOT
1401 * require any disk space to be reserved for it within the transaction.
1402 *
1403 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1404 * indicates the fork which is to be truncated. For the attribute fork we only
1405 * support truncation to size 0.
1406 *
1407 * We use the sync parameter to indicate whether or not the first transaction
1408 * we perform might have to be synchronous. For the attr fork, it needs to be
1409 * so if the unlink of the inode is not yet known to be permanent in the log.
1410 * This keeps us from freeing and reusing the blocks of the attribute fork
1411 * before the unlink of the inode becomes permanent.
1412 *
1413 * For the data fork, we normally have to run synchronously if we're being
1414 * called out of the inactive path or we're being called out of the create path
1415 * where we're truncating an existing file. Either way, the truncate needs to
1416 * be sync so blocks don't reappear in the file with altered data in case of a
1417 * crash. wsync filesystems can run the first case async because anything that
1418 * shrinks the inode has to run sync so by the time we're called here from
1419 * inactive, the inode size is permanently set to 0.
1420 *
1421 * Calls from the truncate path always need to be sync unless we're in a wsync
1422 * filesystem and the file has already been unlinked.
1423 *
1424 * The caller is responsible for correctly setting the sync parameter. It gets
1425 * too hard for us to guess here which path we're being called out of just
1426 * based on inode state.
1427 *
1428 * If we get an error, we must return with the inode locked and linked into the
1429 * current transaction. This keeps things simple for the higher level code,
1430 * because it always knows that the inode is locked and held in the transaction
1431 * that returns to it whether errors occur or not. We don't mark the inode
1432 * dirty on error so that transactions can be easily aborted if possible.
1433 */
1434int
1435xfs_itruncate_finish(
1436 xfs_trans_t **tp,
1437 xfs_inode_t *ip,
1438 xfs_fsize_t new_size,
1439 int fork,
1440 int sync)
1441{
1442 xfs_fsblock_t first_block;
1443 xfs_fileoff_t first_unmap_block;
1444 xfs_fileoff_t last_block;
1445 xfs_filblks_t unmap_len=0;
1446 xfs_mount_t *mp;
1447 xfs_trans_t *ntp;
1448 int done;
1449 int committed;
1450 xfs_bmap_free_t free_list;
1451 int error;
1452
1453 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1454 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1455 ASSERT(*tp != NULL);
1456 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1457 ASSERT(ip->i_transp == *tp);
1458 ASSERT(ip->i_itemp != NULL);
1459 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1460
1461
1462 ntp = *tp;
1463 mp = (ntp)->t_mountp;
1464 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1465
1466 /*
1467 * We only support truncating the entire attribute fork.
1468 */
1469 if (fork == XFS_ATTR_FORK) {
1470 new_size = 0LL;
1471 }
1472 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1473 trace_xfs_itruncate_finish_start(ip, new_size);
1474
1475 /*
1476 * The first thing we do is set the size to new_size permanently
1477 * on disk. This way we don't have to worry about anyone ever
1478 * being able to look at the data being freed even in the face
1479 * of a crash. What we're getting around here is the case where
1480 * we free a block, it is allocated to another file, it is written
1481 * to, and then we crash. If the new data gets written to the
1482 * file but the log buffers containing the free and reallocation
1483 * don't, then we'd end up with garbage in the blocks being freed.
1484 * As long as we make the new_size permanent before actually
1485 * freeing any blocks it doesn't matter if they get writtten to.
1486 *
1487 * The callers must signal into us whether or not the size
1488 * setting here must be synchronous. There are a few cases
1489 * where it doesn't have to be synchronous. Those cases
1490 * occur if the file is unlinked and we know the unlink is
1491 * permanent or if the blocks being truncated are guaranteed
1492 * to be beyond the inode eof (regardless of the link count)
1493 * and the eof value is permanent. Both of these cases occur
1494 * only on wsync-mounted filesystems. In those cases, we're
1495 * guaranteed that no user will ever see the data in the blocks
1496 * that are being truncated so the truncate can run async.
1497 * In the free beyond eof case, the file may wind up with
1498 * more blocks allocated to it than it needs if we crash
1499 * and that won't get fixed until the next time the file
1500 * is re-opened and closed but that's ok as that shouldn't
1501 * be too many blocks.
1502 *
1503 * However, we can't just make all wsync xactions run async
1504 * because there's one call out of the create path that needs
1505 * to run sync where it's truncating an existing file to size
1506 * 0 whose size is > 0.
1507 *
1508 * It's probably possible to come up with a test in this
1509 * routine that would correctly distinguish all the above
1510 * cases from the values of the function parameters and the
1511 * inode state but for sanity's sake, I've decided to let the
1512 * layers above just tell us. It's simpler to correctly figure
1513 * out in the layer above exactly under what conditions we
1514 * can run async and I think it's easier for others read and
1515 * follow the logic in case something has to be changed.
1516 * cscope is your friend -- rcc.
1517 *
1518 * The attribute fork is much simpler.
1519 *
1520 * For the attribute fork we allow the caller to tell us whether
1521 * the unlink of the inode that led to this call is yet permanent
1522 * in the on disk log. If it is not and we will be freeing extents
1523 * in this inode then we make the first transaction synchronous
1524 * to make sure that the unlink is permanent by the time we free
1525 * the blocks.
1526 */
1527 if (fork == XFS_DATA_FORK) {
1528 if (ip->i_d.di_nextents > 0) {
1529 /*
1530 * If we are not changing the file size then do
1531 * not update the on-disk file size - we may be
1532 * called from xfs_inactive_free_eofblocks(). If we
1533 * update the on-disk file size and then the system
1534 * crashes before the contents of the file are
1535 * flushed to disk then the files may be full of
1536 * holes (ie NULL files bug).
1537 */
1538 if (ip->i_size != new_size) {
1539 ip->i_d.di_size = new_size;
1540 ip->i_size = new_size;
1541 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1542 }
1543 }
1544 } else if (sync) {
1545 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1546 if (ip->i_d.di_anextents > 0)
1547 xfs_trans_set_sync(ntp);
1548 }
1549 ASSERT(fork == XFS_DATA_FORK ||
1550 (fork == XFS_ATTR_FORK &&
1551 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1552 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1553
1554 /*
1555 * Since it is possible for space to become allocated beyond
1556 * the end of the file (in a crash where the space is allocated
1557 * but the inode size is not yet updated), simply remove any
1558 * blocks which show up between the new EOF and the maximum
1559 * possible file size. If the first block to be removed is
1560 * beyond the maximum file size (ie it is the same as last_block),
1561 * then there is nothing to do.
1562 */
1563 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1564 ASSERT(first_unmap_block <= last_block);
1565 done = 0;
1566 if (last_block == first_unmap_block) {
1567 done = 1;
1568 } else {
1569 unmap_len = last_block - first_unmap_block + 1;
1570 }
1571 while (!done) {
1572 /*
1573 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1574 * will tell us whether it freed the entire range or
1575 * not. If this is a synchronous mount (wsync),
1576 * then we can tell bunmapi to keep all the
1577 * transactions asynchronous since the unlink
1578 * transaction that made this inode inactive has
1579 * already hit the disk. There's no danger of
1580 * the freed blocks being reused, there being a
1581 * crash, and the reused blocks suddenly reappearing
1582 * in this file with garbage in them once recovery
1583 * runs.
1584 */
1585 xfs_bmap_init(&free_list, &first_block);
1586 error = xfs_bunmapi(ntp, ip,
1587 first_unmap_block, unmap_len,
1588 xfs_bmapi_aflag(fork),
1589 XFS_ITRUNC_MAX_EXTENTS,
1590 &first_block, &free_list,
1591 NULL, &done);
1592 if (error) {
1593 /*
1594 * If the bunmapi call encounters an error,
1595 * return to the caller where the transaction
1596 * can be properly aborted. We just need to
1597 * make sure we're not holding any resources
1598 * that we were not when we came in.
1599 */
1600 xfs_bmap_cancel(&free_list);
1601 return error;
1602 }
1603
1604 /*
1605 * Duplicate the transaction that has the permanent
1606 * reservation and commit the old transaction.
1607 */
1608 error = xfs_bmap_finish(tp, &free_list, &committed);
1609 ntp = *tp;
1610 if (committed)
1611 xfs_trans_ijoin(ntp, ip);
1612
1613 if (error) {
1614 /*
1615 * If the bmap finish call encounters an error, return
1616 * to the caller where the transaction can be properly
1617 * aborted. We just need to make sure we're not
1618 * holding any resources that we were not when we came
1619 * in.
1620 *
1621 * Aborting from this point might lose some blocks in
1622 * the file system, but oh well.
1623 */
1624 xfs_bmap_cancel(&free_list);
1625 return error;
1626 }
1627
1628 if (committed) {
1629 /*
1630 * Mark the inode dirty so it will be logged and
1631 * moved forward in the log as part of every commit.
1632 */
1633 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1634 }
1635
1636 ntp = xfs_trans_dup(ntp);
1637 error = xfs_trans_commit(*tp, 0);
1638 *tp = ntp;
1639
1640 xfs_trans_ijoin(ntp, ip);
1641
1642 if (error)
1643 return error;
1644 /*
1645 * transaction commit worked ok so we can drop the extra ticket
1646 * reference that we gained in xfs_trans_dup()
1647 */
1648 xfs_log_ticket_put(ntp->t_ticket);
1649 error = xfs_trans_reserve(ntp, 0,
1650 XFS_ITRUNCATE_LOG_RES(mp), 0,
1651 XFS_TRANS_PERM_LOG_RES,
1652 XFS_ITRUNCATE_LOG_COUNT);
1653 if (error)
1654 return error;
1655 }
1656 /*
1657 * Only update the size in the case of the data fork, but
1658 * always re-log the inode so that our permanent transaction
1659 * can keep on rolling it forward in the log.
1660 */
1661 if (fork == XFS_DATA_FORK) {
1662 xfs_isize_check(mp, ip, new_size);
1663 /*
1664 * If we are not changing the file size then do
1665 * not update the on-disk file size - we may be
1666 * called from xfs_inactive_free_eofblocks(). If we
1667 * update the on-disk file size and then the system
1668 * crashes before the contents of the file are
1669 * flushed to disk then the files may be full of
1670 * holes (ie NULL files bug).
1671 */
1672 if (ip->i_size != new_size) {
1673 ip->i_d.di_size = new_size;
1674 ip->i_size = new_size;
1675 }
1676 }
1677 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1678 ASSERT((new_size != 0) ||
1679 (fork == XFS_ATTR_FORK) ||
1680 (ip->i_delayed_blks == 0));
1681 ASSERT((new_size != 0) ||
1682 (fork == XFS_ATTR_FORK) ||
1683 (ip->i_d.di_nextents == 0));
1684 trace_xfs_itruncate_finish_end(ip, new_size);
1685 return 0;
1686}
1687
1688/*
1689 * This is called when the inode's link count goes to 0.
1690 * We place the on-disk inode on a list in the AGI. It
1691 * will be pulled from this list when the inode is freed.
1692 */
1693int
1694xfs_iunlink(
1695 xfs_trans_t *tp,
1696 xfs_inode_t *ip)
1697{
1698 xfs_mount_t *mp;
1699 xfs_agi_t *agi;
1700 xfs_dinode_t *dip;
1701 xfs_buf_t *agibp;
1702 xfs_buf_t *ibp;
1703 xfs_agino_t agino;
1704 short bucket_index;
1705 int offset;
1706 int error;
1707
1708 ASSERT(ip->i_d.di_nlink == 0);
1709 ASSERT(ip->i_d.di_mode != 0);
1710 ASSERT(ip->i_transp == tp);
1711
1712 mp = tp->t_mountp;
1713
1714 /*
1715 * Get the agi buffer first. It ensures lock ordering
1716 * on the list.
1717 */
1718 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1719 if (error)
1720 return error;
1721 agi = XFS_BUF_TO_AGI(agibp);
1722
1723 /*
1724 * Get the index into the agi hash table for the
1725 * list this inode will go on.
1726 */
1727 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1728 ASSERT(agino != 0);
1729 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1730 ASSERT(agi->agi_unlinked[bucket_index]);
1731 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1732
1733 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1734 /*
1735 * There is already another inode in the bucket we need
1736 * to add ourselves to. Add us at the front of the list.
1737 * Here we put the head pointer into our next pointer,
1738 * and then we fall through to point the head at us.
1739 */
1740 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1741 if (error)
1742 return error;
1743
1744 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1745 /* both on-disk, don't endian flip twice */
1746 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1747 offset = ip->i_imap.im_boffset +
1748 offsetof(xfs_dinode_t, di_next_unlinked);
1749 xfs_trans_inode_buf(tp, ibp);
1750 xfs_trans_log_buf(tp, ibp, offset,
1751 (offset + sizeof(xfs_agino_t) - 1));
1752 xfs_inobp_check(mp, ibp);
1753 }
1754
1755 /*
1756 * Point the bucket head pointer at the inode being inserted.
1757 */
1758 ASSERT(agino != 0);
1759 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1760 offset = offsetof(xfs_agi_t, agi_unlinked) +
1761 (sizeof(xfs_agino_t) * bucket_index);
1762 xfs_trans_log_buf(tp, agibp, offset,
1763 (offset + sizeof(xfs_agino_t) - 1));
1764 return 0;
1765}
1766
1767/*
1768 * Pull the on-disk inode from the AGI unlinked list.
1769 */
1770STATIC int
1771xfs_iunlink_remove(
1772 xfs_trans_t *tp,
1773 xfs_inode_t *ip)
1774{
1775 xfs_ino_t next_ino;
1776 xfs_mount_t *mp;
1777 xfs_agi_t *agi;
1778 xfs_dinode_t *dip;
1779 xfs_buf_t *agibp;
1780 xfs_buf_t *ibp;
1781 xfs_agnumber_t agno;
1782 xfs_agino_t agino;
1783 xfs_agino_t next_agino;
1784 xfs_buf_t *last_ibp;
1785 xfs_dinode_t *last_dip = NULL;
1786 short bucket_index;
1787 int offset, last_offset = 0;
1788 int error;
1789
1790 mp = tp->t_mountp;
1791 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1792
1793 /*
1794 * Get the agi buffer first. It ensures lock ordering
1795 * on the list.
1796 */
1797 error = xfs_read_agi(mp, tp, agno, &agibp);
1798 if (error)
1799 return error;
1800
1801 agi = XFS_BUF_TO_AGI(agibp);
1802
1803 /*
1804 * Get the index into the agi hash table for the
1805 * list this inode will go on.
1806 */
1807 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1808 ASSERT(agino != 0);
1809 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1810 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1811 ASSERT(agi->agi_unlinked[bucket_index]);
1812
1813 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1814 /*
1815 * We're at the head of the list. Get the inode's
1816 * on-disk buffer to see if there is anyone after us
1817 * on the list. Only modify our next pointer if it
1818 * is not already NULLAGINO. This saves us the overhead
1819 * of dealing with the buffer when there is no need to
1820 * change it.
1821 */
1822 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1823 if (error) {
1824 cmn_err(CE_WARN,
1825 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1826 error, mp->m_fsname);
1827 return error;
1828 }
1829 next_agino = be32_to_cpu(dip->di_next_unlinked);
1830 ASSERT(next_agino != 0);
1831 if (next_agino != NULLAGINO) {
1832 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1833 offset = ip->i_imap.im_boffset +
1834 offsetof(xfs_dinode_t, di_next_unlinked);
1835 xfs_trans_inode_buf(tp, ibp);
1836 xfs_trans_log_buf(tp, ibp, offset,
1837 (offset + sizeof(xfs_agino_t) - 1));
1838 xfs_inobp_check(mp, ibp);
1839 } else {
1840 xfs_trans_brelse(tp, ibp);
1841 }
1842 /*
1843 * Point the bucket head pointer at the next inode.
1844 */
1845 ASSERT(next_agino != 0);
1846 ASSERT(next_agino != agino);
1847 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1848 offset = offsetof(xfs_agi_t, agi_unlinked) +
1849 (sizeof(xfs_agino_t) * bucket_index);
1850 xfs_trans_log_buf(tp, agibp, offset,
1851 (offset + sizeof(xfs_agino_t) - 1));
1852 } else {
1853 /*
1854 * We need to search the list for the inode being freed.
1855 */
1856 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1857 last_ibp = NULL;
1858 while (next_agino != agino) {
1859 /*
1860 * If the last inode wasn't the one pointing to
1861 * us, then release its buffer since we're not
1862 * going to do anything with it.
1863 */
1864 if (last_ibp != NULL) {
1865 xfs_trans_brelse(tp, last_ibp);
1866 }
1867 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1868 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1869 &last_ibp, &last_offset, 0);
1870 if (error) {
1871 cmn_err(CE_WARN,
1872 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1873 error, mp->m_fsname);
1874 return error;
1875 }
1876 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1877 ASSERT(next_agino != NULLAGINO);
1878 ASSERT(next_agino != 0);
1879 }
1880 /*
1881 * Now last_ibp points to the buffer previous to us on
1882 * the unlinked list. Pull us from the list.
1883 */
1884 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1885 if (error) {
1886 cmn_err(CE_WARN,
1887 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1888 error, mp->m_fsname);
1889 return error;
1890 }
1891 next_agino = be32_to_cpu(dip->di_next_unlinked);
1892 ASSERT(next_agino != 0);
1893 ASSERT(next_agino != agino);
1894 if (next_agino != NULLAGINO) {
1895 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1896 offset = ip->i_imap.im_boffset +
1897 offsetof(xfs_dinode_t, di_next_unlinked);
1898 xfs_trans_inode_buf(tp, ibp);
1899 xfs_trans_log_buf(tp, ibp, offset,
1900 (offset + sizeof(xfs_agino_t) - 1));
1901 xfs_inobp_check(mp, ibp);
1902 } else {
1903 xfs_trans_brelse(tp, ibp);
1904 }
1905 /*
1906 * Point the previous inode on the list to the next inode.
1907 */
1908 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1909 ASSERT(next_agino != 0);
1910 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1911 xfs_trans_inode_buf(tp, last_ibp);
1912 xfs_trans_log_buf(tp, last_ibp, offset,
1913 (offset + sizeof(xfs_agino_t) - 1));
1914 xfs_inobp_check(mp, last_ibp);
1915 }
1916 return 0;
1917}
1918
1919STATIC void
1920xfs_ifree_cluster(
1921 xfs_inode_t *free_ip,
1922 xfs_trans_t *tp,
1923 xfs_ino_t inum)
1924{
1925 xfs_mount_t *mp = free_ip->i_mount;
1926 int blks_per_cluster;
1927 int nbufs;
1928 int ninodes;
1929 int i, j;
1930 xfs_daddr_t blkno;
1931 xfs_buf_t *bp;
1932 xfs_inode_t *ip;
1933 xfs_inode_log_item_t *iip;
1934 xfs_log_item_t *lip;
1935 struct xfs_perag *pag;
1936
1937 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1938 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1939 blks_per_cluster = 1;
1940 ninodes = mp->m_sb.sb_inopblock;
1941 nbufs = XFS_IALLOC_BLOCKS(mp);
1942 } else {
1943 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1944 mp->m_sb.sb_blocksize;
1945 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1946 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1947 }
1948
1949 for (j = 0; j < nbufs; j++, inum += ninodes) {
1950 int found = 0;
1951
1952 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1953 XFS_INO_TO_AGBNO(mp, inum));
1954
1955 /*
1956 * We obtain and lock the backing buffer first in the process
1957 * here, as we have to ensure that any dirty inode that we
1958 * can't get the flush lock on is attached to the buffer.
1959 * If we scan the in-memory inodes first, then buffer IO can
1960 * complete before we get a lock on it, and hence we may fail
1961 * to mark all the active inodes on the buffer stale.
1962 */
1963 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1964 mp->m_bsize * blks_per_cluster,
1965 XBF_LOCK);
1966
1967 /*
1968 * Walk the inodes already attached to the buffer and mark them
1969 * stale. These will all have the flush locks held, so an
1970 * in-memory inode walk can't lock them.
1971 */
1972 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1973 while (lip) {
1974 if (lip->li_type == XFS_LI_INODE) {
1975 iip = (xfs_inode_log_item_t *)lip;
1976 ASSERT(iip->ili_logged == 1);
1977 lip->li_cb = xfs_istale_done;
1978 xfs_trans_ail_copy_lsn(mp->m_ail,
1979 &iip->ili_flush_lsn,
1980 &iip->ili_item.li_lsn);
1981 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1982 found++;
1983 }
1984 lip = lip->li_bio_list;
1985 }
1986
1987 /*
1988 * For each inode in memory attempt to add it to the inode
1989 * buffer and set it up for being staled on buffer IO
1990 * completion. This is safe as we've locked out tail pushing
1991 * and flushing by locking the buffer.
1992 *
1993 * We have already marked every inode that was part of a
1994 * transaction stale above, which means there is no point in
1995 * even trying to lock them.
1996 */
1997 for (i = 0; i < ninodes; i++) {
1998 read_lock(&pag->pag_ici_lock);
1999 ip = radix_tree_lookup(&pag->pag_ici_root,
2000 XFS_INO_TO_AGINO(mp, (inum + i)));
2001
2002 /* Inode not in memory or stale, nothing to do */
2003 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2004 read_unlock(&pag->pag_ici_lock);
2005 continue;
2006 }
2007
2008 /* don't try to lock/unlock the current inode */
2009 if (ip != free_ip &&
2010 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2011 read_unlock(&pag->pag_ici_lock);
2012 continue;
2013 }
2014 read_unlock(&pag->pag_ici_lock);
2015
2016 if (!xfs_iflock_nowait(ip)) {
2017 if (ip != free_ip)
2018 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2019 continue;
2020 }
2021
2022 xfs_iflags_set(ip, XFS_ISTALE);
2023 if (xfs_inode_clean(ip)) {
2024 ASSERT(ip != free_ip);
2025 xfs_ifunlock(ip);
2026 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2027 continue;
2028 }
2029
2030 iip = ip->i_itemp;
2031 if (!iip) {
2032 /* inode with unlogged changes only */
2033 ASSERT(ip != free_ip);
2034 ip->i_update_core = 0;
2035 xfs_ifunlock(ip);
2036 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2037 continue;
2038 }
2039 found++;
2040
2041 iip->ili_last_fields = iip->ili_format.ilf_fields;
2042 iip->ili_format.ilf_fields = 0;
2043 iip->ili_logged = 1;
2044 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2045 &iip->ili_item.li_lsn);
2046
2047 xfs_buf_attach_iodone(bp, xfs_istale_done,
2048 &iip->ili_item);
2049
2050 if (ip != free_ip)
2051 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2052 }
2053
2054 if (found)
2055 xfs_trans_stale_inode_buf(tp, bp);
2056 xfs_trans_binval(tp, bp);
2057 }
2058
2059 xfs_perag_put(pag);
2060}
2061
2062/*
2063 * This is called to return an inode to the inode free list.
2064 * The inode should already be truncated to 0 length and have
2065 * no pages associated with it. This routine also assumes that
2066 * the inode is already a part of the transaction.
2067 *
2068 * The on-disk copy of the inode will have been added to the list
2069 * of unlinked inodes in the AGI. We need to remove the inode from
2070 * that list atomically with respect to freeing it here.
2071 */
2072int
2073xfs_ifree(
2074 xfs_trans_t *tp,
2075 xfs_inode_t *ip,
2076 xfs_bmap_free_t *flist)
2077{
2078 int error;
2079 int delete;
2080 xfs_ino_t first_ino;
2081 xfs_dinode_t *dip;
2082 xfs_buf_t *ibp;
2083
2084 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2085 ASSERT(ip->i_transp == tp);
2086 ASSERT(ip->i_d.di_nlink == 0);
2087 ASSERT(ip->i_d.di_nextents == 0);
2088 ASSERT(ip->i_d.di_anextents == 0);
2089 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2090 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2091 ASSERT(ip->i_d.di_nblocks == 0);
2092
2093 /*
2094 * Pull the on-disk inode from the AGI unlinked list.
2095 */
2096 error = xfs_iunlink_remove(tp, ip);
2097 if (error != 0) {
2098 return error;
2099 }
2100
2101 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2102 if (error != 0) {
2103 return error;
2104 }
2105 ip->i_d.di_mode = 0; /* mark incore inode as free */
2106 ip->i_d.di_flags = 0;
2107 ip->i_d.di_dmevmask = 0;
2108 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2109 ip->i_df.if_ext_max =
2110 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2111 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2112 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2113 /*
2114 * Bump the generation count so no one will be confused
2115 * by reincarnations of this inode.
2116 */
2117 ip->i_d.di_gen++;
2118
2119 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2120
2121 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2122 if (error)
2123 return error;
2124
2125 /*
2126 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2127 * from picking up this inode when it is reclaimed (its incore state
2128 * initialzed but not flushed to disk yet). The in-core di_mode is
2129 * already cleared and a corresponding transaction logged.
2130 * The hack here just synchronizes the in-core to on-disk
2131 * di_mode value in advance before the actual inode sync to disk.
2132 * This is OK because the inode is already unlinked and would never
2133 * change its di_mode again for this inode generation.
2134 * This is a temporary hack that would require a proper fix
2135 * in the future.
2136 */
2137 dip->di_mode = 0;
2138
2139 if (delete) {
2140 xfs_ifree_cluster(ip, tp, first_ino);
2141 }
2142
2143 return 0;
2144}
2145
2146/*
2147 * Reallocate the space for if_broot based on the number of records
2148 * being added or deleted as indicated in rec_diff. Move the records
2149 * and pointers in if_broot to fit the new size. When shrinking this
2150 * will eliminate holes between the records and pointers created by
2151 * the caller. When growing this will create holes to be filled in
2152 * by the caller.
2153 *
2154 * The caller must not request to add more records than would fit in
2155 * the on-disk inode root. If the if_broot is currently NULL, then
2156 * if we adding records one will be allocated. The caller must also
2157 * not request that the number of records go below zero, although
2158 * it can go to zero.
2159 *
2160 * ip -- the inode whose if_broot area is changing
2161 * ext_diff -- the change in the number of records, positive or negative,
2162 * requested for the if_broot array.
2163 */
2164void
2165xfs_iroot_realloc(
2166 xfs_inode_t *ip,
2167 int rec_diff,
2168 int whichfork)
2169{
2170 struct xfs_mount *mp = ip->i_mount;
2171 int cur_max;
2172 xfs_ifork_t *ifp;
2173 struct xfs_btree_block *new_broot;
2174 int new_max;
2175 size_t new_size;
2176 char *np;
2177 char *op;
2178
2179 /*
2180 * Handle the degenerate case quietly.
2181 */
2182 if (rec_diff == 0) {
2183 return;
2184 }
2185
2186 ifp = XFS_IFORK_PTR(ip, whichfork);
2187 if (rec_diff > 0) {
2188 /*
2189 * If there wasn't any memory allocated before, just
2190 * allocate it now and get out.
2191 */
2192 if (ifp->if_broot_bytes == 0) {
2193 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2194 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2195 ifp->if_broot_bytes = (int)new_size;
2196 return;
2197 }
2198
2199 /*
2200 * If there is already an existing if_broot, then we need
2201 * to realloc() it and shift the pointers to their new
2202 * location. The records don't change location because
2203 * they are kept butted up against the btree block header.
2204 */
2205 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2206 new_max = cur_max + rec_diff;
2207 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2208 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2209 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2210 KM_SLEEP);
2211 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2212 ifp->if_broot_bytes);
2213 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2214 (int)new_size);
2215 ifp->if_broot_bytes = (int)new_size;
2216 ASSERT(ifp->if_broot_bytes <=
2217 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2218 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2219 return;
2220 }
2221
2222 /*
2223 * rec_diff is less than 0. In this case, we are shrinking the
2224 * if_broot buffer. It must already exist. If we go to zero
2225 * records, just get rid of the root and clear the status bit.
2226 */
2227 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2228 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2229 new_max = cur_max + rec_diff;
2230 ASSERT(new_max >= 0);
2231 if (new_max > 0)
2232 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2233 else
2234 new_size = 0;
2235 if (new_size > 0) {
2236 new_broot = kmem_alloc(new_size, KM_SLEEP);
2237 /*
2238 * First copy over the btree block header.
2239 */
2240 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2241 } else {
2242 new_broot = NULL;
2243 ifp->if_flags &= ~XFS_IFBROOT;
2244 }
2245
2246 /*
2247 * Only copy the records and pointers if there are any.
2248 */
2249 if (new_max > 0) {
2250 /*
2251 * First copy the records.
2252 */
2253 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2254 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2255 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2256
2257 /*
2258 * Then copy the pointers.
2259 */
2260 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2261 ifp->if_broot_bytes);
2262 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2263 (int)new_size);
2264 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2265 }
2266 kmem_free(ifp->if_broot);
2267 ifp->if_broot = new_broot;
2268 ifp->if_broot_bytes = (int)new_size;
2269 ASSERT(ifp->if_broot_bytes <=
2270 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2271 return;
2272}
2273
2274
2275/*
2276 * This is called when the amount of space needed for if_data
2277 * is increased or decreased. The change in size is indicated by
2278 * the number of bytes that need to be added or deleted in the
2279 * byte_diff parameter.
2280 *
2281 * If the amount of space needed has decreased below the size of the
2282 * inline buffer, then switch to using the inline buffer. Otherwise,
2283 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2284 * to what is needed.
2285 *
2286 * ip -- the inode whose if_data area is changing
2287 * byte_diff -- the change in the number of bytes, positive or negative,
2288 * requested for the if_data array.
2289 */
2290void
2291xfs_idata_realloc(
2292 xfs_inode_t *ip,
2293 int byte_diff,
2294 int whichfork)
2295{
2296 xfs_ifork_t *ifp;
2297 int new_size;
2298 int real_size;
2299
2300 if (byte_diff == 0) {
2301 return;
2302 }
2303
2304 ifp = XFS_IFORK_PTR(ip, whichfork);
2305 new_size = (int)ifp->if_bytes + byte_diff;
2306 ASSERT(new_size >= 0);
2307
2308 if (new_size == 0) {
2309 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2310 kmem_free(ifp->if_u1.if_data);
2311 }
2312 ifp->if_u1.if_data = NULL;
2313 real_size = 0;
2314 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2315 /*
2316 * If the valid extents/data can fit in if_inline_ext/data,
2317 * copy them from the malloc'd vector and free it.
2318 */
2319 if (ifp->if_u1.if_data == NULL) {
2320 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2321 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2322 ASSERT(ifp->if_real_bytes != 0);
2323 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2324 new_size);
2325 kmem_free(ifp->if_u1.if_data);
2326 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2327 }
2328 real_size = 0;
2329 } else {
2330 /*
2331 * Stuck with malloc/realloc.
2332 * For inline data, the underlying buffer must be
2333 * a multiple of 4 bytes in size so that it can be
2334 * logged and stay on word boundaries. We enforce
2335 * that here.
2336 */
2337 real_size = roundup(new_size, 4);
2338 if (ifp->if_u1.if_data == NULL) {
2339 ASSERT(ifp->if_real_bytes == 0);
2340 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2341 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2342 /*
2343 * Only do the realloc if the underlying size
2344 * is really changing.
2345 */
2346 if (ifp->if_real_bytes != real_size) {
2347 ifp->if_u1.if_data =
2348 kmem_realloc(ifp->if_u1.if_data,
2349 real_size,
2350 ifp->if_real_bytes,
2351 KM_SLEEP);
2352 }
2353 } else {
2354 ASSERT(ifp->if_real_bytes == 0);
2355 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2356 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2357 ifp->if_bytes);
2358 }
2359 }
2360 ifp->if_real_bytes = real_size;
2361 ifp->if_bytes = new_size;
2362 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2363}
2364
2365void
2366xfs_idestroy_fork(
2367 xfs_inode_t *ip,
2368 int whichfork)
2369{
2370 xfs_ifork_t *ifp;
2371
2372 ifp = XFS_IFORK_PTR(ip, whichfork);
2373 if (ifp->if_broot != NULL) {
2374 kmem_free(ifp->if_broot);
2375 ifp->if_broot = NULL;
2376 }
2377
2378 /*
2379 * If the format is local, then we can't have an extents
2380 * array so just look for an inline data array. If we're
2381 * not local then we may or may not have an extents list,
2382 * so check and free it up if we do.
2383 */
2384 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2385 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2386 (ifp->if_u1.if_data != NULL)) {
2387 ASSERT(ifp->if_real_bytes != 0);
2388 kmem_free(ifp->if_u1.if_data);
2389 ifp->if_u1.if_data = NULL;
2390 ifp->if_real_bytes = 0;
2391 }
2392 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2393 ((ifp->if_flags & XFS_IFEXTIREC) ||
2394 ((ifp->if_u1.if_extents != NULL) &&
2395 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2396 ASSERT(ifp->if_real_bytes != 0);
2397 xfs_iext_destroy(ifp);
2398 }
2399 ASSERT(ifp->if_u1.if_extents == NULL ||
2400 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2401 ASSERT(ifp->if_real_bytes == 0);
2402 if (whichfork == XFS_ATTR_FORK) {
2403 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2404 ip->i_afp = NULL;
2405 }
2406}
2407
2408/*
2409 * This is called to unpin an inode. The caller must have the inode locked
2410 * in at least shared mode so that the buffer cannot be subsequently pinned
2411 * once someone is waiting for it to be unpinned.
2412 */
2413static void
2414xfs_iunpin_nowait(
2415 struct xfs_inode *ip)
2416{
2417 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2418
2419 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2420
2421 /* Give the log a push to start the unpinning I/O */
2422 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2423
2424}
2425
2426void
2427xfs_iunpin_wait(
2428 struct xfs_inode *ip)
2429{
2430 if (xfs_ipincount(ip)) {
2431 xfs_iunpin_nowait(ip);
2432 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2433 }
2434}
2435
2436/*
2437 * xfs_iextents_copy()
2438 *
2439 * This is called to copy the REAL extents (as opposed to the delayed
2440 * allocation extents) from the inode into the given buffer. It
2441 * returns the number of bytes copied into the buffer.
2442 *
2443 * If there are no delayed allocation extents, then we can just
2444 * memcpy() the extents into the buffer. Otherwise, we need to
2445 * examine each extent in turn and skip those which are delayed.
2446 */
2447int
2448xfs_iextents_copy(
2449 xfs_inode_t *ip,
2450 xfs_bmbt_rec_t *dp,
2451 int whichfork)
2452{
2453 int copied;
2454 int i;
2455 xfs_ifork_t *ifp;
2456 int nrecs;
2457 xfs_fsblock_t start_block;
2458
2459 ifp = XFS_IFORK_PTR(ip, whichfork);
2460 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2461 ASSERT(ifp->if_bytes > 0);
2462
2463 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2464 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2465 ASSERT(nrecs > 0);
2466
2467 /*
2468 * There are some delayed allocation extents in the
2469 * inode, so copy the extents one at a time and skip
2470 * the delayed ones. There must be at least one
2471 * non-delayed extent.
2472 */
2473 copied = 0;
2474 for (i = 0; i < nrecs; i++) {
2475 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2476 start_block = xfs_bmbt_get_startblock(ep);
2477 if (isnullstartblock(start_block)) {
2478 /*
2479 * It's a delayed allocation extent, so skip it.
2480 */
2481 continue;
2482 }
2483
2484 /* Translate to on disk format */
2485 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2486 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2487 dp++;
2488 copied++;
2489 }
2490 ASSERT(copied != 0);
2491 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2492
2493 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2494}
2495
2496/*
2497 * Each of the following cases stores data into the same region
2498 * of the on-disk inode, so only one of them can be valid at
2499 * any given time. While it is possible to have conflicting formats
2500 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2501 * in EXTENTS format, this can only happen when the fork has
2502 * changed formats after being modified but before being flushed.
2503 * In these cases, the format always takes precedence, because the
2504 * format indicates the current state of the fork.
2505 */
2506/*ARGSUSED*/
2507STATIC void
2508xfs_iflush_fork(
2509 xfs_inode_t *ip,
2510 xfs_dinode_t *dip,
2511 xfs_inode_log_item_t *iip,
2512 int whichfork,
2513 xfs_buf_t *bp)
2514{
2515 char *cp;
2516 xfs_ifork_t *ifp;
2517 xfs_mount_t *mp;
2518#ifdef XFS_TRANS_DEBUG
2519 int first;
2520#endif
2521 static const short brootflag[2] =
2522 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2523 static const short dataflag[2] =
2524 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2525 static const short extflag[2] =
2526 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2527
2528 if (!iip)
2529 return;
2530 ifp = XFS_IFORK_PTR(ip, whichfork);
2531 /*
2532 * This can happen if we gave up in iformat in an error path,
2533 * for the attribute fork.
2534 */
2535 if (!ifp) {
2536 ASSERT(whichfork == XFS_ATTR_FORK);
2537 return;
2538 }
2539 cp = XFS_DFORK_PTR(dip, whichfork);
2540 mp = ip->i_mount;
2541 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2542 case XFS_DINODE_FMT_LOCAL:
2543 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2544 (ifp->if_bytes > 0)) {
2545 ASSERT(ifp->if_u1.if_data != NULL);
2546 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2547 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2548 }
2549 break;
2550
2551 case XFS_DINODE_FMT_EXTENTS:
2552 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2553 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2554 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2555 (ifp->if_bytes == 0));
2556 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2557 (ifp->if_bytes > 0));
2558 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2559 (ifp->if_bytes > 0)) {
2560 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2561 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2562 whichfork);
2563 }
2564 break;
2565
2566 case XFS_DINODE_FMT_BTREE:
2567 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2568 (ifp->if_broot_bytes > 0)) {
2569 ASSERT(ifp->if_broot != NULL);
2570 ASSERT(ifp->if_broot_bytes <=
2571 (XFS_IFORK_SIZE(ip, whichfork) +
2572 XFS_BROOT_SIZE_ADJ));
2573 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2574 (xfs_bmdr_block_t *)cp,
2575 XFS_DFORK_SIZE(dip, mp, whichfork));
2576 }
2577 break;
2578
2579 case XFS_DINODE_FMT_DEV:
2580 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2581 ASSERT(whichfork == XFS_DATA_FORK);
2582 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2583 }
2584 break;
2585
2586 case XFS_DINODE_FMT_UUID:
2587 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2588 ASSERT(whichfork == XFS_DATA_FORK);
2589 memcpy(XFS_DFORK_DPTR(dip),
2590 &ip->i_df.if_u2.if_uuid,
2591 sizeof(uuid_t));
2592 }
2593 break;
2594
2595 default:
2596 ASSERT(0);
2597 break;
2598 }
2599}
2600
2601STATIC int
2602xfs_iflush_cluster(
2603 xfs_inode_t *ip,
2604 xfs_buf_t *bp)
2605{
2606 xfs_mount_t *mp = ip->i_mount;
2607 struct xfs_perag *pag;
2608 unsigned long first_index, mask;
2609 unsigned long inodes_per_cluster;
2610 int ilist_size;
2611 xfs_inode_t **ilist;
2612 xfs_inode_t *iq;
2613 int nr_found;
2614 int clcount = 0;
2615 int bufwasdelwri;
2616 int i;
2617
2618 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2619
2620 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2621 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2622 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2623 if (!ilist)
2624 goto out_put;
2625
2626 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2627 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2628 read_lock(&pag->pag_ici_lock);
2629 /* really need a gang lookup range call here */
2630 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2631 first_index, inodes_per_cluster);
2632 if (nr_found == 0)
2633 goto out_free;
2634
2635 for (i = 0; i < nr_found; i++) {
2636 iq = ilist[i];
2637 if (iq == ip)
2638 continue;
2639 /* if the inode lies outside this cluster, we're done. */
2640 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2641 break;
2642 /*
2643 * Do an un-protected check to see if the inode is dirty and
2644 * is a candidate for flushing. These checks will be repeated
2645 * later after the appropriate locks are acquired.
2646 */
2647 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2648 continue;
2649
2650 /*
2651 * Try to get locks. If any are unavailable or it is pinned,
2652 * then this inode cannot be flushed and is skipped.
2653 */
2654
2655 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2656 continue;
2657 if (!xfs_iflock_nowait(iq)) {
2658 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2659 continue;
2660 }
2661 if (xfs_ipincount(iq)) {
2662 xfs_ifunlock(iq);
2663 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2664 continue;
2665 }
2666
2667 /*
2668 * arriving here means that this inode can be flushed. First
2669 * re-check that it's dirty before flushing.
2670 */
2671 if (!xfs_inode_clean(iq)) {
2672 int error;
2673 error = xfs_iflush_int(iq, bp);
2674 if (error) {
2675 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2676 goto cluster_corrupt_out;
2677 }
2678 clcount++;
2679 } else {
2680 xfs_ifunlock(iq);
2681 }
2682 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2683 }
2684
2685 if (clcount) {
2686 XFS_STATS_INC(xs_icluster_flushcnt);
2687 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2688 }
2689
2690out_free:
2691 read_unlock(&pag->pag_ici_lock);
2692 kmem_free(ilist);
2693out_put:
2694 xfs_perag_put(pag);
2695 return 0;
2696
2697
2698cluster_corrupt_out:
2699 /*
2700 * Corruption detected in the clustering loop. Invalidate the
2701 * inode buffer and shut down the filesystem.
2702 */
2703 read_unlock(&pag->pag_ici_lock);
2704 /*
2705 * Clean up the buffer. If it was B_DELWRI, just release it --
2706 * brelse can handle it with no problems. If not, shut down the
2707 * filesystem before releasing the buffer.
2708 */
2709 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2710 if (bufwasdelwri)
2711 xfs_buf_relse(bp);
2712
2713 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2714
2715 if (!bufwasdelwri) {
2716 /*
2717 * Just like incore_relse: if we have b_iodone functions,
2718 * mark the buffer as an error and call them. Otherwise
2719 * mark it as stale and brelse.
2720 */
2721 if (XFS_BUF_IODONE_FUNC(bp)) {
2722 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2723 XFS_BUF_UNDONE(bp);
2724 XFS_BUF_STALE(bp);
2725 XFS_BUF_ERROR(bp,EIO);
2726 xfs_biodone(bp);
2727 } else {
2728 XFS_BUF_STALE(bp);
2729 xfs_buf_relse(bp);
2730 }
2731 }
2732
2733 /*
2734 * Unlocks the flush lock
2735 */
2736 xfs_iflush_abort(iq);
2737 kmem_free(ilist);
2738 xfs_perag_put(pag);
2739 return XFS_ERROR(EFSCORRUPTED);
2740}
2741
2742/*
2743 * xfs_iflush() will write a modified inode's changes out to the
2744 * inode's on disk home. The caller must have the inode lock held
2745 * in at least shared mode and the inode flush completion must be
2746 * active as well. The inode lock will still be held upon return from
2747 * the call and the caller is free to unlock it.
2748 * The inode flush will be completed when the inode reaches the disk.
2749 * The flags indicate how the inode's buffer should be written out.
2750 */
2751int
2752xfs_iflush(
2753 xfs_inode_t *ip,
2754 uint flags)
2755{
2756 xfs_inode_log_item_t *iip;
2757 xfs_buf_t *bp;
2758 xfs_dinode_t *dip;
2759 xfs_mount_t *mp;
2760 int error;
2761
2762 XFS_STATS_INC(xs_iflush_count);
2763
2764 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2765 ASSERT(!completion_done(&ip->i_flush));
2766 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2767 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2768
2769 iip = ip->i_itemp;
2770 mp = ip->i_mount;
2771
2772 /*
2773 * We can't flush the inode until it is unpinned, so wait for it if we
2774 * are allowed to block. We know noone new can pin it, because we are
2775 * holding the inode lock shared and you need to hold it exclusively to
2776 * pin the inode.
2777 *
2778 * If we are not allowed to block, force the log out asynchronously so
2779 * that when we come back the inode will be unpinned. If other inodes
2780 * in the same cluster are dirty, they will probably write the inode
2781 * out for us if they occur after the log force completes.
2782 */
2783 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2784 xfs_iunpin_nowait(ip);
2785 xfs_ifunlock(ip);
2786 return EAGAIN;
2787 }
2788 xfs_iunpin_wait(ip);
2789
2790 /*
2791 * For stale inodes we cannot rely on the backing buffer remaining
2792 * stale in cache for the remaining life of the stale inode and so
2793 * xfs_itobp() below may give us a buffer that no longer contains
2794 * inodes below. We have to check this after ensuring the inode is
2795 * unpinned so that it is safe to reclaim the stale inode after the
2796 * flush call.
2797 */
2798 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2799 xfs_ifunlock(ip);
2800 return 0;
2801 }
2802
2803 /*
2804 * This may have been unpinned because the filesystem is shutting
2805 * down forcibly. If that's the case we must not write this inode
2806 * to disk, because the log record didn't make it to disk!
2807 */
2808 if (XFS_FORCED_SHUTDOWN(mp)) {
2809 ip->i_update_core = 0;
2810 if (iip)
2811 iip->ili_format.ilf_fields = 0;
2812 xfs_ifunlock(ip);
2813 return XFS_ERROR(EIO);
2814 }
2815
2816 /*
2817 * Get the buffer containing the on-disk inode.
2818 */
2819 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2820 (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2821 if (error || !bp) {
2822 xfs_ifunlock(ip);
2823 return error;
2824 }
2825
2826 /*
2827 * First flush out the inode that xfs_iflush was called with.
2828 */
2829 error = xfs_iflush_int(ip, bp);
2830 if (error)
2831 goto corrupt_out;
2832
2833 /*
2834 * If the buffer is pinned then push on the log now so we won't
2835 * get stuck waiting in the write for too long.
2836 */
2837 if (XFS_BUF_ISPINNED(bp))
2838 xfs_log_force(mp, 0);
2839
2840 /*
2841 * inode clustering:
2842 * see if other inodes can be gathered into this write
2843 */
2844 error = xfs_iflush_cluster(ip, bp);
2845 if (error)
2846 goto cluster_corrupt_out;
2847
2848 if (flags & SYNC_WAIT)
2849 error = xfs_bwrite(mp, bp);
2850 else
2851 xfs_bdwrite(mp, bp);
2852 return error;
2853
2854corrupt_out:
2855 xfs_buf_relse(bp);
2856 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2857cluster_corrupt_out:
2858 /*
2859 * Unlocks the flush lock
2860 */
2861 xfs_iflush_abort(ip);
2862 return XFS_ERROR(EFSCORRUPTED);
2863}
2864
2865
2866STATIC int
2867xfs_iflush_int(
2868 xfs_inode_t *ip,
2869 xfs_buf_t *bp)
2870{
2871 xfs_inode_log_item_t *iip;
2872 xfs_dinode_t *dip;
2873 xfs_mount_t *mp;
2874#ifdef XFS_TRANS_DEBUG
2875 int first;
2876#endif
2877
2878 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2879 ASSERT(!completion_done(&ip->i_flush));
2880 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2881 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2882
2883 iip = ip->i_itemp;
2884 mp = ip->i_mount;
2885
2886 /* set *dip = inode's place in the buffer */
2887 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2888
2889 /*
2890 * Clear i_update_core before copying out the data.
2891 * This is for coordination with our timestamp updates
2892 * that don't hold the inode lock. They will always
2893 * update the timestamps BEFORE setting i_update_core,
2894 * so if we clear i_update_core after they set it we
2895 * are guaranteed to see their updates to the timestamps.
2896 * I believe that this depends on strongly ordered memory
2897 * semantics, but we have that. We use the SYNCHRONIZE
2898 * macro to make sure that the compiler does not reorder
2899 * the i_update_core access below the data copy below.
2900 */
2901 ip->i_update_core = 0;
2902 SYNCHRONIZE();
2903
2904 /*
2905 * Make sure to get the latest timestamps from the Linux inode.
2906 */
2907 xfs_synchronize_times(ip);
2908
2909 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2910 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2911 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2912 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2913 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2914 goto corrupt_out;
2915 }
2916 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2917 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2918 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2919 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2920 ip->i_ino, ip, ip->i_d.di_magic);
2921 goto corrupt_out;
2922 }
2923 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2924 if (XFS_TEST_ERROR(
2925 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2926 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2927 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2928 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2929 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2930 ip->i_ino, ip);
2931 goto corrupt_out;
2932 }
2933 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2934 if (XFS_TEST_ERROR(
2935 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2936 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2937 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2938 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2939 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2940 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2941 ip->i_ino, ip);
2942 goto corrupt_out;
2943 }
2944 }
2945 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2946 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2947 XFS_RANDOM_IFLUSH_5)) {
2948 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2949 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2950 ip->i_ino,
2951 ip->i_d.di_nextents + ip->i_d.di_anextents,
2952 ip->i_d.di_nblocks,
2953 ip);
2954 goto corrupt_out;
2955 }
2956 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2957 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2958 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2959 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2960 ip->i_ino, ip->i_d.di_forkoff, ip);
2961 goto corrupt_out;
2962 }
2963 /*
2964 * bump the flush iteration count, used to detect flushes which
2965 * postdate a log record during recovery.
2966 */
2967
2968 ip->i_d.di_flushiter++;
2969
2970 /*
2971 * Copy the dirty parts of the inode into the on-disk
2972 * inode. We always copy out the core of the inode,
2973 * because if the inode is dirty at all the core must
2974 * be.
2975 */
2976 xfs_dinode_to_disk(dip, &ip->i_d);
2977
2978 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2979 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2980 ip->i_d.di_flushiter = 0;
2981
2982 /*
2983 * If this is really an old format inode and the superblock version
2984 * has not been updated to support only new format inodes, then
2985 * convert back to the old inode format. If the superblock version
2986 * has been updated, then make the conversion permanent.
2987 */
2988 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2989 if (ip->i_d.di_version == 1) {
2990 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2991 /*
2992 * Convert it back.
2993 */
2994 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2995 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2996 } else {
2997 /*
2998 * The superblock version has already been bumped,
2999 * so just make the conversion to the new inode
3000 * format permanent.
3001 */
3002 ip->i_d.di_version = 2;
3003 dip->di_version = 2;
3004 ip->i_d.di_onlink = 0;
3005 dip->di_onlink = 0;
3006 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3007 memset(&(dip->di_pad[0]), 0,
3008 sizeof(dip->di_pad));
3009 ASSERT(ip->i_d.di_projid == 0);
3010 }
3011 }
3012
3013 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3014 if (XFS_IFORK_Q(ip))
3015 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3016 xfs_inobp_check(mp, bp);
3017
3018 /*
3019 * We've recorded everything logged in the inode, so we'd
3020 * like to clear the ilf_fields bits so we don't log and
3021 * flush things unnecessarily. However, we can't stop
3022 * logging all this information until the data we've copied
3023 * into the disk buffer is written to disk. If we did we might
3024 * overwrite the copy of the inode in the log with all the
3025 * data after re-logging only part of it, and in the face of
3026 * a crash we wouldn't have all the data we need to recover.
3027 *
3028 * What we do is move the bits to the ili_last_fields field.
3029 * When logging the inode, these bits are moved back to the
3030 * ilf_fields field. In the xfs_iflush_done() routine we
3031 * clear ili_last_fields, since we know that the information
3032 * those bits represent is permanently on disk. As long as
3033 * the flush completes before the inode is logged again, then
3034 * both ilf_fields and ili_last_fields will be cleared.
3035 *
3036 * We can play with the ilf_fields bits here, because the inode
3037 * lock must be held exclusively in order to set bits there
3038 * and the flush lock protects the ili_last_fields bits.
3039 * Set ili_logged so the flush done
3040 * routine can tell whether or not to look in the AIL.
3041 * Also, store the current LSN of the inode so that we can tell
3042 * whether the item has moved in the AIL from xfs_iflush_done().
3043 * In order to read the lsn we need the AIL lock, because
3044 * it is a 64 bit value that cannot be read atomically.
3045 */
3046 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3047 iip->ili_last_fields = iip->ili_format.ilf_fields;
3048 iip->ili_format.ilf_fields = 0;
3049 iip->ili_logged = 1;
3050
3051 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3052 &iip->ili_item.li_lsn);
3053
3054 /*
3055 * Attach the function xfs_iflush_done to the inode's
3056 * buffer. This will remove the inode from the AIL
3057 * and unlock the inode's flush lock when the inode is
3058 * completely written to disk.
3059 */
3060 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3061
3062 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3063 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3064 } else {
3065 /*
3066 * We're flushing an inode which is not in the AIL and has
3067 * not been logged but has i_update_core set. For this
3068 * case we can use a B_DELWRI flush and immediately drop
3069 * the inode flush lock because we can avoid the whole
3070 * AIL state thing. It's OK to drop the flush lock now,
3071 * because we've already locked the buffer and to do anything
3072 * you really need both.
3073 */
3074 if (iip != NULL) {
3075 ASSERT(iip->ili_logged == 0);
3076 ASSERT(iip->ili_last_fields == 0);
3077 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3078 }
3079 xfs_ifunlock(ip);
3080 }
3081
3082 return 0;
3083
3084corrupt_out:
3085 return XFS_ERROR(EFSCORRUPTED);
3086}
3087
3088/*
3089 * Return a pointer to the extent record at file index idx.
3090 */
3091xfs_bmbt_rec_host_t *
3092xfs_iext_get_ext(
3093 xfs_ifork_t *ifp, /* inode fork pointer */
3094 xfs_extnum_t idx) /* index of target extent */
3095{
3096 ASSERT(idx >= 0);
3097 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3098 return ifp->if_u1.if_ext_irec->er_extbuf;
3099 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3100 xfs_ext_irec_t *erp; /* irec pointer */
3101 int erp_idx = 0; /* irec index */
3102 xfs_extnum_t page_idx = idx; /* ext index in target list */
3103
3104 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3105 return &erp->er_extbuf[page_idx];
3106 } else if (ifp->if_bytes) {
3107 return &ifp->if_u1.if_extents[idx];
3108 } else {
3109 return NULL;
3110 }
3111}
3112
3113/*
3114 * Insert new item(s) into the extent records for incore inode
3115 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3116 */
3117void
3118xfs_iext_insert(
3119 xfs_inode_t *ip, /* incore inode pointer */
3120 xfs_extnum_t idx, /* starting index of new items */
3121 xfs_extnum_t count, /* number of inserted items */
3122 xfs_bmbt_irec_t *new, /* items to insert */
3123 int state) /* type of extent conversion */
3124{
3125 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3126 xfs_extnum_t i; /* extent record index */
3127
3128 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3129
3130 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3131 xfs_iext_add(ifp, idx, count);
3132 for (i = idx; i < idx + count; i++, new++)
3133 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3134}
3135
3136/*
3137 * This is called when the amount of space required for incore file
3138 * extents needs to be increased. The ext_diff parameter stores the
3139 * number of new extents being added and the idx parameter contains
3140 * the extent index where the new extents will be added. If the new
3141 * extents are being appended, then we just need to (re)allocate and
3142 * initialize the space. Otherwise, if the new extents are being
3143 * inserted into the middle of the existing entries, a bit more work
3144 * is required to make room for the new extents to be inserted. The
3145 * caller is responsible for filling in the new extent entries upon
3146 * return.
3147 */
3148void
3149xfs_iext_add(
3150 xfs_ifork_t *ifp, /* inode fork pointer */
3151 xfs_extnum_t idx, /* index to begin adding exts */
3152 int ext_diff) /* number of extents to add */
3153{
3154 int byte_diff; /* new bytes being added */
3155 int new_size; /* size of extents after adding */
3156 xfs_extnum_t nextents; /* number of extents in file */
3157
3158 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3159 ASSERT((idx >= 0) && (idx <= nextents));
3160 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3161 new_size = ifp->if_bytes + byte_diff;
3162 /*
3163 * If the new number of extents (nextents + ext_diff)
3164 * fits inside the inode, then continue to use the inline
3165 * extent buffer.
3166 */
3167 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3168 if (idx < nextents) {
3169 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3170 &ifp->if_u2.if_inline_ext[idx],
3171 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3172 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3173 }
3174 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3175 ifp->if_real_bytes = 0;
3176 ifp->if_lastex = nextents + ext_diff;
3177 }
3178 /*
3179 * Otherwise use a linear (direct) extent list.
3180 * If the extents are currently inside the inode,
3181 * xfs_iext_realloc_direct will switch us from
3182 * inline to direct extent allocation mode.
3183 */
3184 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3185 xfs_iext_realloc_direct(ifp, new_size);
3186 if (idx < nextents) {
3187 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3188 &ifp->if_u1.if_extents[idx],
3189 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3190 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3191 }
3192 }
3193 /* Indirection array */
3194 else {
3195 xfs_ext_irec_t *erp;
3196 int erp_idx = 0;
3197 int page_idx = idx;
3198
3199 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3200 if (ifp->if_flags & XFS_IFEXTIREC) {
3201 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3202 } else {
3203 xfs_iext_irec_init(ifp);
3204 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3205 erp = ifp->if_u1.if_ext_irec;
3206 }
3207 /* Extents fit in target extent page */
3208 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3209 if (page_idx < erp->er_extcount) {
3210 memmove(&erp->er_extbuf[page_idx + ext_diff],
3211 &erp->er_extbuf[page_idx],
3212 (erp->er_extcount - page_idx) *
3213 sizeof(xfs_bmbt_rec_t));
3214 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3215 }
3216 erp->er_extcount += ext_diff;
3217 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3218 }
3219 /* Insert a new extent page */
3220 else if (erp) {
3221 xfs_iext_add_indirect_multi(ifp,
3222 erp_idx, page_idx, ext_diff);
3223 }
3224 /*
3225 * If extent(s) are being appended to the last page in
3226 * the indirection array and the new extent(s) don't fit
3227 * in the page, then erp is NULL and erp_idx is set to
3228 * the next index needed in the indirection array.
3229 */
3230 else {
3231 int count = ext_diff;
3232
3233 while (count) {
3234 erp = xfs_iext_irec_new(ifp, erp_idx);
3235 erp->er_extcount = count;
3236 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3237 if (count) {
3238 erp_idx++;
3239 }
3240 }
3241 }
3242 }
3243 ifp->if_bytes = new_size;
3244}
3245
3246/*
3247 * This is called when incore extents are being added to the indirection
3248 * array and the new extents do not fit in the target extent list. The
3249 * erp_idx parameter contains the irec index for the target extent list
3250 * in the indirection array, and the idx parameter contains the extent
3251 * index within the list. The number of extents being added is stored
3252 * in the count parameter.
3253 *
3254 * |-------| |-------|
3255 * | | | | idx - number of extents before idx
3256 * | idx | | count |
3257 * | | | | count - number of extents being inserted at idx
3258 * |-------| |-------|
3259 * | count | | nex2 | nex2 - number of extents after idx + count
3260 * |-------| |-------|
3261 */
3262void
3263xfs_iext_add_indirect_multi(
3264 xfs_ifork_t *ifp, /* inode fork pointer */
3265 int erp_idx, /* target extent irec index */
3266 xfs_extnum_t idx, /* index within target list */
3267 int count) /* new extents being added */
3268{
3269 int byte_diff; /* new bytes being added */
3270 xfs_ext_irec_t *erp; /* pointer to irec entry */
3271 xfs_extnum_t ext_diff; /* number of extents to add */
3272 xfs_extnum_t ext_cnt; /* new extents still needed */
3273 xfs_extnum_t nex2; /* extents after idx + count */
3274 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3275 int nlists; /* number of irec's (lists) */
3276
3277 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3278 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3279 nex2 = erp->er_extcount - idx;
3280 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3281
3282 /*
3283 * Save second part of target extent list
3284 * (all extents past */
3285 if (nex2) {
3286 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3287 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3288 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3289 erp->er_extcount -= nex2;
3290 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3291 memset(&erp->er_extbuf[idx], 0, byte_diff);
3292 }
3293
3294 /*
3295 * Add the new extents to the end of the target
3296 * list, then allocate new irec record(s) and
3297 * extent buffer(s) as needed to store the rest
3298 * of the new extents.
3299 */
3300 ext_cnt = count;
3301 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3302 if (ext_diff) {
3303 erp->er_extcount += ext_diff;
3304 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3305 ext_cnt -= ext_diff;
3306 }
3307 while (ext_cnt) {
3308 erp_idx++;
3309 erp = xfs_iext_irec_new(ifp, erp_idx);
3310 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3311 erp->er_extcount = ext_diff;
3312 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3313 ext_cnt -= ext_diff;
3314 }
3315
3316 /* Add nex2 extents back to indirection array */
3317 if (nex2) {
3318 xfs_extnum_t ext_avail;
3319 int i;
3320
3321 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3322 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3323 i = 0;
3324 /*
3325 * If nex2 extents fit in the current page, append
3326 * nex2_ep after the new extents.
3327 */
3328 if (nex2 <= ext_avail) {
3329 i = erp->er_extcount;
3330 }
3331 /*
3332 * Otherwise, check if space is available in the
3333 * next page.
3334 */
3335 else if ((erp_idx < nlists - 1) &&
3336 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3337 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3338 erp_idx++;
3339 erp++;
3340 /* Create a hole for nex2 extents */
3341 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3342 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3343 }
3344 /*
3345 * Final choice, create a new extent page for
3346 * nex2 extents.
3347 */
3348 else {
3349 erp_idx++;
3350 erp = xfs_iext_irec_new(ifp, erp_idx);
3351 }
3352 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3353 kmem_free(nex2_ep);
3354 erp->er_extcount += nex2;
3355 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3356 }
3357}
3358
3359/*
3360 * This is called when the amount of space required for incore file
3361 * extents needs to be decreased. The ext_diff parameter stores the
3362 * number of extents to be removed and the idx parameter contains
3363 * the extent index where the extents will be removed from.
3364 *
3365 * If the amount of space needed has decreased below the linear
3366 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3367 * extent array. Otherwise, use kmem_realloc() to adjust the
3368 * size to what is needed.
3369 */
3370void
3371xfs_iext_remove(
3372 xfs_inode_t *ip, /* incore inode pointer */
3373 xfs_extnum_t idx, /* index to begin removing exts */
3374 int ext_diff, /* number of extents to remove */
3375 int state) /* type of extent conversion */
3376{
3377 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3378 xfs_extnum_t nextents; /* number of extents in file */
3379 int new_size; /* size of extents after removal */
3380
3381 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3382
3383 ASSERT(ext_diff > 0);
3384 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3385 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3386
3387 if (new_size == 0) {
3388 xfs_iext_destroy(ifp);
3389 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3390 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3391 } else if (ifp->if_real_bytes) {
3392 xfs_iext_remove_direct(ifp, idx, ext_diff);
3393 } else {
3394 xfs_iext_remove_inline(ifp, idx, ext_diff);
3395 }
3396 ifp->if_bytes = new_size;
3397}
3398
3399/*
3400 * This removes ext_diff extents from the inline buffer, beginning
3401 * at extent index idx.
3402 */
3403void
3404xfs_iext_remove_inline(
3405 xfs_ifork_t *ifp, /* inode fork pointer */
3406 xfs_extnum_t idx, /* index to begin removing exts */
3407 int ext_diff) /* number of extents to remove */
3408{
3409 int nextents; /* number of extents in file */
3410
3411 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3412 ASSERT(idx < XFS_INLINE_EXTS);
3413 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3414 ASSERT(((nextents - ext_diff) > 0) &&
3415 (nextents - ext_diff) < XFS_INLINE_EXTS);
3416
3417 if (idx + ext_diff < nextents) {
3418 memmove(&ifp->if_u2.if_inline_ext[idx],
3419 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3420 (nextents - (idx + ext_diff)) *
3421 sizeof(xfs_bmbt_rec_t));
3422 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3423 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3424 } else {
3425 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3426 ext_diff * sizeof(xfs_bmbt_rec_t));
3427 }
3428}
3429
3430/*
3431 * This removes ext_diff extents from a linear (direct) extent list,
3432 * beginning at extent index idx. If the extents are being removed
3433 * from the end of the list (ie. truncate) then we just need to re-
3434 * allocate the list to remove the extra space. Otherwise, if the
3435 * extents are being removed from the middle of the existing extent
3436 * entries, then we first need to move the extent records beginning
3437 * at idx + ext_diff up in the list to overwrite the records being
3438 * removed, then remove the extra space via kmem_realloc.
3439 */
3440void
3441xfs_iext_remove_direct(
3442 xfs_ifork_t *ifp, /* inode fork pointer */
3443 xfs_extnum_t idx, /* index to begin removing exts */
3444 int ext_diff) /* number of extents to remove */
3445{
3446 xfs_extnum_t nextents; /* number of extents in file */
3447 int new_size; /* size of extents after removal */
3448
3449 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3450 new_size = ifp->if_bytes -
3451 (ext_diff * sizeof(xfs_bmbt_rec_t));
3452 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3453
3454 if (new_size == 0) {
3455 xfs_iext_destroy(ifp);
3456 return;
3457 }
3458 /* Move extents up in the list (if needed) */
3459 if (idx + ext_diff < nextents) {
3460 memmove(&ifp->if_u1.if_extents[idx],
3461 &ifp->if_u1.if_extents[idx + ext_diff],
3462 (nextents - (idx + ext_diff)) *
3463 sizeof(xfs_bmbt_rec_t));
3464 }
3465 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3466 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3467 /*
3468 * Reallocate the direct extent list. If the extents
3469 * will fit inside the inode then xfs_iext_realloc_direct
3470 * will switch from direct to inline extent allocation
3471 * mode for us.
3472 */
3473 xfs_iext_realloc_direct(ifp, new_size);
3474 ifp->if_bytes = new_size;
3475}
3476
3477/*
3478 * This is called when incore extents are being removed from the
3479 * indirection array and the extents being removed span multiple extent
3480 * buffers. The idx parameter contains the file extent index where we
3481 * want to begin removing extents, and the count parameter contains
3482 * how many extents need to be removed.
3483 *
3484 * |-------| |-------|
3485 * | nex1 | | | nex1 - number of extents before idx
3486 * |-------| | count |
3487 * | | | | count - number of extents being removed at idx
3488 * | count | |-------|
3489 * | | | nex2 | nex2 - number of extents after idx + count
3490 * |-------| |-------|
3491 */
3492void
3493xfs_iext_remove_indirect(
3494 xfs_ifork_t *ifp, /* inode fork pointer */
3495 xfs_extnum_t idx, /* index to begin removing extents */
3496 int count) /* number of extents to remove */
3497{
3498 xfs_ext_irec_t *erp; /* indirection array pointer */
3499 int erp_idx = 0; /* indirection array index */
3500 xfs_extnum_t ext_cnt; /* extents left to remove */
3501 xfs_extnum_t ext_diff; /* extents to remove in current list */
3502 xfs_extnum_t nex1; /* number of extents before idx */
3503 xfs_extnum_t nex2; /* extents after idx + count */
3504 int nlists; /* entries in indirection array */
3505 int page_idx = idx; /* index in target extent list */
3506
3507 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3508 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3509 ASSERT(erp != NULL);
3510 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3511 nex1 = page_idx;
3512 ext_cnt = count;
3513 while (ext_cnt) {
3514 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3515 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3516 /*
3517 * Check for deletion of entire list;
3518 * xfs_iext_irec_remove() updates extent offsets.
3519 */
3520 if (ext_diff == erp->er_extcount) {
3521 xfs_iext_irec_remove(ifp, erp_idx);
3522 ext_cnt -= ext_diff;
3523 nex1 = 0;
3524 if (ext_cnt) {
3525 ASSERT(erp_idx < ifp->if_real_bytes /
3526 XFS_IEXT_BUFSZ);
3527 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3528 nex1 = 0;
3529 continue;
3530 } else {
3531 break;
3532 }
3533 }
3534 /* Move extents up (if needed) */
3535 if (nex2) {
3536 memmove(&erp->er_extbuf[nex1],
3537 &erp->er_extbuf[nex1 + ext_diff],
3538 nex2 * sizeof(xfs_bmbt_rec_t));
3539 }
3540 /* Zero out rest of page */
3541 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3542 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3543 /* Update remaining counters */
3544 erp->er_extcount -= ext_diff;
3545 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3546 ext_cnt -= ext_diff;
3547 nex1 = 0;
3548 erp_idx++;
3549 erp++;
3550 }
3551 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3552 xfs_iext_irec_compact(ifp);
3553}
3554
3555/*
3556 * Create, destroy, or resize a linear (direct) block of extents.
3557 */
3558void
3559xfs_iext_realloc_direct(
3560 xfs_ifork_t *ifp, /* inode fork pointer */
3561 int new_size) /* new size of extents */
3562{
3563 int rnew_size; /* real new size of extents */
3564
3565 rnew_size = new_size;
3566
3567 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3568 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3569 (new_size != ifp->if_real_bytes)));
3570
3571 /* Free extent records */
3572 if (new_size == 0) {
3573 xfs_iext_destroy(ifp);
3574 }
3575 /* Resize direct extent list and zero any new bytes */
3576 else if (ifp->if_real_bytes) {
3577 /* Check if extents will fit inside the inode */
3578 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3579 xfs_iext_direct_to_inline(ifp, new_size /
3580 (uint)sizeof(xfs_bmbt_rec_t));
3581 ifp->if_bytes = new_size;
3582 return;
3583 }
3584 if (!is_power_of_2(new_size)){
3585 rnew_size = roundup_pow_of_two(new_size);
3586 }
3587 if (rnew_size != ifp->if_real_bytes) {
3588 ifp->if_u1.if_extents =
3589 kmem_realloc(ifp->if_u1.if_extents,
3590 rnew_size,
3591 ifp->if_real_bytes, KM_NOFS);
3592 }
3593 if (rnew_size > ifp->if_real_bytes) {
3594 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3595 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3596 rnew_size - ifp->if_real_bytes);
3597 }
3598 }
3599 /*
3600 * Switch from the inline extent buffer to a direct
3601 * extent list. Be sure to include the inline extent
3602 * bytes in new_size.
3603 */
3604 else {
3605 new_size += ifp->if_bytes;
3606 if (!is_power_of_2(new_size)) {
3607 rnew_size = roundup_pow_of_two(new_size);
3608 }
3609 xfs_iext_inline_to_direct(ifp, rnew_size);
3610 }
3611 ifp->if_real_bytes = rnew_size;
3612 ifp->if_bytes = new_size;
3613}
3614
3615/*
3616 * Switch from linear (direct) extent records to inline buffer.
3617 */
3618void
3619xfs_iext_direct_to_inline(
3620 xfs_ifork_t *ifp, /* inode fork pointer */
3621 xfs_extnum_t nextents) /* number of extents in file */
3622{
3623 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3624 ASSERT(nextents <= XFS_INLINE_EXTS);
3625 /*
3626 * The inline buffer was zeroed when we switched
3627 * from inline to direct extent allocation mode,
3628 * so we don't need to clear it here.
3629 */
3630 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3631 nextents * sizeof(xfs_bmbt_rec_t));
3632 kmem_free(ifp->if_u1.if_extents);
3633 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3634 ifp->if_real_bytes = 0;
3635}
3636
3637/*
3638 * Switch from inline buffer to linear (direct) extent records.
3639 * new_size should already be rounded up to the next power of 2
3640 * by the caller (when appropriate), so use new_size as it is.
3641 * However, since new_size may be rounded up, we can't update
3642 * if_bytes here. It is the caller's responsibility to update
3643 * if_bytes upon return.
3644 */
3645void
3646xfs_iext_inline_to_direct(
3647 xfs_ifork_t *ifp, /* inode fork pointer */
3648 int new_size) /* number of extents in file */
3649{
3650 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3651 memset(ifp->if_u1.if_extents, 0, new_size);
3652 if (ifp->if_bytes) {
3653 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3654 ifp->if_bytes);
3655 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3656 sizeof(xfs_bmbt_rec_t));
3657 }
3658 ifp->if_real_bytes = new_size;
3659}
3660
3661/*
3662 * Resize an extent indirection array to new_size bytes.
3663 */
3664STATIC void
3665xfs_iext_realloc_indirect(
3666 xfs_ifork_t *ifp, /* inode fork pointer */
3667 int new_size) /* new indirection array size */
3668{
3669 int nlists; /* number of irec's (ex lists) */
3670 int size; /* current indirection array size */
3671
3672 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3673 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3674 size = nlists * sizeof(xfs_ext_irec_t);
3675 ASSERT(ifp->if_real_bytes);
3676 ASSERT((new_size >= 0) && (new_size != size));
3677 if (new_size == 0) {
3678 xfs_iext_destroy(ifp);
3679 } else {
3680 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3681 kmem_realloc(ifp->if_u1.if_ext_irec,
3682 new_size, size, KM_NOFS);
3683 }
3684}
3685
3686/*
3687 * Switch from indirection array to linear (direct) extent allocations.
3688 */
3689STATIC void
3690xfs_iext_indirect_to_direct(
3691 xfs_ifork_t *ifp) /* inode fork pointer */
3692{
3693 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3694 xfs_extnum_t nextents; /* number of extents in file */
3695 int size; /* size of file extents */
3696
3697 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3698 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3699 ASSERT(nextents <= XFS_LINEAR_EXTS);
3700 size = nextents * sizeof(xfs_bmbt_rec_t);
3701
3702 xfs_iext_irec_compact_pages(ifp);
3703 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3704
3705 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3706 kmem_free(ifp->if_u1.if_ext_irec);
3707 ifp->if_flags &= ~XFS_IFEXTIREC;
3708 ifp->if_u1.if_extents = ep;
3709 ifp->if_bytes = size;
3710 if (nextents < XFS_LINEAR_EXTS) {
3711 xfs_iext_realloc_direct(ifp, size);
3712 }
3713}
3714
3715/*
3716 * Free incore file extents.
3717 */
3718void
3719xfs_iext_destroy(
3720 xfs_ifork_t *ifp) /* inode fork pointer */
3721{
3722 if (ifp->if_flags & XFS_IFEXTIREC) {
3723 int erp_idx;
3724 int nlists;
3725
3726 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3727 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3728 xfs_iext_irec_remove(ifp, erp_idx);
3729 }
3730 ifp->if_flags &= ~XFS_IFEXTIREC;
3731 } else if (ifp->if_real_bytes) {
3732 kmem_free(ifp->if_u1.if_extents);
3733 } else if (ifp->if_bytes) {
3734 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3735 sizeof(xfs_bmbt_rec_t));
3736 }
3737 ifp->if_u1.if_extents = NULL;
3738 ifp->if_real_bytes = 0;
3739 ifp->if_bytes = 0;
3740}
3741
3742/*
3743 * Return a pointer to the extent record for file system block bno.
3744 */
3745xfs_bmbt_rec_host_t * /* pointer to found extent record */
3746xfs_iext_bno_to_ext(
3747 xfs_ifork_t *ifp, /* inode fork pointer */
3748 xfs_fileoff_t bno, /* block number to search for */
3749 xfs_extnum_t *idxp) /* index of target extent */
3750{
3751 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3752 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3753 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3754 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3755 int high; /* upper boundary in search */
3756 xfs_extnum_t idx = 0; /* index of target extent */
3757 int low; /* lower boundary in search */
3758 xfs_extnum_t nextents; /* number of file extents */
3759 xfs_fileoff_t startoff = 0; /* start offset of extent */
3760
3761 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3762 if (nextents == 0) {
3763 *idxp = 0;
3764 return NULL;
3765 }
3766 low = 0;
3767 if (ifp->if_flags & XFS_IFEXTIREC) {
3768 /* Find target extent list */
3769 int erp_idx = 0;
3770 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3771 base = erp->er_extbuf;
3772 high = erp->er_extcount - 1;
3773 } else {
3774 base = ifp->if_u1.if_extents;
3775 high = nextents - 1;
3776 }
3777 /* Binary search extent records */
3778 while (low <= high) {
3779 idx = (low + high) >> 1;
3780 ep = base + idx;
3781 startoff = xfs_bmbt_get_startoff(ep);
3782 blockcount = xfs_bmbt_get_blockcount(ep);
3783 if (bno < startoff) {
3784 high = idx - 1;
3785 } else if (bno >= startoff + blockcount) {
3786 low = idx + 1;
3787 } else {
3788 /* Convert back to file-based extent index */
3789 if (ifp->if_flags & XFS_IFEXTIREC) {
3790 idx += erp->er_extoff;
3791 }
3792 *idxp = idx;
3793 return ep;
3794 }
3795 }
3796 /* Convert back to file-based extent index */
3797 if (ifp->if_flags & XFS_IFEXTIREC) {
3798 idx += erp->er_extoff;
3799 }
3800 if (bno >= startoff + blockcount) {
3801 if (++idx == nextents) {
3802 ep = NULL;
3803 } else {
3804 ep = xfs_iext_get_ext(ifp, idx);
3805 }
3806 }
3807 *idxp = idx;
3808 return ep;
3809}
3810
3811/*
3812 * Return a pointer to the indirection array entry containing the
3813 * extent record for filesystem block bno. Store the index of the
3814 * target irec in *erp_idxp.
3815 */
3816xfs_ext_irec_t * /* pointer to found extent record */
3817xfs_iext_bno_to_irec(
3818 xfs_ifork_t *ifp, /* inode fork pointer */
3819 xfs_fileoff_t bno, /* block number to search for */
3820 int *erp_idxp) /* irec index of target ext list */
3821{
3822 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3823 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3824 int erp_idx; /* indirection array index */
3825 int nlists; /* number of extent irec's (lists) */
3826 int high; /* binary search upper limit */
3827 int low; /* binary search lower limit */
3828
3829 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3830 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3831 erp_idx = 0;
3832 low = 0;
3833 high = nlists - 1;
3834 while (low <= high) {
3835 erp_idx = (low + high) >> 1;
3836 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3837 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3838 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3839 high = erp_idx - 1;
3840 } else if (erp_next && bno >=
3841 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3842 low = erp_idx + 1;
3843 } else {
3844 break;
3845 }
3846 }
3847 *erp_idxp = erp_idx;
3848 return erp;
3849}
3850
3851/*
3852 * Return a pointer to the indirection array entry containing the
3853 * extent record at file extent index *idxp. Store the index of the
3854 * target irec in *erp_idxp and store the page index of the target
3855 * extent record in *idxp.
3856 */
3857xfs_ext_irec_t *
3858xfs_iext_idx_to_irec(
3859 xfs_ifork_t *ifp, /* inode fork pointer */
3860 xfs_extnum_t *idxp, /* extent index (file -> page) */
3861 int *erp_idxp, /* pointer to target irec */
3862 int realloc) /* new bytes were just added */
3863{
3864 xfs_ext_irec_t *prev; /* pointer to previous irec */
3865 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3866 int erp_idx; /* indirection array index */
3867 int nlists; /* number of irec's (ex lists) */
3868 int high; /* binary search upper limit */
3869 int low; /* binary search lower limit */
3870 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3871
3872 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3873 ASSERT(page_idx >= 0 && page_idx <=
3874 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3875 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3876 erp_idx = 0;
3877 low = 0;
3878 high = nlists - 1;
3879
3880 /* Binary search extent irec's */
3881 while (low <= high) {
3882 erp_idx = (low + high) >> 1;
3883 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3884 prev = erp_idx > 0 ? erp - 1 : NULL;
3885 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3886 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3887 high = erp_idx - 1;
3888 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3889 (page_idx == erp->er_extoff + erp->er_extcount &&
3890 !realloc)) {
3891 low = erp_idx + 1;
3892 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3893 erp->er_extcount == XFS_LINEAR_EXTS) {
3894 ASSERT(realloc);
3895 page_idx = 0;
3896 erp_idx++;
3897 erp = erp_idx < nlists ? erp + 1 : NULL;
3898 break;
3899 } else {
3900 page_idx -= erp->er_extoff;
3901 break;
3902 }
3903 }
3904 *idxp = page_idx;
3905 *erp_idxp = erp_idx;
3906 return(erp);
3907}
3908
3909/*
3910 * Allocate and initialize an indirection array once the space needed
3911 * for incore extents increases above XFS_IEXT_BUFSZ.
3912 */
3913void
3914xfs_iext_irec_init(
3915 xfs_ifork_t *ifp) /* inode fork pointer */
3916{
3917 xfs_ext_irec_t *erp; /* indirection array pointer */
3918 xfs_extnum_t nextents; /* number of extents in file */
3919
3920 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3921 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3922 ASSERT(nextents <= XFS_LINEAR_EXTS);
3923
3924 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3925
3926 if (nextents == 0) {
3927 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3928 } else if (!ifp->if_real_bytes) {
3929 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3930 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3931 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3932 }
3933 erp->er_extbuf = ifp->if_u1.if_extents;
3934 erp->er_extcount = nextents;
3935 erp->er_extoff = 0;
3936
3937 ifp->if_flags |= XFS_IFEXTIREC;
3938 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3939 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3940 ifp->if_u1.if_ext_irec = erp;
3941
3942 return;
3943}
3944
3945/*
3946 * Allocate and initialize a new entry in the indirection array.
3947 */
3948xfs_ext_irec_t *
3949xfs_iext_irec_new(
3950 xfs_ifork_t *ifp, /* inode fork pointer */
3951 int erp_idx) /* index for new irec */
3952{
3953 xfs_ext_irec_t *erp; /* indirection array pointer */
3954 int i; /* loop counter */
3955 int nlists; /* number of irec's (ex lists) */
3956
3957 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3958 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3959
3960 /* Resize indirection array */
3961 xfs_iext_realloc_indirect(ifp, ++nlists *
3962 sizeof(xfs_ext_irec_t));
3963 /*
3964 * Move records down in the array so the
3965 * new page can use erp_idx.
3966 */
3967 erp = ifp->if_u1.if_ext_irec;
3968 for (i = nlists - 1; i > erp_idx; i--) {
3969 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3970 }
3971 ASSERT(i == erp_idx);
3972
3973 /* Initialize new extent record */
3974 erp = ifp->if_u1.if_ext_irec;
3975 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3976 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3977 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3978 erp[erp_idx].er_extcount = 0;
3979 erp[erp_idx].er_extoff = erp_idx > 0 ?
3980 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3981 return (&erp[erp_idx]);
3982}
3983
3984/*
3985 * Remove a record from the indirection array.
3986 */
3987void
3988xfs_iext_irec_remove(
3989 xfs_ifork_t *ifp, /* inode fork pointer */
3990 int erp_idx) /* irec index to remove */
3991{
3992 xfs_ext_irec_t *erp; /* indirection array pointer */
3993 int i; /* loop counter */
3994 int nlists; /* number of irec's (ex lists) */
3995
3996 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3997 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3998 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3999 if (erp->er_extbuf) {
4000 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4001 -erp->er_extcount);
4002 kmem_free(erp->er_extbuf);
4003 }
4004 /* Compact extent records */
4005 erp = ifp->if_u1.if_ext_irec;
4006 for (i = erp_idx; i < nlists - 1; i++) {
4007 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4008 }
4009 /*
4010 * Manually free the last extent record from the indirection
4011 * array. A call to xfs_iext_realloc_indirect() with a size
4012 * of zero would result in a call to xfs_iext_destroy() which
4013 * would in turn call this function again, creating a nasty
4014 * infinite loop.
4015 */
4016 if (--nlists) {
4017 xfs_iext_realloc_indirect(ifp,
4018 nlists * sizeof(xfs_ext_irec_t));
4019 } else {
4020 kmem_free(ifp->if_u1.if_ext_irec);
4021 }
4022 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4023}
4024
4025/*
4026 * This is called to clean up large amounts of unused memory allocated
4027 * by the indirection array. Before compacting anything though, verify
4028 * that the indirection array is still needed and switch back to the
4029 * linear extent list (or even the inline buffer) if possible. The
4030 * compaction policy is as follows:
4031 *
4032 * Full Compaction: Extents fit into a single page (or inline buffer)
4033 * Partial Compaction: Extents occupy less than 50% of allocated space
4034 * No Compaction: Extents occupy at least 50% of allocated space
4035 */
4036void
4037xfs_iext_irec_compact(
4038 xfs_ifork_t *ifp) /* inode fork pointer */
4039{
4040 xfs_extnum_t nextents; /* number of extents in file */
4041 int nlists; /* number of irec's (ex lists) */
4042
4043 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4044 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4045 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4046
4047 if (nextents == 0) {
4048 xfs_iext_destroy(ifp);
4049 } else if (nextents <= XFS_INLINE_EXTS) {
4050 xfs_iext_indirect_to_direct(ifp);
4051 xfs_iext_direct_to_inline(ifp, nextents);
4052 } else if (nextents <= XFS_LINEAR_EXTS) {
4053 xfs_iext_indirect_to_direct(ifp);
4054 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4055 xfs_iext_irec_compact_pages(ifp);
4056 }
4057}
4058
4059/*
4060 * Combine extents from neighboring extent pages.
4061 */
4062void
4063xfs_iext_irec_compact_pages(
4064 xfs_ifork_t *ifp) /* inode fork pointer */
4065{
4066 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4067 int erp_idx = 0; /* indirection array index */
4068 int nlists; /* number of irec's (ex lists) */
4069
4070 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4071 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4072 while (erp_idx < nlists - 1) {
4073 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4074 erp_next = erp + 1;
4075 if (erp_next->er_extcount <=
4076 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4077 memcpy(&erp->er_extbuf[erp->er_extcount],
4078 erp_next->er_extbuf, erp_next->er_extcount *
4079 sizeof(xfs_bmbt_rec_t));
4080 erp->er_extcount += erp_next->er_extcount;
4081 /*
4082 * Free page before removing extent record
4083 * so er_extoffs don't get modified in
4084 * xfs_iext_irec_remove.
4085 */
4086 kmem_free(erp_next->er_extbuf);
4087 erp_next->er_extbuf = NULL;
4088 xfs_iext_irec_remove(ifp, erp_idx + 1);
4089 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4090 } else {
4091 erp_idx++;
4092 }
4093 }
4094}
4095
4096/*
4097 * This is called to update the er_extoff field in the indirection
4098 * array when extents have been added or removed from one of the
4099 * extent lists. erp_idx contains the irec index to begin updating
4100 * at and ext_diff contains the number of extents that were added
4101 * or removed.
4102 */
4103void
4104xfs_iext_irec_update_extoffs(
4105 xfs_ifork_t *ifp, /* inode fork pointer */
4106 int erp_idx, /* irec index to update */
4107 int ext_diff) /* number of new extents */
4108{
4109 int i; /* loop counter */
4110 int nlists; /* number of irec's (ex lists */
4111
4112 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4113 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4114 for (i = erp_idx; i < nlists; i++) {
4115 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4116 }
4117}
This page took 0.153556 seconds and 5 git commands to generate.