xfs: remove xfsbdstrat error
[deliverable/linux.git] / fs / xfs / xfs_trans_buf.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_sb.h"
25#include "xfs_ag.h"
26#include "xfs_mount.h"
27#include "xfs_inode.h"
28#include "xfs_trans.h"
29#include "xfs_buf_item.h"
30#include "xfs_trans_priv.h"
31#include "xfs_error.h"
32#include "xfs_trace.h"
33
34/*
35 * Check to see if a buffer matching the given parameters is already
36 * a part of the given transaction.
37 */
38STATIC struct xfs_buf *
39xfs_trans_buf_item_match(
40 struct xfs_trans *tp,
41 struct xfs_buftarg *target,
42 struct xfs_buf_map *map,
43 int nmaps)
44{
45 struct xfs_log_item_desc *lidp;
46 struct xfs_buf_log_item *blip;
47 int len = 0;
48 int i;
49
50 for (i = 0; i < nmaps; i++)
51 len += map[i].bm_len;
52
53 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
54 blip = (struct xfs_buf_log_item *)lidp->lid_item;
55 if (blip->bli_item.li_type == XFS_LI_BUF &&
56 blip->bli_buf->b_target == target &&
57 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
58 blip->bli_buf->b_length == len) {
59 ASSERT(blip->bli_buf->b_map_count == nmaps);
60 return blip->bli_buf;
61 }
62 }
63
64 return NULL;
65}
66
67/*
68 * Add the locked buffer to the transaction.
69 *
70 * The buffer must be locked, and it cannot be associated with any
71 * transaction.
72 *
73 * If the buffer does not yet have a buf log item associated with it,
74 * then allocate one for it. Then add the buf item to the transaction.
75 */
76STATIC void
77_xfs_trans_bjoin(
78 struct xfs_trans *tp,
79 struct xfs_buf *bp,
80 int reset_recur)
81{
82 struct xfs_buf_log_item *bip;
83
84 ASSERT(bp->b_transp == NULL);
85
86 /*
87 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
88 * it doesn't have one yet, then allocate one and initialize it.
89 * The checks to see if one is there are in xfs_buf_item_init().
90 */
91 xfs_buf_item_init(bp, tp->t_mountp);
92 bip = bp->b_fspriv;
93 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
94 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
95 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
96 if (reset_recur)
97 bip->bli_recur = 0;
98
99 /*
100 * Take a reference for this transaction on the buf item.
101 */
102 atomic_inc(&bip->bli_refcount);
103
104 /*
105 * Get a log_item_desc to point at the new item.
106 */
107 xfs_trans_add_item(tp, &bip->bli_item);
108
109 /*
110 * Initialize b_fsprivate2 so we can find it with incore_match()
111 * in xfs_trans_get_buf() and friends above.
112 */
113 bp->b_transp = tp;
114
115}
116
117void
118xfs_trans_bjoin(
119 struct xfs_trans *tp,
120 struct xfs_buf *bp)
121{
122 _xfs_trans_bjoin(tp, bp, 0);
123 trace_xfs_trans_bjoin(bp->b_fspriv);
124}
125
126/*
127 * Get and lock the buffer for the caller if it is not already
128 * locked within the given transaction. If it is already locked
129 * within the transaction, just increment its lock recursion count
130 * and return a pointer to it.
131 *
132 * If the transaction pointer is NULL, make this just a normal
133 * get_buf() call.
134 */
135struct xfs_buf *
136xfs_trans_get_buf_map(
137 struct xfs_trans *tp,
138 struct xfs_buftarg *target,
139 struct xfs_buf_map *map,
140 int nmaps,
141 xfs_buf_flags_t flags)
142{
143 xfs_buf_t *bp;
144 xfs_buf_log_item_t *bip;
145
146 if (!tp)
147 return xfs_buf_get_map(target, map, nmaps, flags);
148
149 /*
150 * If we find the buffer in the cache with this transaction
151 * pointer in its b_fsprivate2 field, then we know we already
152 * have it locked. In this case we just increment the lock
153 * recursion count and return the buffer to the caller.
154 */
155 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
156 if (bp != NULL) {
157 ASSERT(xfs_buf_islocked(bp));
158 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
159 xfs_buf_stale(bp);
160 XFS_BUF_DONE(bp);
161 }
162
163 ASSERT(bp->b_transp == tp);
164 bip = bp->b_fspriv;
165 ASSERT(bip != NULL);
166 ASSERT(atomic_read(&bip->bli_refcount) > 0);
167 bip->bli_recur++;
168 trace_xfs_trans_get_buf_recur(bip);
169 return (bp);
170 }
171
172 bp = xfs_buf_get_map(target, map, nmaps, flags);
173 if (bp == NULL) {
174 return NULL;
175 }
176
177 ASSERT(!bp->b_error);
178
179 _xfs_trans_bjoin(tp, bp, 1);
180 trace_xfs_trans_get_buf(bp->b_fspriv);
181 return (bp);
182}
183
184/*
185 * Get and lock the superblock buffer of this file system for the
186 * given transaction.
187 *
188 * We don't need to use incore_match() here, because the superblock
189 * buffer is a private buffer which we keep a pointer to in the
190 * mount structure.
191 */
192xfs_buf_t *
193xfs_trans_getsb(xfs_trans_t *tp,
194 struct xfs_mount *mp,
195 int flags)
196{
197 xfs_buf_t *bp;
198 xfs_buf_log_item_t *bip;
199
200 /*
201 * Default to just trying to lock the superblock buffer
202 * if tp is NULL.
203 */
204 if (tp == NULL) {
205 return (xfs_getsb(mp, flags));
206 }
207
208 /*
209 * If the superblock buffer already has this transaction
210 * pointer in its b_fsprivate2 field, then we know we already
211 * have it locked. In this case we just increment the lock
212 * recursion count and return the buffer to the caller.
213 */
214 bp = mp->m_sb_bp;
215 if (bp->b_transp == tp) {
216 bip = bp->b_fspriv;
217 ASSERT(bip != NULL);
218 ASSERT(atomic_read(&bip->bli_refcount) > 0);
219 bip->bli_recur++;
220 trace_xfs_trans_getsb_recur(bip);
221 return (bp);
222 }
223
224 bp = xfs_getsb(mp, flags);
225 if (bp == NULL)
226 return NULL;
227
228 _xfs_trans_bjoin(tp, bp, 1);
229 trace_xfs_trans_getsb(bp->b_fspriv);
230 return (bp);
231}
232
233#ifdef DEBUG
234xfs_buftarg_t *xfs_error_target;
235int xfs_do_error;
236int xfs_req_num;
237int xfs_error_mod = 33;
238#endif
239
240/*
241 * Get and lock the buffer for the caller if it is not already
242 * locked within the given transaction. If it has not yet been
243 * read in, read it from disk. If it is already locked
244 * within the transaction and already read in, just increment its
245 * lock recursion count and return a pointer to it.
246 *
247 * If the transaction pointer is NULL, make this just a normal
248 * read_buf() call.
249 */
250int
251xfs_trans_read_buf_map(
252 struct xfs_mount *mp,
253 struct xfs_trans *tp,
254 struct xfs_buftarg *target,
255 struct xfs_buf_map *map,
256 int nmaps,
257 xfs_buf_flags_t flags,
258 struct xfs_buf **bpp,
259 const struct xfs_buf_ops *ops)
260{
261 xfs_buf_t *bp;
262 xfs_buf_log_item_t *bip;
263 int error;
264
265 *bpp = NULL;
266 if (!tp) {
267 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
268 if (!bp)
269 return (flags & XBF_TRYLOCK) ?
270 EAGAIN : XFS_ERROR(ENOMEM);
271
272 if (bp->b_error) {
273 error = bp->b_error;
274 xfs_buf_ioerror_alert(bp, __func__);
275 XFS_BUF_UNDONE(bp);
276 xfs_buf_stale(bp);
277 xfs_buf_relse(bp);
278 return error;
279 }
280#ifdef DEBUG
281 if (xfs_do_error) {
282 if (xfs_error_target == target) {
283 if (((xfs_req_num++) % xfs_error_mod) == 0) {
284 xfs_buf_relse(bp);
285 xfs_debug(mp, "Returning error!");
286 return XFS_ERROR(EIO);
287 }
288 }
289 }
290#endif
291 if (XFS_FORCED_SHUTDOWN(mp))
292 goto shutdown_abort;
293 *bpp = bp;
294 return 0;
295 }
296
297 /*
298 * If we find the buffer in the cache with this transaction
299 * pointer in its b_fsprivate2 field, then we know we already
300 * have it locked. If it is already read in we just increment
301 * the lock recursion count and return the buffer to the caller.
302 * If the buffer is not yet read in, then we read it in, increment
303 * the lock recursion count, and return it to the caller.
304 */
305 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
306 if (bp != NULL) {
307 ASSERT(xfs_buf_islocked(bp));
308 ASSERT(bp->b_transp == tp);
309 ASSERT(bp->b_fspriv != NULL);
310 ASSERT(!bp->b_error);
311 if (!(XFS_BUF_ISDONE(bp))) {
312 trace_xfs_trans_read_buf_io(bp, _RET_IP_);
313 ASSERT(!XFS_BUF_ISASYNC(bp));
314 ASSERT(bp->b_iodone == NULL);
315 XFS_BUF_READ(bp);
316 bp->b_ops = ops;
317
318 /*
319 * XXX(hch): clean up the error handling here to be less
320 * of a mess..
321 */
322 if (XFS_FORCED_SHUTDOWN(mp)) {
323 trace_xfs_bdstrat_shut(bp, _RET_IP_);
324 xfs_bioerror_relse(bp);
325 } else {
326 xfs_buf_iorequest(bp);
327 }
328
329 error = xfs_buf_iowait(bp);
330 if (error) {
331 xfs_buf_ioerror_alert(bp, __func__);
332 xfs_buf_relse(bp);
333 /*
334 * We can gracefully recover from most read
335 * errors. Ones we can't are those that happen
336 * after the transaction's already dirty.
337 */
338 if (tp->t_flags & XFS_TRANS_DIRTY)
339 xfs_force_shutdown(tp->t_mountp,
340 SHUTDOWN_META_IO_ERROR);
341 return error;
342 }
343 }
344 /*
345 * We never locked this buf ourselves, so we shouldn't
346 * brelse it either. Just get out.
347 */
348 if (XFS_FORCED_SHUTDOWN(mp)) {
349 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
350 *bpp = NULL;
351 return XFS_ERROR(EIO);
352 }
353
354
355 bip = bp->b_fspriv;
356 bip->bli_recur++;
357
358 ASSERT(atomic_read(&bip->bli_refcount) > 0);
359 trace_xfs_trans_read_buf_recur(bip);
360 *bpp = bp;
361 return 0;
362 }
363
364 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
365 if (bp == NULL) {
366 *bpp = NULL;
367 return (flags & XBF_TRYLOCK) ?
368 0 : XFS_ERROR(ENOMEM);
369 }
370 if (bp->b_error) {
371 error = bp->b_error;
372 xfs_buf_stale(bp);
373 XFS_BUF_DONE(bp);
374 xfs_buf_ioerror_alert(bp, __func__);
375 if (tp->t_flags & XFS_TRANS_DIRTY)
376 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
377 xfs_buf_relse(bp);
378 return error;
379 }
380#ifdef DEBUG
381 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
382 if (xfs_error_target == target) {
383 if (((xfs_req_num++) % xfs_error_mod) == 0) {
384 xfs_force_shutdown(tp->t_mountp,
385 SHUTDOWN_META_IO_ERROR);
386 xfs_buf_relse(bp);
387 xfs_debug(mp, "Returning trans error!");
388 return XFS_ERROR(EIO);
389 }
390 }
391 }
392#endif
393 if (XFS_FORCED_SHUTDOWN(mp))
394 goto shutdown_abort;
395
396 _xfs_trans_bjoin(tp, bp, 1);
397 trace_xfs_trans_read_buf(bp->b_fspriv);
398
399 *bpp = bp;
400 return 0;
401
402shutdown_abort:
403 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
404 xfs_buf_relse(bp);
405 *bpp = NULL;
406 return XFS_ERROR(EIO);
407}
408
409/*
410 * Release the buffer bp which was previously acquired with one of the
411 * xfs_trans_... buffer allocation routines if the buffer has not
412 * been modified within this transaction. If the buffer is modified
413 * within this transaction, do decrement the recursion count but do
414 * not release the buffer even if the count goes to 0. If the buffer is not
415 * modified within the transaction, decrement the recursion count and
416 * release the buffer if the recursion count goes to 0.
417 *
418 * If the buffer is to be released and it was not modified before
419 * this transaction began, then free the buf_log_item associated with it.
420 *
421 * If the transaction pointer is NULL, make this just a normal
422 * brelse() call.
423 */
424void
425xfs_trans_brelse(xfs_trans_t *tp,
426 xfs_buf_t *bp)
427{
428 xfs_buf_log_item_t *bip;
429
430 /*
431 * Default to a normal brelse() call if the tp is NULL.
432 */
433 if (tp == NULL) {
434 ASSERT(bp->b_transp == NULL);
435 xfs_buf_relse(bp);
436 return;
437 }
438
439 ASSERT(bp->b_transp == tp);
440 bip = bp->b_fspriv;
441 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
442 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
443 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
444 ASSERT(atomic_read(&bip->bli_refcount) > 0);
445
446 trace_xfs_trans_brelse(bip);
447
448 /*
449 * If the release is just for a recursive lock,
450 * then decrement the count and return.
451 */
452 if (bip->bli_recur > 0) {
453 bip->bli_recur--;
454 return;
455 }
456
457 /*
458 * If the buffer is dirty within this transaction, we can't
459 * release it until we commit.
460 */
461 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
462 return;
463
464 /*
465 * If the buffer has been invalidated, then we can't release
466 * it until the transaction commits to disk unless it is re-dirtied
467 * as part of this transaction. This prevents us from pulling
468 * the item from the AIL before we should.
469 */
470 if (bip->bli_flags & XFS_BLI_STALE)
471 return;
472
473 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
474
475 /*
476 * Free up the log item descriptor tracking the released item.
477 */
478 xfs_trans_del_item(&bip->bli_item);
479
480 /*
481 * Clear the hold flag in the buf log item if it is set.
482 * We wouldn't want the next user of the buffer to
483 * get confused.
484 */
485 if (bip->bli_flags & XFS_BLI_HOLD) {
486 bip->bli_flags &= ~XFS_BLI_HOLD;
487 }
488
489 /*
490 * Drop our reference to the buf log item.
491 */
492 atomic_dec(&bip->bli_refcount);
493
494 /*
495 * If the buf item is not tracking data in the log, then
496 * we must free it before releasing the buffer back to the
497 * free pool. Before releasing the buffer to the free pool,
498 * clear the transaction pointer in b_fsprivate2 to dissolve
499 * its relation to this transaction.
500 */
501 if (!xfs_buf_item_dirty(bip)) {
502/***
503 ASSERT(bp->b_pincount == 0);
504***/
505 ASSERT(atomic_read(&bip->bli_refcount) == 0);
506 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
507 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
508 xfs_buf_item_relse(bp);
509 }
510
511 bp->b_transp = NULL;
512 xfs_buf_relse(bp);
513}
514
515/*
516 * Mark the buffer as not needing to be unlocked when the buf item's
517 * iop_unlock() routine is called. The buffer must already be locked
518 * and associated with the given transaction.
519 */
520/* ARGSUSED */
521void
522xfs_trans_bhold(xfs_trans_t *tp,
523 xfs_buf_t *bp)
524{
525 xfs_buf_log_item_t *bip = bp->b_fspriv;
526
527 ASSERT(bp->b_transp == tp);
528 ASSERT(bip != NULL);
529 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
530 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
531 ASSERT(atomic_read(&bip->bli_refcount) > 0);
532
533 bip->bli_flags |= XFS_BLI_HOLD;
534 trace_xfs_trans_bhold(bip);
535}
536
537/*
538 * Cancel the previous buffer hold request made on this buffer
539 * for this transaction.
540 */
541void
542xfs_trans_bhold_release(xfs_trans_t *tp,
543 xfs_buf_t *bp)
544{
545 xfs_buf_log_item_t *bip = bp->b_fspriv;
546
547 ASSERT(bp->b_transp == tp);
548 ASSERT(bip != NULL);
549 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
550 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
551 ASSERT(atomic_read(&bip->bli_refcount) > 0);
552 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
553
554 bip->bli_flags &= ~XFS_BLI_HOLD;
555 trace_xfs_trans_bhold_release(bip);
556}
557
558/*
559 * This is called to mark bytes first through last inclusive of the given
560 * buffer as needing to be logged when the transaction is committed.
561 * The buffer must already be associated with the given transaction.
562 *
563 * First and last are numbers relative to the beginning of this buffer,
564 * so the first byte in the buffer is numbered 0 regardless of the
565 * value of b_blkno.
566 */
567void
568xfs_trans_log_buf(xfs_trans_t *tp,
569 xfs_buf_t *bp,
570 uint first,
571 uint last)
572{
573 xfs_buf_log_item_t *bip = bp->b_fspriv;
574
575 ASSERT(bp->b_transp == tp);
576 ASSERT(bip != NULL);
577 ASSERT(first <= last && last < BBTOB(bp->b_length));
578 ASSERT(bp->b_iodone == NULL ||
579 bp->b_iodone == xfs_buf_iodone_callbacks);
580
581 /*
582 * Mark the buffer as needing to be written out eventually,
583 * and set its iodone function to remove the buffer's buf log
584 * item from the AIL and free it when the buffer is flushed
585 * to disk. See xfs_buf_attach_iodone() for more details
586 * on li_cb and xfs_buf_iodone_callbacks().
587 * If we end up aborting this transaction, we trap this buffer
588 * inside the b_bdstrat callback so that this won't get written to
589 * disk.
590 */
591 XFS_BUF_DONE(bp);
592
593 ASSERT(atomic_read(&bip->bli_refcount) > 0);
594 bp->b_iodone = xfs_buf_iodone_callbacks;
595 bip->bli_item.li_cb = xfs_buf_iodone;
596
597 trace_xfs_trans_log_buf(bip);
598
599 /*
600 * If we invalidated the buffer within this transaction, then
601 * cancel the invalidation now that we're dirtying the buffer
602 * again. There are no races with the code in xfs_buf_item_unpin(),
603 * because we have a reference to the buffer this entire time.
604 */
605 if (bip->bli_flags & XFS_BLI_STALE) {
606 bip->bli_flags &= ~XFS_BLI_STALE;
607 ASSERT(XFS_BUF_ISSTALE(bp));
608 XFS_BUF_UNSTALE(bp);
609 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
610 }
611
612 tp->t_flags |= XFS_TRANS_DIRTY;
613 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
614
615 /*
616 * If we have an ordered buffer we are not logging any dirty range but
617 * it still needs to be marked dirty and that it has been logged.
618 */
619 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
620 if (!(bip->bli_flags & XFS_BLI_ORDERED))
621 xfs_buf_item_log(bip, first, last);
622}
623
624
625/*
626 * Invalidate a buffer that is being used within a transaction.
627 *
628 * Typically this is because the blocks in the buffer are being freed, so we
629 * need to prevent it from being written out when we're done. Allowing it
630 * to be written again might overwrite data in the free blocks if they are
631 * reallocated to a file.
632 *
633 * We prevent the buffer from being written out by marking it stale. We can't
634 * get rid of the buf log item at this point because the buffer may still be
635 * pinned by another transaction. If that is the case, then we'll wait until
636 * the buffer is committed to disk for the last time (we can tell by the ref
637 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
638 * keep the buffer locked so that the buffer and buf log item are not reused.
639 *
640 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
641 * the buf item. This will be used at recovery time to determine that copies
642 * of the buffer in the log before this should not be replayed.
643 *
644 * We mark the item descriptor and the transaction dirty so that we'll hold
645 * the buffer until after the commit.
646 *
647 * Since we're invalidating the buffer, we also clear the state about which
648 * parts of the buffer have been logged. We also clear the flag indicating
649 * that this is an inode buffer since the data in the buffer will no longer
650 * be valid.
651 *
652 * We set the stale bit in the buffer as well since we're getting rid of it.
653 */
654void
655xfs_trans_binval(
656 xfs_trans_t *tp,
657 xfs_buf_t *bp)
658{
659 xfs_buf_log_item_t *bip = bp->b_fspriv;
660 int i;
661
662 ASSERT(bp->b_transp == tp);
663 ASSERT(bip != NULL);
664 ASSERT(atomic_read(&bip->bli_refcount) > 0);
665
666 trace_xfs_trans_binval(bip);
667
668 if (bip->bli_flags & XFS_BLI_STALE) {
669 /*
670 * If the buffer is already invalidated, then
671 * just return.
672 */
673 ASSERT(XFS_BUF_ISSTALE(bp));
674 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
675 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
676 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
677 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
678 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
679 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
680 return;
681 }
682
683 xfs_buf_stale(bp);
684
685 bip->bli_flags |= XFS_BLI_STALE;
686 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
687 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
688 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
689 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
690 for (i = 0; i < bip->bli_format_count; i++) {
691 memset(bip->bli_formats[i].blf_data_map, 0,
692 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
693 }
694 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
695 tp->t_flags |= XFS_TRANS_DIRTY;
696}
697
698/*
699 * This call is used to indicate that the buffer contains on-disk inodes which
700 * must be handled specially during recovery. They require special handling
701 * because only the di_next_unlinked from the inodes in the buffer should be
702 * recovered. The rest of the data in the buffer is logged via the inodes
703 * themselves.
704 *
705 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
706 * transferred to the buffer's log format structure so that we'll know what to
707 * do at recovery time.
708 */
709void
710xfs_trans_inode_buf(
711 xfs_trans_t *tp,
712 xfs_buf_t *bp)
713{
714 xfs_buf_log_item_t *bip = bp->b_fspriv;
715
716 ASSERT(bp->b_transp == tp);
717 ASSERT(bip != NULL);
718 ASSERT(atomic_read(&bip->bli_refcount) > 0);
719
720 bip->bli_flags |= XFS_BLI_INODE_BUF;
721 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
722}
723
724/*
725 * This call is used to indicate that the buffer is going to
726 * be staled and was an inode buffer. This means it gets
727 * special processing during unpin - where any inodes
728 * associated with the buffer should be removed from ail.
729 * There is also special processing during recovery,
730 * any replay of the inodes in the buffer needs to be
731 * prevented as the buffer may have been reused.
732 */
733void
734xfs_trans_stale_inode_buf(
735 xfs_trans_t *tp,
736 xfs_buf_t *bp)
737{
738 xfs_buf_log_item_t *bip = bp->b_fspriv;
739
740 ASSERT(bp->b_transp == tp);
741 ASSERT(bip != NULL);
742 ASSERT(atomic_read(&bip->bli_refcount) > 0);
743
744 bip->bli_flags |= XFS_BLI_STALE_INODE;
745 bip->bli_item.li_cb = xfs_buf_iodone;
746 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
747}
748
749/*
750 * Mark the buffer as being one which contains newly allocated
751 * inodes. We need to make sure that even if this buffer is
752 * relogged as an 'inode buf' we still recover all of the inode
753 * images in the face of a crash. This works in coordination with
754 * xfs_buf_item_committed() to ensure that the buffer remains in the
755 * AIL at its original location even after it has been relogged.
756 */
757/* ARGSUSED */
758void
759xfs_trans_inode_alloc_buf(
760 xfs_trans_t *tp,
761 xfs_buf_t *bp)
762{
763 xfs_buf_log_item_t *bip = bp->b_fspriv;
764
765 ASSERT(bp->b_transp == tp);
766 ASSERT(bip != NULL);
767 ASSERT(atomic_read(&bip->bli_refcount) > 0);
768
769 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
770 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
771}
772
773/*
774 * Mark the buffer as ordered for this transaction. This means
775 * that the contents of the buffer are not recorded in the transaction
776 * but it is tracked in the AIL as though it was. This allows us
777 * to record logical changes in transactions rather than the physical
778 * changes we make to the buffer without changing writeback ordering
779 * constraints of metadata buffers.
780 */
781void
782xfs_trans_ordered_buf(
783 struct xfs_trans *tp,
784 struct xfs_buf *bp)
785{
786 struct xfs_buf_log_item *bip = bp->b_fspriv;
787
788 ASSERT(bp->b_transp == tp);
789 ASSERT(bip != NULL);
790 ASSERT(atomic_read(&bip->bli_refcount) > 0);
791
792 bip->bli_flags |= XFS_BLI_ORDERED;
793 trace_xfs_buf_item_ordered(bip);
794}
795
796/*
797 * Set the type of the buffer for log recovery so that it can correctly identify
798 * and hence attach the correct buffer ops to the buffer after replay.
799 */
800void
801xfs_trans_buf_set_type(
802 struct xfs_trans *tp,
803 struct xfs_buf *bp,
804 enum xfs_blft type)
805{
806 struct xfs_buf_log_item *bip = bp->b_fspriv;
807
808 if (!tp)
809 return;
810
811 ASSERT(bp->b_transp == tp);
812 ASSERT(bip != NULL);
813 ASSERT(atomic_read(&bip->bli_refcount) > 0);
814
815 xfs_blft_to_flags(&bip->__bli_format, type);
816}
817
818void
819xfs_trans_buf_copy_type(
820 struct xfs_buf *dst_bp,
821 struct xfs_buf *src_bp)
822{
823 struct xfs_buf_log_item *sbip = src_bp->b_fspriv;
824 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv;
825 enum xfs_blft type;
826
827 type = xfs_blft_from_flags(&sbip->__bli_format);
828 xfs_blft_to_flags(&dbip->__bli_format, type);
829}
830
831/*
832 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
833 * dquots. However, unlike in inode buffer recovery, dquot buffers get
834 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
835 * The only thing that makes dquot buffers different from regular
836 * buffers is that we must not replay dquot bufs when recovering
837 * if a _corresponding_ quotaoff has happened. We also have to distinguish
838 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
839 * can be turned off independently.
840 */
841/* ARGSUSED */
842void
843xfs_trans_dquot_buf(
844 xfs_trans_t *tp,
845 xfs_buf_t *bp,
846 uint type)
847{
848 struct xfs_buf_log_item *bip = bp->b_fspriv;
849
850 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
851 type == XFS_BLF_PDQUOT_BUF ||
852 type == XFS_BLF_GDQUOT_BUF);
853
854 bip->__bli_format.blf_flags |= type;
855
856 switch (type) {
857 case XFS_BLF_UDQUOT_BUF:
858 type = XFS_BLFT_UDQUOT_BUF;
859 break;
860 case XFS_BLF_PDQUOT_BUF:
861 type = XFS_BLFT_PDQUOT_BUF;
862 break;
863 case XFS_BLF_GDQUOT_BUF:
864 type = XFS_BLFT_GDQUOT_BUF;
865 break;
866 default:
867 type = XFS_BLFT_UNKNOWN_BUF;
868 break;
869 }
870
871 xfs_trans_buf_set_type(tp, bp, type);
872}
This page took 0.027507 seconds and 5 git commands to generate.