| 1 | /* |
| 2 | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
| 3 | * All Rights Reserved. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public License as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it would be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write the Free Software Foundation, |
| 16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 17 | */ |
| 18 | #include "xfs.h" |
| 19 | #include "xfs_fs.h" |
| 20 | #include "xfs_shared.h" |
| 21 | #include "xfs_format.h" |
| 22 | #include "xfs_log_format.h" |
| 23 | #include "xfs_trans_resv.h" |
| 24 | #include "xfs_sb.h" |
| 25 | #include "xfs_ag.h" |
| 26 | #include "xfs_mount.h" |
| 27 | #include "xfs_inode.h" |
| 28 | #include "xfs_trans.h" |
| 29 | #include "xfs_buf_item.h" |
| 30 | #include "xfs_trans_priv.h" |
| 31 | #include "xfs_error.h" |
| 32 | #include "xfs_trace.h" |
| 33 | |
| 34 | /* |
| 35 | * Check to see if a buffer matching the given parameters is already |
| 36 | * a part of the given transaction. |
| 37 | */ |
| 38 | STATIC struct xfs_buf * |
| 39 | xfs_trans_buf_item_match( |
| 40 | struct xfs_trans *tp, |
| 41 | struct xfs_buftarg *target, |
| 42 | struct xfs_buf_map *map, |
| 43 | int nmaps) |
| 44 | { |
| 45 | struct xfs_log_item_desc *lidp; |
| 46 | struct xfs_buf_log_item *blip; |
| 47 | int len = 0; |
| 48 | int i; |
| 49 | |
| 50 | for (i = 0; i < nmaps; i++) |
| 51 | len += map[i].bm_len; |
| 52 | |
| 53 | list_for_each_entry(lidp, &tp->t_items, lid_trans) { |
| 54 | blip = (struct xfs_buf_log_item *)lidp->lid_item; |
| 55 | if (blip->bli_item.li_type == XFS_LI_BUF && |
| 56 | blip->bli_buf->b_target == target && |
| 57 | XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && |
| 58 | blip->bli_buf->b_length == len) { |
| 59 | ASSERT(blip->bli_buf->b_map_count == nmaps); |
| 60 | return blip->bli_buf; |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | return NULL; |
| 65 | } |
| 66 | |
| 67 | /* |
| 68 | * Add the locked buffer to the transaction. |
| 69 | * |
| 70 | * The buffer must be locked, and it cannot be associated with any |
| 71 | * transaction. |
| 72 | * |
| 73 | * If the buffer does not yet have a buf log item associated with it, |
| 74 | * then allocate one for it. Then add the buf item to the transaction. |
| 75 | */ |
| 76 | STATIC void |
| 77 | _xfs_trans_bjoin( |
| 78 | struct xfs_trans *tp, |
| 79 | struct xfs_buf *bp, |
| 80 | int reset_recur) |
| 81 | { |
| 82 | struct xfs_buf_log_item *bip; |
| 83 | |
| 84 | ASSERT(bp->b_transp == NULL); |
| 85 | |
| 86 | /* |
| 87 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If |
| 88 | * it doesn't have one yet, then allocate one and initialize it. |
| 89 | * The checks to see if one is there are in xfs_buf_item_init(). |
| 90 | */ |
| 91 | xfs_buf_item_init(bp, tp->t_mountp); |
| 92 | bip = bp->b_fspriv; |
| 93 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); |
| 94 | ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); |
| 95 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); |
| 96 | if (reset_recur) |
| 97 | bip->bli_recur = 0; |
| 98 | |
| 99 | /* |
| 100 | * Take a reference for this transaction on the buf item. |
| 101 | */ |
| 102 | atomic_inc(&bip->bli_refcount); |
| 103 | |
| 104 | /* |
| 105 | * Get a log_item_desc to point at the new item. |
| 106 | */ |
| 107 | xfs_trans_add_item(tp, &bip->bli_item); |
| 108 | |
| 109 | /* |
| 110 | * Initialize b_fsprivate2 so we can find it with incore_match() |
| 111 | * in xfs_trans_get_buf() and friends above. |
| 112 | */ |
| 113 | bp->b_transp = tp; |
| 114 | |
| 115 | } |
| 116 | |
| 117 | void |
| 118 | xfs_trans_bjoin( |
| 119 | struct xfs_trans *tp, |
| 120 | struct xfs_buf *bp) |
| 121 | { |
| 122 | _xfs_trans_bjoin(tp, bp, 0); |
| 123 | trace_xfs_trans_bjoin(bp->b_fspriv); |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * Get and lock the buffer for the caller if it is not already |
| 128 | * locked within the given transaction. If it is already locked |
| 129 | * within the transaction, just increment its lock recursion count |
| 130 | * and return a pointer to it. |
| 131 | * |
| 132 | * If the transaction pointer is NULL, make this just a normal |
| 133 | * get_buf() call. |
| 134 | */ |
| 135 | struct xfs_buf * |
| 136 | xfs_trans_get_buf_map( |
| 137 | struct xfs_trans *tp, |
| 138 | struct xfs_buftarg *target, |
| 139 | struct xfs_buf_map *map, |
| 140 | int nmaps, |
| 141 | xfs_buf_flags_t flags) |
| 142 | { |
| 143 | xfs_buf_t *bp; |
| 144 | xfs_buf_log_item_t *bip; |
| 145 | |
| 146 | if (!tp) |
| 147 | return xfs_buf_get_map(target, map, nmaps, flags); |
| 148 | |
| 149 | /* |
| 150 | * If we find the buffer in the cache with this transaction |
| 151 | * pointer in its b_fsprivate2 field, then we know we already |
| 152 | * have it locked. In this case we just increment the lock |
| 153 | * recursion count and return the buffer to the caller. |
| 154 | */ |
| 155 | bp = xfs_trans_buf_item_match(tp, target, map, nmaps); |
| 156 | if (bp != NULL) { |
| 157 | ASSERT(xfs_buf_islocked(bp)); |
| 158 | if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { |
| 159 | xfs_buf_stale(bp); |
| 160 | XFS_BUF_DONE(bp); |
| 161 | } |
| 162 | |
| 163 | ASSERT(bp->b_transp == tp); |
| 164 | bip = bp->b_fspriv; |
| 165 | ASSERT(bip != NULL); |
| 166 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 167 | bip->bli_recur++; |
| 168 | trace_xfs_trans_get_buf_recur(bip); |
| 169 | return (bp); |
| 170 | } |
| 171 | |
| 172 | bp = xfs_buf_get_map(target, map, nmaps, flags); |
| 173 | if (bp == NULL) { |
| 174 | return NULL; |
| 175 | } |
| 176 | |
| 177 | ASSERT(!bp->b_error); |
| 178 | |
| 179 | _xfs_trans_bjoin(tp, bp, 1); |
| 180 | trace_xfs_trans_get_buf(bp->b_fspriv); |
| 181 | return (bp); |
| 182 | } |
| 183 | |
| 184 | /* |
| 185 | * Get and lock the superblock buffer of this file system for the |
| 186 | * given transaction. |
| 187 | * |
| 188 | * We don't need to use incore_match() here, because the superblock |
| 189 | * buffer is a private buffer which we keep a pointer to in the |
| 190 | * mount structure. |
| 191 | */ |
| 192 | xfs_buf_t * |
| 193 | xfs_trans_getsb(xfs_trans_t *tp, |
| 194 | struct xfs_mount *mp, |
| 195 | int flags) |
| 196 | { |
| 197 | xfs_buf_t *bp; |
| 198 | xfs_buf_log_item_t *bip; |
| 199 | |
| 200 | /* |
| 201 | * Default to just trying to lock the superblock buffer |
| 202 | * if tp is NULL. |
| 203 | */ |
| 204 | if (tp == NULL) { |
| 205 | return (xfs_getsb(mp, flags)); |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * If the superblock buffer already has this transaction |
| 210 | * pointer in its b_fsprivate2 field, then we know we already |
| 211 | * have it locked. In this case we just increment the lock |
| 212 | * recursion count and return the buffer to the caller. |
| 213 | */ |
| 214 | bp = mp->m_sb_bp; |
| 215 | if (bp->b_transp == tp) { |
| 216 | bip = bp->b_fspriv; |
| 217 | ASSERT(bip != NULL); |
| 218 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 219 | bip->bli_recur++; |
| 220 | trace_xfs_trans_getsb_recur(bip); |
| 221 | return (bp); |
| 222 | } |
| 223 | |
| 224 | bp = xfs_getsb(mp, flags); |
| 225 | if (bp == NULL) |
| 226 | return NULL; |
| 227 | |
| 228 | _xfs_trans_bjoin(tp, bp, 1); |
| 229 | trace_xfs_trans_getsb(bp->b_fspriv); |
| 230 | return (bp); |
| 231 | } |
| 232 | |
| 233 | #ifdef DEBUG |
| 234 | xfs_buftarg_t *xfs_error_target; |
| 235 | int xfs_do_error; |
| 236 | int xfs_req_num; |
| 237 | int xfs_error_mod = 33; |
| 238 | #endif |
| 239 | |
| 240 | /* |
| 241 | * Get and lock the buffer for the caller if it is not already |
| 242 | * locked within the given transaction. If it has not yet been |
| 243 | * read in, read it from disk. If it is already locked |
| 244 | * within the transaction and already read in, just increment its |
| 245 | * lock recursion count and return a pointer to it. |
| 246 | * |
| 247 | * If the transaction pointer is NULL, make this just a normal |
| 248 | * read_buf() call. |
| 249 | */ |
| 250 | int |
| 251 | xfs_trans_read_buf_map( |
| 252 | struct xfs_mount *mp, |
| 253 | struct xfs_trans *tp, |
| 254 | struct xfs_buftarg *target, |
| 255 | struct xfs_buf_map *map, |
| 256 | int nmaps, |
| 257 | xfs_buf_flags_t flags, |
| 258 | struct xfs_buf **bpp, |
| 259 | const struct xfs_buf_ops *ops) |
| 260 | { |
| 261 | xfs_buf_t *bp; |
| 262 | xfs_buf_log_item_t *bip; |
| 263 | int error; |
| 264 | |
| 265 | *bpp = NULL; |
| 266 | if (!tp) { |
| 267 | bp = xfs_buf_read_map(target, map, nmaps, flags, ops); |
| 268 | if (!bp) |
| 269 | return (flags & XBF_TRYLOCK) ? |
| 270 | EAGAIN : XFS_ERROR(ENOMEM); |
| 271 | |
| 272 | if (bp->b_error) { |
| 273 | error = bp->b_error; |
| 274 | xfs_buf_ioerror_alert(bp, __func__); |
| 275 | XFS_BUF_UNDONE(bp); |
| 276 | xfs_buf_stale(bp); |
| 277 | xfs_buf_relse(bp); |
| 278 | return error; |
| 279 | } |
| 280 | #ifdef DEBUG |
| 281 | if (xfs_do_error) { |
| 282 | if (xfs_error_target == target) { |
| 283 | if (((xfs_req_num++) % xfs_error_mod) == 0) { |
| 284 | xfs_buf_relse(bp); |
| 285 | xfs_debug(mp, "Returning error!"); |
| 286 | return XFS_ERROR(EIO); |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | #endif |
| 291 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 292 | goto shutdown_abort; |
| 293 | *bpp = bp; |
| 294 | return 0; |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * If we find the buffer in the cache with this transaction |
| 299 | * pointer in its b_fsprivate2 field, then we know we already |
| 300 | * have it locked. If it is already read in we just increment |
| 301 | * the lock recursion count and return the buffer to the caller. |
| 302 | * If the buffer is not yet read in, then we read it in, increment |
| 303 | * the lock recursion count, and return it to the caller. |
| 304 | */ |
| 305 | bp = xfs_trans_buf_item_match(tp, target, map, nmaps); |
| 306 | if (bp != NULL) { |
| 307 | ASSERT(xfs_buf_islocked(bp)); |
| 308 | ASSERT(bp->b_transp == tp); |
| 309 | ASSERT(bp->b_fspriv != NULL); |
| 310 | ASSERT(!bp->b_error); |
| 311 | if (!(XFS_BUF_ISDONE(bp))) { |
| 312 | trace_xfs_trans_read_buf_io(bp, _RET_IP_); |
| 313 | ASSERT(!XFS_BUF_ISASYNC(bp)); |
| 314 | ASSERT(bp->b_iodone == NULL); |
| 315 | XFS_BUF_READ(bp); |
| 316 | bp->b_ops = ops; |
| 317 | |
| 318 | /* |
| 319 | * XXX(hch): clean up the error handling here to be less |
| 320 | * of a mess.. |
| 321 | */ |
| 322 | if (XFS_FORCED_SHUTDOWN(mp)) { |
| 323 | trace_xfs_bdstrat_shut(bp, _RET_IP_); |
| 324 | xfs_bioerror_relse(bp); |
| 325 | } else { |
| 326 | xfs_buf_iorequest(bp); |
| 327 | } |
| 328 | |
| 329 | error = xfs_buf_iowait(bp); |
| 330 | if (error) { |
| 331 | xfs_buf_ioerror_alert(bp, __func__); |
| 332 | xfs_buf_relse(bp); |
| 333 | /* |
| 334 | * We can gracefully recover from most read |
| 335 | * errors. Ones we can't are those that happen |
| 336 | * after the transaction's already dirty. |
| 337 | */ |
| 338 | if (tp->t_flags & XFS_TRANS_DIRTY) |
| 339 | xfs_force_shutdown(tp->t_mountp, |
| 340 | SHUTDOWN_META_IO_ERROR); |
| 341 | return error; |
| 342 | } |
| 343 | } |
| 344 | /* |
| 345 | * We never locked this buf ourselves, so we shouldn't |
| 346 | * brelse it either. Just get out. |
| 347 | */ |
| 348 | if (XFS_FORCED_SHUTDOWN(mp)) { |
| 349 | trace_xfs_trans_read_buf_shut(bp, _RET_IP_); |
| 350 | *bpp = NULL; |
| 351 | return XFS_ERROR(EIO); |
| 352 | } |
| 353 | |
| 354 | |
| 355 | bip = bp->b_fspriv; |
| 356 | bip->bli_recur++; |
| 357 | |
| 358 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 359 | trace_xfs_trans_read_buf_recur(bip); |
| 360 | *bpp = bp; |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | bp = xfs_buf_read_map(target, map, nmaps, flags, ops); |
| 365 | if (bp == NULL) { |
| 366 | *bpp = NULL; |
| 367 | return (flags & XBF_TRYLOCK) ? |
| 368 | 0 : XFS_ERROR(ENOMEM); |
| 369 | } |
| 370 | if (bp->b_error) { |
| 371 | error = bp->b_error; |
| 372 | xfs_buf_stale(bp); |
| 373 | XFS_BUF_DONE(bp); |
| 374 | xfs_buf_ioerror_alert(bp, __func__); |
| 375 | if (tp->t_flags & XFS_TRANS_DIRTY) |
| 376 | xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); |
| 377 | xfs_buf_relse(bp); |
| 378 | return error; |
| 379 | } |
| 380 | #ifdef DEBUG |
| 381 | if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { |
| 382 | if (xfs_error_target == target) { |
| 383 | if (((xfs_req_num++) % xfs_error_mod) == 0) { |
| 384 | xfs_force_shutdown(tp->t_mountp, |
| 385 | SHUTDOWN_META_IO_ERROR); |
| 386 | xfs_buf_relse(bp); |
| 387 | xfs_debug(mp, "Returning trans error!"); |
| 388 | return XFS_ERROR(EIO); |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | #endif |
| 393 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 394 | goto shutdown_abort; |
| 395 | |
| 396 | _xfs_trans_bjoin(tp, bp, 1); |
| 397 | trace_xfs_trans_read_buf(bp->b_fspriv); |
| 398 | |
| 399 | *bpp = bp; |
| 400 | return 0; |
| 401 | |
| 402 | shutdown_abort: |
| 403 | trace_xfs_trans_read_buf_shut(bp, _RET_IP_); |
| 404 | xfs_buf_relse(bp); |
| 405 | *bpp = NULL; |
| 406 | return XFS_ERROR(EIO); |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * Release the buffer bp which was previously acquired with one of the |
| 411 | * xfs_trans_... buffer allocation routines if the buffer has not |
| 412 | * been modified within this transaction. If the buffer is modified |
| 413 | * within this transaction, do decrement the recursion count but do |
| 414 | * not release the buffer even if the count goes to 0. If the buffer is not |
| 415 | * modified within the transaction, decrement the recursion count and |
| 416 | * release the buffer if the recursion count goes to 0. |
| 417 | * |
| 418 | * If the buffer is to be released and it was not modified before |
| 419 | * this transaction began, then free the buf_log_item associated with it. |
| 420 | * |
| 421 | * If the transaction pointer is NULL, make this just a normal |
| 422 | * brelse() call. |
| 423 | */ |
| 424 | void |
| 425 | xfs_trans_brelse(xfs_trans_t *tp, |
| 426 | xfs_buf_t *bp) |
| 427 | { |
| 428 | xfs_buf_log_item_t *bip; |
| 429 | |
| 430 | /* |
| 431 | * Default to a normal brelse() call if the tp is NULL. |
| 432 | */ |
| 433 | if (tp == NULL) { |
| 434 | ASSERT(bp->b_transp == NULL); |
| 435 | xfs_buf_relse(bp); |
| 436 | return; |
| 437 | } |
| 438 | |
| 439 | ASSERT(bp->b_transp == tp); |
| 440 | bip = bp->b_fspriv; |
| 441 | ASSERT(bip->bli_item.li_type == XFS_LI_BUF); |
| 442 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); |
| 443 | ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); |
| 444 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 445 | |
| 446 | trace_xfs_trans_brelse(bip); |
| 447 | |
| 448 | /* |
| 449 | * If the release is just for a recursive lock, |
| 450 | * then decrement the count and return. |
| 451 | */ |
| 452 | if (bip->bli_recur > 0) { |
| 453 | bip->bli_recur--; |
| 454 | return; |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * If the buffer is dirty within this transaction, we can't |
| 459 | * release it until we commit. |
| 460 | */ |
| 461 | if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) |
| 462 | return; |
| 463 | |
| 464 | /* |
| 465 | * If the buffer has been invalidated, then we can't release |
| 466 | * it until the transaction commits to disk unless it is re-dirtied |
| 467 | * as part of this transaction. This prevents us from pulling |
| 468 | * the item from the AIL before we should. |
| 469 | */ |
| 470 | if (bip->bli_flags & XFS_BLI_STALE) |
| 471 | return; |
| 472 | |
| 473 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); |
| 474 | |
| 475 | /* |
| 476 | * Free up the log item descriptor tracking the released item. |
| 477 | */ |
| 478 | xfs_trans_del_item(&bip->bli_item); |
| 479 | |
| 480 | /* |
| 481 | * Clear the hold flag in the buf log item if it is set. |
| 482 | * We wouldn't want the next user of the buffer to |
| 483 | * get confused. |
| 484 | */ |
| 485 | if (bip->bli_flags & XFS_BLI_HOLD) { |
| 486 | bip->bli_flags &= ~XFS_BLI_HOLD; |
| 487 | } |
| 488 | |
| 489 | /* |
| 490 | * Drop our reference to the buf log item. |
| 491 | */ |
| 492 | atomic_dec(&bip->bli_refcount); |
| 493 | |
| 494 | /* |
| 495 | * If the buf item is not tracking data in the log, then |
| 496 | * we must free it before releasing the buffer back to the |
| 497 | * free pool. Before releasing the buffer to the free pool, |
| 498 | * clear the transaction pointer in b_fsprivate2 to dissolve |
| 499 | * its relation to this transaction. |
| 500 | */ |
| 501 | if (!xfs_buf_item_dirty(bip)) { |
| 502 | /*** |
| 503 | ASSERT(bp->b_pincount == 0); |
| 504 | ***/ |
| 505 | ASSERT(atomic_read(&bip->bli_refcount) == 0); |
| 506 | ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); |
| 507 | ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); |
| 508 | xfs_buf_item_relse(bp); |
| 509 | } |
| 510 | |
| 511 | bp->b_transp = NULL; |
| 512 | xfs_buf_relse(bp); |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * Mark the buffer as not needing to be unlocked when the buf item's |
| 517 | * iop_unlock() routine is called. The buffer must already be locked |
| 518 | * and associated with the given transaction. |
| 519 | */ |
| 520 | /* ARGSUSED */ |
| 521 | void |
| 522 | xfs_trans_bhold(xfs_trans_t *tp, |
| 523 | xfs_buf_t *bp) |
| 524 | { |
| 525 | xfs_buf_log_item_t *bip = bp->b_fspriv; |
| 526 | |
| 527 | ASSERT(bp->b_transp == tp); |
| 528 | ASSERT(bip != NULL); |
| 529 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); |
| 530 | ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); |
| 531 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 532 | |
| 533 | bip->bli_flags |= XFS_BLI_HOLD; |
| 534 | trace_xfs_trans_bhold(bip); |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * Cancel the previous buffer hold request made on this buffer |
| 539 | * for this transaction. |
| 540 | */ |
| 541 | void |
| 542 | xfs_trans_bhold_release(xfs_trans_t *tp, |
| 543 | xfs_buf_t *bp) |
| 544 | { |
| 545 | xfs_buf_log_item_t *bip = bp->b_fspriv; |
| 546 | |
| 547 | ASSERT(bp->b_transp == tp); |
| 548 | ASSERT(bip != NULL); |
| 549 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); |
| 550 | ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); |
| 551 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 552 | ASSERT(bip->bli_flags & XFS_BLI_HOLD); |
| 553 | |
| 554 | bip->bli_flags &= ~XFS_BLI_HOLD; |
| 555 | trace_xfs_trans_bhold_release(bip); |
| 556 | } |
| 557 | |
| 558 | /* |
| 559 | * This is called to mark bytes first through last inclusive of the given |
| 560 | * buffer as needing to be logged when the transaction is committed. |
| 561 | * The buffer must already be associated with the given transaction. |
| 562 | * |
| 563 | * First and last are numbers relative to the beginning of this buffer, |
| 564 | * so the first byte in the buffer is numbered 0 regardless of the |
| 565 | * value of b_blkno. |
| 566 | */ |
| 567 | void |
| 568 | xfs_trans_log_buf(xfs_trans_t *tp, |
| 569 | xfs_buf_t *bp, |
| 570 | uint first, |
| 571 | uint last) |
| 572 | { |
| 573 | xfs_buf_log_item_t *bip = bp->b_fspriv; |
| 574 | |
| 575 | ASSERT(bp->b_transp == tp); |
| 576 | ASSERT(bip != NULL); |
| 577 | ASSERT(first <= last && last < BBTOB(bp->b_length)); |
| 578 | ASSERT(bp->b_iodone == NULL || |
| 579 | bp->b_iodone == xfs_buf_iodone_callbacks); |
| 580 | |
| 581 | /* |
| 582 | * Mark the buffer as needing to be written out eventually, |
| 583 | * and set its iodone function to remove the buffer's buf log |
| 584 | * item from the AIL and free it when the buffer is flushed |
| 585 | * to disk. See xfs_buf_attach_iodone() for more details |
| 586 | * on li_cb and xfs_buf_iodone_callbacks(). |
| 587 | * If we end up aborting this transaction, we trap this buffer |
| 588 | * inside the b_bdstrat callback so that this won't get written to |
| 589 | * disk. |
| 590 | */ |
| 591 | XFS_BUF_DONE(bp); |
| 592 | |
| 593 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 594 | bp->b_iodone = xfs_buf_iodone_callbacks; |
| 595 | bip->bli_item.li_cb = xfs_buf_iodone; |
| 596 | |
| 597 | trace_xfs_trans_log_buf(bip); |
| 598 | |
| 599 | /* |
| 600 | * If we invalidated the buffer within this transaction, then |
| 601 | * cancel the invalidation now that we're dirtying the buffer |
| 602 | * again. There are no races with the code in xfs_buf_item_unpin(), |
| 603 | * because we have a reference to the buffer this entire time. |
| 604 | */ |
| 605 | if (bip->bli_flags & XFS_BLI_STALE) { |
| 606 | bip->bli_flags &= ~XFS_BLI_STALE; |
| 607 | ASSERT(XFS_BUF_ISSTALE(bp)); |
| 608 | XFS_BUF_UNSTALE(bp); |
| 609 | bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; |
| 610 | } |
| 611 | |
| 612 | tp->t_flags |= XFS_TRANS_DIRTY; |
| 613 | bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; |
| 614 | |
| 615 | /* |
| 616 | * If we have an ordered buffer we are not logging any dirty range but |
| 617 | * it still needs to be marked dirty and that it has been logged. |
| 618 | */ |
| 619 | bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; |
| 620 | if (!(bip->bli_flags & XFS_BLI_ORDERED)) |
| 621 | xfs_buf_item_log(bip, first, last); |
| 622 | } |
| 623 | |
| 624 | |
| 625 | /* |
| 626 | * Invalidate a buffer that is being used within a transaction. |
| 627 | * |
| 628 | * Typically this is because the blocks in the buffer are being freed, so we |
| 629 | * need to prevent it from being written out when we're done. Allowing it |
| 630 | * to be written again might overwrite data in the free blocks if they are |
| 631 | * reallocated to a file. |
| 632 | * |
| 633 | * We prevent the buffer from being written out by marking it stale. We can't |
| 634 | * get rid of the buf log item at this point because the buffer may still be |
| 635 | * pinned by another transaction. If that is the case, then we'll wait until |
| 636 | * the buffer is committed to disk for the last time (we can tell by the ref |
| 637 | * count) and free it in xfs_buf_item_unpin(). Until that happens we will |
| 638 | * keep the buffer locked so that the buffer and buf log item are not reused. |
| 639 | * |
| 640 | * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log |
| 641 | * the buf item. This will be used at recovery time to determine that copies |
| 642 | * of the buffer in the log before this should not be replayed. |
| 643 | * |
| 644 | * We mark the item descriptor and the transaction dirty so that we'll hold |
| 645 | * the buffer until after the commit. |
| 646 | * |
| 647 | * Since we're invalidating the buffer, we also clear the state about which |
| 648 | * parts of the buffer have been logged. We also clear the flag indicating |
| 649 | * that this is an inode buffer since the data in the buffer will no longer |
| 650 | * be valid. |
| 651 | * |
| 652 | * We set the stale bit in the buffer as well since we're getting rid of it. |
| 653 | */ |
| 654 | void |
| 655 | xfs_trans_binval( |
| 656 | xfs_trans_t *tp, |
| 657 | xfs_buf_t *bp) |
| 658 | { |
| 659 | xfs_buf_log_item_t *bip = bp->b_fspriv; |
| 660 | int i; |
| 661 | |
| 662 | ASSERT(bp->b_transp == tp); |
| 663 | ASSERT(bip != NULL); |
| 664 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 665 | |
| 666 | trace_xfs_trans_binval(bip); |
| 667 | |
| 668 | if (bip->bli_flags & XFS_BLI_STALE) { |
| 669 | /* |
| 670 | * If the buffer is already invalidated, then |
| 671 | * just return. |
| 672 | */ |
| 673 | ASSERT(XFS_BUF_ISSTALE(bp)); |
| 674 | ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); |
| 675 | ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); |
| 676 | ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); |
| 677 | ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); |
| 678 | ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); |
| 679 | ASSERT(tp->t_flags & XFS_TRANS_DIRTY); |
| 680 | return; |
| 681 | } |
| 682 | |
| 683 | xfs_buf_stale(bp); |
| 684 | |
| 685 | bip->bli_flags |= XFS_BLI_STALE; |
| 686 | bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); |
| 687 | bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; |
| 688 | bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; |
| 689 | bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; |
| 690 | for (i = 0; i < bip->bli_format_count; i++) { |
| 691 | memset(bip->bli_formats[i].blf_data_map, 0, |
| 692 | (bip->bli_formats[i].blf_map_size * sizeof(uint))); |
| 693 | } |
| 694 | bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; |
| 695 | tp->t_flags |= XFS_TRANS_DIRTY; |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * This call is used to indicate that the buffer contains on-disk inodes which |
| 700 | * must be handled specially during recovery. They require special handling |
| 701 | * because only the di_next_unlinked from the inodes in the buffer should be |
| 702 | * recovered. The rest of the data in the buffer is logged via the inodes |
| 703 | * themselves. |
| 704 | * |
| 705 | * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be |
| 706 | * transferred to the buffer's log format structure so that we'll know what to |
| 707 | * do at recovery time. |
| 708 | */ |
| 709 | void |
| 710 | xfs_trans_inode_buf( |
| 711 | xfs_trans_t *tp, |
| 712 | xfs_buf_t *bp) |
| 713 | { |
| 714 | xfs_buf_log_item_t *bip = bp->b_fspriv; |
| 715 | |
| 716 | ASSERT(bp->b_transp == tp); |
| 717 | ASSERT(bip != NULL); |
| 718 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 719 | |
| 720 | bip->bli_flags |= XFS_BLI_INODE_BUF; |
| 721 | xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); |
| 722 | } |
| 723 | |
| 724 | /* |
| 725 | * This call is used to indicate that the buffer is going to |
| 726 | * be staled and was an inode buffer. This means it gets |
| 727 | * special processing during unpin - where any inodes |
| 728 | * associated with the buffer should be removed from ail. |
| 729 | * There is also special processing during recovery, |
| 730 | * any replay of the inodes in the buffer needs to be |
| 731 | * prevented as the buffer may have been reused. |
| 732 | */ |
| 733 | void |
| 734 | xfs_trans_stale_inode_buf( |
| 735 | xfs_trans_t *tp, |
| 736 | xfs_buf_t *bp) |
| 737 | { |
| 738 | xfs_buf_log_item_t *bip = bp->b_fspriv; |
| 739 | |
| 740 | ASSERT(bp->b_transp == tp); |
| 741 | ASSERT(bip != NULL); |
| 742 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 743 | |
| 744 | bip->bli_flags |= XFS_BLI_STALE_INODE; |
| 745 | bip->bli_item.li_cb = xfs_buf_iodone; |
| 746 | xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); |
| 747 | } |
| 748 | |
| 749 | /* |
| 750 | * Mark the buffer as being one which contains newly allocated |
| 751 | * inodes. We need to make sure that even if this buffer is |
| 752 | * relogged as an 'inode buf' we still recover all of the inode |
| 753 | * images in the face of a crash. This works in coordination with |
| 754 | * xfs_buf_item_committed() to ensure that the buffer remains in the |
| 755 | * AIL at its original location even after it has been relogged. |
| 756 | */ |
| 757 | /* ARGSUSED */ |
| 758 | void |
| 759 | xfs_trans_inode_alloc_buf( |
| 760 | xfs_trans_t *tp, |
| 761 | xfs_buf_t *bp) |
| 762 | { |
| 763 | xfs_buf_log_item_t *bip = bp->b_fspriv; |
| 764 | |
| 765 | ASSERT(bp->b_transp == tp); |
| 766 | ASSERT(bip != NULL); |
| 767 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 768 | |
| 769 | bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; |
| 770 | xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * Mark the buffer as ordered for this transaction. This means |
| 775 | * that the contents of the buffer are not recorded in the transaction |
| 776 | * but it is tracked in the AIL as though it was. This allows us |
| 777 | * to record logical changes in transactions rather than the physical |
| 778 | * changes we make to the buffer without changing writeback ordering |
| 779 | * constraints of metadata buffers. |
| 780 | */ |
| 781 | void |
| 782 | xfs_trans_ordered_buf( |
| 783 | struct xfs_trans *tp, |
| 784 | struct xfs_buf *bp) |
| 785 | { |
| 786 | struct xfs_buf_log_item *bip = bp->b_fspriv; |
| 787 | |
| 788 | ASSERT(bp->b_transp == tp); |
| 789 | ASSERT(bip != NULL); |
| 790 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 791 | |
| 792 | bip->bli_flags |= XFS_BLI_ORDERED; |
| 793 | trace_xfs_buf_item_ordered(bip); |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Set the type of the buffer for log recovery so that it can correctly identify |
| 798 | * and hence attach the correct buffer ops to the buffer after replay. |
| 799 | */ |
| 800 | void |
| 801 | xfs_trans_buf_set_type( |
| 802 | struct xfs_trans *tp, |
| 803 | struct xfs_buf *bp, |
| 804 | enum xfs_blft type) |
| 805 | { |
| 806 | struct xfs_buf_log_item *bip = bp->b_fspriv; |
| 807 | |
| 808 | if (!tp) |
| 809 | return; |
| 810 | |
| 811 | ASSERT(bp->b_transp == tp); |
| 812 | ASSERT(bip != NULL); |
| 813 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
| 814 | |
| 815 | xfs_blft_to_flags(&bip->__bli_format, type); |
| 816 | } |
| 817 | |
| 818 | void |
| 819 | xfs_trans_buf_copy_type( |
| 820 | struct xfs_buf *dst_bp, |
| 821 | struct xfs_buf *src_bp) |
| 822 | { |
| 823 | struct xfs_buf_log_item *sbip = src_bp->b_fspriv; |
| 824 | struct xfs_buf_log_item *dbip = dst_bp->b_fspriv; |
| 825 | enum xfs_blft type; |
| 826 | |
| 827 | type = xfs_blft_from_flags(&sbip->__bli_format); |
| 828 | xfs_blft_to_flags(&dbip->__bli_format, type); |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of |
| 833 | * dquots. However, unlike in inode buffer recovery, dquot buffers get |
| 834 | * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). |
| 835 | * The only thing that makes dquot buffers different from regular |
| 836 | * buffers is that we must not replay dquot bufs when recovering |
| 837 | * if a _corresponding_ quotaoff has happened. We also have to distinguish |
| 838 | * between usr dquot bufs and grp dquot bufs, because usr and grp quotas |
| 839 | * can be turned off independently. |
| 840 | */ |
| 841 | /* ARGSUSED */ |
| 842 | void |
| 843 | xfs_trans_dquot_buf( |
| 844 | xfs_trans_t *tp, |
| 845 | xfs_buf_t *bp, |
| 846 | uint type) |
| 847 | { |
| 848 | struct xfs_buf_log_item *bip = bp->b_fspriv; |
| 849 | |
| 850 | ASSERT(type == XFS_BLF_UDQUOT_BUF || |
| 851 | type == XFS_BLF_PDQUOT_BUF || |
| 852 | type == XFS_BLF_GDQUOT_BUF); |
| 853 | |
| 854 | bip->__bli_format.blf_flags |= type; |
| 855 | |
| 856 | switch (type) { |
| 857 | case XFS_BLF_UDQUOT_BUF: |
| 858 | type = XFS_BLFT_UDQUOT_BUF; |
| 859 | break; |
| 860 | case XFS_BLF_PDQUOT_BUF: |
| 861 | type = XFS_BLFT_PDQUOT_BUF; |
| 862 | break; |
| 863 | case XFS_BLF_GDQUOT_BUF: |
| 864 | type = XFS_BLFT_GDQUOT_BUF; |
| 865 | break; |
| 866 | default: |
| 867 | type = XFS_BLFT_UNKNOWN_BUF; |
| 868 | break; |
| 869 | } |
| 870 | |
| 871 | xfs_trans_buf_set_type(tp, bp, type); |
| 872 | } |