Compute 'name' for relocs against both local and global symbols.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
... / ...
CommitLineData
1/* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30#include "as.h"
31#include "safe-ctype.h"
32#include "subsegs.h"
33#include "dwarf2dbg.h"
34#include "dw2gencfi.h"
35#include "opcode/i386.h"
36#include "elf/x86-64.h"
37
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
42#ifndef INFER_ADDR_PREFIX
43#define INFER_ADDR_PREFIX 1
44#endif
45
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
56#endif
57
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
75static int add_prefix PARAMS ((unsigned int));
76static void set_code_flag PARAMS ((int));
77static void set_16bit_gcc_code_flag PARAMS ((int));
78static void set_intel_syntax PARAMS ((int));
79static void set_cpu_arch PARAMS ((int));
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
83static char *output_invalid PARAMS ((int c));
84static int i386_operand PARAMS ((char *operand_string));
85static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88static char *parse_insn PARAMS ((char *, char *));
89static char *parse_operands PARAMS ((char *, const char *));
90static void swap_operands PARAMS ((void));
91static void optimize_imm PARAMS ((void));
92static void optimize_disp PARAMS ((void));
93static int match_template PARAMS ((void));
94static int check_string PARAMS ((void));
95static int process_suffix PARAMS ((void));
96static int check_byte_reg PARAMS ((void));
97static int check_long_reg PARAMS ((void));
98static int check_qword_reg PARAMS ((void));
99static int check_word_reg PARAMS ((void));
100static int finalize_imm PARAMS ((void));
101static int process_operands PARAMS ((void));
102static const seg_entry *build_modrm_byte PARAMS ((void));
103static void output_insn PARAMS ((void));
104static void output_branch PARAMS ((void));
105static void output_jump PARAMS ((void));
106static void output_interseg_jump PARAMS ((void));
107static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
111#ifndef I386COFF
112static void s_bss PARAMS ((int));
113#endif
114
115static const char *default_arch = DEFAULT_ARCH;
116
117/* 'md_assemble ()' gathers together information and puts it into a
118 i386_insn. */
119
120union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
127struct _i386_insn
128 {
129 /* TM holds the template for the insn were currently assembling. */
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
136 /* OPERANDS gives the number of given operands. */
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
141 operands. */
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
145 use OP[i] for the corresponding operand. */
146 unsigned int types[MAX_OPERANDS];
147
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
151
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154#define Operand_PCrel 1
155
156 /* Relocation type for operand */
157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
158
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
166 explicit segment overrides are given. */
167 const seg_entry *seg[2];
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
178 rex_byte rex;
179 sib_byte sib;
180 };
181
182typedef struct _i386_insn i386_insn;
183
184/* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186const char extra_symbol_chars[] = "*%-(["
187#ifdef LEX_AT
188 "@"
189#endif
190#ifdef LEX_QM
191 "?"
192#endif
193 ;
194
195#if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
198 && !defined (TE_NETWARE) \
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
201/* This array holds the chars that always start a comment. If the
202 pre-processor is disabled, these aren't very useful. */
203const char comment_chars[] = "#/";
204#define PREFIX_SEPARATOR '\\'
205
206/* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
210 first line of the input file. This is because the compiler outputs
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
213 '/' isn't otherwise defined. */
214const char line_comment_chars[] = "#";
215
216#else
217/* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219const char comment_chars[] = "#";
220#define PREFIX_SEPARATOR '/'
221
222const char line_comment_chars[] = "/#";
223#endif
224
225const char line_separator_chars[] = ";";
226
227/* Chars that can be used to separate mant from exp in floating point
228 nums. */
229const char EXP_CHARS[] = "eE";
230
231/* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
234const char FLT_CHARS[] = "fFdDxX";
235
236/* Tables for lexical analysis. */
237static char mnemonic_chars[256];
238static char register_chars[256];
239static char operand_chars[256];
240static char identifier_chars[256];
241static char digit_chars[256];
242
243/* Lexical macros. */
244#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245#define is_operand_char(x) (operand_chars[(unsigned char) x])
246#define is_register_char(x) (register_chars[(unsigned char) x])
247#define is_space_char(x) ((x) == ' ')
248#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249#define is_digit_char(x) (digit_chars[(unsigned char) x])
250
251/* All non-digit non-letter characters that may occur in an operand. */
252static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254/* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
257 assembler instruction). */
258static char save_stack[32];
259static char *save_stack_p;
260#define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262#define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
265/* The instruction we're assembling. */
266static i386_insn i;
267
268/* Possible templates for current insn. */
269static const templates *current_templates;
270
271/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
272static expressionS disp_expressions[2], im_expressions[2];
273
274/* Current operand we are working on. */
275static int this_operand;
276
277/* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
284#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
285
286static enum flag_code flag_code;
287static int use_rela_relocations = 0;
288
289/* The names used to print error messages. */
290static const char *flag_code_names[] =
291 {
292 "32",
293 "16",
294 "64"
295 };
296
297/* 1 for intel syntax,
298 0 if att syntax. */
299static int intel_syntax = 0;
300
301/* 1 if register prefix % not required. */
302static int allow_naked_reg = 0;
303
304/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307static char stackop_size = '\0';
308
309/* Non-zero to optimize code alignment. */
310int optimize_align_code = 1;
311
312/* Non-zero to quieten some warnings. */
313static int quiet_warnings = 0;
314
315/* CPU name. */
316static const char *cpu_arch_name = NULL;
317
318/* CPU feature flags. */
319static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
320
321/* If set, conditional jumps are not automatically promoted to handle
322 larger than a byte offset. */
323static unsigned int no_cond_jump_promotion = 0;
324
325/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
326symbolS *GOT_symbol;
327
328/* The dwarf2 return column, adjusted for 32 or 64 bit. */
329unsigned int x86_dwarf2_return_column;
330
331/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
332int x86_cie_data_alignment;
333
334/* Interface to relax_segment.
335 There are 3 major relax states for 386 jump insns because the
336 different types of jumps add different sizes to frags when we're
337 figuring out what sort of jump to choose to reach a given label. */
338
339/* Types. */
340#define UNCOND_JUMP 0
341#define COND_JUMP 1
342#define COND_JUMP86 2
343
344/* Sizes. */
345#define CODE16 1
346#define SMALL 0
347#define SMALL16 (SMALL | CODE16)
348#define BIG 2
349#define BIG16 (BIG | CODE16)
350
351#ifndef INLINE
352#ifdef __GNUC__
353#define INLINE __inline__
354#else
355#define INLINE
356#endif
357#endif
358
359#define ENCODE_RELAX_STATE(type, size) \
360 ((relax_substateT) (((type) << 2) | (size)))
361#define TYPE_FROM_RELAX_STATE(s) \
362 ((s) >> 2)
363#define DISP_SIZE_FROM_RELAX_STATE(s) \
364 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
365
366/* This table is used by relax_frag to promote short jumps to long
367 ones where necessary. SMALL (short) jumps may be promoted to BIG
368 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
369 don't allow a short jump in a 32 bit code segment to be promoted to
370 a 16 bit offset jump because it's slower (requires data size
371 prefix), and doesn't work, unless the destination is in the bottom
372 64k of the code segment (The top 16 bits of eip are zeroed). */
373
374const relax_typeS md_relax_table[] =
375{
376 /* The fields are:
377 1) most positive reach of this state,
378 2) most negative reach of this state,
379 3) how many bytes this mode will have in the variable part of the frag
380 4) which index into the table to try if we can't fit into this one. */
381
382 /* UNCOND_JUMP states. */
383 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
385 /* dword jmp adds 4 bytes to frag:
386 0 extra opcode bytes, 4 displacement bytes. */
387 {0, 0, 4, 0},
388 /* word jmp adds 2 byte2 to frag:
389 0 extra opcode bytes, 2 displacement bytes. */
390 {0, 0, 2, 0},
391
392 /* COND_JUMP states. */
393 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
395 /* dword conditionals adds 5 bytes to frag:
396 1 extra opcode byte, 4 displacement bytes. */
397 {0, 0, 5, 0},
398 /* word conditionals add 3 bytes to frag:
399 1 extra opcode byte, 2 displacement bytes. */
400 {0, 0, 3, 0},
401
402 /* COND_JUMP86 states. */
403 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
405 /* dword conditionals adds 5 bytes to frag:
406 1 extra opcode byte, 4 displacement bytes. */
407 {0, 0, 5, 0},
408 /* word conditionals add 4 bytes to frag:
409 1 displacement byte and a 3 byte long branch insn. */
410 {0, 0, 4, 0}
411};
412
413static const arch_entry cpu_arch[] = {
414 {"i8086", Cpu086 },
415 {"i186", Cpu086|Cpu186 },
416 {"i286", Cpu086|Cpu186|Cpu286 },
417 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
418 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
419 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
420 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
421 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
422 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
423 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
424 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
425 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
426 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
427 {NULL, 0 }
428};
429
430const pseudo_typeS md_pseudo_table[] =
431{
432#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
433 {"align", s_align_bytes, 0},
434#else
435 {"align", s_align_ptwo, 0},
436#endif
437 {"arch", set_cpu_arch, 0},
438#ifndef I386COFF
439 {"bss", s_bss, 0},
440#endif
441 {"ffloat", float_cons, 'f'},
442 {"dfloat", float_cons, 'd'},
443 {"tfloat", float_cons, 'x'},
444 {"value", cons, 2},
445 {"noopt", s_ignore, 0},
446 {"optim", s_ignore, 0},
447 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
448 {"code16", set_code_flag, CODE_16BIT},
449 {"code32", set_code_flag, CODE_32BIT},
450 {"code64", set_code_flag, CODE_64BIT},
451 {"intel_syntax", set_intel_syntax, 1},
452 {"att_syntax", set_intel_syntax, 0},
453 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
454 {"loc", dwarf2_directive_loc, 0},
455#ifdef TE_PE
456 {"secrel32", pe_directive_secrel, 0},
457#endif
458 {0, 0, 0}
459};
460
461/* For interface with expression (). */
462extern char *input_line_pointer;
463
464/* Hash table for instruction mnemonic lookup. */
465static struct hash_control *op_hash;
466
467/* Hash table for register lookup. */
468static struct hash_control *reg_hash;
469\f
470void
471i386_align_code (fragP, count)
472 fragS *fragP;
473 int count;
474{
475 /* Various efficient no-op patterns for aligning code labels.
476 Note: Don't try to assemble the instructions in the comments.
477 0L and 0w are not legal. */
478 static const char f32_1[] =
479 {0x90}; /* nop */
480 static const char f32_2[] =
481 {0x89,0xf6}; /* movl %esi,%esi */
482 static const char f32_3[] =
483 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
484 static const char f32_4[] =
485 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
486 static const char f32_5[] =
487 {0x90, /* nop */
488 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
489 static const char f32_6[] =
490 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
491 static const char f32_7[] =
492 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
493 static const char f32_8[] =
494 {0x90, /* nop */
495 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
496 static const char f32_9[] =
497 {0x89,0xf6, /* movl %esi,%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_10[] =
500 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
501 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
502 static const char f32_11[] =
503 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_12[] =
506 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
507 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
508 static const char f32_13[] =
509 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
510 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
511 static const char f32_14[] =
512 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
513 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
514 static const char f32_15[] =
515 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
516 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
517 static const char f16_3[] =
518 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
519 static const char f16_4[] =
520 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
521 static const char f16_5[] =
522 {0x90, /* nop */
523 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
524 static const char f16_6[] =
525 {0x89,0xf6, /* mov %si,%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char f16_7[] =
528 {0x8d,0x74,0x00, /* lea 0(%si),%si */
529 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
530 static const char f16_8[] =
531 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
532 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
533 static const char *const f32_patt[] = {
534 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
535 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
536 };
537 static const char *const f16_patt[] = {
538 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
539 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
540 };
541
542 if (count <= 0 || count > 15)
543 return;
544
545 /* The recommended way to pad 64bit code is to use NOPs preceded by
546 maximally four 0x66 prefixes. Balance the size of nops. */
547 if (flag_code == CODE_64BIT)
548 {
549 int i;
550 int nnops = (count + 3) / 4;
551 int len = count / nnops;
552 int remains = count - nnops * len;
553 int pos = 0;
554
555 for (i = 0; i < remains; i++)
556 {
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
558 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
559 pos += len + 1;
560 }
561 for (; i < nnops; i++)
562 {
563 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
564 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
565 pos += len;
566 }
567 }
568 else
569 if (flag_code == CODE_16BIT)
570 {
571 memcpy (fragP->fr_literal + fragP->fr_fix,
572 f16_patt[count - 1], count);
573 if (count > 8)
574 /* Adjust jump offset. */
575 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
576 }
577 else
578 memcpy (fragP->fr_literal + fragP->fr_fix,
579 f32_patt[count - 1], count);
580 fragP->fr_var = count;
581}
582
583static INLINE unsigned int
584mode_from_disp_size (t)
585 unsigned int t;
586{
587 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
588}
589
590static INLINE int
591fits_in_signed_byte (num)
592 offsetT num;
593{
594 return (num >= -128) && (num <= 127);
595}
596
597static INLINE int
598fits_in_unsigned_byte (num)
599 offsetT num;
600{
601 return (num & 0xff) == num;
602}
603
604static INLINE int
605fits_in_unsigned_word (num)
606 offsetT num;
607{
608 return (num & 0xffff) == num;
609}
610
611static INLINE int
612fits_in_signed_word (num)
613 offsetT num;
614{
615 return (-32768 <= num) && (num <= 32767);
616}
617static INLINE int
618fits_in_signed_long (num)
619 offsetT num ATTRIBUTE_UNUSED;
620{
621#ifndef BFD64
622 return 1;
623#else
624 return (!(((offsetT) -1 << 31) & num)
625 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
626#endif
627} /* fits_in_signed_long() */
628static INLINE int
629fits_in_unsigned_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631{
632#ifndef BFD64
633 return 1;
634#else
635 return (num & (((offsetT) 2 << 31) - 1)) == num;
636#endif
637} /* fits_in_unsigned_long() */
638
639static int
640smallest_imm_type (num)
641 offsetT num;
642{
643 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
644 {
645 /* This code is disabled on the 486 because all the Imm1 forms
646 in the opcode table are slower on the i486. They're the
647 versions with the implicitly specified single-position
648 displacement, which has another syntax if you really want to
649 use that form. */
650 if (num == 1)
651 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
652 }
653 return (fits_in_signed_byte (num)
654 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
655 : fits_in_unsigned_byte (num)
656 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
657 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
658 ? (Imm16 | Imm32 | Imm32S | Imm64)
659 : fits_in_signed_long (num)
660 ? (Imm32 | Imm32S | Imm64)
661 : fits_in_unsigned_long (num)
662 ? (Imm32 | Imm64)
663 : Imm64);
664}
665
666static offsetT
667offset_in_range (val, size)
668 offsetT val;
669 int size;
670{
671 addressT mask;
672
673 switch (size)
674 {
675 case 1: mask = ((addressT) 1 << 8) - 1; break;
676 case 2: mask = ((addressT) 1 << 16) - 1; break;
677 case 4: mask = ((addressT) 2 << 31) - 1; break;
678#ifdef BFD64
679 case 8: mask = ((addressT) 2 << 63) - 1; break;
680#endif
681 default: abort ();
682 }
683
684 /* If BFD64, sign extend val. */
685 if (!use_rela_relocations)
686 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
687 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
688
689 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
690 {
691 char buf1[40], buf2[40];
692
693 sprint_value (buf1, val);
694 sprint_value (buf2, val & mask);
695 as_warn (_("%s shortened to %s"), buf1, buf2);
696 }
697 return val & mask;
698}
699
700/* Returns 0 if attempting to add a prefix where one from the same
701 class already exists, 1 if non rep/repne added, 2 if rep/repne
702 added. */
703static int
704add_prefix (prefix)
705 unsigned int prefix;
706{
707 int ret = 1;
708 int q;
709
710 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
711 && flag_code == CODE_64BIT)
712 q = REX_PREFIX;
713 else
714 switch (prefix)
715 {
716 default:
717 abort ();
718
719 case CS_PREFIX_OPCODE:
720 case DS_PREFIX_OPCODE:
721 case ES_PREFIX_OPCODE:
722 case FS_PREFIX_OPCODE:
723 case GS_PREFIX_OPCODE:
724 case SS_PREFIX_OPCODE:
725 q = SEG_PREFIX;
726 break;
727
728 case REPNE_PREFIX_OPCODE:
729 case REPE_PREFIX_OPCODE:
730 ret = 2;
731 /* fall thru */
732 case LOCK_PREFIX_OPCODE:
733 q = LOCKREP_PREFIX;
734 break;
735
736 case FWAIT_OPCODE:
737 q = WAIT_PREFIX;
738 break;
739
740 case ADDR_PREFIX_OPCODE:
741 q = ADDR_PREFIX;
742 break;
743
744 case DATA_PREFIX_OPCODE:
745 q = DATA_PREFIX;
746 break;
747 }
748
749 if (i.prefix[q] != 0)
750 {
751 as_bad (_("same type of prefix used twice"));
752 return 0;
753 }
754
755 i.prefixes += 1;
756 i.prefix[q] = prefix;
757 return ret;
758}
759
760static void
761set_code_flag (value)
762 int value;
763{
764 flag_code = value;
765 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
766 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
767 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
768 {
769 as_bad (_("64bit mode not supported on this CPU."));
770 }
771 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
772 {
773 as_bad (_("32bit mode not supported on this CPU."));
774 }
775 stackop_size = '\0';
776}
777
778static void
779set_16bit_gcc_code_flag (new_code_flag)
780 int new_code_flag;
781{
782 flag_code = new_code_flag;
783 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
784 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
785 stackop_size = 'l';
786}
787
788static void
789set_intel_syntax (syntax_flag)
790 int syntax_flag;
791{
792 /* Find out if register prefixing is specified. */
793 int ask_naked_reg = 0;
794
795 SKIP_WHITESPACE ();
796 if (!is_end_of_line[(unsigned char) *input_line_pointer])
797 {
798 char *string = input_line_pointer;
799 int e = get_symbol_end ();
800
801 if (strcmp (string, "prefix") == 0)
802 ask_naked_reg = 1;
803 else if (strcmp (string, "noprefix") == 0)
804 ask_naked_reg = -1;
805 else
806 as_bad (_("bad argument to syntax directive."));
807 *input_line_pointer = e;
808 }
809 demand_empty_rest_of_line ();
810
811 intel_syntax = syntax_flag;
812
813 if (ask_naked_reg == 0)
814 allow_naked_reg = (intel_syntax
815 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
816 else
817 allow_naked_reg = (ask_naked_reg < 0);
818}
819
820static void
821set_cpu_arch (dummy)
822 int dummy ATTRIBUTE_UNUSED;
823{
824 SKIP_WHITESPACE ();
825
826 if (!is_end_of_line[(unsigned char) *input_line_pointer])
827 {
828 char *string = input_line_pointer;
829 int e = get_symbol_end ();
830 int i;
831
832 for (i = 0; cpu_arch[i].name; i++)
833 {
834 if (strcmp (string, cpu_arch[i].name) == 0)
835 {
836 cpu_arch_name = cpu_arch[i].name;
837 cpu_arch_flags = (cpu_arch[i].flags
838 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
839 break;
840 }
841 }
842 if (!cpu_arch[i].name)
843 as_bad (_("no such architecture: `%s'"), string);
844
845 *input_line_pointer = e;
846 }
847 else
848 as_bad (_("missing cpu architecture"));
849
850 no_cond_jump_promotion = 0;
851 if (*input_line_pointer == ','
852 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
853 {
854 char *string = ++input_line_pointer;
855 int e = get_symbol_end ();
856
857 if (strcmp (string, "nojumps") == 0)
858 no_cond_jump_promotion = 1;
859 else if (strcmp (string, "jumps") == 0)
860 ;
861 else
862 as_bad (_("no such architecture modifier: `%s'"), string);
863
864 *input_line_pointer = e;
865 }
866
867 demand_empty_rest_of_line ();
868}
869
870unsigned long
871i386_mach ()
872{
873 if (!strcmp (default_arch, "x86_64"))
874 return bfd_mach_x86_64;
875 else if (!strcmp (default_arch, "i386"))
876 return bfd_mach_i386_i386;
877 else
878 as_fatal (_("Unknown architecture"));
879}
880\f
881void
882md_begin ()
883{
884 const char *hash_err;
885
886 /* Initialize op_hash hash table. */
887 op_hash = hash_new ();
888
889 {
890 const template *optab;
891 templates *core_optab;
892
893 /* Setup for loop. */
894 optab = i386_optab;
895 core_optab = (templates *) xmalloc (sizeof (templates));
896 core_optab->start = optab;
897
898 while (1)
899 {
900 ++optab;
901 if (optab->name == NULL
902 || strcmp (optab->name, (optab - 1)->name) != 0)
903 {
904 /* different name --> ship out current template list;
905 add to hash table; & begin anew. */
906 core_optab->end = optab;
907 hash_err = hash_insert (op_hash,
908 (optab - 1)->name,
909 (PTR) core_optab);
910 if (hash_err)
911 {
912 as_fatal (_("Internal Error: Can't hash %s: %s"),
913 (optab - 1)->name,
914 hash_err);
915 }
916 if (optab->name == NULL)
917 break;
918 core_optab = (templates *) xmalloc (sizeof (templates));
919 core_optab->start = optab;
920 }
921 }
922 }
923
924 /* Initialize reg_hash hash table. */
925 reg_hash = hash_new ();
926 {
927 const reg_entry *regtab;
928
929 for (regtab = i386_regtab;
930 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
931 regtab++)
932 {
933 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
934 if (hash_err)
935 as_fatal (_("Internal Error: Can't hash %s: %s"),
936 regtab->reg_name,
937 hash_err);
938 }
939 }
940
941 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
942 {
943 int c;
944 char *p;
945
946 for (c = 0; c < 256; c++)
947 {
948 if (ISDIGIT (c))
949 {
950 digit_chars[c] = c;
951 mnemonic_chars[c] = c;
952 register_chars[c] = c;
953 operand_chars[c] = c;
954 }
955 else if (ISLOWER (c))
956 {
957 mnemonic_chars[c] = c;
958 register_chars[c] = c;
959 operand_chars[c] = c;
960 }
961 else if (ISUPPER (c))
962 {
963 mnemonic_chars[c] = TOLOWER (c);
964 register_chars[c] = mnemonic_chars[c];
965 operand_chars[c] = c;
966 }
967
968 if (ISALPHA (c) || ISDIGIT (c))
969 identifier_chars[c] = c;
970 else if (c >= 128)
971 {
972 identifier_chars[c] = c;
973 operand_chars[c] = c;
974 }
975 }
976
977#ifdef LEX_AT
978 identifier_chars['@'] = '@';
979#endif
980#ifdef LEX_QM
981 identifier_chars['?'] = '?';
982 operand_chars['?'] = '?';
983#endif
984 digit_chars['-'] = '-';
985 identifier_chars['_'] = '_';
986 identifier_chars['.'] = '.';
987
988 for (p = operand_special_chars; *p != '\0'; p++)
989 operand_chars[(unsigned char) *p] = *p;
990 }
991
992#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
993 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
994 {
995 record_alignment (text_section, 2);
996 record_alignment (data_section, 2);
997 record_alignment (bss_section, 2);
998 }
999#endif
1000
1001 if (flag_code == CODE_64BIT)
1002 {
1003 x86_dwarf2_return_column = 16;
1004 x86_cie_data_alignment = -8;
1005 }
1006 else
1007 {
1008 x86_dwarf2_return_column = 8;
1009 x86_cie_data_alignment = -4;
1010 }
1011}
1012
1013void
1014i386_print_statistics (file)
1015 FILE *file;
1016{
1017 hash_print_statistics (file, "i386 opcode", op_hash);
1018 hash_print_statistics (file, "i386 register", reg_hash);
1019}
1020\f
1021#ifdef DEBUG386
1022
1023/* Debugging routines for md_assemble. */
1024static void pi PARAMS ((char *, i386_insn *));
1025static void pte PARAMS ((template *));
1026static void pt PARAMS ((unsigned int));
1027static void pe PARAMS ((expressionS *));
1028static void ps PARAMS ((symbolS *));
1029
1030static void
1031pi (line, x)
1032 char *line;
1033 i386_insn *x;
1034{
1035 unsigned int i;
1036
1037 fprintf (stdout, "%s: template ", line);
1038 pte (&x->tm);
1039 fprintf (stdout, " address: base %s index %s scale %x\n",
1040 x->base_reg ? x->base_reg->reg_name : "none",
1041 x->index_reg ? x->index_reg->reg_name : "none",
1042 x->log2_scale_factor);
1043 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1044 x->rm.mode, x->rm.reg, x->rm.regmem);
1045 fprintf (stdout, " sib: base %x index %x scale %x\n",
1046 x->sib.base, x->sib.index, x->sib.scale);
1047 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1048 (x->rex & REX_MODE64) != 0,
1049 (x->rex & REX_EXTX) != 0,
1050 (x->rex & REX_EXTY) != 0,
1051 (x->rex & REX_EXTZ) != 0);
1052 for (i = 0; i < x->operands; i++)
1053 {
1054 fprintf (stdout, " #%d: ", i + 1);
1055 pt (x->types[i]);
1056 fprintf (stdout, "\n");
1057 if (x->types[i]
1058 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1059 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1060 if (x->types[i] & Imm)
1061 pe (x->op[i].imms);
1062 if (x->types[i] & Disp)
1063 pe (x->op[i].disps);
1064 }
1065}
1066
1067static void
1068pte (t)
1069 template *t;
1070{
1071 unsigned int i;
1072 fprintf (stdout, " %d operands ", t->operands);
1073 fprintf (stdout, "opcode %x ", t->base_opcode);
1074 if (t->extension_opcode != None)
1075 fprintf (stdout, "ext %x ", t->extension_opcode);
1076 if (t->opcode_modifier & D)
1077 fprintf (stdout, "D");
1078 if (t->opcode_modifier & W)
1079 fprintf (stdout, "W");
1080 fprintf (stdout, "\n");
1081 for (i = 0; i < t->operands; i++)
1082 {
1083 fprintf (stdout, " #%d type ", i + 1);
1084 pt (t->operand_types[i]);
1085 fprintf (stdout, "\n");
1086 }
1087}
1088
1089static void
1090pe (e)
1091 expressionS *e;
1092{
1093 fprintf (stdout, " operation %d\n", e->X_op);
1094 fprintf (stdout, " add_number %ld (%lx)\n",
1095 (long) e->X_add_number, (long) e->X_add_number);
1096 if (e->X_add_symbol)
1097 {
1098 fprintf (stdout, " add_symbol ");
1099 ps (e->X_add_symbol);
1100 fprintf (stdout, "\n");
1101 }
1102 if (e->X_op_symbol)
1103 {
1104 fprintf (stdout, " op_symbol ");
1105 ps (e->X_op_symbol);
1106 fprintf (stdout, "\n");
1107 }
1108}
1109
1110static void
1111ps (s)
1112 symbolS *s;
1113{
1114 fprintf (stdout, "%s type %s%s",
1115 S_GET_NAME (s),
1116 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1117 segment_name (S_GET_SEGMENT (s)));
1118}
1119
1120struct type_name
1121 {
1122 unsigned int mask;
1123 char *tname;
1124 }
1125
1126static const type_names[] =
1127{
1128 { Reg8, "r8" },
1129 { Reg16, "r16" },
1130 { Reg32, "r32" },
1131 { Reg64, "r64" },
1132 { Imm8, "i8" },
1133 { Imm8S, "i8s" },
1134 { Imm16, "i16" },
1135 { Imm32, "i32" },
1136 { Imm32S, "i32s" },
1137 { Imm64, "i64" },
1138 { Imm1, "i1" },
1139 { BaseIndex, "BaseIndex" },
1140 { Disp8, "d8" },
1141 { Disp16, "d16" },
1142 { Disp32, "d32" },
1143 { Disp32S, "d32s" },
1144 { Disp64, "d64" },
1145 { InOutPortReg, "InOutPortReg" },
1146 { ShiftCount, "ShiftCount" },
1147 { Control, "control reg" },
1148 { Test, "test reg" },
1149 { Debug, "debug reg" },
1150 { FloatReg, "FReg" },
1151 { FloatAcc, "FAcc" },
1152 { SReg2, "SReg2" },
1153 { SReg3, "SReg3" },
1154 { Acc, "Acc" },
1155 { JumpAbsolute, "Jump Absolute" },
1156 { RegMMX, "rMMX" },
1157 { RegXMM, "rXMM" },
1158 { EsSeg, "es" },
1159 { 0, "" }
1160};
1161
1162static void
1163pt (t)
1164 unsigned int t;
1165{
1166 const struct type_name *ty;
1167
1168 for (ty = type_names; ty->mask; ty++)
1169 if (t & ty->mask)
1170 fprintf (stdout, "%s, ", ty->tname);
1171 fflush (stdout);
1172}
1173
1174#endif /* DEBUG386 */
1175\f
1176static bfd_reloc_code_real_type reloc
1177 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1178
1179static bfd_reloc_code_real_type
1180reloc (size, pcrel, sign, other)
1181 int size;
1182 int pcrel;
1183 int sign;
1184 bfd_reloc_code_real_type other;
1185{
1186 if (other != NO_RELOC)
1187 return other;
1188
1189 if (pcrel)
1190 {
1191 if (!sign)
1192 as_bad (_("There are no unsigned pc-relative relocations"));
1193 switch (size)
1194 {
1195 case 1: return BFD_RELOC_8_PCREL;
1196 case 2: return BFD_RELOC_16_PCREL;
1197 case 4: return BFD_RELOC_32_PCREL;
1198 }
1199 as_bad (_("can not do %d byte pc-relative relocation"), size);
1200 }
1201 else
1202 {
1203 if (sign)
1204 switch (size)
1205 {
1206 case 4: return BFD_RELOC_X86_64_32S;
1207 }
1208 else
1209 switch (size)
1210 {
1211 case 1: return BFD_RELOC_8;
1212 case 2: return BFD_RELOC_16;
1213 case 4: return BFD_RELOC_32;
1214 case 8: return BFD_RELOC_64;
1215 }
1216 as_bad (_("can not do %s %d byte relocation"),
1217 sign ? "signed" : "unsigned", size);
1218 }
1219
1220 abort ();
1221 return BFD_RELOC_NONE;
1222}
1223
1224/* Here we decide which fixups can be adjusted to make them relative to
1225 the beginning of the section instead of the symbol. Basically we need
1226 to make sure that the dynamic relocations are done correctly, so in
1227 some cases we force the original symbol to be used. */
1228
1229int
1230tc_i386_fix_adjustable (fixP)
1231 fixS *fixP ATTRIBUTE_UNUSED;
1232{
1233#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1234 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1235 return 1;
1236
1237 /* Don't adjust pc-relative references to merge sections in 64-bit
1238 mode. */
1239 if (use_rela_relocations
1240 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1241 && fixP->fx_pcrel)
1242 return 0;
1243
1244 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1245 and changed later by validate_fix. */
1246 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1247 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1248 return 0;
1249
1250 /* adjust_reloc_syms doesn't know about the GOT. */
1251 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1252 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1253 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1254 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1256 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1257 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1258 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1259 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1260 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1261 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1262 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1263 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1264 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1265 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1266 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1267 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1268 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1269 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1270 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1271 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1272 return 0;
1273#endif
1274 return 1;
1275}
1276
1277static int intel_float_operand PARAMS ((const char *mnemonic));
1278
1279static int
1280intel_float_operand (mnemonic)
1281 const char *mnemonic;
1282{
1283 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1284 return 2;
1285
1286 if (mnemonic[0] == 'f')
1287 return 1;
1288
1289 return 0;
1290}
1291
1292/* This is the guts of the machine-dependent assembler. LINE points to a
1293 machine dependent instruction. This function is supposed to emit
1294 the frags/bytes it assembles to. */
1295
1296void
1297md_assemble (line)
1298 char *line;
1299{
1300 int j;
1301 char mnemonic[MAX_MNEM_SIZE];
1302
1303 /* Initialize globals. */
1304 memset (&i, '\0', sizeof (i));
1305 for (j = 0; j < MAX_OPERANDS; j++)
1306 i.reloc[j] = NO_RELOC;
1307 memset (disp_expressions, '\0', sizeof (disp_expressions));
1308 memset (im_expressions, '\0', sizeof (im_expressions));
1309 save_stack_p = save_stack;
1310
1311 /* First parse an instruction mnemonic & call i386_operand for the operands.
1312 We assume that the scrubber has arranged it so that line[0] is the valid
1313 start of a (possibly prefixed) mnemonic. */
1314
1315 line = parse_insn (line, mnemonic);
1316 if (line == NULL)
1317 return;
1318
1319 line = parse_operands (line, mnemonic);
1320 if (line == NULL)
1321 return;
1322
1323 /* Now we've parsed the mnemonic into a set of templates, and have the
1324 operands at hand. */
1325
1326 /* All intel opcodes have reversed operands except for "bound" and
1327 "enter". We also don't reverse intersegment "jmp" and "call"
1328 instructions with 2 immediate operands so that the immediate segment
1329 precedes the offset, as it does when in AT&T mode. "enter" and the
1330 intersegment "jmp" and "call" instructions are the only ones that
1331 have two immediate operands. */
1332 if (intel_syntax && i.operands > 1
1333 && (strcmp (mnemonic, "bound") != 0)
1334 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1335 swap_operands ();
1336
1337 if (i.imm_operands)
1338 optimize_imm ();
1339
1340 if (i.disp_operands)
1341 optimize_disp ();
1342
1343 /* Next, we find a template that matches the given insn,
1344 making sure the overlap of the given operands types is consistent
1345 with the template operand types. */
1346
1347 if (!match_template ())
1348 return;
1349
1350 if (intel_syntax)
1351 {
1352 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1353 if (SYSV386_COMPAT
1354 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1355 i.tm.base_opcode ^= FloatR;
1356
1357 /* Zap movzx and movsx suffix. The suffix may have been set from
1358 "word ptr" or "byte ptr" on the source operand, but we'll use
1359 the suffix later to choose the destination register. */
1360 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1361 i.suffix = 0;
1362 }
1363
1364 if (i.tm.opcode_modifier & FWait)
1365 if (!add_prefix (FWAIT_OPCODE))
1366 return;
1367
1368 /* Check string instruction segment overrides. */
1369 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1370 {
1371 if (!check_string ())
1372 return;
1373 }
1374
1375 if (!process_suffix ())
1376 return;
1377
1378 /* Make still unresolved immediate matches conform to size of immediate
1379 given in i.suffix. */
1380 if (!finalize_imm ())
1381 return;
1382
1383 if (i.types[0] & Imm1)
1384 i.imm_operands = 0; /* kludge for shift insns. */
1385 if (i.types[0] & ImplicitRegister)
1386 i.reg_operands--;
1387 if (i.types[1] & ImplicitRegister)
1388 i.reg_operands--;
1389 if (i.types[2] & ImplicitRegister)
1390 i.reg_operands--;
1391
1392 if (i.tm.opcode_modifier & ImmExt)
1393 {
1394 expressionS *exp;
1395
1396 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1397 {
1398 /* These Intel Prescott New Instructions have the fixed
1399 operands with an opcode suffix which is coded in the same
1400 place as an 8-bit immediate field would be. Here we check
1401 those operands and remove them afterwards. */
1402 unsigned int x;
1403
1404 for (x = 0; x < i.operands; x++)
1405 if (i.op[x].regs->reg_num != x)
1406 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1407 i.op[x].regs->reg_name, x + 1, i.tm.name);
1408 i.operands = 0;
1409 }
1410
1411 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1412 opcode suffix which is coded in the same place as an 8-bit
1413 immediate field would be. Here we fake an 8-bit immediate
1414 operand from the opcode suffix stored in tm.extension_opcode. */
1415
1416 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1417
1418 exp = &im_expressions[i.imm_operands++];
1419 i.op[i.operands].imms = exp;
1420 i.types[i.operands++] = Imm8;
1421 exp->X_op = O_constant;
1422 exp->X_add_number = i.tm.extension_opcode;
1423 i.tm.extension_opcode = None;
1424 }
1425
1426 /* For insns with operands there are more diddles to do to the opcode. */
1427 if (i.operands)
1428 {
1429 if (!process_operands ())
1430 return;
1431 }
1432 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1433 {
1434 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1435 as_warn (_("translating to `%sp'"), i.tm.name);
1436 }
1437
1438 /* Handle conversion of 'int $3' --> special int3 insn. */
1439 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1440 {
1441 i.tm.base_opcode = INT3_OPCODE;
1442 i.imm_operands = 0;
1443 }
1444
1445 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1446 && i.op[0].disps->X_op == O_constant)
1447 {
1448 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1449 the absolute address given by the constant. Since ix86 jumps and
1450 calls are pc relative, we need to generate a reloc. */
1451 i.op[0].disps->X_add_symbol = &abs_symbol;
1452 i.op[0].disps->X_op = O_symbol;
1453 }
1454
1455 if ((i.tm.opcode_modifier & Rex64) != 0)
1456 i.rex |= REX_MODE64;
1457
1458 /* For 8 bit registers we need an empty rex prefix. Also if the
1459 instruction already has a prefix, we need to convert old
1460 registers to new ones. */
1461
1462 if (((i.types[0] & Reg8) != 0
1463 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1464 || ((i.types[1] & Reg8) != 0
1465 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1466 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1467 && i.rex != 0))
1468 {
1469 int x;
1470
1471 i.rex |= REX_OPCODE;
1472 for (x = 0; x < 2; x++)
1473 {
1474 /* Look for 8 bit operand that uses old registers. */
1475 if ((i.types[x] & Reg8) != 0
1476 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1477 {
1478 /* In case it is "hi" register, give up. */
1479 if (i.op[x].regs->reg_num > 3)
1480 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1481 i.op[x].regs->reg_name);
1482
1483 /* Otherwise it is equivalent to the extended register.
1484 Since the encoding doesn't change this is merely
1485 cosmetic cleanup for debug output. */
1486
1487 i.op[x].regs = i.op[x].regs + 8;
1488 }
1489 }
1490 }
1491
1492 if (i.rex != 0)
1493 add_prefix (REX_OPCODE | i.rex);
1494
1495 /* We are ready to output the insn. */
1496 output_insn ();
1497}
1498
1499static char *
1500parse_insn (line, mnemonic)
1501 char *line;
1502 char *mnemonic;
1503{
1504 char *l = line;
1505 char *token_start = l;
1506 char *mnem_p;
1507
1508 /* Non-zero if we found a prefix only acceptable with string insns. */
1509 const char *expecting_string_instruction = NULL;
1510
1511 while (1)
1512 {
1513 mnem_p = mnemonic;
1514 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1515 {
1516 mnem_p++;
1517 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1518 {
1519 as_bad (_("no such instruction: `%s'"), token_start);
1520 return NULL;
1521 }
1522 l++;
1523 }
1524 if (!is_space_char (*l)
1525 && *l != END_OF_INSN
1526 && *l != PREFIX_SEPARATOR
1527 && *l != ',')
1528 {
1529 as_bad (_("invalid character %s in mnemonic"),
1530 output_invalid (*l));
1531 return NULL;
1532 }
1533 if (token_start == l)
1534 {
1535 if (*l == PREFIX_SEPARATOR)
1536 as_bad (_("expecting prefix; got nothing"));
1537 else
1538 as_bad (_("expecting mnemonic; got nothing"));
1539 return NULL;
1540 }
1541
1542 /* Look up instruction (or prefix) via hash table. */
1543 current_templates = hash_find (op_hash, mnemonic);
1544
1545 if (*l != END_OF_INSN
1546 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1547 && current_templates
1548 && (current_templates->start->opcode_modifier & IsPrefix))
1549 {
1550 /* If we are in 16-bit mode, do not allow addr16 or data16.
1551 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1552 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1553 && flag_code != CODE_64BIT
1554 && (((current_templates->start->opcode_modifier & Size32) != 0)
1555 ^ (flag_code == CODE_16BIT)))
1556 {
1557 as_bad (_("redundant %s prefix"),
1558 current_templates->start->name);
1559 return NULL;
1560 }
1561 /* Add prefix, checking for repeated prefixes. */
1562 switch (add_prefix (current_templates->start->base_opcode))
1563 {
1564 case 0:
1565 return NULL;
1566 case 2:
1567 expecting_string_instruction = current_templates->start->name;
1568 break;
1569 }
1570 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1571 token_start = ++l;
1572 }
1573 else
1574 break;
1575 }
1576
1577 if (!current_templates)
1578 {
1579 /* See if we can get a match by trimming off a suffix. */
1580 switch (mnem_p[-1])
1581 {
1582 case WORD_MNEM_SUFFIX:
1583 case BYTE_MNEM_SUFFIX:
1584 case QWORD_MNEM_SUFFIX:
1585 i.suffix = mnem_p[-1];
1586 mnem_p[-1] = '\0';
1587 current_templates = hash_find (op_hash, mnemonic);
1588 break;
1589 case SHORT_MNEM_SUFFIX:
1590 case LONG_MNEM_SUFFIX:
1591 if (!intel_syntax)
1592 {
1593 i.suffix = mnem_p[-1];
1594 mnem_p[-1] = '\0';
1595 current_templates = hash_find (op_hash, mnemonic);
1596 }
1597 break;
1598
1599 /* Intel Syntax. */
1600 case 'd':
1601 if (intel_syntax)
1602 {
1603 if (intel_float_operand (mnemonic))
1604 i.suffix = SHORT_MNEM_SUFFIX;
1605 else
1606 i.suffix = LONG_MNEM_SUFFIX;
1607 mnem_p[-1] = '\0';
1608 current_templates = hash_find (op_hash, mnemonic);
1609 }
1610 break;
1611 }
1612 if (!current_templates)
1613 {
1614 as_bad (_("no such instruction: `%s'"), token_start);
1615 return NULL;
1616 }
1617 }
1618
1619 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1620 {
1621 /* Check for a branch hint. We allow ",pt" and ",pn" for
1622 predict taken and predict not taken respectively.
1623 I'm not sure that branch hints actually do anything on loop
1624 and jcxz insns (JumpByte) for current Pentium4 chips. They
1625 may work in the future and it doesn't hurt to accept them
1626 now. */
1627 if (l[0] == ',' && l[1] == 'p')
1628 {
1629 if (l[2] == 't')
1630 {
1631 if (!add_prefix (DS_PREFIX_OPCODE))
1632 return NULL;
1633 l += 3;
1634 }
1635 else if (l[2] == 'n')
1636 {
1637 if (!add_prefix (CS_PREFIX_OPCODE))
1638 return NULL;
1639 l += 3;
1640 }
1641 }
1642 }
1643 /* Any other comma loses. */
1644 if (*l == ',')
1645 {
1646 as_bad (_("invalid character %s in mnemonic"),
1647 output_invalid (*l));
1648 return NULL;
1649 }
1650
1651 /* Check if instruction is supported on specified architecture. */
1652 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1653 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1654 {
1655 as_warn (_("`%s' is not supported on `%s'"),
1656 current_templates->start->name, cpu_arch_name);
1657 }
1658 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1659 {
1660 as_warn (_("use .code16 to ensure correct addressing mode"));
1661 }
1662
1663 /* Check for rep/repne without a string instruction. */
1664 if (expecting_string_instruction
1665 && !(current_templates->start->opcode_modifier & IsString))
1666 {
1667 as_bad (_("expecting string instruction after `%s'"),
1668 expecting_string_instruction);
1669 return NULL;
1670 }
1671
1672 return l;
1673}
1674
1675static char *
1676parse_operands (l, mnemonic)
1677 char *l;
1678 const char *mnemonic;
1679{
1680 char *token_start;
1681
1682 /* 1 if operand is pending after ','. */
1683 unsigned int expecting_operand = 0;
1684
1685 /* Non-zero if operand parens not balanced. */
1686 unsigned int paren_not_balanced;
1687
1688 while (*l != END_OF_INSN)
1689 {
1690 /* Skip optional white space before operand. */
1691 if (is_space_char (*l))
1692 ++l;
1693 if (!is_operand_char (*l) && *l != END_OF_INSN)
1694 {
1695 as_bad (_("invalid character %s before operand %d"),
1696 output_invalid (*l),
1697 i.operands + 1);
1698 return NULL;
1699 }
1700 token_start = l; /* after white space */
1701 paren_not_balanced = 0;
1702 while (paren_not_balanced || *l != ',')
1703 {
1704 if (*l == END_OF_INSN)
1705 {
1706 if (paren_not_balanced)
1707 {
1708 if (!intel_syntax)
1709 as_bad (_("unbalanced parenthesis in operand %d."),
1710 i.operands + 1);
1711 else
1712 as_bad (_("unbalanced brackets in operand %d."),
1713 i.operands + 1);
1714 return NULL;
1715 }
1716 else
1717 break; /* we are done */
1718 }
1719 else if (!is_operand_char (*l) && !is_space_char (*l))
1720 {
1721 as_bad (_("invalid character %s in operand %d"),
1722 output_invalid (*l),
1723 i.operands + 1);
1724 return NULL;
1725 }
1726 if (!intel_syntax)
1727 {
1728 if (*l == '(')
1729 ++paren_not_balanced;
1730 if (*l == ')')
1731 --paren_not_balanced;
1732 }
1733 else
1734 {
1735 if (*l == '[')
1736 ++paren_not_balanced;
1737 if (*l == ']')
1738 --paren_not_balanced;
1739 }
1740 l++;
1741 }
1742 if (l != token_start)
1743 { /* Yes, we've read in another operand. */
1744 unsigned int operand_ok;
1745 this_operand = i.operands++;
1746 if (i.operands > MAX_OPERANDS)
1747 {
1748 as_bad (_("spurious operands; (%d operands/instruction max)"),
1749 MAX_OPERANDS);
1750 return NULL;
1751 }
1752 /* Now parse operand adding info to 'i' as we go along. */
1753 END_STRING_AND_SAVE (l);
1754
1755 if (intel_syntax)
1756 operand_ok =
1757 i386_intel_operand (token_start,
1758 intel_float_operand (mnemonic));
1759 else
1760 operand_ok = i386_operand (token_start);
1761
1762 RESTORE_END_STRING (l);
1763 if (!operand_ok)
1764 return NULL;
1765 }
1766 else
1767 {
1768 if (expecting_operand)
1769 {
1770 expecting_operand_after_comma:
1771 as_bad (_("expecting operand after ','; got nothing"));
1772 return NULL;
1773 }
1774 if (*l == ',')
1775 {
1776 as_bad (_("expecting operand before ','; got nothing"));
1777 return NULL;
1778 }
1779 }
1780
1781 /* Now *l must be either ',' or END_OF_INSN. */
1782 if (*l == ',')
1783 {
1784 if (*++l == END_OF_INSN)
1785 {
1786 /* Just skip it, if it's \n complain. */
1787 goto expecting_operand_after_comma;
1788 }
1789 expecting_operand = 1;
1790 }
1791 }
1792 return l;
1793}
1794
1795static void
1796swap_operands ()
1797{
1798 union i386_op temp_op;
1799 unsigned int temp_type;
1800 enum bfd_reloc_code_real temp_reloc;
1801 int xchg1 = 0;
1802 int xchg2 = 0;
1803
1804 if (i.operands == 2)
1805 {
1806 xchg1 = 0;
1807 xchg2 = 1;
1808 }
1809 else if (i.operands == 3)
1810 {
1811 xchg1 = 0;
1812 xchg2 = 2;
1813 }
1814 temp_type = i.types[xchg2];
1815 i.types[xchg2] = i.types[xchg1];
1816 i.types[xchg1] = temp_type;
1817 temp_op = i.op[xchg2];
1818 i.op[xchg2] = i.op[xchg1];
1819 i.op[xchg1] = temp_op;
1820 temp_reloc = i.reloc[xchg2];
1821 i.reloc[xchg2] = i.reloc[xchg1];
1822 i.reloc[xchg1] = temp_reloc;
1823
1824 if (i.mem_operands == 2)
1825 {
1826 const seg_entry *temp_seg;
1827 temp_seg = i.seg[0];
1828 i.seg[0] = i.seg[1];
1829 i.seg[1] = temp_seg;
1830 }
1831}
1832
1833/* Try to ensure constant immediates are represented in the smallest
1834 opcode possible. */
1835static void
1836optimize_imm ()
1837{
1838 char guess_suffix = 0;
1839 int op;
1840
1841 if (i.suffix)
1842 guess_suffix = i.suffix;
1843 else if (i.reg_operands)
1844 {
1845 /* Figure out a suffix from the last register operand specified.
1846 We can't do this properly yet, ie. excluding InOutPortReg,
1847 but the following works for instructions with immediates.
1848 In any case, we can't set i.suffix yet. */
1849 for (op = i.operands; --op >= 0;)
1850 if (i.types[op] & Reg)
1851 {
1852 if (i.types[op] & Reg8)
1853 guess_suffix = BYTE_MNEM_SUFFIX;
1854 else if (i.types[op] & Reg16)
1855 guess_suffix = WORD_MNEM_SUFFIX;
1856 else if (i.types[op] & Reg32)
1857 guess_suffix = LONG_MNEM_SUFFIX;
1858 else if (i.types[op] & Reg64)
1859 guess_suffix = QWORD_MNEM_SUFFIX;
1860 break;
1861 }
1862 }
1863 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1864 guess_suffix = WORD_MNEM_SUFFIX;
1865
1866 for (op = i.operands; --op >= 0;)
1867 if (i.types[op] & Imm)
1868 {
1869 switch (i.op[op].imms->X_op)
1870 {
1871 case O_constant:
1872 /* If a suffix is given, this operand may be shortened. */
1873 switch (guess_suffix)
1874 {
1875 case LONG_MNEM_SUFFIX:
1876 i.types[op] |= Imm32 | Imm64;
1877 break;
1878 case WORD_MNEM_SUFFIX:
1879 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1880 break;
1881 case BYTE_MNEM_SUFFIX:
1882 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1883 break;
1884 }
1885
1886 /* If this operand is at most 16 bits, convert it
1887 to a signed 16 bit number before trying to see
1888 whether it will fit in an even smaller size.
1889 This allows a 16-bit operand such as $0xffe0 to
1890 be recognised as within Imm8S range. */
1891 if ((i.types[op] & Imm16)
1892 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1893 {
1894 i.op[op].imms->X_add_number =
1895 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1896 }
1897 if ((i.types[op] & Imm32)
1898 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1899 == 0))
1900 {
1901 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1902 ^ ((offsetT) 1 << 31))
1903 - ((offsetT) 1 << 31));
1904 }
1905 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1906
1907 /* We must avoid matching of Imm32 templates when 64bit
1908 only immediate is available. */
1909 if (guess_suffix == QWORD_MNEM_SUFFIX)
1910 i.types[op] &= ~Imm32;
1911 break;
1912
1913 case O_absent:
1914 case O_register:
1915 abort ();
1916
1917 /* Symbols and expressions. */
1918 default:
1919 /* Convert symbolic operand to proper sizes for matching. */
1920 switch (guess_suffix)
1921 {
1922 case QWORD_MNEM_SUFFIX:
1923 i.types[op] = Imm64 | Imm32S;
1924 break;
1925 case LONG_MNEM_SUFFIX:
1926 i.types[op] = Imm32;
1927 break;
1928 case WORD_MNEM_SUFFIX:
1929 i.types[op] = Imm16;
1930 break;
1931 case BYTE_MNEM_SUFFIX:
1932 i.types[op] = Imm8 | Imm8S;
1933 break;
1934 }
1935 break;
1936 }
1937 }
1938}
1939
1940/* Try to use the smallest displacement type too. */
1941static void
1942optimize_disp ()
1943{
1944 int op;
1945
1946 for (op = i.operands; --op >= 0;)
1947 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
1948 {
1949 offsetT disp = i.op[op].disps->X_add_number;
1950
1951 if (i.types[op] & Disp16)
1952 {
1953 /* We know this operand is at most 16 bits, so
1954 convert to a signed 16 bit number before trying
1955 to see whether it will fit in an even smaller
1956 size. */
1957
1958 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1959 }
1960 else if (i.types[op] & Disp32)
1961 {
1962 /* We know this operand is at most 32 bits, so convert to a
1963 signed 32 bit number before trying to see whether it will
1964 fit in an even smaller size. */
1965 disp &= (((offsetT) 2 << 31) - 1);
1966 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1967 }
1968 if (flag_code == CODE_64BIT)
1969 {
1970 if (fits_in_signed_long (disp))
1971 i.types[op] |= Disp32S;
1972 if (fits_in_unsigned_long (disp))
1973 i.types[op] |= Disp32;
1974 }
1975 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1976 && fits_in_signed_byte (disp))
1977 i.types[op] |= Disp8;
1978 }
1979}
1980
1981static int
1982match_template ()
1983{
1984 /* Points to template once we've found it. */
1985 const template *t;
1986 unsigned int overlap0, overlap1, overlap2;
1987 unsigned int found_reverse_match;
1988 int suffix_check;
1989
1990#define MATCH(overlap, given, template) \
1991 ((overlap & ~JumpAbsolute) \
1992 && (((given) & (BaseIndex | JumpAbsolute)) \
1993 == ((overlap) & (BaseIndex | JumpAbsolute))))
1994
1995 /* If given types r0 and r1 are registers they must be of the same type
1996 unless the expected operand type register overlap is null.
1997 Note that Acc in a template matches every size of reg. */
1998#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1999 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2000 || ((g0) & Reg) == ((g1) & Reg) \
2001 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2002
2003 overlap0 = 0;
2004 overlap1 = 0;
2005 overlap2 = 0;
2006 found_reverse_match = 0;
2007 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2008 ? No_bSuf
2009 : (i.suffix == WORD_MNEM_SUFFIX
2010 ? No_wSuf
2011 : (i.suffix == SHORT_MNEM_SUFFIX
2012 ? No_sSuf
2013 : (i.suffix == LONG_MNEM_SUFFIX
2014 ? No_lSuf
2015 : (i.suffix == QWORD_MNEM_SUFFIX
2016 ? No_qSuf
2017 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2018 ? No_xSuf : 0))))));
2019
2020 t = current_templates->start;
2021 if (i.suffix == QWORD_MNEM_SUFFIX
2022 && flag_code != CODE_64BIT
2023 && (!intel_syntax
2024 || (!(t->opcode_modifier & IgnoreSize)
2025 && ! intel_float_operand (t->name)))
2026 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2027 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2028 && (t->base_opcode != 0x0fc7
2029 || t->extension_opcode != 1 /* cmpxchg8b */))
2030 t = current_templates->end;
2031 for (; t < current_templates->end; t++)
2032 {
2033 /* Must have right number of operands. */
2034 if (i.operands != t->operands)
2035 continue;
2036
2037 /* Check the suffix, except for some instructions in intel mode. */
2038 if ((t->opcode_modifier & suffix_check)
2039 && !(intel_syntax
2040 && (t->opcode_modifier & IgnoreSize))
2041 && !(intel_syntax
2042 && t->base_opcode == 0xd9
2043 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2044 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2045 continue;
2046
2047 /* Do not verify operands when there are none. */
2048 else if (!t->operands)
2049 {
2050 if (t->cpu_flags & ~cpu_arch_flags)
2051 continue;
2052 /* We've found a match; break out of loop. */
2053 break;
2054 }
2055
2056 overlap0 = i.types[0] & t->operand_types[0];
2057 switch (t->operands)
2058 {
2059 case 1:
2060 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2061 continue;
2062 break;
2063 case 2:
2064 case 3:
2065 overlap1 = i.types[1] & t->operand_types[1];
2066 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2067 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2068 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2069 t->operand_types[0],
2070 overlap1, i.types[1],
2071 t->operand_types[1]))
2072 {
2073 /* Check if other direction is valid ... */
2074 if ((t->opcode_modifier & (D | FloatD)) == 0)
2075 continue;
2076
2077 /* Try reversing direction of operands. */
2078 overlap0 = i.types[0] & t->operand_types[1];
2079 overlap1 = i.types[1] & t->operand_types[0];
2080 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2081 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2082 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2083 t->operand_types[1],
2084 overlap1, i.types[1],
2085 t->operand_types[0]))
2086 {
2087 /* Does not match either direction. */
2088 continue;
2089 }
2090 /* found_reverse_match holds which of D or FloatDR
2091 we've found. */
2092 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2093 }
2094 /* Found a forward 2 operand match here. */
2095 else if (t->operands == 3)
2096 {
2097 /* Here we make use of the fact that there are no
2098 reverse match 3 operand instructions, and all 3
2099 operand instructions only need to be checked for
2100 register consistency between operands 2 and 3. */
2101 overlap2 = i.types[2] & t->operand_types[2];
2102 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2103 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2104 t->operand_types[1],
2105 overlap2, i.types[2],
2106 t->operand_types[2]))
2107
2108 continue;
2109 }
2110 /* Found either forward/reverse 2 or 3 operand match here:
2111 slip through to break. */
2112 }
2113 if (t->cpu_flags & ~cpu_arch_flags)
2114 {
2115 found_reverse_match = 0;
2116 continue;
2117 }
2118 /* We've found a match; break out of loop. */
2119 break;
2120 }
2121
2122 if (t == current_templates->end)
2123 {
2124 /* We found no match. */
2125 as_bad (_("suffix or operands invalid for `%s'"),
2126 current_templates->start->name);
2127 return 0;
2128 }
2129
2130 if (!quiet_warnings)
2131 {
2132 if (!intel_syntax
2133 && ((i.types[0] & JumpAbsolute)
2134 != (t->operand_types[0] & JumpAbsolute)))
2135 {
2136 as_warn (_("indirect %s without `*'"), t->name);
2137 }
2138
2139 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2140 == (IsPrefix | IgnoreSize))
2141 {
2142 /* Warn them that a data or address size prefix doesn't
2143 affect assembly of the next line of code. */
2144 as_warn (_("stand-alone `%s' prefix"), t->name);
2145 }
2146 }
2147
2148 /* Copy the template we found. */
2149 i.tm = *t;
2150 if (found_reverse_match)
2151 {
2152 /* If we found a reverse match we must alter the opcode
2153 direction bit. found_reverse_match holds bits to change
2154 (different for int & float insns). */
2155
2156 i.tm.base_opcode ^= found_reverse_match;
2157
2158 i.tm.operand_types[0] = t->operand_types[1];
2159 i.tm.operand_types[1] = t->operand_types[0];
2160 }
2161
2162 return 1;
2163}
2164
2165static int
2166check_string ()
2167{
2168 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2169 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2170 {
2171 if (i.seg[0] != NULL && i.seg[0] != &es)
2172 {
2173 as_bad (_("`%s' operand %d must use `%%es' segment"),
2174 i.tm.name,
2175 mem_op + 1);
2176 return 0;
2177 }
2178 /* There's only ever one segment override allowed per instruction.
2179 This instruction possibly has a legal segment override on the
2180 second operand, so copy the segment to where non-string
2181 instructions store it, allowing common code. */
2182 i.seg[0] = i.seg[1];
2183 }
2184 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2185 {
2186 if (i.seg[1] != NULL && i.seg[1] != &es)
2187 {
2188 as_bad (_("`%s' operand %d must use `%%es' segment"),
2189 i.tm.name,
2190 mem_op + 2);
2191 return 0;
2192 }
2193 }
2194 return 1;
2195}
2196
2197static int
2198process_suffix (void)
2199{
2200 /* If matched instruction specifies an explicit instruction mnemonic
2201 suffix, use it. */
2202 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2203 {
2204 if (i.tm.opcode_modifier & Size16)
2205 i.suffix = WORD_MNEM_SUFFIX;
2206 else if (i.tm.opcode_modifier & Size64)
2207 i.suffix = QWORD_MNEM_SUFFIX;
2208 else
2209 i.suffix = LONG_MNEM_SUFFIX;
2210 }
2211 else if (i.reg_operands)
2212 {
2213 /* If there's no instruction mnemonic suffix we try to invent one
2214 based on register operands. */
2215 if (!i.suffix)
2216 {
2217 /* We take i.suffix from the last register operand specified,
2218 Destination register type is more significant than source
2219 register type. */
2220 int op;
2221
2222 for (op = i.operands; --op >= 0;)
2223 if ((i.types[op] & Reg)
2224 && !(i.tm.operand_types[op] & InOutPortReg))
2225 {
2226 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2227 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2228 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2229 LONG_MNEM_SUFFIX);
2230 break;
2231 }
2232 }
2233 else if (i.suffix == BYTE_MNEM_SUFFIX)
2234 {
2235 if (!check_byte_reg ())
2236 return 0;
2237 }
2238 else if (i.suffix == LONG_MNEM_SUFFIX)
2239 {
2240 if (!check_long_reg ())
2241 return 0;
2242 }
2243 else if (i.suffix == QWORD_MNEM_SUFFIX)
2244 {
2245 if (!check_qword_reg ())
2246 return 0;
2247 }
2248 else if (i.suffix == WORD_MNEM_SUFFIX)
2249 {
2250 if (!check_word_reg ())
2251 return 0;
2252 }
2253 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2254 /* Do nothing if the instruction is going to ignore the prefix. */
2255 ;
2256 else
2257 abort ();
2258 }
2259 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2260 {
2261 i.suffix = stackop_size;
2262 if (i.suffix == QWORD_MNEM_SUFFIX
2263 && (i.tm.opcode_modifier & No_qSuf))
2264 i.suffix = LONG_MNEM_SUFFIX;
2265 }
2266
2267 /* Change the opcode based on the operand size given by i.suffix;
2268 We need not change things for byte insns. */
2269 if (!i.suffix && (i.tm.opcode_modifier & W))
2270 {
2271 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2272 return 0;
2273 }
2274
2275 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2276 {
2277 /* It's not a byte, select word/dword operation. */
2278 if (i.tm.opcode_modifier & W)
2279 {
2280 if (i.tm.opcode_modifier & ShortForm)
2281 i.tm.base_opcode |= 8;
2282 else
2283 i.tm.base_opcode |= 1;
2284 }
2285
2286 /* Now select between word & dword operations via the operand
2287 size prefix, except for instructions that will ignore this
2288 prefix anyway. */
2289 if (i.suffix != QWORD_MNEM_SUFFIX
2290 && !(i.tm.opcode_modifier & IgnoreSize)
2291 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2292 || (flag_code == CODE_64BIT
2293 && (i.tm.opcode_modifier & JumpByte))))
2294 {
2295 unsigned int prefix = DATA_PREFIX_OPCODE;
2296
2297 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2298 prefix = ADDR_PREFIX_OPCODE;
2299
2300 if (!add_prefix (prefix))
2301 return 0;
2302 }
2303
2304 /* Set mode64 for an operand. */
2305 if (i.suffix == QWORD_MNEM_SUFFIX
2306 && flag_code == CODE_64BIT
2307 && (i.tm.opcode_modifier & NoRex64) == 0)
2308 i.rex |= REX_MODE64;
2309
2310 /* Size floating point instruction. */
2311 if (i.suffix == LONG_MNEM_SUFFIX)
2312 if (i.tm.opcode_modifier & FloatMF)
2313 i.tm.base_opcode ^= 4;
2314 }
2315
2316 return 1;
2317}
2318
2319static int
2320check_byte_reg (void)
2321{
2322 int op;
2323
2324 for (op = i.operands; --op >= 0;)
2325 {
2326 /* If this is an eight bit register, it's OK. If it's the 16 or
2327 32 bit version of an eight bit register, we will just use the
2328 low portion, and that's OK too. */
2329 if (i.types[op] & Reg8)
2330 continue;
2331
2332 /* movzx and movsx should not generate this warning. */
2333 if (intel_syntax
2334 && (i.tm.base_opcode == 0xfb7
2335 || i.tm.base_opcode == 0xfb6
2336 || i.tm.base_opcode == 0x63
2337 || i.tm.base_opcode == 0xfbe
2338 || i.tm.base_opcode == 0xfbf))
2339 continue;
2340
2341 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2342#if 0
2343 /* Check that the template allows eight bit regs. This
2344 kills insns such as `orb $1,%edx', which maybe should be
2345 allowed. */
2346 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2347#endif
2348 )
2349 {
2350 /* Prohibit these changes in the 64bit mode, since the
2351 lowering is more complicated. */
2352 if (flag_code == CODE_64BIT
2353 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2354 {
2355 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2356 i.op[op].regs->reg_name,
2357 i.suffix);
2358 return 0;
2359 }
2360#if REGISTER_WARNINGS
2361 if (!quiet_warnings
2362 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2363 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2364 (i.op[op].regs + (i.types[op] & Reg16
2365 ? REGNAM_AL - REGNAM_AX
2366 : REGNAM_AL - REGNAM_EAX))->reg_name,
2367 i.op[op].regs->reg_name,
2368 i.suffix);
2369#endif
2370 continue;
2371 }
2372 /* Any other register is bad. */
2373 if (i.types[op] & (Reg | RegMMX | RegXMM
2374 | SReg2 | SReg3
2375 | Control | Debug | Test
2376 | FloatReg | FloatAcc))
2377 {
2378 as_bad (_("`%%%s' not allowed with `%s%c'"),
2379 i.op[op].regs->reg_name,
2380 i.tm.name,
2381 i.suffix);
2382 return 0;
2383 }
2384 }
2385 return 1;
2386}
2387
2388static int
2389check_long_reg ()
2390{
2391 int op;
2392
2393 for (op = i.operands; --op >= 0;)
2394 /* Reject eight bit registers, except where the template requires
2395 them. (eg. movzb) */
2396 if ((i.types[op] & Reg8) != 0
2397 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2398 {
2399 as_bad (_("`%%%s' not allowed with `%s%c'"),
2400 i.op[op].regs->reg_name,
2401 i.tm.name,
2402 i.suffix);
2403 return 0;
2404 }
2405 /* Warn if the e prefix on a general reg is missing. */
2406 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2407 && (i.types[op] & Reg16) != 0
2408 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2409 {
2410 /* Prohibit these changes in the 64bit mode, since the
2411 lowering is more complicated. */
2412 if (flag_code == CODE_64BIT)
2413 {
2414 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2415 i.op[op].regs->reg_name,
2416 i.suffix);
2417 return 0;
2418 }
2419#if REGISTER_WARNINGS
2420 else
2421 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2422 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2423 i.op[op].regs->reg_name,
2424 i.suffix);
2425#endif
2426 }
2427 /* Warn if the r prefix on a general reg is missing. */
2428 else if ((i.types[op] & Reg64) != 0
2429 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2430 {
2431 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2432 i.op[op].regs->reg_name,
2433 i.suffix);
2434 return 0;
2435 }
2436 return 1;
2437}
2438
2439static int
2440check_qword_reg ()
2441{
2442 int op;
2443
2444 for (op = i.operands; --op >= 0; )
2445 /* Reject eight bit registers, except where the template requires
2446 them. (eg. movzb) */
2447 if ((i.types[op] & Reg8) != 0
2448 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2449 {
2450 as_bad (_("`%%%s' not allowed with `%s%c'"),
2451 i.op[op].regs->reg_name,
2452 i.tm.name,
2453 i.suffix);
2454 return 0;
2455 }
2456 /* Warn if the e prefix on a general reg is missing. */
2457 else if (((i.types[op] & Reg16) != 0
2458 || (i.types[op] & Reg32) != 0)
2459 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2460 {
2461 /* Prohibit these changes in the 64bit mode, since the
2462 lowering is more complicated. */
2463 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2464 i.op[op].regs->reg_name,
2465 i.suffix);
2466 return 0;
2467 }
2468 return 1;
2469}
2470
2471static int
2472check_word_reg ()
2473{
2474 int op;
2475 for (op = i.operands; --op >= 0;)
2476 /* Reject eight bit registers, except where the template requires
2477 them. (eg. movzb) */
2478 if ((i.types[op] & Reg8) != 0
2479 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2480 {
2481 as_bad (_("`%%%s' not allowed with `%s%c'"),
2482 i.op[op].regs->reg_name,
2483 i.tm.name,
2484 i.suffix);
2485 return 0;
2486 }
2487 /* Warn if the e prefix on a general reg is present. */
2488 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2489 && (i.types[op] & Reg32) != 0
2490 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2491 {
2492 /* Prohibit these changes in the 64bit mode, since the
2493 lowering is more complicated. */
2494 if (flag_code == CODE_64BIT)
2495 {
2496 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2497 i.op[op].regs->reg_name,
2498 i.suffix);
2499 return 0;
2500 }
2501 else
2502#if REGISTER_WARNINGS
2503 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2504 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2505 i.op[op].regs->reg_name,
2506 i.suffix);
2507#endif
2508 }
2509 return 1;
2510}
2511
2512static int
2513finalize_imm ()
2514{
2515 unsigned int overlap0, overlap1, overlap2;
2516
2517 overlap0 = i.types[0] & i.tm.operand_types[0];
2518 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
2519 && overlap0 != Imm8 && overlap0 != Imm8S
2520 && overlap0 != Imm16 && overlap0 != Imm32S
2521 && overlap0 != Imm32 && overlap0 != Imm64)
2522 {
2523 if (i.suffix)
2524 {
2525 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2526 ? Imm8 | Imm8S
2527 : (i.suffix == WORD_MNEM_SUFFIX
2528 ? Imm16
2529 : (i.suffix == QWORD_MNEM_SUFFIX
2530 ? Imm64 | Imm32S
2531 : Imm32)));
2532 }
2533 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2534 || overlap0 == (Imm16 | Imm32)
2535 || overlap0 == (Imm16 | Imm32S))
2536 {
2537 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2538 ? Imm16 : Imm32S);
2539 }
2540 if (overlap0 != Imm8 && overlap0 != Imm8S
2541 && overlap0 != Imm16 && overlap0 != Imm32S
2542 && overlap0 != Imm32 && overlap0 != Imm64)
2543 {
2544 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2545 return 0;
2546 }
2547 }
2548 i.types[0] = overlap0;
2549
2550 overlap1 = i.types[1] & i.tm.operand_types[1];
2551 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2552 && overlap1 != Imm8 && overlap1 != Imm8S
2553 && overlap1 != Imm16 && overlap1 != Imm32S
2554 && overlap1 != Imm32 && overlap1 != Imm64)
2555 {
2556 if (i.suffix)
2557 {
2558 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2559 ? Imm8 | Imm8S
2560 : (i.suffix == WORD_MNEM_SUFFIX
2561 ? Imm16
2562 : (i.suffix == QWORD_MNEM_SUFFIX
2563 ? Imm64 | Imm32S
2564 : Imm32)));
2565 }
2566 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2567 || overlap1 == (Imm16 | Imm32)
2568 || overlap1 == (Imm16 | Imm32S))
2569 {
2570 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2571 ? Imm16 : Imm32S);
2572 }
2573 if (overlap1 != Imm8 && overlap1 != Imm8S
2574 && overlap1 != Imm16 && overlap1 != Imm32S
2575 && overlap1 != Imm32 && overlap1 != Imm64)
2576 {
2577 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2578 return 0;
2579 }
2580 }
2581 i.types[1] = overlap1;
2582
2583 overlap2 = i.types[2] & i.tm.operand_types[2];
2584 assert ((overlap2 & Imm) == 0);
2585 i.types[2] = overlap2;
2586
2587 return 1;
2588}
2589
2590static int
2591process_operands ()
2592{
2593 /* Default segment register this instruction will use for memory
2594 accesses. 0 means unknown. This is only for optimizing out
2595 unnecessary segment overrides. */
2596 const seg_entry *default_seg = 0;
2597
2598 /* The imul $imm, %reg instruction is converted into
2599 imul $imm, %reg, %reg, and the clr %reg instruction
2600 is converted into xor %reg, %reg. */
2601 if (i.tm.opcode_modifier & regKludge)
2602 {
2603 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2604 /* Pretend we saw the extra register operand. */
2605 assert (i.op[first_reg_op + 1].regs == 0);
2606 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2607 i.types[first_reg_op + 1] = i.types[first_reg_op];
2608 i.reg_operands = 2;
2609 }
2610
2611 if (i.tm.opcode_modifier & ShortForm)
2612 {
2613 /* The register or float register operand is in operand 0 or 1. */
2614 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2615 /* Register goes in low 3 bits of opcode. */
2616 i.tm.base_opcode |= i.op[op].regs->reg_num;
2617 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2618 i.rex |= REX_EXTZ;
2619 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2620 {
2621 /* Warn about some common errors, but press on regardless.
2622 The first case can be generated by gcc (<= 2.8.1). */
2623 if (i.operands == 2)
2624 {
2625 /* Reversed arguments on faddp, fsubp, etc. */
2626 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2627 i.op[1].regs->reg_name,
2628 i.op[0].regs->reg_name);
2629 }
2630 else
2631 {
2632 /* Extraneous `l' suffix on fp insn. */
2633 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2634 i.op[0].regs->reg_name);
2635 }
2636 }
2637 }
2638 else if (i.tm.opcode_modifier & Modrm)
2639 {
2640 /* The opcode is completed (modulo i.tm.extension_opcode which
2641 must be put into the modrm byte). Now, we make the modrm and
2642 index base bytes based on all the info we've collected. */
2643
2644 default_seg = build_modrm_byte ();
2645 }
2646 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2647 {
2648 if (i.tm.base_opcode == POP_SEG_SHORT
2649 && i.op[0].regs->reg_num == 1)
2650 {
2651 as_bad (_("you can't `pop %%cs'"));
2652 return 0;
2653 }
2654 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2655 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2656 i.rex |= REX_EXTZ;
2657 }
2658 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2659 {
2660 default_seg = &ds;
2661 }
2662 else if ((i.tm.opcode_modifier & IsString) != 0)
2663 {
2664 /* For the string instructions that allow a segment override
2665 on one of their operands, the default segment is ds. */
2666 default_seg = &ds;
2667 }
2668
2669 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2670 as_warn (_("segment override on `lea' is ineffectual"));
2671
2672 /* If a segment was explicitly specified, and the specified segment
2673 is not the default, use an opcode prefix to select it. If we
2674 never figured out what the default segment is, then default_seg
2675 will be zero at this point, and the specified segment prefix will
2676 always be used. */
2677 if ((i.seg[0]) && (i.seg[0] != default_seg))
2678 {
2679 if (!add_prefix (i.seg[0]->seg_prefix))
2680 return 0;
2681 }
2682 return 1;
2683}
2684
2685static const seg_entry *
2686build_modrm_byte ()
2687{
2688 const seg_entry *default_seg = 0;
2689
2690 /* i.reg_operands MUST be the number of real register operands;
2691 implicit registers do not count. */
2692 if (i.reg_operands == 2)
2693 {
2694 unsigned int source, dest;
2695 source = ((i.types[0]
2696 & (Reg | RegMMX | RegXMM
2697 | SReg2 | SReg3
2698 | Control | Debug | Test))
2699 ? 0 : 1);
2700 dest = source + 1;
2701
2702 i.rm.mode = 3;
2703 /* One of the register operands will be encoded in the i.tm.reg
2704 field, the other in the combined i.tm.mode and i.tm.regmem
2705 fields. If no form of this instruction supports a memory
2706 destination operand, then we assume the source operand may
2707 sometimes be a memory operand and so we need to store the
2708 destination in the i.rm.reg field. */
2709 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2710 {
2711 i.rm.reg = i.op[dest].regs->reg_num;
2712 i.rm.regmem = i.op[source].regs->reg_num;
2713 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2714 i.rex |= REX_EXTX;
2715 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2716 i.rex |= REX_EXTZ;
2717 }
2718 else
2719 {
2720 i.rm.reg = i.op[source].regs->reg_num;
2721 i.rm.regmem = i.op[dest].regs->reg_num;
2722 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2723 i.rex |= REX_EXTZ;
2724 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2725 i.rex |= REX_EXTX;
2726 }
2727 }
2728 else
2729 { /* If it's not 2 reg operands... */
2730 if (i.mem_operands)
2731 {
2732 unsigned int fake_zero_displacement = 0;
2733 unsigned int op = ((i.types[0] & AnyMem)
2734 ? 0
2735 : (i.types[1] & AnyMem) ? 1 : 2);
2736
2737 default_seg = &ds;
2738
2739 if (i.base_reg == 0)
2740 {
2741 i.rm.mode = 0;
2742 if (!i.disp_operands)
2743 fake_zero_displacement = 1;
2744 if (i.index_reg == 0)
2745 {
2746 /* Operand is just <disp> */
2747 if (flag_code == CODE_64BIT)
2748 {
2749 /* 64bit mode overwrites the 32bit absolute
2750 addressing by RIP relative addressing and
2751 absolute addressing is encoded by one of the
2752 redundant SIB forms. */
2753 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2754 i.sib.base = NO_BASE_REGISTER;
2755 i.sib.index = NO_INDEX_REGISTER;
2756 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2757 }
2758 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2759 {
2760 i.rm.regmem = NO_BASE_REGISTER_16;
2761 i.types[op] = Disp16;
2762 }
2763 else
2764 {
2765 i.rm.regmem = NO_BASE_REGISTER;
2766 i.types[op] = Disp32;
2767 }
2768 }
2769 else /* !i.base_reg && i.index_reg */
2770 {
2771 i.sib.index = i.index_reg->reg_num;
2772 i.sib.base = NO_BASE_REGISTER;
2773 i.sib.scale = i.log2_scale_factor;
2774 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2775 i.types[op] &= ~Disp;
2776 if (flag_code != CODE_64BIT)
2777 i.types[op] |= Disp32; /* Must be 32 bit */
2778 else
2779 i.types[op] |= Disp32S;
2780 if ((i.index_reg->reg_flags & RegRex) != 0)
2781 i.rex |= REX_EXTY;
2782 }
2783 }
2784 /* RIP addressing for 64bit mode. */
2785 else if (i.base_reg->reg_type == BaseIndex)
2786 {
2787 i.rm.regmem = NO_BASE_REGISTER;
2788 i.types[op] &= ~ Disp;
2789 i.types[op] |= Disp32S;
2790 i.flags[op] = Operand_PCrel;
2791 if (! i.disp_operands)
2792 fake_zero_displacement = 1;
2793 }
2794 else if (i.base_reg->reg_type & Reg16)
2795 {
2796 switch (i.base_reg->reg_num)
2797 {
2798 case 3: /* (%bx) */
2799 if (i.index_reg == 0)
2800 i.rm.regmem = 7;
2801 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2802 i.rm.regmem = i.index_reg->reg_num - 6;
2803 break;
2804 case 5: /* (%bp) */
2805 default_seg = &ss;
2806 if (i.index_reg == 0)
2807 {
2808 i.rm.regmem = 6;
2809 if ((i.types[op] & Disp) == 0)
2810 {
2811 /* fake (%bp) into 0(%bp) */
2812 i.types[op] |= Disp8;
2813 fake_zero_displacement = 1;
2814 }
2815 }
2816 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2817 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2818 break;
2819 default: /* (%si) -> 4 or (%di) -> 5 */
2820 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2821 }
2822 i.rm.mode = mode_from_disp_size (i.types[op]);
2823 }
2824 else /* i.base_reg and 32/64 bit mode */
2825 {
2826 if (flag_code == CODE_64BIT
2827 && (i.types[op] & Disp))
2828 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2829
2830 i.rm.regmem = i.base_reg->reg_num;
2831 if ((i.base_reg->reg_flags & RegRex) != 0)
2832 i.rex |= REX_EXTZ;
2833 i.sib.base = i.base_reg->reg_num;
2834 /* x86-64 ignores REX prefix bit here to avoid decoder
2835 complications. */
2836 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2837 {
2838 default_seg = &ss;
2839 if (i.disp_operands == 0)
2840 {
2841 fake_zero_displacement = 1;
2842 i.types[op] |= Disp8;
2843 }
2844 }
2845 else if (i.base_reg->reg_num == ESP_REG_NUM)
2846 {
2847 default_seg = &ss;
2848 }
2849 i.sib.scale = i.log2_scale_factor;
2850 if (i.index_reg == 0)
2851 {
2852 /* <disp>(%esp) becomes two byte modrm with no index
2853 register. We've already stored the code for esp
2854 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2855 Any base register besides %esp will not use the
2856 extra modrm byte. */
2857 i.sib.index = NO_INDEX_REGISTER;
2858#if !SCALE1_WHEN_NO_INDEX
2859 /* Another case where we force the second modrm byte. */
2860 if (i.log2_scale_factor)
2861 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2862#endif
2863 }
2864 else
2865 {
2866 i.sib.index = i.index_reg->reg_num;
2867 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2868 if ((i.index_reg->reg_flags & RegRex) != 0)
2869 i.rex |= REX_EXTY;
2870 }
2871 i.rm.mode = mode_from_disp_size (i.types[op]);
2872 }
2873
2874 if (fake_zero_displacement)
2875 {
2876 /* Fakes a zero displacement assuming that i.types[op]
2877 holds the correct displacement size. */
2878 expressionS *exp;
2879
2880 assert (i.op[op].disps == 0);
2881 exp = &disp_expressions[i.disp_operands++];
2882 i.op[op].disps = exp;
2883 exp->X_op = O_constant;
2884 exp->X_add_number = 0;
2885 exp->X_add_symbol = (symbolS *) 0;
2886 exp->X_op_symbol = (symbolS *) 0;
2887 }
2888 }
2889
2890 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2891 (if any) based on i.tm.extension_opcode. Again, we must be
2892 careful to make sure that segment/control/debug/test/MMX
2893 registers are coded into the i.rm.reg field. */
2894 if (i.reg_operands)
2895 {
2896 unsigned int op =
2897 ((i.types[0]
2898 & (Reg | RegMMX | RegXMM
2899 | SReg2 | SReg3
2900 | Control | Debug | Test))
2901 ? 0
2902 : ((i.types[1]
2903 & (Reg | RegMMX | RegXMM
2904 | SReg2 | SReg3
2905 | Control | Debug | Test))
2906 ? 1
2907 : 2));
2908 /* If there is an extension opcode to put here, the register
2909 number must be put into the regmem field. */
2910 if (i.tm.extension_opcode != None)
2911 {
2912 i.rm.regmem = i.op[op].regs->reg_num;
2913 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2914 i.rex |= REX_EXTZ;
2915 }
2916 else
2917 {
2918 i.rm.reg = i.op[op].regs->reg_num;
2919 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2920 i.rex |= REX_EXTX;
2921 }
2922
2923 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2924 must set it to 3 to indicate this is a register operand
2925 in the regmem field. */
2926 if (!i.mem_operands)
2927 i.rm.mode = 3;
2928 }
2929
2930 /* Fill in i.rm.reg field with extension opcode (if any). */
2931 if (i.tm.extension_opcode != None)
2932 i.rm.reg = i.tm.extension_opcode;
2933 }
2934 return default_seg;
2935}
2936
2937static void
2938output_branch ()
2939{
2940 char *p;
2941 int code16;
2942 int prefix;
2943 relax_substateT subtype;
2944 symbolS *sym;
2945 offsetT off;
2946
2947 code16 = 0;
2948 if (flag_code == CODE_16BIT)
2949 code16 = CODE16;
2950
2951 prefix = 0;
2952 if (i.prefix[DATA_PREFIX] != 0)
2953 {
2954 prefix = 1;
2955 i.prefixes -= 1;
2956 code16 ^= CODE16;
2957 }
2958 /* Pentium4 branch hints. */
2959 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2960 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2961 {
2962 prefix++;
2963 i.prefixes--;
2964 }
2965 if (i.prefix[REX_PREFIX] != 0)
2966 {
2967 prefix++;
2968 i.prefixes--;
2969 }
2970
2971 if (i.prefixes != 0 && !intel_syntax)
2972 as_warn (_("skipping prefixes on this instruction"));
2973
2974 /* It's always a symbol; End frag & setup for relax.
2975 Make sure there is enough room in this frag for the largest
2976 instruction we may generate in md_convert_frag. This is 2
2977 bytes for the opcode and room for the prefix and largest
2978 displacement. */
2979 frag_grow (prefix + 2 + 4);
2980 /* Prefix and 1 opcode byte go in fr_fix. */
2981 p = frag_more (prefix + 1);
2982 if (i.prefix[DATA_PREFIX] != 0)
2983 *p++ = DATA_PREFIX_OPCODE;
2984 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2985 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2986 *p++ = i.prefix[SEG_PREFIX];
2987 if (i.prefix[REX_PREFIX] != 0)
2988 *p++ = i.prefix[REX_PREFIX];
2989 *p = i.tm.base_opcode;
2990
2991 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2992 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2993 else if ((cpu_arch_flags & Cpu386) != 0)
2994 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2995 else
2996 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2997 subtype |= code16;
2998
2999 sym = i.op[0].disps->X_add_symbol;
3000 off = i.op[0].disps->X_add_number;
3001
3002 if (i.op[0].disps->X_op != O_constant
3003 && i.op[0].disps->X_op != O_symbol)
3004 {
3005 /* Handle complex expressions. */
3006 sym = make_expr_symbol (i.op[0].disps);
3007 off = 0;
3008 }
3009
3010 /* 1 possible extra opcode + 4 byte displacement go in var part.
3011 Pass reloc in fr_var. */
3012 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3013}
3014
3015static void
3016output_jump ()
3017{
3018 char *p;
3019 int size;
3020 fixS *fixP;
3021
3022 if (i.tm.opcode_modifier & JumpByte)
3023 {
3024 /* This is a loop or jecxz type instruction. */
3025 size = 1;
3026 if (i.prefix[ADDR_PREFIX] != 0)
3027 {
3028 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3029 i.prefixes -= 1;
3030 }
3031 /* Pentium4 branch hints. */
3032 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3033 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3034 {
3035 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3036 i.prefixes--;
3037 }
3038 }
3039 else
3040 {
3041 int code16;
3042
3043 code16 = 0;
3044 if (flag_code == CODE_16BIT)
3045 code16 = CODE16;
3046
3047 if (i.prefix[DATA_PREFIX] != 0)
3048 {
3049 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3050 i.prefixes -= 1;
3051 code16 ^= CODE16;
3052 }
3053
3054 size = 4;
3055 if (code16)
3056 size = 2;
3057 }
3058
3059 if (i.prefix[REX_PREFIX] != 0)
3060 {
3061 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3062 i.prefixes -= 1;
3063 }
3064
3065 if (i.prefixes != 0 && !intel_syntax)
3066 as_warn (_("skipping prefixes on this instruction"));
3067
3068 p = frag_more (1 + size);
3069 *p++ = i.tm.base_opcode;
3070
3071 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3072 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3073
3074 /* All jumps handled here are signed, but don't use a signed limit
3075 check for 32 and 16 bit jumps as we want to allow wrap around at
3076 4G and 64k respectively. */
3077 if (size == 1)
3078 fixP->fx_signed = 1;
3079}
3080
3081static void
3082output_interseg_jump ()
3083{
3084 char *p;
3085 int size;
3086 int prefix;
3087 int code16;
3088
3089 code16 = 0;
3090 if (flag_code == CODE_16BIT)
3091 code16 = CODE16;
3092
3093 prefix = 0;
3094 if (i.prefix[DATA_PREFIX] != 0)
3095 {
3096 prefix = 1;
3097 i.prefixes -= 1;
3098 code16 ^= CODE16;
3099 }
3100 if (i.prefix[REX_PREFIX] != 0)
3101 {
3102 prefix++;
3103 i.prefixes -= 1;
3104 }
3105
3106 size = 4;
3107 if (code16)
3108 size = 2;
3109
3110 if (i.prefixes != 0 && !intel_syntax)
3111 as_warn (_("skipping prefixes on this instruction"));
3112
3113 /* 1 opcode; 2 segment; offset */
3114 p = frag_more (prefix + 1 + 2 + size);
3115
3116 if (i.prefix[DATA_PREFIX] != 0)
3117 *p++ = DATA_PREFIX_OPCODE;
3118
3119 if (i.prefix[REX_PREFIX] != 0)
3120 *p++ = i.prefix[REX_PREFIX];
3121
3122 *p++ = i.tm.base_opcode;
3123 if (i.op[1].imms->X_op == O_constant)
3124 {
3125 offsetT n = i.op[1].imms->X_add_number;
3126
3127 if (size == 2
3128 && !fits_in_unsigned_word (n)
3129 && !fits_in_signed_word (n))
3130 {
3131 as_bad (_("16-bit jump out of range"));
3132 return;
3133 }
3134 md_number_to_chars (p, n, size);
3135 }
3136 else
3137 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3138 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3139 if (i.op[0].imms->X_op != O_constant)
3140 as_bad (_("can't handle non absolute segment in `%s'"),
3141 i.tm.name);
3142 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3143}
3144
3145static void
3146output_insn ()
3147{
3148 fragS *insn_start_frag;
3149 offsetT insn_start_off;
3150
3151 /* Tie dwarf2 debug info to the address at the start of the insn.
3152 We can't do this after the insn has been output as the current
3153 frag may have been closed off. eg. by frag_var. */
3154 dwarf2_emit_insn (0);
3155
3156 insn_start_frag = frag_now;
3157 insn_start_off = frag_now_fix ();
3158
3159 /* Output jumps. */
3160 if (i.tm.opcode_modifier & Jump)
3161 output_branch ();
3162 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3163 output_jump ();
3164 else if (i.tm.opcode_modifier & JumpInterSegment)
3165 output_interseg_jump ();
3166 else
3167 {
3168 /* Output normal instructions here. */
3169 char *p;
3170 unsigned char *q;
3171
3172 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3173 have 3 bytes. We may use one more higher byte to specify a prefix
3174 the instruction requires. */
3175 if ((i.tm.cpu_flags & CpuPadLock) != 0
3176 && (i.tm.base_opcode & 0xff000000) != 0)
3177 {
3178 unsigned int prefix;
3179 prefix = (i.tm.base_opcode >> 24) & 0xff;
3180
3181 if (prefix != REPE_PREFIX_OPCODE
3182 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3183 add_prefix (prefix);
3184 }
3185 else
3186 if ((i.tm.cpu_flags & CpuPadLock) == 0
3187 && (i.tm.base_opcode & 0xff0000) != 0)
3188 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3189
3190 /* The prefix bytes. */
3191 for (q = i.prefix;
3192 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3193 q++)
3194 {
3195 if (*q)
3196 {
3197 p = frag_more (1);
3198 md_number_to_chars (p, (valueT) *q, 1);
3199 }
3200 }
3201
3202 /* Now the opcode; be careful about word order here! */
3203 if (fits_in_unsigned_byte (i.tm.base_opcode))
3204 {
3205 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3206 }
3207 else
3208 {
3209 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3210 {
3211 p = frag_more (3);
3212 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3213 }
3214 else
3215 p = frag_more (2);
3216
3217 /* Put out high byte first: can't use md_number_to_chars! */
3218 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3219 *p = i.tm.base_opcode & 0xff;
3220 }
3221
3222 /* Now the modrm byte and sib byte (if present). */
3223 if (i.tm.opcode_modifier & Modrm)
3224 {
3225 p = frag_more (1);
3226 md_number_to_chars (p,
3227 (valueT) (i.rm.regmem << 0
3228 | i.rm.reg << 3
3229 | i.rm.mode << 6),
3230 1);
3231 /* If i.rm.regmem == ESP (4)
3232 && i.rm.mode != (Register mode)
3233 && not 16 bit
3234 ==> need second modrm byte. */
3235 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3236 && i.rm.mode != 3
3237 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3238 {
3239 p = frag_more (1);
3240 md_number_to_chars (p,
3241 (valueT) (i.sib.base << 0
3242 | i.sib.index << 3
3243 | i.sib.scale << 6),
3244 1);
3245 }
3246 }
3247
3248 if (i.disp_operands)
3249 output_disp (insn_start_frag, insn_start_off);
3250
3251 if (i.imm_operands)
3252 output_imm (insn_start_frag, insn_start_off);
3253 }
3254
3255#ifdef DEBUG386
3256 if (flag_debug)
3257 {
3258 pi (line, &i);
3259 }
3260#endif /* DEBUG386 */
3261}
3262
3263static void
3264output_disp (insn_start_frag, insn_start_off)
3265 fragS *insn_start_frag;
3266 offsetT insn_start_off;
3267{
3268 char *p;
3269 unsigned int n;
3270
3271 for (n = 0; n < i.operands; n++)
3272 {
3273 if (i.types[n] & Disp)
3274 {
3275 if (i.op[n].disps->X_op == O_constant)
3276 {
3277 int size;
3278 offsetT val;
3279
3280 size = 4;
3281 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3282 {
3283 size = 2;
3284 if (i.types[n] & Disp8)
3285 size = 1;
3286 if (i.types[n] & Disp64)
3287 size = 8;
3288 }
3289 val = offset_in_range (i.op[n].disps->X_add_number,
3290 size);
3291 p = frag_more (size);
3292 md_number_to_chars (p, val, size);
3293 }
3294 else
3295 {
3296 enum bfd_reloc_code_real reloc_type;
3297 int size = 4;
3298 int sign = 0;
3299 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3300
3301 /* The PC relative address is computed relative
3302 to the instruction boundary, so in case immediate
3303 fields follows, we need to adjust the value. */
3304 if (pcrel && i.imm_operands)
3305 {
3306 int imm_size = 4;
3307 unsigned int n1;
3308
3309 for (n1 = 0; n1 < i.operands; n1++)
3310 if (i.types[n1] & Imm)
3311 {
3312 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3313 {
3314 imm_size = 2;
3315 if (i.types[n1] & (Imm8 | Imm8S))
3316 imm_size = 1;
3317 if (i.types[n1] & Imm64)
3318 imm_size = 8;
3319 }
3320 break;
3321 }
3322 /* We should find the immediate. */
3323 if (n1 == i.operands)
3324 abort ();
3325 i.op[n].disps->X_add_number -= imm_size;
3326 }
3327
3328 if (i.types[n] & Disp32S)
3329 sign = 1;
3330
3331 if (i.types[n] & (Disp16 | Disp64))
3332 {
3333 size = 2;
3334 if (i.types[n] & Disp64)
3335 size = 8;
3336 }
3337
3338 p = frag_more (size);
3339 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3340 if (reloc_type == BFD_RELOC_32
3341 && GOT_symbol
3342 && GOT_symbol == i.op[n].disps->X_add_symbol
3343 && (i.op[n].disps->X_op == O_symbol
3344 || (i.op[n].disps->X_op == O_add
3345 && ((symbol_get_value_expression
3346 (i.op[n].disps->X_op_symbol)->X_op)
3347 == O_subtract))))
3348 {
3349 offsetT add;
3350
3351 if (insn_start_frag == frag_now)
3352 add = (p - frag_now->fr_literal) - insn_start_off;
3353 else
3354 {
3355 fragS *fr;
3356
3357 add = insn_start_frag->fr_fix - insn_start_off;
3358 for (fr = insn_start_frag->fr_next;
3359 fr && fr != frag_now; fr = fr->fr_next)
3360 add += fr->fr_fix;
3361 add += p - frag_now->fr_literal;
3362 }
3363
3364 /* We don't support dynamic linking on x86-64 yet. */
3365 if (flag_code == CODE_64BIT)
3366 abort ();
3367 reloc_type = BFD_RELOC_386_GOTPC;
3368 i.op[n].disps->X_add_number += add;
3369 }
3370 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3371 i.op[n].disps, pcrel, reloc_type);
3372 }
3373 }
3374 }
3375}
3376
3377static void
3378output_imm (insn_start_frag, insn_start_off)
3379 fragS *insn_start_frag;
3380 offsetT insn_start_off;
3381{
3382 char *p;
3383 unsigned int n;
3384
3385 for (n = 0; n < i.operands; n++)
3386 {
3387 if (i.types[n] & Imm)
3388 {
3389 if (i.op[n].imms->X_op == O_constant)
3390 {
3391 int size;
3392 offsetT val;
3393
3394 size = 4;
3395 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3396 {
3397 size = 2;
3398 if (i.types[n] & (Imm8 | Imm8S))
3399 size = 1;
3400 else if (i.types[n] & Imm64)
3401 size = 8;
3402 }
3403 val = offset_in_range (i.op[n].imms->X_add_number,
3404 size);
3405 p = frag_more (size);
3406 md_number_to_chars (p, val, size);
3407 }
3408 else
3409 {
3410 /* Not absolute_section.
3411 Need a 32-bit fixup (don't support 8bit
3412 non-absolute imms). Try to support other
3413 sizes ... */
3414 enum bfd_reloc_code_real reloc_type;
3415 int size = 4;
3416 int sign = 0;
3417
3418 if ((i.types[n] & (Imm32S))
3419 && i.suffix == QWORD_MNEM_SUFFIX)
3420 sign = 1;
3421 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3422 {
3423 size = 2;
3424 if (i.types[n] & (Imm8 | Imm8S))
3425 size = 1;
3426 if (i.types[n] & Imm64)
3427 size = 8;
3428 }
3429
3430 p = frag_more (size);
3431 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3432
3433 /* This is tough to explain. We end up with this one if we
3434 * have operands that look like
3435 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3436 * obtain the absolute address of the GOT, and it is strongly
3437 * preferable from a performance point of view to avoid using
3438 * a runtime relocation for this. The actual sequence of
3439 * instructions often look something like:
3440 *
3441 * call .L66
3442 * .L66:
3443 * popl %ebx
3444 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3445 *
3446 * The call and pop essentially return the absolute address
3447 * of the label .L66 and store it in %ebx. The linker itself
3448 * will ultimately change the first operand of the addl so
3449 * that %ebx points to the GOT, but to keep things simple, the
3450 * .o file must have this operand set so that it generates not
3451 * the absolute address of .L66, but the absolute address of
3452 * itself. This allows the linker itself simply treat a GOTPC
3453 * relocation as asking for a pcrel offset to the GOT to be
3454 * added in, and the addend of the relocation is stored in the
3455 * operand field for the instruction itself.
3456 *
3457 * Our job here is to fix the operand so that it would add
3458 * the correct offset so that %ebx would point to itself. The
3459 * thing that is tricky is that .-.L66 will point to the
3460 * beginning of the instruction, so we need to further modify
3461 * the operand so that it will point to itself. There are
3462 * other cases where you have something like:
3463 *
3464 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3465 *
3466 * and here no correction would be required. Internally in
3467 * the assembler we treat operands of this form as not being
3468 * pcrel since the '.' is explicitly mentioned, and I wonder
3469 * whether it would simplify matters to do it this way. Who
3470 * knows. In earlier versions of the PIC patches, the
3471 * pcrel_adjust field was used to store the correction, but
3472 * since the expression is not pcrel, I felt it would be
3473 * confusing to do it this way. */
3474
3475 if (reloc_type == BFD_RELOC_32
3476 && GOT_symbol
3477 && GOT_symbol == i.op[n].imms->X_add_symbol
3478 && (i.op[n].imms->X_op == O_symbol
3479 || (i.op[n].imms->X_op == O_add
3480 && ((symbol_get_value_expression
3481 (i.op[n].imms->X_op_symbol)->X_op)
3482 == O_subtract))))
3483 {
3484 offsetT add;
3485
3486 if (insn_start_frag == frag_now)
3487 add = (p - frag_now->fr_literal) - insn_start_off;
3488 else
3489 {
3490 fragS *fr;
3491
3492 add = insn_start_frag->fr_fix - insn_start_off;
3493 for (fr = insn_start_frag->fr_next;
3494 fr && fr != frag_now; fr = fr->fr_next)
3495 add += fr->fr_fix;
3496 add += p - frag_now->fr_literal;
3497 }
3498
3499 /* We don't support dynamic linking on x86-64 yet. */
3500 if (flag_code == CODE_64BIT)
3501 abort ();
3502 reloc_type = BFD_RELOC_386_GOTPC;
3503 i.op[n].imms->X_add_number += add;
3504 }
3505 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3506 i.op[n].imms, 0, reloc_type);
3507 }
3508 }
3509 }
3510}
3511\f
3512#ifndef LEX_AT
3513static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
3514
3515/* Parse operands of the form
3516 <symbol>@GOTOFF+<nnn>
3517 and similar .plt or .got references.
3518
3519 If we find one, set up the correct relocation in RELOC and copy the
3520 input string, minus the `@GOTOFF' into a malloc'd buffer for
3521 parsing by the calling routine. Return this buffer, and if ADJUST
3522 is non-null set it to the length of the string we removed from the
3523 input line. Otherwise return NULL. */
3524static char *
3525lex_got (reloc, adjust)
3526 enum bfd_reloc_code_real *reloc;
3527 int *adjust;
3528{
3529 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3530 static const struct {
3531 const char *str;
3532 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
3533 } gotrel[] = {
3534 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3535 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3536 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3537 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3538 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3539 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3540 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3541 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3542 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3543 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3544 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3545 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3546 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3547 };
3548 char *cp;
3549 unsigned int j;
3550
3551 for (cp = input_line_pointer; *cp != '@'; cp++)
3552 if (is_end_of_line[(unsigned char) *cp])
3553 return NULL;
3554
3555 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3556 {
3557 int len;
3558
3559 len = strlen (gotrel[j].str);
3560 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3561 {
3562 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3563 {
3564 int first, second;
3565 char *tmpbuf, *past_reloc;
3566
3567 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3568 if (adjust)
3569 *adjust = len;
3570
3571 if (GOT_symbol == NULL)
3572 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3573
3574 /* Replace the relocation token with ' ', so that
3575 errors like foo@GOTOFF1 will be detected. */
3576
3577 /* The length of the first part of our input line. */
3578 first = cp - input_line_pointer;
3579
3580 /* The second part goes from after the reloc token until
3581 (and including) an end_of_line char. Don't use strlen
3582 here as the end_of_line char may not be a NUL. */
3583 past_reloc = cp + 1 + len;
3584 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3585 ;
3586 second = cp - past_reloc;
3587
3588 /* Allocate and copy string. The trailing NUL shouldn't
3589 be necessary, but be safe. */
3590 tmpbuf = xmalloc (first + second + 2);
3591 memcpy (tmpbuf, input_line_pointer, first);
3592 tmpbuf[first] = ' ';
3593 memcpy (tmpbuf + first + 1, past_reloc, second);
3594 tmpbuf[first + second + 1] = '\0';
3595 return tmpbuf;
3596 }
3597
3598 as_bad (_("@%s reloc is not supported in %s bit mode"),
3599 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3600 return NULL;
3601 }
3602 }
3603
3604 /* Might be a symbol version string. Don't as_bad here. */
3605 return NULL;
3606}
3607
3608/* x86_cons_fix_new is called via the expression parsing code when a
3609 reloc is needed. We use this hook to get the correct .got reloc. */
3610static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3611
3612void
3613x86_cons_fix_new (frag, off, len, exp)
3614 fragS *frag;
3615 unsigned int off;
3616 unsigned int len;
3617 expressionS *exp;
3618{
3619 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
3620 got_reloc = NO_RELOC;
3621 fix_new_exp (frag, off, len, exp, 0, r);
3622}
3623
3624void
3625x86_cons (exp, size)
3626 expressionS *exp;
3627 int size;
3628{
3629 if (size == 4)
3630 {
3631 /* Handle @GOTOFF and the like in an expression. */
3632 char *save;
3633 char *gotfree_input_line;
3634 int adjust;
3635
3636 save = input_line_pointer;
3637 gotfree_input_line = lex_got (&got_reloc, &adjust);
3638 if (gotfree_input_line)
3639 input_line_pointer = gotfree_input_line;
3640
3641 expression (exp);
3642
3643 if (gotfree_input_line)
3644 {
3645 /* expression () has merrily parsed up to the end of line,
3646 or a comma - in the wrong buffer. Transfer how far
3647 input_line_pointer has moved to the right buffer. */
3648 input_line_pointer = (save
3649 + (input_line_pointer - gotfree_input_line)
3650 + adjust);
3651 free (gotfree_input_line);
3652 }
3653 }
3654 else
3655 expression (exp);
3656}
3657#endif
3658
3659#ifdef TE_PE
3660
3661#define O_secrel (O_max + 1)
3662
3663void
3664x86_pe_cons_fix_new (frag, off, len, exp)
3665 fragS *frag;
3666 unsigned int off;
3667 unsigned int len;
3668 expressionS *exp;
3669{
3670 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3671
3672 if (exp->X_op == O_secrel)
3673 {
3674 exp->X_op = O_symbol;
3675 r = BFD_RELOC_32_SECREL;
3676 }
3677
3678 fix_new_exp (frag, off, len, exp, 0, r);
3679}
3680
3681static void
3682pe_directive_secrel (dummy)
3683 int dummy ATTRIBUTE_UNUSED;
3684{
3685 expressionS exp;
3686
3687 do
3688 {
3689 expression (&exp);
3690 if (exp.X_op == O_symbol)
3691 exp.X_op = O_secrel;
3692
3693 emit_expr (&exp, 4);
3694 }
3695 while (*input_line_pointer++ == ',');
3696
3697 input_line_pointer--;
3698 demand_empty_rest_of_line ();
3699}
3700
3701#endif
3702
3703static int i386_immediate PARAMS ((char *));
3704
3705static int
3706i386_immediate (imm_start)
3707 char *imm_start;
3708{
3709 char *save_input_line_pointer;
3710#ifndef LEX_AT
3711 char *gotfree_input_line;
3712#endif
3713 segT exp_seg = 0;
3714 expressionS *exp;
3715
3716 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3717 {
3718 as_bad (_("only 1 or 2 immediate operands are allowed"));
3719 return 0;
3720 }
3721
3722 exp = &im_expressions[i.imm_operands++];
3723 i.op[this_operand].imms = exp;
3724
3725 if (is_space_char (*imm_start))
3726 ++imm_start;
3727
3728 save_input_line_pointer = input_line_pointer;
3729 input_line_pointer = imm_start;
3730
3731#ifndef LEX_AT
3732 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3733 if (gotfree_input_line)
3734 input_line_pointer = gotfree_input_line;
3735#endif
3736
3737 exp_seg = expression (exp);
3738
3739 SKIP_WHITESPACE ();
3740 if (*input_line_pointer)
3741 as_bad (_("junk `%s' after expression"), input_line_pointer);
3742
3743 input_line_pointer = save_input_line_pointer;
3744#ifndef LEX_AT
3745 if (gotfree_input_line)
3746 free (gotfree_input_line);
3747#endif
3748
3749 if (exp->X_op == O_absent || exp->X_op == O_big)
3750 {
3751 /* Missing or bad expr becomes absolute 0. */
3752 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3753 imm_start);
3754 exp->X_op = O_constant;
3755 exp->X_add_number = 0;
3756 exp->X_add_symbol = (symbolS *) 0;
3757 exp->X_op_symbol = (symbolS *) 0;
3758 }
3759 else if (exp->X_op == O_constant)
3760 {
3761 /* Size it properly later. */
3762 i.types[this_operand] |= Imm64;
3763 /* If BFD64, sign extend val. */
3764 if (!use_rela_relocations)
3765 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3766 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3767 }
3768#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3769 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
3770 && exp_seg != absolute_section
3771 && exp_seg != text_section
3772 && exp_seg != data_section
3773 && exp_seg != bss_section
3774 && exp_seg != undefined_section
3775 && !bfd_is_com_section (exp_seg))
3776 {
3777 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3778 return 0;
3779 }
3780#endif
3781 else
3782 {
3783 /* This is an address. The size of the address will be
3784 determined later, depending on destination register,
3785 suffix, or the default for the section. */
3786 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3787 }
3788
3789 return 1;
3790}
3791
3792static char *i386_scale PARAMS ((char *));
3793
3794static char *
3795i386_scale (scale)
3796 char *scale;
3797{
3798 offsetT val;
3799 char *save = input_line_pointer;
3800
3801 input_line_pointer = scale;
3802 val = get_absolute_expression ();
3803
3804 switch (val)
3805 {
3806 case 0:
3807 case 1:
3808 i.log2_scale_factor = 0;
3809 break;
3810 case 2:
3811 i.log2_scale_factor = 1;
3812 break;
3813 case 4:
3814 i.log2_scale_factor = 2;
3815 break;
3816 case 8:
3817 i.log2_scale_factor = 3;
3818 break;
3819 default:
3820 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3821 scale);
3822 input_line_pointer = save;
3823 return NULL;
3824 }
3825 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3826 {
3827 as_warn (_("scale factor of %d without an index register"),
3828 1 << i.log2_scale_factor);
3829#if SCALE1_WHEN_NO_INDEX
3830 i.log2_scale_factor = 0;
3831#endif
3832 }
3833 scale = input_line_pointer;
3834 input_line_pointer = save;
3835 return scale;
3836}
3837
3838static int i386_displacement PARAMS ((char *, char *));
3839
3840static int
3841i386_displacement (disp_start, disp_end)
3842 char *disp_start;
3843 char *disp_end;
3844{
3845 expressionS *exp;
3846 segT exp_seg = 0;
3847 char *save_input_line_pointer;
3848#ifndef LEX_AT
3849 char *gotfree_input_line;
3850#endif
3851 int bigdisp = Disp32;
3852
3853 if (flag_code == CODE_64BIT)
3854 {
3855 if (i.prefix[ADDR_PREFIX] == 0)
3856 bigdisp = Disp64;
3857 }
3858 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3859 bigdisp = Disp16;
3860 i.types[this_operand] |= bigdisp;
3861
3862 exp = &disp_expressions[i.disp_operands];
3863 i.op[this_operand].disps = exp;
3864 i.disp_operands++;
3865 save_input_line_pointer = input_line_pointer;
3866 input_line_pointer = disp_start;
3867 END_STRING_AND_SAVE (disp_end);
3868
3869#ifndef GCC_ASM_O_HACK
3870#define GCC_ASM_O_HACK 0
3871#endif
3872#if GCC_ASM_O_HACK
3873 END_STRING_AND_SAVE (disp_end + 1);
3874 if ((i.types[this_operand] & BaseIndex) != 0
3875 && displacement_string_end[-1] == '+')
3876 {
3877 /* This hack is to avoid a warning when using the "o"
3878 constraint within gcc asm statements.
3879 For instance:
3880
3881 #define _set_tssldt_desc(n,addr,limit,type) \
3882 __asm__ __volatile__ ( \
3883 "movw %w2,%0\n\t" \
3884 "movw %w1,2+%0\n\t" \
3885 "rorl $16,%1\n\t" \
3886 "movb %b1,4+%0\n\t" \
3887 "movb %4,5+%0\n\t" \
3888 "movb $0,6+%0\n\t" \
3889 "movb %h1,7+%0\n\t" \
3890 "rorl $16,%1" \
3891 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3892
3893 This works great except that the output assembler ends
3894 up looking a bit weird if it turns out that there is
3895 no offset. You end up producing code that looks like:
3896
3897 #APP
3898 movw $235,(%eax)
3899 movw %dx,2+(%eax)
3900 rorl $16,%edx
3901 movb %dl,4+(%eax)
3902 movb $137,5+(%eax)
3903 movb $0,6+(%eax)
3904 movb %dh,7+(%eax)
3905 rorl $16,%edx
3906 #NO_APP
3907
3908 So here we provide the missing zero. */
3909
3910 *displacement_string_end = '0';
3911 }
3912#endif
3913#ifndef LEX_AT
3914 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3915 if (gotfree_input_line)
3916 input_line_pointer = gotfree_input_line;
3917#endif
3918
3919 exp_seg = expression (exp);
3920
3921 SKIP_WHITESPACE ();
3922 if (*input_line_pointer)
3923 as_bad (_("junk `%s' after expression"), input_line_pointer);
3924#if GCC_ASM_O_HACK
3925 RESTORE_END_STRING (disp_end + 1);
3926#endif
3927 RESTORE_END_STRING (disp_end);
3928 input_line_pointer = save_input_line_pointer;
3929#ifndef LEX_AT
3930 if (gotfree_input_line)
3931 free (gotfree_input_line);
3932#endif
3933
3934 /* We do this to make sure that the section symbol is in
3935 the symbol table. We will ultimately change the relocation
3936 to be relative to the beginning of the section. */
3937 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3938 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3939 {
3940 if (exp->X_op != O_symbol)
3941 {
3942 as_bad (_("bad expression used with @%s"),
3943 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3944 ? "GOTPCREL"
3945 : "GOTOFF"));
3946 return 0;
3947 }
3948
3949 if (S_IS_LOCAL (exp->X_add_symbol)
3950 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3951 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3952 exp->X_op = O_subtract;
3953 exp->X_op_symbol = GOT_symbol;
3954 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3955 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3956 else
3957 i.reloc[this_operand] = BFD_RELOC_32;
3958 }
3959
3960 if (exp->X_op == O_absent || exp->X_op == O_big)
3961 {
3962 /* Missing or bad expr becomes absolute 0. */
3963 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3964 disp_start);
3965 exp->X_op = O_constant;
3966 exp->X_add_number = 0;
3967 exp->X_add_symbol = (symbolS *) 0;
3968 exp->X_op_symbol = (symbolS *) 0;
3969 }
3970
3971#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3972 if (exp->X_op != O_constant
3973 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3974 && exp_seg != absolute_section
3975 && exp_seg != text_section
3976 && exp_seg != data_section
3977 && exp_seg != bss_section
3978 && exp_seg != undefined_section
3979 && !bfd_is_com_section (exp_seg))
3980 {
3981 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3982 return 0;
3983 }
3984#endif
3985 else if (flag_code == CODE_64BIT)
3986 i.types[this_operand] |= Disp32S | Disp32;
3987 return 1;
3988}
3989
3990static int i386_index_check PARAMS ((const char *));
3991
3992/* Make sure the memory operand we've been dealt is valid.
3993 Return 1 on success, 0 on a failure. */
3994
3995static int
3996i386_index_check (operand_string)
3997 const char *operand_string;
3998{
3999 int ok;
4000#if INFER_ADDR_PREFIX
4001 int fudged = 0;
4002
4003 tryprefix:
4004#endif
4005 ok = 1;
4006 if (flag_code == CODE_64BIT)
4007 {
4008 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4009
4010 if ((i.base_reg
4011 && ((i.base_reg->reg_type & RegXX) == 0)
4012 && (i.base_reg->reg_type != BaseIndex
4013 || i.index_reg))
4014 || (i.index_reg
4015 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4016 != (RegXX | BaseIndex))))
4017 ok = 0;
4018 }
4019 else
4020 {
4021 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4022 {
4023 /* 16bit checks. */
4024 if ((i.base_reg
4025 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4026 != (Reg16 | BaseIndex)))
4027 || (i.index_reg
4028 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4029 != (Reg16 | BaseIndex))
4030 || !(i.base_reg
4031 && i.base_reg->reg_num < 6
4032 && i.index_reg->reg_num >= 6
4033 && i.log2_scale_factor == 0))))
4034 ok = 0;
4035 }
4036 else
4037 {
4038 /* 32bit checks. */
4039 if ((i.base_reg
4040 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4041 || (i.index_reg
4042 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4043 != (Reg32 | BaseIndex))))
4044 ok = 0;
4045 }
4046 }
4047 if (!ok)
4048 {
4049#if INFER_ADDR_PREFIX
4050 if (i.prefix[ADDR_PREFIX] == 0)
4051 {
4052 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4053 i.prefixes += 1;
4054 /* Change the size of any displacement too. At most one of
4055 Disp16 or Disp32 is set.
4056 FIXME. There doesn't seem to be any real need for separate
4057 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4058 Removing them would probably clean up the code quite a lot. */
4059 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4060 i.types[this_operand] ^= (Disp16 | Disp32);
4061 fudged = 1;
4062 goto tryprefix;
4063 }
4064 if (fudged)
4065 as_bad (_("`%s' is not a valid base/index expression"),
4066 operand_string);
4067 else
4068#endif
4069 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4070 operand_string,
4071 flag_code_names[flag_code]);
4072 }
4073 return ok;
4074}
4075
4076/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4077 on error. */
4078
4079static int
4080i386_operand (operand_string)
4081 char *operand_string;
4082{
4083 const reg_entry *r;
4084 char *end_op;
4085 char *op_string = operand_string;
4086
4087 if (is_space_char (*op_string))
4088 ++op_string;
4089
4090 /* We check for an absolute prefix (differentiating,
4091 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4092 if (*op_string == ABSOLUTE_PREFIX)
4093 {
4094 ++op_string;
4095 if (is_space_char (*op_string))
4096 ++op_string;
4097 i.types[this_operand] |= JumpAbsolute;
4098 }
4099
4100 /* Check if operand is a register. */
4101 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4102 && (r = parse_register (op_string, &end_op)) != NULL)
4103 {
4104 /* Check for a segment override by searching for ':' after a
4105 segment register. */
4106 op_string = end_op;
4107 if (is_space_char (*op_string))
4108 ++op_string;
4109 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4110 {
4111 switch (r->reg_num)
4112 {
4113 case 0:
4114 i.seg[i.mem_operands] = &es;
4115 break;
4116 case 1:
4117 i.seg[i.mem_operands] = &cs;
4118 break;
4119 case 2:
4120 i.seg[i.mem_operands] = &ss;
4121 break;
4122 case 3:
4123 i.seg[i.mem_operands] = &ds;
4124 break;
4125 case 4:
4126 i.seg[i.mem_operands] = &fs;
4127 break;
4128 case 5:
4129 i.seg[i.mem_operands] = &gs;
4130 break;
4131 }
4132
4133 /* Skip the ':' and whitespace. */
4134 ++op_string;
4135 if (is_space_char (*op_string))
4136 ++op_string;
4137
4138 if (!is_digit_char (*op_string)
4139 && !is_identifier_char (*op_string)
4140 && *op_string != '('
4141 && *op_string != ABSOLUTE_PREFIX)
4142 {
4143 as_bad (_("bad memory operand `%s'"), op_string);
4144 return 0;
4145 }
4146 /* Handle case of %es:*foo. */
4147 if (*op_string == ABSOLUTE_PREFIX)
4148 {
4149 ++op_string;
4150 if (is_space_char (*op_string))
4151 ++op_string;
4152 i.types[this_operand] |= JumpAbsolute;
4153 }
4154 goto do_memory_reference;
4155 }
4156 if (*op_string)
4157 {
4158 as_bad (_("junk `%s' after register"), op_string);
4159 return 0;
4160 }
4161 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4162 i.op[this_operand].regs = r;
4163 i.reg_operands++;
4164 }
4165 else if (*op_string == REGISTER_PREFIX)
4166 {
4167 as_bad (_("bad register name `%s'"), op_string);
4168 return 0;
4169 }
4170 else if (*op_string == IMMEDIATE_PREFIX)
4171 {
4172 ++op_string;
4173 if (i.types[this_operand] & JumpAbsolute)
4174 {
4175 as_bad (_("immediate operand illegal with absolute jump"));
4176 return 0;
4177 }
4178 if (!i386_immediate (op_string))
4179 return 0;
4180 }
4181 else if (is_digit_char (*op_string)
4182 || is_identifier_char (*op_string)
4183 || *op_string == '(')
4184 {
4185 /* This is a memory reference of some sort. */
4186 char *base_string;
4187
4188 /* Start and end of displacement string expression (if found). */
4189 char *displacement_string_start;
4190 char *displacement_string_end;
4191
4192 do_memory_reference:
4193 if ((i.mem_operands == 1
4194 && (current_templates->start->opcode_modifier & IsString) == 0)
4195 || i.mem_operands == 2)
4196 {
4197 as_bad (_("too many memory references for `%s'"),
4198 current_templates->start->name);
4199 return 0;
4200 }
4201
4202 /* Check for base index form. We detect the base index form by
4203 looking for an ')' at the end of the operand, searching
4204 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4205 after the '('. */
4206 base_string = op_string + strlen (op_string);
4207
4208 --base_string;
4209 if (is_space_char (*base_string))
4210 --base_string;
4211
4212 /* If we only have a displacement, set-up for it to be parsed later. */
4213 displacement_string_start = op_string;
4214 displacement_string_end = base_string + 1;
4215
4216 if (*base_string == ')')
4217 {
4218 char *temp_string;
4219 unsigned int parens_balanced = 1;
4220 /* We've already checked that the number of left & right ()'s are
4221 equal, so this loop will not be infinite. */
4222 do
4223 {
4224 base_string--;
4225 if (*base_string == ')')
4226 parens_balanced++;
4227 if (*base_string == '(')
4228 parens_balanced--;
4229 }
4230 while (parens_balanced);
4231
4232 temp_string = base_string;
4233
4234 /* Skip past '(' and whitespace. */
4235 ++base_string;
4236 if (is_space_char (*base_string))
4237 ++base_string;
4238
4239 if (*base_string == ','
4240 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4241 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4242 {
4243 displacement_string_end = temp_string;
4244
4245 i.types[this_operand] |= BaseIndex;
4246
4247 if (i.base_reg)
4248 {
4249 base_string = end_op;
4250 if (is_space_char (*base_string))
4251 ++base_string;
4252 }
4253
4254 /* There may be an index reg or scale factor here. */
4255 if (*base_string == ',')
4256 {
4257 ++base_string;
4258 if (is_space_char (*base_string))
4259 ++base_string;
4260
4261 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4262 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4263 {
4264 base_string = end_op;
4265 if (is_space_char (*base_string))
4266 ++base_string;
4267 if (*base_string == ',')
4268 {
4269 ++base_string;
4270 if (is_space_char (*base_string))
4271 ++base_string;
4272 }
4273 else if (*base_string != ')')
4274 {
4275 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4276 operand_string);
4277 return 0;
4278 }
4279 }
4280 else if (*base_string == REGISTER_PREFIX)
4281 {
4282 as_bad (_("bad register name `%s'"), base_string);
4283 return 0;
4284 }
4285
4286 /* Check for scale factor. */
4287 if (*base_string != ')')
4288 {
4289 char *end_scale = i386_scale (base_string);
4290
4291 if (!end_scale)
4292 return 0;
4293
4294 base_string = end_scale;
4295 if (is_space_char (*base_string))
4296 ++base_string;
4297 if (*base_string != ')')
4298 {
4299 as_bad (_("expecting `)' after scale factor in `%s'"),
4300 operand_string);
4301 return 0;
4302 }
4303 }
4304 else if (!i.index_reg)
4305 {
4306 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4307 *base_string);
4308 return 0;
4309 }
4310 }
4311 else if (*base_string != ')')
4312 {
4313 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4314 operand_string);
4315 return 0;
4316 }
4317 }
4318 else if (*base_string == REGISTER_PREFIX)
4319 {
4320 as_bad (_("bad register name `%s'"), base_string);
4321 return 0;
4322 }
4323 }
4324
4325 /* If there's an expression beginning the operand, parse it,
4326 assuming displacement_string_start and
4327 displacement_string_end are meaningful. */
4328 if (displacement_string_start != displacement_string_end)
4329 {
4330 if (!i386_displacement (displacement_string_start,
4331 displacement_string_end))
4332 return 0;
4333 }
4334
4335 /* Special case for (%dx) while doing input/output op. */
4336 if (i.base_reg
4337 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4338 && i.index_reg == 0
4339 && i.log2_scale_factor == 0
4340 && i.seg[i.mem_operands] == 0
4341 && (i.types[this_operand] & Disp) == 0)
4342 {
4343 i.types[this_operand] = InOutPortReg;
4344 return 1;
4345 }
4346
4347 if (i386_index_check (operand_string) == 0)
4348 return 0;
4349 i.mem_operands++;
4350 }
4351 else
4352 {
4353 /* It's not a memory operand; argh! */
4354 as_bad (_("invalid char %s beginning operand %d `%s'"),
4355 output_invalid (*op_string),
4356 this_operand + 1,
4357 op_string);
4358 return 0;
4359 }
4360 return 1; /* Normal return. */
4361}
4362\f
4363/* md_estimate_size_before_relax()
4364
4365 Called just before relax() for rs_machine_dependent frags. The x86
4366 assembler uses these frags to handle variable size jump
4367 instructions.
4368
4369 Any symbol that is now undefined will not become defined.
4370 Return the correct fr_subtype in the frag.
4371 Return the initial "guess for variable size of frag" to caller.
4372 The guess is actually the growth beyond the fixed part. Whatever
4373 we do to grow the fixed or variable part contributes to our
4374 returned value. */
4375
4376int
4377md_estimate_size_before_relax (fragP, segment)
4378 fragS *fragP;
4379 segT segment;
4380{
4381 /* We've already got fragP->fr_subtype right; all we have to do is
4382 check for un-relaxable symbols. On an ELF system, we can't relax
4383 an externally visible symbol, because it may be overridden by a
4384 shared library. */
4385 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4386#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4387 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4388 && (S_IS_EXTERNAL (fragP->fr_symbol)
4389 || S_IS_WEAK (fragP->fr_symbol)))
4390#endif
4391 )
4392 {
4393 /* Symbol is undefined in this segment, or we need to keep a
4394 reloc so that weak symbols can be overridden. */
4395 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4396 enum bfd_reloc_code_real reloc_type;
4397 unsigned char *opcode;
4398 int old_fr_fix;
4399
4400 if (fragP->fr_var != NO_RELOC)
4401 reloc_type = fragP->fr_var;
4402 else if (size == 2)
4403 reloc_type = BFD_RELOC_16_PCREL;
4404 else
4405 reloc_type = BFD_RELOC_32_PCREL;
4406
4407 old_fr_fix = fragP->fr_fix;
4408 opcode = (unsigned char *) fragP->fr_opcode;
4409
4410 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4411 {
4412 case UNCOND_JUMP:
4413 /* Make jmp (0xeb) a (d)word displacement jump. */
4414 opcode[0] = 0xe9;
4415 fragP->fr_fix += size;
4416 fix_new (fragP, old_fr_fix, size,
4417 fragP->fr_symbol,
4418 fragP->fr_offset, 1,
4419 reloc_type);
4420 break;
4421
4422 case COND_JUMP86:
4423 if (size == 2
4424 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4425 {
4426 /* Negate the condition, and branch past an
4427 unconditional jump. */
4428 opcode[0] ^= 1;
4429 opcode[1] = 3;
4430 /* Insert an unconditional jump. */
4431 opcode[2] = 0xe9;
4432 /* We added two extra opcode bytes, and have a two byte
4433 offset. */
4434 fragP->fr_fix += 2 + 2;
4435 fix_new (fragP, old_fr_fix + 2, 2,
4436 fragP->fr_symbol,
4437 fragP->fr_offset, 1,
4438 reloc_type);
4439 break;
4440 }
4441 /* Fall through. */
4442
4443 case COND_JUMP:
4444 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4445 {
4446 fixS *fixP;
4447
4448 fragP->fr_fix += 1;
4449 fixP = fix_new (fragP, old_fr_fix, 1,
4450 fragP->fr_symbol,
4451 fragP->fr_offset, 1,
4452 BFD_RELOC_8_PCREL);
4453 fixP->fx_signed = 1;
4454 break;
4455 }
4456
4457 /* This changes the byte-displacement jump 0x7N
4458 to the (d)word-displacement jump 0x0f,0x8N. */
4459 opcode[1] = opcode[0] + 0x10;
4460 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4461 /* We've added an opcode byte. */
4462 fragP->fr_fix += 1 + size;
4463 fix_new (fragP, old_fr_fix + 1, size,
4464 fragP->fr_symbol,
4465 fragP->fr_offset, 1,
4466 reloc_type);
4467 break;
4468
4469 default:
4470 BAD_CASE (fragP->fr_subtype);
4471 break;
4472 }
4473 frag_wane (fragP);
4474 return fragP->fr_fix - old_fr_fix;
4475 }
4476
4477 /* Guess size depending on current relax state. Initially the relax
4478 state will correspond to a short jump and we return 1, because
4479 the variable part of the frag (the branch offset) is one byte
4480 long. However, we can relax a section more than once and in that
4481 case we must either set fr_subtype back to the unrelaxed state,
4482 or return the value for the appropriate branch. */
4483 return md_relax_table[fragP->fr_subtype].rlx_length;
4484}
4485
4486/* Called after relax() is finished.
4487
4488 In: Address of frag.
4489 fr_type == rs_machine_dependent.
4490 fr_subtype is what the address relaxed to.
4491
4492 Out: Any fixSs and constants are set up.
4493 Caller will turn frag into a ".space 0". */
4494
4495void
4496md_convert_frag (abfd, sec, fragP)
4497 bfd *abfd ATTRIBUTE_UNUSED;
4498 segT sec ATTRIBUTE_UNUSED;
4499 fragS *fragP;
4500{
4501 unsigned char *opcode;
4502 unsigned char *where_to_put_displacement = NULL;
4503 offsetT target_address;
4504 offsetT opcode_address;
4505 unsigned int extension = 0;
4506 offsetT displacement_from_opcode_start;
4507
4508 opcode = (unsigned char *) fragP->fr_opcode;
4509
4510 /* Address we want to reach in file space. */
4511 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4512
4513 /* Address opcode resides at in file space. */
4514 opcode_address = fragP->fr_address + fragP->fr_fix;
4515
4516 /* Displacement from opcode start to fill into instruction. */
4517 displacement_from_opcode_start = target_address - opcode_address;
4518
4519 if ((fragP->fr_subtype & BIG) == 0)
4520 {
4521 /* Don't have to change opcode. */
4522 extension = 1; /* 1 opcode + 1 displacement */
4523 where_to_put_displacement = &opcode[1];
4524 }
4525 else
4526 {
4527 if (no_cond_jump_promotion
4528 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4529 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4530
4531 switch (fragP->fr_subtype)
4532 {
4533 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4534 extension = 4; /* 1 opcode + 4 displacement */
4535 opcode[0] = 0xe9;
4536 where_to_put_displacement = &opcode[1];
4537 break;
4538
4539 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4540 extension = 2; /* 1 opcode + 2 displacement */
4541 opcode[0] = 0xe9;
4542 where_to_put_displacement = &opcode[1];
4543 break;
4544
4545 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4546 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4547 extension = 5; /* 2 opcode + 4 displacement */
4548 opcode[1] = opcode[0] + 0x10;
4549 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4550 where_to_put_displacement = &opcode[2];
4551 break;
4552
4553 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4554 extension = 3; /* 2 opcode + 2 displacement */
4555 opcode[1] = opcode[0] + 0x10;
4556 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4557 where_to_put_displacement = &opcode[2];
4558 break;
4559
4560 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4561 extension = 4;
4562 opcode[0] ^= 1;
4563 opcode[1] = 3;
4564 opcode[2] = 0xe9;
4565 where_to_put_displacement = &opcode[3];
4566 break;
4567
4568 default:
4569 BAD_CASE (fragP->fr_subtype);
4570 break;
4571 }
4572 }
4573
4574 /* Now put displacement after opcode. */
4575 md_number_to_chars ((char *) where_to_put_displacement,
4576 (valueT) (displacement_from_opcode_start - extension),
4577 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4578 fragP->fr_fix += extension;
4579}
4580\f
4581/* Size of byte displacement jmp. */
4582int md_short_jump_size = 2;
4583
4584/* Size of dword displacement jmp. */
4585int md_long_jump_size = 5;
4586
4587/* Size of relocation record. */
4588const int md_reloc_size = 8;
4589
4590void
4591md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4592 char *ptr;
4593 addressT from_addr, to_addr;
4594 fragS *frag ATTRIBUTE_UNUSED;
4595 symbolS *to_symbol ATTRIBUTE_UNUSED;
4596{
4597 offsetT offset;
4598
4599 offset = to_addr - (from_addr + 2);
4600 /* Opcode for byte-disp jump. */
4601 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4602 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4603}
4604
4605void
4606md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4607 char *ptr;
4608 addressT from_addr, to_addr;
4609 fragS *frag ATTRIBUTE_UNUSED;
4610 symbolS *to_symbol ATTRIBUTE_UNUSED;
4611{
4612 offsetT offset;
4613
4614 offset = to_addr - (from_addr + 5);
4615 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4616 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4617}
4618\f
4619/* Apply a fixup (fixS) to segment data, once it has been determined
4620 by our caller that we have all the info we need to fix it up.
4621
4622 On the 386, immediates, displacements, and data pointers are all in
4623 the same (little-endian) format, so we don't need to care about which
4624 we are handling. */
4625
4626void
4627md_apply_fix3 (fixP, valP, seg)
4628 /* The fix we're to put in. */
4629 fixS *fixP;
4630 /* Pointer to the value of the bits. */
4631 valueT *valP;
4632 /* Segment fix is from. */
4633 segT seg ATTRIBUTE_UNUSED;
4634{
4635 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4636 valueT value = *valP;
4637
4638#if !defined (TE_Mach)
4639 if (fixP->fx_pcrel)
4640 {
4641 switch (fixP->fx_r_type)
4642 {
4643 default:
4644 break;
4645
4646 case BFD_RELOC_32:
4647 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4648 break;
4649 case BFD_RELOC_16:
4650 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4651 break;
4652 case BFD_RELOC_8:
4653 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4654 break;
4655 }
4656 }
4657
4658 if (fixP->fx_addsy != NULL
4659 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4660 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4661 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4662 && !use_rela_relocations)
4663 {
4664 /* This is a hack. There should be a better way to handle this.
4665 This covers for the fact that bfd_install_relocation will
4666 subtract the current location (for partial_inplace, PC relative
4667 relocations); see more below. */
4668#ifndef OBJ_AOUT
4669 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4670#ifdef TE_PE
4671 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4672#endif
4673 )
4674 value += fixP->fx_where + fixP->fx_frag->fr_address;
4675#endif
4676#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4677 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4678 {
4679 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4680
4681 if ((sym_seg == seg
4682 || (symbol_section_p (fixP->fx_addsy)
4683 && sym_seg != absolute_section))
4684 && !generic_force_reloc (fixP))
4685 {
4686 /* Yes, we add the values in twice. This is because
4687 bfd_install_relocation subtracts them out again. I think
4688 bfd_install_relocation is broken, but I don't dare change
4689 it. FIXME. */
4690 value += fixP->fx_where + fixP->fx_frag->fr_address;
4691 }
4692 }
4693#endif
4694#if defined (OBJ_COFF) && defined (TE_PE)
4695 /* For some reason, the PE format does not store a section
4696 address offset for a PC relative symbol. */
4697 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4698 value += md_pcrel_from (fixP);
4699#endif
4700 }
4701
4702 /* Fix a few things - the dynamic linker expects certain values here,
4703 and we must not disappoint it. */
4704#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4705 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4706 && fixP->fx_addsy)
4707 switch (fixP->fx_r_type)
4708 {
4709 case BFD_RELOC_386_PLT32:
4710 case BFD_RELOC_X86_64_PLT32:
4711 /* Make the jump instruction point to the address of the operand. At
4712 runtime we merely add the offset to the actual PLT entry. */
4713 value = -4;
4714 break;
4715
4716 case BFD_RELOC_386_TLS_GD:
4717 case BFD_RELOC_386_TLS_LDM:
4718 case BFD_RELOC_386_TLS_IE_32:
4719 case BFD_RELOC_386_TLS_IE:
4720 case BFD_RELOC_386_TLS_GOTIE:
4721 case BFD_RELOC_X86_64_TLSGD:
4722 case BFD_RELOC_X86_64_TLSLD:
4723 case BFD_RELOC_X86_64_GOTTPOFF:
4724 value = 0; /* Fully resolved at runtime. No addend. */
4725 /* Fallthrough */
4726 case BFD_RELOC_386_TLS_LE:
4727 case BFD_RELOC_386_TLS_LDO_32:
4728 case BFD_RELOC_386_TLS_LE_32:
4729 case BFD_RELOC_X86_64_DTPOFF32:
4730 case BFD_RELOC_X86_64_TPOFF32:
4731 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4732 break;
4733
4734 case BFD_RELOC_386_GOT32:
4735 case BFD_RELOC_X86_64_GOT32:
4736 value = 0; /* Fully resolved at runtime. No addend. */
4737 break;
4738
4739 case BFD_RELOC_VTABLE_INHERIT:
4740 case BFD_RELOC_VTABLE_ENTRY:
4741 fixP->fx_done = 0;
4742 return;
4743
4744 default:
4745 break;
4746 }
4747#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4748 *valP = value;
4749#endif /* !defined (TE_Mach) */
4750
4751 /* Are we finished with this relocation now? */
4752 if (fixP->fx_addsy == NULL)
4753 fixP->fx_done = 1;
4754 else if (use_rela_relocations)
4755 {
4756 fixP->fx_no_overflow = 1;
4757 /* Remember value for tc_gen_reloc. */
4758 fixP->fx_addnumber = value;
4759 value = 0;
4760 }
4761
4762 md_number_to_chars (p, value, fixP->fx_size);
4763}
4764\f
4765#define MAX_LITTLENUMS 6
4766
4767/* Turn the string pointed to by litP into a floating point constant
4768 of type TYPE, and emit the appropriate bytes. The number of
4769 LITTLENUMS emitted is stored in *SIZEP. An error message is
4770 returned, or NULL on OK. */
4771
4772char *
4773md_atof (type, litP, sizeP)
4774 int type;
4775 char *litP;
4776 int *sizeP;
4777{
4778 int prec;
4779 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4780 LITTLENUM_TYPE *wordP;
4781 char *t;
4782
4783 switch (type)
4784 {
4785 case 'f':
4786 case 'F':
4787 prec = 2;
4788 break;
4789
4790 case 'd':
4791 case 'D':
4792 prec = 4;
4793 break;
4794
4795 case 'x':
4796 case 'X':
4797 prec = 5;
4798 break;
4799
4800 default:
4801 *sizeP = 0;
4802 return _("Bad call to md_atof ()");
4803 }
4804 t = atof_ieee (input_line_pointer, type, words);
4805 if (t)
4806 input_line_pointer = t;
4807
4808 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4809 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4810 the bigendian 386. */
4811 for (wordP = words + prec - 1; prec--;)
4812 {
4813 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4814 litP += sizeof (LITTLENUM_TYPE);
4815 }
4816 return 0;
4817}
4818\f
4819char output_invalid_buf[8];
4820
4821static char *
4822output_invalid (c)
4823 int c;
4824{
4825 if (ISPRINT (c))
4826 sprintf (output_invalid_buf, "'%c'", c);
4827 else
4828 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4829 return output_invalid_buf;
4830}
4831
4832/* REG_STRING starts *before* REGISTER_PREFIX. */
4833
4834static const reg_entry *
4835parse_register (reg_string, end_op)
4836 char *reg_string;
4837 char **end_op;
4838{
4839 char *s = reg_string;
4840 char *p;
4841 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4842 const reg_entry *r;
4843
4844 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4845 if (*s == REGISTER_PREFIX)
4846 ++s;
4847
4848 if (is_space_char (*s))
4849 ++s;
4850
4851 p = reg_name_given;
4852 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4853 {
4854 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4855 return (const reg_entry *) NULL;
4856 s++;
4857 }
4858
4859 /* For naked regs, make sure that we are not dealing with an identifier.
4860 This prevents confusing an identifier like `eax_var' with register
4861 `eax'. */
4862 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4863 return (const reg_entry *) NULL;
4864
4865 *end_op = s;
4866
4867 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4868
4869 /* Handle floating point regs, allowing spaces in the (i) part. */
4870 if (r == i386_regtab /* %st is first entry of table */)
4871 {
4872 if (is_space_char (*s))
4873 ++s;
4874 if (*s == '(')
4875 {
4876 ++s;
4877 if (is_space_char (*s))
4878 ++s;
4879 if (*s >= '0' && *s <= '7')
4880 {
4881 r = &i386_float_regtab[*s - '0'];
4882 ++s;
4883 if (is_space_char (*s))
4884 ++s;
4885 if (*s == ')')
4886 {
4887 *end_op = s + 1;
4888 return r;
4889 }
4890 }
4891 /* We have "%st(" then garbage. */
4892 return (const reg_entry *) NULL;
4893 }
4894 }
4895
4896 if (r != NULL
4897 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
4898 && flag_code != CODE_64BIT)
4899 return (const reg_entry *) NULL;
4900
4901 return r;
4902}
4903\f
4904#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4905const char *md_shortopts = "kVQ:sqn";
4906#else
4907const char *md_shortopts = "qn";
4908#endif
4909
4910struct option md_longopts[] = {
4911#define OPTION_32 (OPTION_MD_BASE + 0)
4912 {"32", no_argument, NULL, OPTION_32},
4913#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4914#define OPTION_64 (OPTION_MD_BASE + 1)
4915 {"64", no_argument, NULL, OPTION_64},
4916#endif
4917 {NULL, no_argument, NULL, 0}
4918};
4919size_t md_longopts_size = sizeof (md_longopts);
4920
4921int
4922md_parse_option (c, arg)
4923 int c;
4924 char *arg ATTRIBUTE_UNUSED;
4925{
4926 switch (c)
4927 {
4928 case 'n':
4929 optimize_align_code = 0;
4930 break;
4931
4932 case 'q':
4933 quiet_warnings = 1;
4934 break;
4935
4936#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4937 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4938 should be emitted or not. FIXME: Not implemented. */
4939 case 'Q':
4940 break;
4941
4942 /* -V: SVR4 argument to print version ID. */
4943 case 'V':
4944 print_version_id ();
4945 break;
4946
4947 /* -k: Ignore for FreeBSD compatibility. */
4948 case 'k':
4949 break;
4950
4951 case 's':
4952 /* -s: On i386 Solaris, this tells the native assembler to use
4953 .stab instead of .stab.excl. We always use .stab anyhow. */
4954 break;
4955
4956 case OPTION_64:
4957 {
4958 const char **list, **l;
4959
4960 list = bfd_target_list ();
4961 for (l = list; *l != NULL; l++)
4962 if (strcmp (*l, "elf64-x86-64") == 0)
4963 {
4964 default_arch = "x86_64";
4965 break;
4966 }
4967 if (*l == NULL)
4968 as_fatal (_("No compiled in support for x86_64"));
4969 free (list);
4970 }
4971 break;
4972#endif
4973
4974 case OPTION_32:
4975 default_arch = "i386";
4976 break;
4977
4978 default:
4979 return 0;
4980 }
4981 return 1;
4982}
4983
4984void
4985md_show_usage (stream)
4986 FILE *stream;
4987{
4988#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4989 fprintf (stream, _("\
4990 -Q ignored\n\
4991 -V print assembler version number\n\
4992 -k ignored\n\
4993 -n Do not optimize code alignment\n\
4994 -q quieten some warnings\n\
4995 -s ignored\n"));
4996#else
4997 fprintf (stream, _("\
4998 -n Do not optimize code alignment\n\
4999 -q quieten some warnings\n"));
5000#endif
5001}
5002
5003#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5004 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5005
5006/* Pick the target format to use. */
5007
5008const char *
5009i386_target_format ()
5010{
5011 if (!strcmp (default_arch, "x86_64"))
5012 set_code_flag (CODE_64BIT);
5013 else if (!strcmp (default_arch, "i386"))
5014 set_code_flag (CODE_32BIT);
5015 else
5016 as_fatal (_("Unknown architecture"));
5017 switch (OUTPUT_FLAVOR)
5018 {
5019#ifdef OBJ_MAYBE_AOUT
5020 case bfd_target_aout_flavour:
5021 return AOUT_TARGET_FORMAT;
5022#endif
5023#ifdef OBJ_MAYBE_COFF
5024 case bfd_target_coff_flavour:
5025 return "coff-i386";
5026#endif
5027#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5028 case bfd_target_elf_flavour:
5029 {
5030 if (flag_code == CODE_64BIT)
5031 use_rela_relocations = 1;
5032 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5033 }
5034#endif
5035 default:
5036 abort ();
5037 return NULL;
5038 }
5039}
5040
5041#endif /* OBJ_MAYBE_ more than one */
5042
5043#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5044void i386_elf_emit_arch_note ()
5045{
5046 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5047 && cpu_arch_name != NULL)
5048 {
5049 char *p;
5050 asection *seg = now_seg;
5051 subsegT subseg = now_subseg;
5052 Elf_Internal_Note i_note;
5053 Elf_External_Note e_note;
5054 asection *note_secp;
5055 int len;
5056
5057 /* Create the .note section. */
5058 note_secp = subseg_new (".note", 0);
5059 bfd_set_section_flags (stdoutput,
5060 note_secp,
5061 SEC_HAS_CONTENTS | SEC_READONLY);
5062
5063 /* Process the arch string. */
5064 len = strlen (cpu_arch_name);
5065
5066 i_note.namesz = len + 1;
5067 i_note.descsz = 0;
5068 i_note.type = NT_ARCH;
5069 p = frag_more (sizeof (e_note.namesz));
5070 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5071 p = frag_more (sizeof (e_note.descsz));
5072 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5073 p = frag_more (sizeof (e_note.type));
5074 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5075 p = frag_more (len + 1);
5076 strcpy (p, cpu_arch_name);
5077
5078 frag_align (2, 0, 0);
5079
5080 subseg_set (seg, subseg);
5081 }
5082}
5083#endif
5084\f
5085symbolS *
5086md_undefined_symbol (name)
5087 char *name;
5088{
5089 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5090 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5091 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5092 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5093 {
5094 if (!GOT_symbol)
5095 {
5096 if (symbol_find (name))
5097 as_bad (_("GOT already in symbol table"));
5098 GOT_symbol = symbol_new (name, undefined_section,
5099 (valueT) 0, &zero_address_frag);
5100 };
5101 return GOT_symbol;
5102 }
5103 return 0;
5104}
5105
5106/* Round up a section size to the appropriate boundary. */
5107
5108valueT
5109md_section_align (segment, size)
5110 segT segment ATTRIBUTE_UNUSED;
5111 valueT size;
5112{
5113#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5114 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5115 {
5116 /* For a.out, force the section size to be aligned. If we don't do
5117 this, BFD will align it for us, but it will not write out the
5118 final bytes of the section. This may be a bug in BFD, but it is
5119 easier to fix it here since that is how the other a.out targets
5120 work. */
5121 int align;
5122
5123 align = bfd_get_section_alignment (stdoutput, segment);
5124 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5125 }
5126#endif
5127
5128 return size;
5129}
5130
5131/* On the i386, PC-relative offsets are relative to the start of the
5132 next instruction. That is, the address of the offset, plus its
5133 size, since the offset is always the last part of the insn. */
5134
5135long
5136md_pcrel_from (fixP)
5137 fixS *fixP;
5138{
5139 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5140}
5141
5142#ifndef I386COFF
5143
5144static void
5145s_bss (ignore)
5146 int ignore ATTRIBUTE_UNUSED;
5147{
5148 int temp;
5149
5150 temp = get_absolute_expression ();
5151 subseg_set (bss_section, (subsegT) temp);
5152 demand_empty_rest_of_line ();
5153}
5154
5155#endif
5156
5157void
5158i386_validate_fix (fixp)
5159 fixS *fixp;
5160{
5161 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5162 {
5163 /* GOTOFF relocation are nonsense in 64bit mode. */
5164 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5165 {
5166 if (flag_code != CODE_64BIT)
5167 abort ();
5168 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5169 }
5170 else
5171 {
5172 if (flag_code == CODE_64BIT)
5173 abort ();
5174 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5175 }
5176 fixp->fx_subsy = 0;
5177 }
5178}
5179
5180arelent *
5181tc_gen_reloc (section, fixp)
5182 asection *section ATTRIBUTE_UNUSED;
5183 fixS *fixp;
5184{
5185 arelent *rel;
5186 bfd_reloc_code_real_type code;
5187
5188 switch (fixp->fx_r_type)
5189 {
5190 case BFD_RELOC_X86_64_PLT32:
5191 case BFD_RELOC_X86_64_GOT32:
5192 case BFD_RELOC_X86_64_GOTPCREL:
5193 case BFD_RELOC_386_PLT32:
5194 case BFD_RELOC_386_GOT32:
5195 case BFD_RELOC_386_GOTOFF:
5196 case BFD_RELOC_386_GOTPC:
5197 case BFD_RELOC_386_TLS_GD:
5198 case BFD_RELOC_386_TLS_LDM:
5199 case BFD_RELOC_386_TLS_LDO_32:
5200 case BFD_RELOC_386_TLS_IE_32:
5201 case BFD_RELOC_386_TLS_IE:
5202 case BFD_RELOC_386_TLS_GOTIE:
5203 case BFD_RELOC_386_TLS_LE_32:
5204 case BFD_RELOC_386_TLS_LE:
5205 case BFD_RELOC_X86_64_32S:
5206 case BFD_RELOC_X86_64_TLSGD:
5207 case BFD_RELOC_X86_64_TLSLD:
5208 case BFD_RELOC_X86_64_DTPOFF32:
5209 case BFD_RELOC_X86_64_GOTTPOFF:
5210 case BFD_RELOC_X86_64_TPOFF32:
5211 case BFD_RELOC_RVA:
5212 case BFD_RELOC_VTABLE_ENTRY:
5213 case BFD_RELOC_VTABLE_INHERIT:
5214#ifdef TE_PE
5215 case BFD_RELOC_32_SECREL:
5216#endif
5217 code = fixp->fx_r_type;
5218 break;
5219 default:
5220 if (fixp->fx_pcrel)
5221 {
5222 switch (fixp->fx_size)
5223 {
5224 default:
5225 as_bad_where (fixp->fx_file, fixp->fx_line,
5226 _("can not do %d byte pc-relative relocation"),
5227 fixp->fx_size);
5228 code = BFD_RELOC_32_PCREL;
5229 break;
5230 case 1: code = BFD_RELOC_8_PCREL; break;
5231 case 2: code = BFD_RELOC_16_PCREL; break;
5232 case 4: code = BFD_RELOC_32_PCREL; break;
5233 }
5234 }
5235 else
5236 {
5237 switch (fixp->fx_size)
5238 {
5239 default:
5240 as_bad_where (fixp->fx_file, fixp->fx_line,
5241 _("can not do %d byte relocation"),
5242 fixp->fx_size);
5243 code = BFD_RELOC_32;
5244 break;
5245 case 1: code = BFD_RELOC_8; break;
5246 case 2: code = BFD_RELOC_16; break;
5247 case 4: code = BFD_RELOC_32; break;
5248#ifdef BFD64
5249 case 8: code = BFD_RELOC_64; break;
5250#endif
5251 }
5252 }
5253 break;
5254 }
5255
5256 if (code == BFD_RELOC_32
5257 && GOT_symbol
5258 && fixp->fx_addsy == GOT_symbol)
5259 {
5260 /* We don't support GOTPC on 64bit targets. */
5261 if (flag_code == CODE_64BIT)
5262 abort ();
5263 code = BFD_RELOC_386_GOTPC;
5264 }
5265
5266 rel = (arelent *) xmalloc (sizeof (arelent));
5267 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5268 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5269
5270 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5271
5272#ifdef TE_PE
5273 if (S_IS_WEAK (fixp->fx_addsy))
5274 rel->addend = rel->address - (*rel->sym_ptr_ptr)->value + 4;
5275 else
5276#endif
5277 if (!use_rela_relocations)
5278 {
5279 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5280 vtable entry to be used in the relocation's section offset. */
5281 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5282 rel->address = fixp->fx_offset;
5283
5284 rel->addend = 0;
5285 }
5286 /* Use the rela in 64bit mode. */
5287 else
5288 {
5289 if (!fixp->fx_pcrel)
5290 rel->addend = fixp->fx_offset;
5291 else
5292 switch (code)
5293 {
5294 case BFD_RELOC_X86_64_PLT32:
5295 case BFD_RELOC_X86_64_GOT32:
5296 case BFD_RELOC_X86_64_GOTPCREL:
5297 case BFD_RELOC_X86_64_TLSGD:
5298 case BFD_RELOC_X86_64_TLSLD:
5299 case BFD_RELOC_X86_64_GOTTPOFF:
5300 rel->addend = fixp->fx_offset - fixp->fx_size;
5301 break;
5302 default:
5303 rel->addend = (section->vma
5304 - fixp->fx_size
5305 + fixp->fx_addnumber
5306 + md_pcrel_from (fixp));
5307 break;
5308 }
5309 }
5310
5311 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5312 if (rel->howto == NULL)
5313 {
5314 as_bad_where (fixp->fx_file, fixp->fx_line,
5315 _("cannot represent relocation type %s"),
5316 bfd_get_reloc_code_name (code));
5317 /* Set howto to a garbage value so that we can keep going. */
5318 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5319 assert (rel->howto != NULL);
5320 }
5321
5322 return rel;
5323}
5324
5325\f
5326/* Parse operands using Intel syntax. This implements a recursive descent
5327 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5328 Programmer's Guide.
5329
5330 FIXME: We do not recognize the full operand grammar defined in the MASM
5331 documentation. In particular, all the structure/union and
5332 high-level macro operands are missing.
5333
5334 Uppercase words are terminals, lower case words are non-terminals.
5335 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5336 bars '|' denote choices. Most grammar productions are implemented in
5337 functions called 'intel_<production>'.
5338
5339 Initial production is 'expr'.
5340
5341 addOp + | - | & | \| | << | >>
5342
5343 alpha [a-zA-Z]
5344
5345 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5346
5347 constant digits [[ radixOverride ]]
5348
5349 dataType BYTE | WORD | DWORD | QWORD | XWORD
5350
5351 digits decdigit
5352 | digits decdigit
5353 | digits hexdigit
5354
5355 decdigit [0-9]
5356
5357 e05 e05 addOp e06
5358 | e06
5359
5360 e06 e06 mulOp e09
5361 | e09
5362
5363 e09 OFFSET e10
5364 | e09 PTR e10
5365 | e09 : e10
5366 | e10
5367
5368 e10 e10 [ expr ]
5369 | e11
5370
5371 e11 ( expr )
5372 | [ expr ]
5373 | constant
5374 | dataType
5375 | id
5376 | $
5377 | register
5378 | ~
5379
5380 => expr SHORT e05
5381 | e05
5382
5383 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5384 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5385
5386 hexdigit a | b | c | d | e | f
5387 | A | B | C | D | E | F
5388
5389 id alpha
5390 | id alpha
5391 | id decdigit
5392
5393 mulOp * | / | MOD
5394
5395 quote " | '
5396
5397 register specialRegister
5398 | gpRegister
5399 | byteRegister
5400
5401 segmentRegister CS | DS | ES | FS | GS | SS
5402
5403 specialRegister CR0 | CR2 | CR3
5404 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5405 | TR3 | TR4 | TR5 | TR6 | TR7
5406
5407 We simplify the grammar in obvious places (e.g., register parsing is
5408 done by calling parse_register) and eliminate immediate left recursion
5409 to implement a recursive-descent parser.
5410
5411 expr SHORT e05
5412 | e05
5413
5414 e05 e06 e05'
5415
5416 e05' addOp e06 e05'
5417 | Empty
5418
5419 e06 e09 e06'
5420
5421 e06' mulOp e09 e06'
5422 | Empty
5423
5424 e09 OFFSET e10 e09'
5425 | e10 e09'
5426
5427 e09' PTR e10 e09'
5428 | : e10 e09'
5429 | Empty
5430
5431 e10 e11 e10'
5432
5433 e10' [ expr ] e10'
5434 | Empty
5435
5436 e11 ( expr )
5437 | [ expr ]
5438 | BYTE
5439 | WORD
5440 | DWORD
5441 | QWORD
5442 | XWORD
5443 | .
5444 | $
5445 | register
5446 | id
5447 | ~
5448 | constant */
5449
5450/* Parsing structure for the intel syntax parser. Used to implement the
5451 semantic actions for the operand grammar. */
5452struct intel_parser_s
5453 {
5454 char *op_string; /* The string being parsed. */
5455 int got_a_float; /* Whether the operand is a float. */
5456 int op_modifier; /* Operand modifier. */
5457 int is_mem; /* 1 if operand is memory reference. */
5458 const reg_entry *reg; /* Last register reference found. */
5459 char *disp; /* Displacement string being built. */
5460 };
5461
5462static struct intel_parser_s intel_parser;
5463
5464/* Token structure for parsing intel syntax. */
5465struct intel_token
5466 {
5467 int code; /* Token code. */
5468 const reg_entry *reg; /* Register entry for register tokens. */
5469 char *str; /* String representation. */
5470 };
5471
5472static struct intel_token cur_token, prev_token;
5473
5474/* Token codes for the intel parser. Since T_SHORT is already used
5475 by COFF, undefine it first to prevent a warning. */
5476#define T_NIL -1
5477#define T_CONST 1
5478#define T_REG 2
5479#define T_BYTE 3
5480#define T_WORD 4
5481#define T_DWORD 5
5482#define T_QWORD 6
5483#define T_XWORD 7
5484#undef T_SHORT
5485#define T_SHORT 8
5486#define T_OFFSET 9
5487#define T_PTR 10
5488#define T_ID 11
5489#define T_SHIFTOP 12
5490
5491/* Prototypes for intel parser functions. */
5492static int intel_match_token PARAMS ((int code));
5493static void intel_get_token PARAMS ((void));
5494static void intel_putback_token PARAMS ((void));
5495static int intel_expr PARAMS ((void));
5496static int intel_e05 PARAMS ((void));
5497static int intel_e05_1 PARAMS ((void));
5498static int intel_e06 PARAMS ((void));
5499static int intel_e06_1 PARAMS ((void));
5500static int intel_e09 PARAMS ((void));
5501static int intel_e09_1 PARAMS ((void));
5502static int intel_e10 PARAMS ((void));
5503static int intel_e10_1 PARAMS ((void));
5504static int intel_e11 PARAMS ((void));
5505
5506static int
5507i386_intel_operand (operand_string, got_a_float)
5508 char *operand_string;
5509 int got_a_float;
5510{
5511 int ret;
5512 char *p;
5513
5514 /* Initialize token holders. */
5515 cur_token.code = prev_token.code = T_NIL;
5516 cur_token.reg = prev_token.reg = NULL;
5517 cur_token.str = prev_token.str = NULL;
5518
5519 /* Initialize parser structure. */
5520 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5521 if (p == NULL)
5522 abort ();
5523 strcpy (intel_parser.op_string, operand_string);
5524 intel_parser.got_a_float = got_a_float;
5525 intel_parser.op_modifier = -1;
5526 intel_parser.is_mem = 0;
5527 intel_parser.reg = NULL;
5528 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5529 if (intel_parser.disp == NULL)
5530 abort ();
5531 intel_parser.disp[0] = '\0';
5532
5533 /* Read the first token and start the parser. */
5534 intel_get_token ();
5535 ret = intel_expr ();
5536
5537 if (ret)
5538 {
5539 /* If we found a memory reference, hand it over to i386_displacement
5540 to fill in the rest of the operand fields. */
5541 if (intel_parser.is_mem)
5542 {
5543 if ((i.mem_operands == 1
5544 && (current_templates->start->opcode_modifier & IsString) == 0)
5545 || i.mem_operands == 2)
5546 {
5547 as_bad (_("too many memory references for '%s'"),
5548 current_templates->start->name);
5549 ret = 0;
5550 }
5551 else
5552 {
5553 char *s = intel_parser.disp;
5554 i.mem_operands++;
5555
5556 /* Add the displacement expression. */
5557 if (*s != '\0')
5558 ret = i386_displacement (s, s + strlen (s));
5559 if (ret)
5560 ret = i386_index_check (operand_string);
5561 }
5562 }
5563
5564 /* Constant and OFFSET expressions are handled by i386_immediate. */
5565 else if (intel_parser.op_modifier == OFFSET_FLAT
5566 || intel_parser.reg == NULL)
5567 ret = i386_immediate (intel_parser.disp);
5568 }
5569
5570 free (p);
5571 free (intel_parser.disp);
5572
5573 return ret;
5574}
5575
5576/* expr SHORT e05
5577 | e05 */
5578static int
5579intel_expr ()
5580{
5581 /* expr SHORT e05 */
5582 if (cur_token.code == T_SHORT)
5583 {
5584 intel_parser.op_modifier = SHORT;
5585 intel_match_token (T_SHORT);
5586
5587 return (intel_e05 ());
5588 }
5589
5590 /* expr e05 */
5591 else
5592 return intel_e05 ();
5593}
5594
5595/* e05 e06 e05'
5596
5597 e05' addOp e06 e05'
5598 | Empty */
5599static int
5600intel_e05 ()
5601{
5602 return (intel_e06 () && intel_e05_1 ());
5603}
5604
5605static int
5606intel_e05_1 ()
5607{
5608 /* e05' addOp e06 e05' */
5609 if (cur_token.code == '+' || cur_token.code == '-'
5610 || cur_token.code == '&' || cur_token.code == '|'
5611 || cur_token.code == T_SHIFTOP)
5612 {
5613 strcat (intel_parser.disp, cur_token.str);
5614 intel_match_token (cur_token.code);
5615
5616 return (intel_e06 () && intel_e05_1 ());
5617 }
5618
5619 /* e05' Empty */
5620 else
5621 return 1;
5622}
5623
5624/* e06 e09 e06'
5625
5626 e06' mulOp e09 e06'
5627 | Empty */
5628static int
5629intel_e06 ()
5630{
5631 return (intel_e09 () && intel_e06_1 ());
5632}
5633
5634static int
5635intel_e06_1 ()
5636{
5637 /* e06' mulOp e09 e06' */
5638 if (cur_token.code == '*' || cur_token.code == '/')
5639 {
5640 strcat (intel_parser.disp, cur_token.str);
5641 intel_match_token (cur_token.code);
5642
5643 return (intel_e09 () && intel_e06_1 ());
5644 }
5645
5646 /* e06' Empty */
5647 else
5648 return 1;
5649}
5650
5651/* e09 OFFSET e10 e09'
5652 | e10 e09'
5653
5654 e09' PTR e10 e09'
5655 | : e10 e09'
5656 | Empty */
5657static int
5658intel_e09 ()
5659{
5660 /* e09 OFFSET e10 e09' */
5661 if (cur_token.code == T_OFFSET)
5662 {
5663 intel_parser.is_mem = 0;
5664 intel_parser.op_modifier = OFFSET_FLAT;
5665 intel_match_token (T_OFFSET);
5666
5667 return (intel_e10 () && intel_e09_1 ());
5668 }
5669
5670 /* e09 e10 e09' */
5671 else
5672 return (intel_e10 () && intel_e09_1 ());
5673}
5674
5675static int
5676intel_e09_1 ()
5677{
5678 /* e09' PTR e10 e09' */
5679 if (cur_token.code == T_PTR)
5680 {
5681 if (prev_token.code == T_BYTE)
5682 i.suffix = BYTE_MNEM_SUFFIX;
5683
5684 else if (prev_token.code == T_WORD)
5685 {
5686 if (intel_parser.got_a_float == 2) /* "fi..." */
5687 i.suffix = SHORT_MNEM_SUFFIX;
5688 else
5689 i.suffix = WORD_MNEM_SUFFIX;
5690 }
5691
5692 else if (prev_token.code == T_DWORD)
5693 {
5694 if (intel_parser.got_a_float == 1) /* "f..." */
5695 i.suffix = SHORT_MNEM_SUFFIX;
5696 else
5697 i.suffix = LONG_MNEM_SUFFIX;
5698 }
5699
5700 else if (prev_token.code == T_QWORD)
5701 {
5702 if (intel_parser.got_a_float == 1) /* "f..." */
5703 i.suffix = LONG_MNEM_SUFFIX;
5704 else
5705 i.suffix = QWORD_MNEM_SUFFIX;
5706 }
5707
5708 else if (prev_token.code == T_XWORD)
5709 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5710
5711 else
5712 {
5713 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
5714 return 0;
5715 }
5716
5717 intel_match_token (T_PTR);
5718
5719 return (intel_e10 () && intel_e09_1 ());
5720 }
5721
5722 /* e09 : e10 e09' */
5723 else if (cur_token.code == ':')
5724 {
5725 /* Mark as a memory operand only if it's not already known to be an
5726 offset expression. */
5727 if (intel_parser.op_modifier != OFFSET_FLAT)
5728 intel_parser.is_mem = 1;
5729
5730 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5731 }
5732
5733 /* e09' Empty */
5734 else
5735 return 1;
5736}
5737
5738/* e10 e11 e10'
5739
5740 e10' [ expr ] e10'
5741 | Empty */
5742static int
5743intel_e10 ()
5744{
5745 return (intel_e11 () && intel_e10_1 ());
5746}
5747
5748static int
5749intel_e10_1 ()
5750{
5751 /* e10' [ expr ] e10' */
5752 if (cur_token.code == '[')
5753 {
5754 intel_match_token ('[');
5755
5756 /* Mark as a memory operand only if it's not already known to be an
5757 offset expression. If it's an offset expression, we need to keep
5758 the brace in. */
5759 if (intel_parser.op_modifier != OFFSET_FLAT)
5760 intel_parser.is_mem = 1;
5761 else
5762 strcat (intel_parser.disp, "[");
5763
5764 /* Add a '+' to the displacement string if necessary. */
5765 if (*intel_parser.disp != '\0'
5766 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5767 strcat (intel_parser.disp, "+");
5768
5769 if (intel_expr () && intel_match_token (']'))
5770 {
5771 /* Preserve brackets when the operand is an offset expression. */
5772 if (intel_parser.op_modifier == OFFSET_FLAT)
5773 strcat (intel_parser.disp, "]");
5774
5775 return intel_e10_1 ();
5776 }
5777 else
5778 return 0;
5779 }
5780
5781 /* e10' Empty */
5782 else
5783 return 1;
5784}
5785
5786/* e11 ( expr )
5787 | [ expr ]
5788 | BYTE
5789 | WORD
5790 | DWORD
5791 | QWORD
5792 | XWORD
5793 | $
5794 | .
5795 | register
5796 | id
5797 | ~
5798 | constant */
5799static int
5800intel_e11 ()
5801{
5802 /* e11 ( expr ) */
5803 if (cur_token.code == '(')
5804 {
5805 intel_match_token ('(');
5806 strcat (intel_parser.disp, "(");
5807
5808 if (intel_expr () && intel_match_token (')'))
5809 {
5810 strcat (intel_parser.disp, ")");
5811 return 1;
5812 }
5813 else
5814 return 0;
5815 }
5816
5817 /* e11 ~ expr */
5818 else if (cur_token.code == '~')
5819 {
5820 strcat (intel_parser.disp, "~");
5821 intel_match_token ('~');
5822
5823 return (intel_e11 ());
5824 }
5825
5826 /* e11 [ expr ] */
5827 else if (cur_token.code == '[')
5828 {
5829 intel_match_token ('[');
5830
5831 /* Mark as a memory operand only if it's not already known to be an
5832 offset expression. If it's an offset expression, we need to keep
5833 the brace in. */
5834 if (intel_parser.op_modifier != OFFSET_FLAT)
5835 intel_parser.is_mem = 1;
5836 else
5837 strcat (intel_parser.disp, "[");
5838
5839 /* Operands for jump/call inside brackets denote absolute addresses. */
5840 if (current_templates->start->opcode_modifier & Jump
5841 || current_templates->start->opcode_modifier & JumpDword
5842 || current_templates->start->opcode_modifier & JumpByte
5843 || current_templates->start->opcode_modifier & JumpInterSegment)
5844 i.types[this_operand] |= JumpAbsolute;
5845
5846 /* Add a '+' to the displacement string if necessary. */
5847 if (*intel_parser.disp != '\0'
5848 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5849 strcat (intel_parser.disp, "+");
5850
5851 if (intel_expr () && intel_match_token (']'))
5852 {
5853 /* Preserve brackets when the operand is an offset expression. */
5854 if (intel_parser.op_modifier == OFFSET_FLAT)
5855 strcat (intel_parser.disp, "]");
5856
5857 return 1;
5858 }
5859 else
5860 return 0;
5861 }
5862
5863 /* e11 BYTE
5864 | WORD
5865 | DWORD
5866 | QWORD
5867 | XWORD */
5868 else if (cur_token.code == T_BYTE
5869 || cur_token.code == T_WORD
5870 || cur_token.code == T_DWORD
5871 || cur_token.code == T_QWORD
5872 || cur_token.code == T_XWORD)
5873 {
5874 intel_match_token (cur_token.code);
5875
5876 return 1;
5877 }
5878
5879 /* e11 $
5880 | . */
5881 else if (cur_token.code == '$' || cur_token.code == '.')
5882 {
5883 strcat (intel_parser.disp, cur_token.str);
5884 intel_match_token (cur_token.code);
5885
5886 /* Mark as a memory operand only if it's not already known to be an
5887 offset expression. */
5888 if (intel_parser.op_modifier != OFFSET_FLAT)
5889 intel_parser.is_mem = 1;
5890
5891 return 1;
5892 }
5893
5894 /* e11 register */
5895 else if (cur_token.code == T_REG)
5896 {
5897 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5898
5899 intel_match_token (T_REG);
5900
5901 /* Check for segment change. */
5902 if (cur_token.code == ':')
5903 {
5904 if (reg->reg_type & (SReg2 | SReg3))
5905 {
5906 switch (reg->reg_num)
5907 {
5908 case 0:
5909 i.seg[i.mem_operands] = &es;
5910 break;
5911 case 1:
5912 i.seg[i.mem_operands] = &cs;
5913 break;
5914 case 2:
5915 i.seg[i.mem_operands] = &ss;
5916 break;
5917 case 3:
5918 i.seg[i.mem_operands] = &ds;
5919 break;
5920 case 4:
5921 i.seg[i.mem_operands] = &fs;
5922 break;
5923 case 5:
5924 i.seg[i.mem_operands] = &gs;
5925 break;
5926 }
5927 }
5928 else
5929 {
5930 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5931 return 0;
5932 }
5933 }
5934
5935 /* Not a segment register. Check for register scaling. */
5936 else if (cur_token.code == '*')
5937 {
5938 if (!intel_parser.is_mem)
5939 {
5940 as_bad (_("Register scaling only allowed in memory operands."));
5941 return 0;
5942 }
5943
5944 /* What follows must be a valid scale. */
5945 if (intel_match_token ('*')
5946 && strchr ("01248", *cur_token.str))
5947 {
5948 i.index_reg = reg;
5949 i.types[this_operand] |= BaseIndex;
5950
5951 /* Set the scale after setting the register (otherwise,
5952 i386_scale will complain) */
5953 i386_scale (cur_token.str);
5954 intel_match_token (T_CONST);
5955 }
5956 else
5957 {
5958 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5959 cur_token.str);
5960 return 0;
5961 }
5962 }
5963
5964 /* No scaling. If this is a memory operand, the register is either a
5965 base register (first occurrence) or an index register (second
5966 occurrence). */
5967 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5968 {
5969 if (i.base_reg && i.index_reg)
5970 {
5971 as_bad (_("Too many register references in memory operand."));
5972 return 0;
5973 }
5974
5975 if (i.base_reg == NULL)
5976 i.base_reg = reg;
5977 else
5978 i.index_reg = reg;
5979
5980 i.types[this_operand] |= BaseIndex;
5981 }
5982
5983 /* Offset modifier. Add the register to the displacement string to be
5984 parsed as an immediate expression after we're done. */
5985 else if (intel_parser.op_modifier == OFFSET_FLAT)
5986 strcat (intel_parser.disp, reg->reg_name);
5987
5988 /* It's neither base nor index nor offset. */
5989 else
5990 {
5991 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5992 i.op[this_operand].regs = reg;
5993 i.reg_operands++;
5994 }
5995
5996 /* Since registers are not part of the displacement string (except
5997 when we're parsing offset operands), we may need to remove any
5998 preceding '+' from the displacement string. */
5999 if (*intel_parser.disp != '\0'
6000 && intel_parser.op_modifier != OFFSET_FLAT)
6001 {
6002 char *s = intel_parser.disp;
6003 s += strlen (s) - 1;
6004 if (*s == '+')
6005 *s = '\0';
6006 }
6007
6008 return 1;
6009 }
6010
6011 /* e11 id */
6012 else if (cur_token.code == T_ID)
6013 {
6014 /* Add the identifier to the displacement string. */
6015 strcat (intel_parser.disp, cur_token.str);
6016 intel_match_token (T_ID);
6017
6018 /* The identifier represents a memory reference only if it's not
6019 preceded by an offset modifier. */
6020 if (intel_parser.op_modifier != OFFSET_FLAT)
6021 intel_parser.is_mem = 1;
6022
6023 return 1;
6024 }
6025
6026 /* e11 constant */
6027 else if (cur_token.code == T_CONST
6028 || cur_token.code == '-'
6029 || cur_token.code == '+')
6030 {
6031 char *save_str;
6032
6033 /* Allow constants that start with `+' or `-'. */
6034 if (cur_token.code == '-' || cur_token.code == '+')
6035 {
6036 strcat (intel_parser.disp, cur_token.str);
6037 intel_match_token (cur_token.code);
6038 if (cur_token.code != T_CONST)
6039 {
6040 as_bad (_("Syntax error. Expecting a constant. Got `%s'."),
6041 cur_token.str);
6042 return 0;
6043 }
6044 }
6045
6046 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6047 if (save_str == NULL)
6048 abort ();
6049 strcpy (save_str, cur_token.str);
6050
6051 /* Get the next token to check for register scaling. */
6052 intel_match_token (cur_token.code);
6053
6054 /* Check if this constant is a scaling factor for an index register. */
6055 if (cur_token.code == '*')
6056 {
6057 if (intel_match_token ('*') && cur_token.code == T_REG)
6058 {
6059 if (!intel_parser.is_mem)
6060 {
6061 as_bad (_("Register scaling only allowed in memory operands."));
6062 return 0;
6063 }
6064
6065 /* The constant is followed by `* reg', so it must be
6066 a valid scale. */
6067 if (strchr ("01248", *save_str))
6068 {
6069 i.index_reg = cur_token.reg;
6070 i.types[this_operand] |= BaseIndex;
6071
6072 /* Set the scale after setting the register (otherwise,
6073 i386_scale will complain) */
6074 i386_scale (save_str);
6075 intel_match_token (T_REG);
6076
6077 /* Since registers are not part of the displacement
6078 string, we may need to remove any preceding '+' from
6079 the displacement string. */
6080 if (*intel_parser.disp != '\0')
6081 {
6082 char *s = intel_parser.disp;
6083 s += strlen (s) - 1;
6084 if (*s == '+')
6085 *s = '\0';
6086 }
6087
6088 free (save_str);
6089
6090 return 1;
6091 }
6092 else
6093 return 0;
6094 }
6095
6096 /* The constant was not used for register scaling. Since we have
6097 already consumed the token following `*' we now need to put it
6098 back in the stream. */
6099 else
6100 intel_putback_token ();
6101 }
6102
6103 /* Add the constant to the displacement string. */
6104 strcat (intel_parser.disp, save_str);
6105 free (save_str);
6106
6107 return 1;
6108 }
6109
6110 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6111 return 0;
6112}
6113
6114/* Match the given token against cur_token. If they match, read the next
6115 token from the operand string. */
6116static int
6117intel_match_token (code)
6118 int code;
6119{
6120 if (cur_token.code == code)
6121 {
6122 intel_get_token ();
6123 return 1;
6124 }
6125 else
6126 {
6127 as_bad (_("Unexpected token `%s'"), cur_token.str);
6128 return 0;
6129 }
6130}
6131
6132/* Read a new token from intel_parser.op_string and store it in cur_token. */
6133static void
6134intel_get_token ()
6135{
6136 char *end_op;
6137 const reg_entry *reg;
6138 struct intel_token new_token;
6139
6140 new_token.code = T_NIL;
6141 new_token.reg = NULL;
6142 new_token.str = NULL;
6143
6144 /* Free the memory allocated to the previous token and move
6145 cur_token to prev_token. */
6146 if (prev_token.str)
6147 free (prev_token.str);
6148
6149 prev_token = cur_token;
6150
6151 /* Skip whitespace. */
6152 while (is_space_char (*intel_parser.op_string))
6153 intel_parser.op_string++;
6154
6155 /* Return an empty token if we find nothing else on the line. */
6156 if (*intel_parser.op_string == '\0')
6157 {
6158 cur_token = new_token;
6159 return;
6160 }
6161
6162 /* The new token cannot be larger than the remainder of the operand
6163 string. */
6164 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6165 if (new_token.str == NULL)
6166 abort ();
6167 new_token.str[0] = '\0';
6168
6169 if (strchr ("0123456789", *intel_parser.op_string))
6170 {
6171 char *p = new_token.str;
6172 char *q = intel_parser.op_string;
6173 new_token.code = T_CONST;
6174
6175 /* Allow any kind of identifier char to encompass floating point and
6176 hexadecimal numbers. */
6177 while (is_identifier_char (*q))
6178 *p++ = *q++;
6179 *p = '\0';
6180
6181 /* Recognize special symbol names [0-9][bf]. */
6182 if (strlen (intel_parser.op_string) == 2
6183 && (intel_parser.op_string[1] == 'b'
6184 || intel_parser.op_string[1] == 'f'))
6185 new_token.code = T_ID;
6186 }
6187
6188 else if (strchr ("<>", *intel_parser.op_string)
6189 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6190 {
6191 new_token.code = T_SHIFTOP;
6192 new_token.str[0] = *intel_parser.op_string;
6193 new_token.str[1] = *intel_parser.op_string;
6194 new_token.str[2] = '\0';
6195 }
6196
6197 else if (strchr ("+-/*&|:[]()~", *intel_parser.op_string))
6198 {
6199 new_token.code = *intel_parser.op_string;
6200 new_token.str[0] = *intel_parser.op_string;
6201 new_token.str[1] = '\0';
6202 }
6203
6204 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6205 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6206 {
6207 new_token.code = T_REG;
6208 new_token.reg = reg;
6209
6210 if (*intel_parser.op_string == REGISTER_PREFIX)
6211 {
6212 new_token.str[0] = REGISTER_PREFIX;
6213 new_token.str[1] = '\0';
6214 }
6215
6216 strcat (new_token.str, reg->reg_name);
6217 }
6218
6219 else if (is_identifier_char (*intel_parser.op_string))
6220 {
6221 char *p = new_token.str;
6222 char *q = intel_parser.op_string;
6223
6224 /* A '.' or '$' followed by an identifier char is an identifier.
6225 Otherwise, it's operator '.' followed by an expression. */
6226 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6227 {
6228 new_token.code = *q;
6229 new_token.str[0] = *q;
6230 new_token.str[1] = '\0';
6231 }
6232 else
6233 {
6234 while (is_identifier_char (*q) || *q == '@')
6235 *p++ = *q++;
6236 *p = '\0';
6237
6238 if (strcasecmp (new_token.str, "BYTE") == 0)
6239 new_token.code = T_BYTE;
6240
6241 else if (strcasecmp (new_token.str, "WORD") == 0)
6242 new_token.code = T_WORD;
6243
6244 else if (strcasecmp (new_token.str, "DWORD") == 0)
6245 new_token.code = T_DWORD;
6246
6247 else if (strcasecmp (new_token.str, "QWORD") == 0)
6248 new_token.code = T_QWORD;
6249
6250 else if (strcasecmp (new_token.str, "XWORD") == 0)
6251 new_token.code = T_XWORD;
6252
6253 else if (strcasecmp (new_token.str, "PTR") == 0)
6254 new_token.code = T_PTR;
6255
6256 else if (strcasecmp (new_token.str, "SHORT") == 0)
6257 new_token.code = T_SHORT;
6258
6259 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6260 {
6261 new_token.code = T_OFFSET;
6262
6263 /* ??? This is not mentioned in the MASM grammar but gcc
6264 makes use of it with -mintel-syntax. OFFSET may be
6265 followed by FLAT: */
6266 if (strncasecmp (q, " FLAT:", 6) == 0)
6267 strcat (new_token.str, " FLAT:");
6268 }
6269
6270 /* ??? This is not mentioned in the MASM grammar. */
6271 else if (strcasecmp (new_token.str, "FLAT") == 0)
6272 new_token.code = T_OFFSET;
6273
6274 else
6275 new_token.code = T_ID;
6276 }
6277 }
6278
6279 else
6280 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
6281
6282 intel_parser.op_string += strlen (new_token.str);
6283 cur_token = new_token;
6284}
6285
6286/* Put cur_token back into the token stream and make cur_token point to
6287 prev_token. */
6288static void
6289intel_putback_token ()
6290{
6291 intel_parser.op_string -= strlen (cur_token.str);
6292 free (cur_token.str);
6293 cur_token = prev_token;
6294
6295 /* Forget prev_token. */
6296 prev_token.code = T_NIL;
6297 prev_token.reg = NULL;
6298 prev_token.str = NULL;
6299}
6300
6301int
6302tc_x86_regname_to_dw2regnum (const char *regname)
6303{
6304 unsigned int regnum;
6305 unsigned int regnames_count;
6306 char *regnames_32[] =
6307 {
6308 "eax", "ecx", "edx", "ebx",
6309 "esp", "ebp", "esi", "edi",
6310 "eip"
6311 };
6312 char *regnames_64[] =
6313 {
6314 "rax", "rbx", "rcx", "rdx",
6315 "rdi", "rsi", "rbp", "rsp",
6316 "r8", "r9", "r10", "r11",
6317 "r12", "r13", "r14", "r15",
6318 "rip"
6319 };
6320 char **regnames;
6321
6322 if (flag_code == CODE_64BIT)
6323 {
6324 regnames = regnames_64;
6325 regnames_count = ARRAY_SIZE (regnames_64);
6326 }
6327 else
6328 {
6329 regnames = regnames_32;
6330 regnames_count = ARRAY_SIZE (regnames_32);
6331 }
6332
6333 for (regnum = 0; regnum < regnames_count; regnum++)
6334 if (strcmp (regname, regnames[regnum]) == 0)
6335 return regnum;
6336
6337 return -1;
6338}
6339
6340void
6341tc_x86_frame_initial_instructions (void)
6342{
6343 static unsigned int sp_regno;
6344
6345 if (!sp_regno)
6346 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6347 ? "rsp" : "esp");
6348
6349 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6350 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
6351}
6352
6353int
6354i386_elf_section_type (const char *str, size_t len)
6355{
6356 if (flag_code == CODE_64BIT
6357 && len == sizeof ("unwind") - 1
6358 && strncmp (str, "unwind", 6) == 0)
6359 return SHT_X86_64_UNWIND;
6360
6361 return -1;
6362}
This page took 0.042121 seconds and 4 git commands to generate.