*** empty log message ***
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
... / ...
CommitLineData
1/* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30#include "as.h"
31#include "safe-ctype.h"
32#include "subsegs.h"
33#include "dwarf2dbg.h"
34#include "dw2gencfi.h"
35#include "elf/x86-64.h"
36#include "opcodes/i386-init.h"
37
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
42#ifndef INFER_ADDR_PREFIX
43#define INFER_ADDR_PREFIX 1
44#endif
45
46#ifndef DEFAULT_ARCH
47#define DEFAULT_ARCH "i386"
48#endif
49
50#ifndef INLINE
51#if __GNUC__ >= 2
52#define INLINE __inline__
53#else
54#define INLINE
55#endif
56#endif
57
58/* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 LOCKREP_PREFIX. */
63#define WAIT_PREFIX 0
64#define SEG_PREFIX 1
65#define ADDR_PREFIX 2
66#define DATA_PREFIX 3
67#define LOCKREP_PREFIX 4
68#define REX_PREFIX 5 /* must come last. */
69#define MAX_PREFIXES 6 /* max prefixes per opcode */
70
71/* we define the syntax here (modulo base,index,scale syntax) */
72#define REGISTER_PREFIX '%'
73#define IMMEDIATE_PREFIX '$'
74#define ABSOLUTE_PREFIX '*'
75
76/* these are the instruction mnemonic suffixes in AT&T syntax or
77 memory operand size in Intel syntax. */
78#define WORD_MNEM_SUFFIX 'w'
79#define BYTE_MNEM_SUFFIX 'b'
80#define SHORT_MNEM_SUFFIX 's'
81#define LONG_MNEM_SUFFIX 'l'
82#define QWORD_MNEM_SUFFIX 'q'
83#define XMMWORD_MNEM_SUFFIX 'x'
84#define YMMWORD_MNEM_SUFFIX 'y'
85/* Intel Syntax. Use a non-ascii letter since since it never appears
86 in instructions. */
87#define LONG_DOUBLE_MNEM_SUFFIX '\1'
88
89#define END_OF_INSN '\0'
90
91/*
92 'templates' is for grouping together 'template' structures for opcodes
93 of the same name. This is only used for storing the insns in the grand
94 ole hash table of insns.
95 The templates themselves start at START and range up to (but not including)
96 END.
97 */
98typedef struct
99{
100 const template *start;
101 const template *end;
102}
103templates;
104
105/* 386 operand encoding bytes: see 386 book for details of this. */
106typedef struct
107{
108 unsigned int regmem; /* codes register or memory operand */
109 unsigned int reg; /* codes register operand (or extended opcode) */
110 unsigned int mode; /* how to interpret regmem & reg */
111}
112modrm_byte;
113
114/* x86-64 extension prefix. */
115typedef int rex_byte;
116
117/* 386 opcode byte to code indirect addressing. */
118typedef struct
119{
120 unsigned base;
121 unsigned index;
122 unsigned scale;
123}
124sib_byte;
125
126/* x86 arch names, types and features */
127typedef struct
128{
129 const char *name; /* arch name */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132}
133arch_entry;
134
135static void set_code_flag (int);
136static void set_16bit_gcc_code_flag (int);
137static void set_intel_syntax (int);
138static void set_intel_mnemonic (int);
139static void set_allow_index_reg (int);
140static void set_sse_check (int);
141static void set_cpu_arch (int);
142#ifdef TE_PE
143static void pe_directive_secrel (int);
144#endif
145static void signed_cons (int);
146static char *output_invalid (int c);
147static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
148 const char *);
149static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
150 const char *);
151static int i386_att_operand (char *);
152static int i386_intel_operand (char *, int);
153static int i386_intel_simplify (expressionS *);
154static int i386_intel_parse_name (const char *, expressionS *);
155static const reg_entry *parse_register (char *, char **);
156static char *parse_insn (char *, char *);
157static char *parse_operands (char *, const char *);
158static void swap_operands (void);
159static void swap_2_operands (int, int);
160static void optimize_imm (void);
161static void optimize_disp (void);
162static const template *match_template (void);
163static int check_string (void);
164static int process_suffix (void);
165static int check_byte_reg (void);
166static int check_long_reg (void);
167static int check_qword_reg (void);
168static int check_word_reg (void);
169static int finalize_imm (void);
170static int process_operands (void);
171static const seg_entry *build_modrm_byte (void);
172static void output_insn (void);
173static void output_imm (fragS *, offsetT);
174static void output_disp (fragS *, offsetT);
175#ifndef I386COFF
176static void s_bss (int);
177#endif
178#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
179static void handle_large_common (int small ATTRIBUTE_UNUSED);
180#endif
181
182static const char *default_arch = DEFAULT_ARCH;
183
184/* VEX prefix. */
185typedef struct
186{
187 /* VEX prefix is either 2 byte or 3 byte. */
188 unsigned char bytes[3];
189 unsigned int length;
190 /* Destination or source register specifier. */
191 const reg_entry *register_specifier;
192} vex_prefix;
193
194/* 'md_assemble ()' gathers together information and puts it into a
195 i386_insn. */
196
197union i386_op
198 {
199 expressionS *disps;
200 expressionS *imms;
201 const reg_entry *regs;
202 };
203
204struct _i386_insn
205 {
206 /* TM holds the template for the insn were currently assembling. */
207 template tm;
208
209 /* SUFFIX holds the instruction size suffix for byte, word, dword
210 or qword, if given. */
211 char suffix;
212
213 /* OPERANDS gives the number of given operands. */
214 unsigned int operands;
215
216 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
217 of given register, displacement, memory operands and immediate
218 operands. */
219 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
220
221 /* TYPES [i] is the type (see above #defines) which tells us how to
222 use OP[i] for the corresponding operand. */
223 i386_operand_type types[MAX_OPERANDS];
224
225 /* Displacement expression, immediate expression, or register for each
226 operand. */
227 union i386_op op[MAX_OPERANDS];
228
229 /* Flags for operands. */
230 unsigned int flags[MAX_OPERANDS];
231#define Operand_PCrel 1
232
233 /* Relocation type for operand */
234 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
235
236 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
237 the base index byte below. */
238 const reg_entry *base_reg;
239 const reg_entry *index_reg;
240 unsigned int log2_scale_factor;
241
242 /* SEG gives the seg_entries of this insn. They are zero unless
243 explicit segment overrides are given. */
244 const seg_entry *seg[2];
245
246 /* PREFIX holds all the given prefix opcodes (usually null).
247 PREFIXES is the number of prefix opcodes. */
248 unsigned int prefixes;
249 unsigned char prefix[MAX_PREFIXES];
250
251 /* RM and SIB are the modrm byte and the sib byte where the
252 addressing modes of this insn are encoded. */
253 modrm_byte rm;
254 rex_byte rex;
255 sib_byte sib;
256 vex_prefix vex;
257
258 /* Swap operand in encoding. */
259 unsigned int swap_operand : 1;
260 };
261
262typedef struct _i386_insn i386_insn;
263
264/* List of chars besides those in app.c:symbol_chars that can start an
265 operand. Used to prevent the scrubber eating vital white-space. */
266const char extra_symbol_chars[] = "*%-(["
267#ifdef LEX_AT
268 "@"
269#endif
270#ifdef LEX_QM
271 "?"
272#endif
273 ;
274
275#if (defined (TE_I386AIX) \
276 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
277 && !defined (TE_GNU) \
278 && !defined (TE_LINUX) \
279 && !defined (TE_NETWARE) \
280 && !defined (TE_FreeBSD) \
281 && !defined (TE_NetBSD)))
282/* This array holds the chars that always start a comment. If the
283 pre-processor is disabled, these aren't very useful. The option
284 --divide will remove '/' from this list. */
285const char *i386_comment_chars = "#/";
286#define SVR4_COMMENT_CHARS 1
287#define PREFIX_SEPARATOR '\\'
288
289#else
290const char *i386_comment_chars = "#";
291#define PREFIX_SEPARATOR '/'
292#endif
293
294/* This array holds the chars that only start a comment at the beginning of
295 a line. If the line seems to have the form '# 123 filename'
296 .line and .file directives will appear in the pre-processed output.
297 Note that input_file.c hand checks for '#' at the beginning of the
298 first line of the input file. This is because the compiler outputs
299 #NO_APP at the beginning of its output.
300 Also note that comments started like this one will always work if
301 '/' isn't otherwise defined. */
302const char line_comment_chars[] = "#/";
303
304const char line_separator_chars[] = ";";
305
306/* Chars that can be used to separate mant from exp in floating point
307 nums. */
308const char EXP_CHARS[] = "eE";
309
310/* Chars that mean this number is a floating point constant
311 As in 0f12.456
312 or 0d1.2345e12. */
313const char FLT_CHARS[] = "fFdDxX";
314
315/* Tables for lexical analysis. */
316static char mnemonic_chars[256];
317static char register_chars[256];
318static char operand_chars[256];
319static char identifier_chars[256];
320static char digit_chars[256];
321
322/* Lexical macros. */
323#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
324#define is_operand_char(x) (operand_chars[(unsigned char) x])
325#define is_register_char(x) (register_chars[(unsigned char) x])
326#define is_space_char(x) ((x) == ' ')
327#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
328#define is_digit_char(x) (digit_chars[(unsigned char) x])
329
330/* All non-digit non-letter characters that may occur in an operand. */
331static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
332
333/* md_assemble() always leaves the strings it's passed unaltered. To
334 effect this we maintain a stack of saved characters that we've smashed
335 with '\0's (indicating end of strings for various sub-fields of the
336 assembler instruction). */
337static char save_stack[32];
338static char *save_stack_p;
339#define END_STRING_AND_SAVE(s) \
340 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
341#define RESTORE_END_STRING(s) \
342 do { *(s) = *--save_stack_p; } while (0)
343
344/* The instruction we're assembling. */
345static i386_insn i;
346
347/* Possible templates for current insn. */
348static const templates *current_templates;
349
350/* Per instruction expressionS buffers: max displacements & immediates. */
351static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
352static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
353
354/* Current operand we are working on. */
355static int this_operand = -1;
356
357/* We support four different modes. FLAG_CODE variable is used to distinguish
358 these. */
359
360enum flag_code {
361 CODE_32BIT,
362 CODE_16BIT,
363 CODE_64BIT };
364
365static enum flag_code flag_code;
366static unsigned int object_64bit;
367static int use_rela_relocations = 0;
368
369/* The names used to print error messages. */
370static const char *flag_code_names[] =
371 {
372 "32",
373 "16",
374 "64"
375 };
376
377/* 1 for intel syntax,
378 0 if att syntax. */
379static int intel_syntax = 0;
380
381/* 1 for intel mnemonic,
382 0 if att mnemonic. */
383static int intel_mnemonic = !SYSV386_COMPAT;
384
385/* 1 if support old (<= 2.8.1) versions of gcc. */
386static int old_gcc = OLDGCC_COMPAT;
387
388/* 1 if pseudo registers are permitted. */
389static int allow_pseudo_reg = 0;
390
391/* 1 if register prefix % not required. */
392static int allow_naked_reg = 0;
393
394/* 1 if pseudo index register, eiz/riz, is allowed . */
395static int allow_index_reg = 0;
396
397static enum
398 {
399 sse_check_none = 0,
400 sse_check_warning,
401 sse_check_error
402 }
403sse_check;
404
405/* Register prefix used for error message. */
406static const char *register_prefix = "%";
407
408/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
409 leave, push, and pop instructions so that gcc has the same stack
410 frame as in 32 bit mode. */
411static char stackop_size = '\0';
412
413/* Non-zero to optimize code alignment. */
414int optimize_align_code = 1;
415
416/* Non-zero to quieten some warnings. */
417static int quiet_warnings = 0;
418
419/* CPU name. */
420static const char *cpu_arch_name = NULL;
421static char *cpu_sub_arch_name = NULL;
422
423/* CPU feature flags. */
424static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
425
426/* If we have selected a cpu we are generating instructions for. */
427static int cpu_arch_tune_set = 0;
428
429/* Cpu we are generating instructions for. */
430enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
431
432/* CPU feature flags of cpu we are generating instructions for. */
433static i386_cpu_flags cpu_arch_tune_flags;
434
435/* CPU instruction set architecture used. */
436enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
437
438/* CPU feature flags of instruction set architecture used. */
439i386_cpu_flags cpu_arch_isa_flags;
440
441/* If set, conditional jumps are not automatically promoted to handle
442 larger than a byte offset. */
443static unsigned int no_cond_jump_promotion = 0;
444
445/* Encode SSE instructions with VEX prefix. */
446static unsigned int sse2avx;
447
448/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
449static symbolS *GOT_symbol;
450
451/* The dwarf2 return column, adjusted for 32 or 64 bit. */
452unsigned int x86_dwarf2_return_column;
453
454/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
455int x86_cie_data_alignment;
456
457/* Interface to relax_segment.
458 There are 3 major relax states for 386 jump insns because the
459 different types of jumps add different sizes to frags when we're
460 figuring out what sort of jump to choose to reach a given label. */
461
462/* Types. */
463#define UNCOND_JUMP 0
464#define COND_JUMP 1
465#define COND_JUMP86 2
466
467/* Sizes. */
468#define CODE16 1
469#define SMALL 0
470#define SMALL16 (SMALL | CODE16)
471#define BIG 2
472#define BIG16 (BIG | CODE16)
473
474#ifndef INLINE
475#ifdef __GNUC__
476#define INLINE __inline__
477#else
478#define INLINE
479#endif
480#endif
481
482#define ENCODE_RELAX_STATE(type, size) \
483 ((relax_substateT) (((type) << 2) | (size)))
484#define TYPE_FROM_RELAX_STATE(s) \
485 ((s) >> 2)
486#define DISP_SIZE_FROM_RELAX_STATE(s) \
487 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
488
489/* This table is used by relax_frag to promote short jumps to long
490 ones where necessary. SMALL (short) jumps may be promoted to BIG
491 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
492 don't allow a short jump in a 32 bit code segment to be promoted to
493 a 16 bit offset jump because it's slower (requires data size
494 prefix), and doesn't work, unless the destination is in the bottom
495 64k of the code segment (The top 16 bits of eip are zeroed). */
496
497const relax_typeS md_relax_table[] =
498{
499 /* The fields are:
500 1) most positive reach of this state,
501 2) most negative reach of this state,
502 3) how many bytes this mode will have in the variable part of the frag
503 4) which index into the table to try if we can't fit into this one. */
504
505 /* UNCOND_JUMP states. */
506 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
507 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
508 /* dword jmp adds 4 bytes to frag:
509 0 extra opcode bytes, 4 displacement bytes. */
510 {0, 0, 4, 0},
511 /* word jmp adds 2 byte2 to frag:
512 0 extra opcode bytes, 2 displacement bytes. */
513 {0, 0, 2, 0},
514
515 /* COND_JUMP states. */
516 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
517 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
518 /* dword conditionals adds 5 bytes to frag:
519 1 extra opcode byte, 4 displacement bytes. */
520 {0, 0, 5, 0},
521 /* word conditionals add 3 bytes to frag:
522 1 extra opcode byte, 2 displacement bytes. */
523 {0, 0, 3, 0},
524
525 /* COND_JUMP86 states. */
526 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
527 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
528 /* dword conditionals adds 5 bytes to frag:
529 1 extra opcode byte, 4 displacement bytes. */
530 {0, 0, 5, 0},
531 /* word conditionals add 4 bytes to frag:
532 1 displacement byte and a 3 byte long branch insn. */
533 {0, 0, 4, 0}
534};
535
536static const arch_entry cpu_arch[] =
537{
538 { "generic32", PROCESSOR_GENERIC32,
539 CPU_GENERIC32_FLAGS },
540 { "generic64", PROCESSOR_GENERIC64,
541 CPU_GENERIC64_FLAGS },
542 { "i8086", PROCESSOR_UNKNOWN,
543 CPU_NONE_FLAGS },
544 { "i186", PROCESSOR_UNKNOWN,
545 CPU_I186_FLAGS },
546 { "i286", PROCESSOR_UNKNOWN,
547 CPU_I286_FLAGS },
548 { "i386", PROCESSOR_I386,
549 CPU_I386_FLAGS },
550 { "i486", PROCESSOR_I486,
551 CPU_I486_FLAGS },
552 { "i586", PROCESSOR_PENTIUM,
553 CPU_I586_FLAGS },
554 { "i686", PROCESSOR_PENTIUMPRO,
555 CPU_I686_FLAGS },
556 { "pentium", PROCESSOR_PENTIUM,
557 CPU_I586_FLAGS },
558 { "pentiumpro", PROCESSOR_PENTIUMPRO,
559 CPU_I686_FLAGS },
560 { "pentiumii", PROCESSOR_PENTIUMPRO,
561 CPU_P2_FLAGS },
562 { "pentiumiii",PROCESSOR_PENTIUMPRO,
563 CPU_P3_FLAGS },
564 { "pentium4", PROCESSOR_PENTIUM4,
565 CPU_P4_FLAGS },
566 { "prescott", PROCESSOR_NOCONA,
567 CPU_CORE_FLAGS },
568 { "nocona", PROCESSOR_NOCONA,
569 CPU_NOCONA_FLAGS },
570 { "yonah", PROCESSOR_CORE,
571 CPU_CORE_FLAGS },
572 { "core", PROCESSOR_CORE,
573 CPU_CORE_FLAGS },
574 { "merom", PROCESSOR_CORE2,
575 CPU_CORE2_FLAGS },
576 { "core2", PROCESSOR_CORE2,
577 CPU_CORE2_FLAGS },
578 { "corei7", PROCESSOR_COREI7,
579 CPU_COREI7_FLAGS },
580 { "k6", PROCESSOR_K6,
581 CPU_K6_FLAGS },
582 { "k6_2", PROCESSOR_K6,
583 CPU_K6_2_FLAGS },
584 { "athlon", PROCESSOR_ATHLON,
585 CPU_ATHLON_FLAGS },
586 { "sledgehammer", PROCESSOR_K8,
587 CPU_K8_FLAGS },
588 { "opteron", PROCESSOR_K8,
589 CPU_K8_FLAGS },
590 { "k8", PROCESSOR_K8,
591 CPU_K8_FLAGS },
592 { "amdfam10", PROCESSOR_AMDFAM10,
593 CPU_AMDFAM10_FLAGS },
594 { ".mmx", PROCESSOR_UNKNOWN,
595 CPU_MMX_FLAGS },
596 { ".sse", PROCESSOR_UNKNOWN,
597 CPU_SSE_FLAGS },
598 { ".sse2", PROCESSOR_UNKNOWN,
599 CPU_SSE2_FLAGS },
600 { ".sse3", PROCESSOR_UNKNOWN,
601 CPU_SSE3_FLAGS },
602 { ".ssse3", PROCESSOR_UNKNOWN,
603 CPU_SSSE3_FLAGS },
604 { ".sse4.1", PROCESSOR_UNKNOWN,
605 CPU_SSE4_1_FLAGS },
606 { ".sse4.2", PROCESSOR_UNKNOWN,
607 CPU_SSE4_2_FLAGS },
608 { ".sse4", PROCESSOR_UNKNOWN,
609 CPU_SSE4_2_FLAGS },
610 { ".avx", PROCESSOR_UNKNOWN,
611 CPU_AVX_FLAGS },
612 { ".vmx", PROCESSOR_UNKNOWN,
613 CPU_VMX_FLAGS },
614 { ".smx", PROCESSOR_UNKNOWN,
615 CPU_SMX_FLAGS },
616 { ".xsave", PROCESSOR_UNKNOWN,
617 CPU_XSAVE_FLAGS },
618 { ".aes", PROCESSOR_UNKNOWN,
619 CPU_AES_FLAGS },
620 { ".pclmul", PROCESSOR_UNKNOWN,
621 CPU_PCLMUL_FLAGS },
622 { ".clmul", PROCESSOR_UNKNOWN,
623 CPU_PCLMUL_FLAGS },
624 { ".fma", PROCESSOR_UNKNOWN,
625 CPU_FMA_FLAGS },
626 { ".movbe", PROCESSOR_UNKNOWN,
627 CPU_MOVBE_FLAGS },
628 { ".ept", PROCESSOR_UNKNOWN,
629 CPU_EPT_FLAGS },
630 { ".clflush", PROCESSOR_UNKNOWN,
631 CPU_CLFLUSH_FLAGS },
632 { ".syscall", PROCESSOR_UNKNOWN,
633 CPU_SYSCALL_FLAGS },
634 { ".rdtscp", PROCESSOR_UNKNOWN,
635 CPU_RDTSCP_FLAGS },
636 { ".3dnow", PROCESSOR_UNKNOWN,
637 CPU_3DNOW_FLAGS },
638 { ".3dnowa", PROCESSOR_UNKNOWN,
639 CPU_3DNOWA_FLAGS },
640 { ".padlock", PROCESSOR_UNKNOWN,
641 CPU_PADLOCK_FLAGS },
642 { ".pacifica", PROCESSOR_UNKNOWN,
643 CPU_SVME_FLAGS },
644 { ".svme", PROCESSOR_UNKNOWN,
645 CPU_SVME_FLAGS },
646 { ".sse4a", PROCESSOR_UNKNOWN,
647 CPU_SSE4A_FLAGS },
648 { ".abm", PROCESSOR_UNKNOWN,
649 CPU_ABM_FLAGS },
650};
651
652#ifdef I386COFF
653/* Like s_lcomm_internal in gas/read.c but the alignment string
654 is allowed to be optional. */
655
656static symbolS *
657pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
658{
659 addressT align = 0;
660
661 SKIP_WHITESPACE ();
662
663 if (needs_align
664 && *input_line_pointer == ',')
665 {
666 align = parse_align (needs_align - 1);
667
668 if (align == (addressT) -1)
669 return NULL;
670 }
671 else
672 {
673 if (size >= 8)
674 align = 3;
675 else if (size >= 4)
676 align = 2;
677 else if (size >= 2)
678 align = 1;
679 else
680 align = 0;
681 }
682
683 bss_alloc (symbolP, size, align);
684 return symbolP;
685}
686
687static void
688pe_lcomm (int needs_align)
689{
690 s_comm_internal (needs_align * 2, pe_lcomm_internal);
691}
692#endif
693
694const pseudo_typeS md_pseudo_table[] =
695{
696#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
697 {"align", s_align_bytes, 0},
698#else
699 {"align", s_align_ptwo, 0},
700#endif
701 {"arch", set_cpu_arch, 0},
702#ifndef I386COFF
703 {"bss", s_bss, 0},
704#else
705 {"lcomm", pe_lcomm, 1},
706#endif
707 {"ffloat", float_cons, 'f'},
708 {"dfloat", float_cons, 'd'},
709 {"tfloat", float_cons, 'x'},
710 {"value", cons, 2},
711 {"slong", signed_cons, 4},
712 {"noopt", s_ignore, 0},
713 {"optim", s_ignore, 0},
714 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
715 {"code16", set_code_flag, CODE_16BIT},
716 {"code32", set_code_flag, CODE_32BIT},
717 {"code64", set_code_flag, CODE_64BIT},
718 {"intel_syntax", set_intel_syntax, 1},
719 {"att_syntax", set_intel_syntax, 0},
720 {"intel_mnemonic", set_intel_mnemonic, 1},
721 {"att_mnemonic", set_intel_mnemonic, 0},
722 {"allow_index_reg", set_allow_index_reg, 1},
723 {"disallow_index_reg", set_allow_index_reg, 0},
724 {"sse_check", set_sse_check, 0},
725#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
726 {"largecomm", handle_large_common, 0},
727#else
728 {"file", (void (*) (int)) dwarf2_directive_file, 0},
729 {"loc", dwarf2_directive_loc, 0},
730 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
731#endif
732#ifdef TE_PE
733 {"secrel32", pe_directive_secrel, 0},
734#endif
735 {0, 0, 0}
736};
737
738/* For interface with expression (). */
739extern char *input_line_pointer;
740
741/* Hash table for instruction mnemonic lookup. */
742static struct hash_control *op_hash;
743
744/* Hash table for register lookup. */
745static struct hash_control *reg_hash;
746\f
747void
748i386_align_code (fragS *fragP, int count)
749{
750 /* Various efficient no-op patterns for aligning code labels.
751 Note: Don't try to assemble the instructions in the comments.
752 0L and 0w are not legal. */
753 static const char f32_1[] =
754 {0x90}; /* nop */
755 static const char f32_2[] =
756 {0x66,0x90}; /* xchg %ax,%ax */
757 static const char f32_3[] =
758 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
759 static const char f32_4[] =
760 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
761 static const char f32_5[] =
762 {0x90, /* nop */
763 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
764 static const char f32_6[] =
765 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
766 static const char f32_7[] =
767 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
768 static const char f32_8[] =
769 {0x90, /* nop */
770 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
771 static const char f32_9[] =
772 {0x89,0xf6, /* movl %esi,%esi */
773 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
774 static const char f32_10[] =
775 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
776 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
777 static const char f32_11[] =
778 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
779 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
780 static const char f32_12[] =
781 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
782 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
783 static const char f32_13[] =
784 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
785 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
786 static const char f32_14[] =
787 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
788 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
789 static const char f16_3[] =
790 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
791 static const char f16_4[] =
792 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
793 static const char f16_5[] =
794 {0x90, /* nop */
795 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
796 static const char f16_6[] =
797 {0x89,0xf6, /* mov %si,%si */
798 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
799 static const char f16_7[] =
800 {0x8d,0x74,0x00, /* lea 0(%si),%si */
801 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
802 static const char f16_8[] =
803 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
804 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
805 static const char jump_31[] =
806 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
807 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
808 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
809 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
810 static const char *const f32_patt[] = {
811 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
812 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
813 };
814 static const char *const f16_patt[] = {
815 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
816 };
817 /* nopl (%[re]ax) */
818 static const char alt_3[] =
819 {0x0f,0x1f,0x00};
820 /* nopl 0(%[re]ax) */
821 static const char alt_4[] =
822 {0x0f,0x1f,0x40,0x00};
823 /* nopl 0(%[re]ax,%[re]ax,1) */
824 static const char alt_5[] =
825 {0x0f,0x1f,0x44,0x00,0x00};
826 /* nopw 0(%[re]ax,%[re]ax,1) */
827 static const char alt_6[] =
828 {0x66,0x0f,0x1f,0x44,0x00,0x00};
829 /* nopl 0L(%[re]ax) */
830 static const char alt_7[] =
831 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
832 /* nopl 0L(%[re]ax,%[re]ax,1) */
833 static const char alt_8[] =
834 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
835 /* nopw 0L(%[re]ax,%[re]ax,1) */
836 static const char alt_9[] =
837 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
838 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
839 static const char alt_10[] =
840 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
841 /* data16
842 nopw %cs:0L(%[re]ax,%[re]ax,1) */
843 static const char alt_long_11[] =
844 {0x66,
845 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
846 /* data16
847 data16
848 nopw %cs:0L(%[re]ax,%[re]ax,1) */
849 static const char alt_long_12[] =
850 {0x66,
851 0x66,
852 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
853 /* data16
854 data16
855 data16
856 nopw %cs:0L(%[re]ax,%[re]ax,1) */
857 static const char alt_long_13[] =
858 {0x66,
859 0x66,
860 0x66,
861 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
862 /* data16
863 data16
864 data16
865 data16
866 nopw %cs:0L(%[re]ax,%[re]ax,1) */
867 static const char alt_long_14[] =
868 {0x66,
869 0x66,
870 0x66,
871 0x66,
872 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
873 /* data16
874 data16
875 data16
876 data16
877 data16
878 nopw %cs:0L(%[re]ax,%[re]ax,1) */
879 static const char alt_long_15[] =
880 {0x66,
881 0x66,
882 0x66,
883 0x66,
884 0x66,
885 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
886 /* nopl 0(%[re]ax,%[re]ax,1)
887 nopw 0(%[re]ax,%[re]ax,1) */
888 static const char alt_short_11[] =
889 {0x0f,0x1f,0x44,0x00,0x00,
890 0x66,0x0f,0x1f,0x44,0x00,0x00};
891 /* nopw 0(%[re]ax,%[re]ax,1)
892 nopw 0(%[re]ax,%[re]ax,1) */
893 static const char alt_short_12[] =
894 {0x66,0x0f,0x1f,0x44,0x00,0x00,
895 0x66,0x0f,0x1f,0x44,0x00,0x00};
896 /* nopw 0(%[re]ax,%[re]ax,1)
897 nopl 0L(%[re]ax) */
898 static const char alt_short_13[] =
899 {0x66,0x0f,0x1f,0x44,0x00,0x00,
900 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
901 /* nopl 0L(%[re]ax)
902 nopl 0L(%[re]ax) */
903 static const char alt_short_14[] =
904 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
905 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
906 /* nopl 0L(%[re]ax)
907 nopl 0L(%[re]ax,%[re]ax,1) */
908 static const char alt_short_15[] =
909 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
910 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
911 static const char *const alt_short_patt[] = {
912 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
913 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
914 alt_short_14, alt_short_15
915 };
916 static const char *const alt_long_patt[] = {
917 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
918 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
919 alt_long_14, alt_long_15
920 };
921
922 /* Only align for at least a positive non-zero boundary. */
923 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
924 return;
925
926 /* We need to decide which NOP sequence to use for 32bit and
927 64bit. When -mtune= is used:
928
929 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
930 PROCESSOR_GENERIC32, f32_patt will be used.
931 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
932 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
933 PROCESSOR_GENERIC64, alt_long_patt will be used.
934 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
935 PROCESSOR_AMDFAM10, alt_short_patt will be used.
936
937 When -mtune= isn't used, alt_long_patt will be used if
938 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
939 be used.
940
941 When -march= or .arch is used, we can't use anything beyond
942 cpu_arch_isa_flags. */
943
944 if (flag_code == CODE_16BIT)
945 {
946 if (count > 8)
947 {
948 memcpy (fragP->fr_literal + fragP->fr_fix,
949 jump_31, count);
950 /* Adjust jump offset. */
951 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
952 }
953 else
954 memcpy (fragP->fr_literal + fragP->fr_fix,
955 f16_patt[count - 1], count);
956 }
957 else
958 {
959 const char *const *patt = NULL;
960
961 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
962 {
963 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
964 switch (cpu_arch_tune)
965 {
966 case PROCESSOR_UNKNOWN:
967 /* We use cpu_arch_isa_flags to check if we SHOULD
968 optimize for Cpu686. */
969 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
970 patt = alt_long_patt;
971 else
972 patt = f32_patt;
973 break;
974 case PROCESSOR_PENTIUMPRO:
975 case PROCESSOR_PENTIUM4:
976 case PROCESSOR_NOCONA:
977 case PROCESSOR_CORE:
978 case PROCESSOR_CORE2:
979 case PROCESSOR_COREI7:
980 case PROCESSOR_GENERIC64:
981 patt = alt_long_patt;
982 break;
983 case PROCESSOR_K6:
984 case PROCESSOR_ATHLON:
985 case PROCESSOR_K8:
986 case PROCESSOR_AMDFAM10:
987 patt = alt_short_patt;
988 break;
989 case PROCESSOR_I386:
990 case PROCESSOR_I486:
991 case PROCESSOR_PENTIUM:
992 case PROCESSOR_GENERIC32:
993 patt = f32_patt;
994 break;
995 }
996 }
997 else
998 {
999 switch (fragP->tc_frag_data.tune)
1000 {
1001 case PROCESSOR_UNKNOWN:
1002 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1003 PROCESSOR_UNKNOWN. */
1004 abort ();
1005 break;
1006
1007 case PROCESSOR_I386:
1008 case PROCESSOR_I486:
1009 case PROCESSOR_PENTIUM:
1010 case PROCESSOR_K6:
1011 case PROCESSOR_ATHLON:
1012 case PROCESSOR_K8:
1013 case PROCESSOR_AMDFAM10:
1014 case PROCESSOR_GENERIC32:
1015 /* We use cpu_arch_isa_flags to check if we CAN optimize
1016 for Cpu686. */
1017 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1018 patt = alt_short_patt;
1019 else
1020 patt = f32_patt;
1021 break;
1022 case PROCESSOR_PENTIUMPRO:
1023 case PROCESSOR_PENTIUM4:
1024 case PROCESSOR_NOCONA:
1025 case PROCESSOR_CORE:
1026 case PROCESSOR_CORE2:
1027 case PROCESSOR_COREI7:
1028 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1029 patt = alt_long_patt;
1030 else
1031 patt = f32_patt;
1032 break;
1033 case PROCESSOR_GENERIC64:
1034 patt = alt_long_patt;
1035 break;
1036 }
1037 }
1038
1039 if (patt == f32_patt)
1040 {
1041 /* If the padding is less than 15 bytes, we use the normal
1042 ones. Otherwise, we use a jump instruction and adjust
1043 its offset. */
1044 if (count < 15)
1045 memcpy (fragP->fr_literal + fragP->fr_fix,
1046 patt[count - 1], count);
1047 else
1048 {
1049 memcpy (fragP->fr_literal + fragP->fr_fix,
1050 jump_31, count);
1051 /* Adjust jump offset. */
1052 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1053 }
1054 }
1055 else
1056 {
1057 /* Maximum length of an instruction is 15 byte. If the
1058 padding is greater than 15 bytes and we don't use jump,
1059 we have to break it into smaller pieces. */
1060 int padding = count;
1061 while (padding > 15)
1062 {
1063 padding -= 15;
1064 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1065 patt [14], 15);
1066 }
1067
1068 if (padding)
1069 memcpy (fragP->fr_literal + fragP->fr_fix,
1070 patt [padding - 1], padding);
1071 }
1072 }
1073 fragP->fr_var = count;
1074}
1075
1076static INLINE int
1077operand_type_all_zero (const union i386_operand_type *x)
1078{
1079 switch (ARRAY_SIZE(x->array))
1080 {
1081 case 3:
1082 if (x->array[2])
1083 return 0;
1084 case 2:
1085 if (x->array[1])
1086 return 0;
1087 case 1:
1088 return !x->array[0];
1089 default:
1090 abort ();
1091 }
1092}
1093
1094static INLINE void
1095operand_type_set (union i386_operand_type *x, unsigned int v)
1096{
1097 switch (ARRAY_SIZE(x->array))
1098 {
1099 case 3:
1100 x->array[2] = v;
1101 case 2:
1102 x->array[1] = v;
1103 case 1:
1104 x->array[0] = v;
1105 break;
1106 default:
1107 abort ();
1108 }
1109}
1110
1111static INLINE int
1112operand_type_equal (const union i386_operand_type *x,
1113 const union i386_operand_type *y)
1114{
1115 switch (ARRAY_SIZE(x->array))
1116 {
1117 case 3:
1118 if (x->array[2] != y->array[2])
1119 return 0;
1120 case 2:
1121 if (x->array[1] != y->array[1])
1122 return 0;
1123 case 1:
1124 return x->array[0] == y->array[0];
1125 break;
1126 default:
1127 abort ();
1128 }
1129}
1130
1131static INLINE int
1132cpu_flags_all_zero (const union i386_cpu_flags *x)
1133{
1134 switch (ARRAY_SIZE(x->array))
1135 {
1136 case 3:
1137 if (x->array[2])
1138 return 0;
1139 case 2:
1140 if (x->array[1])
1141 return 0;
1142 case 1:
1143 return !x->array[0];
1144 default:
1145 abort ();
1146 }
1147}
1148
1149static INLINE void
1150cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1151{
1152 switch (ARRAY_SIZE(x->array))
1153 {
1154 case 3:
1155 x->array[2] = v;
1156 case 2:
1157 x->array[1] = v;
1158 case 1:
1159 x->array[0] = v;
1160 break;
1161 default:
1162 abort ();
1163 }
1164}
1165
1166static INLINE int
1167cpu_flags_equal (const union i386_cpu_flags *x,
1168 const union i386_cpu_flags *y)
1169{
1170 switch (ARRAY_SIZE(x->array))
1171 {
1172 case 3:
1173 if (x->array[2] != y->array[2])
1174 return 0;
1175 case 2:
1176 if (x->array[1] != y->array[1])
1177 return 0;
1178 case 1:
1179 return x->array[0] == y->array[0];
1180 break;
1181 default:
1182 abort ();
1183 }
1184}
1185
1186static INLINE int
1187cpu_flags_check_cpu64 (i386_cpu_flags f)
1188{
1189 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1190 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1191}
1192
1193static INLINE i386_cpu_flags
1194cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1195{
1196 switch (ARRAY_SIZE (x.array))
1197 {
1198 case 3:
1199 x.array [2] &= y.array [2];
1200 case 2:
1201 x.array [1] &= y.array [1];
1202 case 1:
1203 x.array [0] &= y.array [0];
1204 break;
1205 default:
1206 abort ();
1207 }
1208 return x;
1209}
1210
1211static INLINE i386_cpu_flags
1212cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1213{
1214 switch (ARRAY_SIZE (x.array))
1215 {
1216 case 3:
1217 x.array [2] |= y.array [2];
1218 case 2:
1219 x.array [1] |= y.array [1];
1220 case 1:
1221 x.array [0] |= y.array [0];
1222 break;
1223 default:
1224 abort ();
1225 }
1226 return x;
1227}
1228
1229#define CPU_FLAGS_ARCH_MATCH 0x1
1230#define CPU_FLAGS_64BIT_MATCH 0x2
1231#define CPU_FLAGS_AES_MATCH 0x4
1232#define CPU_FLAGS_PCLMUL_MATCH 0x8
1233#define CPU_FLAGS_AVX_MATCH 0x10
1234
1235#define CPU_FLAGS_32BIT_MATCH \
1236 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1237 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1238#define CPU_FLAGS_PERFECT_MATCH \
1239 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1240
1241/* Return CPU flags match bits. */
1242
1243static int
1244cpu_flags_match (const template *t)
1245{
1246 i386_cpu_flags x = t->cpu_flags;
1247 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1248
1249 x.bitfield.cpu64 = 0;
1250 x.bitfield.cpuno64 = 0;
1251
1252 if (cpu_flags_all_zero (&x))
1253 {
1254 /* This instruction is available on all archs. */
1255 match |= CPU_FLAGS_32BIT_MATCH;
1256 }
1257 else
1258 {
1259 /* This instruction is available only on some archs. */
1260 i386_cpu_flags cpu = cpu_arch_flags;
1261
1262 cpu.bitfield.cpu64 = 0;
1263 cpu.bitfield.cpuno64 = 0;
1264 cpu = cpu_flags_and (x, cpu);
1265 if (!cpu_flags_all_zero (&cpu))
1266 {
1267 if (x.bitfield.cpuavx)
1268 {
1269 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1270 if (cpu.bitfield.cpuavx)
1271 {
1272 /* Check SSE2AVX. */
1273 if (!t->opcode_modifier.sse2avx|| sse2avx)
1274 {
1275 match |= (CPU_FLAGS_ARCH_MATCH
1276 | CPU_FLAGS_AVX_MATCH);
1277 /* Check AES. */
1278 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1279 match |= CPU_FLAGS_AES_MATCH;
1280 /* Check PCLMUL. */
1281 if (!x.bitfield.cpupclmul
1282 || cpu.bitfield.cpupclmul)
1283 match |= CPU_FLAGS_PCLMUL_MATCH;
1284 }
1285 }
1286 else
1287 match |= CPU_FLAGS_ARCH_MATCH;
1288 }
1289 else
1290 match |= CPU_FLAGS_32BIT_MATCH;
1291 }
1292 }
1293 return match;
1294}
1295
1296static INLINE i386_operand_type
1297operand_type_and (i386_operand_type x, i386_operand_type y)
1298{
1299 switch (ARRAY_SIZE (x.array))
1300 {
1301 case 3:
1302 x.array [2] &= y.array [2];
1303 case 2:
1304 x.array [1] &= y.array [1];
1305 case 1:
1306 x.array [0] &= y.array [0];
1307 break;
1308 default:
1309 abort ();
1310 }
1311 return x;
1312}
1313
1314static INLINE i386_operand_type
1315operand_type_or (i386_operand_type x, i386_operand_type y)
1316{
1317 switch (ARRAY_SIZE (x.array))
1318 {
1319 case 3:
1320 x.array [2] |= y.array [2];
1321 case 2:
1322 x.array [1] |= y.array [1];
1323 case 1:
1324 x.array [0] |= y.array [0];
1325 break;
1326 default:
1327 abort ();
1328 }
1329 return x;
1330}
1331
1332static INLINE i386_operand_type
1333operand_type_xor (i386_operand_type x, i386_operand_type y)
1334{
1335 switch (ARRAY_SIZE (x.array))
1336 {
1337 case 3:
1338 x.array [2] ^= y.array [2];
1339 case 2:
1340 x.array [1] ^= y.array [1];
1341 case 1:
1342 x.array [0] ^= y.array [0];
1343 break;
1344 default:
1345 abort ();
1346 }
1347 return x;
1348}
1349
1350static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1351static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1352static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1353static const i386_operand_type inoutportreg
1354 = OPERAND_TYPE_INOUTPORTREG;
1355static const i386_operand_type reg16_inoutportreg
1356 = OPERAND_TYPE_REG16_INOUTPORTREG;
1357static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1358static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1359static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1360static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1361static const i386_operand_type anydisp
1362 = OPERAND_TYPE_ANYDISP;
1363static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1364static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1365static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1366static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1367static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1368static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1369static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1370static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1371static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1372static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1373static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1374
1375enum operand_type
1376{
1377 reg,
1378 imm,
1379 disp,
1380 anymem
1381};
1382
1383static INLINE int
1384operand_type_check (i386_operand_type t, enum operand_type c)
1385{
1386 switch (c)
1387 {
1388 case reg:
1389 return (t.bitfield.reg8
1390 || t.bitfield.reg16
1391 || t.bitfield.reg32
1392 || t.bitfield.reg64);
1393
1394 case imm:
1395 return (t.bitfield.imm8
1396 || t.bitfield.imm8s
1397 || t.bitfield.imm16
1398 || t.bitfield.imm32
1399 || t.bitfield.imm32s
1400 || t.bitfield.imm64);
1401
1402 case disp:
1403 return (t.bitfield.disp8
1404 || t.bitfield.disp16
1405 || t.bitfield.disp32
1406 || t.bitfield.disp32s
1407 || t.bitfield.disp64);
1408
1409 case anymem:
1410 return (t.bitfield.disp8
1411 || t.bitfield.disp16
1412 || t.bitfield.disp32
1413 || t.bitfield.disp32s
1414 || t.bitfield.disp64
1415 || t.bitfield.baseindex);
1416
1417 default:
1418 abort ();
1419 }
1420
1421 return 0;
1422}
1423
1424/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1425 operand J for instruction template T. */
1426
1427static INLINE int
1428match_reg_size (const template *t, unsigned int j)
1429{
1430 return !((i.types[j].bitfield.byte
1431 && !t->operand_types[j].bitfield.byte)
1432 || (i.types[j].bitfield.word
1433 && !t->operand_types[j].bitfield.word)
1434 || (i.types[j].bitfield.dword
1435 && !t->operand_types[j].bitfield.dword)
1436 || (i.types[j].bitfield.qword
1437 && !t->operand_types[j].bitfield.qword));
1438}
1439
1440/* Return 1 if there is no conflict in any size on operand J for
1441 instruction template T. */
1442
1443static INLINE int
1444match_mem_size (const template *t, unsigned int j)
1445{
1446 return (match_reg_size (t, j)
1447 && !((i.types[j].bitfield.unspecified
1448 && !t->operand_types[j].bitfield.unspecified)
1449 || (i.types[j].bitfield.fword
1450 && !t->operand_types[j].bitfield.fword)
1451 || (i.types[j].bitfield.tbyte
1452 && !t->operand_types[j].bitfield.tbyte)
1453 || (i.types[j].bitfield.xmmword
1454 && !t->operand_types[j].bitfield.xmmword)
1455 || (i.types[j].bitfield.ymmword
1456 && !t->operand_types[j].bitfield.ymmword)));
1457}
1458
1459/* Return 1 if there is no size conflict on any operands for
1460 instruction template T. */
1461
1462static INLINE int
1463operand_size_match (const template *t)
1464{
1465 unsigned int j;
1466 int match = 1;
1467
1468 /* Don't check jump instructions. */
1469 if (t->opcode_modifier.jump
1470 || t->opcode_modifier.jumpbyte
1471 || t->opcode_modifier.jumpdword
1472 || t->opcode_modifier.jumpintersegment)
1473 return match;
1474
1475 /* Check memory and accumulator operand size. */
1476 for (j = 0; j < i.operands; j++)
1477 {
1478 if (t->operand_types[j].bitfield.anysize)
1479 continue;
1480
1481 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1482 {
1483 match = 0;
1484 break;
1485 }
1486
1487 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1488 {
1489 match = 0;
1490 break;
1491 }
1492 }
1493
1494 if (match
1495 || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
1496 return match;
1497
1498 /* Check reverse. */
1499 gas_assert (i.operands == 2);
1500
1501 match = 1;
1502 for (j = 0; j < 2; j++)
1503 {
1504 if (t->operand_types[j].bitfield.acc
1505 && !match_reg_size (t, j ? 0 : 1))
1506 {
1507 match = 0;
1508 break;
1509 }
1510
1511 if (i.types[j].bitfield.mem
1512 && !match_mem_size (t, j ? 0 : 1))
1513 {
1514 match = 0;
1515 break;
1516 }
1517 }
1518
1519 return match;
1520}
1521
1522static INLINE int
1523operand_type_match (i386_operand_type overlap,
1524 i386_operand_type given)
1525{
1526 i386_operand_type temp = overlap;
1527
1528 temp.bitfield.jumpabsolute = 0;
1529 temp.bitfield.unspecified = 0;
1530 temp.bitfield.byte = 0;
1531 temp.bitfield.word = 0;
1532 temp.bitfield.dword = 0;
1533 temp.bitfield.fword = 0;
1534 temp.bitfield.qword = 0;
1535 temp.bitfield.tbyte = 0;
1536 temp.bitfield.xmmword = 0;
1537 temp.bitfield.ymmword = 0;
1538 if (operand_type_all_zero (&temp))
1539 return 0;
1540
1541 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1542 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1543}
1544
1545/* If given types g0 and g1 are registers they must be of the same type
1546 unless the expected operand type register overlap is null.
1547 Note that Acc in a template matches every size of reg. */
1548
1549static INLINE int
1550operand_type_register_match (i386_operand_type m0,
1551 i386_operand_type g0,
1552 i386_operand_type t0,
1553 i386_operand_type m1,
1554 i386_operand_type g1,
1555 i386_operand_type t1)
1556{
1557 if (!operand_type_check (g0, reg))
1558 return 1;
1559
1560 if (!operand_type_check (g1, reg))
1561 return 1;
1562
1563 if (g0.bitfield.reg8 == g1.bitfield.reg8
1564 && g0.bitfield.reg16 == g1.bitfield.reg16
1565 && g0.bitfield.reg32 == g1.bitfield.reg32
1566 && g0.bitfield.reg64 == g1.bitfield.reg64)
1567 return 1;
1568
1569 if (m0.bitfield.acc)
1570 {
1571 t0.bitfield.reg8 = 1;
1572 t0.bitfield.reg16 = 1;
1573 t0.bitfield.reg32 = 1;
1574 t0.bitfield.reg64 = 1;
1575 }
1576
1577 if (m1.bitfield.acc)
1578 {
1579 t1.bitfield.reg8 = 1;
1580 t1.bitfield.reg16 = 1;
1581 t1.bitfield.reg32 = 1;
1582 t1.bitfield.reg64 = 1;
1583 }
1584
1585 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1586 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1587 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1588 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1589}
1590
1591static INLINE unsigned int
1592mode_from_disp_size (i386_operand_type t)
1593{
1594 if (t.bitfield.disp8)
1595 return 1;
1596 else if (t.bitfield.disp16
1597 || t.bitfield.disp32
1598 || t.bitfield.disp32s)
1599 return 2;
1600 else
1601 return 0;
1602}
1603
1604static INLINE int
1605fits_in_signed_byte (offsetT num)
1606{
1607 return (num >= -128) && (num <= 127);
1608}
1609
1610static INLINE int
1611fits_in_unsigned_byte (offsetT num)
1612{
1613 return (num & 0xff) == num;
1614}
1615
1616static INLINE int
1617fits_in_unsigned_word (offsetT num)
1618{
1619 return (num & 0xffff) == num;
1620}
1621
1622static INLINE int
1623fits_in_signed_word (offsetT num)
1624{
1625 return (-32768 <= num) && (num <= 32767);
1626}
1627
1628static INLINE int
1629fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1630{
1631#ifndef BFD64
1632 return 1;
1633#else
1634 return (!(((offsetT) -1 << 31) & num)
1635 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1636#endif
1637} /* fits_in_signed_long() */
1638
1639static INLINE int
1640fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1641{
1642#ifndef BFD64
1643 return 1;
1644#else
1645 return (num & (((offsetT) 2 << 31) - 1)) == num;
1646#endif
1647} /* fits_in_unsigned_long() */
1648
1649static i386_operand_type
1650smallest_imm_type (offsetT num)
1651{
1652 i386_operand_type t;
1653
1654 operand_type_set (&t, 0);
1655 t.bitfield.imm64 = 1;
1656
1657 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1658 {
1659 /* This code is disabled on the 486 because all the Imm1 forms
1660 in the opcode table are slower on the i486. They're the
1661 versions with the implicitly specified single-position
1662 displacement, which has another syntax if you really want to
1663 use that form. */
1664 t.bitfield.imm1 = 1;
1665 t.bitfield.imm8 = 1;
1666 t.bitfield.imm8s = 1;
1667 t.bitfield.imm16 = 1;
1668 t.bitfield.imm32 = 1;
1669 t.bitfield.imm32s = 1;
1670 }
1671 else if (fits_in_signed_byte (num))
1672 {
1673 t.bitfield.imm8 = 1;
1674 t.bitfield.imm8s = 1;
1675 t.bitfield.imm16 = 1;
1676 t.bitfield.imm32 = 1;
1677 t.bitfield.imm32s = 1;
1678 }
1679 else if (fits_in_unsigned_byte (num))
1680 {
1681 t.bitfield.imm8 = 1;
1682 t.bitfield.imm16 = 1;
1683 t.bitfield.imm32 = 1;
1684 t.bitfield.imm32s = 1;
1685 }
1686 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1687 {
1688 t.bitfield.imm16 = 1;
1689 t.bitfield.imm32 = 1;
1690 t.bitfield.imm32s = 1;
1691 }
1692 else if (fits_in_signed_long (num))
1693 {
1694 t.bitfield.imm32 = 1;
1695 t.bitfield.imm32s = 1;
1696 }
1697 else if (fits_in_unsigned_long (num))
1698 t.bitfield.imm32 = 1;
1699
1700 return t;
1701}
1702
1703static offsetT
1704offset_in_range (offsetT val, int size)
1705{
1706 addressT mask;
1707
1708 switch (size)
1709 {
1710 case 1: mask = ((addressT) 1 << 8) - 1; break;
1711 case 2: mask = ((addressT) 1 << 16) - 1; break;
1712 case 4: mask = ((addressT) 2 << 31) - 1; break;
1713#ifdef BFD64
1714 case 8: mask = ((addressT) 2 << 63) - 1; break;
1715#endif
1716 default: abort ();
1717 }
1718
1719 /* If BFD64, sign extend val. */
1720 if (!use_rela_relocations)
1721 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1722 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1723
1724 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1725 {
1726 char buf1[40], buf2[40];
1727
1728 sprint_value (buf1, val);
1729 sprint_value (buf2, val & mask);
1730 as_warn (_("%s shortened to %s"), buf1, buf2);
1731 }
1732 return val & mask;
1733}
1734
1735/* Returns 0 if attempting to add a prefix where one from the same
1736 class already exists, 1 if non rep/repne added, 2 if rep/repne
1737 added. */
1738static int
1739add_prefix (unsigned int prefix)
1740{
1741 int ret = 1;
1742 unsigned int q;
1743
1744 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1745 && flag_code == CODE_64BIT)
1746 {
1747 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1748 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1749 && (prefix & (REX_R | REX_X | REX_B))))
1750 ret = 0;
1751 q = REX_PREFIX;
1752 }
1753 else
1754 {
1755 switch (prefix)
1756 {
1757 default:
1758 abort ();
1759
1760 case CS_PREFIX_OPCODE:
1761 case DS_PREFIX_OPCODE:
1762 case ES_PREFIX_OPCODE:
1763 case FS_PREFIX_OPCODE:
1764 case GS_PREFIX_OPCODE:
1765 case SS_PREFIX_OPCODE:
1766 q = SEG_PREFIX;
1767 break;
1768
1769 case REPNE_PREFIX_OPCODE:
1770 case REPE_PREFIX_OPCODE:
1771 ret = 2;
1772 /* fall thru */
1773 case LOCK_PREFIX_OPCODE:
1774 q = LOCKREP_PREFIX;
1775 break;
1776
1777 case FWAIT_OPCODE:
1778 q = WAIT_PREFIX;
1779 break;
1780
1781 case ADDR_PREFIX_OPCODE:
1782 q = ADDR_PREFIX;
1783 break;
1784
1785 case DATA_PREFIX_OPCODE:
1786 q = DATA_PREFIX;
1787 break;
1788 }
1789 if (i.prefix[q] != 0)
1790 ret = 0;
1791 }
1792
1793 if (ret)
1794 {
1795 if (!i.prefix[q])
1796 ++i.prefixes;
1797 i.prefix[q] |= prefix;
1798 }
1799 else
1800 as_bad (_("same type of prefix used twice"));
1801
1802 return ret;
1803}
1804
1805static void
1806set_code_flag (int value)
1807{
1808 flag_code = value;
1809 if (flag_code == CODE_64BIT)
1810 {
1811 cpu_arch_flags.bitfield.cpu64 = 1;
1812 cpu_arch_flags.bitfield.cpuno64 = 0;
1813 }
1814 else
1815 {
1816 cpu_arch_flags.bitfield.cpu64 = 0;
1817 cpu_arch_flags.bitfield.cpuno64 = 1;
1818 }
1819 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1820 {
1821 as_bad (_("64bit mode not supported on this CPU."));
1822 }
1823 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1824 {
1825 as_bad (_("32bit mode not supported on this CPU."));
1826 }
1827 stackop_size = '\0';
1828}
1829
1830static void
1831set_16bit_gcc_code_flag (int new_code_flag)
1832{
1833 flag_code = new_code_flag;
1834 if (flag_code != CODE_16BIT)
1835 abort ();
1836 cpu_arch_flags.bitfield.cpu64 = 0;
1837 cpu_arch_flags.bitfield.cpuno64 = 1;
1838 stackop_size = LONG_MNEM_SUFFIX;
1839}
1840
1841static void
1842set_intel_syntax (int syntax_flag)
1843{
1844 /* Find out if register prefixing is specified. */
1845 int ask_naked_reg = 0;
1846
1847 SKIP_WHITESPACE ();
1848 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1849 {
1850 char *string = input_line_pointer;
1851 int e = get_symbol_end ();
1852
1853 if (strcmp (string, "prefix") == 0)
1854 ask_naked_reg = 1;
1855 else if (strcmp (string, "noprefix") == 0)
1856 ask_naked_reg = -1;
1857 else
1858 as_bad (_("bad argument to syntax directive."));
1859 *input_line_pointer = e;
1860 }
1861 demand_empty_rest_of_line ();
1862
1863 intel_syntax = syntax_flag;
1864
1865 if (ask_naked_reg == 0)
1866 allow_naked_reg = (intel_syntax
1867 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1868 else
1869 allow_naked_reg = (ask_naked_reg < 0);
1870
1871 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
1872
1873 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1874 identifier_chars['$'] = intel_syntax ? '$' : 0;
1875 register_prefix = allow_naked_reg ? "" : "%";
1876}
1877
1878static void
1879set_intel_mnemonic (int mnemonic_flag)
1880{
1881 intel_mnemonic = mnemonic_flag;
1882}
1883
1884static void
1885set_allow_index_reg (int flag)
1886{
1887 allow_index_reg = flag;
1888}
1889
1890static void
1891set_sse_check (int dummy ATTRIBUTE_UNUSED)
1892{
1893 SKIP_WHITESPACE ();
1894
1895 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1896 {
1897 char *string = input_line_pointer;
1898 int e = get_symbol_end ();
1899
1900 if (strcmp (string, "none") == 0)
1901 sse_check = sse_check_none;
1902 else if (strcmp (string, "warning") == 0)
1903 sse_check = sse_check_warning;
1904 else if (strcmp (string, "error") == 0)
1905 sse_check = sse_check_error;
1906 else
1907 as_bad (_("bad argument to sse_check directive."));
1908 *input_line_pointer = e;
1909 }
1910 else
1911 as_bad (_("missing argument for sse_check directive"));
1912
1913 demand_empty_rest_of_line ();
1914}
1915
1916static void
1917set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1918{
1919 SKIP_WHITESPACE ();
1920
1921 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1922 {
1923 char *string = input_line_pointer;
1924 int e = get_symbol_end ();
1925 unsigned int i;
1926 i386_cpu_flags flags;
1927
1928 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1929 {
1930 if (strcmp (string, cpu_arch[i].name) == 0)
1931 {
1932 if (*string != '.')
1933 {
1934 cpu_arch_name = cpu_arch[i].name;
1935 cpu_sub_arch_name = NULL;
1936 cpu_arch_flags = cpu_arch[i].flags;
1937 if (flag_code == CODE_64BIT)
1938 {
1939 cpu_arch_flags.bitfield.cpu64 = 1;
1940 cpu_arch_flags.bitfield.cpuno64 = 0;
1941 }
1942 else
1943 {
1944 cpu_arch_flags.bitfield.cpu64 = 0;
1945 cpu_arch_flags.bitfield.cpuno64 = 1;
1946 }
1947 cpu_arch_isa = cpu_arch[i].type;
1948 cpu_arch_isa_flags = cpu_arch[i].flags;
1949 if (!cpu_arch_tune_set)
1950 {
1951 cpu_arch_tune = cpu_arch_isa;
1952 cpu_arch_tune_flags = cpu_arch_isa_flags;
1953 }
1954 break;
1955 }
1956
1957 flags = cpu_flags_or (cpu_arch_flags,
1958 cpu_arch[i].flags);
1959 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
1960 {
1961 if (cpu_sub_arch_name)
1962 {
1963 char *name = cpu_sub_arch_name;
1964 cpu_sub_arch_name = concat (name,
1965 cpu_arch[i].name,
1966 (const char *) NULL);
1967 free (name);
1968 }
1969 else
1970 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
1971 cpu_arch_flags = flags;
1972 }
1973 *input_line_pointer = e;
1974 demand_empty_rest_of_line ();
1975 return;
1976 }
1977 }
1978 if (i >= ARRAY_SIZE (cpu_arch))
1979 as_bad (_("no such architecture: `%s'"), string);
1980
1981 *input_line_pointer = e;
1982 }
1983 else
1984 as_bad (_("missing cpu architecture"));
1985
1986 no_cond_jump_promotion = 0;
1987 if (*input_line_pointer == ','
1988 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1989 {
1990 char *string = ++input_line_pointer;
1991 int e = get_symbol_end ();
1992
1993 if (strcmp (string, "nojumps") == 0)
1994 no_cond_jump_promotion = 1;
1995 else if (strcmp (string, "jumps") == 0)
1996 ;
1997 else
1998 as_bad (_("no such architecture modifier: `%s'"), string);
1999
2000 *input_line_pointer = e;
2001 }
2002
2003 demand_empty_rest_of_line ();
2004}
2005
2006unsigned long
2007i386_mach ()
2008{
2009 if (!strcmp (default_arch, "x86_64"))
2010 return bfd_mach_x86_64;
2011 else if (!strcmp (default_arch, "i386"))
2012 return bfd_mach_i386_i386;
2013 else
2014 as_fatal (_("Unknown architecture"));
2015}
2016\f
2017void
2018md_begin ()
2019{
2020 const char *hash_err;
2021
2022 /* Initialize op_hash hash table. */
2023 op_hash = hash_new ();
2024
2025 {
2026 const template *optab;
2027 templates *core_optab;
2028
2029 /* Setup for loop. */
2030 optab = i386_optab;
2031 core_optab = (templates *) xmalloc (sizeof (templates));
2032 core_optab->start = optab;
2033
2034 while (1)
2035 {
2036 ++optab;
2037 if (optab->name == NULL
2038 || strcmp (optab->name, (optab - 1)->name) != 0)
2039 {
2040 /* different name --> ship out current template list;
2041 add to hash table; & begin anew. */
2042 core_optab->end = optab;
2043 hash_err = hash_insert (op_hash,
2044 (optab - 1)->name,
2045 (void *) core_optab);
2046 if (hash_err)
2047 {
2048 as_fatal (_("Internal Error: Can't hash %s: %s"),
2049 (optab - 1)->name,
2050 hash_err);
2051 }
2052 if (optab->name == NULL)
2053 break;
2054 core_optab = (templates *) xmalloc (sizeof (templates));
2055 core_optab->start = optab;
2056 }
2057 }
2058 }
2059
2060 /* Initialize reg_hash hash table. */
2061 reg_hash = hash_new ();
2062 {
2063 const reg_entry *regtab;
2064 unsigned int regtab_size = i386_regtab_size;
2065
2066 for (regtab = i386_regtab; regtab_size--; regtab++)
2067 {
2068 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2069 if (hash_err)
2070 as_fatal (_("Internal Error: Can't hash %s: %s"),
2071 regtab->reg_name,
2072 hash_err);
2073 }
2074 }
2075
2076 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2077 {
2078 int c;
2079 char *p;
2080
2081 for (c = 0; c < 256; c++)
2082 {
2083 if (ISDIGIT (c))
2084 {
2085 digit_chars[c] = c;
2086 mnemonic_chars[c] = c;
2087 register_chars[c] = c;
2088 operand_chars[c] = c;
2089 }
2090 else if (ISLOWER (c))
2091 {
2092 mnemonic_chars[c] = c;
2093 register_chars[c] = c;
2094 operand_chars[c] = c;
2095 }
2096 else if (ISUPPER (c))
2097 {
2098 mnemonic_chars[c] = TOLOWER (c);
2099 register_chars[c] = mnemonic_chars[c];
2100 operand_chars[c] = c;
2101 }
2102
2103 if (ISALPHA (c) || ISDIGIT (c))
2104 identifier_chars[c] = c;
2105 else if (c >= 128)
2106 {
2107 identifier_chars[c] = c;
2108 operand_chars[c] = c;
2109 }
2110 }
2111
2112#ifdef LEX_AT
2113 identifier_chars['@'] = '@';
2114#endif
2115#ifdef LEX_QM
2116 identifier_chars['?'] = '?';
2117 operand_chars['?'] = '?';
2118#endif
2119 digit_chars['-'] = '-';
2120 mnemonic_chars['_'] = '_';
2121 mnemonic_chars['-'] = '-';
2122 mnemonic_chars['.'] = '.';
2123 identifier_chars['_'] = '_';
2124 identifier_chars['.'] = '.';
2125
2126 for (p = operand_special_chars; *p != '\0'; p++)
2127 operand_chars[(unsigned char) *p] = *p;
2128 }
2129
2130#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2131 if (IS_ELF)
2132 {
2133 record_alignment (text_section, 2);
2134 record_alignment (data_section, 2);
2135 record_alignment (bss_section, 2);
2136 }
2137#endif
2138
2139 if (flag_code == CODE_64BIT)
2140 {
2141 x86_dwarf2_return_column = 16;
2142 x86_cie_data_alignment = -8;
2143 }
2144 else
2145 {
2146 x86_dwarf2_return_column = 8;
2147 x86_cie_data_alignment = -4;
2148 }
2149}
2150
2151void
2152i386_print_statistics (FILE *file)
2153{
2154 hash_print_statistics (file, "i386 opcode", op_hash);
2155 hash_print_statistics (file, "i386 register", reg_hash);
2156}
2157\f
2158#ifdef DEBUG386
2159
2160/* Debugging routines for md_assemble. */
2161static void pte (template *);
2162static void pt (i386_operand_type);
2163static void pe (expressionS *);
2164static void ps (symbolS *);
2165
2166static void
2167pi (char *line, i386_insn *x)
2168{
2169 unsigned int i;
2170
2171 fprintf (stdout, "%s: template ", line);
2172 pte (&x->tm);
2173 fprintf (stdout, " address: base %s index %s scale %x\n",
2174 x->base_reg ? x->base_reg->reg_name : "none",
2175 x->index_reg ? x->index_reg->reg_name : "none",
2176 x->log2_scale_factor);
2177 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2178 x->rm.mode, x->rm.reg, x->rm.regmem);
2179 fprintf (stdout, " sib: base %x index %x scale %x\n",
2180 x->sib.base, x->sib.index, x->sib.scale);
2181 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2182 (x->rex & REX_W) != 0,
2183 (x->rex & REX_R) != 0,
2184 (x->rex & REX_X) != 0,
2185 (x->rex & REX_B) != 0);
2186 for (i = 0; i < x->operands; i++)
2187 {
2188 fprintf (stdout, " #%d: ", i + 1);
2189 pt (x->types[i]);
2190 fprintf (stdout, "\n");
2191 if (x->types[i].bitfield.reg8
2192 || x->types[i].bitfield.reg16
2193 || x->types[i].bitfield.reg32
2194 || x->types[i].bitfield.reg64
2195 || x->types[i].bitfield.regmmx
2196 || x->types[i].bitfield.regxmm
2197 || x->types[i].bitfield.regymm
2198 || x->types[i].bitfield.sreg2
2199 || x->types[i].bitfield.sreg3
2200 || x->types[i].bitfield.control
2201 || x->types[i].bitfield.debug
2202 || x->types[i].bitfield.test)
2203 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
2204 if (operand_type_check (x->types[i], imm))
2205 pe (x->op[i].imms);
2206 if (operand_type_check (x->types[i], disp))
2207 pe (x->op[i].disps);
2208 }
2209}
2210
2211static void
2212pte (template *t)
2213{
2214 unsigned int i;
2215 fprintf (stdout, " %d operands ", t->operands);
2216 fprintf (stdout, "opcode %x ", t->base_opcode);
2217 if (t->extension_opcode != None)
2218 fprintf (stdout, "ext %x ", t->extension_opcode);
2219 if (t->opcode_modifier.d)
2220 fprintf (stdout, "D");
2221 if (t->opcode_modifier.w)
2222 fprintf (stdout, "W");
2223 fprintf (stdout, "\n");
2224 for (i = 0; i < t->operands; i++)
2225 {
2226 fprintf (stdout, " #%d type ", i + 1);
2227 pt (t->operand_types[i]);
2228 fprintf (stdout, "\n");
2229 }
2230}
2231
2232static void
2233pe (expressionS *e)
2234{
2235 fprintf (stdout, " operation %d\n", e->X_op);
2236 fprintf (stdout, " add_number %ld (%lx)\n",
2237 (long) e->X_add_number, (long) e->X_add_number);
2238 if (e->X_add_symbol)
2239 {
2240 fprintf (stdout, " add_symbol ");
2241 ps (e->X_add_symbol);
2242 fprintf (stdout, "\n");
2243 }
2244 if (e->X_op_symbol)
2245 {
2246 fprintf (stdout, " op_symbol ");
2247 ps (e->X_op_symbol);
2248 fprintf (stdout, "\n");
2249 }
2250}
2251
2252static void
2253ps (symbolS *s)
2254{
2255 fprintf (stdout, "%s type %s%s",
2256 S_GET_NAME (s),
2257 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2258 segment_name (S_GET_SEGMENT (s)));
2259}
2260
2261static struct type_name
2262 {
2263 i386_operand_type mask;
2264 const char *name;
2265 }
2266const type_names[] =
2267{
2268 { OPERAND_TYPE_REG8, "r8" },
2269 { OPERAND_TYPE_REG16, "r16" },
2270 { OPERAND_TYPE_REG32, "r32" },
2271 { OPERAND_TYPE_REG64, "r64" },
2272 { OPERAND_TYPE_IMM8, "i8" },
2273 { OPERAND_TYPE_IMM8, "i8s" },
2274 { OPERAND_TYPE_IMM16, "i16" },
2275 { OPERAND_TYPE_IMM32, "i32" },
2276 { OPERAND_TYPE_IMM32S, "i32s" },
2277 { OPERAND_TYPE_IMM64, "i64" },
2278 { OPERAND_TYPE_IMM1, "i1" },
2279 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2280 { OPERAND_TYPE_DISP8, "d8" },
2281 { OPERAND_TYPE_DISP16, "d16" },
2282 { OPERAND_TYPE_DISP32, "d32" },
2283 { OPERAND_TYPE_DISP32S, "d32s" },
2284 { OPERAND_TYPE_DISP64, "d64" },
2285 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2286 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2287 { OPERAND_TYPE_CONTROL, "control reg" },
2288 { OPERAND_TYPE_TEST, "test reg" },
2289 { OPERAND_TYPE_DEBUG, "debug reg" },
2290 { OPERAND_TYPE_FLOATREG, "FReg" },
2291 { OPERAND_TYPE_FLOATACC, "FAcc" },
2292 { OPERAND_TYPE_SREG2, "SReg2" },
2293 { OPERAND_TYPE_SREG3, "SReg3" },
2294 { OPERAND_TYPE_ACC, "Acc" },
2295 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2296 { OPERAND_TYPE_REGMMX, "rMMX" },
2297 { OPERAND_TYPE_REGXMM, "rXMM" },
2298 { OPERAND_TYPE_REGYMM, "rYMM" },
2299 { OPERAND_TYPE_ESSEG, "es" },
2300};
2301
2302static void
2303pt (i386_operand_type t)
2304{
2305 unsigned int j;
2306 i386_operand_type a;
2307
2308 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2309 {
2310 a = operand_type_and (t, type_names[j].mask);
2311 if (!operand_type_all_zero (&a))
2312 fprintf (stdout, "%s, ", type_names[j].name);
2313 }
2314 fflush (stdout);
2315}
2316
2317#endif /* DEBUG386 */
2318\f
2319static bfd_reloc_code_real_type
2320reloc (unsigned int size,
2321 int pcrel,
2322 int sign,
2323 bfd_reloc_code_real_type other)
2324{
2325 if (other != NO_RELOC)
2326 {
2327 reloc_howto_type *reloc;
2328
2329 if (size == 8)
2330 switch (other)
2331 {
2332 case BFD_RELOC_X86_64_GOT32:
2333 return BFD_RELOC_X86_64_GOT64;
2334 break;
2335 case BFD_RELOC_X86_64_PLTOFF64:
2336 return BFD_RELOC_X86_64_PLTOFF64;
2337 break;
2338 case BFD_RELOC_X86_64_GOTPC32:
2339 other = BFD_RELOC_X86_64_GOTPC64;
2340 break;
2341 case BFD_RELOC_X86_64_GOTPCREL:
2342 other = BFD_RELOC_X86_64_GOTPCREL64;
2343 break;
2344 case BFD_RELOC_X86_64_TPOFF32:
2345 other = BFD_RELOC_X86_64_TPOFF64;
2346 break;
2347 case BFD_RELOC_X86_64_DTPOFF32:
2348 other = BFD_RELOC_X86_64_DTPOFF64;
2349 break;
2350 default:
2351 break;
2352 }
2353
2354 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2355 if (size == 4 && flag_code != CODE_64BIT)
2356 sign = -1;
2357
2358 reloc = bfd_reloc_type_lookup (stdoutput, other);
2359 if (!reloc)
2360 as_bad (_("unknown relocation (%u)"), other);
2361 else if (size != bfd_get_reloc_size (reloc))
2362 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2363 bfd_get_reloc_size (reloc),
2364 size);
2365 else if (pcrel && !reloc->pc_relative)
2366 as_bad (_("non-pc-relative relocation for pc-relative field"));
2367 else if ((reloc->complain_on_overflow == complain_overflow_signed
2368 && !sign)
2369 || (reloc->complain_on_overflow == complain_overflow_unsigned
2370 && sign > 0))
2371 as_bad (_("relocated field and relocation type differ in signedness"));
2372 else
2373 return other;
2374 return NO_RELOC;
2375 }
2376
2377 if (pcrel)
2378 {
2379 if (!sign)
2380 as_bad (_("there are no unsigned pc-relative relocations"));
2381 switch (size)
2382 {
2383 case 1: return BFD_RELOC_8_PCREL;
2384 case 2: return BFD_RELOC_16_PCREL;
2385 case 4: return BFD_RELOC_32_PCREL;
2386 case 8: return BFD_RELOC_64_PCREL;
2387 }
2388 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2389 }
2390 else
2391 {
2392 if (sign > 0)
2393 switch (size)
2394 {
2395 case 4: return BFD_RELOC_X86_64_32S;
2396 }
2397 else
2398 switch (size)
2399 {
2400 case 1: return BFD_RELOC_8;
2401 case 2: return BFD_RELOC_16;
2402 case 4: return BFD_RELOC_32;
2403 case 8: return BFD_RELOC_64;
2404 }
2405 as_bad (_("cannot do %s %u byte relocation"),
2406 sign > 0 ? "signed" : "unsigned", size);
2407 }
2408
2409 return NO_RELOC;
2410}
2411
2412/* Here we decide which fixups can be adjusted to make them relative to
2413 the beginning of the section instead of the symbol. Basically we need
2414 to make sure that the dynamic relocations are done correctly, so in
2415 some cases we force the original symbol to be used. */
2416
2417int
2418tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2419{
2420#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2421 if (!IS_ELF)
2422 return 1;
2423
2424 /* Don't adjust pc-relative references to merge sections in 64-bit
2425 mode. */
2426 if (use_rela_relocations
2427 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2428 && fixP->fx_pcrel)
2429 return 0;
2430
2431 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2432 and changed later by validate_fix. */
2433 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2434 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2435 return 0;
2436
2437 /* adjust_reloc_syms doesn't know about the GOT. */
2438 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2439 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2440 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2441 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2442 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2443 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2444 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2445 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2446 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2447 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2448 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2449 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2450 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2451 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2452 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2453 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2454 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2455 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2456 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2457 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2458 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2459 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2460 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2461 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2462 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2463 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2464 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2465 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2466 return 0;
2467
2468 if (fixP->fx_addsy != NULL
2469 && symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_GNU_INDIRECT_FUNCTION)
2470 return 0;
2471#endif
2472 return 1;
2473}
2474
2475static int
2476intel_float_operand (const char *mnemonic)
2477{
2478 /* Note that the value returned is meaningful only for opcodes with (memory)
2479 operands, hence the code here is free to improperly handle opcodes that
2480 have no operands (for better performance and smaller code). */
2481
2482 if (mnemonic[0] != 'f')
2483 return 0; /* non-math */
2484
2485 switch (mnemonic[1])
2486 {
2487 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2488 the fs segment override prefix not currently handled because no
2489 call path can make opcodes without operands get here */
2490 case 'i':
2491 return 2 /* integer op */;
2492 case 'l':
2493 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2494 return 3; /* fldcw/fldenv */
2495 break;
2496 case 'n':
2497 if (mnemonic[2] != 'o' /* fnop */)
2498 return 3; /* non-waiting control op */
2499 break;
2500 case 'r':
2501 if (mnemonic[2] == 's')
2502 return 3; /* frstor/frstpm */
2503 break;
2504 case 's':
2505 if (mnemonic[2] == 'a')
2506 return 3; /* fsave */
2507 if (mnemonic[2] == 't')
2508 {
2509 switch (mnemonic[3])
2510 {
2511 case 'c': /* fstcw */
2512 case 'd': /* fstdw */
2513 case 'e': /* fstenv */
2514 case 's': /* fsts[gw] */
2515 return 3;
2516 }
2517 }
2518 break;
2519 case 'x':
2520 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2521 return 0; /* fxsave/fxrstor are not really math ops */
2522 break;
2523 }
2524
2525 return 1;
2526}
2527
2528/* Build the VEX prefix. */
2529
2530static void
2531build_vex_prefix (const template *t)
2532{
2533 unsigned int register_specifier;
2534 unsigned int implied_prefix;
2535 unsigned int vector_length;
2536
2537 /* Check register specifier. */
2538 if (i.vex.register_specifier)
2539 {
2540 register_specifier = i.vex.register_specifier->reg_num;
2541 if ((i.vex.register_specifier->reg_flags & RegRex))
2542 register_specifier += 8;
2543 register_specifier = ~register_specifier & 0xf;
2544 }
2545 else
2546 register_specifier = 0xf;
2547
2548 /* Use 2-byte VEX prefix by swappping destination and source
2549 operand. */
2550 if (!i.swap_operand
2551 && i.operands == i.reg_operands
2552 && i.tm.opcode_modifier.vex0f
2553 && i.tm.opcode_modifier.s
2554 && i.rex == REX_B)
2555 {
2556 unsigned int xchg = i.operands - 1;
2557 union i386_op temp_op;
2558 i386_operand_type temp_type;
2559
2560 temp_type = i.types[xchg];
2561 i.types[xchg] = i.types[0];
2562 i.types[0] = temp_type;
2563 temp_op = i.op[xchg];
2564 i.op[xchg] = i.op[0];
2565 i.op[0] = temp_op;
2566
2567 gas_assert (i.rm.mode == 3);
2568
2569 i.rex = REX_R;
2570 xchg = i.rm.regmem;
2571 i.rm.regmem = i.rm.reg;
2572 i.rm.reg = xchg;
2573
2574 /* Use the next insn. */
2575 i.tm = t[1];
2576 }
2577
2578 vector_length = i.tm.opcode_modifier.vex256 ? 1 : 0;
2579
2580 switch ((i.tm.base_opcode >> 8) & 0xff)
2581 {
2582 case 0:
2583 implied_prefix = 0;
2584 break;
2585 case DATA_PREFIX_OPCODE:
2586 implied_prefix = 1;
2587 break;
2588 case REPE_PREFIX_OPCODE:
2589 implied_prefix = 2;
2590 break;
2591 case REPNE_PREFIX_OPCODE:
2592 implied_prefix = 3;
2593 break;
2594 default:
2595 abort ();
2596 }
2597
2598 /* Use 2-byte VEX prefix if possible. */
2599 if (i.tm.opcode_modifier.vex0f
2600 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2601 {
2602 /* 2-byte VEX prefix. */
2603 unsigned int r;
2604
2605 i.vex.length = 2;
2606 i.vex.bytes[0] = 0xc5;
2607
2608 /* Check the REX.R bit. */
2609 r = (i.rex & REX_R) ? 0 : 1;
2610 i.vex.bytes[1] = (r << 7
2611 | register_specifier << 3
2612 | vector_length << 2
2613 | implied_prefix);
2614 }
2615 else
2616 {
2617 /* 3-byte VEX prefix. */
2618 unsigned int m, w;
2619
2620 if (i.tm.opcode_modifier.vex0f)
2621 m = 0x1;
2622 else if (i.tm.opcode_modifier.vex0f38)
2623 m = 0x2;
2624 else if (i.tm.opcode_modifier.vex0f3a)
2625 m = 0x3;
2626 else
2627 abort ();
2628
2629 i.vex.length = 3;
2630 i.vex.bytes[0] = 0xc4;
2631
2632 /* The high 3 bits of the second VEX byte are 1's compliment
2633 of RXB bits from REX. */
2634 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2635
2636 /* Check the REX.W bit. */
2637 w = (i.rex & REX_W) ? 1 : 0;
2638 if (i.tm.opcode_modifier.vexw0 || i.tm.opcode_modifier.vexw1)
2639 {
2640 if (w)
2641 abort ();
2642
2643 if (i.tm.opcode_modifier.vexw1)
2644 w = 1;
2645 }
2646
2647 i.vex.bytes[2] = (w << 7
2648 | register_specifier << 3
2649 | vector_length << 2
2650 | implied_prefix);
2651 }
2652}
2653
2654static void
2655process_immext (void)
2656{
2657 expressionS *exp;
2658
2659 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2660 {
2661 /* SSE3 Instructions have the fixed operands with an opcode
2662 suffix which is coded in the same place as an 8-bit immediate
2663 field would be. Here we check those operands and remove them
2664 afterwards. */
2665 unsigned int x;
2666
2667 for (x = 0; x < i.operands; x++)
2668 if (i.op[x].regs->reg_num != x)
2669 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2670 register_prefix, i.op[x].regs->reg_name, x + 1,
2671 i.tm.name);
2672
2673 i.operands = 0;
2674 }
2675
2676 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2677 which is coded in the same place as an 8-bit immediate field
2678 would be. Here we fake an 8-bit immediate operand from the
2679 opcode suffix stored in tm.extension_opcode.
2680
2681 AVX instructions also use this encoding, for some of
2682 3 argument instructions. */
2683
2684 gas_assert (i.imm_operands == 0
2685 && (i.operands <= 2
2686 || (i.tm.opcode_modifier.vex
2687 && i.operands <= 4)));
2688
2689 exp = &im_expressions[i.imm_operands++];
2690 i.op[i.operands].imms = exp;
2691 i.types[i.operands] = imm8;
2692 i.operands++;
2693 exp->X_op = O_constant;
2694 exp->X_add_number = i.tm.extension_opcode;
2695 i.tm.extension_opcode = None;
2696}
2697
2698/* This is the guts of the machine-dependent assembler. LINE points to a
2699 machine dependent instruction. This function is supposed to emit
2700 the frags/bytes it assembles to. */
2701
2702void
2703md_assemble (char *line)
2704{
2705 unsigned int j;
2706 char mnemonic[MAX_MNEM_SIZE];
2707 const template *t;
2708
2709 /* Initialize globals. */
2710 memset (&i, '\0', sizeof (i));
2711 for (j = 0; j < MAX_OPERANDS; j++)
2712 i.reloc[j] = NO_RELOC;
2713 memset (disp_expressions, '\0', sizeof (disp_expressions));
2714 memset (im_expressions, '\0', sizeof (im_expressions));
2715 save_stack_p = save_stack;
2716
2717 /* First parse an instruction mnemonic & call i386_operand for the operands.
2718 We assume that the scrubber has arranged it so that line[0] is the valid
2719 start of a (possibly prefixed) mnemonic. */
2720
2721 line = parse_insn (line, mnemonic);
2722 if (line == NULL)
2723 return;
2724
2725 line = parse_operands (line, mnemonic);
2726 this_operand = -1;
2727 if (line == NULL)
2728 return;
2729
2730 /* Now we've parsed the mnemonic into a set of templates, and have the
2731 operands at hand. */
2732
2733 /* All intel opcodes have reversed operands except for "bound" and
2734 "enter". We also don't reverse intersegment "jmp" and "call"
2735 instructions with 2 immediate operands so that the immediate segment
2736 precedes the offset, as it does when in AT&T mode. */
2737 if (intel_syntax
2738 && i.operands > 1
2739 && (strcmp (mnemonic, "bound") != 0)
2740 && (strcmp (mnemonic, "invlpga") != 0)
2741 && !(operand_type_check (i.types[0], imm)
2742 && operand_type_check (i.types[1], imm)))
2743 swap_operands ();
2744
2745 /* The order of the immediates should be reversed
2746 for 2 immediates extrq and insertq instructions */
2747 if (i.imm_operands == 2
2748 && (strcmp (mnemonic, "extrq") == 0
2749 || strcmp (mnemonic, "insertq") == 0))
2750 swap_2_operands (0, 1);
2751
2752 if (i.imm_operands)
2753 optimize_imm ();
2754
2755 /* Don't optimize displacement for movabs since it only takes 64bit
2756 displacement. */
2757 if (i.disp_operands
2758 && (flag_code != CODE_64BIT
2759 || strcmp (mnemonic, "movabs") != 0))
2760 optimize_disp ();
2761
2762 /* Next, we find a template that matches the given insn,
2763 making sure the overlap of the given operands types is consistent
2764 with the template operand types. */
2765
2766 if (!(t = match_template ()))
2767 return;
2768
2769 if (sse_check != sse_check_none
2770 && !i.tm.opcode_modifier.noavx
2771 && (i.tm.cpu_flags.bitfield.cpusse
2772 || i.tm.cpu_flags.bitfield.cpusse2
2773 || i.tm.cpu_flags.bitfield.cpusse3
2774 || i.tm.cpu_flags.bitfield.cpussse3
2775 || i.tm.cpu_flags.bitfield.cpusse4_1
2776 || i.tm.cpu_flags.bitfield.cpusse4_2))
2777 {
2778 (sse_check == sse_check_warning
2779 ? as_warn
2780 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
2781 }
2782
2783 /* Zap movzx and movsx suffix. The suffix has been set from
2784 "word ptr" or "byte ptr" on the source operand in Intel syntax
2785 or extracted from mnemonic in AT&T syntax. But we'll use
2786 the destination register to choose the suffix for encoding. */
2787 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2788 {
2789 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2790 there is no suffix, the default will be byte extension. */
2791 if (i.reg_operands != 2
2792 && !i.suffix
2793 && intel_syntax)
2794 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2795
2796 i.suffix = 0;
2797 }
2798
2799 if (i.tm.opcode_modifier.fwait)
2800 if (!add_prefix (FWAIT_OPCODE))
2801 return;
2802
2803 /* Check string instruction segment overrides. */
2804 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2805 {
2806 if (!check_string ())
2807 return;
2808 i.disp_operands = 0;
2809 }
2810
2811 if (!process_suffix ())
2812 return;
2813
2814 /* Make still unresolved immediate matches conform to size of immediate
2815 given in i.suffix. */
2816 if (!finalize_imm ())
2817 return;
2818
2819 if (i.types[0].bitfield.imm1)
2820 i.imm_operands = 0; /* kludge for shift insns. */
2821
2822 for (j = 0; j < 3; j++)
2823 if (i.types[j].bitfield.inoutportreg
2824 || i.types[j].bitfield.shiftcount
2825 || i.types[j].bitfield.acc
2826 || i.types[j].bitfield.floatacc)
2827 i.reg_operands--;
2828
2829 /* ImmExt should be processed after SSE2AVX. */
2830 if (!i.tm.opcode_modifier.sse2avx
2831 && i.tm.opcode_modifier.immext)
2832 process_immext ();
2833
2834 /* For insns with operands there are more diddles to do to the opcode. */
2835 if (i.operands)
2836 {
2837 if (!process_operands ())
2838 return;
2839 }
2840 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
2841 {
2842 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2843 as_warn (_("translating to `%sp'"), i.tm.name);
2844 }
2845
2846 if (i.tm.opcode_modifier.vex)
2847 build_vex_prefix (t);
2848
2849 /* Handle conversion of 'int $3' --> special int3 insn. */
2850 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2851 {
2852 i.tm.base_opcode = INT3_OPCODE;
2853 i.imm_operands = 0;
2854 }
2855
2856 if ((i.tm.opcode_modifier.jump
2857 || i.tm.opcode_modifier.jumpbyte
2858 || i.tm.opcode_modifier.jumpdword)
2859 && i.op[0].disps->X_op == O_constant)
2860 {
2861 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2862 the absolute address given by the constant. Since ix86 jumps and
2863 calls are pc relative, we need to generate a reloc. */
2864 i.op[0].disps->X_add_symbol = &abs_symbol;
2865 i.op[0].disps->X_op = O_symbol;
2866 }
2867
2868 if (i.tm.opcode_modifier.rex64)
2869 i.rex |= REX_W;
2870
2871 /* For 8 bit registers we need an empty rex prefix. Also if the
2872 instruction already has a prefix, we need to convert old
2873 registers to new ones. */
2874
2875 if ((i.types[0].bitfield.reg8
2876 && (i.op[0].regs->reg_flags & RegRex64) != 0)
2877 || (i.types[1].bitfield.reg8
2878 && (i.op[1].regs->reg_flags & RegRex64) != 0)
2879 || ((i.types[0].bitfield.reg8
2880 || i.types[1].bitfield.reg8)
2881 && i.rex != 0))
2882 {
2883 int x;
2884
2885 i.rex |= REX_OPCODE;
2886 for (x = 0; x < 2; x++)
2887 {
2888 /* Look for 8 bit operand that uses old registers. */
2889 if (i.types[x].bitfield.reg8
2890 && (i.op[x].regs->reg_flags & RegRex64) == 0)
2891 {
2892 /* In case it is "hi" register, give up. */
2893 if (i.op[x].regs->reg_num > 3)
2894 as_bad (_("can't encode register '%s%s' in an "
2895 "instruction requiring REX prefix."),
2896 register_prefix, i.op[x].regs->reg_name);
2897
2898 /* Otherwise it is equivalent to the extended register.
2899 Since the encoding doesn't change this is merely
2900 cosmetic cleanup for debug output. */
2901
2902 i.op[x].regs = i.op[x].regs + 8;
2903 }
2904 }
2905 }
2906
2907 if (i.rex != 0)
2908 add_prefix (REX_OPCODE | i.rex);
2909
2910 /* We are ready to output the insn. */
2911 output_insn ();
2912}
2913
2914static char *
2915parse_insn (char *line, char *mnemonic)
2916{
2917 char *l = line;
2918 char *token_start = l;
2919 char *mnem_p;
2920 int supported;
2921 const template *t;
2922 char *dot_p = NULL;
2923
2924 /* Non-zero if we found a prefix only acceptable with string insns. */
2925 const char *expecting_string_instruction = NULL;
2926
2927 while (1)
2928 {
2929 mnem_p = mnemonic;
2930 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
2931 {
2932 if (*mnem_p == '.')
2933 dot_p = mnem_p;
2934 mnem_p++;
2935 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
2936 {
2937 as_bad (_("no such instruction: `%s'"), token_start);
2938 return NULL;
2939 }
2940 l++;
2941 }
2942 if (!is_space_char (*l)
2943 && *l != END_OF_INSN
2944 && (intel_syntax
2945 || (*l != PREFIX_SEPARATOR
2946 && *l != ',')))
2947 {
2948 as_bad (_("invalid character %s in mnemonic"),
2949 output_invalid (*l));
2950 return NULL;
2951 }
2952 if (token_start == l)
2953 {
2954 if (!intel_syntax && *l == PREFIX_SEPARATOR)
2955 as_bad (_("expecting prefix; got nothing"));
2956 else
2957 as_bad (_("expecting mnemonic; got nothing"));
2958 return NULL;
2959 }
2960
2961 /* Look up instruction (or prefix) via hash table. */
2962 current_templates = hash_find (op_hash, mnemonic);
2963
2964 if (*l != END_OF_INSN
2965 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2966 && current_templates
2967 && current_templates->start->opcode_modifier.isprefix)
2968 {
2969 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2970 {
2971 as_bad ((flag_code != CODE_64BIT
2972 ? _("`%s' is only supported in 64-bit mode")
2973 : _("`%s' is not supported in 64-bit mode")),
2974 current_templates->start->name);
2975 return NULL;
2976 }
2977 /* If we are in 16-bit mode, do not allow addr16 or data16.
2978 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2979 if ((current_templates->start->opcode_modifier.size16
2980 || current_templates->start->opcode_modifier.size32)
2981 && flag_code != CODE_64BIT
2982 && (current_templates->start->opcode_modifier.size32
2983 ^ (flag_code == CODE_16BIT)))
2984 {
2985 as_bad (_("redundant %s prefix"),
2986 current_templates->start->name);
2987 return NULL;
2988 }
2989 /* Add prefix, checking for repeated prefixes. */
2990 switch (add_prefix (current_templates->start->base_opcode))
2991 {
2992 case 0:
2993 return NULL;
2994 case 2:
2995 expecting_string_instruction = current_templates->start->name;
2996 break;
2997 }
2998 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2999 token_start = ++l;
3000 }
3001 else
3002 break;
3003 }
3004
3005 if (!current_templates)
3006 {
3007 /* Check if we should swap operand in encoding. */
3008 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3009 i.swap_operand = 1;
3010 else
3011 goto check_suffix;
3012 mnem_p = dot_p;
3013 *dot_p = '\0';
3014 current_templates = hash_find (op_hash, mnemonic);
3015 }
3016
3017 if (!current_templates)
3018 {
3019check_suffix:
3020 /* See if we can get a match by trimming off a suffix. */
3021 switch (mnem_p[-1])
3022 {
3023 case WORD_MNEM_SUFFIX:
3024 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3025 i.suffix = SHORT_MNEM_SUFFIX;
3026 else
3027 case BYTE_MNEM_SUFFIX:
3028 case QWORD_MNEM_SUFFIX:
3029 i.suffix = mnem_p[-1];
3030 mnem_p[-1] = '\0';
3031 current_templates = hash_find (op_hash, mnemonic);
3032 break;
3033 case SHORT_MNEM_SUFFIX:
3034 case LONG_MNEM_SUFFIX:
3035 if (!intel_syntax)
3036 {
3037 i.suffix = mnem_p[-1];
3038 mnem_p[-1] = '\0';
3039 current_templates = hash_find (op_hash, mnemonic);
3040 }
3041 break;
3042
3043 /* Intel Syntax. */
3044 case 'd':
3045 if (intel_syntax)
3046 {
3047 if (intel_float_operand (mnemonic) == 1)
3048 i.suffix = SHORT_MNEM_SUFFIX;
3049 else
3050 i.suffix = LONG_MNEM_SUFFIX;
3051 mnem_p[-1] = '\0';
3052 current_templates = hash_find (op_hash, mnemonic);
3053 }
3054 break;
3055 }
3056 if (!current_templates)
3057 {
3058 as_bad (_("no such instruction: `%s'"), token_start);
3059 return NULL;
3060 }
3061 }
3062
3063 if (current_templates->start->opcode_modifier.jump
3064 || current_templates->start->opcode_modifier.jumpbyte)
3065 {
3066 /* Check for a branch hint. We allow ",pt" and ",pn" for
3067 predict taken and predict not taken respectively.
3068 I'm not sure that branch hints actually do anything on loop
3069 and jcxz insns (JumpByte) for current Pentium4 chips. They
3070 may work in the future and it doesn't hurt to accept them
3071 now. */
3072 if (l[0] == ',' && l[1] == 'p')
3073 {
3074 if (l[2] == 't')
3075 {
3076 if (!add_prefix (DS_PREFIX_OPCODE))
3077 return NULL;
3078 l += 3;
3079 }
3080 else if (l[2] == 'n')
3081 {
3082 if (!add_prefix (CS_PREFIX_OPCODE))
3083 return NULL;
3084 l += 3;
3085 }
3086 }
3087 }
3088 /* Any other comma loses. */
3089 if (*l == ',')
3090 {
3091 as_bad (_("invalid character %s in mnemonic"),
3092 output_invalid (*l));
3093 return NULL;
3094 }
3095
3096 /* Check if instruction is supported on specified architecture. */
3097 supported = 0;
3098 for (t = current_templates->start; t < current_templates->end; ++t)
3099 {
3100 supported |= cpu_flags_match (t);
3101 if (supported == CPU_FLAGS_PERFECT_MATCH)
3102 goto skip;
3103 }
3104
3105 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3106 {
3107 as_bad (flag_code == CODE_64BIT
3108 ? _("`%s' is not supported in 64-bit mode")
3109 : _("`%s' is only supported in 64-bit mode"),
3110 current_templates->start->name);
3111 return NULL;
3112 }
3113 if (supported != CPU_FLAGS_PERFECT_MATCH)
3114 {
3115 as_bad (_("`%s' is not supported on `%s%s'"),
3116 current_templates->start->name,
3117 cpu_arch_name ? cpu_arch_name : default_arch,
3118 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3119 return NULL;
3120 }
3121
3122skip:
3123 if (!cpu_arch_flags.bitfield.cpui386
3124 && (flag_code != CODE_16BIT))
3125 {
3126 as_warn (_("use .code16 to ensure correct addressing mode"));
3127 }
3128
3129 /* Check for rep/repne without a string instruction. */
3130 if (expecting_string_instruction)
3131 {
3132 static templates override;
3133
3134 for (t = current_templates->start; t < current_templates->end; ++t)
3135 if (t->opcode_modifier.isstring)
3136 break;
3137 if (t >= current_templates->end)
3138 {
3139 as_bad (_("expecting string instruction after `%s'"),
3140 expecting_string_instruction);
3141 return NULL;
3142 }
3143 for (override.start = t; t < current_templates->end; ++t)
3144 if (!t->opcode_modifier.isstring)
3145 break;
3146 override.end = t;
3147 current_templates = &override;
3148 }
3149
3150 return l;
3151}
3152
3153static char *
3154parse_operands (char *l, const char *mnemonic)
3155{
3156 char *token_start;
3157
3158 /* 1 if operand is pending after ','. */
3159 unsigned int expecting_operand = 0;
3160
3161 /* Non-zero if operand parens not balanced. */
3162 unsigned int paren_not_balanced;
3163
3164 while (*l != END_OF_INSN)
3165 {
3166 /* Skip optional white space before operand. */
3167 if (is_space_char (*l))
3168 ++l;
3169 if (!is_operand_char (*l) && *l != END_OF_INSN)
3170 {
3171 as_bad (_("invalid character %s before operand %d"),
3172 output_invalid (*l),
3173 i.operands + 1);
3174 return NULL;
3175 }
3176 token_start = l; /* after white space */
3177 paren_not_balanced = 0;
3178 while (paren_not_balanced || *l != ',')
3179 {
3180 if (*l == END_OF_INSN)
3181 {
3182 if (paren_not_balanced)
3183 {
3184 if (!intel_syntax)
3185 as_bad (_("unbalanced parenthesis in operand %d."),
3186 i.operands + 1);
3187 else
3188 as_bad (_("unbalanced brackets in operand %d."),
3189 i.operands + 1);
3190 return NULL;
3191 }
3192 else
3193 break; /* we are done */
3194 }
3195 else if (!is_operand_char (*l) && !is_space_char (*l))
3196 {
3197 as_bad (_("invalid character %s in operand %d"),
3198 output_invalid (*l),
3199 i.operands + 1);
3200 return NULL;
3201 }
3202 if (!intel_syntax)
3203 {
3204 if (*l == '(')
3205 ++paren_not_balanced;
3206 if (*l == ')')
3207 --paren_not_balanced;
3208 }
3209 else
3210 {
3211 if (*l == '[')
3212 ++paren_not_balanced;
3213 if (*l == ']')
3214 --paren_not_balanced;
3215 }
3216 l++;
3217 }
3218 if (l != token_start)
3219 { /* Yes, we've read in another operand. */
3220 unsigned int operand_ok;
3221 this_operand = i.operands++;
3222 i.types[this_operand].bitfield.unspecified = 1;
3223 if (i.operands > MAX_OPERANDS)
3224 {
3225 as_bad (_("spurious operands; (%d operands/instruction max)"),
3226 MAX_OPERANDS);
3227 return NULL;
3228 }
3229 /* Now parse operand adding info to 'i' as we go along. */
3230 END_STRING_AND_SAVE (l);
3231
3232 if (intel_syntax)
3233 operand_ok =
3234 i386_intel_operand (token_start,
3235 intel_float_operand (mnemonic));
3236 else
3237 operand_ok = i386_att_operand (token_start);
3238
3239 RESTORE_END_STRING (l);
3240 if (!operand_ok)
3241 return NULL;
3242 }
3243 else
3244 {
3245 if (expecting_operand)
3246 {
3247 expecting_operand_after_comma:
3248 as_bad (_("expecting operand after ','; got nothing"));
3249 return NULL;
3250 }
3251 if (*l == ',')
3252 {
3253 as_bad (_("expecting operand before ','; got nothing"));
3254 return NULL;
3255 }
3256 }
3257
3258 /* Now *l must be either ',' or END_OF_INSN. */
3259 if (*l == ',')
3260 {
3261 if (*++l == END_OF_INSN)
3262 {
3263 /* Just skip it, if it's \n complain. */
3264 goto expecting_operand_after_comma;
3265 }
3266 expecting_operand = 1;
3267 }
3268 }
3269 return l;
3270}
3271
3272static void
3273swap_2_operands (int xchg1, int xchg2)
3274{
3275 union i386_op temp_op;
3276 i386_operand_type temp_type;
3277 enum bfd_reloc_code_real temp_reloc;
3278
3279 temp_type = i.types[xchg2];
3280 i.types[xchg2] = i.types[xchg1];
3281 i.types[xchg1] = temp_type;
3282 temp_op = i.op[xchg2];
3283 i.op[xchg2] = i.op[xchg1];
3284 i.op[xchg1] = temp_op;
3285 temp_reloc = i.reloc[xchg2];
3286 i.reloc[xchg2] = i.reloc[xchg1];
3287 i.reloc[xchg1] = temp_reloc;
3288}
3289
3290static void
3291swap_operands (void)
3292{
3293 switch (i.operands)
3294 {
3295 case 5:
3296 case 4:
3297 swap_2_operands (1, i.operands - 2);
3298 case 3:
3299 case 2:
3300 swap_2_operands (0, i.operands - 1);
3301 break;
3302 default:
3303 abort ();
3304 }
3305
3306 if (i.mem_operands == 2)
3307 {
3308 const seg_entry *temp_seg;
3309 temp_seg = i.seg[0];
3310 i.seg[0] = i.seg[1];
3311 i.seg[1] = temp_seg;
3312 }
3313}
3314
3315/* Try to ensure constant immediates are represented in the smallest
3316 opcode possible. */
3317static void
3318optimize_imm (void)
3319{
3320 char guess_suffix = 0;
3321 int op;
3322
3323 if (i.suffix)
3324 guess_suffix = i.suffix;
3325 else if (i.reg_operands)
3326 {
3327 /* Figure out a suffix from the last register operand specified.
3328 We can't do this properly yet, ie. excluding InOutPortReg,
3329 but the following works for instructions with immediates.
3330 In any case, we can't set i.suffix yet. */
3331 for (op = i.operands; --op >= 0;)
3332 if (i.types[op].bitfield.reg8)
3333 {
3334 guess_suffix = BYTE_MNEM_SUFFIX;
3335 break;
3336 }
3337 else if (i.types[op].bitfield.reg16)
3338 {
3339 guess_suffix = WORD_MNEM_SUFFIX;
3340 break;
3341 }
3342 else if (i.types[op].bitfield.reg32)
3343 {
3344 guess_suffix = LONG_MNEM_SUFFIX;
3345 break;
3346 }
3347 else if (i.types[op].bitfield.reg64)
3348 {
3349 guess_suffix = QWORD_MNEM_SUFFIX;
3350 break;
3351 }
3352 }
3353 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3354 guess_suffix = WORD_MNEM_SUFFIX;
3355
3356 for (op = i.operands; --op >= 0;)
3357 if (operand_type_check (i.types[op], imm))
3358 {
3359 switch (i.op[op].imms->X_op)
3360 {
3361 case O_constant:
3362 /* If a suffix is given, this operand may be shortened. */
3363 switch (guess_suffix)
3364 {
3365 case LONG_MNEM_SUFFIX:
3366 i.types[op].bitfield.imm32 = 1;
3367 i.types[op].bitfield.imm64 = 1;
3368 break;
3369 case WORD_MNEM_SUFFIX:
3370 i.types[op].bitfield.imm16 = 1;
3371 i.types[op].bitfield.imm32 = 1;
3372 i.types[op].bitfield.imm32s = 1;
3373 i.types[op].bitfield.imm64 = 1;
3374 break;
3375 case BYTE_MNEM_SUFFIX:
3376 i.types[op].bitfield.imm8 = 1;
3377 i.types[op].bitfield.imm8s = 1;
3378 i.types[op].bitfield.imm16 = 1;
3379 i.types[op].bitfield.imm32 = 1;
3380 i.types[op].bitfield.imm32s = 1;
3381 i.types[op].bitfield.imm64 = 1;
3382 break;
3383 }
3384
3385 /* If this operand is at most 16 bits, convert it
3386 to a signed 16 bit number before trying to see
3387 whether it will fit in an even smaller size.
3388 This allows a 16-bit operand such as $0xffe0 to
3389 be recognised as within Imm8S range. */
3390 if ((i.types[op].bitfield.imm16)
3391 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3392 {
3393 i.op[op].imms->X_add_number =
3394 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3395 }
3396 if ((i.types[op].bitfield.imm32)
3397 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3398 == 0))
3399 {
3400 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3401 ^ ((offsetT) 1 << 31))
3402 - ((offsetT) 1 << 31));
3403 }
3404 i.types[op]
3405 = operand_type_or (i.types[op],
3406 smallest_imm_type (i.op[op].imms->X_add_number));
3407
3408 /* We must avoid matching of Imm32 templates when 64bit
3409 only immediate is available. */
3410 if (guess_suffix == QWORD_MNEM_SUFFIX)
3411 i.types[op].bitfield.imm32 = 0;
3412 break;
3413
3414 case O_absent:
3415 case O_register:
3416 abort ();
3417
3418 /* Symbols and expressions. */
3419 default:
3420 /* Convert symbolic operand to proper sizes for matching, but don't
3421 prevent matching a set of insns that only supports sizes other
3422 than those matching the insn suffix. */
3423 {
3424 i386_operand_type mask, allowed;
3425 const template *t;
3426
3427 operand_type_set (&mask, 0);
3428 operand_type_set (&allowed, 0);
3429
3430 for (t = current_templates->start;
3431 t < current_templates->end;
3432 ++t)
3433 allowed = operand_type_or (allowed,
3434 t->operand_types[op]);
3435 switch (guess_suffix)
3436 {
3437 case QWORD_MNEM_SUFFIX:
3438 mask.bitfield.imm64 = 1;
3439 mask.bitfield.imm32s = 1;
3440 break;
3441 case LONG_MNEM_SUFFIX:
3442 mask.bitfield.imm32 = 1;
3443 break;
3444 case WORD_MNEM_SUFFIX:
3445 mask.bitfield.imm16 = 1;
3446 break;
3447 case BYTE_MNEM_SUFFIX:
3448 mask.bitfield.imm8 = 1;
3449 break;
3450 default:
3451 break;
3452 }
3453 allowed = operand_type_and (mask, allowed);
3454 if (!operand_type_all_zero (&allowed))
3455 i.types[op] = operand_type_and (i.types[op], mask);
3456 }
3457 break;
3458 }
3459 }
3460}
3461
3462/* Try to use the smallest displacement type too. */
3463static void
3464optimize_disp (void)
3465{
3466 int op;
3467
3468 for (op = i.operands; --op >= 0;)
3469 if (operand_type_check (i.types[op], disp))
3470 {
3471 if (i.op[op].disps->X_op == O_constant)
3472 {
3473 offsetT disp = i.op[op].disps->X_add_number;
3474
3475 if (i.types[op].bitfield.disp16
3476 && (disp & ~(offsetT) 0xffff) == 0)
3477 {
3478 /* If this operand is at most 16 bits, convert
3479 to a signed 16 bit number and don't use 64bit
3480 displacement. */
3481 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
3482 i.types[op].bitfield.disp64 = 0;
3483 }
3484 if (i.types[op].bitfield.disp32
3485 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3486 {
3487 /* If this operand is at most 32 bits, convert
3488 to a signed 32 bit number and don't use 64bit
3489 displacement. */
3490 disp &= (((offsetT) 2 << 31) - 1);
3491 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3492 i.types[op].bitfield.disp64 = 0;
3493 }
3494 if (!disp && i.types[op].bitfield.baseindex)
3495 {
3496 i.types[op].bitfield.disp8 = 0;
3497 i.types[op].bitfield.disp16 = 0;
3498 i.types[op].bitfield.disp32 = 0;
3499 i.types[op].bitfield.disp32s = 0;
3500 i.types[op].bitfield.disp64 = 0;
3501 i.op[op].disps = 0;
3502 i.disp_operands--;
3503 }
3504 else if (flag_code == CODE_64BIT)
3505 {
3506 if (fits_in_signed_long (disp))
3507 {
3508 i.types[op].bitfield.disp64 = 0;
3509 i.types[op].bitfield.disp32s = 1;
3510 }
3511 if (fits_in_unsigned_long (disp))
3512 i.types[op].bitfield.disp32 = 1;
3513 }
3514 if ((i.types[op].bitfield.disp32
3515 || i.types[op].bitfield.disp32s
3516 || i.types[op].bitfield.disp16)
3517 && fits_in_signed_byte (disp))
3518 i.types[op].bitfield.disp8 = 1;
3519 }
3520 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3521 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3522 {
3523 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3524 i.op[op].disps, 0, i.reloc[op]);
3525 i.types[op].bitfield.disp8 = 0;
3526 i.types[op].bitfield.disp16 = 0;
3527 i.types[op].bitfield.disp32 = 0;
3528 i.types[op].bitfield.disp32s = 0;
3529 i.types[op].bitfield.disp64 = 0;
3530 }
3531 else
3532 /* We only support 64bit displacement on constants. */
3533 i.types[op].bitfield.disp64 = 0;
3534 }
3535}
3536
3537static const template *
3538match_template (void)
3539{
3540 /* Points to template once we've found it. */
3541 const template *t;
3542 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3543 i386_operand_type overlap4;
3544 unsigned int found_reverse_match;
3545 i386_opcode_modifier suffix_check;
3546 i386_operand_type operand_types [MAX_OPERANDS];
3547 int addr_prefix_disp;
3548 unsigned int j;
3549 unsigned int found_cpu_match;
3550 unsigned int check_register;
3551
3552#if MAX_OPERANDS != 5
3553# error "MAX_OPERANDS must be 5."
3554#endif
3555
3556 found_reverse_match = 0;
3557 addr_prefix_disp = -1;
3558
3559 memset (&suffix_check, 0, sizeof (suffix_check));
3560 if (i.suffix == BYTE_MNEM_SUFFIX)
3561 suffix_check.no_bsuf = 1;
3562 else if (i.suffix == WORD_MNEM_SUFFIX)
3563 suffix_check.no_wsuf = 1;
3564 else if (i.suffix == SHORT_MNEM_SUFFIX)
3565 suffix_check.no_ssuf = 1;
3566 else if (i.suffix == LONG_MNEM_SUFFIX)
3567 suffix_check.no_lsuf = 1;
3568 else if (i.suffix == QWORD_MNEM_SUFFIX)
3569 suffix_check.no_qsuf = 1;
3570 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3571 suffix_check.no_ldsuf = 1;
3572
3573 for (t = current_templates->start; t < current_templates->end; t++)
3574 {
3575 addr_prefix_disp = -1;
3576
3577 /* Must have right number of operands. */
3578 if (i.operands != t->operands)
3579 continue;
3580
3581 /* Check processor support. */
3582 found_cpu_match = (cpu_flags_match (t)
3583 == CPU_FLAGS_PERFECT_MATCH);
3584 if (!found_cpu_match)
3585 continue;
3586
3587 /* Check old gcc support. */
3588 if (!old_gcc && t->opcode_modifier.oldgcc)
3589 continue;
3590
3591 /* Check AT&T mnemonic. */
3592 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
3593 continue;
3594
3595 /* Check AT&T syntax Intel syntax. */
3596 if ((intel_syntax && t->opcode_modifier.attsyntax)
3597 || (!intel_syntax && t->opcode_modifier.intelsyntax))
3598 continue;
3599
3600 /* Check the suffix, except for some instructions in intel mode. */
3601 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3602 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3603 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3604 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3605 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3606 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3607 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3608 continue;
3609
3610 if (!operand_size_match (t))
3611 continue;
3612
3613 for (j = 0; j < MAX_OPERANDS; j++)
3614 operand_types[j] = t->operand_types[j];
3615
3616 /* In general, don't allow 64-bit operands in 32-bit mode. */
3617 if (i.suffix == QWORD_MNEM_SUFFIX
3618 && flag_code != CODE_64BIT
3619 && (intel_syntax
3620 ? (!t->opcode_modifier.ignoresize
3621 && !intel_float_operand (t->name))
3622 : intel_float_operand (t->name) != 2)
3623 && ((!operand_types[0].bitfield.regmmx
3624 && !operand_types[0].bitfield.regxmm
3625 && !operand_types[0].bitfield.regymm)
3626 || (!operand_types[t->operands > 1].bitfield.regmmx
3627 && !!operand_types[t->operands > 1].bitfield.regxmm
3628 && !!operand_types[t->operands > 1].bitfield.regymm))
3629 && (t->base_opcode != 0x0fc7
3630 || t->extension_opcode != 1 /* cmpxchg8b */))
3631 continue;
3632
3633 /* In general, don't allow 32-bit operands on pre-386. */
3634 else if (i.suffix == LONG_MNEM_SUFFIX
3635 && !cpu_arch_flags.bitfield.cpui386
3636 && (intel_syntax
3637 ? (!t->opcode_modifier.ignoresize
3638 && !intel_float_operand (t->name))
3639 : intel_float_operand (t->name) != 2)
3640 && ((!operand_types[0].bitfield.regmmx
3641 && !operand_types[0].bitfield.regxmm)
3642 || (!operand_types[t->operands > 1].bitfield.regmmx
3643 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3644 continue;
3645
3646 /* Do not verify operands when there are none. */
3647 else
3648 {
3649 if (!t->operands)
3650 /* We've found a match; break out of loop. */
3651 break;
3652 }
3653
3654 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3655 into Disp32/Disp16/Disp32 operand. */
3656 if (i.prefix[ADDR_PREFIX] != 0)
3657 {
3658 /* There should be only one Disp operand. */
3659 switch (flag_code)
3660 {
3661 case CODE_16BIT:
3662 for (j = 0; j < MAX_OPERANDS; j++)
3663 {
3664 if (operand_types[j].bitfield.disp16)
3665 {
3666 addr_prefix_disp = j;
3667 operand_types[j].bitfield.disp32 = 1;
3668 operand_types[j].bitfield.disp16 = 0;
3669 break;
3670 }
3671 }
3672 break;
3673 case CODE_32BIT:
3674 for (j = 0; j < MAX_OPERANDS; j++)
3675 {
3676 if (operand_types[j].bitfield.disp32)
3677 {
3678 addr_prefix_disp = j;
3679 operand_types[j].bitfield.disp32 = 0;
3680 operand_types[j].bitfield.disp16 = 1;
3681 break;
3682 }
3683 }
3684 break;
3685 case CODE_64BIT:
3686 for (j = 0; j < MAX_OPERANDS; j++)
3687 {
3688 if (operand_types[j].bitfield.disp64)
3689 {
3690 addr_prefix_disp = j;
3691 operand_types[j].bitfield.disp64 = 0;
3692 operand_types[j].bitfield.disp32 = 1;
3693 break;
3694 }
3695 }
3696 break;
3697 }
3698 }
3699
3700 /* We check register size only if size of operands can be
3701 encoded the canonical way. */
3702 check_register = t->opcode_modifier.w;
3703 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3704 switch (t->operands)
3705 {
3706 case 1:
3707 if (!operand_type_match (overlap0, i.types[0]))
3708 continue;
3709 break;
3710 case 2:
3711 /* xchg %eax, %eax is a special case. It is an aliase for nop
3712 only in 32bit mode and we can use opcode 0x90. In 64bit
3713 mode, we can't use 0x90 for xchg %eax, %eax since it should
3714 zero-extend %eax to %rax. */
3715 if (flag_code == CODE_64BIT
3716 && t->base_opcode == 0x90
3717 && operand_type_equal (&i.types [0], &acc32)
3718 && operand_type_equal (&i.types [1], &acc32))
3719 continue;
3720 if (i.swap_operand)
3721 {
3722 /* If we swap operand in encoding, we either match
3723 the next one or reverse direction of operands. */
3724 if (t->opcode_modifier.s)
3725 continue;
3726 else if (t->opcode_modifier.d)
3727 goto check_reverse;
3728 }
3729
3730 case 3:
3731 /* If we swap operand in encoding, we match the next one. */
3732 if (i.swap_operand && t->opcode_modifier.s)
3733 continue;
3734 case 4:
3735 case 5:
3736 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3737 if (!operand_type_match (overlap0, i.types[0])
3738 || !operand_type_match (overlap1, i.types[1])
3739 || (check_register
3740 && !operand_type_register_match (overlap0, i.types[0],
3741 operand_types[0],
3742 overlap1, i.types[1],
3743 operand_types[1])))
3744 {
3745 /* Check if other direction is valid ... */
3746 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3747 continue;
3748
3749check_reverse:
3750 /* Try reversing direction of operands. */
3751 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3752 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3753 if (!operand_type_match (overlap0, i.types[0])
3754 || !operand_type_match (overlap1, i.types[1])
3755 || (check_register
3756 && !operand_type_register_match (overlap0,
3757 i.types[0],
3758 operand_types[1],
3759 overlap1,
3760 i.types[1],
3761 operand_types[0])))
3762 {
3763 /* Does not match either direction. */
3764 continue;
3765 }
3766 /* found_reverse_match holds which of D or FloatDR
3767 we've found. */
3768 if (t->opcode_modifier.d)
3769 found_reverse_match = Opcode_D;
3770 else if (t->opcode_modifier.floatd)
3771 found_reverse_match = Opcode_FloatD;
3772 else
3773 found_reverse_match = 0;
3774 if (t->opcode_modifier.floatr)
3775 found_reverse_match |= Opcode_FloatR;
3776 }
3777 else
3778 {
3779 /* Found a forward 2 operand match here. */
3780 switch (t->operands)
3781 {
3782 case 5:
3783 overlap4 = operand_type_and (i.types[4],
3784 operand_types[4]);
3785 case 4:
3786 overlap3 = operand_type_and (i.types[3],
3787 operand_types[3]);
3788 case 3:
3789 overlap2 = operand_type_and (i.types[2],
3790 operand_types[2]);
3791 break;
3792 }
3793
3794 switch (t->operands)
3795 {
3796 case 5:
3797 if (!operand_type_match (overlap4, i.types[4])
3798 || !operand_type_register_match (overlap3,
3799 i.types[3],
3800 operand_types[3],
3801 overlap4,
3802 i.types[4],
3803 operand_types[4]))
3804 continue;
3805 case 4:
3806 if (!operand_type_match (overlap3, i.types[3])
3807 || (check_register
3808 && !operand_type_register_match (overlap2,
3809 i.types[2],
3810 operand_types[2],
3811 overlap3,
3812 i.types[3],
3813 operand_types[3])))
3814 continue;
3815 case 3:
3816 /* Here we make use of the fact that there are no
3817 reverse match 3 operand instructions, and all 3
3818 operand instructions only need to be checked for
3819 register consistency between operands 2 and 3. */
3820 if (!operand_type_match (overlap2, i.types[2])
3821 || (check_register
3822 && !operand_type_register_match (overlap1,
3823 i.types[1],
3824 operand_types[1],
3825 overlap2,
3826 i.types[2],
3827 operand_types[2])))
3828 continue;
3829 break;
3830 }
3831 }
3832 /* Found either forward/reverse 2, 3 or 4 operand match here:
3833 slip through to break. */
3834 }
3835 if (!found_cpu_match)
3836 {
3837 found_reverse_match = 0;
3838 continue;
3839 }
3840
3841 /* We've found a match; break out of loop. */
3842 break;
3843 }
3844
3845 if (t == current_templates->end)
3846 {
3847 /* We found no match. */
3848 if (intel_syntax)
3849 as_bad (_("ambiguous operand size or operands invalid for `%s'"),
3850 current_templates->start->name);
3851 else
3852 as_bad (_("suffix or operands invalid for `%s'"),
3853 current_templates->start->name);
3854 return NULL;
3855 }
3856
3857 if (!quiet_warnings)
3858 {
3859 if (!intel_syntax
3860 && (i.types[0].bitfield.jumpabsolute
3861 != operand_types[0].bitfield.jumpabsolute))
3862 {
3863 as_warn (_("indirect %s without `*'"), t->name);
3864 }
3865
3866 if (t->opcode_modifier.isprefix
3867 && t->opcode_modifier.ignoresize)
3868 {
3869 /* Warn them that a data or address size prefix doesn't
3870 affect assembly of the next line of code. */
3871 as_warn (_("stand-alone `%s' prefix"), t->name);
3872 }
3873 }
3874
3875 /* Copy the template we found. */
3876 i.tm = *t;
3877
3878 if (addr_prefix_disp != -1)
3879 i.tm.operand_types[addr_prefix_disp]
3880 = operand_types[addr_prefix_disp];
3881
3882 if (found_reverse_match)
3883 {
3884 /* If we found a reverse match we must alter the opcode
3885 direction bit. found_reverse_match holds bits to change
3886 (different for int & float insns). */
3887
3888 i.tm.base_opcode ^= found_reverse_match;
3889
3890 i.tm.operand_types[0] = operand_types[1];
3891 i.tm.operand_types[1] = operand_types[0];
3892 }
3893
3894 return t;
3895}
3896
3897static int
3898check_string (void)
3899{
3900 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
3901 if (i.tm.operand_types[mem_op].bitfield.esseg)
3902 {
3903 if (i.seg[0] != NULL && i.seg[0] != &es)
3904 {
3905 as_bad (_("`%s' operand %d must use `%ses' segment"),
3906 i.tm.name,
3907 mem_op + 1,
3908 register_prefix);
3909 return 0;
3910 }
3911 /* There's only ever one segment override allowed per instruction.
3912 This instruction possibly has a legal segment override on the
3913 second operand, so copy the segment to where non-string
3914 instructions store it, allowing common code. */
3915 i.seg[0] = i.seg[1];
3916 }
3917 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
3918 {
3919 if (i.seg[1] != NULL && i.seg[1] != &es)
3920 {
3921 as_bad (_("`%s' operand %d must use `%ses' segment"),
3922 i.tm.name,
3923 mem_op + 2,
3924 register_prefix);
3925 return 0;
3926 }
3927 }
3928 return 1;
3929}
3930
3931static int
3932process_suffix (void)
3933{
3934 /* If matched instruction specifies an explicit instruction mnemonic
3935 suffix, use it. */
3936 if (i.tm.opcode_modifier.size16)
3937 i.suffix = WORD_MNEM_SUFFIX;
3938 else if (i.tm.opcode_modifier.size32)
3939 i.suffix = LONG_MNEM_SUFFIX;
3940 else if (i.tm.opcode_modifier.size64)
3941 i.suffix = QWORD_MNEM_SUFFIX;
3942 else if (i.reg_operands)
3943 {
3944 /* If there's no instruction mnemonic suffix we try to invent one
3945 based on register operands. */
3946 if (!i.suffix)
3947 {
3948 /* We take i.suffix from the last register operand specified,
3949 Destination register type is more significant than source
3950 register type. crc32 in SSE4.2 prefers source register
3951 type. */
3952 if (i.tm.base_opcode == 0xf20f38f1)
3953 {
3954 if (i.types[0].bitfield.reg16)
3955 i.suffix = WORD_MNEM_SUFFIX;
3956 else if (i.types[0].bitfield.reg32)
3957 i.suffix = LONG_MNEM_SUFFIX;
3958 else if (i.types[0].bitfield.reg64)
3959 i.suffix = QWORD_MNEM_SUFFIX;
3960 }
3961 else if (i.tm.base_opcode == 0xf20f38f0)
3962 {
3963 if (i.types[0].bitfield.reg8)
3964 i.suffix = BYTE_MNEM_SUFFIX;
3965 }
3966
3967 if (!i.suffix)
3968 {
3969 int op;
3970
3971 if (i.tm.base_opcode == 0xf20f38f1
3972 || i.tm.base_opcode == 0xf20f38f0)
3973 {
3974 /* We have to know the operand size for crc32. */
3975 as_bad (_("ambiguous memory operand size for `%s`"),
3976 i.tm.name);
3977 return 0;
3978 }
3979
3980 for (op = i.operands; --op >= 0;)
3981 if (!i.tm.operand_types[op].bitfield.inoutportreg)
3982 {
3983 if (i.types[op].bitfield.reg8)
3984 {
3985 i.suffix = BYTE_MNEM_SUFFIX;
3986 break;
3987 }
3988 else if (i.types[op].bitfield.reg16)
3989 {
3990 i.suffix = WORD_MNEM_SUFFIX;
3991 break;
3992 }
3993 else if (i.types[op].bitfield.reg32)
3994 {
3995 i.suffix = LONG_MNEM_SUFFIX;
3996 break;
3997 }
3998 else if (i.types[op].bitfield.reg64)
3999 {
4000 i.suffix = QWORD_MNEM_SUFFIX;
4001 break;
4002 }
4003 }
4004 }
4005 }
4006 else if (i.suffix == BYTE_MNEM_SUFFIX)
4007 {
4008 if (!check_byte_reg ())
4009 return 0;
4010 }
4011 else if (i.suffix == LONG_MNEM_SUFFIX)
4012 {
4013 if (!check_long_reg ())
4014 return 0;
4015 }
4016 else if (i.suffix == QWORD_MNEM_SUFFIX)
4017 {
4018 if (intel_syntax
4019 && i.tm.opcode_modifier.ignoresize
4020 && i.tm.opcode_modifier.no_qsuf)
4021 i.suffix = 0;
4022 else if (!check_qword_reg ())
4023 return 0;
4024 }
4025 else if (i.suffix == WORD_MNEM_SUFFIX)
4026 {
4027 if (!check_word_reg ())
4028 return 0;
4029 }
4030 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4031 || i.suffix == YMMWORD_MNEM_SUFFIX)
4032 {
4033 /* Skip if the instruction has x/y suffix. match_template
4034 should check if it is a valid suffix. */
4035 }
4036 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
4037 /* Do nothing if the instruction is going to ignore the prefix. */
4038 ;
4039 else
4040 abort ();
4041 }
4042 else if (i.tm.opcode_modifier.defaultsize
4043 && !i.suffix
4044 /* exclude fldenv/frstor/fsave/fstenv */
4045 && i.tm.opcode_modifier.no_ssuf)
4046 {
4047 i.suffix = stackop_size;
4048 }
4049 else if (intel_syntax
4050 && !i.suffix
4051 && (i.tm.operand_types[0].bitfield.jumpabsolute
4052 || i.tm.opcode_modifier.jumpbyte
4053 || i.tm.opcode_modifier.jumpintersegment
4054 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4055 && i.tm.extension_opcode <= 3)))
4056 {
4057 switch (flag_code)
4058 {
4059 case CODE_64BIT:
4060 if (!i.tm.opcode_modifier.no_qsuf)
4061 {
4062 i.suffix = QWORD_MNEM_SUFFIX;
4063 break;
4064 }
4065 case CODE_32BIT:
4066 if (!i.tm.opcode_modifier.no_lsuf)
4067 i.suffix = LONG_MNEM_SUFFIX;
4068 break;
4069 case CODE_16BIT:
4070 if (!i.tm.opcode_modifier.no_wsuf)
4071 i.suffix = WORD_MNEM_SUFFIX;
4072 break;
4073 }
4074 }
4075
4076 if (!i.suffix)
4077 {
4078 if (!intel_syntax)
4079 {
4080 if (i.tm.opcode_modifier.w)
4081 {
4082 as_bad (_("no instruction mnemonic suffix given and "
4083 "no register operands; can't size instruction"));
4084 return 0;
4085 }
4086 }
4087 else
4088 {
4089 unsigned int suffixes;
4090
4091 suffixes = !i.tm.opcode_modifier.no_bsuf;
4092 if (!i.tm.opcode_modifier.no_wsuf)
4093 suffixes |= 1 << 1;
4094 if (!i.tm.opcode_modifier.no_lsuf)
4095 suffixes |= 1 << 2;
4096 if (!i.tm.opcode_modifier.no_ldsuf)
4097 suffixes |= 1 << 3;
4098 if (!i.tm.opcode_modifier.no_ssuf)
4099 suffixes |= 1 << 4;
4100 if (!i.tm.opcode_modifier.no_qsuf)
4101 suffixes |= 1 << 5;
4102
4103 /* There are more than suffix matches. */
4104 if (i.tm.opcode_modifier.w
4105 || ((suffixes & (suffixes - 1))
4106 && !i.tm.opcode_modifier.defaultsize
4107 && !i.tm.opcode_modifier.ignoresize))
4108 {
4109 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4110 return 0;
4111 }
4112 }
4113 }
4114
4115 /* Change the opcode based on the operand size given by i.suffix;
4116 We don't need to change things for byte insns. */
4117
4118 if (i.suffix
4119 && i.suffix != BYTE_MNEM_SUFFIX
4120 && i.suffix != XMMWORD_MNEM_SUFFIX
4121 && i.suffix != YMMWORD_MNEM_SUFFIX)
4122 {
4123 /* It's not a byte, select word/dword operation. */
4124 if (i.tm.opcode_modifier.w)
4125 {
4126 if (i.tm.opcode_modifier.shortform)
4127 i.tm.base_opcode |= 8;
4128 else
4129 i.tm.base_opcode |= 1;
4130 }
4131
4132 /* Now select between word & dword operations via the operand
4133 size prefix, except for instructions that will ignore this
4134 prefix anyway. */
4135 if (i.tm.opcode_modifier.addrprefixop0)
4136 {
4137 /* The address size override prefix changes the size of the
4138 first operand. */
4139 if ((flag_code == CODE_32BIT
4140 && i.op->regs[0].reg_type.bitfield.reg16)
4141 || (flag_code != CODE_32BIT
4142 && i.op->regs[0].reg_type.bitfield.reg32))
4143 if (!add_prefix (ADDR_PREFIX_OPCODE))
4144 return 0;
4145 }
4146 else if (i.suffix != QWORD_MNEM_SUFFIX
4147 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
4148 && !i.tm.opcode_modifier.ignoresize
4149 && !i.tm.opcode_modifier.floatmf
4150 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4151 || (flag_code == CODE_64BIT
4152 && i.tm.opcode_modifier.jumpbyte)))
4153 {
4154 unsigned int prefix = DATA_PREFIX_OPCODE;
4155
4156 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
4157 prefix = ADDR_PREFIX_OPCODE;
4158
4159 if (!add_prefix (prefix))
4160 return 0;
4161 }
4162
4163 /* Set mode64 for an operand. */
4164 if (i.suffix == QWORD_MNEM_SUFFIX
4165 && flag_code == CODE_64BIT
4166 && !i.tm.opcode_modifier.norex64)
4167 {
4168 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4169 need rex64. cmpxchg8b is also a special case. */
4170 if (! (i.operands == 2
4171 && i.tm.base_opcode == 0x90
4172 && i.tm.extension_opcode == None
4173 && operand_type_equal (&i.types [0], &acc64)
4174 && operand_type_equal (&i.types [1], &acc64))
4175 && ! (i.operands == 1
4176 && i.tm.base_opcode == 0xfc7
4177 && i.tm.extension_opcode == 1
4178 && !operand_type_check (i.types [0], reg)
4179 && operand_type_check (i.types [0], anymem)))
4180 i.rex |= REX_W;
4181 }
4182
4183 /* Size floating point instruction. */
4184 if (i.suffix == LONG_MNEM_SUFFIX)
4185 if (i.tm.opcode_modifier.floatmf)
4186 i.tm.base_opcode ^= 4;
4187 }
4188
4189 return 1;
4190}
4191
4192static int
4193check_byte_reg (void)
4194{
4195 int op;
4196
4197 for (op = i.operands; --op >= 0;)
4198 {
4199 /* If this is an eight bit register, it's OK. If it's the 16 or
4200 32 bit version of an eight bit register, we will just use the
4201 low portion, and that's OK too. */
4202 if (i.types[op].bitfield.reg8)
4203 continue;
4204
4205 /* Don't generate this warning if not needed. */
4206 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
4207 continue;
4208
4209 /* crc32 doesn't generate this warning. */
4210 if (i.tm.base_opcode == 0xf20f38f0)
4211 continue;
4212
4213 if ((i.types[op].bitfield.reg16
4214 || i.types[op].bitfield.reg32
4215 || i.types[op].bitfield.reg64)
4216 && i.op[op].regs->reg_num < 4)
4217 {
4218 /* Prohibit these changes in the 64bit mode, since the
4219 lowering is more complicated. */
4220 if (flag_code == CODE_64BIT
4221 && !i.tm.operand_types[op].bitfield.inoutportreg)
4222 {
4223 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4224 register_prefix, i.op[op].regs->reg_name,
4225 i.suffix);
4226 return 0;
4227 }
4228#if REGISTER_WARNINGS
4229 if (!quiet_warnings
4230 && !i.tm.operand_types[op].bitfield.inoutportreg)
4231 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4232 register_prefix,
4233 (i.op[op].regs + (i.types[op].bitfield.reg16
4234 ? REGNAM_AL - REGNAM_AX
4235 : REGNAM_AL - REGNAM_EAX))->reg_name,
4236 register_prefix,
4237 i.op[op].regs->reg_name,
4238 i.suffix);
4239#endif
4240 continue;
4241 }
4242 /* Any other register is bad. */
4243 if (i.types[op].bitfield.reg16
4244 || i.types[op].bitfield.reg32
4245 || i.types[op].bitfield.reg64
4246 || i.types[op].bitfield.regmmx
4247 || i.types[op].bitfield.regxmm
4248 || i.types[op].bitfield.regymm
4249 || i.types[op].bitfield.sreg2
4250 || i.types[op].bitfield.sreg3
4251 || i.types[op].bitfield.control
4252 || i.types[op].bitfield.debug
4253 || i.types[op].bitfield.test
4254 || i.types[op].bitfield.floatreg
4255 || i.types[op].bitfield.floatacc)
4256 {
4257 as_bad (_("`%s%s' not allowed with `%s%c'"),
4258 register_prefix,
4259 i.op[op].regs->reg_name,
4260 i.tm.name,
4261 i.suffix);
4262 return 0;
4263 }
4264 }
4265 return 1;
4266}
4267
4268static int
4269check_long_reg (void)
4270{
4271 int op;
4272
4273 for (op = i.operands; --op >= 0;)
4274 /* Reject eight bit registers, except where the template requires
4275 them. (eg. movzb) */
4276 if (i.types[op].bitfield.reg8
4277 && (i.tm.operand_types[op].bitfield.reg16
4278 || i.tm.operand_types[op].bitfield.reg32
4279 || i.tm.operand_types[op].bitfield.acc))
4280 {
4281 as_bad (_("`%s%s' not allowed with `%s%c'"),
4282 register_prefix,
4283 i.op[op].regs->reg_name,
4284 i.tm.name,
4285 i.suffix);
4286 return 0;
4287 }
4288 /* Warn if the e prefix on a general reg is missing. */
4289 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4290 && i.types[op].bitfield.reg16
4291 && (i.tm.operand_types[op].bitfield.reg32
4292 || i.tm.operand_types[op].bitfield.acc))
4293 {
4294 /* Prohibit these changes in the 64bit mode, since the
4295 lowering is more complicated. */
4296 if (flag_code == CODE_64BIT)
4297 {
4298 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4299 register_prefix, i.op[op].regs->reg_name,
4300 i.suffix);
4301 return 0;
4302 }
4303#if REGISTER_WARNINGS
4304 else
4305 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4306 register_prefix,
4307 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
4308 register_prefix,
4309 i.op[op].regs->reg_name,
4310 i.suffix);
4311#endif
4312 }
4313 /* Warn if the r prefix on a general reg is missing. */
4314 else if (i.types[op].bitfield.reg64
4315 && (i.tm.operand_types[op].bitfield.reg32
4316 || i.tm.operand_types[op].bitfield.acc))
4317 {
4318 if (intel_syntax
4319 && i.tm.opcode_modifier.toqword
4320 && !i.types[0].bitfield.regxmm)
4321 {
4322 /* Convert to QWORD. We want REX byte. */
4323 i.suffix = QWORD_MNEM_SUFFIX;
4324 }
4325 else
4326 {
4327 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4328 register_prefix, i.op[op].regs->reg_name,
4329 i.suffix);
4330 return 0;
4331 }
4332 }
4333 return 1;
4334}
4335
4336static int
4337check_qword_reg (void)
4338{
4339 int op;
4340
4341 for (op = i.operands; --op >= 0; )
4342 /* Reject eight bit registers, except where the template requires
4343 them. (eg. movzb) */
4344 if (i.types[op].bitfield.reg8
4345 && (i.tm.operand_types[op].bitfield.reg16
4346 || i.tm.operand_types[op].bitfield.reg32
4347 || i.tm.operand_types[op].bitfield.acc))
4348 {
4349 as_bad (_("`%s%s' not allowed with `%s%c'"),
4350 register_prefix,
4351 i.op[op].regs->reg_name,
4352 i.tm.name,
4353 i.suffix);
4354 return 0;
4355 }
4356 /* Warn if the e prefix on a general reg is missing. */
4357 else if ((i.types[op].bitfield.reg16
4358 || i.types[op].bitfield.reg32)
4359 && (i.tm.operand_types[op].bitfield.reg32
4360 || i.tm.operand_types[op].bitfield.acc))
4361 {
4362 /* Prohibit these changes in the 64bit mode, since the
4363 lowering is more complicated. */
4364 if (intel_syntax
4365 && i.tm.opcode_modifier.todword
4366 && !i.types[0].bitfield.regxmm)
4367 {
4368 /* Convert to DWORD. We don't want REX byte. */
4369 i.suffix = LONG_MNEM_SUFFIX;
4370 }
4371 else
4372 {
4373 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4374 register_prefix, i.op[op].regs->reg_name,
4375 i.suffix);
4376 return 0;
4377 }
4378 }
4379 return 1;
4380}
4381
4382static int
4383check_word_reg (void)
4384{
4385 int op;
4386 for (op = i.operands; --op >= 0;)
4387 /* Reject eight bit registers, except where the template requires
4388 them. (eg. movzb) */
4389 if (i.types[op].bitfield.reg8
4390 && (i.tm.operand_types[op].bitfield.reg16
4391 || i.tm.operand_types[op].bitfield.reg32
4392 || i.tm.operand_types[op].bitfield.acc))
4393 {
4394 as_bad (_("`%s%s' not allowed with `%s%c'"),
4395 register_prefix,
4396 i.op[op].regs->reg_name,
4397 i.tm.name,
4398 i.suffix);
4399 return 0;
4400 }
4401 /* Warn if the e prefix on a general reg is present. */
4402 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4403 && i.types[op].bitfield.reg32
4404 && (i.tm.operand_types[op].bitfield.reg16
4405 || i.tm.operand_types[op].bitfield.acc))
4406 {
4407 /* Prohibit these changes in the 64bit mode, since the
4408 lowering is more complicated. */
4409 if (flag_code == CODE_64BIT)
4410 {
4411 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4412 register_prefix, i.op[op].regs->reg_name,
4413 i.suffix);
4414 return 0;
4415 }
4416 else
4417#if REGISTER_WARNINGS
4418 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4419 register_prefix,
4420 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
4421 register_prefix,
4422 i.op[op].regs->reg_name,
4423 i.suffix);
4424#endif
4425 }
4426 return 1;
4427}
4428
4429static int
4430update_imm (unsigned int j)
4431{
4432 i386_operand_type overlap;
4433
4434 overlap = operand_type_and (i.types[j], i.tm.operand_types[j]);
4435 if ((overlap.bitfield.imm8
4436 || overlap.bitfield.imm8s
4437 || overlap.bitfield.imm16
4438 || overlap.bitfield.imm32
4439 || overlap.bitfield.imm32s
4440 || overlap.bitfield.imm64)
4441 && !operand_type_equal (&overlap, &imm8)
4442 && !operand_type_equal (&overlap, &imm8s)
4443 && !operand_type_equal (&overlap, &imm16)
4444 && !operand_type_equal (&overlap, &imm32)
4445 && !operand_type_equal (&overlap, &imm32s)
4446 && !operand_type_equal (&overlap, &imm64))
4447 {
4448 if (i.suffix)
4449 {
4450 i386_operand_type temp;
4451
4452 operand_type_set (&temp, 0);
4453 if (i.suffix == BYTE_MNEM_SUFFIX)
4454 {
4455 temp.bitfield.imm8 = overlap.bitfield.imm8;
4456 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4457 }
4458 else if (i.suffix == WORD_MNEM_SUFFIX)
4459 temp.bitfield.imm16 = overlap.bitfield.imm16;
4460 else if (i.suffix == QWORD_MNEM_SUFFIX)
4461 {
4462 temp.bitfield.imm64 = overlap.bitfield.imm64;
4463 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4464 }
4465 else
4466 temp.bitfield.imm32 = overlap.bitfield.imm32;
4467 overlap = temp;
4468 }
4469 else if (operand_type_equal (&overlap, &imm16_32_32s)
4470 || operand_type_equal (&overlap, &imm16_32)
4471 || operand_type_equal (&overlap, &imm16_32s))
4472 {
4473 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4474 overlap = imm16;
4475 else
4476 overlap = imm32s;
4477 }
4478 if (!operand_type_equal (&overlap, &imm8)
4479 && !operand_type_equal (&overlap, &imm8s)
4480 && !operand_type_equal (&overlap, &imm16)
4481 && !operand_type_equal (&overlap, &imm32)
4482 && !operand_type_equal (&overlap, &imm32s)
4483 && !operand_type_equal (&overlap, &imm64))
4484 {
4485 as_bad (_("no instruction mnemonic suffix given; "
4486 "can't determine immediate size"));
4487 return 0;
4488 }
4489 }
4490 i.types[j] = overlap;
4491
4492 return 1;
4493}
4494
4495static int
4496finalize_imm (void)
4497{
4498 unsigned int j;
4499
4500 for (j = 0; j < 2; j++)
4501 if (update_imm (j) == 0)
4502 return 0;
4503
4504 i.types[2] = operand_type_and (i.types[2], i.tm.operand_types[2]);
4505 gas_assert (operand_type_check (i.types[2], imm) == 0);
4506
4507 return 1;
4508}
4509
4510static int
4511bad_implicit_operand (int xmm)
4512{
4513 const char *reg = xmm ? "xmm0" : "ymm0";
4514 if (intel_syntax)
4515 as_bad (_("the last operand of `%s' must be `%s%s'"),
4516 i.tm.name, register_prefix, reg);
4517 else
4518 as_bad (_("the first operand of `%s' must be `%s%s'"),
4519 i.tm.name, register_prefix, reg);
4520 return 0;
4521}
4522
4523static int
4524process_operands (void)
4525{
4526 /* Default segment register this instruction will use for memory
4527 accesses. 0 means unknown. This is only for optimizing out
4528 unnecessary segment overrides. */
4529 const seg_entry *default_seg = 0;
4530
4531 if (i.tm.opcode_modifier.sse2avx
4532 && (i.tm.opcode_modifier.vexnds
4533 || i.tm.opcode_modifier.vexndd))
4534 {
4535 unsigned int dup = i.operands;
4536 unsigned int dest = dup - 1;
4537 unsigned int j;
4538
4539 /* The destination must be an xmm register. */
4540 gas_assert (i.reg_operands
4541 && MAX_OPERANDS > dup
4542 && operand_type_equal (&i.types[dest], &regxmm));
4543
4544 if (i.tm.opcode_modifier.firstxmm0)
4545 {
4546 /* The first operand is implicit and must be xmm0. */
4547 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4548 if (i.op[0].regs->reg_num != 0)
4549 return bad_implicit_operand (1);
4550
4551 if (i.tm.opcode_modifier.vex3sources)
4552 {
4553 /* Keep xmm0 for instructions with VEX prefix and 3
4554 sources. */
4555 goto duplicate;
4556 }
4557 else
4558 {
4559 /* We remove the first xmm0 and keep the number of
4560 operands unchanged, which in fact duplicates the
4561 destination. */
4562 for (j = 1; j < i.operands; j++)
4563 {
4564 i.op[j - 1] = i.op[j];
4565 i.types[j - 1] = i.types[j];
4566 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4567 }
4568 }
4569 }
4570 else if (i.tm.opcode_modifier.implicit1stxmm0)
4571 {
4572 gas_assert ((MAX_OPERANDS - 1) > dup
4573 && i.tm.opcode_modifier.vex3sources);
4574
4575 /* Add the implicit xmm0 for instructions with VEX prefix
4576 and 3 sources. */
4577 for (j = i.operands; j > 0; j--)
4578 {
4579 i.op[j] = i.op[j - 1];
4580 i.types[j] = i.types[j - 1];
4581 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4582 }
4583 i.op[0].regs
4584 = (const reg_entry *) hash_find (reg_hash, "xmm0");
4585 i.types[0] = regxmm;
4586 i.tm.operand_types[0] = regxmm;
4587
4588 i.operands += 2;
4589 i.reg_operands += 2;
4590 i.tm.operands += 2;
4591
4592 dup++;
4593 dest++;
4594 i.op[dup] = i.op[dest];
4595 i.types[dup] = i.types[dest];
4596 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4597 }
4598 else
4599 {
4600duplicate:
4601 i.operands++;
4602 i.reg_operands++;
4603 i.tm.operands++;
4604
4605 i.op[dup] = i.op[dest];
4606 i.types[dup] = i.types[dest];
4607 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4608 }
4609
4610 if (i.tm.opcode_modifier.immext)
4611 process_immext ();
4612 }
4613 else if (i.tm.opcode_modifier.firstxmm0)
4614 {
4615 unsigned int j;
4616
4617 /* The first operand is implicit and must be xmm0/ymm0. */
4618 gas_assert (i.reg_operands
4619 && (operand_type_equal (&i.types[0], &regxmm)
4620 || operand_type_equal (&i.types[0], &regymm)));
4621 if (i.op[0].regs->reg_num != 0)
4622 return bad_implicit_operand (i.types[0].bitfield.regxmm);
4623
4624 for (j = 1; j < i.operands; j++)
4625 {
4626 i.op[j - 1] = i.op[j];
4627 i.types[j - 1] = i.types[j];
4628
4629 /* We need to adjust fields in i.tm since they are used by
4630 build_modrm_byte. */
4631 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4632 }
4633
4634 i.operands--;
4635 i.reg_operands--;
4636 i.tm.operands--;
4637 }
4638 else if (i.tm.opcode_modifier.regkludge)
4639 {
4640 /* The imul $imm, %reg instruction is converted into
4641 imul $imm, %reg, %reg, and the clr %reg instruction
4642 is converted into xor %reg, %reg. */
4643
4644 unsigned int first_reg_op;
4645
4646 if (operand_type_check (i.types[0], reg))
4647 first_reg_op = 0;
4648 else
4649 first_reg_op = 1;
4650 /* Pretend we saw the extra register operand. */
4651 gas_assert (i.reg_operands == 1
4652 && i.op[first_reg_op + 1].regs == 0);
4653 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4654 i.types[first_reg_op + 1] = i.types[first_reg_op];
4655 i.operands++;
4656 i.reg_operands++;
4657 }
4658
4659 if (i.tm.opcode_modifier.shortform)
4660 {
4661 if (i.types[0].bitfield.sreg2
4662 || i.types[0].bitfield.sreg3)
4663 {
4664 if (i.tm.base_opcode == POP_SEG_SHORT
4665 && i.op[0].regs->reg_num == 1)
4666 {
4667 as_bad (_("you can't `pop %scs'"), register_prefix);
4668 return 0;
4669 }
4670 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4671 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4672 i.rex |= REX_B;
4673 }
4674 else
4675 {
4676 /* The register or float register operand is in operand
4677 0 or 1. */
4678 unsigned int op;
4679
4680 if (i.types[0].bitfield.floatreg
4681 || operand_type_check (i.types[0], reg))
4682 op = 0;
4683 else
4684 op = 1;
4685 /* Register goes in low 3 bits of opcode. */
4686 i.tm.base_opcode |= i.op[op].regs->reg_num;
4687 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4688 i.rex |= REX_B;
4689 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4690 {
4691 /* Warn about some common errors, but press on regardless.
4692 The first case can be generated by gcc (<= 2.8.1). */
4693 if (i.operands == 2)
4694 {
4695 /* Reversed arguments on faddp, fsubp, etc. */
4696 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4697 register_prefix, i.op[!intel_syntax].regs->reg_name,
4698 register_prefix, i.op[intel_syntax].regs->reg_name);
4699 }
4700 else
4701 {
4702 /* Extraneous `l' suffix on fp insn. */
4703 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4704 register_prefix, i.op[0].regs->reg_name);
4705 }
4706 }
4707 }
4708 }
4709 else if (i.tm.opcode_modifier.modrm)
4710 {
4711 /* The opcode is completed (modulo i.tm.extension_opcode which
4712 must be put into the modrm byte). Now, we make the modrm and
4713 index base bytes based on all the info we've collected. */
4714
4715 default_seg = build_modrm_byte ();
4716 }
4717 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4718 {
4719 default_seg = &ds;
4720 }
4721 else if (i.tm.opcode_modifier.isstring)
4722 {
4723 /* For the string instructions that allow a segment override
4724 on one of their operands, the default segment is ds. */
4725 default_seg = &ds;
4726 }
4727
4728 if (i.tm.base_opcode == 0x8d /* lea */
4729 && i.seg[0]
4730 && !quiet_warnings)
4731 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4732
4733 /* If a segment was explicitly specified, and the specified segment
4734 is not the default, use an opcode prefix to select it. If we
4735 never figured out what the default segment is, then default_seg
4736 will be zero at this point, and the specified segment prefix will
4737 always be used. */
4738 if ((i.seg[0]) && (i.seg[0] != default_seg))
4739 {
4740 if (!add_prefix (i.seg[0]->seg_prefix))
4741 return 0;
4742 }
4743 return 1;
4744}
4745
4746static const seg_entry *
4747build_modrm_byte (void)
4748{
4749 const seg_entry *default_seg = 0;
4750 unsigned int source, dest;
4751 int vex_3_sources;
4752
4753 /* The first operand of instructions with VEX prefix and 3 sources
4754 must be VEX_Imm4. */
4755 vex_3_sources = i.tm.opcode_modifier.vex3sources;
4756 if (vex_3_sources)
4757 {
4758 unsigned int nds, reg;
4759
4760 dest = i.operands - 1;
4761 nds = dest - 1;
4762 source = 1;
4763 reg = 0;
4764
4765 /* This instruction must have 4 operands: 4 register operands
4766 or 3 register operands plus 1 memory operand. It must have
4767 VexNDS and VexImmExt. */
4768 gas_assert (i.operands == 4
4769 && (i.reg_operands == 4
4770 || (i.reg_operands == 3 && i.mem_operands == 1))
4771 && i.tm.opcode_modifier.vexnds
4772 && i.tm.opcode_modifier.veximmext
4773 && (operand_type_equal (&i.tm.operand_types[dest],
4774 &regxmm)
4775 || operand_type_equal (&i.tm.operand_types[dest],
4776 &regymm))
4777 && (operand_type_equal (&i.tm.operand_types[nds],
4778 &regxmm)
4779 || operand_type_equal (&i.tm.operand_types[nds],
4780 &regymm))
4781 && (operand_type_equal (&i.tm.operand_types[reg],
4782 &regxmm)
4783 || operand_type_equal (&i.tm.operand_types[reg],
4784 &regymm)));
4785
4786 /* Generate an 8bit immediate operand to encode the register
4787 operand. */
4788 expressionS *exp = &im_expressions[i.imm_operands++];
4789 i.op[i.operands].imms = exp;
4790 i.types[i.operands] = imm8;
4791 i.operands++;
4792 exp->X_op = O_constant;
4793 exp->X_add_number
4794 = ((i.op[0].regs->reg_num
4795 + ((i.op[0].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
4796
4797 i.vex.register_specifier = i.op[nds].regs;
4798 }
4799 else
4800 source = dest = 0;
4801
4802 /* i.reg_operands MUST be the number of real register operands;
4803 implicit registers do not count. If there are 3 register
4804 operands, it must be a instruction with VexNDS. For a
4805 instruction with VexNDD, the destination register is encoded
4806 in VEX prefix. If there are 4 register operands, it must be
4807 a instruction with VEX prefix and 3 sources. */
4808 if (i.mem_operands == 0
4809 && ((i.reg_operands == 2
4810 && !i.tm.opcode_modifier.vexndd)
4811 || (i.reg_operands == 3
4812 && i.tm.opcode_modifier.vexnds)
4813 || (i.reg_operands == 4 && vex_3_sources)))
4814 {
4815 switch (i.operands)
4816 {
4817 case 2:
4818 source = 0;
4819 break;
4820 case 3:
4821 /* When there are 3 operands, one of them may be immediate,
4822 which may be the first or the last operand. Otherwise,
4823 the first operand must be shift count register (cl) or it
4824 is an instruction with VexNDS. */
4825 gas_assert (i.imm_operands == 1
4826 || (i.imm_operands == 0
4827 && (i.tm.opcode_modifier.vexnds
4828 || i.types[0].bitfield.shiftcount)));
4829 if (operand_type_check (i.types[0], imm)
4830 || i.types[0].bitfield.shiftcount)
4831 source = 1;
4832 else
4833 source = 0;
4834 break;
4835 case 4:
4836 /* When there are 4 operands, the first two must be 8bit
4837 immediate operands. The source operand will be the 3rd
4838 one.
4839
4840 For instructions with VexNDS, if the first operand
4841 an imm8, the source operand is the 2nd one. If the last
4842 operand is imm8, the source operand is the first one. */
4843 gas_assert ((i.imm_operands == 2
4844 && i.types[0].bitfield.imm8
4845 && i.types[1].bitfield.imm8)
4846 || (i.tm.opcode_modifier.vexnds
4847 && i.imm_operands == 1
4848 && (i.types[0].bitfield.imm8
4849 || i.types[i.operands - 1].bitfield.imm8)));
4850 if (i.tm.opcode_modifier.vexnds)
4851 {
4852 if (i.types[0].bitfield.imm8)
4853 source = 1;
4854 else
4855 source = 0;
4856 }
4857 else
4858 source = 2;
4859 break;
4860 case 5:
4861 break;
4862 default:
4863 abort ();
4864 }
4865
4866 if (!vex_3_sources)
4867 {
4868 dest = source + 1;
4869
4870 if (i.tm.opcode_modifier.vexnds)
4871 {
4872 /* For instructions with VexNDS, the register-only
4873 source operand must be XMM or YMM register. It is
4874 encoded in VEX prefix. We need to clear RegMem bit
4875 before calling operand_type_equal. */
4876 i386_operand_type op = i.tm.operand_types[dest];
4877 op.bitfield.regmem = 0;
4878 if ((dest + 1) >= i.operands
4879 || (!operand_type_equal (&op, &regxmm)
4880 && !operand_type_equal (&op, &regymm)))
4881 abort ();
4882 i.vex.register_specifier = i.op[dest].regs;
4883 dest++;
4884 }
4885 }
4886
4887 i.rm.mode = 3;
4888 /* One of the register operands will be encoded in the i.tm.reg
4889 field, the other in the combined i.tm.mode and i.tm.regmem
4890 fields. If no form of this instruction supports a memory
4891 destination operand, then we assume the source operand may
4892 sometimes be a memory operand and so we need to store the
4893 destination in the i.rm.reg field. */
4894 if (!i.tm.operand_types[dest].bitfield.regmem
4895 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
4896 {
4897 i.rm.reg = i.op[dest].regs->reg_num;
4898 i.rm.regmem = i.op[source].regs->reg_num;
4899 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4900 i.rex |= REX_R;
4901 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4902 i.rex |= REX_B;
4903 }
4904 else
4905 {
4906 i.rm.reg = i.op[source].regs->reg_num;
4907 i.rm.regmem = i.op[dest].regs->reg_num;
4908 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4909 i.rex |= REX_B;
4910 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4911 i.rex |= REX_R;
4912 }
4913 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
4914 {
4915 if (!i.types[0].bitfield.control
4916 && !i.types[1].bitfield.control)
4917 abort ();
4918 i.rex &= ~(REX_R | REX_B);
4919 add_prefix (LOCK_PREFIX_OPCODE);
4920 }
4921 }
4922 else
4923 { /* If it's not 2 reg operands... */
4924 unsigned int mem;
4925
4926 if (i.mem_operands)
4927 {
4928 unsigned int fake_zero_displacement = 0;
4929 unsigned int op;
4930
4931 for (op = 0; op < i.operands; op++)
4932 if (operand_type_check (i.types[op], anymem))
4933 break;
4934
4935 gas_assert (op < i.operands);
4936
4937 default_seg = &ds;
4938
4939 if (i.base_reg == 0)
4940 {
4941 i.rm.mode = 0;
4942 if (!i.disp_operands)
4943 fake_zero_displacement = 1;
4944 if (i.index_reg == 0)
4945 {
4946 /* Operand is just <disp> */
4947 if (flag_code == CODE_64BIT)
4948 {
4949 /* 64bit mode overwrites the 32bit absolute
4950 addressing by RIP relative addressing and
4951 absolute addressing is encoded by one of the
4952 redundant SIB forms. */
4953 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4954 i.sib.base = NO_BASE_REGISTER;
4955 i.sib.index = NO_INDEX_REGISTER;
4956 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
4957 ? disp32s : disp32);
4958 }
4959 else if ((flag_code == CODE_16BIT)
4960 ^ (i.prefix[ADDR_PREFIX] != 0))
4961 {
4962 i.rm.regmem = NO_BASE_REGISTER_16;
4963 i.types[op] = disp16;
4964 }
4965 else
4966 {
4967 i.rm.regmem = NO_BASE_REGISTER;
4968 i.types[op] = disp32;
4969 }
4970 }
4971 else /* !i.base_reg && i.index_reg */
4972 {
4973 if (i.index_reg->reg_num == RegEiz
4974 || i.index_reg->reg_num == RegRiz)
4975 i.sib.index = NO_INDEX_REGISTER;
4976 else
4977 i.sib.index = i.index_reg->reg_num;
4978 i.sib.base = NO_BASE_REGISTER;
4979 i.sib.scale = i.log2_scale_factor;
4980 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4981 i.types[op].bitfield.disp8 = 0;
4982 i.types[op].bitfield.disp16 = 0;
4983 i.types[op].bitfield.disp64 = 0;
4984 if (flag_code != CODE_64BIT)
4985 {
4986 /* Must be 32 bit */
4987 i.types[op].bitfield.disp32 = 1;
4988 i.types[op].bitfield.disp32s = 0;
4989 }
4990 else
4991 {
4992 i.types[op].bitfield.disp32 = 0;
4993 i.types[op].bitfield.disp32s = 1;
4994 }
4995 if ((i.index_reg->reg_flags & RegRex) != 0)
4996 i.rex |= REX_X;
4997 }
4998 }
4999 /* RIP addressing for 64bit mode. */
5000 else if (i.base_reg->reg_num == RegRip ||
5001 i.base_reg->reg_num == RegEip)
5002 {
5003 i.rm.regmem = NO_BASE_REGISTER;
5004 i.types[op].bitfield.disp8 = 0;
5005 i.types[op].bitfield.disp16 = 0;
5006 i.types[op].bitfield.disp32 = 0;
5007 i.types[op].bitfield.disp32s = 1;
5008 i.types[op].bitfield.disp64 = 0;
5009 i.flags[op] |= Operand_PCrel;
5010 if (! i.disp_operands)
5011 fake_zero_displacement = 1;
5012 }
5013 else if (i.base_reg->reg_type.bitfield.reg16)
5014 {
5015 switch (i.base_reg->reg_num)
5016 {
5017 case 3: /* (%bx) */
5018 if (i.index_reg == 0)
5019 i.rm.regmem = 7;
5020 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5021 i.rm.regmem = i.index_reg->reg_num - 6;
5022 break;
5023 case 5: /* (%bp) */
5024 default_seg = &ss;
5025 if (i.index_reg == 0)
5026 {
5027 i.rm.regmem = 6;
5028 if (operand_type_check (i.types[op], disp) == 0)
5029 {
5030 /* fake (%bp) into 0(%bp) */
5031 i.types[op].bitfield.disp8 = 1;
5032 fake_zero_displacement = 1;
5033 }
5034 }
5035 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5036 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5037 break;
5038 default: /* (%si) -> 4 or (%di) -> 5 */
5039 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5040 }
5041 i.rm.mode = mode_from_disp_size (i.types[op]);
5042 }
5043 else /* i.base_reg and 32/64 bit mode */
5044 {
5045 if (flag_code == CODE_64BIT
5046 && operand_type_check (i.types[op], disp))
5047 {
5048 i386_operand_type temp;
5049 operand_type_set (&temp, 0);
5050 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5051 i.types[op] = temp;
5052 if (i.prefix[ADDR_PREFIX] == 0)
5053 i.types[op].bitfield.disp32s = 1;
5054 else
5055 i.types[op].bitfield.disp32 = 1;
5056 }
5057
5058 i.rm.regmem = i.base_reg->reg_num;
5059 if ((i.base_reg->reg_flags & RegRex) != 0)
5060 i.rex |= REX_B;
5061 i.sib.base = i.base_reg->reg_num;
5062 /* x86-64 ignores REX prefix bit here to avoid decoder
5063 complications. */
5064 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5065 {
5066 default_seg = &ss;
5067 if (i.disp_operands == 0)
5068 {
5069 fake_zero_displacement = 1;
5070 i.types[op].bitfield.disp8 = 1;
5071 }
5072 }
5073 else if (i.base_reg->reg_num == ESP_REG_NUM)
5074 {
5075 default_seg = &ss;
5076 }
5077 i.sib.scale = i.log2_scale_factor;
5078 if (i.index_reg == 0)
5079 {
5080 /* <disp>(%esp) becomes two byte modrm with no index
5081 register. We've already stored the code for esp
5082 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5083 Any base register besides %esp will not use the
5084 extra modrm byte. */
5085 i.sib.index = NO_INDEX_REGISTER;
5086 }
5087 else
5088 {
5089 if (i.index_reg->reg_num == RegEiz
5090 || i.index_reg->reg_num == RegRiz)
5091 i.sib.index = NO_INDEX_REGISTER;
5092 else
5093 i.sib.index = i.index_reg->reg_num;
5094 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5095 if ((i.index_reg->reg_flags & RegRex) != 0)
5096 i.rex |= REX_X;
5097 }
5098
5099 if (i.disp_operands
5100 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5101 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5102 i.rm.mode = 0;
5103 else
5104 i.rm.mode = mode_from_disp_size (i.types[op]);
5105 }
5106
5107 if (fake_zero_displacement)
5108 {
5109 /* Fakes a zero displacement assuming that i.types[op]
5110 holds the correct displacement size. */
5111 expressionS *exp;
5112
5113 gas_assert (i.op[op].disps == 0);
5114 exp = &disp_expressions[i.disp_operands++];
5115 i.op[op].disps = exp;
5116 exp->X_op = O_constant;
5117 exp->X_add_number = 0;
5118 exp->X_add_symbol = (symbolS *) 0;
5119 exp->X_op_symbol = (symbolS *) 0;
5120 }
5121
5122 mem = op;
5123 }
5124 else
5125 mem = ~0;
5126
5127 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5128 (if any) based on i.tm.extension_opcode. Again, we must be
5129 careful to make sure that segment/control/debug/test/MMX
5130 registers are coded into the i.rm.reg field. */
5131 if (i.reg_operands)
5132 {
5133 unsigned int op;
5134 unsigned int vex_reg = ~0;
5135
5136 for (op = 0; op < i.operands; op++)
5137 if (i.types[op].bitfield.reg8
5138 || i.types[op].bitfield.reg16
5139 || i.types[op].bitfield.reg32
5140 || i.types[op].bitfield.reg64
5141 || i.types[op].bitfield.regmmx
5142 || i.types[op].bitfield.regxmm
5143 || i.types[op].bitfield.regymm
5144 || i.types[op].bitfield.sreg2
5145 || i.types[op].bitfield.sreg3
5146 || i.types[op].bitfield.control
5147 || i.types[op].bitfield.debug
5148 || i.types[op].bitfield.test)
5149 break;
5150
5151 if (vex_3_sources)
5152 op = dest;
5153 else if (i.tm.opcode_modifier.vexnds)
5154 {
5155 /* For instructions with VexNDS, the register-only
5156 source operand is encoded in VEX prefix. */
5157 gas_assert (mem != (unsigned int) ~0);
5158
5159 if (op > mem)
5160 {
5161 vex_reg = op++;
5162 gas_assert (op < i.operands);
5163 }
5164 else
5165 {
5166 vex_reg = op + 1;
5167 gas_assert (vex_reg < i.operands);
5168 }
5169 }
5170 else if (i.tm.opcode_modifier.vexndd)
5171 {
5172 /* For instructions with VexNDD, there should be
5173 no memory operand and the register destination
5174 is encoded in VEX prefix. */
5175 gas_assert (i.mem_operands == 0
5176 && (op + 2) == i.operands);
5177 vex_reg = op + 1;
5178 }
5179 else
5180 gas_assert (op < i.operands);
5181
5182 if (vex_reg != (unsigned int) ~0)
5183 {
5184 gas_assert (i.reg_operands == 2);
5185
5186 if (!operand_type_equal (&i.tm.operand_types[vex_reg],
5187 & regxmm)
5188 && !operand_type_equal (&i.tm.operand_types[vex_reg],
5189 &regymm))
5190 abort ();
5191 i.vex.register_specifier = i.op[vex_reg].regs;
5192 }
5193
5194 /* If there is an extension opcode to put here, the
5195 register number must be put into the regmem field. */
5196 if (i.tm.extension_opcode != None)
5197 {
5198 i.rm.regmem = i.op[op].regs->reg_num;
5199 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5200 i.rex |= REX_B;
5201 }
5202 else
5203 {
5204 i.rm.reg = i.op[op].regs->reg_num;
5205 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5206 i.rex |= REX_R;
5207 }
5208
5209 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5210 must set it to 3 to indicate this is a register operand
5211 in the regmem field. */
5212 if (!i.mem_operands)
5213 i.rm.mode = 3;
5214 }
5215
5216 /* Fill in i.rm.reg field with extension opcode (if any). */
5217 if (i.tm.extension_opcode != None)
5218 i.rm.reg = i.tm.extension_opcode;
5219 }
5220 return default_seg;
5221}
5222
5223static void
5224output_branch (void)
5225{
5226 char *p;
5227 int code16;
5228 int prefix;
5229 relax_substateT subtype;
5230 symbolS *sym;
5231 offsetT off;
5232
5233 code16 = 0;
5234 if (flag_code == CODE_16BIT)
5235 code16 = CODE16;
5236
5237 prefix = 0;
5238 if (i.prefix[DATA_PREFIX] != 0)
5239 {
5240 prefix = 1;
5241 i.prefixes -= 1;
5242 code16 ^= CODE16;
5243 }
5244 /* Pentium4 branch hints. */
5245 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5246 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5247 {
5248 prefix++;
5249 i.prefixes--;
5250 }
5251 if (i.prefix[REX_PREFIX] != 0)
5252 {
5253 prefix++;
5254 i.prefixes--;
5255 }
5256
5257 if (i.prefixes != 0 && !intel_syntax)
5258 as_warn (_("skipping prefixes on this instruction"));
5259
5260 /* It's always a symbol; End frag & setup for relax.
5261 Make sure there is enough room in this frag for the largest
5262 instruction we may generate in md_convert_frag. This is 2
5263 bytes for the opcode and room for the prefix and largest
5264 displacement. */
5265 frag_grow (prefix + 2 + 4);
5266 /* Prefix and 1 opcode byte go in fr_fix. */
5267 p = frag_more (prefix + 1);
5268 if (i.prefix[DATA_PREFIX] != 0)
5269 *p++ = DATA_PREFIX_OPCODE;
5270 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5271 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5272 *p++ = i.prefix[SEG_PREFIX];
5273 if (i.prefix[REX_PREFIX] != 0)
5274 *p++ = i.prefix[REX_PREFIX];
5275 *p = i.tm.base_opcode;
5276
5277 if ((unsigned char) *p == JUMP_PC_RELATIVE)
5278 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
5279 else if (cpu_arch_flags.bitfield.cpui386)
5280 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
5281 else
5282 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
5283 subtype |= code16;
5284
5285 sym = i.op[0].disps->X_add_symbol;
5286 off = i.op[0].disps->X_add_number;
5287
5288 if (i.op[0].disps->X_op != O_constant
5289 && i.op[0].disps->X_op != O_symbol)
5290 {
5291 /* Handle complex expressions. */
5292 sym = make_expr_symbol (i.op[0].disps);
5293 off = 0;
5294 }
5295
5296 /* 1 possible extra opcode + 4 byte displacement go in var part.
5297 Pass reloc in fr_var. */
5298 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5299}
5300
5301static void
5302output_jump (void)
5303{
5304 char *p;
5305 int size;
5306 fixS *fixP;
5307
5308 if (i.tm.opcode_modifier.jumpbyte)
5309 {
5310 /* This is a loop or jecxz type instruction. */
5311 size = 1;
5312 if (i.prefix[ADDR_PREFIX] != 0)
5313 {
5314 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5315 i.prefixes -= 1;
5316 }
5317 /* Pentium4 branch hints. */
5318 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5319 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5320 {
5321 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5322 i.prefixes--;
5323 }
5324 }
5325 else
5326 {
5327 int code16;
5328
5329 code16 = 0;
5330 if (flag_code == CODE_16BIT)
5331 code16 = CODE16;
5332
5333 if (i.prefix[DATA_PREFIX] != 0)
5334 {
5335 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5336 i.prefixes -= 1;
5337 code16 ^= CODE16;
5338 }
5339
5340 size = 4;
5341 if (code16)
5342 size = 2;
5343 }
5344
5345 if (i.prefix[REX_PREFIX] != 0)
5346 {
5347 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5348 i.prefixes -= 1;
5349 }
5350
5351 if (i.prefixes != 0 && !intel_syntax)
5352 as_warn (_("skipping prefixes on this instruction"));
5353
5354 p = frag_more (1 + size);
5355 *p++ = i.tm.base_opcode;
5356
5357 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5358 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5359
5360 /* All jumps handled here are signed, but don't use a signed limit
5361 check for 32 and 16 bit jumps as we want to allow wrap around at
5362 4G and 64k respectively. */
5363 if (size == 1)
5364 fixP->fx_signed = 1;
5365}
5366
5367static void
5368output_interseg_jump (void)
5369{
5370 char *p;
5371 int size;
5372 int prefix;
5373 int code16;
5374
5375 code16 = 0;
5376 if (flag_code == CODE_16BIT)
5377 code16 = CODE16;
5378
5379 prefix = 0;
5380 if (i.prefix[DATA_PREFIX] != 0)
5381 {
5382 prefix = 1;
5383 i.prefixes -= 1;
5384 code16 ^= CODE16;
5385 }
5386 if (i.prefix[REX_PREFIX] != 0)
5387 {
5388 prefix++;
5389 i.prefixes -= 1;
5390 }
5391
5392 size = 4;
5393 if (code16)
5394 size = 2;
5395
5396 if (i.prefixes != 0 && !intel_syntax)
5397 as_warn (_("skipping prefixes on this instruction"));
5398
5399 /* 1 opcode; 2 segment; offset */
5400 p = frag_more (prefix + 1 + 2 + size);
5401
5402 if (i.prefix[DATA_PREFIX] != 0)
5403 *p++ = DATA_PREFIX_OPCODE;
5404
5405 if (i.prefix[REX_PREFIX] != 0)
5406 *p++ = i.prefix[REX_PREFIX];
5407
5408 *p++ = i.tm.base_opcode;
5409 if (i.op[1].imms->X_op == O_constant)
5410 {
5411 offsetT n = i.op[1].imms->X_add_number;
5412
5413 if (size == 2
5414 && !fits_in_unsigned_word (n)
5415 && !fits_in_signed_word (n))
5416 {
5417 as_bad (_("16-bit jump out of range"));
5418 return;
5419 }
5420 md_number_to_chars (p, n, size);
5421 }
5422 else
5423 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5424 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5425 if (i.op[0].imms->X_op != O_constant)
5426 as_bad (_("can't handle non absolute segment in `%s'"),
5427 i.tm.name);
5428 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5429}
5430
5431static void
5432output_insn (void)
5433{
5434 fragS *insn_start_frag;
5435 offsetT insn_start_off;
5436
5437 /* Tie dwarf2 debug info to the address at the start of the insn.
5438 We can't do this after the insn has been output as the current
5439 frag may have been closed off. eg. by frag_var. */
5440 dwarf2_emit_insn (0);
5441
5442 insn_start_frag = frag_now;
5443 insn_start_off = frag_now_fix ();
5444
5445 /* Output jumps. */
5446 if (i.tm.opcode_modifier.jump)
5447 output_branch ();
5448 else if (i.tm.opcode_modifier.jumpbyte
5449 || i.tm.opcode_modifier.jumpdword)
5450 output_jump ();
5451 else if (i.tm.opcode_modifier.jumpintersegment)
5452 output_interseg_jump ();
5453 else
5454 {
5455 /* Output normal instructions here. */
5456 char *p;
5457 unsigned char *q;
5458 unsigned int j;
5459 unsigned int prefix;
5460
5461 /* Since the VEX prefix contains the implicit prefix, we don't
5462 need the explicit prefix. */
5463 if (!i.tm.opcode_modifier.vex)
5464 {
5465 switch (i.tm.opcode_length)
5466 {
5467 case 3:
5468 if (i.tm.base_opcode & 0xff000000)
5469 {
5470 prefix = (i.tm.base_opcode >> 24) & 0xff;
5471 goto check_prefix;
5472 }
5473 break;
5474 case 2:
5475 if ((i.tm.base_opcode & 0xff0000) != 0)
5476 {
5477 prefix = (i.tm.base_opcode >> 16) & 0xff;
5478 if (i.tm.cpu_flags.bitfield.cpupadlock)
5479 {
5480check_prefix:
5481 if (prefix != REPE_PREFIX_OPCODE
5482 || (i.prefix[LOCKREP_PREFIX]
5483 != REPE_PREFIX_OPCODE))
5484 add_prefix (prefix);
5485 }
5486 else
5487 add_prefix (prefix);
5488 }
5489 break;
5490 case 1:
5491 break;
5492 default:
5493 abort ();
5494 }
5495
5496 /* The prefix bytes. */
5497 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5498 if (*q)
5499 FRAG_APPEND_1_CHAR (*q);
5500 }
5501
5502 if (i.tm.opcode_modifier.vex)
5503 {
5504 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
5505 if (*q)
5506 switch (j)
5507 {
5508 case REX_PREFIX:
5509 /* REX byte is encoded in VEX prefix. */
5510 break;
5511 case SEG_PREFIX:
5512 case ADDR_PREFIX:
5513 FRAG_APPEND_1_CHAR (*q);
5514 break;
5515 default:
5516 /* There should be no other prefixes for instructions
5517 with VEX prefix. */
5518 abort ();
5519 }
5520
5521 /* Now the VEX prefix. */
5522 p = frag_more (i.vex.length);
5523 for (j = 0; j < i.vex.length; j++)
5524 p[j] = i.vex.bytes[j];
5525 }
5526
5527 /* Now the opcode; be careful about word order here! */
5528 if (i.tm.opcode_length == 1)
5529 {
5530 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5531 }
5532 else
5533 {
5534 switch (i.tm.opcode_length)
5535 {
5536 case 3:
5537 p = frag_more (3);
5538 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5539 break;
5540 case 2:
5541 p = frag_more (2);
5542 break;
5543 default:
5544 abort ();
5545 break;
5546 }
5547
5548 /* Put out high byte first: can't use md_number_to_chars! */
5549 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5550 *p = i.tm.base_opcode & 0xff;
5551 }
5552
5553 /* Now the modrm byte and sib byte (if present). */
5554 if (i.tm.opcode_modifier.modrm)
5555 {
5556 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5557 | i.rm.reg << 3
5558 | i.rm.mode << 6));
5559 /* If i.rm.regmem == ESP (4)
5560 && i.rm.mode != (Register mode)
5561 && not 16 bit
5562 ==> need second modrm byte. */
5563 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5564 && i.rm.mode != 3
5565 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5566 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5567 | i.sib.index << 3
5568 | i.sib.scale << 6));
5569 }
5570
5571 if (i.disp_operands)
5572 output_disp (insn_start_frag, insn_start_off);
5573
5574 if (i.imm_operands)
5575 output_imm (insn_start_frag, insn_start_off);
5576 }
5577
5578#ifdef DEBUG386
5579 if (flag_debug)
5580 {
5581 pi ("" /*line*/, &i);
5582 }
5583#endif /* DEBUG386 */
5584}
5585
5586/* Return the size of the displacement operand N. */
5587
5588static int
5589disp_size (unsigned int n)
5590{
5591 int size = 4;
5592 if (i.types[n].bitfield.disp64)
5593 size = 8;
5594 else if (i.types[n].bitfield.disp8)
5595 size = 1;
5596 else if (i.types[n].bitfield.disp16)
5597 size = 2;
5598 return size;
5599}
5600
5601/* Return the size of the immediate operand N. */
5602
5603static int
5604imm_size (unsigned int n)
5605{
5606 int size = 4;
5607 if (i.types[n].bitfield.imm64)
5608 size = 8;
5609 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5610 size = 1;
5611 else if (i.types[n].bitfield.imm16)
5612 size = 2;
5613 return size;
5614}
5615
5616static void
5617output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5618{
5619 char *p;
5620 unsigned int n;
5621
5622 for (n = 0; n < i.operands; n++)
5623 {
5624 if (operand_type_check (i.types[n], disp))
5625 {
5626 if (i.op[n].disps->X_op == O_constant)
5627 {
5628 int size = disp_size (n);
5629 offsetT val;
5630
5631 val = offset_in_range (i.op[n].disps->X_add_number,
5632 size);
5633 p = frag_more (size);
5634 md_number_to_chars (p, val, size);
5635 }
5636 else
5637 {
5638 enum bfd_reloc_code_real reloc_type;
5639 int size = disp_size (n);
5640 int sign = i.types[n].bitfield.disp32s;
5641 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5642
5643 /* We can't have 8 bit displacement here. */
5644 gas_assert (!i.types[n].bitfield.disp8);
5645
5646 /* The PC relative address is computed relative
5647 to the instruction boundary, so in case immediate
5648 fields follows, we need to adjust the value. */
5649 if (pcrel && i.imm_operands)
5650 {
5651 unsigned int n1;
5652 int sz = 0;
5653
5654 for (n1 = 0; n1 < i.operands; n1++)
5655 if (operand_type_check (i.types[n1], imm))
5656 {
5657 /* Only one immediate is allowed for PC
5658 relative address. */
5659 gas_assert (sz == 0);
5660 sz = imm_size (n1);
5661 i.op[n].disps->X_add_number -= sz;
5662 }
5663 /* We should find the immediate. */
5664 gas_assert (sz != 0);
5665 }
5666
5667 p = frag_more (size);
5668 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
5669 if (GOT_symbol
5670 && GOT_symbol == i.op[n].disps->X_add_symbol
5671 && (((reloc_type == BFD_RELOC_32
5672 || reloc_type == BFD_RELOC_X86_64_32S
5673 || (reloc_type == BFD_RELOC_64
5674 && object_64bit))
5675 && (i.op[n].disps->X_op == O_symbol
5676 || (i.op[n].disps->X_op == O_add
5677 && ((symbol_get_value_expression
5678 (i.op[n].disps->X_op_symbol)->X_op)
5679 == O_subtract))))
5680 || reloc_type == BFD_RELOC_32_PCREL))
5681 {
5682 offsetT add;
5683
5684 if (insn_start_frag == frag_now)
5685 add = (p - frag_now->fr_literal) - insn_start_off;
5686 else
5687 {
5688 fragS *fr;
5689
5690 add = insn_start_frag->fr_fix - insn_start_off;
5691 for (fr = insn_start_frag->fr_next;
5692 fr && fr != frag_now; fr = fr->fr_next)
5693 add += fr->fr_fix;
5694 add += p - frag_now->fr_literal;
5695 }
5696
5697 if (!object_64bit)
5698 {
5699 reloc_type = BFD_RELOC_386_GOTPC;
5700 i.op[n].imms->X_add_number += add;
5701 }
5702 else if (reloc_type == BFD_RELOC_64)
5703 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5704 else
5705 /* Don't do the adjustment for x86-64, as there
5706 the pcrel addressing is relative to the _next_
5707 insn, and that is taken care of in other code. */
5708 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5709 }
5710 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5711 i.op[n].disps, pcrel, reloc_type);
5712 }
5713 }
5714 }
5715}
5716
5717static void
5718output_imm (fragS *insn_start_frag, offsetT insn_start_off)
5719{
5720 char *p;
5721 unsigned int n;
5722
5723 for (n = 0; n < i.operands; n++)
5724 {
5725 if (operand_type_check (i.types[n], imm))
5726 {
5727 if (i.op[n].imms->X_op == O_constant)
5728 {
5729 int size = imm_size (n);
5730 offsetT val;
5731
5732 val = offset_in_range (i.op[n].imms->X_add_number,
5733 size);
5734 p = frag_more (size);
5735 md_number_to_chars (p, val, size);
5736 }
5737 else
5738 {
5739 /* Not absolute_section.
5740 Need a 32-bit fixup (don't support 8bit
5741 non-absolute imms). Try to support other
5742 sizes ... */
5743 enum bfd_reloc_code_real reloc_type;
5744 int size = imm_size (n);
5745 int sign;
5746
5747 if (i.types[n].bitfield.imm32s
5748 && (i.suffix == QWORD_MNEM_SUFFIX
5749 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
5750 sign = 1;
5751 else
5752 sign = 0;
5753
5754 p = frag_more (size);
5755 reloc_type = reloc (size, 0, sign, i.reloc[n]);
5756
5757 /* This is tough to explain. We end up with this one if we
5758 * have operands that look like
5759 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5760 * obtain the absolute address of the GOT, and it is strongly
5761 * preferable from a performance point of view to avoid using
5762 * a runtime relocation for this. The actual sequence of
5763 * instructions often look something like:
5764 *
5765 * call .L66
5766 * .L66:
5767 * popl %ebx
5768 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5769 *
5770 * The call and pop essentially return the absolute address
5771 * of the label .L66 and store it in %ebx. The linker itself
5772 * will ultimately change the first operand of the addl so
5773 * that %ebx points to the GOT, but to keep things simple, the
5774 * .o file must have this operand set so that it generates not
5775 * the absolute address of .L66, but the absolute address of
5776 * itself. This allows the linker itself simply treat a GOTPC
5777 * relocation as asking for a pcrel offset to the GOT to be
5778 * added in, and the addend of the relocation is stored in the
5779 * operand field for the instruction itself.
5780 *
5781 * Our job here is to fix the operand so that it would add
5782 * the correct offset so that %ebx would point to itself. The
5783 * thing that is tricky is that .-.L66 will point to the
5784 * beginning of the instruction, so we need to further modify
5785 * the operand so that it will point to itself. There are
5786 * other cases where you have something like:
5787 *
5788 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5789 *
5790 * and here no correction would be required. Internally in
5791 * the assembler we treat operands of this form as not being
5792 * pcrel since the '.' is explicitly mentioned, and I wonder
5793 * whether it would simplify matters to do it this way. Who
5794 * knows. In earlier versions of the PIC patches, the
5795 * pcrel_adjust field was used to store the correction, but
5796 * since the expression is not pcrel, I felt it would be
5797 * confusing to do it this way. */
5798
5799 if ((reloc_type == BFD_RELOC_32
5800 || reloc_type == BFD_RELOC_X86_64_32S
5801 || reloc_type == BFD_RELOC_64)
5802 && GOT_symbol
5803 && GOT_symbol == i.op[n].imms->X_add_symbol
5804 && (i.op[n].imms->X_op == O_symbol
5805 || (i.op[n].imms->X_op == O_add
5806 && ((symbol_get_value_expression
5807 (i.op[n].imms->X_op_symbol)->X_op)
5808 == O_subtract))))
5809 {
5810 offsetT add;
5811
5812 if (insn_start_frag == frag_now)
5813 add = (p - frag_now->fr_literal) - insn_start_off;
5814 else
5815 {
5816 fragS *fr;
5817
5818 add = insn_start_frag->fr_fix - insn_start_off;
5819 for (fr = insn_start_frag->fr_next;
5820 fr && fr != frag_now; fr = fr->fr_next)
5821 add += fr->fr_fix;
5822 add += p - frag_now->fr_literal;
5823 }
5824
5825 if (!object_64bit)
5826 reloc_type = BFD_RELOC_386_GOTPC;
5827 else if (size == 4)
5828 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5829 else if (size == 8)
5830 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5831 i.op[n].imms->X_add_number += add;
5832 }
5833 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5834 i.op[n].imms, 0, reloc_type);
5835 }
5836 }
5837 }
5838}
5839\f
5840/* x86_cons_fix_new is called via the expression parsing code when a
5841 reloc is needed. We use this hook to get the correct .got reloc. */
5842static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5843static int cons_sign = -1;
5844
5845void
5846x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
5847 expressionS *exp)
5848{
5849 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5850
5851 got_reloc = NO_RELOC;
5852
5853#ifdef TE_PE
5854 if (exp->X_op == O_secrel)
5855 {
5856 exp->X_op = O_symbol;
5857 r = BFD_RELOC_32_SECREL;
5858 }
5859#endif
5860
5861 fix_new_exp (frag, off, len, exp, 0, r);
5862}
5863
5864#if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
5865# define lex_got(reloc, adjust, types) NULL
5866#else
5867/* Parse operands of the form
5868 <symbol>@GOTOFF+<nnn>
5869 and similar .plt or .got references.
5870
5871 If we find one, set up the correct relocation in RELOC and copy the
5872 input string, minus the `@GOTOFF' into a malloc'd buffer for
5873 parsing by the calling routine. Return this buffer, and if ADJUST
5874 is non-null set it to the length of the string we removed from the
5875 input line. Otherwise return NULL. */
5876static char *
5877lex_got (enum bfd_reloc_code_real *reloc,
5878 int *adjust,
5879 i386_operand_type *types)
5880{
5881 /* Some of the relocations depend on the size of what field is to
5882 be relocated. But in our callers i386_immediate and i386_displacement
5883 we don't yet know the operand size (this will be set by insn
5884 matching). Hence we record the word32 relocation here,
5885 and adjust the reloc according to the real size in reloc(). */
5886 static const struct {
5887 const char *str;
5888 const enum bfd_reloc_code_real rel[2];
5889 const i386_operand_type types64;
5890 } gotrel[] = {
5891 { "PLTOFF", { 0,
5892 BFD_RELOC_X86_64_PLTOFF64 },
5893 OPERAND_TYPE_IMM64 },
5894 { "PLT", { BFD_RELOC_386_PLT32,
5895 BFD_RELOC_X86_64_PLT32 },
5896 OPERAND_TYPE_IMM32_32S_DISP32 },
5897 { "GOTPLT", { 0,
5898 BFD_RELOC_X86_64_GOTPLT64 },
5899 OPERAND_TYPE_IMM64_DISP64 },
5900 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
5901 BFD_RELOC_X86_64_GOTOFF64 },
5902 OPERAND_TYPE_IMM64_DISP64 },
5903 { "GOTPCREL", { 0,
5904 BFD_RELOC_X86_64_GOTPCREL },
5905 OPERAND_TYPE_IMM32_32S_DISP32 },
5906 { "TLSGD", { BFD_RELOC_386_TLS_GD,
5907 BFD_RELOC_X86_64_TLSGD },
5908 OPERAND_TYPE_IMM32_32S_DISP32 },
5909 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
5910 0 },
5911 OPERAND_TYPE_NONE },
5912 { "TLSLD", { 0,
5913 BFD_RELOC_X86_64_TLSLD },
5914 OPERAND_TYPE_IMM32_32S_DISP32 },
5915 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
5916 BFD_RELOC_X86_64_GOTTPOFF },
5917 OPERAND_TYPE_IMM32_32S_DISP32 },
5918 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
5919 BFD_RELOC_X86_64_TPOFF32 },
5920 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5921 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
5922 0 },
5923 OPERAND_TYPE_NONE },
5924 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
5925 BFD_RELOC_X86_64_DTPOFF32 },
5926
5927 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5928 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
5929 0 },
5930 OPERAND_TYPE_NONE },
5931 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
5932 0 },
5933 OPERAND_TYPE_NONE },
5934 { "GOT", { BFD_RELOC_386_GOT32,
5935 BFD_RELOC_X86_64_GOT32 },
5936 OPERAND_TYPE_IMM32_32S_64_DISP32 },
5937 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
5938 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
5939 OPERAND_TYPE_IMM32_32S_DISP32 },
5940 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
5941 BFD_RELOC_X86_64_TLSDESC_CALL },
5942 OPERAND_TYPE_IMM32_32S_DISP32 },
5943 };
5944 char *cp;
5945 unsigned int j;
5946
5947 if (!IS_ELF)
5948 return NULL;
5949
5950 for (cp = input_line_pointer; *cp != '@'; cp++)
5951 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
5952 return NULL;
5953
5954 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
5955 {
5956 int len;
5957
5958 len = strlen (gotrel[j].str);
5959 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
5960 {
5961 if (gotrel[j].rel[object_64bit] != 0)
5962 {
5963 int first, second;
5964 char *tmpbuf, *past_reloc;
5965
5966 *reloc = gotrel[j].rel[object_64bit];
5967 if (adjust)
5968 *adjust = len;
5969
5970 if (types)
5971 {
5972 if (flag_code != CODE_64BIT)
5973 {
5974 types->bitfield.imm32 = 1;
5975 types->bitfield.disp32 = 1;
5976 }
5977 else
5978 *types = gotrel[j].types64;
5979 }
5980
5981 if (GOT_symbol == NULL)
5982 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
5983
5984 /* The length of the first part of our input line. */
5985 first = cp - input_line_pointer;
5986
5987 /* The second part goes from after the reloc token until
5988 (and including) an end_of_line char or comma. */
5989 past_reloc = cp + 1 + len;
5990 cp = past_reloc;
5991 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
5992 ++cp;
5993 second = cp + 1 - past_reloc;
5994
5995 /* Allocate and copy string. The trailing NUL shouldn't
5996 be necessary, but be safe. */
5997 tmpbuf = xmalloc (first + second + 2);
5998 memcpy (tmpbuf, input_line_pointer, first);
5999 if (second != 0 && *past_reloc != ' ')
6000 /* Replace the relocation token with ' ', so that
6001 errors like foo@GOTOFF1 will be detected. */
6002 tmpbuf[first++] = ' ';
6003 memcpy (tmpbuf + first, past_reloc, second);
6004 tmpbuf[first + second] = '\0';
6005 return tmpbuf;
6006 }
6007
6008 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6009 gotrel[j].str, 1 << (5 + object_64bit));
6010 return NULL;
6011 }
6012 }
6013
6014 /* Might be a symbol version string. Don't as_bad here. */
6015 return NULL;
6016}
6017
6018void
6019x86_cons (expressionS *exp, int size)
6020{
6021 intel_syntax = -intel_syntax;
6022
6023 if (size == 4 || (object_64bit && size == 8))
6024 {
6025 /* Handle @GOTOFF and the like in an expression. */
6026 char *save;
6027 char *gotfree_input_line;
6028 int adjust;
6029
6030 save = input_line_pointer;
6031 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
6032 if (gotfree_input_line)
6033 input_line_pointer = gotfree_input_line;
6034
6035 expression (exp);
6036
6037 if (gotfree_input_line)
6038 {
6039 /* expression () has merrily parsed up to the end of line,
6040 or a comma - in the wrong buffer. Transfer how far
6041 input_line_pointer has moved to the right buffer. */
6042 input_line_pointer = (save
6043 + (input_line_pointer - gotfree_input_line)
6044 + adjust);
6045 free (gotfree_input_line);
6046 if (exp->X_op == O_constant
6047 || exp->X_op == O_absent
6048 || exp->X_op == O_illegal
6049 || exp->X_op == O_register
6050 || exp->X_op == O_big)
6051 {
6052 char c = *input_line_pointer;
6053 *input_line_pointer = 0;
6054 as_bad (_("missing or invalid expression `%s'"), save);
6055 *input_line_pointer = c;
6056 }
6057 }
6058 }
6059 else
6060 expression (exp);
6061
6062 intel_syntax = -intel_syntax;
6063
6064 if (intel_syntax)
6065 i386_intel_simplify (exp);
6066}
6067#endif
6068
6069static void signed_cons (int size)
6070{
6071 if (flag_code == CODE_64BIT)
6072 cons_sign = 1;
6073 cons (size);
6074 cons_sign = -1;
6075}
6076
6077#ifdef TE_PE
6078static void
6079pe_directive_secrel (dummy)
6080 int dummy ATTRIBUTE_UNUSED;
6081{
6082 expressionS exp;
6083
6084 do
6085 {
6086 expression (&exp);
6087 if (exp.X_op == O_symbol)
6088 exp.X_op = O_secrel;
6089
6090 emit_expr (&exp, 4);
6091 }
6092 while (*input_line_pointer++ == ',');
6093
6094 input_line_pointer--;
6095 demand_empty_rest_of_line ();
6096}
6097#endif
6098
6099static int
6100i386_immediate (char *imm_start)
6101{
6102 char *save_input_line_pointer;
6103 char *gotfree_input_line;
6104 segT exp_seg = 0;
6105 expressionS *exp;
6106 i386_operand_type types;
6107
6108 operand_type_set (&types, ~0);
6109
6110 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6111 {
6112 as_bad (_("at most %d immediate operands are allowed"),
6113 MAX_IMMEDIATE_OPERANDS);
6114 return 0;
6115 }
6116
6117 exp = &im_expressions[i.imm_operands++];
6118 i.op[this_operand].imms = exp;
6119
6120 if (is_space_char (*imm_start))
6121 ++imm_start;
6122
6123 save_input_line_pointer = input_line_pointer;
6124 input_line_pointer = imm_start;
6125
6126 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6127 if (gotfree_input_line)
6128 input_line_pointer = gotfree_input_line;
6129
6130 exp_seg = expression (exp);
6131
6132 SKIP_WHITESPACE ();
6133 if (*input_line_pointer)
6134 as_bad (_("junk `%s' after expression"), input_line_pointer);
6135
6136 input_line_pointer = save_input_line_pointer;
6137 if (gotfree_input_line)
6138 {
6139 free (gotfree_input_line);
6140
6141 if (exp->X_op == O_constant || exp->X_op == O_register)
6142 exp->X_op = O_illegal;
6143 }
6144
6145 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6146}
6147
6148static int
6149i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6150 i386_operand_type types, const char *imm_start)
6151{
6152 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
6153 {
6154 as_bad (_("missing or invalid immediate expression `%s'"),
6155 imm_start);
6156 return 0;
6157 }
6158 else if (exp->X_op == O_constant)
6159 {
6160 /* Size it properly later. */
6161 i.types[this_operand].bitfield.imm64 = 1;
6162 /* If BFD64, sign extend val. */
6163 if (!use_rela_relocations
6164 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6165 exp->X_add_number
6166 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
6167 }
6168#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6169 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
6170 && exp_seg != absolute_section
6171 && exp_seg != text_section
6172 && exp_seg != data_section
6173 && exp_seg != bss_section
6174 && exp_seg != undefined_section
6175 && !bfd_is_com_section (exp_seg))
6176 {
6177 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6178 return 0;
6179 }
6180#endif
6181 else if (!intel_syntax && exp->X_op == O_register)
6182 {
6183 as_bad (_("illegal immediate register operand %s"), imm_start);
6184 return 0;
6185 }
6186 else
6187 {
6188 /* This is an address. The size of the address will be
6189 determined later, depending on destination register,
6190 suffix, or the default for the section. */
6191 i.types[this_operand].bitfield.imm8 = 1;
6192 i.types[this_operand].bitfield.imm16 = 1;
6193 i.types[this_operand].bitfield.imm32 = 1;
6194 i.types[this_operand].bitfield.imm32s = 1;
6195 i.types[this_operand].bitfield.imm64 = 1;
6196 i.types[this_operand] = operand_type_and (i.types[this_operand],
6197 types);
6198 }
6199
6200 return 1;
6201}
6202
6203static char *
6204i386_scale (char *scale)
6205{
6206 offsetT val;
6207 char *save = input_line_pointer;
6208
6209 input_line_pointer = scale;
6210 val = get_absolute_expression ();
6211
6212 switch (val)
6213 {
6214 case 1:
6215 i.log2_scale_factor = 0;
6216 break;
6217 case 2:
6218 i.log2_scale_factor = 1;
6219 break;
6220 case 4:
6221 i.log2_scale_factor = 2;
6222 break;
6223 case 8:
6224 i.log2_scale_factor = 3;
6225 break;
6226 default:
6227 {
6228 char sep = *input_line_pointer;
6229
6230 *input_line_pointer = '\0';
6231 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6232 scale);
6233 *input_line_pointer = sep;
6234 input_line_pointer = save;
6235 return NULL;
6236 }
6237 }
6238 if (i.log2_scale_factor != 0 && i.index_reg == 0)
6239 {
6240 as_warn (_("scale factor of %d without an index register"),
6241 1 << i.log2_scale_factor);
6242 i.log2_scale_factor = 0;
6243 }
6244 scale = input_line_pointer;
6245 input_line_pointer = save;
6246 return scale;
6247}
6248
6249static int
6250i386_displacement (char *disp_start, char *disp_end)
6251{
6252 expressionS *exp;
6253 segT exp_seg = 0;
6254 char *save_input_line_pointer;
6255 char *gotfree_input_line;
6256 int override;
6257 i386_operand_type bigdisp, types = anydisp;
6258 int ret;
6259
6260 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6261 {
6262 as_bad (_("at most %d displacement operands are allowed"),
6263 MAX_MEMORY_OPERANDS);
6264 return 0;
6265 }
6266
6267 operand_type_set (&bigdisp, 0);
6268 if ((i.types[this_operand].bitfield.jumpabsolute)
6269 || (!current_templates->start->opcode_modifier.jump
6270 && !current_templates->start->opcode_modifier.jumpdword))
6271 {
6272 bigdisp.bitfield.disp32 = 1;
6273 override = (i.prefix[ADDR_PREFIX] != 0);
6274 if (flag_code == CODE_64BIT)
6275 {
6276 if (!override)
6277 {
6278 bigdisp.bitfield.disp32s = 1;
6279 bigdisp.bitfield.disp64 = 1;
6280 }
6281 }
6282 else if ((flag_code == CODE_16BIT) ^ override)
6283 {
6284 bigdisp.bitfield.disp32 = 0;
6285 bigdisp.bitfield.disp16 = 1;
6286 }
6287 }
6288 else
6289 {
6290 /* For PC-relative branches, the width of the displacement
6291 is dependent upon data size, not address size. */
6292 override = (i.prefix[DATA_PREFIX] != 0);
6293 if (flag_code == CODE_64BIT)
6294 {
6295 if (override || i.suffix == WORD_MNEM_SUFFIX)
6296 bigdisp.bitfield.disp16 = 1;
6297 else
6298 {
6299 bigdisp.bitfield.disp32 = 1;
6300 bigdisp.bitfield.disp32s = 1;
6301 }
6302 }
6303 else
6304 {
6305 if (!override)
6306 override = (i.suffix == (flag_code != CODE_16BIT
6307 ? WORD_MNEM_SUFFIX
6308 : LONG_MNEM_SUFFIX));
6309 bigdisp.bitfield.disp32 = 1;
6310 if ((flag_code == CODE_16BIT) ^ override)
6311 {
6312 bigdisp.bitfield.disp32 = 0;
6313 bigdisp.bitfield.disp16 = 1;
6314 }
6315 }
6316 }
6317 i.types[this_operand] = operand_type_or (i.types[this_operand],
6318 bigdisp);
6319
6320 exp = &disp_expressions[i.disp_operands];
6321 i.op[this_operand].disps = exp;
6322 i.disp_operands++;
6323 save_input_line_pointer = input_line_pointer;
6324 input_line_pointer = disp_start;
6325 END_STRING_AND_SAVE (disp_end);
6326
6327#ifndef GCC_ASM_O_HACK
6328#define GCC_ASM_O_HACK 0
6329#endif
6330#if GCC_ASM_O_HACK
6331 END_STRING_AND_SAVE (disp_end + 1);
6332 if (i.types[this_operand].bitfield.baseIndex
6333 && displacement_string_end[-1] == '+')
6334 {
6335 /* This hack is to avoid a warning when using the "o"
6336 constraint within gcc asm statements.
6337 For instance:
6338
6339 #define _set_tssldt_desc(n,addr,limit,type) \
6340 __asm__ __volatile__ ( \
6341 "movw %w2,%0\n\t" \
6342 "movw %w1,2+%0\n\t" \
6343 "rorl $16,%1\n\t" \
6344 "movb %b1,4+%0\n\t" \
6345 "movb %4,5+%0\n\t" \
6346 "movb $0,6+%0\n\t" \
6347 "movb %h1,7+%0\n\t" \
6348 "rorl $16,%1" \
6349 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6350
6351 This works great except that the output assembler ends
6352 up looking a bit weird if it turns out that there is
6353 no offset. You end up producing code that looks like:
6354
6355 #APP
6356 movw $235,(%eax)
6357 movw %dx,2+(%eax)
6358 rorl $16,%edx
6359 movb %dl,4+(%eax)
6360 movb $137,5+(%eax)
6361 movb $0,6+(%eax)
6362 movb %dh,7+(%eax)
6363 rorl $16,%edx
6364 #NO_APP
6365
6366 So here we provide the missing zero. */
6367
6368 *displacement_string_end = '0';
6369 }
6370#endif
6371 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6372 if (gotfree_input_line)
6373 input_line_pointer = gotfree_input_line;
6374
6375 exp_seg = expression (exp);
6376
6377 SKIP_WHITESPACE ();
6378 if (*input_line_pointer)
6379 as_bad (_("junk `%s' after expression"), input_line_pointer);
6380#if GCC_ASM_O_HACK
6381 RESTORE_END_STRING (disp_end + 1);
6382#endif
6383 input_line_pointer = save_input_line_pointer;
6384 if (gotfree_input_line)
6385 {
6386 free (gotfree_input_line);
6387
6388 if (exp->X_op == O_constant || exp->X_op == O_register)
6389 exp->X_op = O_illegal;
6390 }
6391
6392 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6393
6394 RESTORE_END_STRING (disp_end);
6395
6396 return ret;
6397}
6398
6399static int
6400i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6401 i386_operand_type types, const char *disp_start)
6402{
6403 i386_operand_type bigdisp;
6404 int ret = 1;
6405
6406 /* We do this to make sure that the section symbol is in
6407 the symbol table. We will ultimately change the relocation
6408 to be relative to the beginning of the section. */
6409 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
6410 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6411 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6412 {
6413 if (exp->X_op != O_symbol)
6414 goto inv_disp;
6415
6416 if (S_IS_LOCAL (exp->X_add_symbol)
6417 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
6418 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
6419 exp->X_op = O_subtract;
6420 exp->X_op_symbol = GOT_symbol;
6421 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
6422 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
6423 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6424 i.reloc[this_operand] = BFD_RELOC_64;
6425 else
6426 i.reloc[this_operand] = BFD_RELOC_32;
6427 }
6428
6429 else if (exp->X_op == O_absent
6430 || exp->X_op == O_illegal
6431 || exp->X_op == O_big)
6432 {
6433 inv_disp:
6434 as_bad (_("missing or invalid displacement expression `%s'"),
6435 disp_start);
6436 ret = 0;
6437 }
6438
6439#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6440 else if (exp->X_op != O_constant
6441 && OUTPUT_FLAVOR == bfd_target_aout_flavour
6442 && exp_seg != absolute_section
6443 && exp_seg != text_section
6444 && exp_seg != data_section
6445 && exp_seg != bss_section
6446 && exp_seg != undefined_section
6447 && !bfd_is_com_section (exp_seg))
6448 {
6449 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6450 ret = 0;
6451 }
6452#endif
6453
6454 /* Check if this is a displacement only operand. */
6455 bigdisp = i.types[this_operand];
6456 bigdisp.bitfield.disp8 = 0;
6457 bigdisp.bitfield.disp16 = 0;
6458 bigdisp.bitfield.disp32 = 0;
6459 bigdisp.bitfield.disp32s = 0;
6460 bigdisp.bitfield.disp64 = 0;
6461 if (operand_type_all_zero (&bigdisp))
6462 i.types[this_operand] = operand_type_and (i.types[this_operand],
6463 types);
6464
6465 return ret;
6466}
6467
6468/* Make sure the memory operand we've been dealt is valid.
6469 Return 1 on success, 0 on a failure. */
6470
6471static int
6472i386_index_check (const char *operand_string)
6473{
6474 int ok;
6475 const char *kind = "base/index";
6476#if INFER_ADDR_PREFIX
6477 int fudged = 0;
6478
6479 tryprefix:
6480#endif
6481 ok = 1;
6482 if (current_templates->start->opcode_modifier.isstring
6483 && !current_templates->start->opcode_modifier.immext
6484 && (current_templates->end[-1].opcode_modifier.isstring
6485 || i.mem_operands))
6486 {
6487 /* Memory operands of string insns are special in that they only allow
6488 a single register (rDI, rSI, or rBX) as their memory address. */
6489 unsigned int expected;
6490
6491 kind = "string address";
6492
6493 if (current_templates->start->opcode_modifier.w)
6494 {
6495 i386_operand_type type = current_templates->end[-1].operand_types[0];
6496
6497 if (!type.bitfield.baseindex
6498 || ((!i.mem_operands != !intel_syntax)
6499 && current_templates->end[-1].operand_types[1]
6500 .bitfield.baseindex))
6501 type = current_templates->end[-1].operand_types[1];
6502 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
6503 }
6504 else
6505 expected = 3 /* rBX */;
6506
6507 if (!i.base_reg || i.index_reg
6508 || operand_type_check (i.types[this_operand], disp))
6509 ok = -1;
6510 else if (!(flag_code == CODE_64BIT
6511 ? i.prefix[ADDR_PREFIX]
6512 ? i.base_reg->reg_type.bitfield.reg32
6513 : i.base_reg->reg_type.bitfield.reg64
6514 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6515 ? i.base_reg->reg_type.bitfield.reg32
6516 : i.base_reg->reg_type.bitfield.reg16))
6517 ok = 0;
6518 else if (i.base_reg->reg_num != expected)
6519 ok = -1;
6520
6521 if (ok < 0)
6522 {
6523 unsigned int j;
6524
6525 for (j = 0; j < i386_regtab_size; ++j)
6526 if ((flag_code == CODE_64BIT
6527 ? i.prefix[ADDR_PREFIX]
6528 ? i386_regtab[j].reg_type.bitfield.reg32
6529 : i386_regtab[j].reg_type.bitfield.reg64
6530 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6531 ? i386_regtab[j].reg_type.bitfield.reg32
6532 : i386_regtab[j].reg_type.bitfield.reg16)
6533 && i386_regtab[j].reg_num == expected)
6534 break;
6535 gas_assert (j < i386_regtab_size);
6536 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6537 operand_string,
6538 intel_syntax ? '[' : '(',
6539 register_prefix,
6540 i386_regtab[j].reg_name,
6541 intel_syntax ? ']' : ')');
6542 ok = 1;
6543 }
6544 }
6545 else if (flag_code == CODE_64BIT)
6546 {
6547 if ((i.base_reg
6548 && ((i.prefix[ADDR_PREFIX] == 0
6549 && !i.base_reg->reg_type.bitfield.reg64)
6550 || (i.prefix[ADDR_PREFIX]
6551 && !i.base_reg->reg_type.bitfield.reg32))
6552 && (i.index_reg
6553 || i.base_reg->reg_num !=
6554 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
6555 || (i.index_reg
6556 && (!i.index_reg->reg_type.bitfield.baseindex
6557 || (i.prefix[ADDR_PREFIX] == 0
6558 && i.index_reg->reg_num != RegRiz
6559 && !i.index_reg->reg_type.bitfield.reg64
6560 )
6561 || (i.prefix[ADDR_PREFIX]
6562 && i.index_reg->reg_num != RegEiz
6563 && !i.index_reg->reg_type.bitfield.reg32))))
6564 ok = 0;
6565 }
6566 else
6567 {
6568 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
6569 {
6570 /* 16bit checks. */
6571 if ((i.base_reg
6572 && (!i.base_reg->reg_type.bitfield.reg16
6573 || !i.base_reg->reg_type.bitfield.baseindex))
6574 || (i.index_reg
6575 && (!i.index_reg->reg_type.bitfield.reg16
6576 || !i.index_reg->reg_type.bitfield.baseindex
6577 || !(i.base_reg
6578 && i.base_reg->reg_num < 6
6579 && i.index_reg->reg_num >= 6
6580 && i.log2_scale_factor == 0))))
6581 ok = 0;
6582 }
6583 else
6584 {
6585 /* 32bit checks. */
6586 if ((i.base_reg
6587 && !i.base_reg->reg_type.bitfield.reg32)
6588 || (i.index_reg
6589 && ((!i.index_reg->reg_type.bitfield.reg32
6590 && i.index_reg->reg_num != RegEiz)
6591 || !i.index_reg->reg_type.bitfield.baseindex)))
6592 ok = 0;
6593 }
6594 }
6595 if (!ok)
6596 {
6597#if INFER_ADDR_PREFIX
6598 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
6599 {
6600 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6601 i.prefixes += 1;
6602 /* Change the size of any displacement too. At most one of
6603 Disp16 or Disp32 is set.
6604 FIXME. There doesn't seem to be any real need for separate
6605 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6606 Removing them would probably clean up the code quite a lot. */
6607 if (flag_code != CODE_64BIT
6608 && (i.types[this_operand].bitfield.disp16
6609 || i.types[this_operand].bitfield.disp32))
6610 i.types[this_operand]
6611 = operand_type_xor (i.types[this_operand], disp16_32);
6612 fudged = 1;
6613 goto tryprefix;
6614 }
6615 if (fudged)
6616 as_bad (_("`%s' is not a valid %s expression"),
6617 operand_string,
6618 kind);
6619 else
6620#endif
6621 as_bad (_("`%s' is not a valid %s-bit %s expression"),
6622 operand_string,
6623 flag_code_names[i.prefix[ADDR_PREFIX]
6624 ? flag_code == CODE_32BIT
6625 ? CODE_16BIT
6626 : CODE_32BIT
6627 : flag_code],
6628 kind);
6629 }
6630 return ok;
6631}
6632
6633/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
6634 on error. */
6635
6636static int
6637i386_att_operand (char *operand_string)
6638{
6639 const reg_entry *r;
6640 char *end_op;
6641 char *op_string = operand_string;
6642
6643 if (is_space_char (*op_string))
6644 ++op_string;
6645
6646 /* We check for an absolute prefix (differentiating,
6647 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
6648 if (*op_string == ABSOLUTE_PREFIX)
6649 {
6650 ++op_string;
6651 if (is_space_char (*op_string))
6652 ++op_string;
6653 i.types[this_operand].bitfield.jumpabsolute = 1;
6654 }
6655
6656 /* Check if operand is a register. */
6657 if ((r = parse_register (op_string, &end_op)) != NULL)
6658 {
6659 i386_operand_type temp;
6660
6661 /* Check for a segment override by searching for ':' after a
6662 segment register. */
6663 op_string = end_op;
6664 if (is_space_char (*op_string))
6665 ++op_string;
6666 if (*op_string == ':'
6667 && (r->reg_type.bitfield.sreg2
6668 || r->reg_type.bitfield.sreg3))
6669 {
6670 switch (r->reg_num)
6671 {
6672 case 0:
6673 i.seg[i.mem_operands] = &es;
6674 break;
6675 case 1:
6676 i.seg[i.mem_operands] = &cs;
6677 break;
6678 case 2:
6679 i.seg[i.mem_operands] = &ss;
6680 break;
6681 case 3:
6682 i.seg[i.mem_operands] = &ds;
6683 break;
6684 case 4:
6685 i.seg[i.mem_operands] = &fs;
6686 break;
6687 case 5:
6688 i.seg[i.mem_operands] = &gs;
6689 break;
6690 }
6691
6692 /* Skip the ':' and whitespace. */
6693 ++op_string;
6694 if (is_space_char (*op_string))
6695 ++op_string;
6696
6697 if (!is_digit_char (*op_string)
6698 && !is_identifier_char (*op_string)
6699 && *op_string != '('
6700 && *op_string != ABSOLUTE_PREFIX)
6701 {
6702 as_bad (_("bad memory operand `%s'"), op_string);
6703 return 0;
6704 }
6705 /* Handle case of %es:*foo. */
6706 if (*op_string == ABSOLUTE_PREFIX)
6707 {
6708 ++op_string;
6709 if (is_space_char (*op_string))
6710 ++op_string;
6711 i.types[this_operand].bitfield.jumpabsolute = 1;
6712 }
6713 goto do_memory_reference;
6714 }
6715 if (*op_string)
6716 {
6717 as_bad (_("junk `%s' after register"), op_string);
6718 return 0;
6719 }
6720 temp = r->reg_type;
6721 temp.bitfield.baseindex = 0;
6722 i.types[this_operand] = operand_type_or (i.types[this_operand],
6723 temp);
6724 i.types[this_operand].bitfield.unspecified = 0;
6725 i.op[this_operand].regs = r;
6726 i.reg_operands++;
6727 }
6728 else if (*op_string == REGISTER_PREFIX)
6729 {
6730 as_bad (_("bad register name `%s'"), op_string);
6731 return 0;
6732 }
6733 else if (*op_string == IMMEDIATE_PREFIX)
6734 {
6735 ++op_string;
6736 if (i.types[this_operand].bitfield.jumpabsolute)
6737 {
6738 as_bad (_("immediate operand illegal with absolute jump"));
6739 return 0;
6740 }
6741 if (!i386_immediate (op_string))
6742 return 0;
6743 }
6744 else if (is_digit_char (*op_string)
6745 || is_identifier_char (*op_string)
6746 || *op_string == '(')
6747 {
6748 /* This is a memory reference of some sort. */
6749 char *base_string;
6750
6751 /* Start and end of displacement string expression (if found). */
6752 char *displacement_string_start;
6753 char *displacement_string_end;
6754
6755 do_memory_reference:
6756 if ((i.mem_operands == 1
6757 && !current_templates->start->opcode_modifier.isstring)
6758 || i.mem_operands == 2)
6759 {
6760 as_bad (_("too many memory references for `%s'"),
6761 current_templates->start->name);
6762 return 0;
6763 }
6764
6765 /* Check for base index form. We detect the base index form by
6766 looking for an ')' at the end of the operand, searching
6767 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6768 after the '('. */
6769 base_string = op_string + strlen (op_string);
6770
6771 --base_string;
6772 if (is_space_char (*base_string))
6773 --base_string;
6774
6775 /* If we only have a displacement, set-up for it to be parsed later. */
6776 displacement_string_start = op_string;
6777 displacement_string_end = base_string + 1;
6778
6779 if (*base_string == ')')
6780 {
6781 char *temp_string;
6782 unsigned int parens_balanced = 1;
6783 /* We've already checked that the number of left & right ()'s are
6784 equal, so this loop will not be infinite. */
6785 do
6786 {
6787 base_string--;
6788 if (*base_string == ')')
6789 parens_balanced++;
6790 if (*base_string == '(')
6791 parens_balanced--;
6792 }
6793 while (parens_balanced);
6794
6795 temp_string = base_string;
6796
6797 /* Skip past '(' and whitespace. */
6798 ++base_string;
6799 if (is_space_char (*base_string))
6800 ++base_string;
6801
6802 if (*base_string == ','
6803 || ((i.base_reg = parse_register (base_string, &end_op))
6804 != NULL))
6805 {
6806 displacement_string_end = temp_string;
6807
6808 i.types[this_operand].bitfield.baseindex = 1;
6809
6810 if (i.base_reg)
6811 {
6812 base_string = end_op;
6813 if (is_space_char (*base_string))
6814 ++base_string;
6815 }
6816
6817 /* There may be an index reg or scale factor here. */
6818 if (*base_string == ',')
6819 {
6820 ++base_string;
6821 if (is_space_char (*base_string))
6822 ++base_string;
6823
6824 if ((i.index_reg = parse_register (base_string, &end_op))
6825 != NULL)
6826 {
6827 base_string = end_op;
6828 if (is_space_char (*base_string))
6829 ++base_string;
6830 if (*base_string == ',')
6831 {
6832 ++base_string;
6833 if (is_space_char (*base_string))
6834 ++base_string;
6835 }
6836 else if (*base_string != ')')
6837 {
6838 as_bad (_("expecting `,' or `)' "
6839 "after index register in `%s'"),
6840 operand_string);
6841 return 0;
6842 }
6843 }
6844 else if (*base_string == REGISTER_PREFIX)
6845 {
6846 as_bad (_("bad register name `%s'"), base_string);
6847 return 0;
6848 }
6849
6850 /* Check for scale factor. */
6851 if (*base_string != ')')
6852 {
6853 char *end_scale = i386_scale (base_string);
6854
6855 if (!end_scale)
6856 return 0;
6857
6858 base_string = end_scale;
6859 if (is_space_char (*base_string))
6860 ++base_string;
6861 if (*base_string != ')')
6862 {
6863 as_bad (_("expecting `)' "
6864 "after scale factor in `%s'"),
6865 operand_string);
6866 return 0;
6867 }
6868 }
6869 else if (!i.index_reg)
6870 {
6871 as_bad (_("expecting index register or scale factor "
6872 "after `,'; got '%c'"),
6873 *base_string);
6874 return 0;
6875 }
6876 }
6877 else if (*base_string != ')')
6878 {
6879 as_bad (_("expecting `,' or `)' "
6880 "after base register in `%s'"),
6881 operand_string);
6882 return 0;
6883 }
6884 }
6885 else if (*base_string == REGISTER_PREFIX)
6886 {
6887 as_bad (_("bad register name `%s'"), base_string);
6888 return 0;
6889 }
6890 }
6891
6892 /* If there's an expression beginning the operand, parse it,
6893 assuming displacement_string_start and
6894 displacement_string_end are meaningful. */
6895 if (displacement_string_start != displacement_string_end)
6896 {
6897 if (!i386_displacement (displacement_string_start,
6898 displacement_string_end))
6899 return 0;
6900 }
6901
6902 /* Special case for (%dx) while doing input/output op. */
6903 if (i.base_reg
6904 && operand_type_equal (&i.base_reg->reg_type,
6905 &reg16_inoutportreg)
6906 && i.index_reg == 0
6907 && i.log2_scale_factor == 0
6908 && i.seg[i.mem_operands] == 0
6909 && !operand_type_check (i.types[this_operand], disp))
6910 {
6911 i.types[this_operand] = inoutportreg;
6912 return 1;
6913 }
6914
6915 if (i386_index_check (operand_string) == 0)
6916 return 0;
6917 i.types[this_operand].bitfield.mem = 1;
6918 i.mem_operands++;
6919 }
6920 else
6921 {
6922 /* It's not a memory operand; argh! */
6923 as_bad (_("invalid char %s beginning operand %d `%s'"),
6924 output_invalid (*op_string),
6925 this_operand + 1,
6926 op_string);
6927 return 0;
6928 }
6929 return 1; /* Normal return. */
6930}
6931\f
6932/* md_estimate_size_before_relax()
6933
6934 Called just before relax() for rs_machine_dependent frags. The x86
6935 assembler uses these frags to handle variable size jump
6936 instructions.
6937
6938 Any symbol that is now undefined will not become defined.
6939 Return the correct fr_subtype in the frag.
6940 Return the initial "guess for variable size of frag" to caller.
6941 The guess is actually the growth beyond the fixed part. Whatever
6942 we do to grow the fixed or variable part contributes to our
6943 returned value. */
6944
6945int
6946md_estimate_size_before_relax (fragP, segment)
6947 fragS *fragP;
6948 segT segment;
6949{
6950 /* We've already got fragP->fr_subtype right; all we have to do is
6951 check for un-relaxable symbols. On an ELF system, we can't relax
6952 an externally visible symbol, because it may be overridden by a
6953 shared library. */
6954 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6955#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6956 || (IS_ELF
6957 && (S_IS_EXTERNAL (fragP->fr_symbol)
6958 || S_IS_WEAK (fragP->fr_symbol)))
6959#endif
6960#if defined (OBJ_COFF) && defined (TE_PE)
6961 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
6962 && S_IS_WEAK (fragP->fr_symbol))
6963#endif
6964 )
6965 {
6966 /* Symbol is undefined in this segment, or we need to keep a
6967 reloc so that weak symbols can be overridden. */
6968 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
6969 enum bfd_reloc_code_real reloc_type;
6970 unsigned char *opcode;
6971 int old_fr_fix;
6972
6973 if (fragP->fr_var != NO_RELOC)
6974 reloc_type = fragP->fr_var;
6975 else if (size == 2)
6976 reloc_type = BFD_RELOC_16_PCREL;
6977 else
6978 reloc_type = BFD_RELOC_32_PCREL;
6979
6980 old_fr_fix = fragP->fr_fix;
6981 opcode = (unsigned char *) fragP->fr_opcode;
6982
6983 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
6984 {
6985 case UNCOND_JUMP:
6986 /* Make jmp (0xeb) a (d)word displacement jump. */
6987 opcode[0] = 0xe9;
6988 fragP->fr_fix += size;
6989 fix_new (fragP, old_fr_fix, size,
6990 fragP->fr_symbol,
6991 fragP->fr_offset, 1,
6992 reloc_type);
6993 break;
6994
6995 case COND_JUMP86:
6996 if (size == 2
6997 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
6998 {
6999 /* Negate the condition, and branch past an
7000 unconditional jump. */
7001 opcode[0] ^= 1;
7002 opcode[1] = 3;
7003 /* Insert an unconditional jump. */
7004 opcode[2] = 0xe9;
7005 /* We added two extra opcode bytes, and have a two byte
7006 offset. */
7007 fragP->fr_fix += 2 + 2;
7008 fix_new (fragP, old_fr_fix + 2, 2,
7009 fragP->fr_symbol,
7010 fragP->fr_offset, 1,
7011 reloc_type);
7012 break;
7013 }
7014 /* Fall through. */
7015
7016 case COND_JUMP:
7017 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7018 {
7019 fixS *fixP;
7020
7021 fragP->fr_fix += 1;
7022 fixP = fix_new (fragP, old_fr_fix, 1,
7023 fragP->fr_symbol,
7024 fragP->fr_offset, 1,
7025 BFD_RELOC_8_PCREL);
7026 fixP->fx_signed = 1;
7027 break;
7028 }
7029
7030 /* This changes the byte-displacement jump 0x7N
7031 to the (d)word-displacement jump 0x0f,0x8N. */
7032 opcode[1] = opcode[0] + 0x10;
7033 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7034 /* We've added an opcode byte. */
7035 fragP->fr_fix += 1 + size;
7036 fix_new (fragP, old_fr_fix + 1, size,
7037 fragP->fr_symbol,
7038 fragP->fr_offset, 1,
7039 reloc_type);
7040 break;
7041
7042 default:
7043 BAD_CASE (fragP->fr_subtype);
7044 break;
7045 }
7046 frag_wane (fragP);
7047 return fragP->fr_fix - old_fr_fix;
7048 }
7049
7050 /* Guess size depending on current relax state. Initially the relax
7051 state will correspond to a short jump and we return 1, because
7052 the variable part of the frag (the branch offset) is one byte
7053 long. However, we can relax a section more than once and in that
7054 case we must either set fr_subtype back to the unrelaxed state,
7055 or return the value for the appropriate branch. */
7056 return md_relax_table[fragP->fr_subtype].rlx_length;
7057}
7058
7059/* Called after relax() is finished.
7060
7061 In: Address of frag.
7062 fr_type == rs_machine_dependent.
7063 fr_subtype is what the address relaxed to.
7064
7065 Out: Any fixSs and constants are set up.
7066 Caller will turn frag into a ".space 0". */
7067
7068void
7069md_convert_frag (abfd, sec, fragP)
7070 bfd *abfd ATTRIBUTE_UNUSED;
7071 segT sec ATTRIBUTE_UNUSED;
7072 fragS *fragP;
7073{
7074 unsigned char *opcode;
7075 unsigned char *where_to_put_displacement = NULL;
7076 offsetT target_address;
7077 offsetT opcode_address;
7078 unsigned int extension = 0;
7079 offsetT displacement_from_opcode_start;
7080
7081 opcode = (unsigned char *) fragP->fr_opcode;
7082
7083 /* Address we want to reach in file space. */
7084 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
7085
7086 /* Address opcode resides at in file space. */
7087 opcode_address = fragP->fr_address + fragP->fr_fix;
7088
7089 /* Displacement from opcode start to fill into instruction. */
7090 displacement_from_opcode_start = target_address - opcode_address;
7091
7092 if ((fragP->fr_subtype & BIG) == 0)
7093 {
7094 /* Don't have to change opcode. */
7095 extension = 1; /* 1 opcode + 1 displacement */
7096 where_to_put_displacement = &opcode[1];
7097 }
7098 else
7099 {
7100 if (no_cond_jump_promotion
7101 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
7102 as_warn_where (fragP->fr_file, fragP->fr_line,
7103 _("long jump required"));
7104
7105 switch (fragP->fr_subtype)
7106 {
7107 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7108 extension = 4; /* 1 opcode + 4 displacement */
7109 opcode[0] = 0xe9;
7110 where_to_put_displacement = &opcode[1];
7111 break;
7112
7113 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7114 extension = 2; /* 1 opcode + 2 displacement */
7115 opcode[0] = 0xe9;
7116 where_to_put_displacement = &opcode[1];
7117 break;
7118
7119 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7120 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7121 extension = 5; /* 2 opcode + 4 displacement */
7122 opcode[1] = opcode[0] + 0x10;
7123 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7124 where_to_put_displacement = &opcode[2];
7125 break;
7126
7127 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7128 extension = 3; /* 2 opcode + 2 displacement */
7129 opcode[1] = opcode[0] + 0x10;
7130 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7131 where_to_put_displacement = &opcode[2];
7132 break;
7133
7134 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7135 extension = 4;
7136 opcode[0] ^= 1;
7137 opcode[1] = 3;
7138 opcode[2] = 0xe9;
7139 where_to_put_displacement = &opcode[3];
7140 break;
7141
7142 default:
7143 BAD_CASE (fragP->fr_subtype);
7144 break;
7145 }
7146 }
7147
7148 /* If size if less then four we are sure that the operand fits,
7149 but if it's 4, then it could be that the displacement is larger
7150 then -/+ 2GB. */
7151 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7152 && object_64bit
7153 && ((addressT) (displacement_from_opcode_start - extension
7154 + ((addressT) 1 << 31))
7155 > (((addressT) 2 << 31) - 1)))
7156 {
7157 as_bad_where (fragP->fr_file, fragP->fr_line,
7158 _("jump target out of range"));
7159 /* Make us emit 0. */
7160 displacement_from_opcode_start = extension;
7161 }
7162 /* Now put displacement after opcode. */
7163 md_number_to_chars ((char *) where_to_put_displacement,
7164 (valueT) (displacement_from_opcode_start - extension),
7165 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
7166 fragP->fr_fix += extension;
7167}
7168\f
7169/* Apply a fixup (fixS) to segment data, once it has been determined
7170 by our caller that we have all the info we need to fix it up.
7171
7172 On the 386, immediates, displacements, and data pointers are all in
7173 the same (little-endian) format, so we don't need to care about which
7174 we are handling. */
7175
7176void
7177md_apply_fix (fixP, valP, seg)
7178 /* The fix we're to put in. */
7179 fixS *fixP;
7180 /* Pointer to the value of the bits. */
7181 valueT *valP;
7182 /* Segment fix is from. */
7183 segT seg ATTRIBUTE_UNUSED;
7184{
7185 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
7186 valueT value = *valP;
7187
7188#if !defined (TE_Mach)
7189 if (fixP->fx_pcrel)
7190 {
7191 switch (fixP->fx_r_type)
7192 {
7193 default:
7194 break;
7195
7196 case BFD_RELOC_64:
7197 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7198 break;
7199 case BFD_RELOC_32:
7200 case BFD_RELOC_X86_64_32S:
7201 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7202 break;
7203 case BFD_RELOC_16:
7204 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7205 break;
7206 case BFD_RELOC_8:
7207 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7208 break;
7209 }
7210 }
7211
7212 if (fixP->fx_addsy != NULL
7213 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
7214 || fixP->fx_r_type == BFD_RELOC_64_PCREL
7215 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7216 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7217 && !use_rela_relocations)
7218 {
7219 /* This is a hack. There should be a better way to handle this.
7220 This covers for the fact that bfd_install_relocation will
7221 subtract the current location (for partial_inplace, PC relative
7222 relocations); see more below. */
7223#ifndef OBJ_AOUT
7224 if (IS_ELF
7225#ifdef TE_PE
7226 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7227#endif
7228 )
7229 value += fixP->fx_where + fixP->fx_frag->fr_address;
7230#endif
7231#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7232 if (IS_ELF)
7233 {
7234 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
7235
7236 if ((sym_seg == seg
7237 || (symbol_section_p (fixP->fx_addsy)
7238 && sym_seg != absolute_section))
7239 && !TC_FORCE_RELOCATION (fixP))
7240 {
7241 /* Yes, we add the values in twice. This is because
7242 bfd_install_relocation subtracts them out again. I think
7243 bfd_install_relocation is broken, but I don't dare change
7244 it. FIXME. */
7245 value += fixP->fx_where + fixP->fx_frag->fr_address;
7246 }
7247 }
7248#endif
7249#if defined (OBJ_COFF) && defined (TE_PE)
7250 /* For some reason, the PE format does not store a
7251 section address offset for a PC relative symbol. */
7252 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7253 || S_IS_WEAK (fixP->fx_addsy))
7254 value += md_pcrel_from (fixP);
7255#endif
7256 }
7257#if defined (OBJ_COFF) && defined (TE_PE)
7258 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7259 {
7260 value -= S_GET_VALUE (fixP->fx_addsy);
7261 }
7262#endif
7263
7264 /* Fix a few things - the dynamic linker expects certain values here,
7265 and we must not disappoint it. */
7266#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7267 if (IS_ELF && fixP->fx_addsy)
7268 switch (fixP->fx_r_type)
7269 {
7270 case BFD_RELOC_386_PLT32:
7271 case BFD_RELOC_X86_64_PLT32:
7272 /* Make the jump instruction point to the address of the operand. At
7273 runtime we merely add the offset to the actual PLT entry. */
7274 value = -4;
7275 break;
7276
7277 case BFD_RELOC_386_TLS_GD:
7278 case BFD_RELOC_386_TLS_LDM:
7279 case BFD_RELOC_386_TLS_IE_32:
7280 case BFD_RELOC_386_TLS_IE:
7281 case BFD_RELOC_386_TLS_GOTIE:
7282 case BFD_RELOC_386_TLS_GOTDESC:
7283 case BFD_RELOC_X86_64_TLSGD:
7284 case BFD_RELOC_X86_64_TLSLD:
7285 case BFD_RELOC_X86_64_GOTTPOFF:
7286 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7287 value = 0; /* Fully resolved at runtime. No addend. */
7288 /* Fallthrough */
7289 case BFD_RELOC_386_TLS_LE:
7290 case BFD_RELOC_386_TLS_LDO_32:
7291 case BFD_RELOC_386_TLS_LE_32:
7292 case BFD_RELOC_X86_64_DTPOFF32:
7293 case BFD_RELOC_X86_64_DTPOFF64:
7294 case BFD_RELOC_X86_64_TPOFF32:
7295 case BFD_RELOC_X86_64_TPOFF64:
7296 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7297 break;
7298
7299 case BFD_RELOC_386_TLS_DESC_CALL:
7300 case BFD_RELOC_X86_64_TLSDESC_CALL:
7301 value = 0; /* Fully resolved at runtime. No addend. */
7302 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7303 fixP->fx_done = 0;
7304 return;
7305
7306 case BFD_RELOC_386_GOT32:
7307 case BFD_RELOC_X86_64_GOT32:
7308 value = 0; /* Fully resolved at runtime. No addend. */
7309 break;
7310
7311 case BFD_RELOC_VTABLE_INHERIT:
7312 case BFD_RELOC_VTABLE_ENTRY:
7313 fixP->fx_done = 0;
7314 return;
7315
7316 default:
7317 break;
7318 }
7319#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7320 *valP = value;
7321#endif /* !defined (TE_Mach) */
7322
7323 /* Are we finished with this relocation now? */
7324 if (fixP->fx_addsy == NULL)
7325 fixP->fx_done = 1;
7326#if defined (OBJ_COFF) && defined (TE_PE)
7327 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7328 {
7329 fixP->fx_done = 0;
7330 /* Remember value for tc_gen_reloc. */
7331 fixP->fx_addnumber = value;
7332 /* Clear out the frag for now. */
7333 value = 0;
7334 }
7335#endif
7336 else if (use_rela_relocations)
7337 {
7338 fixP->fx_no_overflow = 1;
7339 /* Remember value for tc_gen_reloc. */
7340 fixP->fx_addnumber = value;
7341 value = 0;
7342 }
7343
7344 md_number_to_chars (p, value, fixP->fx_size);
7345}
7346\f
7347char *
7348md_atof (int type, char *litP, int *sizeP)
7349{
7350 /* This outputs the LITTLENUMs in REVERSE order;
7351 in accord with the bigendian 386. */
7352 return ieee_md_atof (type, litP, sizeP, FALSE);
7353}
7354\f
7355static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
7356
7357static char *
7358output_invalid (int c)
7359{
7360 if (ISPRINT (c))
7361 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7362 "'%c'", c);
7363 else
7364 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7365 "(0x%x)", (unsigned char) c);
7366 return output_invalid_buf;
7367}
7368
7369/* REG_STRING starts *before* REGISTER_PREFIX. */
7370
7371static const reg_entry *
7372parse_real_register (char *reg_string, char **end_op)
7373{
7374 char *s = reg_string;
7375 char *p;
7376 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7377 const reg_entry *r;
7378
7379 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7380 if (*s == REGISTER_PREFIX)
7381 ++s;
7382
7383 if (is_space_char (*s))
7384 ++s;
7385
7386 p = reg_name_given;
7387 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
7388 {
7389 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
7390 return (const reg_entry *) NULL;
7391 s++;
7392 }
7393
7394 /* For naked regs, make sure that we are not dealing with an identifier.
7395 This prevents confusing an identifier like `eax_var' with register
7396 `eax'. */
7397 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7398 return (const reg_entry *) NULL;
7399
7400 *end_op = s;
7401
7402 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7403
7404 /* Handle floating point regs, allowing spaces in the (i) part. */
7405 if (r == i386_regtab /* %st is first entry of table */)
7406 {
7407 if (is_space_char (*s))
7408 ++s;
7409 if (*s == '(')
7410 {
7411 ++s;
7412 if (is_space_char (*s))
7413 ++s;
7414 if (*s >= '0' && *s <= '7')
7415 {
7416 int fpr = *s - '0';
7417 ++s;
7418 if (is_space_char (*s))
7419 ++s;
7420 if (*s == ')')
7421 {
7422 *end_op = s + 1;
7423 r = hash_find (reg_hash, "st(0)");
7424 know (r);
7425 return r + fpr;
7426 }
7427 }
7428 /* We have "%st(" then garbage. */
7429 return (const reg_entry *) NULL;
7430 }
7431 }
7432
7433 if (r == NULL || allow_pseudo_reg)
7434 return r;
7435
7436 if (operand_type_all_zero (&r->reg_type))
7437 return (const reg_entry *) NULL;
7438
7439 if ((r->reg_type.bitfield.reg32
7440 || r->reg_type.bitfield.sreg3
7441 || r->reg_type.bitfield.control
7442 || r->reg_type.bitfield.debug
7443 || r->reg_type.bitfield.test)
7444 && !cpu_arch_flags.bitfield.cpui386)
7445 return (const reg_entry *) NULL;
7446
7447 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
7448 return (const reg_entry *) NULL;
7449
7450 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
7451 return (const reg_entry *) NULL;
7452
7453 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
7454 return (const reg_entry *) NULL;
7455
7456 /* Don't allow fake index register unless allow_index_reg isn't 0. */
7457 if (!allow_index_reg
7458 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
7459 return (const reg_entry *) NULL;
7460
7461 if (((r->reg_flags & (RegRex64 | RegRex))
7462 || r->reg_type.bitfield.reg64)
7463 && (!cpu_arch_flags.bitfield.cpulm
7464 || !operand_type_equal (&r->reg_type, &control))
7465 && flag_code != CODE_64BIT)
7466 return (const reg_entry *) NULL;
7467
7468 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
7469 return (const reg_entry *) NULL;
7470
7471 return r;
7472}
7473
7474/* REG_STRING starts *before* REGISTER_PREFIX. */
7475
7476static const reg_entry *
7477parse_register (char *reg_string, char **end_op)
7478{
7479 const reg_entry *r;
7480
7481 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
7482 r = parse_real_register (reg_string, end_op);
7483 else
7484 r = NULL;
7485 if (!r)
7486 {
7487 char *save = input_line_pointer;
7488 char c;
7489 symbolS *symbolP;
7490
7491 input_line_pointer = reg_string;
7492 c = get_symbol_end ();
7493 symbolP = symbol_find (reg_string);
7494 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
7495 {
7496 const expressionS *e = symbol_get_value_expression (symbolP);
7497
7498 know (e->X_op == O_register);
7499 know (e->X_add_number >= 0
7500 && (valueT) e->X_add_number < i386_regtab_size);
7501 r = i386_regtab + e->X_add_number;
7502 *end_op = input_line_pointer;
7503 }
7504 *input_line_pointer = c;
7505 input_line_pointer = save;
7506 }
7507 return r;
7508}
7509
7510int
7511i386_parse_name (char *name, expressionS *e, char *nextcharP)
7512{
7513 const reg_entry *r;
7514 char *end = input_line_pointer;
7515
7516 *end = *nextcharP;
7517 r = parse_register (name, &input_line_pointer);
7518 if (r && end <= input_line_pointer)
7519 {
7520 *nextcharP = *input_line_pointer;
7521 *input_line_pointer = 0;
7522 e->X_op = O_register;
7523 e->X_add_number = r - i386_regtab;
7524 return 1;
7525 }
7526 input_line_pointer = end;
7527 *end = 0;
7528 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
7529}
7530
7531void
7532md_operand (expressionS *e)
7533{
7534 char *end;
7535 const reg_entry *r;
7536
7537 switch (*input_line_pointer)
7538 {
7539 case REGISTER_PREFIX:
7540 r = parse_real_register (input_line_pointer, &end);
7541 if (r)
7542 {
7543 e->X_op = O_register;
7544 e->X_add_number = r - i386_regtab;
7545 input_line_pointer = end;
7546 }
7547 break;
7548
7549 case '[':
7550 gas_assert (intel_syntax);
7551 end = input_line_pointer++;
7552 expression (e);
7553 if (*input_line_pointer == ']')
7554 {
7555 ++input_line_pointer;
7556 e->X_op_symbol = make_expr_symbol (e);
7557 e->X_add_symbol = NULL;
7558 e->X_add_number = 0;
7559 e->X_op = O_index;
7560 }
7561 else
7562 {
7563 e->X_op = O_absent;
7564 input_line_pointer = end;
7565 }
7566 break;
7567 }
7568}
7569
7570\f
7571#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7572const char *md_shortopts = "kVQ:sqn";
7573#else
7574const char *md_shortopts = "qn";
7575#endif
7576
7577#define OPTION_32 (OPTION_MD_BASE + 0)
7578#define OPTION_64 (OPTION_MD_BASE + 1)
7579#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
7580#define OPTION_MARCH (OPTION_MD_BASE + 3)
7581#define OPTION_MTUNE (OPTION_MD_BASE + 4)
7582#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
7583#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
7584#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
7585#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
7586#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
7587#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
7588#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7589
7590struct option md_longopts[] =
7591{
7592 {"32", no_argument, NULL, OPTION_32},
7593#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7594 || defined (TE_PE) || defined (TE_PEP))
7595 {"64", no_argument, NULL, OPTION_64},
7596#endif
7597 {"divide", no_argument, NULL, OPTION_DIVIDE},
7598 {"march", required_argument, NULL, OPTION_MARCH},
7599 {"mtune", required_argument, NULL, OPTION_MTUNE},
7600 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
7601 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
7602 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
7603 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
7604 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
7605 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
7606 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7607 {NULL, no_argument, NULL, 0}
7608};
7609size_t md_longopts_size = sizeof (md_longopts);
7610
7611int
7612md_parse_option (int c, char *arg)
7613{
7614 unsigned int i;
7615 char *arch, *next;
7616
7617 switch (c)
7618 {
7619 case 'n':
7620 optimize_align_code = 0;
7621 break;
7622
7623 case 'q':
7624 quiet_warnings = 1;
7625 break;
7626
7627#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7628 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
7629 should be emitted or not. FIXME: Not implemented. */
7630 case 'Q':
7631 break;
7632
7633 /* -V: SVR4 argument to print version ID. */
7634 case 'V':
7635 print_version_id ();
7636 break;
7637
7638 /* -k: Ignore for FreeBSD compatibility. */
7639 case 'k':
7640 break;
7641
7642 case 's':
7643 /* -s: On i386 Solaris, this tells the native assembler to use
7644 .stab instead of .stab.excl. We always use .stab anyhow. */
7645 break;
7646#endif
7647#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7648 || defined (TE_PE) || defined (TE_PEP))
7649 case OPTION_64:
7650 {
7651 const char **list, **l;
7652
7653 list = bfd_target_list ();
7654 for (l = list; *l != NULL; l++)
7655 if (CONST_STRNEQ (*l, "elf64-x86-64")
7656 || strcmp (*l, "coff-x86-64") == 0
7657 || strcmp (*l, "pe-x86-64") == 0
7658 || strcmp (*l, "pei-x86-64") == 0)
7659 {
7660 default_arch = "x86_64";
7661 break;
7662 }
7663 if (*l == NULL)
7664 as_fatal (_("No compiled in support for x86_64"));
7665 free (list);
7666 }
7667 break;
7668#endif
7669
7670 case OPTION_32:
7671 default_arch = "i386";
7672 break;
7673
7674 case OPTION_DIVIDE:
7675#ifdef SVR4_COMMENT_CHARS
7676 {
7677 char *n, *t;
7678 const char *s;
7679
7680 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
7681 t = n;
7682 for (s = i386_comment_chars; *s != '\0'; s++)
7683 if (*s != '/')
7684 *t++ = *s;
7685 *t = '\0';
7686 i386_comment_chars = n;
7687 }
7688#endif
7689 break;
7690
7691 case OPTION_MARCH:
7692 arch = xstrdup (arg);
7693 do
7694 {
7695 if (*arch == '.')
7696 as_fatal (_("Invalid -march= option: `%s'"), arg);
7697 next = strchr (arch, '+');
7698 if (next)
7699 *next++ = '\0';
7700 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7701 {
7702 if (strcmp (arch, cpu_arch [i].name) == 0)
7703 {
7704 /* Processor. */
7705 cpu_arch_name = cpu_arch[i].name;
7706 cpu_sub_arch_name = NULL;
7707 cpu_arch_flags = cpu_arch[i].flags;
7708 cpu_arch_isa = cpu_arch[i].type;
7709 cpu_arch_isa_flags = cpu_arch[i].flags;
7710 if (!cpu_arch_tune_set)
7711 {
7712 cpu_arch_tune = cpu_arch_isa;
7713 cpu_arch_tune_flags = cpu_arch_isa_flags;
7714 }
7715 break;
7716 }
7717 else if (*cpu_arch [i].name == '.'
7718 && strcmp (arch, cpu_arch [i].name + 1) == 0)
7719 {
7720 /* ISA entension. */
7721 i386_cpu_flags flags;
7722 flags = cpu_flags_or (cpu_arch_flags,
7723 cpu_arch[i].flags);
7724 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
7725 {
7726 if (cpu_sub_arch_name)
7727 {
7728 char *name = cpu_sub_arch_name;
7729 cpu_sub_arch_name = concat (name,
7730 cpu_arch[i].name,
7731 (const char *) NULL);
7732 free (name);
7733 }
7734 else
7735 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
7736 cpu_arch_flags = flags;
7737 }
7738 break;
7739 }
7740 }
7741
7742 if (i >= ARRAY_SIZE (cpu_arch))
7743 as_fatal (_("Invalid -march= option: `%s'"), arg);
7744
7745 arch = next;
7746 }
7747 while (next != NULL );
7748 break;
7749
7750 case OPTION_MTUNE:
7751 if (*arg == '.')
7752 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7753 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7754 {
7755 if (strcmp (arg, cpu_arch [i].name) == 0)
7756 {
7757 cpu_arch_tune_set = 1;
7758 cpu_arch_tune = cpu_arch [i].type;
7759 cpu_arch_tune_flags = cpu_arch[i].flags;
7760 break;
7761 }
7762 }
7763 if (i >= ARRAY_SIZE (cpu_arch))
7764 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7765 break;
7766
7767 case OPTION_MMNEMONIC:
7768 if (strcasecmp (arg, "att") == 0)
7769 intel_mnemonic = 0;
7770 else if (strcasecmp (arg, "intel") == 0)
7771 intel_mnemonic = 1;
7772 else
7773 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
7774 break;
7775
7776 case OPTION_MSYNTAX:
7777 if (strcasecmp (arg, "att") == 0)
7778 intel_syntax = 0;
7779 else if (strcasecmp (arg, "intel") == 0)
7780 intel_syntax = 1;
7781 else
7782 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
7783 break;
7784
7785 case OPTION_MINDEX_REG:
7786 allow_index_reg = 1;
7787 break;
7788
7789 case OPTION_MNAKED_REG:
7790 allow_naked_reg = 1;
7791 break;
7792
7793 case OPTION_MOLD_GCC:
7794 old_gcc = 1;
7795 break;
7796
7797 case OPTION_MSSE2AVX:
7798 sse2avx = 1;
7799 break;
7800
7801 case OPTION_MSSE_CHECK:
7802 if (strcasecmp (arg, "error") == 0)
7803 sse_check = sse_check_error;
7804 else if (strcasecmp (arg, "warning") == 0)
7805 sse_check = sse_check_warning;
7806 else if (strcasecmp (arg, "none") == 0)
7807 sse_check = sse_check_none;
7808 else
7809 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
7810 break;
7811
7812 default:
7813 return 0;
7814 }
7815 return 1;
7816}
7817
7818void
7819md_show_usage (stream)
7820 FILE *stream;
7821{
7822#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7823 fprintf (stream, _("\
7824 -Q ignored\n\
7825 -V print assembler version number\n\
7826 -k ignored\n"));
7827#endif
7828 fprintf (stream, _("\
7829 -n Do not optimize code alignment\n\
7830 -q quieten some warnings\n"));
7831#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7832 fprintf (stream, _("\
7833 -s ignored\n"));
7834#endif
7835#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7836 || defined (TE_PE) || defined (TE_PEP))
7837 fprintf (stream, _("\
7838 --32/--64 generate 32bit/64bit code\n"));
7839#endif
7840#ifdef SVR4_COMMENT_CHARS
7841 fprintf (stream, _("\
7842 --divide do not treat `/' as a comment character\n"));
7843#else
7844 fprintf (stream, _("\
7845 --divide ignored\n"));
7846#endif
7847 fprintf (stream, _("\
7848 -march=CPU[,+EXTENSION...]\n\
7849 generate code for CPU and EXTENSION, CPU is one of:\n\
7850 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
7851 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
7852 core, core2, corei7, k6, k6_2, athlon, k8, amdfam10,\n\
7853 generic32, generic64\n\
7854 EXTENSION is combination of:\n\
7855 mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, sse4,\n\
7856 avx, vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
7857 clflush, syscall, rdtscp, 3dnow, 3dnowa, sse4a,\n\
7858 svme, abm, padlock\n"));
7859 fprintf (stream, _("\
7860 -mtune=CPU optimize for CPU, CPU is one of:\n\
7861 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
7862 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
7863 core, core2, corei7, k6, k6_2, athlon, k8, amdfam10,\n\
7864 generic32, generic64\n"));
7865 fprintf (stream, _("\
7866 -msse2avx encode SSE instructions with VEX prefix\n"));
7867 fprintf (stream, _("\
7868 -msse-check=[none|error|warning]\n\
7869 check SSE instructions\n"));
7870 fprintf (stream, _("\
7871 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
7872 fprintf (stream, _("\
7873 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
7874 fprintf (stream, _("\
7875 -mindex-reg support pseudo index registers\n"));
7876 fprintf (stream, _("\
7877 -mnaked-reg don't require `%%' prefix for registers\n"));
7878 fprintf (stream, _("\
7879 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7880}
7881
7882#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
7883 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7884 || defined (TE_PE) || defined (TE_PEP))
7885
7886/* Pick the target format to use. */
7887
7888const char *
7889i386_target_format (void)
7890{
7891 if (!strcmp (default_arch, "x86_64"))
7892 {
7893 set_code_flag (CODE_64BIT);
7894 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
7895 {
7896 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7897 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7898 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7899 cpu_arch_isa_flags.bitfield.cpui486 = 1;
7900 cpu_arch_isa_flags.bitfield.cpui586 = 1;
7901 cpu_arch_isa_flags.bitfield.cpui686 = 1;
7902 cpu_arch_isa_flags.bitfield.cpuclflush = 1;
7903 cpu_arch_isa_flags.bitfield.cpummx= 1;
7904 cpu_arch_isa_flags.bitfield.cpusse = 1;
7905 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
7906 }
7907 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
7908 {
7909 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7910 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7911 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7912 cpu_arch_tune_flags.bitfield.cpui486 = 1;
7913 cpu_arch_tune_flags.bitfield.cpui586 = 1;
7914 cpu_arch_tune_flags.bitfield.cpui686 = 1;
7915 cpu_arch_tune_flags.bitfield.cpuclflush = 1;
7916 cpu_arch_tune_flags.bitfield.cpummx= 1;
7917 cpu_arch_tune_flags.bitfield.cpusse = 1;
7918 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
7919 }
7920 }
7921 else if (!strcmp (default_arch, "i386"))
7922 {
7923 set_code_flag (CODE_32BIT);
7924 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
7925 {
7926 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7927 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7928 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7929 }
7930 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
7931 {
7932 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7933 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7934 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7935 }
7936 }
7937 else
7938 as_fatal (_("Unknown architecture"));
7939 switch (OUTPUT_FLAVOR)
7940 {
7941#if defined (TE_PE) || defined (TE_PEP)
7942 case bfd_target_coff_flavour:
7943 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
7944#endif
7945#ifdef OBJ_MAYBE_AOUT
7946 case bfd_target_aout_flavour:
7947 return AOUT_TARGET_FORMAT;
7948#endif
7949#ifdef OBJ_MAYBE_COFF
7950 case bfd_target_coff_flavour:
7951 return "coff-i386";
7952#endif
7953#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7954 case bfd_target_elf_flavour:
7955 {
7956 if (flag_code == CODE_64BIT)
7957 {
7958 object_64bit = 1;
7959 use_rela_relocations = 1;
7960 }
7961 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
7962 }
7963#endif
7964 default:
7965 abort ();
7966 return NULL;
7967 }
7968}
7969
7970#endif /* OBJ_MAYBE_ more than one */
7971
7972#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
7973void
7974i386_elf_emit_arch_note (void)
7975{
7976 if (IS_ELF && cpu_arch_name != NULL)
7977 {
7978 char *p;
7979 asection *seg = now_seg;
7980 subsegT subseg = now_subseg;
7981 Elf_Internal_Note i_note;
7982 Elf_External_Note e_note;
7983 asection *note_secp;
7984 int len;
7985
7986 /* Create the .note section. */
7987 note_secp = subseg_new (".note", 0);
7988 bfd_set_section_flags (stdoutput,
7989 note_secp,
7990 SEC_HAS_CONTENTS | SEC_READONLY);
7991
7992 /* Process the arch string. */
7993 len = strlen (cpu_arch_name);
7994
7995 i_note.namesz = len + 1;
7996 i_note.descsz = 0;
7997 i_note.type = NT_ARCH;
7998 p = frag_more (sizeof (e_note.namesz));
7999 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8000 p = frag_more (sizeof (e_note.descsz));
8001 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8002 p = frag_more (sizeof (e_note.type));
8003 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8004 p = frag_more (len + 1);
8005 strcpy (p, cpu_arch_name);
8006
8007 frag_align (2, 0, 0);
8008
8009 subseg_set (seg, subseg);
8010 }
8011}
8012#endif
8013\f
8014symbolS *
8015md_undefined_symbol (name)
8016 char *name;
8017{
8018 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8019 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8020 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8021 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
8022 {
8023 if (!GOT_symbol)
8024 {
8025 if (symbol_find (name))
8026 as_bad (_("GOT already in symbol table"));
8027 GOT_symbol = symbol_new (name, undefined_section,
8028 (valueT) 0, &zero_address_frag);
8029 };
8030 return GOT_symbol;
8031 }
8032 return 0;
8033}
8034
8035/* Round up a section size to the appropriate boundary. */
8036
8037valueT
8038md_section_align (segment, size)
8039 segT segment ATTRIBUTE_UNUSED;
8040 valueT size;
8041{
8042#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8043 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8044 {
8045 /* For a.out, force the section size to be aligned. If we don't do
8046 this, BFD will align it for us, but it will not write out the
8047 final bytes of the section. This may be a bug in BFD, but it is
8048 easier to fix it here since that is how the other a.out targets
8049 work. */
8050 int align;
8051
8052 align = bfd_get_section_alignment (stdoutput, segment);
8053 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8054 }
8055#endif
8056
8057 return size;
8058}
8059
8060/* On the i386, PC-relative offsets are relative to the start of the
8061 next instruction. That is, the address of the offset, plus its
8062 size, since the offset is always the last part of the insn. */
8063
8064long
8065md_pcrel_from (fixS *fixP)
8066{
8067 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8068}
8069
8070#ifndef I386COFF
8071
8072static void
8073s_bss (int ignore ATTRIBUTE_UNUSED)
8074{
8075 int temp;
8076
8077#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8078 if (IS_ELF)
8079 obj_elf_section_change_hook ();
8080#endif
8081 temp = get_absolute_expression ();
8082 subseg_set (bss_section, (subsegT) temp);
8083 demand_empty_rest_of_line ();
8084}
8085
8086#endif
8087
8088void
8089i386_validate_fix (fixS *fixp)
8090{
8091 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8092 {
8093 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8094 {
8095 if (!object_64bit)
8096 abort ();
8097 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8098 }
8099 else
8100 {
8101 if (!object_64bit)
8102 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8103 else
8104 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
8105 }
8106 fixp->fx_subsy = 0;
8107 }
8108}
8109
8110arelent *
8111tc_gen_reloc (section, fixp)
8112 asection *section ATTRIBUTE_UNUSED;
8113 fixS *fixp;
8114{
8115 arelent *rel;
8116 bfd_reloc_code_real_type code;
8117
8118 switch (fixp->fx_r_type)
8119 {
8120 case BFD_RELOC_X86_64_PLT32:
8121 case BFD_RELOC_X86_64_GOT32:
8122 case BFD_RELOC_X86_64_GOTPCREL:
8123 case BFD_RELOC_386_PLT32:
8124 case BFD_RELOC_386_GOT32:
8125 case BFD_RELOC_386_GOTOFF:
8126 case BFD_RELOC_386_GOTPC:
8127 case BFD_RELOC_386_TLS_GD:
8128 case BFD_RELOC_386_TLS_LDM:
8129 case BFD_RELOC_386_TLS_LDO_32:
8130 case BFD_RELOC_386_TLS_IE_32:
8131 case BFD_RELOC_386_TLS_IE:
8132 case BFD_RELOC_386_TLS_GOTIE:
8133 case BFD_RELOC_386_TLS_LE_32:
8134 case BFD_RELOC_386_TLS_LE:
8135 case BFD_RELOC_386_TLS_GOTDESC:
8136 case BFD_RELOC_386_TLS_DESC_CALL:
8137 case BFD_RELOC_X86_64_TLSGD:
8138 case BFD_RELOC_X86_64_TLSLD:
8139 case BFD_RELOC_X86_64_DTPOFF32:
8140 case BFD_RELOC_X86_64_DTPOFF64:
8141 case BFD_RELOC_X86_64_GOTTPOFF:
8142 case BFD_RELOC_X86_64_TPOFF32:
8143 case BFD_RELOC_X86_64_TPOFF64:
8144 case BFD_RELOC_X86_64_GOTOFF64:
8145 case BFD_RELOC_X86_64_GOTPC32:
8146 case BFD_RELOC_X86_64_GOT64:
8147 case BFD_RELOC_X86_64_GOTPCREL64:
8148 case BFD_RELOC_X86_64_GOTPC64:
8149 case BFD_RELOC_X86_64_GOTPLT64:
8150 case BFD_RELOC_X86_64_PLTOFF64:
8151 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8152 case BFD_RELOC_X86_64_TLSDESC_CALL:
8153 case BFD_RELOC_RVA:
8154 case BFD_RELOC_VTABLE_ENTRY:
8155 case BFD_RELOC_VTABLE_INHERIT:
8156#ifdef TE_PE
8157 case BFD_RELOC_32_SECREL:
8158#endif
8159 code = fixp->fx_r_type;
8160 break;
8161 case BFD_RELOC_X86_64_32S:
8162 if (!fixp->fx_pcrel)
8163 {
8164 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8165 code = fixp->fx_r_type;
8166 break;
8167 }
8168 default:
8169 if (fixp->fx_pcrel)
8170 {
8171 switch (fixp->fx_size)
8172 {
8173 default:
8174 as_bad_where (fixp->fx_file, fixp->fx_line,
8175 _("can not do %d byte pc-relative relocation"),
8176 fixp->fx_size);
8177 code = BFD_RELOC_32_PCREL;
8178 break;
8179 case 1: code = BFD_RELOC_8_PCREL; break;
8180 case 2: code = BFD_RELOC_16_PCREL; break;
8181 case 4: code = BFD_RELOC_32_PCREL; break;
8182#ifdef BFD64
8183 case 8: code = BFD_RELOC_64_PCREL; break;
8184#endif
8185 }
8186 }
8187 else
8188 {
8189 switch (fixp->fx_size)
8190 {
8191 default:
8192 as_bad_where (fixp->fx_file, fixp->fx_line,
8193 _("can not do %d byte relocation"),
8194 fixp->fx_size);
8195 code = BFD_RELOC_32;
8196 break;
8197 case 1: code = BFD_RELOC_8; break;
8198 case 2: code = BFD_RELOC_16; break;
8199 case 4: code = BFD_RELOC_32; break;
8200#ifdef BFD64
8201 case 8: code = BFD_RELOC_64; break;
8202#endif
8203 }
8204 }
8205 break;
8206 }
8207
8208 if ((code == BFD_RELOC_32
8209 || code == BFD_RELOC_32_PCREL
8210 || code == BFD_RELOC_X86_64_32S)
8211 && GOT_symbol
8212 && fixp->fx_addsy == GOT_symbol)
8213 {
8214 if (!object_64bit)
8215 code = BFD_RELOC_386_GOTPC;
8216 else
8217 code = BFD_RELOC_X86_64_GOTPC32;
8218 }
8219 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8220 && GOT_symbol
8221 && fixp->fx_addsy == GOT_symbol)
8222 {
8223 code = BFD_RELOC_X86_64_GOTPC64;
8224 }
8225
8226 rel = (arelent *) xmalloc (sizeof (arelent));
8227 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8228 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8229
8230 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
8231
8232 if (!use_rela_relocations)
8233 {
8234 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8235 vtable entry to be used in the relocation's section offset. */
8236 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8237 rel->address = fixp->fx_offset;
8238#if defined (OBJ_COFF) && defined (TE_PE)
8239 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8240 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8241 else
8242#endif
8243 rel->addend = 0;
8244 }
8245 /* Use the rela in 64bit mode. */
8246 else
8247 {
8248 if (!fixp->fx_pcrel)
8249 rel->addend = fixp->fx_offset;
8250 else
8251 switch (code)
8252 {
8253 case BFD_RELOC_X86_64_PLT32:
8254 case BFD_RELOC_X86_64_GOT32:
8255 case BFD_RELOC_X86_64_GOTPCREL:
8256 case BFD_RELOC_X86_64_TLSGD:
8257 case BFD_RELOC_X86_64_TLSLD:
8258 case BFD_RELOC_X86_64_GOTTPOFF:
8259 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8260 case BFD_RELOC_X86_64_TLSDESC_CALL:
8261 rel->addend = fixp->fx_offset - fixp->fx_size;
8262 break;
8263 default:
8264 rel->addend = (section->vma
8265 - fixp->fx_size
8266 + fixp->fx_addnumber
8267 + md_pcrel_from (fixp));
8268 break;
8269 }
8270 }
8271
8272 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8273 if (rel->howto == NULL)
8274 {
8275 as_bad_where (fixp->fx_file, fixp->fx_line,
8276 _("cannot represent relocation type %s"),
8277 bfd_get_reloc_code_name (code));
8278 /* Set howto to a garbage value so that we can keep going. */
8279 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
8280 gas_assert (rel->howto != NULL);
8281 }
8282
8283 return rel;
8284}
8285
8286#include "tc-i386-intel.c"
8287
8288void
8289tc_x86_parse_to_dw2regnum (expressionS *exp)
8290{
8291 int saved_naked_reg;
8292 char saved_register_dot;
8293
8294 saved_naked_reg = allow_naked_reg;
8295 allow_naked_reg = 1;
8296 saved_register_dot = register_chars['.'];
8297 register_chars['.'] = '.';
8298 allow_pseudo_reg = 1;
8299 expression_and_evaluate (exp);
8300 allow_pseudo_reg = 0;
8301 register_chars['.'] = saved_register_dot;
8302 allow_naked_reg = saved_naked_reg;
8303
8304 if (exp->X_op == O_register && exp->X_add_number >= 0)
8305 {
8306 if ((addressT) exp->X_add_number < i386_regtab_size)
8307 {
8308 exp->X_op = O_constant;
8309 exp->X_add_number = i386_regtab[exp->X_add_number]
8310 .dw2_regnum[flag_code >> 1];
8311 }
8312 else
8313 exp->X_op = O_illegal;
8314 }
8315}
8316
8317void
8318tc_x86_frame_initial_instructions (void)
8319{
8320 static unsigned int sp_regno[2];
8321
8322 if (!sp_regno[flag_code >> 1])
8323 {
8324 char *saved_input = input_line_pointer;
8325 char sp[][4] = {"esp", "rsp"};
8326 expressionS exp;
8327
8328 input_line_pointer = sp[flag_code >> 1];
8329 tc_x86_parse_to_dw2regnum (&exp);
8330 gas_assert (exp.X_op == O_constant);
8331 sp_regno[flag_code >> 1] = exp.X_add_number;
8332 input_line_pointer = saved_input;
8333 }
8334
8335 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
8336 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8337}
8338
8339int
8340i386_elf_section_type (const char *str, size_t len)
8341{
8342 if (flag_code == CODE_64BIT
8343 && len == sizeof ("unwind") - 1
8344 && strncmp (str, "unwind", 6) == 0)
8345 return SHT_X86_64_UNWIND;
8346
8347 return -1;
8348}
8349
8350#ifdef TE_SOLARIS
8351void
8352i386_solaris_fix_up_eh_frame (segT sec)
8353{
8354 if (flag_code == CODE_64BIT)
8355 elf_section_type (sec) = SHT_X86_64_UNWIND;
8356}
8357#endif
8358
8359#ifdef TE_PE
8360void
8361tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8362{
8363 expressionS expr;
8364
8365 expr.X_op = O_secrel;
8366 expr.X_add_symbol = symbol;
8367 expr.X_add_number = 0;
8368 emit_expr (&expr, size);
8369}
8370#endif
8371
8372#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8373/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8374
8375bfd_vma
8376x86_64_section_letter (int letter, char **ptr_msg)
8377{
8378 if (flag_code == CODE_64BIT)
8379 {
8380 if (letter == 'l')
8381 return SHF_X86_64_LARGE;
8382
8383 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8384 }
8385 else
8386 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
8387 return -1;
8388}
8389
8390bfd_vma
8391x86_64_section_word (char *str, size_t len)
8392{
8393 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
8394 return SHF_X86_64_LARGE;
8395
8396 return -1;
8397}
8398
8399static void
8400handle_large_common (int small ATTRIBUTE_UNUSED)
8401{
8402 if (flag_code != CODE_64BIT)
8403 {
8404 s_comm_internal (0, elf_common_parse);
8405 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8406 }
8407 else
8408 {
8409 static segT lbss_section;
8410 asection *saved_com_section_ptr = elf_com_section_ptr;
8411 asection *saved_bss_section = bss_section;
8412
8413 if (lbss_section == NULL)
8414 {
8415 flagword applicable;
8416 segT seg = now_seg;
8417 subsegT subseg = now_subseg;
8418
8419 /* The .lbss section is for local .largecomm symbols. */
8420 lbss_section = subseg_new (".lbss", 0);
8421 applicable = bfd_applicable_section_flags (stdoutput);
8422 bfd_set_section_flags (stdoutput, lbss_section,
8423 applicable & SEC_ALLOC);
8424 seg_info (lbss_section)->bss = 1;
8425
8426 subseg_set (seg, subseg);
8427 }
8428
8429 elf_com_section_ptr = &_bfd_elf_large_com_section;
8430 bss_section = lbss_section;
8431
8432 s_comm_internal (0, elf_common_parse);
8433
8434 elf_com_section_ptr = saved_com_section_ptr;
8435 bss_section = saved_bss_section;
8436 }
8437}
8438#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.070376 seconds and 4 git commands to generate.