Automatic date update in version.in
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
... / ...
CommitLineData
1/* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28#include "as.h"
29#include "safe-ctype.h"
30#include "subsegs.h"
31#include "dwarf2dbg.h"
32#include "dw2gencfi.h"
33#include "elf/x86-64.h"
34#include "opcodes/i386-init.h"
35
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
40#ifndef INFER_ADDR_PREFIX
41#define INFER_ADDR_PREFIX 1
42#endif
43
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
46#endif
47
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
65#define REP_PREFIX 4
66#define HLE_PREFIX REP_PREFIX
67#define BND_PREFIX REP_PREFIX
68#define LOCK_PREFIX 5
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
85#define YMMWORD_MNEM_SUFFIX 'y'
86#define ZMMWORD_MNEM_SUFFIX 'z'
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
102 const insn_template *start;
103 const insn_template *end;
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136}
137arch_entry;
138
139/* Used to turn off indicated flags. */
140typedef struct
141{
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145}
146noarch_entry;
147
148static void update_code_flag (int, int);
149static void set_code_flag (int);
150static void set_16bit_gcc_code_flag (int);
151static void set_intel_syntax (int);
152static void set_intel_mnemonic (int);
153static void set_allow_index_reg (int);
154static void set_check (int);
155static void set_cpu_arch (int);
156#ifdef TE_PE
157static void pe_directive_secrel (int);
158#endif
159static void signed_cons (int);
160static char *output_invalid (int c);
161static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165static int i386_att_operand (char *);
166static int i386_intel_operand (char *, int);
167static int i386_intel_simplify (expressionS *);
168static int i386_intel_parse_name (const char *, expressionS *);
169static const reg_entry *parse_register (char *, char **);
170static char *parse_insn (char *, char *);
171static char *parse_operands (char *, const char *);
172static void swap_operands (void);
173static void swap_2_operands (int, int);
174static void optimize_imm (void);
175static void optimize_disp (void);
176static const insn_template *match_template (char);
177static int check_string (void);
178static int process_suffix (void);
179static int check_byte_reg (void);
180static int check_long_reg (void);
181static int check_qword_reg (void);
182static int check_word_reg (void);
183static int finalize_imm (void);
184static int process_operands (void);
185static const seg_entry *build_modrm_byte (void);
186static void output_insn (void);
187static void output_imm (fragS *, offsetT);
188static void output_disp (fragS *, offsetT);
189#ifndef I386COFF
190static void s_bss (int);
191#endif
192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193static void handle_large_common (int small ATTRIBUTE_UNUSED);
194#endif
195
196static const char *default_arch = DEFAULT_ARCH;
197
198/* This struct describes rounding control and SAE in the instruction. */
199struct RC_Operation
200{
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210};
211
212static struct RC_Operation rc_op;
213
214/* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217struct Mask_Operation
218{
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223};
224
225static struct Mask_Operation mask_op;
226
227/* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229struct Broadcast_Operation
230{
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236};
237
238static struct Broadcast_Operation broadcast_op;
239
240/* VEX prefix. */
241typedef struct
242{
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
250/* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314#define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Swap operand in encoding. */
358 unsigned int swap_operand;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* REP prefix. */
369 const char *rep_prefix;
370
371 /* HLE prefix. */
372 const char *hle_prefix;
373
374 /* Have BND prefix. */
375 const char *bnd_prefix;
376
377 /* Need VREX to support upper 16 registers. */
378 int need_vrex;
379
380 /* Error message. */
381 enum i386_error error;
382 };
383
384typedef struct _i386_insn i386_insn;
385
386/* Link RC type with corresponding string, that'll be looked for in
387 asm. */
388struct RC_name
389{
390 enum rc_type type;
391 const char *name;
392 unsigned int len;
393};
394
395static const struct RC_name RC_NamesTable[] =
396{
397 { rne, STRING_COMMA_LEN ("rn-sae") },
398 { rd, STRING_COMMA_LEN ("rd-sae") },
399 { ru, STRING_COMMA_LEN ("ru-sae") },
400 { rz, STRING_COMMA_LEN ("rz-sae") },
401 { saeonly, STRING_COMMA_LEN ("sae") },
402};
403
404/* List of chars besides those in app.c:symbol_chars that can start an
405 operand. Used to prevent the scrubber eating vital white-space. */
406const char extra_symbol_chars[] = "*%-([{"
407#ifdef LEX_AT
408 "@"
409#endif
410#ifdef LEX_QM
411 "?"
412#endif
413 ;
414
415#if (defined (TE_I386AIX) \
416 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
417 && !defined (TE_GNU) \
418 && !defined (TE_LINUX) \
419 && !defined (TE_NACL) \
420 && !defined (TE_NETWARE) \
421 && !defined (TE_FreeBSD) \
422 && !defined (TE_DragonFly) \
423 && !defined (TE_NetBSD)))
424/* This array holds the chars that always start a comment. If the
425 pre-processor is disabled, these aren't very useful. The option
426 --divide will remove '/' from this list. */
427const char *i386_comment_chars = "#/";
428#define SVR4_COMMENT_CHARS 1
429#define PREFIX_SEPARATOR '\\'
430
431#else
432const char *i386_comment_chars = "#";
433#define PREFIX_SEPARATOR '/'
434#endif
435
436/* This array holds the chars that only start a comment at the beginning of
437 a line. If the line seems to have the form '# 123 filename'
438 .line and .file directives will appear in the pre-processed output.
439 Note that input_file.c hand checks for '#' at the beginning of the
440 first line of the input file. This is because the compiler outputs
441 #NO_APP at the beginning of its output.
442 Also note that comments started like this one will always work if
443 '/' isn't otherwise defined. */
444const char line_comment_chars[] = "#/";
445
446const char line_separator_chars[] = ";";
447
448/* Chars that can be used to separate mant from exp in floating point
449 nums. */
450const char EXP_CHARS[] = "eE";
451
452/* Chars that mean this number is a floating point constant
453 As in 0f12.456
454 or 0d1.2345e12. */
455const char FLT_CHARS[] = "fFdDxX";
456
457/* Tables for lexical analysis. */
458static char mnemonic_chars[256];
459static char register_chars[256];
460static char operand_chars[256];
461static char identifier_chars[256];
462static char digit_chars[256];
463
464/* Lexical macros. */
465#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
466#define is_operand_char(x) (operand_chars[(unsigned char) x])
467#define is_register_char(x) (register_chars[(unsigned char) x])
468#define is_space_char(x) ((x) == ' ')
469#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
470#define is_digit_char(x) (digit_chars[(unsigned char) x])
471
472/* All non-digit non-letter characters that may occur in an operand. */
473static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
474
475/* md_assemble() always leaves the strings it's passed unaltered. To
476 effect this we maintain a stack of saved characters that we've smashed
477 with '\0's (indicating end of strings for various sub-fields of the
478 assembler instruction). */
479static char save_stack[32];
480static char *save_stack_p;
481#define END_STRING_AND_SAVE(s) \
482 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
483#define RESTORE_END_STRING(s) \
484 do { *(s) = *--save_stack_p; } while (0)
485
486/* The instruction we're assembling. */
487static i386_insn i;
488
489/* Possible templates for current insn. */
490static const templates *current_templates;
491
492/* Per instruction expressionS buffers: max displacements & immediates. */
493static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
494static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
495
496/* Current operand we are working on. */
497static int this_operand = -1;
498
499/* We support four different modes. FLAG_CODE variable is used to distinguish
500 these. */
501
502enum flag_code {
503 CODE_32BIT,
504 CODE_16BIT,
505 CODE_64BIT };
506
507static enum flag_code flag_code;
508static unsigned int object_64bit;
509static unsigned int disallow_64bit_reloc;
510static int use_rela_relocations = 0;
511
512#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
513 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
514 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
515
516/* The ELF ABI to use. */
517enum x86_elf_abi
518{
519 I386_ABI,
520 X86_64_ABI,
521 X86_64_X32_ABI
522};
523
524static enum x86_elf_abi x86_elf_abi = I386_ABI;
525#endif
526
527#if defined (TE_PE) || defined (TE_PEP)
528/* Use big object file format. */
529static int use_big_obj = 0;
530#endif
531
532#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
533/* 1 if generating code for a shared library. */
534static int shared = 0;
535#endif
536
537/* 1 for intel syntax,
538 0 if att syntax. */
539static int intel_syntax = 0;
540
541/* 1 for Intel64 ISA,
542 0 if AMD64 ISA. */
543static int intel64;
544
545/* 1 for intel mnemonic,
546 0 if att mnemonic. */
547static int intel_mnemonic = !SYSV386_COMPAT;
548
549/* 1 if support old (<= 2.8.1) versions of gcc. */
550static int old_gcc = OLDGCC_COMPAT;
551
552/* 1 if pseudo registers are permitted. */
553static int allow_pseudo_reg = 0;
554
555/* 1 if register prefix % not required. */
556static int allow_naked_reg = 0;
557
558/* 1 if the assembler should add BND prefix for all control-tranferring
559 instructions supporting it, even if this prefix wasn't specified
560 explicitly. */
561static int add_bnd_prefix = 0;
562
563/* 1 if pseudo index register, eiz/riz, is allowed . */
564static int allow_index_reg = 0;
565
566/* 1 if the assembler should ignore LOCK prefix, even if it was
567 specified explicitly. */
568static int omit_lock_prefix = 0;
569
570/* 1 if the assembler should encode lfence, mfence, and sfence as
571 "lock addl $0, (%{re}sp)". */
572static int avoid_fence = 0;
573
574/* 1 if the assembler should generate relax relocations. */
575
576static int generate_relax_relocations
577 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
578
579static enum check_kind
580 {
581 check_none = 0,
582 check_warning,
583 check_error
584 }
585sse_check, operand_check = check_warning;
586
587/* Register prefix used for error message. */
588static const char *register_prefix = "%";
589
590/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
591 leave, push, and pop instructions so that gcc has the same stack
592 frame as in 32 bit mode. */
593static char stackop_size = '\0';
594
595/* Non-zero to optimize code alignment. */
596int optimize_align_code = 1;
597
598/* Non-zero to quieten some warnings. */
599static int quiet_warnings = 0;
600
601/* CPU name. */
602static const char *cpu_arch_name = NULL;
603static char *cpu_sub_arch_name = NULL;
604
605/* CPU feature flags. */
606static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
607
608/* If we have selected a cpu we are generating instructions for. */
609static int cpu_arch_tune_set = 0;
610
611/* Cpu we are generating instructions for. */
612enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
613
614/* CPU feature flags of cpu we are generating instructions for. */
615static i386_cpu_flags cpu_arch_tune_flags;
616
617/* CPU instruction set architecture used. */
618enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
619
620/* CPU feature flags of instruction set architecture used. */
621i386_cpu_flags cpu_arch_isa_flags;
622
623/* If set, conditional jumps are not automatically promoted to handle
624 larger than a byte offset. */
625static unsigned int no_cond_jump_promotion = 0;
626
627/* Encode SSE instructions with VEX prefix. */
628static unsigned int sse2avx;
629
630/* Encode scalar AVX instructions with specific vector length. */
631static enum
632 {
633 vex128 = 0,
634 vex256
635 } avxscalar;
636
637/* Encode scalar EVEX LIG instructions with specific vector length. */
638static enum
639 {
640 evexl128 = 0,
641 evexl256,
642 evexl512
643 } evexlig;
644
645/* Encode EVEX WIG instructions with specific evex.w. */
646static enum
647 {
648 evexw0 = 0,
649 evexw1
650 } evexwig;
651
652/* Value to encode in EVEX RC bits, for SAE-only instructions. */
653static enum rc_type evexrcig = rne;
654
655/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
656static symbolS *GOT_symbol;
657
658/* The dwarf2 return column, adjusted for 32 or 64 bit. */
659unsigned int x86_dwarf2_return_column;
660
661/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
662int x86_cie_data_alignment;
663
664/* Interface to relax_segment.
665 There are 3 major relax states for 386 jump insns because the
666 different types of jumps add different sizes to frags when we're
667 figuring out what sort of jump to choose to reach a given label. */
668
669/* Types. */
670#define UNCOND_JUMP 0
671#define COND_JUMP 1
672#define COND_JUMP86 2
673
674/* Sizes. */
675#define CODE16 1
676#define SMALL 0
677#define SMALL16 (SMALL | CODE16)
678#define BIG 2
679#define BIG16 (BIG | CODE16)
680
681#ifndef INLINE
682#ifdef __GNUC__
683#define INLINE __inline__
684#else
685#define INLINE
686#endif
687#endif
688
689#define ENCODE_RELAX_STATE(type, size) \
690 ((relax_substateT) (((type) << 2) | (size)))
691#define TYPE_FROM_RELAX_STATE(s) \
692 ((s) >> 2)
693#define DISP_SIZE_FROM_RELAX_STATE(s) \
694 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
695
696/* This table is used by relax_frag to promote short jumps to long
697 ones where necessary. SMALL (short) jumps may be promoted to BIG
698 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
699 don't allow a short jump in a 32 bit code segment to be promoted to
700 a 16 bit offset jump because it's slower (requires data size
701 prefix), and doesn't work, unless the destination is in the bottom
702 64k of the code segment (The top 16 bits of eip are zeroed). */
703
704const relax_typeS md_relax_table[] =
705{
706 /* The fields are:
707 1) most positive reach of this state,
708 2) most negative reach of this state,
709 3) how many bytes this mode will have in the variable part of the frag
710 4) which index into the table to try if we can't fit into this one. */
711
712 /* UNCOND_JUMP states. */
713 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
714 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
715 /* dword jmp adds 4 bytes to frag:
716 0 extra opcode bytes, 4 displacement bytes. */
717 {0, 0, 4, 0},
718 /* word jmp adds 2 byte2 to frag:
719 0 extra opcode bytes, 2 displacement bytes. */
720 {0, 0, 2, 0},
721
722 /* COND_JUMP states. */
723 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
724 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
725 /* dword conditionals adds 5 bytes to frag:
726 1 extra opcode byte, 4 displacement bytes. */
727 {0, 0, 5, 0},
728 /* word conditionals add 3 bytes to frag:
729 1 extra opcode byte, 2 displacement bytes. */
730 {0, 0, 3, 0},
731
732 /* COND_JUMP86 states. */
733 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
734 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
735 /* dword conditionals adds 5 bytes to frag:
736 1 extra opcode byte, 4 displacement bytes. */
737 {0, 0, 5, 0},
738 /* word conditionals add 4 bytes to frag:
739 1 displacement byte and a 3 byte long branch insn. */
740 {0, 0, 4, 0}
741};
742
743static const arch_entry cpu_arch[] =
744{
745 /* Do not replace the first two entries - i386_target_format()
746 relies on them being there in this order. */
747 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
748 CPU_GENERIC32_FLAGS, 0 },
749 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
750 CPU_GENERIC64_FLAGS, 0 },
751 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
752 CPU_NONE_FLAGS, 0 },
753 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
754 CPU_I186_FLAGS, 0 },
755 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
756 CPU_I286_FLAGS, 0 },
757 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
758 CPU_I386_FLAGS, 0 },
759 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
760 CPU_I486_FLAGS, 0 },
761 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
762 CPU_I586_FLAGS, 0 },
763 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
764 CPU_I686_FLAGS, 0 },
765 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
766 CPU_I586_FLAGS, 0 },
767 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
768 CPU_PENTIUMPRO_FLAGS, 0 },
769 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
770 CPU_P2_FLAGS, 0 },
771 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
772 CPU_P3_FLAGS, 0 },
773 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
774 CPU_P4_FLAGS, 0 },
775 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
776 CPU_CORE_FLAGS, 0 },
777 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
778 CPU_NOCONA_FLAGS, 0 },
779 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
780 CPU_CORE_FLAGS, 1 },
781 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
782 CPU_CORE_FLAGS, 0 },
783 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
784 CPU_CORE2_FLAGS, 1 },
785 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
786 CPU_CORE2_FLAGS, 0 },
787 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
788 CPU_COREI7_FLAGS, 0 },
789 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
790 CPU_L1OM_FLAGS, 0 },
791 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
792 CPU_K1OM_FLAGS, 0 },
793 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
794 CPU_IAMCU_FLAGS, 0 },
795 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
796 CPU_K6_FLAGS, 0 },
797 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
798 CPU_K6_2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
800 CPU_ATHLON_FLAGS, 0 },
801 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
802 CPU_K8_FLAGS, 1 },
803 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
804 CPU_K8_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
806 CPU_K8_FLAGS, 0 },
807 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
808 CPU_AMDFAM10_FLAGS, 0 },
809 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
810 CPU_BDVER1_FLAGS, 0 },
811 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
812 CPU_BDVER2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
814 CPU_BDVER3_FLAGS, 0 },
815 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
816 CPU_BDVER4_FLAGS, 0 },
817 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
818 CPU_ZNVER1_FLAGS, 0 },
819 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
820 CPU_BTVER1_FLAGS, 0 },
821 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
822 CPU_BTVER2_FLAGS, 0 },
823 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
824 CPU_8087_FLAGS, 0 },
825 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
826 CPU_287_FLAGS, 0 },
827 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
828 CPU_387_FLAGS, 0 },
829 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
830 CPU_687_FLAGS, 0 },
831 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
832 CPU_MMX_FLAGS, 0 },
833 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
834 CPU_SSE_FLAGS, 0 },
835 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
836 CPU_SSE2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
838 CPU_SSE3_FLAGS, 0 },
839 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
840 CPU_SSSE3_FLAGS, 0 },
841 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
842 CPU_SSE4_1_FLAGS, 0 },
843 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
844 CPU_SSE4_2_FLAGS, 0 },
845 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
846 CPU_SSE4_2_FLAGS, 0 },
847 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
848 CPU_AVX_FLAGS, 0 },
849 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
850 CPU_AVX2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
852 CPU_AVX512F_FLAGS, 0 },
853 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
854 CPU_AVX512CD_FLAGS, 0 },
855 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
856 CPU_AVX512ER_FLAGS, 0 },
857 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
858 CPU_AVX512PF_FLAGS, 0 },
859 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
860 CPU_AVX512DQ_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
862 CPU_AVX512BW_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
864 CPU_AVX512VL_FLAGS, 0 },
865 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
866 CPU_VMX_FLAGS, 0 },
867 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
868 CPU_VMFUNC_FLAGS, 0 },
869 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
870 CPU_SMX_FLAGS, 0 },
871 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
872 CPU_XSAVE_FLAGS, 0 },
873 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
874 CPU_XSAVEOPT_FLAGS, 0 },
875 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
876 CPU_XSAVEC_FLAGS, 0 },
877 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
878 CPU_XSAVES_FLAGS, 0 },
879 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
880 CPU_AES_FLAGS, 0 },
881 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
882 CPU_PCLMUL_FLAGS, 0 },
883 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
884 CPU_PCLMUL_FLAGS, 1 },
885 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
886 CPU_FSGSBASE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
888 CPU_RDRND_FLAGS, 0 },
889 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
890 CPU_F16C_FLAGS, 0 },
891 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
892 CPU_BMI2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
894 CPU_FMA_FLAGS, 0 },
895 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
896 CPU_FMA4_FLAGS, 0 },
897 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
898 CPU_XOP_FLAGS, 0 },
899 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
900 CPU_LWP_FLAGS, 0 },
901 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
902 CPU_MOVBE_FLAGS, 0 },
903 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
904 CPU_CX16_FLAGS, 0 },
905 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
906 CPU_EPT_FLAGS, 0 },
907 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
908 CPU_LZCNT_FLAGS, 0 },
909 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
910 CPU_HLE_FLAGS, 0 },
911 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
912 CPU_RTM_FLAGS, 0 },
913 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
914 CPU_INVPCID_FLAGS, 0 },
915 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
916 CPU_CLFLUSH_FLAGS, 0 },
917 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
918 CPU_NOP_FLAGS, 0 },
919 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
920 CPU_SYSCALL_FLAGS, 0 },
921 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
922 CPU_RDTSCP_FLAGS, 0 },
923 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
924 CPU_3DNOW_FLAGS, 0 },
925 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
926 CPU_3DNOWA_FLAGS, 0 },
927 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
928 CPU_PADLOCK_FLAGS, 0 },
929 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
930 CPU_SVME_FLAGS, 1 },
931 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
932 CPU_SVME_FLAGS, 0 },
933 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
934 CPU_SSE4A_FLAGS, 0 },
935 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
936 CPU_ABM_FLAGS, 0 },
937 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
938 CPU_BMI_FLAGS, 0 },
939 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
940 CPU_TBM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
942 CPU_ADX_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
944 CPU_RDSEED_FLAGS, 0 },
945 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
946 CPU_PRFCHW_FLAGS, 0 },
947 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
948 CPU_SMAP_FLAGS, 0 },
949 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
950 CPU_MPX_FLAGS, 0 },
951 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
952 CPU_SHA_FLAGS, 0 },
953 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
954 CPU_CLFLUSHOPT_FLAGS, 0 },
955 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
956 CPU_PREFETCHWT1_FLAGS, 0 },
957 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
958 CPU_SE1_FLAGS, 0 },
959 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
960 CPU_CLWB_FLAGS, 0 },
961 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
962 CPU_AVX512IFMA_FLAGS, 0 },
963 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
964 CPU_AVX512VBMI_FLAGS, 0 },
965 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
966 CPU_CLZERO_FLAGS, 0 },
967 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
968 CPU_MWAITX_FLAGS, 0 },
969 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
970 CPU_OSPKE_FLAGS, 0 },
971 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
972 CPU_RDPID_FLAGS, 0 },
973 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
974 CPU_PTWRITE_FLAGS, 0 },
975};
976
977static const noarch_entry cpu_noarch[] =
978{
979 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
980 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
981 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
982 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
983 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
984 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
985 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
986 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
987 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
988 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
989 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
990 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
991 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
992 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
993 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
994 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
995 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
996 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
997 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
998 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
999 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1000 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1001 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1002};
1003
1004#ifdef I386COFF
1005/* Like s_lcomm_internal in gas/read.c but the alignment string
1006 is allowed to be optional. */
1007
1008static symbolS *
1009pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1010{
1011 addressT align = 0;
1012
1013 SKIP_WHITESPACE ();
1014
1015 if (needs_align
1016 && *input_line_pointer == ',')
1017 {
1018 align = parse_align (needs_align - 1);
1019
1020 if (align == (addressT) -1)
1021 return NULL;
1022 }
1023 else
1024 {
1025 if (size >= 8)
1026 align = 3;
1027 else if (size >= 4)
1028 align = 2;
1029 else if (size >= 2)
1030 align = 1;
1031 else
1032 align = 0;
1033 }
1034
1035 bss_alloc (symbolP, size, align);
1036 return symbolP;
1037}
1038
1039static void
1040pe_lcomm (int needs_align)
1041{
1042 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1043}
1044#endif
1045
1046const pseudo_typeS md_pseudo_table[] =
1047{
1048#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1049 {"align", s_align_bytes, 0},
1050#else
1051 {"align", s_align_ptwo, 0},
1052#endif
1053 {"arch", set_cpu_arch, 0},
1054#ifndef I386COFF
1055 {"bss", s_bss, 0},
1056#else
1057 {"lcomm", pe_lcomm, 1},
1058#endif
1059 {"ffloat", float_cons, 'f'},
1060 {"dfloat", float_cons, 'd'},
1061 {"tfloat", float_cons, 'x'},
1062 {"value", cons, 2},
1063 {"slong", signed_cons, 4},
1064 {"noopt", s_ignore, 0},
1065 {"optim", s_ignore, 0},
1066 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1067 {"code16", set_code_flag, CODE_16BIT},
1068 {"code32", set_code_flag, CODE_32BIT},
1069 {"code64", set_code_flag, CODE_64BIT},
1070 {"intel_syntax", set_intel_syntax, 1},
1071 {"att_syntax", set_intel_syntax, 0},
1072 {"intel_mnemonic", set_intel_mnemonic, 1},
1073 {"att_mnemonic", set_intel_mnemonic, 0},
1074 {"allow_index_reg", set_allow_index_reg, 1},
1075 {"disallow_index_reg", set_allow_index_reg, 0},
1076 {"sse_check", set_check, 0},
1077 {"operand_check", set_check, 1},
1078#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1079 {"largecomm", handle_large_common, 0},
1080#else
1081 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1082 {"loc", dwarf2_directive_loc, 0},
1083 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1084#endif
1085#ifdef TE_PE
1086 {"secrel32", pe_directive_secrel, 0},
1087#endif
1088 {0, 0, 0}
1089};
1090
1091/* For interface with expression (). */
1092extern char *input_line_pointer;
1093
1094/* Hash table for instruction mnemonic lookup. */
1095static struct hash_control *op_hash;
1096
1097/* Hash table for register lookup. */
1098static struct hash_control *reg_hash;
1099\f
1100void
1101i386_align_code (fragS *fragP, int count)
1102{
1103 /* Various efficient no-op patterns for aligning code labels.
1104 Note: Don't try to assemble the instructions in the comments.
1105 0L and 0w are not legal. */
1106 static const unsigned char f32_1[] =
1107 {0x90}; /* nop */
1108 static const unsigned char f32_2[] =
1109 {0x66,0x90}; /* xchg %ax,%ax */
1110 static const unsigned char f32_3[] =
1111 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1112 static const unsigned char f32_4[] =
1113 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1114 static const unsigned char f32_5[] =
1115 {0x90, /* nop */
1116 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1117 static const unsigned char f32_6[] =
1118 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1119 static const unsigned char f32_7[] =
1120 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1121 static const unsigned char f32_8[] =
1122 {0x90, /* nop */
1123 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1124 static const unsigned char f32_9[] =
1125 {0x89,0xf6, /* movl %esi,%esi */
1126 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1127 static const unsigned char f32_10[] =
1128 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1129 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1130 static const unsigned char f32_11[] =
1131 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1132 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1133 static const unsigned char f32_12[] =
1134 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1135 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1136 static const unsigned char f32_13[] =
1137 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1138 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1139 static const unsigned char f32_14[] =
1140 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1141 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1142 static const unsigned char f16_3[] =
1143 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1144 static const unsigned char f16_4[] =
1145 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1146 static const unsigned char f16_5[] =
1147 {0x90, /* nop */
1148 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1149 static const unsigned char f16_6[] =
1150 {0x89,0xf6, /* mov %si,%si */
1151 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1152 static const unsigned char f16_7[] =
1153 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1154 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1155 static const unsigned char f16_8[] =
1156 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1157 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1158 static const unsigned char jump_31[] =
1159 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1160 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1161 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1162 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1163 static const unsigned char *const f32_patt[] = {
1164 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1165 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1166 };
1167 static const unsigned char *const f16_patt[] = {
1168 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1169 };
1170 /* nopl (%[re]ax) */
1171 static const unsigned char alt_3[] =
1172 {0x0f,0x1f,0x00};
1173 /* nopl 0(%[re]ax) */
1174 static const unsigned char alt_4[] =
1175 {0x0f,0x1f,0x40,0x00};
1176 /* nopl 0(%[re]ax,%[re]ax,1) */
1177 static const unsigned char alt_5[] =
1178 {0x0f,0x1f,0x44,0x00,0x00};
1179 /* nopw 0(%[re]ax,%[re]ax,1) */
1180 static const unsigned char alt_6[] =
1181 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1182 /* nopl 0L(%[re]ax) */
1183 static const unsigned char alt_7[] =
1184 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1185 /* nopl 0L(%[re]ax,%[re]ax,1) */
1186 static const unsigned char alt_8[] =
1187 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1188 /* nopw 0L(%[re]ax,%[re]ax,1) */
1189 static const unsigned char alt_9[] =
1190 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1191 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1192 static const unsigned char alt_10[] =
1193 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1194 static const unsigned char *const alt_patt[] = {
1195 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1196 alt_9, alt_10
1197 };
1198
1199 /* Only align for at least a positive non-zero boundary. */
1200 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1201 return;
1202
1203 /* We need to decide which NOP sequence to use for 32bit and
1204 64bit. When -mtune= is used:
1205
1206 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1207 PROCESSOR_GENERIC32, f32_patt will be used.
1208 2. For the rest, alt_patt will be used.
1209
1210 When -mtune= isn't used, alt_patt will be used if
1211 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1212 be used.
1213
1214 When -march= or .arch is used, we can't use anything beyond
1215 cpu_arch_isa_flags. */
1216
1217 if (flag_code == CODE_16BIT)
1218 {
1219 if (count > 8)
1220 {
1221 memcpy (fragP->fr_literal + fragP->fr_fix,
1222 jump_31, count);
1223 /* Adjust jump offset. */
1224 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1225 }
1226 else
1227 memcpy (fragP->fr_literal + fragP->fr_fix,
1228 f16_patt[count - 1], count);
1229 }
1230 else
1231 {
1232 const unsigned char *const *patt = NULL;
1233
1234 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1235 {
1236 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1237 switch (cpu_arch_tune)
1238 {
1239 case PROCESSOR_UNKNOWN:
1240 /* We use cpu_arch_isa_flags to check if we SHOULD
1241 optimize with nops. */
1242 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1243 patt = alt_patt;
1244 else
1245 patt = f32_patt;
1246 break;
1247 case PROCESSOR_PENTIUM4:
1248 case PROCESSOR_NOCONA:
1249 case PROCESSOR_CORE:
1250 case PROCESSOR_CORE2:
1251 case PROCESSOR_COREI7:
1252 case PROCESSOR_L1OM:
1253 case PROCESSOR_K1OM:
1254 case PROCESSOR_GENERIC64:
1255 case PROCESSOR_K6:
1256 case PROCESSOR_ATHLON:
1257 case PROCESSOR_K8:
1258 case PROCESSOR_AMDFAM10:
1259 case PROCESSOR_BD:
1260 case PROCESSOR_ZNVER:
1261 case PROCESSOR_BT:
1262 patt = alt_patt;
1263 break;
1264 case PROCESSOR_I386:
1265 case PROCESSOR_I486:
1266 case PROCESSOR_PENTIUM:
1267 case PROCESSOR_PENTIUMPRO:
1268 case PROCESSOR_IAMCU:
1269 case PROCESSOR_GENERIC32:
1270 patt = f32_patt;
1271 break;
1272 }
1273 }
1274 else
1275 {
1276 switch (fragP->tc_frag_data.tune)
1277 {
1278 case PROCESSOR_UNKNOWN:
1279 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1280 PROCESSOR_UNKNOWN. */
1281 abort ();
1282 break;
1283
1284 case PROCESSOR_I386:
1285 case PROCESSOR_I486:
1286 case PROCESSOR_PENTIUM:
1287 case PROCESSOR_IAMCU:
1288 case PROCESSOR_K6:
1289 case PROCESSOR_ATHLON:
1290 case PROCESSOR_K8:
1291 case PROCESSOR_AMDFAM10:
1292 case PROCESSOR_BD:
1293 case PROCESSOR_ZNVER:
1294 case PROCESSOR_BT:
1295 case PROCESSOR_GENERIC32:
1296 /* We use cpu_arch_isa_flags to check if we CAN optimize
1297 with nops. */
1298 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1299 patt = alt_patt;
1300 else
1301 patt = f32_patt;
1302 break;
1303 case PROCESSOR_PENTIUMPRO:
1304 case PROCESSOR_PENTIUM4:
1305 case PROCESSOR_NOCONA:
1306 case PROCESSOR_CORE:
1307 case PROCESSOR_CORE2:
1308 case PROCESSOR_COREI7:
1309 case PROCESSOR_L1OM:
1310 case PROCESSOR_K1OM:
1311 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1312 patt = alt_patt;
1313 else
1314 patt = f32_patt;
1315 break;
1316 case PROCESSOR_GENERIC64:
1317 patt = alt_patt;
1318 break;
1319 }
1320 }
1321
1322 if (patt == f32_patt)
1323 {
1324 /* If the padding is less than 15 bytes, we use the normal
1325 ones. Otherwise, we use a jump instruction and adjust
1326 its offset. */
1327 int limit;
1328
1329 /* For 64bit, the limit is 3 bytes. */
1330 if (flag_code == CODE_64BIT
1331 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1332 limit = 3;
1333 else
1334 limit = 15;
1335 if (count < limit)
1336 memcpy (fragP->fr_literal + fragP->fr_fix,
1337 patt[count - 1], count);
1338 else
1339 {
1340 memcpy (fragP->fr_literal + fragP->fr_fix,
1341 jump_31, count);
1342 /* Adjust jump offset. */
1343 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1344 }
1345 }
1346 else
1347 {
1348 /* Maximum length of an instruction is 10 byte. If the
1349 padding is greater than 10 bytes and we don't use jump,
1350 we have to break it into smaller pieces. */
1351 int padding = count;
1352 while (padding > 10)
1353 {
1354 padding -= 10;
1355 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1356 patt [9], 10);
1357 }
1358
1359 if (padding)
1360 memcpy (fragP->fr_literal + fragP->fr_fix,
1361 patt [padding - 1], padding);
1362 }
1363 }
1364 fragP->fr_var = count;
1365}
1366
1367static INLINE int
1368operand_type_all_zero (const union i386_operand_type *x)
1369{
1370 switch (ARRAY_SIZE(x->array))
1371 {
1372 case 3:
1373 if (x->array[2])
1374 return 0;
1375 /* Fall through. */
1376 case 2:
1377 if (x->array[1])
1378 return 0;
1379 /* Fall through. */
1380 case 1:
1381 return !x->array[0];
1382 default:
1383 abort ();
1384 }
1385}
1386
1387static INLINE void
1388operand_type_set (union i386_operand_type *x, unsigned int v)
1389{
1390 switch (ARRAY_SIZE(x->array))
1391 {
1392 case 3:
1393 x->array[2] = v;
1394 /* Fall through. */
1395 case 2:
1396 x->array[1] = v;
1397 /* Fall through. */
1398 case 1:
1399 x->array[0] = v;
1400 /* Fall through. */
1401 break;
1402 default:
1403 abort ();
1404 }
1405}
1406
1407static INLINE int
1408operand_type_equal (const union i386_operand_type *x,
1409 const union i386_operand_type *y)
1410{
1411 switch (ARRAY_SIZE(x->array))
1412 {
1413 case 3:
1414 if (x->array[2] != y->array[2])
1415 return 0;
1416 /* Fall through. */
1417 case 2:
1418 if (x->array[1] != y->array[1])
1419 return 0;
1420 /* Fall through. */
1421 case 1:
1422 return x->array[0] == y->array[0];
1423 break;
1424 default:
1425 abort ();
1426 }
1427}
1428
1429static INLINE int
1430cpu_flags_all_zero (const union i386_cpu_flags *x)
1431{
1432 switch (ARRAY_SIZE(x->array))
1433 {
1434 case 3:
1435 if (x->array[2])
1436 return 0;
1437 /* Fall through. */
1438 case 2:
1439 if (x->array[1])
1440 return 0;
1441 /* Fall through. */
1442 case 1:
1443 return !x->array[0];
1444 default:
1445 abort ();
1446 }
1447}
1448
1449static INLINE int
1450cpu_flags_equal (const union i386_cpu_flags *x,
1451 const union i386_cpu_flags *y)
1452{
1453 switch (ARRAY_SIZE(x->array))
1454 {
1455 case 3:
1456 if (x->array[2] != y->array[2])
1457 return 0;
1458 /* Fall through. */
1459 case 2:
1460 if (x->array[1] != y->array[1])
1461 return 0;
1462 /* Fall through. */
1463 case 1:
1464 return x->array[0] == y->array[0];
1465 break;
1466 default:
1467 abort ();
1468 }
1469}
1470
1471static INLINE int
1472cpu_flags_check_cpu64 (i386_cpu_flags f)
1473{
1474 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1475 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1476}
1477
1478static INLINE i386_cpu_flags
1479cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1480{
1481 switch (ARRAY_SIZE (x.array))
1482 {
1483 case 3:
1484 x.array [2] &= y.array [2];
1485 /* Fall through. */
1486 case 2:
1487 x.array [1] &= y.array [1];
1488 /* Fall through. */
1489 case 1:
1490 x.array [0] &= y.array [0];
1491 break;
1492 default:
1493 abort ();
1494 }
1495 return x;
1496}
1497
1498static INLINE i386_cpu_flags
1499cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1500{
1501 switch (ARRAY_SIZE (x.array))
1502 {
1503 case 3:
1504 x.array [2] |= y.array [2];
1505 /* Fall through. */
1506 case 2:
1507 x.array [1] |= y.array [1];
1508 /* Fall through. */
1509 case 1:
1510 x.array [0] |= y.array [0];
1511 break;
1512 default:
1513 abort ();
1514 }
1515 return x;
1516}
1517
1518static INLINE i386_cpu_flags
1519cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1520{
1521 switch (ARRAY_SIZE (x.array))
1522 {
1523 case 3:
1524 x.array [2] &= ~y.array [2];
1525 /* Fall through. */
1526 case 2:
1527 x.array [1] &= ~y.array [1];
1528 /* Fall through. */
1529 case 1:
1530 x.array [0] &= ~y.array [0];
1531 break;
1532 default:
1533 abort ();
1534 }
1535 return x;
1536}
1537
1538#define CPU_FLAGS_ARCH_MATCH 0x1
1539#define CPU_FLAGS_64BIT_MATCH 0x2
1540#define CPU_FLAGS_AES_MATCH 0x4
1541#define CPU_FLAGS_PCLMUL_MATCH 0x8
1542#define CPU_FLAGS_AVX_MATCH 0x10
1543
1544#define CPU_FLAGS_32BIT_MATCH \
1545 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1546 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1547#define CPU_FLAGS_PERFECT_MATCH \
1548 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1549
1550/* Return CPU flags match bits. */
1551
1552static int
1553cpu_flags_match (const insn_template *t)
1554{
1555 i386_cpu_flags x = t->cpu_flags;
1556 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1557
1558 x.bitfield.cpu64 = 0;
1559 x.bitfield.cpuno64 = 0;
1560
1561 if (cpu_flags_all_zero (&x))
1562 {
1563 /* This instruction is available on all archs. */
1564 match |= CPU_FLAGS_32BIT_MATCH;
1565 }
1566 else
1567 {
1568 /* This instruction is available only on some archs. */
1569 i386_cpu_flags cpu = cpu_arch_flags;
1570
1571 cpu = cpu_flags_and (x, cpu);
1572 if (!cpu_flags_all_zero (&cpu))
1573 {
1574 if (x.bitfield.cpuavx)
1575 {
1576 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1577 if (cpu.bitfield.cpuavx)
1578 {
1579 /* Check SSE2AVX. */
1580 if (!t->opcode_modifier.sse2avx|| sse2avx)
1581 {
1582 match |= (CPU_FLAGS_ARCH_MATCH
1583 | CPU_FLAGS_AVX_MATCH);
1584 /* Check AES. */
1585 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1586 match |= CPU_FLAGS_AES_MATCH;
1587 /* Check PCLMUL. */
1588 if (!x.bitfield.cpupclmul
1589 || cpu.bitfield.cpupclmul)
1590 match |= CPU_FLAGS_PCLMUL_MATCH;
1591 }
1592 }
1593 else
1594 match |= CPU_FLAGS_ARCH_MATCH;
1595 }
1596 else if (x.bitfield.cpuavx512vl)
1597 {
1598 /* Match AVX512VL. */
1599 if (cpu.bitfield.cpuavx512vl)
1600 {
1601 /* Need another match. */
1602 cpu.bitfield.cpuavx512vl = 0;
1603 if (!cpu_flags_all_zero (&cpu))
1604 match |= CPU_FLAGS_32BIT_MATCH;
1605 else
1606 match |= CPU_FLAGS_ARCH_MATCH;
1607 }
1608 else
1609 match |= CPU_FLAGS_ARCH_MATCH;
1610 }
1611 else
1612 match |= CPU_FLAGS_32BIT_MATCH;
1613 }
1614 }
1615 return match;
1616}
1617
1618static INLINE i386_operand_type
1619operand_type_and (i386_operand_type x, i386_operand_type y)
1620{
1621 switch (ARRAY_SIZE (x.array))
1622 {
1623 case 3:
1624 x.array [2] &= y.array [2];
1625 /* Fall through. */
1626 case 2:
1627 x.array [1] &= y.array [1];
1628 /* Fall through. */
1629 case 1:
1630 x.array [0] &= y.array [0];
1631 break;
1632 default:
1633 abort ();
1634 }
1635 return x;
1636}
1637
1638static INLINE i386_operand_type
1639operand_type_or (i386_operand_type x, i386_operand_type y)
1640{
1641 switch (ARRAY_SIZE (x.array))
1642 {
1643 case 3:
1644 x.array [2] |= y.array [2];
1645 /* Fall through. */
1646 case 2:
1647 x.array [1] |= y.array [1];
1648 /* Fall through. */
1649 case 1:
1650 x.array [0] |= y.array [0];
1651 break;
1652 default:
1653 abort ();
1654 }
1655 return x;
1656}
1657
1658static INLINE i386_operand_type
1659operand_type_xor (i386_operand_type x, i386_operand_type y)
1660{
1661 switch (ARRAY_SIZE (x.array))
1662 {
1663 case 3:
1664 x.array [2] ^= y.array [2];
1665 /* Fall through. */
1666 case 2:
1667 x.array [1] ^= y.array [1];
1668 /* Fall through. */
1669 case 1:
1670 x.array [0] ^= y.array [0];
1671 break;
1672 default:
1673 abort ();
1674 }
1675 return x;
1676}
1677
1678static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1679static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1680static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1681static const i386_operand_type inoutportreg
1682 = OPERAND_TYPE_INOUTPORTREG;
1683static const i386_operand_type reg16_inoutportreg
1684 = OPERAND_TYPE_REG16_INOUTPORTREG;
1685static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1686static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1687static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1688static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1689static const i386_operand_type anydisp
1690 = OPERAND_TYPE_ANYDISP;
1691static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1692static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1693static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1694static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1695static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1696static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1697static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1698static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1699static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1700static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1701static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1702static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1703static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1704static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1705
1706enum operand_type
1707{
1708 reg,
1709 imm,
1710 disp,
1711 anymem
1712};
1713
1714static INLINE int
1715operand_type_check (i386_operand_type t, enum operand_type c)
1716{
1717 switch (c)
1718 {
1719 case reg:
1720 return (t.bitfield.reg8
1721 || t.bitfield.reg16
1722 || t.bitfield.reg32
1723 || t.bitfield.reg64);
1724
1725 case imm:
1726 return (t.bitfield.imm8
1727 || t.bitfield.imm8s
1728 || t.bitfield.imm16
1729 || t.bitfield.imm32
1730 || t.bitfield.imm32s
1731 || t.bitfield.imm64);
1732
1733 case disp:
1734 return (t.bitfield.disp8
1735 || t.bitfield.disp16
1736 || t.bitfield.disp32
1737 || t.bitfield.disp32s
1738 || t.bitfield.disp64);
1739
1740 case anymem:
1741 return (t.bitfield.disp8
1742 || t.bitfield.disp16
1743 || t.bitfield.disp32
1744 || t.bitfield.disp32s
1745 || t.bitfield.disp64
1746 || t.bitfield.baseindex);
1747
1748 default:
1749 abort ();
1750 }
1751
1752 return 0;
1753}
1754
1755/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1756 operand J for instruction template T. */
1757
1758static INLINE int
1759match_reg_size (const insn_template *t, unsigned int j)
1760{
1761 return !((i.types[j].bitfield.byte
1762 && !t->operand_types[j].bitfield.byte)
1763 || (i.types[j].bitfield.word
1764 && !t->operand_types[j].bitfield.word)
1765 || (i.types[j].bitfield.dword
1766 && !t->operand_types[j].bitfield.dword)
1767 || (i.types[j].bitfield.qword
1768 && !t->operand_types[j].bitfield.qword));
1769}
1770
1771/* Return 1 if there is no conflict in any size on operand J for
1772 instruction template T. */
1773
1774static INLINE int
1775match_mem_size (const insn_template *t, unsigned int j)
1776{
1777 return (match_reg_size (t, j)
1778 && !((i.types[j].bitfield.unspecified
1779 && !i.broadcast
1780 && !t->operand_types[j].bitfield.unspecified)
1781 || (i.types[j].bitfield.fword
1782 && !t->operand_types[j].bitfield.fword)
1783 || (i.types[j].bitfield.tbyte
1784 && !t->operand_types[j].bitfield.tbyte)
1785 || (i.types[j].bitfield.xmmword
1786 && !t->operand_types[j].bitfield.xmmword)
1787 || (i.types[j].bitfield.ymmword
1788 && !t->operand_types[j].bitfield.ymmword)
1789 || (i.types[j].bitfield.zmmword
1790 && !t->operand_types[j].bitfield.zmmword)));
1791}
1792
1793/* Return 1 if there is no size conflict on any operands for
1794 instruction template T. */
1795
1796static INLINE int
1797operand_size_match (const insn_template *t)
1798{
1799 unsigned int j;
1800 int match = 1;
1801
1802 /* Don't check jump instructions. */
1803 if (t->opcode_modifier.jump
1804 || t->opcode_modifier.jumpbyte
1805 || t->opcode_modifier.jumpdword
1806 || t->opcode_modifier.jumpintersegment)
1807 return match;
1808
1809 /* Check memory and accumulator operand size. */
1810 for (j = 0; j < i.operands; j++)
1811 {
1812 if (t->operand_types[j].bitfield.anysize)
1813 continue;
1814
1815 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1816 {
1817 match = 0;
1818 break;
1819 }
1820
1821 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1822 {
1823 match = 0;
1824 break;
1825 }
1826 }
1827
1828 if (match)
1829 return match;
1830 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1831 {
1832mismatch:
1833 i.error = operand_size_mismatch;
1834 return 0;
1835 }
1836
1837 /* Check reverse. */
1838 gas_assert (i.operands == 2);
1839
1840 match = 1;
1841 for (j = 0; j < 2; j++)
1842 {
1843 if (t->operand_types[j].bitfield.acc
1844 && !match_reg_size (t, j ? 0 : 1))
1845 goto mismatch;
1846
1847 if (i.types[j].bitfield.mem
1848 && !match_mem_size (t, j ? 0 : 1))
1849 goto mismatch;
1850 }
1851
1852 return match;
1853}
1854
1855static INLINE int
1856operand_type_match (i386_operand_type overlap,
1857 i386_operand_type given)
1858{
1859 i386_operand_type temp = overlap;
1860
1861 temp.bitfield.jumpabsolute = 0;
1862 temp.bitfield.unspecified = 0;
1863 temp.bitfield.byte = 0;
1864 temp.bitfield.word = 0;
1865 temp.bitfield.dword = 0;
1866 temp.bitfield.fword = 0;
1867 temp.bitfield.qword = 0;
1868 temp.bitfield.tbyte = 0;
1869 temp.bitfield.xmmword = 0;
1870 temp.bitfield.ymmword = 0;
1871 temp.bitfield.zmmword = 0;
1872 if (operand_type_all_zero (&temp))
1873 goto mismatch;
1874
1875 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1876 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1877 return 1;
1878
1879mismatch:
1880 i.error = operand_type_mismatch;
1881 return 0;
1882}
1883
1884/* If given types g0 and g1 are registers they must be of the same type
1885 unless the expected operand type register overlap is null.
1886 Note that Acc in a template matches every size of reg. */
1887
1888static INLINE int
1889operand_type_register_match (i386_operand_type m0,
1890 i386_operand_type g0,
1891 i386_operand_type t0,
1892 i386_operand_type m1,
1893 i386_operand_type g1,
1894 i386_operand_type t1)
1895{
1896 if (!operand_type_check (g0, reg))
1897 return 1;
1898
1899 if (!operand_type_check (g1, reg))
1900 return 1;
1901
1902 if (g0.bitfield.reg8 == g1.bitfield.reg8
1903 && g0.bitfield.reg16 == g1.bitfield.reg16
1904 && g0.bitfield.reg32 == g1.bitfield.reg32
1905 && g0.bitfield.reg64 == g1.bitfield.reg64)
1906 return 1;
1907
1908 if (m0.bitfield.acc)
1909 {
1910 t0.bitfield.reg8 = 1;
1911 t0.bitfield.reg16 = 1;
1912 t0.bitfield.reg32 = 1;
1913 t0.bitfield.reg64 = 1;
1914 }
1915
1916 if (m1.bitfield.acc)
1917 {
1918 t1.bitfield.reg8 = 1;
1919 t1.bitfield.reg16 = 1;
1920 t1.bitfield.reg32 = 1;
1921 t1.bitfield.reg64 = 1;
1922 }
1923
1924 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1925 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1926 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1927 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1928 return 1;
1929
1930 i.error = register_type_mismatch;
1931
1932 return 0;
1933}
1934
1935static INLINE unsigned int
1936register_number (const reg_entry *r)
1937{
1938 unsigned int nr = r->reg_num;
1939
1940 if (r->reg_flags & RegRex)
1941 nr += 8;
1942
1943 if (r->reg_flags & RegVRex)
1944 nr += 16;
1945
1946 return nr;
1947}
1948
1949static INLINE unsigned int
1950mode_from_disp_size (i386_operand_type t)
1951{
1952 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1953 return 1;
1954 else if (t.bitfield.disp16
1955 || t.bitfield.disp32
1956 || t.bitfield.disp32s)
1957 return 2;
1958 else
1959 return 0;
1960}
1961
1962static INLINE int
1963fits_in_signed_byte (addressT num)
1964{
1965 return num + 0x80 <= 0xff;
1966}
1967
1968static INLINE int
1969fits_in_unsigned_byte (addressT num)
1970{
1971 return num <= 0xff;
1972}
1973
1974static INLINE int
1975fits_in_unsigned_word (addressT num)
1976{
1977 return num <= 0xffff;
1978}
1979
1980static INLINE int
1981fits_in_signed_word (addressT num)
1982{
1983 return num + 0x8000 <= 0xffff;
1984}
1985
1986static INLINE int
1987fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1988{
1989#ifndef BFD64
1990 return 1;
1991#else
1992 return num + 0x80000000 <= 0xffffffff;
1993#endif
1994} /* fits_in_signed_long() */
1995
1996static INLINE int
1997fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1998{
1999#ifndef BFD64
2000 return 1;
2001#else
2002 return num <= 0xffffffff;
2003#endif
2004} /* fits_in_unsigned_long() */
2005
2006static INLINE int
2007fits_in_vec_disp8 (offsetT num)
2008{
2009 int shift = i.memshift;
2010 unsigned int mask;
2011
2012 if (shift == -1)
2013 abort ();
2014
2015 mask = (1 << shift) - 1;
2016
2017 /* Return 0 if NUM isn't properly aligned. */
2018 if ((num & mask))
2019 return 0;
2020
2021 /* Check if NUM will fit in 8bit after shift. */
2022 return fits_in_signed_byte (num >> shift);
2023}
2024
2025static INLINE int
2026fits_in_imm4 (offsetT num)
2027{
2028 return (num & 0xf) == num;
2029}
2030
2031static i386_operand_type
2032smallest_imm_type (offsetT num)
2033{
2034 i386_operand_type t;
2035
2036 operand_type_set (&t, 0);
2037 t.bitfield.imm64 = 1;
2038
2039 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2040 {
2041 /* This code is disabled on the 486 because all the Imm1 forms
2042 in the opcode table are slower on the i486. They're the
2043 versions with the implicitly specified single-position
2044 displacement, which has another syntax if you really want to
2045 use that form. */
2046 t.bitfield.imm1 = 1;
2047 t.bitfield.imm8 = 1;
2048 t.bitfield.imm8s = 1;
2049 t.bitfield.imm16 = 1;
2050 t.bitfield.imm32 = 1;
2051 t.bitfield.imm32s = 1;
2052 }
2053 else if (fits_in_signed_byte (num))
2054 {
2055 t.bitfield.imm8 = 1;
2056 t.bitfield.imm8s = 1;
2057 t.bitfield.imm16 = 1;
2058 t.bitfield.imm32 = 1;
2059 t.bitfield.imm32s = 1;
2060 }
2061 else if (fits_in_unsigned_byte (num))
2062 {
2063 t.bitfield.imm8 = 1;
2064 t.bitfield.imm16 = 1;
2065 t.bitfield.imm32 = 1;
2066 t.bitfield.imm32s = 1;
2067 }
2068 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2069 {
2070 t.bitfield.imm16 = 1;
2071 t.bitfield.imm32 = 1;
2072 t.bitfield.imm32s = 1;
2073 }
2074 else if (fits_in_signed_long (num))
2075 {
2076 t.bitfield.imm32 = 1;
2077 t.bitfield.imm32s = 1;
2078 }
2079 else if (fits_in_unsigned_long (num))
2080 t.bitfield.imm32 = 1;
2081
2082 return t;
2083}
2084
2085static offsetT
2086offset_in_range (offsetT val, int size)
2087{
2088 addressT mask;
2089
2090 switch (size)
2091 {
2092 case 1: mask = ((addressT) 1 << 8) - 1; break;
2093 case 2: mask = ((addressT) 1 << 16) - 1; break;
2094 case 4: mask = ((addressT) 2 << 31) - 1; break;
2095#ifdef BFD64
2096 case 8: mask = ((addressT) 2 << 63) - 1; break;
2097#endif
2098 default: abort ();
2099 }
2100
2101#ifdef BFD64
2102 /* If BFD64, sign extend val for 32bit address mode. */
2103 if (flag_code != CODE_64BIT
2104 || i.prefix[ADDR_PREFIX])
2105 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2106 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2107#endif
2108
2109 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2110 {
2111 char buf1[40], buf2[40];
2112
2113 sprint_value (buf1, val);
2114 sprint_value (buf2, val & mask);
2115 as_warn (_("%s shortened to %s"), buf1, buf2);
2116 }
2117 return val & mask;
2118}
2119
2120enum PREFIX_GROUP
2121{
2122 PREFIX_EXIST = 0,
2123 PREFIX_LOCK,
2124 PREFIX_REP,
2125 PREFIX_OTHER
2126};
2127
2128/* Returns
2129 a. PREFIX_EXIST if attempting to add a prefix where one from the
2130 same class already exists.
2131 b. PREFIX_LOCK if lock prefix is added.
2132 c. PREFIX_REP if rep/repne prefix is added.
2133 d. PREFIX_OTHER if other prefix is added.
2134 */
2135
2136static enum PREFIX_GROUP
2137add_prefix (unsigned int prefix)
2138{
2139 enum PREFIX_GROUP ret = PREFIX_OTHER;
2140 unsigned int q;
2141
2142 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2143 && flag_code == CODE_64BIT)
2144 {
2145 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2146 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2147 && (prefix & (REX_R | REX_X | REX_B))))
2148 ret = PREFIX_EXIST;
2149 q = REX_PREFIX;
2150 }
2151 else
2152 {
2153 switch (prefix)
2154 {
2155 default:
2156 abort ();
2157
2158 case CS_PREFIX_OPCODE:
2159 case DS_PREFIX_OPCODE:
2160 case ES_PREFIX_OPCODE:
2161 case FS_PREFIX_OPCODE:
2162 case GS_PREFIX_OPCODE:
2163 case SS_PREFIX_OPCODE:
2164 q = SEG_PREFIX;
2165 break;
2166
2167 case REPNE_PREFIX_OPCODE:
2168 case REPE_PREFIX_OPCODE:
2169 q = REP_PREFIX;
2170 ret = PREFIX_REP;
2171 break;
2172
2173 case LOCK_PREFIX_OPCODE:
2174 q = LOCK_PREFIX;
2175 ret = PREFIX_LOCK;
2176 break;
2177
2178 case FWAIT_OPCODE:
2179 q = WAIT_PREFIX;
2180 break;
2181
2182 case ADDR_PREFIX_OPCODE:
2183 q = ADDR_PREFIX;
2184 break;
2185
2186 case DATA_PREFIX_OPCODE:
2187 q = DATA_PREFIX;
2188 break;
2189 }
2190 if (i.prefix[q] != 0)
2191 ret = PREFIX_EXIST;
2192 }
2193
2194 if (ret)
2195 {
2196 if (!i.prefix[q])
2197 ++i.prefixes;
2198 i.prefix[q] |= prefix;
2199 }
2200 else
2201 as_bad (_("same type of prefix used twice"));
2202
2203 return ret;
2204}
2205
2206static void
2207update_code_flag (int value, int check)
2208{
2209 PRINTF_LIKE ((*as_error));
2210
2211 flag_code = (enum flag_code) value;
2212 if (flag_code == CODE_64BIT)
2213 {
2214 cpu_arch_flags.bitfield.cpu64 = 1;
2215 cpu_arch_flags.bitfield.cpuno64 = 0;
2216 }
2217 else
2218 {
2219 cpu_arch_flags.bitfield.cpu64 = 0;
2220 cpu_arch_flags.bitfield.cpuno64 = 1;
2221 }
2222 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2223 {
2224 if (check)
2225 as_error = as_fatal;
2226 else
2227 as_error = as_bad;
2228 (*as_error) (_("64bit mode not supported on `%s'."),
2229 cpu_arch_name ? cpu_arch_name : default_arch);
2230 }
2231 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2232 {
2233 if (check)
2234 as_error = as_fatal;
2235 else
2236 as_error = as_bad;
2237 (*as_error) (_("32bit mode not supported on `%s'."),
2238 cpu_arch_name ? cpu_arch_name : default_arch);
2239 }
2240 stackop_size = '\0';
2241}
2242
2243static void
2244set_code_flag (int value)
2245{
2246 update_code_flag (value, 0);
2247}
2248
2249static void
2250set_16bit_gcc_code_flag (int new_code_flag)
2251{
2252 flag_code = (enum flag_code) new_code_flag;
2253 if (flag_code != CODE_16BIT)
2254 abort ();
2255 cpu_arch_flags.bitfield.cpu64 = 0;
2256 cpu_arch_flags.bitfield.cpuno64 = 1;
2257 stackop_size = LONG_MNEM_SUFFIX;
2258}
2259
2260static void
2261set_intel_syntax (int syntax_flag)
2262{
2263 /* Find out if register prefixing is specified. */
2264 int ask_naked_reg = 0;
2265
2266 SKIP_WHITESPACE ();
2267 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2268 {
2269 char *string;
2270 int e = get_symbol_name (&string);
2271
2272 if (strcmp (string, "prefix") == 0)
2273 ask_naked_reg = 1;
2274 else if (strcmp (string, "noprefix") == 0)
2275 ask_naked_reg = -1;
2276 else
2277 as_bad (_("bad argument to syntax directive."));
2278 (void) restore_line_pointer (e);
2279 }
2280 demand_empty_rest_of_line ();
2281
2282 intel_syntax = syntax_flag;
2283
2284 if (ask_naked_reg == 0)
2285 allow_naked_reg = (intel_syntax
2286 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2287 else
2288 allow_naked_reg = (ask_naked_reg < 0);
2289
2290 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2291
2292 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2293 identifier_chars['$'] = intel_syntax ? '$' : 0;
2294 register_prefix = allow_naked_reg ? "" : "%";
2295}
2296
2297static void
2298set_intel_mnemonic (int mnemonic_flag)
2299{
2300 intel_mnemonic = mnemonic_flag;
2301}
2302
2303static void
2304set_allow_index_reg (int flag)
2305{
2306 allow_index_reg = flag;
2307}
2308
2309static void
2310set_check (int what)
2311{
2312 enum check_kind *kind;
2313 const char *str;
2314
2315 if (what)
2316 {
2317 kind = &operand_check;
2318 str = "operand";
2319 }
2320 else
2321 {
2322 kind = &sse_check;
2323 str = "sse";
2324 }
2325
2326 SKIP_WHITESPACE ();
2327
2328 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2329 {
2330 char *string;
2331 int e = get_symbol_name (&string);
2332
2333 if (strcmp (string, "none") == 0)
2334 *kind = check_none;
2335 else if (strcmp (string, "warning") == 0)
2336 *kind = check_warning;
2337 else if (strcmp (string, "error") == 0)
2338 *kind = check_error;
2339 else
2340 as_bad (_("bad argument to %s_check directive."), str);
2341 (void) restore_line_pointer (e);
2342 }
2343 else
2344 as_bad (_("missing argument for %s_check directive"), str);
2345
2346 demand_empty_rest_of_line ();
2347}
2348
2349static void
2350check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2351 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2352{
2353#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2354 static const char *arch;
2355
2356 /* Intel LIOM is only supported on ELF. */
2357 if (!IS_ELF)
2358 return;
2359
2360 if (!arch)
2361 {
2362 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2363 use default_arch. */
2364 arch = cpu_arch_name;
2365 if (!arch)
2366 arch = default_arch;
2367 }
2368
2369 /* If we are targeting Intel MCU, we must enable it. */
2370 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2371 || new_flag.bitfield.cpuiamcu)
2372 return;
2373
2374 /* If we are targeting Intel L1OM, we must enable it. */
2375 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2376 || new_flag.bitfield.cpul1om)
2377 return;
2378
2379 /* If we are targeting Intel K1OM, we must enable it. */
2380 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2381 || new_flag.bitfield.cpuk1om)
2382 return;
2383
2384 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2385#endif
2386}
2387
2388static void
2389set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2390{
2391 SKIP_WHITESPACE ();
2392
2393 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2394 {
2395 char *string;
2396 int e = get_symbol_name (&string);
2397 unsigned int j;
2398 i386_cpu_flags flags;
2399
2400 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2401 {
2402 if (strcmp (string, cpu_arch[j].name) == 0)
2403 {
2404 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2405
2406 if (*string != '.')
2407 {
2408 cpu_arch_name = cpu_arch[j].name;
2409 cpu_sub_arch_name = NULL;
2410 cpu_arch_flags = cpu_arch[j].flags;
2411 if (flag_code == CODE_64BIT)
2412 {
2413 cpu_arch_flags.bitfield.cpu64 = 1;
2414 cpu_arch_flags.bitfield.cpuno64 = 0;
2415 }
2416 else
2417 {
2418 cpu_arch_flags.bitfield.cpu64 = 0;
2419 cpu_arch_flags.bitfield.cpuno64 = 1;
2420 }
2421 cpu_arch_isa = cpu_arch[j].type;
2422 cpu_arch_isa_flags = cpu_arch[j].flags;
2423 if (!cpu_arch_tune_set)
2424 {
2425 cpu_arch_tune = cpu_arch_isa;
2426 cpu_arch_tune_flags = cpu_arch_isa_flags;
2427 }
2428 break;
2429 }
2430
2431 flags = cpu_flags_or (cpu_arch_flags,
2432 cpu_arch[j].flags);
2433
2434 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2435 {
2436 if (cpu_sub_arch_name)
2437 {
2438 char *name = cpu_sub_arch_name;
2439 cpu_sub_arch_name = concat (name,
2440 cpu_arch[j].name,
2441 (const char *) NULL);
2442 free (name);
2443 }
2444 else
2445 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2446 cpu_arch_flags = flags;
2447 cpu_arch_isa_flags = flags;
2448 }
2449 (void) restore_line_pointer (e);
2450 demand_empty_rest_of_line ();
2451 return;
2452 }
2453 }
2454
2455 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2456 {
2457 /* Disable an ISA entension. */
2458 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2459 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2460 {
2461 flags = cpu_flags_and_not (cpu_arch_flags,
2462 cpu_noarch[j].flags);
2463 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2464 {
2465 if (cpu_sub_arch_name)
2466 {
2467 char *name = cpu_sub_arch_name;
2468 cpu_sub_arch_name = concat (name, string,
2469 (const char *) NULL);
2470 free (name);
2471 }
2472 else
2473 cpu_sub_arch_name = xstrdup (string);
2474 cpu_arch_flags = flags;
2475 cpu_arch_isa_flags = flags;
2476 }
2477 (void) restore_line_pointer (e);
2478 demand_empty_rest_of_line ();
2479 return;
2480 }
2481
2482 j = ARRAY_SIZE (cpu_arch);
2483 }
2484
2485 if (j >= ARRAY_SIZE (cpu_arch))
2486 as_bad (_("no such architecture: `%s'"), string);
2487
2488 *input_line_pointer = e;
2489 }
2490 else
2491 as_bad (_("missing cpu architecture"));
2492
2493 no_cond_jump_promotion = 0;
2494 if (*input_line_pointer == ','
2495 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2496 {
2497 char *string;
2498 char e;
2499
2500 ++input_line_pointer;
2501 e = get_symbol_name (&string);
2502
2503 if (strcmp (string, "nojumps") == 0)
2504 no_cond_jump_promotion = 1;
2505 else if (strcmp (string, "jumps") == 0)
2506 ;
2507 else
2508 as_bad (_("no such architecture modifier: `%s'"), string);
2509
2510 (void) restore_line_pointer (e);
2511 }
2512
2513 demand_empty_rest_of_line ();
2514}
2515
2516enum bfd_architecture
2517i386_arch (void)
2518{
2519 if (cpu_arch_isa == PROCESSOR_L1OM)
2520 {
2521 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2522 || flag_code != CODE_64BIT)
2523 as_fatal (_("Intel L1OM is 64bit ELF only"));
2524 return bfd_arch_l1om;
2525 }
2526 else if (cpu_arch_isa == PROCESSOR_K1OM)
2527 {
2528 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2529 || flag_code != CODE_64BIT)
2530 as_fatal (_("Intel K1OM is 64bit ELF only"));
2531 return bfd_arch_k1om;
2532 }
2533 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2534 {
2535 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2536 || flag_code == CODE_64BIT)
2537 as_fatal (_("Intel MCU is 32bit ELF only"));
2538 return bfd_arch_iamcu;
2539 }
2540 else
2541 return bfd_arch_i386;
2542}
2543
2544unsigned long
2545i386_mach (void)
2546{
2547 if (!strncmp (default_arch, "x86_64", 6))
2548 {
2549 if (cpu_arch_isa == PROCESSOR_L1OM)
2550 {
2551 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2552 || default_arch[6] != '\0')
2553 as_fatal (_("Intel L1OM is 64bit ELF only"));
2554 return bfd_mach_l1om;
2555 }
2556 else if (cpu_arch_isa == PROCESSOR_K1OM)
2557 {
2558 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2559 || default_arch[6] != '\0')
2560 as_fatal (_("Intel K1OM is 64bit ELF only"));
2561 return bfd_mach_k1om;
2562 }
2563 else if (default_arch[6] == '\0')
2564 return bfd_mach_x86_64;
2565 else
2566 return bfd_mach_x64_32;
2567 }
2568 else if (!strcmp (default_arch, "i386")
2569 || !strcmp (default_arch, "iamcu"))
2570 {
2571 if (cpu_arch_isa == PROCESSOR_IAMCU)
2572 {
2573 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2574 as_fatal (_("Intel MCU is 32bit ELF only"));
2575 return bfd_mach_i386_iamcu;
2576 }
2577 else
2578 return bfd_mach_i386_i386;
2579 }
2580 else
2581 as_fatal (_("unknown architecture"));
2582}
2583\f
2584void
2585md_begin (void)
2586{
2587 const char *hash_err;
2588
2589 /* Initialize op_hash hash table. */
2590 op_hash = hash_new ();
2591
2592 {
2593 const insn_template *optab;
2594 templates *core_optab;
2595
2596 /* Setup for loop. */
2597 optab = i386_optab;
2598 core_optab = XNEW (templates);
2599 core_optab->start = optab;
2600
2601 while (1)
2602 {
2603 ++optab;
2604 if (optab->name == NULL
2605 || strcmp (optab->name, (optab - 1)->name) != 0)
2606 {
2607 /* different name --> ship out current template list;
2608 add to hash table; & begin anew. */
2609 core_optab->end = optab;
2610 hash_err = hash_insert (op_hash,
2611 (optab - 1)->name,
2612 (void *) core_optab);
2613 if (hash_err)
2614 {
2615 as_fatal (_("can't hash %s: %s"),
2616 (optab - 1)->name,
2617 hash_err);
2618 }
2619 if (optab->name == NULL)
2620 break;
2621 core_optab = XNEW (templates);
2622 core_optab->start = optab;
2623 }
2624 }
2625 }
2626
2627 /* Initialize reg_hash hash table. */
2628 reg_hash = hash_new ();
2629 {
2630 const reg_entry *regtab;
2631 unsigned int regtab_size = i386_regtab_size;
2632
2633 for (regtab = i386_regtab; regtab_size--; regtab++)
2634 {
2635 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2636 if (hash_err)
2637 as_fatal (_("can't hash %s: %s"),
2638 regtab->reg_name,
2639 hash_err);
2640 }
2641 }
2642
2643 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2644 {
2645 int c;
2646 char *p;
2647
2648 for (c = 0; c < 256; c++)
2649 {
2650 if (ISDIGIT (c))
2651 {
2652 digit_chars[c] = c;
2653 mnemonic_chars[c] = c;
2654 register_chars[c] = c;
2655 operand_chars[c] = c;
2656 }
2657 else if (ISLOWER (c))
2658 {
2659 mnemonic_chars[c] = c;
2660 register_chars[c] = c;
2661 operand_chars[c] = c;
2662 }
2663 else if (ISUPPER (c))
2664 {
2665 mnemonic_chars[c] = TOLOWER (c);
2666 register_chars[c] = mnemonic_chars[c];
2667 operand_chars[c] = c;
2668 }
2669 else if (c == '{' || c == '}')
2670 operand_chars[c] = c;
2671
2672 if (ISALPHA (c) || ISDIGIT (c))
2673 identifier_chars[c] = c;
2674 else if (c >= 128)
2675 {
2676 identifier_chars[c] = c;
2677 operand_chars[c] = c;
2678 }
2679 }
2680
2681#ifdef LEX_AT
2682 identifier_chars['@'] = '@';
2683#endif
2684#ifdef LEX_QM
2685 identifier_chars['?'] = '?';
2686 operand_chars['?'] = '?';
2687#endif
2688 digit_chars['-'] = '-';
2689 mnemonic_chars['_'] = '_';
2690 mnemonic_chars['-'] = '-';
2691 mnemonic_chars['.'] = '.';
2692 identifier_chars['_'] = '_';
2693 identifier_chars['.'] = '.';
2694
2695 for (p = operand_special_chars; *p != '\0'; p++)
2696 operand_chars[(unsigned char) *p] = *p;
2697 }
2698
2699 if (flag_code == CODE_64BIT)
2700 {
2701#if defined (OBJ_COFF) && defined (TE_PE)
2702 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2703 ? 32 : 16);
2704#else
2705 x86_dwarf2_return_column = 16;
2706#endif
2707 x86_cie_data_alignment = -8;
2708 }
2709 else
2710 {
2711 x86_dwarf2_return_column = 8;
2712 x86_cie_data_alignment = -4;
2713 }
2714}
2715
2716void
2717i386_print_statistics (FILE *file)
2718{
2719 hash_print_statistics (file, "i386 opcode", op_hash);
2720 hash_print_statistics (file, "i386 register", reg_hash);
2721}
2722\f
2723#ifdef DEBUG386
2724
2725/* Debugging routines for md_assemble. */
2726static void pte (insn_template *);
2727static void pt (i386_operand_type);
2728static void pe (expressionS *);
2729static void ps (symbolS *);
2730
2731static void
2732pi (char *line, i386_insn *x)
2733{
2734 unsigned int j;
2735
2736 fprintf (stdout, "%s: template ", line);
2737 pte (&x->tm);
2738 fprintf (stdout, " address: base %s index %s scale %x\n",
2739 x->base_reg ? x->base_reg->reg_name : "none",
2740 x->index_reg ? x->index_reg->reg_name : "none",
2741 x->log2_scale_factor);
2742 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2743 x->rm.mode, x->rm.reg, x->rm.regmem);
2744 fprintf (stdout, " sib: base %x index %x scale %x\n",
2745 x->sib.base, x->sib.index, x->sib.scale);
2746 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2747 (x->rex & REX_W) != 0,
2748 (x->rex & REX_R) != 0,
2749 (x->rex & REX_X) != 0,
2750 (x->rex & REX_B) != 0);
2751 for (j = 0; j < x->operands; j++)
2752 {
2753 fprintf (stdout, " #%d: ", j + 1);
2754 pt (x->types[j]);
2755 fprintf (stdout, "\n");
2756 if (x->types[j].bitfield.reg8
2757 || x->types[j].bitfield.reg16
2758 || x->types[j].bitfield.reg32
2759 || x->types[j].bitfield.reg64
2760 || x->types[j].bitfield.regmmx
2761 || x->types[j].bitfield.regxmm
2762 || x->types[j].bitfield.regymm
2763 || x->types[j].bitfield.regzmm
2764 || x->types[j].bitfield.sreg2
2765 || x->types[j].bitfield.sreg3
2766 || x->types[j].bitfield.control
2767 || x->types[j].bitfield.debug
2768 || x->types[j].bitfield.test)
2769 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2770 if (operand_type_check (x->types[j], imm))
2771 pe (x->op[j].imms);
2772 if (operand_type_check (x->types[j], disp))
2773 pe (x->op[j].disps);
2774 }
2775}
2776
2777static void
2778pte (insn_template *t)
2779{
2780 unsigned int j;
2781 fprintf (stdout, " %d operands ", t->operands);
2782 fprintf (stdout, "opcode %x ", t->base_opcode);
2783 if (t->extension_opcode != None)
2784 fprintf (stdout, "ext %x ", t->extension_opcode);
2785 if (t->opcode_modifier.d)
2786 fprintf (stdout, "D");
2787 if (t->opcode_modifier.w)
2788 fprintf (stdout, "W");
2789 fprintf (stdout, "\n");
2790 for (j = 0; j < t->operands; j++)
2791 {
2792 fprintf (stdout, " #%d type ", j + 1);
2793 pt (t->operand_types[j]);
2794 fprintf (stdout, "\n");
2795 }
2796}
2797
2798static void
2799pe (expressionS *e)
2800{
2801 fprintf (stdout, " operation %d\n", e->X_op);
2802 fprintf (stdout, " add_number %ld (%lx)\n",
2803 (long) e->X_add_number, (long) e->X_add_number);
2804 if (e->X_add_symbol)
2805 {
2806 fprintf (stdout, " add_symbol ");
2807 ps (e->X_add_symbol);
2808 fprintf (stdout, "\n");
2809 }
2810 if (e->X_op_symbol)
2811 {
2812 fprintf (stdout, " op_symbol ");
2813 ps (e->X_op_symbol);
2814 fprintf (stdout, "\n");
2815 }
2816}
2817
2818static void
2819ps (symbolS *s)
2820{
2821 fprintf (stdout, "%s type %s%s",
2822 S_GET_NAME (s),
2823 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2824 segment_name (S_GET_SEGMENT (s)));
2825}
2826
2827static struct type_name
2828 {
2829 i386_operand_type mask;
2830 const char *name;
2831 }
2832const type_names[] =
2833{
2834 { OPERAND_TYPE_REG8, "r8" },
2835 { OPERAND_TYPE_REG16, "r16" },
2836 { OPERAND_TYPE_REG32, "r32" },
2837 { OPERAND_TYPE_REG64, "r64" },
2838 { OPERAND_TYPE_IMM8, "i8" },
2839 { OPERAND_TYPE_IMM8, "i8s" },
2840 { OPERAND_TYPE_IMM16, "i16" },
2841 { OPERAND_TYPE_IMM32, "i32" },
2842 { OPERAND_TYPE_IMM32S, "i32s" },
2843 { OPERAND_TYPE_IMM64, "i64" },
2844 { OPERAND_TYPE_IMM1, "i1" },
2845 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2846 { OPERAND_TYPE_DISP8, "d8" },
2847 { OPERAND_TYPE_DISP16, "d16" },
2848 { OPERAND_TYPE_DISP32, "d32" },
2849 { OPERAND_TYPE_DISP32S, "d32s" },
2850 { OPERAND_TYPE_DISP64, "d64" },
2851 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2852 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2853 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2854 { OPERAND_TYPE_CONTROL, "control reg" },
2855 { OPERAND_TYPE_TEST, "test reg" },
2856 { OPERAND_TYPE_DEBUG, "debug reg" },
2857 { OPERAND_TYPE_FLOATREG, "FReg" },
2858 { OPERAND_TYPE_FLOATACC, "FAcc" },
2859 { OPERAND_TYPE_SREG2, "SReg2" },
2860 { OPERAND_TYPE_SREG3, "SReg3" },
2861 { OPERAND_TYPE_ACC, "Acc" },
2862 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2863 { OPERAND_TYPE_REGMMX, "rMMX" },
2864 { OPERAND_TYPE_REGXMM, "rXMM" },
2865 { OPERAND_TYPE_REGYMM, "rYMM" },
2866 { OPERAND_TYPE_REGZMM, "rZMM" },
2867 { OPERAND_TYPE_REGMASK, "Mask reg" },
2868 { OPERAND_TYPE_ESSEG, "es" },
2869};
2870
2871static void
2872pt (i386_operand_type t)
2873{
2874 unsigned int j;
2875 i386_operand_type a;
2876
2877 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2878 {
2879 a = operand_type_and (t, type_names[j].mask);
2880 if (!operand_type_all_zero (&a))
2881 fprintf (stdout, "%s, ", type_names[j].name);
2882 }
2883 fflush (stdout);
2884}
2885
2886#endif /* DEBUG386 */
2887\f
2888static bfd_reloc_code_real_type
2889reloc (unsigned int size,
2890 int pcrel,
2891 int sign,
2892 bfd_reloc_code_real_type other)
2893{
2894 if (other != NO_RELOC)
2895 {
2896 reloc_howto_type *rel;
2897
2898 if (size == 8)
2899 switch (other)
2900 {
2901 case BFD_RELOC_X86_64_GOT32:
2902 return BFD_RELOC_X86_64_GOT64;
2903 break;
2904 case BFD_RELOC_X86_64_GOTPLT64:
2905 return BFD_RELOC_X86_64_GOTPLT64;
2906 break;
2907 case BFD_RELOC_X86_64_PLTOFF64:
2908 return BFD_RELOC_X86_64_PLTOFF64;
2909 break;
2910 case BFD_RELOC_X86_64_GOTPC32:
2911 other = BFD_RELOC_X86_64_GOTPC64;
2912 break;
2913 case BFD_RELOC_X86_64_GOTPCREL:
2914 other = BFD_RELOC_X86_64_GOTPCREL64;
2915 break;
2916 case BFD_RELOC_X86_64_TPOFF32:
2917 other = BFD_RELOC_X86_64_TPOFF64;
2918 break;
2919 case BFD_RELOC_X86_64_DTPOFF32:
2920 other = BFD_RELOC_X86_64_DTPOFF64;
2921 break;
2922 default:
2923 break;
2924 }
2925
2926#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2927 if (other == BFD_RELOC_SIZE32)
2928 {
2929 if (size == 8)
2930 other = BFD_RELOC_SIZE64;
2931 if (pcrel)
2932 {
2933 as_bad (_("there are no pc-relative size relocations"));
2934 return NO_RELOC;
2935 }
2936 }
2937#endif
2938
2939 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2940 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2941 sign = -1;
2942
2943 rel = bfd_reloc_type_lookup (stdoutput, other);
2944 if (!rel)
2945 as_bad (_("unknown relocation (%u)"), other);
2946 else if (size != bfd_get_reloc_size (rel))
2947 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2948 bfd_get_reloc_size (rel),
2949 size);
2950 else if (pcrel && !rel->pc_relative)
2951 as_bad (_("non-pc-relative relocation for pc-relative field"));
2952 else if ((rel->complain_on_overflow == complain_overflow_signed
2953 && !sign)
2954 || (rel->complain_on_overflow == complain_overflow_unsigned
2955 && sign > 0))
2956 as_bad (_("relocated field and relocation type differ in signedness"));
2957 else
2958 return other;
2959 return NO_RELOC;
2960 }
2961
2962 if (pcrel)
2963 {
2964 if (!sign)
2965 as_bad (_("there are no unsigned pc-relative relocations"));
2966 switch (size)
2967 {
2968 case 1: return BFD_RELOC_8_PCREL;
2969 case 2: return BFD_RELOC_16_PCREL;
2970 case 4: return BFD_RELOC_32_PCREL;
2971 case 8: return BFD_RELOC_64_PCREL;
2972 }
2973 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2974 }
2975 else
2976 {
2977 if (sign > 0)
2978 switch (size)
2979 {
2980 case 4: return BFD_RELOC_X86_64_32S;
2981 }
2982 else
2983 switch (size)
2984 {
2985 case 1: return BFD_RELOC_8;
2986 case 2: return BFD_RELOC_16;
2987 case 4: return BFD_RELOC_32;
2988 case 8: return BFD_RELOC_64;
2989 }
2990 as_bad (_("cannot do %s %u byte relocation"),
2991 sign > 0 ? "signed" : "unsigned", size);
2992 }
2993
2994 return NO_RELOC;
2995}
2996
2997/* Here we decide which fixups can be adjusted to make them relative to
2998 the beginning of the section instead of the symbol. Basically we need
2999 to make sure that the dynamic relocations are done correctly, so in
3000 some cases we force the original symbol to be used. */
3001
3002int
3003tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3004{
3005#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3006 if (!IS_ELF)
3007 return 1;
3008
3009 /* Don't adjust pc-relative references to merge sections in 64-bit
3010 mode. */
3011 if (use_rela_relocations
3012 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3013 && fixP->fx_pcrel)
3014 return 0;
3015
3016 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3017 and changed later by validate_fix. */
3018 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3019 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3020 return 0;
3021
3022 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3023 for size relocations. */
3024 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3025 || fixP->fx_r_type == BFD_RELOC_SIZE64
3026 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3027 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3028 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3029 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3030 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3031 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3032 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3033 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3034 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3035 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3036 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3037 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3038 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3039 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3040 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3041 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3042 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3043 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3044 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3045 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3046 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3047 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3048 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3049 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3050 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3051 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3052 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3053 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3054 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3055 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3056 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3057 return 0;
3058#endif
3059 return 1;
3060}
3061
3062static int
3063intel_float_operand (const char *mnemonic)
3064{
3065 /* Note that the value returned is meaningful only for opcodes with (memory)
3066 operands, hence the code here is free to improperly handle opcodes that
3067 have no operands (for better performance and smaller code). */
3068
3069 if (mnemonic[0] != 'f')
3070 return 0; /* non-math */
3071
3072 switch (mnemonic[1])
3073 {
3074 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3075 the fs segment override prefix not currently handled because no
3076 call path can make opcodes without operands get here */
3077 case 'i':
3078 return 2 /* integer op */;
3079 case 'l':
3080 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3081 return 3; /* fldcw/fldenv */
3082 break;
3083 case 'n':
3084 if (mnemonic[2] != 'o' /* fnop */)
3085 return 3; /* non-waiting control op */
3086 break;
3087 case 'r':
3088 if (mnemonic[2] == 's')
3089 return 3; /* frstor/frstpm */
3090 break;
3091 case 's':
3092 if (mnemonic[2] == 'a')
3093 return 3; /* fsave */
3094 if (mnemonic[2] == 't')
3095 {
3096 switch (mnemonic[3])
3097 {
3098 case 'c': /* fstcw */
3099 case 'd': /* fstdw */
3100 case 'e': /* fstenv */
3101 case 's': /* fsts[gw] */
3102 return 3;
3103 }
3104 }
3105 break;
3106 case 'x':
3107 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3108 return 0; /* fxsave/fxrstor are not really math ops */
3109 break;
3110 }
3111
3112 return 1;
3113}
3114
3115/* Build the VEX prefix. */
3116
3117static void
3118build_vex_prefix (const insn_template *t)
3119{
3120 unsigned int register_specifier;
3121 unsigned int implied_prefix;
3122 unsigned int vector_length;
3123
3124 /* Check register specifier. */
3125 if (i.vex.register_specifier)
3126 {
3127 register_specifier =
3128 ~register_number (i.vex.register_specifier) & 0xf;
3129 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3130 }
3131 else
3132 register_specifier = 0xf;
3133
3134 /* Use 2-byte VEX prefix by swappping destination and source
3135 operand. */
3136 if (!i.swap_operand
3137 && i.operands == i.reg_operands
3138 && i.tm.opcode_modifier.vexopcode == VEX0F
3139 && i.tm.opcode_modifier.s
3140 && i.rex == REX_B)
3141 {
3142 unsigned int xchg = i.operands - 1;
3143 union i386_op temp_op;
3144 i386_operand_type temp_type;
3145
3146 temp_type = i.types[xchg];
3147 i.types[xchg] = i.types[0];
3148 i.types[0] = temp_type;
3149 temp_op = i.op[xchg];
3150 i.op[xchg] = i.op[0];
3151 i.op[0] = temp_op;
3152
3153 gas_assert (i.rm.mode == 3);
3154
3155 i.rex = REX_R;
3156 xchg = i.rm.regmem;
3157 i.rm.regmem = i.rm.reg;
3158 i.rm.reg = xchg;
3159
3160 /* Use the next insn. */
3161 i.tm = t[1];
3162 }
3163
3164 if (i.tm.opcode_modifier.vex == VEXScalar)
3165 vector_length = avxscalar;
3166 else
3167 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3168
3169 switch ((i.tm.base_opcode >> 8) & 0xff)
3170 {
3171 case 0:
3172 implied_prefix = 0;
3173 break;
3174 case DATA_PREFIX_OPCODE:
3175 implied_prefix = 1;
3176 break;
3177 case REPE_PREFIX_OPCODE:
3178 implied_prefix = 2;
3179 break;
3180 case REPNE_PREFIX_OPCODE:
3181 implied_prefix = 3;
3182 break;
3183 default:
3184 abort ();
3185 }
3186
3187 /* Use 2-byte VEX prefix if possible. */
3188 if (i.tm.opcode_modifier.vexopcode == VEX0F
3189 && i.tm.opcode_modifier.vexw != VEXW1
3190 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3191 {
3192 /* 2-byte VEX prefix. */
3193 unsigned int r;
3194
3195 i.vex.length = 2;
3196 i.vex.bytes[0] = 0xc5;
3197
3198 /* Check the REX.R bit. */
3199 r = (i.rex & REX_R) ? 0 : 1;
3200 i.vex.bytes[1] = (r << 7
3201 | register_specifier << 3
3202 | vector_length << 2
3203 | implied_prefix);
3204 }
3205 else
3206 {
3207 /* 3-byte VEX prefix. */
3208 unsigned int m, w;
3209
3210 i.vex.length = 3;
3211
3212 switch (i.tm.opcode_modifier.vexopcode)
3213 {
3214 case VEX0F:
3215 m = 0x1;
3216 i.vex.bytes[0] = 0xc4;
3217 break;
3218 case VEX0F38:
3219 m = 0x2;
3220 i.vex.bytes[0] = 0xc4;
3221 break;
3222 case VEX0F3A:
3223 m = 0x3;
3224 i.vex.bytes[0] = 0xc4;
3225 break;
3226 case XOP08:
3227 m = 0x8;
3228 i.vex.bytes[0] = 0x8f;
3229 break;
3230 case XOP09:
3231 m = 0x9;
3232 i.vex.bytes[0] = 0x8f;
3233 break;
3234 case XOP0A:
3235 m = 0xa;
3236 i.vex.bytes[0] = 0x8f;
3237 break;
3238 default:
3239 abort ();
3240 }
3241
3242 /* The high 3 bits of the second VEX byte are 1's compliment
3243 of RXB bits from REX. */
3244 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3245
3246 /* Check the REX.W bit. */
3247 w = (i.rex & REX_W) ? 1 : 0;
3248 if (i.tm.opcode_modifier.vexw == VEXW1)
3249 w = 1;
3250
3251 i.vex.bytes[2] = (w << 7
3252 | register_specifier << 3
3253 | vector_length << 2
3254 | implied_prefix);
3255 }
3256}
3257
3258/* Build the EVEX prefix. */
3259
3260static void
3261build_evex_prefix (void)
3262{
3263 unsigned int register_specifier;
3264 unsigned int implied_prefix;
3265 unsigned int m, w;
3266 rex_byte vrex_used = 0;
3267
3268 /* Check register specifier. */
3269 if (i.vex.register_specifier)
3270 {
3271 gas_assert ((i.vrex & REX_X) == 0);
3272
3273 register_specifier = i.vex.register_specifier->reg_num;
3274 if ((i.vex.register_specifier->reg_flags & RegRex))
3275 register_specifier += 8;
3276 /* The upper 16 registers are encoded in the fourth byte of the
3277 EVEX prefix. */
3278 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3279 i.vex.bytes[3] = 0x8;
3280 register_specifier = ~register_specifier & 0xf;
3281 }
3282 else
3283 {
3284 register_specifier = 0xf;
3285
3286 /* Encode upper 16 vector index register in the fourth byte of
3287 the EVEX prefix. */
3288 if (!(i.vrex & REX_X))
3289 i.vex.bytes[3] = 0x8;
3290 else
3291 vrex_used |= REX_X;
3292 }
3293
3294 switch ((i.tm.base_opcode >> 8) & 0xff)
3295 {
3296 case 0:
3297 implied_prefix = 0;
3298 break;
3299 case DATA_PREFIX_OPCODE:
3300 implied_prefix = 1;
3301 break;
3302 case REPE_PREFIX_OPCODE:
3303 implied_prefix = 2;
3304 break;
3305 case REPNE_PREFIX_OPCODE:
3306 implied_prefix = 3;
3307 break;
3308 default:
3309 abort ();
3310 }
3311
3312 /* 4 byte EVEX prefix. */
3313 i.vex.length = 4;
3314 i.vex.bytes[0] = 0x62;
3315
3316 /* mmmm bits. */
3317 switch (i.tm.opcode_modifier.vexopcode)
3318 {
3319 case VEX0F:
3320 m = 1;
3321 break;
3322 case VEX0F38:
3323 m = 2;
3324 break;
3325 case VEX0F3A:
3326 m = 3;
3327 break;
3328 default:
3329 abort ();
3330 break;
3331 }
3332
3333 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3334 bits from REX. */
3335 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3336
3337 /* The fifth bit of the second EVEX byte is 1's compliment of the
3338 REX_R bit in VREX. */
3339 if (!(i.vrex & REX_R))
3340 i.vex.bytes[1] |= 0x10;
3341 else
3342 vrex_used |= REX_R;
3343
3344 if ((i.reg_operands + i.imm_operands) == i.operands)
3345 {
3346 /* When all operands are registers, the REX_X bit in REX is not
3347 used. We reuse it to encode the upper 16 registers, which is
3348 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3349 as 1's compliment. */
3350 if ((i.vrex & REX_B))
3351 {
3352 vrex_used |= REX_B;
3353 i.vex.bytes[1] &= ~0x40;
3354 }
3355 }
3356
3357 /* EVEX instructions shouldn't need the REX prefix. */
3358 i.vrex &= ~vrex_used;
3359 gas_assert (i.vrex == 0);
3360
3361 /* Check the REX.W bit. */
3362 w = (i.rex & REX_W) ? 1 : 0;
3363 if (i.tm.opcode_modifier.vexw)
3364 {
3365 if (i.tm.opcode_modifier.vexw == VEXW1)
3366 w = 1;
3367 }
3368 /* If w is not set it means we are dealing with WIG instruction. */
3369 else if (!w)
3370 {
3371 if (evexwig == evexw1)
3372 w = 1;
3373 }
3374
3375 /* Encode the U bit. */
3376 implied_prefix |= 0x4;
3377
3378 /* The third byte of the EVEX prefix. */
3379 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3380
3381 /* The fourth byte of the EVEX prefix. */
3382 /* The zeroing-masking bit. */
3383 if (i.mask && i.mask->zeroing)
3384 i.vex.bytes[3] |= 0x80;
3385
3386 /* Don't always set the broadcast bit if there is no RC. */
3387 if (!i.rounding)
3388 {
3389 /* Encode the vector length. */
3390 unsigned int vec_length;
3391
3392 switch (i.tm.opcode_modifier.evex)
3393 {
3394 case EVEXLIG: /* LL' is ignored */
3395 vec_length = evexlig << 5;
3396 break;
3397 case EVEX128:
3398 vec_length = 0 << 5;
3399 break;
3400 case EVEX256:
3401 vec_length = 1 << 5;
3402 break;
3403 case EVEX512:
3404 vec_length = 2 << 5;
3405 break;
3406 default:
3407 abort ();
3408 break;
3409 }
3410 i.vex.bytes[3] |= vec_length;
3411 /* Encode the broadcast bit. */
3412 if (i.broadcast)
3413 i.vex.bytes[3] |= 0x10;
3414 }
3415 else
3416 {
3417 if (i.rounding->type != saeonly)
3418 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3419 else
3420 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3421 }
3422
3423 if (i.mask && i.mask->mask)
3424 i.vex.bytes[3] |= i.mask->mask->reg_num;
3425}
3426
3427static void
3428process_immext (void)
3429{
3430 expressionS *exp;
3431
3432 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3433 && i.operands > 0)
3434 {
3435 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3436 with an opcode suffix which is coded in the same place as an
3437 8-bit immediate field would be.
3438 Here we check those operands and remove them afterwards. */
3439 unsigned int x;
3440
3441 for (x = 0; x < i.operands; x++)
3442 if (register_number (i.op[x].regs) != x)
3443 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3444 register_prefix, i.op[x].regs->reg_name, x + 1,
3445 i.tm.name);
3446
3447 i.operands = 0;
3448 }
3449
3450 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3451 {
3452 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3453 suffix which is coded in the same place as an 8-bit immediate
3454 field would be.
3455 Here we check those operands and remove them afterwards. */
3456 unsigned int x;
3457
3458 if (i.operands != 3)
3459 abort();
3460
3461 for (x = 0; x < 2; x++)
3462 if (register_number (i.op[x].regs) != x)
3463 goto bad_register_operand;
3464
3465 /* Check for third operand for mwaitx/monitorx insn. */
3466 if (register_number (i.op[x].regs)
3467 != (x + (i.tm.extension_opcode == 0xfb)))
3468 {
3469bad_register_operand:
3470 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3471 register_prefix, i.op[x].regs->reg_name, x+1,
3472 i.tm.name);
3473 }
3474
3475 i.operands = 0;
3476 }
3477
3478 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3479 which is coded in the same place as an 8-bit immediate field
3480 would be. Here we fake an 8-bit immediate operand from the
3481 opcode suffix stored in tm.extension_opcode.
3482
3483 AVX instructions also use this encoding, for some of
3484 3 argument instructions. */
3485
3486 gas_assert (i.imm_operands <= 1
3487 && (i.operands <= 2
3488 || ((i.tm.opcode_modifier.vex
3489 || i.tm.opcode_modifier.evex)
3490 && i.operands <= 4)));
3491
3492 exp = &im_expressions[i.imm_operands++];
3493 i.op[i.operands].imms = exp;
3494 i.types[i.operands] = imm8;
3495 i.operands++;
3496 exp->X_op = O_constant;
3497 exp->X_add_number = i.tm.extension_opcode;
3498 i.tm.extension_opcode = None;
3499}
3500
3501
3502static int
3503check_hle (void)
3504{
3505 switch (i.tm.opcode_modifier.hleprefixok)
3506 {
3507 default:
3508 abort ();
3509 case HLEPrefixNone:
3510 as_bad (_("invalid instruction `%s' after `%s'"),
3511 i.tm.name, i.hle_prefix);
3512 return 0;
3513 case HLEPrefixLock:
3514 if (i.prefix[LOCK_PREFIX])
3515 return 1;
3516 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3517 return 0;
3518 case HLEPrefixAny:
3519 return 1;
3520 case HLEPrefixRelease:
3521 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3522 {
3523 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3524 i.tm.name);
3525 return 0;
3526 }
3527 if (i.mem_operands == 0
3528 || !operand_type_check (i.types[i.operands - 1], anymem))
3529 {
3530 as_bad (_("memory destination needed for instruction `%s'"
3531 " after `xrelease'"), i.tm.name);
3532 return 0;
3533 }
3534 return 1;
3535 }
3536}
3537
3538/* This is the guts of the machine-dependent assembler. LINE points to a
3539 machine dependent instruction. This function is supposed to emit
3540 the frags/bytes it assembles to. */
3541
3542void
3543md_assemble (char *line)
3544{
3545 unsigned int j;
3546 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3547 const insn_template *t;
3548
3549 /* Initialize globals. */
3550 memset (&i, '\0', sizeof (i));
3551 for (j = 0; j < MAX_OPERANDS; j++)
3552 i.reloc[j] = NO_RELOC;
3553 memset (disp_expressions, '\0', sizeof (disp_expressions));
3554 memset (im_expressions, '\0', sizeof (im_expressions));
3555 save_stack_p = save_stack;
3556
3557 /* First parse an instruction mnemonic & call i386_operand for the operands.
3558 We assume that the scrubber has arranged it so that line[0] is the valid
3559 start of a (possibly prefixed) mnemonic. */
3560
3561 line = parse_insn (line, mnemonic);
3562 if (line == NULL)
3563 return;
3564 mnem_suffix = i.suffix;
3565
3566 line = parse_operands (line, mnemonic);
3567 this_operand = -1;
3568 xfree (i.memop1_string);
3569 i.memop1_string = NULL;
3570 if (line == NULL)
3571 return;
3572
3573 /* Now we've parsed the mnemonic into a set of templates, and have the
3574 operands at hand. */
3575
3576 /* All intel opcodes have reversed operands except for "bound" and
3577 "enter". We also don't reverse intersegment "jmp" and "call"
3578 instructions with 2 immediate operands so that the immediate segment
3579 precedes the offset, as it does when in AT&T mode. */
3580 if (intel_syntax
3581 && i.operands > 1
3582 && (strcmp (mnemonic, "bound") != 0)
3583 && (strcmp (mnemonic, "invlpga") != 0)
3584 && !(operand_type_check (i.types[0], imm)
3585 && operand_type_check (i.types[1], imm)))
3586 swap_operands ();
3587
3588 /* The order of the immediates should be reversed
3589 for 2 immediates extrq and insertq instructions */
3590 if (i.imm_operands == 2
3591 && (strcmp (mnemonic, "extrq") == 0
3592 || strcmp (mnemonic, "insertq") == 0))
3593 swap_2_operands (0, 1);
3594
3595 if (i.imm_operands)
3596 optimize_imm ();
3597
3598 /* Don't optimize displacement for movabs since it only takes 64bit
3599 displacement. */
3600 if (i.disp_operands
3601 && i.disp_encoding != disp_encoding_32bit
3602 && (flag_code != CODE_64BIT
3603 || strcmp (mnemonic, "movabs") != 0))
3604 optimize_disp ();
3605
3606 /* Next, we find a template that matches the given insn,
3607 making sure the overlap of the given operands types is consistent
3608 with the template operand types. */
3609
3610 if (!(t = match_template (mnem_suffix)))
3611 return;
3612
3613 if (sse_check != check_none
3614 && !i.tm.opcode_modifier.noavx
3615 && (i.tm.cpu_flags.bitfield.cpusse
3616 || i.tm.cpu_flags.bitfield.cpusse2
3617 || i.tm.cpu_flags.bitfield.cpusse3
3618 || i.tm.cpu_flags.bitfield.cpussse3
3619 || i.tm.cpu_flags.bitfield.cpusse4_1
3620 || i.tm.cpu_flags.bitfield.cpusse4_2))
3621 {
3622 (sse_check == check_warning
3623 ? as_warn
3624 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3625 }
3626
3627 /* Zap movzx and movsx suffix. The suffix has been set from
3628 "word ptr" or "byte ptr" on the source operand in Intel syntax
3629 or extracted from mnemonic in AT&T syntax. But we'll use
3630 the destination register to choose the suffix for encoding. */
3631 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3632 {
3633 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3634 there is no suffix, the default will be byte extension. */
3635 if (i.reg_operands != 2
3636 && !i.suffix
3637 && intel_syntax)
3638 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3639
3640 i.suffix = 0;
3641 }
3642
3643 if (i.tm.opcode_modifier.fwait)
3644 if (!add_prefix (FWAIT_OPCODE))
3645 return;
3646
3647 /* Check if REP prefix is OK. */
3648 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3649 {
3650 as_bad (_("invalid instruction `%s' after `%s'"),
3651 i.tm.name, i.rep_prefix);
3652 return;
3653 }
3654
3655 /* Check for lock without a lockable instruction. Destination operand
3656 must be memory unless it is xchg (0x86). */
3657 if (i.prefix[LOCK_PREFIX]
3658 && (!i.tm.opcode_modifier.islockable
3659 || i.mem_operands == 0
3660 || (i.tm.base_opcode != 0x86
3661 && !operand_type_check (i.types[i.operands - 1], anymem))))
3662 {
3663 as_bad (_("expecting lockable instruction after `lock'"));
3664 return;
3665 }
3666
3667 /* Check if HLE prefix is OK. */
3668 if (i.hle_prefix && !check_hle ())
3669 return;
3670
3671 /* Check BND prefix. */
3672 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3673 as_bad (_("expecting valid branch instruction after `bnd'"));
3674
3675 if (i.tm.cpu_flags.bitfield.cpumpx)
3676 {
3677 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3678 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3679 else if (flag_code != CODE_16BIT
3680 ? i.prefix[ADDR_PREFIX]
3681 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3682 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3683 }
3684
3685 /* Insert BND prefix. */
3686 if (add_bnd_prefix
3687 && i.tm.opcode_modifier.bndprefixok
3688 && !i.prefix[BND_PREFIX])
3689 add_prefix (BND_PREFIX_OPCODE);
3690
3691 /* Check string instruction segment overrides. */
3692 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3693 {
3694 if (!check_string ())
3695 return;
3696 i.disp_operands = 0;
3697 }
3698
3699 if (!process_suffix ())
3700 return;
3701
3702 /* Update operand types. */
3703 for (j = 0; j < i.operands; j++)
3704 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3705
3706 /* Make still unresolved immediate matches conform to size of immediate
3707 given in i.suffix. */
3708 if (!finalize_imm ())
3709 return;
3710
3711 if (i.types[0].bitfield.imm1)
3712 i.imm_operands = 0; /* kludge for shift insns. */
3713
3714 /* We only need to check those implicit registers for instructions
3715 with 3 operands or less. */
3716 if (i.operands <= 3)
3717 for (j = 0; j < i.operands; j++)
3718 if (i.types[j].bitfield.inoutportreg
3719 || i.types[j].bitfield.shiftcount
3720 || i.types[j].bitfield.acc
3721 || i.types[j].bitfield.floatacc)
3722 i.reg_operands--;
3723
3724 /* ImmExt should be processed after SSE2AVX. */
3725 if (!i.tm.opcode_modifier.sse2avx
3726 && i.tm.opcode_modifier.immext)
3727 process_immext ();
3728
3729 /* For insns with operands there are more diddles to do to the opcode. */
3730 if (i.operands)
3731 {
3732 if (!process_operands ())
3733 return;
3734 }
3735 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3736 {
3737 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3738 as_warn (_("translating to `%sp'"), i.tm.name);
3739 }
3740
3741 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3742 {
3743 if (flag_code == CODE_16BIT)
3744 {
3745 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3746 i.tm.name);
3747 return;
3748 }
3749
3750 if (i.tm.opcode_modifier.vex)
3751 build_vex_prefix (t);
3752 else
3753 build_evex_prefix ();
3754 }
3755
3756 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3757 instructions may define INT_OPCODE as well, so avoid this corner
3758 case for those instructions that use MODRM. */
3759 if (i.tm.base_opcode == INT_OPCODE
3760 && !i.tm.opcode_modifier.modrm
3761 && i.op[0].imms->X_add_number == 3)
3762 {
3763 i.tm.base_opcode = INT3_OPCODE;
3764 i.imm_operands = 0;
3765 }
3766
3767 if ((i.tm.opcode_modifier.jump
3768 || i.tm.opcode_modifier.jumpbyte
3769 || i.tm.opcode_modifier.jumpdword)
3770 && i.op[0].disps->X_op == O_constant)
3771 {
3772 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3773 the absolute address given by the constant. Since ix86 jumps and
3774 calls are pc relative, we need to generate a reloc. */
3775 i.op[0].disps->X_add_symbol = &abs_symbol;
3776 i.op[0].disps->X_op = O_symbol;
3777 }
3778
3779 if (i.tm.opcode_modifier.rex64)
3780 i.rex |= REX_W;
3781
3782 /* For 8 bit registers we need an empty rex prefix. Also if the
3783 instruction already has a prefix, we need to convert old
3784 registers to new ones. */
3785
3786 if ((i.types[0].bitfield.reg8
3787 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3788 || (i.types[1].bitfield.reg8
3789 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3790 || ((i.types[0].bitfield.reg8
3791 || i.types[1].bitfield.reg8)
3792 && i.rex != 0))
3793 {
3794 int x;
3795
3796 i.rex |= REX_OPCODE;
3797 for (x = 0; x < 2; x++)
3798 {
3799 /* Look for 8 bit operand that uses old registers. */
3800 if (i.types[x].bitfield.reg8
3801 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3802 {
3803 /* In case it is "hi" register, give up. */
3804 if (i.op[x].regs->reg_num > 3)
3805 as_bad (_("can't encode register '%s%s' in an "
3806 "instruction requiring REX prefix."),
3807 register_prefix, i.op[x].regs->reg_name);
3808
3809 /* Otherwise it is equivalent to the extended register.
3810 Since the encoding doesn't change this is merely
3811 cosmetic cleanup for debug output. */
3812
3813 i.op[x].regs = i.op[x].regs + 8;
3814 }
3815 }
3816 }
3817
3818 if (i.rex != 0)
3819 add_prefix (REX_OPCODE | i.rex);
3820
3821 /* We are ready to output the insn. */
3822 output_insn ();
3823}
3824
3825static char *
3826parse_insn (char *line, char *mnemonic)
3827{
3828 char *l = line;
3829 char *token_start = l;
3830 char *mnem_p;
3831 int supported;
3832 const insn_template *t;
3833 char *dot_p = NULL;
3834
3835 while (1)
3836 {
3837 mnem_p = mnemonic;
3838 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3839 {
3840 if (*mnem_p == '.')
3841 dot_p = mnem_p;
3842 mnem_p++;
3843 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3844 {
3845 as_bad (_("no such instruction: `%s'"), token_start);
3846 return NULL;
3847 }
3848 l++;
3849 }
3850 if (!is_space_char (*l)
3851 && *l != END_OF_INSN
3852 && (intel_syntax
3853 || (*l != PREFIX_SEPARATOR
3854 && *l != ',')))
3855 {
3856 as_bad (_("invalid character %s in mnemonic"),
3857 output_invalid (*l));
3858 return NULL;
3859 }
3860 if (token_start == l)
3861 {
3862 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3863 as_bad (_("expecting prefix; got nothing"));
3864 else
3865 as_bad (_("expecting mnemonic; got nothing"));
3866 return NULL;
3867 }
3868
3869 /* Look up instruction (or prefix) via hash table. */
3870 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3871
3872 if (*l != END_OF_INSN
3873 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3874 && current_templates
3875 && current_templates->start->opcode_modifier.isprefix)
3876 {
3877 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3878 {
3879 as_bad ((flag_code != CODE_64BIT
3880 ? _("`%s' is only supported in 64-bit mode")
3881 : _("`%s' is not supported in 64-bit mode")),
3882 current_templates->start->name);
3883 return NULL;
3884 }
3885 /* If we are in 16-bit mode, do not allow addr16 or data16.
3886 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3887 if ((current_templates->start->opcode_modifier.size16
3888 || current_templates->start->opcode_modifier.size32)
3889 && flag_code != CODE_64BIT
3890 && (current_templates->start->opcode_modifier.size32
3891 ^ (flag_code == CODE_16BIT)))
3892 {
3893 as_bad (_("redundant %s prefix"),
3894 current_templates->start->name);
3895 return NULL;
3896 }
3897 /* Add prefix, checking for repeated prefixes. */
3898 switch (add_prefix (current_templates->start->base_opcode))
3899 {
3900 case PREFIX_EXIST:
3901 return NULL;
3902 case PREFIX_REP:
3903 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3904 i.hle_prefix = current_templates->start->name;
3905 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3906 i.bnd_prefix = current_templates->start->name;
3907 else
3908 i.rep_prefix = current_templates->start->name;
3909 break;
3910 default:
3911 break;
3912 }
3913 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3914 token_start = ++l;
3915 }
3916 else
3917 break;
3918 }
3919
3920 if (!current_templates)
3921 {
3922 /* Check if we should swap operand or force 32bit displacement in
3923 encoding. */
3924 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3925 i.swap_operand = 1;
3926 else if (mnem_p - 3 == dot_p
3927 && dot_p[1] == 'd'
3928 && dot_p[2] == '8')
3929 i.disp_encoding = disp_encoding_8bit;
3930 else if (mnem_p - 4 == dot_p
3931 && dot_p[1] == 'd'
3932 && dot_p[2] == '3'
3933 && dot_p[3] == '2')
3934 i.disp_encoding = disp_encoding_32bit;
3935 else
3936 goto check_suffix;
3937 mnem_p = dot_p;
3938 *dot_p = '\0';
3939 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3940 }
3941
3942 if (!current_templates)
3943 {
3944check_suffix:
3945 /* See if we can get a match by trimming off a suffix. */
3946 switch (mnem_p[-1])
3947 {
3948 case WORD_MNEM_SUFFIX:
3949 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3950 i.suffix = SHORT_MNEM_SUFFIX;
3951 else
3952 /* Fall through. */
3953 case BYTE_MNEM_SUFFIX:
3954 case QWORD_MNEM_SUFFIX:
3955 i.suffix = mnem_p[-1];
3956 mnem_p[-1] = '\0';
3957 current_templates = (const templates *) hash_find (op_hash,
3958 mnemonic);
3959 break;
3960 case SHORT_MNEM_SUFFIX:
3961 case LONG_MNEM_SUFFIX:
3962 if (!intel_syntax)
3963 {
3964 i.suffix = mnem_p[-1];
3965 mnem_p[-1] = '\0';
3966 current_templates = (const templates *) hash_find (op_hash,
3967 mnemonic);
3968 }
3969 break;
3970
3971 /* Intel Syntax. */
3972 case 'd':
3973 if (intel_syntax)
3974 {
3975 if (intel_float_operand (mnemonic) == 1)
3976 i.suffix = SHORT_MNEM_SUFFIX;
3977 else
3978 i.suffix = LONG_MNEM_SUFFIX;
3979 mnem_p[-1] = '\0';
3980 current_templates = (const templates *) hash_find (op_hash,
3981 mnemonic);
3982 }
3983 break;
3984 }
3985 if (!current_templates)
3986 {
3987 as_bad (_("no such instruction: `%s'"), token_start);
3988 return NULL;
3989 }
3990 }
3991
3992 if (current_templates->start->opcode_modifier.jump
3993 || current_templates->start->opcode_modifier.jumpbyte)
3994 {
3995 /* Check for a branch hint. We allow ",pt" and ",pn" for
3996 predict taken and predict not taken respectively.
3997 I'm not sure that branch hints actually do anything on loop
3998 and jcxz insns (JumpByte) for current Pentium4 chips. They
3999 may work in the future and it doesn't hurt to accept them
4000 now. */
4001 if (l[0] == ',' && l[1] == 'p')
4002 {
4003 if (l[2] == 't')
4004 {
4005 if (!add_prefix (DS_PREFIX_OPCODE))
4006 return NULL;
4007 l += 3;
4008 }
4009 else if (l[2] == 'n')
4010 {
4011 if (!add_prefix (CS_PREFIX_OPCODE))
4012 return NULL;
4013 l += 3;
4014 }
4015 }
4016 }
4017 /* Any other comma loses. */
4018 if (*l == ',')
4019 {
4020 as_bad (_("invalid character %s in mnemonic"),
4021 output_invalid (*l));
4022 return NULL;
4023 }
4024
4025 /* Check if instruction is supported on specified architecture. */
4026 supported = 0;
4027 for (t = current_templates->start; t < current_templates->end; ++t)
4028 {
4029 supported |= cpu_flags_match (t);
4030 if (supported == CPU_FLAGS_PERFECT_MATCH)
4031 goto skip;
4032 }
4033
4034 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4035 {
4036 as_bad (flag_code == CODE_64BIT
4037 ? _("`%s' is not supported in 64-bit mode")
4038 : _("`%s' is only supported in 64-bit mode"),
4039 current_templates->start->name);
4040 return NULL;
4041 }
4042 if (supported != CPU_FLAGS_PERFECT_MATCH)
4043 {
4044 as_bad (_("`%s' is not supported on `%s%s'"),
4045 current_templates->start->name,
4046 cpu_arch_name ? cpu_arch_name : default_arch,
4047 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4048 return NULL;
4049 }
4050
4051skip:
4052 if (!cpu_arch_flags.bitfield.cpui386
4053 && (flag_code != CODE_16BIT))
4054 {
4055 as_warn (_("use .code16 to ensure correct addressing mode"));
4056 }
4057
4058 return l;
4059}
4060
4061static char *
4062parse_operands (char *l, const char *mnemonic)
4063{
4064 char *token_start;
4065
4066 /* 1 if operand is pending after ','. */
4067 unsigned int expecting_operand = 0;
4068
4069 /* Non-zero if operand parens not balanced. */
4070 unsigned int paren_not_balanced;
4071
4072 while (*l != END_OF_INSN)
4073 {
4074 /* Skip optional white space before operand. */
4075 if (is_space_char (*l))
4076 ++l;
4077 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4078 {
4079 as_bad (_("invalid character %s before operand %d"),
4080 output_invalid (*l),
4081 i.operands + 1);
4082 return NULL;
4083 }
4084 token_start = l; /* After white space. */
4085 paren_not_balanced = 0;
4086 while (paren_not_balanced || *l != ',')
4087 {
4088 if (*l == END_OF_INSN)
4089 {
4090 if (paren_not_balanced)
4091 {
4092 if (!intel_syntax)
4093 as_bad (_("unbalanced parenthesis in operand %d."),
4094 i.operands + 1);
4095 else
4096 as_bad (_("unbalanced brackets in operand %d."),
4097 i.operands + 1);
4098 return NULL;
4099 }
4100 else
4101 break; /* we are done */
4102 }
4103 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4104 {
4105 as_bad (_("invalid character %s in operand %d"),
4106 output_invalid (*l),
4107 i.operands + 1);
4108 return NULL;
4109 }
4110 if (!intel_syntax)
4111 {
4112 if (*l == '(')
4113 ++paren_not_balanced;
4114 if (*l == ')')
4115 --paren_not_balanced;
4116 }
4117 else
4118 {
4119 if (*l == '[')
4120 ++paren_not_balanced;
4121 if (*l == ']')
4122 --paren_not_balanced;
4123 }
4124 l++;
4125 }
4126 if (l != token_start)
4127 { /* Yes, we've read in another operand. */
4128 unsigned int operand_ok;
4129 this_operand = i.operands++;
4130 i.types[this_operand].bitfield.unspecified = 1;
4131 if (i.operands > MAX_OPERANDS)
4132 {
4133 as_bad (_("spurious operands; (%d operands/instruction max)"),
4134 MAX_OPERANDS);
4135 return NULL;
4136 }
4137 /* Now parse operand adding info to 'i' as we go along. */
4138 END_STRING_AND_SAVE (l);
4139
4140 if (intel_syntax)
4141 operand_ok =
4142 i386_intel_operand (token_start,
4143 intel_float_operand (mnemonic));
4144 else
4145 operand_ok = i386_att_operand (token_start);
4146
4147 RESTORE_END_STRING (l);
4148 if (!operand_ok)
4149 return NULL;
4150 }
4151 else
4152 {
4153 if (expecting_operand)
4154 {
4155 expecting_operand_after_comma:
4156 as_bad (_("expecting operand after ','; got nothing"));
4157 return NULL;
4158 }
4159 if (*l == ',')
4160 {
4161 as_bad (_("expecting operand before ','; got nothing"));
4162 return NULL;
4163 }
4164 }
4165
4166 /* Now *l must be either ',' or END_OF_INSN. */
4167 if (*l == ',')
4168 {
4169 if (*++l == END_OF_INSN)
4170 {
4171 /* Just skip it, if it's \n complain. */
4172 goto expecting_operand_after_comma;
4173 }
4174 expecting_operand = 1;
4175 }
4176 }
4177 return l;
4178}
4179
4180static void
4181swap_2_operands (int xchg1, int xchg2)
4182{
4183 union i386_op temp_op;
4184 i386_operand_type temp_type;
4185 enum bfd_reloc_code_real temp_reloc;
4186
4187 temp_type = i.types[xchg2];
4188 i.types[xchg2] = i.types[xchg1];
4189 i.types[xchg1] = temp_type;
4190 temp_op = i.op[xchg2];
4191 i.op[xchg2] = i.op[xchg1];
4192 i.op[xchg1] = temp_op;
4193 temp_reloc = i.reloc[xchg2];
4194 i.reloc[xchg2] = i.reloc[xchg1];
4195 i.reloc[xchg1] = temp_reloc;
4196
4197 if (i.mask)
4198 {
4199 if (i.mask->operand == xchg1)
4200 i.mask->operand = xchg2;
4201 else if (i.mask->operand == xchg2)
4202 i.mask->operand = xchg1;
4203 }
4204 if (i.broadcast)
4205 {
4206 if (i.broadcast->operand == xchg1)
4207 i.broadcast->operand = xchg2;
4208 else if (i.broadcast->operand == xchg2)
4209 i.broadcast->operand = xchg1;
4210 }
4211 if (i.rounding)
4212 {
4213 if (i.rounding->operand == xchg1)
4214 i.rounding->operand = xchg2;
4215 else if (i.rounding->operand == xchg2)
4216 i.rounding->operand = xchg1;
4217 }
4218}
4219
4220static void
4221swap_operands (void)
4222{
4223 switch (i.operands)
4224 {
4225 case 5:
4226 case 4:
4227 swap_2_operands (1, i.operands - 2);
4228 /* Fall through. */
4229 case 3:
4230 case 2:
4231 swap_2_operands (0, i.operands - 1);
4232 break;
4233 default:
4234 abort ();
4235 }
4236
4237 if (i.mem_operands == 2)
4238 {
4239 const seg_entry *temp_seg;
4240 temp_seg = i.seg[0];
4241 i.seg[0] = i.seg[1];
4242 i.seg[1] = temp_seg;
4243 }
4244}
4245
4246/* Try to ensure constant immediates are represented in the smallest
4247 opcode possible. */
4248static void
4249optimize_imm (void)
4250{
4251 char guess_suffix = 0;
4252 int op;
4253
4254 if (i.suffix)
4255 guess_suffix = i.suffix;
4256 else if (i.reg_operands)
4257 {
4258 /* Figure out a suffix from the last register operand specified.
4259 We can't do this properly yet, ie. excluding InOutPortReg,
4260 but the following works for instructions with immediates.
4261 In any case, we can't set i.suffix yet. */
4262 for (op = i.operands; --op >= 0;)
4263 if (i.types[op].bitfield.reg8)
4264 {
4265 guess_suffix = BYTE_MNEM_SUFFIX;
4266 break;
4267 }
4268 else if (i.types[op].bitfield.reg16)
4269 {
4270 guess_suffix = WORD_MNEM_SUFFIX;
4271 break;
4272 }
4273 else if (i.types[op].bitfield.reg32)
4274 {
4275 guess_suffix = LONG_MNEM_SUFFIX;
4276 break;
4277 }
4278 else if (i.types[op].bitfield.reg64)
4279 {
4280 guess_suffix = QWORD_MNEM_SUFFIX;
4281 break;
4282 }
4283 }
4284 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4285 guess_suffix = WORD_MNEM_SUFFIX;
4286
4287 for (op = i.operands; --op >= 0;)
4288 if (operand_type_check (i.types[op], imm))
4289 {
4290 switch (i.op[op].imms->X_op)
4291 {
4292 case O_constant:
4293 /* If a suffix is given, this operand may be shortened. */
4294 switch (guess_suffix)
4295 {
4296 case LONG_MNEM_SUFFIX:
4297 i.types[op].bitfield.imm32 = 1;
4298 i.types[op].bitfield.imm64 = 1;
4299 break;
4300 case WORD_MNEM_SUFFIX:
4301 i.types[op].bitfield.imm16 = 1;
4302 i.types[op].bitfield.imm32 = 1;
4303 i.types[op].bitfield.imm32s = 1;
4304 i.types[op].bitfield.imm64 = 1;
4305 break;
4306 case BYTE_MNEM_SUFFIX:
4307 i.types[op].bitfield.imm8 = 1;
4308 i.types[op].bitfield.imm8s = 1;
4309 i.types[op].bitfield.imm16 = 1;
4310 i.types[op].bitfield.imm32 = 1;
4311 i.types[op].bitfield.imm32s = 1;
4312 i.types[op].bitfield.imm64 = 1;
4313 break;
4314 }
4315
4316 /* If this operand is at most 16 bits, convert it
4317 to a signed 16 bit number before trying to see
4318 whether it will fit in an even smaller size.
4319 This allows a 16-bit operand such as $0xffe0 to
4320 be recognised as within Imm8S range. */
4321 if ((i.types[op].bitfield.imm16)
4322 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4323 {
4324 i.op[op].imms->X_add_number =
4325 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4326 }
4327#ifdef BFD64
4328 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4329 if ((i.types[op].bitfield.imm32)
4330 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4331 == 0))
4332 {
4333 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4334 ^ ((offsetT) 1 << 31))
4335 - ((offsetT) 1 << 31));
4336 }
4337#endif
4338 i.types[op]
4339 = operand_type_or (i.types[op],
4340 smallest_imm_type (i.op[op].imms->X_add_number));
4341
4342 /* We must avoid matching of Imm32 templates when 64bit
4343 only immediate is available. */
4344 if (guess_suffix == QWORD_MNEM_SUFFIX)
4345 i.types[op].bitfield.imm32 = 0;
4346 break;
4347
4348 case O_absent:
4349 case O_register:
4350 abort ();
4351
4352 /* Symbols and expressions. */
4353 default:
4354 /* Convert symbolic operand to proper sizes for matching, but don't
4355 prevent matching a set of insns that only supports sizes other
4356 than those matching the insn suffix. */
4357 {
4358 i386_operand_type mask, allowed;
4359 const insn_template *t;
4360
4361 operand_type_set (&mask, 0);
4362 operand_type_set (&allowed, 0);
4363
4364 for (t = current_templates->start;
4365 t < current_templates->end;
4366 ++t)
4367 allowed = operand_type_or (allowed,
4368 t->operand_types[op]);
4369 switch (guess_suffix)
4370 {
4371 case QWORD_MNEM_SUFFIX:
4372 mask.bitfield.imm64 = 1;
4373 mask.bitfield.imm32s = 1;
4374 break;
4375 case LONG_MNEM_SUFFIX:
4376 mask.bitfield.imm32 = 1;
4377 break;
4378 case WORD_MNEM_SUFFIX:
4379 mask.bitfield.imm16 = 1;
4380 break;
4381 case BYTE_MNEM_SUFFIX:
4382 mask.bitfield.imm8 = 1;
4383 break;
4384 default:
4385 break;
4386 }
4387 allowed = operand_type_and (mask, allowed);
4388 if (!operand_type_all_zero (&allowed))
4389 i.types[op] = operand_type_and (i.types[op], mask);
4390 }
4391 break;
4392 }
4393 }
4394}
4395
4396/* Try to use the smallest displacement type too. */
4397static void
4398optimize_disp (void)
4399{
4400 int op;
4401
4402 for (op = i.operands; --op >= 0;)
4403 if (operand_type_check (i.types[op], disp))
4404 {
4405 if (i.op[op].disps->X_op == O_constant)
4406 {
4407 offsetT op_disp = i.op[op].disps->X_add_number;
4408
4409 if (i.types[op].bitfield.disp16
4410 && (op_disp & ~(offsetT) 0xffff) == 0)
4411 {
4412 /* If this operand is at most 16 bits, convert
4413 to a signed 16 bit number and don't use 64bit
4414 displacement. */
4415 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4416 i.types[op].bitfield.disp64 = 0;
4417 }
4418#ifdef BFD64
4419 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4420 if (i.types[op].bitfield.disp32
4421 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4422 {
4423 /* If this operand is at most 32 bits, convert
4424 to a signed 32 bit number and don't use 64bit
4425 displacement. */
4426 op_disp &= (((offsetT) 2 << 31) - 1);
4427 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4428 i.types[op].bitfield.disp64 = 0;
4429 }
4430#endif
4431 if (!op_disp && i.types[op].bitfield.baseindex)
4432 {
4433 i.types[op].bitfield.disp8 = 0;
4434 i.types[op].bitfield.disp16 = 0;
4435 i.types[op].bitfield.disp32 = 0;
4436 i.types[op].bitfield.disp32s = 0;
4437 i.types[op].bitfield.disp64 = 0;
4438 i.op[op].disps = 0;
4439 i.disp_operands--;
4440 }
4441 else if (flag_code == CODE_64BIT)
4442 {
4443 if (fits_in_signed_long (op_disp))
4444 {
4445 i.types[op].bitfield.disp64 = 0;
4446 i.types[op].bitfield.disp32s = 1;
4447 }
4448 if (i.prefix[ADDR_PREFIX]
4449 && fits_in_unsigned_long (op_disp))
4450 i.types[op].bitfield.disp32 = 1;
4451 }
4452 if ((i.types[op].bitfield.disp32
4453 || i.types[op].bitfield.disp32s
4454 || i.types[op].bitfield.disp16)
4455 && fits_in_signed_byte (op_disp))
4456 i.types[op].bitfield.disp8 = 1;
4457 }
4458 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4459 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4460 {
4461 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4462 i.op[op].disps, 0, i.reloc[op]);
4463 i.types[op].bitfield.disp8 = 0;
4464 i.types[op].bitfield.disp16 = 0;
4465 i.types[op].bitfield.disp32 = 0;
4466 i.types[op].bitfield.disp32s = 0;
4467 i.types[op].bitfield.disp64 = 0;
4468 }
4469 else
4470 /* We only support 64bit displacement on constants. */
4471 i.types[op].bitfield.disp64 = 0;
4472 }
4473}
4474
4475/* Check if operands are valid for the instruction. */
4476
4477static int
4478check_VecOperands (const insn_template *t)
4479{
4480 unsigned int op;
4481
4482 /* Without VSIB byte, we can't have a vector register for index. */
4483 if (!t->opcode_modifier.vecsib
4484 && i.index_reg
4485 && (i.index_reg->reg_type.bitfield.regxmm
4486 || i.index_reg->reg_type.bitfield.regymm
4487 || i.index_reg->reg_type.bitfield.regzmm))
4488 {
4489 i.error = unsupported_vector_index_register;
4490 return 1;
4491 }
4492
4493 /* Check if default mask is allowed. */
4494 if (t->opcode_modifier.nodefmask
4495 && (!i.mask || i.mask->mask->reg_num == 0))
4496 {
4497 i.error = no_default_mask;
4498 return 1;
4499 }
4500
4501 /* For VSIB byte, we need a vector register for index, and all vector
4502 registers must be distinct. */
4503 if (t->opcode_modifier.vecsib)
4504 {
4505 if (!i.index_reg
4506 || !((t->opcode_modifier.vecsib == VecSIB128
4507 && i.index_reg->reg_type.bitfield.regxmm)
4508 || (t->opcode_modifier.vecsib == VecSIB256
4509 && i.index_reg->reg_type.bitfield.regymm)
4510 || (t->opcode_modifier.vecsib == VecSIB512
4511 && i.index_reg->reg_type.bitfield.regzmm)))
4512 {
4513 i.error = invalid_vsib_address;
4514 return 1;
4515 }
4516
4517 gas_assert (i.reg_operands == 2 || i.mask);
4518 if (i.reg_operands == 2 && !i.mask)
4519 {
4520 gas_assert (i.types[0].bitfield.regxmm
4521 || i.types[0].bitfield.regymm);
4522 gas_assert (i.types[2].bitfield.regxmm
4523 || i.types[2].bitfield.regymm);
4524 if (operand_check == check_none)
4525 return 0;
4526 if (register_number (i.op[0].regs)
4527 != register_number (i.index_reg)
4528 && register_number (i.op[2].regs)
4529 != register_number (i.index_reg)
4530 && register_number (i.op[0].regs)
4531 != register_number (i.op[2].regs))
4532 return 0;
4533 if (operand_check == check_error)
4534 {
4535 i.error = invalid_vector_register_set;
4536 return 1;
4537 }
4538 as_warn (_("mask, index, and destination registers should be distinct"));
4539 }
4540 else if (i.reg_operands == 1 && i.mask)
4541 {
4542 if ((i.types[1].bitfield.regymm
4543 || i.types[1].bitfield.regzmm)
4544 && (register_number (i.op[1].regs)
4545 == register_number (i.index_reg)))
4546 {
4547 if (operand_check == check_error)
4548 {
4549 i.error = invalid_vector_register_set;
4550 return 1;
4551 }
4552 if (operand_check != check_none)
4553 as_warn (_("index and destination registers should be distinct"));
4554 }
4555 }
4556 }
4557
4558 /* Check if broadcast is supported by the instruction and is applied
4559 to the memory operand. */
4560 if (i.broadcast)
4561 {
4562 int broadcasted_opnd_size;
4563
4564 /* Check if specified broadcast is supported in this instruction,
4565 and it's applied to memory operand of DWORD or QWORD type,
4566 depending on VecESize. */
4567 if (i.broadcast->type != t->opcode_modifier.broadcast
4568 || !i.types[i.broadcast->operand].bitfield.mem
4569 || (t->opcode_modifier.vecesize == 0
4570 && !i.types[i.broadcast->operand].bitfield.dword
4571 && !i.types[i.broadcast->operand].bitfield.unspecified)
4572 || (t->opcode_modifier.vecesize == 1
4573 && !i.types[i.broadcast->operand].bitfield.qword
4574 && !i.types[i.broadcast->operand].bitfield.unspecified))
4575 goto bad_broadcast;
4576
4577 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4578 if (i.broadcast->type == BROADCAST_1TO16)
4579 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4580 else if (i.broadcast->type == BROADCAST_1TO8)
4581 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4582 else if (i.broadcast->type == BROADCAST_1TO4)
4583 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4584 else if (i.broadcast->type == BROADCAST_1TO2)
4585 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4586 else
4587 goto bad_broadcast;
4588
4589 if ((broadcasted_opnd_size == 256
4590 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4591 || (broadcasted_opnd_size == 512
4592 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4593 {
4594 bad_broadcast:
4595 i.error = unsupported_broadcast;
4596 return 1;
4597 }
4598 }
4599 /* If broadcast is supported in this instruction, we need to check if
4600 operand of one-element size isn't specified without broadcast. */
4601 else if (t->opcode_modifier.broadcast && i.mem_operands)
4602 {
4603 /* Find memory operand. */
4604 for (op = 0; op < i.operands; op++)
4605 if (operand_type_check (i.types[op], anymem))
4606 break;
4607 gas_assert (op < i.operands);
4608 /* Check size of the memory operand. */
4609 if ((t->opcode_modifier.vecesize == 0
4610 && i.types[op].bitfield.dword)
4611 || (t->opcode_modifier.vecesize == 1
4612 && i.types[op].bitfield.qword))
4613 {
4614 i.error = broadcast_needed;
4615 return 1;
4616 }
4617 }
4618
4619 /* Check if requested masking is supported. */
4620 if (i.mask
4621 && (!t->opcode_modifier.masking
4622 || (i.mask->zeroing
4623 && t->opcode_modifier.masking == MERGING_MASKING)))
4624 {
4625 i.error = unsupported_masking;
4626 return 1;
4627 }
4628
4629 /* Check if masking is applied to dest operand. */
4630 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4631 {
4632 i.error = mask_not_on_destination;
4633 return 1;
4634 }
4635
4636 /* Check RC/SAE. */
4637 if (i.rounding)
4638 {
4639 if ((i.rounding->type != saeonly
4640 && !t->opcode_modifier.staticrounding)
4641 || (i.rounding->type == saeonly
4642 && (t->opcode_modifier.staticrounding
4643 || !t->opcode_modifier.sae)))
4644 {
4645 i.error = unsupported_rc_sae;
4646 return 1;
4647 }
4648 /* If the instruction has several immediate operands and one of
4649 them is rounding, the rounding operand should be the last
4650 immediate operand. */
4651 if (i.imm_operands > 1
4652 && i.rounding->operand != (int) (i.imm_operands - 1))
4653 {
4654 i.error = rc_sae_operand_not_last_imm;
4655 return 1;
4656 }
4657 }
4658
4659 /* Check vector Disp8 operand. */
4660 if (t->opcode_modifier.disp8memshift)
4661 {
4662 if (i.broadcast)
4663 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4664 else
4665 i.memshift = t->opcode_modifier.disp8memshift;
4666
4667 for (op = 0; op < i.operands; op++)
4668 if (operand_type_check (i.types[op], disp)
4669 && i.op[op].disps->X_op == O_constant)
4670 {
4671 offsetT value = i.op[op].disps->X_add_number;
4672 int vec_disp8_ok
4673 = (i.disp_encoding != disp_encoding_32bit
4674 && fits_in_vec_disp8 (value));
4675 if (t->operand_types [op].bitfield.vec_disp8)
4676 {
4677 if (vec_disp8_ok)
4678 i.types[op].bitfield.vec_disp8 = 1;
4679 else
4680 {
4681 /* Vector insn can only have Vec_Disp8/Disp32 in
4682 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4683 mode. */
4684 i.types[op].bitfield.disp8 = 0;
4685 if (flag_code != CODE_16BIT)
4686 i.types[op].bitfield.disp16 = 0;
4687 }
4688 }
4689 else if (flag_code != CODE_16BIT)
4690 {
4691 /* One form of this instruction supports vector Disp8.
4692 Try vector Disp8 if we need to use Disp32. */
4693 if (vec_disp8_ok && !fits_in_signed_byte (value))
4694 {
4695 i.error = try_vector_disp8;
4696 return 1;
4697 }
4698 }
4699 }
4700 }
4701 else
4702 i.memshift = -1;
4703
4704 return 0;
4705}
4706
4707/* Check if operands are valid for the instruction. Update VEX
4708 operand types. */
4709
4710static int
4711VEX_check_operands (const insn_template *t)
4712{
4713 /* VREX is only valid with EVEX prefix. */
4714 if (i.need_vrex && !t->opcode_modifier.evex)
4715 {
4716 i.error = invalid_register_operand;
4717 return 1;
4718 }
4719
4720 if (!t->opcode_modifier.vex)
4721 return 0;
4722
4723 /* Only check VEX_Imm4, which must be the first operand. */
4724 if (t->operand_types[0].bitfield.vec_imm4)
4725 {
4726 if (i.op[0].imms->X_op != O_constant
4727 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4728 {
4729 i.error = bad_imm4;
4730 return 1;
4731 }
4732
4733 /* Turn off Imm8 so that update_imm won't complain. */
4734 i.types[0] = vec_imm4;
4735 }
4736
4737 return 0;
4738}
4739
4740static const insn_template *
4741match_template (char mnem_suffix)
4742{
4743 /* Points to template once we've found it. */
4744 const insn_template *t;
4745 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4746 i386_operand_type overlap4;
4747 unsigned int found_reverse_match;
4748 i386_opcode_modifier suffix_check, mnemsuf_check;
4749 i386_operand_type operand_types [MAX_OPERANDS];
4750 int addr_prefix_disp;
4751 unsigned int j;
4752 unsigned int found_cpu_match;
4753 unsigned int check_register;
4754 enum i386_error specific_error = 0;
4755
4756#if MAX_OPERANDS != 5
4757# error "MAX_OPERANDS must be 5."
4758#endif
4759
4760 found_reverse_match = 0;
4761 addr_prefix_disp = -1;
4762
4763 memset (&suffix_check, 0, sizeof (suffix_check));
4764 if (i.suffix == BYTE_MNEM_SUFFIX)
4765 suffix_check.no_bsuf = 1;
4766 else if (i.suffix == WORD_MNEM_SUFFIX)
4767 suffix_check.no_wsuf = 1;
4768 else if (i.suffix == SHORT_MNEM_SUFFIX)
4769 suffix_check.no_ssuf = 1;
4770 else if (i.suffix == LONG_MNEM_SUFFIX)
4771 suffix_check.no_lsuf = 1;
4772 else if (i.suffix == QWORD_MNEM_SUFFIX)
4773 suffix_check.no_qsuf = 1;
4774 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4775 suffix_check.no_ldsuf = 1;
4776
4777 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4778 if (intel_syntax)
4779 {
4780 switch (mnem_suffix)
4781 {
4782 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4783 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4784 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4785 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4786 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4787 }
4788 }
4789
4790 /* Must have right number of operands. */
4791 i.error = number_of_operands_mismatch;
4792
4793 for (t = current_templates->start; t < current_templates->end; t++)
4794 {
4795 addr_prefix_disp = -1;
4796
4797 if (i.operands != t->operands)
4798 continue;
4799
4800 /* Check processor support. */
4801 i.error = unsupported;
4802 found_cpu_match = (cpu_flags_match (t)
4803 == CPU_FLAGS_PERFECT_MATCH);
4804 if (!found_cpu_match)
4805 continue;
4806
4807 /* Check old gcc support. */
4808 i.error = old_gcc_only;
4809 if (!old_gcc && t->opcode_modifier.oldgcc)
4810 continue;
4811
4812 /* Check AT&T mnemonic. */
4813 i.error = unsupported_with_intel_mnemonic;
4814 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4815 continue;
4816
4817 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4818 i.error = unsupported_syntax;
4819 if ((intel_syntax && t->opcode_modifier.attsyntax)
4820 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4821 || (intel64 && t->opcode_modifier.amd64)
4822 || (!intel64 && t->opcode_modifier.intel64))
4823 continue;
4824
4825 /* Check the suffix, except for some instructions in intel mode. */
4826 i.error = invalid_instruction_suffix;
4827 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4828 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4829 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4830 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4831 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4832 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4833 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4834 continue;
4835 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4836 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4837 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4838 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4839 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4840 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4841 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4842 continue;
4843
4844 if (!operand_size_match (t))
4845 continue;
4846
4847 for (j = 0; j < MAX_OPERANDS; j++)
4848 operand_types[j] = t->operand_types[j];
4849
4850 /* In general, don't allow 64-bit operands in 32-bit mode. */
4851 if (i.suffix == QWORD_MNEM_SUFFIX
4852 && flag_code != CODE_64BIT
4853 && (intel_syntax
4854 ? (!t->opcode_modifier.ignoresize
4855 && !intel_float_operand (t->name))
4856 : intel_float_operand (t->name) != 2)
4857 && ((!operand_types[0].bitfield.regmmx
4858 && !operand_types[0].bitfield.regxmm
4859 && !operand_types[0].bitfield.regymm
4860 && !operand_types[0].bitfield.regzmm)
4861 || (!operand_types[t->operands > 1].bitfield.regmmx
4862 && operand_types[t->operands > 1].bitfield.regxmm
4863 && operand_types[t->operands > 1].bitfield.regymm
4864 && operand_types[t->operands > 1].bitfield.regzmm))
4865 && (t->base_opcode != 0x0fc7
4866 || t->extension_opcode != 1 /* cmpxchg8b */))
4867 continue;
4868
4869 /* In general, don't allow 32-bit operands on pre-386. */
4870 else if (i.suffix == LONG_MNEM_SUFFIX
4871 && !cpu_arch_flags.bitfield.cpui386
4872 && (intel_syntax
4873 ? (!t->opcode_modifier.ignoresize
4874 && !intel_float_operand (t->name))
4875 : intel_float_operand (t->name) != 2)
4876 && ((!operand_types[0].bitfield.regmmx
4877 && !operand_types[0].bitfield.regxmm)
4878 || (!operand_types[t->operands > 1].bitfield.regmmx
4879 && operand_types[t->operands > 1].bitfield.regxmm)))
4880 continue;
4881
4882 /* Do not verify operands when there are none. */
4883 else
4884 {
4885 if (!t->operands)
4886 /* We've found a match; break out of loop. */
4887 break;
4888 }
4889
4890 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4891 into Disp32/Disp16/Disp32 operand. */
4892 if (i.prefix[ADDR_PREFIX] != 0)
4893 {
4894 /* There should be only one Disp operand. */
4895 switch (flag_code)
4896 {
4897 case CODE_16BIT:
4898 for (j = 0; j < MAX_OPERANDS; j++)
4899 {
4900 if (operand_types[j].bitfield.disp16)
4901 {
4902 addr_prefix_disp = j;
4903 operand_types[j].bitfield.disp32 = 1;
4904 operand_types[j].bitfield.disp16 = 0;
4905 break;
4906 }
4907 }
4908 break;
4909 case CODE_32BIT:
4910 for (j = 0; j < MAX_OPERANDS; j++)
4911 {
4912 if (operand_types[j].bitfield.disp32)
4913 {
4914 addr_prefix_disp = j;
4915 operand_types[j].bitfield.disp32 = 0;
4916 operand_types[j].bitfield.disp16 = 1;
4917 break;
4918 }
4919 }
4920 break;
4921 case CODE_64BIT:
4922 for (j = 0; j < MAX_OPERANDS; j++)
4923 {
4924 if (operand_types[j].bitfield.disp64)
4925 {
4926 addr_prefix_disp = j;
4927 operand_types[j].bitfield.disp64 = 0;
4928 operand_types[j].bitfield.disp32 = 1;
4929 break;
4930 }
4931 }
4932 break;
4933 }
4934 }
4935
4936 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4937 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4938 continue;
4939
4940 /* We check register size if needed. */
4941 check_register = t->opcode_modifier.checkregsize;
4942 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4943 switch (t->operands)
4944 {
4945 case 1:
4946 if (!operand_type_match (overlap0, i.types[0]))
4947 continue;
4948 break;
4949 case 2:
4950 /* xchg %eax, %eax is a special case. It is an aliase for nop
4951 only in 32bit mode and we can use opcode 0x90. In 64bit
4952 mode, we can't use 0x90 for xchg %eax, %eax since it should
4953 zero-extend %eax to %rax. */
4954 if (flag_code == CODE_64BIT
4955 && t->base_opcode == 0x90
4956 && operand_type_equal (&i.types [0], &acc32)
4957 && operand_type_equal (&i.types [1], &acc32))
4958 continue;
4959 if (i.swap_operand)
4960 {
4961 /* If we swap operand in encoding, we either match
4962 the next one or reverse direction of operands. */
4963 if (t->opcode_modifier.s)
4964 continue;
4965 else if (t->opcode_modifier.d)
4966 goto check_reverse;
4967 }
4968 /* Fall through. */
4969
4970 case 3:
4971 /* If we swap operand in encoding, we match the next one. */
4972 if (i.swap_operand && t->opcode_modifier.s)
4973 continue;
4974 /* Fall through. */
4975 case 4:
4976 case 5:
4977 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4978 if (!operand_type_match (overlap0, i.types[0])
4979 || !operand_type_match (overlap1, i.types[1])
4980 || (check_register
4981 && !operand_type_register_match (overlap0, i.types[0],
4982 operand_types[0],
4983 overlap1, i.types[1],
4984 operand_types[1])))
4985 {
4986 /* Check if other direction is valid ... */
4987 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4988 continue;
4989
4990check_reverse:
4991 /* Try reversing direction of operands. */
4992 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4993 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4994 if (!operand_type_match (overlap0, i.types[0])
4995 || !operand_type_match (overlap1, i.types[1])
4996 || (check_register
4997 && !operand_type_register_match (overlap0,
4998 i.types[0],
4999 operand_types[1],
5000 overlap1,
5001 i.types[1],
5002 operand_types[0])))
5003 {
5004 /* Does not match either direction. */
5005 continue;
5006 }
5007 /* found_reverse_match holds which of D or FloatDR
5008 we've found. */
5009 if (t->opcode_modifier.d)
5010 found_reverse_match = Opcode_D;
5011 else if (t->opcode_modifier.floatd)
5012 found_reverse_match = Opcode_FloatD;
5013 else
5014 found_reverse_match = 0;
5015 if (t->opcode_modifier.floatr)
5016 found_reverse_match |= Opcode_FloatR;
5017 }
5018 else
5019 {
5020 /* Found a forward 2 operand match here. */
5021 switch (t->operands)
5022 {
5023 case 5:
5024 overlap4 = operand_type_and (i.types[4],
5025 operand_types[4]);
5026 /* Fall through. */
5027 case 4:
5028 overlap3 = operand_type_and (i.types[3],
5029 operand_types[3]);
5030 /* Fall through. */
5031 case 3:
5032 overlap2 = operand_type_and (i.types[2],
5033 operand_types[2]);
5034 break;
5035 }
5036
5037 switch (t->operands)
5038 {
5039 case 5:
5040 if (!operand_type_match (overlap4, i.types[4])
5041 || !operand_type_register_match (overlap3,
5042 i.types[3],
5043 operand_types[3],
5044 overlap4,
5045 i.types[4],
5046 operand_types[4]))
5047 continue;
5048 /* Fall through. */
5049 case 4:
5050 if (!operand_type_match (overlap3, i.types[3])
5051 || (check_register
5052 && !operand_type_register_match (overlap2,
5053 i.types[2],
5054 operand_types[2],
5055 overlap3,
5056 i.types[3],
5057 operand_types[3])))
5058 continue;
5059 /* Fall through. */
5060 case 3:
5061 /* Here we make use of the fact that there are no
5062 reverse match 3 operand instructions, and all 3
5063 operand instructions only need to be checked for
5064 register consistency between operands 2 and 3. */
5065 if (!operand_type_match (overlap2, i.types[2])
5066 || (check_register
5067 && !operand_type_register_match (overlap1,
5068 i.types[1],
5069 operand_types[1],
5070 overlap2,
5071 i.types[2],
5072 operand_types[2])))
5073 continue;
5074 break;
5075 }
5076 }
5077 /* Found either forward/reverse 2, 3 or 4 operand match here:
5078 slip through to break. */
5079 }
5080 if (!found_cpu_match)
5081 {
5082 found_reverse_match = 0;
5083 continue;
5084 }
5085
5086 /* Check if vector and VEX operands are valid. */
5087 if (check_VecOperands (t) || VEX_check_operands (t))
5088 {
5089 specific_error = i.error;
5090 continue;
5091 }
5092
5093 /* We've found a match; break out of loop. */
5094 break;
5095 }
5096
5097 if (t == current_templates->end)
5098 {
5099 /* We found no match. */
5100 const char *err_msg;
5101 switch (specific_error ? specific_error : i.error)
5102 {
5103 default:
5104 abort ();
5105 case operand_size_mismatch:
5106 err_msg = _("operand size mismatch");
5107 break;
5108 case operand_type_mismatch:
5109 err_msg = _("operand type mismatch");
5110 break;
5111 case register_type_mismatch:
5112 err_msg = _("register type mismatch");
5113 break;
5114 case number_of_operands_mismatch:
5115 err_msg = _("number of operands mismatch");
5116 break;
5117 case invalid_instruction_suffix:
5118 err_msg = _("invalid instruction suffix");
5119 break;
5120 case bad_imm4:
5121 err_msg = _("constant doesn't fit in 4 bits");
5122 break;
5123 case old_gcc_only:
5124 err_msg = _("only supported with old gcc");
5125 break;
5126 case unsupported_with_intel_mnemonic:
5127 err_msg = _("unsupported with Intel mnemonic");
5128 break;
5129 case unsupported_syntax:
5130 err_msg = _("unsupported syntax");
5131 break;
5132 case unsupported:
5133 as_bad (_("unsupported instruction `%s'"),
5134 current_templates->start->name);
5135 return NULL;
5136 case invalid_vsib_address:
5137 err_msg = _("invalid VSIB address");
5138 break;
5139 case invalid_vector_register_set:
5140 err_msg = _("mask, index, and destination registers must be distinct");
5141 break;
5142 case unsupported_vector_index_register:
5143 err_msg = _("unsupported vector index register");
5144 break;
5145 case unsupported_broadcast:
5146 err_msg = _("unsupported broadcast");
5147 break;
5148 case broadcast_not_on_src_operand:
5149 err_msg = _("broadcast not on source memory operand");
5150 break;
5151 case broadcast_needed:
5152 err_msg = _("broadcast is needed for operand of such type");
5153 break;
5154 case unsupported_masking:
5155 err_msg = _("unsupported masking");
5156 break;
5157 case mask_not_on_destination:
5158 err_msg = _("mask not on destination operand");
5159 break;
5160 case no_default_mask:
5161 err_msg = _("default mask isn't allowed");
5162 break;
5163 case unsupported_rc_sae:
5164 err_msg = _("unsupported static rounding/sae");
5165 break;
5166 case rc_sae_operand_not_last_imm:
5167 if (intel_syntax)
5168 err_msg = _("RC/SAE operand must precede immediate operands");
5169 else
5170 err_msg = _("RC/SAE operand must follow immediate operands");
5171 break;
5172 case invalid_register_operand:
5173 err_msg = _("invalid register operand");
5174 break;
5175 }
5176 as_bad (_("%s for `%s'"), err_msg,
5177 current_templates->start->name);
5178 return NULL;
5179 }
5180
5181 if (!quiet_warnings)
5182 {
5183 if (!intel_syntax
5184 && (i.types[0].bitfield.jumpabsolute
5185 != operand_types[0].bitfield.jumpabsolute))
5186 {
5187 as_warn (_("indirect %s without `*'"), t->name);
5188 }
5189
5190 if (t->opcode_modifier.isprefix
5191 && t->opcode_modifier.ignoresize)
5192 {
5193 /* Warn them that a data or address size prefix doesn't
5194 affect assembly of the next line of code. */
5195 as_warn (_("stand-alone `%s' prefix"), t->name);
5196 }
5197 }
5198
5199 /* Copy the template we found. */
5200 i.tm = *t;
5201
5202 if (addr_prefix_disp != -1)
5203 i.tm.operand_types[addr_prefix_disp]
5204 = operand_types[addr_prefix_disp];
5205
5206 if (found_reverse_match)
5207 {
5208 /* If we found a reverse match we must alter the opcode
5209 direction bit. found_reverse_match holds bits to change
5210 (different for int & float insns). */
5211
5212 i.tm.base_opcode ^= found_reverse_match;
5213
5214 i.tm.operand_types[0] = operand_types[1];
5215 i.tm.operand_types[1] = operand_types[0];
5216 }
5217
5218 return t;
5219}
5220
5221static int
5222check_string (void)
5223{
5224 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5225 if (i.tm.operand_types[mem_op].bitfield.esseg)
5226 {
5227 if (i.seg[0] != NULL && i.seg[0] != &es)
5228 {
5229 as_bad (_("`%s' operand %d must use `%ses' segment"),
5230 i.tm.name,
5231 mem_op + 1,
5232 register_prefix);
5233 return 0;
5234 }
5235 /* There's only ever one segment override allowed per instruction.
5236 This instruction possibly has a legal segment override on the
5237 second operand, so copy the segment to where non-string
5238 instructions store it, allowing common code. */
5239 i.seg[0] = i.seg[1];
5240 }
5241 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5242 {
5243 if (i.seg[1] != NULL && i.seg[1] != &es)
5244 {
5245 as_bad (_("`%s' operand %d must use `%ses' segment"),
5246 i.tm.name,
5247 mem_op + 2,
5248 register_prefix);
5249 return 0;
5250 }
5251 }
5252 return 1;
5253}
5254
5255static int
5256process_suffix (void)
5257{
5258 /* If matched instruction specifies an explicit instruction mnemonic
5259 suffix, use it. */
5260 if (i.tm.opcode_modifier.size16)
5261 i.suffix = WORD_MNEM_SUFFIX;
5262 else if (i.tm.opcode_modifier.size32)
5263 i.suffix = LONG_MNEM_SUFFIX;
5264 else if (i.tm.opcode_modifier.size64)
5265 i.suffix = QWORD_MNEM_SUFFIX;
5266 else if (i.reg_operands)
5267 {
5268 /* If there's no instruction mnemonic suffix we try to invent one
5269 based on register operands. */
5270 if (!i.suffix)
5271 {
5272 /* We take i.suffix from the last register operand specified,
5273 Destination register type is more significant than source
5274 register type. crc32 in SSE4.2 prefers source register
5275 type. */
5276 if (i.tm.base_opcode == 0xf20f38f1)
5277 {
5278 if (i.types[0].bitfield.reg16)
5279 i.suffix = WORD_MNEM_SUFFIX;
5280 else if (i.types[0].bitfield.reg32)
5281 i.suffix = LONG_MNEM_SUFFIX;
5282 else if (i.types[0].bitfield.reg64)
5283 i.suffix = QWORD_MNEM_SUFFIX;
5284 }
5285 else if (i.tm.base_opcode == 0xf20f38f0)
5286 {
5287 if (i.types[0].bitfield.reg8)
5288 i.suffix = BYTE_MNEM_SUFFIX;
5289 }
5290
5291 if (!i.suffix)
5292 {
5293 int op;
5294
5295 if (i.tm.base_opcode == 0xf20f38f1
5296 || i.tm.base_opcode == 0xf20f38f0)
5297 {
5298 /* We have to know the operand size for crc32. */
5299 as_bad (_("ambiguous memory operand size for `%s`"),
5300 i.tm.name);
5301 return 0;
5302 }
5303
5304 for (op = i.operands; --op >= 0;)
5305 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5306 {
5307 if (i.types[op].bitfield.reg8)
5308 {
5309 i.suffix = BYTE_MNEM_SUFFIX;
5310 break;
5311 }
5312 else if (i.types[op].bitfield.reg16)
5313 {
5314 i.suffix = WORD_MNEM_SUFFIX;
5315 break;
5316 }
5317 else if (i.types[op].bitfield.reg32)
5318 {
5319 i.suffix = LONG_MNEM_SUFFIX;
5320 break;
5321 }
5322 else if (i.types[op].bitfield.reg64)
5323 {
5324 i.suffix = QWORD_MNEM_SUFFIX;
5325 break;
5326 }
5327 }
5328 }
5329 }
5330 else if (i.suffix == BYTE_MNEM_SUFFIX)
5331 {
5332 if (intel_syntax
5333 && i.tm.opcode_modifier.ignoresize
5334 && i.tm.opcode_modifier.no_bsuf)
5335 i.suffix = 0;
5336 else if (!check_byte_reg ())
5337 return 0;
5338 }
5339 else if (i.suffix == LONG_MNEM_SUFFIX)
5340 {
5341 if (intel_syntax
5342 && i.tm.opcode_modifier.ignoresize
5343 && i.tm.opcode_modifier.no_lsuf)
5344 i.suffix = 0;
5345 else if (!check_long_reg ())
5346 return 0;
5347 }
5348 else if (i.suffix == QWORD_MNEM_SUFFIX)
5349 {
5350 if (intel_syntax
5351 && i.tm.opcode_modifier.ignoresize
5352 && i.tm.opcode_modifier.no_qsuf)
5353 i.suffix = 0;
5354 else if (!check_qword_reg ())
5355 return 0;
5356 }
5357 else if (i.suffix == WORD_MNEM_SUFFIX)
5358 {
5359 if (intel_syntax
5360 && i.tm.opcode_modifier.ignoresize
5361 && i.tm.opcode_modifier.no_wsuf)
5362 i.suffix = 0;
5363 else if (!check_word_reg ())
5364 return 0;
5365 }
5366 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5367 || i.suffix == YMMWORD_MNEM_SUFFIX
5368 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5369 {
5370 /* Skip if the instruction has x/y/z suffix. match_template
5371 should check if it is a valid suffix. */
5372 }
5373 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5374 /* Do nothing if the instruction is going to ignore the prefix. */
5375 ;
5376 else
5377 abort ();
5378 }
5379 else if (i.tm.opcode_modifier.defaultsize
5380 && !i.suffix
5381 /* exclude fldenv/frstor/fsave/fstenv */
5382 && i.tm.opcode_modifier.no_ssuf)
5383 {
5384 i.suffix = stackop_size;
5385 }
5386 else if (intel_syntax
5387 && !i.suffix
5388 && (i.tm.operand_types[0].bitfield.jumpabsolute
5389 || i.tm.opcode_modifier.jumpbyte
5390 || i.tm.opcode_modifier.jumpintersegment
5391 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5392 && i.tm.extension_opcode <= 3)))
5393 {
5394 switch (flag_code)
5395 {
5396 case CODE_64BIT:
5397 if (!i.tm.opcode_modifier.no_qsuf)
5398 {
5399 i.suffix = QWORD_MNEM_SUFFIX;
5400 break;
5401 }
5402 /* Fall through. */
5403 case CODE_32BIT:
5404 if (!i.tm.opcode_modifier.no_lsuf)
5405 i.suffix = LONG_MNEM_SUFFIX;
5406 break;
5407 case CODE_16BIT:
5408 if (!i.tm.opcode_modifier.no_wsuf)
5409 i.suffix = WORD_MNEM_SUFFIX;
5410 break;
5411 }
5412 }
5413
5414 if (!i.suffix)
5415 {
5416 if (!intel_syntax)
5417 {
5418 if (i.tm.opcode_modifier.w)
5419 {
5420 as_bad (_("no instruction mnemonic suffix given and "
5421 "no register operands; can't size instruction"));
5422 return 0;
5423 }
5424 }
5425 else
5426 {
5427 unsigned int suffixes;
5428
5429 suffixes = !i.tm.opcode_modifier.no_bsuf;
5430 if (!i.tm.opcode_modifier.no_wsuf)
5431 suffixes |= 1 << 1;
5432 if (!i.tm.opcode_modifier.no_lsuf)
5433 suffixes |= 1 << 2;
5434 if (!i.tm.opcode_modifier.no_ldsuf)
5435 suffixes |= 1 << 3;
5436 if (!i.tm.opcode_modifier.no_ssuf)
5437 suffixes |= 1 << 4;
5438 if (!i.tm.opcode_modifier.no_qsuf)
5439 suffixes |= 1 << 5;
5440
5441 /* There are more than suffix matches. */
5442 if (i.tm.opcode_modifier.w
5443 || ((suffixes & (suffixes - 1))
5444 && !i.tm.opcode_modifier.defaultsize
5445 && !i.tm.opcode_modifier.ignoresize))
5446 {
5447 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5448 return 0;
5449 }
5450 }
5451 }
5452
5453 /* Change the opcode based on the operand size given by i.suffix;
5454 We don't need to change things for byte insns. */
5455
5456 if (i.suffix
5457 && i.suffix != BYTE_MNEM_SUFFIX
5458 && i.suffix != XMMWORD_MNEM_SUFFIX
5459 && i.suffix != YMMWORD_MNEM_SUFFIX
5460 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5461 {
5462 /* It's not a byte, select word/dword operation. */
5463 if (i.tm.opcode_modifier.w)
5464 {
5465 if (i.tm.opcode_modifier.shortform)
5466 i.tm.base_opcode |= 8;
5467 else
5468 i.tm.base_opcode |= 1;
5469 }
5470
5471 /* Now select between word & dword operations via the operand
5472 size prefix, except for instructions that will ignore this
5473 prefix anyway. */
5474 if (i.tm.opcode_modifier.addrprefixop0)
5475 {
5476 /* The address size override prefix changes the size of the
5477 first operand. */
5478 if ((flag_code == CODE_32BIT
5479 && i.op->regs[0].reg_type.bitfield.reg16)
5480 || (flag_code != CODE_32BIT
5481 && i.op->regs[0].reg_type.bitfield.reg32))
5482 if (!add_prefix (ADDR_PREFIX_OPCODE))
5483 return 0;
5484 }
5485 else if (i.suffix != QWORD_MNEM_SUFFIX
5486 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5487 && !i.tm.opcode_modifier.ignoresize
5488 && !i.tm.opcode_modifier.floatmf
5489 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5490 || (flag_code == CODE_64BIT
5491 && i.tm.opcode_modifier.jumpbyte)))
5492 {
5493 unsigned int prefix = DATA_PREFIX_OPCODE;
5494
5495 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5496 prefix = ADDR_PREFIX_OPCODE;
5497
5498 if (!add_prefix (prefix))
5499 return 0;
5500 }
5501
5502 /* Set mode64 for an operand. */
5503 if (i.suffix == QWORD_MNEM_SUFFIX
5504 && flag_code == CODE_64BIT
5505 && !i.tm.opcode_modifier.norex64)
5506 {
5507 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5508 need rex64. cmpxchg8b is also a special case. */
5509 if (! (i.operands == 2
5510 && i.tm.base_opcode == 0x90
5511 && i.tm.extension_opcode == None
5512 && operand_type_equal (&i.types [0], &acc64)
5513 && operand_type_equal (&i.types [1], &acc64))
5514 && ! (i.operands == 1
5515 && i.tm.base_opcode == 0xfc7
5516 && i.tm.extension_opcode == 1
5517 && !operand_type_check (i.types [0], reg)
5518 && operand_type_check (i.types [0], anymem)))
5519 i.rex |= REX_W;
5520 }
5521
5522 /* Size floating point instruction. */
5523 if (i.suffix == LONG_MNEM_SUFFIX)
5524 if (i.tm.opcode_modifier.floatmf)
5525 i.tm.base_opcode ^= 4;
5526 }
5527
5528 return 1;
5529}
5530
5531static int
5532check_byte_reg (void)
5533{
5534 int op;
5535
5536 for (op = i.operands; --op >= 0;)
5537 {
5538 /* If this is an eight bit register, it's OK. If it's the 16 or
5539 32 bit version of an eight bit register, we will just use the
5540 low portion, and that's OK too. */
5541 if (i.types[op].bitfield.reg8)
5542 continue;
5543
5544 /* I/O port address operands are OK too. */
5545 if (i.tm.operand_types[op].bitfield.inoutportreg)
5546 continue;
5547
5548 /* crc32 doesn't generate this warning. */
5549 if (i.tm.base_opcode == 0xf20f38f0)
5550 continue;
5551
5552 if ((i.types[op].bitfield.reg16
5553 || i.types[op].bitfield.reg32
5554 || i.types[op].bitfield.reg64)
5555 && i.op[op].regs->reg_num < 4
5556 /* Prohibit these changes in 64bit mode, since the lowering
5557 would be more complicated. */
5558 && flag_code != CODE_64BIT)
5559 {
5560#if REGISTER_WARNINGS
5561 if (!quiet_warnings)
5562 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5563 register_prefix,
5564 (i.op[op].regs + (i.types[op].bitfield.reg16
5565 ? REGNAM_AL - REGNAM_AX
5566 : REGNAM_AL - REGNAM_EAX))->reg_name,
5567 register_prefix,
5568 i.op[op].regs->reg_name,
5569 i.suffix);
5570#endif
5571 continue;
5572 }
5573 /* Any other register is bad. */
5574 if (i.types[op].bitfield.reg16
5575 || i.types[op].bitfield.reg32
5576 || i.types[op].bitfield.reg64
5577 || i.types[op].bitfield.regmmx
5578 || i.types[op].bitfield.regxmm
5579 || i.types[op].bitfield.regymm
5580 || i.types[op].bitfield.regzmm
5581 || i.types[op].bitfield.sreg2
5582 || i.types[op].bitfield.sreg3
5583 || i.types[op].bitfield.control
5584 || i.types[op].bitfield.debug
5585 || i.types[op].bitfield.test
5586 || i.types[op].bitfield.floatreg
5587 || i.types[op].bitfield.floatacc)
5588 {
5589 as_bad (_("`%s%s' not allowed with `%s%c'"),
5590 register_prefix,
5591 i.op[op].regs->reg_name,
5592 i.tm.name,
5593 i.suffix);
5594 return 0;
5595 }
5596 }
5597 return 1;
5598}
5599
5600static int
5601check_long_reg (void)
5602{
5603 int op;
5604
5605 for (op = i.operands; --op >= 0;)
5606 /* Reject eight bit registers, except where the template requires
5607 them. (eg. movzb) */
5608 if (i.types[op].bitfield.reg8
5609 && (i.tm.operand_types[op].bitfield.reg16
5610 || i.tm.operand_types[op].bitfield.reg32
5611 || i.tm.operand_types[op].bitfield.acc))
5612 {
5613 as_bad (_("`%s%s' not allowed with `%s%c'"),
5614 register_prefix,
5615 i.op[op].regs->reg_name,
5616 i.tm.name,
5617 i.suffix);
5618 return 0;
5619 }
5620 /* Warn if the e prefix on a general reg is missing. */
5621 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5622 && i.types[op].bitfield.reg16
5623 && (i.tm.operand_types[op].bitfield.reg32
5624 || i.tm.operand_types[op].bitfield.acc))
5625 {
5626 /* Prohibit these changes in the 64bit mode, since the
5627 lowering is more complicated. */
5628 if (flag_code == CODE_64BIT)
5629 {
5630 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5631 register_prefix, i.op[op].regs->reg_name,
5632 i.suffix);
5633 return 0;
5634 }
5635#if REGISTER_WARNINGS
5636 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5637 register_prefix,
5638 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5639 register_prefix, i.op[op].regs->reg_name, i.suffix);
5640#endif
5641 }
5642 /* Warn if the r prefix on a general reg is present. */
5643 else if (i.types[op].bitfield.reg64
5644 && (i.tm.operand_types[op].bitfield.reg32
5645 || i.tm.operand_types[op].bitfield.acc))
5646 {
5647 if (intel_syntax
5648 && i.tm.opcode_modifier.toqword
5649 && !i.types[0].bitfield.regxmm)
5650 {
5651 /* Convert to QWORD. We want REX byte. */
5652 i.suffix = QWORD_MNEM_SUFFIX;
5653 }
5654 else
5655 {
5656 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5657 register_prefix, i.op[op].regs->reg_name,
5658 i.suffix);
5659 return 0;
5660 }
5661 }
5662 return 1;
5663}
5664
5665static int
5666check_qword_reg (void)
5667{
5668 int op;
5669
5670 for (op = i.operands; --op >= 0; )
5671 /* Reject eight bit registers, except where the template requires
5672 them. (eg. movzb) */
5673 if (i.types[op].bitfield.reg8
5674 && (i.tm.operand_types[op].bitfield.reg16
5675 || i.tm.operand_types[op].bitfield.reg32
5676 || i.tm.operand_types[op].bitfield.acc))
5677 {
5678 as_bad (_("`%s%s' not allowed with `%s%c'"),
5679 register_prefix,
5680 i.op[op].regs->reg_name,
5681 i.tm.name,
5682 i.suffix);
5683 return 0;
5684 }
5685 /* Warn if the r prefix on a general reg is missing. */
5686 else if ((i.types[op].bitfield.reg16
5687 || i.types[op].bitfield.reg32)
5688 && (i.tm.operand_types[op].bitfield.reg64
5689 || i.tm.operand_types[op].bitfield.acc))
5690 {
5691 /* Prohibit these changes in the 64bit mode, since the
5692 lowering is more complicated. */
5693 if (intel_syntax
5694 && i.tm.opcode_modifier.todword
5695 && !i.types[0].bitfield.regxmm)
5696 {
5697 /* Convert to DWORD. We don't want REX byte. */
5698 i.suffix = LONG_MNEM_SUFFIX;
5699 }
5700 else
5701 {
5702 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5703 register_prefix, i.op[op].regs->reg_name,
5704 i.suffix);
5705 return 0;
5706 }
5707 }
5708 return 1;
5709}
5710
5711static int
5712check_word_reg (void)
5713{
5714 int op;
5715 for (op = i.operands; --op >= 0;)
5716 /* Reject eight bit registers, except where the template requires
5717 them. (eg. movzb) */
5718 if (i.types[op].bitfield.reg8
5719 && (i.tm.operand_types[op].bitfield.reg16
5720 || i.tm.operand_types[op].bitfield.reg32
5721 || i.tm.operand_types[op].bitfield.acc))
5722 {
5723 as_bad (_("`%s%s' not allowed with `%s%c'"),
5724 register_prefix,
5725 i.op[op].regs->reg_name,
5726 i.tm.name,
5727 i.suffix);
5728 return 0;
5729 }
5730 /* Warn if the e or r prefix on a general reg is present. */
5731 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5732 && (i.types[op].bitfield.reg32
5733 || i.types[op].bitfield.reg64)
5734 && (i.tm.operand_types[op].bitfield.reg16
5735 || i.tm.operand_types[op].bitfield.acc))
5736 {
5737 /* Prohibit these changes in the 64bit mode, since the
5738 lowering is more complicated. */
5739 if (flag_code == CODE_64BIT)
5740 {
5741 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5742 register_prefix, i.op[op].regs->reg_name,
5743 i.suffix);
5744 return 0;
5745 }
5746#if REGISTER_WARNINGS
5747 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5748 register_prefix,
5749 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5750 register_prefix, i.op[op].regs->reg_name, i.suffix);
5751#endif
5752 }
5753 return 1;
5754}
5755
5756static int
5757update_imm (unsigned int j)
5758{
5759 i386_operand_type overlap = i.types[j];
5760 if ((overlap.bitfield.imm8
5761 || overlap.bitfield.imm8s
5762 || overlap.bitfield.imm16
5763 || overlap.bitfield.imm32
5764 || overlap.bitfield.imm32s
5765 || overlap.bitfield.imm64)
5766 && !operand_type_equal (&overlap, &imm8)
5767 && !operand_type_equal (&overlap, &imm8s)
5768 && !operand_type_equal (&overlap, &imm16)
5769 && !operand_type_equal (&overlap, &imm32)
5770 && !operand_type_equal (&overlap, &imm32s)
5771 && !operand_type_equal (&overlap, &imm64))
5772 {
5773 if (i.suffix)
5774 {
5775 i386_operand_type temp;
5776
5777 operand_type_set (&temp, 0);
5778 if (i.suffix == BYTE_MNEM_SUFFIX)
5779 {
5780 temp.bitfield.imm8 = overlap.bitfield.imm8;
5781 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5782 }
5783 else if (i.suffix == WORD_MNEM_SUFFIX)
5784 temp.bitfield.imm16 = overlap.bitfield.imm16;
5785 else if (i.suffix == QWORD_MNEM_SUFFIX)
5786 {
5787 temp.bitfield.imm64 = overlap.bitfield.imm64;
5788 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5789 }
5790 else
5791 temp.bitfield.imm32 = overlap.bitfield.imm32;
5792 overlap = temp;
5793 }
5794 else if (operand_type_equal (&overlap, &imm16_32_32s)
5795 || operand_type_equal (&overlap, &imm16_32)
5796 || operand_type_equal (&overlap, &imm16_32s))
5797 {
5798 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5799 overlap = imm16;
5800 else
5801 overlap = imm32s;
5802 }
5803 if (!operand_type_equal (&overlap, &imm8)
5804 && !operand_type_equal (&overlap, &imm8s)
5805 && !operand_type_equal (&overlap, &imm16)
5806 && !operand_type_equal (&overlap, &imm32)
5807 && !operand_type_equal (&overlap, &imm32s)
5808 && !operand_type_equal (&overlap, &imm64))
5809 {
5810 as_bad (_("no instruction mnemonic suffix given; "
5811 "can't determine immediate size"));
5812 return 0;
5813 }
5814 }
5815 i.types[j] = overlap;
5816
5817 return 1;
5818}
5819
5820static int
5821finalize_imm (void)
5822{
5823 unsigned int j, n;
5824
5825 /* Update the first 2 immediate operands. */
5826 n = i.operands > 2 ? 2 : i.operands;
5827 if (n)
5828 {
5829 for (j = 0; j < n; j++)
5830 if (update_imm (j) == 0)
5831 return 0;
5832
5833 /* The 3rd operand can't be immediate operand. */
5834 gas_assert (operand_type_check (i.types[2], imm) == 0);
5835 }
5836
5837 return 1;
5838}
5839
5840static int
5841bad_implicit_operand (int xmm)
5842{
5843 const char *ireg = xmm ? "xmm0" : "ymm0";
5844
5845 if (intel_syntax)
5846 as_bad (_("the last operand of `%s' must be `%s%s'"),
5847 i.tm.name, register_prefix, ireg);
5848 else
5849 as_bad (_("the first operand of `%s' must be `%s%s'"),
5850 i.tm.name, register_prefix, ireg);
5851 return 0;
5852}
5853
5854static int
5855process_operands (void)
5856{
5857 /* Default segment register this instruction will use for memory
5858 accesses. 0 means unknown. This is only for optimizing out
5859 unnecessary segment overrides. */
5860 const seg_entry *default_seg = 0;
5861
5862 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5863 {
5864 unsigned int dupl = i.operands;
5865 unsigned int dest = dupl - 1;
5866 unsigned int j;
5867
5868 /* The destination must be an xmm register. */
5869 gas_assert (i.reg_operands
5870 && MAX_OPERANDS > dupl
5871 && operand_type_equal (&i.types[dest], &regxmm));
5872
5873 if (i.tm.opcode_modifier.firstxmm0)
5874 {
5875 /* The first operand is implicit and must be xmm0. */
5876 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5877 if (register_number (i.op[0].regs) != 0)
5878 return bad_implicit_operand (1);
5879
5880 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5881 {
5882 /* Keep xmm0 for instructions with VEX prefix and 3
5883 sources. */
5884 goto duplicate;
5885 }
5886 else
5887 {
5888 /* We remove the first xmm0 and keep the number of
5889 operands unchanged, which in fact duplicates the
5890 destination. */
5891 for (j = 1; j < i.operands; j++)
5892 {
5893 i.op[j - 1] = i.op[j];
5894 i.types[j - 1] = i.types[j];
5895 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5896 }
5897 }
5898 }
5899 else if (i.tm.opcode_modifier.implicit1stxmm0)
5900 {
5901 gas_assert ((MAX_OPERANDS - 1) > dupl
5902 && (i.tm.opcode_modifier.vexsources
5903 == VEX3SOURCES));
5904
5905 /* Add the implicit xmm0 for instructions with VEX prefix
5906 and 3 sources. */
5907 for (j = i.operands; j > 0; j--)
5908 {
5909 i.op[j] = i.op[j - 1];
5910 i.types[j] = i.types[j - 1];
5911 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5912 }
5913 i.op[0].regs
5914 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5915 i.types[0] = regxmm;
5916 i.tm.operand_types[0] = regxmm;
5917
5918 i.operands += 2;
5919 i.reg_operands += 2;
5920 i.tm.operands += 2;
5921
5922 dupl++;
5923 dest++;
5924 i.op[dupl] = i.op[dest];
5925 i.types[dupl] = i.types[dest];
5926 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5927 }
5928 else
5929 {
5930duplicate:
5931 i.operands++;
5932 i.reg_operands++;
5933 i.tm.operands++;
5934
5935 i.op[dupl] = i.op[dest];
5936 i.types[dupl] = i.types[dest];
5937 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5938 }
5939
5940 if (i.tm.opcode_modifier.immext)
5941 process_immext ();
5942 }
5943 else if (i.tm.opcode_modifier.firstxmm0)
5944 {
5945 unsigned int j;
5946
5947 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5948 gas_assert (i.reg_operands
5949 && (operand_type_equal (&i.types[0], &regxmm)
5950 || operand_type_equal (&i.types[0], &regymm)
5951 || operand_type_equal (&i.types[0], &regzmm)));
5952 if (register_number (i.op[0].regs) != 0)
5953 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5954
5955 for (j = 1; j < i.operands; j++)
5956 {
5957 i.op[j - 1] = i.op[j];
5958 i.types[j - 1] = i.types[j];
5959
5960 /* We need to adjust fields in i.tm since they are used by
5961 build_modrm_byte. */
5962 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5963 }
5964
5965 i.operands--;
5966 i.reg_operands--;
5967 i.tm.operands--;
5968 }
5969 else if (i.tm.opcode_modifier.regkludge)
5970 {
5971 /* The imul $imm, %reg instruction is converted into
5972 imul $imm, %reg, %reg, and the clr %reg instruction
5973 is converted into xor %reg, %reg. */
5974
5975 unsigned int first_reg_op;
5976
5977 if (operand_type_check (i.types[0], reg))
5978 first_reg_op = 0;
5979 else
5980 first_reg_op = 1;
5981 /* Pretend we saw the extra register operand. */
5982 gas_assert (i.reg_operands == 1
5983 && i.op[first_reg_op + 1].regs == 0);
5984 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5985 i.types[first_reg_op + 1] = i.types[first_reg_op];
5986 i.operands++;
5987 i.reg_operands++;
5988 }
5989
5990 if (i.tm.opcode_modifier.shortform)
5991 {
5992 if (i.types[0].bitfield.sreg2
5993 || i.types[0].bitfield.sreg3)
5994 {
5995 if (i.tm.base_opcode == POP_SEG_SHORT
5996 && i.op[0].regs->reg_num == 1)
5997 {
5998 as_bad (_("you can't `pop %scs'"), register_prefix);
5999 return 0;
6000 }
6001 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6002 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6003 i.rex |= REX_B;
6004 }
6005 else
6006 {
6007 /* The register or float register operand is in operand
6008 0 or 1. */
6009 unsigned int op;
6010
6011 if (i.types[0].bitfield.floatreg
6012 || operand_type_check (i.types[0], reg))
6013 op = 0;
6014 else
6015 op = 1;
6016 /* Register goes in low 3 bits of opcode. */
6017 i.tm.base_opcode |= i.op[op].regs->reg_num;
6018 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6019 i.rex |= REX_B;
6020 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6021 {
6022 /* Warn about some common errors, but press on regardless.
6023 The first case can be generated by gcc (<= 2.8.1). */
6024 if (i.operands == 2)
6025 {
6026 /* Reversed arguments on faddp, fsubp, etc. */
6027 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6028 register_prefix, i.op[!intel_syntax].regs->reg_name,
6029 register_prefix, i.op[intel_syntax].regs->reg_name);
6030 }
6031 else
6032 {
6033 /* Extraneous `l' suffix on fp insn. */
6034 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6035 register_prefix, i.op[0].regs->reg_name);
6036 }
6037 }
6038 }
6039 }
6040 else if (i.tm.opcode_modifier.modrm)
6041 {
6042 /* The opcode is completed (modulo i.tm.extension_opcode which
6043 must be put into the modrm byte). Now, we make the modrm and
6044 index base bytes based on all the info we've collected. */
6045
6046 default_seg = build_modrm_byte ();
6047 }
6048 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6049 {
6050 default_seg = &ds;
6051 }
6052 else if (i.tm.opcode_modifier.isstring)
6053 {
6054 /* For the string instructions that allow a segment override
6055 on one of their operands, the default segment is ds. */
6056 default_seg = &ds;
6057 }
6058
6059 if (i.tm.base_opcode == 0x8d /* lea */
6060 && i.seg[0]
6061 && !quiet_warnings)
6062 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6063
6064 /* If a segment was explicitly specified, and the specified segment
6065 is not the default, use an opcode prefix to select it. If we
6066 never figured out what the default segment is, then default_seg
6067 will be zero at this point, and the specified segment prefix will
6068 always be used. */
6069 if ((i.seg[0]) && (i.seg[0] != default_seg))
6070 {
6071 if (!add_prefix (i.seg[0]->seg_prefix))
6072 return 0;
6073 }
6074 return 1;
6075}
6076
6077static const seg_entry *
6078build_modrm_byte (void)
6079{
6080 const seg_entry *default_seg = 0;
6081 unsigned int source, dest;
6082 int vex_3_sources;
6083
6084 /* The first operand of instructions with VEX prefix and 3 sources
6085 must be VEX_Imm4. */
6086 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6087 if (vex_3_sources)
6088 {
6089 unsigned int nds, reg_slot;
6090 expressionS *exp;
6091
6092 if (i.tm.opcode_modifier.veximmext
6093 && i.tm.opcode_modifier.immext)
6094 {
6095 dest = i.operands - 2;
6096 gas_assert (dest == 3);
6097 }
6098 else
6099 dest = i.operands - 1;
6100 nds = dest - 1;
6101
6102 /* There are 2 kinds of instructions:
6103 1. 5 operands: 4 register operands or 3 register operands
6104 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6105 VexW0 or VexW1. The destination must be either XMM, YMM or
6106 ZMM register.
6107 2. 4 operands: 4 register operands or 3 register operands
6108 plus 1 memory operand, VexXDS, and VexImmExt */
6109 gas_assert ((i.reg_operands == 4
6110 || (i.reg_operands == 3 && i.mem_operands == 1))
6111 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6112 && (i.tm.opcode_modifier.veximmext
6113 || (i.imm_operands == 1
6114 && i.types[0].bitfield.vec_imm4
6115 && (i.tm.opcode_modifier.vexw == VEXW0
6116 || i.tm.opcode_modifier.vexw == VEXW1)
6117 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6118 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6119 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6120
6121 if (i.imm_operands == 0)
6122 {
6123 /* When there is no immediate operand, generate an 8bit
6124 immediate operand to encode the first operand. */
6125 exp = &im_expressions[i.imm_operands++];
6126 i.op[i.operands].imms = exp;
6127 i.types[i.operands] = imm8;
6128 i.operands++;
6129 /* If VexW1 is set, the first operand is the source and
6130 the second operand is encoded in the immediate operand. */
6131 if (i.tm.opcode_modifier.vexw == VEXW1)
6132 {
6133 source = 0;
6134 reg_slot = 1;
6135 }
6136 else
6137 {
6138 source = 1;
6139 reg_slot = 0;
6140 }
6141
6142 /* FMA swaps REG and NDS. */
6143 if (i.tm.cpu_flags.bitfield.cpufma)
6144 {
6145 unsigned int tmp;
6146 tmp = reg_slot;
6147 reg_slot = nds;
6148 nds = tmp;
6149 }
6150
6151 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6152 &regxmm)
6153 || operand_type_equal (&i.tm.operand_types[reg_slot],
6154 &regymm)
6155 || operand_type_equal (&i.tm.operand_types[reg_slot],
6156 &regzmm));
6157 exp->X_op = O_constant;
6158 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6159 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6160 }
6161 else
6162 {
6163 unsigned int imm_slot;
6164
6165 if (i.tm.opcode_modifier.vexw == VEXW0)
6166 {
6167 /* If VexW0 is set, the third operand is the source and
6168 the second operand is encoded in the immediate
6169 operand. */
6170 source = 2;
6171 reg_slot = 1;
6172 }
6173 else
6174 {
6175 /* VexW1 is set, the second operand is the source and
6176 the third operand is encoded in the immediate
6177 operand. */
6178 source = 1;
6179 reg_slot = 2;
6180 }
6181
6182 if (i.tm.opcode_modifier.immext)
6183 {
6184 /* When ImmExt is set, the immdiate byte is the last
6185 operand. */
6186 imm_slot = i.operands - 1;
6187 source--;
6188 reg_slot--;
6189 }
6190 else
6191 {
6192 imm_slot = 0;
6193
6194 /* Turn on Imm8 so that output_imm will generate it. */
6195 i.types[imm_slot].bitfield.imm8 = 1;
6196 }
6197
6198 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6199 &regxmm)
6200 || operand_type_equal (&i.tm.operand_types[reg_slot],
6201 &regymm)
6202 || operand_type_equal (&i.tm.operand_types[reg_slot],
6203 &regzmm));
6204 i.op[imm_slot].imms->X_add_number
6205 |= register_number (i.op[reg_slot].regs) << 4;
6206 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6207 }
6208
6209 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6210 || operand_type_equal (&i.tm.operand_types[nds],
6211 &regymm)
6212 || operand_type_equal (&i.tm.operand_types[nds],
6213 &regzmm));
6214 i.vex.register_specifier = i.op[nds].regs;
6215 }
6216 else
6217 source = dest = 0;
6218
6219 /* i.reg_operands MUST be the number of real register operands;
6220 implicit registers do not count. If there are 3 register
6221 operands, it must be a instruction with VexNDS. For a
6222 instruction with VexNDD, the destination register is encoded
6223 in VEX prefix. If there are 4 register operands, it must be
6224 a instruction with VEX prefix and 3 sources. */
6225 if (i.mem_operands == 0
6226 && ((i.reg_operands == 2
6227 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6228 || (i.reg_operands == 3
6229 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6230 || (i.reg_operands == 4 && vex_3_sources)))
6231 {
6232 switch (i.operands)
6233 {
6234 case 2:
6235 source = 0;
6236 break;
6237 case 3:
6238 /* When there are 3 operands, one of them may be immediate,
6239 which may be the first or the last operand. Otherwise,
6240 the first operand must be shift count register (cl) or it
6241 is an instruction with VexNDS. */
6242 gas_assert (i.imm_operands == 1
6243 || (i.imm_operands == 0
6244 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6245 || i.types[0].bitfield.shiftcount)));
6246 if (operand_type_check (i.types[0], imm)
6247 || i.types[0].bitfield.shiftcount)
6248 source = 1;
6249 else
6250 source = 0;
6251 break;
6252 case 4:
6253 /* When there are 4 operands, the first two must be 8bit
6254 immediate operands. The source operand will be the 3rd
6255 one.
6256
6257 For instructions with VexNDS, if the first operand
6258 an imm8, the source operand is the 2nd one. If the last
6259 operand is imm8, the source operand is the first one. */
6260 gas_assert ((i.imm_operands == 2
6261 && i.types[0].bitfield.imm8
6262 && i.types[1].bitfield.imm8)
6263 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6264 && i.imm_operands == 1
6265 && (i.types[0].bitfield.imm8
6266 || i.types[i.operands - 1].bitfield.imm8
6267 || i.rounding)));
6268 if (i.imm_operands == 2)
6269 source = 2;
6270 else
6271 {
6272 if (i.types[0].bitfield.imm8)
6273 source = 1;
6274 else
6275 source = 0;
6276 }
6277 break;
6278 case 5:
6279 if (i.tm.opcode_modifier.evex)
6280 {
6281 /* For EVEX instructions, when there are 5 operands, the
6282 first one must be immediate operand. If the second one
6283 is immediate operand, the source operand is the 3th
6284 one. If the last one is immediate operand, the source
6285 operand is the 2nd one. */
6286 gas_assert (i.imm_operands == 2
6287 && i.tm.opcode_modifier.sae
6288 && operand_type_check (i.types[0], imm));
6289 if (operand_type_check (i.types[1], imm))
6290 source = 2;
6291 else if (operand_type_check (i.types[4], imm))
6292 source = 1;
6293 else
6294 abort ();
6295 }
6296 break;
6297 default:
6298 abort ();
6299 }
6300
6301 if (!vex_3_sources)
6302 {
6303 dest = source + 1;
6304
6305 /* RC/SAE operand could be between DEST and SRC. That happens
6306 when one operand is GPR and the other one is XMM/YMM/ZMM
6307 register. */
6308 if (i.rounding && i.rounding->operand == (int) dest)
6309 dest++;
6310
6311 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6312 {
6313 /* For instructions with VexNDS, the register-only source
6314 operand must be 32/64bit integer, XMM, YMM or ZMM
6315 register. It is encoded in VEX prefix. We need to
6316 clear RegMem bit before calling operand_type_equal. */
6317
6318 i386_operand_type op;
6319 unsigned int vvvv;
6320
6321 /* Check register-only source operand when two source
6322 operands are swapped. */
6323 if (!i.tm.operand_types[source].bitfield.baseindex
6324 && i.tm.operand_types[dest].bitfield.baseindex)
6325 {
6326 vvvv = source;
6327 source = dest;
6328 }
6329 else
6330 vvvv = dest;
6331
6332 op = i.tm.operand_types[vvvv];
6333 op.bitfield.regmem = 0;
6334 if ((dest + 1) >= i.operands
6335 || (!op.bitfield.reg32
6336 && op.bitfield.reg64
6337 && !operand_type_equal (&op, &regxmm)
6338 && !operand_type_equal (&op, &regymm)
6339 && !operand_type_equal (&op, &regzmm)
6340 && !operand_type_equal (&op, &regmask)))
6341 abort ();
6342 i.vex.register_specifier = i.op[vvvv].regs;
6343 dest++;
6344 }
6345 }
6346
6347 i.rm.mode = 3;
6348 /* One of the register operands will be encoded in the i.tm.reg
6349 field, the other in the combined i.tm.mode and i.tm.regmem
6350 fields. If no form of this instruction supports a memory
6351 destination operand, then we assume the source operand may
6352 sometimes be a memory operand and so we need to store the
6353 destination in the i.rm.reg field. */
6354 if (!i.tm.operand_types[dest].bitfield.regmem
6355 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6356 {
6357 i.rm.reg = i.op[dest].regs->reg_num;
6358 i.rm.regmem = i.op[source].regs->reg_num;
6359 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6360 i.rex |= REX_R;
6361 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6362 i.vrex |= REX_R;
6363 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6364 i.rex |= REX_B;
6365 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6366 i.vrex |= REX_B;
6367 }
6368 else
6369 {
6370 i.rm.reg = i.op[source].regs->reg_num;
6371 i.rm.regmem = i.op[dest].regs->reg_num;
6372 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6373 i.rex |= REX_B;
6374 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6375 i.vrex |= REX_B;
6376 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6377 i.rex |= REX_R;
6378 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6379 i.vrex |= REX_R;
6380 }
6381 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6382 {
6383 if (!i.types[0].bitfield.control
6384 && !i.types[1].bitfield.control)
6385 abort ();
6386 i.rex &= ~(REX_R | REX_B);
6387 add_prefix (LOCK_PREFIX_OPCODE);
6388 }
6389 }
6390 else
6391 { /* If it's not 2 reg operands... */
6392 unsigned int mem;
6393
6394 if (i.mem_operands)
6395 {
6396 unsigned int fake_zero_displacement = 0;
6397 unsigned int op;
6398
6399 for (op = 0; op < i.operands; op++)
6400 if (operand_type_check (i.types[op], anymem))
6401 break;
6402 gas_assert (op < i.operands);
6403
6404 if (i.tm.opcode_modifier.vecsib)
6405 {
6406 if (i.index_reg->reg_num == RegEiz
6407 || i.index_reg->reg_num == RegRiz)
6408 abort ();
6409
6410 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6411 if (!i.base_reg)
6412 {
6413 i.sib.base = NO_BASE_REGISTER;
6414 i.sib.scale = i.log2_scale_factor;
6415 /* No Vec_Disp8 if there is no base. */
6416 i.types[op].bitfield.vec_disp8 = 0;
6417 i.types[op].bitfield.disp8 = 0;
6418 i.types[op].bitfield.disp16 = 0;
6419 i.types[op].bitfield.disp64 = 0;
6420 if (flag_code != CODE_64BIT)
6421 {
6422 /* Must be 32 bit */
6423 i.types[op].bitfield.disp32 = 1;
6424 i.types[op].bitfield.disp32s = 0;
6425 }
6426 else
6427 {
6428 i.types[op].bitfield.disp32 = 0;
6429 i.types[op].bitfield.disp32s = 1;
6430 }
6431 }
6432 i.sib.index = i.index_reg->reg_num;
6433 if ((i.index_reg->reg_flags & RegRex) != 0)
6434 i.rex |= REX_X;
6435 if ((i.index_reg->reg_flags & RegVRex) != 0)
6436 i.vrex |= REX_X;
6437 }
6438
6439 default_seg = &ds;
6440
6441 if (i.base_reg == 0)
6442 {
6443 i.rm.mode = 0;
6444 if (!i.disp_operands)
6445 {
6446 fake_zero_displacement = 1;
6447 /* Instructions with VSIB byte need 32bit displacement
6448 if there is no base register. */
6449 if (i.tm.opcode_modifier.vecsib)
6450 i.types[op].bitfield.disp32 = 1;
6451 }
6452 if (i.index_reg == 0)
6453 {
6454 gas_assert (!i.tm.opcode_modifier.vecsib);
6455 /* Operand is just <disp> */
6456 if (flag_code == CODE_64BIT)
6457 {
6458 /* 64bit mode overwrites the 32bit absolute
6459 addressing by RIP relative addressing and
6460 absolute addressing is encoded by one of the
6461 redundant SIB forms. */
6462 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6463 i.sib.base = NO_BASE_REGISTER;
6464 i.sib.index = NO_INDEX_REGISTER;
6465 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6466 ? disp32s : disp32);
6467 }
6468 else if ((flag_code == CODE_16BIT)
6469 ^ (i.prefix[ADDR_PREFIX] != 0))
6470 {
6471 i.rm.regmem = NO_BASE_REGISTER_16;
6472 i.types[op] = disp16;
6473 }
6474 else
6475 {
6476 i.rm.regmem = NO_BASE_REGISTER;
6477 i.types[op] = disp32;
6478 }
6479 }
6480 else if (!i.tm.opcode_modifier.vecsib)
6481 {
6482 /* !i.base_reg && i.index_reg */
6483 if (i.index_reg->reg_num == RegEiz
6484 || i.index_reg->reg_num == RegRiz)
6485 i.sib.index = NO_INDEX_REGISTER;
6486 else
6487 i.sib.index = i.index_reg->reg_num;
6488 i.sib.base = NO_BASE_REGISTER;
6489 i.sib.scale = i.log2_scale_factor;
6490 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6491 /* No Vec_Disp8 if there is no base. */
6492 i.types[op].bitfield.vec_disp8 = 0;
6493 i.types[op].bitfield.disp8 = 0;
6494 i.types[op].bitfield.disp16 = 0;
6495 i.types[op].bitfield.disp64 = 0;
6496 if (flag_code != CODE_64BIT)
6497 {
6498 /* Must be 32 bit */
6499 i.types[op].bitfield.disp32 = 1;
6500 i.types[op].bitfield.disp32s = 0;
6501 }
6502 else
6503 {
6504 i.types[op].bitfield.disp32 = 0;
6505 i.types[op].bitfield.disp32s = 1;
6506 }
6507 if ((i.index_reg->reg_flags & RegRex) != 0)
6508 i.rex |= REX_X;
6509 }
6510 }
6511 /* RIP addressing for 64bit mode. */
6512 else if (i.base_reg->reg_num == RegRip ||
6513 i.base_reg->reg_num == RegEip)
6514 {
6515 gas_assert (!i.tm.opcode_modifier.vecsib);
6516 i.rm.regmem = NO_BASE_REGISTER;
6517 i.types[op].bitfield.disp8 = 0;
6518 i.types[op].bitfield.disp16 = 0;
6519 i.types[op].bitfield.disp32 = 0;
6520 i.types[op].bitfield.disp32s = 1;
6521 i.types[op].bitfield.disp64 = 0;
6522 i.types[op].bitfield.vec_disp8 = 0;
6523 i.flags[op] |= Operand_PCrel;
6524 if (! i.disp_operands)
6525 fake_zero_displacement = 1;
6526 }
6527 else if (i.base_reg->reg_type.bitfield.reg16)
6528 {
6529 gas_assert (!i.tm.opcode_modifier.vecsib);
6530 switch (i.base_reg->reg_num)
6531 {
6532 case 3: /* (%bx) */
6533 if (i.index_reg == 0)
6534 i.rm.regmem = 7;
6535 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6536 i.rm.regmem = i.index_reg->reg_num - 6;
6537 break;
6538 case 5: /* (%bp) */
6539 default_seg = &ss;
6540 if (i.index_reg == 0)
6541 {
6542 i.rm.regmem = 6;
6543 if (operand_type_check (i.types[op], disp) == 0)
6544 {
6545 /* fake (%bp) into 0(%bp) */
6546 if (i.tm.operand_types[op].bitfield.vec_disp8)
6547 i.types[op].bitfield.vec_disp8 = 1;
6548 else
6549 i.types[op].bitfield.disp8 = 1;
6550 fake_zero_displacement = 1;
6551 }
6552 }
6553 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6554 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6555 break;
6556 default: /* (%si) -> 4 or (%di) -> 5 */
6557 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6558 }
6559 i.rm.mode = mode_from_disp_size (i.types[op]);
6560 }
6561 else /* i.base_reg and 32/64 bit mode */
6562 {
6563 if (flag_code == CODE_64BIT
6564 && operand_type_check (i.types[op], disp))
6565 {
6566 i386_operand_type temp;
6567 operand_type_set (&temp, 0);
6568 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6569 temp.bitfield.vec_disp8
6570 = i.types[op].bitfield.vec_disp8;
6571 i.types[op] = temp;
6572 if (i.prefix[ADDR_PREFIX] == 0)
6573 i.types[op].bitfield.disp32s = 1;
6574 else
6575 i.types[op].bitfield.disp32 = 1;
6576 }
6577
6578 if (!i.tm.opcode_modifier.vecsib)
6579 i.rm.regmem = i.base_reg->reg_num;
6580 if ((i.base_reg->reg_flags & RegRex) != 0)
6581 i.rex |= REX_B;
6582 i.sib.base = i.base_reg->reg_num;
6583 /* x86-64 ignores REX prefix bit here to avoid decoder
6584 complications. */
6585 if (!(i.base_reg->reg_flags & RegRex)
6586 && (i.base_reg->reg_num == EBP_REG_NUM
6587 || i.base_reg->reg_num == ESP_REG_NUM))
6588 default_seg = &ss;
6589 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6590 {
6591 fake_zero_displacement = 1;
6592 if (i.tm.operand_types [op].bitfield.vec_disp8)
6593 i.types[op].bitfield.vec_disp8 = 1;
6594 else
6595 i.types[op].bitfield.disp8 = 1;
6596 }
6597 i.sib.scale = i.log2_scale_factor;
6598 if (i.index_reg == 0)
6599 {
6600 gas_assert (!i.tm.opcode_modifier.vecsib);
6601 /* <disp>(%esp) becomes two byte modrm with no index
6602 register. We've already stored the code for esp
6603 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6604 Any base register besides %esp will not use the
6605 extra modrm byte. */
6606 i.sib.index = NO_INDEX_REGISTER;
6607 }
6608 else if (!i.tm.opcode_modifier.vecsib)
6609 {
6610 if (i.index_reg->reg_num == RegEiz
6611 || i.index_reg->reg_num == RegRiz)
6612 i.sib.index = NO_INDEX_REGISTER;
6613 else
6614 i.sib.index = i.index_reg->reg_num;
6615 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6616 if ((i.index_reg->reg_flags & RegRex) != 0)
6617 i.rex |= REX_X;
6618 }
6619
6620 if (i.disp_operands
6621 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6622 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6623 i.rm.mode = 0;
6624 else
6625 {
6626 if (!fake_zero_displacement
6627 && !i.disp_operands
6628 && i.disp_encoding)
6629 {
6630 fake_zero_displacement = 1;
6631 if (i.disp_encoding == disp_encoding_8bit)
6632 i.types[op].bitfield.disp8 = 1;
6633 else
6634 i.types[op].bitfield.disp32 = 1;
6635 }
6636 i.rm.mode = mode_from_disp_size (i.types[op]);
6637 }
6638 }
6639
6640 if (fake_zero_displacement)
6641 {
6642 /* Fakes a zero displacement assuming that i.types[op]
6643 holds the correct displacement size. */
6644 expressionS *exp;
6645
6646 gas_assert (i.op[op].disps == 0);
6647 exp = &disp_expressions[i.disp_operands++];
6648 i.op[op].disps = exp;
6649 exp->X_op = O_constant;
6650 exp->X_add_number = 0;
6651 exp->X_add_symbol = (symbolS *) 0;
6652 exp->X_op_symbol = (symbolS *) 0;
6653 }
6654
6655 mem = op;
6656 }
6657 else
6658 mem = ~0;
6659
6660 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6661 {
6662 if (operand_type_check (i.types[0], imm))
6663 i.vex.register_specifier = NULL;
6664 else
6665 {
6666 /* VEX.vvvv encodes one of the sources when the first
6667 operand is not an immediate. */
6668 if (i.tm.opcode_modifier.vexw == VEXW0)
6669 i.vex.register_specifier = i.op[0].regs;
6670 else
6671 i.vex.register_specifier = i.op[1].regs;
6672 }
6673
6674 /* Destination is a XMM register encoded in the ModRM.reg
6675 and VEX.R bit. */
6676 i.rm.reg = i.op[2].regs->reg_num;
6677 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6678 i.rex |= REX_R;
6679
6680 /* ModRM.rm and VEX.B encodes the other source. */
6681 if (!i.mem_operands)
6682 {
6683 i.rm.mode = 3;
6684
6685 if (i.tm.opcode_modifier.vexw == VEXW0)
6686 i.rm.regmem = i.op[1].regs->reg_num;
6687 else
6688 i.rm.regmem = i.op[0].regs->reg_num;
6689
6690 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6691 i.rex |= REX_B;
6692 }
6693 }
6694 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6695 {
6696 i.vex.register_specifier = i.op[2].regs;
6697 if (!i.mem_operands)
6698 {
6699 i.rm.mode = 3;
6700 i.rm.regmem = i.op[1].regs->reg_num;
6701 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6702 i.rex |= REX_B;
6703 }
6704 }
6705 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6706 (if any) based on i.tm.extension_opcode. Again, we must be
6707 careful to make sure that segment/control/debug/test/MMX
6708 registers are coded into the i.rm.reg field. */
6709 else if (i.reg_operands)
6710 {
6711 unsigned int op;
6712 unsigned int vex_reg = ~0;
6713
6714 for (op = 0; op < i.operands; op++)
6715 if (i.types[op].bitfield.reg8
6716 || i.types[op].bitfield.reg16
6717 || i.types[op].bitfield.reg32
6718 || i.types[op].bitfield.reg64
6719 || i.types[op].bitfield.regmmx
6720 || i.types[op].bitfield.regxmm
6721 || i.types[op].bitfield.regymm
6722 || i.types[op].bitfield.regbnd
6723 || i.types[op].bitfield.regzmm
6724 || i.types[op].bitfield.regmask
6725 || i.types[op].bitfield.sreg2
6726 || i.types[op].bitfield.sreg3
6727 || i.types[op].bitfield.control
6728 || i.types[op].bitfield.debug
6729 || i.types[op].bitfield.test)
6730 break;
6731
6732 if (vex_3_sources)
6733 op = dest;
6734 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6735 {
6736 /* For instructions with VexNDS, the register-only
6737 source operand is encoded in VEX prefix. */
6738 gas_assert (mem != (unsigned int) ~0);
6739
6740 if (op > mem)
6741 {
6742 vex_reg = op++;
6743 gas_assert (op < i.operands);
6744 }
6745 else
6746 {
6747 /* Check register-only source operand when two source
6748 operands are swapped. */
6749 if (!i.tm.operand_types[op].bitfield.baseindex
6750 && i.tm.operand_types[op + 1].bitfield.baseindex)
6751 {
6752 vex_reg = op;
6753 op += 2;
6754 gas_assert (mem == (vex_reg + 1)
6755 && op < i.operands);
6756 }
6757 else
6758 {
6759 vex_reg = op + 1;
6760 gas_assert (vex_reg < i.operands);
6761 }
6762 }
6763 }
6764 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6765 {
6766 /* For instructions with VexNDD, the register destination
6767 is encoded in VEX prefix. */
6768 if (i.mem_operands == 0)
6769 {
6770 /* There is no memory operand. */
6771 gas_assert ((op + 2) == i.operands);
6772 vex_reg = op + 1;
6773 }
6774 else
6775 {
6776 /* There are only 2 operands. */
6777 gas_assert (op < 2 && i.operands == 2);
6778 vex_reg = 1;
6779 }
6780 }
6781 else
6782 gas_assert (op < i.operands);
6783
6784 if (vex_reg != (unsigned int) ~0)
6785 {
6786 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6787
6788 if (type->bitfield.reg32 != 1
6789 && type->bitfield.reg64 != 1
6790 && !operand_type_equal (type, &regxmm)
6791 && !operand_type_equal (type, &regymm)
6792 && !operand_type_equal (type, &regzmm)
6793 && !operand_type_equal (type, &regmask))
6794 abort ();
6795
6796 i.vex.register_specifier = i.op[vex_reg].regs;
6797 }
6798
6799 /* Don't set OP operand twice. */
6800 if (vex_reg != op)
6801 {
6802 /* If there is an extension opcode to put here, the
6803 register number must be put into the regmem field. */
6804 if (i.tm.extension_opcode != None)
6805 {
6806 i.rm.regmem = i.op[op].regs->reg_num;
6807 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6808 i.rex |= REX_B;
6809 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6810 i.vrex |= REX_B;
6811 }
6812 else
6813 {
6814 i.rm.reg = i.op[op].regs->reg_num;
6815 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6816 i.rex |= REX_R;
6817 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6818 i.vrex |= REX_R;
6819 }
6820 }
6821
6822 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6823 must set it to 3 to indicate this is a register operand
6824 in the regmem field. */
6825 if (!i.mem_operands)
6826 i.rm.mode = 3;
6827 }
6828
6829 /* Fill in i.rm.reg field with extension opcode (if any). */
6830 if (i.tm.extension_opcode != None)
6831 i.rm.reg = i.tm.extension_opcode;
6832 }
6833 return default_seg;
6834}
6835
6836static void
6837output_branch (void)
6838{
6839 char *p;
6840 int size;
6841 int code16;
6842 int prefix;
6843 relax_substateT subtype;
6844 symbolS *sym;
6845 offsetT off;
6846
6847 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6848 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6849
6850 prefix = 0;
6851 if (i.prefix[DATA_PREFIX] != 0)
6852 {
6853 prefix = 1;
6854 i.prefixes -= 1;
6855 code16 ^= CODE16;
6856 }
6857 /* Pentium4 branch hints. */
6858 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6859 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6860 {
6861 prefix++;
6862 i.prefixes--;
6863 }
6864 if (i.prefix[REX_PREFIX] != 0)
6865 {
6866 prefix++;
6867 i.prefixes--;
6868 }
6869
6870 /* BND prefixed jump. */
6871 if (i.prefix[BND_PREFIX] != 0)
6872 {
6873 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6874 i.prefixes -= 1;
6875 }
6876
6877 if (i.prefixes != 0 && !intel_syntax)
6878 as_warn (_("skipping prefixes on this instruction"));
6879
6880 /* It's always a symbol; End frag & setup for relax.
6881 Make sure there is enough room in this frag for the largest
6882 instruction we may generate in md_convert_frag. This is 2
6883 bytes for the opcode and room for the prefix and largest
6884 displacement. */
6885 frag_grow (prefix + 2 + 4);
6886 /* Prefix and 1 opcode byte go in fr_fix. */
6887 p = frag_more (prefix + 1);
6888 if (i.prefix[DATA_PREFIX] != 0)
6889 *p++ = DATA_PREFIX_OPCODE;
6890 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6891 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6892 *p++ = i.prefix[SEG_PREFIX];
6893 if (i.prefix[REX_PREFIX] != 0)
6894 *p++ = i.prefix[REX_PREFIX];
6895 *p = i.tm.base_opcode;
6896
6897 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6898 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6899 else if (cpu_arch_flags.bitfield.cpui386)
6900 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6901 else
6902 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6903 subtype |= code16;
6904
6905 sym = i.op[0].disps->X_add_symbol;
6906 off = i.op[0].disps->X_add_number;
6907
6908 if (i.op[0].disps->X_op != O_constant
6909 && i.op[0].disps->X_op != O_symbol)
6910 {
6911 /* Handle complex expressions. */
6912 sym = make_expr_symbol (i.op[0].disps);
6913 off = 0;
6914 }
6915
6916 /* 1 possible extra opcode + 4 byte displacement go in var part.
6917 Pass reloc in fr_var. */
6918 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6919}
6920
6921static void
6922output_jump (void)
6923{
6924 char *p;
6925 int size;
6926 fixS *fixP;
6927
6928 if (i.tm.opcode_modifier.jumpbyte)
6929 {
6930 /* This is a loop or jecxz type instruction. */
6931 size = 1;
6932 if (i.prefix[ADDR_PREFIX] != 0)
6933 {
6934 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6935 i.prefixes -= 1;
6936 }
6937 /* Pentium4 branch hints. */
6938 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6939 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6940 {
6941 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6942 i.prefixes--;
6943 }
6944 }
6945 else
6946 {
6947 int code16;
6948
6949 code16 = 0;
6950 if (flag_code == CODE_16BIT)
6951 code16 = CODE16;
6952
6953 if (i.prefix[DATA_PREFIX] != 0)
6954 {
6955 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6956 i.prefixes -= 1;
6957 code16 ^= CODE16;
6958 }
6959
6960 size = 4;
6961 if (code16)
6962 size = 2;
6963 }
6964
6965 if (i.prefix[REX_PREFIX] != 0)
6966 {
6967 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6968 i.prefixes -= 1;
6969 }
6970
6971 /* BND prefixed jump. */
6972 if (i.prefix[BND_PREFIX] != 0)
6973 {
6974 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6975 i.prefixes -= 1;
6976 }
6977
6978 if (i.prefixes != 0 && !intel_syntax)
6979 as_warn (_("skipping prefixes on this instruction"));
6980
6981 p = frag_more (i.tm.opcode_length + size);
6982 switch (i.tm.opcode_length)
6983 {
6984 case 2:
6985 *p++ = i.tm.base_opcode >> 8;
6986 /* Fall through. */
6987 case 1:
6988 *p++ = i.tm.base_opcode;
6989 break;
6990 default:
6991 abort ();
6992 }
6993
6994 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6995 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6996
6997 /* All jumps handled here are signed, but don't use a signed limit
6998 check for 32 and 16 bit jumps as we want to allow wrap around at
6999 4G and 64k respectively. */
7000 if (size == 1)
7001 fixP->fx_signed = 1;
7002}
7003
7004static void
7005output_interseg_jump (void)
7006{
7007 char *p;
7008 int size;
7009 int prefix;
7010 int code16;
7011
7012 code16 = 0;
7013 if (flag_code == CODE_16BIT)
7014 code16 = CODE16;
7015
7016 prefix = 0;
7017 if (i.prefix[DATA_PREFIX] != 0)
7018 {
7019 prefix = 1;
7020 i.prefixes -= 1;
7021 code16 ^= CODE16;
7022 }
7023 if (i.prefix[REX_PREFIX] != 0)
7024 {
7025 prefix++;
7026 i.prefixes -= 1;
7027 }
7028
7029 size = 4;
7030 if (code16)
7031 size = 2;
7032
7033 if (i.prefixes != 0 && !intel_syntax)
7034 as_warn (_("skipping prefixes on this instruction"));
7035
7036 /* 1 opcode; 2 segment; offset */
7037 p = frag_more (prefix + 1 + 2 + size);
7038
7039 if (i.prefix[DATA_PREFIX] != 0)
7040 *p++ = DATA_PREFIX_OPCODE;
7041
7042 if (i.prefix[REX_PREFIX] != 0)
7043 *p++ = i.prefix[REX_PREFIX];
7044
7045 *p++ = i.tm.base_opcode;
7046 if (i.op[1].imms->X_op == O_constant)
7047 {
7048 offsetT n = i.op[1].imms->X_add_number;
7049
7050 if (size == 2
7051 && !fits_in_unsigned_word (n)
7052 && !fits_in_signed_word (n))
7053 {
7054 as_bad (_("16-bit jump out of range"));
7055 return;
7056 }
7057 md_number_to_chars (p, n, size);
7058 }
7059 else
7060 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7061 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7062 if (i.op[0].imms->X_op != O_constant)
7063 as_bad (_("can't handle non absolute segment in `%s'"),
7064 i.tm.name);
7065 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7066}
7067
7068static void
7069output_insn (void)
7070{
7071 fragS *insn_start_frag;
7072 offsetT insn_start_off;
7073
7074 /* Tie dwarf2 debug info to the address at the start of the insn.
7075 We can't do this after the insn has been output as the current
7076 frag may have been closed off. eg. by frag_var. */
7077 dwarf2_emit_insn (0);
7078
7079 insn_start_frag = frag_now;
7080 insn_start_off = frag_now_fix ();
7081
7082 /* Output jumps. */
7083 if (i.tm.opcode_modifier.jump)
7084 output_branch ();
7085 else if (i.tm.opcode_modifier.jumpbyte
7086 || i.tm.opcode_modifier.jumpdword)
7087 output_jump ();
7088 else if (i.tm.opcode_modifier.jumpintersegment)
7089 output_interseg_jump ();
7090 else
7091 {
7092 /* Output normal instructions here. */
7093 char *p;
7094 unsigned char *q;
7095 unsigned int j;
7096 unsigned int prefix;
7097
7098 if (avoid_fence
7099 && i.tm.base_opcode == 0xfae
7100 && i.operands == 1
7101 && i.imm_operands == 1
7102 && (i.op[0].imms->X_add_number == 0xe8
7103 || i.op[0].imms->X_add_number == 0xf0
7104 || i.op[0].imms->X_add_number == 0xf8))
7105 {
7106 /* Encode lfence, mfence, and sfence as
7107 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7108 offsetT val = 0x240483f0ULL;
7109 p = frag_more (5);
7110 md_number_to_chars (p, val, 5);
7111 return;
7112 }
7113
7114 /* Some processors fail on LOCK prefix. This options makes
7115 assembler ignore LOCK prefix and serves as a workaround. */
7116 if (omit_lock_prefix)
7117 {
7118 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7119 return;
7120 i.prefix[LOCK_PREFIX] = 0;
7121 }
7122
7123 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7124 don't need the explicit prefix. */
7125 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7126 {
7127 switch (i.tm.opcode_length)
7128 {
7129 case 3:
7130 if (i.tm.base_opcode & 0xff000000)
7131 {
7132 prefix = (i.tm.base_opcode >> 24) & 0xff;
7133 goto check_prefix;
7134 }
7135 break;
7136 case 2:
7137 if ((i.tm.base_opcode & 0xff0000) != 0)
7138 {
7139 prefix = (i.tm.base_opcode >> 16) & 0xff;
7140 if (i.tm.cpu_flags.bitfield.cpupadlock)
7141 {
7142check_prefix:
7143 if (prefix != REPE_PREFIX_OPCODE
7144 || (i.prefix[REP_PREFIX]
7145 != REPE_PREFIX_OPCODE))
7146 add_prefix (prefix);
7147 }
7148 else
7149 add_prefix (prefix);
7150 }
7151 break;
7152 case 1:
7153 break;
7154 default:
7155 abort ();
7156 }
7157
7158#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7159 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7160 R_X86_64_GOTTPOFF relocation so that linker can safely
7161 perform IE->LE optimization. */
7162 if (x86_elf_abi == X86_64_X32_ABI
7163 && i.operands == 2
7164 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7165 && i.prefix[REX_PREFIX] == 0)
7166 add_prefix (REX_OPCODE);
7167#endif
7168
7169 /* The prefix bytes. */
7170 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7171 if (*q)
7172 FRAG_APPEND_1_CHAR (*q);
7173 }
7174 else
7175 {
7176 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7177 if (*q)
7178 switch (j)
7179 {
7180 case REX_PREFIX:
7181 /* REX byte is encoded in VEX prefix. */
7182 break;
7183 case SEG_PREFIX:
7184 case ADDR_PREFIX:
7185 FRAG_APPEND_1_CHAR (*q);
7186 break;
7187 default:
7188 /* There should be no other prefixes for instructions
7189 with VEX prefix. */
7190 abort ();
7191 }
7192
7193 /* For EVEX instructions i.vrex should become 0 after
7194 build_evex_prefix. For VEX instructions upper 16 registers
7195 aren't available, so VREX should be 0. */
7196 if (i.vrex)
7197 abort ();
7198 /* Now the VEX prefix. */
7199 p = frag_more (i.vex.length);
7200 for (j = 0; j < i.vex.length; j++)
7201 p[j] = i.vex.bytes[j];
7202 }
7203
7204 /* Now the opcode; be careful about word order here! */
7205 if (i.tm.opcode_length == 1)
7206 {
7207 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7208 }
7209 else
7210 {
7211 switch (i.tm.opcode_length)
7212 {
7213 case 4:
7214 p = frag_more (4);
7215 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7216 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7217 break;
7218 case 3:
7219 p = frag_more (3);
7220 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7221 break;
7222 case 2:
7223 p = frag_more (2);
7224 break;
7225 default:
7226 abort ();
7227 break;
7228 }
7229
7230 /* Put out high byte first: can't use md_number_to_chars! */
7231 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7232 *p = i.tm.base_opcode & 0xff;
7233 }
7234
7235 /* Now the modrm byte and sib byte (if present). */
7236 if (i.tm.opcode_modifier.modrm)
7237 {
7238 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7239 | i.rm.reg << 3
7240 | i.rm.mode << 6));
7241 /* If i.rm.regmem == ESP (4)
7242 && i.rm.mode != (Register mode)
7243 && not 16 bit
7244 ==> need second modrm byte. */
7245 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7246 && i.rm.mode != 3
7247 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7248 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7249 | i.sib.index << 3
7250 | i.sib.scale << 6));
7251 }
7252
7253 if (i.disp_operands)
7254 output_disp (insn_start_frag, insn_start_off);
7255
7256 if (i.imm_operands)
7257 output_imm (insn_start_frag, insn_start_off);
7258 }
7259
7260#ifdef DEBUG386
7261 if (flag_debug)
7262 {
7263 pi ("" /*line*/, &i);
7264 }
7265#endif /* DEBUG386 */
7266}
7267
7268/* Return the size of the displacement operand N. */
7269
7270static int
7271disp_size (unsigned int n)
7272{
7273 int size = 4;
7274
7275 /* Vec_Disp8 has to be 8bit. */
7276 if (i.types[n].bitfield.vec_disp8)
7277 size = 1;
7278 else if (i.types[n].bitfield.disp64)
7279 size = 8;
7280 else if (i.types[n].bitfield.disp8)
7281 size = 1;
7282 else if (i.types[n].bitfield.disp16)
7283 size = 2;
7284 return size;
7285}
7286
7287/* Return the size of the immediate operand N. */
7288
7289static int
7290imm_size (unsigned int n)
7291{
7292 int size = 4;
7293 if (i.types[n].bitfield.imm64)
7294 size = 8;
7295 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7296 size = 1;
7297 else if (i.types[n].bitfield.imm16)
7298 size = 2;
7299 return size;
7300}
7301
7302static void
7303output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7304{
7305 char *p;
7306 unsigned int n;
7307
7308 for (n = 0; n < i.operands; n++)
7309 {
7310 if (i.types[n].bitfield.vec_disp8
7311 || operand_type_check (i.types[n], disp))
7312 {
7313 if (i.op[n].disps->X_op == O_constant)
7314 {
7315 int size = disp_size (n);
7316 offsetT val = i.op[n].disps->X_add_number;
7317
7318 if (i.types[n].bitfield.vec_disp8)
7319 val >>= i.memshift;
7320 val = offset_in_range (val, size);
7321 p = frag_more (size);
7322 md_number_to_chars (p, val, size);
7323 }
7324 else
7325 {
7326 enum bfd_reloc_code_real reloc_type;
7327 int size = disp_size (n);
7328 int sign = i.types[n].bitfield.disp32s;
7329 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7330 fixS *fixP;
7331
7332 /* We can't have 8 bit displacement here. */
7333 gas_assert (!i.types[n].bitfield.disp8);
7334
7335 /* The PC relative address is computed relative
7336 to the instruction boundary, so in case immediate
7337 fields follows, we need to adjust the value. */
7338 if (pcrel && i.imm_operands)
7339 {
7340 unsigned int n1;
7341 int sz = 0;
7342
7343 for (n1 = 0; n1 < i.operands; n1++)
7344 if (operand_type_check (i.types[n1], imm))
7345 {
7346 /* Only one immediate is allowed for PC
7347 relative address. */
7348 gas_assert (sz == 0);
7349 sz = imm_size (n1);
7350 i.op[n].disps->X_add_number -= sz;
7351 }
7352 /* We should find the immediate. */
7353 gas_assert (sz != 0);
7354 }
7355
7356 p = frag_more (size);
7357 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7358 if (GOT_symbol
7359 && GOT_symbol == i.op[n].disps->X_add_symbol
7360 && (((reloc_type == BFD_RELOC_32
7361 || reloc_type == BFD_RELOC_X86_64_32S
7362 || (reloc_type == BFD_RELOC_64
7363 && object_64bit))
7364 && (i.op[n].disps->X_op == O_symbol
7365 || (i.op[n].disps->X_op == O_add
7366 && ((symbol_get_value_expression
7367 (i.op[n].disps->X_op_symbol)->X_op)
7368 == O_subtract))))
7369 || reloc_type == BFD_RELOC_32_PCREL))
7370 {
7371 offsetT add;
7372
7373 if (insn_start_frag == frag_now)
7374 add = (p - frag_now->fr_literal) - insn_start_off;
7375 else
7376 {
7377 fragS *fr;
7378
7379 add = insn_start_frag->fr_fix - insn_start_off;
7380 for (fr = insn_start_frag->fr_next;
7381 fr && fr != frag_now; fr = fr->fr_next)
7382 add += fr->fr_fix;
7383 add += p - frag_now->fr_literal;
7384 }
7385
7386 if (!object_64bit)
7387 {
7388 reloc_type = BFD_RELOC_386_GOTPC;
7389 i.op[n].imms->X_add_number += add;
7390 }
7391 else if (reloc_type == BFD_RELOC_64)
7392 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7393 else
7394 /* Don't do the adjustment for x86-64, as there
7395 the pcrel addressing is relative to the _next_
7396 insn, and that is taken care of in other code. */
7397 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7398 }
7399 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7400 size, i.op[n].disps, pcrel,
7401 reloc_type);
7402 /* Check for "call/jmp *mem", "mov mem, %reg",
7403 "test %reg, mem" and "binop mem, %reg" where binop
7404 is one of adc, add, and, cmp, or, sbb, sub, xor
7405 instructions. Always generate R_386_GOT32X for
7406 "sym*GOT" operand in 32-bit mode. */
7407 if ((generate_relax_relocations
7408 || (!object_64bit
7409 && i.rm.mode == 0
7410 && i.rm.regmem == 5))
7411 && (i.rm.mode == 2
7412 || (i.rm.mode == 0 && i.rm.regmem == 5))
7413 && ((i.operands == 1
7414 && i.tm.base_opcode == 0xff
7415 && (i.rm.reg == 2 || i.rm.reg == 4))
7416 || (i.operands == 2
7417 && (i.tm.base_opcode == 0x8b
7418 || i.tm.base_opcode == 0x85
7419 || (i.tm.base_opcode & 0xc7) == 0x03))))
7420 {
7421 if (object_64bit)
7422 {
7423 fixP->fx_tcbit = i.rex != 0;
7424 if (i.base_reg
7425 && (i.base_reg->reg_num == RegRip
7426 || i.base_reg->reg_num == RegEip))
7427 fixP->fx_tcbit2 = 1;
7428 }
7429 else
7430 fixP->fx_tcbit2 = 1;
7431 }
7432 }
7433 }
7434 }
7435}
7436
7437static void
7438output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7439{
7440 char *p;
7441 unsigned int n;
7442
7443 for (n = 0; n < i.operands; n++)
7444 {
7445 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7446 if (i.rounding && (int) n == i.rounding->operand)
7447 continue;
7448
7449 if (operand_type_check (i.types[n], imm))
7450 {
7451 if (i.op[n].imms->X_op == O_constant)
7452 {
7453 int size = imm_size (n);
7454 offsetT val;
7455
7456 val = offset_in_range (i.op[n].imms->X_add_number,
7457 size);
7458 p = frag_more (size);
7459 md_number_to_chars (p, val, size);
7460 }
7461 else
7462 {
7463 /* Not absolute_section.
7464 Need a 32-bit fixup (don't support 8bit
7465 non-absolute imms). Try to support other
7466 sizes ... */
7467 enum bfd_reloc_code_real reloc_type;
7468 int size = imm_size (n);
7469 int sign;
7470
7471 if (i.types[n].bitfield.imm32s
7472 && (i.suffix == QWORD_MNEM_SUFFIX
7473 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7474 sign = 1;
7475 else
7476 sign = 0;
7477
7478 p = frag_more (size);
7479 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7480
7481 /* This is tough to explain. We end up with this one if we
7482 * have operands that look like
7483 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7484 * obtain the absolute address of the GOT, and it is strongly
7485 * preferable from a performance point of view to avoid using
7486 * a runtime relocation for this. The actual sequence of
7487 * instructions often look something like:
7488 *
7489 * call .L66
7490 * .L66:
7491 * popl %ebx
7492 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7493 *
7494 * The call and pop essentially return the absolute address
7495 * of the label .L66 and store it in %ebx. The linker itself
7496 * will ultimately change the first operand of the addl so
7497 * that %ebx points to the GOT, but to keep things simple, the
7498 * .o file must have this operand set so that it generates not
7499 * the absolute address of .L66, but the absolute address of
7500 * itself. This allows the linker itself simply treat a GOTPC
7501 * relocation as asking for a pcrel offset to the GOT to be
7502 * added in, and the addend of the relocation is stored in the
7503 * operand field for the instruction itself.
7504 *
7505 * Our job here is to fix the operand so that it would add
7506 * the correct offset so that %ebx would point to itself. The
7507 * thing that is tricky is that .-.L66 will point to the
7508 * beginning of the instruction, so we need to further modify
7509 * the operand so that it will point to itself. There are
7510 * other cases where you have something like:
7511 *
7512 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7513 *
7514 * and here no correction would be required. Internally in
7515 * the assembler we treat operands of this form as not being
7516 * pcrel since the '.' is explicitly mentioned, and I wonder
7517 * whether it would simplify matters to do it this way. Who
7518 * knows. In earlier versions of the PIC patches, the
7519 * pcrel_adjust field was used to store the correction, but
7520 * since the expression is not pcrel, I felt it would be
7521 * confusing to do it this way. */
7522
7523 if ((reloc_type == BFD_RELOC_32
7524 || reloc_type == BFD_RELOC_X86_64_32S
7525 || reloc_type == BFD_RELOC_64)
7526 && GOT_symbol
7527 && GOT_symbol == i.op[n].imms->X_add_symbol
7528 && (i.op[n].imms->X_op == O_symbol
7529 || (i.op[n].imms->X_op == O_add
7530 && ((symbol_get_value_expression
7531 (i.op[n].imms->X_op_symbol)->X_op)
7532 == O_subtract))))
7533 {
7534 offsetT add;
7535
7536 if (insn_start_frag == frag_now)
7537 add = (p - frag_now->fr_literal) - insn_start_off;
7538 else
7539 {
7540 fragS *fr;
7541
7542 add = insn_start_frag->fr_fix - insn_start_off;
7543 for (fr = insn_start_frag->fr_next;
7544 fr && fr != frag_now; fr = fr->fr_next)
7545 add += fr->fr_fix;
7546 add += p - frag_now->fr_literal;
7547 }
7548
7549 if (!object_64bit)
7550 reloc_type = BFD_RELOC_386_GOTPC;
7551 else if (size == 4)
7552 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7553 else if (size == 8)
7554 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7555 i.op[n].imms->X_add_number += add;
7556 }
7557 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7558 i.op[n].imms, 0, reloc_type);
7559 }
7560 }
7561 }
7562}
7563\f
7564/* x86_cons_fix_new is called via the expression parsing code when a
7565 reloc is needed. We use this hook to get the correct .got reloc. */
7566static int cons_sign = -1;
7567
7568void
7569x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7570 expressionS *exp, bfd_reloc_code_real_type r)
7571{
7572 r = reloc (len, 0, cons_sign, r);
7573
7574#ifdef TE_PE
7575 if (exp->X_op == O_secrel)
7576 {
7577 exp->X_op = O_symbol;
7578 r = BFD_RELOC_32_SECREL;
7579 }
7580#endif
7581
7582 fix_new_exp (frag, off, len, exp, 0, r);
7583}
7584
7585/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7586 purpose of the `.dc.a' internal pseudo-op. */
7587
7588int
7589x86_address_bytes (void)
7590{
7591 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7592 return 4;
7593 return stdoutput->arch_info->bits_per_address / 8;
7594}
7595
7596#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7597 || defined (LEX_AT)
7598# define lex_got(reloc, adjust, types) NULL
7599#else
7600/* Parse operands of the form
7601 <symbol>@GOTOFF+<nnn>
7602 and similar .plt or .got references.
7603
7604 If we find one, set up the correct relocation in RELOC and copy the
7605 input string, minus the `@GOTOFF' into a malloc'd buffer for
7606 parsing by the calling routine. Return this buffer, and if ADJUST
7607 is non-null set it to the length of the string we removed from the
7608 input line. Otherwise return NULL. */
7609static char *
7610lex_got (enum bfd_reloc_code_real *rel,
7611 int *adjust,
7612 i386_operand_type *types)
7613{
7614 /* Some of the relocations depend on the size of what field is to
7615 be relocated. But in our callers i386_immediate and i386_displacement
7616 we don't yet know the operand size (this will be set by insn
7617 matching). Hence we record the word32 relocation here,
7618 and adjust the reloc according to the real size in reloc(). */
7619 static const struct {
7620 const char *str;
7621 int len;
7622 const enum bfd_reloc_code_real rel[2];
7623 const i386_operand_type types64;
7624 } gotrel[] = {
7625#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7626 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7627 BFD_RELOC_SIZE32 },
7628 OPERAND_TYPE_IMM32_64 },
7629#endif
7630 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7631 BFD_RELOC_X86_64_PLTOFF64 },
7632 OPERAND_TYPE_IMM64 },
7633 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7634 BFD_RELOC_X86_64_PLT32 },
7635 OPERAND_TYPE_IMM32_32S_DISP32 },
7636 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7637 BFD_RELOC_X86_64_GOTPLT64 },
7638 OPERAND_TYPE_IMM64_DISP64 },
7639 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7640 BFD_RELOC_X86_64_GOTOFF64 },
7641 OPERAND_TYPE_IMM64_DISP64 },
7642 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7643 BFD_RELOC_X86_64_GOTPCREL },
7644 OPERAND_TYPE_IMM32_32S_DISP32 },
7645 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7646 BFD_RELOC_X86_64_TLSGD },
7647 OPERAND_TYPE_IMM32_32S_DISP32 },
7648 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7649 _dummy_first_bfd_reloc_code_real },
7650 OPERAND_TYPE_NONE },
7651 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7652 BFD_RELOC_X86_64_TLSLD },
7653 OPERAND_TYPE_IMM32_32S_DISP32 },
7654 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7655 BFD_RELOC_X86_64_GOTTPOFF },
7656 OPERAND_TYPE_IMM32_32S_DISP32 },
7657 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7658 BFD_RELOC_X86_64_TPOFF32 },
7659 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7660 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7661 _dummy_first_bfd_reloc_code_real },
7662 OPERAND_TYPE_NONE },
7663 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7664 BFD_RELOC_X86_64_DTPOFF32 },
7665 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7666 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7667 _dummy_first_bfd_reloc_code_real },
7668 OPERAND_TYPE_NONE },
7669 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7670 _dummy_first_bfd_reloc_code_real },
7671 OPERAND_TYPE_NONE },
7672 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7673 BFD_RELOC_X86_64_GOT32 },
7674 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7675 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7676 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7677 OPERAND_TYPE_IMM32_32S_DISP32 },
7678 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7679 BFD_RELOC_X86_64_TLSDESC_CALL },
7680 OPERAND_TYPE_IMM32_32S_DISP32 },
7681 };
7682 char *cp;
7683 unsigned int j;
7684
7685#if defined (OBJ_MAYBE_ELF)
7686 if (!IS_ELF)
7687 return NULL;
7688#endif
7689
7690 for (cp = input_line_pointer; *cp != '@'; cp++)
7691 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7692 return NULL;
7693
7694 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7695 {
7696 int len = gotrel[j].len;
7697 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7698 {
7699 if (gotrel[j].rel[object_64bit] != 0)
7700 {
7701 int first, second;
7702 char *tmpbuf, *past_reloc;
7703
7704 *rel = gotrel[j].rel[object_64bit];
7705
7706 if (types)
7707 {
7708 if (flag_code != CODE_64BIT)
7709 {
7710 types->bitfield.imm32 = 1;
7711 types->bitfield.disp32 = 1;
7712 }
7713 else
7714 *types = gotrel[j].types64;
7715 }
7716
7717 if (j != 0 && GOT_symbol == NULL)
7718 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7719
7720 /* The length of the first part of our input line. */
7721 first = cp - input_line_pointer;
7722
7723 /* The second part goes from after the reloc token until
7724 (and including) an end_of_line char or comma. */
7725 past_reloc = cp + 1 + len;
7726 cp = past_reloc;
7727 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7728 ++cp;
7729 second = cp + 1 - past_reloc;
7730
7731 /* Allocate and copy string. The trailing NUL shouldn't
7732 be necessary, but be safe. */
7733 tmpbuf = XNEWVEC (char, first + second + 2);
7734 memcpy (tmpbuf, input_line_pointer, first);
7735 if (second != 0 && *past_reloc != ' ')
7736 /* Replace the relocation token with ' ', so that
7737 errors like foo@GOTOFF1 will be detected. */
7738 tmpbuf[first++] = ' ';
7739 else
7740 /* Increment length by 1 if the relocation token is
7741 removed. */
7742 len++;
7743 if (adjust)
7744 *adjust = len;
7745 memcpy (tmpbuf + first, past_reloc, second);
7746 tmpbuf[first + second] = '\0';
7747 return tmpbuf;
7748 }
7749
7750 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7751 gotrel[j].str, 1 << (5 + object_64bit));
7752 return NULL;
7753 }
7754 }
7755
7756 /* Might be a symbol version string. Don't as_bad here. */
7757 return NULL;
7758}
7759#endif
7760
7761#ifdef TE_PE
7762#ifdef lex_got
7763#undef lex_got
7764#endif
7765/* Parse operands of the form
7766 <symbol>@SECREL32+<nnn>
7767
7768 If we find one, set up the correct relocation in RELOC and copy the
7769 input string, minus the `@SECREL32' into a malloc'd buffer for
7770 parsing by the calling routine. Return this buffer, and if ADJUST
7771 is non-null set it to the length of the string we removed from the
7772 input line. Otherwise return NULL.
7773
7774 This function is copied from the ELF version above adjusted for PE targets. */
7775
7776static char *
7777lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7778 int *adjust ATTRIBUTE_UNUSED,
7779 i386_operand_type *types)
7780{
7781 static const struct
7782 {
7783 const char *str;
7784 int len;
7785 const enum bfd_reloc_code_real rel[2];
7786 const i386_operand_type types64;
7787 }
7788 gotrel[] =
7789 {
7790 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7791 BFD_RELOC_32_SECREL },
7792 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7793 };
7794
7795 char *cp;
7796 unsigned j;
7797
7798 for (cp = input_line_pointer; *cp != '@'; cp++)
7799 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7800 return NULL;
7801
7802 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7803 {
7804 int len = gotrel[j].len;
7805
7806 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7807 {
7808 if (gotrel[j].rel[object_64bit] != 0)
7809 {
7810 int first, second;
7811 char *tmpbuf, *past_reloc;
7812
7813 *rel = gotrel[j].rel[object_64bit];
7814 if (adjust)
7815 *adjust = len;
7816
7817 if (types)
7818 {
7819 if (flag_code != CODE_64BIT)
7820 {
7821 types->bitfield.imm32 = 1;
7822 types->bitfield.disp32 = 1;
7823 }
7824 else
7825 *types = gotrel[j].types64;
7826 }
7827
7828 /* The length of the first part of our input line. */
7829 first = cp - input_line_pointer;
7830
7831 /* The second part goes from after the reloc token until
7832 (and including) an end_of_line char or comma. */
7833 past_reloc = cp + 1 + len;
7834 cp = past_reloc;
7835 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7836 ++cp;
7837 second = cp + 1 - past_reloc;
7838
7839 /* Allocate and copy string. The trailing NUL shouldn't
7840 be necessary, but be safe. */
7841 tmpbuf = XNEWVEC (char, first + second + 2);
7842 memcpy (tmpbuf, input_line_pointer, first);
7843 if (second != 0 && *past_reloc != ' ')
7844 /* Replace the relocation token with ' ', so that
7845 errors like foo@SECLREL321 will be detected. */
7846 tmpbuf[first++] = ' ';
7847 memcpy (tmpbuf + first, past_reloc, second);
7848 tmpbuf[first + second] = '\0';
7849 return tmpbuf;
7850 }
7851
7852 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7853 gotrel[j].str, 1 << (5 + object_64bit));
7854 return NULL;
7855 }
7856 }
7857
7858 /* Might be a symbol version string. Don't as_bad here. */
7859 return NULL;
7860}
7861
7862#endif /* TE_PE */
7863
7864bfd_reloc_code_real_type
7865x86_cons (expressionS *exp, int size)
7866{
7867 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7868
7869 intel_syntax = -intel_syntax;
7870
7871 exp->X_md = 0;
7872 if (size == 4 || (object_64bit && size == 8))
7873 {
7874 /* Handle @GOTOFF and the like in an expression. */
7875 char *save;
7876 char *gotfree_input_line;
7877 int adjust = 0;
7878
7879 save = input_line_pointer;
7880 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7881 if (gotfree_input_line)
7882 input_line_pointer = gotfree_input_line;
7883
7884 expression (exp);
7885
7886 if (gotfree_input_line)
7887 {
7888 /* expression () has merrily parsed up to the end of line,
7889 or a comma - in the wrong buffer. Transfer how far
7890 input_line_pointer has moved to the right buffer. */
7891 input_line_pointer = (save
7892 + (input_line_pointer - gotfree_input_line)
7893 + adjust);
7894 free (gotfree_input_line);
7895 if (exp->X_op == O_constant
7896 || exp->X_op == O_absent
7897 || exp->X_op == O_illegal
7898 || exp->X_op == O_register
7899 || exp->X_op == O_big)
7900 {
7901 char c = *input_line_pointer;
7902 *input_line_pointer = 0;
7903 as_bad (_("missing or invalid expression `%s'"), save);
7904 *input_line_pointer = c;
7905 }
7906 }
7907 }
7908 else
7909 expression (exp);
7910
7911 intel_syntax = -intel_syntax;
7912
7913 if (intel_syntax)
7914 i386_intel_simplify (exp);
7915
7916 return got_reloc;
7917}
7918
7919static void
7920signed_cons (int size)
7921{
7922 if (flag_code == CODE_64BIT)
7923 cons_sign = 1;
7924 cons (size);
7925 cons_sign = -1;
7926}
7927
7928#ifdef TE_PE
7929static void
7930pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7931{
7932 expressionS exp;
7933
7934 do
7935 {
7936 expression (&exp);
7937 if (exp.X_op == O_symbol)
7938 exp.X_op = O_secrel;
7939
7940 emit_expr (&exp, 4);
7941 }
7942 while (*input_line_pointer++ == ',');
7943
7944 input_line_pointer--;
7945 demand_empty_rest_of_line ();
7946}
7947#endif
7948
7949/* Handle Vector operations. */
7950
7951static char *
7952check_VecOperations (char *op_string, char *op_end)
7953{
7954 const reg_entry *mask;
7955 const char *saved;
7956 char *end_op;
7957
7958 while (*op_string
7959 && (op_end == NULL || op_string < op_end))
7960 {
7961 saved = op_string;
7962 if (*op_string == '{')
7963 {
7964 op_string++;
7965
7966 /* Check broadcasts. */
7967 if (strncmp (op_string, "1to", 3) == 0)
7968 {
7969 int bcst_type;
7970
7971 if (i.broadcast)
7972 goto duplicated_vec_op;
7973
7974 op_string += 3;
7975 if (*op_string == '8')
7976 bcst_type = BROADCAST_1TO8;
7977 else if (*op_string == '4')
7978 bcst_type = BROADCAST_1TO4;
7979 else if (*op_string == '2')
7980 bcst_type = BROADCAST_1TO2;
7981 else if (*op_string == '1'
7982 && *(op_string+1) == '6')
7983 {
7984 bcst_type = BROADCAST_1TO16;
7985 op_string++;
7986 }
7987 else
7988 {
7989 as_bad (_("Unsupported broadcast: `%s'"), saved);
7990 return NULL;
7991 }
7992 op_string++;
7993
7994 broadcast_op.type = bcst_type;
7995 broadcast_op.operand = this_operand;
7996 i.broadcast = &broadcast_op;
7997 }
7998 /* Check masking operation. */
7999 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8000 {
8001 /* k0 can't be used for write mask. */
8002 if (mask->reg_num == 0)
8003 {
8004 as_bad (_("`%s' can't be used for write mask"),
8005 op_string);
8006 return NULL;
8007 }
8008
8009 if (!i.mask)
8010 {
8011 mask_op.mask = mask;
8012 mask_op.zeroing = 0;
8013 mask_op.operand = this_operand;
8014 i.mask = &mask_op;
8015 }
8016 else
8017 {
8018 if (i.mask->mask)
8019 goto duplicated_vec_op;
8020
8021 i.mask->mask = mask;
8022
8023 /* Only "{z}" is allowed here. No need to check
8024 zeroing mask explicitly. */
8025 if (i.mask->operand != this_operand)
8026 {
8027 as_bad (_("invalid write mask `%s'"), saved);
8028 return NULL;
8029 }
8030 }
8031
8032 op_string = end_op;
8033 }
8034 /* Check zeroing-flag for masking operation. */
8035 else if (*op_string == 'z')
8036 {
8037 if (!i.mask)
8038 {
8039 mask_op.mask = NULL;
8040 mask_op.zeroing = 1;
8041 mask_op.operand = this_operand;
8042 i.mask = &mask_op;
8043 }
8044 else
8045 {
8046 if (i.mask->zeroing)
8047 {
8048 duplicated_vec_op:
8049 as_bad (_("duplicated `%s'"), saved);
8050 return NULL;
8051 }
8052
8053 i.mask->zeroing = 1;
8054
8055 /* Only "{%k}" is allowed here. No need to check mask
8056 register explicitly. */
8057 if (i.mask->operand != this_operand)
8058 {
8059 as_bad (_("invalid zeroing-masking `%s'"),
8060 saved);
8061 return NULL;
8062 }
8063 }
8064
8065 op_string++;
8066 }
8067 else
8068 goto unknown_vec_op;
8069
8070 if (*op_string != '}')
8071 {
8072 as_bad (_("missing `}' in `%s'"), saved);
8073 return NULL;
8074 }
8075 op_string++;
8076 continue;
8077 }
8078 unknown_vec_op:
8079 /* We don't know this one. */
8080 as_bad (_("unknown vector operation: `%s'"), saved);
8081 return NULL;
8082 }
8083
8084 return op_string;
8085}
8086
8087static int
8088i386_immediate (char *imm_start)
8089{
8090 char *save_input_line_pointer;
8091 char *gotfree_input_line;
8092 segT exp_seg = 0;
8093 expressionS *exp;
8094 i386_operand_type types;
8095
8096 operand_type_set (&types, ~0);
8097
8098 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8099 {
8100 as_bad (_("at most %d immediate operands are allowed"),
8101 MAX_IMMEDIATE_OPERANDS);
8102 return 0;
8103 }
8104
8105 exp = &im_expressions[i.imm_operands++];
8106 i.op[this_operand].imms = exp;
8107
8108 if (is_space_char (*imm_start))
8109 ++imm_start;
8110
8111 save_input_line_pointer = input_line_pointer;
8112 input_line_pointer = imm_start;
8113
8114 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8115 if (gotfree_input_line)
8116 input_line_pointer = gotfree_input_line;
8117
8118 exp_seg = expression (exp);
8119
8120 SKIP_WHITESPACE ();
8121
8122 /* Handle vector operations. */
8123 if (*input_line_pointer == '{')
8124 {
8125 input_line_pointer = check_VecOperations (input_line_pointer,
8126 NULL);
8127 if (input_line_pointer == NULL)
8128 return 0;
8129 }
8130
8131 if (*input_line_pointer)
8132 as_bad (_("junk `%s' after expression"), input_line_pointer);
8133
8134 input_line_pointer = save_input_line_pointer;
8135 if (gotfree_input_line)
8136 {
8137 free (gotfree_input_line);
8138
8139 if (exp->X_op == O_constant || exp->X_op == O_register)
8140 exp->X_op = O_illegal;
8141 }
8142
8143 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8144}
8145
8146static int
8147i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8148 i386_operand_type types, const char *imm_start)
8149{
8150 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8151 {
8152 if (imm_start)
8153 as_bad (_("missing or invalid immediate expression `%s'"),
8154 imm_start);
8155 return 0;
8156 }
8157 else if (exp->X_op == O_constant)
8158 {
8159 /* Size it properly later. */
8160 i.types[this_operand].bitfield.imm64 = 1;
8161 /* If not 64bit, sign extend val. */
8162 if (flag_code != CODE_64BIT
8163 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8164 exp->X_add_number
8165 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8166 }
8167#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8168 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8169 && exp_seg != absolute_section
8170 && exp_seg != text_section
8171 && exp_seg != data_section
8172 && exp_seg != bss_section
8173 && exp_seg != undefined_section
8174 && !bfd_is_com_section (exp_seg))
8175 {
8176 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8177 return 0;
8178 }
8179#endif
8180 else if (!intel_syntax && exp_seg == reg_section)
8181 {
8182 if (imm_start)
8183 as_bad (_("illegal immediate register operand %s"), imm_start);
8184 return 0;
8185 }
8186 else
8187 {
8188 /* This is an address. The size of the address will be
8189 determined later, depending on destination register,
8190 suffix, or the default for the section. */
8191 i.types[this_operand].bitfield.imm8 = 1;
8192 i.types[this_operand].bitfield.imm16 = 1;
8193 i.types[this_operand].bitfield.imm32 = 1;
8194 i.types[this_operand].bitfield.imm32s = 1;
8195 i.types[this_operand].bitfield.imm64 = 1;
8196 i.types[this_operand] = operand_type_and (i.types[this_operand],
8197 types);
8198 }
8199
8200 return 1;
8201}
8202
8203static char *
8204i386_scale (char *scale)
8205{
8206 offsetT val;
8207 char *save = input_line_pointer;
8208
8209 input_line_pointer = scale;
8210 val = get_absolute_expression ();
8211
8212 switch (val)
8213 {
8214 case 1:
8215 i.log2_scale_factor = 0;
8216 break;
8217 case 2:
8218 i.log2_scale_factor = 1;
8219 break;
8220 case 4:
8221 i.log2_scale_factor = 2;
8222 break;
8223 case 8:
8224 i.log2_scale_factor = 3;
8225 break;
8226 default:
8227 {
8228 char sep = *input_line_pointer;
8229
8230 *input_line_pointer = '\0';
8231 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8232 scale);
8233 *input_line_pointer = sep;
8234 input_line_pointer = save;
8235 return NULL;
8236 }
8237 }
8238 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8239 {
8240 as_warn (_("scale factor of %d without an index register"),
8241 1 << i.log2_scale_factor);
8242 i.log2_scale_factor = 0;
8243 }
8244 scale = input_line_pointer;
8245 input_line_pointer = save;
8246 return scale;
8247}
8248
8249static int
8250i386_displacement (char *disp_start, char *disp_end)
8251{
8252 expressionS *exp;
8253 segT exp_seg = 0;
8254 char *save_input_line_pointer;
8255 char *gotfree_input_line;
8256 int override;
8257 i386_operand_type bigdisp, types = anydisp;
8258 int ret;
8259
8260 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8261 {
8262 as_bad (_("at most %d displacement operands are allowed"),
8263 MAX_MEMORY_OPERANDS);
8264 return 0;
8265 }
8266
8267 operand_type_set (&bigdisp, 0);
8268 if ((i.types[this_operand].bitfield.jumpabsolute)
8269 || (!current_templates->start->opcode_modifier.jump
8270 && !current_templates->start->opcode_modifier.jumpdword))
8271 {
8272 bigdisp.bitfield.disp32 = 1;
8273 override = (i.prefix[ADDR_PREFIX] != 0);
8274 if (flag_code == CODE_64BIT)
8275 {
8276 if (!override)
8277 {
8278 bigdisp.bitfield.disp32s = 1;
8279 bigdisp.bitfield.disp64 = 1;
8280 }
8281 }
8282 else if ((flag_code == CODE_16BIT) ^ override)
8283 {
8284 bigdisp.bitfield.disp32 = 0;
8285 bigdisp.bitfield.disp16 = 1;
8286 }
8287 }
8288 else
8289 {
8290 /* For PC-relative branches, the width of the displacement
8291 is dependent upon data size, not address size. */
8292 override = (i.prefix[DATA_PREFIX] != 0);
8293 if (flag_code == CODE_64BIT)
8294 {
8295 if (override || i.suffix == WORD_MNEM_SUFFIX)
8296 bigdisp.bitfield.disp16 = 1;
8297 else
8298 {
8299 bigdisp.bitfield.disp32 = 1;
8300 bigdisp.bitfield.disp32s = 1;
8301 }
8302 }
8303 else
8304 {
8305 if (!override)
8306 override = (i.suffix == (flag_code != CODE_16BIT
8307 ? WORD_MNEM_SUFFIX
8308 : LONG_MNEM_SUFFIX));
8309 bigdisp.bitfield.disp32 = 1;
8310 if ((flag_code == CODE_16BIT) ^ override)
8311 {
8312 bigdisp.bitfield.disp32 = 0;
8313 bigdisp.bitfield.disp16 = 1;
8314 }
8315 }
8316 }
8317 i.types[this_operand] = operand_type_or (i.types[this_operand],
8318 bigdisp);
8319
8320 exp = &disp_expressions[i.disp_operands];
8321 i.op[this_operand].disps = exp;
8322 i.disp_operands++;
8323 save_input_line_pointer = input_line_pointer;
8324 input_line_pointer = disp_start;
8325 END_STRING_AND_SAVE (disp_end);
8326
8327#ifndef GCC_ASM_O_HACK
8328#define GCC_ASM_O_HACK 0
8329#endif
8330#if GCC_ASM_O_HACK
8331 END_STRING_AND_SAVE (disp_end + 1);
8332 if (i.types[this_operand].bitfield.baseIndex
8333 && displacement_string_end[-1] == '+')
8334 {
8335 /* This hack is to avoid a warning when using the "o"
8336 constraint within gcc asm statements.
8337 For instance:
8338
8339 #define _set_tssldt_desc(n,addr,limit,type) \
8340 __asm__ __volatile__ ( \
8341 "movw %w2,%0\n\t" \
8342 "movw %w1,2+%0\n\t" \
8343 "rorl $16,%1\n\t" \
8344 "movb %b1,4+%0\n\t" \
8345 "movb %4,5+%0\n\t" \
8346 "movb $0,6+%0\n\t" \
8347 "movb %h1,7+%0\n\t" \
8348 "rorl $16,%1" \
8349 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8350
8351 This works great except that the output assembler ends
8352 up looking a bit weird if it turns out that there is
8353 no offset. You end up producing code that looks like:
8354
8355 #APP
8356 movw $235,(%eax)
8357 movw %dx,2+(%eax)
8358 rorl $16,%edx
8359 movb %dl,4+(%eax)
8360 movb $137,5+(%eax)
8361 movb $0,6+(%eax)
8362 movb %dh,7+(%eax)
8363 rorl $16,%edx
8364 #NO_APP
8365
8366 So here we provide the missing zero. */
8367
8368 *displacement_string_end = '0';
8369 }
8370#endif
8371 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8372 if (gotfree_input_line)
8373 input_line_pointer = gotfree_input_line;
8374
8375 exp_seg = expression (exp);
8376
8377 SKIP_WHITESPACE ();
8378 if (*input_line_pointer)
8379 as_bad (_("junk `%s' after expression"), input_line_pointer);
8380#if GCC_ASM_O_HACK
8381 RESTORE_END_STRING (disp_end + 1);
8382#endif
8383 input_line_pointer = save_input_line_pointer;
8384 if (gotfree_input_line)
8385 {
8386 free (gotfree_input_line);
8387
8388 if (exp->X_op == O_constant || exp->X_op == O_register)
8389 exp->X_op = O_illegal;
8390 }
8391
8392 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8393
8394 RESTORE_END_STRING (disp_end);
8395
8396 return ret;
8397}
8398
8399static int
8400i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8401 i386_operand_type types, const char *disp_start)
8402{
8403 i386_operand_type bigdisp;
8404 int ret = 1;
8405
8406 /* We do this to make sure that the section symbol is in
8407 the symbol table. We will ultimately change the relocation
8408 to be relative to the beginning of the section. */
8409 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8410 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8411 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8412 {
8413 if (exp->X_op != O_symbol)
8414 goto inv_disp;
8415
8416 if (S_IS_LOCAL (exp->X_add_symbol)
8417 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8418 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8419 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8420 exp->X_op = O_subtract;
8421 exp->X_op_symbol = GOT_symbol;
8422 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8423 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8424 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8425 i.reloc[this_operand] = BFD_RELOC_64;
8426 else
8427 i.reloc[this_operand] = BFD_RELOC_32;
8428 }
8429
8430 else if (exp->X_op == O_absent
8431 || exp->X_op == O_illegal
8432 || exp->X_op == O_big)
8433 {
8434 inv_disp:
8435 as_bad (_("missing or invalid displacement expression `%s'"),
8436 disp_start);
8437 ret = 0;
8438 }
8439
8440 else if (flag_code == CODE_64BIT
8441 && !i.prefix[ADDR_PREFIX]
8442 && exp->X_op == O_constant)
8443 {
8444 /* Since displacement is signed extended to 64bit, don't allow
8445 disp32 and turn off disp32s if they are out of range. */
8446 i.types[this_operand].bitfield.disp32 = 0;
8447 if (!fits_in_signed_long (exp->X_add_number))
8448 {
8449 i.types[this_operand].bitfield.disp32s = 0;
8450 if (i.types[this_operand].bitfield.baseindex)
8451 {
8452 as_bad (_("0x%lx out range of signed 32bit displacement"),
8453 (long) exp->X_add_number);
8454 ret = 0;
8455 }
8456 }
8457 }
8458
8459#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8460 else if (exp->X_op != O_constant
8461 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8462 && exp_seg != absolute_section
8463 && exp_seg != text_section
8464 && exp_seg != data_section
8465 && exp_seg != bss_section
8466 && exp_seg != undefined_section
8467 && !bfd_is_com_section (exp_seg))
8468 {
8469 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8470 ret = 0;
8471 }
8472#endif
8473
8474 /* Check if this is a displacement only operand. */
8475 bigdisp = i.types[this_operand];
8476 bigdisp.bitfield.disp8 = 0;
8477 bigdisp.bitfield.disp16 = 0;
8478 bigdisp.bitfield.disp32 = 0;
8479 bigdisp.bitfield.disp32s = 0;
8480 bigdisp.bitfield.disp64 = 0;
8481 if (operand_type_all_zero (&bigdisp))
8482 i.types[this_operand] = operand_type_and (i.types[this_operand],
8483 types);
8484
8485 return ret;
8486}
8487
8488/* Make sure the memory operand we've been dealt is valid.
8489 Return 1 on success, 0 on a failure. */
8490
8491static int
8492i386_index_check (const char *operand_string)
8493{
8494 const char *kind = "base/index";
8495 enum flag_code addr_mode;
8496
8497 if (i.prefix[ADDR_PREFIX])
8498 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8499 else
8500 {
8501 addr_mode = flag_code;
8502
8503#if INFER_ADDR_PREFIX
8504 if (i.mem_operands == 0)
8505 {
8506 /* Infer address prefix from the first memory operand. */
8507 const reg_entry *addr_reg = i.base_reg;
8508
8509 if (addr_reg == NULL)
8510 addr_reg = i.index_reg;
8511
8512 if (addr_reg)
8513 {
8514 if (addr_reg->reg_num == RegEip
8515 || addr_reg->reg_num == RegEiz
8516 || addr_reg->reg_type.bitfield.reg32)
8517 addr_mode = CODE_32BIT;
8518 else if (flag_code != CODE_64BIT
8519 && addr_reg->reg_type.bitfield.reg16)
8520 addr_mode = CODE_16BIT;
8521
8522 if (addr_mode != flag_code)
8523 {
8524 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8525 i.prefixes += 1;
8526 /* Change the size of any displacement too. At most one
8527 of Disp16 or Disp32 is set.
8528 FIXME. There doesn't seem to be any real need for
8529 separate Disp16 and Disp32 flags. The same goes for
8530 Imm16 and Imm32. Removing them would probably clean
8531 up the code quite a lot. */
8532 if (flag_code != CODE_64BIT
8533 && (i.types[this_operand].bitfield.disp16
8534 || i.types[this_operand].bitfield.disp32))
8535 i.types[this_operand]
8536 = operand_type_xor (i.types[this_operand], disp16_32);
8537 }
8538 }
8539 }
8540#endif
8541 }
8542
8543 if (current_templates->start->opcode_modifier.isstring
8544 && !current_templates->start->opcode_modifier.immext
8545 && (current_templates->end[-1].opcode_modifier.isstring
8546 || i.mem_operands))
8547 {
8548 /* Memory operands of string insns are special in that they only allow
8549 a single register (rDI, rSI, or rBX) as their memory address. */
8550 const reg_entry *expected_reg;
8551 static const char *di_si[][2] =
8552 {
8553 { "esi", "edi" },
8554 { "si", "di" },
8555 { "rsi", "rdi" }
8556 };
8557 static const char *bx[] = { "ebx", "bx", "rbx" };
8558
8559 kind = "string address";
8560
8561 if (current_templates->start->opcode_modifier.repprefixok)
8562 {
8563 i386_operand_type type = current_templates->end[-1].operand_types[0];
8564
8565 if (!type.bitfield.baseindex
8566 || ((!i.mem_operands != !intel_syntax)
8567 && current_templates->end[-1].operand_types[1]
8568 .bitfield.baseindex))
8569 type = current_templates->end[-1].operand_types[1];
8570 expected_reg = hash_find (reg_hash,
8571 di_si[addr_mode][type.bitfield.esseg]);
8572
8573 }
8574 else
8575 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8576
8577 if (i.base_reg != expected_reg
8578 || i.index_reg
8579 || operand_type_check (i.types[this_operand], disp))
8580 {
8581 /* The second memory operand must have the same size as
8582 the first one. */
8583 if (i.mem_operands
8584 && i.base_reg
8585 && !((addr_mode == CODE_64BIT
8586 && i.base_reg->reg_type.bitfield.reg64)
8587 || (addr_mode == CODE_32BIT
8588 ? i.base_reg->reg_type.bitfield.reg32
8589 : i.base_reg->reg_type.bitfield.reg16)))
8590 goto bad_address;
8591
8592 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8593 operand_string,
8594 intel_syntax ? '[' : '(',
8595 register_prefix,
8596 expected_reg->reg_name,
8597 intel_syntax ? ']' : ')');
8598 return 1;
8599 }
8600 else
8601 return 1;
8602
8603bad_address:
8604 as_bad (_("`%s' is not a valid %s expression"),
8605 operand_string, kind);
8606 return 0;
8607 }
8608 else
8609 {
8610 if (addr_mode != CODE_16BIT)
8611 {
8612 /* 32-bit/64-bit checks. */
8613 if ((i.base_reg
8614 && (addr_mode == CODE_64BIT
8615 ? !i.base_reg->reg_type.bitfield.reg64
8616 : !i.base_reg->reg_type.bitfield.reg32)
8617 && (i.index_reg
8618 || (i.base_reg->reg_num
8619 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8620 || (i.index_reg
8621 && !i.index_reg->reg_type.bitfield.regxmm
8622 && !i.index_reg->reg_type.bitfield.regymm
8623 && !i.index_reg->reg_type.bitfield.regzmm
8624 && ((addr_mode == CODE_64BIT
8625 ? !(i.index_reg->reg_type.bitfield.reg64
8626 || i.index_reg->reg_num == RegRiz)
8627 : !(i.index_reg->reg_type.bitfield.reg32
8628 || i.index_reg->reg_num == RegEiz))
8629 || !i.index_reg->reg_type.bitfield.baseindex)))
8630 goto bad_address;
8631
8632 /* bndmk, bndldx, and bndstx have special restrictions. */
8633 if (current_templates->start->base_opcode == 0xf30f1b
8634 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8635 {
8636 /* They cannot use RIP-relative addressing. */
8637 if (i.base_reg && i.base_reg->reg_num == RegRip)
8638 {
8639 as_bad (_("`%s' cannot be used here"), operand_string);
8640 return 0;
8641 }
8642
8643 /* bndldx and bndstx ignore their scale factor. */
8644 if (current_templates->start->base_opcode != 0xf30f1b
8645 && i.log2_scale_factor)
8646 as_warn (_("register scaling is being ignored here"));
8647 }
8648 }
8649 else
8650 {
8651 /* 16-bit checks. */
8652 if ((i.base_reg
8653 && (!i.base_reg->reg_type.bitfield.reg16
8654 || !i.base_reg->reg_type.bitfield.baseindex))
8655 || (i.index_reg
8656 && (!i.index_reg->reg_type.bitfield.reg16
8657 || !i.index_reg->reg_type.bitfield.baseindex
8658 || !(i.base_reg
8659 && i.base_reg->reg_num < 6
8660 && i.index_reg->reg_num >= 6
8661 && i.log2_scale_factor == 0))))
8662 goto bad_address;
8663 }
8664 }
8665 return 1;
8666}
8667
8668/* Handle vector immediates. */
8669
8670static int
8671RC_SAE_immediate (const char *imm_start)
8672{
8673 unsigned int match_found, j;
8674 const char *pstr = imm_start;
8675 expressionS *exp;
8676
8677 if (*pstr != '{')
8678 return 0;
8679
8680 pstr++;
8681 match_found = 0;
8682 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8683 {
8684 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8685 {
8686 if (!i.rounding)
8687 {
8688 rc_op.type = RC_NamesTable[j].type;
8689 rc_op.operand = this_operand;
8690 i.rounding = &rc_op;
8691 }
8692 else
8693 {
8694 as_bad (_("duplicated `%s'"), imm_start);
8695 return 0;
8696 }
8697 pstr += RC_NamesTable[j].len;
8698 match_found = 1;
8699 break;
8700 }
8701 }
8702 if (!match_found)
8703 return 0;
8704
8705 if (*pstr++ != '}')
8706 {
8707 as_bad (_("Missing '}': '%s'"), imm_start);
8708 return 0;
8709 }
8710 /* RC/SAE immediate string should contain nothing more. */;
8711 if (*pstr != 0)
8712 {
8713 as_bad (_("Junk after '}': '%s'"), imm_start);
8714 return 0;
8715 }
8716
8717 exp = &im_expressions[i.imm_operands++];
8718 i.op[this_operand].imms = exp;
8719
8720 exp->X_op = O_constant;
8721 exp->X_add_number = 0;
8722 exp->X_add_symbol = (symbolS *) 0;
8723 exp->X_op_symbol = (symbolS *) 0;
8724
8725 i.types[this_operand].bitfield.imm8 = 1;
8726 return 1;
8727}
8728
8729/* Only string instructions can have a second memory operand, so
8730 reduce current_templates to just those if it contains any. */
8731static int
8732maybe_adjust_templates (void)
8733{
8734 const insn_template *t;
8735
8736 gas_assert (i.mem_operands == 1);
8737
8738 for (t = current_templates->start; t < current_templates->end; ++t)
8739 if (t->opcode_modifier.isstring)
8740 break;
8741
8742 if (t < current_templates->end)
8743 {
8744 static templates aux_templates;
8745 bfd_boolean recheck;
8746
8747 aux_templates.start = t;
8748 for (; t < current_templates->end; ++t)
8749 if (!t->opcode_modifier.isstring)
8750 break;
8751 aux_templates.end = t;
8752
8753 /* Determine whether to re-check the first memory operand. */
8754 recheck = (aux_templates.start != current_templates->start
8755 || t != current_templates->end);
8756
8757 current_templates = &aux_templates;
8758
8759 if (recheck)
8760 {
8761 i.mem_operands = 0;
8762 if (i.memop1_string != NULL
8763 && i386_index_check (i.memop1_string) == 0)
8764 return 0;
8765 i.mem_operands = 1;
8766 }
8767 }
8768
8769 return 1;
8770}
8771
8772/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8773 on error. */
8774
8775static int
8776i386_att_operand (char *operand_string)
8777{
8778 const reg_entry *r;
8779 char *end_op;
8780 char *op_string = operand_string;
8781
8782 if (is_space_char (*op_string))
8783 ++op_string;
8784
8785 /* We check for an absolute prefix (differentiating,
8786 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8787 if (*op_string == ABSOLUTE_PREFIX)
8788 {
8789 ++op_string;
8790 if (is_space_char (*op_string))
8791 ++op_string;
8792 i.types[this_operand].bitfield.jumpabsolute = 1;
8793 }
8794
8795 /* Check if operand is a register. */
8796 if ((r = parse_register (op_string, &end_op)) != NULL)
8797 {
8798 i386_operand_type temp;
8799
8800 /* Check for a segment override by searching for ':' after a
8801 segment register. */
8802 op_string = end_op;
8803 if (is_space_char (*op_string))
8804 ++op_string;
8805 if (*op_string == ':'
8806 && (r->reg_type.bitfield.sreg2
8807 || r->reg_type.bitfield.sreg3))
8808 {
8809 switch (r->reg_num)
8810 {
8811 case 0:
8812 i.seg[i.mem_operands] = &es;
8813 break;
8814 case 1:
8815 i.seg[i.mem_operands] = &cs;
8816 break;
8817 case 2:
8818 i.seg[i.mem_operands] = &ss;
8819 break;
8820 case 3:
8821 i.seg[i.mem_operands] = &ds;
8822 break;
8823 case 4:
8824 i.seg[i.mem_operands] = &fs;
8825 break;
8826 case 5:
8827 i.seg[i.mem_operands] = &gs;
8828 break;
8829 }
8830
8831 /* Skip the ':' and whitespace. */
8832 ++op_string;
8833 if (is_space_char (*op_string))
8834 ++op_string;
8835
8836 if (!is_digit_char (*op_string)
8837 && !is_identifier_char (*op_string)
8838 && *op_string != '('
8839 && *op_string != ABSOLUTE_PREFIX)
8840 {
8841 as_bad (_("bad memory operand `%s'"), op_string);
8842 return 0;
8843 }
8844 /* Handle case of %es:*foo. */
8845 if (*op_string == ABSOLUTE_PREFIX)
8846 {
8847 ++op_string;
8848 if (is_space_char (*op_string))
8849 ++op_string;
8850 i.types[this_operand].bitfield.jumpabsolute = 1;
8851 }
8852 goto do_memory_reference;
8853 }
8854
8855 /* Handle vector operations. */
8856 if (*op_string == '{')
8857 {
8858 op_string = check_VecOperations (op_string, NULL);
8859 if (op_string == NULL)
8860 return 0;
8861 }
8862
8863 if (*op_string)
8864 {
8865 as_bad (_("junk `%s' after register"), op_string);
8866 return 0;
8867 }
8868 temp = r->reg_type;
8869 temp.bitfield.baseindex = 0;
8870 i.types[this_operand] = operand_type_or (i.types[this_operand],
8871 temp);
8872 i.types[this_operand].bitfield.unspecified = 0;
8873 i.op[this_operand].regs = r;
8874 i.reg_operands++;
8875 }
8876 else if (*op_string == REGISTER_PREFIX)
8877 {
8878 as_bad (_("bad register name `%s'"), op_string);
8879 return 0;
8880 }
8881 else if (*op_string == IMMEDIATE_PREFIX)
8882 {
8883 ++op_string;
8884 if (i.types[this_operand].bitfield.jumpabsolute)
8885 {
8886 as_bad (_("immediate operand illegal with absolute jump"));
8887 return 0;
8888 }
8889 if (!i386_immediate (op_string))
8890 return 0;
8891 }
8892 else if (RC_SAE_immediate (operand_string))
8893 {
8894 /* If it is a RC or SAE immediate, do nothing. */
8895 ;
8896 }
8897 else if (is_digit_char (*op_string)
8898 || is_identifier_char (*op_string)
8899 || *op_string == '"'
8900 || *op_string == '(')
8901 {
8902 /* This is a memory reference of some sort. */
8903 char *base_string;
8904
8905 /* Start and end of displacement string expression (if found). */
8906 char *displacement_string_start;
8907 char *displacement_string_end;
8908 char *vop_start;
8909
8910 do_memory_reference:
8911 if (i.mem_operands == 1 && !maybe_adjust_templates ())
8912 return 0;
8913 if ((i.mem_operands == 1
8914 && !current_templates->start->opcode_modifier.isstring)
8915 || i.mem_operands == 2)
8916 {
8917 as_bad (_("too many memory references for `%s'"),
8918 current_templates->start->name);
8919 return 0;
8920 }
8921
8922 /* Check for base index form. We detect the base index form by
8923 looking for an ')' at the end of the operand, searching
8924 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8925 after the '('. */
8926 base_string = op_string + strlen (op_string);
8927
8928 /* Handle vector operations. */
8929 vop_start = strchr (op_string, '{');
8930 if (vop_start && vop_start < base_string)
8931 {
8932 if (check_VecOperations (vop_start, base_string) == NULL)
8933 return 0;
8934 base_string = vop_start;
8935 }
8936
8937 --base_string;
8938 if (is_space_char (*base_string))
8939 --base_string;
8940
8941 /* If we only have a displacement, set-up for it to be parsed later. */
8942 displacement_string_start = op_string;
8943 displacement_string_end = base_string + 1;
8944
8945 if (*base_string == ')')
8946 {
8947 char *temp_string;
8948 unsigned int parens_balanced = 1;
8949 /* We've already checked that the number of left & right ()'s are
8950 equal, so this loop will not be infinite. */
8951 do
8952 {
8953 base_string--;
8954 if (*base_string == ')')
8955 parens_balanced++;
8956 if (*base_string == '(')
8957 parens_balanced--;
8958 }
8959 while (parens_balanced);
8960
8961 temp_string = base_string;
8962
8963 /* Skip past '(' and whitespace. */
8964 ++base_string;
8965 if (is_space_char (*base_string))
8966 ++base_string;
8967
8968 if (*base_string == ','
8969 || ((i.base_reg = parse_register (base_string, &end_op))
8970 != NULL))
8971 {
8972 displacement_string_end = temp_string;
8973
8974 i.types[this_operand].bitfield.baseindex = 1;
8975
8976 if (i.base_reg)
8977 {
8978 base_string = end_op;
8979 if (is_space_char (*base_string))
8980 ++base_string;
8981 }
8982
8983 /* There may be an index reg or scale factor here. */
8984 if (*base_string == ',')
8985 {
8986 ++base_string;
8987 if (is_space_char (*base_string))
8988 ++base_string;
8989
8990 if ((i.index_reg = parse_register (base_string, &end_op))
8991 != NULL)
8992 {
8993 base_string = end_op;
8994 if (is_space_char (*base_string))
8995 ++base_string;
8996 if (*base_string == ',')
8997 {
8998 ++base_string;
8999 if (is_space_char (*base_string))
9000 ++base_string;
9001 }
9002 else if (*base_string != ')')
9003 {
9004 as_bad (_("expecting `,' or `)' "
9005 "after index register in `%s'"),
9006 operand_string);
9007 return 0;
9008 }
9009 }
9010 else if (*base_string == REGISTER_PREFIX)
9011 {
9012 end_op = strchr (base_string, ',');
9013 if (end_op)
9014 *end_op = '\0';
9015 as_bad (_("bad register name `%s'"), base_string);
9016 return 0;
9017 }
9018
9019 /* Check for scale factor. */
9020 if (*base_string != ')')
9021 {
9022 char *end_scale = i386_scale (base_string);
9023
9024 if (!end_scale)
9025 return 0;
9026
9027 base_string = end_scale;
9028 if (is_space_char (*base_string))
9029 ++base_string;
9030 if (*base_string != ')')
9031 {
9032 as_bad (_("expecting `)' "
9033 "after scale factor in `%s'"),
9034 operand_string);
9035 return 0;
9036 }
9037 }
9038 else if (!i.index_reg)
9039 {
9040 as_bad (_("expecting index register or scale factor "
9041 "after `,'; got '%c'"),
9042 *base_string);
9043 return 0;
9044 }
9045 }
9046 else if (*base_string != ')')
9047 {
9048 as_bad (_("expecting `,' or `)' "
9049 "after base register in `%s'"),
9050 operand_string);
9051 return 0;
9052 }
9053 }
9054 else if (*base_string == REGISTER_PREFIX)
9055 {
9056 end_op = strchr (base_string, ',');
9057 if (end_op)
9058 *end_op = '\0';
9059 as_bad (_("bad register name `%s'"), base_string);
9060 return 0;
9061 }
9062 }
9063
9064 /* If there's an expression beginning the operand, parse it,
9065 assuming displacement_string_start and
9066 displacement_string_end are meaningful. */
9067 if (displacement_string_start != displacement_string_end)
9068 {
9069 if (!i386_displacement (displacement_string_start,
9070 displacement_string_end))
9071 return 0;
9072 }
9073
9074 /* Special case for (%dx) while doing input/output op. */
9075 if (i.base_reg
9076 && operand_type_equal (&i.base_reg->reg_type,
9077 &reg16_inoutportreg)
9078 && i.index_reg == 0
9079 && i.log2_scale_factor == 0
9080 && i.seg[i.mem_operands] == 0
9081 && !operand_type_check (i.types[this_operand], disp))
9082 {
9083 i.types[this_operand] = inoutportreg;
9084 return 1;
9085 }
9086
9087 if (i386_index_check (operand_string) == 0)
9088 return 0;
9089 i.types[this_operand].bitfield.mem = 1;
9090 if (i.mem_operands == 0)
9091 i.memop1_string = xstrdup (operand_string);
9092 i.mem_operands++;
9093 }
9094 else
9095 {
9096 /* It's not a memory operand; argh! */
9097 as_bad (_("invalid char %s beginning operand %d `%s'"),
9098 output_invalid (*op_string),
9099 this_operand + 1,
9100 op_string);
9101 return 0;
9102 }
9103 return 1; /* Normal return. */
9104}
9105\f
9106/* Calculate the maximum variable size (i.e., excluding fr_fix)
9107 that an rs_machine_dependent frag may reach. */
9108
9109unsigned int
9110i386_frag_max_var (fragS *frag)
9111{
9112 /* The only relaxable frags are for jumps.
9113 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9114 gas_assert (frag->fr_type == rs_machine_dependent);
9115 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9116}
9117
9118#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9119static int
9120elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9121{
9122 /* STT_GNU_IFUNC symbol must go through PLT. */
9123 if ((symbol_get_bfdsym (fr_symbol)->flags
9124 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9125 return 0;
9126
9127 if (!S_IS_EXTERNAL (fr_symbol))
9128 /* Symbol may be weak or local. */
9129 return !S_IS_WEAK (fr_symbol);
9130
9131 /* Global symbols with non-default visibility can't be preempted. */
9132 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9133 return 1;
9134
9135 if (fr_var != NO_RELOC)
9136 switch ((enum bfd_reloc_code_real) fr_var)
9137 {
9138 case BFD_RELOC_386_PLT32:
9139 case BFD_RELOC_X86_64_PLT32:
9140 /* Symbol with PLT relocatin may be preempted. */
9141 return 0;
9142 default:
9143 abort ();
9144 }
9145
9146 /* Global symbols with default visibility in a shared library may be
9147 preempted by another definition. */
9148 return !shared;
9149}
9150#endif
9151
9152/* md_estimate_size_before_relax()
9153
9154 Called just before relax() for rs_machine_dependent frags. The x86
9155 assembler uses these frags to handle variable size jump
9156 instructions.
9157
9158 Any symbol that is now undefined will not become defined.
9159 Return the correct fr_subtype in the frag.
9160 Return the initial "guess for variable size of frag" to caller.
9161 The guess is actually the growth beyond the fixed part. Whatever
9162 we do to grow the fixed or variable part contributes to our
9163 returned value. */
9164
9165int
9166md_estimate_size_before_relax (fragS *fragP, segT segment)
9167{
9168 /* We've already got fragP->fr_subtype right; all we have to do is
9169 check for un-relaxable symbols. On an ELF system, we can't relax
9170 an externally visible symbol, because it may be overridden by a
9171 shared library. */
9172 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9173#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9174 || (IS_ELF
9175 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9176 fragP->fr_var))
9177#endif
9178#if defined (OBJ_COFF) && defined (TE_PE)
9179 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9180 && S_IS_WEAK (fragP->fr_symbol))
9181#endif
9182 )
9183 {
9184 /* Symbol is undefined in this segment, or we need to keep a
9185 reloc so that weak symbols can be overridden. */
9186 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9187 enum bfd_reloc_code_real reloc_type;
9188 unsigned char *opcode;
9189 int old_fr_fix;
9190
9191 if (fragP->fr_var != NO_RELOC)
9192 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9193 else if (size == 2)
9194 reloc_type = BFD_RELOC_16_PCREL;
9195 else
9196 reloc_type = BFD_RELOC_32_PCREL;
9197
9198 old_fr_fix = fragP->fr_fix;
9199 opcode = (unsigned char *) fragP->fr_opcode;
9200
9201 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9202 {
9203 case UNCOND_JUMP:
9204 /* Make jmp (0xeb) a (d)word displacement jump. */
9205 opcode[0] = 0xe9;
9206 fragP->fr_fix += size;
9207 fix_new (fragP, old_fr_fix, size,
9208 fragP->fr_symbol,
9209 fragP->fr_offset, 1,
9210 reloc_type);
9211 break;
9212
9213 case COND_JUMP86:
9214 if (size == 2
9215 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9216 {
9217 /* Negate the condition, and branch past an
9218 unconditional jump. */
9219 opcode[0] ^= 1;
9220 opcode[1] = 3;
9221 /* Insert an unconditional jump. */
9222 opcode[2] = 0xe9;
9223 /* We added two extra opcode bytes, and have a two byte
9224 offset. */
9225 fragP->fr_fix += 2 + 2;
9226 fix_new (fragP, old_fr_fix + 2, 2,
9227 fragP->fr_symbol,
9228 fragP->fr_offset, 1,
9229 reloc_type);
9230 break;
9231 }
9232 /* Fall through. */
9233
9234 case COND_JUMP:
9235 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9236 {
9237 fixS *fixP;
9238
9239 fragP->fr_fix += 1;
9240 fixP = fix_new (fragP, old_fr_fix, 1,
9241 fragP->fr_symbol,
9242 fragP->fr_offset, 1,
9243 BFD_RELOC_8_PCREL);
9244 fixP->fx_signed = 1;
9245 break;
9246 }
9247
9248 /* This changes the byte-displacement jump 0x7N
9249 to the (d)word-displacement jump 0x0f,0x8N. */
9250 opcode[1] = opcode[0] + 0x10;
9251 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9252 /* We've added an opcode byte. */
9253 fragP->fr_fix += 1 + size;
9254 fix_new (fragP, old_fr_fix + 1, size,
9255 fragP->fr_symbol,
9256 fragP->fr_offset, 1,
9257 reloc_type);
9258 break;
9259
9260 default:
9261 BAD_CASE (fragP->fr_subtype);
9262 break;
9263 }
9264 frag_wane (fragP);
9265 return fragP->fr_fix - old_fr_fix;
9266 }
9267
9268 /* Guess size depending on current relax state. Initially the relax
9269 state will correspond to a short jump and we return 1, because
9270 the variable part of the frag (the branch offset) is one byte
9271 long. However, we can relax a section more than once and in that
9272 case we must either set fr_subtype back to the unrelaxed state,
9273 or return the value for the appropriate branch. */
9274 return md_relax_table[fragP->fr_subtype].rlx_length;
9275}
9276
9277/* Called after relax() is finished.
9278
9279 In: Address of frag.
9280 fr_type == rs_machine_dependent.
9281 fr_subtype is what the address relaxed to.
9282
9283 Out: Any fixSs and constants are set up.
9284 Caller will turn frag into a ".space 0". */
9285
9286void
9287md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9288 fragS *fragP)
9289{
9290 unsigned char *opcode;
9291 unsigned char *where_to_put_displacement = NULL;
9292 offsetT target_address;
9293 offsetT opcode_address;
9294 unsigned int extension = 0;
9295 offsetT displacement_from_opcode_start;
9296
9297 opcode = (unsigned char *) fragP->fr_opcode;
9298
9299 /* Address we want to reach in file space. */
9300 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9301
9302 /* Address opcode resides at in file space. */
9303 opcode_address = fragP->fr_address + fragP->fr_fix;
9304
9305 /* Displacement from opcode start to fill into instruction. */
9306 displacement_from_opcode_start = target_address - opcode_address;
9307
9308 if ((fragP->fr_subtype & BIG) == 0)
9309 {
9310 /* Don't have to change opcode. */
9311 extension = 1; /* 1 opcode + 1 displacement */
9312 where_to_put_displacement = &opcode[1];
9313 }
9314 else
9315 {
9316 if (no_cond_jump_promotion
9317 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9318 as_warn_where (fragP->fr_file, fragP->fr_line,
9319 _("long jump required"));
9320
9321 switch (fragP->fr_subtype)
9322 {
9323 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9324 extension = 4; /* 1 opcode + 4 displacement */
9325 opcode[0] = 0xe9;
9326 where_to_put_displacement = &opcode[1];
9327 break;
9328
9329 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9330 extension = 2; /* 1 opcode + 2 displacement */
9331 opcode[0] = 0xe9;
9332 where_to_put_displacement = &opcode[1];
9333 break;
9334
9335 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9336 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9337 extension = 5; /* 2 opcode + 4 displacement */
9338 opcode[1] = opcode[0] + 0x10;
9339 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9340 where_to_put_displacement = &opcode[2];
9341 break;
9342
9343 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9344 extension = 3; /* 2 opcode + 2 displacement */
9345 opcode[1] = opcode[0] + 0x10;
9346 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9347 where_to_put_displacement = &opcode[2];
9348 break;
9349
9350 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9351 extension = 4;
9352 opcode[0] ^= 1;
9353 opcode[1] = 3;
9354 opcode[2] = 0xe9;
9355 where_to_put_displacement = &opcode[3];
9356 break;
9357
9358 default:
9359 BAD_CASE (fragP->fr_subtype);
9360 break;
9361 }
9362 }
9363
9364 /* If size if less then four we are sure that the operand fits,
9365 but if it's 4, then it could be that the displacement is larger
9366 then -/+ 2GB. */
9367 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9368 && object_64bit
9369 && ((addressT) (displacement_from_opcode_start - extension
9370 + ((addressT) 1 << 31))
9371 > (((addressT) 2 << 31) - 1)))
9372 {
9373 as_bad_where (fragP->fr_file, fragP->fr_line,
9374 _("jump target out of range"));
9375 /* Make us emit 0. */
9376 displacement_from_opcode_start = extension;
9377 }
9378 /* Now put displacement after opcode. */
9379 md_number_to_chars ((char *) where_to_put_displacement,
9380 (valueT) (displacement_from_opcode_start - extension),
9381 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9382 fragP->fr_fix += extension;
9383}
9384\f
9385/* Apply a fixup (fixP) to segment data, once it has been determined
9386 by our caller that we have all the info we need to fix it up.
9387
9388 Parameter valP is the pointer to the value of the bits.
9389
9390 On the 386, immediates, displacements, and data pointers are all in
9391 the same (little-endian) format, so we don't need to care about which
9392 we are handling. */
9393
9394void
9395md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9396{
9397 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9398 valueT value = *valP;
9399
9400#if !defined (TE_Mach)
9401 if (fixP->fx_pcrel)
9402 {
9403 switch (fixP->fx_r_type)
9404 {
9405 default:
9406 break;
9407
9408 case BFD_RELOC_64:
9409 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9410 break;
9411 case BFD_RELOC_32:
9412 case BFD_RELOC_X86_64_32S:
9413 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9414 break;
9415 case BFD_RELOC_16:
9416 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9417 break;
9418 case BFD_RELOC_8:
9419 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9420 break;
9421 }
9422 }
9423
9424 if (fixP->fx_addsy != NULL
9425 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9426 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9427 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9428 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9429 && !use_rela_relocations)
9430 {
9431 /* This is a hack. There should be a better way to handle this.
9432 This covers for the fact that bfd_install_relocation will
9433 subtract the current location (for partial_inplace, PC relative
9434 relocations); see more below. */
9435#ifndef OBJ_AOUT
9436 if (IS_ELF
9437#ifdef TE_PE
9438 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9439#endif
9440 )
9441 value += fixP->fx_where + fixP->fx_frag->fr_address;
9442#endif
9443#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9444 if (IS_ELF)
9445 {
9446 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9447
9448 if ((sym_seg == seg
9449 || (symbol_section_p (fixP->fx_addsy)
9450 && sym_seg != absolute_section))
9451 && !generic_force_reloc (fixP))
9452 {
9453 /* Yes, we add the values in twice. This is because
9454 bfd_install_relocation subtracts them out again. I think
9455 bfd_install_relocation is broken, but I don't dare change
9456 it. FIXME. */
9457 value += fixP->fx_where + fixP->fx_frag->fr_address;
9458 }
9459 }
9460#endif
9461#if defined (OBJ_COFF) && defined (TE_PE)
9462 /* For some reason, the PE format does not store a
9463 section address offset for a PC relative symbol. */
9464 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9465 || S_IS_WEAK (fixP->fx_addsy))
9466 value += md_pcrel_from (fixP);
9467#endif
9468 }
9469#if defined (OBJ_COFF) && defined (TE_PE)
9470 if (fixP->fx_addsy != NULL
9471 && S_IS_WEAK (fixP->fx_addsy)
9472 /* PR 16858: Do not modify weak function references. */
9473 && ! fixP->fx_pcrel)
9474 {
9475#if !defined (TE_PEP)
9476 /* For x86 PE weak function symbols are neither PC-relative
9477 nor do they set S_IS_FUNCTION. So the only reliable way
9478 to detect them is to check the flags of their containing
9479 section. */
9480 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9481 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9482 ;
9483 else
9484#endif
9485 value -= S_GET_VALUE (fixP->fx_addsy);
9486 }
9487#endif
9488
9489 /* Fix a few things - the dynamic linker expects certain values here,
9490 and we must not disappoint it. */
9491#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9492 if (IS_ELF && fixP->fx_addsy)
9493 switch (fixP->fx_r_type)
9494 {
9495 case BFD_RELOC_386_PLT32:
9496 case BFD_RELOC_X86_64_PLT32:
9497 /* Make the jump instruction point to the address of the operand. At
9498 runtime we merely add the offset to the actual PLT entry. */
9499 value = -4;
9500 break;
9501
9502 case BFD_RELOC_386_TLS_GD:
9503 case BFD_RELOC_386_TLS_LDM:
9504 case BFD_RELOC_386_TLS_IE_32:
9505 case BFD_RELOC_386_TLS_IE:
9506 case BFD_RELOC_386_TLS_GOTIE:
9507 case BFD_RELOC_386_TLS_GOTDESC:
9508 case BFD_RELOC_X86_64_TLSGD:
9509 case BFD_RELOC_X86_64_TLSLD:
9510 case BFD_RELOC_X86_64_GOTTPOFF:
9511 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9512 value = 0; /* Fully resolved at runtime. No addend. */
9513 /* Fallthrough */
9514 case BFD_RELOC_386_TLS_LE:
9515 case BFD_RELOC_386_TLS_LDO_32:
9516 case BFD_RELOC_386_TLS_LE_32:
9517 case BFD_RELOC_X86_64_DTPOFF32:
9518 case BFD_RELOC_X86_64_DTPOFF64:
9519 case BFD_RELOC_X86_64_TPOFF32:
9520 case BFD_RELOC_X86_64_TPOFF64:
9521 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9522 break;
9523
9524 case BFD_RELOC_386_TLS_DESC_CALL:
9525 case BFD_RELOC_X86_64_TLSDESC_CALL:
9526 value = 0; /* Fully resolved at runtime. No addend. */
9527 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9528 fixP->fx_done = 0;
9529 return;
9530
9531 case BFD_RELOC_VTABLE_INHERIT:
9532 case BFD_RELOC_VTABLE_ENTRY:
9533 fixP->fx_done = 0;
9534 return;
9535
9536 default:
9537 break;
9538 }
9539#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9540 *valP = value;
9541#endif /* !defined (TE_Mach) */
9542
9543 /* Are we finished with this relocation now? */
9544 if (fixP->fx_addsy == NULL)
9545 fixP->fx_done = 1;
9546#if defined (OBJ_COFF) && defined (TE_PE)
9547 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9548 {
9549 fixP->fx_done = 0;
9550 /* Remember value for tc_gen_reloc. */
9551 fixP->fx_addnumber = value;
9552 /* Clear out the frag for now. */
9553 value = 0;
9554 }
9555#endif
9556 else if (use_rela_relocations)
9557 {
9558 fixP->fx_no_overflow = 1;
9559 /* Remember value for tc_gen_reloc. */
9560 fixP->fx_addnumber = value;
9561 value = 0;
9562 }
9563
9564 md_number_to_chars (p, value, fixP->fx_size);
9565}
9566\f
9567const char *
9568md_atof (int type, char *litP, int *sizeP)
9569{
9570 /* This outputs the LITTLENUMs in REVERSE order;
9571 in accord with the bigendian 386. */
9572 return ieee_md_atof (type, litP, sizeP, FALSE);
9573}
9574\f
9575static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9576
9577static char *
9578output_invalid (int c)
9579{
9580 if (ISPRINT (c))
9581 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9582 "'%c'", c);
9583 else
9584 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9585 "(0x%x)", (unsigned char) c);
9586 return output_invalid_buf;
9587}
9588
9589/* REG_STRING starts *before* REGISTER_PREFIX. */
9590
9591static const reg_entry *
9592parse_real_register (char *reg_string, char **end_op)
9593{
9594 char *s = reg_string;
9595 char *p;
9596 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9597 const reg_entry *r;
9598
9599 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9600 if (*s == REGISTER_PREFIX)
9601 ++s;
9602
9603 if (is_space_char (*s))
9604 ++s;
9605
9606 p = reg_name_given;
9607 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9608 {
9609 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9610 return (const reg_entry *) NULL;
9611 s++;
9612 }
9613
9614 /* For naked regs, make sure that we are not dealing with an identifier.
9615 This prevents confusing an identifier like `eax_var' with register
9616 `eax'. */
9617 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9618 return (const reg_entry *) NULL;
9619
9620 *end_op = s;
9621
9622 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9623
9624 /* Handle floating point regs, allowing spaces in the (i) part. */
9625 if (r == i386_regtab /* %st is first entry of table */)
9626 {
9627 if (is_space_char (*s))
9628 ++s;
9629 if (*s == '(')
9630 {
9631 ++s;
9632 if (is_space_char (*s))
9633 ++s;
9634 if (*s >= '0' && *s <= '7')
9635 {
9636 int fpr = *s - '0';
9637 ++s;
9638 if (is_space_char (*s))
9639 ++s;
9640 if (*s == ')')
9641 {
9642 *end_op = s + 1;
9643 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9644 know (r);
9645 return r + fpr;
9646 }
9647 }
9648 /* We have "%st(" then garbage. */
9649 return (const reg_entry *) NULL;
9650 }
9651 }
9652
9653 if (r == NULL || allow_pseudo_reg)
9654 return r;
9655
9656 if (operand_type_all_zero (&r->reg_type))
9657 return (const reg_entry *) NULL;
9658
9659 if ((r->reg_type.bitfield.reg32
9660 || r->reg_type.bitfield.sreg3
9661 || r->reg_type.bitfield.control
9662 || r->reg_type.bitfield.debug
9663 || r->reg_type.bitfield.test)
9664 && !cpu_arch_flags.bitfield.cpui386)
9665 return (const reg_entry *) NULL;
9666
9667 if (r->reg_type.bitfield.floatreg
9668 && !cpu_arch_flags.bitfield.cpu8087
9669 && !cpu_arch_flags.bitfield.cpu287
9670 && !cpu_arch_flags.bitfield.cpu387)
9671 return (const reg_entry *) NULL;
9672
9673 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9674 return (const reg_entry *) NULL;
9675
9676 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9677 return (const reg_entry *) NULL;
9678
9679 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9680 return (const reg_entry *) NULL;
9681
9682 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9683 return (const reg_entry *) NULL;
9684
9685 if (r->reg_type.bitfield.regmask
9686 && !cpu_arch_flags.bitfield.cpuregmask)
9687 return (const reg_entry *) NULL;
9688
9689 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9690 if (!allow_index_reg
9691 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9692 return (const reg_entry *) NULL;
9693
9694 /* Upper 16 vector register is only available with VREX in 64bit
9695 mode. */
9696 if ((r->reg_flags & RegVRex))
9697 {
9698 if (!cpu_arch_flags.bitfield.cpuvrex
9699 || flag_code != CODE_64BIT)
9700 return (const reg_entry *) NULL;
9701
9702 i.need_vrex = 1;
9703 }
9704
9705 if (((r->reg_flags & (RegRex64 | RegRex))
9706 || r->reg_type.bitfield.reg64)
9707 && (!cpu_arch_flags.bitfield.cpulm
9708 || !operand_type_equal (&r->reg_type, &control))
9709 && flag_code != CODE_64BIT)
9710 return (const reg_entry *) NULL;
9711
9712 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9713 return (const reg_entry *) NULL;
9714
9715 return r;
9716}
9717
9718/* REG_STRING starts *before* REGISTER_PREFIX. */
9719
9720static const reg_entry *
9721parse_register (char *reg_string, char **end_op)
9722{
9723 const reg_entry *r;
9724
9725 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9726 r = parse_real_register (reg_string, end_op);
9727 else
9728 r = NULL;
9729 if (!r)
9730 {
9731 char *save = input_line_pointer;
9732 char c;
9733 symbolS *symbolP;
9734
9735 input_line_pointer = reg_string;
9736 c = get_symbol_name (&reg_string);
9737 symbolP = symbol_find (reg_string);
9738 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9739 {
9740 const expressionS *e = symbol_get_value_expression (symbolP);
9741
9742 know (e->X_op == O_register);
9743 know (e->X_add_number >= 0
9744 && (valueT) e->X_add_number < i386_regtab_size);
9745 r = i386_regtab + e->X_add_number;
9746 if ((r->reg_flags & RegVRex))
9747 i.need_vrex = 1;
9748 *end_op = input_line_pointer;
9749 }
9750 *input_line_pointer = c;
9751 input_line_pointer = save;
9752 }
9753 return r;
9754}
9755
9756int
9757i386_parse_name (char *name, expressionS *e, char *nextcharP)
9758{
9759 const reg_entry *r;
9760 char *end = input_line_pointer;
9761
9762 *end = *nextcharP;
9763 r = parse_register (name, &input_line_pointer);
9764 if (r && end <= input_line_pointer)
9765 {
9766 *nextcharP = *input_line_pointer;
9767 *input_line_pointer = 0;
9768 e->X_op = O_register;
9769 e->X_add_number = r - i386_regtab;
9770 return 1;
9771 }
9772 input_line_pointer = end;
9773 *end = 0;
9774 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9775}
9776
9777void
9778md_operand (expressionS *e)
9779{
9780 char *end;
9781 const reg_entry *r;
9782
9783 switch (*input_line_pointer)
9784 {
9785 case REGISTER_PREFIX:
9786 r = parse_real_register (input_line_pointer, &end);
9787 if (r)
9788 {
9789 e->X_op = O_register;
9790 e->X_add_number = r - i386_regtab;
9791 input_line_pointer = end;
9792 }
9793 break;
9794
9795 case '[':
9796 gas_assert (intel_syntax);
9797 end = input_line_pointer++;
9798 expression (e);
9799 if (*input_line_pointer == ']')
9800 {
9801 ++input_line_pointer;
9802 e->X_op_symbol = make_expr_symbol (e);
9803 e->X_add_symbol = NULL;
9804 e->X_add_number = 0;
9805 e->X_op = O_index;
9806 }
9807 else
9808 {
9809 e->X_op = O_absent;
9810 input_line_pointer = end;
9811 }
9812 break;
9813 }
9814}
9815
9816\f
9817#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9818const char *md_shortopts = "kVQ:sqn";
9819#else
9820const char *md_shortopts = "qn";
9821#endif
9822
9823#define OPTION_32 (OPTION_MD_BASE + 0)
9824#define OPTION_64 (OPTION_MD_BASE + 1)
9825#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9826#define OPTION_MARCH (OPTION_MD_BASE + 3)
9827#define OPTION_MTUNE (OPTION_MD_BASE + 4)
9828#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9829#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9830#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9831#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9832#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9833#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9834#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9835#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9836#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9837#define OPTION_X32 (OPTION_MD_BASE + 14)
9838#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9839#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9840#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9841#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9842#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9843#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9844#define OPTION_MSHARED (OPTION_MD_BASE + 21)
9845#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9846#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9847#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9848#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9849
9850struct option md_longopts[] =
9851{
9852 {"32", no_argument, NULL, OPTION_32},
9853#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9854 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9855 {"64", no_argument, NULL, OPTION_64},
9856#endif
9857#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9858 {"x32", no_argument, NULL, OPTION_X32},
9859 {"mshared", no_argument, NULL, OPTION_MSHARED},
9860#endif
9861 {"divide", no_argument, NULL, OPTION_DIVIDE},
9862 {"march", required_argument, NULL, OPTION_MARCH},
9863 {"mtune", required_argument, NULL, OPTION_MTUNE},
9864 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9865 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9866 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9867 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9868 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9869 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9870 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9871 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9872 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9873 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9874 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9875 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9876# if defined (TE_PE) || defined (TE_PEP)
9877 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9878#endif
9879 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
9880 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
9881 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
9882 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9883 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9884 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9885 {NULL, no_argument, NULL, 0}
9886};
9887size_t md_longopts_size = sizeof (md_longopts);
9888
9889int
9890md_parse_option (int c, const char *arg)
9891{
9892 unsigned int j;
9893 char *arch, *next, *saved;
9894
9895 switch (c)
9896 {
9897 case 'n':
9898 optimize_align_code = 0;
9899 break;
9900
9901 case 'q':
9902 quiet_warnings = 1;
9903 break;
9904
9905#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9906 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9907 should be emitted or not. FIXME: Not implemented. */
9908 case 'Q':
9909 break;
9910
9911 /* -V: SVR4 argument to print version ID. */
9912 case 'V':
9913 print_version_id ();
9914 break;
9915
9916 /* -k: Ignore for FreeBSD compatibility. */
9917 case 'k':
9918 break;
9919
9920 case 's':
9921 /* -s: On i386 Solaris, this tells the native assembler to use
9922 .stab instead of .stab.excl. We always use .stab anyhow. */
9923 break;
9924
9925 case OPTION_MSHARED:
9926 shared = 1;
9927 break;
9928#endif
9929#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9930 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9931 case OPTION_64:
9932 {
9933 const char **list, **l;
9934
9935 list = bfd_target_list ();
9936 for (l = list; *l != NULL; l++)
9937 if (CONST_STRNEQ (*l, "elf64-x86-64")
9938 || strcmp (*l, "coff-x86-64") == 0
9939 || strcmp (*l, "pe-x86-64") == 0
9940 || strcmp (*l, "pei-x86-64") == 0
9941 || strcmp (*l, "mach-o-x86-64") == 0)
9942 {
9943 default_arch = "x86_64";
9944 break;
9945 }
9946 if (*l == NULL)
9947 as_fatal (_("no compiled in support for x86_64"));
9948 free (list);
9949 }
9950 break;
9951#endif
9952
9953#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9954 case OPTION_X32:
9955 if (IS_ELF)
9956 {
9957 const char **list, **l;
9958
9959 list = bfd_target_list ();
9960 for (l = list; *l != NULL; l++)
9961 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9962 {
9963 default_arch = "x86_64:32";
9964 break;
9965 }
9966 if (*l == NULL)
9967 as_fatal (_("no compiled in support for 32bit x86_64"));
9968 free (list);
9969 }
9970 else
9971 as_fatal (_("32bit x86_64 is only supported for ELF"));
9972 break;
9973#endif
9974
9975 case OPTION_32:
9976 default_arch = "i386";
9977 break;
9978
9979 case OPTION_DIVIDE:
9980#ifdef SVR4_COMMENT_CHARS
9981 {
9982 char *n, *t;
9983 const char *s;
9984
9985 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
9986 t = n;
9987 for (s = i386_comment_chars; *s != '\0'; s++)
9988 if (*s != '/')
9989 *t++ = *s;
9990 *t = '\0';
9991 i386_comment_chars = n;
9992 }
9993#endif
9994 break;
9995
9996 case OPTION_MARCH:
9997 saved = xstrdup (arg);
9998 arch = saved;
9999 /* Allow -march=+nosse. */
10000 if (*arch == '+')
10001 arch++;
10002 do
10003 {
10004 if (*arch == '.')
10005 as_fatal (_("invalid -march= option: `%s'"), arg);
10006 next = strchr (arch, '+');
10007 if (next)
10008 *next++ = '\0';
10009 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10010 {
10011 if (strcmp (arch, cpu_arch [j].name) == 0)
10012 {
10013 /* Processor. */
10014 if (! cpu_arch[j].flags.bitfield.cpui386)
10015 continue;
10016
10017 cpu_arch_name = cpu_arch[j].name;
10018 cpu_sub_arch_name = NULL;
10019 cpu_arch_flags = cpu_arch[j].flags;
10020 cpu_arch_isa = cpu_arch[j].type;
10021 cpu_arch_isa_flags = cpu_arch[j].flags;
10022 if (!cpu_arch_tune_set)
10023 {
10024 cpu_arch_tune = cpu_arch_isa;
10025 cpu_arch_tune_flags = cpu_arch_isa_flags;
10026 }
10027 break;
10028 }
10029 else if (*cpu_arch [j].name == '.'
10030 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10031 {
10032 /* ISA entension. */
10033 i386_cpu_flags flags;
10034
10035 flags = cpu_flags_or (cpu_arch_flags,
10036 cpu_arch[j].flags);
10037
10038 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10039 {
10040 if (cpu_sub_arch_name)
10041 {
10042 char *name = cpu_sub_arch_name;
10043 cpu_sub_arch_name = concat (name,
10044 cpu_arch[j].name,
10045 (const char *) NULL);
10046 free (name);
10047 }
10048 else
10049 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10050 cpu_arch_flags = flags;
10051 cpu_arch_isa_flags = flags;
10052 }
10053 break;
10054 }
10055 }
10056
10057 if (j >= ARRAY_SIZE (cpu_arch))
10058 {
10059 /* Disable an ISA entension. */
10060 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10061 if (strcmp (arch, cpu_noarch [j].name) == 0)
10062 {
10063 i386_cpu_flags flags;
10064
10065 flags = cpu_flags_and_not (cpu_arch_flags,
10066 cpu_noarch[j].flags);
10067 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10068 {
10069 if (cpu_sub_arch_name)
10070 {
10071 char *name = cpu_sub_arch_name;
10072 cpu_sub_arch_name = concat (arch,
10073 (const char *) NULL);
10074 free (name);
10075 }
10076 else
10077 cpu_sub_arch_name = xstrdup (arch);
10078 cpu_arch_flags = flags;
10079 cpu_arch_isa_flags = flags;
10080 }
10081 break;
10082 }
10083
10084 if (j >= ARRAY_SIZE (cpu_noarch))
10085 j = ARRAY_SIZE (cpu_arch);
10086 }
10087
10088 if (j >= ARRAY_SIZE (cpu_arch))
10089 as_fatal (_("invalid -march= option: `%s'"), arg);
10090
10091 arch = next;
10092 }
10093 while (next != NULL);
10094 free (saved);
10095 break;
10096
10097 case OPTION_MTUNE:
10098 if (*arg == '.')
10099 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10100 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10101 {
10102 if (strcmp (arg, cpu_arch [j].name) == 0)
10103 {
10104 cpu_arch_tune_set = 1;
10105 cpu_arch_tune = cpu_arch [j].type;
10106 cpu_arch_tune_flags = cpu_arch[j].flags;
10107 break;
10108 }
10109 }
10110 if (j >= ARRAY_SIZE (cpu_arch))
10111 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10112 break;
10113
10114 case OPTION_MMNEMONIC:
10115 if (strcasecmp (arg, "att") == 0)
10116 intel_mnemonic = 0;
10117 else if (strcasecmp (arg, "intel") == 0)
10118 intel_mnemonic = 1;
10119 else
10120 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10121 break;
10122
10123 case OPTION_MSYNTAX:
10124 if (strcasecmp (arg, "att") == 0)
10125 intel_syntax = 0;
10126 else if (strcasecmp (arg, "intel") == 0)
10127 intel_syntax = 1;
10128 else
10129 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10130 break;
10131
10132 case OPTION_MINDEX_REG:
10133 allow_index_reg = 1;
10134 break;
10135
10136 case OPTION_MNAKED_REG:
10137 allow_naked_reg = 1;
10138 break;
10139
10140 case OPTION_MOLD_GCC:
10141 old_gcc = 1;
10142 break;
10143
10144 case OPTION_MSSE2AVX:
10145 sse2avx = 1;
10146 break;
10147
10148 case OPTION_MSSE_CHECK:
10149 if (strcasecmp (arg, "error") == 0)
10150 sse_check = check_error;
10151 else if (strcasecmp (arg, "warning") == 0)
10152 sse_check = check_warning;
10153 else if (strcasecmp (arg, "none") == 0)
10154 sse_check = check_none;
10155 else
10156 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10157 break;
10158
10159 case OPTION_MOPERAND_CHECK:
10160 if (strcasecmp (arg, "error") == 0)
10161 operand_check = check_error;
10162 else if (strcasecmp (arg, "warning") == 0)
10163 operand_check = check_warning;
10164 else if (strcasecmp (arg, "none") == 0)
10165 operand_check = check_none;
10166 else
10167 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10168 break;
10169
10170 case OPTION_MAVXSCALAR:
10171 if (strcasecmp (arg, "128") == 0)
10172 avxscalar = vex128;
10173 else if (strcasecmp (arg, "256") == 0)
10174 avxscalar = vex256;
10175 else
10176 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10177 break;
10178
10179 case OPTION_MADD_BND_PREFIX:
10180 add_bnd_prefix = 1;
10181 break;
10182
10183 case OPTION_MEVEXLIG:
10184 if (strcmp (arg, "128") == 0)
10185 evexlig = evexl128;
10186 else if (strcmp (arg, "256") == 0)
10187 evexlig = evexl256;
10188 else if (strcmp (arg, "512") == 0)
10189 evexlig = evexl512;
10190 else
10191 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10192 break;
10193
10194 case OPTION_MEVEXRCIG:
10195 if (strcmp (arg, "rne") == 0)
10196 evexrcig = rne;
10197 else if (strcmp (arg, "rd") == 0)
10198 evexrcig = rd;
10199 else if (strcmp (arg, "ru") == 0)
10200 evexrcig = ru;
10201 else if (strcmp (arg, "rz") == 0)
10202 evexrcig = rz;
10203 else
10204 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10205 break;
10206
10207 case OPTION_MEVEXWIG:
10208 if (strcmp (arg, "0") == 0)
10209 evexwig = evexw0;
10210 else if (strcmp (arg, "1") == 0)
10211 evexwig = evexw1;
10212 else
10213 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10214 break;
10215
10216# if defined (TE_PE) || defined (TE_PEP)
10217 case OPTION_MBIG_OBJ:
10218 use_big_obj = 1;
10219 break;
10220#endif
10221
10222 case OPTION_MOMIT_LOCK_PREFIX:
10223 if (strcasecmp (arg, "yes") == 0)
10224 omit_lock_prefix = 1;
10225 else if (strcasecmp (arg, "no") == 0)
10226 omit_lock_prefix = 0;
10227 else
10228 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10229 break;
10230
10231 case OPTION_MFENCE_AS_LOCK_ADD:
10232 if (strcasecmp (arg, "yes") == 0)
10233 avoid_fence = 1;
10234 else if (strcasecmp (arg, "no") == 0)
10235 avoid_fence = 0;
10236 else
10237 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10238 break;
10239
10240 case OPTION_MRELAX_RELOCATIONS:
10241 if (strcasecmp (arg, "yes") == 0)
10242 generate_relax_relocations = 1;
10243 else if (strcasecmp (arg, "no") == 0)
10244 generate_relax_relocations = 0;
10245 else
10246 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10247 break;
10248
10249 case OPTION_MAMD64:
10250 intel64 = 0;
10251 break;
10252
10253 case OPTION_MINTEL64:
10254 intel64 = 1;
10255 break;
10256
10257 default:
10258 return 0;
10259 }
10260 return 1;
10261}
10262
10263#define MESSAGE_TEMPLATE \
10264" "
10265
10266static char *
10267output_message (FILE *stream, char *p, char *message, char *start,
10268 int *left_p, const char *name, int len)
10269{
10270 int size = sizeof (MESSAGE_TEMPLATE);
10271 int left = *left_p;
10272
10273 /* Reserve 2 spaces for ", " or ",\0" */
10274 left -= len + 2;
10275
10276 /* Check if there is any room. */
10277 if (left >= 0)
10278 {
10279 if (p != start)
10280 {
10281 *p++ = ',';
10282 *p++ = ' ';
10283 }
10284 p = mempcpy (p, name, len);
10285 }
10286 else
10287 {
10288 /* Output the current message now and start a new one. */
10289 *p++ = ',';
10290 *p = '\0';
10291 fprintf (stream, "%s\n", message);
10292 p = start;
10293 left = size - (start - message) - len - 2;
10294
10295 gas_assert (left >= 0);
10296
10297 p = mempcpy (p, name, len);
10298 }
10299
10300 *left_p = left;
10301 return p;
10302}
10303
10304static void
10305show_arch (FILE *stream, int ext, int check)
10306{
10307 static char message[] = MESSAGE_TEMPLATE;
10308 char *start = message + 27;
10309 char *p;
10310 int size = sizeof (MESSAGE_TEMPLATE);
10311 int left;
10312 const char *name;
10313 int len;
10314 unsigned int j;
10315
10316 p = start;
10317 left = size - (start - message);
10318 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10319 {
10320 /* Should it be skipped? */
10321 if (cpu_arch [j].skip)
10322 continue;
10323
10324 name = cpu_arch [j].name;
10325 len = cpu_arch [j].len;
10326 if (*name == '.')
10327 {
10328 /* It is an extension. Skip if we aren't asked to show it. */
10329 if (ext)
10330 {
10331 name++;
10332 len--;
10333 }
10334 else
10335 continue;
10336 }
10337 else if (ext)
10338 {
10339 /* It is an processor. Skip if we show only extension. */
10340 continue;
10341 }
10342 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10343 {
10344 /* It is an impossible processor - skip. */
10345 continue;
10346 }
10347
10348 p = output_message (stream, p, message, start, &left, name, len);
10349 }
10350
10351 /* Display disabled extensions. */
10352 if (ext)
10353 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10354 {
10355 name = cpu_noarch [j].name;
10356 len = cpu_noarch [j].len;
10357 p = output_message (stream, p, message, start, &left, name,
10358 len);
10359 }
10360
10361 *p = '\0';
10362 fprintf (stream, "%s\n", message);
10363}
10364
10365void
10366md_show_usage (FILE *stream)
10367{
10368#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10369 fprintf (stream, _("\
10370 -Q ignored\n\
10371 -V print assembler version number\n\
10372 -k ignored\n"));
10373#endif
10374 fprintf (stream, _("\
10375 -n Do not optimize code alignment\n\
10376 -q quieten some warnings\n"));
10377#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10378 fprintf (stream, _("\
10379 -s ignored\n"));
10380#endif
10381#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10382 || defined (TE_PE) || defined (TE_PEP))
10383 fprintf (stream, _("\
10384 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10385#endif
10386#ifdef SVR4_COMMENT_CHARS
10387 fprintf (stream, _("\
10388 --divide do not treat `/' as a comment character\n"));
10389#else
10390 fprintf (stream, _("\
10391 --divide ignored\n"));
10392#endif
10393 fprintf (stream, _("\
10394 -march=CPU[,+EXTENSION...]\n\
10395 generate code for CPU and EXTENSION, CPU is one of:\n"));
10396 show_arch (stream, 0, 1);
10397 fprintf (stream, _("\
10398 EXTENSION is combination of:\n"));
10399 show_arch (stream, 1, 0);
10400 fprintf (stream, _("\
10401 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10402 show_arch (stream, 0, 0);
10403 fprintf (stream, _("\
10404 -msse2avx encode SSE instructions with VEX prefix\n"));
10405 fprintf (stream, _("\
10406 -msse-check=[none|error|warning]\n\
10407 check SSE instructions\n"));
10408 fprintf (stream, _("\
10409 -moperand-check=[none|error|warning]\n\
10410 check operand combinations for validity\n"));
10411 fprintf (stream, _("\
10412 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10413 length\n"));
10414 fprintf (stream, _("\
10415 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10416 length\n"));
10417 fprintf (stream, _("\
10418 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10419 for EVEX.W bit ignored instructions\n"));
10420 fprintf (stream, _("\
10421 -mevexrcig=[rne|rd|ru|rz]\n\
10422 encode EVEX instructions with specific EVEX.RC value\n\
10423 for SAE-only ignored instructions\n"));
10424 fprintf (stream, _("\
10425 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10426 fprintf (stream, _("\
10427 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10428 fprintf (stream, _("\
10429 -mindex-reg support pseudo index registers\n"));
10430 fprintf (stream, _("\
10431 -mnaked-reg don't require `%%' prefix for registers\n"));
10432 fprintf (stream, _("\
10433 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10434 fprintf (stream, _("\
10435 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10436 fprintf (stream, _("\
10437 -mshared disable branch optimization for shared code\n"));
10438# if defined (TE_PE) || defined (TE_PEP)
10439 fprintf (stream, _("\
10440 -mbig-obj generate big object files\n"));
10441#endif
10442 fprintf (stream, _("\
10443 -momit-lock-prefix=[no|yes]\n\
10444 strip all lock prefixes\n"));
10445 fprintf (stream, _("\
10446 -mfence-as-lock-add=[no|yes]\n\
10447 encode lfence, mfence and sfence as\n\
10448 lock addl $0x0, (%%{re}sp)\n"));
10449 fprintf (stream, _("\
10450 -mrelax-relocations=[no|yes]\n\
10451 generate relax relocations\n"));
10452 fprintf (stream, _("\
10453 -mamd64 accept only AMD64 ISA\n"));
10454 fprintf (stream, _("\
10455 -mintel64 accept only Intel64 ISA\n"));
10456}
10457
10458#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10459 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10460 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10461
10462/* Pick the target format to use. */
10463
10464const char *
10465i386_target_format (void)
10466{
10467 if (!strncmp (default_arch, "x86_64", 6))
10468 {
10469 update_code_flag (CODE_64BIT, 1);
10470 if (default_arch[6] == '\0')
10471 x86_elf_abi = X86_64_ABI;
10472 else
10473 x86_elf_abi = X86_64_X32_ABI;
10474 }
10475 else if (!strcmp (default_arch, "i386"))
10476 update_code_flag (CODE_32BIT, 1);
10477 else if (!strcmp (default_arch, "iamcu"))
10478 {
10479 update_code_flag (CODE_32BIT, 1);
10480 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10481 {
10482 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10483 cpu_arch_name = "iamcu";
10484 cpu_sub_arch_name = NULL;
10485 cpu_arch_flags = iamcu_flags;
10486 cpu_arch_isa = PROCESSOR_IAMCU;
10487 cpu_arch_isa_flags = iamcu_flags;
10488 if (!cpu_arch_tune_set)
10489 {
10490 cpu_arch_tune = cpu_arch_isa;
10491 cpu_arch_tune_flags = cpu_arch_isa_flags;
10492 }
10493 }
10494 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10495 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10496 cpu_arch_name);
10497 }
10498 else
10499 as_fatal (_("unknown architecture"));
10500
10501 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10502 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10503 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10504 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10505
10506 switch (OUTPUT_FLAVOR)
10507 {
10508#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10509 case bfd_target_aout_flavour:
10510 return AOUT_TARGET_FORMAT;
10511#endif
10512#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10513# if defined (TE_PE) || defined (TE_PEP)
10514 case bfd_target_coff_flavour:
10515 if (flag_code == CODE_64BIT)
10516 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10517 else
10518 return "pe-i386";
10519# elif defined (TE_GO32)
10520 case bfd_target_coff_flavour:
10521 return "coff-go32";
10522# else
10523 case bfd_target_coff_flavour:
10524 return "coff-i386";
10525# endif
10526#endif
10527#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10528 case bfd_target_elf_flavour:
10529 {
10530 const char *format;
10531
10532 switch (x86_elf_abi)
10533 {
10534 default:
10535 format = ELF_TARGET_FORMAT;
10536 break;
10537 case X86_64_ABI:
10538 use_rela_relocations = 1;
10539 object_64bit = 1;
10540 format = ELF_TARGET_FORMAT64;
10541 break;
10542 case X86_64_X32_ABI:
10543 use_rela_relocations = 1;
10544 object_64bit = 1;
10545 disallow_64bit_reloc = 1;
10546 format = ELF_TARGET_FORMAT32;
10547 break;
10548 }
10549 if (cpu_arch_isa == PROCESSOR_L1OM)
10550 {
10551 if (x86_elf_abi != X86_64_ABI)
10552 as_fatal (_("Intel L1OM is 64bit only"));
10553 return ELF_TARGET_L1OM_FORMAT;
10554 }
10555 else if (cpu_arch_isa == PROCESSOR_K1OM)
10556 {
10557 if (x86_elf_abi != X86_64_ABI)
10558 as_fatal (_("Intel K1OM is 64bit only"));
10559 return ELF_TARGET_K1OM_FORMAT;
10560 }
10561 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10562 {
10563 if (x86_elf_abi != I386_ABI)
10564 as_fatal (_("Intel MCU is 32bit only"));
10565 return ELF_TARGET_IAMCU_FORMAT;
10566 }
10567 else
10568 return format;
10569 }
10570#endif
10571#if defined (OBJ_MACH_O)
10572 case bfd_target_mach_o_flavour:
10573 if (flag_code == CODE_64BIT)
10574 {
10575 use_rela_relocations = 1;
10576 object_64bit = 1;
10577 return "mach-o-x86-64";
10578 }
10579 else
10580 return "mach-o-i386";
10581#endif
10582 default:
10583 abort ();
10584 return NULL;
10585 }
10586}
10587
10588#endif /* OBJ_MAYBE_ more than one */
10589\f
10590symbolS *
10591md_undefined_symbol (char *name)
10592{
10593 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10594 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10595 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10596 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10597 {
10598 if (!GOT_symbol)
10599 {
10600 if (symbol_find (name))
10601 as_bad (_("GOT already in symbol table"));
10602 GOT_symbol = symbol_new (name, undefined_section,
10603 (valueT) 0, &zero_address_frag);
10604 };
10605 return GOT_symbol;
10606 }
10607 return 0;
10608}
10609
10610/* Round up a section size to the appropriate boundary. */
10611
10612valueT
10613md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10614{
10615#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10616 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10617 {
10618 /* For a.out, force the section size to be aligned. If we don't do
10619 this, BFD will align it for us, but it will not write out the
10620 final bytes of the section. This may be a bug in BFD, but it is
10621 easier to fix it here since that is how the other a.out targets
10622 work. */
10623 int align;
10624
10625 align = bfd_get_section_alignment (stdoutput, segment);
10626 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10627 }
10628#endif
10629
10630 return size;
10631}
10632
10633/* On the i386, PC-relative offsets are relative to the start of the
10634 next instruction. That is, the address of the offset, plus its
10635 size, since the offset is always the last part of the insn. */
10636
10637long
10638md_pcrel_from (fixS *fixP)
10639{
10640 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10641}
10642
10643#ifndef I386COFF
10644
10645static void
10646s_bss (int ignore ATTRIBUTE_UNUSED)
10647{
10648 int temp;
10649
10650#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10651 if (IS_ELF)
10652 obj_elf_section_change_hook ();
10653#endif
10654 temp = get_absolute_expression ();
10655 subseg_set (bss_section, (subsegT) temp);
10656 demand_empty_rest_of_line ();
10657}
10658
10659#endif
10660
10661void
10662i386_validate_fix (fixS *fixp)
10663{
10664 if (fixp->fx_subsy)
10665 {
10666 if (fixp->fx_subsy == GOT_symbol)
10667 {
10668 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10669 {
10670 if (!object_64bit)
10671 abort ();
10672#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10673 if (fixp->fx_tcbit2)
10674 fixp->fx_r_type = (fixp->fx_tcbit
10675 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10676 : BFD_RELOC_X86_64_GOTPCRELX);
10677 else
10678#endif
10679 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10680 }
10681 else
10682 {
10683 if (!object_64bit)
10684 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10685 else
10686 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10687 }
10688 fixp->fx_subsy = 0;
10689 }
10690 }
10691#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10692 else if (!object_64bit)
10693 {
10694 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10695 && fixp->fx_tcbit2)
10696 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10697 }
10698#endif
10699}
10700
10701arelent *
10702tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10703{
10704 arelent *rel;
10705 bfd_reloc_code_real_type code;
10706
10707 switch (fixp->fx_r_type)
10708 {
10709#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10710 case BFD_RELOC_SIZE32:
10711 case BFD_RELOC_SIZE64:
10712 if (S_IS_DEFINED (fixp->fx_addsy)
10713 && !S_IS_EXTERNAL (fixp->fx_addsy))
10714 {
10715 /* Resolve size relocation against local symbol to size of
10716 the symbol plus addend. */
10717 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10718 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10719 && !fits_in_unsigned_long (value))
10720 as_bad_where (fixp->fx_file, fixp->fx_line,
10721 _("symbol size computation overflow"));
10722 fixp->fx_addsy = NULL;
10723 fixp->fx_subsy = NULL;
10724 md_apply_fix (fixp, (valueT *) &value, NULL);
10725 return NULL;
10726 }
10727#endif
10728 /* Fall through. */
10729
10730 case BFD_RELOC_X86_64_PLT32:
10731 case BFD_RELOC_X86_64_GOT32:
10732 case BFD_RELOC_X86_64_GOTPCREL:
10733 case BFD_RELOC_X86_64_GOTPCRELX:
10734 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10735 case BFD_RELOC_386_PLT32:
10736 case BFD_RELOC_386_GOT32:
10737 case BFD_RELOC_386_GOT32X:
10738 case BFD_RELOC_386_GOTOFF:
10739 case BFD_RELOC_386_GOTPC:
10740 case BFD_RELOC_386_TLS_GD:
10741 case BFD_RELOC_386_TLS_LDM:
10742 case BFD_RELOC_386_TLS_LDO_32:
10743 case BFD_RELOC_386_TLS_IE_32:
10744 case BFD_RELOC_386_TLS_IE:
10745 case BFD_RELOC_386_TLS_GOTIE:
10746 case BFD_RELOC_386_TLS_LE_32:
10747 case BFD_RELOC_386_TLS_LE:
10748 case BFD_RELOC_386_TLS_GOTDESC:
10749 case BFD_RELOC_386_TLS_DESC_CALL:
10750 case BFD_RELOC_X86_64_TLSGD:
10751 case BFD_RELOC_X86_64_TLSLD:
10752 case BFD_RELOC_X86_64_DTPOFF32:
10753 case BFD_RELOC_X86_64_DTPOFF64:
10754 case BFD_RELOC_X86_64_GOTTPOFF:
10755 case BFD_RELOC_X86_64_TPOFF32:
10756 case BFD_RELOC_X86_64_TPOFF64:
10757 case BFD_RELOC_X86_64_GOTOFF64:
10758 case BFD_RELOC_X86_64_GOTPC32:
10759 case BFD_RELOC_X86_64_GOT64:
10760 case BFD_RELOC_X86_64_GOTPCREL64:
10761 case BFD_RELOC_X86_64_GOTPC64:
10762 case BFD_RELOC_X86_64_GOTPLT64:
10763 case BFD_RELOC_X86_64_PLTOFF64:
10764 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10765 case BFD_RELOC_X86_64_TLSDESC_CALL:
10766 case BFD_RELOC_RVA:
10767 case BFD_RELOC_VTABLE_ENTRY:
10768 case BFD_RELOC_VTABLE_INHERIT:
10769#ifdef TE_PE
10770 case BFD_RELOC_32_SECREL:
10771#endif
10772 code = fixp->fx_r_type;
10773 break;
10774 case BFD_RELOC_X86_64_32S:
10775 if (!fixp->fx_pcrel)
10776 {
10777 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10778 code = fixp->fx_r_type;
10779 break;
10780 }
10781 /* Fall through. */
10782 default:
10783 if (fixp->fx_pcrel)
10784 {
10785 switch (fixp->fx_size)
10786 {
10787 default:
10788 as_bad_where (fixp->fx_file, fixp->fx_line,
10789 _("can not do %d byte pc-relative relocation"),
10790 fixp->fx_size);
10791 code = BFD_RELOC_32_PCREL;
10792 break;
10793 case 1: code = BFD_RELOC_8_PCREL; break;
10794 case 2: code = BFD_RELOC_16_PCREL; break;
10795 case 4: code = BFD_RELOC_32_PCREL; break;
10796#ifdef BFD64
10797 case 8: code = BFD_RELOC_64_PCREL; break;
10798#endif
10799 }
10800 }
10801 else
10802 {
10803 switch (fixp->fx_size)
10804 {
10805 default:
10806 as_bad_where (fixp->fx_file, fixp->fx_line,
10807 _("can not do %d byte relocation"),
10808 fixp->fx_size);
10809 code = BFD_RELOC_32;
10810 break;
10811 case 1: code = BFD_RELOC_8; break;
10812 case 2: code = BFD_RELOC_16; break;
10813 case 4: code = BFD_RELOC_32; break;
10814#ifdef BFD64
10815 case 8: code = BFD_RELOC_64; break;
10816#endif
10817 }
10818 }
10819 break;
10820 }
10821
10822 if ((code == BFD_RELOC_32
10823 || code == BFD_RELOC_32_PCREL
10824 || code == BFD_RELOC_X86_64_32S)
10825 && GOT_symbol
10826 && fixp->fx_addsy == GOT_symbol)
10827 {
10828 if (!object_64bit)
10829 code = BFD_RELOC_386_GOTPC;
10830 else
10831 code = BFD_RELOC_X86_64_GOTPC32;
10832 }
10833 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10834 && GOT_symbol
10835 && fixp->fx_addsy == GOT_symbol)
10836 {
10837 code = BFD_RELOC_X86_64_GOTPC64;
10838 }
10839
10840 rel = XNEW (arelent);
10841 rel->sym_ptr_ptr = XNEW (asymbol *);
10842 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10843
10844 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10845
10846 if (!use_rela_relocations)
10847 {
10848 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10849 vtable entry to be used in the relocation's section offset. */
10850 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10851 rel->address = fixp->fx_offset;
10852#if defined (OBJ_COFF) && defined (TE_PE)
10853 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10854 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10855 else
10856#endif
10857 rel->addend = 0;
10858 }
10859 /* Use the rela in 64bit mode. */
10860 else
10861 {
10862 if (disallow_64bit_reloc)
10863 switch (code)
10864 {
10865 case BFD_RELOC_X86_64_DTPOFF64:
10866 case BFD_RELOC_X86_64_TPOFF64:
10867 case BFD_RELOC_64_PCREL:
10868 case BFD_RELOC_X86_64_GOTOFF64:
10869 case BFD_RELOC_X86_64_GOT64:
10870 case BFD_RELOC_X86_64_GOTPCREL64:
10871 case BFD_RELOC_X86_64_GOTPC64:
10872 case BFD_RELOC_X86_64_GOTPLT64:
10873 case BFD_RELOC_X86_64_PLTOFF64:
10874 as_bad_where (fixp->fx_file, fixp->fx_line,
10875 _("cannot represent relocation type %s in x32 mode"),
10876 bfd_get_reloc_code_name (code));
10877 break;
10878 default:
10879 break;
10880 }
10881
10882 if (!fixp->fx_pcrel)
10883 rel->addend = fixp->fx_offset;
10884 else
10885 switch (code)
10886 {
10887 case BFD_RELOC_X86_64_PLT32:
10888 case BFD_RELOC_X86_64_GOT32:
10889 case BFD_RELOC_X86_64_GOTPCREL:
10890 case BFD_RELOC_X86_64_GOTPCRELX:
10891 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10892 case BFD_RELOC_X86_64_TLSGD:
10893 case BFD_RELOC_X86_64_TLSLD:
10894 case BFD_RELOC_X86_64_GOTTPOFF:
10895 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10896 case BFD_RELOC_X86_64_TLSDESC_CALL:
10897 rel->addend = fixp->fx_offset - fixp->fx_size;
10898 break;
10899 default:
10900 rel->addend = (section->vma
10901 - fixp->fx_size
10902 + fixp->fx_addnumber
10903 + md_pcrel_from (fixp));
10904 break;
10905 }
10906 }
10907
10908 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10909 if (rel->howto == NULL)
10910 {
10911 as_bad_where (fixp->fx_file, fixp->fx_line,
10912 _("cannot represent relocation type %s"),
10913 bfd_get_reloc_code_name (code));
10914 /* Set howto to a garbage value so that we can keep going. */
10915 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10916 gas_assert (rel->howto != NULL);
10917 }
10918
10919 return rel;
10920}
10921
10922#include "tc-i386-intel.c"
10923
10924void
10925tc_x86_parse_to_dw2regnum (expressionS *exp)
10926{
10927 int saved_naked_reg;
10928 char saved_register_dot;
10929
10930 saved_naked_reg = allow_naked_reg;
10931 allow_naked_reg = 1;
10932 saved_register_dot = register_chars['.'];
10933 register_chars['.'] = '.';
10934 allow_pseudo_reg = 1;
10935 expression_and_evaluate (exp);
10936 allow_pseudo_reg = 0;
10937 register_chars['.'] = saved_register_dot;
10938 allow_naked_reg = saved_naked_reg;
10939
10940 if (exp->X_op == O_register && exp->X_add_number >= 0)
10941 {
10942 if ((addressT) exp->X_add_number < i386_regtab_size)
10943 {
10944 exp->X_op = O_constant;
10945 exp->X_add_number = i386_regtab[exp->X_add_number]
10946 .dw2_regnum[flag_code >> 1];
10947 }
10948 else
10949 exp->X_op = O_illegal;
10950 }
10951}
10952
10953void
10954tc_x86_frame_initial_instructions (void)
10955{
10956 static unsigned int sp_regno[2];
10957
10958 if (!sp_regno[flag_code >> 1])
10959 {
10960 char *saved_input = input_line_pointer;
10961 char sp[][4] = {"esp", "rsp"};
10962 expressionS exp;
10963
10964 input_line_pointer = sp[flag_code >> 1];
10965 tc_x86_parse_to_dw2regnum (&exp);
10966 gas_assert (exp.X_op == O_constant);
10967 sp_regno[flag_code >> 1] = exp.X_add_number;
10968 input_line_pointer = saved_input;
10969 }
10970
10971 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10972 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10973}
10974
10975int
10976x86_dwarf2_addr_size (void)
10977{
10978#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10979 if (x86_elf_abi == X86_64_X32_ABI)
10980 return 4;
10981#endif
10982 return bfd_arch_bits_per_address (stdoutput) / 8;
10983}
10984
10985int
10986i386_elf_section_type (const char *str, size_t len)
10987{
10988 if (flag_code == CODE_64BIT
10989 && len == sizeof ("unwind") - 1
10990 && strncmp (str, "unwind", 6) == 0)
10991 return SHT_X86_64_UNWIND;
10992
10993 return -1;
10994}
10995
10996#ifdef TE_SOLARIS
10997void
10998i386_solaris_fix_up_eh_frame (segT sec)
10999{
11000 if (flag_code == CODE_64BIT)
11001 elf_section_type (sec) = SHT_X86_64_UNWIND;
11002}
11003#endif
11004
11005#ifdef TE_PE
11006void
11007tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11008{
11009 expressionS exp;
11010
11011 exp.X_op = O_secrel;
11012 exp.X_add_symbol = symbol;
11013 exp.X_add_number = 0;
11014 emit_expr (&exp, size);
11015}
11016#endif
11017
11018#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11019/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11020
11021bfd_vma
11022x86_64_section_letter (int letter, const char **ptr_msg)
11023{
11024 if (flag_code == CODE_64BIT)
11025 {
11026 if (letter == 'l')
11027 return SHF_X86_64_LARGE;
11028
11029 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11030 }
11031 else
11032 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11033 return -1;
11034}
11035
11036bfd_vma
11037x86_64_section_word (char *str, size_t len)
11038{
11039 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11040 return SHF_X86_64_LARGE;
11041
11042 return -1;
11043}
11044
11045static void
11046handle_large_common (int small ATTRIBUTE_UNUSED)
11047{
11048 if (flag_code != CODE_64BIT)
11049 {
11050 s_comm_internal (0, elf_common_parse);
11051 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11052 }
11053 else
11054 {
11055 static segT lbss_section;
11056 asection *saved_com_section_ptr = elf_com_section_ptr;
11057 asection *saved_bss_section = bss_section;
11058
11059 if (lbss_section == NULL)
11060 {
11061 flagword applicable;
11062 segT seg = now_seg;
11063 subsegT subseg = now_subseg;
11064
11065 /* The .lbss section is for local .largecomm symbols. */
11066 lbss_section = subseg_new (".lbss", 0);
11067 applicable = bfd_applicable_section_flags (stdoutput);
11068 bfd_set_section_flags (stdoutput, lbss_section,
11069 applicable & SEC_ALLOC);
11070 seg_info (lbss_section)->bss = 1;
11071
11072 subseg_set (seg, subseg);
11073 }
11074
11075 elf_com_section_ptr = &_bfd_elf_large_com_section;
11076 bss_section = lbss_section;
11077
11078 s_comm_internal (0, elf_common_parse);
11079
11080 elf_com_section_ptr = saved_com_section_ptr;
11081 bss_section = saved_bss_section;
11082 }
11083}
11084#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.058805 seconds and 4 git commands to generate.