Fix copyright notices
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
... / ...
CommitLineData
1/* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
28
29#include <ctype.h>
30
31#include "as.h"
32#include "subsegs.h"
33#include "dwarf2dbg.h"
34#include "opcode/i386.h"
35
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
40#ifndef INFER_ADDR_PREFIX
41#define INFER_ADDR_PREFIX 1
42#endif
43
44#ifndef SCALE1_WHEN_NO_INDEX
45/* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49#define SCALE1_WHEN_NO_INDEX 1
50#endif
51
52#define true 1
53#define false 0
54
55static unsigned int mode_from_disp_size PARAMS ((unsigned int));
56static int fits_in_signed_byte PARAMS ((offsetT));
57static int fits_in_unsigned_byte PARAMS ((offsetT));
58static int fits_in_unsigned_word PARAMS ((offsetT));
59static int fits_in_signed_word PARAMS ((offsetT));
60static int fits_in_unsigned_long PARAMS ((offsetT));
61static int fits_in_signed_long PARAMS ((offsetT));
62static int smallest_imm_type PARAMS ((offsetT));
63static offsetT offset_in_range PARAMS ((offsetT, int));
64static int add_prefix PARAMS ((unsigned int));
65static void set_code_flag PARAMS ((int));
66static void set_16bit_gcc_code_flag PARAMS ((int));
67static void set_intel_syntax PARAMS ((int));
68static void set_cpu_arch PARAMS ((int));
69
70#ifdef BFD_ASSEMBLER
71static bfd_reloc_code_real_type reloc
72 PARAMS ((int, int, int, bfd_reloc_code_real_type));
73#endif
74
75#ifndef DEFAULT_ARCH
76#define DEFAULT_ARCH "i386"
77#endif
78static char *default_arch = DEFAULT_ARCH;
79
80/* 'md_assemble ()' gathers together information and puts it into a
81 i386_insn. */
82
83union i386_op
84 {
85 expressionS *disps;
86 expressionS *imms;
87 const reg_entry *regs;
88 };
89
90struct _i386_insn
91 {
92 /* TM holds the template for the insn were currently assembling. */
93 template tm;
94
95 /* SUFFIX holds the instruction mnemonic suffix if given.
96 (e.g. 'l' for 'movl') */
97 char suffix;
98
99 /* OPERANDS gives the number of given operands. */
100 unsigned int operands;
101
102 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
103 of given register, displacement, memory operands and immediate
104 operands. */
105 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
106
107 /* TYPES [i] is the type (see above #defines) which tells us how to
108 use OP[i] for the corresponding operand. */
109 unsigned int types[MAX_OPERANDS];
110
111 /* Displacement expression, immediate expression, or register for each
112 operand. */
113 union i386_op op[MAX_OPERANDS];
114
115 /* Flags for operands. */
116 unsigned int flags[MAX_OPERANDS];
117#define Operand_PCrel 1
118
119 /* Relocation type for operand */
120#ifdef BFD_ASSEMBLER
121 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
122#else
123 int reloc[MAX_OPERANDS];
124#endif
125
126 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
127 the base index byte below. */
128 const reg_entry *base_reg;
129 const reg_entry *index_reg;
130 unsigned int log2_scale_factor;
131
132 /* SEG gives the seg_entries of this insn. They are zero unless
133 explicit segment overrides are given. */
134 const seg_entry *seg[2];
135
136 /* PREFIX holds all the given prefix opcodes (usually null).
137 PREFIXES is the number of prefix opcodes. */
138 unsigned int prefixes;
139 unsigned char prefix[MAX_PREFIXES];
140
141 /* RM and SIB are the modrm byte and the sib byte where the
142 addressing modes of this insn are encoded. */
143
144 modrm_byte rm;
145 rex_byte rex;
146 sib_byte sib;
147 };
148
149typedef struct _i386_insn i386_insn;
150
151/* List of chars besides those in app.c:symbol_chars that can start an
152 operand. Used to prevent the scrubber eating vital white-space. */
153#ifdef LEX_AT
154const char extra_symbol_chars[] = "*%-(@";
155#else
156const char extra_symbol_chars[] = "*%-(";
157#endif
158
159/* This array holds the chars that always start a comment. If the
160 pre-processor is disabled, these aren't very useful. */
161#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
162/* Putting '/' here makes it impossible to use the divide operator.
163 However, we need it for compatibility with SVR4 systems. */
164const char comment_chars[] = "#/";
165#define PREFIX_SEPARATOR '\\'
166#else
167const char comment_chars[] = "#";
168#define PREFIX_SEPARATOR '/'
169#endif
170
171/* This array holds the chars that only start a comment at the beginning of
172 a line. If the line seems to have the form '# 123 filename'
173 .line and .file directives will appear in the pre-processed output.
174 Note that input_file.c hand checks for '#' at the beginning of the
175 first line of the input file. This is because the compiler outputs
176 #NO_APP at the beginning of its output.
177 Also note that comments started like this one will always work if
178 '/' isn't otherwise defined. */
179#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
180const char line_comment_chars[] = "";
181#else
182const char line_comment_chars[] = "/";
183#endif
184
185const char line_separator_chars[] = ";";
186
187/* Chars that can be used to separate mant from exp in floating point
188 nums. */
189const char EXP_CHARS[] = "eE";
190
191/* Chars that mean this number is a floating point constant
192 As in 0f12.456
193 or 0d1.2345e12. */
194const char FLT_CHARS[] = "fFdDxX";
195
196/* Tables for lexical analysis. */
197static char mnemonic_chars[256];
198static char register_chars[256];
199static char operand_chars[256];
200static char identifier_chars[256];
201static char digit_chars[256];
202
203/* Lexical macros. */
204#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
205#define is_operand_char(x) (operand_chars[(unsigned char) x])
206#define is_register_char(x) (register_chars[(unsigned char) x])
207#define is_space_char(x) ((x) == ' ')
208#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
209#define is_digit_char(x) (digit_chars[(unsigned char) x])
210
211/* All non-digit non-letter charcters that may occur in an operand. */
212static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
213
214/* md_assemble() always leaves the strings it's passed unaltered. To
215 effect this we maintain a stack of saved characters that we've smashed
216 with '\0's (indicating end of strings for various sub-fields of the
217 assembler instruction). */
218static char save_stack[32];
219static char *save_stack_p;
220#define END_STRING_AND_SAVE(s) \
221 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
222#define RESTORE_END_STRING(s) \
223 do { *(s) = *--save_stack_p; } while (0)
224
225/* The instruction we're assembling. */
226static i386_insn i;
227
228/* Possible templates for current insn. */
229static const templates *current_templates;
230
231/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
232static expressionS disp_expressions[2], im_expressions[2];
233
234/* Current operand we are working on. */
235static int this_operand;
236
237/* We support four different modes. FLAG_CODE variable is used to distinguish
238 these. */
239
240enum flag_code {
241 CODE_32BIT,
242 CODE_16BIT,
243 CODE_64BIT };
244
245static enum flag_code flag_code;
246static int use_rela_relocations = 0;
247
248/* The names used to print error messages. */
249static const char *flag_code_names[] =
250 {
251 "32",
252 "16",
253 "64"
254 };
255
256/* 1 for intel syntax,
257 0 if att syntax. */
258static int intel_syntax = 0;
259
260/* 1 if register prefix % not required. */
261static int allow_naked_reg = 0;
262
263/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266static char stackop_size = '\0';
267
268/* Non-zero to quieten some warnings. */
269static int quiet_warnings = 0;
270
271/* CPU name. */
272static const char *cpu_arch_name = NULL;
273
274/* CPU feature flags. */
275static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
276
277/* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279static unsigned int no_cond_jump_promotion = 0;
280
281/* Interface to relax_segment.
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
285
286/* Types. */
287#define UNCOND_JUMP 1
288#define COND_JUMP 2
289#define COND_JUMP86 3
290
291/* Sizes. */
292#define CODE16 1
293#define SMALL 0
294#define SMALL16 (SMALL|CODE16)
295#define BIG 2
296#define BIG16 (BIG|CODE16)
297
298#ifndef INLINE
299#ifdef __GNUC__
300#define INLINE __inline__
301#else
302#define INLINE
303#endif
304#endif
305
306#define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308#define TYPE_FROM_RELAX_STATE(s) \
309 ((s) >> 2)
310#define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
312
313/* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
320
321const relax_typeS md_relax_table[] =
322{
323 /* The fields are:
324 1) most positive reach of this state,
325 2) most negative reach of this state,
326 3) how many bytes this mode will add to the size of the current frag
327 4) which index into the table to try if we can't fit into this one. */
328 {1, 1, 0, 0},
329 {1, 1, 0, 0},
330 {1, 1, 0, 0},
331 {1, 1, 0, 0},
332
333 /* UNCOND_JUMP states. */
334 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
335 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
336 /* dword jmp adds 3 bytes to frag:
337 0 extra opcode bytes, 3 extra displacement bytes. */
338 {0, 0, 3, 0},
339 /* word jmp adds 1 byte to frag:
340 0 extra opcode bytes, 1 extra displacement byte. */
341 {0, 0, 1, 0},
342
343 /* COND_JUMP states. */
344 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
345 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
346 /* dword conditionals adds 4 bytes to frag:
347 1 extra opcode byte, 3 extra displacement bytes. */
348 {0, 0, 4, 0},
349 /* word conditionals add 2 bytes to frag:
350 1 extra opcode byte, 1 extra displacement byte. */
351 {0, 0, 2, 0},
352
353 /* COND_JUMP86 states. */
354 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
355 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
356 /* dword conditionals adds 4 bytes to frag:
357 1 extra opcode byte, 3 extra displacement bytes. */
358 {0, 0, 4, 0},
359 /* word conditionals add 3 bytes to frag:
360 1 extra opcode byte, 2 extra displacement bytes. */
361 {0, 0, 3, 0}
362};
363
364static const arch_entry cpu_arch[] = {
365 {"i8086", Cpu086 },
366 {"i186", Cpu086|Cpu186 },
367 {"i286", Cpu086|Cpu186|Cpu286 },
368 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
369 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
370 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
371 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
372 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
373 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
374 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
375 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
376 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
377 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
378 {NULL, 0 }
379};
380
381void
382i386_align_code (fragP, count)
383 fragS *fragP;
384 int count;
385{
386 /* Various efficient no-op patterns for aligning code labels.
387 Note: Don't try to assemble the instructions in the comments.
388 0L and 0w are not legal. */
389 static const char f32_1[] =
390 {0x90}; /* nop */
391 static const char f32_2[] =
392 {0x89,0xf6}; /* movl %esi,%esi */
393 static const char f32_3[] =
394 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
395 static const char f32_4[] =
396 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
397 static const char f32_5[] =
398 {0x90, /* nop */
399 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
400 static const char f32_6[] =
401 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
402 static const char f32_7[] =
403 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
404 static const char f32_8[] =
405 {0x90, /* nop */
406 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
407 static const char f32_9[] =
408 {0x89,0xf6, /* movl %esi,%esi */
409 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
410 static const char f32_10[] =
411 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
412 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
413 static const char f32_11[] =
414 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
415 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
416 static const char f32_12[] =
417 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
418 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
419 static const char f32_13[] =
420 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
421 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
422 static const char f32_14[] =
423 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
424 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
425 static const char f32_15[] =
426 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
427 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
428 static const char f16_3[] =
429 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
430 static const char f16_4[] =
431 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
432 static const char f16_5[] =
433 {0x90, /* nop */
434 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
435 static const char f16_6[] =
436 {0x89,0xf6, /* mov %si,%si */
437 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
438 static const char f16_7[] =
439 {0x8d,0x74,0x00, /* lea 0(%si),%si */
440 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
441 static const char f16_8[] =
442 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
443 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
444 static const char *const f32_patt[] = {
445 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
446 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
447 };
448 static const char *const f16_patt[] = {
449 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
450 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
451 };
452
453 /* ??? We can't use these fillers for x86_64, since they often kills the
454 upper halves. Solve later. */
455 if (flag_code == CODE_64BIT)
456 count = 1;
457
458 if (count > 0 && count <= 15)
459 {
460 if (flag_code == CODE_16BIT)
461 {
462 memcpy (fragP->fr_literal + fragP->fr_fix,
463 f16_patt[count - 1], count);
464 if (count > 8)
465 /* Adjust jump offset. */
466 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
467 }
468 else
469 memcpy (fragP->fr_literal + fragP->fr_fix,
470 f32_patt[count - 1], count);
471 fragP->fr_var = count;
472 }
473}
474
475static char *output_invalid PARAMS ((int c));
476static int i386_operand PARAMS ((char *operand_string));
477static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
478static const reg_entry *parse_register PARAMS ((char *reg_string,
479 char **end_op));
480
481#ifndef I386COFF
482static void s_bss PARAMS ((int));
483#endif
484
485symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
486
487static INLINE unsigned int
488mode_from_disp_size (t)
489 unsigned int t;
490{
491 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
492}
493
494static INLINE int
495fits_in_signed_byte (num)
496 offsetT num;
497{
498 return (num >= -128) && (num <= 127);
499}
500
501static INLINE int
502fits_in_unsigned_byte (num)
503 offsetT num;
504{
505 return (num & 0xff) == num;
506}
507
508static INLINE int
509fits_in_unsigned_word (num)
510 offsetT num;
511{
512 return (num & 0xffff) == num;
513}
514
515static INLINE int
516fits_in_signed_word (num)
517 offsetT num;
518{
519 return (-32768 <= num) && (num <= 32767);
520}
521static INLINE int
522fits_in_signed_long (num)
523 offsetT num ATTRIBUTE_UNUSED;
524{
525#ifndef BFD64
526 return 1;
527#else
528 return (!(((offsetT) -1 << 31) & num)
529 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
530#endif
531} /* fits_in_signed_long() */
532static INLINE int
533fits_in_unsigned_long (num)
534 offsetT num ATTRIBUTE_UNUSED;
535{
536#ifndef BFD64
537 return 1;
538#else
539 return (num & (((offsetT) 2 << 31) - 1)) == num;
540#endif
541} /* fits_in_unsigned_long() */
542
543static int
544smallest_imm_type (num)
545 offsetT num;
546{
547 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
548 && !(cpu_arch_flags & (CpuUnknown)))
549 {
550 /* This code is disabled on the 486 because all the Imm1 forms
551 in the opcode table are slower on the i486. They're the
552 versions with the implicitly specified single-position
553 displacement, which has another syntax if you really want to
554 use that form. */
555 if (num == 1)
556 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
557 }
558 return (fits_in_signed_byte (num)
559 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
560 : fits_in_unsigned_byte (num)
561 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
562 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
563 ? (Imm16 | Imm32 | Imm32S | Imm64)
564 : fits_in_signed_long (num)
565 ? (Imm32 | Imm32S | Imm64)
566 : fits_in_unsigned_long (num)
567 ? (Imm32 | Imm64)
568 : Imm64);
569}
570
571static offsetT
572offset_in_range (val, size)
573 offsetT val;
574 int size;
575{
576 addressT mask;
577
578 switch (size)
579 {
580 case 1: mask = ((addressT) 1 << 8) - 1; break;
581 case 2: mask = ((addressT) 1 << 16) - 1; break;
582 case 4: mask = ((addressT) 2 << 31) - 1; break;
583#ifdef BFD64
584 case 8: mask = ((addressT) 2 << 63) - 1; break;
585#endif
586 default: abort ();
587 }
588
589 /* If BFD64, sign extend val. */
590 if (!use_rela_relocations)
591 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
592 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
593
594 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
595 {
596 char buf1[40], buf2[40];
597
598 sprint_value (buf1, val);
599 sprint_value (buf2, val & mask);
600 as_warn (_("%s shortened to %s"), buf1, buf2);
601 }
602 return val & mask;
603}
604
605/* Returns 0 if attempting to add a prefix where one from the same
606 class already exists, 1 if non rep/repne added, 2 if rep/repne
607 added. */
608static int
609add_prefix (prefix)
610 unsigned int prefix;
611{
612 int ret = 1;
613 int q;
614
615 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
616 q = REX_PREFIX;
617 else
618 switch (prefix)
619 {
620 default:
621 abort ();
622
623 case CS_PREFIX_OPCODE:
624 case DS_PREFIX_OPCODE:
625 case ES_PREFIX_OPCODE:
626 case FS_PREFIX_OPCODE:
627 case GS_PREFIX_OPCODE:
628 case SS_PREFIX_OPCODE:
629 q = SEG_PREFIX;
630 break;
631
632 case REPNE_PREFIX_OPCODE:
633 case REPE_PREFIX_OPCODE:
634 ret = 2;
635 /* fall thru */
636 case LOCK_PREFIX_OPCODE:
637 q = LOCKREP_PREFIX;
638 break;
639
640 case FWAIT_OPCODE:
641 q = WAIT_PREFIX;
642 break;
643
644 case ADDR_PREFIX_OPCODE:
645 q = ADDR_PREFIX;
646 break;
647
648 case DATA_PREFIX_OPCODE:
649 q = DATA_PREFIX;
650 break;
651 }
652
653 if (i.prefix[q])
654 {
655 as_bad (_("same type of prefix used twice"));
656 return 0;
657 }
658
659 i.prefixes += 1;
660 i.prefix[q] = prefix;
661 return ret;
662}
663
664static void
665set_code_flag (value)
666 int value;
667{
668 flag_code = value;
669 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
670 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
671 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
672 {
673 as_bad (_("64bit mode not supported on this CPU."));
674 }
675 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
676 {
677 as_bad (_("32bit mode not supported on this CPU."));
678 }
679 stackop_size = '\0';
680}
681
682static void
683set_16bit_gcc_code_flag (new_code_flag)
684 int new_code_flag;
685{
686 flag_code = new_code_flag;
687 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
688 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
689 stackop_size = 'l';
690}
691
692static void
693set_intel_syntax (syntax_flag)
694 int syntax_flag;
695{
696 /* Find out if register prefixing is specified. */
697 int ask_naked_reg = 0;
698
699 SKIP_WHITESPACE ();
700 if (! is_end_of_line[(unsigned char) *input_line_pointer])
701 {
702 char *string = input_line_pointer;
703 int e = get_symbol_end ();
704
705 if (strcmp (string, "prefix") == 0)
706 ask_naked_reg = 1;
707 else if (strcmp (string, "noprefix") == 0)
708 ask_naked_reg = -1;
709 else
710 as_bad (_("bad argument to syntax directive."));
711 *input_line_pointer = e;
712 }
713 demand_empty_rest_of_line ();
714
715 intel_syntax = syntax_flag;
716
717 if (ask_naked_reg == 0)
718 {
719#ifdef BFD_ASSEMBLER
720 allow_naked_reg = (intel_syntax
721 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
722#else
723 /* Conservative default. */
724 allow_naked_reg = 0;
725#endif
726 }
727 else
728 allow_naked_reg = (ask_naked_reg < 0);
729}
730
731static void
732set_cpu_arch (dummy)
733 int dummy ATTRIBUTE_UNUSED;
734{
735 SKIP_WHITESPACE ();
736
737 if (! is_end_of_line[(unsigned char) *input_line_pointer])
738 {
739 char *string = input_line_pointer;
740 int e = get_symbol_end ();
741 int i;
742
743 for (i = 0; cpu_arch[i].name; i++)
744 {
745 if (strcmp (string, cpu_arch[i].name) == 0)
746 {
747 cpu_arch_name = cpu_arch[i].name;
748 cpu_arch_flags = (cpu_arch[i].flags
749 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
750 break;
751 }
752 }
753 if (!cpu_arch[i].name)
754 as_bad (_("no such architecture: `%s'"), string);
755
756 *input_line_pointer = e;
757 }
758 else
759 as_bad (_("missing cpu architecture"));
760
761 no_cond_jump_promotion = 0;
762 if (*input_line_pointer == ','
763 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
764 {
765 char *string = ++input_line_pointer;
766 int e = get_symbol_end ();
767
768 if (strcmp (string, "nojumps") == 0)
769 no_cond_jump_promotion = 1;
770 else if (strcmp (string, "jumps") == 0)
771 ;
772 else
773 as_bad (_("no such architecture modifier: `%s'"), string);
774
775 *input_line_pointer = e;
776 }
777
778 demand_empty_rest_of_line ();
779}
780
781const pseudo_typeS md_pseudo_table[] =
782{
783#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
784 {"align", s_align_bytes, 0},
785#else
786 {"align", s_align_ptwo, 0},
787#endif
788 {"arch", set_cpu_arch, 0},
789#ifndef I386COFF
790 {"bss", s_bss, 0},
791#endif
792 {"ffloat", float_cons, 'f'},
793 {"dfloat", float_cons, 'd'},
794 {"tfloat", float_cons, 'x'},
795 {"value", cons, 2},
796 {"noopt", s_ignore, 0},
797 {"optim", s_ignore, 0},
798 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
799 {"code16", set_code_flag, CODE_16BIT},
800 {"code32", set_code_flag, CODE_32BIT},
801 {"code64", set_code_flag, CODE_64BIT},
802 {"intel_syntax", set_intel_syntax, 1},
803 {"att_syntax", set_intel_syntax, 0},
804 {"file", dwarf2_directive_file, 0},
805 {"loc", dwarf2_directive_loc, 0},
806 {0, 0, 0}
807};
808
809/* For interface with expression (). */
810extern char *input_line_pointer;
811
812/* Hash table for instruction mnemonic lookup. */
813static struct hash_control *op_hash;
814
815/* Hash table for register lookup. */
816static struct hash_control *reg_hash;
817\f
818#ifdef BFD_ASSEMBLER
819unsigned long
820i386_mach ()
821{
822 if (!strcmp (default_arch, "x86_64"))
823 return bfd_mach_x86_64;
824 else if (!strcmp (default_arch, "i386"))
825 return bfd_mach_i386_i386;
826 else
827 as_fatal (_("Unknown architecture"));
828}
829#endif
830\f
831void
832md_begin ()
833{
834 const char *hash_err;
835
836 /* Initialize op_hash hash table. */
837 op_hash = hash_new ();
838
839 {
840 register const template *optab;
841 register templates *core_optab;
842
843 /* Setup for loop. */
844 optab = i386_optab;
845 core_optab = (templates *) xmalloc (sizeof (templates));
846 core_optab->start = optab;
847
848 while (1)
849 {
850 ++optab;
851 if (optab->name == NULL
852 || strcmp (optab->name, (optab - 1)->name) != 0)
853 {
854 /* different name --> ship out current template list;
855 add to hash table; & begin anew. */
856 core_optab->end = optab;
857 hash_err = hash_insert (op_hash,
858 (optab - 1)->name,
859 (PTR) core_optab);
860 if (hash_err)
861 {
862 as_fatal (_("Internal Error: Can't hash %s: %s"),
863 (optab - 1)->name,
864 hash_err);
865 }
866 if (optab->name == NULL)
867 break;
868 core_optab = (templates *) xmalloc (sizeof (templates));
869 core_optab->start = optab;
870 }
871 }
872 }
873
874 /* Initialize reg_hash hash table. */
875 reg_hash = hash_new ();
876 {
877 register const reg_entry *regtab;
878
879 for (regtab = i386_regtab;
880 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
881 regtab++)
882 {
883 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
884 if (hash_err)
885 as_fatal (_("Internal Error: Can't hash %s: %s"),
886 regtab->reg_name,
887 hash_err);
888 }
889 }
890
891 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
892 {
893 register int c;
894 register char *p;
895
896 for (c = 0; c < 256; c++)
897 {
898 if (isdigit (c))
899 {
900 digit_chars[c] = c;
901 mnemonic_chars[c] = c;
902 register_chars[c] = c;
903 operand_chars[c] = c;
904 }
905 else if (islower (c))
906 {
907 mnemonic_chars[c] = c;
908 register_chars[c] = c;
909 operand_chars[c] = c;
910 }
911 else if (isupper (c))
912 {
913 mnemonic_chars[c] = tolower (c);
914 register_chars[c] = mnemonic_chars[c];
915 operand_chars[c] = c;
916 }
917
918 if (isalpha (c) || isdigit (c))
919 identifier_chars[c] = c;
920 else if (c >= 128)
921 {
922 identifier_chars[c] = c;
923 operand_chars[c] = c;
924 }
925 }
926
927#ifdef LEX_AT
928 identifier_chars['@'] = '@';
929#endif
930 digit_chars['-'] = '-';
931 identifier_chars['_'] = '_';
932 identifier_chars['.'] = '.';
933
934 for (p = operand_special_chars; *p != '\0'; p++)
935 operand_chars[(unsigned char) *p] = *p;
936 }
937
938#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
939 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
940 {
941 record_alignment (text_section, 2);
942 record_alignment (data_section, 2);
943 record_alignment (bss_section, 2);
944 }
945#endif
946}
947
948void
949i386_print_statistics (file)
950 FILE *file;
951{
952 hash_print_statistics (file, "i386 opcode", op_hash);
953 hash_print_statistics (file, "i386 register", reg_hash);
954}
955\f
956#ifdef DEBUG386
957
958/* Debugging routines for md_assemble. */
959static void pi PARAMS ((char *, i386_insn *));
960static void pte PARAMS ((template *));
961static void pt PARAMS ((unsigned int));
962static void pe PARAMS ((expressionS *));
963static void ps PARAMS ((symbolS *));
964
965static void
966pi (line, x)
967 char *line;
968 i386_insn *x;
969{
970 unsigned int i;
971
972 fprintf (stdout, "%s: template ", line);
973 pte (&x->tm);
974 fprintf (stdout, " address: base %s index %s scale %x\n",
975 x->base_reg ? x->base_reg->reg_name : "none",
976 x->index_reg ? x->index_reg->reg_name : "none",
977 x->log2_scale_factor);
978 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
979 x->rm.mode, x->rm.reg, x->rm.regmem);
980 fprintf (stdout, " sib: base %x index %x scale %x\n",
981 x->sib.base, x->sib.index, x->sib.scale);
982 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
983 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
984 for (i = 0; i < x->operands; i++)
985 {
986 fprintf (stdout, " #%d: ", i + 1);
987 pt (x->types[i]);
988 fprintf (stdout, "\n");
989 if (x->types[i]
990 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
991 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
992 if (x->types[i] & Imm)
993 pe (x->op[i].imms);
994 if (x->types[i] & Disp)
995 pe (x->op[i].disps);
996 }
997}
998
999static void
1000pte (t)
1001 template *t;
1002{
1003 unsigned int i;
1004 fprintf (stdout, " %d operands ", t->operands);
1005 fprintf (stdout, "opcode %x ", t->base_opcode);
1006 if (t->extension_opcode != None)
1007 fprintf (stdout, "ext %x ", t->extension_opcode);
1008 if (t->opcode_modifier & D)
1009 fprintf (stdout, "D");
1010 if (t->opcode_modifier & W)
1011 fprintf (stdout, "W");
1012 fprintf (stdout, "\n");
1013 for (i = 0; i < t->operands; i++)
1014 {
1015 fprintf (stdout, " #%d type ", i + 1);
1016 pt (t->operand_types[i]);
1017 fprintf (stdout, "\n");
1018 }
1019}
1020
1021static void
1022pe (e)
1023 expressionS *e;
1024{
1025 fprintf (stdout, " operation %d\n", e->X_op);
1026 fprintf (stdout, " add_number %ld (%lx)\n",
1027 (long) e->X_add_number, (long) e->X_add_number);
1028 if (e->X_add_symbol)
1029 {
1030 fprintf (stdout, " add_symbol ");
1031 ps (e->X_add_symbol);
1032 fprintf (stdout, "\n");
1033 }
1034 if (e->X_op_symbol)
1035 {
1036 fprintf (stdout, " op_symbol ");
1037 ps (e->X_op_symbol);
1038 fprintf (stdout, "\n");
1039 }
1040}
1041
1042static void
1043ps (s)
1044 symbolS *s;
1045{
1046 fprintf (stdout, "%s type %s%s",
1047 S_GET_NAME (s),
1048 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1049 segment_name (S_GET_SEGMENT (s)));
1050}
1051
1052struct type_name
1053 {
1054 unsigned int mask;
1055 char *tname;
1056 }
1057
1058type_names[] =
1059{
1060 { Reg8, "r8" },
1061 { Reg16, "r16" },
1062 { Reg32, "r32" },
1063 { Reg64, "r64" },
1064 { Imm8, "i8" },
1065 { Imm8S, "i8s" },
1066 { Imm16, "i16" },
1067 { Imm32, "i32" },
1068 { Imm32S, "i32s" },
1069 { Imm64, "i64" },
1070 { Imm1, "i1" },
1071 { BaseIndex, "BaseIndex" },
1072 { Disp8, "d8" },
1073 { Disp16, "d16" },
1074 { Disp32, "d32" },
1075 { Disp32S, "d32s" },
1076 { Disp64, "d64" },
1077 { InOutPortReg, "InOutPortReg" },
1078 { ShiftCount, "ShiftCount" },
1079 { Control, "control reg" },
1080 { Test, "test reg" },
1081 { Debug, "debug reg" },
1082 { FloatReg, "FReg" },
1083 { FloatAcc, "FAcc" },
1084 { SReg2, "SReg2" },
1085 { SReg3, "SReg3" },
1086 { Acc, "Acc" },
1087 { JumpAbsolute, "Jump Absolute" },
1088 { RegMMX, "rMMX" },
1089 { RegXMM, "rXMM" },
1090 { EsSeg, "es" },
1091 { 0, "" }
1092};
1093
1094static void
1095pt (t)
1096 unsigned int t;
1097{
1098 register struct type_name *ty;
1099
1100 for (ty = type_names; ty->mask; ty++)
1101 if (t & ty->mask)
1102 fprintf (stdout, "%s, ", ty->tname);
1103 fflush (stdout);
1104}
1105
1106#endif /* DEBUG386 */
1107\f
1108int
1109tc_i386_force_relocation (fixp)
1110 struct fix *fixp;
1111{
1112#ifdef BFD_ASSEMBLER
1113 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1114 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1115 return 1;
1116 return 0;
1117#else
1118 /* For COFF. */
1119 return fixp->fx_r_type == 7;
1120#endif
1121}
1122
1123#ifdef BFD_ASSEMBLER
1124
1125static bfd_reloc_code_real_type
1126reloc (size, pcrel, sign, other)
1127 int size;
1128 int pcrel;
1129 int sign;
1130 bfd_reloc_code_real_type other;
1131{
1132 if (other != NO_RELOC)
1133 return other;
1134
1135 if (pcrel)
1136 {
1137 if (!sign)
1138 as_bad (_("There are no unsigned pc-relative relocations"));
1139 switch (size)
1140 {
1141 case 1: return BFD_RELOC_8_PCREL;
1142 case 2: return BFD_RELOC_16_PCREL;
1143 case 4: return BFD_RELOC_32_PCREL;
1144 }
1145 as_bad (_("can not do %d byte pc-relative relocation"), size);
1146 }
1147 else
1148 {
1149 if (sign)
1150 switch (size)
1151 {
1152 case 4: return BFD_RELOC_X86_64_32S;
1153 }
1154 else
1155 switch (size)
1156 {
1157 case 1: return BFD_RELOC_8;
1158 case 2: return BFD_RELOC_16;
1159 case 4: return BFD_RELOC_32;
1160 case 8: return BFD_RELOC_64;
1161 }
1162 as_bad (_("can not do %s %d byte relocation"),
1163 sign ? "signed" : "unsigned", size);
1164 }
1165
1166 abort ();
1167 return BFD_RELOC_NONE;
1168}
1169
1170/* Here we decide which fixups can be adjusted to make them relative to
1171 the beginning of the section instead of the symbol. Basically we need
1172 to make sure that the dynamic relocations are done correctly, so in
1173 some cases we force the original symbol to be used. */
1174
1175int
1176tc_i386_fix_adjustable (fixP)
1177 fixS *fixP;
1178{
1179#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1180 /* Prevent all adjustments to global symbols, or else dynamic
1181 linking will not work correctly. */
1182 if (S_IS_EXTERNAL (fixP->fx_addsy)
1183 || S_IS_WEAK (fixP->fx_addsy))
1184 return 0;
1185#endif
1186 /* adjust_reloc_syms doesn't know about the GOT. */
1187 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1188 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1189 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1190 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1191 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1192 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1193 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1194 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1195 return 0;
1196 return 1;
1197}
1198#else
1199#define reloc(SIZE,PCREL,SIGN,OTHER) 0
1200#define BFD_RELOC_16 0
1201#define BFD_RELOC_32 0
1202#define BFD_RELOC_16_PCREL 0
1203#define BFD_RELOC_32_PCREL 0
1204#define BFD_RELOC_386_PLT32 0
1205#define BFD_RELOC_386_GOT32 0
1206#define BFD_RELOC_386_GOTOFF 0
1207#define BFD_RELOC_X86_64_PLT32 0
1208#define BFD_RELOC_X86_64_GOT32 0
1209#define BFD_RELOC_X86_64_GOTPCREL 0
1210#endif
1211
1212static int intel_float_operand PARAMS ((char *mnemonic));
1213
1214static int
1215intel_float_operand (mnemonic)
1216 char *mnemonic;
1217{
1218 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1219 return 2;
1220
1221 if (mnemonic[0] == 'f')
1222 return 1;
1223
1224 return 0;
1225}
1226
1227/* This is the guts of the machine-dependent assembler. LINE points to a
1228 machine dependent instruction. This function is supposed to emit
1229 the frags/bytes it assembles to. */
1230
1231void
1232md_assemble (line)
1233 char *line;
1234{
1235 /* Points to template once we've found it. */
1236 const template *t;
1237
1238 /* Count the size of the instruction generated. Does not include
1239 variable part of jump insns before relax. */
1240 int insn_size = 0;
1241
1242 int j;
1243
1244 char mnemonic[MAX_MNEM_SIZE];
1245
1246 /* Initialize globals. */
1247 memset (&i, '\0', sizeof (i));
1248 for (j = 0; j < MAX_OPERANDS; j++)
1249 i.reloc[j] = NO_RELOC;
1250 memset (disp_expressions, '\0', sizeof (disp_expressions));
1251 memset (im_expressions, '\0', sizeof (im_expressions));
1252 save_stack_p = save_stack;
1253
1254 /* First parse an instruction mnemonic & call i386_operand for the operands.
1255 We assume that the scrubber has arranged it so that line[0] is the valid
1256 start of a (possibly prefixed) mnemonic. */
1257 {
1258 char *l = line;
1259 char *token_start = l;
1260 char *mnem_p;
1261
1262 /* Non-zero if we found a prefix only acceptable with string insns. */
1263 const char *expecting_string_instruction = NULL;
1264
1265 while (1)
1266 {
1267 mnem_p = mnemonic;
1268 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1269 {
1270 mnem_p++;
1271 if (mnem_p >= mnemonic + sizeof (mnemonic))
1272 {
1273 as_bad (_("no such instruction: `%s'"), token_start);
1274 return;
1275 }
1276 l++;
1277 }
1278 if (!is_space_char (*l)
1279 && *l != END_OF_INSN
1280 && *l != PREFIX_SEPARATOR)
1281 {
1282 as_bad (_("invalid character %s in mnemonic"),
1283 output_invalid (*l));
1284 return;
1285 }
1286 if (token_start == l)
1287 {
1288 if (*l == PREFIX_SEPARATOR)
1289 as_bad (_("expecting prefix; got nothing"));
1290 else
1291 as_bad (_("expecting mnemonic; got nothing"));
1292 return;
1293 }
1294
1295 /* Look up instruction (or prefix) via hash table. */
1296 current_templates = hash_find (op_hash, mnemonic);
1297
1298 if (*l != END_OF_INSN
1299 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1300 && current_templates
1301 && (current_templates->start->opcode_modifier & IsPrefix))
1302 {
1303 /* If we are in 16-bit mode, do not allow addr16 or data16.
1304 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1305 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1306 && (((current_templates->start->opcode_modifier & Size32) != 0)
1307 ^ (flag_code == CODE_16BIT)))
1308 {
1309 as_bad (_("redundant %s prefix"),
1310 current_templates->start->name);
1311 return;
1312 }
1313 /* Add prefix, checking for repeated prefixes. */
1314 switch (add_prefix (current_templates->start->base_opcode))
1315 {
1316 case 0:
1317 return;
1318 case 2:
1319 expecting_string_instruction = current_templates->start->name;
1320 break;
1321 }
1322 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1323 token_start = ++l;
1324 }
1325 else
1326 break;
1327 }
1328
1329 if (!current_templates)
1330 {
1331 /* See if we can get a match by trimming off a suffix. */
1332 switch (mnem_p[-1])
1333 {
1334 case WORD_MNEM_SUFFIX:
1335 case BYTE_MNEM_SUFFIX:
1336 case QWORD_MNEM_SUFFIX:
1337 i.suffix = mnem_p[-1];
1338 mnem_p[-1] = '\0';
1339 current_templates = hash_find (op_hash, mnemonic);
1340 break;
1341 case SHORT_MNEM_SUFFIX:
1342 case LONG_MNEM_SUFFIX:
1343 if (!intel_syntax)
1344 {
1345 i.suffix = mnem_p[-1];
1346 mnem_p[-1] = '\0';
1347 current_templates = hash_find (op_hash, mnemonic);
1348 }
1349 break;
1350
1351 /* Intel Syntax. */
1352 case 'd':
1353 if (intel_syntax)
1354 {
1355 if (intel_float_operand (mnemonic))
1356 i.suffix = SHORT_MNEM_SUFFIX;
1357 else
1358 i.suffix = LONG_MNEM_SUFFIX;
1359 mnem_p[-1] = '\0';
1360 current_templates = hash_find (op_hash, mnemonic);
1361 }
1362 break;
1363 }
1364 if (!current_templates)
1365 {
1366 as_bad (_("no such instruction: `%s'"), token_start);
1367 return;
1368 }
1369 }
1370
1371 /* Check if instruction is supported on specified architecture. */
1372 if (cpu_arch_flags != 0)
1373 {
1374 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1375 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1376 {
1377 as_warn (_("`%s' is not supported on `%s'"),
1378 current_templates->start->name, cpu_arch_name);
1379 }
1380 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1381 {
1382 as_warn (_("use .code16 to ensure correct addressing mode"));
1383 }
1384 }
1385
1386 /* Check for rep/repne without a string instruction. */
1387 if (expecting_string_instruction
1388 && !(current_templates->start->opcode_modifier & IsString))
1389 {
1390 as_bad (_("expecting string instruction after `%s'"),
1391 expecting_string_instruction);
1392 return;
1393 }
1394
1395 /* There may be operands to parse. */
1396 if (*l != END_OF_INSN)
1397 {
1398 /* 1 if operand is pending after ','. */
1399 unsigned int expecting_operand = 0;
1400
1401 /* Non-zero if operand parens not balanced. */
1402 unsigned int paren_not_balanced;
1403
1404 do
1405 {
1406 /* Skip optional white space before operand. */
1407 if (is_space_char (*l))
1408 ++l;
1409 if (!is_operand_char (*l) && *l != END_OF_INSN)
1410 {
1411 as_bad (_("invalid character %s before operand %d"),
1412 output_invalid (*l),
1413 i.operands + 1);
1414 return;
1415 }
1416 token_start = l; /* after white space */
1417 paren_not_balanced = 0;
1418 while (paren_not_balanced || *l != ',')
1419 {
1420 if (*l == END_OF_INSN)
1421 {
1422 if (paren_not_balanced)
1423 {
1424 if (!intel_syntax)
1425 as_bad (_("unbalanced parenthesis in operand %d."),
1426 i.operands + 1);
1427 else
1428 as_bad (_("unbalanced brackets in operand %d."),
1429 i.operands + 1);
1430 return;
1431 }
1432 else
1433 break; /* we are done */
1434 }
1435 else if (!is_operand_char (*l) && !is_space_char (*l))
1436 {
1437 as_bad (_("invalid character %s in operand %d"),
1438 output_invalid (*l),
1439 i.operands + 1);
1440 return;
1441 }
1442 if (!intel_syntax)
1443 {
1444 if (*l == '(')
1445 ++paren_not_balanced;
1446 if (*l == ')')
1447 --paren_not_balanced;
1448 }
1449 else
1450 {
1451 if (*l == '[')
1452 ++paren_not_balanced;
1453 if (*l == ']')
1454 --paren_not_balanced;
1455 }
1456 l++;
1457 }
1458 if (l != token_start)
1459 { /* Yes, we've read in another operand. */
1460 unsigned int operand_ok;
1461 this_operand = i.operands++;
1462 if (i.operands > MAX_OPERANDS)
1463 {
1464 as_bad (_("spurious operands; (%d operands/instruction max)"),
1465 MAX_OPERANDS);
1466 return;
1467 }
1468 /* Now parse operand adding info to 'i' as we go along. */
1469 END_STRING_AND_SAVE (l);
1470
1471 if (intel_syntax)
1472 operand_ok =
1473 i386_intel_operand (token_start,
1474 intel_float_operand (mnemonic));
1475 else
1476 operand_ok = i386_operand (token_start);
1477
1478 RESTORE_END_STRING (l);
1479 if (!operand_ok)
1480 return;
1481 }
1482 else
1483 {
1484 if (expecting_operand)
1485 {
1486 expecting_operand_after_comma:
1487 as_bad (_("expecting operand after ','; got nothing"));
1488 return;
1489 }
1490 if (*l == ',')
1491 {
1492 as_bad (_("expecting operand before ','; got nothing"));
1493 return;
1494 }
1495 }
1496
1497 /* Now *l must be either ',' or END_OF_INSN. */
1498 if (*l == ',')
1499 {
1500 if (*++l == END_OF_INSN)
1501 {
1502 /* Just skip it, if it's \n complain. */
1503 goto expecting_operand_after_comma;
1504 }
1505 expecting_operand = 1;
1506 }
1507 }
1508 while (*l != END_OF_INSN);
1509 }
1510 }
1511
1512 /* Now we've parsed the mnemonic into a set of templates, and have the
1513 operands at hand.
1514
1515 Next, we find a template that matches the given insn,
1516 making sure the overlap of the given operands types is consistent
1517 with the template operand types. */
1518
1519#define MATCH(overlap, given, template) \
1520 ((overlap & ~JumpAbsolute) \
1521 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1522
1523 /* If given types r0 and r1 are registers they must be of the same type
1524 unless the expected operand type register overlap is null.
1525 Note that Acc in a template matches every size of reg. */
1526#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1527 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1528 ((g0) & Reg) == ((g1) & Reg) || \
1529 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1530
1531 {
1532 register unsigned int overlap0, overlap1;
1533 unsigned int overlap2;
1534 unsigned int found_reverse_match;
1535 int suffix_check;
1536
1537 /* All intel opcodes have reversed operands except for "bound" and
1538 "enter". We also don't reverse intersegment "jmp" and "call"
1539 instructions with 2 immediate operands so that the immediate segment
1540 precedes the offset, as it does when in AT&T mode. "enter" and the
1541 intersegment "jmp" and "call" instructions are the only ones that
1542 have two immediate operands. */
1543 if (intel_syntax && i.operands > 1
1544 && (strcmp (mnemonic, "bound") != 0)
1545 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1546 {
1547 union i386_op temp_op;
1548 unsigned int temp_type;
1549#ifdef BFD_ASSEMBLER
1550 enum bfd_reloc_code_real temp_reloc;
1551#else
1552 int temp_reloc;
1553#endif
1554 int xchg1 = 0;
1555 int xchg2 = 0;
1556
1557 if (i.operands == 2)
1558 {
1559 xchg1 = 0;
1560 xchg2 = 1;
1561 }
1562 else if (i.operands == 3)
1563 {
1564 xchg1 = 0;
1565 xchg2 = 2;
1566 }
1567 temp_type = i.types[xchg2];
1568 i.types[xchg2] = i.types[xchg1];
1569 i.types[xchg1] = temp_type;
1570 temp_op = i.op[xchg2];
1571 i.op[xchg2] = i.op[xchg1];
1572 i.op[xchg1] = temp_op;
1573 temp_reloc = i.reloc[xchg2];
1574 i.reloc[xchg2] = i.reloc[xchg1];
1575 i.reloc[xchg1] = temp_reloc;
1576
1577 if (i.mem_operands == 2)
1578 {
1579 const seg_entry *temp_seg;
1580 temp_seg = i.seg[0];
1581 i.seg[0] = i.seg[1];
1582 i.seg[1] = temp_seg;
1583 }
1584 }
1585
1586 if (i.imm_operands)
1587 {
1588 /* Try to ensure constant immediates are represented in the smallest
1589 opcode possible. */
1590 char guess_suffix = 0;
1591 int op;
1592
1593 if (i.suffix)
1594 guess_suffix = i.suffix;
1595 else if (i.reg_operands)
1596 {
1597 /* Figure out a suffix from the last register operand specified.
1598 We can't do this properly yet, ie. excluding InOutPortReg,
1599 but the following works for instructions with immediates.
1600 In any case, we can't set i.suffix yet. */
1601 for (op = i.operands; --op >= 0;)
1602 if (i.types[op] & Reg)
1603 {
1604 if (i.types[op] & Reg8)
1605 guess_suffix = BYTE_MNEM_SUFFIX;
1606 else if (i.types[op] & Reg16)
1607 guess_suffix = WORD_MNEM_SUFFIX;
1608 else if (i.types[op] & Reg32)
1609 guess_suffix = LONG_MNEM_SUFFIX;
1610 else if (i.types[op] & Reg64)
1611 guess_suffix = QWORD_MNEM_SUFFIX;
1612 break;
1613 }
1614 }
1615 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1616 guess_suffix = WORD_MNEM_SUFFIX;
1617
1618 for (op = i.operands; --op >= 0;)
1619 if (i.types[op] & Imm)
1620 {
1621 switch (i.op[op].imms->X_op)
1622 {
1623 case O_constant:
1624 /* If a suffix is given, this operand may be shortened. */
1625 switch (guess_suffix)
1626 {
1627 case LONG_MNEM_SUFFIX:
1628 i.types[op] |= Imm32 | Imm64;
1629 break;
1630 case WORD_MNEM_SUFFIX:
1631 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1632 break;
1633 case BYTE_MNEM_SUFFIX:
1634 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1635 break;
1636 }
1637
1638 /* If this operand is at most 16 bits, convert it
1639 to a signed 16 bit number before trying to see
1640 whether it will fit in an even smaller size.
1641 This allows a 16-bit operand such as $0xffe0 to
1642 be recognised as within Imm8S range. */
1643 if ((i.types[op] & Imm16)
1644 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1645 {
1646 i.op[op].imms->X_add_number =
1647 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1648 }
1649 if ((i.types[op] & Imm32)
1650 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1651 {
1652 i.op[op].imms->X_add_number =
1653 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1654 }
1655 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1656 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1657 if (guess_suffix == QWORD_MNEM_SUFFIX)
1658 i.types[op] &= ~Imm32;
1659 break;
1660 case O_absent:
1661 case O_register:
1662 abort ();
1663 /* Symbols and expressions. */
1664 default:
1665 /* Convert symbolic operand to proper sizes for matching. */
1666 switch (guess_suffix)
1667 {
1668 case QWORD_MNEM_SUFFIX:
1669 i.types[op] = Imm64 | Imm32S;
1670 break;
1671 case LONG_MNEM_SUFFIX:
1672 i.types[op] = Imm32 | Imm64;
1673 break;
1674 case WORD_MNEM_SUFFIX:
1675 i.types[op] = Imm16 | Imm32 | Imm64;
1676 break;
1677 break;
1678 case BYTE_MNEM_SUFFIX:
1679 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1680 break;
1681 break;
1682 }
1683 break;
1684 }
1685 }
1686 }
1687
1688 if (i.disp_operands)
1689 {
1690 /* Try to use the smallest displacement type too. */
1691 int op;
1692
1693 for (op = i.operands; --op >= 0;)
1694 if ((i.types[op] & Disp)
1695 && i.op[op].disps->X_op == O_constant)
1696 {
1697 offsetT disp = i.op[op].disps->X_add_number;
1698
1699 if (i.types[op] & Disp16)
1700 {
1701 /* We know this operand is at most 16 bits, so
1702 convert to a signed 16 bit number before trying
1703 to see whether it will fit in an even smaller
1704 size. */
1705
1706 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1707 }
1708 else if (i.types[op] & Disp32)
1709 {
1710 /* We know this operand is at most 32 bits, so convert to a
1711 signed 32 bit number before trying to see whether it will
1712 fit in an even smaller size. */
1713 disp &= (((offsetT) 2 << 31) - 1);
1714 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1715 }
1716 if (flag_code == CODE_64BIT)
1717 {
1718 if (fits_in_signed_long (disp))
1719 i.types[op] |= Disp32S;
1720 if (fits_in_unsigned_long (disp))
1721 i.types[op] |= Disp32;
1722 }
1723 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1724 && fits_in_signed_byte (disp))
1725 i.types[op] |= Disp8;
1726 }
1727 }
1728
1729 overlap0 = 0;
1730 overlap1 = 0;
1731 overlap2 = 0;
1732 found_reverse_match = 0;
1733 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1734 ? No_bSuf
1735 : (i.suffix == WORD_MNEM_SUFFIX
1736 ? No_wSuf
1737 : (i.suffix == SHORT_MNEM_SUFFIX
1738 ? No_sSuf
1739 : (i.suffix == LONG_MNEM_SUFFIX
1740 ? No_lSuf
1741 : (i.suffix == QWORD_MNEM_SUFFIX
1742 ? No_qSuf
1743 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1744
1745 for (t = current_templates->start;
1746 t < current_templates->end;
1747 t++)
1748 {
1749 /* Must have right number of operands. */
1750 if (i.operands != t->operands)
1751 continue;
1752
1753 /* Check the suffix, except for some instructions in intel mode. */
1754 if ((t->opcode_modifier & suffix_check)
1755 && !(intel_syntax
1756 && (t->opcode_modifier & IgnoreSize))
1757 && !(intel_syntax
1758 && t->base_opcode == 0xd9
1759 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1760 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1761 continue;
1762
1763 /* Do not verify operands when there are none. */
1764 else if (!t->operands)
1765 {
1766 if (t->cpu_flags & ~cpu_arch_flags)
1767 continue;
1768 /* We've found a match; break out of loop. */
1769 break;
1770 }
1771
1772 overlap0 = i.types[0] & t->operand_types[0];
1773 switch (t->operands)
1774 {
1775 case 1:
1776 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1777 continue;
1778 break;
1779 case 2:
1780 case 3:
1781 overlap1 = i.types[1] & t->operand_types[1];
1782 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1783 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1784 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1785 t->operand_types[0],
1786 overlap1, i.types[1],
1787 t->operand_types[1]))
1788 {
1789 /* Check if other direction is valid ... */
1790 if ((t->opcode_modifier & (D|FloatD)) == 0)
1791 continue;
1792
1793 /* Try reversing direction of operands. */
1794 overlap0 = i.types[0] & t->operand_types[1];
1795 overlap1 = i.types[1] & t->operand_types[0];
1796 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1797 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1798 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1799 t->operand_types[1],
1800 overlap1, i.types[1],
1801 t->operand_types[0]))
1802 {
1803 /* Does not match either direction. */
1804 continue;
1805 }
1806 /* found_reverse_match holds which of D or FloatDR
1807 we've found. */
1808 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1809 }
1810 /* Found a forward 2 operand match here. */
1811 else if (t->operands == 3)
1812 {
1813 /* Here we make use of the fact that there are no
1814 reverse match 3 operand instructions, and all 3
1815 operand instructions only need to be checked for
1816 register consistency between operands 2 and 3. */
1817 overlap2 = i.types[2] & t->operand_types[2];
1818 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1819 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1820 t->operand_types[1],
1821 overlap2, i.types[2],
1822 t->operand_types[2]))
1823
1824 continue;
1825 }
1826 /* Found either forward/reverse 2 or 3 operand match here:
1827 slip through to break. */
1828 }
1829 if (t->cpu_flags & ~cpu_arch_flags)
1830 {
1831 found_reverse_match = 0;
1832 continue;
1833 }
1834 /* We've found a match; break out of loop. */
1835 break;
1836 }
1837 if (t == current_templates->end)
1838 {
1839 /* We found no match. */
1840 as_bad (_("suffix or operands invalid for `%s'"),
1841 current_templates->start->name);
1842 return;
1843 }
1844
1845 if (!quiet_warnings)
1846 {
1847 if (!intel_syntax
1848 && ((i.types[0] & JumpAbsolute)
1849 != (t->operand_types[0] & JumpAbsolute)))
1850 {
1851 as_warn (_("indirect %s without `*'"), t->name);
1852 }
1853
1854 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1855 == (IsPrefix|IgnoreSize))
1856 {
1857 /* Warn them that a data or address size prefix doesn't
1858 affect assembly of the next line of code. */
1859 as_warn (_("stand-alone `%s' prefix"), t->name);
1860 }
1861 }
1862
1863 /* Copy the template we found. */
1864 i.tm = *t;
1865 if (found_reverse_match)
1866 {
1867 /* If we found a reverse match we must alter the opcode
1868 direction bit. found_reverse_match holds bits to change
1869 (different for int & float insns). */
1870
1871 i.tm.base_opcode ^= found_reverse_match;
1872
1873 i.tm.operand_types[0] = t->operand_types[1];
1874 i.tm.operand_types[1] = t->operand_types[0];
1875 }
1876
1877 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1878 if (SYSV386_COMPAT
1879 && intel_syntax
1880 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1881 i.tm.base_opcode ^= FloatR;
1882
1883 if (i.tm.opcode_modifier & FWait)
1884 if (! add_prefix (FWAIT_OPCODE))
1885 return;
1886
1887 /* Check string instruction segment overrides. */
1888 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1889 {
1890 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1891 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1892 {
1893 if (i.seg[0] != NULL && i.seg[0] != &es)
1894 {
1895 as_bad (_("`%s' operand %d must use `%%es' segment"),
1896 i.tm.name,
1897 mem_op + 1);
1898 return;
1899 }
1900 /* There's only ever one segment override allowed per instruction.
1901 This instruction possibly has a legal segment override on the
1902 second operand, so copy the segment to where non-string
1903 instructions store it, allowing common code. */
1904 i.seg[0] = i.seg[1];
1905 }
1906 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1907 {
1908 if (i.seg[1] != NULL && i.seg[1] != &es)
1909 {
1910 as_bad (_("`%s' operand %d must use `%%es' segment"),
1911 i.tm.name,
1912 mem_op + 2);
1913 return;
1914 }
1915 }
1916 }
1917
1918 if (i.reg_operands && flag_code < CODE_64BIT)
1919 {
1920 int op;
1921 for (op = i.operands; --op >= 0;)
1922 if ((i.types[op] & Reg)
1923 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
1924 {
1925 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1926 i.op[op].regs->reg_name);
1927 return;
1928 }
1929 }
1930
1931 /* If matched instruction specifies an explicit instruction mnemonic
1932 suffix, use it. */
1933 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
1934 {
1935 if (i.tm.opcode_modifier & Size16)
1936 i.suffix = WORD_MNEM_SUFFIX;
1937 else if (i.tm.opcode_modifier & Size64)
1938 i.suffix = QWORD_MNEM_SUFFIX;
1939 else
1940 i.suffix = LONG_MNEM_SUFFIX;
1941 }
1942 else if (i.reg_operands)
1943 {
1944 /* If there's no instruction mnemonic suffix we try to invent one
1945 based on register operands. */
1946 if (!i.suffix)
1947 {
1948 /* We take i.suffix from the last register operand specified,
1949 Destination register type is more significant than source
1950 register type. */
1951 int op;
1952 for (op = i.operands; --op >= 0;)
1953 if ((i.types[op] & Reg)
1954 && !(i.tm.operand_types[op] & InOutPortReg))
1955 {
1956 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1957 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1958 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
1959 LONG_MNEM_SUFFIX);
1960 break;
1961 }
1962 }
1963 else if (i.suffix == BYTE_MNEM_SUFFIX)
1964 {
1965 int op;
1966 for (op = i.operands; --op >= 0;)
1967 {
1968 /* If this is an eight bit register, it's OK. If it's
1969 the 16 or 32 bit version of an eight bit register,
1970 we will just use the low portion, and that's OK too. */
1971 if (i.types[op] & Reg8)
1972 continue;
1973
1974 /* movzx and movsx should not generate this warning. */
1975 if (intel_syntax
1976 && (i.tm.base_opcode == 0xfb7
1977 || i.tm.base_opcode == 0xfb6
1978 || i.tm.base_opcode == 0x63
1979 || i.tm.base_opcode == 0xfbe
1980 || i.tm.base_opcode == 0xfbf))
1981 continue;
1982
1983 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1984#if 0
1985 /* Check that the template allows eight bit regs
1986 This kills insns such as `orb $1,%edx', which
1987 maybe should be allowed. */
1988 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1989#endif
1990 )
1991 {
1992 /* Prohibit these changes in the 64bit mode, since
1993 the lowering is more complicated. */
1994 if (flag_code == CODE_64BIT
1995 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1996 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1997 i.op[op].regs->reg_name,
1998 i.suffix);
1999#if REGISTER_WARNINGS
2000 if (!quiet_warnings
2001 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2002 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2003 (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
2004 i.op[op].regs->reg_name,
2005 i.suffix);
2006#endif
2007 continue;
2008 }
2009 /* Any other register is bad. */
2010 if (i.types[op] & (Reg | RegMMX | RegXMM
2011 | SReg2 | SReg3
2012 | Control | Debug | Test
2013 | FloatReg | FloatAcc))
2014 {
2015 as_bad (_("`%%%s' not allowed with `%s%c'"),
2016 i.op[op].regs->reg_name,
2017 i.tm.name,
2018 i.suffix);
2019 return;
2020 }
2021 }
2022 }
2023 else if (i.suffix == LONG_MNEM_SUFFIX)
2024 {
2025 int op;
2026
2027 for (op = i.operands; --op >= 0;)
2028 /* Reject eight bit registers, except where the template
2029 requires them. (eg. movzb) */
2030 if ((i.types[op] & Reg8) != 0
2031 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2032 {
2033 as_bad (_("`%%%s' not allowed with `%s%c'"),
2034 i.op[op].regs->reg_name,
2035 i.tm.name,
2036 i.suffix);
2037 return;
2038 }
2039 /* Warn if the e prefix on a general reg is missing. */
2040 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2041 && (i.types[op] & Reg16) != 0
2042 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2043 {
2044 /* Prohibit these changes in the 64bit mode, since
2045 the lowering is more complicated. */
2046 if (flag_code == CODE_64BIT)
2047 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2048 i.op[op].regs->reg_name,
2049 i.suffix);
2050#if REGISTER_WARNINGS
2051 else
2052 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2053 (i.op[op].regs + 8)->reg_name,
2054 i.op[op].regs->reg_name,
2055 i.suffix);
2056#endif
2057 }
2058 /* Warn if the r prefix on a general reg is missing. */
2059 else if ((i.types[op] & Reg64) != 0
2060 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2061 {
2062 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2063 i.op[op].regs->reg_name,
2064 i.suffix);
2065 }
2066 }
2067 else if (i.suffix == QWORD_MNEM_SUFFIX)
2068 {
2069 int op;
2070
2071 for (op = i.operands; --op >= 0; )
2072 /* Reject eight bit registers, except where the template
2073 requires them. (eg. movzb) */
2074 if ((i.types[op] & Reg8) != 0
2075 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2076 {
2077 as_bad (_("`%%%s' not allowed with `%s%c'"),
2078 i.op[op].regs->reg_name,
2079 i.tm.name,
2080 i.suffix);
2081 return;
2082 }
2083 /* Warn if the e prefix on a general reg is missing. */
2084 else if (((i.types[op] & Reg16) != 0
2085 || (i.types[op] & Reg32) != 0)
2086 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2087 {
2088 /* Prohibit these changes in the 64bit mode, since
2089 the lowering is more complicated. */
2090 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2091 i.op[op].regs->reg_name,
2092 i.suffix);
2093 }
2094 }
2095 else if (i.suffix == WORD_MNEM_SUFFIX)
2096 {
2097 int op;
2098 for (op = i.operands; --op >= 0;)
2099 /* Reject eight bit registers, except where the template
2100 requires them. (eg. movzb) */
2101 if ((i.types[op] & Reg8) != 0
2102 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2103 {
2104 as_bad (_("`%%%s' not allowed with `%s%c'"),
2105 i.op[op].regs->reg_name,
2106 i.tm.name,
2107 i.suffix);
2108 return;
2109 }
2110 /* Warn if the e prefix on a general reg is present. */
2111 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2112 && (i.types[op] & Reg32) != 0
2113 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2114 {
2115 /* Prohibit these changes in the 64bit mode, since
2116 the lowering is more complicated. */
2117 if (flag_code == CODE_64BIT)
2118 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2119 i.op[op].regs->reg_name,
2120 i.suffix);
2121 else
2122#if REGISTER_WARNINGS
2123 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2124 (i.op[op].regs - 8)->reg_name,
2125 i.op[op].regs->reg_name,
2126 i.suffix);
2127#endif
2128 }
2129 }
2130 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2131 /* Do nothing if the instruction is going to ignore the prefix. */
2132 ;
2133 else
2134 abort ();
2135 }
2136 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2137 {
2138 i.suffix = stackop_size;
2139 }
2140 /* Make still unresolved immediate matches conform to size of immediate
2141 given in i.suffix. Note: overlap2 cannot be an immediate! */
2142 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2143 && overlap0 != Imm8 && overlap0 != Imm8S
2144 && overlap0 != Imm16 && overlap0 != Imm32S
2145 && overlap0 != Imm32 && overlap0 != Imm64)
2146 {
2147 if (i.suffix)
2148 {
2149 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2150 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2151 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2152 }
2153 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2154 || overlap0 == (Imm16 | Imm32)
2155 || overlap0 == (Imm16 | Imm32S))
2156 {
2157 overlap0 =
2158 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2159 }
2160 if (overlap0 != Imm8 && overlap0 != Imm8S
2161 && overlap0 != Imm16 && overlap0 != Imm32S
2162 && overlap0 != Imm32 && overlap0 != Imm64)
2163 {
2164 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2165 return;
2166 }
2167 }
2168 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2169 && overlap1 != Imm8 && overlap1 != Imm8S
2170 && overlap1 != Imm16 && overlap1 != Imm32S
2171 && overlap1 != Imm32 && overlap1 != Imm64)
2172 {
2173 if (i.suffix)
2174 {
2175 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2176 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2177 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2178 }
2179 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2180 || overlap1 == (Imm16 | Imm32)
2181 || overlap1 == (Imm16 | Imm32S))
2182 {
2183 overlap1 =
2184 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2185 }
2186 if (overlap1 != Imm8 && overlap1 != Imm8S
2187 && overlap1 != Imm16 && overlap1 != Imm32S
2188 && overlap1 != Imm32 && overlap1 != Imm64)
2189 {
2190 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2191 return;
2192 }
2193 }
2194 assert ((overlap2 & Imm) == 0);
2195
2196 i.types[0] = overlap0;
2197 if (overlap0 & ImplicitRegister)
2198 i.reg_operands--;
2199 if (overlap0 & Imm1)
2200 i.imm_operands = 0; /* kludge for shift insns. */
2201
2202 i.types[1] = overlap1;
2203 if (overlap1 & ImplicitRegister)
2204 i.reg_operands--;
2205
2206 i.types[2] = overlap2;
2207 if (overlap2 & ImplicitRegister)
2208 i.reg_operands--;
2209
2210 /* Finalize opcode. First, we change the opcode based on the operand
2211 size given by i.suffix: We need not change things for byte insns. */
2212
2213 if (!i.suffix && (i.tm.opcode_modifier & W))
2214 {
2215 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2216 return;
2217 }
2218
2219 /* For movzx and movsx, need to check the register type. */
2220 if (intel_syntax
2221 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
2222 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
2223 {
2224 unsigned int prefix = DATA_PREFIX_OPCODE;
2225
2226 if ((i.op[1].regs->reg_type & Reg16) != 0)
2227 if (!add_prefix (prefix))
2228 return;
2229 }
2230
2231 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2232 {
2233 /* It's not a byte, select word/dword operation. */
2234 if (i.tm.opcode_modifier & W)
2235 {
2236 if (i.tm.opcode_modifier & ShortForm)
2237 i.tm.base_opcode |= 8;
2238 else
2239 i.tm.base_opcode |= 1;
2240 }
2241 /* Now select between word & dword operations via the operand
2242 size prefix, except for instructions that will ignore this
2243 prefix anyway. */
2244 if (i.suffix != QWORD_MNEM_SUFFIX
2245 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2246 && !(i.tm.opcode_modifier & IgnoreSize))
2247 {
2248 unsigned int prefix = DATA_PREFIX_OPCODE;
2249 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2250 prefix = ADDR_PREFIX_OPCODE;
2251
2252 if (! add_prefix (prefix))
2253 return;
2254 }
2255
2256 /* Set mode64 for an operand. */
2257 if (i.suffix == QWORD_MNEM_SUFFIX
2258 && !(i.tm.opcode_modifier & NoRex64))
2259 {
2260 i.rex.mode64 = 1;
2261 if (flag_code < CODE_64BIT)
2262 {
2263 as_bad (_("64bit operations available only in 64bit modes."));
2264 return;
2265 }
2266 }
2267
2268 /* Size floating point instruction. */
2269 if (i.suffix == LONG_MNEM_SUFFIX)
2270 {
2271 if (i.tm.opcode_modifier & FloatMF)
2272 i.tm.base_opcode ^= 4;
2273 }
2274 }
2275
2276 if (i.tm.opcode_modifier & ImmExt)
2277 {
2278 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2279 opcode suffix which is coded in the same place as an 8-bit
2280 immediate field would be. Here we fake an 8-bit immediate
2281 operand from the opcode suffix stored in tm.extension_opcode. */
2282
2283 expressionS *exp;
2284
2285 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
2286
2287 exp = &im_expressions[i.imm_operands++];
2288 i.op[i.operands].imms = exp;
2289 i.types[i.operands++] = Imm8;
2290 exp->X_op = O_constant;
2291 exp->X_add_number = i.tm.extension_opcode;
2292 i.tm.extension_opcode = None;
2293 }
2294
2295 /* For insns with operands there are more diddles to do to the opcode. */
2296 if (i.operands)
2297 {
2298 /* Default segment register this instruction will use
2299 for memory accesses. 0 means unknown.
2300 This is only for optimizing out unnecessary segment overrides. */
2301 const seg_entry *default_seg = 0;
2302
2303 /* The imul $imm, %reg instruction is converted into
2304 imul $imm, %reg, %reg, and the clr %reg instruction
2305 is converted into xor %reg, %reg. */
2306 if (i.tm.opcode_modifier & regKludge)
2307 {
2308 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2309 /* Pretend we saw the extra register operand. */
2310 assert (i.op[first_reg_op + 1].regs == 0);
2311 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2312 i.types[first_reg_op + 1] = i.types[first_reg_op];
2313 i.reg_operands = 2;
2314 }
2315
2316 if (i.tm.opcode_modifier & ShortForm)
2317 {
2318 /* The register or float register operand is in operand 0 or 1. */
2319 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2320 /* Register goes in low 3 bits of opcode. */
2321 i.tm.base_opcode |= i.op[op].regs->reg_num;
2322 if (i.op[op].regs->reg_flags & RegRex)
2323 i.rex.extZ = 1;
2324 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2325 {
2326 /* Warn about some common errors, but press on regardless.
2327 The first case can be generated by gcc (<= 2.8.1). */
2328 if (i.operands == 2)
2329 {
2330 /* Reversed arguments on faddp, fsubp, etc. */
2331 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2332 i.op[1].regs->reg_name,
2333 i.op[0].regs->reg_name);
2334 }
2335 else
2336 {
2337 /* Extraneous `l' suffix on fp insn. */
2338 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2339 i.op[0].regs->reg_name);
2340 }
2341 }
2342 }
2343 else if (i.tm.opcode_modifier & Modrm)
2344 {
2345 /* The opcode is completed (modulo i.tm.extension_opcode which
2346 must be put into the modrm byte).
2347 Now, we make the modrm & index base bytes based on all the
2348 info we've collected. */
2349
2350 /* i.reg_operands MUST be the number of real register operands;
2351 implicit registers do not count. */
2352 if (i.reg_operands == 2)
2353 {
2354 unsigned int source, dest;
2355 source = ((i.types[0]
2356 & (Reg | RegMMX | RegXMM
2357 | SReg2 | SReg3
2358 | Control | Debug | Test))
2359 ? 0 : 1);
2360 dest = source + 1;
2361
2362 i.rm.mode = 3;
2363 /* One of the register operands will be encoded in the
2364 i.tm.reg field, the other in the combined i.tm.mode
2365 and i.tm.regmem fields. If no form of this
2366 instruction supports a memory destination operand,
2367 then we assume the source operand may sometimes be
2368 a memory operand and so we need to store the
2369 destination in the i.rm.reg field. */
2370 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2371 {
2372 i.rm.reg = i.op[dest].regs->reg_num;
2373 i.rm.regmem = i.op[source].regs->reg_num;
2374 if (i.op[dest].regs->reg_flags & RegRex)
2375 i.rex.extX = 1;
2376 if (i.op[source].regs->reg_flags & RegRex)
2377 i.rex.extZ = 1;
2378 }
2379 else
2380 {
2381 i.rm.reg = i.op[source].regs->reg_num;
2382 i.rm.regmem = i.op[dest].regs->reg_num;
2383 if (i.op[dest].regs->reg_flags & RegRex)
2384 i.rex.extZ = 1;
2385 if (i.op[source].regs->reg_flags & RegRex)
2386 i.rex.extX = 1;
2387 }
2388 }
2389 else
2390 { /* If it's not 2 reg operands... */
2391 if (i.mem_operands)
2392 {
2393 unsigned int fake_zero_displacement = 0;
2394 unsigned int op = ((i.types[0] & AnyMem)
2395 ? 0
2396 : (i.types[1] & AnyMem) ? 1 : 2);
2397
2398 default_seg = &ds;
2399
2400 if (! i.base_reg)
2401 {
2402 i.rm.mode = 0;
2403 if (! i.disp_operands)
2404 fake_zero_displacement = 1;
2405 if (! i.index_reg)
2406 {
2407 /* Operand is just <disp> */
2408 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2409 {
2410 i.rm.regmem = NO_BASE_REGISTER_16;
2411 i.types[op] &= ~Disp;
2412 i.types[op] |= Disp16;
2413 }
2414 else if (flag_code != CODE_64BIT)
2415 {
2416 i.rm.regmem = NO_BASE_REGISTER;
2417 i.types[op] &= ~Disp;
2418 i.types[op] |= Disp32;
2419 }
2420 else
2421 {
2422 /* 64bit mode overwrites the 32bit
2423 absolute addressing by RIP relative
2424 addressing and absolute addressing
2425 is encoded by one of the redundant
2426 SIB forms. */
2427
2428 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2429 i.sib.base = NO_BASE_REGISTER;
2430 i.sib.index = NO_INDEX_REGISTER;
2431 i.types[op] &= ~Disp;
2432 i.types[op] |= Disp32S;
2433 }
2434 }
2435 else /* ! i.base_reg && i.index_reg */
2436 {
2437 i.sib.index = i.index_reg->reg_num;
2438 i.sib.base = NO_BASE_REGISTER;
2439 i.sib.scale = i.log2_scale_factor;
2440 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2441 i.types[op] &= ~Disp;
2442 if (flag_code != CODE_64BIT)
2443 i.types[op] |= Disp32; /* Must be 32 bit */
2444 else
2445 i.types[op] |= Disp32S;
2446 if (i.index_reg->reg_flags & RegRex)
2447 i.rex.extY = 1;
2448 }
2449 }
2450 /* RIP addressing for 64bit mode. */
2451 else if (i.base_reg->reg_type == BaseIndex)
2452 {
2453 i.rm.regmem = NO_BASE_REGISTER;
2454 i.types[op] &= ~Disp;
2455 i.types[op] |= Disp32S;
2456 i.flags[op] = Operand_PCrel;
2457 }
2458 else if (i.base_reg->reg_type & Reg16)
2459 {
2460 switch (i.base_reg->reg_num)
2461 {
2462 case 3: /* (%bx) */
2463 if (! i.index_reg)
2464 i.rm.regmem = 7;
2465 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2466 i.rm.regmem = i.index_reg->reg_num - 6;
2467 break;
2468 case 5: /* (%bp) */
2469 default_seg = &ss;
2470 if (! i.index_reg)
2471 {
2472 i.rm.regmem = 6;
2473 if ((i.types[op] & Disp) == 0)
2474 {
2475 /* fake (%bp) into 0(%bp) */
2476 i.types[op] |= Disp8;
2477 fake_zero_displacement = 1;
2478 }
2479 }
2480 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2481 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2482 break;
2483 default: /* (%si) -> 4 or (%di) -> 5 */
2484 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2485 }
2486 i.rm.mode = mode_from_disp_size (i.types[op]);
2487 }
2488 else /* i.base_reg and 32/64 bit mode */
2489 {
2490 if (flag_code == CODE_64BIT
2491 && (i.types[op] & Disp))
2492 {
2493 if (i.types[op] & Disp8)
2494 i.types[op] = Disp8 | Disp32S;
2495 else
2496 i.types[op] = Disp32S;
2497 }
2498 i.rm.regmem = i.base_reg->reg_num;
2499 if (i.base_reg->reg_flags & RegRex)
2500 i.rex.extZ = 1;
2501 i.sib.base = i.base_reg->reg_num;
2502 /* x86-64 ignores REX prefix bit here to avoid
2503 decoder complications. */
2504 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2505 {
2506 default_seg = &ss;
2507 if (i.disp_operands == 0)
2508 {
2509 fake_zero_displacement = 1;
2510 i.types[op] |= Disp8;
2511 }
2512 }
2513 else if (i.base_reg->reg_num == ESP_REG_NUM)
2514 {
2515 default_seg = &ss;
2516 }
2517 i.sib.scale = i.log2_scale_factor;
2518 if (! i.index_reg)
2519 {
2520 /* <disp>(%esp) becomes two byte modrm
2521 with no index register. We've already
2522 stored the code for esp in i.rm.regmem
2523 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2524 base register besides %esp will not use
2525 the extra modrm byte. */
2526 i.sib.index = NO_INDEX_REGISTER;
2527#if ! SCALE1_WHEN_NO_INDEX
2528 /* Another case where we force the second
2529 modrm byte. */
2530 if (i.log2_scale_factor)
2531 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2532#endif
2533 }
2534 else
2535 {
2536 i.sib.index = i.index_reg->reg_num;
2537 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2538 if (i.index_reg->reg_flags & RegRex)
2539 i.rex.extY = 1;
2540 }
2541 i.rm.mode = mode_from_disp_size (i.types[op]);
2542 }
2543
2544 if (fake_zero_displacement)
2545 {
2546 /* Fakes a zero displacement assuming that i.types[op]
2547 holds the correct displacement size. */
2548 expressionS *exp;
2549
2550 assert (i.op[op].disps == 0);
2551 exp = &disp_expressions[i.disp_operands++];
2552 i.op[op].disps = exp;
2553 exp->X_op = O_constant;
2554 exp->X_add_number = 0;
2555 exp->X_add_symbol = (symbolS *) 0;
2556 exp->X_op_symbol = (symbolS *) 0;
2557 }
2558 }
2559
2560 /* Fill in i.rm.reg or i.rm.regmem field with register
2561 operand (if any) based on i.tm.extension_opcode.
2562 Again, we must be careful to make sure that
2563 segment/control/debug/test/MMX registers are coded
2564 into the i.rm.reg field. */
2565 if (i.reg_operands)
2566 {
2567 unsigned int op =
2568 ((i.types[0]
2569 & (Reg | RegMMX | RegXMM
2570 | SReg2 | SReg3
2571 | Control | Debug | Test))
2572 ? 0
2573 : ((i.types[1]
2574 & (Reg | RegMMX | RegXMM
2575 | SReg2 | SReg3
2576 | Control | Debug | Test))
2577 ? 1
2578 : 2));
2579 /* If there is an extension opcode to put here, the
2580 register number must be put into the regmem field. */
2581 if (i.tm.extension_opcode != None)
2582 {
2583 i.rm.regmem = i.op[op].regs->reg_num;
2584 if (i.op[op].regs->reg_flags & RegRex)
2585 i.rex.extZ = 1;
2586 }
2587 else
2588 {
2589 i.rm.reg = i.op[op].regs->reg_num;
2590 if (i.op[op].regs->reg_flags & RegRex)
2591 i.rex.extX = 1;
2592 }
2593
2594 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2595 we must set it to 3 to indicate this is a register
2596 operand in the regmem field. */
2597 if (!i.mem_operands)
2598 i.rm.mode = 3;
2599 }
2600
2601 /* Fill in i.rm.reg field with extension opcode (if any). */
2602 if (i.tm.extension_opcode != None)
2603 i.rm.reg = i.tm.extension_opcode;
2604 }
2605 }
2606 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2607 {
2608 if (i.tm.base_opcode == POP_SEG_SHORT
2609 && i.op[0].regs->reg_num == 1)
2610 {
2611 as_bad (_("you can't `pop %%cs'"));
2612 return;
2613 }
2614 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2615 if (i.op[0].regs->reg_flags & RegRex)
2616 i.rex.extZ = 1;
2617 }
2618 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2619 {
2620 default_seg = &ds;
2621 }
2622 else if ((i.tm.opcode_modifier & IsString) != 0)
2623 {
2624 /* For the string instructions that allow a segment override
2625 on one of their operands, the default segment is ds. */
2626 default_seg = &ds;
2627 }
2628
2629 /* If a segment was explicitly specified,
2630 and the specified segment is not the default,
2631 use an opcode prefix to select it.
2632 If we never figured out what the default segment is,
2633 then default_seg will be zero at this point,
2634 and the specified segment prefix will always be used. */
2635 if ((i.seg[0]) && (i.seg[0] != default_seg))
2636 {
2637 if (! add_prefix (i.seg[0]->seg_prefix))
2638 return;
2639 }
2640 }
2641 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2642 {
2643 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2644 as_warn (_("translating to `%sp'"), i.tm.name);
2645 }
2646 }
2647
2648 /* Handle conversion of 'int $3' --> special int3 insn. */
2649 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2650 {
2651 i.tm.base_opcode = INT3_OPCODE;
2652 i.imm_operands = 0;
2653 }
2654
2655 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2656 && i.op[0].disps->X_op == O_constant)
2657 {
2658 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2659 the absolute address given by the constant. Since ix86 jumps and
2660 calls are pc relative, we need to generate a reloc. */
2661 i.op[0].disps->X_add_symbol = &abs_symbol;
2662 i.op[0].disps->X_op = O_symbol;
2663 }
2664
2665 if (i.tm.opcode_modifier & Rex64)
2666 i.rex.mode64 = 1;
2667
2668 /* For 8bit registers we would need an empty rex prefix.
2669 Also in the case instruction is already having prefix,
2670 we need to convert old registers to new ones. */
2671
2672 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2673 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2674 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2675 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2676 {
2677 int x;
2678 i.rex.empty = 1;
2679 for (x = 0; x < 2; x++)
2680 {
2681 /* Look for 8bit operand that does use old registers. */
2682 if (i.types[x] & Reg8
2683 && !(i.op[x].regs->reg_flags & RegRex64))
2684 {
2685 /* In case it is "hi" register, give up. */
2686 if (i.op[x].regs->reg_num > 3)
2687 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2688 i.op[x].regs->reg_name);
2689
2690 /* Otherwise it is equivalent to the extended register.
2691 Since the encoding don't change this is merely cosmetical
2692 cleanup for debug output. */
2693
2694 i.op[x].regs = i.op[x].regs + 8;
2695 }
2696 }
2697 }
2698
2699 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2700 add_prefix (0x40
2701 | (i.rex.mode64 ? 8 : 0)
2702 | (i.rex.extX ? 4 : 0)
2703 | (i.rex.extY ? 2 : 0)
2704 | (i.rex.extZ ? 1 : 0));
2705
2706 /* We are ready to output the insn. */
2707 {
2708 register char *p;
2709
2710 /* Output jumps. */
2711 if (i.tm.opcode_modifier & Jump)
2712 {
2713 int code16;
2714 int prefix;
2715
2716 code16 = 0;
2717 if (flag_code == CODE_16BIT)
2718 code16 = CODE16;
2719
2720 prefix = 0;
2721 if (i.prefix[DATA_PREFIX])
2722 {
2723 prefix = 1;
2724 i.prefixes -= 1;
2725 code16 ^= CODE16;
2726 }
2727 if (i.prefix[REX_PREFIX])
2728 {
2729 prefix++;
2730 i.prefixes--;
2731 }
2732
2733 if (i.prefixes != 0 && !intel_syntax)
2734 as_warn (_("skipping prefixes on this instruction"));
2735
2736 /* It's always a symbol; End frag & setup for relax.
2737 Make sure there is enough room in this frag for the largest
2738 instruction we may generate in md_convert_frag. This is 2
2739 bytes for the opcode and room for the prefix and largest
2740 displacement. */
2741 frag_grow (prefix + 2 + 4);
2742 insn_size += prefix + 1;
2743 /* Prefix and 1 opcode byte go in fr_fix. */
2744 p = frag_more (prefix + 1);
2745 if (i.prefix[DATA_PREFIX])
2746 *p++ = DATA_PREFIX_OPCODE;
2747 if (i.prefix[REX_PREFIX])
2748 *p++ = i.prefix[REX_PREFIX];
2749 *p = i.tm.base_opcode;
2750 /* 1 possible extra opcode + displacement go in var part.
2751 Pass reloc in fr_var. */
2752 frag_var (rs_machine_dependent,
2753 1 + 4,
2754 i.reloc[0],
2755 ((unsigned char) *p == JUMP_PC_RELATIVE
2756 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2757 : ((cpu_arch_flags & Cpu386) != 0
2758 ? ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16
2759 : ENCODE_RELAX_STATE (COND_JUMP86, SMALL) | code16)),
2760 i.op[0].disps->X_add_symbol,
2761 i.op[0].disps->X_add_number,
2762 p);
2763 }
2764 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2765 {
2766 int size;
2767
2768 if (i.tm.opcode_modifier & JumpByte)
2769 {
2770 /* This is a loop or jecxz type instruction. */
2771 size = 1;
2772 if (i.prefix[ADDR_PREFIX])
2773 {
2774 insn_size += 1;
2775 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2776 i.prefixes -= 1;
2777 }
2778 }
2779 else
2780 {
2781 int code16;
2782
2783 code16 = 0;
2784 if (flag_code == CODE_16BIT)
2785 code16 = CODE16;
2786
2787 if (i.prefix[DATA_PREFIX])
2788 {
2789 insn_size += 1;
2790 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2791 i.prefixes -= 1;
2792 code16 ^= CODE16;
2793 }
2794
2795 size = 4;
2796 if (code16)
2797 size = 2;
2798 }
2799
2800 if (i.prefix[REX_PREFIX])
2801 {
2802 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2803 insn_size++;
2804 i.prefixes -= 1;
2805 }
2806
2807 if (i.prefixes != 0 && !intel_syntax)
2808 as_warn (_("skipping prefixes on this instruction"));
2809
2810 if (fits_in_unsigned_byte (i.tm.base_opcode))
2811 {
2812 insn_size += 1 + size;
2813 p = frag_more (1 + size);
2814 }
2815 else
2816 {
2817 /* Opcode can be at most two bytes. */
2818 insn_size += 2 + size;
2819 p = frag_more (2 + size);
2820 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2821 }
2822 *p++ = i.tm.base_opcode & 0xff;
2823
2824 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2825 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
2826 }
2827 else if (i.tm.opcode_modifier & JumpInterSegment)
2828 {
2829 int size;
2830 int prefix;
2831 int code16;
2832
2833 code16 = 0;
2834 if (flag_code == CODE_16BIT)
2835 code16 = CODE16;
2836
2837 prefix = 0;
2838 if (i.prefix[DATA_PREFIX])
2839 {
2840 prefix = 1;
2841 i.prefixes -= 1;
2842 code16 ^= CODE16;
2843 }
2844 if (i.prefix[REX_PREFIX])
2845 {
2846 prefix++;
2847 i.prefixes -= 1;
2848 }
2849
2850 size = 4;
2851 if (code16)
2852 size = 2;
2853
2854 if (i.prefixes != 0 && !intel_syntax)
2855 as_warn (_("skipping prefixes on this instruction"));
2856
2857 /* 1 opcode; 2 segment; offset */
2858 insn_size += prefix + 1 + 2 + size;
2859 p = frag_more (prefix + 1 + 2 + size);
2860
2861 if (i.prefix[DATA_PREFIX])
2862 *p++ = DATA_PREFIX_OPCODE;
2863
2864 if (i.prefix[REX_PREFIX])
2865 *p++ = i.prefix[REX_PREFIX];
2866
2867 *p++ = i.tm.base_opcode;
2868 if (i.op[1].imms->X_op == O_constant)
2869 {
2870 offsetT n = i.op[1].imms->X_add_number;
2871
2872 if (size == 2
2873 && !fits_in_unsigned_word (n)
2874 && !fits_in_signed_word (n))
2875 {
2876 as_bad (_("16-bit jump out of range"));
2877 return;
2878 }
2879 md_number_to_chars (p, n, size);
2880 }
2881 else
2882 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2883 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
2884 if (i.op[0].imms->X_op != O_constant)
2885 as_bad (_("can't handle non absolute segment in `%s'"),
2886 i.tm.name);
2887 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2888 }
2889 else
2890 {
2891 /* Output normal instructions here. */
2892 unsigned char *q;
2893
2894 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2895 byte for the SSE instructions to specify prefix they require. */
2896 if (i.tm.base_opcode & 0xff0000)
2897 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2898
2899 /* The prefix bytes. */
2900 for (q = i.prefix;
2901 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2902 q++)
2903 {
2904 if (*q)
2905 {
2906 insn_size += 1;
2907 p = frag_more (1);
2908 md_number_to_chars (p, (valueT) *q, 1);
2909 }
2910 }
2911
2912 /* Now the opcode; be careful about word order here! */
2913 if (fits_in_unsigned_byte (i.tm.base_opcode))
2914 {
2915 insn_size += 1;
2916 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2917 }
2918 else
2919 {
2920 insn_size += 2;
2921 p = frag_more (2);
2922 /* Put out high byte first: can't use md_number_to_chars! */
2923 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2924 *p = i.tm.base_opcode & 0xff;
2925 }
2926
2927 /* Now the modrm byte and sib byte (if present). */
2928 if (i.tm.opcode_modifier & Modrm)
2929 {
2930 insn_size += 1;
2931 p = frag_more (1);
2932 md_number_to_chars (p,
2933 (valueT) (i.rm.regmem << 0
2934 | i.rm.reg << 3
2935 | i.rm.mode << 6),
2936 1);
2937 /* If i.rm.regmem == ESP (4)
2938 && i.rm.mode != (Register mode)
2939 && not 16 bit
2940 ==> need second modrm byte. */
2941 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2942 && i.rm.mode != 3
2943 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2944 {
2945 insn_size += 1;
2946 p = frag_more (1);
2947 md_number_to_chars (p,
2948 (valueT) (i.sib.base << 0
2949 | i.sib.index << 3
2950 | i.sib.scale << 6),
2951 1);
2952 }
2953 }
2954
2955 if (i.disp_operands)
2956 {
2957 register unsigned int n;
2958
2959 for (n = 0; n < i.operands; n++)
2960 {
2961 if (i.types[n] & Disp)
2962 {
2963 if (i.op[n].disps->X_op == O_constant)
2964 {
2965 int size;
2966 offsetT val;
2967
2968 size = 4;
2969 if (i.types[n] & (Disp8 | Disp16 | Disp64))
2970 {
2971 size = 2;
2972 if (i.types[n] & Disp8)
2973 size = 1;
2974 if (i.types[n] & Disp64)
2975 size = 8;
2976 }
2977 val = offset_in_range (i.op[n].disps->X_add_number,
2978 size);
2979 insn_size += size;
2980 p = frag_more (size);
2981 md_number_to_chars (p, val, size);
2982 }
2983 else
2984 {
2985 int size = 4;
2986 int sign = 0;
2987 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
2988
2989 /* The PC relative address is computed relative
2990 to the instruction boundary, so in case immediate
2991 fields follows, we need to adjust the value. */
2992 if (pcrel && i.imm_operands)
2993 {
2994 int imm_size = 4;
2995 register unsigned int n1;
2996
2997 for (n1 = 0; n1 < i.operands; n1++)
2998 if (i.types[n1] & Imm)
2999 {
3000 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3001 {
3002 imm_size = 2;
3003 if (i.types[n1] & (Imm8 | Imm8S))
3004 imm_size = 1;
3005 if (i.types[n1] & Imm64)
3006 imm_size = 8;
3007 }
3008 break;
3009 }
3010 /* We should find the immediate. */
3011 if (n1 == i.operands)
3012 abort ();
3013 i.op[n].disps->X_add_number -= imm_size;
3014 }
3015
3016 if (i.types[n] & Disp32S)
3017 sign = 1;
3018
3019 if (i.types[n] & (Disp16 | Disp64))
3020 {
3021 size = 2;
3022 if (i.types[n] & Disp64)
3023 size = 8;
3024 }
3025
3026 insn_size += size;
3027 p = frag_more (size);
3028 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3029 i.op[n].disps, pcrel,
3030 reloc (size, pcrel, sign, i.reloc[n]));
3031 }
3032 }
3033 }
3034 }
3035
3036 /* Output immediate. */
3037 if (i.imm_operands)
3038 {
3039 register unsigned int n;
3040
3041 for (n = 0; n < i.operands; n++)
3042 {
3043 if (i.types[n] & Imm)
3044 {
3045 if (i.op[n].imms->X_op == O_constant)
3046 {
3047 int size;
3048 offsetT val;
3049
3050 size = 4;
3051 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3052 {
3053 size = 2;
3054 if (i.types[n] & (Imm8 | Imm8S))
3055 size = 1;
3056 else if (i.types[n] & Imm64)
3057 size = 8;
3058 }
3059 val = offset_in_range (i.op[n].imms->X_add_number,
3060 size);
3061 insn_size += size;
3062 p = frag_more (size);
3063 md_number_to_chars (p, val, size);
3064 }
3065 else
3066 {
3067 /* Not absolute_section.
3068 Need a 32-bit fixup (don't support 8bit
3069 non-absolute imms). Try to support other
3070 sizes ... */
3071#ifdef BFD_ASSEMBLER
3072 enum bfd_reloc_code_real reloc_type;
3073#else
3074 int reloc_type;
3075#endif
3076 int size = 4;
3077 int sign = 0;
3078
3079 if ((i.types[n] & (Imm32S))
3080 && i.suffix == QWORD_MNEM_SUFFIX)
3081 sign = 1;
3082 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3083 {
3084 size = 2;
3085 if (i.types[n] & (Imm8 | Imm8S))
3086 size = 1;
3087 if (i.types[n] & Imm64)
3088 size = 8;
3089 }
3090
3091 insn_size += size;
3092 p = frag_more (size);
3093 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3094#ifdef BFD_ASSEMBLER
3095 if (reloc_type == BFD_RELOC_32
3096 && GOT_symbol
3097 && GOT_symbol == i.op[n].imms->X_add_symbol
3098 && (i.op[n].imms->X_op == O_symbol
3099 || (i.op[n].imms->X_op == O_add
3100 && ((symbol_get_value_expression
3101 (i.op[n].imms->X_op_symbol)->X_op)
3102 == O_subtract))))
3103 {
3104 /* We don't support dynamic linking on x86-64 yet. */
3105 if (flag_code == CODE_64BIT)
3106 abort ();
3107 reloc_type = BFD_RELOC_386_GOTPC;
3108 i.op[n].imms->X_add_number += 3;
3109 }
3110#endif
3111 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3112 i.op[n].imms, 0, reloc_type);
3113 }
3114 }
3115 }
3116 }
3117 }
3118
3119 dwarf2_emit_insn (insn_size);
3120
3121#ifdef DEBUG386
3122 if (flag_debug)
3123 {
3124 pi (line, &i);
3125 }
3126#endif /* DEBUG386 */
3127 }
3128}
3129\f
3130static int i386_immediate PARAMS ((char *));
3131
3132static int
3133i386_immediate (imm_start)
3134 char *imm_start;
3135{
3136 char *save_input_line_pointer;
3137 segT exp_seg = 0;
3138 expressionS *exp;
3139
3140 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3141 {
3142 as_bad (_("only 1 or 2 immediate operands are allowed"));
3143 return 0;
3144 }
3145
3146 exp = &im_expressions[i.imm_operands++];
3147 i.op[this_operand].imms = exp;
3148
3149 if (is_space_char (*imm_start))
3150 ++imm_start;
3151
3152 save_input_line_pointer = input_line_pointer;
3153 input_line_pointer = imm_start;
3154
3155#ifndef LEX_AT
3156 {
3157 /* We can have operands of the form
3158 <symbol>@GOTOFF+<nnn>
3159 Take the easy way out here and copy everything
3160 into a temporary buffer... */
3161 register char *cp;
3162
3163 cp = strchr (input_line_pointer, '@');
3164 if (cp != NULL)
3165 {
3166 char *tmpbuf;
3167 int len = 0;
3168 int first;
3169
3170 /* GOT relocations are not supported in 16 bit mode. */
3171 if (flag_code == CODE_16BIT)
3172 as_bad (_("GOT relocations not supported in 16 bit mode"));
3173
3174 if (GOT_symbol == NULL)
3175 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3176
3177 if (strncmp (cp + 1, "PLT", 3) == 0)
3178 {
3179 if (flag_code == CODE_64BIT)
3180 i.reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3181 else
3182 i.reloc[this_operand] = BFD_RELOC_386_PLT32;
3183 len = 3;
3184 }
3185 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3186 {
3187 if (flag_code == CODE_64BIT)
3188 as_bad ("GOTOFF relocations are unsupported in 64bit mode.");
3189 i.reloc[this_operand] = BFD_RELOC_386_GOTOFF;
3190 len = 6;
3191 }
3192 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
3193 {
3194 if (flag_code == CODE_64BIT)
3195 i.reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
3196 else
3197 as_bad ("GOTPCREL relocations are supported only in 64bit mode.");
3198 len = 8;
3199 }
3200 else if (strncmp (cp + 1, "GOT", 3) == 0)
3201 {
3202 if (flag_code == CODE_64BIT)
3203 i.reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3204 else
3205 i.reloc[this_operand] = BFD_RELOC_386_GOT32;
3206 len = 3;
3207 }
3208 else
3209 as_bad (_("bad reloc specifier in expression"));
3210
3211 /* Replace the relocation token with ' ', so that errors like
3212 foo@GOTOFF1 will be detected. */
3213 first = cp - input_line_pointer;
3214 tmpbuf = (char *) alloca (strlen (input_line_pointer));
3215 memcpy (tmpbuf, input_line_pointer, first);
3216 tmpbuf[first] = ' ';
3217 strcpy (tmpbuf + first + 1, cp + 1 + len);
3218 input_line_pointer = tmpbuf;
3219 }
3220 }
3221#endif
3222
3223 exp_seg = expression (exp);
3224
3225 SKIP_WHITESPACE ();
3226 if (*input_line_pointer)
3227 as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);
3228
3229 input_line_pointer = save_input_line_pointer;
3230
3231 if (exp->X_op == O_absent || exp->X_op == O_big)
3232 {
3233 /* Missing or bad expr becomes absolute 0. */
3234 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3235 imm_start);
3236 exp->X_op = O_constant;
3237 exp->X_add_number = 0;
3238 exp->X_add_symbol = (symbolS *) 0;
3239 exp->X_op_symbol = (symbolS *) 0;
3240 }
3241 else if (exp->X_op == O_constant)
3242 {
3243 /* Size it properly later. */
3244 i.types[this_operand] |= Imm64;
3245 /* If BFD64, sign extend val. */
3246 if (!use_rela_relocations)
3247 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3248 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3249 }
3250#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3251 else if (1
3252#ifdef BFD_ASSEMBLER
3253 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3254#endif
3255 && exp_seg != text_section
3256 && exp_seg != data_section
3257 && exp_seg != bss_section
3258 && exp_seg != undefined_section
3259#ifdef BFD_ASSEMBLER
3260 && !bfd_is_com_section (exp_seg)
3261#endif
3262 )
3263 {
3264#ifdef BFD_ASSEMBLER
3265 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3266#else
3267 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3268#endif
3269 return 0;
3270 }
3271#endif
3272 else
3273 {
3274 /* This is an address. The size of the address will be
3275 determined later, depending on destination register,
3276 suffix, or the default for the section. */
3277 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3278 }
3279
3280 return 1;
3281}
3282
3283static int i386_scale PARAMS ((char *));
3284
3285static int
3286i386_scale (scale)
3287 char *scale;
3288{
3289 if (!isdigit (*scale))
3290 goto bad_scale;
3291
3292 switch (*scale)
3293 {
3294 case '0':
3295 case '1':
3296 i.log2_scale_factor = 0;
3297 break;
3298 case '2':
3299 i.log2_scale_factor = 1;
3300 break;
3301 case '4':
3302 i.log2_scale_factor = 2;
3303 break;
3304 case '8':
3305 i.log2_scale_factor = 3;
3306 break;
3307 default:
3308 bad_scale:
3309 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3310 scale);
3311 return 0;
3312 }
3313 if (i.log2_scale_factor != 0 && ! i.index_reg)
3314 {
3315 as_warn (_("scale factor of %d without an index register"),
3316 1 << i.log2_scale_factor);
3317#if SCALE1_WHEN_NO_INDEX
3318 i.log2_scale_factor = 0;
3319#endif
3320 }
3321 return 1;
3322}
3323
3324static int i386_displacement PARAMS ((char *, char *));
3325
3326static int
3327i386_displacement (disp_start, disp_end)
3328 char *disp_start;
3329 char *disp_end;
3330{
3331 register expressionS *exp;
3332 segT exp_seg = 0;
3333 char *save_input_line_pointer;
3334 int bigdisp = Disp32;
3335
3336 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3337 bigdisp = Disp16;
3338 if (flag_code == CODE_64BIT)
3339 bigdisp = Disp64;
3340 i.types[this_operand] |= bigdisp;
3341
3342 exp = &disp_expressions[i.disp_operands];
3343 i.op[this_operand].disps = exp;
3344 i.disp_operands++;
3345 save_input_line_pointer = input_line_pointer;
3346 input_line_pointer = disp_start;
3347 END_STRING_AND_SAVE (disp_end);
3348
3349#ifndef GCC_ASM_O_HACK
3350#define GCC_ASM_O_HACK 0
3351#endif
3352#if GCC_ASM_O_HACK
3353 END_STRING_AND_SAVE (disp_end + 1);
3354 if ((i.types[this_operand] & BaseIndex) != 0
3355 && displacement_string_end[-1] == '+')
3356 {
3357 /* This hack is to avoid a warning when using the "o"
3358 constraint within gcc asm statements.
3359 For instance:
3360
3361 #define _set_tssldt_desc(n,addr,limit,type) \
3362 __asm__ __volatile__ ( \
3363 "movw %w2,%0\n\t" \
3364 "movw %w1,2+%0\n\t" \
3365 "rorl $16,%1\n\t" \
3366 "movb %b1,4+%0\n\t" \
3367 "movb %4,5+%0\n\t" \
3368 "movb $0,6+%0\n\t" \
3369 "movb %h1,7+%0\n\t" \
3370 "rorl $16,%1" \
3371 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3372
3373 This works great except that the output assembler ends
3374 up looking a bit weird if it turns out that there is
3375 no offset. You end up producing code that looks like:
3376
3377 #APP
3378 movw $235,(%eax)
3379 movw %dx,2+(%eax)
3380 rorl $16,%edx
3381 movb %dl,4+(%eax)
3382 movb $137,5+(%eax)
3383 movb $0,6+(%eax)
3384 movb %dh,7+(%eax)
3385 rorl $16,%edx
3386 #NO_APP
3387
3388 So here we provide the missing zero. */
3389
3390 *displacement_string_end = '0';
3391 }
3392#endif
3393#ifndef LEX_AT
3394 {
3395 /* We can have operands of the form
3396 <symbol>@GOTOFF+<nnn>
3397 Take the easy way out here and copy everything
3398 into a temporary buffer... */
3399 register char *cp;
3400
3401 cp = strchr (input_line_pointer, '@');
3402 if (cp != NULL)
3403 {
3404 char *tmpbuf;
3405 int len = 0;
3406 int first;
3407
3408 /* GOT relocations are not supported in 16 bit mode. */
3409 if (flag_code == CODE_16BIT)
3410 as_bad (_("GOT relocations not supported in 16 bit mode"));
3411
3412 if (GOT_symbol == NULL)
3413 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3414
3415 if (strncmp (cp + 1, "PLT", 3) == 0)
3416 {
3417 if (flag_code == CODE_64BIT)
3418 i.reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3419 else
3420 i.reloc[this_operand] = BFD_RELOC_386_PLT32;
3421 len = 3;
3422 }
3423 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3424 {
3425 if (flag_code == CODE_64BIT)
3426 as_bad ("GOTOFF relocation is not supported in 64bit mode.");
3427 i.reloc[this_operand] = BFD_RELOC_386_GOTOFF;
3428 len = 6;
3429 }
3430 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
3431 {
3432 if (flag_code != CODE_64BIT)
3433 as_bad ("GOTPCREL relocation is supported only in 64bit mode.");
3434 i.reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
3435 len = 8;
3436 }
3437 else if (strncmp (cp + 1, "GOT", 3) == 0)
3438 {
3439 if (flag_code == CODE_64BIT)
3440 i.reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3441 else
3442 i.reloc[this_operand] = BFD_RELOC_386_GOT32;
3443 len = 3;
3444 }
3445 else
3446 as_bad (_("bad reloc specifier in expression"));
3447
3448 /* Replace the relocation token with ' ', so that errors like
3449 foo@GOTOFF1 will be detected. */
3450 first = cp - input_line_pointer;
3451 tmpbuf = (char *) alloca (strlen (input_line_pointer));
3452 memcpy (tmpbuf, input_line_pointer, first);
3453 tmpbuf[first] = ' ';
3454 strcpy (tmpbuf + first + 1, cp + 1 + len);
3455 input_line_pointer = tmpbuf;
3456 }
3457 }
3458#endif
3459
3460 exp_seg = expression (exp);
3461
3462#ifdef BFD_ASSEMBLER
3463 /* We do this to make sure that the section symbol is in
3464 the symbol table. We will ultimately change the relocation
3465 to be relative to the beginning of the section. */
3466 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3467 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3468 {
3469 if (S_IS_LOCAL (exp->X_add_symbol)
3470 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3471 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3472 assert (exp->X_op == O_symbol);
3473 exp->X_op = O_subtract;
3474 exp->X_op_symbol = GOT_symbol;
3475 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3476 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3477 else
3478 i.reloc[this_operand] = BFD_RELOC_32;
3479 }
3480#endif
3481
3482 SKIP_WHITESPACE ();
3483 if (*input_line_pointer)
3484 as_bad (_("ignoring junk `%s' after expression"),
3485 input_line_pointer);
3486#if GCC_ASM_O_HACK
3487 RESTORE_END_STRING (disp_end + 1);
3488#endif
3489 RESTORE_END_STRING (disp_end);
3490 input_line_pointer = save_input_line_pointer;
3491
3492 if (exp->X_op == O_absent || exp->X_op == O_big)
3493 {
3494 /* Missing or bad expr becomes absolute 0. */
3495 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3496 disp_start);
3497 exp->X_op = O_constant;
3498 exp->X_add_number = 0;
3499 exp->X_add_symbol = (symbolS *) 0;
3500 exp->X_op_symbol = (symbolS *) 0;
3501 }
3502
3503#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3504 if (exp->X_op != O_constant
3505#ifdef BFD_ASSEMBLER
3506 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3507#endif
3508 && exp_seg != text_section
3509 && exp_seg != data_section
3510 && exp_seg != bss_section
3511 && exp_seg != undefined_section)
3512 {
3513#ifdef BFD_ASSEMBLER
3514 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3515#else
3516 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3517#endif
3518 return 0;
3519 }
3520#endif
3521 else if (flag_code == CODE_64BIT)
3522 i.types[this_operand] |= Disp32S | Disp32;
3523 return 1;
3524}
3525
3526static int i386_index_check PARAMS ((const char *));
3527
3528/* Make sure the memory operand we've been dealt is valid.
3529 Return 1 on success, 0 on a failure. */
3530
3531static int
3532i386_index_check (operand_string)
3533 const char *operand_string;
3534{
3535 int ok;
3536#if INFER_ADDR_PREFIX
3537 int fudged = 0;
3538
3539 tryprefix:
3540#endif
3541 ok = 1;
3542 if (flag_code == CODE_64BIT)
3543 {
3544 /* 64bit checks. */
3545 if ((i.base_reg
3546 && ((i.base_reg->reg_type & Reg64) == 0)
3547 && (i.base_reg->reg_type != BaseIndex
3548 || i.index_reg))
3549 || (i.index_reg
3550 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3551 != (Reg64|BaseIndex))))
3552 ok = 0;
3553 }
3554 else
3555 {
3556 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3557 {
3558 /* 16bit checks. */
3559 if ((i.base_reg
3560 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3561 != (Reg16|BaseIndex)))
3562 || (i.index_reg
3563 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3564 != (Reg16|BaseIndex))
3565 || ! (i.base_reg
3566 && i.base_reg->reg_num < 6
3567 && i.index_reg->reg_num >= 6
3568 && i.log2_scale_factor == 0))))
3569 ok = 0;
3570 }
3571 else
3572 {
3573 /* 32bit checks. */
3574 if ((i.base_reg
3575 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3576 || (i.index_reg
3577 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3578 != (Reg32|BaseIndex))))
3579 ok = 0;
3580 }
3581 }
3582 if (!ok)
3583 {
3584#if INFER_ADDR_PREFIX
3585 if (flag_code != CODE_64BIT
3586 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3587 {
3588 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3589 i.prefixes += 1;
3590 /* Change the size of any displacement too. At most one of
3591 Disp16 or Disp32 is set.
3592 FIXME. There doesn't seem to be any real need for separate
3593 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3594 Removing them would probably clean up the code quite a lot. */
3595 if (i.types[this_operand] & (Disp16|Disp32))
3596 i.types[this_operand] ^= (Disp16|Disp32);
3597 fudged = 1;
3598 goto tryprefix;
3599 }
3600 if (fudged)
3601 as_bad (_("`%s' is not a valid base/index expression"),
3602 operand_string);
3603 else
3604#endif
3605 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3606 operand_string,
3607 flag_code_names[flag_code]);
3608 return 0;
3609 }
3610 return 1;
3611}
3612
3613/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3614 on error. */
3615
3616static int
3617i386_operand (operand_string)
3618 char *operand_string;
3619{
3620 const reg_entry *r;
3621 char *end_op;
3622 char *op_string = operand_string;
3623
3624 if (is_space_char (*op_string))
3625 ++op_string;
3626
3627 /* We check for an absolute prefix (differentiating,
3628 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3629 if (*op_string == ABSOLUTE_PREFIX)
3630 {
3631 ++op_string;
3632 if (is_space_char (*op_string))
3633 ++op_string;
3634 i.types[this_operand] |= JumpAbsolute;
3635 }
3636
3637 /* Check if operand is a register. */
3638 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3639 && (r = parse_register (op_string, &end_op)) != NULL)
3640 {
3641 /* Check for a segment override by searching for ':' after a
3642 segment register. */
3643 op_string = end_op;
3644 if (is_space_char (*op_string))
3645 ++op_string;
3646 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3647 {
3648 switch (r->reg_num)
3649 {
3650 case 0:
3651 i.seg[i.mem_operands] = &es;
3652 break;
3653 case 1:
3654 i.seg[i.mem_operands] = &cs;
3655 break;
3656 case 2:
3657 i.seg[i.mem_operands] = &ss;
3658 break;
3659 case 3:
3660 i.seg[i.mem_operands] = &ds;
3661 break;
3662 case 4:
3663 i.seg[i.mem_operands] = &fs;
3664 break;
3665 case 5:
3666 i.seg[i.mem_operands] = &gs;
3667 break;
3668 }
3669
3670 /* Skip the ':' and whitespace. */
3671 ++op_string;
3672 if (is_space_char (*op_string))
3673 ++op_string;
3674
3675 if (!is_digit_char (*op_string)
3676 && !is_identifier_char (*op_string)
3677 && *op_string != '('
3678 && *op_string != ABSOLUTE_PREFIX)
3679 {
3680 as_bad (_("bad memory operand `%s'"), op_string);
3681 return 0;
3682 }
3683 /* Handle case of %es:*foo. */
3684 if (*op_string == ABSOLUTE_PREFIX)
3685 {
3686 ++op_string;
3687 if (is_space_char (*op_string))
3688 ++op_string;
3689 i.types[this_operand] |= JumpAbsolute;
3690 }
3691 goto do_memory_reference;
3692 }
3693 if (*op_string)
3694 {
3695 as_bad (_("junk `%s' after register"), op_string);
3696 return 0;
3697 }
3698 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3699 i.op[this_operand].regs = r;
3700 i.reg_operands++;
3701 }
3702 else if (*op_string == REGISTER_PREFIX)
3703 {
3704 as_bad (_("bad register name `%s'"), op_string);
3705 return 0;
3706 }
3707 else if (*op_string == IMMEDIATE_PREFIX)
3708 {
3709 ++op_string;
3710 if (i.types[this_operand] & JumpAbsolute)
3711 {
3712 as_bad (_("immediate operand illegal with absolute jump"));
3713 return 0;
3714 }
3715 if (!i386_immediate (op_string))
3716 return 0;
3717 }
3718 else if (is_digit_char (*op_string)
3719 || is_identifier_char (*op_string)
3720 || *op_string == '(')
3721 {
3722 /* This is a memory reference of some sort. */
3723 char *base_string;
3724
3725 /* Start and end of displacement string expression (if found). */
3726 char *displacement_string_start;
3727 char *displacement_string_end;
3728
3729 do_memory_reference:
3730 if ((i.mem_operands == 1
3731 && (current_templates->start->opcode_modifier & IsString) == 0)
3732 || i.mem_operands == 2)
3733 {
3734 as_bad (_("too many memory references for `%s'"),
3735 current_templates->start->name);
3736 return 0;
3737 }
3738
3739 /* Check for base index form. We detect the base index form by
3740 looking for an ')' at the end of the operand, searching
3741 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3742 after the '('. */
3743 base_string = op_string + strlen (op_string);
3744
3745 --base_string;
3746 if (is_space_char (*base_string))
3747 --base_string;
3748
3749 /* If we only have a displacement, set-up for it to be parsed later. */
3750 displacement_string_start = op_string;
3751 displacement_string_end = base_string + 1;
3752
3753 if (*base_string == ')')
3754 {
3755 char *temp_string;
3756 unsigned int parens_balanced = 1;
3757 /* We've already checked that the number of left & right ()'s are
3758 equal, so this loop will not be infinite. */
3759 do
3760 {
3761 base_string--;
3762 if (*base_string == ')')
3763 parens_balanced++;
3764 if (*base_string == '(')
3765 parens_balanced--;
3766 }
3767 while (parens_balanced);
3768
3769 temp_string = base_string;
3770
3771 /* Skip past '(' and whitespace. */
3772 ++base_string;
3773 if (is_space_char (*base_string))
3774 ++base_string;
3775
3776 if (*base_string == ','
3777 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3778 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3779 {
3780 displacement_string_end = temp_string;
3781
3782 i.types[this_operand] |= BaseIndex;
3783
3784 if (i.base_reg)
3785 {
3786 base_string = end_op;
3787 if (is_space_char (*base_string))
3788 ++base_string;
3789 }
3790
3791 /* There may be an index reg or scale factor here. */
3792 if (*base_string == ',')
3793 {
3794 ++base_string;
3795 if (is_space_char (*base_string))
3796 ++base_string;
3797
3798 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3799 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3800 {
3801 base_string = end_op;
3802 if (is_space_char (*base_string))
3803 ++base_string;
3804 if (*base_string == ',')
3805 {
3806 ++base_string;
3807 if (is_space_char (*base_string))
3808 ++base_string;
3809 }
3810 else if (*base_string != ')')
3811 {
3812 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3813 operand_string);
3814 return 0;
3815 }
3816 }
3817 else if (*base_string == REGISTER_PREFIX)
3818 {
3819 as_bad (_("bad register name `%s'"), base_string);
3820 return 0;
3821 }
3822
3823 /* Check for scale factor. */
3824 if (isdigit ((unsigned char) *base_string))
3825 {
3826 if (!i386_scale (base_string))
3827 return 0;
3828
3829 ++base_string;
3830 if (is_space_char (*base_string))
3831 ++base_string;
3832 if (*base_string != ')')
3833 {
3834 as_bad (_("expecting `)' after scale factor in `%s'"),
3835 operand_string);
3836 return 0;
3837 }
3838 }
3839 else if (!i.index_reg)
3840 {
3841 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3842 *base_string);
3843 return 0;
3844 }
3845 }
3846 else if (*base_string != ')')
3847 {
3848 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3849 operand_string);
3850 return 0;
3851 }
3852 }
3853 else if (*base_string == REGISTER_PREFIX)
3854 {
3855 as_bad (_("bad register name `%s'"), base_string);
3856 return 0;
3857 }
3858 }
3859
3860 /* If there's an expression beginning the operand, parse it,
3861 assuming displacement_string_start and
3862 displacement_string_end are meaningful. */
3863 if (displacement_string_start != displacement_string_end)
3864 {
3865 if (!i386_displacement (displacement_string_start,
3866 displacement_string_end))
3867 return 0;
3868 }
3869
3870 /* Special case for (%dx) while doing input/output op. */
3871 if (i.base_reg
3872 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3873 && i.index_reg == 0
3874 && i.log2_scale_factor == 0
3875 && i.seg[i.mem_operands] == 0
3876 && (i.types[this_operand] & Disp) == 0)
3877 {
3878 i.types[this_operand] = InOutPortReg;
3879 return 1;
3880 }
3881
3882 if (i386_index_check (operand_string) == 0)
3883 return 0;
3884 i.mem_operands++;
3885 }
3886 else
3887 {
3888 /* It's not a memory operand; argh! */
3889 as_bad (_("invalid char %s beginning operand %d `%s'"),
3890 output_invalid (*op_string),
3891 this_operand + 1,
3892 op_string);
3893 return 0;
3894 }
3895 return 1; /* Normal return. */
3896}
3897\f
3898/* md_estimate_size_before_relax()
3899
3900 Called just before relax() for rs_machine_dependent frags. The x86
3901 assembler uses these frags to handle variable size jump
3902 instructions.
3903
3904 Any symbol that is now undefined will not become defined.
3905 Return the correct fr_subtype in the frag.
3906 Return the initial "guess for variable size of frag" to caller.
3907 The guess is actually the growth beyond the fixed part. Whatever
3908 we do to grow the fixed or variable part contributes to our
3909 returned value. */
3910
3911int
3912md_estimate_size_before_relax (fragP, segment)
3913 register fragS *fragP;
3914 register segT segment;
3915{
3916 /* We've already got fragP->fr_subtype right; all we have to do is
3917 check for un-relaxable symbols. On an ELF system, we can't relax
3918 an externally visible symbol, because it may be overridden by a
3919 shared library. */
3920 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3921#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3922 || S_IS_EXTERNAL (fragP->fr_symbol)
3923 || S_IS_WEAK (fragP->fr_symbol)
3924#endif
3925 )
3926 {
3927 /* Symbol is undefined in this segment, or we need to keep a
3928 reloc so that weak symbols can be overridden. */
3929 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
3930#ifdef BFD_ASSEMBLER
3931 enum bfd_reloc_code_real reloc_type;
3932#else
3933 int reloc_type;
3934#endif
3935 unsigned char *opcode;
3936 int old_fr_fix;
3937
3938 if (fragP->fr_var != NO_RELOC)
3939 reloc_type = fragP->fr_var;
3940 else if (size == 2)
3941 reloc_type = BFD_RELOC_16_PCREL;
3942 else
3943 reloc_type = BFD_RELOC_32_PCREL;
3944
3945 old_fr_fix = fragP->fr_fix;
3946 opcode = (unsigned char *) fragP->fr_opcode;
3947
3948 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
3949 {
3950 case UNCOND_JUMP:
3951 /* Make jmp (0xeb) a (d)word displacement jump. */
3952 opcode[0] = 0xe9;
3953 fragP->fr_fix += size;
3954 fix_new (fragP, old_fr_fix, size,
3955 fragP->fr_symbol,
3956 fragP->fr_offset, 1,
3957 reloc_type);
3958 break;
3959
3960 case COND_JUMP86:
3961 if (no_cond_jump_promotion)
3962 return 1;
3963 if (size == 2)
3964 {
3965 /* Negate the condition, and branch past an
3966 unconditional jump. */
3967 opcode[0] ^= 1;
3968 opcode[1] = 3;
3969 /* Insert an unconditional jump. */
3970 opcode[2] = 0xe9;
3971 /* We added two extra opcode bytes, and have a two byte
3972 offset. */
3973 fragP->fr_fix += 2 + 2;
3974 fix_new (fragP, old_fr_fix + 2, 2,
3975 fragP->fr_symbol,
3976 fragP->fr_offset, 1,
3977 reloc_type);
3978 break;
3979 }
3980 /* Fall through. */
3981
3982 case COND_JUMP:
3983 if (no_cond_jump_promotion)
3984 return 1;
3985 /* This changes the byte-displacement jump 0x7N
3986 to the (d)word-displacement jump 0x0f,0x8N. */
3987 opcode[1] = opcode[0] + 0x10;
3988 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3989 /* We've added an opcode byte. */
3990 fragP->fr_fix += 1 + size;
3991 fix_new (fragP, old_fr_fix + 1, size,
3992 fragP->fr_symbol,
3993 fragP->fr_offset, 1,
3994 reloc_type);
3995 break;
3996
3997 default:
3998 BAD_CASE (fragP->fr_subtype);
3999 break;
4000 }
4001 frag_wane (fragP);
4002 return fragP->fr_fix - old_fr_fix;
4003 }
4004 /* Guess a short jump. */
4005 return 1;
4006}
4007
4008/* Called after relax() is finished.
4009
4010 In: Address of frag.
4011 fr_type == rs_machine_dependent.
4012 fr_subtype is what the address relaxed to.
4013
4014 Out: Any fixSs and constants are set up.
4015 Caller will turn frag into a ".space 0". */
4016
4017#ifndef BFD_ASSEMBLER
4018void
4019md_convert_frag (headers, sec, fragP)
4020 object_headers *headers ATTRIBUTE_UNUSED;
4021 segT sec ATTRIBUTE_UNUSED;
4022 register fragS *fragP;
4023#else
4024void
4025md_convert_frag (abfd, sec, fragP)
4026 bfd *abfd ATTRIBUTE_UNUSED;
4027 segT sec ATTRIBUTE_UNUSED;
4028 register fragS *fragP;
4029#endif
4030{
4031 register unsigned char *opcode;
4032 unsigned char *where_to_put_displacement = NULL;
4033 offsetT target_address;
4034 offsetT opcode_address;
4035 unsigned int extension = 0;
4036 offsetT displacement_from_opcode_start;
4037
4038 opcode = (unsigned char *) fragP->fr_opcode;
4039
4040 /* Address we want to reach in file space. */
4041 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4042#ifdef BFD_ASSEMBLER
4043 /* Not needed otherwise? */
4044 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
4045#endif
4046
4047 /* Address opcode resides at in file space. */
4048 opcode_address = fragP->fr_address + fragP->fr_fix;
4049
4050 /* Displacement from opcode start to fill into instruction. */
4051 displacement_from_opcode_start = target_address - opcode_address;
4052
4053 if ((fragP->fr_subtype & BIG) == 0)
4054 {
4055 /* Don't have to change opcode. */
4056 extension = 1; /* 1 opcode + 1 displacement */
4057 where_to_put_displacement = &opcode[1];
4058 }
4059 else
4060 {
4061 if (no_cond_jump_promotion
4062 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4063 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4064
4065 switch (fragP->fr_subtype)
4066 {
4067 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4068 extension = 4; /* 1 opcode + 4 displacement */
4069 opcode[0] = 0xe9;
4070 where_to_put_displacement = &opcode[1];
4071 break;
4072
4073 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4074 extension = 2; /* 1 opcode + 2 displacement */
4075 opcode[0] = 0xe9;
4076 where_to_put_displacement = &opcode[1];
4077 break;
4078
4079 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4080 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4081 extension = 5; /* 2 opcode + 4 displacement */
4082 opcode[1] = opcode[0] + 0x10;
4083 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4084 where_to_put_displacement = &opcode[2];
4085 break;
4086
4087 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4088 extension = 3; /* 2 opcode + 2 displacement */
4089 opcode[1] = opcode[0] + 0x10;
4090 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4091 where_to_put_displacement = &opcode[2];
4092 break;
4093
4094 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4095 extension = 4;
4096 opcode[0] ^= 1;
4097 opcode[1] = 3;
4098 opcode[2] = 0xe9;
4099 where_to_put_displacement = &opcode[3];
4100 break;
4101
4102 default:
4103 BAD_CASE (fragP->fr_subtype);
4104 break;
4105 }
4106 }
4107
4108 /* Now put displacement after opcode. */
4109 md_number_to_chars ((char *) where_to_put_displacement,
4110 (valueT) (displacement_from_opcode_start - extension),
4111 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4112 fragP->fr_fix += extension;
4113}
4114\f
4115/* Size of byte displacement jmp. */
4116int md_short_jump_size = 2;
4117
4118/* Size of dword displacement jmp. */
4119int md_long_jump_size = 5;
4120
4121/* Size of relocation record. */
4122const int md_reloc_size = 8;
4123
4124void
4125md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4126 char *ptr;
4127 addressT from_addr, to_addr;
4128 fragS *frag ATTRIBUTE_UNUSED;
4129 symbolS *to_symbol ATTRIBUTE_UNUSED;
4130{
4131 offsetT offset;
4132
4133 offset = to_addr - (from_addr + 2);
4134 /* Opcode for byte-disp jump. */
4135 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4136 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4137}
4138
4139void
4140md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4141 char *ptr;
4142 addressT from_addr, to_addr;
4143 fragS *frag ATTRIBUTE_UNUSED;
4144 symbolS *to_symbol ATTRIBUTE_UNUSED;
4145{
4146 offsetT offset;
4147
4148 offset = to_addr - (from_addr + 5);
4149 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4150 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4151}
4152\f
4153/* Apply a fixup (fixS) to segment data, once it has been determined
4154 by our caller that we have all the info we need to fix it up.
4155
4156 On the 386, immediates, displacements, and data pointers are all in
4157 the same (little-endian) format, so we don't need to care about which
4158 we are handling. */
4159
4160int
4161md_apply_fix3 (fixP, valp, seg)
4162 /* The fix we're to put in. */
4163 fixS *fixP;
4164
4165 /* Pointer to the value of the bits. */
4166 valueT *valp;
4167
4168 /* Segment fix is from. */
4169 segT seg ATTRIBUTE_UNUSED;
4170{
4171 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4172 valueT value = *valp;
4173
4174#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4175 if (fixP->fx_pcrel)
4176 {
4177 switch (fixP->fx_r_type)
4178 {
4179 default:
4180 break;
4181
4182 case BFD_RELOC_32:
4183 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4184 break;
4185 case BFD_RELOC_16:
4186 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4187 break;
4188 case BFD_RELOC_8:
4189 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4190 break;
4191 }
4192 }
4193
4194 /* This is a hack. There should be a better way to handle this.
4195 This covers for the fact that bfd_install_relocation will
4196 subtract the current location (for partial_inplace, PC relative
4197 relocations); see more below. */
4198 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4199 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4200 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4201 && fixP->fx_addsy && !use_rela_relocations)
4202 {
4203#ifndef OBJ_AOUT
4204 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4205#ifdef TE_PE
4206 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4207#endif
4208 )
4209 value += fixP->fx_where + fixP->fx_frag->fr_address;
4210#endif
4211#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4212 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4213 {
4214 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4215
4216 if ((fseg == seg
4217 || (symbol_section_p (fixP->fx_addsy)
4218 && fseg != absolute_section))
4219 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4220 && ! S_IS_WEAK (fixP->fx_addsy)
4221 && S_IS_DEFINED (fixP->fx_addsy)
4222 && ! S_IS_COMMON (fixP->fx_addsy))
4223 {
4224 /* Yes, we add the values in twice. This is because
4225 bfd_perform_relocation subtracts them out again. I think
4226 bfd_perform_relocation is broken, but I don't dare change
4227 it. FIXME. */
4228 value += fixP->fx_where + fixP->fx_frag->fr_address;
4229 }
4230 }
4231#endif
4232#if defined (OBJ_COFF) && defined (TE_PE)
4233 /* For some reason, the PE format does not store a section
4234 address offset for a PC relative symbol. */
4235 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4236 value += md_pcrel_from (fixP);
4237#endif
4238 }
4239
4240 /* Fix a few things - the dynamic linker expects certain values here,
4241 and we must not dissappoint it. */
4242#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4243 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4244 && fixP->fx_addsy)
4245 switch (fixP->fx_r_type)
4246 {
4247 case BFD_RELOC_386_PLT32:
4248 case BFD_RELOC_X86_64_PLT32:
4249 /* Make the jump instruction point to the address of the operand. At
4250 runtime we merely add the offset to the actual PLT entry. */
4251 value = -4;
4252 break;
4253 case BFD_RELOC_386_GOTPC:
4254
4255/* This is tough to explain. We end up with this one if we have
4256 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4257 * here is to obtain the absolute address of the GOT, and it is strongly
4258 * preferable from a performance point of view to avoid using a runtime
4259 * relocation for this. The actual sequence of instructions often look
4260 * something like:
4261 *
4262 * call .L66
4263 * .L66:
4264 * popl %ebx
4265 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4266 *
4267 * The call and pop essentially return the absolute address of
4268 * the label .L66 and store it in %ebx. The linker itself will
4269 * ultimately change the first operand of the addl so that %ebx points to
4270 * the GOT, but to keep things simple, the .o file must have this operand
4271 * set so that it generates not the absolute address of .L66, but the
4272 * absolute address of itself. This allows the linker itself simply
4273 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4274 * added in, and the addend of the relocation is stored in the operand
4275 * field for the instruction itself.
4276 *
4277 * Our job here is to fix the operand so that it would add the correct
4278 * offset so that %ebx would point to itself. The thing that is tricky is
4279 * that .-.L66 will point to the beginning of the instruction, so we need
4280 * to further modify the operand so that it will point to itself.
4281 * There are other cases where you have something like:
4282 *
4283 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4284 *
4285 * and here no correction would be required. Internally in the assembler
4286 * we treat operands of this form as not being pcrel since the '.' is
4287 * explicitly mentioned, and I wonder whether it would simplify matters
4288 * to do it this way. Who knows. In earlier versions of the PIC patches,
4289 * the pcrel_adjust field was used to store the correction, but since the
4290 * expression is not pcrel, I felt it would be confusing to do it this
4291 * way. */
4292
4293 value -= 1;
4294 break;
4295 case BFD_RELOC_386_GOT32:
4296 case BFD_RELOC_X86_64_GOT32:
4297 value = 0; /* Fully resolved at runtime. No addend. */
4298 break;
4299 case BFD_RELOC_386_GOTOFF:
4300 case BFD_RELOC_X86_64_GOTPCREL:
4301 break;
4302
4303 case BFD_RELOC_VTABLE_INHERIT:
4304 case BFD_RELOC_VTABLE_ENTRY:
4305 fixP->fx_done = 0;
4306 return 1;
4307
4308 default:
4309 break;
4310 }
4311#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4312 *valp = value;
4313#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4314
4315#ifndef BFD_ASSEMBLER
4316 md_number_to_chars (p, value, fixP->fx_size);
4317#else
4318 /* Are we finished with this relocation now? */
4319 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4320 fixP->fx_done = 1;
4321 else if (use_rela_relocations)
4322 {
4323 fixP->fx_no_overflow = 1;
4324 value = 0;
4325 }
4326 md_number_to_chars (p, value, fixP->fx_size);
4327#endif
4328
4329 return 1;
4330}
4331\f
4332#define MAX_LITTLENUMS 6
4333
4334/* Turn the string pointed to by litP into a floating point constant
4335 of type TYPE, and emit the appropriate bytes. The number of
4336 LITTLENUMS emitted is stored in *SIZEP. An error message is
4337 returned, or NULL on OK. */
4338
4339char *
4340md_atof (type, litP, sizeP)
4341 int type;
4342 char *litP;
4343 int *sizeP;
4344{
4345 int prec;
4346 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4347 LITTLENUM_TYPE *wordP;
4348 char *t;
4349
4350 switch (type)
4351 {
4352 case 'f':
4353 case 'F':
4354 prec = 2;
4355 break;
4356
4357 case 'd':
4358 case 'D':
4359 prec = 4;
4360 break;
4361
4362 case 'x':
4363 case 'X':
4364 prec = 5;
4365 break;
4366
4367 default:
4368 *sizeP = 0;
4369 return _("Bad call to md_atof ()");
4370 }
4371 t = atof_ieee (input_line_pointer, type, words);
4372 if (t)
4373 input_line_pointer = t;
4374
4375 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4376 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4377 the bigendian 386. */
4378 for (wordP = words + prec - 1; prec--;)
4379 {
4380 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4381 litP += sizeof (LITTLENUM_TYPE);
4382 }
4383 return 0;
4384}
4385\f
4386char output_invalid_buf[8];
4387
4388static char *
4389output_invalid (c)
4390 int c;
4391{
4392 if (isprint (c))
4393 sprintf (output_invalid_buf, "'%c'", c);
4394 else
4395 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4396 return output_invalid_buf;
4397}
4398
4399/* REG_STRING starts *before* REGISTER_PREFIX. */
4400
4401static const reg_entry *
4402parse_register (reg_string, end_op)
4403 char *reg_string;
4404 char **end_op;
4405{
4406 char *s = reg_string;
4407 char *p;
4408 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4409 const reg_entry *r;
4410
4411 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4412 if (*s == REGISTER_PREFIX)
4413 ++s;
4414
4415 if (is_space_char (*s))
4416 ++s;
4417
4418 p = reg_name_given;
4419 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4420 {
4421 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4422 return (const reg_entry *) NULL;
4423 s++;
4424 }
4425
4426 /* For naked regs, make sure that we are not dealing with an identifier.
4427 This prevents confusing an identifier like `eax_var' with register
4428 `eax'. */
4429 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4430 return (const reg_entry *) NULL;
4431
4432 *end_op = s;
4433
4434 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4435
4436 /* Handle floating point regs, allowing spaces in the (i) part. */
4437 if (r == i386_regtab /* %st is first entry of table */)
4438 {
4439 if (is_space_char (*s))
4440 ++s;
4441 if (*s == '(')
4442 {
4443 ++s;
4444 if (is_space_char (*s))
4445 ++s;
4446 if (*s >= '0' && *s <= '7')
4447 {
4448 r = &i386_float_regtab[*s - '0'];
4449 ++s;
4450 if (is_space_char (*s))
4451 ++s;
4452 if (*s == ')')
4453 {
4454 *end_op = s + 1;
4455 return r;
4456 }
4457 }
4458 /* We have "%st(" then garbage. */
4459 return (const reg_entry *) NULL;
4460 }
4461 }
4462
4463 return r;
4464}
4465\f
4466#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4467const char *md_shortopts = "kVQ:sq";
4468#else
4469const char *md_shortopts = "q";
4470#endif
4471
4472struct option md_longopts[] = {
4473#define OPTION_32 (OPTION_MD_BASE + 0)
4474 {"32", no_argument, NULL, OPTION_32},
4475#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4476#define OPTION_64 (OPTION_MD_BASE + 1)
4477 {"64", no_argument, NULL, OPTION_64},
4478#endif
4479 {NULL, no_argument, NULL, 0}
4480};
4481size_t md_longopts_size = sizeof (md_longopts);
4482
4483int
4484md_parse_option (c, arg)
4485 int c;
4486 char *arg ATTRIBUTE_UNUSED;
4487{
4488 switch (c)
4489 {
4490 case 'q':
4491 quiet_warnings = 1;
4492 break;
4493
4494#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4495 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4496 should be emitted or not. FIXME: Not implemented. */
4497 case 'Q':
4498 break;
4499
4500 /* -V: SVR4 argument to print version ID. */
4501 case 'V':
4502 print_version_id ();
4503 break;
4504
4505 /* -k: Ignore for FreeBSD compatibility. */
4506 case 'k':
4507 break;
4508
4509 case 's':
4510 /* -s: On i386 Solaris, this tells the native assembler to use
4511 .stab instead of .stab.excl. We always use .stab anyhow. */
4512 break;
4513
4514 case OPTION_64:
4515 {
4516 const char **list, **l;
4517
4518 list = bfd_target_list ();
4519 for (l = list; *l != NULL; l++)
4520 if (strcmp (*l, "elf64-x86-64") == 0)
4521 {
4522 default_arch = "x86_64";
4523 break;
4524 }
4525 if (*l == NULL)
4526 as_fatal (_("No compiled in support for x86_64"));
4527 free (list);
4528 }
4529 break;
4530#endif
4531
4532 case OPTION_32:
4533 default_arch = "i386";
4534 break;
4535
4536 default:
4537 return 0;
4538 }
4539 return 1;
4540}
4541
4542void
4543md_show_usage (stream)
4544 FILE *stream;
4545{
4546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4547 fprintf (stream, _("\
4548 -Q ignored\n\
4549 -V print assembler version number\n\
4550 -k ignored\n\
4551 -q quieten some warnings\n\
4552 -s ignored\n"));
4553#else
4554 fprintf (stream, _("\
4555 -q quieten some warnings\n"));
4556#endif
4557}
4558
4559#ifdef BFD_ASSEMBLER
4560#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4562
4563/* Pick the target format to use. */
4564
4565const char *
4566i386_target_format ()
4567{
4568 if (!strcmp (default_arch, "x86_64"))
4569 set_code_flag (CODE_64BIT);
4570 else if (!strcmp (default_arch, "i386"))
4571 set_code_flag (CODE_32BIT);
4572 else
4573 as_fatal (_("Unknown architecture"));
4574 switch (OUTPUT_FLAVOR)
4575 {
4576#ifdef OBJ_MAYBE_AOUT
4577 case bfd_target_aout_flavour:
4578 return AOUT_TARGET_FORMAT;
4579#endif
4580#ifdef OBJ_MAYBE_COFF
4581 case bfd_target_coff_flavour:
4582 return "coff-i386";
4583#endif
4584#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4585 case bfd_target_elf_flavour:
4586 {
4587 if (flag_code == CODE_64BIT)
4588 use_rela_relocations = 1;
4589 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4590 }
4591#endif
4592 default:
4593 abort ();
4594 return NULL;
4595 }
4596}
4597
4598#endif /* OBJ_MAYBE_ more than one */
4599#endif /* BFD_ASSEMBLER */
4600\f
4601symbolS *
4602md_undefined_symbol (name)
4603 char *name;
4604{
4605 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4606 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4607 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4608 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4609 {
4610 if (!GOT_symbol)
4611 {
4612 if (symbol_find (name))
4613 as_bad (_("GOT already in symbol table"));
4614 GOT_symbol = symbol_new (name, undefined_section,
4615 (valueT) 0, &zero_address_frag);
4616 };
4617 return GOT_symbol;
4618 }
4619 return 0;
4620}
4621
4622/* Round up a section size to the appropriate boundary. */
4623
4624valueT
4625md_section_align (segment, size)
4626 segT segment ATTRIBUTE_UNUSED;
4627 valueT size;
4628{
4629#ifdef BFD_ASSEMBLER
4630#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4631 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4632 {
4633 /* For a.out, force the section size to be aligned. If we don't do
4634 this, BFD will align it for us, but it will not write out the
4635 final bytes of the section. This may be a bug in BFD, but it is
4636 easier to fix it here since that is how the other a.out targets
4637 work. */
4638 int align;
4639
4640 align = bfd_get_section_alignment (stdoutput, segment);
4641 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4642 }
4643#endif
4644#endif
4645
4646 return size;
4647}
4648
4649/* On the i386, PC-relative offsets are relative to the start of the
4650 next instruction. That is, the address of the offset, plus its
4651 size, since the offset is always the last part of the insn. */
4652
4653long
4654md_pcrel_from (fixP)
4655 fixS *fixP;
4656{
4657 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4658}
4659
4660#ifndef I386COFF
4661
4662static void
4663s_bss (ignore)
4664 int ignore ATTRIBUTE_UNUSED;
4665{
4666 register int temp;
4667
4668 temp = get_absolute_expression ();
4669 subseg_set (bss_section, (subsegT) temp);
4670 demand_empty_rest_of_line ();
4671}
4672
4673#endif
4674
4675#ifdef BFD_ASSEMBLER
4676
4677void
4678i386_validate_fix (fixp)
4679 fixS *fixp;
4680{
4681 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4682 {
4683 /* GOTOFF relocation are nonsense in 64bit mode. */
4684 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4685 {
4686 if (flag_code != CODE_64BIT)
4687 abort ();
4688 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4689 }
4690 else
4691 {
4692 if (flag_code == CODE_64BIT)
4693 abort ();
4694 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4695 }
4696 fixp->fx_subsy = 0;
4697 }
4698}
4699
4700arelent *
4701tc_gen_reloc (section, fixp)
4702 asection *section ATTRIBUTE_UNUSED;
4703 fixS *fixp;
4704{
4705 arelent *rel;
4706 bfd_reloc_code_real_type code;
4707
4708 switch (fixp->fx_r_type)
4709 {
4710 case BFD_RELOC_X86_64_PLT32:
4711 case BFD_RELOC_X86_64_GOT32:
4712 case BFD_RELOC_X86_64_GOTPCREL:
4713 case BFD_RELOC_386_PLT32:
4714 case BFD_RELOC_386_GOT32:
4715 case BFD_RELOC_386_GOTOFF:
4716 case BFD_RELOC_386_GOTPC:
4717 case BFD_RELOC_X86_64_32S:
4718 case BFD_RELOC_RVA:
4719 case BFD_RELOC_VTABLE_ENTRY:
4720 case BFD_RELOC_VTABLE_INHERIT:
4721 code = fixp->fx_r_type;
4722 break;
4723 default:
4724 if (fixp->fx_pcrel)
4725 {
4726 switch (fixp->fx_size)
4727 {
4728 default:
4729 as_bad (_("can not do %d byte pc-relative relocation"),
4730 fixp->fx_size);
4731 code = BFD_RELOC_32_PCREL;
4732 break;
4733 case 1: code = BFD_RELOC_8_PCREL; break;
4734 case 2: code = BFD_RELOC_16_PCREL; break;
4735 case 4: code = BFD_RELOC_32_PCREL; break;
4736 }
4737 }
4738 else
4739 {
4740 switch (fixp->fx_size)
4741 {
4742 default:
4743 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
4744 code = BFD_RELOC_32;
4745 break;
4746 case 1: code = BFD_RELOC_8; break;
4747 case 2: code = BFD_RELOC_16; break;
4748 case 4: code = BFD_RELOC_32; break;
4749 case 8: code = BFD_RELOC_64; break;
4750 }
4751 }
4752 break;
4753 }
4754
4755 if (code == BFD_RELOC_32
4756 && GOT_symbol
4757 && fixp->fx_addsy == GOT_symbol)
4758 {
4759 /* We don't support GOTPC on 64bit targets. */
4760 if (flag_code == CODE_64BIT)
4761 abort ();
4762 code = BFD_RELOC_386_GOTPC;
4763 }
4764
4765 rel = (arelent *) xmalloc (sizeof (arelent));
4766 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4767 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4768
4769 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4770 if (!use_rela_relocations)
4771 {
4772 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4773 vtable entry to be used in the relocation's section offset. */
4774 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4775 rel->address = fixp->fx_offset;
4776
4777 if (fixp->fx_pcrel)
4778 rel->addend = fixp->fx_addnumber;
4779 else
4780 rel->addend = 0;
4781 }
4782 /* Use the rela in 64bit mode. */
4783 else
4784 {
4785 rel->addend = fixp->fx_offset;
4786 if (fixp->fx_pcrel)
4787 rel->addend -= fixp->fx_size;
4788 }
4789
4790 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4791 if (rel->howto == NULL)
4792 {
4793 as_bad_where (fixp->fx_file, fixp->fx_line,
4794 _("cannot represent relocation type %s"),
4795 bfd_get_reloc_code_name (code));
4796 /* Set howto to a garbage value so that we can keep going. */
4797 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4798 assert (rel->howto != NULL);
4799 }
4800
4801 return rel;
4802}
4803
4804#else /* ! BFD_ASSEMBLER */
4805
4806#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4807void
4808tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4809 char *where;
4810 fixS *fixP;
4811 relax_addressT segment_address_in_file;
4812{
4813 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4814 Out: GNU LD relocation length code: 0, 1, or 2. */
4815
4816 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4817 long r_symbolnum;
4818
4819 know (fixP->fx_addsy != NULL);
4820
4821 md_number_to_chars (where,
4822 (valueT) (fixP->fx_frag->fr_address
4823 + fixP->fx_where - segment_address_in_file),
4824 4);
4825
4826 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4827 ? S_GET_TYPE (fixP->fx_addsy)
4828 : fixP->fx_addsy->sy_number);
4829
4830 where[6] = (r_symbolnum >> 16) & 0x0ff;
4831 where[5] = (r_symbolnum >> 8) & 0x0ff;
4832 where[4] = r_symbolnum & 0x0ff;
4833 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4834 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4835 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4836}
4837
4838#endif /* OBJ_AOUT or OBJ_BOUT. */
4839
4840#if defined (I386COFF)
4841
4842short
4843tc_coff_fix2rtype (fixP)
4844 fixS *fixP;
4845{
4846 if (fixP->fx_r_type == R_IMAGEBASE)
4847 return R_IMAGEBASE;
4848
4849 return (fixP->fx_pcrel ?
4850 (fixP->fx_size == 1 ? R_PCRBYTE :
4851 fixP->fx_size == 2 ? R_PCRWORD :
4852 R_PCRLONG) :
4853 (fixP->fx_size == 1 ? R_RELBYTE :
4854 fixP->fx_size == 2 ? R_RELWORD :
4855 R_DIR32));
4856}
4857
4858int
4859tc_coff_sizemachdep (frag)
4860 fragS *frag;
4861{
4862 if (frag->fr_next)
4863 return (frag->fr_next->fr_address - frag->fr_address);
4864 else
4865 return 0;
4866}
4867
4868#endif /* I386COFF */
4869
4870#endif /* ! BFD_ASSEMBLER */
4871\f
4872/* Parse operands using Intel syntax. This implements a recursive descent
4873 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4874 Programmer's Guide.
4875
4876 FIXME: We do not recognize the full operand grammar defined in the MASM
4877 documentation. In particular, all the structure/union and
4878 high-level macro operands are missing.
4879
4880 Uppercase words are terminals, lower case words are non-terminals.
4881 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4882 bars '|' denote choices. Most grammar productions are implemented in
4883 functions called 'intel_<production>'.
4884
4885 Initial production is 'expr'.
4886
4887 addOp + | -
4888
4889 alpha [a-zA-Z]
4890
4891 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4892
4893 constant digits [[ radixOverride ]]
4894
4895 dataType BYTE | WORD | DWORD | QWORD | XWORD
4896
4897 digits decdigit
4898 | digits decdigit
4899 | digits hexdigit
4900
4901 decdigit [0-9]
4902
4903 e05 e05 addOp e06
4904 | e06
4905
4906 e06 e06 mulOp e09
4907 | e09
4908
4909 e09 OFFSET e10
4910 | e09 PTR e10
4911 | e09 : e10
4912 | e10
4913
4914 e10 e10 [ expr ]
4915 | e11
4916
4917 e11 ( expr )
4918 | [ expr ]
4919 | constant
4920 | dataType
4921 | id
4922 | $
4923 | register
4924
4925 => expr SHORT e05
4926 | e05
4927
4928 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4929 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4930
4931 hexdigit a | b | c | d | e | f
4932 | A | B | C | D | E | F
4933
4934 id alpha
4935 | id alpha
4936 | id decdigit
4937
4938 mulOp * | / | MOD
4939
4940 quote " | '
4941
4942 register specialRegister
4943 | gpRegister
4944 | byteRegister
4945
4946 segmentRegister CS | DS | ES | FS | GS | SS
4947
4948 specialRegister CR0 | CR2 | CR3
4949 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
4950 | TR3 | TR4 | TR5 | TR6 | TR7
4951
4952 We simplify the grammar in obvious places (e.g., register parsing is
4953 done by calling parse_register) and eliminate immediate left recursion
4954 to implement a recursive-descent parser.
4955
4956 expr SHORT e05
4957 | e05
4958
4959 e05 e06 e05'
4960
4961 e05' addOp e06 e05'
4962 | Empty
4963
4964 e06 e09 e06'
4965
4966 e06' mulOp e09 e06'
4967 | Empty
4968
4969 e09 OFFSET e10 e09'
4970 | e10 e09'
4971
4972 e09' PTR e10 e09'
4973 | : e10 e09'
4974 | Empty
4975
4976 e10 e11 e10'
4977
4978 e10' [ expr ] e10'
4979 | Empty
4980
4981 e11 ( expr )
4982 | [ expr ]
4983 | BYTE
4984 | WORD
4985 | DWORD
4986 | QWORD
4987 | XWORD
4988 | .
4989 | $
4990 | register
4991 | id
4992 | constant */
4993
4994/* Parsing structure for the intel syntax parser. Used to implement the
4995 semantic actions for the operand grammar. */
4996struct intel_parser_s
4997 {
4998 char *op_string; /* The string being parsed. */
4999 int got_a_float; /* Whether the operand is a float. */
5000 int op_modifier; /* Operand modifier. */
5001 int is_mem; /* 1 if operand is memory reference. */
5002 const reg_entry *reg; /* Last register reference found. */
5003 char *disp; /* Displacement string being built. */
5004 };
5005
5006static struct intel_parser_s intel_parser;
5007
5008/* Token structure for parsing intel syntax. */
5009struct intel_token
5010 {
5011 int code; /* Token code. */
5012 const reg_entry *reg; /* Register entry for register tokens. */
5013 char *str; /* String representation. */
5014 };
5015
5016static struct intel_token cur_token, prev_token;
5017
5018/* Token codes for the intel parser. Since T_SHORT is already used
5019 by COFF, undefine it first to prevent a warning. */
5020#define T_NIL -1
5021#define T_CONST 1
5022#define T_REG 2
5023#define T_BYTE 3
5024#define T_WORD 4
5025#define T_DWORD 5
5026#define T_QWORD 6
5027#define T_XWORD 7
5028#undef T_SHORT
5029#define T_SHORT 8
5030#define T_OFFSET 9
5031#define T_PTR 10
5032#define T_ID 11
5033
5034/* Prototypes for intel parser functions. */
5035static int intel_match_token PARAMS ((int code));
5036static void intel_get_token PARAMS ((void));
5037static void intel_putback_token PARAMS ((void));
5038static int intel_expr PARAMS ((void));
5039static int intel_e05 PARAMS ((void));
5040static int intel_e05_1 PARAMS ((void));
5041static int intel_e06 PARAMS ((void));
5042static int intel_e06_1 PARAMS ((void));
5043static int intel_e09 PARAMS ((void));
5044static int intel_e09_1 PARAMS ((void));
5045static int intel_e10 PARAMS ((void));
5046static int intel_e10_1 PARAMS ((void));
5047static int intel_e11 PARAMS ((void));
5048
5049static int
5050i386_intel_operand (operand_string, got_a_float)
5051 char *operand_string;
5052 int got_a_float;
5053{
5054 int ret;
5055 char *p;
5056
5057 /* Initialize token holders. */
5058 cur_token.code = prev_token.code = T_NIL;
5059 cur_token.reg = prev_token.reg = NULL;
5060 cur_token.str = prev_token.str = NULL;
5061
5062 /* Initialize parser structure. */
5063 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5064 if (p == NULL)
5065 abort ();
5066 strcpy (intel_parser.op_string, operand_string);
5067 intel_parser.got_a_float = got_a_float;
5068 intel_parser.op_modifier = -1;
5069 intel_parser.is_mem = 0;
5070 intel_parser.reg = NULL;
5071 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5072 if (intel_parser.disp == NULL)
5073 abort ();
5074 intel_parser.disp[0] = '\0';
5075
5076 /* Read the first token and start the parser. */
5077 intel_get_token ();
5078 ret = intel_expr ();
5079
5080 if (ret)
5081 {
5082 /* If we found a memory reference, hand it over to i386_displacement
5083 to fill in the rest of the operand fields. */
5084 if (intel_parser.is_mem)
5085 {
5086 if ((i.mem_operands == 1
5087 && (current_templates->start->opcode_modifier & IsString) == 0)
5088 || i.mem_operands == 2)
5089 {
5090 as_bad (_("too many memory references for '%s'"),
5091 current_templates->start->name);
5092 ret = 0;
5093 }
5094 else
5095 {
5096 char *s = intel_parser.disp;
5097 i.mem_operands++;
5098
5099 /* Add the displacement expression. */
5100 if (*s != '\0')
5101 ret = i386_displacement (s, s + strlen (s))
5102 && i386_index_check (s);
5103 }
5104 }
5105
5106 /* Constant and OFFSET expressions are handled by i386_immediate. */
5107 else if (intel_parser.op_modifier == OFFSET_FLAT
5108 || intel_parser.reg == NULL)
5109 ret = i386_immediate (intel_parser.disp);
5110 }
5111
5112 free (p);
5113 free (intel_parser.disp);
5114
5115 return ret;
5116}
5117
5118/* expr SHORT e05
5119 | e05 */
5120static int
5121intel_expr ()
5122{
5123 /* expr SHORT e05 */
5124 if (cur_token.code == T_SHORT)
5125 {
5126 intel_parser.op_modifier = SHORT;
5127 intel_match_token (T_SHORT);
5128
5129 return (intel_e05 ());
5130 }
5131
5132 /* expr e05 */
5133 else
5134 return intel_e05 ();
5135}
5136
5137/* e05 e06 e05'
5138
5139 e05' addOp e06 e05'
5140 | Empty */
5141static int
5142intel_e05 ()
5143{
5144 return (intel_e06 () && intel_e05_1 ());
5145}
5146
5147static int
5148intel_e05_1 ()
5149{
5150 /* e05' addOp e06 e05' */
5151 if (cur_token.code == '+' || cur_token.code == '-')
5152 {
5153 strcat (intel_parser.disp, cur_token.str);
5154 intel_match_token (cur_token.code);
5155
5156 return (intel_e06 () && intel_e05_1 ());
5157 }
5158
5159 /* e05' Empty */
5160 else
5161 return 1;
5162}
5163
5164/* e06 e09 e06'
5165
5166 e06' mulOp e09 e06'
5167 | Empty */
5168static int
5169intel_e06 ()
5170{
5171 return (intel_e09 () && intel_e06_1 ());
5172}
5173
5174static int
5175intel_e06_1 ()
5176{
5177 /* e06' mulOp e09 e06' */
5178 if (cur_token.code == '*' || cur_token.code == '/')
5179 {
5180 strcat (intel_parser.disp, cur_token.str);
5181 intel_match_token (cur_token.code);
5182
5183 return (intel_e09 () && intel_e06_1 ());
5184 }
5185
5186 /* e06' Empty */
5187 else
5188 return 1;
5189}
5190
5191/* e09 OFFSET e10 e09'
5192 | e10 e09'
5193
5194 e09' PTR e10 e09'
5195 | : e10 e09'
5196 | Empty */
5197static int
5198intel_e09 ()
5199{
5200 /* e09 OFFSET e10 e09' */
5201 if (cur_token.code == T_OFFSET)
5202 {
5203 intel_parser.is_mem = 0;
5204 intel_parser.op_modifier = OFFSET_FLAT;
5205 intel_match_token (T_OFFSET);
5206
5207 return (intel_e10 () && intel_e09_1 ());
5208 }
5209
5210 /* e09 e10 e09' */
5211 else
5212 return (intel_e10 () && intel_e09_1 ());
5213}
5214
5215static int
5216intel_e09_1 ()
5217{
5218 /* e09' PTR e10 e09' */
5219 if (cur_token.code == T_PTR)
5220 {
5221 if (prev_token.code == T_BYTE)
5222 i.suffix = BYTE_MNEM_SUFFIX;
5223
5224 else if (prev_token.code == T_WORD)
5225 {
5226 if (intel_parser.got_a_float == 2) /* "fi..." */
5227 i.suffix = SHORT_MNEM_SUFFIX;
5228 else
5229 i.suffix = WORD_MNEM_SUFFIX;
5230 }
5231
5232 else if (prev_token.code == T_DWORD)
5233 {
5234 if (intel_parser.got_a_float == 1) /* "f..." */
5235 i.suffix = SHORT_MNEM_SUFFIX;
5236 else
5237 i.suffix = LONG_MNEM_SUFFIX;
5238 }
5239
5240 else if (prev_token.code == T_QWORD)
5241 {
5242 if (intel_parser.got_a_float == 1) /* "f..." */
5243 i.suffix = LONG_MNEM_SUFFIX;
5244 else
5245 i.suffix = QWORD_MNEM_SUFFIX;
5246 }
5247
5248 else if (prev_token.code == T_XWORD)
5249 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5250
5251 else
5252 {
5253 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5254 return 0;
5255 }
5256
5257 intel_match_token (T_PTR);
5258
5259 return (intel_e10 () && intel_e09_1 ());
5260 }
5261
5262 /* e09 : e10 e09' */
5263 else if (cur_token.code == ':')
5264 {
5265 /* Mark as a memory operand only if it's not already known to be an
5266 offset expression. */
5267 if (intel_parser.op_modifier != OFFSET_FLAT)
5268 intel_parser.is_mem = 1;
5269
5270 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5271 }
5272
5273 /* e09' Empty */
5274 else
5275 return 1;
5276}
5277
5278/* e10 e11 e10'
5279
5280 e10' [ expr ] e10'
5281 | Empty */
5282static int
5283intel_e10 ()
5284{
5285 return (intel_e11 () && intel_e10_1 ());
5286}
5287
5288static int
5289intel_e10_1 ()
5290{
5291 /* e10' [ expr ] e10' */
5292 if (cur_token.code == '[')
5293 {
5294 intel_match_token ('[');
5295
5296 /* Mark as a memory operand only if it's not already known to be an
5297 offset expression. If it's an offset expression, we need to keep
5298 the brace in. */
5299 if (intel_parser.op_modifier != OFFSET_FLAT)
5300 intel_parser.is_mem = 1;
5301 else
5302 strcat (intel_parser.disp, "[");
5303
5304 /* Add a '+' to the displacement string if necessary. */
5305 if (*intel_parser.disp != '\0'
5306 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5307 strcat (intel_parser.disp, "+");
5308
5309 if (intel_expr () && intel_match_token (']'))
5310 {
5311 /* Preserve brackets when the operand is an offset expression. */
5312 if (intel_parser.op_modifier == OFFSET_FLAT)
5313 strcat (intel_parser.disp, "]");
5314
5315 return intel_e10_1 ();
5316 }
5317 else
5318 return 0;
5319 }
5320
5321 /* e10' Empty */
5322 else
5323 return 1;
5324}
5325
5326/* e11 ( expr )
5327 | [ expr ]
5328 | BYTE
5329 | WORD
5330 | DWORD
5331 | QWORD
5332 | XWORD
5333 | $
5334 | .
5335 | register
5336 | id
5337 | constant */
5338static int
5339intel_e11 ()
5340{
5341 /* e11 ( expr ) */
5342 if (cur_token.code == '(')
5343 {
5344 intel_match_token ('(');
5345 strcat (intel_parser.disp, "(");
5346
5347 if (intel_expr () && intel_match_token (')'))
5348 {
5349 strcat (intel_parser.disp, ")");
5350 return 1;
5351 }
5352 else
5353 return 0;
5354 }
5355
5356 /* e11 [ expr ] */
5357 else if (cur_token.code == '[')
5358 {
5359 intel_match_token ('[');
5360
5361 /* Mark as a memory operand only if it's not already known to be an
5362 offset expression. If it's an offset expression, we need to keep
5363 the brace in. */
5364 if (intel_parser.op_modifier != OFFSET_FLAT)
5365 intel_parser.is_mem = 1;
5366 else
5367 strcat (intel_parser.disp, "[");
5368
5369 /* Operands for jump/call inside brackets denote absolute addresses. */
5370 if (current_templates->start->opcode_modifier & Jump
5371 || current_templates->start->opcode_modifier & JumpDword
5372 || current_templates->start->opcode_modifier & JumpByte
5373 || current_templates->start->opcode_modifier & JumpInterSegment)
5374 i.types[this_operand] |= JumpAbsolute;
5375
5376 /* Add a '+' to the displacement string if necessary. */
5377 if (*intel_parser.disp != '\0'
5378 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5379 strcat (intel_parser.disp, "+");
5380
5381 if (intel_expr () && intel_match_token (']'))
5382 {
5383 /* Preserve brackets when the operand is an offset expression. */
5384 if (intel_parser.op_modifier == OFFSET_FLAT)
5385 strcat (intel_parser.disp, "]");
5386
5387 return 1;
5388 }
5389 else
5390 return 0;
5391 }
5392
5393 /* e11 BYTE
5394 | WORD
5395 | DWORD
5396 | QWORD
5397 | XWORD */
5398 else if (cur_token.code == T_BYTE
5399 || cur_token.code == T_WORD
5400 || cur_token.code == T_DWORD
5401 || cur_token.code == T_QWORD
5402 || cur_token.code == T_XWORD)
5403 {
5404 intel_match_token (cur_token.code);
5405
5406 return 1;
5407 }
5408
5409 /* e11 $
5410 | . */
5411 else if (cur_token.code == '$' || cur_token.code == '.')
5412 {
5413 strcat (intel_parser.disp, cur_token.str);
5414 intel_match_token (cur_token.code);
5415
5416 /* Mark as a memory operand only if it's not already known to be an
5417 offset expression. */
5418 if (intel_parser.op_modifier != OFFSET_FLAT)
5419 intel_parser.is_mem = 1;
5420
5421 return 1;
5422 }
5423
5424 /* e11 register */
5425 else if (cur_token.code == T_REG)
5426 {
5427 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5428
5429 intel_match_token (T_REG);
5430
5431 /* Check for segment change. */
5432 if (cur_token.code == ':')
5433 {
5434 if (reg->reg_type & (SReg2 | SReg3))
5435 {
5436 switch (reg->reg_num)
5437 {
5438 case 0:
5439 i.seg[i.mem_operands] = &es;
5440 break;
5441 case 1:
5442 i.seg[i.mem_operands] = &cs;
5443 break;
5444 case 2:
5445 i.seg[i.mem_operands] = &ss;
5446 break;
5447 case 3:
5448 i.seg[i.mem_operands] = &ds;
5449 break;
5450 case 4:
5451 i.seg[i.mem_operands] = &fs;
5452 break;
5453 case 5:
5454 i.seg[i.mem_operands] = &gs;
5455 break;
5456 }
5457 }
5458 else
5459 {
5460 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5461 return 0;
5462 }
5463 }
5464
5465 /* Not a segment register. Check for register scaling. */
5466 else if (cur_token.code == '*')
5467 {
5468 if (!intel_parser.is_mem)
5469 {
5470 as_bad (_("Register scaling only allowed in memory operands."));
5471 return 0;
5472 }
5473
5474 /* What follows must be a valid scale. */
5475 if (intel_match_token ('*')
5476 && strchr ("01248", *cur_token.str))
5477 {
5478 i.index_reg = reg;
5479 i.types[this_operand] |= BaseIndex;
5480
5481 /* Set the scale after setting the register (otherwise,
5482 i386_scale will complain) */
5483 i386_scale (cur_token.str);
5484 intel_match_token (T_CONST);
5485 }
5486 else
5487 {
5488 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5489 cur_token.str);
5490 return 0;
5491 }
5492 }
5493
5494 /* No scaling. If this is a memory operand, the register is either a
5495 base register (first occurrence) or an index register (second
5496 occurrence). */
5497 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5498 {
5499 if (i.base_reg && i.index_reg)
5500 {
5501 as_bad (_("Too many register references in memory operand.\n"));
5502 return 0;
5503 }
5504
5505 if (i.base_reg == NULL)
5506 i.base_reg = reg;
5507 else
5508 i.index_reg = reg;
5509
5510 i.types[this_operand] |= BaseIndex;
5511 }
5512
5513 /* Offset modifier. Add the register to the displacement string to be
5514 parsed as an immediate expression after we're done. */
5515 else if (intel_parser.op_modifier == OFFSET_FLAT)
5516 strcat (intel_parser.disp, reg->reg_name);
5517
5518 /* It's neither base nor index nor offset. */
5519 else
5520 {
5521 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5522 i.op[this_operand].regs = reg;
5523 i.reg_operands++;
5524 }
5525
5526 /* Since registers are not part of the displacement string (except
5527 when we're parsing offset operands), we may need to remove any
5528 preceding '+' from the displacement string. */
5529 if (*intel_parser.disp != '\0'
5530 && intel_parser.op_modifier != OFFSET_FLAT)
5531 {
5532 char *s = intel_parser.disp;
5533 s += strlen (s) - 1;
5534 if (*s == '+')
5535 *s = '\0';
5536 }
5537
5538 return 1;
5539 }
5540
5541 /* e11 id */
5542 else if (cur_token.code == T_ID)
5543 {
5544 /* Add the identifier to the displacement string. */
5545 strcat (intel_parser.disp, cur_token.str);
5546 intel_match_token (T_ID);
5547
5548 /* The identifier represents a memory reference only if it's not
5549 preceded by an offset modifier. */
5550 if (intel_parser.op_modifier != OFFSET_FLAT)
5551 intel_parser.is_mem = 1;
5552
5553 return 1;
5554 }
5555
5556 /* e11 constant */
5557 else if (cur_token.code == T_CONST
5558 || cur_token.code == '-'
5559 || cur_token.code == '+')
5560 {
5561 char *save_str;
5562
5563 /* Allow constants that start with `+' or `-'. */
5564 if (cur_token.code == '-' || cur_token.code == '+')
5565 {
5566 strcat (intel_parser.disp, cur_token.str);
5567 intel_match_token (cur_token.code);
5568 if (cur_token.code != T_CONST)
5569 {
5570 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5571 cur_token.str);
5572 return 0;
5573 }
5574 }
5575
5576 save_str = (char *) malloc (strlen (cur_token.str) + 1);
5577 if (save_str == NULL)
5578 abort ();
5579 strcpy (save_str, cur_token.str);
5580
5581 /* Get the next token to check for register scaling. */
5582 intel_match_token (cur_token.code);
5583
5584 /* Check if this constant is a scaling factor for an index register. */
5585 if (cur_token.code == '*')
5586 {
5587 if (intel_match_token ('*') && cur_token.code == T_REG)
5588 {
5589 if (!intel_parser.is_mem)
5590 {
5591 as_bad (_("Register scaling only allowed in memory operands."));
5592 return 0;
5593 }
5594
5595 /* The constant is followed by `* reg', so it must be
5596 a valid scale. */
5597 if (strchr ("01248", *save_str))
5598 {
5599 i.index_reg = cur_token.reg;
5600 i.types[this_operand] |= BaseIndex;
5601
5602 /* Set the scale after setting the register (otherwise,
5603 i386_scale will complain) */
5604 i386_scale (save_str);
5605 intel_match_token (T_REG);
5606
5607 /* Since registers are not part of the displacement
5608 string, we may need to remove any preceding '+' from
5609 the displacement string. */
5610 if (*intel_parser.disp != '\0')
5611 {
5612 char *s = intel_parser.disp;
5613 s += strlen (s) - 1;
5614 if (*s == '+')
5615 *s = '\0';
5616 }
5617
5618 free (save_str);
5619
5620 return 1;
5621 }
5622 else
5623 return 0;
5624 }
5625
5626 /* The constant was not used for register scaling. Since we have
5627 already consumed the token following `*' we now need to put it
5628 back in the stream. */
5629 else
5630 intel_putback_token ();
5631 }
5632
5633 /* Add the constant to the displacement string. */
5634 strcat (intel_parser.disp, save_str);
5635 free (save_str);
5636
5637 return 1;
5638 }
5639
5640 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5641 return 0;
5642}
5643
5644/* Match the given token against cur_token. If they match, read the next
5645 token from the operand string. */
5646static int
5647intel_match_token (code)
5648 int code;
5649{
5650 if (cur_token.code == code)
5651 {
5652 intel_get_token ();
5653 return 1;
5654 }
5655 else
5656 {
5657 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5658 return 0;
5659 }
5660}
5661
5662/* Read a new token from intel_parser.op_string and store it in cur_token. */
5663static void
5664intel_get_token ()
5665{
5666 char *end_op;
5667 const reg_entry *reg;
5668 struct intel_token new_token;
5669
5670 new_token.code = T_NIL;
5671 new_token.reg = NULL;
5672 new_token.str = NULL;
5673
5674 /* Free the memory allocated to the previous token and move
5675 cur_token to prev_token. */
5676 if (prev_token.str)
5677 free (prev_token.str);
5678
5679 prev_token = cur_token;
5680
5681 /* Skip whitespace. */
5682 while (is_space_char (*intel_parser.op_string))
5683 intel_parser.op_string++;
5684
5685 /* Return an empty token if we find nothing else on the line. */
5686 if (*intel_parser.op_string == '\0')
5687 {
5688 cur_token = new_token;
5689 return;
5690 }
5691
5692 /* The new token cannot be larger than the remainder of the operand
5693 string. */
5694 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
5695 if (new_token.str == NULL)
5696 abort ();
5697 new_token.str[0] = '\0';
5698
5699 if (strchr ("0123456789", *intel_parser.op_string))
5700 {
5701 char *p = new_token.str;
5702 char *q = intel_parser.op_string;
5703 new_token.code = T_CONST;
5704
5705 /* Allow any kind of identifier char to encompass floating point and
5706 hexadecimal numbers. */
5707 while (is_identifier_char (*q))
5708 *p++ = *q++;
5709 *p = '\0';
5710
5711 /* Recognize special symbol names [0-9][bf]. */
5712 if (strlen (intel_parser.op_string) == 2
5713 && (intel_parser.op_string[1] == 'b'
5714 || intel_parser.op_string[1] == 'f'))
5715 new_token.code = T_ID;
5716 }
5717
5718 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5719 {
5720 new_token.code = *intel_parser.op_string;
5721 new_token.str[0] = *intel_parser.op_string;
5722 new_token.str[1] = '\0';
5723 }
5724
5725 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5726 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5727 {
5728 new_token.code = T_REG;
5729 new_token.reg = reg;
5730
5731 if (*intel_parser.op_string == REGISTER_PREFIX)
5732 {
5733 new_token.str[0] = REGISTER_PREFIX;
5734 new_token.str[1] = '\0';
5735 }
5736
5737 strcat (new_token.str, reg->reg_name);
5738 }
5739
5740 else if (is_identifier_char (*intel_parser.op_string))
5741 {
5742 char *p = new_token.str;
5743 char *q = intel_parser.op_string;
5744
5745 /* A '.' or '$' followed by an identifier char is an identifier.
5746 Otherwise, it's operator '.' followed by an expression. */
5747 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5748 {
5749 new_token.code = *q;
5750 new_token.str[0] = *q;
5751 new_token.str[1] = '\0';
5752 }
5753 else
5754 {
5755 while (is_identifier_char (*q) || *q == '@')
5756 *p++ = *q++;
5757 *p = '\0';
5758
5759 if (strcasecmp (new_token.str, "BYTE") == 0)
5760 new_token.code = T_BYTE;
5761
5762 else if (strcasecmp (new_token.str, "WORD") == 0)
5763 new_token.code = T_WORD;
5764
5765 else if (strcasecmp (new_token.str, "DWORD") == 0)
5766 new_token.code = T_DWORD;
5767
5768 else if (strcasecmp (new_token.str, "QWORD") == 0)
5769 new_token.code = T_QWORD;
5770
5771 else if (strcasecmp (new_token.str, "XWORD") == 0)
5772 new_token.code = T_XWORD;
5773
5774 else if (strcasecmp (new_token.str, "PTR") == 0)
5775 new_token.code = T_PTR;
5776
5777 else if (strcasecmp (new_token.str, "SHORT") == 0)
5778 new_token.code = T_SHORT;
5779
5780 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5781 {
5782 new_token.code = T_OFFSET;
5783
5784 /* ??? This is not mentioned in the MASM grammar but gcc
5785 makes use of it with -mintel-syntax. OFFSET may be
5786 followed by FLAT: */
5787 if (strncasecmp (q, " FLAT:", 6) == 0)
5788 strcat (new_token.str, " FLAT:");
5789 }
5790
5791 /* ??? This is not mentioned in the MASM grammar. */
5792 else if (strcasecmp (new_token.str, "FLAT") == 0)
5793 new_token.code = T_OFFSET;
5794
5795 else
5796 new_token.code = T_ID;
5797 }
5798 }
5799
5800 else
5801 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5802
5803 intel_parser.op_string += strlen (new_token.str);
5804 cur_token = new_token;
5805}
5806
5807/* Put cur_token back into the token stream and make cur_token point to
5808 prev_token. */
5809static void
5810intel_putback_token ()
5811{
5812 intel_parser.op_string -= strlen (cur_token.str);
5813 free (cur_token.str);
5814 cur_token = prev_token;
5815
5816 /* Forget prev_token. */
5817 prev_token.code = T_NIL;
5818 prev_token.reg = NULL;
5819 prev_token.str = NULL;
5820}
This page took 0.043557 seconds and 4 git commands to generate.