MIPS16: Fix SP-relative SD instruction annotation
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
... / ...
CommitLineData
1/* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
28#include "safe-ctype.h"
29
30#include "opcode/mips.h"
31#include "itbl-ops.h"
32#include "dwarf2dbg.h"
33#include "dw2gencfi.h"
34
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
45#define streq(a, b) (strcmp (a, b) == 0)
46
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50/* Clean up namespace so we can include obj-elf.h too. */
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
70
71#include "elf/mips.h"
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
78int mips_flag_mdebug = -1;
79
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
89#include "ecoff.h"
90
91static char *mips_regmask_frag;
92static char *mips_flags_frag;
93
94#define ZERO 0
95#define ATREG 1
96#define S0 16
97#define S7 23
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
109#define AT mips_opts.at
110
111extern int target_big_endian;
112
113/* The name of the readonly data section. */
114#define RDATA_SECTION_NAME ".rodata"
115
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168};
169
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
182static enum mips_abi_level mips_abi = NO_ABI;
183
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195struct mips_set_options
196{
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265};
266
267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
275
276/* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287};
288
289/* This is similar to file_mips_opts, but for the current set of options. */
290
291static struct mips_set_options mips_opts =
292{
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298};
299
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
309/* True if any MIPS16 code was produced. */
310static int file_ase_mips16;
311
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327#else
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334#endif
335
336/* The argument of the -march= flag. The architecture we are assembling. */
337static const char *mips_arch_string;
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
342static const char *mips_tune_string;
343
344/* True when generating 32-bit code for a 64-bit processor. */
345static int mips_32bitmode = 0;
346
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
351#define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360/* Return true if ISA supports 64 bit wide gp registers. */
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388#define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412/* Return true if ISA supports single-precision floats in odd registers. */
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486#define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489#define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498/* Return true if the given CPU supports the MIPS16 ASE. */
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503/* Return true if the given CPU supports the microMIPS ASE. */
504#define CPU_HAS_MICROMIPS(cpu) 0
505
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512/* True if CPU is in the Octeon family */
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516/* True if CPU has seq/sne and seqi/snei instructions. */
517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557/* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577/* Itbl support may require additional care here. */
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607/* The minimum and maximum signed values that can be stored in a GPR. */
608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609#define GPR_SMIN (-GPR_SMAX - 1)
610
611/* MIPS PIC level. */
612
613enum mips_pic_level mips_pic;
614
615/* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617static int mips_big_got = 0;
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621static int mips_trap = 0;
622
623/* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
639/* The size of objects in the small data section. */
640static unsigned int g_switch_value = 8;
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659static int nopic_need_relax (symbolS *, int);
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
683/* This array holds machine specific line separator characters. */
684const char line_separator_chars[] = ";";
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
751static int mips_gprel_offset = 0;
752
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
793
794/* Arrays of operands for each instruction. */
795#define MAX_OPERANDS 6
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
803/* Nop instructions used by emit_nop. */
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
808
809/* The appropriate nop for the current mode. */
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818/* The size of NOP_INSN in bytes. */
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850struct mips_hi_fixup
851{
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
871static const unsigned int mips16_to_32_reg_map[] =
872{
873 16, 17, 2, 3, 4, 5, 6, 7
874};
875
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880/* The microMIPS registers with type h. */
881static const unsigned int micromips_to_32_reg_h_map1[] =
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
885static const unsigned int micromips_to_32_reg_h_map2[] =
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900enum fix_vr4120_class
901{
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
926static int mips_fix_vr4120;
927
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
946\f
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018/* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162#define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
1163 uncond, compact, link, nods, \
1164 relax32, toofar16, toofar32) \
1165 (0x40000000 \
1166 | ((type) & 0xff) \
1167 | (((at) & 0x1f) << 8) \
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
1176#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1179#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182#define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
1183#define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
1185
1186#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
1192
1193/* Sign-extend 16-bit value X. */
1194#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1195
1196/* Is the given value a sign-extended 32-bit value? */
1197#define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1200
1201/* Is the given value a sign-extended 16-bit value? */
1202#define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1205
1206/* Is the given value a sign-extended 12-bit value? */
1207#define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1209
1210/* Is the given value a sign-extended 9-bit value? */
1211#define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1213
1214/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215#define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1218
1219/* Extract bits MASK << SHIFT from STRUCT and shift them right
1220 SHIFT places. */
1221#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1223
1224/* Extract the operand given by FIELD from mips_cl_insn INSN. */
1225#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1226 (!(MICROMIPS) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1230#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
1234
1235/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236#define MIPS16_EXTEND (0xf000U << 16)
1237\f
1238/* Whether or not we are emitting a branch-likely macro. */
1239static bfd_boolean emit_branch_likely_macro = FALSE;
1240
1241/* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1243 is used. */
1244static struct {
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1248 int sequence;
1249
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1252 fixS *first_fixup;
1253
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1257
1258 /* The symbol on which the choice of sequence depends. */
1259 symbolS *symbol;
1260} mips_relax;
1261\f
1262/* Global variables used to decide whether a macro needs a warning. */
1263static struct {
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1266
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1270
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1274 macro in bytes. */
1275 unsigned int sizes[2];
1276
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1282
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1285
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1288 second alternative.
1289
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1293
1294 /* The first variant frag for this macro. */
1295 fragS *first_frag;
1296} mips_macro_warning;
1297\f
1298/* Prototypes for static functions. */
1299
1300enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1301
1302static void append_insn
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
1305static void mips_no_prev_insn (void);
1306static void macro_build (expressionS *, const char *, const char *, ...);
1307static void mips16_macro_build
1308 (expressionS *, const char *, const char *, va_list *);
1309static void load_register (int, expressionS *, int);
1310static void macro_start (void);
1311static void macro_end (void);
1312static void macro (struct mips_cl_insn *ip, char *str);
1313static void mips16_macro (struct mips_cl_insn * ip);
1314static void mips_ip (char *str, struct mips_cl_insn * ip);
1315static void mips16_ip (char *str, struct mips_cl_insn * ip);
1316static void mips16_immed
1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1318 unsigned int, unsigned long *);
1319static size_t my_getSmallExpression
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321static void my_getExpression (expressionS *, char *);
1322static void s_align (int);
1323static void s_change_sec (int);
1324static void s_change_section (int);
1325static void s_cons (int);
1326static void s_float_cons (int);
1327static void s_mips_globl (int);
1328static void s_option (int);
1329static void s_mipsset (int);
1330static void s_abicalls (int);
1331static void s_cpload (int);
1332static void s_cpsetup (int);
1333static void s_cplocal (int);
1334static void s_cprestore (int);
1335static void s_cpreturn (int);
1336static void s_dtprelword (int);
1337static void s_dtpreldword (int);
1338static void s_tprelword (int);
1339static void s_tpreldword (int);
1340static void s_gpvalue (int);
1341static void s_gpword (int);
1342static void s_gpdword (int);
1343static void s_ehword (int);
1344static void s_cpadd (int);
1345static void s_insn (int);
1346static void s_nan (int);
1347static void s_module (int);
1348static void s_mips_ent (int);
1349static void s_mips_end (int);
1350static void s_mips_frame (int);
1351static void s_mips_mask (int reg_type);
1352static void s_mips_stab (int);
1353static void s_mips_weakext (int);
1354static void s_mips_file (int);
1355static void s_mips_loc (int);
1356static bfd_boolean pic_need_relax (symbolS *, asection *);
1357static int relaxed_branch_length (fragS *, asection *, int);
1358static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1360static void file_mips_check_options (void);
1361
1362/* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1364
1365struct mips_cpu_info
1366{
1367 const char *name; /* CPU or ISA name. */
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1372};
1373
1374#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1375
1376static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1379\f
1380/* Command-line options. */
1381const char *md_shortopts = "O::g::G:";
1382
1383enum options
1384 {
1385 OPTION_MARCH = OPTION_MD_BASE,
1386 OPTION_MTUNE,
1387 OPTION_MIPS1,
1388 OPTION_MIPS2,
1389 OPTION_MIPS3,
1390 OPTION_MIPS4,
1391 OPTION_MIPS5,
1392 OPTION_MIPS32,
1393 OPTION_MIPS64,
1394 OPTION_MIPS32R2,
1395 OPTION_MIPS32R3,
1396 OPTION_MIPS32R5,
1397 OPTION_MIPS32R6,
1398 OPTION_MIPS64R2,
1399 OPTION_MIPS64R3,
1400 OPTION_MIPS64R5,
1401 OPTION_MIPS64R6,
1402 OPTION_MIPS16,
1403 OPTION_NO_MIPS16,
1404 OPTION_MIPS3D,
1405 OPTION_NO_MIPS3D,
1406 OPTION_MDMX,
1407 OPTION_NO_MDMX,
1408 OPTION_DSP,
1409 OPTION_NO_DSP,
1410 OPTION_MT,
1411 OPTION_NO_MT,
1412 OPTION_VIRT,
1413 OPTION_NO_VIRT,
1414 OPTION_MSA,
1415 OPTION_NO_MSA,
1416 OPTION_SMARTMIPS,
1417 OPTION_NO_SMARTMIPS,
1418 OPTION_DSPR2,
1419 OPTION_NO_DSPR2,
1420 OPTION_DSPR3,
1421 OPTION_NO_DSPR3,
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
1424 OPTION_XPA,
1425 OPTION_NO_XPA,
1426 OPTION_MICROMIPS,
1427 OPTION_NO_MICROMIPS,
1428 OPTION_MCU,
1429 OPTION_NO_MCU,
1430 OPTION_COMPAT_ARCH_BASE,
1431 OPTION_M4650,
1432 OPTION_NO_M4650,
1433 OPTION_M4010,
1434 OPTION_NO_M4010,
1435 OPTION_M4100,
1436 OPTION_NO_M4100,
1437 OPTION_M3900,
1438 OPTION_NO_M3900,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1441 OPTION_FIX_24K,
1442 OPTION_NO_FIX_24K,
1443 OPTION_FIX_RM7000,
1444 OPTION_NO_FIX_RM7000,
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1449 OPTION_FIX_VR4120,
1450 OPTION_NO_FIX_VR4120,
1451 OPTION_FIX_VR4130,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1455 OPTION_TRAP,
1456 OPTION_BREAK,
1457 OPTION_EB,
1458 OPTION_EL,
1459 OPTION_FP32,
1460 OPTION_GP32,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1463 OPTION_FP64,
1464 OPTION_FPXX,
1465 OPTION_GP64,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
1468 OPTION_INSN32,
1469 OPTION_NO_INSN32,
1470 OPTION_MSHARED,
1471 OPTION_MNO_SHARED,
1472 OPTION_MSYM32,
1473 OPTION_MNO_SYM32,
1474 OPTION_SOFT_FLOAT,
1475 OPTION_HARD_FLOAT,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1478 OPTION_32,
1479 OPTION_CALL_SHARED,
1480 OPTION_CALL_NONPIC,
1481 OPTION_NON_SHARED,
1482 OPTION_XGOT,
1483 OPTION_MABI,
1484 OPTION_N32,
1485 OPTION_64,
1486 OPTION_MDEBUG,
1487 OPTION_NO_MDEBUG,
1488 OPTION_PDR,
1489 OPTION_NO_PDR,
1490 OPTION_MVXWORKS_PIC,
1491 OPTION_NAN,
1492 OPTION_ODD_SPREG,
1493 OPTION_NO_ODD_SPREG,
1494 OPTION_END_OF_ENUM
1495 };
1496
1497struct option md_longopts[] =
1498{
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1518
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1548
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1558
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1577
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1606
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1611
1612 /* ELF-specific options. */
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1626 {"mnan", required_argument, NULL, OPTION_NAN},
1627
1628 {NULL, no_argument, NULL, 0}
1629};
1630size_t md_longopts_size = sizeof (md_longopts);
1631\f
1632/* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1635struct mips_ase
1636{
1637 /* The name of the ASE, used in both the command-line and .set options. */
1638 const char *name;
1639
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1643 unsigned int flags;
1644
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1648
1649 /* The command-line options that turn the ASE on and off. */
1650 int option_on;
1651 int option_off;
1652
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1655 int mips32_rev;
1656 int mips64_rev;
1657 int micromips32_rev;
1658 int micromips64_rev;
1659
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1661 been removed. */
1662 int rem_rev;
1663};
1664
1665/* A table of all supported ASEs. */
1666static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
1669 2, 2, 2, 2,
1670 -1 },
1671
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
1674 2, 2, 2, 2,
1675 -1 },
1676
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1679 6, 6, -1, -1,
1680 -1 },
1681
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
1684 2, 2, 2, 2,
1685 -1 },
1686
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
1689 2, 2, 2, 2,
1690 -1 },
1691
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
1695 -1, 1, -1, -1,
1696 6 },
1697
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1701 2, 1, -1, -1,
1702 6 },
1703
1704 { "mt", ASE_MT, 0,
1705 OPTION_MT, OPTION_NO_MT,
1706 2, 2, -1, -1,
1707 -1 },
1708
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1711 1, -1, -1, -1,
1712 6 },
1713
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
1716 2, 2, 2, 2,
1717 -1 },
1718
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
1721 2, 2, 2, 2,
1722 -1 },
1723
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
1726 2, 2, -1, -1,
1727 -1 },
1728};
1729
1730/* The set of ASEs that require -mfp64. */
1731#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1732
1733/* Groups of ASE_* flags that represent different revisions of an ASE. */
1734static const unsigned int mips_ase_groups[] = {
1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1736};
1737\f
1738/* Pseudo-op table.
1739
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1743
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1748 .vreg.
1749
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
1754
1755static const pseudo_typeS mips_pseudo_table[] =
1756{
1757 /* MIPS specific pseudo-ops. */
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
1767 {"cprestore", s_cprestore, 0},
1768 {"cpreturn", s_cpreturn, 0},
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
1773 {"gpvalue", s_gpvalue, 0},
1774 {"gpword", s_gpword, 0},
1775 {"gpdword", s_gpdword, 0},
1776 {"ehword", s_ehword, 0},
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
1779 {"nan", s_nan, 0},
1780 {"module", s_module, 0},
1781
1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
1783 chips. */
1784 {"asciiz", stringer, 8 + 1},
1785 {"bss", s_change_sec, 'b'},
1786 {"err", s_err, 0},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
1792
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1795
1796 /* These pseudo-ops are defined in read.c, but must be overridden
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1806 {"int", s_cons, 2},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
1810 {"section", s_change_section, 0},
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
1813 {"stabd", s_mips_stab, 'd'},
1814 {"stabn", s_mips_stab, 'n'},
1815 {"stabs", s_mips_stab, 's'},
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
1818
1819 { "extern", ecoff_directive_extern, 0},
1820
1821 { NULL, NULL, 0 },
1822};
1823
1824static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1825{
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
1833 {"file", s_mips_file, 0},
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
1836 {"loc", s_mips_loc, 0},
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
1839 { NULL, NULL, 0 },
1840};
1841
1842/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1844
1845int
1846mips_address_bytes (void)
1847{
1848 file_mips_check_options ();
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1850}
1851
1852extern void pop_insert (const pseudo_typeS *);
1853
1854void
1855mips_pop_insert (void)
1856{
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1860}
1861\f
1862/* Symbols labelling the current insn. */
1863
1864struct insn_label_list
1865{
1866 struct insn_label_list *next;
1867 symbolS *label;
1868};
1869
1870static struct insn_label_list *free_insn_labels;
1871#define label_list tc_segment_info_data.labels
1872
1873static void mips_clear_insn_labels (void);
1874static void mips_mark_labels (void);
1875static void mips_compressed_mark_labels (void);
1876
1877static inline void
1878mips_clear_insn_labels (void)
1879{
1880 struct insn_label_list **pl;
1881 segment_info_type *si;
1882
1883 if (now_seg)
1884 {
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1886 ;
1887
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1891 }
1892}
1893
1894/* Mark instruction labels in MIPS16/microMIPS mode. */
1895
1896static inline void
1897mips_mark_labels (void)
1898{
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1901}
1902\f
1903static char *expr_end;
1904
1905/* An expression in a macro instruction. This is set by mips_ip and
1906 mips16_ip and when populated is always an O_constant. */
1907
1908static expressionS imm_expr;
1909
1910/* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
1914
1915static expressionS offset_expr;
1916static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1918
1919/* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
1922
1923static unsigned int forced_insn_length;
1924
1925/* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1927
1928static bfd_boolean mips_assembling_insn;
1929
1930/* The pdr segment for per procedure frame/regmask info. Not used for
1931 ECOFF debugging. */
1932
1933static segT pdr_seg;
1934
1935/* The default target format to use. */
1936
1937#if defined (TE_FreeBSD)
1938#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939#elif defined (TE_TMIPS)
1940#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1941#else
1942#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1943#endif
1944
1945const char *
1946mips_target_format (void)
1947{
1948 switch (OUTPUT_FLAVOR)
1949 {
1950 case bfd_target_elf_flavour:
1951#ifdef TE_VXWORKS
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1956#endif
1957 return (target_big_endian
1958 ? (HAVE_64BIT_OBJECTS
1959 ? ELF_TARGET ("elf64-", "big")
1960 : (HAVE_NEWABI
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
1963 : (HAVE_64BIT_OBJECTS
1964 ? ELF_TARGET ("elf64-", "little")
1965 : (HAVE_NEWABI
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
1968 default:
1969 abort ();
1970 return NULL;
1971 }
1972}
1973
1974/* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1976
1977static int
1978mips_isa_rev (void)
1979{
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1981 return 2;
1982
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1984 return 3;
1985
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1987 return 5;
1988
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1990 return 6;
1991
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1994 return 2;
1995
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1997 return 1;
1998
1999 return 0;
2000}
2001
2002/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2003
2004static unsigned int
2005mips_ase_mask (unsigned int flags)
2006{
2007 unsigned int i;
2008
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2012 return flags;
2013}
2014
2015/* Check whether the current ISA supports ASE. Issue a warning if
2016 appropriate. */
2017
2018static void
2019mips_check_isa_supports_ase (const struct mips_ase *ase)
2020{
2021 const char *base;
2022 int min_rev, size;
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2025
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2028 else
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2032 {
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2036 if (min_rev < 0)
2037 as_warn (_("the %d-bit %s architecture does not support the"
2038 " `%s' extension"), size, base, ase->name);
2039 else
2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2041 ase->name, base, size, min_rev);
2042 }
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2045 {
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2051 }
2052
2053 if ((ase->flags & FP64_ASES)
2054 && mips_opts.fp != 64
2055 && (warned_fp32 & ase->flags) != ase->flags)
2056 {
2057 warned_fp32 |= ase->flags;
2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2059 }
2060}
2061
2062/* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2064
2065static void
2066mips_check_isa_supports_ases (void)
2067{
2068 unsigned int i, mask;
2069
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2071 {
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2075 }
2076}
2077
2078/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2080
2081static unsigned int
2082mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
2084{
2085 unsigned int mask;
2086
2087 mask = mips_ase_mask (ase->flags);
2088 opts->ase &= ~mask;
2089 if (enabled_p)
2090 opts->ase |= ase->flags;
2091 return mask;
2092}
2093
2094/* Return the ASE called NAME, or null if none. */
2095
2096static const struct mips_ase *
2097mips_lookup_ase (const char *name)
2098{
2099 unsigned int i;
2100
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2104 return NULL;
2105}
2106
2107/* Return the length of a microMIPS instruction in bytes. If bits of
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
2110
2111static inline unsigned int
2112micromips_insn_length (const struct mips_opcode *mo)
2113{
2114 return (mo->mask >> 16) == 0 ? 2 : 4;
2115}
2116
2117/* Return the length of MIPS16 instruction OPCODE. */
2118
2119static inline unsigned int
2120mips16_opcode_length (unsigned long opcode)
2121{
2122 return (opcode >> 16) == 0 ? 2 : 4;
2123}
2124
2125/* Return the length of instruction INSN. */
2126
2127static inline unsigned int
2128insn_length (const struct mips_cl_insn *insn)
2129{
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
2133 return mips16_opcode_length (insn->insn_opcode);
2134 else
2135 return 4;
2136}
2137
2138/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2139
2140static void
2141create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2142{
2143 size_t i;
2144
2145 insn->insn_mo = mo;
2146 insn->insn_opcode = mo->match;
2147 insn->frag = NULL;
2148 insn->where = 0;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
2154 insn->complete_p = 0;
2155 insn->cleared_p = 0;
2156}
2157
2158/* Get a list of all the operands in INSN. */
2159
2160static const struct mips_operand_array *
2161insn_operands (const struct mips_cl_insn *insn)
2162{
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2166
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2170
2171 if (insn->insn_mo >= &micromips_opcodes[0]
2172 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2173 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2174
2175 abort ();
2176}
2177
2178/* Get a description of operand OPNO of INSN. */
2179
2180static const struct mips_operand *
2181insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2182{
2183 const struct mips_operand_array *operands;
2184
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2187 abort ();
2188 return operands->operand[opno];
2189}
2190
2191/* Install UVAL as the value of OPERAND in INSN. */
2192
2193static inline void
2194insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2196{
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2198}
2199
2200/* Extract the value of OPERAND from INSN. */
2201
2202static inline unsigned
2203insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2205{
2206 return mips_extract_operand (operand, insn->insn_opcode);
2207}
2208
2209/* Record the current MIPS16/microMIPS mode in now_seg. */
2210
2211static void
2212mips_record_compressed_mode (void)
2213{
2214 segment_info_type *si;
2215
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
2221}
2222
2223/* Read a standard MIPS instruction from BUF. */
2224
2225static unsigned long
2226read_insn (char *buf)
2227{
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2230 else
2231 return bfd_getl32 ((bfd_byte *) buf);
2232}
2233
2234/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2235 the next byte. */
2236
2237static char *
2238write_insn (char *buf, unsigned int insn)
2239{
2240 md_number_to_chars (buf, insn, 4);
2241 return buf + 4;
2242}
2243
2244/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2246
2247static unsigned long
2248read_compressed_insn (char *buf, unsigned int length)
2249{
2250 unsigned long insn;
2251 unsigned int i;
2252
2253 insn = 0;
2254 for (i = 0; i < length; i += 2)
2255 {
2256 insn <<= 16;
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2259 else
2260 insn |= bfd_getl16 ((char *) buf);
2261 buf += 2;
2262 }
2263 return insn;
2264}
2265
2266/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2268
2269static char *
2270write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2271{
2272 unsigned int i;
2273
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2277}
2278
2279/* Install INSN at the location specified by its "frag" and "where" fields. */
2280
2281static void
2282install_insn (const struct mips_cl_insn *insn)
2283{
2284 char *f = insn->frag->fr_literal + insn->where;
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2287 else
2288 write_insn (f, insn->insn_opcode);
2289 mips_record_compressed_mode ();
2290}
2291
2292/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2294
2295static void
2296move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2297{
2298 size_t i;
2299
2300 insn->frag = frag;
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2304 {
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2307 }
2308 install_insn (insn);
2309}
2310
2311/* Add INSN to the end of the output. */
2312
2313static void
2314add_fixed_insn (struct mips_cl_insn *insn)
2315{
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2318}
2319
2320/* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2322
2323static void
2324add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2326{
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2329 insn->fixed_p = 1;
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2332}
2333
2334/* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2336
2337static void
2338insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2340{
2341 if (mips_relax.sequence != 2)
2342 {
2343 unsigned int i;
2344
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2346 if (i >= first + n)
2347 history[i] = history[i - n];
2348 else
2349 history[i] = *insn;
2350 }
2351}
2352
2353/* Clear the error in insn_error. */
2354
2355static void
2356clear_insn_error (void)
2357{
2358 memset (&insn_error, 0, sizeof (insn_error));
2359}
2360
2361/* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2365 was kept. */
2366
2367static bfd_boolean
2368set_insn_error_format (int argnum, enum mips_insn_error_format format,
2369 const char *msg)
2370{
2371 if (argnum == 0)
2372 {
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2375 if (insn_error.msg)
2376 return FALSE;
2377 }
2378 else
2379 {
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2382 return FALSE;
2383
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2388 && insn_error.msg
2389 && strcmp (insn_error.msg, msg) != 0)
2390 {
2391 insn_error.msg = 0;
2392 insn_error.min_argnum += 1;
2393 return FALSE;
2394 }
2395 }
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2399 return TRUE;
2400}
2401
2402/* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2404
2405static void
2406set_insn_error (int argnum, const char *msg)
2407{
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2409}
2410
2411/* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414static void
2415set_insn_error_i (int argnum, const char *msg, int i)
2416{
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2418 insn_error.u.i = i;
2419}
2420
2421/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2423
2424static void
2425set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2426{
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2428 {
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2431 }
2432}
2433
2434/* Report the error in insn_error, which is against assembly code STR. */
2435
2436static void
2437report_insn_error (const char *str)
2438{
2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2440
2441 switch (insn_error.format)
2442 {
2443 case ERR_FMT_PLAIN:
2444 as_bad (msg, str);
2445 break;
2446
2447 case ERR_FMT_I:
2448 as_bad (msg, insn_error.u.i, str);
2449 break;
2450
2451 case ERR_FMT_SS:
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2453 break;
2454 }
2455
2456 free ((char *) msg);
2457}
2458
2459/* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2461 included. */
2462
2463static void
2464init_vr4120_conflicts (void)
2465{
2466#define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2468
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2472
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2478
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2482
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2490
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2499
2500#undef CONFLICT
2501}
2502
2503struct regname {
2504 const char *name;
2505 unsigned int num;
2506};
2507
2508#define RNUM_MASK 0x00000ff
2509#define RTYPE_MASK 0x0ffff00
2510#define RTYPE_NUM 0x0000100
2511#define RTYPE_FPU 0x0000200
2512#define RTYPE_FCC 0x0000400
2513#define RTYPE_VEC 0x0000800
2514#define RTYPE_GP 0x0001000
2515#define RTYPE_CP0 0x0002000
2516#define RTYPE_PC 0x0004000
2517#define RTYPE_ACC 0x0008000
2518#define RTYPE_CCC 0x0010000
2519#define RTYPE_VI 0x0020000
2520#define RTYPE_VF 0x0040000
2521#define RTYPE_R5900_I 0x0080000
2522#define RTYPE_R5900_Q 0x0100000
2523#define RTYPE_R5900_R 0x0200000
2524#define RTYPE_R5900_ACC 0x0400000
2525#define RTYPE_MSA 0x0800000
2526#define RWARN 0x8000000
2527
2528#define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
2560 {"$31", RTYPE_NUM | 31}
2561
2562#define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2595
2596#define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2605
2606#define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2615
2616#define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2629
2630#define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2643
2644/* Remaining symbolic register names */
2645#define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2674
2675#define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2677
2678#define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2711
2712#define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2714
2715#define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2717
2718#define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2720
2721#define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2723
2724#define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2729
2730static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2732 FPU_REGISTER_NAMES,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2735
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
2738 one of the tables below once mips_abi is set after
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2741
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
2744 R5900_I_NAMES,
2745 R5900_Q_NAMES,
2746 R5900_R_NAMES,
2747 R5900_ACC_NAMES,
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2749 {0, 0}
2750};
2751
2752static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2754 {0, 0}
2755};
2756
2757static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2759 {0, 0}
2760};
2761
2762/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
2766
2767static unsigned int
2768mips_prefer_vec_regno (unsigned int symval)
2769{
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2772 return symval;
2773}
2774
2775/* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
2777
2778static bfd_boolean
2779mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2780{
2781 char save_c;
2782 symbolS *symbol;
2783
2784 /* Terminate name. */
2785 save_c = *e;
2786 *e = '\0';
2787
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2790 *e = save_c;
2791
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2793 return FALSE;
2794
2795 *symval_ptr = S_GET_VALUE (symbol);
2796 return TRUE;
2797}
2798
2799/* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2801 is nonnull.
2802
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2808
2809static bfd_boolean
2810mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2812{
2813 char *s, *e, *m;
2814 const char *q;
2815 unsigned int channels, symval, bit;
2816
2817 /* Find end of name. */
2818 s = e = *sptr;
2819 if (is_name_beginner (*e))
2820 ++e;
2821 while (is_part_of_name (*e))
2822 ++e;
2823
2824 channels = 0;
2825 if (!mips_parse_register_1 (s, e, &symval))
2826 {
2827 if (!channels_ptr)
2828 return FALSE;
2829
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2833 bit = 1;
2834 m = e;
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2837 {
2838 --m;
2839 channels |= bit;
2840 }
2841
2842 if (channels == 0
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2845 return FALSE;
2846 }
2847
2848 *sptr = e;
2849 *symval_ptr = symval;
2850 if (channels_ptr)
2851 *channels_ptr = channels;
2852 return TRUE;
2853}
2854
2855/* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2858
2859static int
2860reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2861{
2862 unsigned int regno;
2863
2864 if (mips_parse_register (s, &regno, NULL))
2865 {
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2868 if (regno & types)
2869 regno &= RNUM_MASK;
2870 else
2871 regno = ~0;
2872 }
2873 else
2874 {
2875 if (types & RWARN)
2876 as_warn (_("unrecognized register name `%s'"), *s);
2877 regno = ~0;
2878 }
2879 if (regnop)
2880 *regnop = regno;
2881 return regno <= RNUM_MASK;
2882}
2883
2884/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2886
2887static char *
2888mips_parse_vu0_channels (char *s, unsigned int *channels)
2889{
2890 unsigned int i;
2891
2892 *channels = 0;
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2895 {
2896 *channels |= 1 << (3 - i);
2897 ++s;
2898 }
2899 return s;
2900}
2901
2902/* Token types for parsed operand lists. */
2903enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2905 OT_REG,
2906
2907 /* A 4-bit XYZW channel mask. */
2908 OT_CHANNELS,
2909
2910 /* A constant vector index, e.g. [1]. */
2911 OT_INTEGER_INDEX,
2912
2913 /* A register vector index, e.g. [$2]. */
2914 OT_REG_INDEX,
2915
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2917 OT_REG_RANGE,
2918
2919 /* A (possibly relocated) expression. */
2920 OT_INTEGER,
2921
2922 /* A floating-point value. */
2923 OT_FLOAT,
2924
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2926 before OT_REGs. */
2927 OT_CHAR,
2928
2929 /* A doubled character, either "--" or "++". */
2930 OT_DOUBLE_CHAR,
2931
2932 /* The end of the operand list. */
2933 OT_END
2934};
2935
2936/* A parsed operand token. */
2937struct mips_operand_token
2938{
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2941 union
2942 {
2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2944 unsigned int regno;
2945
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2948
2949 /* The integer value of an OT_INTEGER_INDEX. */
2950 addressT index;
2951
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2953 struct {
2954 unsigned int regno1;
2955 unsigned int regno2;
2956 } reg_range;
2957
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2962 struct {
2963 expressionS value;
2964 bfd_reloc_code_real_type relocs[3];
2965 } integer;
2966
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2968 in the constant. */
2969 struct {
2970 unsigned char data[8];
2971 int length;
2972 } flt;
2973
2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2975 char ch;
2976 } u;
2977};
2978
2979/* An obstack used to construct lists of mips_operand_tokens. */
2980static struct obstack mips_operand_tokens;
2981
2982/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2983
2984static void
2985mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2987{
2988 token->type = type;
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2990}
2991
2992/* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2995
2996static char *
2997mips_parse_base_start (char *s)
2998{
2999 struct mips_operand_token token;
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
3002
3003 if (*s != '(')
3004 return 0;
3005
3006 ++s;
3007 SKIP_SPACE_TABS (s);
3008
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3012 if (decrement_p)
3013 {
3014 s += 2;
3015 SKIP_SPACE_TABS (s);
3016 }
3017
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, &regno, &channels))
3021 return 0;
3022
3023 token.u.ch = '(';
3024 mips_add_token (&token, OT_CHAR);
3025
3026 if (decrement_p)
3027 {
3028 token.u.ch = '-';
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3030 }
3031
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3034
3035 if (channels)
3036 {
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3039 }
3040
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3044 {
3045 s += 2;
3046 token.u.ch = '+';
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3048 }
3049
3050 return s;
3051}
3052
3053/* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3057
3058static char *
3059mips_parse_argument_token (char *s, char float_format)
3060{
3061 char *end, *save_in;
3062 const char *err;
3063 unsigned int regno1, regno2, channels;
3064 struct mips_operand_token token;
3065
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3069 if (end)
3070 return end;
3071
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3074 {
3075 token.u.ch = *s;
3076 mips_add_token (&token, OT_CHAR);
3077 ++s;
3078 return s;
3079 }
3080
3081 /* Handle tokens that start with a register. */
3082 if (mips_parse_register (&s, &regno1, &channels))
3083 {
3084 if (channels)
3085 {
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3089
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3092 return s;
3093 }
3094
3095 SKIP_SPACE_TABS (s);
3096 if (*s == '-')
3097 {
3098 /* A register range. */
3099 ++s;
3100 SKIP_SPACE_TABS (s);
3101 if (!mips_parse_register (&s, &regno2, NULL))
3102 {
3103 set_insn_error (0, _("invalid register range"));
3104 return 0;
3105 }
3106
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3110 return s;
3111 }
3112
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3116
3117 /* Check for a vector index. */
3118 if (*s == '[')
3119 {
3120 ++s;
3121 SKIP_SPACE_TABS (s);
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3124 else
3125 {
3126 expressionS element;
3127
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3130 {
3131 set_insn_error (0, _("vector element must be constant"));
3132 return 0;
3133 }
3134 s = expr_end;
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
3137 }
3138 SKIP_SPACE_TABS (s);
3139 if (*s != ']')
3140 {
3141 set_insn_error (0, _("missing `]'"));
3142 return 0;
3143 }
3144 ++s;
3145 }
3146 return s;
3147 }
3148
3149 if (float_format)
3150 {
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3158 if (err && *err)
3159 {
3160 set_insn_error (0, err);
3161 return 0;
3162 }
3163 if (s != end)
3164 {
3165 mips_add_token (&token, OT_FLOAT);
3166 return end;
3167 }
3168 }
3169
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3175 s = expr_end;
3176 mips_add_token (&token, OT_INTEGER);
3177 return s;
3178}
3179
3180/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3184
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3187
3188static struct mips_operand_token *
3189mips_parse_arguments (char *s, char float_format)
3190{
3191 struct mips_operand_token token;
3192
3193 SKIP_SPACE_TABS (s);
3194 while (*s)
3195 {
3196 s = mips_parse_argument_token (s, float_format);
3197 if (!s)
3198 {
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3201 return 0;
3202 }
3203 SKIP_SPACE_TABS (s);
3204 }
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3207}
3208
3209/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3211
3212static bfd_boolean
3213is_opcode_valid (const struct mips_opcode *mo)
3214{
3215 int isa = mips_opts.isa;
3216 int ase = mips_opts.ase;
3217 int fp_s, fp_d;
3218 unsigned int i;
3219
3220 if (ISA_HAS_64BIT_REGS (isa))
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
3224
3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3226 return FALSE;
3227
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3232 {
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3235 }
3236 else
3237 {
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3240 }
3241
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3243 return FALSE;
3244
3245 if (fp_s && mips_opts.soft_float)
3246 return FALSE;
3247
3248 return TRUE;
3249}
3250
3251/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3253
3254static bfd_boolean
3255is_opcode_valid_16 (const struct mips_opcode *mo)
3256{
3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3258}
3259
3260/* Return TRUE if the size of the microMIPS opcode MO matches one
3261 explicitly requested. Always TRUE in the standard MIPS mode. */
3262
3263static bfd_boolean
3264is_size_valid (const struct mips_opcode *mo)
3265{
3266 if (!mips_opts.micromips)
3267 return TRUE;
3268
3269 if (mips_opts.insn32)
3270 {
3271 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3272 return FALSE;
3273 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3274 return FALSE;
3275 }
3276 if (!forced_insn_length)
3277 return TRUE;
3278 if (mo->pinfo == INSN_MACRO)
3279 return FALSE;
3280 return forced_insn_length == micromips_insn_length (mo);
3281}
3282
3283/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3284 of the preceding instruction. Always TRUE in the standard MIPS mode.
3285
3286 We don't accept macros in 16-bit delay slots to avoid a case where
3287 a macro expansion fails because it relies on a preceding 32-bit real
3288 instruction to have matched and does not handle the operands correctly.
3289 The only macros that may expand to 16-bit instructions are JAL that
3290 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3291 and BGT (that likewise cannot be placed in a delay slot) that decay to
3292 a NOP. In all these cases the macros precede any corresponding real
3293 instruction definitions in the opcode table, so they will match in the
3294 second pass where the size of the delay slot is ignored and therefore
3295 produce correct code. */
3296
3297static bfd_boolean
3298is_delay_slot_valid (const struct mips_opcode *mo)
3299{
3300 if (!mips_opts.micromips)
3301 return TRUE;
3302
3303 if (mo->pinfo == INSN_MACRO)
3304 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3305 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3306 && micromips_insn_length (mo) != 4)
3307 return FALSE;
3308 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3309 && micromips_insn_length (mo) != 2)
3310 return FALSE;
3311
3312 return TRUE;
3313}
3314
3315/* For consistency checking, verify that all bits of OPCODE are specified
3316 either by the match/mask part of the instruction definition, or by the
3317 operand list. Also build up a list of operands in OPERANDS.
3318
3319 INSN_BITS says which bits of the instruction are significant.
3320 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3321 provides the mips_operand description of each operand. DECODE_OPERAND
3322 is null for MIPS16 instructions. */
3323
3324static int
3325validate_mips_insn (const struct mips_opcode *opcode,
3326 unsigned long insn_bits,
3327 const struct mips_operand *(*decode_operand) (const char *),
3328 struct mips_operand_array *operands)
3329{
3330 const char *s;
3331 unsigned long used_bits, doubled, undefined, opno, mask;
3332 const struct mips_operand *operand;
3333
3334 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3335 if ((mask & opcode->match) != opcode->match)
3336 {
3337 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3338 opcode->name, opcode->args);
3339 return 0;
3340 }
3341 used_bits = 0;
3342 opno = 0;
3343 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3344 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3345 for (s = opcode->args; *s; ++s)
3346 switch (*s)
3347 {
3348 case ',':
3349 case '(':
3350 case ')':
3351 break;
3352
3353 case '#':
3354 s++;
3355 break;
3356
3357 default:
3358 if (!decode_operand)
3359 operand = decode_mips16_operand (*s, FALSE);
3360 else
3361 operand = decode_operand (s);
3362 if (!operand && opcode->pinfo != INSN_MACRO)
3363 {
3364 as_bad (_("internal: unknown operand type: %s %s"),
3365 opcode->name, opcode->args);
3366 return 0;
3367 }
3368 gas_assert (opno < MAX_OPERANDS);
3369 operands->operand[opno] = operand;
3370 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3371 {
3372 used_bits = mips_insert_operand (operand, used_bits, -1);
3373 if (operand->type == OP_MDMX_IMM_REG)
3374 /* Bit 5 is the format selector (OB vs QH). The opcode table
3375 has separate entries for each format. */
3376 used_bits &= ~(1 << (operand->lsb + 5));
3377 if (operand->type == OP_ENTRY_EXIT_LIST)
3378 used_bits &= ~(mask & 0x700);
3379 }
3380 /* Skip prefix characters. */
3381 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3382 ++s;
3383 opno += 1;
3384 break;
3385 }
3386 doubled = used_bits & mask & insn_bits;
3387 if (doubled)
3388 {
3389 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3390 " %s %s"), doubled, opcode->name, opcode->args);
3391 return 0;
3392 }
3393 used_bits |= mask;
3394 undefined = ~used_bits & insn_bits;
3395 if (opcode->pinfo != INSN_MACRO && undefined)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3398 undefined, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 used_bits &= ~insn_bits;
3402 if (used_bits)
3403 {
3404 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3405 used_bits, opcode->name, opcode->args);
3406 return 0;
3407 }
3408 return 1;
3409}
3410
3411/* The MIPS16 version of validate_mips_insn. */
3412
3413static int
3414validate_mips16_insn (const struct mips_opcode *opcode,
3415 struct mips_operand_array *operands)
3416{
3417 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3418 {
3419 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3420 instruction. Use TMP to describe the full instruction. */
3421 struct mips_opcode tmp;
3422
3423 tmp = *opcode;
3424 tmp.match <<= 16;
3425 tmp.mask <<= 16;
3426 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3427 }
3428 return validate_mips_insn (opcode, 0xffff, 0, operands);
3429}
3430
3431/* The microMIPS version of validate_mips_insn. */
3432
3433static int
3434validate_micromips_insn (const struct mips_opcode *opc,
3435 struct mips_operand_array *operands)
3436{
3437 unsigned long insn_bits;
3438 unsigned long major;
3439 unsigned int length;
3440
3441 if (opc->pinfo == INSN_MACRO)
3442 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3443 operands);
3444
3445 length = micromips_insn_length (opc);
3446 if (length != 2 && length != 4)
3447 {
3448 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3449 "%s %s"), length, opc->name, opc->args);
3450 return 0;
3451 }
3452 major = opc->match >> (10 + 8 * (length - 2));
3453 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3454 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3455 {
3456 as_bad (_("internal error: bad microMIPS opcode "
3457 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3458 return 0;
3459 }
3460
3461 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3462 insn_bits = 1 << 4 * length;
3463 insn_bits <<= 4 * length;
3464 insn_bits -= 1;
3465 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3466 operands);
3467}
3468
3469/* This function is called once, at assembler startup time. It should set up
3470 all the tables, etc. that the MD part of the assembler will need. */
3471
3472void
3473md_begin (void)
3474{
3475 const char *retval = NULL;
3476 int i = 0;
3477 int broken = 0;
3478
3479 if (mips_pic != NO_PIC)
3480 {
3481 if (g_switch_seen && g_switch_value != 0)
3482 as_bad (_("-G may not be used in position-independent code"));
3483 g_switch_value = 0;
3484 }
3485 else if (mips_abicalls)
3486 {
3487 if (g_switch_seen && g_switch_value != 0)
3488 as_bad (_("-G may not be used with abicalls"));
3489 g_switch_value = 0;
3490 }
3491
3492 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3493 as_warn (_("could not set architecture and machine"));
3494
3495 op_hash = hash_new ();
3496
3497 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3498 for (i = 0; i < NUMOPCODES;)
3499 {
3500 const char *name = mips_opcodes[i].name;
3501
3502 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3503 if (retval != NULL)
3504 {
3505 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3506 mips_opcodes[i].name, retval);
3507 /* Probably a memory allocation problem? Give up now. */
3508 as_fatal (_("broken assembler, no assembly attempted"));
3509 }
3510 do
3511 {
3512 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3513 decode_mips_operand, &mips_operands[i]))
3514 broken = 1;
3515 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3516 {
3517 create_insn (&nop_insn, mips_opcodes + i);
3518 if (mips_fix_loongson2f_nop)
3519 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3520 nop_insn.fixed_p = 1;
3521 }
3522 ++i;
3523 }
3524 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3525 }
3526
3527 mips16_op_hash = hash_new ();
3528 mips16_operands = XCNEWVEC (struct mips_operand_array,
3529 bfd_mips16_num_opcodes);
3530
3531 i = 0;
3532 while (i < bfd_mips16_num_opcodes)
3533 {
3534 const char *name = mips16_opcodes[i].name;
3535
3536 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3537 if (retval != NULL)
3538 as_fatal (_("internal: can't hash `%s': %s"),
3539 mips16_opcodes[i].name, retval);
3540 do
3541 {
3542 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3543 broken = 1;
3544 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3545 {
3546 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3547 mips16_nop_insn.fixed_p = 1;
3548 }
3549 ++i;
3550 }
3551 while (i < bfd_mips16_num_opcodes
3552 && strcmp (mips16_opcodes[i].name, name) == 0);
3553 }
3554
3555 micromips_op_hash = hash_new ();
3556 micromips_operands = XCNEWVEC (struct mips_operand_array,
3557 bfd_micromips_num_opcodes);
3558
3559 i = 0;
3560 while (i < bfd_micromips_num_opcodes)
3561 {
3562 const char *name = micromips_opcodes[i].name;
3563
3564 retval = hash_insert (micromips_op_hash, name,
3565 (void *) &micromips_opcodes[i]);
3566 if (retval != NULL)
3567 as_fatal (_("internal: can't hash `%s': %s"),
3568 micromips_opcodes[i].name, retval);
3569 do
3570 {
3571 struct mips_cl_insn *micromips_nop_insn;
3572
3573 if (!validate_micromips_insn (&micromips_opcodes[i],
3574 &micromips_operands[i]))
3575 broken = 1;
3576
3577 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3578 {
3579 if (micromips_insn_length (micromips_opcodes + i) == 2)
3580 micromips_nop_insn = &micromips_nop16_insn;
3581 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3582 micromips_nop_insn = &micromips_nop32_insn;
3583 else
3584 continue;
3585
3586 if (micromips_nop_insn->insn_mo == NULL
3587 && strcmp (name, "nop") == 0)
3588 {
3589 create_insn (micromips_nop_insn, micromips_opcodes + i);
3590 micromips_nop_insn->fixed_p = 1;
3591 }
3592 }
3593 }
3594 while (++i < bfd_micromips_num_opcodes
3595 && strcmp (micromips_opcodes[i].name, name) == 0);
3596 }
3597
3598 if (broken)
3599 as_fatal (_("broken assembler, no assembly attempted"));
3600
3601 /* We add all the general register names to the symbol table. This
3602 helps us detect invalid uses of them. */
3603 for (i = 0; reg_names[i].name; i++)
3604 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3605 reg_names[i].num, /* & RNUM_MASK, */
3606 &zero_address_frag));
3607 if (HAVE_NEWABI)
3608 for (i = 0; reg_names_n32n64[i].name; i++)
3609 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3610 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3611 &zero_address_frag));
3612 else
3613 for (i = 0; reg_names_o32[i].name; i++)
3614 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3615 reg_names_o32[i].num, /* & RNUM_MASK, */
3616 &zero_address_frag));
3617
3618 for (i = 0; i < 32; i++)
3619 {
3620 char regname[6];
3621
3622 /* R5900 VU0 floating-point register. */
3623 sprintf (regname, "$vf%d", i);
3624 symbol_table_insert (symbol_new (regname, reg_section,
3625 RTYPE_VF | i, &zero_address_frag));
3626
3627 /* R5900 VU0 integer register. */
3628 sprintf (regname, "$vi%d", i);
3629 symbol_table_insert (symbol_new (regname, reg_section,
3630 RTYPE_VI | i, &zero_address_frag));
3631
3632 /* MSA register. */
3633 sprintf (regname, "$w%d", i);
3634 symbol_table_insert (symbol_new (regname, reg_section,
3635 RTYPE_MSA | i, &zero_address_frag));
3636 }
3637
3638 obstack_init (&mips_operand_tokens);
3639
3640 mips_no_prev_insn ();
3641
3642 mips_gprmask = 0;
3643 mips_cprmask[0] = 0;
3644 mips_cprmask[1] = 0;
3645 mips_cprmask[2] = 0;
3646 mips_cprmask[3] = 0;
3647
3648 /* set the default alignment for the text section (2**2) */
3649 record_alignment (text_section, 2);
3650
3651 bfd_set_gp_size (stdoutput, g_switch_value);
3652
3653 /* On a native system other than VxWorks, sections must be aligned
3654 to 16 byte boundaries. When configured for an embedded ELF
3655 target, we don't bother. */
3656 if (strncmp (TARGET_OS, "elf", 3) != 0
3657 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3658 {
3659 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3660 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3661 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3662 }
3663
3664 /* Create a .reginfo section for register masks and a .mdebug
3665 section for debugging information. */
3666 {
3667 segT seg;
3668 subsegT subseg;
3669 flagword flags;
3670 segT sec;
3671
3672 seg = now_seg;
3673 subseg = now_subseg;
3674
3675 /* The ABI says this section should be loaded so that the
3676 running program can access it. However, we don't load it
3677 if we are configured for an embedded target */
3678 flags = SEC_READONLY | SEC_DATA;
3679 if (strncmp (TARGET_OS, "elf", 3) != 0)
3680 flags |= SEC_ALLOC | SEC_LOAD;
3681
3682 if (mips_abi != N64_ABI)
3683 {
3684 sec = subseg_new (".reginfo", (subsegT) 0);
3685
3686 bfd_set_section_flags (stdoutput, sec, flags);
3687 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3688
3689 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3690 }
3691 else
3692 {
3693 /* The 64-bit ABI uses a .MIPS.options section rather than
3694 .reginfo section. */
3695 sec = subseg_new (".MIPS.options", (subsegT) 0);
3696 bfd_set_section_flags (stdoutput, sec, flags);
3697 bfd_set_section_alignment (stdoutput, sec, 3);
3698
3699 /* Set up the option header. */
3700 {
3701 Elf_Internal_Options opthdr;
3702 char *f;
3703
3704 opthdr.kind = ODK_REGINFO;
3705 opthdr.size = (sizeof (Elf_External_Options)
3706 + sizeof (Elf64_External_RegInfo));
3707 opthdr.section = 0;
3708 opthdr.info = 0;
3709 f = frag_more (sizeof (Elf_External_Options));
3710 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3711 (Elf_External_Options *) f);
3712
3713 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3714 }
3715 }
3716
3717 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3718 bfd_set_section_flags (stdoutput, sec,
3719 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3720 bfd_set_section_alignment (stdoutput, sec, 3);
3721 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3722
3723 if (ECOFF_DEBUGGING)
3724 {
3725 sec = subseg_new (".mdebug", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, sec,
3727 SEC_HAS_CONTENTS | SEC_READONLY);
3728 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3729 }
3730 else if (mips_flag_pdr)
3731 {
3732 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3733 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3734 SEC_READONLY | SEC_RELOC
3735 | SEC_DEBUGGING);
3736 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3737 }
3738
3739 subseg_set (seg, subseg);
3740 }
3741
3742 if (mips_fix_vr4120)
3743 init_vr4120_conflicts ();
3744}
3745
3746static inline void
3747fpabi_incompatible_with (int fpabi, const char *what)
3748{
3749 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751}
3752
3753static inline void
3754fpabi_requires (int fpabi, const char *what)
3755{
3756 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3757 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3758}
3759
3760/* Check -mabi and register sizes against the specified FP ABI. */
3761static void
3762check_fpabi (int fpabi)
3763{
3764 switch (fpabi)
3765 {
3766 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3767 if (file_mips_opts.soft_float)
3768 fpabi_incompatible_with (fpabi, "softfloat");
3769 else if (file_mips_opts.single_float)
3770 fpabi_incompatible_with (fpabi, "singlefloat");
3771 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3772 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3773 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3774 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3775 break;
3776
3777 case Val_GNU_MIPS_ABI_FP_XX:
3778 if (mips_abi != O32_ABI)
3779 fpabi_requires (fpabi, "-mabi=32");
3780 else if (file_mips_opts.soft_float)
3781 fpabi_incompatible_with (fpabi, "softfloat");
3782 else if (file_mips_opts.single_float)
3783 fpabi_incompatible_with (fpabi, "singlefloat");
3784 else if (file_mips_opts.fp != 0)
3785 fpabi_requires (fpabi, "fp=xx");
3786 break;
3787
3788 case Val_GNU_MIPS_ABI_FP_64A:
3789 case Val_GNU_MIPS_ABI_FP_64:
3790 if (mips_abi != O32_ABI)
3791 fpabi_requires (fpabi, "-mabi=32");
3792 else if (file_mips_opts.soft_float)
3793 fpabi_incompatible_with (fpabi, "softfloat");
3794 else if (file_mips_opts.single_float)
3795 fpabi_incompatible_with (fpabi, "singlefloat");
3796 else if (file_mips_opts.fp != 64)
3797 fpabi_requires (fpabi, "fp=64");
3798 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3799 fpabi_incompatible_with (fpabi, "nooddspreg");
3800 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3801 fpabi_requires (fpabi, "nooddspreg");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SINGLE:
3805 if (file_mips_opts.soft_float)
3806 fpabi_incompatible_with (fpabi, "softfloat");
3807 else if (!file_mips_opts.single_float)
3808 fpabi_requires (fpabi, "singlefloat");
3809 break;
3810
3811 case Val_GNU_MIPS_ABI_FP_SOFT:
3812 if (!file_mips_opts.soft_float)
3813 fpabi_requires (fpabi, "softfloat");
3814 break;
3815
3816 case Val_GNU_MIPS_ABI_FP_OLD_64:
3817 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3818 Tag_GNU_MIPS_ABI_FP, fpabi);
3819 break;
3820
3821 case Val_GNU_MIPS_ABI_FP_NAN2008:
3822 /* Silently ignore compatibility value. */
3823 break;
3824
3825 default:
3826 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3827 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3828 break;
3829 }
3830}
3831
3832/* Perform consistency checks on the current options. */
3833
3834static void
3835mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3836{
3837 /* Check the size of integer registers agrees with the ABI and ISA. */
3838 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3839 as_bad (_("`gp=64' used with a 32-bit processor"));
3840 else if (abi_checks
3841 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3842 as_bad (_("`gp=32' used with a 64-bit ABI"));
3843 else if (abi_checks
3844 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3845 as_bad (_("`gp=64' used with a 32-bit ABI"));
3846
3847 /* Check the size of the float registers agrees with the ABI and ISA. */
3848 switch (opts->fp)
3849 {
3850 case 0:
3851 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3852 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3853 else if (opts->single_float == 1)
3854 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3855 break;
3856 case 64:
3857 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3858 as_bad (_("`fp=64' used with a 32-bit fpu"));
3859 else if (abi_checks
3860 && ABI_NEEDS_32BIT_REGS (mips_abi)
3861 && !ISA_HAS_MXHC1 (opts->isa))
3862 as_warn (_("`fp=64' used with a 32-bit ABI"));
3863 break;
3864 case 32:
3865 if (abi_checks
3866 && ABI_NEEDS_64BIT_REGS (mips_abi))
3867 as_warn (_("`fp=32' used with a 64-bit ABI"));
3868 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3869 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3870 break;
3871 default:
3872 as_bad (_("Unknown size of floating point registers"));
3873 break;
3874 }
3875
3876 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3877 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3878
3879 if (opts->micromips == 1 && opts->mips16 == 1)
3880 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3881 else if (ISA_IS_R6 (opts->isa)
3882 && (opts->micromips == 1
3883 || opts->mips16 == 1))
3884 as_fatal (_("`%s' cannot be used with `%s'"),
3885 opts->micromips ? "micromips" : "mips16",
3886 mips_cpu_info_from_isa (opts->isa)->name);
3887
3888 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3889 as_fatal (_("branch relaxation is not supported in `%s'"),
3890 mips_cpu_info_from_isa (opts->isa)->name);
3891}
3892
3893/* Perform consistency checks on the module level options exactly once.
3894 This is a deferred check that happens:
3895 at the first .set directive
3896 or, at the first pseudo op that generates code (inc .dc.a)
3897 or, at the first instruction
3898 or, at the end. */
3899
3900static void
3901file_mips_check_options (void)
3902{
3903 const struct mips_cpu_info *arch_info = 0;
3904
3905 if (file_mips_opts_checked)
3906 return;
3907
3908 /* The following code determines the register size.
3909 Similar code was added to GCC 3.3 (see override_options() in
3910 config/mips/mips.c). The GAS and GCC code should be kept in sync
3911 as much as possible. */
3912
3913 if (file_mips_opts.gp < 0)
3914 {
3915 /* Infer the integer register size from the ABI and processor.
3916 Restrict ourselves to 32-bit registers if that's all the
3917 processor has, or if the ABI cannot handle 64-bit registers. */
3918 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3919 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3920 ? 32 : 64;
3921 }
3922
3923 if (file_mips_opts.fp < 0)
3924 {
3925 /* No user specified float register size.
3926 ??? GAS treats single-float processors as though they had 64-bit
3927 float registers (although it complains when double-precision
3928 instructions are used). As things stand, saying they have 32-bit
3929 registers would lead to spurious "register must be even" messages.
3930 So here we assume float registers are never smaller than the
3931 integer ones. */
3932 if (file_mips_opts.gp == 64)
3933 /* 64-bit integer registers implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3935 else if ((file_mips_opts.ase & FP64_ASES)
3936 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3937 /* Handle ASEs that require 64-bit float registers, if possible. */
3938 file_mips_opts.fp = 64;
3939 else if (ISA_IS_R6 (mips_opts.isa))
3940 /* R6 implies 64-bit float registers. */
3941 file_mips_opts.fp = 64;
3942 else
3943 /* 32-bit float registers. */
3944 file_mips_opts.fp = 32;
3945 }
3946
3947 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3948
3949 /* Disable operations on odd-numbered floating-point registers by default
3950 when using the FPXX ABI. */
3951 if (file_mips_opts.oddspreg < 0)
3952 {
3953 if (file_mips_opts.fp == 0)
3954 file_mips_opts.oddspreg = 0;
3955 else
3956 file_mips_opts.oddspreg = 1;
3957 }
3958
3959 /* End of GCC-shared inference code. */
3960
3961 /* This flag is set when we have a 64-bit capable CPU but use only
3962 32-bit wide registers. Note that EABI does not use it. */
3963 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3964 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3965 || mips_abi == O32_ABI))
3966 mips_32bitmode = 1;
3967
3968 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3969 as_bad (_("trap exception not supported at ISA 1"));
3970
3971 /* If the selected architecture includes support for ASEs, enable
3972 generation of code for them. */
3973 if (file_mips_opts.mips16 == -1)
3974 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3975 if (file_mips_opts.micromips == -1)
3976 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3977 ? 1 : 0;
3978
3979 if (mips_nan2008 == -1)
3980 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3981 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3982 as_fatal (_("`%s' does not support legacy NaN"),
3983 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3984
3985 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3986 being selected implicitly. */
3987 if (file_mips_opts.fp != 64)
3988 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3989
3990 /* If the user didn't explicitly select or deselect a particular ASE,
3991 use the default setting for the CPU. */
3992 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3993
3994 /* Set up the current options. These may change throughout assembly. */
3995 mips_opts = file_mips_opts;
3996
3997 mips_check_isa_supports_ases ();
3998 mips_check_options (&file_mips_opts, TRUE);
3999 file_mips_opts_checked = TRUE;
4000
4001 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4002 as_warn (_("could not set architecture and machine"));
4003}
4004
4005void
4006md_assemble (char *str)
4007{
4008 struct mips_cl_insn insn;
4009 bfd_reloc_code_real_type unused_reloc[3]
4010 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4011
4012 file_mips_check_options ();
4013
4014 imm_expr.X_op = O_absent;
4015 offset_expr.X_op = O_absent;
4016 offset_reloc[0] = BFD_RELOC_UNUSED;
4017 offset_reloc[1] = BFD_RELOC_UNUSED;
4018 offset_reloc[2] = BFD_RELOC_UNUSED;
4019
4020 mips_mark_labels ();
4021 mips_assembling_insn = TRUE;
4022 clear_insn_error ();
4023
4024 if (mips_opts.mips16)
4025 mips16_ip (str, &insn);
4026 else
4027 {
4028 mips_ip (str, &insn);
4029 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4030 str, insn.insn_opcode));
4031 }
4032
4033 if (insn_error.msg)
4034 report_insn_error (str);
4035 else if (insn.insn_mo->pinfo == INSN_MACRO)
4036 {
4037 macro_start ();
4038 if (mips_opts.mips16)
4039 mips16_macro (&insn);
4040 else
4041 macro (&insn, str);
4042 macro_end ();
4043 }
4044 else
4045 {
4046 if (offset_expr.X_op != O_absent)
4047 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4048 else
4049 append_insn (&insn, NULL, unused_reloc, FALSE);
4050 }
4051
4052 mips_assembling_insn = FALSE;
4053}
4054
4055/* Convenience functions for abstracting away the differences between
4056 MIPS16 and non-MIPS16 relocations. */
4057
4058static inline bfd_boolean
4059mips16_reloc_p (bfd_reloc_code_real_type reloc)
4060{
4061 switch (reloc)
4062 {
4063 case BFD_RELOC_MIPS16_JMP:
4064 case BFD_RELOC_MIPS16_GPREL:
4065 case BFD_RELOC_MIPS16_GOT16:
4066 case BFD_RELOC_MIPS16_CALL16:
4067 case BFD_RELOC_MIPS16_HI16_S:
4068 case BFD_RELOC_MIPS16_HI16:
4069 case BFD_RELOC_MIPS16_LO16:
4070 case BFD_RELOC_MIPS16_16_PCREL_S1:
4071 return TRUE;
4072
4073 default:
4074 return FALSE;
4075 }
4076}
4077
4078static inline bfd_boolean
4079micromips_reloc_p (bfd_reloc_code_real_type reloc)
4080{
4081 switch (reloc)
4082 {
4083 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4084 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4085 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4086 case BFD_RELOC_MICROMIPS_GPREL16:
4087 case BFD_RELOC_MICROMIPS_JMP:
4088 case BFD_RELOC_MICROMIPS_HI16:
4089 case BFD_RELOC_MICROMIPS_HI16_S:
4090 case BFD_RELOC_MICROMIPS_LO16:
4091 case BFD_RELOC_MICROMIPS_LITERAL:
4092 case BFD_RELOC_MICROMIPS_GOT16:
4093 case BFD_RELOC_MICROMIPS_CALL16:
4094 case BFD_RELOC_MICROMIPS_GOT_HI16:
4095 case BFD_RELOC_MICROMIPS_GOT_LO16:
4096 case BFD_RELOC_MICROMIPS_CALL_HI16:
4097 case BFD_RELOC_MICROMIPS_CALL_LO16:
4098 case BFD_RELOC_MICROMIPS_SUB:
4099 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4100 case BFD_RELOC_MICROMIPS_GOT_OFST:
4101 case BFD_RELOC_MICROMIPS_GOT_DISP:
4102 case BFD_RELOC_MICROMIPS_HIGHEST:
4103 case BFD_RELOC_MICROMIPS_HIGHER:
4104 case BFD_RELOC_MICROMIPS_SCN_DISP:
4105 case BFD_RELOC_MICROMIPS_JALR:
4106 return TRUE;
4107
4108 default:
4109 return FALSE;
4110 }
4111}
4112
4113static inline bfd_boolean
4114jmp_reloc_p (bfd_reloc_code_real_type reloc)
4115{
4116 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4117}
4118
4119static inline bfd_boolean
4120b_reloc_p (bfd_reloc_code_real_type reloc)
4121{
4122 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4123 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4124 || reloc == BFD_RELOC_16_PCREL_S2
4125 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4126 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4127 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4128 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4129}
4130
4131static inline bfd_boolean
4132got16_reloc_p (bfd_reloc_code_real_type reloc)
4133{
4134 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4135 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4136}
4137
4138static inline bfd_boolean
4139hi16_reloc_p (bfd_reloc_code_real_type reloc)
4140{
4141 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4142 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4143}
4144
4145static inline bfd_boolean
4146lo16_reloc_p (bfd_reloc_code_real_type reloc)
4147{
4148 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4149 || reloc == BFD_RELOC_MICROMIPS_LO16);
4150}
4151
4152static inline bfd_boolean
4153jalr_reloc_p (bfd_reloc_code_real_type reloc)
4154{
4155 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4156}
4157
4158static inline bfd_boolean
4159gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4160{
4161 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4162 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4163}
4164
4165/* Return true if RELOC is a PC-relative relocation that does not have
4166 full address range. */
4167
4168static inline bfd_boolean
4169limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4170{
4171 switch (reloc)
4172 {
4173 case BFD_RELOC_16_PCREL_S2:
4174 case BFD_RELOC_MIPS16_16_PCREL_S1:
4175 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4176 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4177 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4178 case BFD_RELOC_MIPS_21_PCREL_S2:
4179 case BFD_RELOC_MIPS_26_PCREL_S2:
4180 case BFD_RELOC_MIPS_18_PCREL_S3:
4181 case BFD_RELOC_MIPS_19_PCREL_S2:
4182 return TRUE;
4183
4184 case BFD_RELOC_32_PCREL:
4185 case BFD_RELOC_HI16_S_PCREL:
4186 case BFD_RELOC_LO16_PCREL:
4187 return HAVE_64BIT_ADDRESSES;
4188
4189 default:
4190 return FALSE;
4191 }
4192}
4193
4194/* Return true if the given relocation might need a matching %lo().
4195 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4196 need a matching %lo() when applied to local symbols. */
4197
4198static inline bfd_boolean
4199reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4200{
4201 return (HAVE_IN_PLACE_ADDENDS
4202 && (hi16_reloc_p (reloc)
4203 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4204 all GOT16 relocations evaluate to "G". */
4205 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4206}
4207
4208/* Return the type of %lo() reloc needed by RELOC, given that
4209 reloc_needs_lo_p. */
4210
4211static inline bfd_reloc_code_real_type
4212matching_lo_reloc (bfd_reloc_code_real_type reloc)
4213{
4214 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4215 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4216 : BFD_RELOC_LO16));
4217}
4218
4219/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4220 relocation. */
4221
4222static inline bfd_boolean
4223fixup_has_matching_lo_p (fixS *fixp)
4224{
4225 return (fixp->fx_next != NULL
4226 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4227 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4228 && fixp->fx_offset == fixp->fx_next->fx_offset);
4229}
4230
4231/* Move all labels in LABELS to the current insertion point. TEXT_P
4232 says whether the labels refer to text or data. */
4233
4234static void
4235mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4236{
4237 struct insn_label_list *l;
4238 valueT val;
4239
4240 for (l = labels; l != NULL; l = l->next)
4241 {
4242 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4243 symbol_set_frag (l->label, frag_now);
4244 val = (valueT) frag_now_fix ();
4245 /* MIPS16/microMIPS text labels are stored as odd. */
4246 if (text_p && HAVE_CODE_COMPRESSION)
4247 ++val;
4248 S_SET_VALUE (l->label, val);
4249 }
4250}
4251
4252/* Move all labels in insn_labels to the current insertion point
4253 and treat them as text labels. */
4254
4255static void
4256mips_move_text_labels (void)
4257{
4258 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4259}
4260
4261static bfd_boolean
4262s_is_linkonce (symbolS *sym, segT from_seg)
4263{
4264 bfd_boolean linkonce = FALSE;
4265 segT symseg = S_GET_SEGMENT (sym);
4266
4267 if (symseg != from_seg && !S_IS_LOCAL (sym))
4268 {
4269 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4270 linkonce = TRUE;
4271 /* The GNU toolchain uses an extension for ELF: a section
4272 beginning with the magic string .gnu.linkonce is a
4273 linkonce section. */
4274 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4275 sizeof ".gnu.linkonce" - 1) == 0)
4276 linkonce = TRUE;
4277 }
4278 return linkonce;
4279}
4280
4281/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4282 linker to handle them specially, such as generating jalx instructions
4283 when needed. We also make them odd for the duration of the assembly,
4284 in order to generate the right sort of code. We will make them even
4285 in the adjust_symtab routine, while leaving them marked. This is
4286 convenient for the debugger and the disassembler. The linker knows
4287 to make them odd again. */
4288
4289static void
4290mips_compressed_mark_label (symbolS *label)
4291{
4292 gas_assert (HAVE_CODE_COMPRESSION);
4293
4294 if (mips_opts.mips16)
4295 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4296 else
4297 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4298 if ((S_GET_VALUE (label) & 1) == 0
4299 /* Don't adjust the address if the label is global or weak, or
4300 in a link-once section, since we'll be emitting symbol reloc
4301 references to it which will be patched up by the linker, and
4302 the final value of the symbol may or may not be MIPS16/microMIPS. */
4303 && !S_IS_WEAK (label)
4304 && !S_IS_EXTERNAL (label)
4305 && !s_is_linkonce (label, now_seg))
4306 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4307}
4308
4309/* Mark preceding MIPS16 or microMIPS instruction labels. */
4310
4311static void
4312mips_compressed_mark_labels (void)
4313{
4314 struct insn_label_list *l;
4315
4316 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4317 mips_compressed_mark_label (l->label);
4318}
4319
4320/* End the current frag. Make it a variant frag and record the
4321 relaxation info. */
4322
4323static void
4324relax_close_frag (void)
4325{
4326 mips_macro_warning.first_frag = frag_now;
4327 frag_var (rs_machine_dependent, 0, 0,
4328 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4329 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4330
4331 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4332 mips_relax.first_fixup = 0;
4333}
4334
4335/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4336 See the comment above RELAX_ENCODE for more details. */
4337
4338static void
4339relax_start (symbolS *symbol)
4340{
4341 gas_assert (mips_relax.sequence == 0);
4342 mips_relax.sequence = 1;
4343 mips_relax.symbol = symbol;
4344}
4345
4346/* Start generating the second version of a relaxable sequence.
4347 See the comment above RELAX_ENCODE for more details. */
4348
4349static void
4350relax_switch (void)
4351{
4352 gas_assert (mips_relax.sequence == 1);
4353 mips_relax.sequence = 2;
4354}
4355
4356/* End the current relaxable sequence. */
4357
4358static void
4359relax_end (void)
4360{
4361 gas_assert (mips_relax.sequence == 2);
4362 relax_close_frag ();
4363 mips_relax.sequence = 0;
4364}
4365
4366/* Return true if IP is a delayed branch or jump. */
4367
4368static inline bfd_boolean
4369delayed_branch_p (const struct mips_cl_insn *ip)
4370{
4371 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4372 | INSN_COND_BRANCH_DELAY
4373 | INSN_COND_BRANCH_LIKELY)) != 0;
4374}
4375
4376/* Return true if IP is a compact branch or jump. */
4377
4378static inline bfd_boolean
4379compact_branch_p (const struct mips_cl_insn *ip)
4380{
4381 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4382 | INSN2_COND_BRANCH)) != 0;
4383}
4384
4385/* Return true if IP is an unconditional branch or jump. */
4386
4387static inline bfd_boolean
4388uncond_branch_p (const struct mips_cl_insn *ip)
4389{
4390 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4391 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4392}
4393
4394/* Return true if IP is a branch-likely instruction. */
4395
4396static inline bfd_boolean
4397branch_likely_p (const struct mips_cl_insn *ip)
4398{
4399 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4400}
4401
4402/* Return the type of nop that should be used to fill the delay slot
4403 of delayed branch IP. */
4404
4405static struct mips_cl_insn *
4406get_delay_slot_nop (const struct mips_cl_insn *ip)
4407{
4408 if (mips_opts.micromips
4409 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4410 return &micromips_nop32_insn;
4411 return NOP_INSN;
4412}
4413
4414/* Return a mask that has bit N set if OPCODE reads the register(s)
4415 in operand N. */
4416
4417static unsigned int
4418insn_read_mask (const struct mips_opcode *opcode)
4419{
4420 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4421}
4422
4423/* Return a mask that has bit N set if OPCODE writes to the register(s)
4424 in operand N. */
4425
4426static unsigned int
4427insn_write_mask (const struct mips_opcode *opcode)
4428{
4429 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4430}
4431
4432/* Return a mask of the registers specified by operand OPERAND of INSN.
4433 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4434 is set. */
4435
4436static unsigned int
4437operand_reg_mask (const struct mips_cl_insn *insn,
4438 const struct mips_operand *operand,
4439 unsigned int type_mask)
4440{
4441 unsigned int uval, vsel;
4442
4443 switch (operand->type)
4444 {
4445 case OP_INT:
4446 case OP_MAPPED_INT:
4447 case OP_MSB:
4448 case OP_PCREL:
4449 case OP_PERF_REG:
4450 case OP_ADDIUSP_INT:
4451 case OP_ENTRY_EXIT_LIST:
4452 case OP_REPEAT_DEST_REG:
4453 case OP_REPEAT_PREV_REG:
4454 case OP_PC:
4455 case OP_VU0_SUFFIX:
4456 case OP_VU0_MATCH_SUFFIX:
4457 case OP_IMM_INDEX:
4458 abort ();
4459
4460 case OP_REG:
4461 case OP_OPTIONAL_REG:
4462 {
4463 const struct mips_reg_operand *reg_op;
4464
4465 reg_op = (const struct mips_reg_operand *) operand;
4466 if (!(type_mask & (1 << reg_op->reg_type)))
4467 return 0;
4468 uval = insn_extract_operand (insn, operand);
4469 return 1 << mips_decode_reg_operand (reg_op, uval);
4470 }
4471
4472 case OP_REG_PAIR:
4473 {
4474 const struct mips_reg_pair_operand *pair_op;
4475
4476 pair_op = (const struct mips_reg_pair_operand *) operand;
4477 if (!(type_mask & (1 << pair_op->reg_type)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4481 }
4482
4483 case OP_CLO_CLZ_DEST:
4484 if (!(type_mask & (1 << OP_REG_GP)))
4485 return 0;
4486 uval = insn_extract_operand (insn, operand);
4487 return (1 << (uval & 31)) | (1 << (uval >> 5));
4488
4489 case OP_SAME_RS_RT:
4490 if (!(type_mask & (1 << OP_REG_GP)))
4491 return 0;
4492 uval = insn_extract_operand (insn, operand);
4493 gas_assert ((uval & 31) == (uval >> 5));
4494 return 1 << (uval & 31);
4495
4496 case OP_CHECK_PREV:
4497 case OP_NON_ZERO_REG:
4498 if (!(type_mask & (1 << OP_REG_GP)))
4499 return 0;
4500 uval = insn_extract_operand (insn, operand);
4501 return 1 << (uval & 31);
4502
4503 case OP_LWM_SWM_LIST:
4504 abort ();
4505
4506 case OP_SAVE_RESTORE_LIST:
4507 abort ();
4508
4509 case OP_MDMX_IMM_REG:
4510 if (!(type_mask & (1 << OP_REG_VEC)))
4511 return 0;
4512 uval = insn_extract_operand (insn, operand);
4513 vsel = uval >> 5;
4514 if ((vsel & 0x18) == 0x18)
4515 return 0;
4516 return 1 << (uval & 31);
4517
4518 case OP_REG_INDEX:
4519 if (!(type_mask & (1 << OP_REG_GP)))
4520 return 0;
4521 return 1 << insn_extract_operand (insn, operand);
4522 }
4523 abort ();
4524}
4525
4526/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4527 where bit N of OPNO_MASK is set if operand N should be included.
4528 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4529 is set. */
4530
4531static unsigned int
4532insn_reg_mask (const struct mips_cl_insn *insn,
4533 unsigned int type_mask, unsigned int opno_mask)
4534{
4535 unsigned int opno, reg_mask;
4536
4537 opno = 0;
4538 reg_mask = 0;
4539 while (opno_mask != 0)
4540 {
4541 if (opno_mask & 1)
4542 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4543 opno_mask >>= 1;
4544 opno += 1;
4545 }
4546 return reg_mask;
4547}
4548
4549/* Return the mask of core registers that IP reads. */
4550
4551static unsigned int
4552gpr_read_mask (const struct mips_cl_insn *ip)
4553{
4554 unsigned long pinfo, pinfo2;
4555 unsigned int mask;
4556
4557 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4558 pinfo = ip->insn_mo->pinfo;
4559 pinfo2 = ip->insn_mo->pinfo2;
4560 if (pinfo & INSN_UDI)
4561 {
4562 /* UDI instructions have traditionally been assumed to read RS
4563 and RT. */
4564 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4565 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4566 }
4567 if (pinfo & INSN_READ_GPR_24)
4568 mask |= 1 << 24;
4569 if (pinfo2 & INSN2_READ_GPR_16)
4570 mask |= 1 << 16;
4571 if (pinfo2 & INSN2_READ_SP)
4572 mask |= 1 << SP;
4573 if (pinfo2 & INSN2_READ_GPR_31)
4574 mask |= 1 << 31;
4575 /* Don't include register 0. */
4576 return mask & ~1;
4577}
4578
4579/* Return the mask of core registers that IP writes. */
4580
4581static unsigned int
4582gpr_write_mask (const struct mips_cl_insn *ip)
4583{
4584 unsigned long pinfo, pinfo2;
4585 unsigned int mask;
4586
4587 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4588 pinfo = ip->insn_mo->pinfo;
4589 pinfo2 = ip->insn_mo->pinfo2;
4590 if (pinfo & INSN_WRITE_GPR_24)
4591 mask |= 1 << 24;
4592 if (pinfo & INSN_WRITE_GPR_31)
4593 mask |= 1 << 31;
4594 if (pinfo & INSN_UDI)
4595 /* UDI instructions have traditionally been assumed to write to RD. */
4596 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4597 if (pinfo2 & INSN2_WRITE_SP)
4598 mask |= 1 << SP;
4599 /* Don't include register 0. */
4600 return mask & ~1;
4601}
4602
4603/* Return the mask of floating-point registers that IP reads. */
4604
4605static unsigned int
4606fpr_read_mask (const struct mips_cl_insn *ip)
4607{
4608 unsigned long pinfo;
4609 unsigned int mask;
4610
4611 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4612 | (1 << OP_REG_MSA)),
4613 insn_read_mask (ip->insn_mo));
4614 pinfo = ip->insn_mo->pinfo;
4615 /* Conservatively treat all operands to an FP_D instruction are doubles.
4616 (This is overly pessimistic for things like cvt.d.s.) */
4617 if (FPR_SIZE != 64 && (pinfo & FP_D))
4618 mask |= mask << 1;
4619 return mask;
4620}
4621
4622/* Return the mask of floating-point registers that IP writes. */
4623
4624static unsigned int
4625fpr_write_mask (const struct mips_cl_insn *ip)
4626{
4627 unsigned long pinfo;
4628 unsigned int mask;
4629
4630 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4631 | (1 << OP_REG_MSA)),
4632 insn_write_mask (ip->insn_mo));
4633 pinfo = ip->insn_mo->pinfo;
4634 /* Conservatively treat all operands to an FP_D instruction are doubles.
4635 (This is overly pessimistic for things like cvt.s.d.) */
4636 if (FPR_SIZE != 64 && (pinfo & FP_D))
4637 mask |= mask << 1;
4638 return mask;
4639}
4640
4641/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4642 Check whether that is allowed. */
4643
4644static bfd_boolean
4645mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4646{
4647 const char *s = insn->name;
4648 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4649 || FPR_SIZE == 64)
4650 && mips_opts.oddspreg;
4651
4652 if (insn->pinfo == INSN_MACRO)
4653 /* Let a macro pass, we'll catch it later when it is expanded. */
4654 return TRUE;
4655
4656 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4657 otherwise it depends on oddspreg. */
4658 if ((insn->pinfo & FP_S)
4659 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4660 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4661 return FPR_SIZE == 32 || oddspreg;
4662
4663 /* Allow odd registers for single-precision ops and double-precision if the
4664 floating-point registers are 64-bit wide. */
4665 switch (insn->pinfo & (FP_S | FP_D))
4666 {
4667 case FP_S:
4668 case 0:
4669 return oddspreg;
4670 case FP_D:
4671 return FPR_SIZE == 64;
4672 default:
4673 break;
4674 }
4675
4676 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4677 s = strchr (insn->name, '.');
4678 if (s != NULL && opnum == 2)
4679 s = strchr (s + 1, '.');
4680 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4681 return oddspreg;
4682
4683 return FPR_SIZE == 64;
4684}
4685
4686/* Information about an instruction argument that we're trying to match. */
4687struct mips_arg_info
4688{
4689 /* The instruction so far. */
4690 struct mips_cl_insn *insn;
4691
4692 /* The first unconsumed operand token. */
4693 struct mips_operand_token *token;
4694
4695 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4696 int opnum;
4697
4698 /* The 1-based argument number, for error reporting. This does not
4699 count elided optional registers, etc.. */
4700 int argnum;
4701
4702 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4703 unsigned int last_regno;
4704
4705 /* If the first operand was an OP_REG, this is the register that it
4706 specified, otherwise it is ILLEGAL_REG. */
4707 unsigned int dest_regno;
4708
4709 /* The value of the last OP_INT operand. Only used for OP_MSB,
4710 where it gives the lsb position. */
4711 unsigned int last_op_int;
4712
4713 /* If true, match routines should assume that no later instruction
4714 alternative matches and should therefore be as accommodating as
4715 possible. Match routines should not report errors if something
4716 is only invalid for !LAX_MATCH. */
4717 bfd_boolean lax_match;
4718
4719 /* True if a reference to the current AT register was seen. */
4720 bfd_boolean seen_at;
4721};
4722
4723/* Record that the argument is out of range. */
4724
4725static void
4726match_out_of_range (struct mips_arg_info *arg)
4727{
4728 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4729}
4730
4731/* Record that the argument isn't constant but needs to be. */
4732
4733static void
4734match_not_constant (struct mips_arg_info *arg)
4735{
4736 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4737 arg->argnum);
4738}
4739
4740/* Try to match an OT_CHAR token for character CH. Consume the token
4741 and return true on success, otherwise return false. */
4742
4743static bfd_boolean
4744match_char (struct mips_arg_info *arg, char ch)
4745{
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4747 {
4748 ++arg->token;
4749 if (ch == ',')
4750 arg->argnum += 1;
4751 return TRUE;
4752 }
4753 return FALSE;
4754}
4755
4756/* Try to get an expression from the next tokens in ARG. Consume the
4757 tokens and return true on success, storing the expression value in
4758 VALUE and relocation types in R. */
4759
4760static bfd_boolean
4761match_expression (struct mips_arg_info *arg, expressionS *value,
4762 bfd_reloc_code_real_type *r)
4763{
4764 /* If the next token is a '(' that was parsed as being part of a base
4765 expression, assume we have an elided offset. The later match will fail
4766 if this turns out to be wrong. */
4767 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4768 {
4769 value->X_op = O_constant;
4770 value->X_add_number = 0;
4771 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4772 return TRUE;
4773 }
4774
4775 /* Reject register-based expressions such as "0+$2" and "(($2))".
4776 For plain registers the default error seems more appropriate. */
4777 if (arg->token->type == OT_INTEGER
4778 && arg->token->u.integer.value.X_op == O_register)
4779 {
4780 set_insn_error (arg->argnum, _("register value used as expression"));
4781 return FALSE;
4782 }
4783
4784 if (arg->token->type == OT_INTEGER)
4785 {
4786 *value = arg->token->u.integer.value;
4787 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4788 ++arg->token;
4789 return TRUE;
4790 }
4791
4792 set_insn_error_i
4793 (arg->argnum, _("operand %d must be an immediate expression"),
4794 arg->argnum);
4795 return FALSE;
4796}
4797
4798/* Try to get a constant expression from the next tokens in ARG. Consume
4799 the tokens and return return true on success, storing the constant value
4800 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4801 error. */
4802
4803static bfd_boolean
4804match_const_int (struct mips_arg_info *arg, offsetT *value)
4805{
4806 expressionS ex;
4807 bfd_reloc_code_real_type r[3];
4808
4809 if (!match_expression (arg, &ex, r))
4810 return FALSE;
4811
4812 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4813 *value = ex.X_add_number;
4814 else
4815 {
4816 match_not_constant (arg);
4817 return FALSE;
4818 }
4819 return TRUE;
4820}
4821
4822/* Return the RTYPE_* flags for a register operand of type TYPE that
4823 appears in instruction OPCODE. */
4824
4825static unsigned int
4826convert_reg_type (const struct mips_opcode *opcode,
4827 enum mips_reg_operand_type type)
4828{
4829 switch (type)
4830 {
4831 case OP_REG_GP:
4832 return RTYPE_NUM | RTYPE_GP;
4833
4834 case OP_REG_FP:
4835 /* Allow vector register names for MDMX if the instruction is a 64-bit
4836 FPR load, store or move (including moves to and from GPRs). */
4837 if ((mips_opts.ase & ASE_MDMX)
4838 && (opcode->pinfo & FP_D)
4839 && (opcode->pinfo & (INSN_COPROC_MOVE
4840 | INSN_COPROC_MEMORY_DELAY
4841 | INSN_LOAD_COPROC
4842 | INSN_LOAD_MEMORY
4843 | INSN_STORE_MEMORY)))
4844 return RTYPE_FPU | RTYPE_VEC;
4845 return RTYPE_FPU;
4846
4847 case OP_REG_CCC:
4848 if (opcode->pinfo & (FP_D | FP_S))
4849 return RTYPE_CCC | RTYPE_FCC;
4850 return RTYPE_CCC;
4851
4852 case OP_REG_VEC:
4853 if (opcode->membership & INSN_5400)
4854 return RTYPE_FPU;
4855 return RTYPE_FPU | RTYPE_VEC;
4856
4857 case OP_REG_ACC:
4858 return RTYPE_ACC;
4859
4860 case OP_REG_COPRO:
4861 if (opcode->name[strlen (opcode->name) - 1] == '0')
4862 return RTYPE_NUM | RTYPE_CP0;
4863 return RTYPE_NUM;
4864
4865 case OP_REG_HW:
4866 return RTYPE_NUM;
4867
4868 case OP_REG_VI:
4869 return RTYPE_NUM | RTYPE_VI;
4870
4871 case OP_REG_VF:
4872 return RTYPE_NUM | RTYPE_VF;
4873
4874 case OP_REG_R5900_I:
4875 return RTYPE_R5900_I;
4876
4877 case OP_REG_R5900_Q:
4878 return RTYPE_R5900_Q;
4879
4880 case OP_REG_R5900_R:
4881 return RTYPE_R5900_R;
4882
4883 case OP_REG_R5900_ACC:
4884 return RTYPE_R5900_ACC;
4885
4886 case OP_REG_MSA:
4887 return RTYPE_MSA;
4888
4889 case OP_REG_MSA_CTRL:
4890 return RTYPE_NUM;
4891 }
4892 abort ();
4893}
4894
4895/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4896
4897static void
4898check_regno (struct mips_arg_info *arg,
4899 enum mips_reg_operand_type type, unsigned int regno)
4900{
4901 if (AT && type == OP_REG_GP && regno == AT)
4902 arg->seen_at = TRUE;
4903
4904 if (type == OP_REG_FP
4905 && (regno & 1) != 0
4906 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4907 {
4908 /* This was a warning prior to introducing O32 FPXX and FP64 support
4909 so maintain a warning for FP32 but raise an error for the new
4910 cases. */
4911 if (FPR_SIZE == 32)
4912 as_warn (_("float register should be even, was %d"), regno);
4913 else
4914 as_bad (_("float register should be even, was %d"), regno);
4915 }
4916
4917 if (type == OP_REG_CCC)
4918 {
4919 const char *name;
4920 size_t length;
4921
4922 name = arg->insn->insn_mo->name;
4923 length = strlen (name);
4924 if ((regno & 1) != 0
4925 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4926 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4927 as_warn (_("condition code register should be even for %s, was %d"),
4928 name, regno);
4929
4930 if ((regno & 3) != 0
4931 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4932 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4933 name, regno);
4934 }
4935}
4936
4937/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4938 a register of type TYPE. Return true on success, storing the register
4939 number in *REGNO and warning about any dubious uses. */
4940
4941static bfd_boolean
4942match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4943 unsigned int symval, unsigned int *regno)
4944{
4945 if (type == OP_REG_VEC)
4946 symval = mips_prefer_vec_regno (symval);
4947 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4948 return FALSE;
4949
4950 *regno = symval & RNUM_MASK;
4951 check_regno (arg, type, *regno);
4952 return TRUE;
4953}
4954
4955/* Try to interpret the next token in ARG as a register of type TYPE.
4956 Consume the token and return true on success, storing the register
4957 number in *REGNO. Return false on failure. */
4958
4959static bfd_boolean
4960match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4961 unsigned int *regno)
4962{
4963 if (arg->token->type == OT_REG
4964 && match_regno (arg, type, arg->token->u.regno, regno))
4965 {
4966 ++arg->token;
4967 return TRUE;
4968 }
4969 return FALSE;
4970}
4971
4972/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4973 Consume the token and return true on success, storing the register numbers
4974 in *REGNO1 and *REGNO2. Return false on failure. */
4975
4976static bfd_boolean
4977match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4978 unsigned int *regno1, unsigned int *regno2)
4979{
4980 if (match_reg (arg, type, regno1))
4981 {
4982 *regno2 = *regno1;
4983 return TRUE;
4984 }
4985 if (arg->token->type == OT_REG_RANGE
4986 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4987 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4988 && *regno1 <= *regno2)
4989 {
4990 ++arg->token;
4991 return TRUE;
4992 }
4993 return FALSE;
4994}
4995
4996/* OP_INT matcher. */
4997
4998static bfd_boolean
4999match_int_operand (struct mips_arg_info *arg,
5000 const struct mips_operand *operand_base)
5001{
5002 const struct mips_int_operand *operand;
5003 unsigned int uval;
5004 int min_val, max_val, factor;
5005 offsetT sval;
5006
5007 operand = (const struct mips_int_operand *) operand_base;
5008 factor = 1 << operand->shift;
5009 min_val = mips_int_operand_min (operand);
5010 max_val = mips_int_operand_max (operand);
5011
5012 if (operand_base->lsb == 0
5013 && operand_base->size == 16
5014 && operand->shift == 0
5015 && operand->bias == 0
5016 && (operand->max_val == 32767 || operand->max_val == 65535))
5017 {
5018 /* The operand can be relocated. */
5019 if (!match_expression (arg, &offset_expr, offset_reloc))
5020 return FALSE;
5021
5022 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5023 /* Relocation operators were used. Accept the arguent and
5024 leave the relocation value in offset_expr and offset_relocs
5025 for the caller to process. */
5026 return TRUE;
5027
5028 if (offset_expr.X_op != O_constant)
5029 {
5030 /* Accept non-constant operands if no later alternative matches,
5031 leaving it for the caller to process. */
5032 if (!arg->lax_match)
5033 return FALSE;
5034 offset_reloc[0] = BFD_RELOC_LO16;
5035 return TRUE;
5036 }
5037
5038 /* Clear the global state; we're going to install the operand
5039 ourselves. */
5040 sval = offset_expr.X_add_number;
5041 offset_expr.X_op = O_absent;
5042
5043 /* For compatibility with older assemblers, we accept
5044 0x8000-0xffff as signed 16-bit numbers when only
5045 signed numbers are allowed. */
5046 if (sval > max_val)
5047 {
5048 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5049 if (!arg->lax_match && sval <= max_val)
5050 return FALSE;
5051 }
5052 }
5053 else
5054 {
5055 if (!match_const_int (arg, &sval))
5056 return FALSE;
5057 }
5058
5059 arg->last_op_int = sval;
5060
5061 if (sval < min_val || sval > max_val || sval % factor)
5062 {
5063 match_out_of_range (arg);
5064 return FALSE;
5065 }
5066
5067 uval = (unsigned int) sval >> operand->shift;
5068 uval -= operand->bias;
5069
5070 /* Handle -mfix-cn63xxp1. */
5071 if (arg->opnum == 1
5072 && mips_fix_cn63xxp1
5073 && !mips_opts.micromips
5074 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5075 switch (uval)
5076 {
5077 case 5:
5078 case 25:
5079 case 26:
5080 case 27:
5081 case 28:
5082 case 29:
5083 case 30:
5084 case 31:
5085 /* These are ok. */
5086 break;
5087
5088 default:
5089 /* The rest must be changed to 28. */
5090 uval = 28;
5091 break;
5092 }
5093
5094 insn_insert_operand (arg->insn, operand_base, uval);
5095 return TRUE;
5096}
5097
5098/* OP_MAPPED_INT matcher. */
5099
5100static bfd_boolean
5101match_mapped_int_operand (struct mips_arg_info *arg,
5102 const struct mips_operand *operand_base)
5103{
5104 const struct mips_mapped_int_operand *operand;
5105 unsigned int uval, num_vals;
5106 offsetT sval;
5107
5108 operand = (const struct mips_mapped_int_operand *) operand_base;
5109 if (!match_const_int (arg, &sval))
5110 return FALSE;
5111
5112 num_vals = 1 << operand_base->size;
5113 for (uval = 0; uval < num_vals; uval++)
5114 if (operand->int_map[uval] == sval)
5115 break;
5116 if (uval == num_vals)
5117 {
5118 match_out_of_range (arg);
5119 return FALSE;
5120 }
5121
5122 insn_insert_operand (arg->insn, operand_base, uval);
5123 return TRUE;
5124}
5125
5126/* OP_MSB matcher. */
5127
5128static bfd_boolean
5129match_msb_operand (struct mips_arg_info *arg,
5130 const struct mips_operand *operand_base)
5131{
5132 const struct mips_msb_operand *operand;
5133 int min_val, max_val, max_high;
5134 offsetT size, sval, high;
5135
5136 operand = (const struct mips_msb_operand *) operand_base;
5137 min_val = operand->bias;
5138 max_val = min_val + (1 << operand_base->size) - 1;
5139 max_high = operand->opsize;
5140
5141 if (!match_const_int (arg, &size))
5142 return FALSE;
5143
5144 high = size + arg->last_op_int;
5145 sval = operand->add_lsb ? high : size;
5146
5147 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5148 {
5149 match_out_of_range (arg);
5150 return FALSE;
5151 }
5152 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5153 return TRUE;
5154}
5155
5156/* OP_REG matcher. */
5157
5158static bfd_boolean
5159match_reg_operand (struct mips_arg_info *arg,
5160 const struct mips_operand *operand_base)
5161{
5162 const struct mips_reg_operand *operand;
5163 unsigned int regno, uval, num_vals;
5164
5165 operand = (const struct mips_reg_operand *) operand_base;
5166 if (!match_reg (arg, operand->reg_type, &regno))
5167 return FALSE;
5168
5169 if (operand->reg_map)
5170 {
5171 num_vals = 1 << operand->root.size;
5172 for (uval = 0; uval < num_vals; uval++)
5173 if (operand->reg_map[uval] == regno)
5174 break;
5175 if (num_vals == uval)
5176 return FALSE;
5177 }
5178 else
5179 uval = regno;
5180
5181 arg->last_regno = regno;
5182 if (arg->opnum == 1)
5183 arg->dest_regno = regno;
5184 insn_insert_operand (arg->insn, operand_base, uval);
5185 return TRUE;
5186}
5187
5188/* OP_REG_PAIR matcher. */
5189
5190static bfd_boolean
5191match_reg_pair_operand (struct mips_arg_info *arg,
5192 const struct mips_operand *operand_base)
5193{
5194 const struct mips_reg_pair_operand *operand;
5195 unsigned int regno1, regno2, uval, num_vals;
5196
5197 operand = (const struct mips_reg_pair_operand *) operand_base;
5198 if (!match_reg (arg, operand->reg_type, &regno1)
5199 || !match_char (arg, ',')
5200 || !match_reg (arg, operand->reg_type, &regno2))
5201 return FALSE;
5202
5203 num_vals = 1 << operand_base->size;
5204 for (uval = 0; uval < num_vals; uval++)
5205 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5206 break;
5207 if (uval == num_vals)
5208 return FALSE;
5209
5210 insn_insert_operand (arg->insn, operand_base, uval);
5211 return TRUE;
5212}
5213
5214/* OP_PCREL matcher. The caller chooses the relocation type. */
5215
5216static bfd_boolean
5217match_pcrel_operand (struct mips_arg_info *arg)
5218{
5219 bfd_reloc_code_real_type r[3];
5220
5221 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5222}
5223
5224/* OP_PERF_REG matcher. */
5225
5226static bfd_boolean
5227match_perf_reg_operand (struct mips_arg_info *arg,
5228 const struct mips_operand *operand)
5229{
5230 offsetT sval;
5231
5232 if (!match_const_int (arg, &sval))
5233 return FALSE;
5234
5235 if (sval != 0
5236 && (sval != 1
5237 || (mips_opts.arch == CPU_R5900
5238 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5239 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5240 {
5241 set_insn_error (arg->argnum, _("invalid performance register"));
5242 return FALSE;
5243 }
5244
5245 insn_insert_operand (arg->insn, operand, sval);
5246 return TRUE;
5247}
5248
5249/* OP_ADDIUSP matcher. */
5250
5251static bfd_boolean
5252match_addiusp_operand (struct mips_arg_info *arg,
5253 const struct mips_operand *operand)
5254{
5255 offsetT sval;
5256 unsigned int uval;
5257
5258 if (!match_const_int (arg, &sval))
5259 return FALSE;
5260
5261 if (sval % 4)
5262 {
5263 match_out_of_range (arg);
5264 return FALSE;
5265 }
5266
5267 sval /= 4;
5268 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5269 {
5270 match_out_of_range (arg);
5271 return FALSE;
5272 }
5273
5274 uval = (unsigned int) sval;
5275 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5276 insn_insert_operand (arg->insn, operand, uval);
5277 return TRUE;
5278}
5279
5280/* OP_CLO_CLZ_DEST matcher. */
5281
5282static bfd_boolean
5283match_clo_clz_dest_operand (struct mips_arg_info *arg,
5284 const struct mips_operand *operand)
5285{
5286 unsigned int regno;
5287
5288 if (!match_reg (arg, OP_REG_GP, &regno))
5289 return FALSE;
5290
5291 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5292 return TRUE;
5293}
5294
5295/* OP_CHECK_PREV matcher. */
5296
5297static bfd_boolean
5298match_check_prev_operand (struct mips_arg_info *arg,
5299 const struct mips_operand *operand_base)
5300{
5301 const struct mips_check_prev_operand *operand;
5302 unsigned int regno;
5303
5304 operand = (const struct mips_check_prev_operand *) operand_base;
5305
5306 if (!match_reg (arg, OP_REG_GP, &regno))
5307 return FALSE;
5308
5309 if (!operand->zero_ok && regno == 0)
5310 return FALSE;
5311
5312 if ((operand->less_than_ok && regno < arg->last_regno)
5313 || (operand->greater_than_ok && regno > arg->last_regno)
5314 || (operand->equal_ok && regno == arg->last_regno))
5315 {
5316 arg->last_regno = regno;
5317 insn_insert_operand (arg->insn, operand_base, regno);
5318 return TRUE;
5319 }
5320
5321 return FALSE;
5322}
5323
5324/* OP_SAME_RS_RT matcher. */
5325
5326static bfd_boolean
5327match_same_rs_rt_operand (struct mips_arg_info *arg,
5328 const struct mips_operand *operand)
5329{
5330 unsigned int regno;
5331
5332 if (!match_reg (arg, OP_REG_GP, &regno))
5333 return FALSE;
5334
5335 if (regno == 0)
5336 {
5337 set_insn_error (arg->argnum, _("the source register must not be $0"));
5338 return FALSE;
5339 }
5340
5341 arg->last_regno = regno;
5342
5343 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5344 return TRUE;
5345}
5346
5347/* OP_LWM_SWM_LIST matcher. */
5348
5349static bfd_boolean
5350match_lwm_swm_list_operand (struct mips_arg_info *arg,
5351 const struct mips_operand *operand)
5352{
5353 unsigned int reglist, sregs, ra, regno1, regno2;
5354 struct mips_arg_info reset;
5355
5356 reglist = 0;
5357 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5358 return FALSE;
5359 do
5360 {
5361 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5362 {
5363 reglist |= 1 << FP;
5364 regno2 = S7;
5365 }
5366 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5367 reset = *arg;
5368 }
5369 while (match_char (arg, ',')
5370 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5371 *arg = reset;
5372
5373 if (operand->size == 2)
5374 {
5375 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5376
5377 s0, ra
5378 s0, s1, ra, s2, s3
5379 s0-s2, ra
5380
5381 and any permutations of these. */
5382 if ((reglist & 0xfff1ffff) != 0x80010000)
5383 return FALSE;
5384
5385 sregs = (reglist >> 17) & 7;
5386 ra = 0;
5387 }
5388 else
5389 {
5390 /* The list must include at least one of ra and s0-sN,
5391 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5392 which are $23 and $30 respectively.) E.g.:
5393
5394 ra
5395 s0
5396 ra, s0, s1, s2
5397 s0-s8
5398 s0-s5, ra
5399
5400 and any permutations of these. */
5401 if ((reglist & 0x3f00ffff) != 0)
5402 return FALSE;
5403
5404 ra = (reglist >> 27) & 0x10;
5405 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5406 }
5407 sregs += 1;
5408 if ((sregs & -sregs) != sregs)
5409 return FALSE;
5410
5411 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5412 return TRUE;
5413}
5414
5415/* OP_ENTRY_EXIT_LIST matcher. */
5416
5417static unsigned int
5418match_entry_exit_operand (struct mips_arg_info *arg,
5419 const struct mips_operand *operand)
5420{
5421 unsigned int mask;
5422 bfd_boolean is_exit;
5423
5424 /* The format is the same for both ENTRY and EXIT, but the constraints
5425 are different. */
5426 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5427 mask = (is_exit ? 7 << 3 : 0);
5428 do
5429 {
5430 unsigned int regno1, regno2;
5431 bfd_boolean is_freg;
5432
5433 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5434 is_freg = FALSE;
5435 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5436 is_freg = TRUE;
5437 else
5438 return FALSE;
5439
5440 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5441 {
5442 mask &= ~(7 << 3);
5443 mask |= (5 + regno2) << 3;
5444 }
5445 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5446 mask |= (regno2 - 3) << 3;
5447 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5448 mask |= (regno2 - 15) << 1;
5449 else if (regno1 == RA && regno2 == RA)
5450 mask |= 1;
5451 else
5452 return FALSE;
5453 }
5454 while (match_char (arg, ','));
5455
5456 insn_insert_operand (arg->insn, operand, mask);
5457 return TRUE;
5458}
5459
5460/* OP_SAVE_RESTORE_LIST matcher. */
5461
5462static bfd_boolean
5463match_save_restore_list_operand (struct mips_arg_info *arg)
5464{
5465 unsigned int opcode, args, statics, sregs;
5466 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5467 offsetT frame_size;
5468
5469 opcode = arg->insn->insn_opcode;
5470 frame_size = 0;
5471 num_frame_sizes = 0;
5472 args = 0;
5473 statics = 0;
5474 sregs = 0;
5475 do
5476 {
5477 unsigned int regno1, regno2;
5478
5479 if (arg->token->type == OT_INTEGER)
5480 {
5481 /* Handle the frame size. */
5482 if (!match_const_int (arg, &frame_size))
5483 return FALSE;
5484 num_frame_sizes += 1;
5485 }
5486 else
5487 {
5488 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5489 return FALSE;
5490
5491 while (regno1 <= regno2)
5492 {
5493 if (regno1 >= 4 && regno1 <= 7)
5494 {
5495 if (num_frame_sizes == 0)
5496 /* args $a0-$a3 */
5497 args |= 1 << (regno1 - 4);
5498 else
5499 /* statics $a0-$a3 */
5500 statics |= 1 << (regno1 - 4);
5501 }
5502 else if (regno1 >= 16 && regno1 <= 23)
5503 /* $s0-$s7 */
5504 sregs |= 1 << (regno1 - 16);
5505 else if (regno1 == 30)
5506 /* $s8 */
5507 sregs |= 1 << 8;
5508 else if (regno1 == 31)
5509 /* Add $ra to insn. */
5510 opcode |= 0x40;
5511 else
5512 return FALSE;
5513 regno1 += 1;
5514 if (regno1 == 24)
5515 regno1 = 30;
5516 }
5517 }
5518 }
5519 while (match_char (arg, ','));
5520
5521 /* Encode args/statics combination. */
5522 if (args & statics)
5523 return FALSE;
5524 else if (args == 0xf)
5525 /* All $a0-$a3 are args. */
5526 opcode |= MIPS16_ALL_ARGS << 16;
5527 else if (statics == 0xf)
5528 /* All $a0-$a3 are statics. */
5529 opcode |= MIPS16_ALL_STATICS << 16;
5530 else
5531 {
5532 /* Count arg registers. */
5533 num_args = 0;
5534 while (args & 0x1)
5535 {
5536 args >>= 1;
5537 num_args += 1;
5538 }
5539 if (args != 0)
5540 return FALSE;
5541
5542 /* Count static registers. */
5543 num_statics = 0;
5544 while (statics & 0x8)
5545 {
5546 statics = (statics << 1) & 0xf;
5547 num_statics += 1;
5548 }
5549 if (statics != 0)
5550 return FALSE;
5551
5552 /* Encode args/statics. */
5553 opcode |= ((num_args << 2) | num_statics) << 16;
5554 }
5555
5556 /* Encode $s0/$s1. */
5557 if (sregs & (1 << 0)) /* $s0 */
5558 opcode |= 0x20;
5559 if (sregs & (1 << 1)) /* $s1 */
5560 opcode |= 0x10;
5561 sregs >>= 2;
5562
5563 /* Encode $s2-$s8. */
5564 num_sregs = 0;
5565 while (sregs & 1)
5566 {
5567 sregs >>= 1;
5568 num_sregs += 1;
5569 }
5570 if (sregs != 0)
5571 return FALSE;
5572 opcode |= num_sregs << 24;
5573
5574 /* Encode frame size. */
5575 if (num_frame_sizes == 0)
5576 {
5577 set_insn_error (arg->argnum, _("missing frame size"));
5578 return FALSE;
5579 }
5580 if (num_frame_sizes > 1)
5581 {
5582 set_insn_error (arg->argnum, _("frame size specified twice"));
5583 return FALSE;
5584 }
5585 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5586 {
5587 set_insn_error (arg->argnum, _("invalid frame size"));
5588 return FALSE;
5589 }
5590 if (frame_size != 128 || (opcode >> 16) != 0)
5591 {
5592 frame_size /= 8;
5593 opcode |= (((frame_size & 0xf0) << 16)
5594 | (frame_size & 0x0f));
5595 }
5596
5597 /* Finally build the instruction. */
5598 if ((opcode >> 16) != 0 || frame_size == 0)
5599 opcode |= MIPS16_EXTEND;
5600 arg->insn->insn_opcode = opcode;
5601 return TRUE;
5602}
5603
5604/* OP_MDMX_IMM_REG matcher. */
5605
5606static bfd_boolean
5607match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5608 const struct mips_operand *operand)
5609{
5610 unsigned int regno, uval;
5611 bfd_boolean is_qh;
5612 const struct mips_opcode *opcode;
5613
5614 /* The mips_opcode records whether this is an octobyte or quadhalf
5615 instruction. Start out with that bit in place. */
5616 opcode = arg->insn->insn_mo;
5617 uval = mips_extract_operand (operand, opcode->match);
5618 is_qh = (uval != 0);
5619
5620 if (arg->token->type == OT_REG)
5621 {
5622 if ((opcode->membership & INSN_5400)
5623 && strcmp (opcode->name, "rzu.ob") == 0)
5624 {
5625 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5626 arg->argnum);
5627 return FALSE;
5628 }
5629
5630 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5631 return FALSE;
5632 ++arg->token;
5633
5634 /* Check whether this is a vector register or a broadcast of
5635 a single element. */
5636 if (arg->token->type == OT_INTEGER_INDEX)
5637 {
5638 if (arg->token->u.index > (is_qh ? 3 : 7))
5639 {
5640 set_insn_error (arg->argnum, _("invalid element selector"));
5641 return FALSE;
5642 }
5643 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5644 ++arg->token;
5645 }
5646 else
5647 {
5648 /* A full vector. */
5649 if ((opcode->membership & INSN_5400)
5650 && (strcmp (opcode->name, "sll.ob") == 0
5651 || strcmp (opcode->name, "srl.ob") == 0))
5652 {
5653 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5654 arg->argnum);
5655 return FALSE;
5656 }
5657
5658 if (is_qh)
5659 uval |= MDMX_FMTSEL_VEC_QH << 5;
5660 else
5661 uval |= MDMX_FMTSEL_VEC_OB << 5;
5662 }
5663 uval |= regno;
5664 }
5665 else
5666 {
5667 offsetT sval;
5668
5669 if (!match_const_int (arg, &sval))
5670 return FALSE;
5671 if (sval < 0 || sval > 31)
5672 {
5673 match_out_of_range (arg);
5674 return FALSE;
5675 }
5676 uval |= (sval & 31);
5677 if (is_qh)
5678 uval |= MDMX_FMTSEL_IMM_QH << 5;
5679 else
5680 uval |= MDMX_FMTSEL_IMM_OB << 5;
5681 }
5682 insn_insert_operand (arg->insn, operand, uval);
5683 return TRUE;
5684}
5685
5686/* OP_IMM_INDEX matcher. */
5687
5688static bfd_boolean
5689match_imm_index_operand (struct mips_arg_info *arg,
5690 const struct mips_operand *operand)
5691{
5692 unsigned int max_val;
5693
5694 if (arg->token->type != OT_INTEGER_INDEX)
5695 return FALSE;
5696
5697 max_val = (1 << operand->size) - 1;
5698 if (arg->token->u.index > max_val)
5699 {
5700 match_out_of_range (arg);
5701 return FALSE;
5702 }
5703 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5704 ++arg->token;
5705 return TRUE;
5706}
5707
5708/* OP_REG_INDEX matcher. */
5709
5710static bfd_boolean
5711match_reg_index_operand (struct mips_arg_info *arg,
5712 const struct mips_operand *operand)
5713{
5714 unsigned int regno;
5715
5716 if (arg->token->type != OT_REG_INDEX)
5717 return FALSE;
5718
5719 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5720 return FALSE;
5721
5722 insn_insert_operand (arg->insn, operand, regno);
5723 ++arg->token;
5724 return TRUE;
5725}
5726
5727/* OP_PC matcher. */
5728
5729static bfd_boolean
5730match_pc_operand (struct mips_arg_info *arg)
5731{
5732 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5733 {
5734 ++arg->token;
5735 return TRUE;
5736 }
5737 return FALSE;
5738}
5739
5740/* OP_NON_ZERO_REG matcher. */
5741
5742static bfd_boolean
5743match_non_zero_reg_operand (struct mips_arg_info *arg,
5744 const struct mips_operand *operand)
5745{
5746 unsigned int regno;
5747
5748 if (!match_reg (arg, OP_REG_GP, &regno))
5749 return FALSE;
5750
5751 if (regno == 0)
5752 return FALSE;
5753
5754 arg->last_regno = regno;
5755 insn_insert_operand (arg->insn, operand, regno);
5756 return TRUE;
5757}
5758
5759/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5760 register that we need to match. */
5761
5762static bfd_boolean
5763match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5764{
5765 unsigned int regno;
5766
5767 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5768}
5769
5770/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5771 the length of the value in bytes (4 for float, 8 for double) and
5772 USING_GPRS says whether the destination is a GPR rather than an FPR.
5773
5774 Return the constant in IMM and OFFSET as follows:
5775
5776 - If the constant should be loaded via memory, set IMM to O_absent and
5777 OFFSET to the memory address.
5778
5779 - Otherwise, if the constant should be loaded into two 32-bit registers,
5780 set IMM to the O_constant to load into the high register and OFFSET
5781 to the corresponding value for the low register.
5782
5783 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5784
5785 These constants only appear as the last operand in an instruction,
5786 and every instruction that accepts them in any variant accepts them
5787 in all variants. This means we don't have to worry about backing out
5788 any changes if the instruction does not match. We just match
5789 unconditionally and report an error if the constant is invalid. */
5790
5791static bfd_boolean
5792match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5793 expressionS *offset, int length, bfd_boolean using_gprs)
5794{
5795 char *p;
5796 segT seg, new_seg;
5797 subsegT subseg;
5798 const char *newname;
5799 unsigned char *data;
5800
5801 /* Where the constant is placed is based on how the MIPS assembler
5802 does things:
5803
5804 length == 4 && using_gprs -- immediate value only
5805 length == 8 && using_gprs -- .rdata or immediate value
5806 length == 4 && !using_gprs -- .lit4 or immediate value
5807 length == 8 && !using_gprs -- .lit8 or immediate value
5808
5809 The .lit4 and .lit8 sections are only used if permitted by the
5810 -G argument. */
5811 if (arg->token->type != OT_FLOAT)
5812 {
5813 set_insn_error (arg->argnum, _("floating-point expression required"));
5814 return FALSE;
5815 }
5816
5817 gas_assert (arg->token->u.flt.length == length);
5818 data = arg->token->u.flt.data;
5819 ++arg->token;
5820
5821 /* Handle 32-bit constants for which an immediate value is best. */
5822 if (length == 4
5823 && (using_gprs
5824 || g_switch_value < 4
5825 || (data[0] == 0 && data[1] == 0)
5826 || (data[2] == 0 && data[3] == 0)))
5827 {
5828 imm->X_op = O_constant;
5829 if (!target_big_endian)
5830 imm->X_add_number = bfd_getl32 (data);
5831 else
5832 imm->X_add_number = bfd_getb32 (data);
5833 offset->X_op = O_absent;
5834 return TRUE;
5835 }
5836
5837 /* Handle 64-bit constants for which an immediate value is best. */
5838 if (length == 8
5839 && !mips_disable_float_construction
5840 /* Constants can only be constructed in GPRs and copied to FPRs if the
5841 GPRs are at least as wide as the FPRs or MTHC1 is available.
5842 Unlike most tests for 32-bit floating-point registers this check
5843 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5844 permit 64-bit moves without MXHC1.
5845 Force the constant into memory otherwise. */
5846 && (using_gprs
5847 || GPR_SIZE == 64
5848 || ISA_HAS_MXHC1 (mips_opts.isa)
5849 || FPR_SIZE == 32)
5850 && ((data[0] == 0 && data[1] == 0)
5851 || (data[2] == 0 && data[3] == 0))
5852 && ((data[4] == 0 && data[5] == 0)
5853 || (data[6] == 0 && data[7] == 0)))
5854 {
5855 /* The value is simple enough to load with a couple of instructions.
5856 If using 32-bit registers, set IMM to the high order 32 bits and
5857 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5858 64 bit constant. */
5859 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5860 {
5861 imm->X_op = O_constant;
5862 offset->X_op = O_constant;
5863 if (!target_big_endian)
5864 {
5865 imm->X_add_number = bfd_getl32 (data + 4);
5866 offset->X_add_number = bfd_getl32 (data);
5867 }
5868 else
5869 {
5870 imm->X_add_number = bfd_getb32 (data);
5871 offset->X_add_number = bfd_getb32 (data + 4);
5872 }
5873 if (offset->X_add_number == 0)
5874 offset->X_op = O_absent;
5875 }
5876 else
5877 {
5878 imm->X_op = O_constant;
5879 if (!target_big_endian)
5880 imm->X_add_number = bfd_getl64 (data);
5881 else
5882 imm->X_add_number = bfd_getb64 (data);
5883 offset->X_op = O_absent;
5884 }
5885 return TRUE;
5886 }
5887
5888 /* Switch to the right section. */
5889 seg = now_seg;
5890 subseg = now_subseg;
5891 if (length == 4)
5892 {
5893 gas_assert (!using_gprs && g_switch_value >= 4);
5894 newname = ".lit4";
5895 }
5896 else
5897 {
5898 if (using_gprs || g_switch_value < 8)
5899 newname = RDATA_SECTION_NAME;
5900 else
5901 newname = ".lit8";
5902 }
5903
5904 new_seg = subseg_new (newname, (subsegT) 0);
5905 bfd_set_section_flags (stdoutput, new_seg,
5906 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5907 frag_align (length == 4 ? 2 : 3, 0, 0);
5908 if (strncmp (TARGET_OS, "elf", 3) != 0)
5909 record_alignment (new_seg, 4);
5910 else
5911 record_alignment (new_seg, length == 4 ? 2 : 3);
5912 if (seg == now_seg)
5913 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5914
5915 /* Set the argument to the current address in the section. */
5916 imm->X_op = O_absent;
5917 offset->X_op = O_symbol;
5918 offset->X_add_symbol = symbol_temp_new_now ();
5919 offset->X_add_number = 0;
5920
5921 /* Put the floating point number into the section. */
5922 p = frag_more (length);
5923 memcpy (p, data, length);
5924
5925 /* Switch back to the original section. */
5926 subseg_set (seg, subseg);
5927 return TRUE;
5928}
5929
5930/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5931 them. */
5932
5933static bfd_boolean
5934match_vu0_suffix_operand (struct mips_arg_info *arg,
5935 const struct mips_operand *operand,
5936 bfd_boolean match_p)
5937{
5938 unsigned int uval;
5939
5940 /* The operand can be an XYZW mask or a single 2-bit channel index
5941 (with X being 0). */
5942 gas_assert (operand->size == 2 || operand->size == 4);
5943
5944 /* The suffix can be omitted when it is already part of the opcode. */
5945 if (arg->token->type != OT_CHANNELS)
5946 return match_p;
5947
5948 uval = arg->token->u.channels;
5949 if (operand->size == 2)
5950 {
5951 /* Check that a single bit is set and convert it into a 2-bit index. */
5952 if ((uval & -uval) != uval)
5953 return FALSE;
5954 uval = 4 - ffs (uval);
5955 }
5956
5957 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5958 return FALSE;
5959
5960 ++arg->token;
5961 if (!match_p)
5962 insn_insert_operand (arg->insn, operand, uval);
5963 return TRUE;
5964}
5965
5966/* S is the text seen for ARG. Match it against OPERAND. Return the end
5967 of the argument text if the match is successful, otherwise return null. */
5968
5969static bfd_boolean
5970match_operand (struct mips_arg_info *arg,
5971 const struct mips_operand *operand)
5972{
5973 switch (operand->type)
5974 {
5975 case OP_INT:
5976 return match_int_operand (arg, operand);
5977
5978 case OP_MAPPED_INT:
5979 return match_mapped_int_operand (arg, operand);
5980
5981 case OP_MSB:
5982 return match_msb_operand (arg, operand);
5983
5984 case OP_REG:
5985 case OP_OPTIONAL_REG:
5986 return match_reg_operand (arg, operand);
5987
5988 case OP_REG_PAIR:
5989 return match_reg_pair_operand (arg, operand);
5990
5991 case OP_PCREL:
5992 return match_pcrel_operand (arg);
5993
5994 case OP_PERF_REG:
5995 return match_perf_reg_operand (arg, operand);
5996
5997 case OP_ADDIUSP_INT:
5998 return match_addiusp_operand (arg, operand);
5999
6000 case OP_CLO_CLZ_DEST:
6001 return match_clo_clz_dest_operand (arg, operand);
6002
6003 case OP_LWM_SWM_LIST:
6004 return match_lwm_swm_list_operand (arg, operand);
6005
6006 case OP_ENTRY_EXIT_LIST:
6007 return match_entry_exit_operand (arg, operand);
6008
6009 case OP_SAVE_RESTORE_LIST:
6010 return match_save_restore_list_operand (arg);
6011
6012 case OP_MDMX_IMM_REG:
6013 return match_mdmx_imm_reg_operand (arg, operand);
6014
6015 case OP_REPEAT_DEST_REG:
6016 return match_tied_reg_operand (arg, arg->dest_regno);
6017
6018 case OP_REPEAT_PREV_REG:
6019 return match_tied_reg_operand (arg, arg->last_regno);
6020
6021 case OP_PC:
6022 return match_pc_operand (arg);
6023
6024 case OP_VU0_SUFFIX:
6025 return match_vu0_suffix_operand (arg, operand, FALSE);
6026
6027 case OP_VU0_MATCH_SUFFIX:
6028 return match_vu0_suffix_operand (arg, operand, TRUE);
6029
6030 case OP_IMM_INDEX:
6031 return match_imm_index_operand (arg, operand);
6032
6033 case OP_REG_INDEX:
6034 return match_reg_index_operand (arg, operand);
6035
6036 case OP_SAME_RS_RT:
6037 return match_same_rs_rt_operand (arg, operand);
6038
6039 case OP_CHECK_PREV:
6040 return match_check_prev_operand (arg, operand);
6041
6042 case OP_NON_ZERO_REG:
6043 return match_non_zero_reg_operand (arg, operand);
6044 }
6045 abort ();
6046}
6047
6048/* ARG is the state after successfully matching an instruction.
6049 Issue any queued-up warnings. */
6050
6051static void
6052check_completed_insn (struct mips_arg_info *arg)
6053{
6054 if (arg->seen_at)
6055 {
6056 if (AT == ATREG)
6057 as_warn (_("used $at without \".set noat\""));
6058 else
6059 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6060 }
6061}
6062
6063/* Return true if modifying general-purpose register REG needs a delay. */
6064
6065static bfd_boolean
6066reg_needs_delay (unsigned int reg)
6067{
6068 unsigned long prev_pinfo;
6069
6070 prev_pinfo = history[0].insn_mo->pinfo;
6071 if (!mips_opts.noreorder
6072 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6073 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6074 && (gpr_write_mask (&history[0]) & (1 << reg)))
6075 return TRUE;
6076
6077 return FALSE;
6078}
6079
6080/* Classify an instruction according to the FIX_VR4120_* enumeration.
6081 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6082 by VR4120 errata. */
6083
6084static unsigned int
6085classify_vr4120_insn (const char *name)
6086{
6087 if (strncmp (name, "macc", 4) == 0)
6088 return FIX_VR4120_MACC;
6089 if (strncmp (name, "dmacc", 5) == 0)
6090 return FIX_VR4120_DMACC;
6091 if (strncmp (name, "mult", 4) == 0)
6092 return FIX_VR4120_MULT;
6093 if (strncmp (name, "dmult", 5) == 0)
6094 return FIX_VR4120_DMULT;
6095 if (strstr (name, "div"))
6096 return FIX_VR4120_DIV;
6097 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6098 return FIX_VR4120_MTHILO;
6099 return NUM_FIX_VR4120_CLASSES;
6100}
6101
6102#define INSN_ERET 0x42000018
6103#define INSN_DERET 0x4200001f
6104#define INSN_DMULT 0x1c
6105#define INSN_DMULTU 0x1d
6106
6107/* Return the number of instructions that must separate INSN1 and INSN2,
6108 where INSN1 is the earlier instruction. Return the worst-case value
6109 for any INSN2 if INSN2 is null. */
6110
6111static unsigned int
6112insns_between (const struct mips_cl_insn *insn1,
6113 const struct mips_cl_insn *insn2)
6114{
6115 unsigned long pinfo1, pinfo2;
6116 unsigned int mask;
6117
6118 /* If INFO2 is null, pessimistically assume that all flags are set for
6119 the second instruction. */
6120 pinfo1 = insn1->insn_mo->pinfo;
6121 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6122
6123 /* For most targets, write-after-read dependencies on the HI and LO
6124 registers must be separated by at least two instructions. */
6125 if (!hilo_interlocks)
6126 {
6127 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6128 return 2;
6129 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6130 return 2;
6131 }
6132
6133 /* If we're working around r7000 errata, there must be two instructions
6134 between an mfhi or mflo and any instruction that uses the result. */
6135 if (mips_7000_hilo_fix
6136 && !mips_opts.micromips
6137 && MF_HILO_INSN (pinfo1)
6138 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6139 return 2;
6140
6141 /* If we're working around 24K errata, one instruction is required
6142 if an ERET or DERET is followed by a branch instruction. */
6143 if (mips_fix_24k && !mips_opts.micromips)
6144 {
6145 if (insn1->insn_opcode == INSN_ERET
6146 || insn1->insn_opcode == INSN_DERET)
6147 {
6148 if (insn2 == NULL
6149 || insn2->insn_opcode == INSN_ERET
6150 || insn2->insn_opcode == INSN_DERET
6151 || delayed_branch_p (insn2))
6152 return 1;
6153 }
6154 }
6155
6156 /* If we're working around PMC RM7000 errata, there must be three
6157 nops between a dmult and a load instruction. */
6158 if (mips_fix_rm7000 && !mips_opts.micromips)
6159 {
6160 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6161 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6162 {
6163 if (pinfo2 & INSN_LOAD_MEMORY)
6164 return 3;
6165 }
6166 }
6167
6168 /* If working around VR4120 errata, check for combinations that need
6169 a single intervening instruction. */
6170 if (mips_fix_vr4120 && !mips_opts.micromips)
6171 {
6172 unsigned int class1, class2;
6173
6174 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6175 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6176 {
6177 if (insn2 == NULL)
6178 return 1;
6179 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6180 if (vr4120_conflicts[class1] & (1 << class2))
6181 return 1;
6182 }
6183 }
6184
6185 if (!HAVE_CODE_COMPRESSION)
6186 {
6187 /* Check for GPR or coprocessor load delays. All such delays
6188 are on the RT register. */
6189 /* Itbl support may require additional care here. */
6190 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6191 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6192 {
6193 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6194 return 1;
6195 }
6196
6197 /* Check for generic coprocessor hazards.
6198
6199 This case is not handled very well. There is no special
6200 knowledge of CP0 handling, and the coprocessors other than
6201 the floating point unit are not distinguished at all. */
6202 /* Itbl support may require additional care here. FIXME!
6203 Need to modify this to include knowledge about
6204 user specified delays! */
6205 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6206 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6207 {
6208 /* Handle cases where INSN1 writes to a known general coprocessor
6209 register. There must be a one instruction delay before INSN2
6210 if INSN2 reads that register, otherwise no delay is needed. */
6211 mask = fpr_write_mask (insn1);
6212 if (mask != 0)
6213 {
6214 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6215 return 1;
6216 }
6217 else
6218 {
6219 /* Read-after-write dependencies on the control registers
6220 require a two-instruction gap. */
6221 if ((pinfo1 & INSN_WRITE_COND_CODE)
6222 && (pinfo2 & INSN_READ_COND_CODE))
6223 return 2;
6224
6225 /* We don't know exactly what INSN1 does. If INSN2 is
6226 also a coprocessor instruction, assume there must be
6227 a one instruction gap. */
6228 if (pinfo2 & INSN_COP)
6229 return 1;
6230 }
6231 }
6232
6233 /* Check for read-after-write dependencies on the coprocessor
6234 control registers in cases where INSN1 does not need a general
6235 coprocessor delay. This means that INSN1 is a floating point
6236 comparison instruction. */
6237 /* Itbl support may require additional care here. */
6238 else if (!cop_interlocks
6239 && (pinfo1 & INSN_WRITE_COND_CODE)
6240 && (pinfo2 & INSN_READ_COND_CODE))
6241 return 1;
6242 }
6243
6244 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6245 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6246 and pause. */
6247 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6248 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6249 || (insn2 && delayed_branch_p (insn2))))
6250 return 1;
6251
6252 return 0;
6253}
6254
6255/* Return the number of nops that would be needed to work around the
6256 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6257 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6258 that are contained within the first IGNORE instructions of HIST. */
6259
6260static int
6261nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6262 const struct mips_cl_insn *insn)
6263{
6264 int i, j;
6265 unsigned int mask;
6266
6267 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6268 are not affected by the errata. */
6269 if (insn != 0
6270 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6271 || strcmp (insn->insn_mo->name, "mtlo") == 0
6272 || strcmp (insn->insn_mo->name, "mthi") == 0))
6273 return 0;
6274
6275 /* Search for the first MFLO or MFHI. */
6276 for (i = 0; i < MAX_VR4130_NOPS; i++)
6277 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6278 {
6279 /* Extract the destination register. */
6280 mask = gpr_write_mask (&hist[i]);
6281
6282 /* No nops are needed if INSN reads that register. */
6283 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6284 return 0;
6285
6286 /* ...or if any of the intervening instructions do. */
6287 for (j = 0; j < i; j++)
6288 if (gpr_read_mask (&hist[j]) & mask)
6289 return 0;
6290
6291 if (i >= ignore)
6292 return MAX_VR4130_NOPS - i;
6293 }
6294 return 0;
6295}
6296
6297#define BASE_REG_EQ(INSN1, INSN2) \
6298 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6299 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6300
6301/* Return the minimum alignment for this store instruction. */
6302
6303static int
6304fix_24k_align_to (const struct mips_opcode *mo)
6305{
6306 if (strcmp (mo->name, "sh") == 0)
6307 return 2;
6308
6309 if (strcmp (mo->name, "swc1") == 0
6310 || strcmp (mo->name, "swc2") == 0
6311 || strcmp (mo->name, "sw") == 0
6312 || strcmp (mo->name, "sc") == 0
6313 || strcmp (mo->name, "s.s") == 0)
6314 return 4;
6315
6316 if (strcmp (mo->name, "sdc1") == 0
6317 || strcmp (mo->name, "sdc2") == 0
6318 || strcmp (mo->name, "s.d") == 0)
6319 return 8;
6320
6321 /* sb, swl, swr */
6322 return 1;
6323}
6324
6325struct fix_24k_store_info
6326 {
6327 /* Immediate offset, if any, for this store instruction. */
6328 short off;
6329 /* Alignment required by this store instruction. */
6330 int align_to;
6331 /* True for register offsets. */
6332 int register_offset;
6333 };
6334
6335/* Comparison function used by qsort. */
6336
6337static int
6338fix_24k_sort (const void *a, const void *b)
6339{
6340 const struct fix_24k_store_info *pos1 = a;
6341 const struct fix_24k_store_info *pos2 = b;
6342
6343 return (pos1->off - pos2->off);
6344}
6345
6346/* INSN is a store instruction. Try to record the store information
6347 in STINFO. Return false if the information isn't known. */
6348
6349static bfd_boolean
6350fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6351 const struct mips_cl_insn *insn)
6352{
6353 /* The instruction must have a known offset. */
6354 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6355 return FALSE;
6356
6357 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6358 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6359 return TRUE;
6360}
6361
6362/* Return the number of nops that would be needed to work around the 24k
6363 "lost data on stores during refill" errata if instruction INSN
6364 immediately followed the 2 instructions described by HIST.
6365 Ignore hazards that are contained within the first IGNORE
6366 instructions of HIST.
6367
6368 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6369 for the data cache refills and store data. The following describes
6370 the scenario where the store data could be lost.
6371
6372 * A data cache miss, due to either a load or a store, causing fill
6373 data to be supplied by the memory subsystem
6374 * The first three doublewords of fill data are returned and written
6375 into the cache
6376 * A sequence of four stores occurs in consecutive cycles around the
6377 final doubleword of the fill:
6378 * Store A
6379 * Store B
6380 * Store C
6381 * Zero, One or more instructions
6382 * Store D
6383
6384 The four stores A-D must be to different doublewords of the line that
6385 is being filled. The fourth instruction in the sequence above permits
6386 the fill of the final doubleword to be transferred from the FSB into
6387 the cache. In the sequence above, the stores may be either integer
6388 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6389 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6390 different doublewords on the line. If the floating point unit is
6391 running in 1:2 mode, it is not possible to create the sequence above
6392 using only floating point store instructions.
6393
6394 In this case, the cache line being filled is incorrectly marked
6395 invalid, thereby losing the data from any store to the line that
6396 occurs between the original miss and the completion of the five
6397 cycle sequence shown above.
6398
6399 The workarounds are:
6400
6401 * Run the data cache in write-through mode.
6402 * Insert a non-store instruction between
6403 Store A and Store B or Store B and Store C. */
6404
6405static int
6406nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6407 const struct mips_cl_insn *insn)
6408{
6409 struct fix_24k_store_info pos[3];
6410 int align, i, base_offset;
6411
6412 if (ignore >= 2)
6413 return 0;
6414
6415 /* If the previous instruction wasn't a store, there's nothing to
6416 worry about. */
6417 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6418 return 0;
6419
6420 /* If the instructions after the previous one are unknown, we have
6421 to assume the worst. */
6422 if (!insn)
6423 return 1;
6424
6425 /* Check whether we are dealing with three consecutive stores. */
6426 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6427 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6428 return 0;
6429
6430 /* If we don't know the relationship between the store addresses,
6431 assume the worst. */
6432 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6433 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6434 return 1;
6435
6436 if (!fix_24k_record_store_info (&pos[0], insn)
6437 || !fix_24k_record_store_info (&pos[1], &hist[0])
6438 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6439 return 1;
6440
6441 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6442
6443 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6444 X bytes and such that the base register + X is known to be aligned
6445 to align bytes. */
6446
6447 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6448 align = 8;
6449 else
6450 {
6451 align = pos[0].align_to;
6452 base_offset = pos[0].off;
6453 for (i = 1; i < 3; i++)
6454 if (align < pos[i].align_to)
6455 {
6456 align = pos[i].align_to;
6457 base_offset = pos[i].off;
6458 }
6459 for (i = 0; i < 3; i++)
6460 pos[i].off -= base_offset;
6461 }
6462
6463 pos[0].off &= ~align + 1;
6464 pos[1].off &= ~align + 1;
6465 pos[2].off &= ~align + 1;
6466
6467 /* If any two stores write to the same chunk, they also write to the
6468 same doubleword. The offsets are still sorted at this point. */
6469 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6470 return 0;
6471
6472 /* A range of at least 9 bytes is needed for the stores to be in
6473 non-overlapping doublewords. */
6474 if (pos[2].off - pos[0].off <= 8)
6475 return 0;
6476
6477 if (pos[2].off - pos[1].off >= 24
6478 || pos[1].off - pos[0].off >= 24
6479 || pos[2].off - pos[0].off >= 32)
6480 return 0;
6481
6482 return 1;
6483}
6484
6485/* Return the number of nops that would be needed if instruction INSN
6486 immediately followed the MAX_NOPS instructions given by HIST,
6487 where HIST[0] is the most recent instruction. Ignore hazards
6488 between INSN and the first IGNORE instructions in HIST.
6489
6490 If INSN is null, return the worse-case number of nops for any
6491 instruction. */
6492
6493static int
6494nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6495 const struct mips_cl_insn *insn)
6496{
6497 int i, nops, tmp_nops;
6498
6499 nops = 0;
6500 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6501 {
6502 tmp_nops = insns_between (hist + i, insn) - i;
6503 if (tmp_nops > nops)
6504 nops = tmp_nops;
6505 }
6506
6507 if (mips_fix_vr4130 && !mips_opts.micromips)
6508 {
6509 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6510 if (tmp_nops > nops)
6511 nops = tmp_nops;
6512 }
6513
6514 if (mips_fix_24k && !mips_opts.micromips)
6515 {
6516 tmp_nops = nops_for_24k (ignore, hist, insn);
6517 if (tmp_nops > nops)
6518 nops = tmp_nops;
6519 }
6520
6521 return nops;
6522}
6523
6524/* The variable arguments provide NUM_INSNS extra instructions that
6525 might be added to HIST. Return the largest number of nops that
6526 would be needed after the extended sequence, ignoring hazards
6527 in the first IGNORE instructions. */
6528
6529static int
6530nops_for_sequence (int num_insns, int ignore,
6531 const struct mips_cl_insn *hist, ...)
6532{
6533 va_list args;
6534 struct mips_cl_insn buffer[MAX_NOPS];
6535 struct mips_cl_insn *cursor;
6536 int nops;
6537
6538 va_start (args, hist);
6539 cursor = buffer + num_insns;
6540 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6541 while (cursor > buffer)
6542 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6543
6544 nops = nops_for_insn (ignore, buffer, NULL);
6545 va_end (args);
6546 return nops;
6547}
6548
6549/* Like nops_for_insn, but if INSN is a branch, take into account the
6550 worst-case delay for the branch target. */
6551
6552static int
6553nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6554 const struct mips_cl_insn *insn)
6555{
6556 int nops, tmp_nops;
6557
6558 nops = nops_for_insn (ignore, hist, insn);
6559 if (delayed_branch_p (insn))
6560 {
6561 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6562 hist, insn, get_delay_slot_nop (insn));
6563 if (tmp_nops > nops)
6564 nops = tmp_nops;
6565 }
6566 else if (compact_branch_p (insn))
6567 {
6568 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6569 if (tmp_nops > nops)
6570 nops = tmp_nops;
6571 }
6572 return nops;
6573}
6574
6575/* Fix NOP issue: Replace nops by "or at,at,zero". */
6576
6577static void
6578fix_loongson2f_nop (struct mips_cl_insn * ip)
6579{
6580 gas_assert (!HAVE_CODE_COMPRESSION);
6581 if (strcmp (ip->insn_mo->name, "nop") == 0)
6582 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6583}
6584
6585/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6586 jr target pc &= 'hffff_ffff_cfff_ffff. */
6587
6588static void
6589fix_loongson2f_jump (struct mips_cl_insn * ip)
6590{
6591 gas_assert (!HAVE_CODE_COMPRESSION);
6592 if (strcmp (ip->insn_mo->name, "j") == 0
6593 || strcmp (ip->insn_mo->name, "jr") == 0
6594 || strcmp (ip->insn_mo->name, "jalr") == 0)
6595 {
6596 int sreg;
6597 expressionS ep;
6598
6599 if (! mips_opts.at)
6600 return;
6601
6602 sreg = EXTRACT_OPERAND (0, RS, *ip);
6603 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6604 return;
6605
6606 ep.X_op = O_constant;
6607 ep.X_add_number = 0xcfff0000;
6608 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6609 ep.X_add_number = 0xffff;
6610 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6611 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6612 }
6613}
6614
6615static void
6616fix_loongson2f (struct mips_cl_insn * ip)
6617{
6618 if (mips_fix_loongson2f_nop)
6619 fix_loongson2f_nop (ip);
6620
6621 if (mips_fix_loongson2f_jump)
6622 fix_loongson2f_jump (ip);
6623}
6624
6625/* IP is a branch that has a delay slot, and we need to fill it
6626 automatically. Return true if we can do that by swapping IP
6627 with the previous instruction.
6628 ADDRESS_EXPR is an operand of the instruction to be used with
6629 RELOC_TYPE. */
6630
6631static bfd_boolean
6632can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6633 bfd_reloc_code_real_type *reloc_type)
6634{
6635 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6636 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6637 unsigned int fpr_read, prev_fpr_write;
6638
6639 /* -O2 and above is required for this optimization. */
6640 if (mips_optimize < 2)
6641 return FALSE;
6642
6643 /* If we have seen .set volatile or .set nomove, don't optimize. */
6644 if (mips_opts.nomove)
6645 return FALSE;
6646
6647 /* We can't swap if the previous instruction's position is fixed. */
6648 if (history[0].fixed_p)
6649 return FALSE;
6650
6651 /* If the previous previous insn was in a .set noreorder, we can't
6652 swap. Actually, the MIPS assembler will swap in this situation.
6653 However, gcc configured -with-gnu-as will generate code like
6654
6655 .set noreorder
6656 lw $4,XXX
6657 .set reorder
6658 INSN
6659 bne $4,$0,foo
6660
6661 in which we can not swap the bne and INSN. If gcc is not configured
6662 -with-gnu-as, it does not output the .set pseudo-ops. */
6663 if (history[1].noreorder_p)
6664 return FALSE;
6665
6666 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6667 This means that the previous instruction was a 4-byte one anyhow. */
6668 if (mips_opts.mips16 && history[0].fixp[0])
6669 return FALSE;
6670
6671 /* If the branch is itself the target of a branch, we can not swap.
6672 We cheat on this; all we check for is whether there is a label on
6673 this instruction. If there are any branches to anything other than
6674 a label, users must use .set noreorder. */
6675 if (seg_info (now_seg)->label_list)
6676 return FALSE;
6677
6678 /* If the previous instruction is in a variant frag other than this
6679 branch's one, we cannot do the swap. This does not apply to
6680 MIPS16 code, which uses variant frags for different purposes. */
6681 if (!mips_opts.mips16
6682 && history[0].frag
6683 && history[0].frag->fr_type == rs_machine_dependent)
6684 return FALSE;
6685
6686 /* We do not swap with instructions that cannot architecturally
6687 be placed in a branch delay slot, such as SYNC or ERET. We
6688 also refrain from swapping with a trap instruction, since it
6689 complicates trap handlers to have the trap instruction be in
6690 a delay slot. */
6691 prev_pinfo = history[0].insn_mo->pinfo;
6692 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6693 return FALSE;
6694
6695 /* Check for conflicts between the branch and the instructions
6696 before the candidate delay slot. */
6697 if (nops_for_insn (0, history + 1, ip) > 0)
6698 return FALSE;
6699
6700 /* Check for conflicts between the swapped sequence and the
6701 target of the branch. */
6702 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6703 return FALSE;
6704
6705 /* If the branch reads a register that the previous
6706 instruction sets, we can not swap. */
6707 gpr_read = gpr_read_mask (ip);
6708 prev_gpr_write = gpr_write_mask (&history[0]);
6709 if (gpr_read & prev_gpr_write)
6710 return FALSE;
6711
6712 fpr_read = fpr_read_mask (ip);
6713 prev_fpr_write = fpr_write_mask (&history[0]);
6714 if (fpr_read & prev_fpr_write)
6715 return FALSE;
6716
6717 /* If the branch writes a register that the previous
6718 instruction sets, we can not swap. */
6719 gpr_write = gpr_write_mask (ip);
6720 if (gpr_write & prev_gpr_write)
6721 return FALSE;
6722
6723 /* If the branch writes a register that the previous
6724 instruction reads, we can not swap. */
6725 prev_gpr_read = gpr_read_mask (&history[0]);
6726 if (gpr_write & prev_gpr_read)
6727 return FALSE;
6728
6729 /* If one instruction sets a condition code and the
6730 other one uses a condition code, we can not swap. */
6731 pinfo = ip->insn_mo->pinfo;
6732 if ((pinfo & INSN_READ_COND_CODE)
6733 && (prev_pinfo & INSN_WRITE_COND_CODE))
6734 return FALSE;
6735 if ((pinfo & INSN_WRITE_COND_CODE)
6736 && (prev_pinfo & INSN_READ_COND_CODE))
6737 return FALSE;
6738
6739 /* If the previous instruction uses the PC, we can not swap. */
6740 prev_pinfo2 = history[0].insn_mo->pinfo2;
6741 if (prev_pinfo2 & INSN2_READ_PC)
6742 return FALSE;
6743
6744 /* If the previous instruction has an incorrect size for a fixed
6745 branch delay slot in microMIPS mode, we cannot swap. */
6746 pinfo2 = ip->insn_mo->pinfo2;
6747 if (mips_opts.micromips
6748 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6749 && insn_length (history) != 2)
6750 return FALSE;
6751 if (mips_opts.micromips
6752 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6753 && insn_length (history) != 4)
6754 return FALSE;
6755
6756 /* On R5900 short loops need to be fixed by inserting a nop in
6757 the branch delay slots.
6758 A short loop can be terminated too early. */
6759 if (mips_opts.arch == CPU_R5900
6760 /* Check if instruction has a parameter, ignore "j $31". */
6761 && (address_expr != NULL)
6762 /* Parameter must be 16 bit. */
6763 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6764 /* Branch to same segment. */
6765 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6766 /* Branch to same code fragment. */
6767 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6768 /* Can only calculate branch offset if value is known. */
6769 && symbol_constant_p (address_expr->X_add_symbol)
6770 /* Check if branch is really conditional. */
6771 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6772 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6773 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6774 {
6775 int distance;
6776 /* Check if loop is shorter than 6 instructions including
6777 branch and delay slot. */
6778 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6779 if (distance <= 20)
6780 {
6781 int i;
6782 int rv;
6783
6784 rv = FALSE;
6785 /* When the loop includes branches or jumps,
6786 it is not a short loop. */
6787 for (i = 0; i < (distance / 4); i++)
6788 {
6789 if ((history[i].cleared_p)
6790 || delayed_branch_p (&history[i]))
6791 {
6792 rv = TRUE;
6793 break;
6794 }
6795 }
6796 if (rv == FALSE)
6797 {
6798 /* Insert nop after branch to fix short loop. */
6799 return FALSE;
6800 }
6801 }
6802 }
6803
6804 return TRUE;
6805}
6806
6807/* Decide how we should add IP to the instruction stream.
6808 ADDRESS_EXPR is an operand of the instruction to be used with
6809 RELOC_TYPE. */
6810
6811static enum append_method
6812get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6813 bfd_reloc_code_real_type *reloc_type)
6814{
6815 /* The relaxed version of a macro sequence must be inherently
6816 hazard-free. */
6817 if (mips_relax.sequence == 2)
6818 return APPEND_ADD;
6819
6820 /* We must not dabble with instructions in a ".set noreorder" block. */
6821 if (mips_opts.noreorder)
6822 return APPEND_ADD;
6823
6824 /* Otherwise, it's our responsibility to fill branch delay slots. */
6825 if (delayed_branch_p (ip))
6826 {
6827 if (!branch_likely_p (ip)
6828 && can_swap_branch_p (ip, address_expr, reloc_type))
6829 return APPEND_SWAP;
6830
6831 if (mips_opts.mips16
6832 && ISA_SUPPORTS_MIPS16E
6833 && gpr_read_mask (ip) != 0)
6834 return APPEND_ADD_COMPACT;
6835
6836 if (mips_opts.micromips
6837 && ((ip->insn_opcode & 0xffe0) == 0x4580
6838 || (!forced_insn_length
6839 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6840 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6841 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6842 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6843 return APPEND_ADD_COMPACT;
6844
6845 return APPEND_ADD_WITH_NOP;
6846 }
6847
6848 return APPEND_ADD;
6849}
6850
6851/* IP is an instruction whose opcode we have just changed, END points
6852 to the end of the opcode table processed. Point IP->insn_mo to the
6853 new opcode's definition. */
6854
6855static void
6856find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6857{
6858 const struct mips_opcode *mo;
6859
6860 for (mo = ip->insn_mo; mo < end; mo++)
6861 if (mo->pinfo != INSN_MACRO
6862 && (ip->insn_opcode & mo->mask) == mo->match)
6863 {
6864 ip->insn_mo = mo;
6865 return;
6866 }
6867 abort ();
6868}
6869
6870/* IP is a MIPS16 instruction whose opcode we have just changed.
6871 Point IP->insn_mo to the new opcode's definition. */
6872
6873static void
6874find_altered_mips16_opcode (struct mips_cl_insn *ip)
6875{
6876 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6877}
6878
6879/* IP is a microMIPS instruction whose opcode we have just changed.
6880 Point IP->insn_mo to the new opcode's definition. */
6881
6882static void
6883find_altered_micromips_opcode (struct mips_cl_insn *ip)
6884{
6885 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6886}
6887
6888/* For microMIPS macros, we need to generate a local number label
6889 as the target of branches. */
6890#define MICROMIPS_LABEL_CHAR '\037'
6891static unsigned long micromips_target_label;
6892static char micromips_target_name[32];
6893
6894static char *
6895micromips_label_name (void)
6896{
6897 char *p = micromips_target_name;
6898 char symbol_name_temporary[24];
6899 unsigned long l;
6900 int i;
6901
6902 if (*p)
6903 return p;
6904
6905 i = 0;
6906 l = micromips_target_label;
6907#ifdef LOCAL_LABEL_PREFIX
6908 *p++ = LOCAL_LABEL_PREFIX;
6909#endif
6910 *p++ = 'L';
6911 *p++ = MICROMIPS_LABEL_CHAR;
6912 do
6913 {
6914 symbol_name_temporary[i++] = l % 10 + '0';
6915 l /= 10;
6916 }
6917 while (l != 0);
6918 while (i > 0)
6919 *p++ = symbol_name_temporary[--i];
6920 *p = '\0';
6921
6922 return micromips_target_name;
6923}
6924
6925static void
6926micromips_label_expr (expressionS *label_expr)
6927{
6928 label_expr->X_op = O_symbol;
6929 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6930 label_expr->X_add_number = 0;
6931}
6932
6933static void
6934micromips_label_inc (void)
6935{
6936 micromips_target_label++;
6937 *micromips_target_name = '\0';
6938}
6939
6940static void
6941micromips_add_label (void)
6942{
6943 symbolS *s;
6944
6945 s = colon (micromips_label_name ());
6946 micromips_label_inc ();
6947 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6948}
6949
6950/* If assembling microMIPS code, then return the microMIPS reloc
6951 corresponding to the requested one if any. Otherwise return
6952 the reloc unchanged. */
6953
6954static bfd_reloc_code_real_type
6955micromips_map_reloc (bfd_reloc_code_real_type reloc)
6956{
6957 static const bfd_reloc_code_real_type relocs[][2] =
6958 {
6959 /* Keep sorted incrementally by the left-hand key. */
6960 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6961 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6962 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6963 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6964 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6965 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6966 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6967 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6968 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6969 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6970 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6971 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6972 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6973 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6974 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6975 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6976 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6977 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6978 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6979 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6980 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6981 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6982 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6983 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6984 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6985 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6986 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6987 };
6988 bfd_reloc_code_real_type r;
6989 size_t i;
6990
6991 if (!mips_opts.micromips)
6992 return reloc;
6993 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6994 {
6995 r = relocs[i][0];
6996 if (r > reloc)
6997 return reloc;
6998 if (r == reloc)
6999 return relocs[i][1];
7000 }
7001 return reloc;
7002}
7003
7004/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7005 Return true on success, storing the resolved value in RESULT. */
7006
7007static bfd_boolean
7008calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7009 offsetT *result)
7010{
7011 switch (reloc)
7012 {
7013 case BFD_RELOC_MIPS_HIGHEST:
7014 case BFD_RELOC_MICROMIPS_HIGHEST:
7015 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7016 return TRUE;
7017
7018 case BFD_RELOC_MIPS_HIGHER:
7019 case BFD_RELOC_MICROMIPS_HIGHER:
7020 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7021 return TRUE;
7022
7023 case BFD_RELOC_HI16_S:
7024 case BFD_RELOC_HI16_S_PCREL:
7025 case BFD_RELOC_MICROMIPS_HI16_S:
7026 case BFD_RELOC_MIPS16_HI16_S:
7027 *result = ((operand + 0x8000) >> 16) & 0xffff;
7028 return TRUE;
7029
7030 case BFD_RELOC_HI16:
7031 case BFD_RELOC_MICROMIPS_HI16:
7032 case BFD_RELOC_MIPS16_HI16:
7033 *result = (operand >> 16) & 0xffff;
7034 return TRUE;
7035
7036 case BFD_RELOC_LO16:
7037 case BFD_RELOC_LO16_PCREL:
7038 case BFD_RELOC_MICROMIPS_LO16:
7039 case BFD_RELOC_MIPS16_LO16:
7040 *result = operand & 0xffff;
7041 return TRUE;
7042
7043 case BFD_RELOC_UNUSED:
7044 *result = operand;
7045 return TRUE;
7046
7047 default:
7048 return FALSE;
7049 }
7050}
7051
7052/* Output an instruction. IP is the instruction information.
7053 ADDRESS_EXPR is an operand of the instruction to be used with
7054 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7055 a macro expansion. */
7056
7057static void
7058append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7059 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7060{
7061 unsigned long prev_pinfo2, pinfo;
7062 bfd_boolean relaxed_branch = FALSE;
7063 enum append_method method;
7064 bfd_boolean relax32;
7065 int branch_disp;
7066
7067 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7068 fix_loongson2f (ip);
7069
7070 file_ase_mips16 |= mips_opts.mips16;
7071 file_ase_micromips |= mips_opts.micromips;
7072
7073 prev_pinfo2 = history[0].insn_mo->pinfo2;
7074 pinfo = ip->insn_mo->pinfo;
7075
7076 /* Don't raise alarm about `nods' frags as they'll fill in the right
7077 kind of nop in relaxation if required. */
7078 if (mips_opts.micromips
7079 && !expansionp
7080 && !(history[0].frag
7081 && history[0].frag->fr_type == rs_machine_dependent
7082 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7083 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7084 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7085 && micromips_insn_length (ip->insn_mo) != 2)
7086 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7087 && micromips_insn_length (ip->insn_mo) != 4)))
7088 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7089 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7090
7091 if (address_expr == NULL)
7092 ip->complete_p = 1;
7093 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7094 && reloc_type[1] == BFD_RELOC_UNUSED
7095 && reloc_type[2] == BFD_RELOC_UNUSED
7096 && address_expr->X_op == O_constant)
7097 {
7098 switch (*reloc_type)
7099 {
7100 case BFD_RELOC_MIPS_JMP:
7101 {
7102 int shift;
7103
7104 /* Shift is 2, unusually, for microMIPS JALX. */
7105 shift = (mips_opts.micromips
7106 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7107 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7108 as_bad (_("jump to misaligned address (0x%lx)"),
7109 (unsigned long) address_expr->X_add_number);
7110 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7111 & 0x3ffffff);
7112 ip->complete_p = 1;
7113 }
7114 break;
7115
7116 case BFD_RELOC_MIPS16_JMP:
7117 if ((address_expr->X_add_number & 3) != 0)
7118 as_bad (_("jump to misaligned address (0x%lx)"),
7119 (unsigned long) address_expr->X_add_number);
7120 ip->insn_opcode |=
7121 (((address_expr->X_add_number & 0x7c0000) << 3)
7122 | ((address_expr->X_add_number & 0xf800000) >> 7)
7123 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7124 ip->complete_p = 1;
7125 break;
7126
7127 case BFD_RELOC_16_PCREL_S2:
7128 {
7129 int shift;
7130
7131 shift = mips_opts.micromips ? 1 : 2;
7132 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7133 as_bad (_("branch to misaligned address (0x%lx)"),
7134 (unsigned long) address_expr->X_add_number);
7135 if (!mips_relax_branch)
7136 {
7137 if ((address_expr->X_add_number + (1 << (shift + 15)))
7138 & ~((1 << (shift + 16)) - 1))
7139 as_bad (_("branch address range overflow (0x%lx)"),
7140 (unsigned long) address_expr->X_add_number);
7141 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7142 & 0xffff);
7143 }
7144 }
7145 break;
7146
7147 case BFD_RELOC_MIPS_21_PCREL_S2:
7148 {
7149 int shift;
7150
7151 shift = 2;
7152 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7153 as_bad (_("branch to misaligned address (0x%lx)"),
7154 (unsigned long) address_expr->X_add_number);
7155 if ((address_expr->X_add_number + (1 << (shift + 20)))
7156 & ~((1 << (shift + 21)) - 1))
7157 as_bad (_("branch address range overflow (0x%lx)"),
7158 (unsigned long) address_expr->X_add_number);
7159 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7160 & 0x1fffff);
7161 }
7162 break;
7163
7164 case BFD_RELOC_MIPS_26_PCREL_S2:
7165 {
7166 int shift;
7167
7168 shift = 2;
7169 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7170 as_bad (_("branch to misaligned address (0x%lx)"),
7171 (unsigned long) address_expr->X_add_number);
7172 if ((address_expr->X_add_number + (1 << (shift + 25)))
7173 & ~((1 << (shift + 26)) - 1))
7174 as_bad (_("branch address range overflow (0x%lx)"),
7175 (unsigned long) address_expr->X_add_number);
7176 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7177 & 0x3ffffff);
7178 }
7179 break;
7180
7181 default:
7182 {
7183 offsetT value;
7184
7185 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7186 &value))
7187 {
7188 ip->insn_opcode |= value & 0xffff;
7189 ip->complete_p = 1;
7190 }
7191 }
7192 break;
7193 }
7194 }
7195
7196 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7197 {
7198 /* There are a lot of optimizations we could do that we don't.
7199 In particular, we do not, in general, reorder instructions.
7200 If you use gcc with optimization, it will reorder
7201 instructions and generally do much more optimization then we
7202 do here; repeating all that work in the assembler would only
7203 benefit hand written assembly code, and does not seem worth
7204 it. */
7205 int nops = (mips_optimize == 0
7206 ? nops_for_insn (0, history, NULL)
7207 : nops_for_insn_or_target (0, history, ip));
7208 if (nops > 0)
7209 {
7210 fragS *old_frag;
7211 unsigned long old_frag_offset;
7212 int i;
7213
7214 old_frag = frag_now;
7215 old_frag_offset = frag_now_fix ();
7216
7217 for (i = 0; i < nops; i++)
7218 add_fixed_insn (NOP_INSN);
7219 insert_into_history (0, nops, NOP_INSN);
7220
7221 if (listing)
7222 {
7223 listing_prev_line ();
7224 /* We may be at the start of a variant frag. In case we
7225 are, make sure there is enough space for the frag
7226 after the frags created by listing_prev_line. The
7227 argument to frag_grow here must be at least as large
7228 as the argument to all other calls to frag_grow in
7229 this file. We don't have to worry about being in the
7230 middle of a variant frag, because the variants insert
7231 all needed nop instructions themselves. */
7232 frag_grow (40);
7233 }
7234
7235 mips_move_text_labels ();
7236
7237#ifndef NO_ECOFF_DEBUGGING
7238 if (ECOFF_DEBUGGING)
7239 ecoff_fix_loc (old_frag, old_frag_offset);
7240#endif
7241 }
7242 }
7243 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7244 {
7245 int nops;
7246
7247 /* Work out how many nops in prev_nop_frag are needed by IP,
7248 ignoring hazards generated by the first prev_nop_frag_since
7249 instructions. */
7250 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7251 gas_assert (nops <= prev_nop_frag_holds);
7252
7253 /* Enforce NOPS as a minimum. */
7254 if (nops > prev_nop_frag_required)
7255 prev_nop_frag_required = nops;
7256
7257 if (prev_nop_frag_holds == prev_nop_frag_required)
7258 {
7259 /* Settle for the current number of nops. Update the history
7260 accordingly (for the benefit of any future .set reorder code). */
7261 prev_nop_frag = NULL;
7262 insert_into_history (prev_nop_frag_since,
7263 prev_nop_frag_holds, NOP_INSN);
7264 }
7265 else
7266 {
7267 /* Allow this instruction to replace one of the nops that was
7268 tentatively added to prev_nop_frag. */
7269 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7270 prev_nop_frag_holds--;
7271 prev_nop_frag_since++;
7272 }
7273 }
7274
7275 method = get_append_method (ip, address_expr, reloc_type);
7276 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7277
7278 dwarf2_emit_insn (0);
7279 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7280 so "move" the instruction address accordingly.
7281
7282 Also, it doesn't seem appropriate for the assembler to reorder .loc
7283 entries. If this instruction is a branch that we are going to swap
7284 with the previous instruction, the two instructions should be
7285 treated as a unit, and the debug information for both instructions
7286 should refer to the start of the branch sequence. Using the
7287 current position is certainly wrong when swapping a 32-bit branch
7288 and a 16-bit delay slot, since the current position would then be
7289 in the middle of a branch. */
7290 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7291
7292 relax32 = (mips_relax_branch
7293 /* Don't try branch relaxation within .set nomacro, or within
7294 .set noat if we use $at for PIC computations. If it turns
7295 out that the branch was out-of-range, we'll get an error. */
7296 && !mips_opts.warn_about_macros
7297 && (mips_opts.at || mips_pic == NO_PIC)
7298 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7299 as they have no complementing branches. */
7300 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7301
7302 if (!HAVE_CODE_COMPRESSION
7303 && address_expr
7304 && relax32
7305 && *reloc_type == BFD_RELOC_16_PCREL_S2
7306 && delayed_branch_p (ip))
7307 {
7308 relaxed_branch = TRUE;
7309 add_relaxed_insn (ip, (relaxed_branch_length
7310 (NULL, NULL,
7311 uncond_branch_p (ip) ? -1
7312 : branch_likely_p (ip) ? 1
7313 : 0)), 4,
7314 RELAX_BRANCH_ENCODE
7315 (AT,
7316 uncond_branch_p (ip),
7317 branch_likely_p (ip),
7318 pinfo & INSN_WRITE_GPR_31,
7319 0),
7320 address_expr->X_add_symbol,
7321 address_expr->X_add_number);
7322 *reloc_type = BFD_RELOC_UNUSED;
7323 }
7324 else if (mips_opts.micromips
7325 && address_expr
7326 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7327 || *reloc_type > BFD_RELOC_UNUSED)
7328 && (delayed_branch_p (ip) || compact_branch_p (ip))
7329 /* Don't try branch relaxation when users specify
7330 16-bit/32-bit instructions. */
7331 && !forced_insn_length)
7332 {
7333 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7334 && *reloc_type > BFD_RELOC_UNUSED);
7335 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7336 int uncond = uncond_branch_p (ip) ? -1 : 0;
7337 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7338 int nods = method == APPEND_ADD_WITH_NOP;
7339 int al = pinfo & INSN_WRITE_GPR_31;
7340 int length32 = nods ? 8 : 4;
7341
7342 gas_assert (address_expr != NULL);
7343 gas_assert (!mips_relax.sequence);
7344
7345 relaxed_branch = TRUE;
7346 if (nods)
7347 method = APPEND_ADD;
7348 if (relax32)
7349 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7350 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7351 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7352 uncond, compact, al, nods,
7353 relax32, 0, 0),
7354 address_expr->X_add_symbol,
7355 address_expr->X_add_number);
7356 *reloc_type = BFD_RELOC_UNUSED;
7357 }
7358 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7359 {
7360 symbolS *symbol;
7361 offsetT offset;
7362
7363 /* We need to set up a variant frag. */
7364 gas_assert (address_expr != NULL);
7365 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7366 symbol created by `make_expr_symbol' may not get a necessary
7367 external relocation produced. */
7368 if (address_expr->X_op == O_symbol)
7369 {
7370 symbol = address_expr->X_add_symbol;
7371 offset = address_expr->X_add_number;
7372 }
7373 else
7374 {
7375 symbol = make_expr_symbol (address_expr);
7376 offset = 0;
7377 }
7378 add_relaxed_insn (ip, 4, 0,
7379 RELAX_MIPS16_ENCODE
7380 (*reloc_type - BFD_RELOC_UNUSED,
7381 forced_insn_length == 2, forced_insn_length == 4,
7382 delayed_branch_p (&history[0]),
7383 history[0].mips16_absolute_jump_p),
7384 symbol, offset);
7385 }
7386 else if (mips_opts.mips16 && insn_length (ip) == 2)
7387 {
7388 if (!delayed_branch_p (ip))
7389 /* Make sure there is enough room to swap this instruction with
7390 a following jump instruction. */
7391 frag_grow (6);
7392 add_fixed_insn (ip);
7393 }
7394 else
7395 {
7396 if (mips_opts.mips16
7397 && mips_opts.noreorder
7398 && delayed_branch_p (&history[0]))
7399 as_warn (_("extended instruction in delay slot"));
7400
7401 if (mips_relax.sequence)
7402 {
7403 /* If we've reached the end of this frag, turn it into a variant
7404 frag and record the information for the instructions we've
7405 written so far. */
7406 if (frag_room () < 4)
7407 relax_close_frag ();
7408 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7409 }
7410
7411 if (mips_relax.sequence != 2)
7412 {
7413 if (mips_macro_warning.first_insn_sizes[0] == 0)
7414 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7415 mips_macro_warning.sizes[0] += insn_length (ip);
7416 mips_macro_warning.insns[0]++;
7417 }
7418 if (mips_relax.sequence != 1)
7419 {
7420 if (mips_macro_warning.first_insn_sizes[1] == 0)
7421 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7422 mips_macro_warning.sizes[1] += insn_length (ip);
7423 mips_macro_warning.insns[1]++;
7424 }
7425
7426 if (mips_opts.mips16)
7427 {
7428 ip->fixed_p = 1;
7429 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7430 }
7431 add_fixed_insn (ip);
7432 }
7433
7434 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7435 {
7436 bfd_reloc_code_real_type final_type[3];
7437 reloc_howto_type *howto0;
7438 reloc_howto_type *howto;
7439 int i;
7440
7441 /* Perform any necessary conversion to microMIPS relocations
7442 and find out how many relocations there actually are. */
7443 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7444 final_type[i] = micromips_map_reloc (reloc_type[i]);
7445
7446 /* In a compound relocation, it is the final (outermost)
7447 operator that determines the relocated field. */
7448 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7449 if (!howto)
7450 abort ();
7451
7452 if (i > 1)
7453 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7454 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7455 bfd_get_reloc_size (howto),
7456 address_expr,
7457 howto0 && howto0->pc_relative,
7458 final_type[0]);
7459
7460 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7461 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7462 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7463
7464 /* These relocations can have an addend that won't fit in
7465 4 octets for 64bit assembly. */
7466 if (GPR_SIZE == 64
7467 && ! howto->partial_inplace
7468 && (reloc_type[0] == BFD_RELOC_16
7469 || reloc_type[0] == BFD_RELOC_32
7470 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7471 || reloc_type[0] == BFD_RELOC_GPREL16
7472 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7473 || reloc_type[0] == BFD_RELOC_GPREL32
7474 || reloc_type[0] == BFD_RELOC_64
7475 || reloc_type[0] == BFD_RELOC_CTOR
7476 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7477 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7478 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7479 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7480 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7481 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7482 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7483 || hi16_reloc_p (reloc_type[0])
7484 || lo16_reloc_p (reloc_type[0])))
7485 ip->fixp[0]->fx_no_overflow = 1;
7486
7487 /* These relocations can have an addend that won't fit in 2 octets. */
7488 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7489 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7490 ip->fixp[0]->fx_no_overflow = 1;
7491
7492 if (mips_relax.sequence)
7493 {
7494 if (mips_relax.first_fixup == 0)
7495 mips_relax.first_fixup = ip->fixp[0];
7496 }
7497 else if (reloc_needs_lo_p (*reloc_type))
7498 {
7499 struct mips_hi_fixup *hi_fixup;
7500
7501 /* Reuse the last entry if it already has a matching %lo. */
7502 hi_fixup = mips_hi_fixup_list;
7503 if (hi_fixup == 0
7504 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7505 {
7506 hi_fixup = XNEW (struct mips_hi_fixup);
7507 hi_fixup->next = mips_hi_fixup_list;
7508 mips_hi_fixup_list = hi_fixup;
7509 }
7510 hi_fixup->fixp = ip->fixp[0];
7511 hi_fixup->seg = now_seg;
7512 }
7513
7514 /* Add fixups for the second and third relocations, if given.
7515 Note that the ABI allows the second relocation to be
7516 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7517 moment we only use RSS_UNDEF, but we could add support
7518 for the others if it ever becomes necessary. */
7519 for (i = 1; i < 3; i++)
7520 if (reloc_type[i] != BFD_RELOC_UNUSED)
7521 {
7522 ip->fixp[i] = fix_new (ip->frag, ip->where,
7523 ip->fixp[0]->fx_size, NULL, 0,
7524 FALSE, final_type[i]);
7525
7526 /* Use fx_tcbit to mark compound relocs. */
7527 ip->fixp[0]->fx_tcbit = 1;
7528 ip->fixp[i]->fx_tcbit = 1;
7529 }
7530 }
7531
7532 /* Update the register mask information. */
7533 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7534 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7535
7536 switch (method)
7537 {
7538 case APPEND_ADD:
7539 insert_into_history (0, 1, ip);
7540 break;
7541
7542 case APPEND_ADD_WITH_NOP:
7543 {
7544 struct mips_cl_insn *nop;
7545
7546 insert_into_history (0, 1, ip);
7547 nop = get_delay_slot_nop (ip);
7548 add_fixed_insn (nop);
7549 insert_into_history (0, 1, nop);
7550 if (mips_relax.sequence)
7551 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7552 }
7553 break;
7554
7555 case APPEND_ADD_COMPACT:
7556 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7557 if (mips_opts.mips16)
7558 {
7559 ip->insn_opcode |= 0x0080;
7560 find_altered_mips16_opcode (ip);
7561 }
7562 /* Convert microMIPS instructions. */
7563 else if (mips_opts.micromips)
7564 {
7565 /* jr16->jrc */
7566 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7567 ip->insn_opcode |= 0x0020;
7568 /* b16->bc */
7569 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7570 ip->insn_opcode = 0x40e00000;
7571 /* beqz16->beqzc, bnez16->bnezc */
7572 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7573 {
7574 unsigned long regno;
7575
7576 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7577 regno &= MICROMIPSOP_MASK_MD;
7578 regno = micromips_to_32_reg_d_map[regno];
7579 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7580 | (regno << MICROMIPSOP_SH_RS)
7581 | 0x40a00000) ^ 0x00400000;
7582 }
7583 /* beqz->beqzc, bnez->bnezc */
7584 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7585 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7586 | ((ip->insn_opcode >> 7) & 0x00400000)
7587 | 0x40a00000) ^ 0x00400000;
7588 /* beq $0->beqzc, bne $0->bnezc */
7589 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7590 ip->insn_opcode = (((ip->insn_opcode >>
7591 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7592 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7593 | ((ip->insn_opcode >> 7) & 0x00400000)
7594 | 0x40a00000) ^ 0x00400000;
7595 else
7596 abort ();
7597 find_altered_micromips_opcode (ip);
7598 }
7599 else
7600 abort ();
7601 install_insn (ip);
7602 insert_into_history (0, 1, ip);
7603 break;
7604
7605 case APPEND_SWAP:
7606 {
7607 struct mips_cl_insn delay = history[0];
7608
7609 if (relaxed_branch || delay.frag != ip->frag)
7610 {
7611 /* Add the delay slot instruction to the end of the
7612 current frag and shrink the fixed part of the
7613 original frag. If the branch occupies the tail of
7614 the latter, move it backwards to cover the gap. */
7615 delay.frag->fr_fix -= branch_disp;
7616 if (delay.frag == ip->frag)
7617 move_insn (ip, ip->frag, ip->where - branch_disp);
7618 add_fixed_insn (&delay);
7619 }
7620 else
7621 {
7622 /* If this is not a relaxed branch and we are in the
7623 same frag, then just swap the instructions. */
7624 move_insn (ip, delay.frag, delay.where);
7625 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7626 }
7627 history[0] = *ip;
7628 delay.fixed_p = 1;
7629 insert_into_history (0, 1, &delay);
7630 }
7631 break;
7632 }
7633
7634 /* If we have just completed an unconditional branch, clear the history. */
7635 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7636 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7637 {
7638 unsigned int i;
7639
7640 mips_no_prev_insn ();
7641
7642 for (i = 0; i < ARRAY_SIZE (history); i++)
7643 history[i].cleared_p = 1;
7644 }
7645
7646 /* We need to emit a label at the end of branch-likely macros. */
7647 if (emit_branch_likely_macro)
7648 {
7649 emit_branch_likely_macro = FALSE;
7650 micromips_add_label ();
7651 }
7652
7653 /* We just output an insn, so the next one doesn't have a label. */
7654 mips_clear_insn_labels ();
7655}
7656
7657/* Forget that there was any previous instruction or label.
7658 When BRANCH is true, the branch history is also flushed. */
7659
7660static void
7661mips_no_prev_insn (void)
7662{
7663 prev_nop_frag = NULL;
7664 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7665 mips_clear_insn_labels ();
7666}
7667
7668/* This function must be called before we emit something other than
7669 instructions. It is like mips_no_prev_insn except that it inserts
7670 any NOPS that might be needed by previous instructions. */
7671
7672void
7673mips_emit_delays (void)
7674{
7675 if (! mips_opts.noreorder)
7676 {
7677 int nops = nops_for_insn (0, history, NULL);
7678 if (nops > 0)
7679 {
7680 while (nops-- > 0)
7681 add_fixed_insn (NOP_INSN);
7682 mips_move_text_labels ();
7683 }
7684 }
7685 mips_no_prev_insn ();
7686}
7687
7688/* Start a (possibly nested) noreorder block. */
7689
7690static void
7691start_noreorder (void)
7692{
7693 if (mips_opts.noreorder == 0)
7694 {
7695 unsigned int i;
7696 int nops;
7697
7698 /* None of the instructions before the .set noreorder can be moved. */
7699 for (i = 0; i < ARRAY_SIZE (history); i++)
7700 history[i].fixed_p = 1;
7701
7702 /* Insert any nops that might be needed between the .set noreorder
7703 block and the previous instructions. We will later remove any
7704 nops that turn out not to be needed. */
7705 nops = nops_for_insn (0, history, NULL);
7706 if (nops > 0)
7707 {
7708 if (mips_optimize != 0)
7709 {
7710 /* Record the frag which holds the nop instructions, so
7711 that we can remove them if we don't need them. */
7712 frag_grow (nops * NOP_INSN_SIZE);
7713 prev_nop_frag = frag_now;
7714 prev_nop_frag_holds = nops;
7715 prev_nop_frag_required = 0;
7716 prev_nop_frag_since = 0;
7717 }
7718
7719 for (; nops > 0; --nops)
7720 add_fixed_insn (NOP_INSN);
7721
7722 /* Move on to a new frag, so that it is safe to simply
7723 decrease the size of prev_nop_frag. */
7724 frag_wane (frag_now);
7725 frag_new (0);
7726 mips_move_text_labels ();
7727 }
7728 mips_mark_labels ();
7729 mips_clear_insn_labels ();
7730 }
7731 mips_opts.noreorder++;
7732 mips_any_noreorder = 1;
7733}
7734
7735/* End a nested noreorder block. */
7736
7737static void
7738end_noreorder (void)
7739{
7740 mips_opts.noreorder--;
7741 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7742 {
7743 /* Commit to inserting prev_nop_frag_required nops and go back to
7744 handling nop insertion the .set reorder way. */
7745 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7746 * NOP_INSN_SIZE);
7747 insert_into_history (prev_nop_frag_since,
7748 prev_nop_frag_required, NOP_INSN);
7749 prev_nop_frag = NULL;
7750 }
7751}
7752
7753/* Sign-extend 32-bit mode constants that have bit 31 set and all
7754 higher bits unset. */
7755
7756static void
7757normalize_constant_expr (expressionS *ex)
7758{
7759 if (ex->X_op == O_constant
7760 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7761 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7762 - 0x80000000);
7763}
7764
7765/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7766 all higher bits unset. */
7767
7768static void
7769normalize_address_expr (expressionS *ex)
7770{
7771 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7772 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7773 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7774 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7775 - 0x80000000);
7776}
7777
7778/* Try to match TOKENS against OPCODE, storing the result in INSN.
7779 Return true if the match was successful.
7780
7781 OPCODE_EXTRA is a value that should be ORed into the opcode
7782 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7783 there are more alternatives after OPCODE and SOFT_MATCH is
7784 as for mips_arg_info. */
7785
7786static bfd_boolean
7787match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7788 struct mips_operand_token *tokens, unsigned int opcode_extra,
7789 bfd_boolean lax_match, bfd_boolean complete_p)
7790{
7791 const char *args;
7792 struct mips_arg_info arg;
7793 const struct mips_operand *operand;
7794 char c;
7795
7796 imm_expr.X_op = O_absent;
7797 offset_expr.X_op = O_absent;
7798 offset_reloc[0] = BFD_RELOC_UNUSED;
7799 offset_reloc[1] = BFD_RELOC_UNUSED;
7800 offset_reloc[2] = BFD_RELOC_UNUSED;
7801
7802 create_insn (insn, opcode);
7803 /* When no opcode suffix is specified, assume ".xyzw". */
7804 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7805 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7806 else
7807 insn->insn_opcode |= opcode_extra;
7808 memset (&arg, 0, sizeof (arg));
7809 arg.insn = insn;
7810 arg.token = tokens;
7811 arg.argnum = 1;
7812 arg.last_regno = ILLEGAL_REG;
7813 arg.dest_regno = ILLEGAL_REG;
7814 arg.lax_match = lax_match;
7815 for (args = opcode->args;; ++args)
7816 {
7817 if (arg.token->type == OT_END)
7818 {
7819 /* Handle unary instructions in which only one operand is given.
7820 The source is then the same as the destination. */
7821 if (arg.opnum == 1 && *args == ',')
7822 {
7823 operand = (mips_opts.micromips
7824 ? decode_micromips_operand (args + 1)
7825 : decode_mips_operand (args + 1));
7826 if (operand && mips_optional_operand_p (operand))
7827 {
7828 arg.token = tokens;
7829 arg.argnum = 1;
7830 continue;
7831 }
7832 }
7833
7834 /* Treat elided base registers as $0. */
7835 if (strcmp (args, "(b)") == 0)
7836 args += 3;
7837
7838 if (args[0] == '+')
7839 switch (args[1])
7840 {
7841 case 'K':
7842 case 'N':
7843 /* The register suffix is optional. */
7844 args += 2;
7845 break;
7846 }
7847
7848 /* Fail the match if there were too few operands. */
7849 if (*args)
7850 return FALSE;
7851
7852 /* Successful match. */
7853 if (!complete_p)
7854 return TRUE;
7855 clear_insn_error ();
7856 if (arg.dest_regno == arg.last_regno
7857 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7858 {
7859 if (arg.opnum == 2)
7860 set_insn_error
7861 (0, _("source and destination must be different"));
7862 else if (arg.last_regno == 31)
7863 set_insn_error
7864 (0, _("a destination register must be supplied"));
7865 }
7866 else if (arg.last_regno == 31
7867 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7868 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7869 set_insn_error (0, _("the source register must not be $31"));
7870 check_completed_insn (&arg);
7871 return TRUE;
7872 }
7873
7874 /* Fail the match if the line has too many operands. */
7875 if (*args == 0)
7876 return FALSE;
7877
7878 /* Handle characters that need to match exactly. */
7879 if (*args == '(' || *args == ')' || *args == ',')
7880 {
7881 if (match_char (&arg, *args))
7882 continue;
7883 return FALSE;
7884 }
7885 if (*args == '#')
7886 {
7887 ++args;
7888 if (arg.token->type == OT_DOUBLE_CHAR
7889 && arg.token->u.ch == *args)
7890 {
7891 ++arg.token;
7892 continue;
7893 }
7894 return FALSE;
7895 }
7896
7897 /* Handle special macro operands. Work out the properties of
7898 other operands. */
7899 arg.opnum += 1;
7900 switch (*args)
7901 {
7902 case '-':
7903 switch (args[1])
7904 {
7905 case 'A':
7906 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7907 break;
7908
7909 case 'B':
7910 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7911 break;
7912 }
7913 break;
7914
7915 case '+':
7916 switch (args[1])
7917 {
7918 case 'i':
7919 *offset_reloc = BFD_RELOC_MIPS_JMP;
7920 break;
7921
7922 case '\'':
7923 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7924 break;
7925
7926 case '\"':
7927 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7928 break;
7929 }
7930 break;
7931
7932 case 'I':
7933 if (!match_const_int (&arg, &imm_expr.X_add_number))
7934 return FALSE;
7935 imm_expr.X_op = O_constant;
7936 if (GPR_SIZE == 32)
7937 normalize_constant_expr (&imm_expr);
7938 continue;
7939
7940 case 'A':
7941 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7942 {
7943 /* Assume that the offset has been elided and that what
7944 we saw was a base register. The match will fail later
7945 if that assumption turns out to be wrong. */
7946 offset_expr.X_op = O_constant;
7947 offset_expr.X_add_number = 0;
7948 }
7949 else
7950 {
7951 if (!match_expression (&arg, &offset_expr, offset_reloc))
7952 return FALSE;
7953 normalize_address_expr (&offset_expr);
7954 }
7955 continue;
7956
7957 case 'F':
7958 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7959 8, TRUE))
7960 return FALSE;
7961 continue;
7962
7963 case 'L':
7964 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7965 8, FALSE))
7966 return FALSE;
7967 continue;
7968
7969 case 'f':
7970 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7971 4, TRUE))
7972 return FALSE;
7973 continue;
7974
7975 case 'l':
7976 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7977 4, FALSE))
7978 return FALSE;
7979 continue;
7980
7981 case 'p':
7982 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7983 break;
7984
7985 case 'a':
7986 *offset_reloc = BFD_RELOC_MIPS_JMP;
7987 break;
7988
7989 case 'm':
7990 gas_assert (mips_opts.micromips);
7991 c = args[1];
7992 switch (c)
7993 {
7994 case 'D':
7995 case 'E':
7996 if (!forced_insn_length)
7997 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7998 else if (c == 'D')
7999 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8000 else
8001 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8002 break;
8003 }
8004 break;
8005 }
8006
8007 operand = (mips_opts.micromips
8008 ? decode_micromips_operand (args)
8009 : decode_mips_operand (args));
8010 if (!operand)
8011 abort ();
8012
8013 /* Skip prefixes. */
8014 if (*args == '+' || *args == 'm' || *args == '-')
8015 args++;
8016
8017 if (mips_optional_operand_p (operand)
8018 && args[1] == ','
8019 && (arg.token[0].type != OT_REG
8020 || arg.token[1].type == OT_END))
8021 {
8022 /* Assume that the register has been elided and is the
8023 same as the first operand. */
8024 arg.token = tokens;
8025 arg.argnum = 1;
8026 }
8027
8028 if (!match_operand (&arg, operand))
8029 return FALSE;
8030 }
8031}
8032
8033/* Like match_insn, but for MIPS16. */
8034
8035static bfd_boolean
8036match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8037 struct mips_operand_token *tokens)
8038{
8039 const char *args;
8040 const struct mips_operand *operand;
8041 const struct mips_operand *ext_operand;
8042 struct mips_arg_info arg;
8043 int relax_char;
8044
8045 create_insn (insn, opcode);
8046 imm_expr.X_op = O_absent;
8047 offset_expr.X_op = O_absent;
8048 offset_reloc[0] = BFD_RELOC_UNUSED;
8049 offset_reloc[1] = BFD_RELOC_UNUSED;
8050 offset_reloc[2] = BFD_RELOC_UNUSED;
8051 relax_char = 0;
8052
8053 memset (&arg, 0, sizeof (arg));
8054 arg.insn = insn;
8055 arg.token = tokens;
8056 arg.argnum = 1;
8057 arg.last_regno = ILLEGAL_REG;
8058 arg.dest_regno = ILLEGAL_REG;
8059 relax_char = 0;
8060 for (args = opcode->args;; ++args)
8061 {
8062 int c;
8063
8064 if (arg.token->type == OT_END)
8065 {
8066 offsetT value;
8067
8068 /* Handle unary instructions in which only one operand is given.
8069 The source is then the same as the destination. */
8070 if (arg.opnum == 1 && *args == ',')
8071 {
8072 operand = decode_mips16_operand (args[1], FALSE);
8073 if (operand && mips_optional_operand_p (operand))
8074 {
8075 arg.token = tokens;
8076 arg.argnum = 1;
8077 continue;
8078 }
8079 }
8080
8081 /* Fail the match if there were too few operands. */
8082 if (*args)
8083 return FALSE;
8084
8085 /* Successful match. Stuff the immediate value in now, if
8086 we can. */
8087 clear_insn_error ();
8088 if (opcode->pinfo == INSN_MACRO)
8089 {
8090 gas_assert (relax_char == 0 || relax_char == 'p');
8091 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8092 }
8093 else if (relax_char
8094 && offset_expr.X_op == O_constant
8095 && calculate_reloc (*offset_reloc,
8096 offset_expr.X_add_number,
8097 &value))
8098 {
8099 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8100 forced_insn_length, &insn->insn_opcode);
8101 offset_expr.X_op = O_absent;
8102 *offset_reloc = BFD_RELOC_UNUSED;
8103 }
8104 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8105 {
8106 if (forced_insn_length == 2)
8107 set_insn_error (0, _("invalid unextended operand value"));
8108 forced_insn_length = 4;
8109 insn->insn_opcode |= MIPS16_EXTEND;
8110 }
8111 else if (relax_char)
8112 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8113
8114 check_completed_insn (&arg);
8115 return TRUE;
8116 }
8117
8118 /* Fail the match if the line has too many operands. */
8119 if (*args == 0)
8120 return FALSE;
8121
8122 /* Handle characters that need to match exactly. */
8123 if (*args == '(' || *args == ')' || *args == ',')
8124 {
8125 if (match_char (&arg, *args))
8126 continue;
8127 return FALSE;
8128 }
8129
8130 arg.opnum += 1;
8131 c = *args;
8132 switch (c)
8133 {
8134 case 'p':
8135 case 'q':
8136 case 'A':
8137 case 'B':
8138 case 'E':
8139 relax_char = c;
8140 break;
8141
8142 case 'I':
8143 if (!match_const_int (&arg, &imm_expr.X_add_number))
8144 return FALSE;
8145 imm_expr.X_op = O_constant;
8146 if (GPR_SIZE == 32)
8147 normalize_constant_expr (&imm_expr);
8148 continue;
8149
8150 case 'a':
8151 case 'i':
8152 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8153 insn->insn_opcode <<= 16;
8154 break;
8155 }
8156
8157 operand = decode_mips16_operand (c, FALSE);
8158 if (!operand)
8159 abort ();
8160
8161 /* '6' is a special case. It is used for BREAK and SDBBP,
8162 whose operands are only meaningful to the software that decodes
8163 them. This means that there is no architectural reason why
8164 they cannot be prefixed by EXTEND, but in practice,
8165 exception handlers will only look at the instruction
8166 itself. We therefore allow '6' to be extended when
8167 disassembling but not when assembling. */
8168 if (operand->type != OP_PCREL && c != '6')
8169 {
8170 ext_operand = decode_mips16_operand (c, TRUE);
8171 if (operand != ext_operand)
8172 {
8173 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8174 {
8175 offset_expr.X_op = O_constant;
8176 offset_expr.X_add_number = 0;
8177 relax_char = c;
8178 continue;
8179 }
8180
8181 /* We need the OT_INTEGER check because some MIPS16
8182 immediate variants are listed before the register ones. */
8183 if (arg.token->type != OT_INTEGER
8184 || !match_expression (&arg, &offset_expr, offset_reloc))
8185 return FALSE;
8186
8187 /* '8' is used for SLTI(U) and has traditionally not
8188 been allowed to take relocation operators. */
8189 if (offset_reloc[0] != BFD_RELOC_UNUSED
8190 && (ext_operand->size != 16 || c == '8'))
8191 return FALSE;
8192
8193 relax_char = c;
8194 continue;
8195 }
8196 }
8197
8198 if (mips_optional_operand_p (operand)
8199 && args[1] == ','
8200 && (arg.token[0].type != OT_REG
8201 || arg.token[1].type == OT_END))
8202 {
8203 /* Assume that the register has been elided and is the
8204 same as the first operand. */
8205 arg.token = tokens;
8206 arg.argnum = 1;
8207 }
8208
8209 if (!match_operand (&arg, operand))
8210 return FALSE;
8211 }
8212}
8213
8214/* Record that the current instruction is invalid for the current ISA. */
8215
8216static void
8217match_invalid_for_isa (void)
8218{
8219 set_insn_error_ss
8220 (0, _("opcode not supported on this processor: %s (%s)"),
8221 mips_cpu_info_from_arch (mips_opts.arch)->name,
8222 mips_cpu_info_from_isa (mips_opts.isa)->name);
8223}
8224
8225/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8226 Return true if a definite match or failure was found, storing any match
8227 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8228 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8229 tried and failed to match under normal conditions and now want to try a
8230 more relaxed match. */
8231
8232static bfd_boolean
8233match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8234 const struct mips_opcode *past, struct mips_operand_token *tokens,
8235 int opcode_extra, bfd_boolean lax_match)
8236{
8237 const struct mips_opcode *opcode;
8238 const struct mips_opcode *invalid_delay_slot;
8239 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8240
8241 /* Search for a match, ignoring alternatives that don't satisfy the
8242 current ISA or forced_length. */
8243 invalid_delay_slot = 0;
8244 seen_valid_for_isa = FALSE;
8245 seen_valid_for_size = FALSE;
8246 opcode = first;
8247 do
8248 {
8249 gas_assert (strcmp (opcode->name, first->name) == 0);
8250 if (is_opcode_valid (opcode))
8251 {
8252 seen_valid_for_isa = TRUE;
8253 if (is_size_valid (opcode))
8254 {
8255 bfd_boolean delay_slot_ok;
8256
8257 seen_valid_for_size = TRUE;
8258 delay_slot_ok = is_delay_slot_valid (opcode);
8259 if (match_insn (insn, opcode, tokens, opcode_extra,
8260 lax_match, delay_slot_ok))
8261 {
8262 if (!delay_slot_ok)
8263 {
8264 if (!invalid_delay_slot)
8265 invalid_delay_slot = opcode;
8266 }
8267 else
8268 return TRUE;
8269 }
8270 }
8271 }
8272 ++opcode;
8273 }
8274 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8275
8276 /* If the only matches we found had the wrong length for the delay slot,
8277 pick the first such match. We'll issue an appropriate warning later. */
8278 if (invalid_delay_slot)
8279 {
8280 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8281 lax_match, TRUE))
8282 return TRUE;
8283 abort ();
8284 }
8285
8286 /* Handle the case where we didn't try to match an instruction because
8287 all the alternatives were incompatible with the current ISA. */
8288 if (!seen_valid_for_isa)
8289 {
8290 match_invalid_for_isa ();
8291 return TRUE;
8292 }
8293
8294 /* Handle the case where we didn't try to match an instruction because
8295 all the alternatives were of the wrong size. */
8296 if (!seen_valid_for_size)
8297 {
8298 if (mips_opts.insn32)
8299 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8300 else
8301 set_insn_error_i
8302 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8303 8 * forced_insn_length);
8304 return TRUE;
8305 }
8306
8307 return FALSE;
8308}
8309
8310/* Like match_insns, but for MIPS16. */
8311
8312static bfd_boolean
8313match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8314 struct mips_operand_token *tokens)
8315{
8316 const struct mips_opcode *opcode;
8317 bfd_boolean seen_valid_for_isa;
8318
8319 /* Search for a match, ignoring alternatives that don't satisfy the
8320 current ISA. There are no separate entries for extended forms so
8321 we deal with forced_length later. */
8322 seen_valid_for_isa = FALSE;
8323 opcode = first;
8324 do
8325 {
8326 gas_assert (strcmp (opcode->name, first->name) == 0);
8327 if (is_opcode_valid_16 (opcode))
8328 {
8329 seen_valid_for_isa = TRUE;
8330 if (match_mips16_insn (insn, opcode, tokens))
8331 return TRUE;
8332 }
8333 ++opcode;
8334 }
8335 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8336 && strcmp (opcode->name, first->name) == 0);
8337
8338 /* Handle the case where we didn't try to match an instruction because
8339 all the alternatives were incompatible with the current ISA. */
8340 if (!seen_valid_for_isa)
8341 {
8342 match_invalid_for_isa ();
8343 return TRUE;
8344 }
8345
8346 return FALSE;
8347}
8348
8349/* Set up global variables for the start of a new macro. */
8350
8351static void
8352macro_start (void)
8353{
8354 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8355 memset (&mips_macro_warning.first_insn_sizes, 0,
8356 sizeof (mips_macro_warning.first_insn_sizes));
8357 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8358 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8359 && delayed_branch_p (&history[0]));
8360 if (history[0].frag
8361 && history[0].frag->fr_type == rs_machine_dependent
8362 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8363 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8364 mips_macro_warning.delay_slot_length = 0;
8365 else
8366 switch (history[0].insn_mo->pinfo2
8367 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8368 {
8369 case INSN2_BRANCH_DELAY_32BIT:
8370 mips_macro_warning.delay_slot_length = 4;
8371 break;
8372 case INSN2_BRANCH_DELAY_16BIT:
8373 mips_macro_warning.delay_slot_length = 2;
8374 break;
8375 default:
8376 mips_macro_warning.delay_slot_length = 0;
8377 break;
8378 }
8379 mips_macro_warning.first_frag = NULL;
8380}
8381
8382/* Given that a macro is longer than one instruction or of the wrong size,
8383 return the appropriate warning for it. Return null if no warning is
8384 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8385 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8386 and RELAX_NOMACRO. */
8387
8388static const char *
8389macro_warning (relax_substateT subtype)
8390{
8391 if (subtype & RELAX_DELAY_SLOT)
8392 return _("macro instruction expanded into multiple instructions"
8393 " in a branch delay slot");
8394 else if (subtype & RELAX_NOMACRO)
8395 return _("macro instruction expanded into multiple instructions");
8396 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8397 | RELAX_DELAY_SLOT_SIZE_SECOND))
8398 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8399 ? _("macro instruction expanded into a wrong size instruction"
8400 " in a 16-bit branch delay slot")
8401 : _("macro instruction expanded into a wrong size instruction"
8402 " in a 32-bit branch delay slot"));
8403 else
8404 return 0;
8405}
8406
8407/* Finish up a macro. Emit warnings as appropriate. */
8408
8409static void
8410macro_end (void)
8411{
8412 /* Relaxation warning flags. */
8413 relax_substateT subtype = 0;
8414
8415 /* Check delay slot size requirements. */
8416 if (mips_macro_warning.delay_slot_length == 2)
8417 subtype |= RELAX_DELAY_SLOT_16BIT;
8418 if (mips_macro_warning.delay_slot_length != 0)
8419 {
8420 if (mips_macro_warning.delay_slot_length
8421 != mips_macro_warning.first_insn_sizes[0])
8422 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8423 if (mips_macro_warning.delay_slot_length
8424 != mips_macro_warning.first_insn_sizes[1])
8425 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8426 }
8427
8428 /* Check instruction count requirements. */
8429 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8430 {
8431 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8432 subtype |= RELAX_SECOND_LONGER;
8433 if (mips_opts.warn_about_macros)
8434 subtype |= RELAX_NOMACRO;
8435 if (mips_macro_warning.delay_slot_p)
8436 subtype |= RELAX_DELAY_SLOT;
8437 }
8438
8439 /* If both alternatives fail to fill a delay slot correctly,
8440 emit the warning now. */
8441 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8442 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8443 {
8444 relax_substateT s;
8445 const char *msg;
8446
8447 s = subtype & (RELAX_DELAY_SLOT_16BIT
8448 | RELAX_DELAY_SLOT_SIZE_FIRST
8449 | RELAX_DELAY_SLOT_SIZE_SECOND);
8450 msg = macro_warning (s);
8451 if (msg != NULL)
8452 as_warn ("%s", msg);
8453 subtype &= ~s;
8454 }
8455
8456 /* If both implementations are longer than 1 instruction, then emit the
8457 warning now. */
8458 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8459 {
8460 relax_substateT s;
8461 const char *msg;
8462
8463 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8464 msg = macro_warning (s);
8465 if (msg != NULL)
8466 as_warn ("%s", msg);
8467 subtype &= ~s;
8468 }
8469
8470 /* If any flags still set, then one implementation might need a warning
8471 and the other either will need one of a different kind or none at all.
8472 Pass any remaining flags over to relaxation. */
8473 if (mips_macro_warning.first_frag != NULL)
8474 mips_macro_warning.first_frag->fr_subtype |= subtype;
8475}
8476
8477/* Instruction operand formats used in macros that vary between
8478 standard MIPS and microMIPS code. */
8479
8480static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8481static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8482static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8483static const char * const lui_fmt[2] = { "t,u", "s,u" };
8484static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8485static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8486static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8487static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8488
8489#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8490#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8491 : cop12_fmt[mips_opts.micromips])
8492#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8493#define LUI_FMT (lui_fmt[mips_opts.micromips])
8494#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8495#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8496 : mem12_fmt[mips_opts.micromips])
8497#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8498#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8499#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8500
8501/* Read a macro's relocation codes from *ARGS and store them in *R.
8502 The first argument in *ARGS will be either the code for a single
8503 relocation or -1 followed by the three codes that make up a
8504 composite relocation. */
8505
8506static void
8507macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8508{
8509 int i, next;
8510
8511 next = va_arg (*args, int);
8512 if (next >= 0)
8513 r[0] = (bfd_reloc_code_real_type) next;
8514 else
8515 {
8516 for (i = 0; i < 3; i++)
8517 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8518 /* This function is only used for 16-bit relocation fields.
8519 To make the macro code simpler, treat an unrelocated value
8520 in the same way as BFD_RELOC_LO16. */
8521 if (r[0] == BFD_RELOC_UNUSED)
8522 r[0] = BFD_RELOC_LO16;
8523 }
8524}
8525
8526/* Build an instruction created by a macro expansion. This is passed
8527 a pointer to the count of instructions created so far, an
8528 expression, the name of the instruction to build, an operand format
8529 string, and corresponding arguments. */
8530
8531static void
8532macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8533{
8534 const struct mips_opcode *mo = NULL;
8535 bfd_reloc_code_real_type r[3];
8536 const struct mips_opcode *amo;
8537 const struct mips_operand *operand;
8538 struct hash_control *hash;
8539 struct mips_cl_insn insn;
8540 va_list args;
8541 unsigned int uval;
8542
8543 va_start (args, fmt);
8544
8545 if (mips_opts.mips16)
8546 {
8547 mips16_macro_build (ep, name, fmt, &args);
8548 va_end (args);
8549 return;
8550 }
8551
8552 r[0] = BFD_RELOC_UNUSED;
8553 r[1] = BFD_RELOC_UNUSED;
8554 r[2] = BFD_RELOC_UNUSED;
8555 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8556 amo = (struct mips_opcode *) hash_find (hash, name);
8557 gas_assert (amo);
8558 gas_assert (strcmp (name, amo->name) == 0);
8559
8560 do
8561 {
8562 /* Search until we get a match for NAME. It is assumed here that
8563 macros will never generate MDMX, MIPS-3D, or MT instructions.
8564 We try to match an instruction that fulfils the branch delay
8565 slot instruction length requirement (if any) of the previous
8566 instruction. While doing this we record the first instruction
8567 seen that matches all the other conditions and use it anyway
8568 if the requirement cannot be met; we will issue an appropriate
8569 warning later on. */
8570 if (strcmp (fmt, amo->args) == 0
8571 && amo->pinfo != INSN_MACRO
8572 && is_opcode_valid (amo)
8573 && is_size_valid (amo))
8574 {
8575 if (is_delay_slot_valid (amo))
8576 {
8577 mo = amo;
8578 break;
8579 }
8580 else if (!mo)
8581 mo = amo;
8582 }
8583
8584 ++amo;
8585 gas_assert (amo->name);
8586 }
8587 while (strcmp (name, amo->name) == 0);
8588
8589 gas_assert (mo);
8590 create_insn (&insn, mo);
8591 for (; *fmt; ++fmt)
8592 {
8593 switch (*fmt)
8594 {
8595 case ',':
8596 case '(':
8597 case ')':
8598 case 'z':
8599 break;
8600
8601 case 'i':
8602 case 'j':
8603 macro_read_relocs (&args, r);
8604 gas_assert (*r == BFD_RELOC_GPREL16
8605 || *r == BFD_RELOC_MIPS_HIGHER
8606 || *r == BFD_RELOC_HI16_S
8607 || *r == BFD_RELOC_LO16
8608 || *r == BFD_RELOC_MIPS_GOT_OFST);
8609 break;
8610
8611 case 'o':
8612 macro_read_relocs (&args, r);
8613 break;
8614
8615 case 'u':
8616 macro_read_relocs (&args, r);
8617 gas_assert (ep != NULL
8618 && (ep->X_op == O_constant
8619 || (ep->X_op == O_symbol
8620 && (*r == BFD_RELOC_MIPS_HIGHEST
8621 || *r == BFD_RELOC_HI16_S
8622 || *r == BFD_RELOC_HI16
8623 || *r == BFD_RELOC_GPREL16
8624 || *r == BFD_RELOC_MIPS_GOT_HI16
8625 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8626 break;
8627
8628 case 'p':
8629 gas_assert (ep != NULL);
8630
8631 /*
8632 * This allows macro() to pass an immediate expression for
8633 * creating short branches without creating a symbol.
8634 *
8635 * We don't allow branch relaxation for these branches, as
8636 * they should only appear in ".set nomacro" anyway.
8637 */
8638 if (ep->X_op == O_constant)
8639 {
8640 /* For microMIPS we always use relocations for branches.
8641 So we should not resolve immediate values. */
8642 gas_assert (!mips_opts.micromips);
8643
8644 if ((ep->X_add_number & 3) != 0)
8645 as_bad (_("branch to misaligned address (0x%lx)"),
8646 (unsigned long) ep->X_add_number);
8647 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8648 as_bad (_("branch address range overflow (0x%lx)"),
8649 (unsigned long) ep->X_add_number);
8650 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8651 ep = NULL;
8652 }
8653 else
8654 *r = BFD_RELOC_16_PCREL_S2;
8655 break;
8656
8657 case 'a':
8658 gas_assert (ep != NULL);
8659 *r = BFD_RELOC_MIPS_JMP;
8660 break;
8661
8662 default:
8663 operand = (mips_opts.micromips
8664 ? decode_micromips_operand (fmt)
8665 : decode_mips_operand (fmt));
8666 if (!operand)
8667 abort ();
8668
8669 uval = va_arg (args, int);
8670 if (operand->type == OP_CLO_CLZ_DEST)
8671 uval |= (uval << 5);
8672 insn_insert_operand (&insn, operand, uval);
8673
8674 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8675 ++fmt;
8676 break;
8677 }
8678 }
8679 va_end (args);
8680 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8681
8682 append_insn (&insn, ep, r, TRUE);
8683}
8684
8685static void
8686mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8687 va_list *args)
8688{
8689 struct mips_opcode *mo;
8690 struct mips_cl_insn insn;
8691 const struct mips_operand *operand;
8692 bfd_reloc_code_real_type r[3]
8693 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8694
8695 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8696 gas_assert (mo);
8697 gas_assert (strcmp (name, mo->name) == 0);
8698
8699 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8700 {
8701 ++mo;
8702 gas_assert (mo->name);
8703 gas_assert (strcmp (name, mo->name) == 0);
8704 }
8705
8706 create_insn (&insn, mo);
8707 for (; *fmt; ++fmt)
8708 {
8709 int c;
8710
8711 c = *fmt;
8712 switch (c)
8713 {
8714 case ',':
8715 case '(':
8716 case ')':
8717 break;
8718
8719 case '0':
8720 case 'S':
8721 case 'P':
8722 case 'R':
8723 break;
8724
8725 case '<':
8726 case '4':
8727 case '5':
8728 case 'H':
8729 case 'W':
8730 case 'D':
8731 case 'j':
8732 case '8':
8733 case 'V':
8734 case 'C':
8735 case 'U':
8736 case 'k':
8737 case 'K':
8738 case 'p':
8739 case 'q':
8740 {
8741 offsetT value;
8742
8743 gas_assert (ep != NULL);
8744
8745 if (ep->X_op != O_constant)
8746 *r = (int) BFD_RELOC_UNUSED + c;
8747 else if (calculate_reloc (*r, ep->X_add_number, &value))
8748 {
8749 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8750 ep = NULL;
8751 *r = BFD_RELOC_UNUSED;
8752 }
8753 }
8754 break;
8755
8756 default:
8757 operand = decode_mips16_operand (c, FALSE);
8758 if (!operand)
8759 abort ();
8760
8761 insn_insert_operand (&insn, operand, va_arg (*args, int));
8762 break;
8763 }
8764 }
8765
8766 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8767
8768 append_insn (&insn, ep, r, TRUE);
8769}
8770
8771/*
8772 * Generate a "jalr" instruction with a relocation hint to the called
8773 * function. This occurs in NewABI PIC code.
8774 */
8775static void
8776macro_build_jalr (expressionS *ep, int cprestore)
8777{
8778 static const bfd_reloc_code_real_type jalr_relocs[2]
8779 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8780 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8781 const char *jalr;
8782 char *f = NULL;
8783
8784 if (MIPS_JALR_HINT_P (ep))
8785 {
8786 frag_grow (8);
8787 f = frag_more (0);
8788 }
8789 if (mips_opts.micromips)
8790 {
8791 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8792 ? "jalr" : "jalrs");
8793 if (MIPS_JALR_HINT_P (ep)
8794 || mips_opts.insn32
8795 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8796 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8797 else
8798 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8799 }
8800 else
8801 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8802 if (MIPS_JALR_HINT_P (ep))
8803 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8804}
8805
8806/*
8807 * Generate a "lui" instruction.
8808 */
8809static void
8810macro_build_lui (expressionS *ep, int regnum)
8811{
8812 gas_assert (! mips_opts.mips16);
8813
8814 if (ep->X_op != O_constant)
8815 {
8816 gas_assert (ep->X_op == O_symbol);
8817 /* _gp_disp is a special case, used from s_cpload.
8818 __gnu_local_gp is used if mips_no_shared. */
8819 gas_assert (mips_pic == NO_PIC
8820 || (! HAVE_NEWABI
8821 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8822 || (! mips_in_shared
8823 && strcmp (S_GET_NAME (ep->X_add_symbol),
8824 "__gnu_local_gp") == 0));
8825 }
8826
8827 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8828}
8829
8830/* Generate a sequence of instructions to do a load or store from a constant
8831 offset off of a base register (breg) into/from a target register (treg),
8832 using AT if necessary. */
8833static void
8834macro_build_ldst_constoffset (expressionS *ep, const char *op,
8835 int treg, int breg, int dbl)
8836{
8837 gas_assert (ep->X_op == O_constant);
8838
8839 /* Sign-extending 32-bit constants makes their handling easier. */
8840 if (!dbl)
8841 normalize_constant_expr (ep);
8842
8843 /* Right now, this routine can only handle signed 32-bit constants. */
8844 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8845 as_warn (_("operand overflow"));
8846
8847 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8848 {
8849 /* Signed 16-bit offset will fit in the op. Easy! */
8850 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8851 }
8852 else
8853 {
8854 /* 32-bit offset, need multiple instructions and AT, like:
8855 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8856 addu $tempreg,$tempreg,$breg
8857 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8858 to handle the complete offset. */
8859 macro_build_lui (ep, AT);
8860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8861 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8862
8863 if (!mips_opts.at)
8864 as_bad (_("macro used $at after \".set noat\""));
8865 }
8866}
8867
8868/* set_at()
8869 * Generates code to set the $at register to true (one)
8870 * if reg is less than the immediate expression.
8871 */
8872static void
8873set_at (int reg, int unsignedp)
8874{
8875 if (imm_expr.X_add_number >= -0x8000
8876 && imm_expr.X_add_number < 0x8000)
8877 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8878 AT, reg, BFD_RELOC_LO16);
8879 else
8880 {
8881 load_register (AT, &imm_expr, GPR_SIZE == 64);
8882 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8883 }
8884}
8885
8886/* Count the leading zeroes by performing a binary chop. This is a
8887 bulky bit of source, but performance is a LOT better for the
8888 majority of values than a simple loop to count the bits:
8889 for (lcnt = 0; (lcnt < 32); lcnt++)
8890 if ((v) & (1 << (31 - lcnt)))
8891 break;
8892 However it is not code size friendly, and the gain will drop a bit
8893 on certain cached systems.
8894*/
8895#define COUNT_TOP_ZEROES(v) \
8896 (((v) & ~0xffff) == 0 \
8897 ? ((v) & ~0xff) == 0 \
8898 ? ((v) & ~0xf) == 0 \
8899 ? ((v) & ~0x3) == 0 \
8900 ? ((v) & ~0x1) == 0 \
8901 ? !(v) \
8902 ? 32 \
8903 : 31 \
8904 : 30 \
8905 : ((v) & ~0x7) == 0 \
8906 ? 29 \
8907 : 28 \
8908 : ((v) & ~0x3f) == 0 \
8909 ? ((v) & ~0x1f) == 0 \
8910 ? 27 \
8911 : 26 \
8912 : ((v) & ~0x7f) == 0 \
8913 ? 25 \
8914 : 24 \
8915 : ((v) & ~0xfff) == 0 \
8916 ? ((v) & ~0x3ff) == 0 \
8917 ? ((v) & ~0x1ff) == 0 \
8918 ? 23 \
8919 : 22 \
8920 : ((v) & ~0x7ff) == 0 \
8921 ? 21 \
8922 : 20 \
8923 : ((v) & ~0x3fff) == 0 \
8924 ? ((v) & ~0x1fff) == 0 \
8925 ? 19 \
8926 : 18 \
8927 : ((v) & ~0x7fff) == 0 \
8928 ? 17 \
8929 : 16 \
8930 : ((v) & ~0xffffff) == 0 \
8931 ? ((v) & ~0xfffff) == 0 \
8932 ? ((v) & ~0x3ffff) == 0 \
8933 ? ((v) & ~0x1ffff) == 0 \
8934 ? 15 \
8935 : 14 \
8936 : ((v) & ~0x7ffff) == 0 \
8937 ? 13 \
8938 : 12 \
8939 : ((v) & ~0x3fffff) == 0 \
8940 ? ((v) & ~0x1fffff) == 0 \
8941 ? 11 \
8942 : 10 \
8943 : ((v) & ~0x7fffff) == 0 \
8944 ? 9 \
8945 : 8 \
8946 : ((v) & ~0xfffffff) == 0 \
8947 ? ((v) & ~0x3ffffff) == 0 \
8948 ? ((v) & ~0x1ffffff) == 0 \
8949 ? 7 \
8950 : 6 \
8951 : ((v) & ~0x7ffffff) == 0 \
8952 ? 5 \
8953 : 4 \
8954 : ((v) & ~0x3fffffff) == 0 \
8955 ? ((v) & ~0x1fffffff) == 0 \
8956 ? 3 \
8957 : 2 \
8958 : ((v) & ~0x7fffffff) == 0 \
8959 ? 1 \
8960 : 0)
8961
8962/* load_register()
8963 * This routine generates the least number of instructions necessary to load
8964 * an absolute expression value into a register.
8965 */
8966static void
8967load_register (int reg, expressionS *ep, int dbl)
8968{
8969 int freg;
8970 expressionS hi32, lo32;
8971
8972 if (ep->X_op != O_big)
8973 {
8974 gas_assert (ep->X_op == O_constant);
8975
8976 /* Sign-extending 32-bit constants makes their handling easier. */
8977 if (!dbl)
8978 normalize_constant_expr (ep);
8979
8980 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8981 {
8982 /* We can handle 16 bit signed values with an addiu to
8983 $zero. No need to ever use daddiu here, since $zero and
8984 the result are always correct in 32 bit mode. */
8985 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8986 return;
8987 }
8988 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8989 {
8990 /* We can handle 16 bit unsigned values with an ori to
8991 $zero. */
8992 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8993 return;
8994 }
8995 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8996 {
8997 /* 32 bit values require an lui. */
8998 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8999 if ((ep->X_add_number & 0xffff) != 0)
9000 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9001 return;
9002 }
9003 }
9004
9005 /* The value is larger than 32 bits. */
9006
9007 if (!dbl || GPR_SIZE == 32)
9008 {
9009 char value[32];
9010
9011 sprintf_vma (value, ep->X_add_number);
9012 as_bad (_("number (0x%s) larger than 32 bits"), value);
9013 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9014 return;
9015 }
9016
9017 if (ep->X_op != O_big)
9018 {
9019 hi32 = *ep;
9020 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9021 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9022 hi32.X_add_number &= 0xffffffff;
9023 lo32 = *ep;
9024 lo32.X_add_number &= 0xffffffff;
9025 }
9026 else
9027 {
9028 gas_assert (ep->X_add_number > 2);
9029 if (ep->X_add_number == 3)
9030 generic_bignum[3] = 0;
9031 else if (ep->X_add_number > 4)
9032 as_bad (_("number larger than 64 bits"));
9033 lo32.X_op = O_constant;
9034 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9035 hi32.X_op = O_constant;
9036 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9037 }
9038
9039 if (hi32.X_add_number == 0)
9040 freg = 0;
9041 else
9042 {
9043 int shift, bit;
9044 unsigned long hi, lo;
9045
9046 if (hi32.X_add_number == (offsetT) 0xffffffff)
9047 {
9048 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9049 {
9050 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9051 return;
9052 }
9053 if (lo32.X_add_number & 0x80000000)
9054 {
9055 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9056 if (lo32.X_add_number & 0xffff)
9057 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9058 return;
9059 }
9060 }
9061
9062 /* Check for 16bit shifted constant. We know that hi32 is
9063 non-zero, so start the mask on the first bit of the hi32
9064 value. */
9065 shift = 17;
9066 do
9067 {
9068 unsigned long himask, lomask;
9069
9070 if (shift < 32)
9071 {
9072 himask = 0xffff >> (32 - shift);
9073 lomask = (0xffff << shift) & 0xffffffff;
9074 }
9075 else
9076 {
9077 himask = 0xffff << (shift - 32);
9078 lomask = 0;
9079 }
9080 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9081 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9082 {
9083 expressionS tmp;
9084
9085 tmp.X_op = O_constant;
9086 if (shift < 32)
9087 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9088 | (lo32.X_add_number >> shift));
9089 else
9090 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9091 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9092 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9093 reg, reg, (shift >= 32) ? shift - 32 : shift);
9094 return;
9095 }
9096 ++shift;
9097 }
9098 while (shift <= (64 - 16));
9099
9100 /* Find the bit number of the lowest one bit, and store the
9101 shifted value in hi/lo. */
9102 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9103 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9104 if (lo != 0)
9105 {
9106 bit = 0;
9107 while ((lo & 1) == 0)
9108 {
9109 lo >>= 1;
9110 ++bit;
9111 }
9112 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9113 hi >>= bit;
9114 }
9115 else
9116 {
9117 bit = 32;
9118 while ((hi & 1) == 0)
9119 {
9120 hi >>= 1;
9121 ++bit;
9122 }
9123 lo = hi;
9124 hi = 0;
9125 }
9126
9127 /* Optimize if the shifted value is a (power of 2) - 1. */
9128 if ((hi == 0 && ((lo + 1) & lo) == 0)
9129 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9130 {
9131 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9132 if (shift != 0)
9133 {
9134 expressionS tmp;
9135
9136 /* This instruction will set the register to be all
9137 ones. */
9138 tmp.X_op = O_constant;
9139 tmp.X_add_number = (offsetT) -1;
9140 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9141 if (bit != 0)
9142 {
9143 bit += shift;
9144 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9145 reg, reg, (bit >= 32) ? bit - 32 : bit);
9146 }
9147 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9148 reg, reg, (shift >= 32) ? shift - 32 : shift);
9149 return;
9150 }
9151 }
9152
9153 /* Sign extend hi32 before calling load_register, because we can
9154 generally get better code when we load a sign extended value. */
9155 if ((hi32.X_add_number & 0x80000000) != 0)
9156 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9157 load_register (reg, &hi32, 0);
9158 freg = reg;
9159 }
9160 if ((lo32.X_add_number & 0xffff0000) == 0)
9161 {
9162 if (freg != 0)
9163 {
9164 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9165 freg = reg;
9166 }
9167 }
9168 else
9169 {
9170 expressionS mid16;
9171
9172 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9173 {
9174 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9175 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9176 return;
9177 }
9178
9179 if (freg != 0)
9180 {
9181 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9182 freg = reg;
9183 }
9184 mid16 = lo32;
9185 mid16.X_add_number >>= 16;
9186 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9187 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9188 freg = reg;
9189 }
9190 if ((lo32.X_add_number & 0xffff) != 0)
9191 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9192}
9193
9194static inline void
9195load_delay_nop (void)
9196{
9197 if (!gpr_interlocks)
9198 macro_build (NULL, "nop", "");
9199}
9200
9201/* Load an address into a register. */
9202
9203static void
9204load_address (int reg, expressionS *ep, int *used_at)
9205{
9206 if (ep->X_op != O_constant
9207 && ep->X_op != O_symbol)
9208 {
9209 as_bad (_("expression too complex"));
9210 ep->X_op = O_constant;
9211 }
9212
9213 if (ep->X_op == O_constant)
9214 {
9215 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9216 return;
9217 }
9218
9219 if (mips_pic == NO_PIC)
9220 {
9221 /* If this is a reference to a GP relative symbol, we want
9222 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9223 Otherwise we want
9224 lui $reg,<sym> (BFD_RELOC_HI16_S)
9225 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9226 If we have an addend, we always use the latter form.
9227
9228 With 64bit address space and a usable $at we want
9229 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9230 lui $at,<sym> (BFD_RELOC_HI16_S)
9231 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9232 daddiu $at,<sym> (BFD_RELOC_LO16)
9233 dsll32 $reg,0
9234 daddu $reg,$reg,$at
9235
9236 If $at is already in use, we use a path which is suboptimal
9237 on superscalar processors.
9238 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9239 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9240 dsll $reg,16
9241 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9242 dsll $reg,16
9243 daddiu $reg,<sym> (BFD_RELOC_LO16)
9244
9245 For GP relative symbols in 64bit address space we can use
9246 the same sequence as in 32bit address space. */
9247 if (HAVE_64BIT_SYMBOLS)
9248 {
9249 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9250 && !nopic_need_relax (ep->X_add_symbol, 1))
9251 {
9252 relax_start (ep->X_add_symbol);
9253 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9254 mips_gp_register, BFD_RELOC_GPREL16);
9255 relax_switch ();
9256 }
9257
9258 if (*used_at == 0 && mips_opts.at)
9259 {
9260 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9261 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9262 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9263 BFD_RELOC_MIPS_HIGHER);
9264 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9265 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9266 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9267 *used_at = 1;
9268 }
9269 else
9270 {
9271 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9272 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9273 BFD_RELOC_MIPS_HIGHER);
9274 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9275 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9276 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9277 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9278 }
9279
9280 if (mips_relax.sequence)
9281 relax_end ();
9282 }
9283 else
9284 {
9285 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9286 && !nopic_need_relax (ep->X_add_symbol, 1))
9287 {
9288 relax_start (ep->X_add_symbol);
9289 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9290 mips_gp_register, BFD_RELOC_GPREL16);
9291 relax_switch ();
9292 }
9293 macro_build_lui (ep, reg);
9294 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9295 reg, reg, BFD_RELOC_LO16);
9296 if (mips_relax.sequence)
9297 relax_end ();
9298 }
9299 }
9300 else if (!mips_big_got)
9301 {
9302 expressionS ex;
9303
9304 /* If this is a reference to an external symbol, we want
9305 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9306 Otherwise we want
9307 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9308 nop
9309 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9310 If there is a constant, it must be added in after.
9311
9312 If we have NewABI, we want
9313 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9314 unless we're referencing a global symbol with a non-zero
9315 offset, in which case cst must be added separately. */
9316 if (HAVE_NEWABI)
9317 {
9318 if (ep->X_add_number)
9319 {
9320 ex.X_add_number = ep->X_add_number;
9321 ep->X_add_number = 0;
9322 relax_start (ep->X_add_symbol);
9323 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9324 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9325 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9326 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9327 ex.X_op = O_constant;
9328 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9329 reg, reg, BFD_RELOC_LO16);
9330 ep->X_add_number = ex.X_add_number;
9331 relax_switch ();
9332 }
9333 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9334 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9335 if (mips_relax.sequence)
9336 relax_end ();
9337 }
9338 else
9339 {
9340 ex.X_add_number = ep->X_add_number;
9341 ep->X_add_number = 0;
9342 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9343 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9344 load_delay_nop ();
9345 relax_start (ep->X_add_symbol);
9346 relax_switch ();
9347 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9348 BFD_RELOC_LO16);
9349 relax_end ();
9350
9351 if (ex.X_add_number != 0)
9352 {
9353 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9354 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9355 ex.X_op = O_constant;
9356 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9357 reg, reg, BFD_RELOC_LO16);
9358 }
9359 }
9360 }
9361 else if (mips_big_got)
9362 {
9363 expressionS ex;
9364
9365 /* This is the large GOT case. If this is a reference to an
9366 external symbol, we want
9367 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9368 addu $reg,$reg,$gp
9369 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9370
9371 Otherwise, for a reference to a local symbol in old ABI, we want
9372 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9373 nop
9374 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9375 If there is a constant, it must be added in after.
9376
9377 In the NewABI, for local symbols, with or without offsets, we want:
9378 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9379 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9380 */
9381 if (HAVE_NEWABI)
9382 {
9383 ex.X_add_number = ep->X_add_number;
9384 ep->X_add_number = 0;
9385 relax_start (ep->X_add_symbol);
9386 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9387 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9388 reg, reg, mips_gp_register);
9389 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9390 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9391 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9392 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9393 else if (ex.X_add_number)
9394 {
9395 ex.X_op = O_constant;
9396 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9397 BFD_RELOC_LO16);
9398 }
9399
9400 ep->X_add_number = ex.X_add_number;
9401 relax_switch ();
9402 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9403 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9404 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9405 BFD_RELOC_MIPS_GOT_OFST);
9406 relax_end ();
9407 }
9408 else
9409 {
9410 ex.X_add_number = ep->X_add_number;
9411 ep->X_add_number = 0;
9412 relax_start (ep->X_add_symbol);
9413 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9414 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9415 reg, reg, mips_gp_register);
9416 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9417 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9418 relax_switch ();
9419 if (reg_needs_delay (mips_gp_register))
9420 {
9421 /* We need a nop before loading from $gp. This special
9422 check is required because the lui which starts the main
9423 instruction stream does not refer to $gp, and so will not
9424 insert the nop which may be required. */
9425 macro_build (NULL, "nop", "");
9426 }
9427 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9428 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9429 load_delay_nop ();
9430 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9431 BFD_RELOC_LO16);
9432 relax_end ();
9433
9434 if (ex.X_add_number != 0)
9435 {
9436 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9437 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9438 ex.X_op = O_constant;
9439 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9440 BFD_RELOC_LO16);
9441 }
9442 }
9443 }
9444 else
9445 abort ();
9446
9447 if (!mips_opts.at && *used_at == 1)
9448 as_bad (_("macro used $at after \".set noat\""));
9449}
9450
9451/* Move the contents of register SOURCE into register DEST. */
9452
9453static void
9454move_register (int dest, int source)
9455{
9456 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9457 instruction specifically requires a 32-bit one. */
9458 if (mips_opts.micromips
9459 && !mips_opts.insn32
9460 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9461 macro_build (NULL, "move", "mp,mj", dest, source);
9462 else
9463 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9464}
9465
9466/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9467 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9468 The two alternatives are:
9469
9470 Global symbol Local sybmol
9471 ------------- ------------
9472 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9473 ... ...
9474 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9475
9476 load_got_offset emits the first instruction and add_got_offset
9477 emits the second for a 16-bit offset or add_got_offset_hilo emits
9478 a sequence to add a 32-bit offset using a scratch register. */
9479
9480static void
9481load_got_offset (int dest, expressionS *local)
9482{
9483 expressionS global;
9484
9485 global = *local;
9486 global.X_add_number = 0;
9487
9488 relax_start (local->X_add_symbol);
9489 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9490 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9491 relax_switch ();
9492 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9493 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9494 relax_end ();
9495}
9496
9497static void
9498add_got_offset (int dest, expressionS *local)
9499{
9500 expressionS global;
9501
9502 global.X_op = O_constant;
9503 global.X_op_symbol = NULL;
9504 global.X_add_symbol = NULL;
9505 global.X_add_number = local->X_add_number;
9506
9507 relax_start (local->X_add_symbol);
9508 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9509 dest, dest, BFD_RELOC_LO16);
9510 relax_switch ();
9511 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9512 relax_end ();
9513}
9514
9515static void
9516add_got_offset_hilo (int dest, expressionS *local, int tmp)
9517{
9518 expressionS global;
9519 int hold_mips_optimize;
9520
9521 global.X_op = O_constant;
9522 global.X_op_symbol = NULL;
9523 global.X_add_symbol = NULL;
9524 global.X_add_number = local->X_add_number;
9525
9526 relax_start (local->X_add_symbol);
9527 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9528 relax_switch ();
9529 /* Set mips_optimize around the lui instruction to avoid
9530 inserting an unnecessary nop after the lw. */
9531 hold_mips_optimize = mips_optimize;
9532 mips_optimize = 2;
9533 macro_build_lui (&global, tmp);
9534 mips_optimize = hold_mips_optimize;
9535 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9536 relax_end ();
9537
9538 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9539}
9540
9541/* Emit a sequence of instructions to emulate a branch likely operation.
9542 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9543 is its complementing branch with the original condition negated.
9544 CALL is set if the original branch specified the link operation.
9545 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9546
9547 Code like this is produced in the noreorder mode:
9548
9549 BRNEG <args>, 1f
9550 nop
9551 b <sym>
9552 delay slot (executed only if branch taken)
9553 1:
9554
9555 or, if CALL is set:
9556
9557 BRNEG <args>, 1f
9558 nop
9559 bal <sym>
9560 delay slot (executed only if branch taken)
9561 1:
9562
9563 In the reorder mode the delay slot would be filled with a nop anyway,
9564 so code produced is simply:
9565
9566 BR <args>, <sym>
9567 nop
9568
9569 This function is used when producing code for the microMIPS ASE that
9570 does not implement branch likely instructions in hardware. */
9571
9572static void
9573macro_build_branch_likely (const char *br, const char *brneg,
9574 int call, expressionS *ep, const char *fmt,
9575 unsigned int sreg, unsigned int treg)
9576{
9577 int noreorder = mips_opts.noreorder;
9578 expressionS expr1;
9579
9580 gas_assert (mips_opts.micromips);
9581 start_noreorder ();
9582 if (noreorder)
9583 {
9584 micromips_label_expr (&expr1);
9585 macro_build (&expr1, brneg, fmt, sreg, treg);
9586 macro_build (NULL, "nop", "");
9587 macro_build (ep, call ? "bal" : "b", "p");
9588
9589 /* Set to true so that append_insn adds a label. */
9590 emit_branch_likely_macro = TRUE;
9591 }
9592 else
9593 {
9594 macro_build (ep, br, fmt, sreg, treg);
9595 macro_build (NULL, "nop", "");
9596 }
9597 end_noreorder ();
9598}
9599
9600/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9601 the condition code tested. EP specifies the branch target. */
9602
9603static void
9604macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9605{
9606 const int call = 0;
9607 const char *brneg;
9608 const char *br;
9609
9610 switch (type)
9611 {
9612 case M_BC1FL:
9613 br = "bc1f";
9614 brneg = "bc1t";
9615 break;
9616 case M_BC1TL:
9617 br = "bc1t";
9618 brneg = "bc1f";
9619 break;
9620 case M_BC2FL:
9621 br = "bc2f";
9622 brneg = "bc2t";
9623 break;
9624 case M_BC2TL:
9625 br = "bc2t";
9626 brneg = "bc2f";
9627 break;
9628 default:
9629 abort ();
9630 }
9631 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9632}
9633
9634/* Emit a two-argument branch macro specified by TYPE, using SREG as
9635 the register tested. EP specifies the branch target. */
9636
9637static void
9638macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9639{
9640 const char *brneg = NULL;
9641 const char *br;
9642 int call = 0;
9643
9644 switch (type)
9645 {
9646 case M_BGEZ:
9647 br = "bgez";
9648 break;
9649 case M_BGEZL:
9650 br = mips_opts.micromips ? "bgez" : "bgezl";
9651 brneg = "bltz";
9652 break;
9653 case M_BGEZALL:
9654 gas_assert (mips_opts.micromips);
9655 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9656 brneg = "bltz";
9657 call = 1;
9658 break;
9659 case M_BGTZ:
9660 br = "bgtz";
9661 break;
9662 case M_BGTZL:
9663 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9664 brneg = "blez";
9665 break;
9666 case M_BLEZ:
9667 br = "blez";
9668 break;
9669 case M_BLEZL:
9670 br = mips_opts.micromips ? "blez" : "blezl";
9671 brneg = "bgtz";
9672 break;
9673 case M_BLTZ:
9674 br = "bltz";
9675 break;
9676 case M_BLTZL:
9677 br = mips_opts.micromips ? "bltz" : "bltzl";
9678 brneg = "bgez";
9679 break;
9680 case M_BLTZALL:
9681 gas_assert (mips_opts.micromips);
9682 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9683 brneg = "bgez";
9684 call = 1;
9685 break;
9686 default:
9687 abort ();
9688 }
9689 if (mips_opts.micromips && brneg)
9690 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9691 else
9692 macro_build (ep, br, "s,p", sreg);
9693}
9694
9695/* Emit a three-argument branch macro specified by TYPE, using SREG and
9696 TREG as the registers tested. EP specifies the branch target. */
9697
9698static void
9699macro_build_branch_rsrt (int type, expressionS *ep,
9700 unsigned int sreg, unsigned int treg)
9701{
9702 const char *brneg = NULL;
9703 const int call = 0;
9704 const char *br;
9705
9706 switch (type)
9707 {
9708 case M_BEQ:
9709 case M_BEQ_I:
9710 br = "beq";
9711 break;
9712 case M_BEQL:
9713 case M_BEQL_I:
9714 br = mips_opts.micromips ? "beq" : "beql";
9715 brneg = "bne";
9716 break;
9717 case M_BNE:
9718 case M_BNE_I:
9719 br = "bne";
9720 break;
9721 case M_BNEL:
9722 case M_BNEL_I:
9723 br = mips_opts.micromips ? "bne" : "bnel";
9724 brneg = "beq";
9725 break;
9726 default:
9727 abort ();
9728 }
9729 if (mips_opts.micromips && brneg)
9730 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9731 else
9732 macro_build (ep, br, "s,t,p", sreg, treg);
9733}
9734
9735/* Return the high part that should be loaded in order to make the low
9736 part of VALUE accessible using an offset of OFFBITS bits. */
9737
9738static offsetT
9739offset_high_part (offsetT value, unsigned int offbits)
9740{
9741 offsetT bias;
9742 addressT low_mask;
9743
9744 if (offbits == 0)
9745 return value;
9746 bias = 1 << (offbits - 1);
9747 low_mask = bias * 2 - 1;
9748 return (value + bias) & ~low_mask;
9749}
9750
9751/* Return true if the value stored in offset_expr and offset_reloc
9752 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9753 amount that the caller wants to add without inducing overflow
9754 and ALIGN is the known alignment of the value in bytes. */
9755
9756static bfd_boolean
9757small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9758{
9759 if (offbits == 16)
9760 {
9761 /* Accept any relocation operator if overflow isn't a concern. */
9762 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9763 return TRUE;
9764
9765 /* These relocations are guaranteed not to overflow in correct links. */
9766 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9767 || gprel16_reloc_p (*offset_reloc))
9768 return TRUE;
9769 }
9770 if (offset_expr.X_op == O_constant
9771 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9772 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9773 return TRUE;
9774 return FALSE;
9775}
9776
9777/*
9778 * Build macros
9779 * This routine implements the seemingly endless macro or synthesized
9780 * instructions and addressing modes in the mips assembly language. Many
9781 * of these macros are simple and are similar to each other. These could
9782 * probably be handled by some kind of table or grammar approach instead of
9783 * this verbose method. Others are not simple macros but are more like
9784 * optimizing code generation.
9785 * One interesting optimization is when several store macros appear
9786 * consecutively that would load AT with the upper half of the same address.
9787 * The ensuing load upper instructions are omitted. This implies some kind
9788 * of global optimization. We currently only optimize within a single macro.
9789 * For many of the load and store macros if the address is specified as a
9790 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9791 * first load register 'at' with zero and use it as the base register. The
9792 * mips assembler simply uses register $zero. Just one tiny optimization
9793 * we're missing.
9794 */
9795static void
9796macro (struct mips_cl_insn *ip, char *str)
9797{
9798 const struct mips_operand_array *operands;
9799 unsigned int breg, i;
9800 unsigned int tempreg;
9801 int mask;
9802 int used_at = 0;
9803 expressionS label_expr;
9804 expressionS expr1;
9805 expressionS *ep;
9806 const char *s;
9807 const char *s2;
9808 const char *fmt;
9809 int likely = 0;
9810 int coproc = 0;
9811 int offbits = 16;
9812 int call = 0;
9813 int jals = 0;
9814 int dbl = 0;
9815 int imm = 0;
9816 int ust = 0;
9817 int lp = 0;
9818 bfd_boolean large_offset;
9819 int off;
9820 int hold_mips_optimize;
9821 unsigned int align;
9822 unsigned int op[MAX_OPERANDS];
9823
9824 gas_assert (! mips_opts.mips16);
9825
9826 operands = insn_operands (ip);
9827 for (i = 0; i < MAX_OPERANDS; i++)
9828 if (operands->operand[i])
9829 op[i] = insn_extract_operand (ip, operands->operand[i]);
9830 else
9831 op[i] = -1;
9832
9833 mask = ip->insn_mo->mask;
9834
9835 label_expr.X_op = O_constant;
9836 label_expr.X_op_symbol = NULL;
9837 label_expr.X_add_symbol = NULL;
9838 label_expr.X_add_number = 0;
9839
9840 expr1.X_op = O_constant;
9841 expr1.X_op_symbol = NULL;
9842 expr1.X_add_symbol = NULL;
9843 expr1.X_add_number = 1;
9844 align = 1;
9845
9846 switch (mask)
9847 {
9848 case M_DABS:
9849 dbl = 1;
9850 /* Fall through. */
9851 case M_ABS:
9852 /* bgez $a0,1f
9853 move v0,$a0
9854 sub v0,$zero,$a0
9855 1:
9856 */
9857
9858 start_noreorder ();
9859
9860 if (mips_opts.micromips)
9861 micromips_label_expr (&label_expr);
9862 else
9863 label_expr.X_add_number = 8;
9864 macro_build (&label_expr, "bgez", "s,p", op[1]);
9865 if (op[0] == op[1])
9866 macro_build (NULL, "nop", "");
9867 else
9868 move_register (op[0], op[1]);
9869 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9870 if (mips_opts.micromips)
9871 micromips_add_label ();
9872
9873 end_noreorder ();
9874 break;
9875
9876 case M_ADD_I:
9877 s = "addi";
9878 s2 = "add";
9879 goto do_addi;
9880 case M_ADDU_I:
9881 s = "addiu";
9882 s2 = "addu";
9883 goto do_addi;
9884 case M_DADD_I:
9885 dbl = 1;
9886 s = "daddi";
9887 s2 = "dadd";
9888 if (!mips_opts.micromips)
9889 goto do_addi;
9890 if (imm_expr.X_add_number >= -0x200
9891 && imm_expr.X_add_number < 0x200)
9892 {
9893 macro_build (NULL, s, "t,r,.", op[0], op[1],
9894 (int) imm_expr.X_add_number);
9895 break;
9896 }
9897 goto do_addi_i;
9898 case M_DADDU_I:
9899 dbl = 1;
9900 s = "daddiu";
9901 s2 = "daddu";
9902 do_addi:
9903 if (imm_expr.X_add_number >= -0x8000
9904 && imm_expr.X_add_number < 0x8000)
9905 {
9906 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9907 break;
9908 }
9909 do_addi_i:
9910 used_at = 1;
9911 load_register (AT, &imm_expr, dbl);
9912 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9913 break;
9914
9915 case M_AND_I:
9916 s = "andi";
9917 s2 = "and";
9918 goto do_bit;
9919 case M_OR_I:
9920 s = "ori";
9921 s2 = "or";
9922 goto do_bit;
9923 case M_NOR_I:
9924 s = "";
9925 s2 = "nor";
9926 goto do_bit;
9927 case M_XOR_I:
9928 s = "xori";
9929 s2 = "xor";
9930 do_bit:
9931 if (imm_expr.X_add_number >= 0
9932 && imm_expr.X_add_number < 0x10000)
9933 {
9934 if (mask != M_NOR_I)
9935 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9936 else
9937 {
9938 macro_build (&imm_expr, "ori", "t,r,i",
9939 op[0], op[1], BFD_RELOC_LO16);
9940 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9941 }
9942 break;
9943 }
9944
9945 used_at = 1;
9946 load_register (AT, &imm_expr, GPR_SIZE == 64);
9947 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9948 break;
9949
9950 case M_BALIGN:
9951 switch (imm_expr.X_add_number)
9952 {
9953 case 0:
9954 macro_build (NULL, "nop", "");
9955 break;
9956 case 2:
9957 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9958 break;
9959 case 1:
9960 case 3:
9961 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9962 (int) imm_expr.X_add_number);
9963 break;
9964 default:
9965 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9966 (unsigned long) imm_expr.X_add_number);
9967 break;
9968 }
9969 break;
9970
9971 case M_BC1FL:
9972 case M_BC1TL:
9973 case M_BC2FL:
9974 case M_BC2TL:
9975 gas_assert (mips_opts.micromips);
9976 macro_build_branch_ccl (mask, &offset_expr,
9977 EXTRACT_OPERAND (1, BCC, *ip));
9978 break;
9979
9980 case M_BEQ_I:
9981 case M_BEQL_I:
9982 case M_BNE_I:
9983 case M_BNEL_I:
9984 if (imm_expr.X_add_number == 0)
9985 op[1] = 0;
9986 else
9987 {
9988 op[1] = AT;
9989 used_at = 1;
9990 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9991 }
9992 /* Fall through. */
9993 case M_BEQL:
9994 case M_BNEL:
9995 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9996 break;
9997
9998 case M_BGEL:
9999 likely = 1;
10000 /* Fall through. */
10001 case M_BGE:
10002 if (op[1] == 0)
10003 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10004 else if (op[0] == 0)
10005 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10006 else
10007 {
10008 used_at = 1;
10009 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10010 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10011 &offset_expr, AT, ZERO);
10012 }
10013 break;
10014
10015 case M_BGEZL:
10016 case M_BGEZALL:
10017 case M_BGTZL:
10018 case M_BLEZL:
10019 case M_BLTZL:
10020 case M_BLTZALL:
10021 macro_build_branch_rs (mask, &offset_expr, op[0]);
10022 break;
10023
10024 case M_BGTL_I:
10025 likely = 1;
10026 /* Fall through. */
10027 case M_BGT_I:
10028 /* Check for > max integer. */
10029 if (imm_expr.X_add_number >= GPR_SMAX)
10030 {
10031 do_false:
10032 /* Result is always false. */
10033 if (! likely)
10034 macro_build (NULL, "nop", "");
10035 else
10036 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10037 break;
10038 }
10039 ++imm_expr.X_add_number;
10040 /* FALLTHROUGH */
10041 case M_BGE_I:
10042 case M_BGEL_I:
10043 if (mask == M_BGEL_I)
10044 likely = 1;
10045 if (imm_expr.X_add_number == 0)
10046 {
10047 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10048 &offset_expr, op[0]);
10049 break;
10050 }
10051 if (imm_expr.X_add_number == 1)
10052 {
10053 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10054 &offset_expr, op[0]);
10055 break;
10056 }
10057 if (imm_expr.X_add_number <= GPR_SMIN)
10058 {
10059 do_true:
10060 /* result is always true */
10061 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10062 macro_build (&offset_expr, "b", "p");
10063 break;
10064 }
10065 used_at = 1;
10066 set_at (op[0], 0);
10067 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10068 &offset_expr, AT, ZERO);
10069 break;
10070
10071 case M_BGEUL:
10072 likely = 1;
10073 /* Fall through. */
10074 case M_BGEU:
10075 if (op[1] == 0)
10076 goto do_true;
10077 else if (op[0] == 0)
10078 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10079 &offset_expr, ZERO, op[1]);
10080 else
10081 {
10082 used_at = 1;
10083 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10084 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10085 &offset_expr, AT, ZERO);
10086 }
10087 break;
10088
10089 case M_BGTUL_I:
10090 likely = 1;
10091 /* Fall through. */
10092 case M_BGTU_I:
10093 if (op[0] == 0
10094 || (GPR_SIZE == 32
10095 && imm_expr.X_add_number == -1))
10096 goto do_false;
10097 ++imm_expr.X_add_number;
10098 /* FALLTHROUGH */
10099 case M_BGEU_I:
10100 case M_BGEUL_I:
10101 if (mask == M_BGEUL_I)
10102 likely = 1;
10103 if (imm_expr.X_add_number == 0)
10104 goto do_true;
10105 else if (imm_expr.X_add_number == 1)
10106 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10107 &offset_expr, op[0], ZERO);
10108 else
10109 {
10110 used_at = 1;
10111 set_at (op[0], 1);
10112 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10113 &offset_expr, AT, ZERO);
10114 }
10115 break;
10116
10117 case M_BGTL:
10118 likely = 1;
10119 /* Fall through. */
10120 case M_BGT:
10121 if (op[1] == 0)
10122 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10123 else if (op[0] == 0)
10124 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10125 else
10126 {
10127 used_at = 1;
10128 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10129 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10130 &offset_expr, AT, ZERO);
10131 }
10132 break;
10133
10134 case M_BGTUL:
10135 likely = 1;
10136 /* Fall through. */
10137 case M_BGTU:
10138 if (op[1] == 0)
10139 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10140 &offset_expr, op[0], ZERO);
10141 else if (op[0] == 0)
10142 goto do_false;
10143 else
10144 {
10145 used_at = 1;
10146 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10147 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10148 &offset_expr, AT, ZERO);
10149 }
10150 break;
10151
10152 case M_BLEL:
10153 likely = 1;
10154 /* Fall through. */
10155 case M_BLE:
10156 if (op[1] == 0)
10157 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10158 else if (op[0] == 0)
10159 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10160 else
10161 {
10162 used_at = 1;
10163 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10164 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10165 &offset_expr, AT, ZERO);
10166 }
10167 break;
10168
10169 case M_BLEL_I:
10170 likely = 1;
10171 /* Fall through. */
10172 case M_BLE_I:
10173 if (imm_expr.X_add_number >= GPR_SMAX)
10174 goto do_true;
10175 ++imm_expr.X_add_number;
10176 /* FALLTHROUGH */
10177 case M_BLT_I:
10178 case M_BLTL_I:
10179 if (mask == M_BLTL_I)
10180 likely = 1;
10181 if (imm_expr.X_add_number == 0)
10182 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10183 else if (imm_expr.X_add_number == 1)
10184 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10185 else
10186 {
10187 used_at = 1;
10188 set_at (op[0], 0);
10189 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10190 &offset_expr, AT, ZERO);
10191 }
10192 break;
10193
10194 case M_BLEUL:
10195 likely = 1;
10196 /* Fall through. */
10197 case M_BLEU:
10198 if (op[1] == 0)
10199 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10200 &offset_expr, op[0], ZERO);
10201 else if (op[0] == 0)
10202 goto do_true;
10203 else
10204 {
10205 used_at = 1;
10206 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10207 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10208 &offset_expr, AT, ZERO);
10209 }
10210 break;
10211
10212 case M_BLEUL_I:
10213 likely = 1;
10214 /* Fall through. */
10215 case M_BLEU_I:
10216 if (op[0] == 0
10217 || (GPR_SIZE == 32
10218 && imm_expr.X_add_number == -1))
10219 goto do_true;
10220 ++imm_expr.X_add_number;
10221 /* FALLTHROUGH */
10222 case M_BLTU_I:
10223 case M_BLTUL_I:
10224 if (mask == M_BLTUL_I)
10225 likely = 1;
10226 if (imm_expr.X_add_number == 0)
10227 goto do_false;
10228 else if (imm_expr.X_add_number == 1)
10229 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10230 &offset_expr, op[0], ZERO);
10231 else
10232 {
10233 used_at = 1;
10234 set_at (op[0], 1);
10235 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10236 &offset_expr, AT, ZERO);
10237 }
10238 break;
10239
10240 case M_BLTL:
10241 likely = 1;
10242 /* Fall through. */
10243 case M_BLT:
10244 if (op[1] == 0)
10245 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10246 else if (op[0] == 0)
10247 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10248 else
10249 {
10250 used_at = 1;
10251 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10252 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10253 &offset_expr, AT, ZERO);
10254 }
10255 break;
10256
10257 case M_BLTUL:
10258 likely = 1;
10259 /* Fall through. */
10260 case M_BLTU:
10261 if (op[1] == 0)
10262 goto do_false;
10263 else if (op[0] == 0)
10264 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10265 &offset_expr, ZERO, op[1]);
10266 else
10267 {
10268 used_at = 1;
10269 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10270 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10271 &offset_expr, AT, ZERO);
10272 }
10273 break;
10274
10275 case M_DDIV_3:
10276 dbl = 1;
10277 /* Fall through. */
10278 case M_DIV_3:
10279 s = "mflo";
10280 goto do_div3;
10281 case M_DREM_3:
10282 dbl = 1;
10283 /* Fall through. */
10284 case M_REM_3:
10285 s = "mfhi";
10286 do_div3:
10287 if (op[2] == 0)
10288 {
10289 as_warn (_("divide by zero"));
10290 if (mips_trap)
10291 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10292 else
10293 macro_build (NULL, "break", BRK_FMT, 7);
10294 break;
10295 }
10296
10297 start_noreorder ();
10298 if (mips_trap)
10299 {
10300 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10301 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10302 }
10303 else
10304 {
10305 if (mips_opts.micromips)
10306 micromips_label_expr (&label_expr);
10307 else
10308 label_expr.X_add_number = 8;
10309 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10310 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10311 macro_build (NULL, "break", BRK_FMT, 7);
10312 if (mips_opts.micromips)
10313 micromips_add_label ();
10314 }
10315 expr1.X_add_number = -1;
10316 used_at = 1;
10317 load_register (AT, &expr1, dbl);
10318 if (mips_opts.micromips)
10319 micromips_label_expr (&label_expr);
10320 else
10321 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10322 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10323 if (dbl)
10324 {
10325 expr1.X_add_number = 1;
10326 load_register (AT, &expr1, dbl);
10327 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10328 }
10329 else
10330 {
10331 expr1.X_add_number = 0x80000000;
10332 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10333 }
10334 if (mips_trap)
10335 {
10336 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10337 /* We want to close the noreorder block as soon as possible, so
10338 that later insns are available for delay slot filling. */
10339 end_noreorder ();
10340 }
10341 else
10342 {
10343 if (mips_opts.micromips)
10344 micromips_label_expr (&label_expr);
10345 else
10346 label_expr.X_add_number = 8;
10347 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10348 macro_build (NULL, "nop", "");
10349
10350 /* We want to close the noreorder block as soon as possible, so
10351 that later insns are available for delay slot filling. */
10352 end_noreorder ();
10353
10354 macro_build (NULL, "break", BRK_FMT, 6);
10355 }
10356 if (mips_opts.micromips)
10357 micromips_add_label ();
10358 macro_build (NULL, s, MFHL_FMT, op[0]);
10359 break;
10360
10361 case M_DIV_3I:
10362 s = "div";
10363 s2 = "mflo";
10364 goto do_divi;
10365 case M_DIVU_3I:
10366 s = "divu";
10367 s2 = "mflo";
10368 goto do_divi;
10369 case M_REM_3I:
10370 s = "div";
10371 s2 = "mfhi";
10372 goto do_divi;
10373 case M_REMU_3I:
10374 s = "divu";
10375 s2 = "mfhi";
10376 goto do_divi;
10377 case M_DDIV_3I:
10378 dbl = 1;
10379 s = "ddiv";
10380 s2 = "mflo";
10381 goto do_divi;
10382 case M_DDIVU_3I:
10383 dbl = 1;
10384 s = "ddivu";
10385 s2 = "mflo";
10386 goto do_divi;
10387 case M_DREM_3I:
10388 dbl = 1;
10389 s = "ddiv";
10390 s2 = "mfhi";
10391 goto do_divi;
10392 case M_DREMU_3I:
10393 dbl = 1;
10394 s = "ddivu";
10395 s2 = "mfhi";
10396 do_divi:
10397 if (imm_expr.X_add_number == 0)
10398 {
10399 as_warn (_("divide by zero"));
10400 if (mips_trap)
10401 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10402 else
10403 macro_build (NULL, "break", BRK_FMT, 7);
10404 break;
10405 }
10406 if (imm_expr.X_add_number == 1)
10407 {
10408 if (strcmp (s2, "mflo") == 0)
10409 move_register (op[0], op[1]);
10410 else
10411 move_register (op[0], ZERO);
10412 break;
10413 }
10414 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10415 {
10416 if (strcmp (s2, "mflo") == 0)
10417 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10418 else
10419 move_register (op[0], ZERO);
10420 break;
10421 }
10422
10423 used_at = 1;
10424 load_register (AT, &imm_expr, dbl);
10425 macro_build (NULL, s, "z,s,t", op[1], AT);
10426 macro_build (NULL, s2, MFHL_FMT, op[0]);
10427 break;
10428
10429 case M_DIVU_3:
10430 s = "divu";
10431 s2 = "mflo";
10432 goto do_divu3;
10433 case M_REMU_3:
10434 s = "divu";
10435 s2 = "mfhi";
10436 goto do_divu3;
10437 case M_DDIVU_3:
10438 s = "ddivu";
10439 s2 = "mflo";
10440 goto do_divu3;
10441 case M_DREMU_3:
10442 s = "ddivu";
10443 s2 = "mfhi";
10444 do_divu3:
10445 start_noreorder ();
10446 if (mips_trap)
10447 {
10448 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10449 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10450 /* We want to close the noreorder block as soon as possible, so
10451 that later insns are available for delay slot filling. */
10452 end_noreorder ();
10453 }
10454 else
10455 {
10456 if (mips_opts.micromips)
10457 micromips_label_expr (&label_expr);
10458 else
10459 label_expr.X_add_number = 8;
10460 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10461 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10462
10463 /* We want to close the noreorder block as soon as possible, so
10464 that later insns are available for delay slot filling. */
10465 end_noreorder ();
10466 macro_build (NULL, "break", BRK_FMT, 7);
10467 if (mips_opts.micromips)
10468 micromips_add_label ();
10469 }
10470 macro_build (NULL, s2, MFHL_FMT, op[0]);
10471 break;
10472
10473 case M_DLCA_AB:
10474 dbl = 1;
10475 /* Fall through. */
10476 case M_LCA_AB:
10477 call = 1;
10478 goto do_la;
10479 case M_DLA_AB:
10480 dbl = 1;
10481 /* Fall through. */
10482 case M_LA_AB:
10483 do_la:
10484 /* Load the address of a symbol into a register. If breg is not
10485 zero, we then add a base register to it. */
10486
10487 breg = op[2];
10488 if (dbl && GPR_SIZE == 32)
10489 as_warn (_("dla used to load 32-bit register; recommend using la "
10490 "instead"));
10491
10492 if (!dbl && HAVE_64BIT_OBJECTS)
10493 as_warn (_("la used to load 64-bit address; recommend using dla "
10494 "instead"));
10495
10496 if (small_offset_p (0, align, 16))
10497 {
10498 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10499 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10500 break;
10501 }
10502
10503 if (mips_opts.at && (op[0] == breg))
10504 {
10505 tempreg = AT;
10506 used_at = 1;
10507 }
10508 else
10509 tempreg = op[0];
10510
10511 if (offset_expr.X_op != O_symbol
10512 && offset_expr.X_op != O_constant)
10513 {
10514 as_bad (_("expression too complex"));
10515 offset_expr.X_op = O_constant;
10516 }
10517
10518 if (offset_expr.X_op == O_constant)
10519 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10520 else if (mips_pic == NO_PIC)
10521 {
10522 /* If this is a reference to a GP relative symbol, we want
10523 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10524 Otherwise we want
10525 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10526 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10527 If we have a constant, we need two instructions anyhow,
10528 so we may as well always use the latter form.
10529
10530 With 64bit address space and a usable $at we want
10531 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10532 lui $at,<sym> (BFD_RELOC_HI16_S)
10533 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10534 daddiu $at,<sym> (BFD_RELOC_LO16)
10535 dsll32 $tempreg,0
10536 daddu $tempreg,$tempreg,$at
10537
10538 If $at is already in use, we use a path which is suboptimal
10539 on superscalar processors.
10540 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10541 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10542 dsll $tempreg,16
10543 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10544 dsll $tempreg,16
10545 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10546
10547 For GP relative symbols in 64bit address space we can use
10548 the same sequence as in 32bit address space. */
10549 if (HAVE_64BIT_SYMBOLS)
10550 {
10551 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10552 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10553 {
10554 relax_start (offset_expr.X_add_symbol);
10555 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10556 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10557 relax_switch ();
10558 }
10559
10560 if (used_at == 0 && mips_opts.at)
10561 {
10562 macro_build (&offset_expr, "lui", LUI_FMT,
10563 tempreg, BFD_RELOC_MIPS_HIGHEST);
10564 macro_build (&offset_expr, "lui", LUI_FMT,
10565 AT, BFD_RELOC_HI16_S);
10566 macro_build (&offset_expr, "daddiu", "t,r,j",
10567 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10568 macro_build (&offset_expr, "daddiu", "t,r,j",
10569 AT, AT, BFD_RELOC_LO16);
10570 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10571 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10572 used_at = 1;
10573 }
10574 else
10575 {
10576 macro_build (&offset_expr, "lui", LUI_FMT,
10577 tempreg, BFD_RELOC_MIPS_HIGHEST);
10578 macro_build (&offset_expr, "daddiu", "t,r,j",
10579 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10580 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10581 macro_build (&offset_expr, "daddiu", "t,r,j",
10582 tempreg, tempreg, BFD_RELOC_HI16_S);
10583 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10584 macro_build (&offset_expr, "daddiu", "t,r,j",
10585 tempreg, tempreg, BFD_RELOC_LO16);
10586 }
10587
10588 if (mips_relax.sequence)
10589 relax_end ();
10590 }
10591 else
10592 {
10593 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10594 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10595 {
10596 relax_start (offset_expr.X_add_symbol);
10597 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10598 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10599 relax_switch ();
10600 }
10601 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10602 as_bad (_("offset too large"));
10603 macro_build_lui (&offset_expr, tempreg);
10604 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10605 tempreg, tempreg, BFD_RELOC_LO16);
10606 if (mips_relax.sequence)
10607 relax_end ();
10608 }
10609 }
10610 else if (!mips_big_got && !HAVE_NEWABI)
10611 {
10612 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10613
10614 /* If this is a reference to an external symbol, and there
10615 is no constant, we want
10616 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10617 or for lca or if tempreg is PIC_CALL_REG
10618 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10619 For a local symbol, we want
10620 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10621 nop
10622 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10623
10624 If we have a small constant, and this is a reference to
10625 an external symbol, we want
10626 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10627 nop
10628 addiu $tempreg,$tempreg,<constant>
10629 For a local symbol, we want the same instruction
10630 sequence, but we output a BFD_RELOC_LO16 reloc on the
10631 addiu instruction.
10632
10633 If we have a large constant, and this is a reference to
10634 an external symbol, we want
10635 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10636 lui $at,<hiconstant>
10637 addiu $at,$at,<loconstant>
10638 addu $tempreg,$tempreg,$at
10639 For a local symbol, we want the same instruction
10640 sequence, but we output a BFD_RELOC_LO16 reloc on the
10641 addiu instruction.
10642 */
10643
10644 if (offset_expr.X_add_number == 0)
10645 {
10646 if (mips_pic == SVR4_PIC
10647 && breg == 0
10648 && (call || tempreg == PIC_CALL_REG))
10649 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10650
10651 relax_start (offset_expr.X_add_symbol);
10652 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10653 lw_reloc_type, mips_gp_register);
10654 if (breg != 0)
10655 {
10656 /* We're going to put in an addu instruction using
10657 tempreg, so we may as well insert the nop right
10658 now. */
10659 load_delay_nop ();
10660 }
10661 relax_switch ();
10662 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10663 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10664 load_delay_nop ();
10665 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10666 tempreg, tempreg, BFD_RELOC_LO16);
10667 relax_end ();
10668 /* FIXME: If breg == 0, and the next instruction uses
10669 $tempreg, then if this variant case is used an extra
10670 nop will be generated. */
10671 }
10672 else if (offset_expr.X_add_number >= -0x8000
10673 && offset_expr.X_add_number < 0x8000)
10674 {
10675 load_got_offset (tempreg, &offset_expr);
10676 load_delay_nop ();
10677 add_got_offset (tempreg, &offset_expr);
10678 }
10679 else
10680 {
10681 expr1.X_add_number = offset_expr.X_add_number;
10682 offset_expr.X_add_number =
10683 SEXT_16BIT (offset_expr.X_add_number);
10684 load_got_offset (tempreg, &offset_expr);
10685 offset_expr.X_add_number = expr1.X_add_number;
10686 /* If we are going to add in a base register, and the
10687 target register and the base register are the same,
10688 then we are using AT as a temporary register. Since
10689 we want to load the constant into AT, we add our
10690 current AT (from the global offset table) and the
10691 register into the register now, and pretend we were
10692 not using a base register. */
10693 if (breg == op[0])
10694 {
10695 load_delay_nop ();
10696 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10697 op[0], AT, breg);
10698 breg = 0;
10699 tempreg = op[0];
10700 }
10701 add_got_offset_hilo (tempreg, &offset_expr, AT);
10702 used_at = 1;
10703 }
10704 }
10705 else if (!mips_big_got && HAVE_NEWABI)
10706 {
10707 int add_breg_early = 0;
10708
10709 /* If this is a reference to an external, and there is no
10710 constant, or local symbol (*), with or without a
10711 constant, we want
10712 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10713 or for lca or if tempreg is PIC_CALL_REG
10714 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10715
10716 If we have a small constant, and this is a reference to
10717 an external symbol, we want
10718 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10719 addiu $tempreg,$tempreg,<constant>
10720
10721 If we have a large constant, and this is a reference to
10722 an external symbol, we want
10723 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10724 lui $at,<hiconstant>
10725 addiu $at,$at,<loconstant>
10726 addu $tempreg,$tempreg,$at
10727
10728 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10729 local symbols, even though it introduces an additional
10730 instruction. */
10731
10732 if (offset_expr.X_add_number)
10733 {
10734 expr1.X_add_number = offset_expr.X_add_number;
10735 offset_expr.X_add_number = 0;
10736
10737 relax_start (offset_expr.X_add_symbol);
10738 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10739 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10740
10741 if (expr1.X_add_number >= -0x8000
10742 && expr1.X_add_number < 0x8000)
10743 {
10744 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10745 tempreg, tempreg, BFD_RELOC_LO16);
10746 }
10747 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10748 {
10749 unsigned int dreg;
10750
10751 /* If we are going to add in a base register, and the
10752 target register and the base register are the same,
10753 then we are using AT as a temporary register. Since
10754 we want to load the constant into AT, we add our
10755 current AT (from the global offset table) and the
10756 register into the register now, and pretend we were
10757 not using a base register. */
10758 if (breg != op[0])
10759 dreg = tempreg;
10760 else
10761 {
10762 gas_assert (tempreg == AT);
10763 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10764 op[0], AT, breg);
10765 dreg = op[0];
10766 add_breg_early = 1;
10767 }
10768
10769 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10770 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10771 dreg, dreg, AT);
10772
10773 used_at = 1;
10774 }
10775 else
10776 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10777
10778 relax_switch ();
10779 offset_expr.X_add_number = expr1.X_add_number;
10780
10781 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10782 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10783 if (add_breg_early)
10784 {
10785 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10786 op[0], tempreg, breg);
10787 breg = 0;
10788 tempreg = op[0];
10789 }
10790 relax_end ();
10791 }
10792 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10793 {
10794 relax_start (offset_expr.X_add_symbol);
10795 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10796 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10797 relax_switch ();
10798 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10799 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10800 relax_end ();
10801 }
10802 else
10803 {
10804 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10805 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10806 }
10807 }
10808 else if (mips_big_got && !HAVE_NEWABI)
10809 {
10810 int gpdelay;
10811 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10812 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10813 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10814
10815 /* This is the large GOT case. If this is a reference to an
10816 external symbol, and there is no constant, we want
10817 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10818 addu $tempreg,$tempreg,$gp
10819 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10820 or for lca or if tempreg is PIC_CALL_REG
10821 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10822 addu $tempreg,$tempreg,$gp
10823 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10824 For a local symbol, we want
10825 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10826 nop
10827 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10828
10829 If we have a small constant, and this is a reference to
10830 an external symbol, we want
10831 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10832 addu $tempreg,$tempreg,$gp
10833 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10834 nop
10835 addiu $tempreg,$tempreg,<constant>
10836 For a local symbol, we want
10837 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10838 nop
10839 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10840
10841 If we have a large constant, and this is a reference to
10842 an external symbol, we want
10843 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10844 addu $tempreg,$tempreg,$gp
10845 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10846 lui $at,<hiconstant>
10847 addiu $at,$at,<loconstant>
10848 addu $tempreg,$tempreg,$at
10849 For a local symbol, we want
10850 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10851 lui $at,<hiconstant>
10852 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10853 addu $tempreg,$tempreg,$at
10854 */
10855
10856 expr1.X_add_number = offset_expr.X_add_number;
10857 offset_expr.X_add_number = 0;
10858 relax_start (offset_expr.X_add_symbol);
10859 gpdelay = reg_needs_delay (mips_gp_register);
10860 if (expr1.X_add_number == 0 && breg == 0
10861 && (call || tempreg == PIC_CALL_REG))
10862 {
10863 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10864 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10865 }
10866 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10867 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10868 tempreg, tempreg, mips_gp_register);
10869 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10870 tempreg, lw_reloc_type, tempreg);
10871 if (expr1.X_add_number == 0)
10872 {
10873 if (breg != 0)
10874 {
10875 /* We're going to put in an addu instruction using
10876 tempreg, so we may as well insert the nop right
10877 now. */
10878 load_delay_nop ();
10879 }
10880 }
10881 else if (expr1.X_add_number >= -0x8000
10882 && expr1.X_add_number < 0x8000)
10883 {
10884 load_delay_nop ();
10885 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10886 tempreg, tempreg, BFD_RELOC_LO16);
10887 }
10888 else
10889 {
10890 unsigned int dreg;
10891
10892 /* If we are going to add in a base register, and the
10893 target register and the base register are the same,
10894 then we are using AT as a temporary register. Since
10895 we want to load the constant into AT, we add our
10896 current AT (from the global offset table) and the
10897 register into the register now, and pretend we were
10898 not using a base register. */
10899 if (breg != op[0])
10900 dreg = tempreg;
10901 else
10902 {
10903 gas_assert (tempreg == AT);
10904 load_delay_nop ();
10905 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10906 op[0], AT, breg);
10907 dreg = op[0];
10908 }
10909
10910 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10911 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10912
10913 used_at = 1;
10914 }
10915 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10916 relax_switch ();
10917
10918 if (gpdelay)
10919 {
10920 /* This is needed because this instruction uses $gp, but
10921 the first instruction on the main stream does not. */
10922 macro_build (NULL, "nop", "");
10923 }
10924
10925 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10926 local_reloc_type, mips_gp_register);
10927 if (expr1.X_add_number >= -0x8000
10928 && expr1.X_add_number < 0x8000)
10929 {
10930 load_delay_nop ();
10931 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10932 tempreg, tempreg, BFD_RELOC_LO16);
10933 /* FIXME: If add_number is 0, and there was no base
10934 register, the external symbol case ended with a load,
10935 so if the symbol turns out to not be external, and
10936 the next instruction uses tempreg, an unnecessary nop
10937 will be inserted. */
10938 }
10939 else
10940 {
10941 if (breg == op[0])
10942 {
10943 /* We must add in the base register now, as in the
10944 external symbol case. */
10945 gas_assert (tempreg == AT);
10946 load_delay_nop ();
10947 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10948 op[0], AT, breg);
10949 tempreg = op[0];
10950 /* We set breg to 0 because we have arranged to add
10951 it in in both cases. */
10952 breg = 0;
10953 }
10954
10955 macro_build_lui (&expr1, AT);
10956 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10957 AT, AT, BFD_RELOC_LO16);
10958 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10959 tempreg, tempreg, AT);
10960 used_at = 1;
10961 }
10962 relax_end ();
10963 }
10964 else if (mips_big_got && HAVE_NEWABI)
10965 {
10966 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10967 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10968 int add_breg_early = 0;
10969
10970 /* This is the large GOT case. If this is a reference to an
10971 external symbol, and there is no constant, we want
10972 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10973 add $tempreg,$tempreg,$gp
10974 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10975 or for lca or if tempreg is PIC_CALL_REG
10976 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10977 add $tempreg,$tempreg,$gp
10978 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10979
10980 If we have a small constant, and this is a reference to
10981 an external symbol, we want
10982 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10983 add $tempreg,$tempreg,$gp
10984 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10985 addi $tempreg,$tempreg,<constant>
10986
10987 If we have a large constant, and this is a reference to
10988 an external symbol, we want
10989 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10990 addu $tempreg,$tempreg,$gp
10991 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10992 lui $at,<hiconstant>
10993 addi $at,$at,<loconstant>
10994 add $tempreg,$tempreg,$at
10995
10996 If we have NewABI, and we know it's a local symbol, we want
10997 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10998 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10999 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11000
11001 relax_start (offset_expr.X_add_symbol);
11002
11003 expr1.X_add_number = offset_expr.X_add_number;
11004 offset_expr.X_add_number = 0;
11005
11006 if (expr1.X_add_number == 0 && breg == 0
11007 && (call || tempreg == PIC_CALL_REG))
11008 {
11009 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11010 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11011 }
11012 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11013 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11014 tempreg, tempreg, mips_gp_register);
11015 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11016 tempreg, lw_reloc_type, tempreg);
11017
11018 if (expr1.X_add_number == 0)
11019 ;
11020 else if (expr1.X_add_number >= -0x8000
11021 && expr1.X_add_number < 0x8000)
11022 {
11023 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11024 tempreg, tempreg, BFD_RELOC_LO16);
11025 }
11026 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11027 {
11028 unsigned int dreg;
11029
11030 /* If we are going to add in a base register, and the
11031 target register and the base register are the same,
11032 then we are using AT as a temporary register. Since
11033 we want to load the constant into AT, we add our
11034 current AT (from the global offset table) and the
11035 register into the register now, and pretend we were
11036 not using a base register. */
11037 if (breg != op[0])
11038 dreg = tempreg;
11039 else
11040 {
11041 gas_assert (tempreg == AT);
11042 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11043 op[0], AT, breg);
11044 dreg = op[0];
11045 add_breg_early = 1;
11046 }
11047
11048 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11049 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11050
11051 used_at = 1;
11052 }
11053 else
11054 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11055
11056 relax_switch ();
11057 offset_expr.X_add_number = expr1.X_add_number;
11058 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11059 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11060 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11061 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11062 if (add_breg_early)
11063 {
11064 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11065 op[0], tempreg, breg);
11066 breg = 0;
11067 tempreg = op[0];
11068 }
11069 relax_end ();
11070 }
11071 else
11072 abort ();
11073
11074 if (breg != 0)
11075 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11076 break;
11077
11078 case M_MSGSND:
11079 gas_assert (!mips_opts.micromips);
11080 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11081 break;
11082
11083 case M_MSGLD:
11084 gas_assert (!mips_opts.micromips);
11085 macro_build (NULL, "c2", "C", 0x02);
11086 break;
11087
11088 case M_MSGLD_T:
11089 gas_assert (!mips_opts.micromips);
11090 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11091 break;
11092
11093 case M_MSGWAIT:
11094 gas_assert (!mips_opts.micromips);
11095 macro_build (NULL, "c2", "C", 3);
11096 break;
11097
11098 case M_MSGWAIT_T:
11099 gas_assert (!mips_opts.micromips);
11100 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11101 break;
11102
11103 case M_J_A:
11104 /* The j instruction may not be used in PIC code, since it
11105 requires an absolute address. We convert it to a b
11106 instruction. */
11107 if (mips_pic == NO_PIC)
11108 macro_build (&offset_expr, "j", "a");
11109 else
11110 macro_build (&offset_expr, "b", "p");
11111 break;
11112
11113 /* The jal instructions must be handled as macros because when
11114 generating PIC code they expand to multi-instruction
11115 sequences. Normally they are simple instructions. */
11116 case M_JALS_1:
11117 op[1] = op[0];
11118 op[0] = RA;
11119 /* Fall through. */
11120 case M_JALS_2:
11121 gas_assert (mips_opts.micromips);
11122 if (mips_opts.insn32)
11123 {
11124 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11125 break;
11126 }
11127 jals = 1;
11128 goto jal;
11129 case M_JAL_1:
11130 op[1] = op[0];
11131 op[0] = RA;
11132 /* Fall through. */
11133 case M_JAL_2:
11134 jal:
11135 if (mips_pic == NO_PIC)
11136 {
11137 s = jals ? "jalrs" : "jalr";
11138 if (mips_opts.micromips
11139 && !mips_opts.insn32
11140 && op[0] == RA
11141 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11142 macro_build (NULL, s, "mj", op[1]);
11143 else
11144 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11145 }
11146 else
11147 {
11148 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11149 && mips_cprestore_offset >= 0);
11150
11151 if (op[1] != PIC_CALL_REG)
11152 as_warn (_("MIPS PIC call to register other than $25"));
11153
11154 s = ((mips_opts.micromips
11155 && !mips_opts.insn32
11156 && (!mips_opts.noreorder || cprestore))
11157 ? "jalrs" : "jalr");
11158 if (mips_opts.micromips
11159 && !mips_opts.insn32
11160 && op[0] == RA
11161 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11162 macro_build (NULL, s, "mj", op[1]);
11163 else
11164 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11165 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11166 {
11167 if (mips_cprestore_offset < 0)
11168 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11169 else
11170 {
11171 if (!mips_frame_reg_valid)
11172 {
11173 as_warn (_("no .frame pseudo-op used in PIC code"));
11174 /* Quiet this warning. */
11175 mips_frame_reg_valid = 1;
11176 }
11177 if (!mips_cprestore_valid)
11178 {
11179 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11180 /* Quiet this warning. */
11181 mips_cprestore_valid = 1;
11182 }
11183 if (mips_opts.noreorder)
11184 macro_build (NULL, "nop", "");
11185 expr1.X_add_number = mips_cprestore_offset;
11186 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11187 mips_gp_register,
11188 mips_frame_reg,
11189 HAVE_64BIT_ADDRESSES);
11190 }
11191 }
11192 }
11193
11194 break;
11195
11196 case M_JALS_A:
11197 gas_assert (mips_opts.micromips);
11198 if (mips_opts.insn32)
11199 {
11200 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11201 break;
11202 }
11203 jals = 1;
11204 /* Fall through. */
11205 case M_JAL_A:
11206 if (mips_pic == NO_PIC)
11207 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11208 else if (mips_pic == SVR4_PIC)
11209 {
11210 /* If this is a reference to an external symbol, and we are
11211 using a small GOT, we want
11212 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11213 nop
11214 jalr $ra,$25
11215 nop
11216 lw $gp,cprestore($sp)
11217 The cprestore value is set using the .cprestore
11218 pseudo-op. If we are using a big GOT, we want
11219 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11220 addu $25,$25,$gp
11221 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11222 nop
11223 jalr $ra,$25
11224 nop
11225 lw $gp,cprestore($sp)
11226 If the symbol is not external, we want
11227 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11228 nop
11229 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11230 jalr $ra,$25
11231 nop
11232 lw $gp,cprestore($sp)
11233
11234 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11235 sequences above, minus nops, unless the symbol is local,
11236 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11237 GOT_DISP. */
11238 if (HAVE_NEWABI)
11239 {
11240 if (!mips_big_got)
11241 {
11242 relax_start (offset_expr.X_add_symbol);
11243 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11244 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11245 mips_gp_register);
11246 relax_switch ();
11247 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11248 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11249 mips_gp_register);
11250 relax_end ();
11251 }
11252 else
11253 {
11254 relax_start (offset_expr.X_add_symbol);
11255 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11256 BFD_RELOC_MIPS_CALL_HI16);
11257 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11258 PIC_CALL_REG, mips_gp_register);
11259 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11260 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11261 PIC_CALL_REG);
11262 relax_switch ();
11263 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11264 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11265 mips_gp_register);
11266 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11267 PIC_CALL_REG, PIC_CALL_REG,
11268 BFD_RELOC_MIPS_GOT_OFST);
11269 relax_end ();
11270 }
11271
11272 macro_build_jalr (&offset_expr, 0);
11273 }
11274 else
11275 {
11276 relax_start (offset_expr.X_add_symbol);
11277 if (!mips_big_got)
11278 {
11279 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11280 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11281 mips_gp_register);
11282 load_delay_nop ();
11283 relax_switch ();
11284 }
11285 else
11286 {
11287 int gpdelay;
11288
11289 gpdelay = reg_needs_delay (mips_gp_register);
11290 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11291 BFD_RELOC_MIPS_CALL_HI16);
11292 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11293 PIC_CALL_REG, mips_gp_register);
11294 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11295 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11296 PIC_CALL_REG);
11297 load_delay_nop ();
11298 relax_switch ();
11299 if (gpdelay)
11300 macro_build (NULL, "nop", "");
11301 }
11302 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11303 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11304 mips_gp_register);
11305 load_delay_nop ();
11306 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11307 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11308 relax_end ();
11309 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11310
11311 if (mips_cprestore_offset < 0)
11312 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11313 else
11314 {
11315 if (!mips_frame_reg_valid)
11316 {
11317 as_warn (_("no .frame pseudo-op used in PIC code"));
11318 /* Quiet this warning. */
11319 mips_frame_reg_valid = 1;
11320 }
11321 if (!mips_cprestore_valid)
11322 {
11323 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11324 /* Quiet this warning. */
11325 mips_cprestore_valid = 1;
11326 }
11327 if (mips_opts.noreorder)
11328 macro_build (NULL, "nop", "");
11329 expr1.X_add_number = mips_cprestore_offset;
11330 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11331 mips_gp_register,
11332 mips_frame_reg,
11333 HAVE_64BIT_ADDRESSES);
11334 }
11335 }
11336 }
11337 else if (mips_pic == VXWORKS_PIC)
11338 as_bad (_("non-PIC jump used in PIC library"));
11339 else
11340 abort ();
11341
11342 break;
11343
11344 case M_LBUE_AB:
11345 s = "lbue";
11346 fmt = "t,+j(b)";
11347 offbits = 9;
11348 goto ld_st;
11349 case M_LHUE_AB:
11350 s = "lhue";
11351 fmt = "t,+j(b)";
11352 offbits = 9;
11353 goto ld_st;
11354 case M_LBE_AB:
11355 s = "lbe";
11356 fmt = "t,+j(b)";
11357 offbits = 9;
11358 goto ld_st;
11359 case M_LHE_AB:
11360 s = "lhe";
11361 fmt = "t,+j(b)";
11362 offbits = 9;
11363 goto ld_st;
11364 case M_LLE_AB:
11365 s = "lle";
11366 fmt = "t,+j(b)";
11367 offbits = 9;
11368 goto ld_st;
11369 case M_LWE_AB:
11370 s = "lwe";
11371 fmt = "t,+j(b)";
11372 offbits = 9;
11373 goto ld_st;
11374 case M_LWLE_AB:
11375 s = "lwle";
11376 fmt = "t,+j(b)";
11377 offbits = 9;
11378 goto ld_st;
11379 case M_LWRE_AB:
11380 s = "lwre";
11381 fmt = "t,+j(b)";
11382 offbits = 9;
11383 goto ld_st;
11384 case M_SBE_AB:
11385 s = "sbe";
11386 fmt = "t,+j(b)";
11387 offbits = 9;
11388 goto ld_st;
11389 case M_SCE_AB:
11390 s = "sce";
11391 fmt = "t,+j(b)";
11392 offbits = 9;
11393 goto ld_st;
11394 case M_SHE_AB:
11395 s = "she";
11396 fmt = "t,+j(b)";
11397 offbits = 9;
11398 goto ld_st;
11399 case M_SWE_AB:
11400 s = "swe";
11401 fmt = "t,+j(b)";
11402 offbits = 9;
11403 goto ld_st;
11404 case M_SWLE_AB:
11405 s = "swle";
11406 fmt = "t,+j(b)";
11407 offbits = 9;
11408 goto ld_st;
11409 case M_SWRE_AB:
11410 s = "swre";
11411 fmt = "t,+j(b)";
11412 offbits = 9;
11413 goto ld_st;
11414 case M_ACLR_AB:
11415 s = "aclr";
11416 fmt = "\\,~(b)";
11417 offbits = 12;
11418 goto ld_st;
11419 case M_ASET_AB:
11420 s = "aset";
11421 fmt = "\\,~(b)";
11422 offbits = 12;
11423 goto ld_st;
11424 case M_LB_AB:
11425 s = "lb";
11426 fmt = "t,o(b)";
11427 goto ld;
11428 case M_LBU_AB:
11429 s = "lbu";
11430 fmt = "t,o(b)";
11431 goto ld;
11432 case M_LH_AB:
11433 s = "lh";
11434 fmt = "t,o(b)";
11435 goto ld;
11436 case M_LHU_AB:
11437 s = "lhu";
11438 fmt = "t,o(b)";
11439 goto ld;
11440 case M_LW_AB:
11441 s = "lw";
11442 fmt = "t,o(b)";
11443 goto ld;
11444 case M_LWC0_AB:
11445 gas_assert (!mips_opts.micromips);
11446 s = "lwc0";
11447 fmt = "E,o(b)";
11448 /* Itbl support may require additional care here. */
11449 coproc = 1;
11450 goto ld_st;
11451 case M_LWC1_AB:
11452 s = "lwc1";
11453 fmt = "T,o(b)";
11454 /* Itbl support may require additional care here. */
11455 coproc = 1;
11456 goto ld_st;
11457 case M_LWC2_AB:
11458 s = "lwc2";
11459 fmt = COP12_FMT;
11460 offbits = (mips_opts.micromips ? 12
11461 : ISA_IS_R6 (mips_opts.isa) ? 11
11462 : 16);
11463 /* Itbl support may require additional care here. */
11464 coproc = 1;
11465 goto ld_st;
11466 case M_LWC3_AB:
11467 gas_assert (!mips_opts.micromips);
11468 s = "lwc3";
11469 fmt = "E,o(b)";
11470 /* Itbl support may require additional care here. */
11471 coproc = 1;
11472 goto ld_st;
11473 case M_LWL_AB:
11474 s = "lwl";
11475 fmt = MEM12_FMT;
11476 offbits = (mips_opts.micromips ? 12 : 16);
11477 goto ld_st;
11478 case M_LWR_AB:
11479 s = "lwr";
11480 fmt = MEM12_FMT;
11481 offbits = (mips_opts.micromips ? 12 : 16);
11482 goto ld_st;
11483 case M_LDC1_AB:
11484 s = "ldc1";
11485 fmt = "T,o(b)";
11486 /* Itbl support may require additional care here. */
11487 coproc = 1;
11488 goto ld_st;
11489 case M_LDC2_AB:
11490 s = "ldc2";
11491 fmt = COP12_FMT;
11492 offbits = (mips_opts.micromips ? 12
11493 : ISA_IS_R6 (mips_opts.isa) ? 11
11494 : 16);
11495 /* Itbl support may require additional care here. */
11496 coproc = 1;
11497 goto ld_st;
11498 case M_LQC2_AB:
11499 s = "lqc2";
11500 fmt = "+7,o(b)";
11501 /* Itbl support may require additional care here. */
11502 coproc = 1;
11503 goto ld_st;
11504 case M_LDC3_AB:
11505 s = "ldc3";
11506 fmt = "E,o(b)";
11507 /* Itbl support may require additional care here. */
11508 coproc = 1;
11509 goto ld_st;
11510 case M_LDL_AB:
11511 s = "ldl";
11512 fmt = MEM12_FMT;
11513 offbits = (mips_opts.micromips ? 12 : 16);
11514 goto ld_st;
11515 case M_LDR_AB:
11516 s = "ldr";
11517 fmt = MEM12_FMT;
11518 offbits = (mips_opts.micromips ? 12 : 16);
11519 goto ld_st;
11520 case M_LL_AB:
11521 s = "ll";
11522 fmt = LL_SC_FMT;
11523 offbits = (mips_opts.micromips ? 12
11524 : ISA_IS_R6 (mips_opts.isa) ? 9
11525 : 16);
11526 goto ld;
11527 case M_LLD_AB:
11528 s = "lld";
11529 fmt = LL_SC_FMT;
11530 offbits = (mips_opts.micromips ? 12
11531 : ISA_IS_R6 (mips_opts.isa) ? 9
11532 : 16);
11533 goto ld;
11534 case M_LWU_AB:
11535 s = "lwu";
11536 fmt = MEM12_FMT;
11537 offbits = (mips_opts.micromips ? 12 : 16);
11538 goto ld;
11539 case M_LWP_AB:
11540 gas_assert (mips_opts.micromips);
11541 s = "lwp";
11542 fmt = "t,~(b)";
11543 offbits = 12;
11544 lp = 1;
11545 goto ld;
11546 case M_LDP_AB:
11547 gas_assert (mips_opts.micromips);
11548 s = "ldp";
11549 fmt = "t,~(b)";
11550 offbits = 12;
11551 lp = 1;
11552 goto ld;
11553 case M_LWM_AB:
11554 gas_assert (mips_opts.micromips);
11555 s = "lwm";
11556 fmt = "n,~(b)";
11557 offbits = 12;
11558 goto ld_st;
11559 case M_LDM_AB:
11560 gas_assert (mips_opts.micromips);
11561 s = "ldm";
11562 fmt = "n,~(b)";
11563 offbits = 12;
11564 goto ld_st;
11565
11566 ld:
11567 /* We don't want to use $0 as tempreg. */
11568 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11569 goto ld_st;
11570 else
11571 tempreg = op[0] + lp;
11572 goto ld_noat;
11573
11574 case M_SB_AB:
11575 s = "sb";
11576 fmt = "t,o(b)";
11577 goto ld_st;
11578 case M_SH_AB:
11579 s = "sh";
11580 fmt = "t,o(b)";
11581 goto ld_st;
11582 case M_SW_AB:
11583 s = "sw";
11584 fmt = "t,o(b)";
11585 goto ld_st;
11586 case M_SWC0_AB:
11587 gas_assert (!mips_opts.micromips);
11588 s = "swc0";
11589 fmt = "E,o(b)";
11590 /* Itbl support may require additional care here. */
11591 coproc = 1;
11592 goto ld_st;
11593 case M_SWC1_AB:
11594 s = "swc1";
11595 fmt = "T,o(b)";
11596 /* Itbl support may require additional care here. */
11597 coproc = 1;
11598 goto ld_st;
11599 case M_SWC2_AB:
11600 s = "swc2";
11601 fmt = COP12_FMT;
11602 offbits = (mips_opts.micromips ? 12
11603 : ISA_IS_R6 (mips_opts.isa) ? 11
11604 : 16);
11605 /* Itbl support may require additional care here. */
11606 coproc = 1;
11607 goto ld_st;
11608 case M_SWC3_AB:
11609 gas_assert (!mips_opts.micromips);
11610 s = "swc3";
11611 fmt = "E,o(b)";
11612 /* Itbl support may require additional care here. */
11613 coproc = 1;
11614 goto ld_st;
11615 case M_SWL_AB:
11616 s = "swl";
11617 fmt = MEM12_FMT;
11618 offbits = (mips_opts.micromips ? 12 : 16);
11619 goto ld_st;
11620 case M_SWR_AB:
11621 s = "swr";
11622 fmt = MEM12_FMT;
11623 offbits = (mips_opts.micromips ? 12 : 16);
11624 goto ld_st;
11625 case M_SC_AB:
11626 s = "sc";
11627 fmt = LL_SC_FMT;
11628 offbits = (mips_opts.micromips ? 12
11629 : ISA_IS_R6 (mips_opts.isa) ? 9
11630 : 16);
11631 goto ld_st;
11632 case M_SCD_AB:
11633 s = "scd";
11634 fmt = LL_SC_FMT;
11635 offbits = (mips_opts.micromips ? 12
11636 : ISA_IS_R6 (mips_opts.isa) ? 9
11637 : 16);
11638 goto ld_st;
11639 case M_CACHE_AB:
11640 s = "cache";
11641 fmt = (mips_opts.micromips ? "k,~(b)"
11642 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11643 : "k,o(b)");
11644 offbits = (mips_opts.micromips ? 12
11645 : ISA_IS_R6 (mips_opts.isa) ? 9
11646 : 16);
11647 goto ld_st;
11648 case M_CACHEE_AB:
11649 s = "cachee";
11650 fmt = "k,+j(b)";
11651 offbits = 9;
11652 goto ld_st;
11653 case M_PREF_AB:
11654 s = "pref";
11655 fmt = (mips_opts.micromips ? "k,~(b)"
11656 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11657 : "k,o(b)");
11658 offbits = (mips_opts.micromips ? 12
11659 : ISA_IS_R6 (mips_opts.isa) ? 9
11660 : 16);
11661 goto ld_st;
11662 case M_PREFE_AB:
11663 s = "prefe";
11664 fmt = "k,+j(b)";
11665 offbits = 9;
11666 goto ld_st;
11667 case M_SDC1_AB:
11668 s = "sdc1";
11669 fmt = "T,o(b)";
11670 coproc = 1;
11671 /* Itbl support may require additional care here. */
11672 goto ld_st;
11673 case M_SDC2_AB:
11674 s = "sdc2";
11675 fmt = COP12_FMT;
11676 offbits = (mips_opts.micromips ? 12
11677 : ISA_IS_R6 (mips_opts.isa) ? 11
11678 : 16);
11679 /* Itbl support may require additional care here. */
11680 coproc = 1;
11681 goto ld_st;
11682 case M_SQC2_AB:
11683 s = "sqc2";
11684 fmt = "+7,o(b)";
11685 /* Itbl support may require additional care here. */
11686 coproc = 1;
11687 goto ld_st;
11688 case M_SDC3_AB:
11689 gas_assert (!mips_opts.micromips);
11690 s = "sdc3";
11691 fmt = "E,o(b)";
11692 /* Itbl support may require additional care here. */
11693 coproc = 1;
11694 goto ld_st;
11695 case M_SDL_AB:
11696 s = "sdl";
11697 fmt = MEM12_FMT;
11698 offbits = (mips_opts.micromips ? 12 : 16);
11699 goto ld_st;
11700 case M_SDR_AB:
11701 s = "sdr";
11702 fmt = MEM12_FMT;
11703 offbits = (mips_opts.micromips ? 12 : 16);
11704 goto ld_st;
11705 case M_SWP_AB:
11706 gas_assert (mips_opts.micromips);
11707 s = "swp";
11708 fmt = "t,~(b)";
11709 offbits = 12;
11710 goto ld_st;
11711 case M_SDP_AB:
11712 gas_assert (mips_opts.micromips);
11713 s = "sdp";
11714 fmt = "t,~(b)";
11715 offbits = 12;
11716 goto ld_st;
11717 case M_SWM_AB:
11718 gas_assert (mips_opts.micromips);
11719 s = "swm";
11720 fmt = "n,~(b)";
11721 offbits = 12;
11722 goto ld_st;
11723 case M_SDM_AB:
11724 gas_assert (mips_opts.micromips);
11725 s = "sdm";
11726 fmt = "n,~(b)";
11727 offbits = 12;
11728
11729 ld_st:
11730 tempreg = AT;
11731 ld_noat:
11732 breg = op[2];
11733 if (small_offset_p (0, align, 16))
11734 {
11735 /* The first case exists for M_LD_AB and M_SD_AB, which are
11736 macros for o32 but which should act like normal instructions
11737 otherwise. */
11738 if (offbits == 16)
11739 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11740 offset_reloc[1], offset_reloc[2], breg);
11741 else if (small_offset_p (0, align, offbits))
11742 {
11743 if (offbits == 0)
11744 macro_build (NULL, s, fmt, op[0], breg);
11745 else
11746 macro_build (NULL, s, fmt, op[0],
11747 (int) offset_expr.X_add_number, breg);
11748 }
11749 else
11750 {
11751 if (tempreg == AT)
11752 used_at = 1;
11753 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11754 tempreg, breg, -1, offset_reloc[0],
11755 offset_reloc[1], offset_reloc[2]);
11756 if (offbits == 0)
11757 macro_build (NULL, s, fmt, op[0], tempreg);
11758 else
11759 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11760 }
11761 break;
11762 }
11763
11764 if (tempreg == AT)
11765 used_at = 1;
11766
11767 if (offset_expr.X_op != O_constant
11768 && offset_expr.X_op != O_symbol)
11769 {
11770 as_bad (_("expression too complex"));
11771 offset_expr.X_op = O_constant;
11772 }
11773
11774 if (HAVE_32BIT_ADDRESSES
11775 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11776 {
11777 char value [32];
11778
11779 sprintf_vma (value, offset_expr.X_add_number);
11780 as_bad (_("number (0x%s) larger than 32 bits"), value);
11781 }
11782
11783 /* A constant expression in PIC code can be handled just as it
11784 is in non PIC code. */
11785 if (offset_expr.X_op == O_constant)
11786 {
11787 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11788 offbits == 0 ? 16 : offbits);
11789 offset_expr.X_add_number -= expr1.X_add_number;
11790
11791 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11792 if (breg != 0)
11793 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11794 tempreg, tempreg, breg);
11795 if (offbits == 0)
11796 {
11797 if (offset_expr.X_add_number != 0)
11798 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11799 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11800 macro_build (NULL, s, fmt, op[0], tempreg);
11801 }
11802 else if (offbits == 16)
11803 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11804 else
11805 macro_build (NULL, s, fmt, op[0],
11806 (int) offset_expr.X_add_number, tempreg);
11807 }
11808 else if (offbits != 16)
11809 {
11810 /* The offset field is too narrow to be used for a low-part
11811 relocation, so load the whole address into the auxiliary
11812 register. */
11813 load_address (tempreg, &offset_expr, &used_at);
11814 if (breg != 0)
11815 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11816 tempreg, tempreg, breg);
11817 if (offbits == 0)
11818 macro_build (NULL, s, fmt, op[0], tempreg);
11819 else
11820 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11821 }
11822 else if (mips_pic == NO_PIC)
11823 {
11824 /* If this is a reference to a GP relative symbol, and there
11825 is no base register, we want
11826 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11827 Otherwise, if there is no base register, we want
11828 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11829 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11830 If we have a constant, we need two instructions anyhow,
11831 so we always use the latter form.
11832
11833 If we have a base register, and this is a reference to a
11834 GP relative symbol, we want
11835 addu $tempreg,$breg,$gp
11836 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11837 Otherwise we want
11838 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11839 addu $tempreg,$tempreg,$breg
11840 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11841 With a constant we always use the latter case.
11842
11843 With 64bit address space and no base register and $at usable,
11844 we want
11845 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11846 lui $at,<sym> (BFD_RELOC_HI16_S)
11847 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11848 dsll32 $tempreg,0
11849 daddu $tempreg,$at
11850 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11851 If we have a base register, we want
11852 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11853 lui $at,<sym> (BFD_RELOC_HI16_S)
11854 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11855 daddu $at,$breg
11856 dsll32 $tempreg,0
11857 daddu $tempreg,$at
11858 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11859
11860 Without $at we can't generate the optimal path for superscalar
11861 processors here since this would require two temporary registers.
11862 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11863 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11864 dsll $tempreg,16
11865 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11866 dsll $tempreg,16
11867 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11868 If we have a base register, we want
11869 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11870 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11871 dsll $tempreg,16
11872 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11873 dsll $tempreg,16
11874 daddu $tempreg,$tempreg,$breg
11875 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11876
11877 For GP relative symbols in 64bit address space we can use
11878 the same sequence as in 32bit address space. */
11879 if (HAVE_64BIT_SYMBOLS)
11880 {
11881 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11882 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11883 {
11884 relax_start (offset_expr.X_add_symbol);
11885 if (breg == 0)
11886 {
11887 macro_build (&offset_expr, s, fmt, op[0],
11888 BFD_RELOC_GPREL16, mips_gp_register);
11889 }
11890 else
11891 {
11892 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11893 tempreg, breg, mips_gp_register);
11894 macro_build (&offset_expr, s, fmt, op[0],
11895 BFD_RELOC_GPREL16, tempreg);
11896 }
11897 relax_switch ();
11898 }
11899
11900 if (used_at == 0 && mips_opts.at)
11901 {
11902 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11903 BFD_RELOC_MIPS_HIGHEST);
11904 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11905 BFD_RELOC_HI16_S);
11906 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11907 tempreg, BFD_RELOC_MIPS_HIGHER);
11908 if (breg != 0)
11909 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11910 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11911 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11912 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11913 tempreg);
11914 used_at = 1;
11915 }
11916 else
11917 {
11918 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11919 BFD_RELOC_MIPS_HIGHEST);
11920 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11921 tempreg, BFD_RELOC_MIPS_HIGHER);
11922 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11923 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11924 tempreg, BFD_RELOC_HI16_S);
11925 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11926 if (breg != 0)
11927 macro_build (NULL, "daddu", "d,v,t",
11928 tempreg, tempreg, breg);
11929 macro_build (&offset_expr, s, fmt, op[0],
11930 BFD_RELOC_LO16, tempreg);
11931 }
11932
11933 if (mips_relax.sequence)
11934 relax_end ();
11935 break;
11936 }
11937
11938 if (breg == 0)
11939 {
11940 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11941 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11942 {
11943 relax_start (offset_expr.X_add_symbol);
11944 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11945 mips_gp_register);
11946 relax_switch ();
11947 }
11948 macro_build_lui (&offset_expr, tempreg);
11949 macro_build (&offset_expr, s, fmt, op[0],
11950 BFD_RELOC_LO16, tempreg);
11951 if (mips_relax.sequence)
11952 relax_end ();
11953 }
11954 else
11955 {
11956 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11957 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11958 {
11959 relax_start (offset_expr.X_add_symbol);
11960 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11961 tempreg, breg, mips_gp_register);
11962 macro_build (&offset_expr, s, fmt, op[0],
11963 BFD_RELOC_GPREL16, tempreg);
11964 relax_switch ();
11965 }
11966 macro_build_lui (&offset_expr, tempreg);
11967 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11968 tempreg, tempreg, breg);
11969 macro_build (&offset_expr, s, fmt, op[0],
11970 BFD_RELOC_LO16, tempreg);
11971 if (mips_relax.sequence)
11972 relax_end ();
11973 }
11974 }
11975 else if (!mips_big_got)
11976 {
11977 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11978
11979 /* If this is a reference to an external symbol, we want
11980 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11981 nop
11982 <op> op[0],0($tempreg)
11983 Otherwise we want
11984 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11985 nop
11986 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11987 <op> op[0],0($tempreg)
11988
11989 For NewABI, we want
11990 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11991 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11992
11993 If there is a base register, we add it to $tempreg before
11994 the <op>. If there is a constant, we stick it in the
11995 <op> instruction. We don't handle constants larger than
11996 16 bits, because we have no way to load the upper 16 bits
11997 (actually, we could handle them for the subset of cases
11998 in which we are not using $at). */
11999 gas_assert (offset_expr.X_op == O_symbol);
12000 if (HAVE_NEWABI)
12001 {
12002 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12003 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12004 if (breg != 0)
12005 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12006 tempreg, tempreg, breg);
12007 macro_build (&offset_expr, s, fmt, op[0],
12008 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12009 break;
12010 }
12011 expr1.X_add_number = offset_expr.X_add_number;
12012 offset_expr.X_add_number = 0;
12013 if (expr1.X_add_number < -0x8000
12014 || expr1.X_add_number >= 0x8000)
12015 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12016 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12017 lw_reloc_type, mips_gp_register);
12018 load_delay_nop ();
12019 relax_start (offset_expr.X_add_symbol);
12020 relax_switch ();
12021 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12022 tempreg, BFD_RELOC_LO16);
12023 relax_end ();
12024 if (breg != 0)
12025 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12026 tempreg, tempreg, breg);
12027 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12028 }
12029 else if (mips_big_got && !HAVE_NEWABI)
12030 {
12031 int gpdelay;
12032
12033 /* If this is a reference to an external symbol, we want
12034 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12035 addu $tempreg,$tempreg,$gp
12036 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12037 <op> op[0],0($tempreg)
12038 Otherwise we want
12039 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12040 nop
12041 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12042 <op> op[0],0($tempreg)
12043 If there is a base register, we add it to $tempreg before
12044 the <op>. If there is a constant, we stick it in the
12045 <op> instruction. We don't handle constants larger than
12046 16 bits, because we have no way to load the upper 16 bits
12047 (actually, we could handle them for the subset of cases
12048 in which we are not using $at). */
12049 gas_assert (offset_expr.X_op == O_symbol);
12050 expr1.X_add_number = offset_expr.X_add_number;
12051 offset_expr.X_add_number = 0;
12052 if (expr1.X_add_number < -0x8000
12053 || expr1.X_add_number >= 0x8000)
12054 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12055 gpdelay = reg_needs_delay (mips_gp_register);
12056 relax_start (offset_expr.X_add_symbol);
12057 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12058 BFD_RELOC_MIPS_GOT_HI16);
12059 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12060 mips_gp_register);
12061 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12062 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12063 relax_switch ();
12064 if (gpdelay)
12065 macro_build (NULL, "nop", "");
12066 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12067 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12068 load_delay_nop ();
12069 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12070 tempreg, BFD_RELOC_LO16);
12071 relax_end ();
12072
12073 if (breg != 0)
12074 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12075 tempreg, tempreg, breg);
12076 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12077 }
12078 else if (mips_big_got && HAVE_NEWABI)
12079 {
12080 /* If this is a reference to an external symbol, we want
12081 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12082 add $tempreg,$tempreg,$gp
12083 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12084 <op> op[0],<ofst>($tempreg)
12085 Otherwise, for local symbols, we want:
12086 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12087 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12088 gas_assert (offset_expr.X_op == O_symbol);
12089 expr1.X_add_number = offset_expr.X_add_number;
12090 offset_expr.X_add_number = 0;
12091 if (expr1.X_add_number < -0x8000
12092 || expr1.X_add_number >= 0x8000)
12093 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12094 relax_start (offset_expr.X_add_symbol);
12095 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12096 BFD_RELOC_MIPS_GOT_HI16);
12097 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12098 mips_gp_register);
12099 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12100 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12101 if (breg != 0)
12102 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12103 tempreg, tempreg, breg);
12104 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12105
12106 relax_switch ();
12107 offset_expr.X_add_number = expr1.X_add_number;
12108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12109 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12110 if (breg != 0)
12111 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12112 tempreg, tempreg, breg);
12113 macro_build (&offset_expr, s, fmt, op[0],
12114 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12115 relax_end ();
12116 }
12117 else
12118 abort ();
12119
12120 break;
12121
12122 case M_JRADDIUSP:
12123 gas_assert (mips_opts.micromips);
12124 gas_assert (mips_opts.insn32);
12125 start_noreorder ();
12126 macro_build (NULL, "jr", "s", RA);
12127 expr1.X_add_number = op[0] << 2;
12128 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12129 end_noreorder ();
12130 break;
12131
12132 case M_JRC:
12133 gas_assert (mips_opts.micromips);
12134 gas_assert (mips_opts.insn32);
12135 macro_build (NULL, "jr", "s", op[0]);
12136 if (mips_opts.noreorder)
12137 macro_build (NULL, "nop", "");
12138 break;
12139
12140 case M_LI:
12141 case M_LI_S:
12142 load_register (op[0], &imm_expr, 0);
12143 break;
12144
12145 case M_DLI:
12146 load_register (op[0], &imm_expr, 1);
12147 break;
12148
12149 case M_LI_SS:
12150 if (imm_expr.X_op == O_constant)
12151 {
12152 used_at = 1;
12153 load_register (AT, &imm_expr, 0);
12154 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12155 break;
12156 }
12157 else
12158 {
12159 gas_assert (imm_expr.X_op == O_absent
12160 && offset_expr.X_op == O_symbol
12161 && strcmp (segment_name (S_GET_SEGMENT
12162 (offset_expr.X_add_symbol)),
12163 ".lit4") == 0
12164 && offset_expr.X_add_number == 0);
12165 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12166 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12167 break;
12168 }
12169
12170 case M_LI_D:
12171 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12172 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12173 order 32 bits of the value and the low order 32 bits are either
12174 zero or in OFFSET_EXPR. */
12175 if (imm_expr.X_op == O_constant)
12176 {
12177 if (GPR_SIZE == 64)
12178 load_register (op[0], &imm_expr, 1);
12179 else
12180 {
12181 int hreg, lreg;
12182
12183 if (target_big_endian)
12184 {
12185 hreg = op[0];
12186 lreg = op[0] + 1;
12187 }
12188 else
12189 {
12190 hreg = op[0] + 1;
12191 lreg = op[0];
12192 }
12193
12194 if (hreg <= 31)
12195 load_register (hreg, &imm_expr, 0);
12196 if (lreg <= 31)
12197 {
12198 if (offset_expr.X_op == O_absent)
12199 move_register (lreg, 0);
12200 else
12201 {
12202 gas_assert (offset_expr.X_op == O_constant);
12203 load_register (lreg, &offset_expr, 0);
12204 }
12205 }
12206 }
12207 break;
12208 }
12209 gas_assert (imm_expr.X_op == O_absent);
12210
12211 /* We know that sym is in the .rdata section. First we get the
12212 upper 16 bits of the address. */
12213 if (mips_pic == NO_PIC)
12214 {
12215 macro_build_lui (&offset_expr, AT);
12216 used_at = 1;
12217 }
12218 else
12219 {
12220 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12221 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12222 used_at = 1;
12223 }
12224
12225 /* Now we load the register(s). */
12226 if (GPR_SIZE == 64)
12227 {
12228 used_at = 1;
12229 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12230 BFD_RELOC_LO16, AT);
12231 }
12232 else
12233 {
12234 used_at = 1;
12235 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12236 BFD_RELOC_LO16, AT);
12237 if (op[0] != RA)
12238 {
12239 /* FIXME: How in the world do we deal with the possible
12240 overflow here? */
12241 offset_expr.X_add_number += 4;
12242 macro_build (&offset_expr, "lw", "t,o(b)",
12243 op[0] + 1, BFD_RELOC_LO16, AT);
12244 }
12245 }
12246 break;
12247
12248 case M_LI_DD:
12249 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12250 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12251 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12252 the value and the low order 32 bits are either zero or in
12253 OFFSET_EXPR. */
12254 if (imm_expr.X_op == O_constant)
12255 {
12256 used_at = 1;
12257 load_register (AT, &imm_expr, FPR_SIZE == 64);
12258 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12259 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12260 else
12261 {
12262 if (ISA_HAS_MXHC1 (mips_opts.isa))
12263 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12264 else if (FPR_SIZE != 32)
12265 as_bad (_("Unable to generate `%s' compliant code "
12266 "without mthc1"),
12267 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12268 else
12269 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12270 if (offset_expr.X_op == O_absent)
12271 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12272 else
12273 {
12274 gas_assert (offset_expr.X_op == O_constant);
12275 load_register (AT, &offset_expr, 0);
12276 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12277 }
12278 }
12279 break;
12280 }
12281
12282 gas_assert (imm_expr.X_op == O_absent
12283 && offset_expr.X_op == O_symbol
12284 && offset_expr.X_add_number == 0);
12285 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12286 if (strcmp (s, ".lit8") == 0)
12287 {
12288 op[2] = mips_gp_register;
12289 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12290 offset_reloc[1] = BFD_RELOC_UNUSED;
12291 offset_reloc[2] = BFD_RELOC_UNUSED;
12292 }
12293 else
12294 {
12295 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12296 used_at = 1;
12297 if (mips_pic != NO_PIC)
12298 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12299 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12300 else
12301 {
12302 /* FIXME: This won't work for a 64 bit address. */
12303 macro_build_lui (&offset_expr, AT);
12304 }
12305
12306 op[2] = AT;
12307 offset_reloc[0] = BFD_RELOC_LO16;
12308 offset_reloc[1] = BFD_RELOC_UNUSED;
12309 offset_reloc[2] = BFD_RELOC_UNUSED;
12310 }
12311 align = 8;
12312 /* Fall through */
12313
12314 case M_L_DAB:
12315 /*
12316 * The MIPS assembler seems to check for X_add_number not
12317 * being double aligned and generating:
12318 * lui at,%hi(foo+1)
12319 * addu at,at,v1
12320 * addiu at,at,%lo(foo+1)
12321 * lwc1 f2,0(at)
12322 * lwc1 f3,4(at)
12323 * But, the resulting address is the same after relocation so why
12324 * generate the extra instruction?
12325 */
12326 /* Itbl support may require additional care here. */
12327 coproc = 1;
12328 fmt = "T,o(b)";
12329 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12330 {
12331 s = "ldc1";
12332 goto ld_st;
12333 }
12334 s = "lwc1";
12335 goto ldd_std;
12336
12337 case M_S_DAB:
12338 gas_assert (!mips_opts.micromips);
12339 /* Itbl support may require additional care here. */
12340 coproc = 1;
12341 fmt = "T,o(b)";
12342 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12343 {
12344 s = "sdc1";
12345 goto ld_st;
12346 }
12347 s = "swc1";
12348 goto ldd_std;
12349
12350 case M_LQ_AB:
12351 fmt = "t,o(b)";
12352 s = "lq";
12353 goto ld;
12354
12355 case M_SQ_AB:
12356 fmt = "t,o(b)";
12357 s = "sq";
12358 goto ld_st;
12359
12360 case M_LD_AB:
12361 fmt = "t,o(b)";
12362 if (GPR_SIZE == 64)
12363 {
12364 s = "ld";
12365 goto ld;
12366 }
12367 s = "lw";
12368 goto ldd_std;
12369
12370 case M_SD_AB:
12371 fmt = "t,o(b)";
12372 if (GPR_SIZE == 64)
12373 {
12374 s = "sd";
12375 goto ld_st;
12376 }
12377 s = "sw";
12378
12379 ldd_std:
12380 /* Even on a big endian machine $fn comes before $fn+1. We have
12381 to adjust when loading from memory. We set coproc if we must
12382 load $fn+1 first. */
12383 /* Itbl support may require additional care here. */
12384 if (!target_big_endian)
12385 coproc = 0;
12386
12387 breg = op[2];
12388 if (small_offset_p (0, align, 16))
12389 {
12390 ep = &offset_expr;
12391 if (!small_offset_p (4, align, 16))
12392 {
12393 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12394 -1, offset_reloc[0], offset_reloc[1],
12395 offset_reloc[2]);
12396 expr1.X_add_number = 0;
12397 ep = &expr1;
12398 breg = AT;
12399 used_at = 1;
12400 offset_reloc[0] = BFD_RELOC_LO16;
12401 offset_reloc[1] = BFD_RELOC_UNUSED;
12402 offset_reloc[2] = BFD_RELOC_UNUSED;
12403 }
12404 if (strcmp (s, "lw") == 0 && op[0] == breg)
12405 {
12406 ep->X_add_number += 4;
12407 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12408 offset_reloc[1], offset_reloc[2], breg);
12409 ep->X_add_number -= 4;
12410 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12411 offset_reloc[1], offset_reloc[2], breg);
12412 }
12413 else
12414 {
12415 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12416 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12417 breg);
12418 ep->X_add_number += 4;
12419 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12420 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12421 breg);
12422 }
12423 break;
12424 }
12425
12426 if (offset_expr.X_op != O_symbol
12427 && offset_expr.X_op != O_constant)
12428 {
12429 as_bad (_("expression too complex"));
12430 offset_expr.X_op = O_constant;
12431 }
12432
12433 if (HAVE_32BIT_ADDRESSES
12434 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12435 {
12436 char value [32];
12437
12438 sprintf_vma (value, offset_expr.X_add_number);
12439 as_bad (_("number (0x%s) larger than 32 bits"), value);
12440 }
12441
12442 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12443 {
12444 /* If this is a reference to a GP relative symbol, we want
12445 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12446 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12447 If we have a base register, we use this
12448 addu $at,$breg,$gp
12449 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12450 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12451 If this is not a GP relative symbol, we want
12452 lui $at,<sym> (BFD_RELOC_HI16_S)
12453 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12454 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12455 If there is a base register, we add it to $at after the
12456 lui instruction. If there is a constant, we always use
12457 the last case. */
12458 if (offset_expr.X_op == O_symbol
12459 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12460 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12461 {
12462 relax_start (offset_expr.X_add_symbol);
12463 if (breg == 0)
12464 {
12465 tempreg = mips_gp_register;
12466 }
12467 else
12468 {
12469 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12470 AT, breg, mips_gp_register);
12471 tempreg = AT;
12472 used_at = 1;
12473 }
12474
12475 /* Itbl support may require additional care here. */
12476 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12477 BFD_RELOC_GPREL16, tempreg);
12478 offset_expr.X_add_number += 4;
12479
12480 /* Set mips_optimize to 2 to avoid inserting an
12481 undesired nop. */
12482 hold_mips_optimize = mips_optimize;
12483 mips_optimize = 2;
12484 /* Itbl support may require additional care here. */
12485 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12486 BFD_RELOC_GPREL16, tempreg);
12487 mips_optimize = hold_mips_optimize;
12488
12489 relax_switch ();
12490
12491 offset_expr.X_add_number -= 4;
12492 }
12493 used_at = 1;
12494 if (offset_high_part (offset_expr.X_add_number, 16)
12495 != offset_high_part (offset_expr.X_add_number + 4, 16))
12496 {
12497 load_address (AT, &offset_expr, &used_at);
12498 offset_expr.X_op = O_constant;
12499 offset_expr.X_add_number = 0;
12500 }
12501 else
12502 macro_build_lui (&offset_expr, AT);
12503 if (breg != 0)
12504 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12505 /* Itbl support may require additional care here. */
12506 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12507 BFD_RELOC_LO16, AT);
12508 /* FIXME: How do we handle overflow here? */
12509 offset_expr.X_add_number += 4;
12510 /* Itbl support may require additional care here. */
12511 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12512 BFD_RELOC_LO16, AT);
12513 if (mips_relax.sequence)
12514 relax_end ();
12515 }
12516 else if (!mips_big_got)
12517 {
12518 /* If this is a reference to an external symbol, we want
12519 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12520 nop
12521 <op> op[0],0($at)
12522 <op> op[0]+1,4($at)
12523 Otherwise we want
12524 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12525 nop
12526 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12527 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12528 If there is a base register we add it to $at before the
12529 lwc1 instructions. If there is a constant we include it
12530 in the lwc1 instructions. */
12531 used_at = 1;
12532 expr1.X_add_number = offset_expr.X_add_number;
12533 if (expr1.X_add_number < -0x8000
12534 || expr1.X_add_number >= 0x8000 - 4)
12535 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12536 load_got_offset (AT, &offset_expr);
12537 load_delay_nop ();
12538 if (breg != 0)
12539 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12540
12541 /* Set mips_optimize to 2 to avoid inserting an undesired
12542 nop. */
12543 hold_mips_optimize = mips_optimize;
12544 mips_optimize = 2;
12545
12546 /* Itbl support may require additional care here. */
12547 relax_start (offset_expr.X_add_symbol);
12548 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12549 BFD_RELOC_LO16, AT);
12550 expr1.X_add_number += 4;
12551 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12552 BFD_RELOC_LO16, AT);
12553 relax_switch ();
12554 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12555 BFD_RELOC_LO16, AT);
12556 offset_expr.X_add_number += 4;
12557 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12558 BFD_RELOC_LO16, AT);
12559 relax_end ();
12560
12561 mips_optimize = hold_mips_optimize;
12562 }
12563 else if (mips_big_got)
12564 {
12565 int gpdelay;
12566
12567 /* If this is a reference to an external symbol, we want
12568 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12569 addu $at,$at,$gp
12570 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12571 nop
12572 <op> op[0],0($at)
12573 <op> op[0]+1,4($at)
12574 Otherwise we want
12575 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12576 nop
12577 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12578 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12579 If there is a base register we add it to $at before the
12580 lwc1 instructions. If there is a constant we include it
12581 in the lwc1 instructions. */
12582 used_at = 1;
12583 expr1.X_add_number = offset_expr.X_add_number;
12584 offset_expr.X_add_number = 0;
12585 if (expr1.X_add_number < -0x8000
12586 || expr1.X_add_number >= 0x8000 - 4)
12587 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12588 gpdelay = reg_needs_delay (mips_gp_register);
12589 relax_start (offset_expr.X_add_symbol);
12590 macro_build (&offset_expr, "lui", LUI_FMT,
12591 AT, BFD_RELOC_MIPS_GOT_HI16);
12592 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12593 AT, AT, mips_gp_register);
12594 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12595 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12596 load_delay_nop ();
12597 if (breg != 0)
12598 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12599 /* Itbl support may require additional care here. */
12600 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12601 BFD_RELOC_LO16, AT);
12602 expr1.X_add_number += 4;
12603
12604 /* Set mips_optimize to 2 to avoid inserting an undesired
12605 nop. */
12606 hold_mips_optimize = mips_optimize;
12607 mips_optimize = 2;
12608 /* Itbl support may require additional care here. */
12609 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12610 BFD_RELOC_LO16, AT);
12611 mips_optimize = hold_mips_optimize;
12612 expr1.X_add_number -= 4;
12613
12614 relax_switch ();
12615 offset_expr.X_add_number = expr1.X_add_number;
12616 if (gpdelay)
12617 macro_build (NULL, "nop", "");
12618 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12619 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12620 load_delay_nop ();
12621 if (breg != 0)
12622 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12623 /* Itbl support may require additional care here. */
12624 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12625 BFD_RELOC_LO16, AT);
12626 offset_expr.X_add_number += 4;
12627
12628 /* Set mips_optimize to 2 to avoid inserting an undesired
12629 nop. */
12630 hold_mips_optimize = mips_optimize;
12631 mips_optimize = 2;
12632 /* Itbl support may require additional care here. */
12633 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12634 BFD_RELOC_LO16, AT);
12635 mips_optimize = hold_mips_optimize;
12636 relax_end ();
12637 }
12638 else
12639 abort ();
12640
12641 break;
12642
12643 case M_SAA_AB:
12644 s = "saa";
12645 goto saa_saad;
12646 case M_SAAD_AB:
12647 s = "saad";
12648 saa_saad:
12649 gas_assert (!mips_opts.micromips);
12650 offbits = 0;
12651 fmt = "t,(b)";
12652 goto ld_st;
12653
12654 /* New code added to support COPZ instructions.
12655 This code builds table entries out of the macros in mip_opcodes.
12656 R4000 uses interlocks to handle coproc delays.
12657 Other chips (like the R3000) require nops to be inserted for delays.
12658
12659 FIXME: Currently, we require that the user handle delays.
12660 In order to fill delay slots for non-interlocked chips,
12661 we must have a way to specify delays based on the coprocessor.
12662 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12663 What are the side-effects of the cop instruction?
12664 What cache support might we have and what are its effects?
12665 Both coprocessor & memory require delays. how long???
12666 What registers are read/set/modified?
12667
12668 If an itbl is provided to interpret cop instructions,
12669 this knowledge can be encoded in the itbl spec. */
12670
12671 case M_COP0:
12672 s = "c0";
12673 goto copz;
12674 case M_COP1:
12675 s = "c1";
12676 goto copz;
12677 case M_COP2:
12678 s = "c2";
12679 goto copz;
12680 case M_COP3:
12681 s = "c3";
12682 copz:
12683 gas_assert (!mips_opts.micromips);
12684 /* For now we just do C (same as Cz). The parameter will be
12685 stored in insn_opcode by mips_ip. */
12686 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12687 break;
12688
12689 case M_MOVE:
12690 move_register (op[0], op[1]);
12691 break;
12692
12693 case M_MOVEP:
12694 gas_assert (mips_opts.micromips);
12695 gas_assert (mips_opts.insn32);
12696 move_register (micromips_to_32_reg_h_map1[op[0]],
12697 micromips_to_32_reg_m_map[op[1]]);
12698 move_register (micromips_to_32_reg_h_map2[op[0]],
12699 micromips_to_32_reg_n_map[op[2]]);
12700 break;
12701
12702 case M_DMUL:
12703 dbl = 1;
12704 /* Fall through. */
12705 case M_MUL:
12706 if (mips_opts.arch == CPU_R5900)
12707 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12708 op[2]);
12709 else
12710 {
12711 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12712 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12713 }
12714 break;
12715
12716 case M_DMUL_I:
12717 dbl = 1;
12718 /* Fall through. */
12719 case M_MUL_I:
12720 /* The MIPS assembler some times generates shifts and adds. I'm
12721 not trying to be that fancy. GCC should do this for us
12722 anyway. */
12723 used_at = 1;
12724 load_register (AT, &imm_expr, dbl);
12725 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12726 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12727 break;
12728
12729 case M_DMULO_I:
12730 dbl = 1;
12731 /* Fall through. */
12732 case M_MULO_I:
12733 imm = 1;
12734 goto do_mulo;
12735
12736 case M_DMULO:
12737 dbl = 1;
12738 /* Fall through. */
12739 case M_MULO:
12740 do_mulo:
12741 start_noreorder ();
12742 used_at = 1;
12743 if (imm)
12744 load_register (AT, &imm_expr, dbl);
12745 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12746 op[1], imm ? AT : op[2]);
12747 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12748 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12749 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12750 if (mips_trap)
12751 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12752 else
12753 {
12754 if (mips_opts.micromips)
12755 micromips_label_expr (&label_expr);
12756 else
12757 label_expr.X_add_number = 8;
12758 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12759 macro_build (NULL, "nop", "");
12760 macro_build (NULL, "break", BRK_FMT, 6);
12761 if (mips_opts.micromips)
12762 micromips_add_label ();
12763 }
12764 end_noreorder ();
12765 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12766 break;
12767
12768 case M_DMULOU_I:
12769 dbl = 1;
12770 /* Fall through. */
12771 case M_MULOU_I:
12772 imm = 1;
12773 goto do_mulou;
12774
12775 case M_DMULOU:
12776 dbl = 1;
12777 /* Fall through. */
12778 case M_MULOU:
12779 do_mulou:
12780 start_noreorder ();
12781 used_at = 1;
12782 if (imm)
12783 load_register (AT, &imm_expr, dbl);
12784 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12785 op[1], imm ? AT : op[2]);
12786 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12787 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12788 if (mips_trap)
12789 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12790 else
12791 {
12792 if (mips_opts.micromips)
12793 micromips_label_expr (&label_expr);
12794 else
12795 label_expr.X_add_number = 8;
12796 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12797 macro_build (NULL, "nop", "");
12798 macro_build (NULL, "break", BRK_FMT, 6);
12799 if (mips_opts.micromips)
12800 micromips_add_label ();
12801 }
12802 end_noreorder ();
12803 break;
12804
12805 case M_DROL:
12806 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12807 {
12808 if (op[0] == op[1])
12809 {
12810 tempreg = AT;
12811 used_at = 1;
12812 }
12813 else
12814 tempreg = op[0];
12815 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12816 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12817 break;
12818 }
12819 used_at = 1;
12820 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12821 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12822 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12823 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12824 break;
12825
12826 case M_ROL:
12827 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12828 {
12829 if (op[0] == op[1])
12830 {
12831 tempreg = AT;
12832 used_at = 1;
12833 }
12834 else
12835 tempreg = op[0];
12836 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12837 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12838 break;
12839 }
12840 used_at = 1;
12841 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12842 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12843 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12844 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12845 break;
12846
12847 case M_DROL_I:
12848 {
12849 unsigned int rot;
12850 const char *l;
12851 const char *rr;
12852
12853 rot = imm_expr.X_add_number & 0x3f;
12854 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12855 {
12856 rot = (64 - rot) & 0x3f;
12857 if (rot >= 32)
12858 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12859 else
12860 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12861 break;
12862 }
12863 if (rot == 0)
12864 {
12865 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12866 break;
12867 }
12868 l = (rot < 0x20) ? "dsll" : "dsll32";
12869 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12870 rot &= 0x1f;
12871 used_at = 1;
12872 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12873 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12874 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12875 }
12876 break;
12877
12878 case M_ROL_I:
12879 {
12880 unsigned int rot;
12881
12882 rot = imm_expr.X_add_number & 0x1f;
12883 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12884 {
12885 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12886 (32 - rot) & 0x1f);
12887 break;
12888 }
12889 if (rot == 0)
12890 {
12891 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12892 break;
12893 }
12894 used_at = 1;
12895 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12896 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12897 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12898 }
12899 break;
12900
12901 case M_DROR:
12902 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12903 {
12904 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12905 break;
12906 }
12907 used_at = 1;
12908 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12909 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12910 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12911 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12912 break;
12913
12914 case M_ROR:
12915 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12916 {
12917 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12918 break;
12919 }
12920 used_at = 1;
12921 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12922 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12923 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12924 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12925 break;
12926
12927 case M_DROR_I:
12928 {
12929 unsigned int rot;
12930 const char *l;
12931 const char *rr;
12932
12933 rot = imm_expr.X_add_number & 0x3f;
12934 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12935 {
12936 if (rot >= 32)
12937 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12938 else
12939 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12940 break;
12941 }
12942 if (rot == 0)
12943 {
12944 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12945 break;
12946 }
12947 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12948 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12949 rot &= 0x1f;
12950 used_at = 1;
12951 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12952 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12953 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12954 }
12955 break;
12956
12957 case M_ROR_I:
12958 {
12959 unsigned int rot;
12960
12961 rot = imm_expr.X_add_number & 0x1f;
12962 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12963 {
12964 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12965 break;
12966 }
12967 if (rot == 0)
12968 {
12969 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12970 break;
12971 }
12972 used_at = 1;
12973 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12974 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12975 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12976 }
12977 break;
12978
12979 case M_SEQ:
12980 if (op[1] == 0)
12981 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12982 else if (op[2] == 0)
12983 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12984 else
12985 {
12986 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12987 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12988 }
12989 break;
12990
12991 case M_SEQ_I:
12992 if (imm_expr.X_add_number == 0)
12993 {
12994 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12995 break;
12996 }
12997 if (op[1] == 0)
12998 {
12999 as_warn (_("instruction %s: result is always false"),
13000 ip->insn_mo->name);
13001 move_register (op[0], 0);
13002 break;
13003 }
13004 if (CPU_HAS_SEQ (mips_opts.arch)
13005 && -512 <= imm_expr.X_add_number
13006 && imm_expr.X_add_number < 512)
13007 {
13008 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13009 (int) imm_expr.X_add_number);
13010 break;
13011 }
13012 if (imm_expr.X_add_number >= 0
13013 && imm_expr.X_add_number < 0x10000)
13014 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13015 else if (imm_expr.X_add_number > -0x8000
13016 && imm_expr.X_add_number < 0)
13017 {
13018 imm_expr.X_add_number = -imm_expr.X_add_number;
13019 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13020 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13021 }
13022 else if (CPU_HAS_SEQ (mips_opts.arch))
13023 {
13024 used_at = 1;
13025 load_register (AT, &imm_expr, GPR_SIZE == 64);
13026 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13027 break;
13028 }
13029 else
13030 {
13031 load_register (AT, &imm_expr, GPR_SIZE == 64);
13032 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13033 used_at = 1;
13034 }
13035 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13036 break;
13037
13038 case M_SGE: /* X >= Y <==> not (X < Y) */
13039 s = "slt";
13040 goto sge;
13041 case M_SGEU:
13042 s = "sltu";
13043 sge:
13044 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13045 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13046 break;
13047
13048 case M_SGE_I: /* X >= I <==> not (X < I) */
13049 case M_SGEU_I:
13050 if (imm_expr.X_add_number >= -0x8000
13051 && imm_expr.X_add_number < 0x8000)
13052 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13053 op[0], op[1], BFD_RELOC_LO16);
13054 else
13055 {
13056 load_register (AT, &imm_expr, GPR_SIZE == 64);
13057 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13058 op[0], op[1], AT);
13059 used_at = 1;
13060 }
13061 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13062 break;
13063
13064 case M_SGT: /* X > Y <==> Y < X */
13065 s = "slt";
13066 goto sgt;
13067 case M_SGTU:
13068 s = "sltu";
13069 sgt:
13070 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13071 break;
13072
13073 case M_SGT_I: /* X > I <==> I < X */
13074 s = "slt";
13075 goto sgti;
13076 case M_SGTU_I:
13077 s = "sltu";
13078 sgti:
13079 used_at = 1;
13080 load_register (AT, &imm_expr, GPR_SIZE == 64);
13081 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13082 break;
13083
13084 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13085 s = "slt";
13086 goto sle;
13087 case M_SLEU:
13088 s = "sltu";
13089 sle:
13090 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13091 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13092 break;
13093
13094 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13095 s = "slt";
13096 goto slei;
13097 case M_SLEU_I:
13098 s = "sltu";
13099 slei:
13100 used_at = 1;
13101 load_register (AT, &imm_expr, GPR_SIZE == 64);
13102 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13103 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13104 break;
13105
13106 case M_SLT_I:
13107 if (imm_expr.X_add_number >= -0x8000
13108 && imm_expr.X_add_number < 0x8000)
13109 {
13110 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13111 BFD_RELOC_LO16);
13112 break;
13113 }
13114 used_at = 1;
13115 load_register (AT, &imm_expr, GPR_SIZE == 64);
13116 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13117 break;
13118
13119 case M_SLTU_I:
13120 if (imm_expr.X_add_number >= -0x8000
13121 && imm_expr.X_add_number < 0x8000)
13122 {
13123 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13124 BFD_RELOC_LO16);
13125 break;
13126 }
13127 used_at = 1;
13128 load_register (AT, &imm_expr, GPR_SIZE == 64);
13129 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13130 break;
13131
13132 case M_SNE:
13133 if (op[1] == 0)
13134 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13135 else if (op[2] == 0)
13136 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13137 else
13138 {
13139 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13140 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13141 }
13142 break;
13143
13144 case M_SNE_I:
13145 if (imm_expr.X_add_number == 0)
13146 {
13147 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13148 break;
13149 }
13150 if (op[1] == 0)
13151 {
13152 as_warn (_("instruction %s: result is always true"),
13153 ip->insn_mo->name);
13154 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13155 op[0], 0, BFD_RELOC_LO16);
13156 break;
13157 }
13158 if (CPU_HAS_SEQ (mips_opts.arch)
13159 && -512 <= imm_expr.X_add_number
13160 && imm_expr.X_add_number < 512)
13161 {
13162 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13163 (int) imm_expr.X_add_number);
13164 break;
13165 }
13166 if (imm_expr.X_add_number >= 0
13167 && imm_expr.X_add_number < 0x10000)
13168 {
13169 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13170 BFD_RELOC_LO16);
13171 }
13172 else if (imm_expr.X_add_number > -0x8000
13173 && imm_expr.X_add_number < 0)
13174 {
13175 imm_expr.X_add_number = -imm_expr.X_add_number;
13176 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13177 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13178 }
13179 else if (CPU_HAS_SEQ (mips_opts.arch))
13180 {
13181 used_at = 1;
13182 load_register (AT, &imm_expr, GPR_SIZE == 64);
13183 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13184 break;
13185 }
13186 else
13187 {
13188 load_register (AT, &imm_expr, GPR_SIZE == 64);
13189 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13190 used_at = 1;
13191 }
13192 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13193 break;
13194
13195 case M_SUB_I:
13196 s = "addi";
13197 s2 = "sub";
13198 goto do_subi;
13199 case M_SUBU_I:
13200 s = "addiu";
13201 s2 = "subu";
13202 goto do_subi;
13203 case M_DSUB_I:
13204 dbl = 1;
13205 s = "daddi";
13206 s2 = "dsub";
13207 if (!mips_opts.micromips)
13208 goto do_subi;
13209 if (imm_expr.X_add_number > -0x200
13210 && imm_expr.X_add_number <= 0x200)
13211 {
13212 macro_build (NULL, s, "t,r,.", op[0], op[1],
13213 (int) -imm_expr.X_add_number);
13214 break;
13215 }
13216 goto do_subi_i;
13217 case M_DSUBU_I:
13218 dbl = 1;
13219 s = "daddiu";
13220 s2 = "dsubu";
13221 do_subi:
13222 if (imm_expr.X_add_number > -0x8000
13223 && imm_expr.X_add_number <= 0x8000)
13224 {
13225 imm_expr.X_add_number = -imm_expr.X_add_number;
13226 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13227 break;
13228 }
13229 do_subi_i:
13230 used_at = 1;
13231 load_register (AT, &imm_expr, dbl);
13232 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13233 break;
13234
13235 case M_TEQ_I:
13236 s = "teq";
13237 goto trap;
13238 case M_TGE_I:
13239 s = "tge";
13240 goto trap;
13241 case M_TGEU_I:
13242 s = "tgeu";
13243 goto trap;
13244 case M_TLT_I:
13245 s = "tlt";
13246 goto trap;
13247 case M_TLTU_I:
13248 s = "tltu";
13249 goto trap;
13250 case M_TNE_I:
13251 s = "tne";
13252 trap:
13253 used_at = 1;
13254 load_register (AT, &imm_expr, GPR_SIZE == 64);
13255 macro_build (NULL, s, "s,t", op[0], AT);
13256 break;
13257
13258 case M_TRUNCWS:
13259 case M_TRUNCWD:
13260 gas_assert (!mips_opts.micromips);
13261 gas_assert (mips_opts.isa == ISA_MIPS1);
13262 used_at = 1;
13263
13264 /*
13265 * Is the double cfc1 instruction a bug in the mips assembler;
13266 * or is there a reason for it?
13267 */
13268 start_noreorder ();
13269 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13270 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13271 macro_build (NULL, "nop", "");
13272 expr1.X_add_number = 3;
13273 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13274 expr1.X_add_number = 2;
13275 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13276 macro_build (NULL, "ctc1", "t,G", AT, RA);
13277 macro_build (NULL, "nop", "");
13278 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13279 op[0], op[1]);
13280 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13281 macro_build (NULL, "nop", "");
13282 end_noreorder ();
13283 break;
13284
13285 case M_ULH_AB:
13286 s = "lb";
13287 s2 = "lbu";
13288 off = 1;
13289 goto uld_st;
13290 case M_ULHU_AB:
13291 s = "lbu";
13292 s2 = "lbu";
13293 off = 1;
13294 goto uld_st;
13295 case M_ULW_AB:
13296 s = "lwl";
13297 s2 = "lwr";
13298 offbits = (mips_opts.micromips ? 12 : 16);
13299 off = 3;
13300 goto uld_st;
13301 case M_ULD_AB:
13302 s = "ldl";
13303 s2 = "ldr";
13304 offbits = (mips_opts.micromips ? 12 : 16);
13305 off = 7;
13306 goto uld_st;
13307 case M_USH_AB:
13308 s = "sb";
13309 s2 = "sb";
13310 off = 1;
13311 ust = 1;
13312 goto uld_st;
13313 case M_USW_AB:
13314 s = "swl";
13315 s2 = "swr";
13316 offbits = (mips_opts.micromips ? 12 : 16);
13317 off = 3;
13318 ust = 1;
13319 goto uld_st;
13320 case M_USD_AB:
13321 s = "sdl";
13322 s2 = "sdr";
13323 offbits = (mips_opts.micromips ? 12 : 16);
13324 off = 7;
13325 ust = 1;
13326
13327 uld_st:
13328 breg = op[2];
13329 large_offset = !small_offset_p (off, align, offbits);
13330 ep = &offset_expr;
13331 expr1.X_add_number = 0;
13332 if (large_offset)
13333 {
13334 used_at = 1;
13335 tempreg = AT;
13336 if (small_offset_p (0, align, 16))
13337 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13338 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13339 else
13340 {
13341 load_address (tempreg, ep, &used_at);
13342 if (breg != 0)
13343 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13344 tempreg, tempreg, breg);
13345 }
13346 offset_reloc[0] = BFD_RELOC_LO16;
13347 offset_reloc[1] = BFD_RELOC_UNUSED;
13348 offset_reloc[2] = BFD_RELOC_UNUSED;
13349 breg = tempreg;
13350 tempreg = op[0];
13351 ep = &expr1;
13352 }
13353 else if (!ust && op[0] == breg)
13354 {
13355 used_at = 1;
13356 tempreg = AT;
13357 }
13358 else
13359 tempreg = op[0];
13360
13361 if (off == 1)
13362 goto ulh_sh;
13363
13364 if (!target_big_endian)
13365 ep->X_add_number += off;
13366 if (offbits == 12)
13367 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13368 else
13369 macro_build (ep, s, "t,o(b)", tempreg, -1,
13370 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13371
13372 if (!target_big_endian)
13373 ep->X_add_number -= off;
13374 else
13375 ep->X_add_number += off;
13376 if (offbits == 12)
13377 macro_build (NULL, s2, "t,~(b)",
13378 tempreg, (int) ep->X_add_number, breg);
13379 else
13380 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13381 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13382
13383 /* If necessary, move the result in tempreg to the final destination. */
13384 if (!ust && op[0] != tempreg)
13385 {
13386 /* Protect second load's delay slot. */
13387 load_delay_nop ();
13388 move_register (op[0], tempreg);
13389 }
13390 break;
13391
13392 ulh_sh:
13393 used_at = 1;
13394 if (target_big_endian == ust)
13395 ep->X_add_number += off;
13396 tempreg = ust || large_offset ? op[0] : AT;
13397 macro_build (ep, s, "t,o(b)", tempreg, -1,
13398 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13399
13400 /* For halfword transfers we need a temporary register to shuffle
13401 bytes. Unfortunately for M_USH_A we have none available before
13402 the next store as AT holds the base address. We deal with this
13403 case by clobbering TREG and then restoring it as with ULH. */
13404 tempreg = ust == large_offset ? op[0] : AT;
13405 if (ust)
13406 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13407
13408 if (target_big_endian == ust)
13409 ep->X_add_number -= off;
13410 else
13411 ep->X_add_number += off;
13412 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13413 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13414
13415 /* For M_USH_A re-retrieve the LSB. */
13416 if (ust && large_offset)
13417 {
13418 if (target_big_endian)
13419 ep->X_add_number += off;
13420 else
13421 ep->X_add_number -= off;
13422 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13423 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13424 }
13425 /* For ULH and M_USH_A OR the LSB in. */
13426 if (!ust || large_offset)
13427 {
13428 tempreg = !large_offset ? AT : op[0];
13429 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13430 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13431 }
13432 break;
13433
13434 default:
13435 /* FIXME: Check if this is one of the itbl macros, since they
13436 are added dynamically. */
13437 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13438 break;
13439 }
13440 if (!mips_opts.at && used_at)
13441 as_bad (_("macro used $at after \".set noat\""));
13442}
13443
13444/* Implement macros in mips16 mode. */
13445
13446static void
13447mips16_macro (struct mips_cl_insn *ip)
13448{
13449 const struct mips_operand_array *operands;
13450 int mask;
13451 int tmp;
13452 expressionS expr1;
13453 int dbl;
13454 const char *s, *s2, *s3;
13455 unsigned int op[MAX_OPERANDS];
13456 unsigned int i;
13457
13458 mask = ip->insn_mo->mask;
13459
13460 operands = insn_operands (ip);
13461 for (i = 0; i < MAX_OPERANDS; i++)
13462 if (operands->operand[i])
13463 op[i] = insn_extract_operand (ip, operands->operand[i]);
13464 else
13465 op[i] = -1;
13466
13467 expr1.X_op = O_constant;
13468 expr1.X_op_symbol = NULL;
13469 expr1.X_add_symbol = NULL;
13470 expr1.X_add_number = 1;
13471
13472 dbl = 0;
13473
13474 switch (mask)
13475 {
13476 default:
13477 abort ();
13478
13479 case M_DDIV_3:
13480 dbl = 1;
13481 /* Fall through. */
13482 case M_DIV_3:
13483 s = "mflo";
13484 goto do_div3;
13485 case M_DREM_3:
13486 dbl = 1;
13487 /* Fall through. */
13488 case M_REM_3:
13489 s = "mfhi";
13490 do_div3:
13491 start_noreorder ();
13492 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13493 expr1.X_add_number = 2;
13494 macro_build (&expr1, "bnez", "x,p", op[2]);
13495 macro_build (NULL, "break", "6", 7);
13496
13497 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13498 since that causes an overflow. We should do that as well,
13499 but I don't see how to do the comparisons without a temporary
13500 register. */
13501 end_noreorder ();
13502 macro_build (NULL, s, "x", op[0]);
13503 break;
13504
13505 case M_DIVU_3:
13506 s = "divu";
13507 s2 = "mflo";
13508 goto do_divu3;
13509 case M_REMU_3:
13510 s = "divu";
13511 s2 = "mfhi";
13512 goto do_divu3;
13513 case M_DDIVU_3:
13514 s = "ddivu";
13515 s2 = "mflo";
13516 goto do_divu3;
13517 case M_DREMU_3:
13518 s = "ddivu";
13519 s2 = "mfhi";
13520 do_divu3:
13521 start_noreorder ();
13522 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13523 expr1.X_add_number = 2;
13524 macro_build (&expr1, "bnez", "x,p", op[2]);
13525 macro_build (NULL, "break", "6", 7);
13526 end_noreorder ();
13527 macro_build (NULL, s2, "x", op[0]);
13528 break;
13529
13530 case M_DMUL:
13531 dbl = 1;
13532 /* Fall through. */
13533 case M_MUL:
13534 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13535 macro_build (NULL, "mflo", "x", op[0]);
13536 break;
13537
13538 case M_DSUBU_I:
13539 dbl = 1;
13540 goto do_subu;
13541 case M_SUBU_I:
13542 do_subu:
13543 imm_expr.X_add_number = -imm_expr.X_add_number;
13544 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13545 break;
13546
13547 case M_SUBU_I_2:
13548 imm_expr.X_add_number = -imm_expr.X_add_number;
13549 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13550 break;
13551
13552 case M_DSUBU_I_2:
13553 imm_expr.X_add_number = -imm_expr.X_add_number;
13554 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13555 break;
13556
13557 case M_BEQ:
13558 s = "cmp";
13559 s2 = "bteqz";
13560 goto do_branch;
13561 case M_BNE:
13562 s = "cmp";
13563 s2 = "btnez";
13564 goto do_branch;
13565 case M_BLT:
13566 s = "slt";
13567 s2 = "btnez";
13568 goto do_branch;
13569 case M_BLTU:
13570 s = "sltu";
13571 s2 = "btnez";
13572 goto do_branch;
13573 case M_BLE:
13574 s = "slt";
13575 s2 = "bteqz";
13576 goto do_reverse_branch;
13577 case M_BLEU:
13578 s = "sltu";
13579 s2 = "bteqz";
13580 goto do_reverse_branch;
13581 case M_BGE:
13582 s = "slt";
13583 s2 = "bteqz";
13584 goto do_branch;
13585 case M_BGEU:
13586 s = "sltu";
13587 s2 = "bteqz";
13588 goto do_branch;
13589 case M_BGT:
13590 s = "slt";
13591 s2 = "btnez";
13592 goto do_reverse_branch;
13593 case M_BGTU:
13594 s = "sltu";
13595 s2 = "btnez";
13596
13597 do_reverse_branch:
13598 tmp = op[1];
13599 op[1] = op[0];
13600 op[0] = tmp;
13601
13602 do_branch:
13603 macro_build (NULL, s, "x,y", op[0], op[1]);
13604 macro_build (&offset_expr, s2, "p");
13605 break;
13606
13607 case M_BEQ_I:
13608 s = "cmpi";
13609 s2 = "bteqz";
13610 s3 = "x,U";
13611 goto do_branch_i;
13612 case M_BNE_I:
13613 s = "cmpi";
13614 s2 = "btnez";
13615 s3 = "x,U";
13616 goto do_branch_i;
13617 case M_BLT_I:
13618 s = "slti";
13619 s2 = "btnez";
13620 s3 = "x,8";
13621 goto do_branch_i;
13622 case M_BLTU_I:
13623 s = "sltiu";
13624 s2 = "btnez";
13625 s3 = "x,8";
13626 goto do_branch_i;
13627 case M_BLE_I:
13628 s = "slti";
13629 s2 = "btnez";
13630 s3 = "x,8";
13631 goto do_addone_branch_i;
13632 case M_BLEU_I:
13633 s = "sltiu";
13634 s2 = "btnez";
13635 s3 = "x,8";
13636 goto do_addone_branch_i;
13637 case M_BGE_I:
13638 s = "slti";
13639 s2 = "bteqz";
13640 s3 = "x,8";
13641 goto do_branch_i;
13642 case M_BGEU_I:
13643 s = "sltiu";
13644 s2 = "bteqz";
13645 s3 = "x,8";
13646 goto do_branch_i;
13647 case M_BGT_I:
13648 s = "slti";
13649 s2 = "bteqz";
13650 s3 = "x,8";
13651 goto do_addone_branch_i;
13652 case M_BGTU_I:
13653 s = "sltiu";
13654 s2 = "bteqz";
13655 s3 = "x,8";
13656
13657 do_addone_branch_i:
13658 ++imm_expr.X_add_number;
13659
13660 do_branch_i:
13661 macro_build (&imm_expr, s, s3, op[0]);
13662 macro_build (&offset_expr, s2, "p");
13663 break;
13664
13665 case M_ABS:
13666 expr1.X_add_number = 0;
13667 macro_build (&expr1, "slti", "x,8", op[1]);
13668 if (op[0] != op[1])
13669 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13670 expr1.X_add_number = 2;
13671 macro_build (&expr1, "bteqz", "p");
13672 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13673 break;
13674 }
13675}
13676
13677/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13678 opcode bits in *OPCODE_EXTRA. */
13679
13680static struct mips_opcode *
13681mips_lookup_insn (struct hash_control *hash, const char *start,
13682 ssize_t length, unsigned int *opcode_extra)
13683{
13684 char *name, *dot, *p;
13685 unsigned int mask, suffix;
13686 ssize_t opend;
13687 struct mips_opcode *insn;
13688
13689 /* Make a copy of the instruction so that we can fiddle with it. */
13690 name = xstrndup (start, length);
13691
13692 /* Look up the instruction as-is. */
13693 insn = (struct mips_opcode *) hash_find (hash, name);
13694 if (insn)
13695 goto end;
13696
13697 dot = strchr (name, '.');
13698 if (dot && dot[1])
13699 {
13700 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13701 p = mips_parse_vu0_channels (dot + 1, &mask);
13702 if (*p == 0 && mask != 0)
13703 {
13704 *dot = 0;
13705 insn = (struct mips_opcode *) hash_find (hash, name);
13706 *dot = '.';
13707 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13708 {
13709 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13710 goto end;
13711 }
13712 }
13713 }
13714
13715 if (mips_opts.micromips)
13716 {
13717 /* See if there's an instruction size override suffix,
13718 either `16' or `32', at the end of the mnemonic proper,
13719 that defines the operation, i.e. before the first `.'
13720 character if any. Strip it and retry. */
13721 opend = dot != NULL ? dot - name : length;
13722 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13723 suffix = 2;
13724 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13725 suffix = 4;
13726 else
13727 suffix = 0;
13728 if (suffix)
13729 {
13730 memcpy (name + opend - 2, name + opend, length - opend + 1);
13731 insn = (struct mips_opcode *) hash_find (hash, name);
13732 if (insn)
13733 {
13734 forced_insn_length = suffix;
13735 goto end;
13736 }
13737 }
13738 }
13739
13740 insn = NULL;
13741 end:
13742 free (name);
13743 return insn;
13744}
13745
13746/* Assemble an instruction into its binary format. If the instruction
13747 is a macro, set imm_expr and offset_expr to the values associated
13748 with "I" and "A" operands respectively. Otherwise store the value
13749 of the relocatable field (if any) in offset_expr. In both cases
13750 set offset_reloc to the relocation operators applied to offset_expr. */
13751
13752static void
13753mips_ip (char *str, struct mips_cl_insn *insn)
13754{
13755 const struct mips_opcode *first, *past;
13756 struct hash_control *hash;
13757 char format;
13758 size_t end;
13759 struct mips_operand_token *tokens;
13760 unsigned int opcode_extra;
13761
13762 if (mips_opts.micromips)
13763 {
13764 hash = micromips_op_hash;
13765 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13766 }
13767 else
13768 {
13769 hash = op_hash;
13770 past = &mips_opcodes[NUMOPCODES];
13771 }
13772 forced_insn_length = 0;
13773 opcode_extra = 0;
13774
13775 /* We first try to match an instruction up to a space or to the end. */
13776 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13777 continue;
13778
13779 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13780 if (first == NULL)
13781 {
13782 set_insn_error (0, _("unrecognized opcode"));
13783 return;
13784 }
13785
13786 if (strcmp (first->name, "li.s") == 0)
13787 format = 'f';
13788 else if (strcmp (first->name, "li.d") == 0)
13789 format = 'd';
13790 else
13791 format = 0;
13792 tokens = mips_parse_arguments (str + end, format);
13793 if (!tokens)
13794 return;
13795
13796 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13797 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13798 set_insn_error (0, _("invalid operands"));
13799
13800 obstack_free (&mips_operand_tokens, tokens);
13801}
13802
13803/* As for mips_ip, but used when assembling MIPS16 code.
13804 Also set forced_insn_length to the resulting instruction size in
13805 bytes if the user explicitly requested a small or extended instruction. */
13806
13807static void
13808mips16_ip (char *str, struct mips_cl_insn *insn)
13809{
13810 char *end, *s, c;
13811 struct mips_opcode *first;
13812 struct mips_operand_token *tokens;
13813
13814 forced_insn_length = 0;
13815
13816 for (s = str; ISLOWER (*s); ++s)
13817 ;
13818 end = s;
13819 c = *end;
13820 switch (c)
13821 {
13822 case '\0':
13823 break;
13824
13825 case ' ':
13826 s++;
13827 break;
13828
13829 case '.':
13830 if (s[1] == 't' && s[2] == ' ')
13831 {
13832 forced_insn_length = 2;
13833 s += 3;
13834 break;
13835 }
13836 else if (s[1] == 'e' && s[2] == ' ')
13837 {
13838 forced_insn_length = 4;
13839 s += 3;
13840 break;
13841 }
13842 /* Fall through. */
13843 default:
13844 set_insn_error (0, _("unrecognized opcode"));
13845 return;
13846 }
13847
13848 if (mips_opts.noautoextend && !forced_insn_length)
13849 forced_insn_length = 2;
13850
13851 *end = 0;
13852 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13853 *end = c;
13854
13855 if (!first)
13856 {
13857 set_insn_error (0, _("unrecognized opcode"));
13858 return;
13859 }
13860
13861 tokens = mips_parse_arguments (s, 0);
13862 if (!tokens)
13863 return;
13864
13865 if (!match_mips16_insns (insn, first, tokens))
13866 set_insn_error (0, _("invalid operands"));
13867
13868 obstack_free (&mips_operand_tokens, tokens);
13869}
13870
13871/* Marshal immediate value VAL for an extended MIPS16 instruction.
13872 NBITS is the number of significant bits in VAL. */
13873
13874static unsigned long
13875mips16_immed_extend (offsetT val, unsigned int nbits)
13876{
13877 int extval;
13878 if (nbits == 16)
13879 {
13880 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13881 val &= 0x1f;
13882 }
13883 else if (nbits == 15)
13884 {
13885 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13886 val &= 0xf;
13887 }
13888 else
13889 {
13890 extval = ((val & 0x1f) << 6) | (val & 0x20);
13891 val = 0;
13892 }
13893 return (extval << 16) | val;
13894}
13895
13896/* Like decode_mips16_operand, but require the operand to be defined and
13897 require it to be an integer. */
13898
13899static const struct mips_int_operand *
13900mips16_immed_operand (int type, bfd_boolean extended_p)
13901{
13902 const struct mips_operand *operand;
13903
13904 operand = decode_mips16_operand (type, extended_p);
13905 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13906 abort ();
13907 return (const struct mips_int_operand *) operand;
13908}
13909
13910/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13911
13912static bfd_boolean
13913mips16_immed_in_range_p (const struct mips_int_operand *operand,
13914 bfd_reloc_code_real_type reloc, offsetT sval)
13915{
13916 int min_val, max_val;
13917
13918 min_val = mips_int_operand_min (operand);
13919 max_val = mips_int_operand_max (operand);
13920 if (reloc != BFD_RELOC_UNUSED)
13921 {
13922 if (min_val < 0)
13923 sval = SEXT_16BIT (sval);
13924 else
13925 sval &= 0xffff;
13926 }
13927
13928 return (sval >= min_val
13929 && sval <= max_val
13930 && (sval & ((1 << operand->shift) - 1)) == 0);
13931}
13932
13933/* Install immediate value VAL into MIPS16 instruction *INSN,
13934 extending it if necessary. The instruction in *INSN may
13935 already be extended.
13936
13937 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13938 if none. In the former case, VAL is a 16-bit number with no
13939 defined signedness.
13940
13941 TYPE is the type of the immediate field. USER_INSN_LENGTH
13942 is the length that the user requested, or 0 if none. */
13943
13944static void
13945mips16_immed (const char *file, unsigned int line, int type,
13946 bfd_reloc_code_real_type reloc, offsetT val,
13947 unsigned int user_insn_length, unsigned long *insn)
13948{
13949 const struct mips_int_operand *operand;
13950 unsigned int uval, length;
13951
13952 operand = mips16_immed_operand (type, FALSE);
13953 if (!mips16_immed_in_range_p (operand, reloc, val))
13954 {
13955 /* We need an extended instruction. */
13956 if (user_insn_length == 2)
13957 as_bad_where (file, line, _("invalid unextended operand value"));
13958 else
13959 *insn |= MIPS16_EXTEND;
13960 }
13961 else if (user_insn_length == 4)
13962 {
13963 /* The operand doesn't force an unextended instruction to be extended.
13964 Warn if the user wanted an extended instruction anyway. */
13965 *insn |= MIPS16_EXTEND;
13966 as_warn_where (file, line,
13967 _("extended operand requested but not required"));
13968 }
13969
13970 length = mips16_opcode_length (*insn);
13971 if (length == 4)
13972 {
13973 operand = mips16_immed_operand (type, TRUE);
13974 if (!mips16_immed_in_range_p (operand, reloc, val))
13975 as_bad_where (file, line,
13976 _("operand value out of range for instruction"));
13977 }
13978 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13979 if (length == 2)
13980 *insn = mips_insert_operand (&operand->root, *insn, uval);
13981 else
13982 *insn |= mips16_immed_extend (uval, operand->root.size);
13983}
13984\f
13985struct percent_op_match
13986{
13987 const char *str;
13988 bfd_reloc_code_real_type reloc;
13989};
13990
13991static const struct percent_op_match mips_percent_op[] =
13992{
13993 {"%lo", BFD_RELOC_LO16},
13994 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13995 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13996 {"%call16", BFD_RELOC_MIPS_CALL16},
13997 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13998 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13999 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14000 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14001 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14002 {"%got", BFD_RELOC_MIPS_GOT16},
14003 {"%gp_rel", BFD_RELOC_GPREL16},
14004 {"%half", BFD_RELOC_16},
14005 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14006 {"%higher", BFD_RELOC_MIPS_HIGHER},
14007 {"%neg", BFD_RELOC_MIPS_SUB},
14008 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14009 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14010 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14011 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14012 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14013 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14014 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14015 {"%hi", BFD_RELOC_HI16_S},
14016 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14017 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14018};
14019
14020static const struct percent_op_match mips16_percent_op[] =
14021{
14022 {"%lo", BFD_RELOC_MIPS16_LO16},
14023 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14024 {"%got", BFD_RELOC_MIPS16_GOT16},
14025 {"%call16", BFD_RELOC_MIPS16_CALL16},
14026 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14027 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14028 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14029 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14030 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14031 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14032 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14033 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14034};
14035
14036
14037/* Return true if *STR points to a relocation operator. When returning true,
14038 move *STR over the operator and store its relocation code in *RELOC.
14039 Leave both *STR and *RELOC alone when returning false. */
14040
14041static bfd_boolean
14042parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14043{
14044 const struct percent_op_match *percent_op;
14045 size_t limit, i;
14046
14047 if (mips_opts.mips16)
14048 {
14049 percent_op = mips16_percent_op;
14050 limit = ARRAY_SIZE (mips16_percent_op);
14051 }
14052 else
14053 {
14054 percent_op = mips_percent_op;
14055 limit = ARRAY_SIZE (mips_percent_op);
14056 }
14057
14058 for (i = 0; i < limit; i++)
14059 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14060 {
14061 int len = strlen (percent_op[i].str);
14062
14063 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14064 continue;
14065
14066 *str += strlen (percent_op[i].str);
14067 *reloc = percent_op[i].reloc;
14068
14069 /* Check whether the output BFD supports this relocation.
14070 If not, issue an error and fall back on something safe. */
14071 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14072 {
14073 as_bad (_("relocation %s isn't supported by the current ABI"),
14074 percent_op[i].str);
14075 *reloc = BFD_RELOC_UNUSED;
14076 }
14077 return TRUE;
14078 }
14079 return FALSE;
14080}
14081
14082
14083/* Parse string STR as a 16-bit relocatable operand. Store the
14084 expression in *EP and the relocations in the array starting
14085 at RELOC. Return the number of relocation operators used.
14086
14087 On exit, EXPR_END points to the first character after the expression. */
14088
14089static size_t
14090my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14091 char *str)
14092{
14093 bfd_reloc_code_real_type reversed_reloc[3];
14094 size_t reloc_index, i;
14095 int crux_depth, str_depth;
14096 char *crux;
14097
14098 /* Search for the start of the main expression, recoding relocations
14099 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14100 of the main expression and with CRUX_DEPTH containing the number
14101 of open brackets at that point. */
14102 reloc_index = -1;
14103 str_depth = 0;
14104 do
14105 {
14106 reloc_index++;
14107 crux = str;
14108 crux_depth = str_depth;
14109
14110 /* Skip over whitespace and brackets, keeping count of the number
14111 of brackets. */
14112 while (*str == ' ' || *str == '\t' || *str == '(')
14113 if (*str++ == '(')
14114 str_depth++;
14115 }
14116 while (*str == '%'
14117 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14118 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14119
14120 my_getExpression (ep, crux);
14121 str = expr_end;
14122
14123 /* Match every open bracket. */
14124 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14125 if (*str++ == ')')
14126 crux_depth--;
14127
14128 if (crux_depth > 0)
14129 as_bad (_("unclosed '('"));
14130
14131 expr_end = str;
14132
14133 if (reloc_index != 0)
14134 {
14135 prev_reloc_op_frag = frag_now;
14136 for (i = 0; i < reloc_index; i++)
14137 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14138 }
14139
14140 return reloc_index;
14141}
14142
14143static void
14144my_getExpression (expressionS *ep, char *str)
14145{
14146 char *save_in;
14147
14148 save_in = input_line_pointer;
14149 input_line_pointer = str;
14150 expression (ep);
14151 expr_end = input_line_pointer;
14152 input_line_pointer = save_in;
14153}
14154
14155const char *
14156md_atof (int type, char *litP, int *sizeP)
14157{
14158 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14159}
14160
14161void
14162md_number_to_chars (char *buf, valueT val, int n)
14163{
14164 if (target_big_endian)
14165 number_to_chars_bigendian (buf, val, n);
14166 else
14167 number_to_chars_littleendian (buf, val, n);
14168}
14169\f
14170static int support_64bit_objects(void)
14171{
14172 const char **list, **l;
14173 int yes;
14174
14175 list = bfd_target_list ();
14176 for (l = list; *l != NULL; l++)
14177 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14178 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14179 break;
14180 yes = (*l != NULL);
14181 free (list);
14182 return yes;
14183}
14184
14185/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14186 NEW_VALUE. Warn if another value was already specified. Note:
14187 we have to defer parsing the -march and -mtune arguments in order
14188 to handle 'from-abi' correctly, since the ABI might be specified
14189 in a later argument. */
14190
14191static void
14192mips_set_option_string (const char **string_ptr, const char *new_value)
14193{
14194 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14195 as_warn (_("a different %s was already specified, is now %s"),
14196 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14197 new_value);
14198
14199 *string_ptr = new_value;
14200}
14201
14202int
14203md_parse_option (int c, const char *arg)
14204{
14205 unsigned int i;
14206
14207 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14208 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14209 {
14210 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14211 c == mips_ases[i].option_on);
14212 return 1;
14213 }
14214
14215 switch (c)
14216 {
14217 case OPTION_CONSTRUCT_FLOATS:
14218 mips_disable_float_construction = 0;
14219 break;
14220
14221 case OPTION_NO_CONSTRUCT_FLOATS:
14222 mips_disable_float_construction = 1;
14223 break;
14224
14225 case OPTION_TRAP:
14226 mips_trap = 1;
14227 break;
14228
14229 case OPTION_BREAK:
14230 mips_trap = 0;
14231 break;
14232
14233 case OPTION_EB:
14234 target_big_endian = 1;
14235 break;
14236
14237 case OPTION_EL:
14238 target_big_endian = 0;
14239 break;
14240
14241 case 'O':
14242 if (arg == NULL)
14243 mips_optimize = 1;
14244 else if (arg[0] == '0')
14245 mips_optimize = 0;
14246 else if (arg[0] == '1')
14247 mips_optimize = 1;
14248 else
14249 mips_optimize = 2;
14250 break;
14251
14252 case 'g':
14253 if (arg == NULL)
14254 mips_debug = 2;
14255 else
14256 mips_debug = atoi (arg);
14257 break;
14258
14259 case OPTION_MIPS1:
14260 file_mips_opts.isa = ISA_MIPS1;
14261 break;
14262
14263 case OPTION_MIPS2:
14264 file_mips_opts.isa = ISA_MIPS2;
14265 break;
14266
14267 case OPTION_MIPS3:
14268 file_mips_opts.isa = ISA_MIPS3;
14269 break;
14270
14271 case OPTION_MIPS4:
14272 file_mips_opts.isa = ISA_MIPS4;
14273 break;
14274
14275 case OPTION_MIPS5:
14276 file_mips_opts.isa = ISA_MIPS5;
14277 break;
14278
14279 case OPTION_MIPS32:
14280 file_mips_opts.isa = ISA_MIPS32;
14281 break;
14282
14283 case OPTION_MIPS32R2:
14284 file_mips_opts.isa = ISA_MIPS32R2;
14285 break;
14286
14287 case OPTION_MIPS32R3:
14288 file_mips_opts.isa = ISA_MIPS32R3;
14289 break;
14290
14291 case OPTION_MIPS32R5:
14292 file_mips_opts.isa = ISA_MIPS32R5;
14293 break;
14294
14295 case OPTION_MIPS32R6:
14296 file_mips_opts.isa = ISA_MIPS32R6;
14297 break;
14298
14299 case OPTION_MIPS64R2:
14300 file_mips_opts.isa = ISA_MIPS64R2;
14301 break;
14302
14303 case OPTION_MIPS64R3:
14304 file_mips_opts.isa = ISA_MIPS64R3;
14305 break;
14306
14307 case OPTION_MIPS64R5:
14308 file_mips_opts.isa = ISA_MIPS64R5;
14309 break;
14310
14311 case OPTION_MIPS64R6:
14312 file_mips_opts.isa = ISA_MIPS64R6;
14313 break;
14314
14315 case OPTION_MIPS64:
14316 file_mips_opts.isa = ISA_MIPS64;
14317 break;
14318
14319 case OPTION_MTUNE:
14320 mips_set_option_string (&mips_tune_string, arg);
14321 break;
14322
14323 case OPTION_MARCH:
14324 mips_set_option_string (&mips_arch_string, arg);
14325 break;
14326
14327 case OPTION_M4650:
14328 mips_set_option_string (&mips_arch_string, "4650");
14329 mips_set_option_string (&mips_tune_string, "4650");
14330 break;
14331
14332 case OPTION_NO_M4650:
14333 break;
14334
14335 case OPTION_M4010:
14336 mips_set_option_string (&mips_arch_string, "4010");
14337 mips_set_option_string (&mips_tune_string, "4010");
14338 break;
14339
14340 case OPTION_NO_M4010:
14341 break;
14342
14343 case OPTION_M4100:
14344 mips_set_option_string (&mips_arch_string, "4100");
14345 mips_set_option_string (&mips_tune_string, "4100");
14346 break;
14347
14348 case OPTION_NO_M4100:
14349 break;
14350
14351 case OPTION_M3900:
14352 mips_set_option_string (&mips_arch_string, "3900");
14353 mips_set_option_string (&mips_tune_string, "3900");
14354 break;
14355
14356 case OPTION_NO_M3900:
14357 break;
14358
14359 case OPTION_MICROMIPS:
14360 if (file_mips_opts.mips16 == 1)
14361 {
14362 as_bad (_("-mmicromips cannot be used with -mips16"));
14363 return 0;
14364 }
14365 file_mips_opts.micromips = 1;
14366 mips_no_prev_insn ();
14367 break;
14368
14369 case OPTION_NO_MICROMIPS:
14370 file_mips_opts.micromips = 0;
14371 mips_no_prev_insn ();
14372 break;
14373
14374 case OPTION_MIPS16:
14375 if (file_mips_opts.micromips == 1)
14376 {
14377 as_bad (_("-mips16 cannot be used with -micromips"));
14378 return 0;
14379 }
14380 file_mips_opts.mips16 = 1;
14381 mips_no_prev_insn ();
14382 break;
14383
14384 case OPTION_NO_MIPS16:
14385 file_mips_opts.mips16 = 0;
14386 mips_no_prev_insn ();
14387 break;
14388
14389 case OPTION_FIX_24K:
14390 mips_fix_24k = 1;
14391 break;
14392
14393 case OPTION_NO_FIX_24K:
14394 mips_fix_24k = 0;
14395 break;
14396
14397 case OPTION_FIX_RM7000:
14398 mips_fix_rm7000 = 1;
14399 break;
14400
14401 case OPTION_NO_FIX_RM7000:
14402 mips_fix_rm7000 = 0;
14403 break;
14404
14405 case OPTION_FIX_LOONGSON2F_JUMP:
14406 mips_fix_loongson2f_jump = TRUE;
14407 break;
14408
14409 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14410 mips_fix_loongson2f_jump = FALSE;
14411 break;
14412
14413 case OPTION_FIX_LOONGSON2F_NOP:
14414 mips_fix_loongson2f_nop = TRUE;
14415 break;
14416
14417 case OPTION_NO_FIX_LOONGSON2F_NOP:
14418 mips_fix_loongson2f_nop = FALSE;
14419 break;
14420
14421 case OPTION_FIX_VR4120:
14422 mips_fix_vr4120 = 1;
14423 break;
14424
14425 case OPTION_NO_FIX_VR4120:
14426 mips_fix_vr4120 = 0;
14427 break;
14428
14429 case OPTION_FIX_VR4130:
14430 mips_fix_vr4130 = 1;
14431 break;
14432
14433 case OPTION_NO_FIX_VR4130:
14434 mips_fix_vr4130 = 0;
14435 break;
14436
14437 case OPTION_FIX_CN63XXP1:
14438 mips_fix_cn63xxp1 = TRUE;
14439 break;
14440
14441 case OPTION_NO_FIX_CN63XXP1:
14442 mips_fix_cn63xxp1 = FALSE;
14443 break;
14444
14445 case OPTION_RELAX_BRANCH:
14446 mips_relax_branch = 1;
14447 break;
14448
14449 case OPTION_NO_RELAX_BRANCH:
14450 mips_relax_branch = 0;
14451 break;
14452
14453 case OPTION_INSN32:
14454 file_mips_opts.insn32 = TRUE;
14455 break;
14456
14457 case OPTION_NO_INSN32:
14458 file_mips_opts.insn32 = FALSE;
14459 break;
14460
14461 case OPTION_MSHARED:
14462 mips_in_shared = TRUE;
14463 break;
14464
14465 case OPTION_MNO_SHARED:
14466 mips_in_shared = FALSE;
14467 break;
14468
14469 case OPTION_MSYM32:
14470 file_mips_opts.sym32 = TRUE;
14471 break;
14472
14473 case OPTION_MNO_SYM32:
14474 file_mips_opts.sym32 = FALSE;
14475 break;
14476
14477 /* When generating ELF code, we permit -KPIC and -call_shared to
14478 select SVR4_PIC, and -non_shared to select no PIC. This is
14479 intended to be compatible with Irix 5. */
14480 case OPTION_CALL_SHARED:
14481 mips_pic = SVR4_PIC;
14482 mips_abicalls = TRUE;
14483 break;
14484
14485 case OPTION_CALL_NONPIC:
14486 mips_pic = NO_PIC;
14487 mips_abicalls = TRUE;
14488 break;
14489
14490 case OPTION_NON_SHARED:
14491 mips_pic = NO_PIC;
14492 mips_abicalls = FALSE;
14493 break;
14494
14495 /* The -xgot option tells the assembler to use 32 bit offsets
14496 when accessing the got in SVR4_PIC mode. It is for Irix
14497 compatibility. */
14498 case OPTION_XGOT:
14499 mips_big_got = 1;
14500 break;
14501
14502 case 'G':
14503 g_switch_value = atoi (arg);
14504 g_switch_seen = 1;
14505 break;
14506
14507 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14508 and -mabi=64. */
14509 case OPTION_32:
14510 mips_abi = O32_ABI;
14511 break;
14512
14513 case OPTION_N32:
14514 mips_abi = N32_ABI;
14515 break;
14516
14517 case OPTION_64:
14518 mips_abi = N64_ABI;
14519 if (!support_64bit_objects())
14520 as_fatal (_("no compiled in support for 64 bit object file format"));
14521 break;
14522
14523 case OPTION_GP32:
14524 file_mips_opts.gp = 32;
14525 break;
14526
14527 case OPTION_GP64:
14528 file_mips_opts.gp = 64;
14529 break;
14530
14531 case OPTION_FP32:
14532 file_mips_opts.fp = 32;
14533 break;
14534
14535 case OPTION_FPXX:
14536 file_mips_opts.fp = 0;
14537 break;
14538
14539 case OPTION_FP64:
14540 file_mips_opts.fp = 64;
14541 break;
14542
14543 case OPTION_ODD_SPREG:
14544 file_mips_opts.oddspreg = 1;
14545 break;
14546
14547 case OPTION_NO_ODD_SPREG:
14548 file_mips_opts.oddspreg = 0;
14549 break;
14550
14551 case OPTION_SINGLE_FLOAT:
14552 file_mips_opts.single_float = 1;
14553 break;
14554
14555 case OPTION_DOUBLE_FLOAT:
14556 file_mips_opts.single_float = 0;
14557 break;
14558
14559 case OPTION_SOFT_FLOAT:
14560 file_mips_opts.soft_float = 1;
14561 break;
14562
14563 case OPTION_HARD_FLOAT:
14564 file_mips_opts.soft_float = 0;
14565 break;
14566
14567 case OPTION_MABI:
14568 if (strcmp (arg, "32") == 0)
14569 mips_abi = O32_ABI;
14570 else if (strcmp (arg, "o64") == 0)
14571 mips_abi = O64_ABI;
14572 else if (strcmp (arg, "n32") == 0)
14573 mips_abi = N32_ABI;
14574 else if (strcmp (arg, "64") == 0)
14575 {
14576 mips_abi = N64_ABI;
14577 if (! support_64bit_objects())
14578 as_fatal (_("no compiled in support for 64 bit object file "
14579 "format"));
14580 }
14581 else if (strcmp (arg, "eabi") == 0)
14582 mips_abi = EABI_ABI;
14583 else
14584 {
14585 as_fatal (_("invalid abi -mabi=%s"), arg);
14586 return 0;
14587 }
14588 break;
14589
14590 case OPTION_M7000_HILO_FIX:
14591 mips_7000_hilo_fix = TRUE;
14592 break;
14593
14594 case OPTION_MNO_7000_HILO_FIX:
14595 mips_7000_hilo_fix = FALSE;
14596 break;
14597
14598 case OPTION_MDEBUG:
14599 mips_flag_mdebug = TRUE;
14600 break;
14601
14602 case OPTION_NO_MDEBUG:
14603 mips_flag_mdebug = FALSE;
14604 break;
14605
14606 case OPTION_PDR:
14607 mips_flag_pdr = TRUE;
14608 break;
14609
14610 case OPTION_NO_PDR:
14611 mips_flag_pdr = FALSE;
14612 break;
14613
14614 case OPTION_MVXWORKS_PIC:
14615 mips_pic = VXWORKS_PIC;
14616 break;
14617
14618 case OPTION_NAN:
14619 if (strcmp (arg, "2008") == 0)
14620 mips_nan2008 = 1;
14621 else if (strcmp (arg, "legacy") == 0)
14622 mips_nan2008 = 0;
14623 else
14624 {
14625 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14626 return 0;
14627 }
14628 break;
14629
14630 default:
14631 return 0;
14632 }
14633
14634 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14635
14636 return 1;
14637}
14638\f
14639/* Set up globals to tune for the ISA or processor described by INFO. */
14640
14641static void
14642mips_set_tune (const struct mips_cpu_info *info)
14643{
14644 if (info != 0)
14645 mips_tune = info->cpu;
14646}
14647
14648
14649void
14650mips_after_parse_args (void)
14651{
14652 const struct mips_cpu_info *arch_info = 0;
14653 const struct mips_cpu_info *tune_info = 0;
14654
14655 /* GP relative stuff not working for PE */
14656 if (strncmp (TARGET_OS, "pe", 2) == 0)
14657 {
14658 if (g_switch_seen && g_switch_value != 0)
14659 as_bad (_("-G not supported in this configuration"));
14660 g_switch_value = 0;
14661 }
14662
14663 if (mips_abi == NO_ABI)
14664 mips_abi = MIPS_DEFAULT_ABI;
14665
14666 /* The following code determines the architecture.
14667 Similar code was added to GCC 3.3 (see override_options() in
14668 config/mips/mips.c). The GAS and GCC code should be kept in sync
14669 as much as possible. */
14670
14671 if (mips_arch_string != 0)
14672 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14673
14674 if (file_mips_opts.isa != ISA_UNKNOWN)
14675 {
14676 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14677 ISA level specified by -mipsN, while arch_info->isa contains
14678 the -march selection (if any). */
14679 if (arch_info != 0)
14680 {
14681 /* -march takes precedence over -mipsN, since it is more descriptive.
14682 There's no harm in specifying both as long as the ISA levels
14683 are the same. */
14684 if (file_mips_opts.isa != arch_info->isa)
14685 as_bad (_("-%s conflicts with the other architecture options,"
14686 " which imply -%s"),
14687 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14688 mips_cpu_info_from_isa (arch_info->isa)->name);
14689 }
14690 else
14691 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14692 }
14693
14694 if (arch_info == 0)
14695 {
14696 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14697 gas_assert (arch_info);
14698 }
14699
14700 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14701 as_bad (_("-march=%s is not compatible with the selected ABI"),
14702 arch_info->name);
14703
14704 file_mips_opts.arch = arch_info->cpu;
14705 file_mips_opts.isa = arch_info->isa;
14706
14707 /* Set up initial mips_opts state. */
14708 mips_opts = file_mips_opts;
14709
14710 /* The register size inference code is now placed in
14711 file_mips_check_options. */
14712
14713 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14714 processor. */
14715 if (mips_tune_string != 0)
14716 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14717
14718 if (tune_info == 0)
14719 mips_set_tune (arch_info);
14720 else
14721 mips_set_tune (tune_info);
14722
14723 if (mips_flag_mdebug < 0)
14724 mips_flag_mdebug = 0;
14725}
14726\f
14727void
14728mips_init_after_args (void)
14729{
14730 /* initialize opcodes */
14731 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14732 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14733}
14734
14735long
14736md_pcrel_from (fixS *fixP)
14737{
14738 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14739 switch (fixP->fx_r_type)
14740 {
14741 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14742 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14743 /* Return the address of the delay slot. */
14744 return addr + 2;
14745
14746 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14747 case BFD_RELOC_MICROMIPS_JMP:
14748 case BFD_RELOC_MIPS16_16_PCREL_S1:
14749 case BFD_RELOC_16_PCREL_S2:
14750 case BFD_RELOC_MIPS_21_PCREL_S2:
14751 case BFD_RELOC_MIPS_26_PCREL_S2:
14752 case BFD_RELOC_MIPS_JMP:
14753 /* Return the address of the delay slot. */
14754 return addr + 4;
14755
14756 case BFD_RELOC_MIPS_18_PCREL_S3:
14757 /* Return the aligned address of the doubleword containing
14758 the instruction. */
14759 return addr & ~7;
14760
14761 default:
14762 return addr;
14763 }
14764}
14765
14766/* This is called before the symbol table is processed. In order to
14767 work with gcc when using mips-tfile, we must keep all local labels.
14768 However, in other cases, we want to discard them. If we were
14769 called with -g, but we didn't see any debugging information, it may
14770 mean that gcc is smuggling debugging information through to
14771 mips-tfile, in which case we must generate all local labels. */
14772
14773void
14774mips_frob_file_before_adjust (void)
14775{
14776#ifndef NO_ECOFF_DEBUGGING
14777 if (ECOFF_DEBUGGING
14778 && mips_debug != 0
14779 && ! ecoff_debugging_seen)
14780 flag_keep_locals = 1;
14781#endif
14782}
14783
14784/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14785 the corresponding LO16 reloc. This is called before md_apply_fix and
14786 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14787 relocation operators.
14788
14789 For our purposes, a %lo() expression matches a %got() or %hi()
14790 expression if:
14791
14792 (a) it refers to the same symbol; and
14793 (b) the offset applied in the %lo() expression is no lower than
14794 the offset applied in the %got() or %hi().
14795
14796 (b) allows us to cope with code like:
14797
14798 lui $4,%hi(foo)
14799 lh $4,%lo(foo+2)($4)
14800
14801 ...which is legal on RELA targets, and has a well-defined behaviour
14802 if the user knows that adding 2 to "foo" will not induce a carry to
14803 the high 16 bits.
14804
14805 When several %lo()s match a particular %got() or %hi(), we use the
14806 following rules to distinguish them:
14807
14808 (1) %lo()s with smaller offsets are a better match than %lo()s with
14809 higher offsets.
14810
14811 (2) %lo()s with no matching %got() or %hi() are better than those
14812 that already have a matching %got() or %hi().
14813
14814 (3) later %lo()s are better than earlier %lo()s.
14815
14816 These rules are applied in order.
14817
14818 (1) means, among other things, that %lo()s with identical offsets are
14819 chosen if they exist.
14820
14821 (2) means that we won't associate several high-part relocations with
14822 the same low-part relocation unless there's no alternative. Having
14823 several high parts for the same low part is a GNU extension; this rule
14824 allows careful users to avoid it.
14825
14826 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14827 with the last high-part relocation being at the front of the list.
14828 It therefore makes sense to choose the last matching low-part
14829 relocation, all other things being equal. It's also easier
14830 to code that way. */
14831
14832void
14833mips_frob_file (void)
14834{
14835 struct mips_hi_fixup *l;
14836 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14837
14838 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14839 {
14840 segment_info_type *seginfo;
14841 bfd_boolean matched_lo_p;
14842 fixS **hi_pos, **lo_pos, **pos;
14843
14844 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14845
14846 /* If a GOT16 relocation turns out to be against a global symbol,
14847 there isn't supposed to be a matching LO. Ignore %gots against
14848 constants; we'll report an error for those later. */
14849 if (got16_reloc_p (l->fixp->fx_r_type)
14850 && !(l->fixp->fx_addsy
14851 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14852 continue;
14853
14854 /* Check quickly whether the next fixup happens to be a matching %lo. */
14855 if (fixup_has_matching_lo_p (l->fixp))
14856 continue;
14857
14858 seginfo = seg_info (l->seg);
14859
14860 /* Set HI_POS to the position of this relocation in the chain.
14861 Set LO_POS to the position of the chosen low-part relocation.
14862 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14863 relocation that matches an immediately-preceding high-part
14864 relocation. */
14865 hi_pos = NULL;
14866 lo_pos = NULL;
14867 matched_lo_p = FALSE;
14868 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14869
14870 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14871 {
14872 if (*pos == l->fixp)
14873 hi_pos = pos;
14874
14875 if ((*pos)->fx_r_type == looking_for_rtype
14876 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14877 && (*pos)->fx_offset >= l->fixp->fx_offset
14878 && (lo_pos == NULL
14879 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14880 || (!matched_lo_p
14881 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14882 lo_pos = pos;
14883
14884 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14885 && fixup_has_matching_lo_p (*pos));
14886 }
14887
14888 /* If we found a match, remove the high-part relocation from its
14889 current position and insert it before the low-part relocation.
14890 Make the offsets match so that fixup_has_matching_lo_p()
14891 will return true.
14892
14893 We don't warn about unmatched high-part relocations since some
14894 versions of gcc have been known to emit dead "lui ...%hi(...)"
14895 instructions. */
14896 if (lo_pos != NULL)
14897 {
14898 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14899 if (l->fixp->fx_next != *lo_pos)
14900 {
14901 *hi_pos = l->fixp->fx_next;
14902 l->fixp->fx_next = *lo_pos;
14903 *lo_pos = l->fixp;
14904 }
14905 }
14906 }
14907}
14908
14909int
14910mips_force_relocation (fixS *fixp)
14911{
14912 if (generic_force_reloc (fixp))
14913 return 1;
14914
14915 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14916 so that the linker relaxation can update targets. */
14917 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14918 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14919 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14920 return 1;
14921
14922 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14923 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14924 microMIPS symbols so that we can do cross-mode branch diagnostics
14925 and BAL to JALX conversion by the linker. */
14926 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14927 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14928 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14929 && fixp->fx_addsy
14930 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14931 return 1;
14932
14933 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14934 if (ISA_IS_R6 (file_mips_opts.isa)
14935 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14936 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14937 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14938 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14939 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14940 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14941 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14942 return 1;
14943
14944 return 0;
14945}
14946
14947/* Implement TC_FORCE_RELOCATION_ABS. */
14948
14949bfd_boolean
14950mips_force_relocation_abs (fixS *fixp)
14951{
14952 if (generic_force_reloc (fixp))
14953 return TRUE;
14954
14955 /* These relocations do not have enough bits in the in-place addend
14956 to hold an arbitrary absolute section's offset. */
14957 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
14958 return TRUE;
14959
14960 return FALSE;
14961}
14962
14963/* Read the instruction associated with RELOC from BUF. */
14964
14965static unsigned int
14966read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14967{
14968 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14969 return read_compressed_insn (buf, 4);
14970 else
14971 return read_insn (buf);
14972}
14973
14974/* Write instruction INSN to BUF, given that it has been relocated
14975 by RELOC. */
14976
14977static void
14978write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14979 unsigned long insn)
14980{
14981 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14982 write_compressed_insn (buf, insn, 4);
14983 else
14984 write_insn (buf, insn);
14985}
14986
14987/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
14988 to a symbol in another ISA mode, which cannot be converted to JALX. */
14989
14990static bfd_boolean
14991fix_bad_cross_mode_jump_p (fixS *fixP)
14992{
14993 unsigned long opcode;
14994 int other;
14995 char *buf;
14996
14997 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
14998 return FALSE;
14999
15000 other = S_GET_OTHER (fixP->fx_addsy);
15001 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15002 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15003 switch (fixP->fx_r_type)
15004 {
15005 case BFD_RELOC_MIPS_JMP:
15006 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15007 case BFD_RELOC_MICROMIPS_JMP:
15008 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15009 default:
15010 return FALSE;
15011 }
15012}
15013
15014/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15015 jump to a symbol in the same ISA mode. */
15016
15017static bfd_boolean
15018fix_bad_same_mode_jalx_p (fixS *fixP)
15019{
15020 unsigned long opcode;
15021 int other;
15022 char *buf;
15023
15024 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15025 return FALSE;
15026
15027 other = S_GET_OTHER (fixP->fx_addsy);
15028 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15029 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15030 switch (fixP->fx_r_type)
15031 {
15032 case BFD_RELOC_MIPS_JMP:
15033 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15034 case BFD_RELOC_MIPS16_JMP:
15035 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15036 case BFD_RELOC_MICROMIPS_JMP:
15037 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15038 default:
15039 return FALSE;
15040 }
15041}
15042
15043/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15044 to a symbol whose value plus addend is not aligned according to the
15045 ultimate (after linker relaxation) jump instruction's immediate field
15046 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15047 regular MIPS code, to (1 << 2). */
15048
15049static bfd_boolean
15050fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15051{
15052 bfd_boolean micro_to_mips_p;
15053 valueT val;
15054 int other;
15055
15056 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15057 return FALSE;
15058
15059 other = S_GET_OTHER (fixP->fx_addsy);
15060 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15061 val += fixP->fx_offset;
15062 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15063 && !ELF_ST_IS_MICROMIPS (other));
15064 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15065 != ELF_ST_IS_COMPRESSED (other));
15066}
15067
15068/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15069 to a symbol whose annotation indicates another ISA mode. For absolute
15070 symbols check the ISA bit instead.
15071
15072 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15073 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15074 MIPS symbols and associated with BAL instructions as these instructions
15075 may be be converted to JALX by the linker. */
15076
15077static bfd_boolean
15078fix_bad_cross_mode_branch_p (fixS *fixP)
15079{
15080 bfd_boolean absolute_p;
15081 unsigned long opcode;
15082 asection *symsec;
15083 valueT val;
15084 int other;
15085 char *buf;
15086
15087 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15088 return FALSE;
15089
15090 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15091 absolute_p = bfd_is_abs_section (symsec);
15092
15093 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15094 other = S_GET_OTHER (fixP->fx_addsy);
15095
15096 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15097 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15098 switch (fixP->fx_r_type)
15099 {
15100 case BFD_RELOC_16_PCREL_S2:
15101 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15102 && opcode != 0x0411);
15103 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15104 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15105 && opcode != 0x4060);
15106 case BFD_RELOC_MIPS_21_PCREL_S2:
15107 case BFD_RELOC_MIPS_26_PCREL_S2:
15108 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15109 case BFD_RELOC_MIPS16_16_PCREL_S1:
15110 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15111 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15112 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15113 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15114 default:
15115 abort ();
15116 }
15117}
15118
15119/* Return TRUE if the symbol plus addend associated with a regular MIPS
15120 branch instruction pointed to by FIXP is not aligned according to the
15121 branch instruction's immediate field requirement. We need the addend
15122 to preserve the ISA bit and also the sum must not have bit 2 set. We
15123 must explicitly OR in the ISA bit from symbol annotation as the bit
15124 won't be set in the symbol's value then. */
15125
15126static bfd_boolean
15127fix_bad_misaligned_branch_p (fixS *fixP)
15128{
15129 bfd_boolean absolute_p;
15130 asection *symsec;
15131 valueT isa_bit;
15132 valueT val;
15133 valueT off;
15134 int other;
15135
15136 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15137 return FALSE;
15138
15139 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15140 absolute_p = bfd_is_abs_section (symsec);
15141
15142 val = S_GET_VALUE (fixP->fx_addsy);
15143 other = S_GET_OTHER (fixP->fx_addsy);
15144 off = fixP->fx_offset;
15145
15146 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15147 val |= ELF_ST_IS_COMPRESSED (other);
15148 val += off;
15149 return (val & 0x3) != isa_bit;
15150}
15151
15152/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15153 and its calculated value VAL. */
15154
15155static void
15156fix_validate_branch (fixS *fixP, valueT val)
15157{
15158 if (fixP->fx_done && (val & 0x3) != 0)
15159 as_bad_where (fixP->fx_file, fixP->fx_line,
15160 _("branch to misaligned address (0x%lx)"),
15161 (long) (val + md_pcrel_from (fixP)));
15162 else if (fix_bad_cross_mode_branch_p (fixP))
15163 as_bad_where (fixP->fx_file, fixP->fx_line,
15164 _("branch to a symbol in another ISA mode"));
15165 else if (fix_bad_misaligned_branch_p (fixP))
15166 as_bad_where (fixP->fx_file, fixP->fx_line,
15167 _("branch to misaligned address (0x%lx)"),
15168 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15169 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15170 as_bad_where (fixP->fx_file, fixP->fx_line,
15171 _("cannot encode misaligned addend "
15172 "in the relocatable field (0x%lx)"),
15173 (long) fixP->fx_offset);
15174}
15175
15176/* Apply a fixup to the object file. */
15177
15178void
15179md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15180{
15181 char *buf;
15182 unsigned long insn;
15183 reloc_howto_type *howto;
15184
15185 if (fixP->fx_pcrel)
15186 switch (fixP->fx_r_type)
15187 {
15188 case BFD_RELOC_16_PCREL_S2:
15189 case BFD_RELOC_MIPS16_16_PCREL_S1:
15190 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15191 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15192 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15193 case BFD_RELOC_32_PCREL:
15194 case BFD_RELOC_MIPS_21_PCREL_S2:
15195 case BFD_RELOC_MIPS_26_PCREL_S2:
15196 case BFD_RELOC_MIPS_18_PCREL_S3:
15197 case BFD_RELOC_MIPS_19_PCREL_S2:
15198 case BFD_RELOC_HI16_S_PCREL:
15199 case BFD_RELOC_LO16_PCREL:
15200 break;
15201
15202 case BFD_RELOC_32:
15203 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15204 break;
15205
15206 default:
15207 as_bad_where (fixP->fx_file, fixP->fx_line,
15208 _("PC-relative reference to a different section"));
15209 break;
15210 }
15211
15212 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15213 that have no MIPS ELF equivalent. */
15214 if (fixP->fx_r_type != BFD_RELOC_8)
15215 {
15216 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15217 if (!howto)
15218 return;
15219 }
15220
15221 gas_assert (fixP->fx_size == 2
15222 || fixP->fx_size == 4
15223 || fixP->fx_r_type == BFD_RELOC_8
15224 || fixP->fx_r_type == BFD_RELOC_16
15225 || fixP->fx_r_type == BFD_RELOC_64
15226 || fixP->fx_r_type == BFD_RELOC_CTOR
15227 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15228 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15229 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15230 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15231 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15232 || fixP->fx_r_type == BFD_RELOC_NONE);
15233
15234 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15235
15236 /* Don't treat parts of a composite relocation as done. There are two
15237 reasons for this:
15238
15239 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15240 should nevertheless be emitted if the first part is.
15241
15242 (2) In normal usage, composite relocations are never assembly-time
15243 constants. The easiest way of dealing with the pathological
15244 exceptions is to generate a relocation against STN_UNDEF and
15245 leave everything up to the linker. */
15246 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15247 fixP->fx_done = 1;
15248
15249 switch (fixP->fx_r_type)
15250 {
15251 case BFD_RELOC_MIPS_TLS_GD:
15252 case BFD_RELOC_MIPS_TLS_LDM:
15253 case BFD_RELOC_MIPS_TLS_DTPREL32:
15254 case BFD_RELOC_MIPS_TLS_DTPREL64:
15255 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15256 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15257 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15258 case BFD_RELOC_MIPS_TLS_TPREL32:
15259 case BFD_RELOC_MIPS_TLS_TPREL64:
15260 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15261 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15262 case BFD_RELOC_MICROMIPS_TLS_GD:
15263 case BFD_RELOC_MICROMIPS_TLS_LDM:
15264 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15265 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15266 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15267 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15268 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15269 case BFD_RELOC_MIPS16_TLS_GD:
15270 case BFD_RELOC_MIPS16_TLS_LDM:
15271 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15272 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15273 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15274 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15275 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15276 if (fixP->fx_addsy)
15277 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15278 else
15279 as_bad_where (fixP->fx_file, fixP->fx_line,
15280 _("TLS relocation against a constant"));
15281 break;
15282
15283 case BFD_RELOC_MIPS_JMP:
15284 case BFD_RELOC_MIPS16_JMP:
15285 case BFD_RELOC_MICROMIPS_JMP:
15286 {
15287 int shift;
15288
15289 gas_assert (!fixP->fx_done);
15290
15291 /* Shift is 2, unusually, for microMIPS JALX. */
15292 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15293 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15294 shift = 1;
15295 else
15296 shift = 2;
15297
15298 if (fix_bad_cross_mode_jump_p (fixP))
15299 as_bad_where (fixP->fx_file, fixP->fx_line,
15300 _("jump to a symbol in another ISA mode"));
15301 else if (fix_bad_same_mode_jalx_p (fixP))
15302 as_bad_where (fixP->fx_file, fixP->fx_line,
15303 _("JALX to a symbol in the same ISA mode"));
15304 else if (fix_bad_misaligned_jump_p (fixP, shift))
15305 as_bad_where (fixP->fx_file, fixP->fx_line,
15306 _("jump to misaligned address (0x%lx)"),
15307 (long) (S_GET_VALUE (fixP->fx_addsy)
15308 + fixP->fx_offset));
15309 else if (HAVE_IN_PLACE_ADDENDS
15310 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15311 as_bad_where (fixP->fx_file, fixP->fx_line,
15312 _("cannot encode misaligned addend "
15313 "in the relocatable field (0x%lx)"),
15314 (long) fixP->fx_offset);
15315 }
15316 /* Fall through. */
15317
15318 case BFD_RELOC_MIPS_SHIFT5:
15319 case BFD_RELOC_MIPS_SHIFT6:
15320 case BFD_RELOC_MIPS_GOT_DISP:
15321 case BFD_RELOC_MIPS_GOT_PAGE:
15322 case BFD_RELOC_MIPS_GOT_OFST:
15323 case BFD_RELOC_MIPS_SUB:
15324 case BFD_RELOC_MIPS_INSERT_A:
15325 case BFD_RELOC_MIPS_INSERT_B:
15326 case BFD_RELOC_MIPS_DELETE:
15327 case BFD_RELOC_MIPS_HIGHEST:
15328 case BFD_RELOC_MIPS_HIGHER:
15329 case BFD_RELOC_MIPS_SCN_DISP:
15330 case BFD_RELOC_MIPS_REL16:
15331 case BFD_RELOC_MIPS_RELGOT:
15332 case BFD_RELOC_MIPS_JALR:
15333 case BFD_RELOC_HI16:
15334 case BFD_RELOC_HI16_S:
15335 case BFD_RELOC_LO16:
15336 case BFD_RELOC_GPREL16:
15337 case BFD_RELOC_MIPS_LITERAL:
15338 case BFD_RELOC_MIPS_CALL16:
15339 case BFD_RELOC_MIPS_GOT16:
15340 case BFD_RELOC_GPREL32:
15341 case BFD_RELOC_MIPS_GOT_HI16:
15342 case BFD_RELOC_MIPS_GOT_LO16:
15343 case BFD_RELOC_MIPS_CALL_HI16:
15344 case BFD_RELOC_MIPS_CALL_LO16:
15345 case BFD_RELOC_HI16_S_PCREL:
15346 case BFD_RELOC_LO16_PCREL:
15347 case BFD_RELOC_MIPS16_GPREL:
15348 case BFD_RELOC_MIPS16_GOT16:
15349 case BFD_RELOC_MIPS16_CALL16:
15350 case BFD_RELOC_MIPS16_HI16:
15351 case BFD_RELOC_MIPS16_HI16_S:
15352 case BFD_RELOC_MIPS16_LO16:
15353 case BFD_RELOC_MICROMIPS_GOT_DISP:
15354 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15355 case BFD_RELOC_MICROMIPS_GOT_OFST:
15356 case BFD_RELOC_MICROMIPS_SUB:
15357 case BFD_RELOC_MICROMIPS_HIGHEST:
15358 case BFD_RELOC_MICROMIPS_HIGHER:
15359 case BFD_RELOC_MICROMIPS_SCN_DISP:
15360 case BFD_RELOC_MICROMIPS_JALR:
15361 case BFD_RELOC_MICROMIPS_HI16:
15362 case BFD_RELOC_MICROMIPS_HI16_S:
15363 case BFD_RELOC_MICROMIPS_LO16:
15364 case BFD_RELOC_MICROMIPS_GPREL16:
15365 case BFD_RELOC_MICROMIPS_LITERAL:
15366 case BFD_RELOC_MICROMIPS_CALL16:
15367 case BFD_RELOC_MICROMIPS_GOT16:
15368 case BFD_RELOC_MICROMIPS_GOT_HI16:
15369 case BFD_RELOC_MICROMIPS_GOT_LO16:
15370 case BFD_RELOC_MICROMIPS_CALL_HI16:
15371 case BFD_RELOC_MICROMIPS_CALL_LO16:
15372 case BFD_RELOC_MIPS_EH:
15373 if (fixP->fx_done)
15374 {
15375 offsetT value;
15376
15377 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15378 {
15379 insn = read_reloc_insn (buf, fixP->fx_r_type);
15380 if (mips16_reloc_p (fixP->fx_r_type))
15381 insn |= mips16_immed_extend (value, 16);
15382 else
15383 insn |= (value & 0xffff);
15384 write_reloc_insn (buf, fixP->fx_r_type, insn);
15385 }
15386 else
15387 as_bad_where (fixP->fx_file, fixP->fx_line,
15388 _("unsupported constant in relocation"));
15389 }
15390 break;
15391
15392 case BFD_RELOC_64:
15393 /* This is handled like BFD_RELOC_32, but we output a sign
15394 extended value if we are only 32 bits. */
15395 if (fixP->fx_done)
15396 {
15397 if (8 <= sizeof (valueT))
15398 md_number_to_chars (buf, *valP, 8);
15399 else
15400 {
15401 valueT hiv;
15402
15403 if ((*valP & 0x80000000) != 0)
15404 hiv = 0xffffffff;
15405 else
15406 hiv = 0;
15407 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15408 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15409 }
15410 }
15411 break;
15412
15413 case BFD_RELOC_RVA:
15414 case BFD_RELOC_32:
15415 case BFD_RELOC_32_PCREL:
15416 case BFD_RELOC_16:
15417 case BFD_RELOC_8:
15418 /* If we are deleting this reloc entry, we must fill in the
15419 value now. This can happen if we have a .word which is not
15420 resolved when it appears but is later defined. */
15421 if (fixP->fx_done)
15422 md_number_to_chars (buf, *valP, fixP->fx_size);
15423 break;
15424
15425 case BFD_RELOC_MIPS_21_PCREL_S2:
15426 fix_validate_branch (fixP, *valP);
15427 if (!fixP->fx_done)
15428 break;
15429
15430 if (*valP + 0x400000 <= 0x7fffff)
15431 {
15432 insn = read_insn (buf);
15433 insn |= (*valP >> 2) & 0x1fffff;
15434 write_insn (buf, insn);
15435 }
15436 else
15437 as_bad_where (fixP->fx_file, fixP->fx_line,
15438 _("branch out of range"));
15439 break;
15440
15441 case BFD_RELOC_MIPS_26_PCREL_S2:
15442 fix_validate_branch (fixP, *valP);
15443 if (!fixP->fx_done)
15444 break;
15445
15446 if (*valP + 0x8000000 <= 0xfffffff)
15447 {
15448 insn = read_insn (buf);
15449 insn |= (*valP >> 2) & 0x3ffffff;
15450 write_insn (buf, insn);
15451 }
15452 else
15453 as_bad_where (fixP->fx_file, fixP->fx_line,
15454 _("branch out of range"));
15455 break;
15456
15457 case BFD_RELOC_MIPS_18_PCREL_S3:
15458 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15459 as_bad_where (fixP->fx_file, fixP->fx_line,
15460 _("PC-relative access using misaligned symbol (%lx)"),
15461 (long) S_GET_VALUE (fixP->fx_addsy));
15462 if ((fixP->fx_offset & 0x7) != 0)
15463 as_bad_where (fixP->fx_file, fixP->fx_line,
15464 _("PC-relative access using misaligned offset (%lx)"),
15465 (long) fixP->fx_offset);
15466 if (!fixP->fx_done)
15467 break;
15468
15469 if (*valP + 0x100000 <= 0x1fffff)
15470 {
15471 insn = read_insn (buf);
15472 insn |= (*valP >> 3) & 0x3ffff;
15473 write_insn (buf, insn);
15474 }
15475 else
15476 as_bad_where (fixP->fx_file, fixP->fx_line,
15477 _("PC-relative access out of range"));
15478 break;
15479
15480 case BFD_RELOC_MIPS_19_PCREL_S2:
15481 if ((*valP & 0x3) != 0)
15482 as_bad_where (fixP->fx_file, fixP->fx_line,
15483 _("PC-relative access to misaligned address (%lx)"),
15484 (long) *valP);
15485 if (!fixP->fx_done)
15486 break;
15487
15488 if (*valP + 0x100000 <= 0x1fffff)
15489 {
15490 insn = read_insn (buf);
15491 insn |= (*valP >> 2) & 0x7ffff;
15492 write_insn (buf, insn);
15493 }
15494 else
15495 as_bad_where (fixP->fx_file, fixP->fx_line,
15496 _("PC-relative access out of range"));
15497 break;
15498
15499 case BFD_RELOC_16_PCREL_S2:
15500 fix_validate_branch (fixP, *valP);
15501
15502 /* We need to save the bits in the instruction since fixup_segment()
15503 might be deleting the relocation entry (i.e., a branch within
15504 the current segment). */
15505 if (! fixP->fx_done)
15506 break;
15507
15508 /* Update old instruction data. */
15509 insn = read_insn (buf);
15510
15511 if (*valP + 0x20000 <= 0x3ffff)
15512 {
15513 insn |= (*valP >> 2) & 0xffff;
15514 write_insn (buf, insn);
15515 }
15516 else if (mips_pic == NO_PIC
15517 && fixP->fx_done
15518 && fixP->fx_frag->fr_address >= text_section->vma
15519 && (fixP->fx_frag->fr_address
15520 < text_section->vma + bfd_get_section_size (text_section))
15521 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15522 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15523 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15524 {
15525 /* The branch offset is too large. If this is an
15526 unconditional branch, and we are not generating PIC code,
15527 we can convert it to an absolute jump instruction. */
15528 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15529 insn = 0x0c000000; /* jal */
15530 else
15531 insn = 0x08000000; /* j */
15532 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15533 fixP->fx_done = 0;
15534 fixP->fx_addsy = section_symbol (text_section);
15535 *valP += md_pcrel_from (fixP);
15536 write_insn (buf, insn);
15537 }
15538 else
15539 {
15540 /* If we got here, we have branch-relaxation disabled,
15541 and there's nothing we can do to fix this instruction
15542 without turning it into a longer sequence. */
15543 as_bad_where (fixP->fx_file, fixP->fx_line,
15544 _("branch out of range"));
15545 }
15546 break;
15547
15548 case BFD_RELOC_MIPS16_16_PCREL_S1:
15549 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15550 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15551 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15552 gas_assert (!fixP->fx_done);
15553 if (fix_bad_cross_mode_branch_p (fixP))
15554 as_bad_where (fixP->fx_file, fixP->fx_line,
15555 _("branch to a symbol in another ISA mode"));
15556 else if (fixP->fx_addsy
15557 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15558 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15559 && (fixP->fx_offset & 0x1) != 0)
15560 as_bad_where (fixP->fx_file, fixP->fx_line,
15561 _("branch to misaligned address (0x%lx)"),
15562 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15563 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15564 as_bad_where (fixP->fx_file, fixP->fx_line,
15565 _("cannot encode misaligned addend "
15566 "in the relocatable field (0x%lx)"),
15567 (long) fixP->fx_offset);
15568 break;
15569
15570 case BFD_RELOC_VTABLE_INHERIT:
15571 fixP->fx_done = 0;
15572 if (fixP->fx_addsy
15573 && !S_IS_DEFINED (fixP->fx_addsy)
15574 && !S_IS_WEAK (fixP->fx_addsy))
15575 S_SET_WEAK (fixP->fx_addsy);
15576 break;
15577
15578 case BFD_RELOC_NONE:
15579 case BFD_RELOC_VTABLE_ENTRY:
15580 fixP->fx_done = 0;
15581 break;
15582
15583 default:
15584 abort ();
15585 }
15586
15587 /* Remember value for tc_gen_reloc. */
15588 fixP->fx_addnumber = *valP;
15589}
15590
15591static symbolS *
15592get_symbol (void)
15593{
15594 int c;
15595 char *name;
15596 symbolS *p;
15597
15598 c = get_symbol_name (&name);
15599 p = (symbolS *) symbol_find_or_make (name);
15600 (void) restore_line_pointer (c);
15601 return p;
15602}
15603
15604/* Align the current frag to a given power of two. If a particular
15605 fill byte should be used, FILL points to an integer that contains
15606 that byte, otherwise FILL is null.
15607
15608 This function used to have the comment:
15609
15610 The MIPS assembler also automatically adjusts any preceding label.
15611
15612 The implementation therefore applied the adjustment to a maximum of
15613 one label. However, other label adjustments are applied to batches
15614 of labels, and adjusting just one caused problems when new labels
15615 were added for the sake of debugging or unwind information.
15616 We therefore adjust all preceding labels (given as LABELS) instead. */
15617
15618static void
15619mips_align (int to, int *fill, struct insn_label_list *labels)
15620{
15621 mips_emit_delays ();
15622 mips_record_compressed_mode ();
15623 if (fill == NULL && subseg_text_p (now_seg))
15624 frag_align_code (to, 0);
15625 else
15626 frag_align (to, fill ? *fill : 0, 0);
15627 record_alignment (now_seg, to);
15628 mips_move_labels (labels, FALSE);
15629}
15630
15631/* Align to a given power of two. .align 0 turns off the automatic
15632 alignment used by the data creating pseudo-ops. */
15633
15634static void
15635s_align (int x ATTRIBUTE_UNUSED)
15636{
15637 int temp, fill_value, *fill_ptr;
15638 long max_alignment = 28;
15639
15640 /* o Note that the assembler pulls down any immediately preceding label
15641 to the aligned address.
15642 o It's not documented but auto alignment is reinstated by
15643 a .align pseudo instruction.
15644 o Note also that after auto alignment is turned off the mips assembler
15645 issues an error on attempt to assemble an improperly aligned data item.
15646 We don't. */
15647
15648 temp = get_absolute_expression ();
15649 if (temp > max_alignment)
15650 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15651 else if (temp < 0)
15652 {
15653 as_warn (_("alignment negative, 0 assumed"));
15654 temp = 0;
15655 }
15656 if (*input_line_pointer == ',')
15657 {
15658 ++input_line_pointer;
15659 fill_value = get_absolute_expression ();
15660 fill_ptr = &fill_value;
15661 }
15662 else
15663 fill_ptr = 0;
15664 if (temp)
15665 {
15666 segment_info_type *si = seg_info (now_seg);
15667 struct insn_label_list *l = si->label_list;
15668 /* Auto alignment should be switched on by next section change. */
15669 auto_align = 1;
15670 mips_align (temp, fill_ptr, l);
15671 }
15672 else
15673 {
15674 auto_align = 0;
15675 }
15676
15677 demand_empty_rest_of_line ();
15678}
15679
15680static void
15681s_change_sec (int sec)
15682{
15683 segT seg;
15684
15685 /* The ELF backend needs to know that we are changing sections, so
15686 that .previous works correctly. We could do something like check
15687 for an obj_section_change_hook macro, but that might be confusing
15688 as it would not be appropriate to use it in the section changing
15689 functions in read.c, since obj-elf.c intercepts those. FIXME:
15690 This should be cleaner, somehow. */
15691 obj_elf_section_change_hook ();
15692
15693 mips_emit_delays ();
15694
15695 switch (sec)
15696 {
15697 case 't':
15698 s_text (0);
15699 break;
15700 case 'd':
15701 s_data (0);
15702 break;
15703 case 'b':
15704 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15705 demand_empty_rest_of_line ();
15706 break;
15707
15708 case 'r':
15709 seg = subseg_new (RDATA_SECTION_NAME,
15710 (subsegT) get_absolute_expression ());
15711 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15712 | SEC_READONLY | SEC_RELOC
15713 | SEC_DATA));
15714 if (strncmp (TARGET_OS, "elf", 3) != 0)
15715 record_alignment (seg, 4);
15716 demand_empty_rest_of_line ();
15717 break;
15718
15719 case 's':
15720 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15721 bfd_set_section_flags (stdoutput, seg,
15722 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15723 if (strncmp (TARGET_OS, "elf", 3) != 0)
15724 record_alignment (seg, 4);
15725 demand_empty_rest_of_line ();
15726 break;
15727
15728 case 'B':
15729 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15730 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15731 if (strncmp (TARGET_OS, "elf", 3) != 0)
15732 record_alignment (seg, 4);
15733 demand_empty_rest_of_line ();
15734 break;
15735 }
15736
15737 auto_align = 1;
15738}
15739
15740void
15741s_change_section (int ignore ATTRIBUTE_UNUSED)
15742{
15743 char *saved_ilp;
15744 char *section_name;
15745 char c, endc;
15746 char next_c = 0;
15747 int section_type;
15748 int section_flag;
15749 int section_entry_size;
15750 int section_alignment;
15751
15752 saved_ilp = input_line_pointer;
15753 endc = get_symbol_name (&section_name);
15754 c = (endc == '"' ? input_line_pointer[1] : endc);
15755 if (c)
15756 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15757
15758 /* Do we have .section Name<,"flags">? */
15759 if (c != ',' || (c == ',' && next_c == '"'))
15760 {
15761 /* Just after name is now '\0'. */
15762 (void) restore_line_pointer (endc);
15763 input_line_pointer = saved_ilp;
15764 obj_elf_section (ignore);
15765 return;
15766 }
15767
15768 section_name = xstrdup (section_name);
15769 c = restore_line_pointer (endc);
15770
15771 input_line_pointer++;
15772
15773 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15774 if (c == ',')
15775 section_type = get_absolute_expression ();
15776 else
15777 section_type = 0;
15778
15779 if (*input_line_pointer++ == ',')
15780 section_flag = get_absolute_expression ();
15781 else
15782 section_flag = 0;
15783
15784 if (*input_line_pointer++ == ',')
15785 section_entry_size = get_absolute_expression ();
15786 else
15787 section_entry_size = 0;
15788
15789 if (*input_line_pointer++ == ',')
15790 section_alignment = get_absolute_expression ();
15791 else
15792 section_alignment = 0;
15793
15794 /* FIXME: really ignore? */
15795 (void) section_alignment;
15796
15797 /* When using the generic form of .section (as implemented by obj-elf.c),
15798 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15799 traditionally had to fall back on the more common @progbits instead.
15800
15801 There's nothing really harmful in this, since bfd will correct
15802 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15803 means that, for backwards compatibility, the special_section entries
15804 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15805
15806 Even so, we shouldn't force users of the MIPS .section syntax to
15807 incorrectly label the sections as SHT_PROGBITS. The best compromise
15808 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15809 generic type-checking code. */
15810 if (section_type == SHT_MIPS_DWARF)
15811 section_type = SHT_PROGBITS;
15812
15813 obj_elf_change_section (section_name, section_type, section_flag,
15814 section_entry_size, 0, 0, 0);
15815
15816 if (now_seg->name != section_name)
15817 free (section_name);
15818}
15819
15820void
15821mips_enable_auto_align (void)
15822{
15823 auto_align = 1;
15824}
15825
15826static void
15827s_cons (int log_size)
15828{
15829 segment_info_type *si = seg_info (now_seg);
15830 struct insn_label_list *l = si->label_list;
15831
15832 mips_emit_delays ();
15833 if (log_size > 0 && auto_align)
15834 mips_align (log_size, 0, l);
15835 cons (1 << log_size);
15836 mips_clear_insn_labels ();
15837}
15838
15839static void
15840s_float_cons (int type)
15841{
15842 segment_info_type *si = seg_info (now_seg);
15843 struct insn_label_list *l = si->label_list;
15844
15845 mips_emit_delays ();
15846
15847 if (auto_align)
15848 {
15849 if (type == 'd')
15850 mips_align (3, 0, l);
15851 else
15852 mips_align (2, 0, l);
15853 }
15854
15855 float_cons (type);
15856 mips_clear_insn_labels ();
15857}
15858
15859/* Handle .globl. We need to override it because on Irix 5 you are
15860 permitted to say
15861 .globl foo .text
15862 where foo is an undefined symbol, to mean that foo should be
15863 considered to be the address of a function. */
15864
15865static void
15866s_mips_globl (int x ATTRIBUTE_UNUSED)
15867{
15868 char *name;
15869 int c;
15870 symbolS *symbolP;
15871 flagword flag;
15872
15873 do
15874 {
15875 c = get_symbol_name (&name);
15876 symbolP = symbol_find_or_make (name);
15877 S_SET_EXTERNAL (symbolP);
15878
15879 *input_line_pointer = c;
15880 SKIP_WHITESPACE_AFTER_NAME ();
15881
15882 /* On Irix 5, every global symbol that is not explicitly labelled as
15883 being a function is apparently labelled as being an object. */
15884 flag = BSF_OBJECT;
15885
15886 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15887 && (*input_line_pointer != ','))
15888 {
15889 char *secname;
15890 asection *sec;
15891
15892 c = get_symbol_name (&secname);
15893 sec = bfd_get_section_by_name (stdoutput, secname);
15894 if (sec == NULL)
15895 as_bad (_("%s: no such section"), secname);
15896 (void) restore_line_pointer (c);
15897
15898 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15899 flag = BSF_FUNCTION;
15900 }
15901
15902 symbol_get_bfdsym (symbolP)->flags |= flag;
15903
15904 c = *input_line_pointer;
15905 if (c == ',')
15906 {
15907 input_line_pointer++;
15908 SKIP_WHITESPACE ();
15909 if (is_end_of_line[(unsigned char) *input_line_pointer])
15910 c = '\n';
15911 }
15912 }
15913 while (c == ',');
15914
15915 demand_empty_rest_of_line ();
15916}
15917
15918static void
15919s_option (int x ATTRIBUTE_UNUSED)
15920{
15921 char *opt;
15922 char c;
15923
15924 c = get_symbol_name (&opt);
15925
15926 if (*opt == 'O')
15927 {
15928 /* FIXME: What does this mean? */
15929 }
15930 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15931 {
15932 int i;
15933
15934 i = atoi (opt + 3);
15935 if (i != 0 && i != 2)
15936 as_bad (_(".option pic%d not supported"), i);
15937 else if (mips_pic == VXWORKS_PIC)
15938 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15939 else if (i == 0)
15940 mips_pic = NO_PIC;
15941 else if (i == 2)
15942 {
15943 mips_pic = SVR4_PIC;
15944 mips_abicalls = TRUE;
15945 }
15946
15947 if (mips_pic == SVR4_PIC)
15948 {
15949 if (g_switch_seen && g_switch_value != 0)
15950 as_warn (_("-G may not be used with SVR4 PIC code"));
15951 g_switch_value = 0;
15952 bfd_set_gp_size (stdoutput, 0);
15953 }
15954 }
15955 else
15956 as_warn (_("unrecognized option \"%s\""), opt);
15957
15958 (void) restore_line_pointer (c);
15959 demand_empty_rest_of_line ();
15960}
15961
15962/* This structure is used to hold a stack of .set values. */
15963
15964struct mips_option_stack
15965{
15966 struct mips_option_stack *next;
15967 struct mips_set_options options;
15968};
15969
15970static struct mips_option_stack *mips_opts_stack;
15971
15972/* Return status for .set/.module option handling. */
15973
15974enum code_option_type
15975{
15976 /* Unrecognized option. */
15977 OPTION_TYPE_BAD = -1,
15978
15979 /* Ordinary option. */
15980 OPTION_TYPE_NORMAL,
15981
15982 /* ISA changing option. */
15983 OPTION_TYPE_ISA
15984};
15985
15986/* Handle common .set/.module options. Return status indicating option
15987 type. */
15988
15989static enum code_option_type
15990parse_code_option (char * name)
15991{
15992 bfd_boolean isa_set = FALSE;
15993 const struct mips_ase *ase;
15994
15995 if (strncmp (name, "at=", 3) == 0)
15996 {
15997 char *s = name + 3;
15998
15999 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16000 as_bad (_("unrecognized register name `%s'"), s);
16001 }
16002 else if (strcmp (name, "at") == 0)
16003 mips_opts.at = ATREG;
16004 else if (strcmp (name, "noat") == 0)
16005 mips_opts.at = ZERO;
16006 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16007 mips_opts.nomove = 0;
16008 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16009 mips_opts.nomove = 1;
16010 else if (strcmp (name, "bopt") == 0)
16011 mips_opts.nobopt = 0;
16012 else if (strcmp (name, "nobopt") == 0)
16013 mips_opts.nobopt = 1;
16014 else if (strcmp (name, "gp=32") == 0)
16015 mips_opts.gp = 32;
16016 else if (strcmp (name, "gp=64") == 0)
16017 mips_opts.gp = 64;
16018 else if (strcmp (name, "fp=32") == 0)
16019 mips_opts.fp = 32;
16020 else if (strcmp (name, "fp=xx") == 0)
16021 mips_opts.fp = 0;
16022 else if (strcmp (name, "fp=64") == 0)
16023 mips_opts.fp = 64;
16024 else if (strcmp (name, "softfloat") == 0)
16025 mips_opts.soft_float = 1;
16026 else if (strcmp (name, "hardfloat") == 0)
16027 mips_opts.soft_float = 0;
16028 else if (strcmp (name, "singlefloat") == 0)
16029 mips_opts.single_float = 1;
16030 else if (strcmp (name, "doublefloat") == 0)
16031 mips_opts.single_float = 0;
16032 else if (strcmp (name, "nooddspreg") == 0)
16033 mips_opts.oddspreg = 0;
16034 else if (strcmp (name, "oddspreg") == 0)
16035 mips_opts.oddspreg = 1;
16036 else if (strcmp (name, "mips16") == 0
16037 || strcmp (name, "MIPS-16") == 0)
16038 mips_opts.mips16 = 1;
16039 else if (strcmp (name, "nomips16") == 0
16040 || strcmp (name, "noMIPS-16") == 0)
16041 mips_opts.mips16 = 0;
16042 else if (strcmp (name, "micromips") == 0)
16043 mips_opts.micromips = 1;
16044 else if (strcmp (name, "nomicromips") == 0)
16045 mips_opts.micromips = 0;
16046 else if (name[0] == 'n'
16047 && name[1] == 'o'
16048 && (ase = mips_lookup_ase (name + 2)))
16049 mips_set_ase (ase, &mips_opts, FALSE);
16050 else if ((ase = mips_lookup_ase (name)))
16051 mips_set_ase (ase, &mips_opts, TRUE);
16052 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16053 {
16054 /* Permit the user to change the ISA and architecture on the fly.
16055 Needless to say, misuse can cause serious problems. */
16056 if (strncmp (name, "arch=", 5) == 0)
16057 {
16058 const struct mips_cpu_info *p;
16059
16060 p = mips_parse_cpu ("internal use", name + 5);
16061 if (!p)
16062 as_bad (_("unknown architecture %s"), name + 5);
16063 else
16064 {
16065 mips_opts.arch = p->cpu;
16066 mips_opts.isa = p->isa;
16067 isa_set = TRUE;
16068 }
16069 }
16070 else if (strncmp (name, "mips", 4) == 0)
16071 {
16072 const struct mips_cpu_info *p;
16073
16074 p = mips_parse_cpu ("internal use", name);
16075 if (!p)
16076 as_bad (_("unknown ISA level %s"), name + 4);
16077 else
16078 {
16079 mips_opts.arch = p->cpu;
16080 mips_opts.isa = p->isa;
16081 isa_set = TRUE;
16082 }
16083 }
16084 else
16085 as_bad (_("unknown ISA or architecture %s"), name);
16086 }
16087 else if (strcmp (name, "autoextend") == 0)
16088 mips_opts.noautoextend = 0;
16089 else if (strcmp (name, "noautoextend") == 0)
16090 mips_opts.noautoextend = 1;
16091 else if (strcmp (name, "insn32") == 0)
16092 mips_opts.insn32 = TRUE;
16093 else if (strcmp (name, "noinsn32") == 0)
16094 mips_opts.insn32 = FALSE;
16095 else if (strcmp (name, "sym32") == 0)
16096 mips_opts.sym32 = TRUE;
16097 else if (strcmp (name, "nosym32") == 0)
16098 mips_opts.sym32 = FALSE;
16099 else
16100 return OPTION_TYPE_BAD;
16101
16102 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16103}
16104
16105/* Handle the .set pseudo-op. */
16106
16107static void
16108s_mipsset (int x ATTRIBUTE_UNUSED)
16109{
16110 enum code_option_type type = OPTION_TYPE_NORMAL;
16111 char *name = input_line_pointer, ch;
16112
16113 file_mips_check_options ();
16114
16115 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16116 ++input_line_pointer;
16117 ch = *input_line_pointer;
16118 *input_line_pointer = '\0';
16119
16120 if (strchr (name, ','))
16121 {
16122 /* Generic ".set" directive; use the generic handler. */
16123 *input_line_pointer = ch;
16124 input_line_pointer = name;
16125 s_set (0);
16126 return;
16127 }
16128
16129 if (strcmp (name, "reorder") == 0)
16130 {
16131 if (mips_opts.noreorder)
16132 end_noreorder ();
16133 }
16134 else if (strcmp (name, "noreorder") == 0)
16135 {
16136 if (!mips_opts.noreorder)
16137 start_noreorder ();
16138 }
16139 else if (strcmp (name, "macro") == 0)
16140 mips_opts.warn_about_macros = 0;
16141 else if (strcmp (name, "nomacro") == 0)
16142 {
16143 if (mips_opts.noreorder == 0)
16144 as_bad (_("`noreorder' must be set before `nomacro'"));
16145 mips_opts.warn_about_macros = 1;
16146 }
16147 else if (strcmp (name, "gp=default") == 0)
16148 mips_opts.gp = file_mips_opts.gp;
16149 else if (strcmp (name, "fp=default") == 0)
16150 mips_opts.fp = file_mips_opts.fp;
16151 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16152 {
16153 mips_opts.isa = file_mips_opts.isa;
16154 mips_opts.arch = file_mips_opts.arch;
16155 mips_opts.gp = file_mips_opts.gp;
16156 mips_opts.fp = file_mips_opts.fp;
16157 }
16158 else if (strcmp (name, "push") == 0)
16159 {
16160 struct mips_option_stack *s;
16161
16162 s = XNEW (struct mips_option_stack);
16163 s->next = mips_opts_stack;
16164 s->options = mips_opts;
16165 mips_opts_stack = s;
16166 }
16167 else if (strcmp (name, "pop") == 0)
16168 {
16169 struct mips_option_stack *s;
16170
16171 s = mips_opts_stack;
16172 if (s == NULL)
16173 as_bad (_(".set pop with no .set push"));
16174 else
16175 {
16176 /* If we're changing the reorder mode we need to handle
16177 delay slots correctly. */
16178 if (s->options.noreorder && ! mips_opts.noreorder)
16179 start_noreorder ();
16180 else if (! s->options.noreorder && mips_opts.noreorder)
16181 end_noreorder ();
16182
16183 mips_opts = s->options;
16184 mips_opts_stack = s->next;
16185 free (s);
16186 }
16187 }
16188 else
16189 {
16190 type = parse_code_option (name);
16191 if (type == OPTION_TYPE_BAD)
16192 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16193 }
16194
16195 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16196 registers based on what is supported by the arch/cpu. */
16197 if (type == OPTION_TYPE_ISA)
16198 {
16199 switch (mips_opts.isa)
16200 {
16201 case 0:
16202 break;
16203 case ISA_MIPS1:
16204 /* MIPS I cannot support FPXX. */
16205 mips_opts.fp = 32;
16206 /* fall-through. */
16207 case ISA_MIPS2:
16208 case ISA_MIPS32:
16209 case ISA_MIPS32R2:
16210 case ISA_MIPS32R3:
16211 case ISA_MIPS32R5:
16212 mips_opts.gp = 32;
16213 if (mips_opts.fp != 0)
16214 mips_opts.fp = 32;
16215 break;
16216 case ISA_MIPS32R6:
16217 mips_opts.gp = 32;
16218 mips_opts.fp = 64;
16219 break;
16220 case ISA_MIPS3:
16221 case ISA_MIPS4:
16222 case ISA_MIPS5:
16223 case ISA_MIPS64:
16224 case ISA_MIPS64R2:
16225 case ISA_MIPS64R3:
16226 case ISA_MIPS64R5:
16227 case ISA_MIPS64R6:
16228 mips_opts.gp = 64;
16229 if (mips_opts.fp != 0)
16230 {
16231 if (mips_opts.arch == CPU_R5900)
16232 mips_opts.fp = 32;
16233 else
16234 mips_opts.fp = 64;
16235 }
16236 break;
16237 default:
16238 as_bad (_("unknown ISA level %s"), name + 4);
16239 break;
16240 }
16241 }
16242
16243 mips_check_options (&mips_opts, FALSE);
16244
16245 mips_check_isa_supports_ases ();
16246 *input_line_pointer = ch;
16247 demand_empty_rest_of_line ();
16248}
16249
16250/* Handle the .module pseudo-op. */
16251
16252static void
16253s_module (int ignore ATTRIBUTE_UNUSED)
16254{
16255 char *name = input_line_pointer, ch;
16256
16257 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16258 ++input_line_pointer;
16259 ch = *input_line_pointer;
16260 *input_line_pointer = '\0';
16261
16262 if (!file_mips_opts_checked)
16263 {
16264 if (parse_code_option (name) == OPTION_TYPE_BAD)
16265 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16266
16267 /* Update module level settings from mips_opts. */
16268 file_mips_opts = mips_opts;
16269 }
16270 else
16271 as_bad (_(".module is not permitted after generating code"));
16272
16273 *input_line_pointer = ch;
16274 demand_empty_rest_of_line ();
16275}
16276
16277/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16278 .option pic2. It means to generate SVR4 PIC calls. */
16279
16280static void
16281s_abicalls (int ignore ATTRIBUTE_UNUSED)
16282{
16283 mips_pic = SVR4_PIC;
16284 mips_abicalls = TRUE;
16285
16286 if (g_switch_seen && g_switch_value != 0)
16287 as_warn (_("-G may not be used with SVR4 PIC code"));
16288 g_switch_value = 0;
16289
16290 bfd_set_gp_size (stdoutput, 0);
16291 demand_empty_rest_of_line ();
16292}
16293
16294/* Handle the .cpload pseudo-op. This is used when generating SVR4
16295 PIC code. It sets the $gp register for the function based on the
16296 function address, which is in the register named in the argument.
16297 This uses a relocation against _gp_disp, which is handled specially
16298 by the linker. The result is:
16299 lui $gp,%hi(_gp_disp)
16300 addiu $gp,$gp,%lo(_gp_disp)
16301 addu $gp,$gp,.cpload argument
16302 The .cpload argument is normally $25 == $t9.
16303
16304 The -mno-shared option changes this to:
16305 lui $gp,%hi(__gnu_local_gp)
16306 addiu $gp,$gp,%lo(__gnu_local_gp)
16307 and the argument is ignored. This saves an instruction, but the
16308 resulting code is not position independent; it uses an absolute
16309 address for __gnu_local_gp. Thus code assembled with -mno-shared
16310 can go into an ordinary executable, but not into a shared library. */
16311
16312static void
16313s_cpload (int ignore ATTRIBUTE_UNUSED)
16314{
16315 expressionS ex;
16316 int reg;
16317 int in_shared;
16318
16319 file_mips_check_options ();
16320
16321 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16322 .cpload is ignored. */
16323 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16324 {
16325 s_ignore (0);
16326 return;
16327 }
16328
16329 if (mips_opts.mips16)
16330 {
16331 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16332 ignore_rest_of_line ();
16333 return;
16334 }
16335
16336 /* .cpload should be in a .set noreorder section. */
16337 if (mips_opts.noreorder == 0)
16338 as_warn (_(".cpload not in noreorder section"));
16339
16340 reg = tc_get_register (0);
16341
16342 /* If we need to produce a 64-bit address, we are better off using
16343 the default instruction sequence. */
16344 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16345
16346 ex.X_op = O_symbol;
16347 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16348 "__gnu_local_gp");
16349 ex.X_op_symbol = NULL;
16350 ex.X_add_number = 0;
16351
16352 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16353 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16354
16355 mips_mark_labels ();
16356 mips_assembling_insn = TRUE;
16357
16358 macro_start ();
16359 macro_build_lui (&ex, mips_gp_register);
16360 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16361 mips_gp_register, BFD_RELOC_LO16);
16362 if (in_shared)
16363 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16364 mips_gp_register, reg);
16365 macro_end ();
16366
16367 mips_assembling_insn = FALSE;
16368 demand_empty_rest_of_line ();
16369}
16370
16371/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16372 .cpsetup $reg1, offset|$reg2, label
16373
16374 If offset is given, this results in:
16375 sd $gp, offset($sp)
16376 lui $gp, %hi(%neg(%gp_rel(label)))
16377 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16378 daddu $gp, $gp, $reg1
16379
16380 If $reg2 is given, this results in:
16381 or $reg2, $gp, $0
16382 lui $gp, %hi(%neg(%gp_rel(label)))
16383 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16384 daddu $gp, $gp, $reg1
16385 $reg1 is normally $25 == $t9.
16386
16387 The -mno-shared option replaces the last three instructions with
16388 lui $gp,%hi(_gp)
16389 addiu $gp,$gp,%lo(_gp) */
16390
16391static void
16392s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16393{
16394 expressionS ex_off;
16395 expressionS ex_sym;
16396 int reg1;
16397
16398 file_mips_check_options ();
16399
16400 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16401 We also need NewABI support. */
16402 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16403 {
16404 s_ignore (0);
16405 return;
16406 }
16407
16408 if (mips_opts.mips16)
16409 {
16410 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16411 ignore_rest_of_line ();
16412 return;
16413 }
16414
16415 reg1 = tc_get_register (0);
16416 SKIP_WHITESPACE ();
16417 if (*input_line_pointer != ',')
16418 {
16419 as_bad (_("missing argument separator ',' for .cpsetup"));
16420 return;
16421 }
16422 else
16423 ++input_line_pointer;
16424 SKIP_WHITESPACE ();
16425 if (*input_line_pointer == '$')
16426 {
16427 mips_cpreturn_register = tc_get_register (0);
16428 mips_cpreturn_offset = -1;
16429 }
16430 else
16431 {
16432 mips_cpreturn_offset = get_absolute_expression ();
16433 mips_cpreturn_register = -1;
16434 }
16435 SKIP_WHITESPACE ();
16436 if (*input_line_pointer != ',')
16437 {
16438 as_bad (_("missing argument separator ',' for .cpsetup"));
16439 return;
16440 }
16441 else
16442 ++input_line_pointer;
16443 SKIP_WHITESPACE ();
16444 expression (&ex_sym);
16445
16446 mips_mark_labels ();
16447 mips_assembling_insn = TRUE;
16448
16449 macro_start ();
16450 if (mips_cpreturn_register == -1)
16451 {
16452 ex_off.X_op = O_constant;
16453 ex_off.X_add_symbol = NULL;
16454 ex_off.X_op_symbol = NULL;
16455 ex_off.X_add_number = mips_cpreturn_offset;
16456
16457 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16458 BFD_RELOC_LO16, SP);
16459 }
16460 else
16461 move_register (mips_cpreturn_register, mips_gp_register);
16462
16463 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16464 {
16465 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16466 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16467 BFD_RELOC_HI16_S);
16468
16469 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16470 mips_gp_register, -1, BFD_RELOC_GPREL16,
16471 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16472
16473 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16474 mips_gp_register, reg1);
16475 }
16476 else
16477 {
16478 expressionS ex;
16479
16480 ex.X_op = O_symbol;
16481 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16482 ex.X_op_symbol = NULL;
16483 ex.X_add_number = 0;
16484
16485 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16486 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16487
16488 macro_build_lui (&ex, mips_gp_register);
16489 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16490 mips_gp_register, BFD_RELOC_LO16);
16491 }
16492
16493 macro_end ();
16494
16495 mips_assembling_insn = FALSE;
16496 demand_empty_rest_of_line ();
16497}
16498
16499static void
16500s_cplocal (int ignore ATTRIBUTE_UNUSED)
16501{
16502 file_mips_check_options ();
16503
16504 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16505 .cplocal is ignored. */
16506 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16507 {
16508 s_ignore (0);
16509 return;
16510 }
16511
16512 if (mips_opts.mips16)
16513 {
16514 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16515 ignore_rest_of_line ();
16516 return;
16517 }
16518
16519 mips_gp_register = tc_get_register (0);
16520 demand_empty_rest_of_line ();
16521}
16522
16523/* Handle the .cprestore pseudo-op. This stores $gp into a given
16524 offset from $sp. The offset is remembered, and after making a PIC
16525 call $gp is restored from that location. */
16526
16527static void
16528s_cprestore (int ignore ATTRIBUTE_UNUSED)
16529{
16530 expressionS ex;
16531
16532 file_mips_check_options ();
16533
16534 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16535 .cprestore is ignored. */
16536 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16537 {
16538 s_ignore (0);
16539 return;
16540 }
16541
16542 if (mips_opts.mips16)
16543 {
16544 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16545 ignore_rest_of_line ();
16546 return;
16547 }
16548
16549 mips_cprestore_offset = get_absolute_expression ();
16550 mips_cprestore_valid = 1;
16551
16552 ex.X_op = O_constant;
16553 ex.X_add_symbol = NULL;
16554 ex.X_op_symbol = NULL;
16555 ex.X_add_number = mips_cprestore_offset;
16556
16557 mips_mark_labels ();
16558 mips_assembling_insn = TRUE;
16559
16560 macro_start ();
16561 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16562 SP, HAVE_64BIT_ADDRESSES);
16563 macro_end ();
16564
16565 mips_assembling_insn = FALSE;
16566 demand_empty_rest_of_line ();
16567}
16568
16569/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16570 was given in the preceding .cpsetup, it results in:
16571 ld $gp, offset($sp)
16572
16573 If a register $reg2 was given there, it results in:
16574 or $gp, $reg2, $0 */
16575
16576static void
16577s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16578{
16579 expressionS ex;
16580
16581 file_mips_check_options ();
16582
16583 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16584 We also need NewABI support. */
16585 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16586 {
16587 s_ignore (0);
16588 return;
16589 }
16590
16591 if (mips_opts.mips16)
16592 {
16593 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16594 ignore_rest_of_line ();
16595 return;
16596 }
16597
16598 mips_mark_labels ();
16599 mips_assembling_insn = TRUE;
16600
16601 macro_start ();
16602 if (mips_cpreturn_register == -1)
16603 {
16604 ex.X_op = O_constant;
16605 ex.X_add_symbol = NULL;
16606 ex.X_op_symbol = NULL;
16607 ex.X_add_number = mips_cpreturn_offset;
16608
16609 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16610 }
16611 else
16612 move_register (mips_gp_register, mips_cpreturn_register);
16613
16614 macro_end ();
16615
16616 mips_assembling_insn = FALSE;
16617 demand_empty_rest_of_line ();
16618}
16619
16620/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16621 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16622 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16623 debug information or MIPS16 TLS. */
16624
16625static void
16626s_tls_rel_directive (const size_t bytes, const char *dirstr,
16627 bfd_reloc_code_real_type rtype)
16628{
16629 expressionS ex;
16630 char *p;
16631
16632 expression (&ex);
16633
16634 if (ex.X_op != O_symbol)
16635 {
16636 as_bad (_("unsupported use of %s"), dirstr);
16637 ignore_rest_of_line ();
16638 }
16639
16640 p = frag_more (bytes);
16641 md_number_to_chars (p, 0, bytes);
16642 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16643 demand_empty_rest_of_line ();
16644 mips_clear_insn_labels ();
16645}
16646
16647/* Handle .dtprelword. */
16648
16649static void
16650s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16651{
16652 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16653}
16654
16655/* Handle .dtpreldword. */
16656
16657static void
16658s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16659{
16660 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16661}
16662
16663/* Handle .tprelword. */
16664
16665static void
16666s_tprelword (int ignore ATTRIBUTE_UNUSED)
16667{
16668 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16669}
16670
16671/* Handle .tpreldword. */
16672
16673static void
16674s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16675{
16676 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16677}
16678
16679/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16680 code. It sets the offset to use in gp_rel relocations. */
16681
16682static void
16683s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16684{
16685 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16686 We also need NewABI support. */
16687 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16688 {
16689 s_ignore (0);
16690 return;
16691 }
16692
16693 mips_gprel_offset = get_absolute_expression ();
16694
16695 demand_empty_rest_of_line ();
16696}
16697
16698/* Handle the .gpword pseudo-op. This is used when generating PIC
16699 code. It generates a 32 bit GP relative reloc. */
16700
16701static void
16702s_gpword (int ignore ATTRIBUTE_UNUSED)
16703{
16704 segment_info_type *si;
16705 struct insn_label_list *l;
16706 expressionS ex;
16707 char *p;
16708
16709 /* When not generating PIC code, this is treated as .word. */
16710 if (mips_pic != SVR4_PIC)
16711 {
16712 s_cons (2);
16713 return;
16714 }
16715
16716 si = seg_info (now_seg);
16717 l = si->label_list;
16718 mips_emit_delays ();
16719 if (auto_align)
16720 mips_align (2, 0, l);
16721
16722 expression (&ex);
16723 mips_clear_insn_labels ();
16724
16725 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16726 {
16727 as_bad (_("unsupported use of .gpword"));
16728 ignore_rest_of_line ();
16729 }
16730
16731 p = frag_more (4);
16732 md_number_to_chars (p, 0, 4);
16733 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16734 BFD_RELOC_GPREL32);
16735
16736 demand_empty_rest_of_line ();
16737}
16738
16739static void
16740s_gpdword (int ignore ATTRIBUTE_UNUSED)
16741{
16742 segment_info_type *si;
16743 struct insn_label_list *l;
16744 expressionS ex;
16745 char *p;
16746
16747 /* When not generating PIC code, this is treated as .dword. */
16748 if (mips_pic != SVR4_PIC)
16749 {
16750 s_cons (3);
16751 return;
16752 }
16753
16754 si = seg_info (now_seg);
16755 l = si->label_list;
16756 mips_emit_delays ();
16757 if (auto_align)
16758 mips_align (3, 0, l);
16759
16760 expression (&ex);
16761 mips_clear_insn_labels ();
16762
16763 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16764 {
16765 as_bad (_("unsupported use of .gpdword"));
16766 ignore_rest_of_line ();
16767 }
16768
16769 p = frag_more (8);
16770 md_number_to_chars (p, 0, 8);
16771 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16772 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16773
16774 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16775 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16776 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16777
16778 demand_empty_rest_of_line ();
16779}
16780
16781/* Handle the .ehword pseudo-op. This is used when generating unwinding
16782 tables. It generates a R_MIPS_EH reloc. */
16783
16784static void
16785s_ehword (int ignore ATTRIBUTE_UNUSED)
16786{
16787 expressionS ex;
16788 char *p;
16789
16790 mips_emit_delays ();
16791
16792 expression (&ex);
16793 mips_clear_insn_labels ();
16794
16795 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16796 {
16797 as_bad (_("unsupported use of .ehword"));
16798 ignore_rest_of_line ();
16799 }
16800
16801 p = frag_more (4);
16802 md_number_to_chars (p, 0, 4);
16803 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16804 BFD_RELOC_32_PCREL);
16805
16806 demand_empty_rest_of_line ();
16807}
16808
16809/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16810 tables in SVR4 PIC code. */
16811
16812static void
16813s_cpadd (int ignore ATTRIBUTE_UNUSED)
16814{
16815 int reg;
16816
16817 file_mips_check_options ();
16818
16819 /* This is ignored when not generating SVR4 PIC code. */
16820 if (mips_pic != SVR4_PIC)
16821 {
16822 s_ignore (0);
16823 return;
16824 }
16825
16826 mips_mark_labels ();
16827 mips_assembling_insn = TRUE;
16828
16829 /* Add $gp to the register named as an argument. */
16830 macro_start ();
16831 reg = tc_get_register (0);
16832 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16833 macro_end ();
16834
16835 mips_assembling_insn = FALSE;
16836 demand_empty_rest_of_line ();
16837}
16838
16839/* Handle the .insn pseudo-op. This marks instruction labels in
16840 mips16/micromips mode. This permits the linker to handle them specially,
16841 such as generating jalx instructions when needed. We also make
16842 them odd for the duration of the assembly, in order to generate the
16843 right sort of code. We will make them even in the adjust_symtab
16844 routine, while leaving them marked. This is convenient for the
16845 debugger and the disassembler. The linker knows to make them odd
16846 again. */
16847
16848static void
16849s_insn (int ignore ATTRIBUTE_UNUSED)
16850{
16851 file_mips_check_options ();
16852 file_ase_mips16 |= mips_opts.mips16;
16853 file_ase_micromips |= mips_opts.micromips;
16854
16855 mips_mark_labels ();
16856
16857 demand_empty_rest_of_line ();
16858}
16859
16860/* Handle the .nan pseudo-op. */
16861
16862static void
16863s_nan (int ignore ATTRIBUTE_UNUSED)
16864{
16865 static const char str_legacy[] = "legacy";
16866 static const char str_2008[] = "2008";
16867 size_t i;
16868
16869 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16870
16871 if (i == sizeof (str_2008) - 1
16872 && memcmp (input_line_pointer, str_2008, i) == 0)
16873 mips_nan2008 = 1;
16874 else if (i == sizeof (str_legacy) - 1
16875 && memcmp (input_line_pointer, str_legacy, i) == 0)
16876 {
16877 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16878 mips_nan2008 = 0;
16879 else
16880 as_bad (_("`%s' does not support legacy NaN"),
16881 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16882 }
16883 else
16884 as_bad (_("bad .nan directive"));
16885
16886 input_line_pointer += i;
16887 demand_empty_rest_of_line ();
16888}
16889
16890/* Handle a .stab[snd] directive. Ideally these directives would be
16891 implemented in a transparent way, so that removing them would not
16892 have any effect on the generated instructions. However, s_stab
16893 internally changes the section, so in practice we need to decide
16894 now whether the preceding label marks compressed code. We do not
16895 support changing the compression mode of a label after a .stab*
16896 directive, such as in:
16897
16898 foo:
16899 .stabs ...
16900 .set mips16
16901
16902 so the current mode wins. */
16903
16904static void
16905s_mips_stab (int type)
16906{
16907 mips_mark_labels ();
16908 s_stab (type);
16909}
16910
16911/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16912
16913static void
16914s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16915{
16916 char *name;
16917 int c;
16918 symbolS *symbolP;
16919 expressionS exp;
16920
16921 c = get_symbol_name (&name);
16922 symbolP = symbol_find_or_make (name);
16923 S_SET_WEAK (symbolP);
16924 *input_line_pointer = c;
16925
16926 SKIP_WHITESPACE_AFTER_NAME ();
16927
16928 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16929 {
16930 if (S_IS_DEFINED (symbolP))
16931 {
16932 as_bad (_("ignoring attempt to redefine symbol %s"),
16933 S_GET_NAME (symbolP));
16934 ignore_rest_of_line ();
16935 return;
16936 }
16937
16938 if (*input_line_pointer == ',')
16939 {
16940 ++input_line_pointer;
16941 SKIP_WHITESPACE ();
16942 }
16943
16944 expression (&exp);
16945 if (exp.X_op != O_symbol)
16946 {
16947 as_bad (_("bad .weakext directive"));
16948 ignore_rest_of_line ();
16949 return;
16950 }
16951 symbol_set_value_expression (symbolP, &exp);
16952 }
16953
16954 demand_empty_rest_of_line ();
16955}
16956
16957/* Parse a register string into a number. Called from the ECOFF code
16958 to parse .frame. The argument is non-zero if this is the frame
16959 register, so that we can record it in mips_frame_reg. */
16960
16961int
16962tc_get_register (int frame)
16963{
16964 unsigned int reg;
16965
16966 SKIP_WHITESPACE ();
16967 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16968 reg = 0;
16969 if (frame)
16970 {
16971 mips_frame_reg = reg != 0 ? reg : SP;
16972 mips_frame_reg_valid = 1;
16973 mips_cprestore_valid = 0;
16974 }
16975 return reg;
16976}
16977
16978valueT
16979md_section_align (asection *seg, valueT addr)
16980{
16981 int align = bfd_get_section_alignment (stdoutput, seg);
16982
16983 /* We don't need to align ELF sections to the full alignment.
16984 However, Irix 5 may prefer that we align them at least to a 16
16985 byte boundary. We don't bother to align the sections if we
16986 are targeted for an embedded system. */
16987 if (strncmp (TARGET_OS, "elf", 3) == 0)
16988 return addr;
16989 if (align > 4)
16990 align = 4;
16991
16992 return ((addr + (1 << align) - 1) & -(1 << align));
16993}
16994
16995/* Utility routine, called from above as well. If called while the
16996 input file is still being read, it's only an approximation. (For
16997 example, a symbol may later become defined which appeared to be
16998 undefined earlier.) */
16999
17000static int
17001nopic_need_relax (symbolS *sym, int before_relaxing)
17002{
17003 if (sym == 0)
17004 return 0;
17005
17006 if (g_switch_value > 0)
17007 {
17008 const char *symname;
17009 int change;
17010
17011 /* Find out whether this symbol can be referenced off the $gp
17012 register. It can be if it is smaller than the -G size or if
17013 it is in the .sdata or .sbss section. Certain symbols can
17014 not be referenced off the $gp, although it appears as though
17015 they can. */
17016 symname = S_GET_NAME (sym);
17017 if (symname != (const char *) NULL
17018 && (strcmp (symname, "eprol") == 0
17019 || strcmp (symname, "etext") == 0
17020 || strcmp (symname, "_gp") == 0
17021 || strcmp (symname, "edata") == 0
17022 || strcmp (symname, "_fbss") == 0
17023 || strcmp (symname, "_fdata") == 0
17024 || strcmp (symname, "_ftext") == 0
17025 || strcmp (symname, "end") == 0
17026 || strcmp (symname, "_gp_disp") == 0))
17027 change = 1;
17028 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17029 && (0
17030#ifndef NO_ECOFF_DEBUGGING
17031 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17032 && (symbol_get_obj (sym)->ecoff_extern_size
17033 <= g_switch_value))
17034#endif
17035 /* We must defer this decision until after the whole
17036 file has been read, since there might be a .extern
17037 after the first use of this symbol. */
17038 || (before_relaxing
17039#ifndef NO_ECOFF_DEBUGGING
17040 && symbol_get_obj (sym)->ecoff_extern_size == 0
17041#endif
17042 && S_GET_VALUE (sym) == 0)
17043 || (S_GET_VALUE (sym) != 0
17044 && S_GET_VALUE (sym) <= g_switch_value)))
17045 change = 0;
17046 else
17047 {
17048 const char *segname;
17049
17050 segname = segment_name (S_GET_SEGMENT (sym));
17051 gas_assert (strcmp (segname, ".lit8") != 0
17052 && strcmp (segname, ".lit4") != 0);
17053 change = (strcmp (segname, ".sdata") != 0
17054 && strcmp (segname, ".sbss") != 0
17055 && strncmp (segname, ".sdata.", 7) != 0
17056 && strncmp (segname, ".sbss.", 6) != 0
17057 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17058 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17059 }
17060 return change;
17061 }
17062 else
17063 /* We are not optimizing for the $gp register. */
17064 return 1;
17065}
17066
17067
17068/* Return true if the given symbol should be considered local for SVR4 PIC. */
17069
17070static bfd_boolean
17071pic_need_relax (symbolS *sym, asection *segtype)
17072{
17073 asection *symsec;
17074
17075 /* Handle the case of a symbol equated to another symbol. */
17076 while (symbol_equated_reloc_p (sym))
17077 {
17078 symbolS *n;
17079
17080 /* It's possible to get a loop here in a badly written program. */
17081 n = symbol_get_value_expression (sym)->X_add_symbol;
17082 if (n == sym)
17083 break;
17084 sym = n;
17085 }
17086
17087 if (symbol_section_p (sym))
17088 return TRUE;
17089
17090 symsec = S_GET_SEGMENT (sym);
17091
17092 /* This must duplicate the test in adjust_reloc_syms. */
17093 return (!bfd_is_und_section (symsec)
17094 && !bfd_is_abs_section (symsec)
17095 && !bfd_is_com_section (symsec)
17096 && !s_is_linkonce (sym, segtype)
17097 /* A global or weak symbol is treated as external. */
17098 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17099}
17100
17101
17102/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17103 extended opcode. SEC is the section the frag is in. */
17104
17105static int
17106mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17107{
17108 int type;
17109 const struct mips_int_operand *operand;
17110 offsetT val;
17111 segT symsec;
17112 fragS *sym_frag;
17113
17114 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17115 return 0;
17116 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17117 return 1;
17118
17119 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17120 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17121 operand = mips16_immed_operand (type, FALSE);
17122 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17123 || (operand->root.type == OP_PCREL
17124 ? sec != symsec
17125 : !bfd_is_abs_section (symsec)))
17126 return 1;
17127
17128 sym_frag = symbol_get_frag (fragp->fr_symbol);
17129 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17130
17131 if (operand->root.type == OP_PCREL)
17132 {
17133 const struct mips_pcrel_operand *pcrel_op;
17134 addressT addr;
17135 offsetT maxtiny;
17136
17137 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17138 return 1;
17139
17140 pcrel_op = (const struct mips_pcrel_operand *) operand;
17141
17142 /* If the relax_marker of the symbol fragment differs from the
17143 relax_marker of this fragment, we have not yet adjusted the
17144 symbol fragment fr_address. We want to add in STRETCH in
17145 order to get a better estimate of the address. This
17146 particularly matters because of the shift bits. */
17147 if (stretch != 0
17148 && sym_frag->relax_marker != fragp->relax_marker)
17149 {
17150 fragS *f;
17151
17152 /* Adjust stretch for any alignment frag. Note that if have
17153 been expanding the earlier code, the symbol may be
17154 defined in what appears to be an earlier frag. FIXME:
17155 This doesn't handle the fr_subtype field, which specifies
17156 a maximum number of bytes to skip when doing an
17157 alignment. */
17158 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17159 {
17160 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17161 {
17162 if (stretch < 0)
17163 stretch = - ((- stretch)
17164 & ~ ((1 << (int) f->fr_offset) - 1));
17165 else
17166 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17167 if (stretch == 0)
17168 break;
17169 }
17170 }
17171 if (f != NULL)
17172 val += stretch;
17173 }
17174
17175 addr = fragp->fr_address + fragp->fr_fix;
17176
17177 /* The base address rules are complicated. The base address of
17178 a branch is the following instruction. The base address of a
17179 PC relative load or add is the instruction itself, but if it
17180 is in a delay slot (in which case it can not be extended) use
17181 the address of the instruction whose delay slot it is in. */
17182 if (pcrel_op->include_isa_bit)
17183 {
17184 addr += 2;
17185
17186 /* If we are currently assuming that this frag should be
17187 extended, then, the current address is two bytes
17188 higher. */
17189 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17190 addr += 2;
17191
17192 /* Ignore the low bit in the target, since it will be set
17193 for a text label. */
17194 val &= -2;
17195 }
17196 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17197 addr -= 4;
17198 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17199 addr -= 2;
17200
17201 val -= addr & -(1 << pcrel_op->align_log2);
17202
17203 /* If any of the shifted bits are set, we must use an extended
17204 opcode. If the address depends on the size of this
17205 instruction, this can lead to a loop, so we arrange to always
17206 use an extended opcode. */
17207 if ((val & ((1 << operand->shift) - 1)) != 0)
17208 {
17209 fragp->fr_subtype =
17210 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17211 return 1;
17212 }
17213
17214 /* If we are about to mark a frag as extended because the value
17215 is precisely the next value above maxtiny, then there is a
17216 chance of an infinite loop as in the following code:
17217 la $4,foo
17218 .skip 1020
17219 .align 2
17220 foo:
17221 In this case when the la is extended, foo is 0x3fc bytes
17222 away, so the la can be shrunk, but then foo is 0x400 away, so
17223 the la must be extended. To avoid this loop, we mark the
17224 frag as extended if it was small, and is about to become
17225 extended with the next value above maxtiny. */
17226 maxtiny = mips_int_operand_max (operand);
17227 if (val == maxtiny + (1 << operand->shift)
17228 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17229 {
17230 fragp->fr_subtype =
17231 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17232 return 1;
17233 }
17234 }
17235
17236 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17237}
17238
17239/* Compute the length of a branch sequence, and adjust the
17240 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17241 worst-case length is computed, with UPDATE being used to indicate
17242 whether an unconditional (-1), branch-likely (+1) or regular (0)
17243 branch is to be computed. */
17244static int
17245relaxed_branch_length (fragS *fragp, asection *sec, int update)
17246{
17247 bfd_boolean toofar;
17248 int length;
17249
17250 if (fragp
17251 && S_IS_DEFINED (fragp->fr_symbol)
17252 && !S_IS_WEAK (fragp->fr_symbol)
17253 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17254 {
17255 addressT addr;
17256 offsetT val;
17257
17258 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17259
17260 addr = fragp->fr_address + fragp->fr_fix + 4;
17261
17262 val -= addr;
17263
17264 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17265 }
17266 else
17267 /* If the symbol is not defined or it's in a different segment,
17268 we emit the long sequence. */
17269 toofar = TRUE;
17270
17271 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17272 fragp->fr_subtype
17273 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17274 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17275 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17276 RELAX_BRANCH_LINK (fragp->fr_subtype),
17277 toofar);
17278
17279 length = 4;
17280 if (toofar)
17281 {
17282 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17283 length += 8;
17284
17285 if (mips_pic != NO_PIC)
17286 {
17287 /* Additional space for PIC loading of target address. */
17288 length += 8;
17289 if (mips_opts.isa == ISA_MIPS1)
17290 /* Additional space for $at-stabilizing nop. */
17291 length += 4;
17292 }
17293
17294 /* If branch is conditional. */
17295 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17296 length += 8;
17297 }
17298
17299 return length;
17300}
17301
17302/* Get a FRAG's branch instruction delay slot size, either from the
17303 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17304 or SHORT_INSN_SIZE otherwise. */
17305
17306static int
17307frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17308{
17309 char *buf = fragp->fr_literal + fragp->fr_fix;
17310
17311 if (al)
17312 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17313 else
17314 return short_insn_size;
17315}
17316
17317/* Compute the length of a branch sequence, and adjust the
17318 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17319 worst-case length is computed, with UPDATE being used to indicate
17320 whether an unconditional (-1), or regular (0) branch is to be
17321 computed. */
17322
17323static int
17324relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17325{
17326 bfd_boolean insn32 = TRUE;
17327 bfd_boolean nods = TRUE;
17328 bfd_boolean al = TRUE;
17329 int short_insn_size;
17330 bfd_boolean toofar;
17331 int length;
17332
17333 if (fragp)
17334 {
17335 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17336 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17337 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17338 }
17339 short_insn_size = insn32 ? 4 : 2;
17340
17341 if (fragp
17342 && S_IS_DEFINED (fragp->fr_symbol)
17343 && !S_IS_WEAK (fragp->fr_symbol)
17344 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17345 {
17346 addressT addr;
17347 offsetT val;
17348
17349 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17350 /* Ignore the low bit in the target, since it will be set
17351 for a text label. */
17352 if ((val & 1) != 0)
17353 --val;
17354
17355 addr = fragp->fr_address + fragp->fr_fix + 4;
17356
17357 val -= addr;
17358
17359 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17360 }
17361 else
17362 /* If the symbol is not defined or it's in a different segment,
17363 we emit the long sequence. */
17364 toofar = TRUE;
17365
17366 if (fragp && update
17367 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17368 fragp->fr_subtype = (toofar
17369 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17370 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17371
17372 length = 4;
17373 if (toofar)
17374 {
17375 bfd_boolean compact_known = fragp != NULL;
17376 bfd_boolean compact = FALSE;
17377 bfd_boolean uncond;
17378
17379 if (fragp)
17380 {
17381 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17382 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17383 }
17384 else
17385 uncond = update < 0;
17386
17387 /* If label is out of range, we turn branch <br>:
17388
17389 <br> label # 4 bytes
17390 0:
17391
17392 into:
17393
17394 j label # 4 bytes
17395 nop # 2/4 bytes if
17396 # compact && (!PIC || insn32)
17397 0:
17398 */
17399 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17400 length += short_insn_size;
17401
17402 /* If assembling PIC code, we further turn:
17403
17404 j label # 4 bytes
17405
17406 into:
17407
17408 lw/ld at, %got(label)(gp) # 4 bytes
17409 d/addiu at, %lo(label) # 4 bytes
17410 jr/c at # 2/4 bytes
17411 */
17412 if (mips_pic != NO_PIC)
17413 length += 4 + short_insn_size;
17414
17415 /* Add an extra nop if the jump has no compact form and we need
17416 to fill the delay slot. */
17417 if ((mips_pic == NO_PIC || al) && nods)
17418 length += (fragp
17419 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17420 : short_insn_size);
17421
17422 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17423
17424 <brneg> 0f # 4 bytes
17425 nop # 2/4 bytes if !compact
17426 */
17427 if (!uncond)
17428 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17429 }
17430 else if (nods)
17431 {
17432 /* Add an extra nop to fill the delay slot. */
17433 gas_assert (fragp);
17434 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17435 }
17436
17437 return length;
17438}
17439
17440/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17441 bit accordingly. */
17442
17443static int
17444relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17445{
17446 bfd_boolean toofar;
17447
17448 if (fragp
17449 && S_IS_DEFINED (fragp->fr_symbol)
17450 && !S_IS_WEAK (fragp->fr_symbol)
17451 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17452 {
17453 addressT addr;
17454 offsetT val;
17455 int type;
17456
17457 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17458 /* Ignore the low bit in the target, since it will be set
17459 for a text label. */
17460 if ((val & 1) != 0)
17461 --val;
17462
17463 /* Assume this is a 2-byte branch. */
17464 addr = fragp->fr_address + fragp->fr_fix + 2;
17465
17466 /* We try to avoid the infinite loop by not adding 2 more bytes for
17467 long branches. */
17468
17469 val -= addr;
17470
17471 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17472 if (type == 'D')
17473 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17474 else if (type == 'E')
17475 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17476 else
17477 abort ();
17478 }
17479 else
17480 /* If the symbol is not defined or it's in a different segment,
17481 we emit a normal 32-bit branch. */
17482 toofar = TRUE;
17483
17484 if (fragp && update
17485 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17486 fragp->fr_subtype
17487 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17488 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17489
17490 if (toofar)
17491 return 4;
17492
17493 return 2;
17494}
17495
17496/* Estimate the size of a frag before relaxing. Unless this is the
17497 mips16, we are not really relaxing here, and the final size is
17498 encoded in the subtype information. For the mips16, we have to
17499 decide whether we are using an extended opcode or not. */
17500
17501int
17502md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17503{
17504 int change;
17505
17506 if (RELAX_BRANCH_P (fragp->fr_subtype))
17507 {
17508
17509 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17510
17511 return fragp->fr_var;
17512 }
17513
17514 if (RELAX_MIPS16_P (fragp->fr_subtype))
17515 /* We don't want to modify the EXTENDED bit here; it might get us
17516 into infinite loops. We change it only in mips_relax_frag(). */
17517 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17518
17519 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17520 {
17521 int length = 4;
17522
17523 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17524 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17525 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17526 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17527 fragp->fr_var = length;
17528
17529 return length;
17530 }
17531
17532 if (mips_pic == NO_PIC)
17533 change = nopic_need_relax (fragp->fr_symbol, 0);
17534 else if (mips_pic == SVR4_PIC)
17535 change = pic_need_relax (fragp->fr_symbol, segtype);
17536 else if (mips_pic == VXWORKS_PIC)
17537 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17538 change = 0;
17539 else
17540 abort ();
17541
17542 if (change)
17543 {
17544 fragp->fr_subtype |= RELAX_USE_SECOND;
17545 return -RELAX_FIRST (fragp->fr_subtype);
17546 }
17547 else
17548 return -RELAX_SECOND (fragp->fr_subtype);
17549}
17550
17551/* This is called to see whether a reloc against a defined symbol
17552 should be converted into a reloc against a section. */
17553
17554int
17555mips_fix_adjustable (fixS *fixp)
17556{
17557 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17558 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17559 return 0;
17560
17561 if (fixp->fx_addsy == NULL)
17562 return 1;
17563
17564 /* Allow relocs used for EH tables. */
17565 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17566 return 1;
17567
17568 /* If symbol SYM is in a mergeable section, relocations of the form
17569 SYM + 0 can usually be made section-relative. The mergeable data
17570 is then identified by the section offset rather than by the symbol.
17571
17572 However, if we're generating REL LO16 relocations, the offset is split
17573 between the LO16 and parterning high part relocation. The linker will
17574 need to recalculate the complete offset in order to correctly identify
17575 the merge data.
17576
17577 The linker has traditionally not looked for the parterning high part
17578 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17579 placed anywhere. Rather than break backwards compatibility by changing
17580 this, it seems better not to force the issue, and instead keep the
17581 original symbol. This will work with either linker behavior. */
17582 if ((lo16_reloc_p (fixp->fx_r_type)
17583 || reloc_needs_lo_p (fixp->fx_r_type))
17584 && HAVE_IN_PLACE_ADDENDS
17585 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17586 return 0;
17587
17588 /* There is no place to store an in-place offset for JALR relocations. */
17589 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17590 return 0;
17591
17592 /* Likewise an in-range offset of limited PC-relative relocations may
17593 overflow the in-place relocatable field if recalculated against the
17594 start address of the symbol's containing section.
17595
17596 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17597 section relative to allow linker relaxations to be performed later on. */
17598 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17599 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17600 return 0;
17601
17602 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17603 to a floating-point stub. The same is true for non-R_MIPS16_26
17604 relocations against MIPS16 functions; in this case, the stub becomes
17605 the function's canonical address.
17606
17607 Floating-point stubs are stored in unique .mips16.call.* or
17608 .mips16.fn.* sections. If a stub T for function F is in section S,
17609 the first relocation in section S must be against F; this is how the
17610 linker determines the target function. All relocations that might
17611 resolve to T must also be against F. We therefore have the following
17612 restrictions, which are given in an intentionally-redundant way:
17613
17614 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17615 symbols.
17616
17617 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17618 if that stub might be used.
17619
17620 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17621 symbols.
17622
17623 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17624 that stub might be used.
17625
17626 There is a further restriction:
17627
17628 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17629 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17630 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17631 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17632 against MIPS16 or microMIPS symbols because we need to keep the
17633 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17634 detection and JAL or BAL to JALX instruction conversion in the
17635 linker.
17636
17637 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17638 against a MIPS16 symbol. We deal with (5) by additionally leaving
17639 alone any jump and branch relocations against a microMIPS symbol.
17640
17641 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17642 relocation against some symbol R, no relocation against R may be
17643 reduced. (Note that this deals with (2) as well as (1) because
17644 relocations against global symbols will never be reduced on ELF
17645 targets.) This approach is a little simpler than trying to detect
17646 stub sections, and gives the "all or nothing" per-symbol consistency
17647 that we have for MIPS16 symbols. */
17648 if (fixp->fx_subsy == NULL
17649 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17650 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17651 && (jmp_reloc_p (fixp->fx_r_type)
17652 || b_reloc_p (fixp->fx_r_type)))
17653 || *symbol_get_tc (fixp->fx_addsy)))
17654 return 0;
17655
17656 return 1;
17657}
17658
17659/* Translate internal representation of relocation info to BFD target
17660 format. */
17661
17662arelent **
17663tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17664{
17665 static arelent *retval[4];
17666 arelent *reloc;
17667 bfd_reloc_code_real_type code;
17668
17669 memset (retval, 0, sizeof(retval));
17670 reloc = retval[0] = XCNEW (arelent);
17671 reloc->sym_ptr_ptr = XNEW (asymbol *);
17672 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17673 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17674
17675 if (fixp->fx_pcrel)
17676 {
17677 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17678 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17679 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17680 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17681 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17682 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17683 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17684 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17685 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17686 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17687 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17688 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17689
17690 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17691 Relocations want only the symbol offset. */
17692 switch (fixp->fx_r_type)
17693 {
17694 case BFD_RELOC_MIPS_18_PCREL_S3:
17695 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17696 break;
17697 default:
17698 reloc->addend = fixp->fx_addnumber + reloc->address;
17699 break;
17700 }
17701 }
17702 else if (HAVE_IN_PLACE_ADDENDS
17703 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17704 && (read_compressed_insn (fixp->fx_frag->fr_literal
17705 + fixp->fx_where, 4) >> 26) == 0x3c)
17706 {
17707 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17708 addend accordingly. */
17709 reloc->addend = fixp->fx_addnumber >> 1;
17710 }
17711 else
17712 reloc->addend = fixp->fx_addnumber;
17713
17714 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17715 entry to be used in the relocation's section offset. */
17716 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17717 {
17718 reloc->address = reloc->addend;
17719 reloc->addend = 0;
17720 }
17721
17722 code = fixp->fx_r_type;
17723
17724 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17725 if (reloc->howto == NULL)
17726 {
17727 as_bad_where (fixp->fx_file, fixp->fx_line,
17728 _("cannot represent %s relocation in this object file"
17729 " format"),
17730 bfd_get_reloc_code_name (code));
17731 retval[0] = NULL;
17732 }
17733
17734 return retval;
17735}
17736
17737/* Relax a machine dependent frag. This returns the amount by which
17738 the current size of the frag should change. */
17739
17740int
17741mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17742{
17743 if (RELAX_BRANCH_P (fragp->fr_subtype))
17744 {
17745 offsetT old_var = fragp->fr_var;
17746
17747 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17748
17749 return fragp->fr_var - old_var;
17750 }
17751
17752 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17753 {
17754 offsetT old_var = fragp->fr_var;
17755 offsetT new_var = 4;
17756
17757 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17758 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17759 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17760 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17761 fragp->fr_var = new_var;
17762
17763 return new_var - old_var;
17764 }
17765
17766 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17767 return 0;
17768
17769 if (mips16_extended_frag (fragp, sec, stretch))
17770 {
17771 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17772 return 0;
17773 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17774 return 2;
17775 }
17776 else
17777 {
17778 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17779 return 0;
17780 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17781 return -2;
17782 }
17783
17784 return 0;
17785}
17786
17787/* Convert a machine dependent frag. */
17788
17789void
17790md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17791{
17792 if (RELAX_BRANCH_P (fragp->fr_subtype))
17793 {
17794 char *buf;
17795 unsigned long insn;
17796 expressionS exp;
17797 fixS *fixp;
17798
17799 buf = fragp->fr_literal + fragp->fr_fix;
17800 insn = read_insn (buf);
17801
17802 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17803 {
17804 /* We generate a fixup instead of applying it right now
17805 because, if there are linker relaxations, we're going to
17806 need the relocations. */
17807 exp.X_op = O_symbol;
17808 exp.X_add_symbol = fragp->fr_symbol;
17809 exp.X_add_number = fragp->fr_offset;
17810
17811 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17812 BFD_RELOC_16_PCREL_S2);
17813 fixp->fx_file = fragp->fr_file;
17814 fixp->fx_line = fragp->fr_line;
17815
17816 buf = write_insn (buf, insn);
17817 }
17818 else
17819 {
17820 int i;
17821
17822 as_warn_where (fragp->fr_file, fragp->fr_line,
17823 _("relaxed out-of-range branch into a jump"));
17824
17825 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17826 goto uncond;
17827
17828 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17829 {
17830 /* Reverse the branch. */
17831 switch ((insn >> 28) & 0xf)
17832 {
17833 case 4:
17834 if ((insn & 0xff000000) == 0x47000000
17835 || (insn & 0xff600000) == 0x45600000)
17836 {
17837 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17838 reversed by tweaking bit 23. */
17839 insn ^= 0x00800000;
17840 }
17841 else
17842 {
17843 /* bc[0-3][tf]l? instructions can have the condition
17844 reversed by tweaking a single TF bit, and their
17845 opcodes all have 0x4???????. */
17846 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17847 insn ^= 0x00010000;
17848 }
17849 break;
17850
17851 case 0:
17852 /* bltz 0x04000000 bgez 0x04010000
17853 bltzal 0x04100000 bgezal 0x04110000 */
17854 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17855 insn ^= 0x00010000;
17856 break;
17857
17858 case 1:
17859 /* beq 0x10000000 bne 0x14000000
17860 blez 0x18000000 bgtz 0x1c000000 */
17861 insn ^= 0x04000000;
17862 break;
17863
17864 default:
17865 abort ();
17866 }
17867 }
17868
17869 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17870 {
17871 /* Clear the and-link bit. */
17872 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17873
17874 /* bltzal 0x04100000 bgezal 0x04110000
17875 bltzall 0x04120000 bgezall 0x04130000 */
17876 insn &= ~0x00100000;
17877 }
17878
17879 /* Branch over the branch (if the branch was likely) or the
17880 full jump (not likely case). Compute the offset from the
17881 current instruction to branch to. */
17882 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17883 i = 16;
17884 else
17885 {
17886 /* How many bytes in instructions we've already emitted? */
17887 i = buf - fragp->fr_literal - fragp->fr_fix;
17888 /* How many bytes in instructions from here to the end? */
17889 i = fragp->fr_var - i;
17890 }
17891 /* Convert to instruction count. */
17892 i >>= 2;
17893 /* Branch counts from the next instruction. */
17894 i--;
17895 insn |= i;
17896 /* Branch over the jump. */
17897 buf = write_insn (buf, insn);
17898
17899 /* nop */
17900 buf = write_insn (buf, 0);
17901
17902 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17903 {
17904 /* beql $0, $0, 2f */
17905 insn = 0x50000000;
17906 /* Compute the PC offset from the current instruction to
17907 the end of the variable frag. */
17908 /* How many bytes in instructions we've already emitted? */
17909 i = buf - fragp->fr_literal - fragp->fr_fix;
17910 /* How many bytes in instructions from here to the end? */
17911 i = fragp->fr_var - i;
17912 /* Convert to instruction count. */
17913 i >>= 2;
17914 /* Don't decrement i, because we want to branch over the
17915 delay slot. */
17916 insn |= i;
17917
17918 buf = write_insn (buf, insn);
17919 buf = write_insn (buf, 0);
17920 }
17921
17922 uncond:
17923 if (mips_pic == NO_PIC)
17924 {
17925 /* j or jal. */
17926 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17927 ? 0x0c000000 : 0x08000000);
17928 exp.X_op = O_symbol;
17929 exp.X_add_symbol = fragp->fr_symbol;
17930 exp.X_add_number = fragp->fr_offset;
17931
17932 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17933 FALSE, BFD_RELOC_MIPS_JMP);
17934 fixp->fx_file = fragp->fr_file;
17935 fixp->fx_line = fragp->fr_line;
17936
17937 buf = write_insn (buf, insn);
17938 }
17939 else
17940 {
17941 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17942
17943 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17944 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17945 insn |= at << OP_SH_RT;
17946 exp.X_op = O_symbol;
17947 exp.X_add_symbol = fragp->fr_symbol;
17948 exp.X_add_number = fragp->fr_offset;
17949
17950 if (fragp->fr_offset)
17951 {
17952 exp.X_add_symbol = make_expr_symbol (&exp);
17953 exp.X_add_number = 0;
17954 }
17955
17956 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17957 FALSE, BFD_RELOC_MIPS_GOT16);
17958 fixp->fx_file = fragp->fr_file;
17959 fixp->fx_line = fragp->fr_line;
17960
17961 buf = write_insn (buf, insn);
17962
17963 if (mips_opts.isa == ISA_MIPS1)
17964 /* nop */
17965 buf = write_insn (buf, 0);
17966
17967 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17968 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17969 insn |= at << OP_SH_RS | at << OP_SH_RT;
17970
17971 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17972 FALSE, BFD_RELOC_LO16);
17973 fixp->fx_file = fragp->fr_file;
17974 fixp->fx_line = fragp->fr_line;
17975
17976 buf = write_insn (buf, insn);
17977
17978 /* j(al)r $at. */
17979 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17980 insn = 0x0000f809;
17981 else
17982 insn = 0x00000008;
17983 insn |= at << OP_SH_RS;
17984
17985 buf = write_insn (buf, insn);
17986 }
17987 }
17988
17989 fragp->fr_fix += fragp->fr_var;
17990 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17991 return;
17992 }
17993
17994 /* Relax microMIPS branches. */
17995 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17996 {
17997 char *buf = fragp->fr_literal + fragp->fr_fix;
17998 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17999 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18000 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18001 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18002 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18003 bfd_boolean short_ds;
18004 unsigned long insn;
18005 expressionS exp;
18006 fixS *fixp;
18007
18008 exp.X_op = O_symbol;
18009 exp.X_add_symbol = fragp->fr_symbol;
18010 exp.X_add_number = fragp->fr_offset;
18011
18012 fragp->fr_fix += fragp->fr_var;
18013
18014 /* Handle 16-bit branches that fit or are forced to fit. */
18015 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18016 {
18017 /* We generate a fixup instead of applying it right now,
18018 because if there is linker relaxation, we're going to
18019 need the relocations. */
18020 if (type == 'D')
18021 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18022 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18023 else if (type == 'E')
18024 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18025 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18026 else
18027 abort ();
18028
18029 fixp->fx_file = fragp->fr_file;
18030 fixp->fx_line = fragp->fr_line;
18031
18032 /* These relocations can have an addend that won't fit in
18033 2 octets. */
18034 fixp->fx_no_overflow = 1;
18035
18036 return;
18037 }
18038
18039 /* Handle 32-bit branches that fit or are forced to fit. */
18040 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18041 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18042 {
18043 /* We generate a fixup instead of applying it right now,
18044 because if there is linker relaxation, we're going to
18045 need the relocations. */
18046 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18047 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18048 fixp->fx_file = fragp->fr_file;
18049 fixp->fx_line = fragp->fr_line;
18050
18051 if (type == 0)
18052 {
18053 insn = read_compressed_insn (buf, 4);
18054 buf += 4;
18055
18056 if (nods)
18057 {
18058 /* Check the short-delay-slot bit. */
18059 if (!al || (insn & 0x02000000) != 0)
18060 buf = write_compressed_insn (buf, 0x0c00, 2);
18061 else
18062 buf = write_compressed_insn (buf, 0x00000000, 4);
18063 }
18064
18065 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18066 return;
18067 }
18068 }
18069
18070 /* Relax 16-bit branches to 32-bit branches. */
18071 if (type != 0)
18072 {
18073 insn = read_compressed_insn (buf, 2);
18074
18075 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18076 insn = 0x94000000; /* beq */
18077 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18078 {
18079 unsigned long regno;
18080
18081 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18082 regno = micromips_to_32_reg_d_map [regno];
18083 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18084 insn |= regno << MICROMIPSOP_SH_RS;
18085 }
18086 else
18087 abort ();
18088
18089 /* Nothing else to do, just write it out. */
18090 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18091 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18092 {
18093 buf = write_compressed_insn (buf, insn, 4);
18094 if (nods)
18095 buf = write_compressed_insn (buf, 0x0c00, 2);
18096 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18097 return;
18098 }
18099 }
18100 else
18101 insn = read_compressed_insn (buf, 4);
18102
18103 /* Relax 32-bit branches to a sequence of instructions. */
18104 as_warn_where (fragp->fr_file, fragp->fr_line,
18105 _("relaxed out-of-range branch into a jump"));
18106
18107 /* Set the short-delay-slot bit. */
18108 short_ds = !al || (insn & 0x02000000) != 0;
18109
18110 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18111 {
18112 symbolS *l;
18113
18114 /* Reverse the branch. */
18115 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18116 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18117 insn ^= 0x20000000;
18118 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18119 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18120 || (insn & 0xffe00000) == 0x40800000 /* blez */
18121 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18122 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18123 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18124 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18125 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18126 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18127 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18128 insn ^= 0x00400000;
18129 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18130 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18131 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18132 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18133 insn ^= 0x00200000;
18134 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18135 BNZ.df */
18136 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18137 BNZ.V */
18138 insn ^= 0x00800000;
18139 else
18140 abort ();
18141
18142 if (al)
18143 {
18144 /* Clear the and-link and short-delay-slot bits. */
18145 gas_assert ((insn & 0xfda00000) == 0x40200000);
18146
18147 /* bltzal 0x40200000 bgezal 0x40600000 */
18148 /* bltzals 0x42200000 bgezals 0x42600000 */
18149 insn &= ~0x02200000;
18150 }
18151
18152 /* Make a label at the end for use with the branch. */
18153 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18154 micromips_label_inc ();
18155 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18156
18157 /* Refer to it. */
18158 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18159 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18160 fixp->fx_file = fragp->fr_file;
18161 fixp->fx_line = fragp->fr_line;
18162
18163 /* Branch over the jump. */
18164 buf = write_compressed_insn (buf, insn, 4);
18165
18166 if (!compact)
18167 {
18168 /* nop */
18169 if (insn32)
18170 buf = write_compressed_insn (buf, 0x00000000, 4);
18171 else
18172 buf = write_compressed_insn (buf, 0x0c00, 2);
18173 }
18174 }
18175
18176 if (mips_pic == NO_PIC)
18177 {
18178 unsigned long jal = (short_ds || nods
18179 ? 0x74000000 : 0xf4000000); /* jal/s */
18180
18181 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18182 insn = al ? jal : 0xd4000000;
18183
18184 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18185 BFD_RELOC_MICROMIPS_JMP);
18186 fixp->fx_file = fragp->fr_file;
18187 fixp->fx_line = fragp->fr_line;
18188
18189 buf = write_compressed_insn (buf, insn, 4);
18190
18191 if (compact || nods)
18192 {
18193 /* nop */
18194 if (insn32)
18195 buf = write_compressed_insn (buf, 0x00000000, 4);
18196 else
18197 buf = write_compressed_insn (buf, 0x0c00, 2);
18198 }
18199 }
18200 else
18201 {
18202 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18203
18204 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18205 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18206 insn |= at << MICROMIPSOP_SH_RT;
18207
18208 if (exp.X_add_number)
18209 {
18210 exp.X_add_symbol = make_expr_symbol (&exp);
18211 exp.X_add_number = 0;
18212 }
18213
18214 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18215 BFD_RELOC_MICROMIPS_GOT16);
18216 fixp->fx_file = fragp->fr_file;
18217 fixp->fx_line = fragp->fr_line;
18218
18219 buf = write_compressed_insn (buf, insn, 4);
18220
18221 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18222 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18223 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18224
18225 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18226 BFD_RELOC_MICROMIPS_LO16);
18227 fixp->fx_file = fragp->fr_file;
18228 fixp->fx_line = fragp->fr_line;
18229
18230 buf = write_compressed_insn (buf, insn, 4);
18231
18232 if (insn32)
18233 {
18234 /* jr/jalr $at */
18235 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18236 insn |= at << MICROMIPSOP_SH_RS;
18237
18238 buf = write_compressed_insn (buf, insn, 4);
18239
18240 if (compact || nods)
18241 /* nop */
18242 buf = write_compressed_insn (buf, 0x00000000, 4);
18243 }
18244 else
18245 {
18246 /* jr/jrc/jalr/jalrs $at */
18247 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18248 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18249
18250 insn = al ? jalr : jr;
18251 insn |= at << MICROMIPSOP_SH_MJ;
18252
18253 buf = write_compressed_insn (buf, insn, 2);
18254 if (al && nods)
18255 {
18256 /* nop */
18257 if (short_ds)
18258 buf = write_compressed_insn (buf, 0x0c00, 2);
18259 else
18260 buf = write_compressed_insn (buf, 0x00000000, 4);
18261 }
18262 }
18263 }
18264
18265 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18266 return;
18267 }
18268
18269 if (RELAX_MIPS16_P (fragp->fr_subtype))
18270 {
18271 int type;
18272 const struct mips_int_operand *operand;
18273 offsetT val;
18274 char *buf;
18275 unsigned int user_length, length;
18276 bfd_boolean need_reloc;
18277 unsigned long insn;
18278 bfd_boolean ext;
18279 segT symsec;
18280
18281 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18282 operand = mips16_immed_operand (type, FALSE);
18283
18284 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18285 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18286
18287 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18288 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18289 || (operand->root.type == OP_PCREL
18290 ? asec != symsec
18291 : !bfd_is_abs_section (symsec)));
18292
18293 if (operand->root.type == OP_PCREL)
18294 {
18295 const struct mips_pcrel_operand *pcrel_op;
18296 addressT addr;
18297
18298 pcrel_op = (const struct mips_pcrel_operand *) operand;
18299 addr = fragp->fr_address + fragp->fr_fix;
18300
18301 /* The rules for the base address of a PC relative reloc are
18302 complicated; see mips16_extended_frag. */
18303 if (pcrel_op->include_isa_bit)
18304 {
18305 if (!need_reloc)
18306 {
18307 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18308 as_bad_where (fragp->fr_file, fragp->fr_line,
18309 _("branch to a symbol in another ISA mode"));
18310 else if ((fragp->fr_offset & 0x1) != 0)
18311 as_bad_where (fragp->fr_file, fragp->fr_line,
18312 _("branch to misaligned address (0x%lx)"),
18313 (long) val);
18314 }
18315 addr += 2;
18316 if (ext)
18317 addr += 2;
18318 /* Ignore the low bit in the target, since it will be
18319 set for a text label. */
18320 val &= -2;
18321 }
18322 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18323 addr -= 4;
18324 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18325 addr -= 2;
18326
18327 addr &= -(1 << pcrel_op->align_log2);
18328 val -= addr;
18329
18330 /* Make sure the section winds up with the alignment we have
18331 assumed. */
18332 if (operand->shift > 0)
18333 record_alignment (asec, operand->shift);
18334 }
18335
18336 if (ext
18337 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18338 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18339 as_warn_where (fragp->fr_file, fragp->fr_line,
18340 _("extended instruction in delay slot"));
18341
18342 buf = fragp->fr_literal + fragp->fr_fix;
18343
18344 insn = read_compressed_insn (buf, 2);
18345 if (ext)
18346 insn |= MIPS16_EXTEND;
18347
18348 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18349 user_length = 4;
18350 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18351 user_length = 2;
18352 else
18353 user_length = 0;
18354
18355 if (need_reloc)
18356 {
18357 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18358 expressionS exp;
18359 fixS *fixp;
18360
18361 switch (type)
18362 {
18363 case 'p':
18364 case 'q':
18365 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18366 break;
18367 default:
18368 as_bad_where (fragp->fr_file, fragp->fr_line,
18369 _("unsupported relocation"));
18370 break;
18371 }
18372 if (reloc != BFD_RELOC_NONE)
18373 {
18374 gas_assert (ext);
18375
18376 exp.X_op = O_symbol;
18377 exp.X_add_symbol = fragp->fr_symbol;
18378 exp.X_add_number = fragp->fr_offset;
18379
18380 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18381 TRUE, reloc);
18382
18383 fixp->fx_file = fragp->fr_file;
18384 fixp->fx_line = fragp->fr_line;
18385
18386 /* These relocations can have an addend that won't fit
18387 in 2 octets. */
18388 fixp->fx_no_overflow = 1;
18389 }
18390 }
18391 else
18392 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18393 BFD_RELOC_UNUSED, val, user_length, &insn);
18394
18395 length = (ext ? 4 : 2);
18396 gas_assert (mips16_opcode_length (insn) == length);
18397 write_compressed_insn (buf, insn, length);
18398 fragp->fr_fix += length;
18399 }
18400 else
18401 {
18402 relax_substateT subtype = fragp->fr_subtype;
18403 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18404 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18405 int first, second;
18406 fixS *fixp;
18407
18408 first = RELAX_FIRST (subtype);
18409 second = RELAX_SECOND (subtype);
18410 fixp = (fixS *) fragp->fr_opcode;
18411
18412 /* If the delay slot chosen does not match the size of the instruction,
18413 then emit a warning. */
18414 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18415 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18416 {
18417 relax_substateT s;
18418 const char *msg;
18419
18420 s = subtype & (RELAX_DELAY_SLOT_16BIT
18421 | RELAX_DELAY_SLOT_SIZE_FIRST
18422 | RELAX_DELAY_SLOT_SIZE_SECOND);
18423 msg = macro_warning (s);
18424 if (msg != NULL)
18425 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18426 subtype &= ~s;
18427 }
18428
18429 /* Possibly emit a warning if we've chosen the longer option. */
18430 if (use_second == second_longer)
18431 {
18432 relax_substateT s;
18433 const char *msg;
18434
18435 s = (subtype
18436 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18437 msg = macro_warning (s);
18438 if (msg != NULL)
18439 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18440 subtype &= ~s;
18441 }
18442
18443 /* Go through all the fixups for the first sequence. Disable them
18444 (by marking them as done) if we're going to use the second
18445 sequence instead. */
18446 while (fixp
18447 && fixp->fx_frag == fragp
18448 && fixp->fx_where < fragp->fr_fix - second)
18449 {
18450 if (subtype & RELAX_USE_SECOND)
18451 fixp->fx_done = 1;
18452 fixp = fixp->fx_next;
18453 }
18454
18455 /* Go through the fixups for the second sequence. Disable them if
18456 we're going to use the first sequence, otherwise adjust their
18457 addresses to account for the relaxation. */
18458 while (fixp && fixp->fx_frag == fragp)
18459 {
18460 if (subtype & RELAX_USE_SECOND)
18461 fixp->fx_where -= first;
18462 else
18463 fixp->fx_done = 1;
18464 fixp = fixp->fx_next;
18465 }
18466
18467 /* Now modify the frag contents. */
18468 if (subtype & RELAX_USE_SECOND)
18469 {
18470 char *start;
18471
18472 start = fragp->fr_literal + fragp->fr_fix - first - second;
18473 memmove (start, start + first, second);
18474 fragp->fr_fix -= first;
18475 }
18476 else
18477 fragp->fr_fix -= second;
18478 }
18479}
18480
18481/* This function is called after the relocs have been generated.
18482 We've been storing mips16 text labels as odd. Here we convert them
18483 back to even for the convenience of the debugger. */
18484
18485void
18486mips_frob_file_after_relocs (void)
18487{
18488 asymbol **syms;
18489 unsigned int count, i;
18490
18491 syms = bfd_get_outsymbols (stdoutput);
18492 count = bfd_get_symcount (stdoutput);
18493 for (i = 0; i < count; i++, syms++)
18494 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18495 && ((*syms)->value & 1) != 0)
18496 {
18497 (*syms)->value &= ~1;
18498 /* If the symbol has an odd size, it was probably computed
18499 incorrectly, so adjust that as well. */
18500 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18501 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18502 }
18503}
18504
18505/* This function is called whenever a label is defined, including fake
18506 labels instantiated off the dot special symbol. It is used when
18507 handling branch delays; if a branch has a label, we assume we cannot
18508 move it. This also bumps the value of the symbol by 1 in compressed
18509 code. */
18510
18511static void
18512mips_record_label (symbolS *sym)
18513{
18514 segment_info_type *si = seg_info (now_seg);
18515 struct insn_label_list *l;
18516
18517 if (free_insn_labels == NULL)
18518 l = XNEW (struct insn_label_list);
18519 else
18520 {
18521 l = free_insn_labels;
18522 free_insn_labels = l->next;
18523 }
18524
18525 l->label = sym;
18526 l->next = si->label_list;
18527 si->label_list = l;
18528}
18529
18530/* This function is called as tc_frob_label() whenever a label is defined
18531 and adds a DWARF-2 record we only want for true labels. */
18532
18533void
18534mips_define_label (symbolS *sym)
18535{
18536 mips_record_label (sym);
18537 dwarf2_emit_label (sym);
18538}
18539
18540/* This function is called by tc_new_dot_label whenever a new dot symbol
18541 is defined. */
18542
18543void
18544mips_add_dot_label (symbolS *sym)
18545{
18546 mips_record_label (sym);
18547 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18548 mips_compressed_mark_label (sym);
18549}
18550\f
18551/* Converting ASE flags from internal to .MIPS.abiflags values. */
18552static unsigned int
18553mips_convert_ase_flags (int ase)
18554{
18555 unsigned int ext_ases = 0;
18556
18557 if (ase & ASE_DSP)
18558 ext_ases |= AFL_ASE_DSP;
18559 if (ase & ASE_DSPR2)
18560 ext_ases |= AFL_ASE_DSPR2;
18561 if (ase & ASE_DSPR3)
18562 ext_ases |= AFL_ASE_DSPR3;
18563 if (ase & ASE_EVA)
18564 ext_ases |= AFL_ASE_EVA;
18565 if (ase & ASE_MCU)
18566 ext_ases |= AFL_ASE_MCU;
18567 if (ase & ASE_MDMX)
18568 ext_ases |= AFL_ASE_MDMX;
18569 if (ase & ASE_MIPS3D)
18570 ext_ases |= AFL_ASE_MIPS3D;
18571 if (ase & ASE_MT)
18572 ext_ases |= AFL_ASE_MT;
18573 if (ase & ASE_SMARTMIPS)
18574 ext_ases |= AFL_ASE_SMARTMIPS;
18575 if (ase & ASE_VIRT)
18576 ext_ases |= AFL_ASE_VIRT;
18577 if (ase & ASE_MSA)
18578 ext_ases |= AFL_ASE_MSA;
18579 if (ase & ASE_XPA)
18580 ext_ases |= AFL_ASE_XPA;
18581
18582 return ext_ases;
18583}
18584/* Some special processing for a MIPS ELF file. */
18585
18586void
18587mips_elf_final_processing (void)
18588{
18589 int fpabi;
18590 Elf_Internal_ABIFlags_v0 flags;
18591
18592 flags.version = 0;
18593 flags.isa_rev = 0;
18594 switch (file_mips_opts.isa)
18595 {
18596 case INSN_ISA1:
18597 flags.isa_level = 1;
18598 break;
18599 case INSN_ISA2:
18600 flags.isa_level = 2;
18601 break;
18602 case INSN_ISA3:
18603 flags.isa_level = 3;
18604 break;
18605 case INSN_ISA4:
18606 flags.isa_level = 4;
18607 break;
18608 case INSN_ISA5:
18609 flags.isa_level = 5;
18610 break;
18611 case INSN_ISA32:
18612 flags.isa_level = 32;
18613 flags.isa_rev = 1;
18614 break;
18615 case INSN_ISA32R2:
18616 flags.isa_level = 32;
18617 flags.isa_rev = 2;
18618 break;
18619 case INSN_ISA32R3:
18620 flags.isa_level = 32;
18621 flags.isa_rev = 3;
18622 break;
18623 case INSN_ISA32R5:
18624 flags.isa_level = 32;
18625 flags.isa_rev = 5;
18626 break;
18627 case INSN_ISA32R6:
18628 flags.isa_level = 32;
18629 flags.isa_rev = 6;
18630 break;
18631 case INSN_ISA64:
18632 flags.isa_level = 64;
18633 flags.isa_rev = 1;
18634 break;
18635 case INSN_ISA64R2:
18636 flags.isa_level = 64;
18637 flags.isa_rev = 2;
18638 break;
18639 case INSN_ISA64R3:
18640 flags.isa_level = 64;
18641 flags.isa_rev = 3;
18642 break;
18643 case INSN_ISA64R5:
18644 flags.isa_level = 64;
18645 flags.isa_rev = 5;
18646 break;
18647 case INSN_ISA64R6:
18648 flags.isa_level = 64;
18649 flags.isa_rev = 6;
18650 break;
18651 }
18652
18653 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18654 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18655 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18656 : (file_mips_opts.fp == 64) ? AFL_REG_64
18657 : AFL_REG_32;
18658 flags.cpr2_size = AFL_REG_NONE;
18659 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18660 Tag_GNU_MIPS_ABI_FP);
18661 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18662 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18663 if (file_ase_mips16)
18664 flags.ases |= AFL_ASE_MIPS16;
18665 if (file_ase_micromips)
18666 flags.ases |= AFL_ASE_MICROMIPS;
18667 flags.flags1 = 0;
18668 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18669 || file_mips_opts.fp == 64)
18670 && file_mips_opts.oddspreg)
18671 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18672 flags.flags2 = 0;
18673
18674 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18675 ((Elf_External_ABIFlags_v0 *)
18676 mips_flags_frag));
18677
18678 /* Write out the register information. */
18679 if (mips_abi != N64_ABI)
18680 {
18681 Elf32_RegInfo s;
18682
18683 s.ri_gprmask = mips_gprmask;
18684 s.ri_cprmask[0] = mips_cprmask[0];
18685 s.ri_cprmask[1] = mips_cprmask[1];
18686 s.ri_cprmask[2] = mips_cprmask[2];
18687 s.ri_cprmask[3] = mips_cprmask[3];
18688 /* The gp_value field is set by the MIPS ELF backend. */
18689
18690 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18691 ((Elf32_External_RegInfo *)
18692 mips_regmask_frag));
18693 }
18694 else
18695 {
18696 Elf64_Internal_RegInfo s;
18697
18698 s.ri_gprmask = mips_gprmask;
18699 s.ri_pad = 0;
18700 s.ri_cprmask[0] = mips_cprmask[0];
18701 s.ri_cprmask[1] = mips_cprmask[1];
18702 s.ri_cprmask[2] = mips_cprmask[2];
18703 s.ri_cprmask[3] = mips_cprmask[3];
18704 /* The gp_value field is set by the MIPS ELF backend. */
18705
18706 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18707 ((Elf64_External_RegInfo *)
18708 mips_regmask_frag));
18709 }
18710
18711 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18712 sort of BFD interface for this. */
18713 if (mips_any_noreorder)
18714 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18715 if (mips_pic != NO_PIC)
18716 {
18717 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18718 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18719 }
18720 if (mips_abicalls)
18721 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18722
18723 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18724 defined at present; this might need to change in future. */
18725 if (file_ase_mips16)
18726 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18727 if (file_ase_micromips)
18728 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18729 if (file_mips_opts.ase & ASE_MDMX)
18730 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18731
18732 /* Set the MIPS ELF ABI flags. */
18733 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18734 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18735 else if (mips_abi == O64_ABI)
18736 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18737 else if (mips_abi == EABI_ABI)
18738 {
18739 if (file_mips_opts.gp == 64)
18740 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18741 else
18742 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18743 }
18744 else if (mips_abi == N32_ABI)
18745 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18746
18747 /* Nothing to do for N64_ABI. */
18748
18749 if (mips_32bitmode)
18750 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18751
18752 if (mips_nan2008 == 1)
18753 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18754
18755 /* 32 bit code with 64 bit FP registers. */
18756 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18757 Tag_GNU_MIPS_ABI_FP);
18758 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18759 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18760}
18761\f
18762typedef struct proc {
18763 symbolS *func_sym;
18764 symbolS *func_end_sym;
18765 unsigned long reg_mask;
18766 unsigned long reg_offset;
18767 unsigned long fpreg_mask;
18768 unsigned long fpreg_offset;
18769 unsigned long frame_offset;
18770 unsigned long frame_reg;
18771 unsigned long pc_reg;
18772} procS;
18773
18774static procS cur_proc;
18775static procS *cur_proc_ptr;
18776static int numprocs;
18777
18778/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18779 as "2", and a normal nop as "0". */
18780
18781#define NOP_OPCODE_MIPS 0
18782#define NOP_OPCODE_MIPS16 1
18783#define NOP_OPCODE_MICROMIPS 2
18784
18785char
18786mips_nop_opcode (void)
18787{
18788 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18789 return NOP_OPCODE_MICROMIPS;
18790 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18791 return NOP_OPCODE_MIPS16;
18792 else
18793 return NOP_OPCODE_MIPS;
18794}
18795
18796/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18797 32-bit microMIPS NOPs here (if applicable). */
18798
18799void
18800mips_handle_align (fragS *fragp)
18801{
18802 char nop_opcode;
18803 char *p;
18804 int bytes, size, excess;
18805 valueT opcode;
18806
18807 if (fragp->fr_type != rs_align_code)
18808 return;
18809
18810 p = fragp->fr_literal + fragp->fr_fix;
18811 nop_opcode = *p;
18812 switch (nop_opcode)
18813 {
18814 case NOP_OPCODE_MICROMIPS:
18815 opcode = micromips_nop32_insn.insn_opcode;
18816 size = 4;
18817 break;
18818 case NOP_OPCODE_MIPS16:
18819 opcode = mips16_nop_insn.insn_opcode;
18820 size = 2;
18821 break;
18822 case NOP_OPCODE_MIPS:
18823 default:
18824 opcode = nop_insn.insn_opcode;
18825 size = 4;
18826 break;
18827 }
18828
18829 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18830 excess = bytes % size;
18831
18832 /* Handle the leading part if we're not inserting a whole number of
18833 instructions, and make it the end of the fixed part of the frag.
18834 Try to fit in a short microMIPS NOP if applicable and possible,
18835 and use zeroes otherwise. */
18836 gas_assert (excess < 4);
18837 fragp->fr_fix += excess;
18838 switch (excess)
18839 {
18840 case 3:
18841 *p++ = '\0';
18842 /* Fall through. */
18843 case 2:
18844 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18845 {
18846 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18847 break;
18848 }
18849 *p++ = '\0';
18850 /* Fall through. */
18851 case 1:
18852 *p++ = '\0';
18853 /* Fall through. */
18854 case 0:
18855 break;
18856 }
18857
18858 md_number_to_chars (p, opcode, size);
18859 fragp->fr_var = size;
18860}
18861
18862static long
18863get_number (void)
18864{
18865 int negative = 0;
18866 long val = 0;
18867
18868 if (*input_line_pointer == '-')
18869 {
18870 ++input_line_pointer;
18871 negative = 1;
18872 }
18873 if (!ISDIGIT (*input_line_pointer))
18874 as_bad (_("expected simple number"));
18875 if (input_line_pointer[0] == '0')
18876 {
18877 if (input_line_pointer[1] == 'x')
18878 {
18879 input_line_pointer += 2;
18880 while (ISXDIGIT (*input_line_pointer))
18881 {
18882 val <<= 4;
18883 val |= hex_value (*input_line_pointer++);
18884 }
18885 return negative ? -val : val;
18886 }
18887 else
18888 {
18889 ++input_line_pointer;
18890 while (ISDIGIT (*input_line_pointer))
18891 {
18892 val <<= 3;
18893 val |= *input_line_pointer++ - '0';
18894 }
18895 return negative ? -val : val;
18896 }
18897 }
18898 if (!ISDIGIT (*input_line_pointer))
18899 {
18900 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18901 *input_line_pointer, *input_line_pointer);
18902 as_warn (_("invalid number"));
18903 return -1;
18904 }
18905 while (ISDIGIT (*input_line_pointer))
18906 {
18907 val *= 10;
18908 val += *input_line_pointer++ - '0';
18909 }
18910 return negative ? -val : val;
18911}
18912
18913/* The .file directive; just like the usual .file directive, but there
18914 is an initial number which is the ECOFF file index. In the non-ECOFF
18915 case .file implies DWARF-2. */
18916
18917static void
18918s_mips_file (int x ATTRIBUTE_UNUSED)
18919{
18920 static int first_file_directive = 0;
18921
18922 if (ECOFF_DEBUGGING)
18923 {
18924 get_number ();
18925 s_app_file (0);
18926 }
18927 else
18928 {
18929 char *filename;
18930
18931 filename = dwarf2_directive_file (0);
18932
18933 /* Versions of GCC up to 3.1 start files with a ".file"
18934 directive even for stabs output. Make sure that this
18935 ".file" is handled. Note that you need a version of GCC
18936 after 3.1 in order to support DWARF-2 on MIPS. */
18937 if (filename != NULL && ! first_file_directive)
18938 {
18939 (void) new_logical_line (filename, -1);
18940 s_app_file_string (filename, 0);
18941 }
18942 first_file_directive = 1;
18943 }
18944}
18945
18946/* The .loc directive, implying DWARF-2. */
18947
18948static void
18949s_mips_loc (int x ATTRIBUTE_UNUSED)
18950{
18951 if (!ECOFF_DEBUGGING)
18952 dwarf2_directive_loc (0);
18953}
18954
18955/* The .end directive. */
18956
18957static void
18958s_mips_end (int x ATTRIBUTE_UNUSED)
18959{
18960 symbolS *p;
18961
18962 /* Following functions need their own .frame and .cprestore directives. */
18963 mips_frame_reg_valid = 0;
18964 mips_cprestore_valid = 0;
18965
18966 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18967 {
18968 p = get_symbol ();
18969 demand_empty_rest_of_line ();
18970 }
18971 else
18972 p = NULL;
18973
18974 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18975 as_warn (_(".end not in text section"));
18976
18977 if (!cur_proc_ptr)
18978 {
18979 as_warn (_(".end directive without a preceding .ent directive"));
18980 demand_empty_rest_of_line ();
18981 return;
18982 }
18983
18984 if (p != NULL)
18985 {
18986 gas_assert (S_GET_NAME (p));
18987 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18988 as_warn (_(".end symbol does not match .ent symbol"));
18989
18990 if (debug_type == DEBUG_STABS)
18991 stabs_generate_asm_endfunc (S_GET_NAME (p),
18992 S_GET_NAME (p));
18993 }
18994 else
18995 as_warn (_(".end directive missing or unknown symbol"));
18996
18997 /* Create an expression to calculate the size of the function. */
18998 if (p && cur_proc_ptr)
18999 {
19000 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19001 expressionS *exp = XNEW (expressionS);
19002
19003 obj->size = exp;
19004 exp->X_op = O_subtract;
19005 exp->X_add_symbol = symbol_temp_new_now ();
19006 exp->X_op_symbol = p;
19007 exp->X_add_number = 0;
19008
19009 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19010 }
19011
19012 /* Generate a .pdr section. */
19013 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19014 {
19015 segT saved_seg = now_seg;
19016 subsegT saved_subseg = now_subseg;
19017 expressionS exp;
19018 char *fragp;
19019
19020#ifdef md_flush_pending_output
19021 md_flush_pending_output ();
19022#endif
19023
19024 gas_assert (pdr_seg);
19025 subseg_set (pdr_seg, 0);
19026
19027 /* Write the symbol. */
19028 exp.X_op = O_symbol;
19029 exp.X_add_symbol = p;
19030 exp.X_add_number = 0;
19031 emit_expr (&exp, 4);
19032
19033 fragp = frag_more (7 * 4);
19034
19035 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19036 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19037 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19038 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19039 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19040 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19041 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19042
19043 subseg_set (saved_seg, saved_subseg);
19044 }
19045
19046 cur_proc_ptr = NULL;
19047}
19048
19049/* The .aent and .ent directives. */
19050
19051static void
19052s_mips_ent (int aent)
19053{
19054 symbolS *symbolP;
19055
19056 symbolP = get_symbol ();
19057 if (*input_line_pointer == ',')
19058 ++input_line_pointer;
19059 SKIP_WHITESPACE ();
19060 if (ISDIGIT (*input_line_pointer)
19061 || *input_line_pointer == '-')
19062 get_number ();
19063
19064 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19065 as_warn (_(".ent or .aent not in text section"));
19066
19067 if (!aent && cur_proc_ptr)
19068 as_warn (_("missing .end"));
19069
19070 if (!aent)
19071 {
19072 /* This function needs its own .frame and .cprestore directives. */
19073 mips_frame_reg_valid = 0;
19074 mips_cprestore_valid = 0;
19075
19076 cur_proc_ptr = &cur_proc;
19077 memset (cur_proc_ptr, '\0', sizeof (procS));
19078
19079 cur_proc_ptr->func_sym = symbolP;
19080
19081 ++numprocs;
19082
19083 if (debug_type == DEBUG_STABS)
19084 stabs_generate_asm_func (S_GET_NAME (symbolP),
19085 S_GET_NAME (symbolP));
19086 }
19087
19088 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19089
19090 demand_empty_rest_of_line ();
19091}
19092
19093/* The .frame directive. If the mdebug section is present (IRIX 5 native)
19094 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19095 s_mips_frame is used so that we can set the PDR information correctly.
19096 We can't use the ecoff routines because they make reference to the ecoff
19097 symbol table (in the mdebug section). */
19098
19099static void
19100s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19101{
19102 if (ECOFF_DEBUGGING)
19103 s_ignore (ignore);
19104 else
19105 {
19106 long val;
19107
19108 if (cur_proc_ptr == (procS *) NULL)
19109 {
19110 as_warn (_(".frame outside of .ent"));
19111 demand_empty_rest_of_line ();
19112 return;
19113 }
19114
19115 cur_proc_ptr->frame_reg = tc_get_register (1);
19116
19117 SKIP_WHITESPACE ();
19118 if (*input_line_pointer++ != ','
19119 || get_absolute_expression_and_terminator (&val) != ',')
19120 {
19121 as_warn (_("bad .frame directive"));
19122 --input_line_pointer;
19123 demand_empty_rest_of_line ();
19124 return;
19125 }
19126
19127 cur_proc_ptr->frame_offset = val;
19128 cur_proc_ptr->pc_reg = tc_get_register (0);
19129
19130 demand_empty_rest_of_line ();
19131 }
19132}
19133
19134/* The .fmask and .mask directives. If the mdebug section is present
19135 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19136 embedded targets, s_mips_mask is used so that we can set the PDR
19137 information correctly. We can't use the ecoff routines because they
19138 make reference to the ecoff symbol table (in the mdebug section). */
19139
19140static void
19141s_mips_mask (int reg_type)
19142{
19143 if (ECOFF_DEBUGGING)
19144 s_ignore (reg_type);
19145 else
19146 {
19147 long mask, off;
19148
19149 if (cur_proc_ptr == (procS *) NULL)
19150 {
19151 as_warn (_(".mask/.fmask outside of .ent"));
19152 demand_empty_rest_of_line ();
19153 return;
19154 }
19155
19156 if (get_absolute_expression_and_terminator (&mask) != ',')
19157 {
19158 as_warn (_("bad .mask/.fmask directive"));
19159 --input_line_pointer;
19160 demand_empty_rest_of_line ();
19161 return;
19162 }
19163
19164 off = get_absolute_expression ();
19165
19166 if (reg_type == 'F')
19167 {
19168 cur_proc_ptr->fpreg_mask = mask;
19169 cur_proc_ptr->fpreg_offset = off;
19170 }
19171 else
19172 {
19173 cur_proc_ptr->reg_mask = mask;
19174 cur_proc_ptr->reg_offset = off;
19175 }
19176
19177 demand_empty_rest_of_line ();
19178 }
19179}
19180
19181/* A table describing all the processors gas knows about. Names are
19182 matched in the order listed.
19183
19184 To ease comparison, please keep this table in the same order as
19185 gcc's mips_cpu_info_table[]. */
19186static const struct mips_cpu_info mips_cpu_info_table[] =
19187{
19188 /* Entries for generic ISAs */
19189 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19190 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19191 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19192 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19193 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19194 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19195 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19196 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19197 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19198 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19199 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19200 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19201 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19202 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19203 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19204
19205 /* MIPS I */
19206 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19207 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19208 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19209
19210 /* MIPS II */
19211 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19212
19213 /* MIPS III */
19214 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19215 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19216 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19217 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19218 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19219 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19220 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19221 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19222 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19223 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19224 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19225 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19226 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19227 /* ST Microelectronics Loongson 2E and 2F cores */
19228 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19229 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19230
19231 /* MIPS IV */
19232 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19233 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19234 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19235 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19236 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19237 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19238 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19239 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19240 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19241 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19242 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19243 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19244 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19245 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19246 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19247
19248 /* MIPS 32 */
19249 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19250 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19251 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19252 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19253
19254 /* MIPS 32 Release 2 */
19255 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19256 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19257 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19258 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19259 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19260 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19261 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19262 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19263 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19264 ISA_MIPS32R2, CPU_MIPS32R2 },
19265 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19266 ISA_MIPS32R2, CPU_MIPS32R2 },
19267 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19268 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19269 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19270 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19271 /* Deprecated forms of the above. */
19272 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19273 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19274 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19275 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19276 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19277 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19278 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19279 /* Deprecated forms of the above. */
19280 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19281 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19282 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19283 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19284 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19285 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19286 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19287 /* Deprecated forms of the above. */
19288 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19289 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19290 /* 34Kn is a 34kc without DSP. */
19291 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19292 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19293 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19294 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19295 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19296 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19297 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19298 /* Deprecated forms of the above. */
19299 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19300 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19301 /* 1004K cores are multiprocessor versions of the 34K. */
19302 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19303 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19304 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19305 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19306 /* interaptiv is the new name for 1004kf */
19307 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19308 /* M5100 family */
19309 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19310 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19311 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19312 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19313
19314 /* MIPS 64 */
19315 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19316 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19317 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19318 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19319
19320 /* Broadcom SB-1 CPU core */
19321 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19322 /* Broadcom SB-1A CPU core */
19323 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19324
19325 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19326
19327 /* MIPS 64 Release 2 */
19328
19329 /* Cavium Networks Octeon CPU core */
19330 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19331 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19332 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19333 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19334
19335 /* RMI Xlr */
19336 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19337
19338 /* Broadcom XLP.
19339 XLP is mostly like XLR, with the prominent exception that it is
19340 MIPS64R2 rather than MIPS64. */
19341 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19342
19343 /* MIPS 64 Release 6 */
19344 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19345 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19346
19347 /* End marker */
19348 { NULL, 0, 0, 0, 0 }
19349};
19350
19351
19352/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19353 with a final "000" replaced by "k". Ignore case.
19354
19355 Note: this function is shared between GCC and GAS. */
19356
19357static bfd_boolean
19358mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19359{
19360 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19361 given++, canonical++;
19362
19363 return ((*given == 0 && *canonical == 0)
19364 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19365}
19366
19367
19368/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19369 CPU name. We've traditionally allowed a lot of variation here.
19370
19371 Note: this function is shared between GCC and GAS. */
19372
19373static bfd_boolean
19374mips_matching_cpu_name_p (const char *canonical, const char *given)
19375{
19376 /* First see if the name matches exactly, or with a final "000"
19377 turned into "k". */
19378 if (mips_strict_matching_cpu_name_p (canonical, given))
19379 return TRUE;
19380
19381 /* If not, try comparing based on numerical designation alone.
19382 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19383 if (TOLOWER (*given) == 'r')
19384 given++;
19385 if (!ISDIGIT (*given))
19386 return FALSE;
19387
19388 /* Skip over some well-known prefixes in the canonical name,
19389 hoping to find a number there too. */
19390 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19391 canonical += 2;
19392 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19393 canonical += 2;
19394 else if (TOLOWER (canonical[0]) == 'r')
19395 canonical += 1;
19396
19397 return mips_strict_matching_cpu_name_p (canonical, given);
19398}
19399
19400
19401/* Parse an option that takes the name of a processor as its argument.
19402 OPTION is the name of the option and CPU_STRING is the argument.
19403 Return the corresponding processor enumeration if the CPU_STRING is
19404 recognized, otherwise report an error and return null.
19405
19406 A similar function exists in GCC. */
19407
19408static const struct mips_cpu_info *
19409mips_parse_cpu (const char *option, const char *cpu_string)
19410{
19411 const struct mips_cpu_info *p;
19412
19413 /* 'from-abi' selects the most compatible architecture for the given
19414 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19415 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19416 version. Look first at the -mgp options, if given, otherwise base
19417 the choice on MIPS_DEFAULT_64BIT.
19418
19419 Treat NO_ABI like the EABIs. One reason to do this is that the
19420 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19421 architecture. This code picks MIPS I for 'mips' and MIPS III for
19422 'mips64', just as we did in the days before 'from-abi'. */
19423 if (strcasecmp (cpu_string, "from-abi") == 0)
19424 {
19425 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19426 return mips_cpu_info_from_isa (ISA_MIPS1);
19427
19428 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19429 return mips_cpu_info_from_isa (ISA_MIPS3);
19430
19431 if (file_mips_opts.gp >= 0)
19432 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19433 ? ISA_MIPS1 : ISA_MIPS3);
19434
19435 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19436 ? ISA_MIPS3
19437 : ISA_MIPS1);
19438 }
19439
19440 /* 'default' has traditionally been a no-op. Probably not very useful. */
19441 if (strcasecmp (cpu_string, "default") == 0)
19442 return 0;
19443
19444 for (p = mips_cpu_info_table; p->name != 0; p++)
19445 if (mips_matching_cpu_name_p (p->name, cpu_string))
19446 return p;
19447
19448 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19449 return 0;
19450}
19451
19452/* Return the canonical processor information for ISA (a member of the
19453 ISA_MIPS* enumeration). */
19454
19455static const struct mips_cpu_info *
19456mips_cpu_info_from_isa (int isa)
19457{
19458 int i;
19459
19460 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19461 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19462 && isa == mips_cpu_info_table[i].isa)
19463 return (&mips_cpu_info_table[i]);
19464
19465 return NULL;
19466}
19467
19468static const struct mips_cpu_info *
19469mips_cpu_info_from_arch (int arch)
19470{
19471 int i;
19472
19473 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19474 if (arch == mips_cpu_info_table[i].cpu)
19475 return (&mips_cpu_info_table[i]);
19476
19477 return NULL;
19478}
19479\f
19480static void
19481show (FILE *stream, const char *string, int *col_p, int *first_p)
19482{
19483 if (*first_p)
19484 {
19485 fprintf (stream, "%24s", "");
19486 *col_p = 24;
19487 }
19488 else
19489 {
19490 fprintf (stream, ", ");
19491 *col_p += 2;
19492 }
19493
19494 if (*col_p + strlen (string) > 72)
19495 {
19496 fprintf (stream, "\n%24s", "");
19497 *col_p = 24;
19498 }
19499
19500 fprintf (stream, "%s", string);
19501 *col_p += strlen (string);
19502
19503 *first_p = 0;
19504}
19505
19506void
19507md_show_usage (FILE *stream)
19508{
19509 int column, first;
19510 size_t i;
19511
19512 fprintf (stream, _("\
19513MIPS options:\n\
19514-EB generate big endian output\n\
19515-EL generate little endian output\n\
19516-g, -g2 do not remove unneeded NOPs or swap branches\n\
19517-G NUM allow referencing objects up to NUM bytes\n\
19518 implicitly with the gp register [default 8]\n"));
19519 fprintf (stream, _("\
19520-mips1 generate MIPS ISA I instructions\n\
19521-mips2 generate MIPS ISA II instructions\n\
19522-mips3 generate MIPS ISA III instructions\n\
19523-mips4 generate MIPS ISA IV instructions\n\
19524-mips5 generate MIPS ISA V instructions\n\
19525-mips32 generate MIPS32 ISA instructions\n\
19526-mips32r2 generate MIPS32 release 2 ISA instructions\n\
19527-mips32r3 generate MIPS32 release 3 ISA instructions\n\
19528-mips32r5 generate MIPS32 release 5 ISA instructions\n\
19529-mips32r6 generate MIPS32 release 6 ISA instructions\n\
19530-mips64 generate MIPS64 ISA instructions\n\
19531-mips64r2 generate MIPS64 release 2 ISA instructions\n\
19532-mips64r3 generate MIPS64 release 3 ISA instructions\n\
19533-mips64r5 generate MIPS64 release 5 ISA instructions\n\
19534-mips64r6 generate MIPS64 release 6 ISA instructions\n\
19535-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19536
19537 first = 1;
19538
19539 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19540 show (stream, mips_cpu_info_table[i].name, &column, &first);
19541 show (stream, "from-abi", &column, &first);
19542 fputc ('\n', stream);
19543
19544 fprintf (stream, _("\
19545-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19546-no-mCPU don't generate code specific to CPU.\n\
19547 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19548
19549 first = 1;
19550
19551 show (stream, "3900", &column, &first);
19552 show (stream, "4010", &column, &first);
19553 show (stream, "4100", &column, &first);
19554 show (stream, "4650", &column, &first);
19555 fputc ('\n', stream);
19556
19557 fprintf (stream, _("\
19558-mips16 generate mips16 instructions\n\
19559-no-mips16 do not generate mips16 instructions\n"));
19560 fprintf (stream, _("\
19561-mmicromips generate microMIPS instructions\n\
19562-mno-micromips do not generate microMIPS instructions\n"));
19563 fprintf (stream, _("\
19564-msmartmips generate smartmips instructions\n\
19565-mno-smartmips do not generate smartmips instructions\n"));
19566 fprintf (stream, _("\
19567-mdsp generate DSP instructions\n\
19568-mno-dsp do not generate DSP instructions\n"));
19569 fprintf (stream, _("\
19570-mdspr2 generate DSP R2 instructions\n\
19571-mno-dspr2 do not generate DSP R2 instructions\n"));
19572 fprintf (stream, _("\
19573-mdspr3 generate DSP R3 instructions\n\
19574-mno-dspr3 do not generate DSP R3 instructions\n"));
19575 fprintf (stream, _("\
19576-mmt generate MT instructions\n\
19577-mno-mt do not generate MT instructions\n"));
19578 fprintf (stream, _("\
19579-mmcu generate MCU instructions\n\
19580-mno-mcu do not generate MCU instructions\n"));
19581 fprintf (stream, _("\
19582-mmsa generate MSA instructions\n\
19583-mno-msa do not generate MSA instructions\n"));
19584 fprintf (stream, _("\
19585-mxpa generate eXtended Physical Address (XPA) instructions\n\
19586-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19587 fprintf (stream, _("\
19588-mvirt generate Virtualization instructions\n\
19589-mno-virt do not generate Virtualization instructions\n"));
19590 fprintf (stream, _("\
19591-minsn32 only generate 32-bit microMIPS instructions\n\
19592-mno-insn32 generate all microMIPS instructions\n"));
19593 fprintf (stream, _("\
19594-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19595-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19596-mfix-vr4120 work around certain VR4120 errata\n\
19597-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19598-mfix-24k insert a nop after ERET and DERET instructions\n\
19599-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19600-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19601-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19602-msym32 assume all symbols have 32-bit values\n\
19603-O0 remove unneeded NOPs, do not swap branches\n\
19604-O remove unneeded NOPs and swap branches\n\
19605--trap, --no-break trap exception on div by 0 and mult overflow\n\
19606--break, --no-trap break exception on div by 0 and mult overflow\n"));
19607 fprintf (stream, _("\
19608-mhard-float allow floating-point instructions\n\
19609-msoft-float do not allow floating-point instructions\n\
19610-msingle-float only allow 32-bit floating-point operations\n\
19611-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19612--[no-]construct-floats [dis]allow floating point values to be constructed\n\
19613--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19614-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19615
19616 first = 1;
19617
19618 show (stream, "legacy", &column, &first);
19619 show (stream, "2008", &column, &first);
19620
19621 fputc ('\n', stream);
19622
19623 fprintf (stream, _("\
19624-KPIC, -call_shared generate SVR4 position independent code\n\
19625-call_nonpic generate non-PIC code that can operate with DSOs\n\
19626-mvxworks-pic generate VxWorks position independent code\n\
19627-non_shared do not generate code that can operate with DSOs\n\
19628-xgot assume a 32 bit GOT\n\
19629-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19630-mshared, -mno-shared disable/enable .cpload optimization for\n\
19631 position dependent (non shared) code\n\
19632-mabi=ABI create ABI conformant object file for:\n"));
19633
19634 first = 1;
19635
19636 show (stream, "32", &column, &first);
19637 show (stream, "o64", &column, &first);
19638 show (stream, "n32", &column, &first);
19639 show (stream, "64", &column, &first);
19640 show (stream, "eabi", &column, &first);
19641
19642 fputc ('\n', stream);
19643
19644 fprintf (stream, _("\
19645-32 create o32 ABI object file (default)\n\
19646-n32 create n32 ABI object file\n\
19647-64 create 64 ABI object file\n"));
19648}
19649
19650#ifdef TE_IRIX
19651enum dwarf2_format
19652mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19653{
19654 if (HAVE_64BIT_SYMBOLS)
19655 return dwarf2_format_64bit_irix;
19656 else
19657 return dwarf2_format_32bit;
19658}
19659#endif
19660
19661int
19662mips_dwarf2_addr_size (void)
19663{
19664 if (HAVE_64BIT_OBJECTS)
19665 return 8;
19666 else
19667 return 4;
19668}
19669
19670/* Standard calling conventions leave the CFA at SP on entry. */
19671void
19672mips_cfi_frame_initial_instructions (void)
19673{
19674 cfi_add_CFA_def_cfa_register (SP);
19675}
19676
19677int
19678tc_mips_regname_to_dw2regnum (char *regname)
19679{
19680 unsigned int regnum = -1;
19681 unsigned int reg;
19682
19683 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19684 regnum = reg;
19685
19686 return regnum;
19687}
19688
19689/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19690 Given a symbolic attribute NAME, return the proper integer value.
19691 Returns -1 if the attribute is not known. */
19692
19693int
19694mips_convert_symbolic_attribute (const char *name)
19695{
19696 static const struct
19697 {
19698 const char * name;
19699 const int tag;
19700 }
19701 attribute_table[] =
19702 {
19703#define T(tag) {#tag, tag}
19704 T (Tag_GNU_MIPS_ABI_FP),
19705 T (Tag_GNU_MIPS_ABI_MSA),
19706#undef T
19707 };
19708 unsigned int i;
19709
19710 if (name == NULL)
19711 return -1;
19712
19713 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19714 if (streq (name, attribute_table[i].name))
19715 return attribute_table[i].tag;
19716
19717 return -1;
19718}
19719
19720void
19721md_mips_end (void)
19722{
19723 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19724
19725 mips_emit_delays ();
19726 if (cur_proc_ptr)
19727 as_warn (_("missing .end at end of assembly"));
19728
19729 /* Just in case no code was emitted, do the consistency check. */
19730 file_mips_check_options ();
19731
19732 /* Set a floating-point ABI if the user did not. */
19733 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19734 {
19735 /* Perform consistency checks on the floating-point ABI. */
19736 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19737 Tag_GNU_MIPS_ABI_FP);
19738 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19739 check_fpabi (fpabi);
19740 }
19741 else
19742 {
19743 /* Soft-float gets precedence over single-float, the two options should
19744 not be used together so this should not matter. */
19745 if (file_mips_opts.soft_float == 1)
19746 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19747 /* Single-float gets precedence over all double_float cases. */
19748 else if (file_mips_opts.single_float == 1)
19749 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19750 else
19751 {
19752 switch (file_mips_opts.fp)
19753 {
19754 case 32:
19755 if (file_mips_opts.gp == 32)
19756 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19757 break;
19758 case 0:
19759 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19760 break;
19761 case 64:
19762 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19763 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19764 else if (file_mips_opts.gp == 32)
19765 fpabi = Val_GNU_MIPS_ABI_FP_64;
19766 else
19767 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19768 break;
19769 }
19770 }
19771
19772 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19773 Tag_GNU_MIPS_ABI_FP, fpabi);
19774 }
19775}
19776
19777/* Returns the relocation type required for a particular CFI encoding. */
19778
19779bfd_reloc_code_real_type
19780mips_cfi_reloc_for_encoding (int encoding)
19781{
19782 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19783 return BFD_RELOC_32_PCREL;
19784 else return BFD_RELOC_NONE;
19785}
This page took 0.099641 seconds and 4 git commands to generate.