Add clwb instruction
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
... / ...
CommitLineData
1@c Copyright (C) 1996-2014 Free Software Foundation, Inc.
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4
5@ifset GENERIC
6@page
7@node ARM-Dependent
8@chapter ARM Dependent Features
9@end ifset
10
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter ARM Dependent Features
14@end ifclear
15
16@cindex ARM support
17@cindex Thumb support
18@menu
19* ARM Options:: Options
20* ARM Syntax:: Syntax
21* ARM Floating Point:: Floating Point
22* ARM Directives:: ARM Machine Directives
23* ARM Opcodes:: Opcodes
24* ARM Mapping Symbols:: Mapping Symbols
25* ARM Unwinding Tutorial:: Unwinding
26@end menu
27
28@node ARM Options
29@section Options
30@cindex ARM options (none)
31@cindex options for ARM (none)
32
33@table @code
34
35@cindex @code{-mcpu=} command line option, ARM
36@item -mcpu=@var{processor}[+@var{extension}@dots{}]
37This option specifies the target processor. The assembler will issue an
38error message if an attempt is made to assemble an instruction which
39will not execute on the target processor. The following processor names are
40recognized:
41@code{arm1},
42@code{arm2},
43@code{arm250},
44@code{arm3},
45@code{arm6},
46@code{arm60},
47@code{arm600},
48@code{arm610},
49@code{arm620},
50@code{arm7},
51@code{arm7m},
52@code{arm7d},
53@code{arm7dm},
54@code{arm7di},
55@code{arm7dmi},
56@code{arm70},
57@code{arm700},
58@code{arm700i},
59@code{arm710},
60@code{arm710t},
61@code{arm720},
62@code{arm720t},
63@code{arm740t},
64@code{arm710c},
65@code{arm7100},
66@code{arm7500},
67@code{arm7500fe},
68@code{arm7t},
69@code{arm7tdmi},
70@code{arm7tdmi-s},
71@code{arm8},
72@code{arm810},
73@code{strongarm},
74@code{strongarm1},
75@code{strongarm110},
76@code{strongarm1100},
77@code{strongarm1110},
78@code{arm9},
79@code{arm920},
80@code{arm920t},
81@code{arm922t},
82@code{arm940t},
83@code{arm9tdmi},
84@code{fa526} (Faraday FA526 processor),
85@code{fa626} (Faraday FA626 processor),
86@code{arm9e},
87@code{arm926e},
88@code{arm926ej-s},
89@code{arm946e-r0},
90@code{arm946e},
91@code{arm946e-s},
92@code{arm966e-r0},
93@code{arm966e},
94@code{arm966e-s},
95@code{arm968e-s},
96@code{arm10t},
97@code{arm10tdmi},
98@code{arm10e},
99@code{arm1020},
100@code{arm1020t},
101@code{arm1020e},
102@code{arm1022e},
103@code{arm1026ej-s},
104@code{fa606te} (Faraday FA606TE processor),
105@code{fa616te} (Faraday FA616TE processor),
106@code{fa626te} (Faraday FA626TE processor),
107@code{fmp626} (Faraday FMP626 processor),
108@code{fa726te} (Faraday FA726TE processor),
109@code{arm1136j-s},
110@code{arm1136jf-s},
111@code{arm1156t2-s},
112@code{arm1156t2f-s},
113@code{arm1176jz-s},
114@code{arm1176jzf-s},
115@code{mpcore},
116@code{mpcorenovfp},
117@code{cortex-a5},
118@code{cortex-a7},
119@code{cortex-a8},
120@code{cortex-a9},
121@code{cortex-a15},
122@code{cortex-r4},
123@code{cortex-r4f},
124@code{cortex-r5},
125@code{cortex-r7},
126@code{cortex-m4},
127@code{cortex-m3},
128@code{cortex-m1},
129@code{cortex-m0},
130@code{cortex-m0plus},
131@code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
132@code{i80200} (Intel XScale processor)
133@code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
134and
135@code{xscale}.
136The special name @code{all} may be used to allow the
137assembler to accept instructions valid for any ARM processor.
138
139In addition to the basic instruction set, the assembler can be told to
140accept various extension mnemonics that extend the processor using the
141co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
142is equivalent to specifying @code{-mcpu=ep9312}.
143
144Multiple extensions may be specified, separated by a @code{+}. The
145extensions should be specified in ascending alphabetical order.
146
147Some extensions may be restricted to particular architectures; this is
148documented in the list of extensions below.
149
150Extension mnemonics may also be removed from those the assembler accepts.
151This is done be prepending @code{no} to the option that adds the extension.
152Extensions that are removed should be listed after all extensions which have
153been added, again in ascending alphabetical order. For example,
154@code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
155
156
157The following extensions are currently supported:
158@code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
159@code{fp} (Floating Point Extensions for v8-A architecture),
160@code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
161@code{iwmmxt},
162@code{iwmmxt2},
163@code{maverick},
164@code{mp} (Multiprocessing Extensions for v7-A and v7-R architectures),
165@code{os} (Operating System for v6M architecture),
166@code{sec} (Security Extensions for v6K and v7-A architectures),
167@code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
168@code{virt} (Virtualization Extensions for v7-A architecture, implies
169@code{idiv}),
170and
171@code{xscale}.
172
173@cindex @code{-march=} command line option, ARM
174@item -march=@var{architecture}[+@var{extension}@dots{}]
175This option specifies the target architecture. The assembler will issue
176an error message if an attempt is made to assemble an instruction which
177will not execute on the target architecture. The following architecture
178names are recognized:
179@code{armv1},
180@code{armv2},
181@code{armv2a},
182@code{armv2s},
183@code{armv3},
184@code{armv3m},
185@code{armv4},
186@code{armv4xm},
187@code{armv4t},
188@code{armv4txm},
189@code{armv5},
190@code{armv5t},
191@code{armv5txm},
192@code{armv5te},
193@code{armv5texp},
194@code{armv6},
195@code{armv6j},
196@code{armv6k},
197@code{armv6z},
198@code{armv6zk},
199@code{armv6-m},
200@code{armv6s-m},
201@code{armv7},
202@code{armv7-a},
203@code{armv7ve},
204@code{armv7-r},
205@code{armv7-m},
206@code{armv7e-m},
207@code{armv8-a},
208@code{iwmmxt}
209and
210@code{xscale}.
211If both @code{-mcpu} and
212@code{-march} are specified, the assembler will use
213the setting for @code{-mcpu}.
214
215The architecture option can be extended with the same instruction set
216extension options as the @code{-mcpu} option.
217
218@cindex @code{-mfpu=} command line option, ARM
219@item -mfpu=@var{floating-point-format}
220
221This option specifies the floating point format to assemble for. The
222assembler will issue an error message if an attempt is made to assemble
223an instruction which will not execute on the target floating point unit.
224The following format options are recognized:
225@code{softfpa},
226@code{fpe},
227@code{fpe2},
228@code{fpe3},
229@code{fpa},
230@code{fpa10},
231@code{fpa11},
232@code{arm7500fe},
233@code{softvfp},
234@code{softvfp+vfp},
235@code{vfp},
236@code{vfp10},
237@code{vfp10-r0},
238@code{vfp9},
239@code{vfpxd},
240@code{vfpv2},
241@code{vfpv3},
242@code{vfpv3-fp16},
243@code{vfpv3-d16},
244@code{vfpv3-d16-fp16},
245@code{vfpv3xd},
246@code{vfpv3xd-d16},
247@code{vfpv4},
248@code{vfpv4-d16},
249@code{fpv4-sp-d16},
250@code{fp-armv8},
251@code{arm1020t},
252@code{arm1020e},
253@code{arm1136jf-s},
254@code{maverick},
255@code{neon},
256@code{neon-vfpv4},
257@code{neon-fp-armv8},
258and
259@code{crypto-neon-fp-armv8}.
260
261In addition to determining which instructions are assembled, this option
262also affects the way in which the @code{.double} assembler directive behaves
263when assembling little-endian code.
264
265The default is dependent on the processor selected. For Architecture 5 or
266later, the default is to assembler for VFP instructions; for earlier
267architectures the default is to assemble for FPA instructions.
268
269@cindex @code{-mthumb} command line option, ARM
270@item -mthumb
271This option specifies that the assembler should start assembling Thumb
272instructions; that is, it should behave as though the file starts with a
273@code{.code 16} directive.
274
275@cindex @code{-mthumb-interwork} command line option, ARM
276@item -mthumb-interwork
277This option specifies that the output generated by the assembler should
278be marked as supporting interworking.
279
280@cindex @code{-mimplicit-it} command line option, ARM
281@item -mimplicit-it=never
282@itemx -mimplicit-it=always
283@itemx -mimplicit-it=arm
284@itemx -mimplicit-it=thumb
285The @code{-mimplicit-it} option controls the behavior of the assembler when
286conditional instructions are not enclosed in IT blocks.
287There are four possible behaviors.
288If @code{never} is specified, such constructs cause a warning in ARM
289code and an error in Thumb-2 code.
290If @code{always} is specified, such constructs are accepted in both
291ARM and Thumb-2 code, where the IT instruction is added implicitly.
292If @code{arm} is specified, such constructs are accepted in ARM code
293and cause an error in Thumb-2 code.
294If @code{thumb} is specified, such constructs cause a warning in ARM
295code and are accepted in Thumb-2 code. If you omit this option, the
296behavior is equivalent to @code{-mimplicit-it=arm}.
297
298@cindex @code{-mapcs-26} command line option, ARM
299@cindex @code{-mapcs-32} command line option, ARM
300@item -mapcs-26
301@itemx -mapcs-32
302These options specify that the output generated by the assembler should
303be marked as supporting the indicated version of the Arm Procedure.
304Calling Standard.
305
306@cindex @code{-matpcs} command line option, ARM
307@item -matpcs
308This option specifies that the output generated by the assembler should
309be marked as supporting the Arm/Thumb Procedure Calling Standard. If
310enabled this option will cause the assembler to create an empty
311debugging section in the object file called .arm.atpcs. Debuggers can
312use this to determine the ABI being used by.
313
314@cindex @code{-mapcs-float} command line option, ARM
315@item -mapcs-float
316This indicates the floating point variant of the APCS should be
317used. In this variant floating point arguments are passed in FP
318registers rather than integer registers.
319
320@cindex @code{-mapcs-reentrant} command line option, ARM
321@item -mapcs-reentrant
322This indicates that the reentrant variant of the APCS should be used.
323This variant supports position independent code.
324
325@cindex @code{-mfloat-abi=} command line option, ARM
326@item -mfloat-abi=@var{abi}
327This option specifies that the output generated by the assembler should be
328marked as using specified floating point ABI.
329The following values are recognized:
330@code{soft},
331@code{softfp}
332and
333@code{hard}.
334
335@cindex @code{-eabi=} command line option, ARM
336@item -meabi=@var{ver}
337This option specifies which EABI version the produced object files should
338conform to.
339The following values are recognized:
340@code{gnu},
341@code{4}
342and
343@code{5}.
344
345@cindex @code{-EB} command line option, ARM
346@item -EB
347This option specifies that the output generated by the assembler should
348be marked as being encoded for a big-endian processor.
349
350@cindex @code{-EL} command line option, ARM
351@item -EL
352This option specifies that the output generated by the assembler should
353be marked as being encoded for a little-endian processor.
354
355@cindex @code{-k} command line option, ARM
356@cindex PIC code generation for ARM
357@item -k
358This option specifies that the output of the assembler should be marked
359as position-independent code (PIC).
360
361@cindex @code{--fix-v4bx} command line option, ARM
362@item --fix-v4bx
363Allow @code{BX} instructions in ARMv4 code. This is intended for use with
364the linker option of the same name.
365
366@cindex @code{-mwarn-deprecated} command line option, ARM
367@item -mwarn-deprecated
368@itemx -mno-warn-deprecated
369Enable or disable warnings about using deprecated options or
370features. The default is to warn.
371
372@cindex @code{-mccs} command line option, ARM
373@item -mccs
374Turns on CodeComposer Studio assembly syntax compatibility mode.
375
376@end table
377
378
379@node ARM Syntax
380@section Syntax
381@menu
382* ARM-Instruction-Set:: Instruction Set
383* ARM-Chars:: Special Characters
384* ARM-Regs:: Register Names
385* ARM-Relocations:: Relocations
386* ARM-Neon-Alignment:: NEON Alignment Specifiers
387@end menu
388
389@node ARM-Instruction-Set
390@subsection Instruction Set Syntax
391Two slightly different syntaxes are support for ARM and THUMB
392instructions. The default, @code{divided}, uses the old style where
393ARM and THUMB instructions had their own, separate syntaxes. The new,
394@code{unified} syntax, which can be selected via the @code{.syntax}
395directive, and has the following main features:
396
397@itemize @bullet
398@item
399Immediate operands do not require a @code{#} prefix.
400
401@item
402The @code{IT} instruction may appear, and if it does it is validated
403against subsequent conditional affixes. In ARM mode it does not
404generate machine code, in THUMB mode it does.
405
406@item
407For ARM instructions the conditional affixes always appear at the end
408of the instruction. For THUMB instructions conditional affixes can be
409used, but only inside the scope of an @code{IT} instruction.
410
411@item
412All of the instructions new to the V6T2 architecture (and later) are
413available. (Only a few such instructions can be written in the
414@code{divided} syntax).
415
416@item
417The @code{.N} and @code{.W} suffixes are recognized and honored.
418
419@item
420All instructions set the flags if and only if they have an @code{s}
421affix.
422@end itemize
423
424@node ARM-Chars
425@subsection Special Characters
426
427@cindex line comment character, ARM
428@cindex ARM line comment character
429The presence of a @samp{@@} anywhere on a line indicates the start of
430a comment that extends to the end of that line.
431
432If a @samp{#} appears as the first character of a line then the whole
433line is treated as a comment, but in this case the line could also be
434a logical line number directive (@pxref{Comments}) or a preprocessor
435control command (@pxref{Preprocessing}).
436
437@cindex line separator, ARM
438@cindex statement separator, ARM
439@cindex ARM line separator
440The @samp{;} character can be used instead of a newline to separate
441statements.
442
443@cindex immediate character, ARM
444@cindex ARM immediate character
445Either @samp{#} or @samp{$} can be used to indicate immediate operands.
446
447@cindex identifiers, ARM
448@cindex ARM identifiers
449*TODO* Explain about /data modifier on symbols.
450
451@node ARM-Regs
452@subsection Register Names
453
454@cindex ARM register names
455@cindex register names, ARM
456*TODO* Explain about ARM register naming, and the predefined names.
457
458@node ARM-Relocations
459@subsection ARM relocation generation
460
461@cindex data relocations, ARM
462@cindex ARM data relocations
463Specific data relocations can be generated by putting the relocation name
464in parentheses after the symbol name. For example:
465
466@smallexample
467 .word foo(TARGET1)
468@end smallexample
469
470This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
471@var{foo}.
472The following relocations are supported:
473@code{GOT},
474@code{GOTOFF},
475@code{TARGET1},
476@code{TARGET2},
477@code{SBREL},
478@code{TLSGD},
479@code{TLSLDM},
480@code{TLSLDO},
481@code{TLSDESC},
482@code{TLSCALL},
483@code{GOTTPOFF},
484@code{GOT_PREL}
485and
486@code{TPOFF}.
487
488For compatibility with older toolchains the assembler also accepts
489@code{(PLT)} after branch targets. On legacy targets this will
490generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
491targets it will encode either the @samp{R_ARM_CALL} or
492@samp{R_ARM_JUMP24} relocation, as appropriate.
493
494@cindex MOVW and MOVT relocations, ARM
495Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
496by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
497respectively. For example to load the 32-bit address of foo into r0:
498
499@smallexample
500 MOVW r0, #:lower16:foo
501 MOVT r0, #:upper16:foo
502@end smallexample
503
504@node ARM-Neon-Alignment
505@subsection NEON Alignment Specifiers
506
507@cindex alignment for NEON instructions
508Some NEON load/store instructions allow an optional address
509alignment qualifier.
510The ARM documentation specifies that this is indicated by
511@samp{@@ @var{align}}. However GAS already interprets
512the @samp{@@} character as a "line comment" start,
513so @samp{: @var{align}} is used instead. For example:
514
515@smallexample
516 vld1.8 @{q0@}, [r0, :128]
517@end smallexample
518
519@node ARM Floating Point
520@section Floating Point
521
522@cindex floating point, ARM (@sc{ieee})
523@cindex ARM floating point (@sc{ieee})
524The ARM family uses @sc{ieee} floating-point numbers.
525
526@node ARM Directives
527@section ARM Machine Directives
528
529@cindex machine directives, ARM
530@cindex ARM machine directives
531@table @code
532
533@c AAAAAAAAAAAAAAAAAAAAAAAAA
534
535@cindex @code{.2byte} directive, ARM
536@cindex @code{.4byte} directive, ARM
537@cindex @code{.8byte} directive, ARM
538@item .2byte @var{expression} [, @var{expression}]*
539@itemx .4byte @var{expression} [, @var{expression}]*
540@itemx .8byte @var{expression} [, @var{expression}]*
541These directives write 2, 4 or 8 byte values to the output section.
542
543@cindex @code{.align} directive, ARM
544@item .align @var{expression} [, @var{expression}]
545This is the generic @var{.align} directive. For the ARM however if the
546first argument is zero (ie no alignment is needed) the assembler will
547behave as if the argument had been 2 (ie pad to the next four byte
548boundary). This is for compatibility with ARM's own assembler.
549
550@cindex @code{.arch} directive, ARM
551@item .arch @var{name}
552Select the target architecture. Valid values for @var{name} are the same as
553for the @option{-march} commandline option.
554
555Specifying @code{.arch} clears any previously selected architecture
556extensions.
557
558@cindex @code{.arch_extension} directive, ARM
559@item .arch_extension @var{name}
560Add or remove an architecture extension to the target architecture. Valid
561values for @var{name} are the same as those accepted as architectural
562extensions by the @option{-mcpu} commandline option.
563
564@code{.arch_extension} may be used multiple times to add or remove extensions
565incrementally to the architecture being compiled for.
566
567@cindex @code{.arm} directive, ARM
568@item .arm
569This performs the same action as @var{.code 32}.
570
571@c BBBBBBBBBBBBBBBBBBBBBBBBBB
572
573@cindex @code{.bss} directive, ARM
574@item .bss
575This directive switches to the @code{.bss} section.
576
577@c CCCCCCCCCCCCCCCCCCCCCCCCCC
578
579@cindex @code{.cantunwind} directive, ARM
580@item .cantunwind
581Prevents unwinding through the current function. No personality routine
582or exception table data is required or permitted.
583
584@cindex @code{.code} directive, ARM
585@item .code @code{[16|32]}
586This directive selects the instruction set being generated. The value 16
587selects Thumb, with the value 32 selecting ARM.
588
589@cindex @code{.cpu} directive, ARM
590@item .cpu @var{name}
591Select the target processor. Valid values for @var{name} are the same as
592for the @option{-mcpu} commandline option.
593
594Specifying @code{.cpu} clears any previously selected architecture
595extensions.
596
597@c DDDDDDDDDDDDDDDDDDDDDDDDDD
598
599@cindex @code{.dn} and @code{.qn} directives, ARM
600@item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
601@itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
602
603The @code{dn} and @code{qn} directives are used to create typed
604and/or indexed register aliases for use in Advanced SIMD Extension
605(Neon) instructions. The former should be used to create aliases
606of double-precision registers, and the latter to create aliases of
607quad-precision registers.
608
609If these directives are used to create typed aliases, those aliases can
610be used in Neon instructions instead of writing types after the mnemonic
611or after each operand. For example:
612
613@smallexample
614 x .dn d2.f32
615 y .dn d3.f32
616 z .dn d4.f32[1]
617 vmul x,y,z
618@end smallexample
619
620This is equivalent to writing the following:
621
622@smallexample
623 vmul.f32 d2,d3,d4[1]
624@end smallexample
625
626Aliases created using @code{dn} or @code{qn} can be destroyed using
627@code{unreq}.
628
629@c EEEEEEEEEEEEEEEEEEEEEEEEEE
630
631@cindex @code{.eabi_attribute} directive, ARM
632@item .eabi_attribute @var{tag}, @var{value}
633Set the EABI object attribute @var{tag} to @var{value}.
634
635The @var{tag} is either an attribute number, or one of the following:
636@code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
637@code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
638@code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
639@code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
640@code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
641@code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
642@code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
643@code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
644@code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
645@code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
646@code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
647@code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
648@code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
649@code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
650@code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
651@code{Tag_MPextension_use}, @code{Tag_DIV_use},
652@code{Tag_nodefaults}, @code{Tag_also_compatible_with},
653@code{Tag_conformance}, @code{Tag_T2EE_use},
654@code{Tag_Virtualization_use}
655
656The @var{value} is either a @code{number}, @code{"string"}, or
657@code{number, "string"} depending on the tag.
658
659Note - the following legacy values are also accepted by @var{tag}:
660@code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
661@code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
662
663@cindex @code{.even} directive, ARM
664@item .even
665This directive aligns to an even-numbered address.
666
667@cindex @code{.extend} directive, ARM
668@cindex @code{.ldouble} directive, ARM
669@item .extend @var{expression} [, @var{expression}]*
670@itemx .ldouble @var{expression} [, @var{expression}]*
671These directives write 12byte long double floating-point values to the
672output section. These are not compatible with current ARM processors
673or ABIs.
674
675@c FFFFFFFFFFFFFFFFFFFFFFFFFF
676
677@anchor{arm_fnend}
678@cindex @code{.fnend} directive, ARM
679@item .fnend
680Marks the end of a function with an unwind table entry. The unwind index
681table entry is created when this directive is processed.
682
683If no personality routine has been specified then standard personality
684routine 0 or 1 will be used, depending on the number of unwind opcodes
685required.
686
687@anchor{arm_fnstart}
688@cindex @code{.fnstart} directive, ARM
689@item .fnstart
690Marks the start of a function with an unwind table entry.
691
692@cindex @code{.force_thumb} directive, ARM
693@item .force_thumb
694This directive forces the selection of Thumb instructions, even if the
695target processor does not support those instructions
696
697@cindex @code{.fpu} directive, ARM
698@item .fpu @var{name}
699Select the floating-point unit to assemble for. Valid values for @var{name}
700are the same as for the @option{-mfpu} commandline option.
701
702@c GGGGGGGGGGGGGGGGGGGGGGGGGG
703@c HHHHHHHHHHHHHHHHHHHHHHHHHH
704
705@cindex @code{.handlerdata} directive, ARM
706@item .handlerdata
707Marks the end of the current function, and the start of the exception table
708entry for that function. Anything between this directive and the
709@code{.fnend} directive will be added to the exception table entry.
710
711Must be preceded by a @code{.personality} or @code{.personalityindex}
712directive.
713
714@c IIIIIIIIIIIIIIIIIIIIIIIIII
715
716@cindex @code{.inst} directive, ARM
717@item .inst @var{opcode} [ , @dots{} ]
718@itemx .inst.n @var{opcode} [ , @dots{} ]
719@itemx .inst.w @var{opcode} [ , @dots{} ]
720Generates the instruction corresponding to the numerical value @var{opcode}.
721@code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
722specified explicitly, overriding the normal encoding rules.
723
724@c JJJJJJJJJJJJJJJJJJJJJJJJJJ
725@c KKKKKKKKKKKKKKKKKKKKKKKKKK
726@c LLLLLLLLLLLLLLLLLLLLLLLLLL
727
728@item .ldouble @var{expression} [, @var{expression}]*
729See @code{.extend}.
730
731@cindex @code{.ltorg} directive, ARM
732@item .ltorg
733This directive causes the current contents of the literal pool to be
734dumped into the current section (which is assumed to be the .text
735section) at the current location (aligned to a word boundary).
736@code{GAS} maintains a separate literal pool for each section and each
737sub-section. The @code{.ltorg} directive will only affect the literal
738pool of the current section and sub-section. At the end of assembly
739all remaining, un-empty literal pools will automatically be dumped.
740
741Note - older versions of @code{GAS} would dump the current literal
742pool any time a section change occurred. This is no longer done, since
743it prevents accurate control of the placement of literal pools.
744
745@c MMMMMMMMMMMMMMMMMMMMMMMMMM
746
747@cindex @code{.movsp} directive, ARM
748@item .movsp @var{reg} [, #@var{offset}]
749Tell the unwinder that @var{reg} contains an offset from the current
750stack pointer. If @var{offset} is not specified then it is assumed to be
751zero.
752
753@c NNNNNNNNNNNNNNNNNNNNNNNNNN
754@c OOOOOOOOOOOOOOOOOOOOOOOOOO
755
756@cindex @code{.object_arch} directive, ARM
757@item .object_arch @var{name}
758Override the architecture recorded in the EABI object attribute section.
759Valid values for @var{name} are the same as for the @code{.arch} directive.
760Typically this is useful when code uses runtime detection of CPU features.
761
762@c PPPPPPPPPPPPPPPPPPPPPPPPPP
763
764@cindex @code{.packed} directive, ARM
765@item .packed @var{expression} [, @var{expression}]*
766This directive writes 12-byte packed floating-point values to the
767output section. These are not compatible with current ARM processors
768or ABIs.
769
770@anchor{arm_pad}
771@cindex @code{.pad} directive, ARM
772@item .pad #@var{count}
773Generate unwinder annotations for a stack adjustment of @var{count} bytes.
774A positive value indicates the function prologue allocated stack space by
775decrementing the stack pointer.
776
777@cindex @code{.personality} directive, ARM
778@item .personality @var{name}
779Sets the personality routine for the current function to @var{name}.
780
781@cindex @code{.personalityindex} directive, ARM
782@item .personalityindex @var{index}
783Sets the personality routine for the current function to the EABI standard
784routine number @var{index}
785
786@cindex @code{.pool} directive, ARM
787@item .pool
788This is a synonym for .ltorg.
789
790@c QQQQQQQQQQQQQQQQQQQQQQQQQQ
791@c RRRRRRRRRRRRRRRRRRRRRRRRRR
792
793@cindex @code{.req} directive, ARM
794@item @var{name} .req @var{register name}
795This creates an alias for @var{register name} called @var{name}. For
796example:
797
798@smallexample
799 foo .req r0
800@end smallexample
801
802@c SSSSSSSSSSSSSSSSSSSSSSSSSS
803
804@anchor{arm_save}
805@cindex @code{.save} directive, ARM
806@item .save @var{reglist}
807Generate unwinder annotations to restore the registers in @var{reglist}.
808The format of @var{reglist} is the same as the corresponding store-multiple
809instruction.
810
811@smallexample
812@exdent @emph{core registers}
813 .save @{r4, r5, r6, lr@}
814 stmfd sp!, @{r4, r5, r6, lr@}
815@exdent @emph{FPA registers}
816 .save f4, 2
817 sfmfd f4, 2, [sp]!
818@exdent @emph{VFP registers}
819 .save @{d8, d9, d10@}
820 fstmdx sp!, @{d8, d9, d10@}
821@exdent @emph{iWMMXt registers}
822 .save @{wr10, wr11@}
823 wstrd wr11, [sp, #-8]!
824 wstrd wr10, [sp, #-8]!
825or
826 .save wr11
827 wstrd wr11, [sp, #-8]!
828 .save wr10
829 wstrd wr10, [sp, #-8]!
830@end smallexample
831
832@anchor{arm_setfp}
833@cindex @code{.setfp} directive, ARM
834@item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
835Make all unwinder annotations relative to a frame pointer. Without this
836the unwinder will use offsets from the stack pointer.
837
838The syntax of this directive is the same as the @code{add} or @code{mov}
839instruction used to set the frame pointer. @var{spreg} must be either
840@code{sp} or mentioned in a previous @code{.movsp} directive.
841
842@smallexample
843.movsp ip
844mov ip, sp
845@dots{}
846.setfp fp, ip, #4
847add fp, ip, #4
848@end smallexample
849
850@cindex @code{.secrel32} directive, ARM
851@item .secrel32 @var{expression} [, @var{expression}]*
852This directive emits relocations that evaluate to the section-relative
853offset of each expression's symbol. This directive is only supported
854for PE targets.
855
856@cindex @code{.syntax} directive, ARM
857@item .syntax [@code{unified} | @code{divided}]
858This directive sets the Instruction Set Syntax as described in the
859@ref{ARM-Instruction-Set} section.
860
861@c TTTTTTTTTTTTTTTTTTTTTTTTTT
862
863@cindex @code{.thumb} directive, ARM
864@item .thumb
865This performs the same action as @var{.code 16}.
866
867@cindex @code{.thumb_func} directive, ARM
868@item .thumb_func
869This directive specifies that the following symbol is the name of a
870Thumb encoded function. This information is necessary in order to allow
871the assembler and linker to generate correct code for interworking
872between Arm and Thumb instructions and should be used even if
873interworking is not going to be performed. The presence of this
874directive also implies @code{.thumb}
875
876This directive is not neccessary when generating EABI objects. On these
877targets the encoding is implicit when generating Thumb code.
878
879@cindex @code{.thumb_set} directive, ARM
880@item .thumb_set
881This performs the equivalent of a @code{.set} directive in that it
882creates a symbol which is an alias for another symbol (possibly not yet
883defined). This directive also has the added property in that it marks
884the aliased symbol as being a thumb function entry point, in the same
885way that the @code{.thumb_func} directive does.
886
887@cindex @code{.tlsdescseq} directive, ARM
888@item .tlsdescseq @var{tls-variable}
889This directive is used to annotate parts of an inlined TLS descriptor
890trampoline. Normally the trampoline is provided by the linker, and
891this directive is not needed.
892
893@c UUUUUUUUUUUUUUUUUUUUUUUUUU
894
895@cindex @code{.unreq} directive, ARM
896@item .unreq @var{alias-name}
897This undefines a register alias which was previously defined using the
898@code{req}, @code{dn} or @code{qn} directives. For example:
899
900@smallexample
901 foo .req r0
902 .unreq foo
903@end smallexample
904
905An error occurs if the name is undefined. Note - this pseudo op can
906be used to delete builtin in register name aliases (eg 'r0'). This
907should only be done if it is really necessary.
908
909@cindex @code{.unwind_raw} directive, ARM
910@item .unwind_raw @var{offset}, @var{byte1}, @dots{}
911Insert one of more arbitary unwind opcode bytes, which are known to adjust
912the stack pointer by @var{offset} bytes.
913
914For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
915@code{.save @{r0@}}
916
917@c VVVVVVVVVVVVVVVVVVVVVVVVVV
918
919@cindex @code{.vsave} directive, ARM
920@item .vsave @var{vfp-reglist}
921Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
922using FLDMD. Also works for VFPv3 registers
923that are to be restored using VLDM.
924The format of @var{vfp-reglist} is the same as the corresponding store-multiple
925instruction.
926
927@smallexample
928@exdent @emph{VFP registers}
929 .vsave @{d8, d9, d10@}
930 fstmdd sp!, @{d8, d9, d10@}
931@exdent @emph{VFPv3 registers}
932 .vsave @{d15, d16, d17@}
933 vstm sp!, @{d15, d16, d17@}
934@end smallexample
935
936Since FLDMX and FSTMX are now deprecated, this directive should be
937used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
938
939@c WWWWWWWWWWWWWWWWWWWWWWWWWW
940@c XXXXXXXXXXXXXXXXXXXXXXXXXX
941@c YYYYYYYYYYYYYYYYYYYYYYYYYY
942@c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
943
944@end table
945
946@node ARM Opcodes
947@section Opcodes
948
949@cindex ARM opcodes
950@cindex opcodes for ARM
951@code{@value{AS}} implements all the standard ARM opcodes. It also
952implements several pseudo opcodes, including several synthetic load
953instructions.
954
955@table @code
956
957@cindex @code{NOP} pseudo op, ARM
958@item NOP
959@smallexample
960 nop
961@end smallexample
962
963This pseudo op will always evaluate to a legal ARM instruction that does
964nothing. Currently it will evaluate to MOV r0, r0.
965
966@cindex @code{LDR reg,=<label>} pseudo op, ARM
967@item LDR
968@smallexample
969 ldr <register> , = <expression>
970@end smallexample
971
972If expression evaluates to a numeric constant then a MOV or MVN
973instruction will be used in place of the LDR instruction, if the
974constant can be generated by either of these instructions. Otherwise
975the constant will be placed into the nearest literal pool (if it not
976already there) and a PC relative LDR instruction will be generated.
977
978@cindex @code{ADR reg,<label>} pseudo op, ARM
979@item ADR
980@smallexample
981 adr <register> <label>
982@end smallexample
983
984This instruction will load the address of @var{label} into the indicated
985register. The instruction will evaluate to a PC relative ADD or SUB
986instruction depending upon where the label is located. If the label is
987out of range, or if it is not defined in the same file (and section) as
988the ADR instruction, then an error will be generated. This instruction
989will not make use of the literal pool.
990
991@cindex @code{ADRL reg,<label>} pseudo op, ARM
992@item ADRL
993@smallexample
994 adrl <register> <label>
995@end smallexample
996
997This instruction will load the address of @var{label} into the indicated
998register. The instruction will evaluate to one or two PC relative ADD
999or SUB instructions depending upon where the label is located. If a
1000second instruction is not needed a NOP instruction will be generated in
1001its place, so that this instruction is always 8 bytes long.
1002
1003If the label is out of range, or if it is not defined in the same file
1004(and section) as the ADRL instruction, then an error will be generated.
1005This instruction will not make use of the literal pool.
1006
1007@end table
1008
1009For information on the ARM or Thumb instruction sets, see @cite{ARM
1010Software Development Toolkit Reference Manual}, Advanced RISC Machines
1011Ltd.
1012
1013@node ARM Mapping Symbols
1014@section Mapping Symbols
1015
1016The ARM ELF specification requires that special symbols be inserted
1017into object files to mark certain features:
1018
1019@table @code
1020
1021@cindex @code{$a}
1022@item $a
1023At the start of a region of code containing ARM instructions.
1024
1025@cindex @code{$t}
1026@item $t
1027At the start of a region of code containing THUMB instructions.
1028
1029@cindex @code{$d}
1030@item $d
1031At the start of a region of data.
1032
1033@end table
1034
1035The assembler will automatically insert these symbols for you - there
1036is no need to code them yourself. Support for tagging symbols ($b,
1037$f, $p and $m) which is also mentioned in the current ARM ELF
1038specification is not implemented. This is because they have been
1039dropped from the new EABI and so tools cannot rely upon their
1040presence.
1041
1042@node ARM Unwinding Tutorial
1043@section Unwinding
1044
1045The ABI for the ARM Architecture specifies a standard format for
1046exception unwind information. This information is used when an
1047exception is thrown to determine where control should be transferred.
1048In particular, the unwind information is used to determine which
1049function called the function that threw the exception, and which
1050function called that one, and so forth. This information is also used
1051to restore the values of callee-saved registers in the function
1052catching the exception.
1053
1054If you are writing functions in assembly code, and those functions
1055call other functions that throw exceptions, you must use assembly
1056pseudo ops to ensure that appropriate exception unwind information is
1057generated. Otherwise, if one of the functions called by your assembly
1058code throws an exception, the run-time library will be unable to
1059unwind the stack through your assembly code and your program will not
1060behave correctly.
1061
1062To illustrate the use of these pseudo ops, we will examine the code
1063that G++ generates for the following C++ input:
1064
1065@verbatim
1066void callee (int *);
1067
1068int
1069caller ()
1070{
1071 int i;
1072 callee (&i);
1073 return i;
1074}
1075@end verbatim
1076
1077This example does not show how to throw or catch an exception from
1078assembly code. That is a much more complex operation and should
1079always be done in a high-level language, such as C++, that directly
1080supports exceptions.
1081
1082The code generated by one particular version of G++ when compiling the
1083example above is:
1084
1085@verbatim
1086_Z6callerv:
1087 .fnstart
1088.LFB2:
1089 @ Function supports interworking.
1090 @ args = 0, pretend = 0, frame = 8
1091 @ frame_needed = 1, uses_anonymous_args = 0
1092 stmfd sp!, {fp, lr}
1093 .save {fp, lr}
1094.LCFI0:
1095 .setfp fp, sp, #4
1096 add fp, sp, #4
1097.LCFI1:
1098 .pad #8
1099 sub sp, sp, #8
1100.LCFI2:
1101 sub r3, fp, #8
1102 mov r0, r3
1103 bl _Z6calleePi
1104 ldr r3, [fp, #-8]
1105 mov r0, r3
1106 sub sp, fp, #4
1107 ldmfd sp!, {fp, lr}
1108 bx lr
1109.LFE2:
1110 .fnend
1111@end verbatim
1112
1113Of course, the sequence of instructions varies based on the options
1114you pass to GCC and on the version of GCC in use. The exact
1115instructions are not important since we are focusing on the pseudo ops
1116that are used to generate unwind information.
1117
1118An important assumption made by the unwinder is that the stack frame
1119does not change during the body of the function. In particular, since
1120we assume that the assembly code does not itself throw an exception,
1121the only point where an exception can be thrown is from a call, such
1122as the @code{bl} instruction above. At each call site, the same saved
1123registers (including @code{lr}, which indicates the return address)
1124must be located in the same locations relative to the frame pointer.
1125
1126The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1127op appears immediately before the first instruction of the function
1128while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1129op appears immediately after the last instruction of the function.
1130These pseudo ops specify the range of the function.
1131
1132Only the order of the other pseudos ops (e.g., @code{.setfp} or
1133@code{.pad}) matters; their exact locations are irrelevant. In the
1134example above, the compiler emits the pseudo ops with particular
1135instructions. That makes it easier to understand the code, but it is
1136not required for correctness. It would work just as well to emit all
1137of the pseudo ops other than @code{.fnend} in the same order, but
1138immediately after @code{.fnstart}.
1139
1140The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1141indicates registers that have been saved to the stack so that they can
1142be restored before the function returns. The argument to the
1143@code{.save} pseudo op is a list of registers to save. If a register
1144is ``callee-saved'' (as specified by the ABI) and is modified by the
1145function you are writing, then your code must save the value before it
1146is modified and restore the original value before the function
1147returns. If an exception is thrown, the run-time library restores the
1148values of these registers from their locations on the stack before
1149returning control to the exception handler. (Of course, if an
1150exception is not thrown, the function that contains the @code{.save}
1151pseudo op restores these registers in the function epilogue, as is
1152done with the @code{ldmfd} instruction above.)
1153
1154You do not have to save callee-saved registers at the very beginning
1155of the function and you do not need to use the @code{.save} pseudo op
1156immediately following the point at which the registers are saved.
1157However, if you modify a callee-saved register, you must save it on
1158the stack before modifying it and before calling any functions which
1159might throw an exception. And, you must use the @code{.save} pseudo
1160op to indicate that you have done so.
1161
1162The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1163modification of the stack pointer that does not save any registers.
1164The argument is the number of bytes (in decimal) that are subtracted
1165from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1166subtracting from the stack pointer increases the size of the stack.)
1167
1168The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1169indicates the register that contains the frame pointer. The first
1170argument is the register that is set, which is typically @code{fp}.
1171The second argument indicates the register from which the frame
1172pointer takes its value. The third argument, if present, is the value
1173(in decimal) added to the register specified by the second argument to
1174compute the value of the frame pointer. You should not modify the
1175frame pointer in the body of the function.
1176
1177If you do not use a frame pointer, then you should not use the
1178@code{.setfp} pseudo op. If you do not use a frame pointer, then you
1179should avoid modifying the stack pointer outside of the function
1180prologue. Otherwise, the run-time library will be unable to find
1181saved registers when it is unwinding the stack.
1182
1183The pseudo ops described above are sufficient for writing assembly
1184code that calls functions which may throw exceptions. If you need to
1185know more about the object-file format used to represent unwind
1186information, you may consult the @cite{Exception Handling ABI for the
1187ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.025544 seconds and 4 git commands to generate.