Automatic date update in version.in
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
... / ...
CommitLineData
1@c Copyright (C) 1996-2019 Free Software Foundation, Inc.
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4
5@ifset GENERIC
6@page
7@node ARM-Dependent
8@chapter ARM Dependent Features
9@end ifset
10
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter ARM Dependent Features
14@end ifclear
15
16@cindex ARM support
17@cindex Thumb support
18@menu
19* ARM Options:: Options
20* ARM Syntax:: Syntax
21* ARM Floating Point:: Floating Point
22* ARM Directives:: ARM Machine Directives
23* ARM Opcodes:: Opcodes
24* ARM Mapping Symbols:: Mapping Symbols
25* ARM Unwinding Tutorial:: Unwinding
26@end menu
27
28@node ARM Options
29@section Options
30@cindex ARM options (none)
31@cindex options for ARM (none)
32
33@table @code
34
35@cindex @code{-mcpu=} command-line option, ARM
36@item -mcpu=@var{processor}[+@var{extension}@dots{}]
37This option specifies the target processor. The assembler will issue an
38error message if an attempt is made to assemble an instruction which
39will not execute on the target processor. The following processor names are
40recognized:
41@code{arm1},
42@code{arm2},
43@code{arm250},
44@code{arm3},
45@code{arm6},
46@code{arm60},
47@code{arm600},
48@code{arm610},
49@code{arm620},
50@code{arm7},
51@code{arm7m},
52@code{arm7d},
53@code{arm7dm},
54@code{arm7di},
55@code{arm7dmi},
56@code{arm70},
57@code{arm700},
58@code{arm700i},
59@code{arm710},
60@code{arm710t},
61@code{arm720},
62@code{arm720t},
63@code{arm740t},
64@code{arm710c},
65@code{arm7100},
66@code{arm7500},
67@code{arm7500fe},
68@code{arm7t},
69@code{arm7tdmi},
70@code{arm7tdmi-s},
71@code{arm8},
72@code{arm810},
73@code{strongarm},
74@code{strongarm1},
75@code{strongarm110},
76@code{strongarm1100},
77@code{strongarm1110},
78@code{arm9},
79@code{arm920},
80@code{arm920t},
81@code{arm922t},
82@code{arm940t},
83@code{arm9tdmi},
84@code{fa526} (Faraday FA526 processor),
85@code{fa626} (Faraday FA626 processor),
86@code{arm9e},
87@code{arm926e},
88@code{arm926ej-s},
89@code{arm946e-r0},
90@code{arm946e},
91@code{arm946e-s},
92@code{arm966e-r0},
93@code{arm966e},
94@code{arm966e-s},
95@code{arm968e-s},
96@code{arm10t},
97@code{arm10tdmi},
98@code{arm10e},
99@code{arm1020},
100@code{arm1020t},
101@code{arm1020e},
102@code{arm1022e},
103@code{arm1026ej-s},
104@code{fa606te} (Faraday FA606TE processor),
105@code{fa616te} (Faraday FA616TE processor),
106@code{fa626te} (Faraday FA626TE processor),
107@code{fmp626} (Faraday FMP626 processor),
108@code{fa726te} (Faraday FA726TE processor),
109@code{arm1136j-s},
110@code{arm1136jf-s},
111@code{arm1156t2-s},
112@code{arm1156t2f-s},
113@code{arm1176jz-s},
114@code{arm1176jzf-s},
115@code{mpcore},
116@code{mpcorenovfp},
117@code{cortex-a5},
118@code{cortex-a7},
119@code{cortex-a8},
120@code{cortex-a9},
121@code{cortex-a15},
122@code{cortex-a17},
123@code{cortex-a32},
124@code{cortex-a35},
125@code{cortex-a53},
126@code{cortex-a55},
127@code{cortex-a57},
128@code{cortex-a72},
129@code{cortex-a73},
130@code{cortex-a75},
131@code{cortex-a76},
132@code{cortex-a76ae},
133@code{cortex-a77},
134@code{ares},
135@code{cortex-r4},
136@code{cortex-r4f},
137@code{cortex-r5},
138@code{cortex-r7},
139@code{cortex-r8},
140@code{cortex-r52},
141@code{cortex-m35p},
142@code{cortex-m33},
143@code{cortex-m23},
144@code{cortex-m7},
145@code{cortex-m4},
146@code{cortex-m3},
147@code{cortex-m1},
148@code{cortex-m0},
149@code{cortex-m0plus},
150@code{exynos-m1},
151@code{marvell-pj4},
152@code{marvell-whitney},
153@code{neoverse-n1},
154@code{xgene1},
155@code{xgene2},
156@code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
157@code{i80200} (Intel XScale processor)
158@code{iwmmxt} (Intel XScale processor with Wireless MMX technology coprocessor)
159and
160@code{xscale}.
161The special name @code{all} may be used to allow the
162assembler to accept instructions valid for any ARM processor.
163
164In addition to the basic instruction set, the assembler can be told to
165accept various extension mnemonics that extend the processor using the
166co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
167is equivalent to specifying @code{-mcpu=ep9312}.
168
169Multiple extensions may be specified, separated by a @code{+}. The
170extensions should be specified in ascending alphabetical order.
171
172Some extensions may be restricted to particular architectures; this is
173documented in the list of extensions below.
174
175Extension mnemonics may also be removed from those the assembler accepts.
176This is done be prepending @code{no} to the option that adds the extension.
177Extensions that are removed should be listed after all extensions which have
178been added, again in ascending alphabetical order. For example,
179@code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
180
181
182The following extensions are currently supported:
183@code{bf16} (BFloat16 extensions for v8.6-A architecture),
184@code{i8mm} (Int8 Matrix Multiply extensions for v8.6-A architecture),
185@code{crc}
186@code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
187@code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
188@code{fp} (Floating Point Extensions for v8-A architecture),
189@code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
190@code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
191@code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
192@code{iwmmxt},
193@code{iwmmxt2},
194@code{xscale},
195@code{maverick},
196@code{mp} (Multiprocessing Extensions for v7-A and v7-R
197architectures),
198@code{os} (Operating System for v6M architecture),
199@code{predres} (Execution and Data Prediction Restriction Instruction for
200v8-A architectures, added by default from v8.5-A),
201@code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
202default from v8.5-A),
203@code{sec} (Security Extensions for v6K and v7-A architectures),
204@code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
205@code{virt} (Virtualization Extensions for v7-A architecture, implies
206@code{idiv}),
207@code{pan} (Privileged Access Never Extensions for v8-A architecture),
208@code{ras} (Reliability, Availability and Serviceability extensions
209for v8-A architecture),
210@code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
211@code{simd})
212and
213@code{xscale}.
214
215@cindex @code{-march=} command-line option, ARM
216@item -march=@var{architecture}[+@var{extension}@dots{}]
217This option specifies the target architecture. The assembler will issue
218an error message if an attempt is made to assemble an instruction which
219will not execute on the target architecture. The following architecture
220names are recognized:
221@code{armv1},
222@code{armv2},
223@code{armv2a},
224@code{armv2s},
225@code{armv3},
226@code{armv3m},
227@code{armv4},
228@code{armv4xm},
229@code{armv4t},
230@code{armv4txm},
231@code{armv5},
232@code{armv5t},
233@code{armv5txm},
234@code{armv5te},
235@code{armv5texp},
236@code{armv6},
237@code{armv6j},
238@code{armv6k},
239@code{armv6z},
240@code{armv6kz},
241@code{armv6-m},
242@code{armv6s-m},
243@code{armv7},
244@code{armv7-a},
245@code{armv7ve},
246@code{armv7-r},
247@code{armv7-m},
248@code{armv7e-m},
249@code{armv8-a},
250@code{armv8.1-a},
251@code{armv8.2-a},
252@code{armv8.3-a},
253@code{armv8-r},
254@code{armv8.4-a},
255@code{armv8.5-a},
256@code{armv8-m.base},
257@code{armv8-m.main},
258@code{armv8.1-m.main},
259@code{armv8.6-a},
260@code{iwmmxt},
261@code{iwmmxt2}
262and
263@code{xscale}.
264If both @code{-mcpu} and
265@code{-march} are specified, the assembler will use
266the setting for @code{-mcpu}.
267
268The architecture option can be extended with a set extension options. These
269extensions are context sensitive, i.e. the same extension may mean different
270things when used with different architectures. When used together with a
271@code{-mfpu} option, the union of both feature enablement is taken.
272See their availability and meaning below:
273
274For @code{armv5te}, @code{armv5texp}, @code{armv5tej}, @code{armv6}, @code{armv6j}, @code{armv6k}, @code{armv6z}, @code{armv6kz}, @code{armv6zk}, @code{armv6t2}, @code{armv6kt2} and @code{armv6zt2}:
275
276@code{+fp}: Enables VFPv2 instructions.
277@code{+nofp}: Disables all FPU instrunctions.
278
279For @code{armv7}:
280
281@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
282@code{+nofp}: Disables all FPU instructions.
283
284For @code{armv7-a}:
285
286@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
287@code{+vfpv3-d16}: Alias for @code{+fp}.
288@code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
289@code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
290conversion instructions and 16 double-word registers.
291@code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
292instructions and 32 double-word registers.
293@code{+vfpv4-d16}: Enables VFPv4 instructions with 16 double-word registers.
294@code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
295@code{+simd}: Enables VFPv3 and NEONv1 instructions with 32 double-word
296registers.
297@code{+neon}: Alias for @code{+simd}.
298@code{+neon-vfpv3}: Alias for @code{+simd}.
299@code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
300NEONv1 instructions with 32 double-word registers.
301@code{+neon-vfpv4}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
302double-word registers.
303@code{+mp}: Enables Multiprocessing Extensions.
304@code{+sec}: Enables Security Extensions.
305@code{+nofp}: Disables all FPU and NEON instructions.
306@code{+nosimd}: Disables all NEON instructions.
307
308For @code{armv7ve}:
309
310@code{+fp}: Enables VFPv4 instructions with 16 double-word registers.
311@code{+vfpv4-d16}: Alias for @code{+fp}.
312@code{+vfpv3-d16}: Enables VFPv3 instructions with 16 double-word registers.
313@code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
314@code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
315conversion instructions and 16 double-word registers.
316@code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
317instructions and 32 double-word registers.
318@code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
319@code{+simd}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
320double-word registers.
321@code{+neon-vfpv4}: Alias for @code{+simd}.
322@code{+neon}: Enables VFPv3 and NEONv1 instructions with 32 double-word
323registers.
324@code{+neon-vfpv3}: Alias for @code{+neon}.
325@code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
326NEONv1 instructions with 32 double-word registers.
327double-word registers.
328@code{+nofp}: Disables all FPU and NEON instructions.
329@code{+nosimd}: Disables all NEON instructions.
330
331For @code{armv7-r}:
332
333@code{+fp.sp}: Enables single-precision only VFPv3 instructions with 16
334double-word registers.
335@code{+vfpv3xd}: Alias for @code{+fp.sp}.
336@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
337@code{+vfpv3-d16}: Alias for @code{+fp}.
338@code{+vfpv3xd-fp16}: Enables single-precision only VFPv3 and half
339floating-point conversion instructions with 16 double-word registers.
340@code{+vfpv3-d16-fp16}: Enables VFPv3 and half precision floating-point
341conversion instructions with 16 double-word registers.
342@code{+idiv}: Enables integer division instructions in ARM mode.
343@code{+nofp}: Disables all FPU instructions.
344
345For @code{armv7e-m}:
346
347@code{+fp}: Enables single-precision only VFPv4 instructions with 16
348double-word registers.
349@code{+vfpvf4-sp-d16}: Alias for @code{+fp}.
350@code{+fpv5}: Enables single-precision only VFPv5 instructions with 16
351double-word registers.
352@code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
353@code{+fpv5-d16"}: Alias for @code{+fp.dp}.
354@code{+nofp}: Disables all FPU instructions.
355
356For @code{armv8-m.main}:
357
358@code{+dsp}: Enables DSP Extension.
359@code{+fp}: Enables single-precision only VFPv5 instructions with 16
360double-word registers.
361@code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
362@code{+nofp}: Disables all FPU instructions.
363@code{+nodsp}: Disables DSP Extension.
364
365For @code{armv8.1-m.main}:
366
367@code{+dsp}: Enables DSP Extension.
368@code{+fp}: Enables single and half precision scalar Floating Point Extensions
369for Armv8.1-M Mainline with 16 double-word registers.
370@code{+fp.dp}: Enables double precision scalar Floating Point Extensions for
371Armv8.1-M Mainline, implies @code{+fp}.
372@code{+mve}: Enables integer only M-profile Vector Extension for
373Armv8.1-M Mainline, implies @code{+dsp}.
374@code{+mve.fp}: Enables Floating Point M-profile Vector Extension for
375Armv8.1-M Mainline, implies @code{+mve} and @code{+fp}.
376@code{+nofp}: Disables all FPU instructions.
377@code{+nodsp}: Disables DSP Extension.
378@code{+nomve}: Disables all M-profile Vector Extensions.
379
380For @code{armv8-a}:
381
382@code{+crc}: Enables CRC32 Extension.
383@code{+simd}: Enables VFP and NEON for Armv8-A.
384@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
385@code{+simd}.
386@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
387@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
388for Armv8-A.
389@code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
390@code{+nocrypto}: Disables Cryptography Extensions.
391
392For @code{armv8.1-a}:
393
394@code{+simd}: Enables VFP and NEON for Armv8.1-A.
395@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
396@code{+simd}.
397@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
398@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
399for Armv8-A.
400@code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
401@code{+nocrypto}: Disables Cryptography Extensions.
402
403For @code{armv8.2-a} and @code{armv8.3-a}:
404
405@code{+simd}: Enables VFP and NEON for Armv8.1-A.
406@code{+fp16}: Enables FP16 Extension for Armv8.2-A, implies @code{+simd}.
407@code{+fp16fml}: Enables FP16 Floating Point Multiplication Variant Extensions
408for Armv8.2-A, implies @code{+fp16}.
409@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
410@code{+simd}.
411@code{+dotprod}: Enables Dot Product Extensions for Armv8.2-A, implies
412@code{+simd}.
413@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
414@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
415for Armv8-A.
416@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
417@code{+nocrypto}: Disables Cryptography Extensions.
418
419For @code{armv8.4-a}:
420
421@code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
422Armv8.2-A.
423@code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
424Variant Extensions for Armv8.2-A, implies @code{+simd}.
425@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
426@code{+simd}.
427@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
428@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
429for Armv8-A.
430@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
431@code{+nocryptp}: Disables Cryptography Extensions.
432
433For @code{armv8.5-a}:
434
435@code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
436Armv8.2-A.
437@code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
438Variant Extensions for Armv8.2-A, implies @code{+simd}.
439@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
440@code{+simd}.
441@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
442@code{+nocryptp}: Disables Cryptography Extensions.
443
444
445@cindex @code{-mfpu=} command-line option, ARM
446@item -mfpu=@var{floating-point-format}
447
448This option specifies the floating point format to assemble for. The
449assembler will issue an error message if an attempt is made to assemble
450an instruction which will not execute on the target floating point unit.
451The following format options are recognized:
452@code{softfpa},
453@code{fpe},
454@code{fpe2},
455@code{fpe3},
456@code{fpa},
457@code{fpa10},
458@code{fpa11},
459@code{arm7500fe},
460@code{softvfp},
461@code{softvfp+vfp},
462@code{vfp},
463@code{vfp10},
464@code{vfp10-r0},
465@code{vfp9},
466@code{vfpxd},
467@code{vfpv2},
468@code{vfpv3},
469@code{vfpv3-fp16},
470@code{vfpv3-d16},
471@code{vfpv3-d16-fp16},
472@code{vfpv3xd},
473@code{vfpv3xd-d16},
474@code{vfpv4},
475@code{vfpv4-d16},
476@code{fpv4-sp-d16},
477@code{fpv5-sp-d16},
478@code{fpv5-d16},
479@code{fp-armv8},
480@code{arm1020t},
481@code{arm1020e},
482@code{arm1136jf-s},
483@code{maverick},
484@code{neon},
485@code{neon-vfpv3},
486@code{neon-fp16},
487@code{neon-vfpv4},
488@code{neon-fp-armv8},
489@code{crypto-neon-fp-armv8},
490@code{neon-fp-armv8.1}
491and
492@code{crypto-neon-fp-armv8.1}.
493
494In addition to determining which instructions are assembled, this option
495also affects the way in which the @code{.double} assembler directive behaves
496when assembling little-endian code.
497
498The default is dependent on the processor selected. For Architecture 5 or
499later, the default is to assemble for VFP instructions; for earlier
500architectures the default is to assemble for FPA instructions.
501
502@cindex @code{-mfp16-format=} command-line option
503@item -mfp16-format=@var{format}
504This option specifies the half-precision floating point format to use
505when assembling floating point numbers emitted by the @code{.float16}
506directive.
507The following format options are recognized:
508@code{ieee},
509@code{alternative}.
510If @code{ieee} is specified then the IEEE 754-2008 half-precision floating
511point format is used, if @code{alternative} is specified then the Arm
512alternative half-precision format is used. If this option is set on the
513command line then the format is fixed and cannot be changed with
514the @code{float16_format} directive. If this value is not set then
515the IEEE 754-2008 format is used until the format is explicitly set with
516the @code{float16_format} directive.
517
518@cindex @code{-mthumb} command-line option, ARM
519@item -mthumb
520This option specifies that the assembler should start assembling Thumb
521instructions; that is, it should behave as though the file starts with a
522@code{.code 16} directive.
523
524@cindex @code{-mthumb-interwork} command-line option, ARM
525@item -mthumb-interwork
526This option specifies that the output generated by the assembler should
527be marked as supporting interworking. It also affects the behaviour
528of the @code{ADR} and @code{ADRL} pseudo opcodes.
529
530@cindex @code{-mimplicit-it} command-line option, ARM
531@item -mimplicit-it=never
532@itemx -mimplicit-it=always
533@itemx -mimplicit-it=arm
534@itemx -mimplicit-it=thumb
535The @code{-mimplicit-it} option controls the behavior of the assembler when
536conditional instructions are not enclosed in IT blocks.
537There are four possible behaviors.
538If @code{never} is specified, such constructs cause a warning in ARM
539code and an error in Thumb-2 code.
540If @code{always} is specified, such constructs are accepted in both
541ARM and Thumb-2 code, where the IT instruction is added implicitly.
542If @code{arm} is specified, such constructs are accepted in ARM code
543and cause an error in Thumb-2 code.
544If @code{thumb} is specified, such constructs cause a warning in ARM
545code and are accepted in Thumb-2 code. If you omit this option, the
546behavior is equivalent to @code{-mimplicit-it=arm}.
547
548@cindex @code{-mapcs-26} command-line option, ARM
549@cindex @code{-mapcs-32} command-line option, ARM
550@item -mapcs-26
551@itemx -mapcs-32
552These options specify that the output generated by the assembler should
553be marked as supporting the indicated version of the Arm Procedure.
554Calling Standard.
555
556@cindex @code{-matpcs} command-line option, ARM
557@item -matpcs
558This option specifies that the output generated by the assembler should
559be marked as supporting the Arm/Thumb Procedure Calling Standard. If
560enabled this option will cause the assembler to create an empty
561debugging section in the object file called .arm.atpcs. Debuggers can
562use this to determine the ABI being used by.
563
564@cindex @code{-mapcs-float} command-line option, ARM
565@item -mapcs-float
566This indicates the floating point variant of the APCS should be
567used. In this variant floating point arguments are passed in FP
568registers rather than integer registers.
569
570@cindex @code{-mapcs-reentrant} command-line option, ARM
571@item -mapcs-reentrant
572This indicates that the reentrant variant of the APCS should be used.
573This variant supports position independent code.
574
575@cindex @code{-mfloat-abi=} command-line option, ARM
576@item -mfloat-abi=@var{abi}
577This option specifies that the output generated by the assembler should be
578marked as using specified floating point ABI.
579The following values are recognized:
580@code{soft},
581@code{softfp}
582and
583@code{hard}.
584
585@cindex @code{-eabi=} command-line option, ARM
586@item -meabi=@var{ver}
587This option specifies which EABI version the produced object files should
588conform to.
589The following values are recognized:
590@code{gnu},
591@code{4}
592and
593@code{5}.
594
595@cindex @code{-EB} command-line option, ARM
596@item -EB
597This option specifies that the output generated by the assembler should
598be marked as being encoded for a big-endian processor.
599
600Note: If a program is being built for a system with big-endian data
601and little-endian instructions then it should be assembled with the
602@option{-EB} option, (all of it, code and data) and then linked with
603the @option{--be8} option. This will reverse the endianness of the
604instructions back to little-endian, but leave the data as big-endian.
605
606@cindex @code{-EL} command-line option, ARM
607@item -EL
608This option specifies that the output generated by the assembler should
609be marked as being encoded for a little-endian processor.
610
611@cindex @code{-k} command-line option, ARM
612@cindex PIC code generation for ARM
613@item -k
614This option specifies that the output of the assembler should be marked
615as position-independent code (PIC).
616
617@cindex @code{--fix-v4bx} command-line option, ARM
618@item --fix-v4bx
619Allow @code{BX} instructions in ARMv4 code. This is intended for use with
620the linker option of the same name.
621
622@cindex @code{-mwarn-deprecated} command-line option, ARM
623@item -mwarn-deprecated
624@itemx -mno-warn-deprecated
625Enable or disable warnings about using deprecated options or
626features. The default is to warn.
627
628@cindex @code{-mccs} command-line option, ARM
629@item -mccs
630Turns on CodeComposer Studio assembly syntax compatibility mode.
631
632@cindex @code{-mwarn-syms} command-line option, ARM
633@item -mwarn-syms
634@itemx -mno-warn-syms
635Enable or disable warnings about symbols that match the names of ARM
636instructions. The default is to warn.
637
638@end table
639
640
641@node ARM Syntax
642@section Syntax
643@menu
644* ARM-Instruction-Set:: Instruction Set
645* ARM-Chars:: Special Characters
646* ARM-Regs:: Register Names
647* ARM-Relocations:: Relocations
648* ARM-Neon-Alignment:: NEON Alignment Specifiers
649@end menu
650
651@node ARM-Instruction-Set
652@subsection Instruction Set Syntax
653Two slightly different syntaxes are support for ARM and THUMB
654instructions. The default, @code{divided}, uses the old style where
655ARM and THUMB instructions had their own, separate syntaxes. The new,
656@code{unified} syntax, which can be selected via the @code{.syntax}
657directive, and has the following main features:
658
659@itemize @bullet
660@item
661Immediate operands do not require a @code{#} prefix.
662
663@item
664The @code{IT} instruction may appear, and if it does it is validated
665against subsequent conditional affixes. In ARM mode it does not
666generate machine code, in THUMB mode it does.
667
668@item
669For ARM instructions the conditional affixes always appear at the end
670of the instruction. For THUMB instructions conditional affixes can be
671used, but only inside the scope of an @code{IT} instruction.
672
673@item
674All of the instructions new to the V6T2 architecture (and later) are
675available. (Only a few such instructions can be written in the
676@code{divided} syntax).
677
678@item
679The @code{.N} and @code{.W} suffixes are recognized and honored.
680
681@item
682All instructions set the flags if and only if they have an @code{s}
683affix.
684@end itemize
685
686@node ARM-Chars
687@subsection Special Characters
688
689@cindex line comment character, ARM
690@cindex ARM line comment character
691The presence of a @samp{@@} anywhere on a line indicates the start of
692a comment that extends to the end of that line.
693
694If a @samp{#} appears as the first character of a line then the whole
695line is treated as a comment, but in this case the line could also be
696a logical line number directive (@pxref{Comments}) or a preprocessor
697control command (@pxref{Preprocessing}).
698
699@cindex line separator, ARM
700@cindex statement separator, ARM
701@cindex ARM line separator
702The @samp{;} character can be used instead of a newline to separate
703statements.
704
705@cindex immediate character, ARM
706@cindex ARM immediate character
707Either @samp{#} or @samp{$} can be used to indicate immediate operands.
708
709@cindex identifiers, ARM
710@cindex ARM identifiers
711*TODO* Explain about /data modifier on symbols.
712
713@node ARM-Regs
714@subsection Register Names
715
716@cindex ARM register names
717@cindex register names, ARM
718*TODO* Explain about ARM register naming, and the predefined names.
719
720@node ARM-Relocations
721@subsection ARM relocation generation
722
723@cindex data relocations, ARM
724@cindex ARM data relocations
725Specific data relocations can be generated by putting the relocation name
726in parentheses after the symbol name. For example:
727
728@smallexample
729 .word foo(TARGET1)
730@end smallexample
731
732This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
733@var{foo}.
734The following relocations are supported:
735@code{GOT},
736@code{GOTOFF},
737@code{TARGET1},
738@code{TARGET2},
739@code{SBREL},
740@code{TLSGD},
741@code{TLSLDM},
742@code{TLSLDO},
743@code{TLSDESC},
744@code{TLSCALL},
745@code{GOTTPOFF},
746@code{GOT_PREL}
747and
748@code{TPOFF}.
749
750For compatibility with older toolchains the assembler also accepts
751@code{(PLT)} after branch targets. On legacy targets this will
752generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
753targets it will encode either the @samp{R_ARM_CALL} or
754@samp{R_ARM_JUMP24} relocation, as appropriate.
755
756@cindex MOVW and MOVT relocations, ARM
757Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
758by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
759respectively. For example to load the 32-bit address of foo into r0:
760
761@smallexample
762 MOVW r0, #:lower16:foo
763 MOVT r0, #:upper16:foo
764@end smallexample
765
766Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
767@samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
768generated by prefixing the value with @samp{#:lower0_7:#},
769@samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
770respectively. For example to load the 32-bit address of foo into r0:
771
772@smallexample
773 MOVS r0, #:upper8_15:#foo
774 LSLS r0, r0, #8
775 ADDS r0, #:upper0_7:#foo
776 LSLS r0, r0, #8
777 ADDS r0, #:lower8_15:#foo
778 LSLS r0, r0, #8
779 ADDS r0, #:lower0_7:#foo
780@end smallexample
781
782@node ARM-Neon-Alignment
783@subsection NEON Alignment Specifiers
784
785@cindex alignment for NEON instructions
786Some NEON load/store instructions allow an optional address
787alignment qualifier.
788The ARM documentation specifies that this is indicated by
789@samp{@@ @var{align}}. However GAS already interprets
790the @samp{@@} character as a "line comment" start,
791so @samp{: @var{align}} is used instead. For example:
792
793@smallexample
794 vld1.8 @{q0@}, [r0, :128]
795@end smallexample
796
797@node ARM Floating Point
798@section Floating Point
799
800@cindex floating point, ARM (@sc{ieee})
801@cindex ARM floating point (@sc{ieee})
802The ARM family uses @sc{ieee} floating-point numbers.
803
804@node ARM Directives
805@section ARM Machine Directives
806
807@cindex machine directives, ARM
808@cindex ARM machine directives
809@table @code
810
811@c AAAAAAAAAAAAAAAAAAAAAAAAA
812
813@ifclear ELF
814@cindex @code{.2byte} directive, ARM
815@cindex @code{.4byte} directive, ARM
816@cindex @code{.8byte} directive, ARM
817@item .2byte @var{expression} [, @var{expression}]*
818@itemx .4byte @var{expression} [, @var{expression}]*
819@itemx .8byte @var{expression} [, @var{expression}]*
820These directives write 2, 4 or 8 byte values to the output section.
821@end ifclear
822
823@cindex @code{.align} directive, ARM
824@item .align @var{expression} [, @var{expression}]
825This is the generic @var{.align} directive. For the ARM however if the
826first argument is zero (ie no alignment is needed) the assembler will
827behave as if the argument had been 2 (ie pad to the next four byte
828boundary). This is for compatibility with ARM's own assembler.
829
830@cindex @code{.arch} directive, ARM
831@item .arch @var{name}
832Select the target architecture. Valid values for @var{name} are the same as
833for the @option{-march} command-line option without the instruction set
834extension.
835
836Specifying @code{.arch} clears any previously selected architecture
837extensions.
838
839@cindex @code{.arch_extension} directive, ARM
840@item .arch_extension @var{name}
841Add or remove an architecture extension to the target architecture. Valid
842values for @var{name} are the same as those accepted as architectural
843extensions by the @option{-mcpu} and @option{-march} command-line options.
844
845@code{.arch_extension} may be used multiple times to add or remove extensions
846incrementally to the architecture being compiled for.
847
848@cindex @code{.arm} directive, ARM
849@item .arm
850This performs the same action as @var{.code 32}.
851
852@c BBBBBBBBBBBBBBBBBBBBBBBBBB
853
854@cindex @code{.bss} directive, ARM
855@item .bss
856This directive switches to the @code{.bss} section.
857
858@c CCCCCCCCCCCCCCCCCCCCCCCCCC
859
860@cindex @code{.cantunwind} directive, ARM
861@item .cantunwind
862Prevents unwinding through the current function. No personality routine
863or exception table data is required or permitted.
864
865@cindex @code{.code} directive, ARM
866@item .code @code{[16|32]}
867This directive selects the instruction set being generated. The value 16
868selects Thumb, with the value 32 selecting ARM.
869
870@cindex @code{.cpu} directive, ARM
871@item .cpu @var{name}
872Select the target processor. Valid values for @var{name} are the same as
873for the @option{-mcpu} command-line option without the instruction set
874extension.
875
876Specifying @code{.cpu} clears any previously selected architecture
877extensions.
878
879@c DDDDDDDDDDDDDDDDDDDDDDDDDD
880
881@cindex @code{.dn} and @code{.qn} directives, ARM
882@item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
883@itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
884
885The @code{dn} and @code{qn} directives are used to create typed
886and/or indexed register aliases for use in Advanced SIMD Extension
887(Neon) instructions. The former should be used to create aliases
888of double-precision registers, and the latter to create aliases of
889quad-precision registers.
890
891If these directives are used to create typed aliases, those aliases can
892be used in Neon instructions instead of writing types after the mnemonic
893or after each operand. For example:
894
895@smallexample
896 x .dn d2.f32
897 y .dn d3.f32
898 z .dn d4.f32[1]
899 vmul x,y,z
900@end smallexample
901
902This is equivalent to writing the following:
903
904@smallexample
905 vmul.f32 d2,d3,d4[1]
906@end smallexample
907
908Aliases created using @code{dn} or @code{qn} can be destroyed using
909@code{unreq}.
910
911@c EEEEEEEEEEEEEEEEEEEEEEEEEE
912
913@cindex @code{.eabi_attribute} directive, ARM
914@item .eabi_attribute @var{tag}, @var{value}
915Set the EABI object attribute @var{tag} to @var{value}.
916
917The @var{tag} is either an attribute number, or one of the following:
918@code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
919@code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
920@code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
921@code{Tag_Advanced_SIMD_arch}, @code{Tag_MVE_arch}, @code{Tag_PCS_config},
922@code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
923@code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
924@code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
925@code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
926@code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
927@code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
928@code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
929@code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
930@code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
931@code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
932@code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
933@code{Tag_MPextension_use}, @code{Tag_DIV_use},
934@code{Tag_nodefaults}, @code{Tag_also_compatible_with},
935@code{Tag_conformance}, @code{Tag_T2EE_use},
936@code{Tag_Virtualization_use}
937
938The @var{value} is either a @code{number}, @code{"string"}, or
939@code{number, "string"} depending on the tag.
940
941Note - the following legacy values are also accepted by @var{tag}:
942@code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
943@code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
944
945@cindex @code{.even} directive, ARM
946@item .even
947This directive aligns to an even-numbered address.
948
949@cindex @code{.extend} directive, ARM
950@cindex @code{.ldouble} directive, ARM
951@item .extend @var{expression} [, @var{expression}]*
952@itemx .ldouble @var{expression} [, @var{expression}]*
953These directives write 12byte long double floating-point values to the
954output section. These are not compatible with current ARM processors
955or ABIs.
956
957@c FFFFFFFFFFFFFFFFFFFFFFFFFF
958
959@cindex @code{.float16} directive, ARM
960@item .float16 @var{value [,...,value_n]}
961Place the half precision floating point representation of one or more
962floating-point values into the current section. The exact format of the
963encoding is specified by @code{.float16_format}. If the format has not
964been explicitly set yet (either via the @code{.float16_format} directive or
965the command line option) then the IEEE 754-2008 format is used.
966
967@cindex @code{.float16_format} directive, ARM
968@item .float16_format @var{format}
969Set the format to use when encoding float16 values emitted by
970the @code{.float16} directive.
971Once the format has been set it cannot be changed.
972@code{format} should be one of the following: @code{ieee} (encode in
973the IEEE 754-2008 half precision format) or @code{alternative} (encode in
974the Arm alternative half precision format).
975
976@anchor{arm_fnend}
977@cindex @code{.fnend} directive, ARM
978@item .fnend
979Marks the end of a function with an unwind table entry. The unwind index
980table entry is created when this directive is processed.
981
982If no personality routine has been specified then standard personality
983routine 0 or 1 will be used, depending on the number of unwind opcodes
984required.
985
986@anchor{arm_fnstart}
987@cindex @code{.fnstart} directive, ARM
988@item .fnstart
989Marks the start of a function with an unwind table entry.
990
991@cindex @code{.force_thumb} directive, ARM
992@item .force_thumb
993This directive forces the selection of Thumb instructions, even if the
994target processor does not support those instructions
995
996@cindex @code{.fpu} directive, ARM
997@item .fpu @var{name}
998Select the floating-point unit to assemble for. Valid values for @var{name}
999are the same as for the @option{-mfpu} command-line option.
1000
1001@c GGGGGGGGGGGGGGGGGGGGGGGGGG
1002@c HHHHHHHHHHHHHHHHHHHHHHHHHH
1003
1004@cindex @code{.handlerdata} directive, ARM
1005@item .handlerdata
1006Marks the end of the current function, and the start of the exception table
1007entry for that function. Anything between this directive and the
1008@code{.fnend} directive will be added to the exception table entry.
1009
1010Must be preceded by a @code{.personality} or @code{.personalityindex}
1011directive.
1012
1013@c IIIIIIIIIIIIIIIIIIIIIIIIII
1014
1015@cindex @code{.inst} directive, ARM
1016@item .inst @var{opcode} [ , @dots{} ]
1017@itemx .inst.n @var{opcode} [ , @dots{} ]
1018@itemx .inst.w @var{opcode} [ , @dots{} ]
1019Generates the instruction corresponding to the numerical value @var{opcode}.
1020@code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
1021specified explicitly, overriding the normal encoding rules.
1022
1023@c JJJJJJJJJJJJJJJJJJJJJJJJJJ
1024@c KKKKKKKKKKKKKKKKKKKKKKKKKK
1025@c LLLLLLLLLLLLLLLLLLLLLLLLLL
1026
1027@item .ldouble @var{expression} [, @var{expression}]*
1028See @code{.extend}.
1029
1030@cindex @code{.ltorg} directive, ARM
1031@item .ltorg
1032This directive causes the current contents of the literal pool to be
1033dumped into the current section (which is assumed to be the .text
1034section) at the current location (aligned to a word boundary).
1035@code{GAS} maintains a separate literal pool for each section and each
1036sub-section. The @code{.ltorg} directive will only affect the literal
1037pool of the current section and sub-section. At the end of assembly
1038all remaining, un-empty literal pools will automatically be dumped.
1039
1040Note - older versions of @code{GAS} would dump the current literal
1041pool any time a section change occurred. This is no longer done, since
1042it prevents accurate control of the placement of literal pools.
1043
1044@c MMMMMMMMMMMMMMMMMMMMMMMMMM
1045
1046@cindex @code{.movsp} directive, ARM
1047@item .movsp @var{reg} [, #@var{offset}]
1048Tell the unwinder that @var{reg} contains an offset from the current
1049stack pointer. If @var{offset} is not specified then it is assumed to be
1050zero.
1051
1052@c NNNNNNNNNNNNNNNNNNNNNNNNNN
1053@c OOOOOOOOOOOOOOOOOOOOOOOOOO
1054
1055@cindex @code{.object_arch} directive, ARM
1056@item .object_arch @var{name}
1057Override the architecture recorded in the EABI object attribute section.
1058Valid values for @var{name} are the same as for the @code{.arch} directive.
1059Typically this is useful when code uses runtime detection of CPU features.
1060
1061@c PPPPPPPPPPPPPPPPPPPPPPPPPP
1062
1063@cindex @code{.packed} directive, ARM
1064@item .packed @var{expression} [, @var{expression}]*
1065This directive writes 12-byte packed floating-point values to the
1066output section. These are not compatible with current ARM processors
1067or ABIs.
1068
1069@anchor{arm_pad}
1070@cindex @code{.pad} directive, ARM
1071@item .pad #@var{count}
1072Generate unwinder annotations for a stack adjustment of @var{count} bytes.
1073A positive value indicates the function prologue allocated stack space by
1074decrementing the stack pointer.
1075
1076@cindex @code{.personality} directive, ARM
1077@item .personality @var{name}
1078Sets the personality routine for the current function to @var{name}.
1079
1080@cindex @code{.personalityindex} directive, ARM
1081@item .personalityindex @var{index}
1082Sets the personality routine for the current function to the EABI standard
1083routine number @var{index}
1084
1085@cindex @code{.pool} directive, ARM
1086@item .pool
1087This is a synonym for .ltorg.
1088
1089@c QQQQQQQQQQQQQQQQQQQQQQQQQQ
1090@c RRRRRRRRRRRRRRRRRRRRRRRRRR
1091
1092@cindex @code{.req} directive, ARM
1093@item @var{name} .req @var{register name}
1094This creates an alias for @var{register name} called @var{name}. For
1095example:
1096
1097@smallexample
1098 foo .req r0
1099@end smallexample
1100
1101@c SSSSSSSSSSSSSSSSSSSSSSSSSS
1102
1103@anchor{arm_save}
1104@cindex @code{.save} directive, ARM
1105@item .save @var{reglist}
1106Generate unwinder annotations to restore the registers in @var{reglist}.
1107The format of @var{reglist} is the same as the corresponding store-multiple
1108instruction.
1109
1110@smallexample
1111@exdent @emph{core registers}
1112 .save @{r4, r5, r6, lr@}
1113 stmfd sp!, @{r4, r5, r6, lr@}
1114@exdent @emph{FPA registers}
1115 .save f4, 2
1116 sfmfd f4, 2, [sp]!
1117@exdent @emph{VFP registers}
1118 .save @{d8, d9, d10@}
1119 fstmdx sp!, @{d8, d9, d10@}
1120@exdent @emph{iWMMXt registers}
1121 .save @{wr10, wr11@}
1122 wstrd wr11, [sp, #-8]!
1123 wstrd wr10, [sp, #-8]!
1124or
1125 .save wr11
1126 wstrd wr11, [sp, #-8]!
1127 .save wr10
1128 wstrd wr10, [sp, #-8]!
1129@end smallexample
1130
1131@anchor{arm_setfp}
1132@cindex @code{.setfp} directive, ARM
1133@item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
1134Make all unwinder annotations relative to a frame pointer. Without this
1135the unwinder will use offsets from the stack pointer.
1136
1137The syntax of this directive is the same as the @code{add} or @code{mov}
1138instruction used to set the frame pointer. @var{spreg} must be either
1139@code{sp} or mentioned in a previous @code{.movsp} directive.
1140
1141@smallexample
1142.movsp ip
1143mov ip, sp
1144@dots{}
1145.setfp fp, ip, #4
1146add fp, ip, #4
1147@end smallexample
1148
1149@cindex @code{.secrel32} directive, ARM
1150@item .secrel32 @var{expression} [, @var{expression}]*
1151This directive emits relocations that evaluate to the section-relative
1152offset of each expression's symbol. This directive is only supported
1153for PE targets.
1154
1155@cindex @code{.syntax} directive, ARM
1156@item .syntax [@code{unified} | @code{divided}]
1157This directive sets the Instruction Set Syntax as described in the
1158@ref{ARM-Instruction-Set} section.
1159
1160@c TTTTTTTTTTTTTTTTTTTTTTTTTT
1161
1162@cindex @code{.thumb} directive, ARM
1163@item .thumb
1164This performs the same action as @var{.code 16}.
1165
1166@cindex @code{.thumb_func} directive, ARM
1167@item .thumb_func
1168This directive specifies that the following symbol is the name of a
1169Thumb encoded function. This information is necessary in order to allow
1170the assembler and linker to generate correct code for interworking
1171between Arm and Thumb instructions and should be used even if
1172interworking is not going to be performed. The presence of this
1173directive also implies @code{.thumb}
1174
1175This directive is not necessary when generating EABI objects. On these
1176targets the encoding is implicit when generating Thumb code.
1177
1178@cindex @code{.thumb_set} directive, ARM
1179@item .thumb_set
1180This performs the equivalent of a @code{.set} directive in that it
1181creates a symbol which is an alias for another symbol (possibly not yet
1182defined). This directive also has the added property in that it marks
1183the aliased symbol as being a thumb function entry point, in the same
1184way that the @code{.thumb_func} directive does.
1185
1186@cindex @code{.tlsdescseq} directive, ARM
1187@item .tlsdescseq @var{tls-variable}
1188This directive is used to annotate parts of an inlined TLS descriptor
1189trampoline. Normally the trampoline is provided by the linker, and
1190this directive is not needed.
1191
1192@c UUUUUUUUUUUUUUUUUUUUUUUUUU
1193
1194@cindex @code{.unreq} directive, ARM
1195@item .unreq @var{alias-name}
1196This undefines a register alias which was previously defined using the
1197@code{req}, @code{dn} or @code{qn} directives. For example:
1198
1199@smallexample
1200 foo .req r0
1201 .unreq foo
1202@end smallexample
1203
1204An error occurs if the name is undefined. Note - this pseudo op can
1205be used to delete builtin in register name aliases (eg 'r0'). This
1206should only be done if it is really necessary.
1207
1208@cindex @code{.unwind_raw} directive, ARM
1209@item .unwind_raw @var{offset}, @var{byte1}, @dots{}
1210Insert one of more arbitrary unwind opcode bytes, which are known to adjust
1211the stack pointer by @var{offset} bytes.
1212
1213For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
1214@code{.save @{r0@}}
1215
1216@c VVVVVVVVVVVVVVVVVVVVVVVVVV
1217
1218@cindex @code{.vsave} directive, ARM
1219@item .vsave @var{vfp-reglist}
1220Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1221using FLDMD. Also works for VFPv3 registers
1222that are to be restored using VLDM.
1223The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1224instruction.
1225
1226@smallexample
1227@exdent @emph{VFP registers}
1228 .vsave @{d8, d9, d10@}
1229 fstmdd sp!, @{d8, d9, d10@}
1230@exdent @emph{VFPv3 registers}
1231 .vsave @{d15, d16, d17@}
1232 vstm sp!, @{d15, d16, d17@}
1233@end smallexample
1234
1235Since FLDMX and FSTMX are now deprecated, this directive should be
1236used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
1237
1238@c WWWWWWWWWWWWWWWWWWWWWWWWWW
1239@c XXXXXXXXXXXXXXXXXXXXXXXXXX
1240@c YYYYYYYYYYYYYYYYYYYYYYYYYY
1241@c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
1242
1243@end table
1244
1245@node ARM Opcodes
1246@section Opcodes
1247
1248@cindex ARM opcodes
1249@cindex opcodes for ARM
1250@code{@value{AS}} implements all the standard ARM opcodes. It also
1251implements several pseudo opcodes, including several synthetic load
1252instructions.
1253
1254@table @code
1255
1256@cindex @code{NOP} pseudo op, ARM
1257@item NOP
1258@smallexample
1259 nop
1260@end smallexample
1261
1262This pseudo op will always evaluate to a legal ARM instruction that does
1263nothing. Currently it will evaluate to MOV r0, r0.
1264
1265@cindex @code{LDR reg,=<label>} pseudo op, ARM
1266@item LDR
1267@smallexample
1268 ldr <register> , = <expression>
1269@end smallexample
1270
1271If expression evaluates to a numeric constant then a MOV or MVN
1272instruction will be used in place of the LDR instruction, if the
1273constant can be generated by either of these instructions. Otherwise
1274the constant will be placed into the nearest literal pool (if it not
1275already there) and a PC relative LDR instruction will be generated.
1276
1277@cindex @code{ADR reg,<label>} pseudo op, ARM
1278@item ADR
1279@smallexample
1280 adr <register> <label>
1281@end smallexample
1282
1283This instruction will load the address of @var{label} into the indicated
1284register. The instruction will evaluate to a PC relative ADD or SUB
1285instruction depending upon where the label is located. If the label is
1286out of range, or if it is not defined in the same file (and section) as
1287the ADR instruction, then an error will be generated. This instruction
1288will not make use of the literal pool.
1289
1290If @var{label} is a thumb function symbol, and thumb interworking has
1291been enabled via the @option{-mthumb-interwork} option then the bottom
1292bit of the value stored into @var{register} will be set. This allows
1293the following sequence to work as expected:
1294
1295@smallexample
1296 adr r0, thumb_function
1297 blx r0
1298@end smallexample
1299
1300@cindex @code{ADRL reg,<label>} pseudo op, ARM
1301@item ADRL
1302@smallexample
1303 adrl <register> <label>
1304@end smallexample
1305
1306This instruction will load the address of @var{label} into the indicated
1307register. The instruction will evaluate to one or two PC relative ADD
1308or SUB instructions depending upon where the label is located. If a
1309second instruction is not needed a NOP instruction will be generated in
1310its place, so that this instruction is always 8 bytes long.
1311
1312If the label is out of range, or if it is not defined in the same file
1313(and section) as the ADRL instruction, then an error will be generated.
1314This instruction will not make use of the literal pool.
1315
1316If @var{label} is a thumb function symbol, and thumb interworking has
1317been enabled via the @option{-mthumb-interwork} option then the bottom
1318bit of the value stored into @var{register} will be set.
1319
1320@end table
1321
1322For information on the ARM or Thumb instruction sets, see @cite{ARM
1323Software Development Toolkit Reference Manual}, Advanced RISC Machines
1324Ltd.
1325
1326@node ARM Mapping Symbols
1327@section Mapping Symbols
1328
1329The ARM ELF specification requires that special symbols be inserted
1330into object files to mark certain features:
1331
1332@table @code
1333
1334@cindex @code{$a}
1335@item $a
1336At the start of a region of code containing ARM instructions.
1337
1338@cindex @code{$t}
1339@item $t
1340At the start of a region of code containing THUMB instructions.
1341
1342@cindex @code{$d}
1343@item $d
1344At the start of a region of data.
1345
1346@end table
1347
1348The assembler will automatically insert these symbols for you - there
1349is no need to code them yourself. Support for tagging symbols ($b,
1350$f, $p and $m) which is also mentioned in the current ARM ELF
1351specification is not implemented. This is because they have been
1352dropped from the new EABI and so tools cannot rely upon their
1353presence.
1354
1355@node ARM Unwinding Tutorial
1356@section Unwinding
1357
1358The ABI for the ARM Architecture specifies a standard format for
1359exception unwind information. This information is used when an
1360exception is thrown to determine where control should be transferred.
1361In particular, the unwind information is used to determine which
1362function called the function that threw the exception, and which
1363function called that one, and so forth. This information is also used
1364to restore the values of callee-saved registers in the function
1365catching the exception.
1366
1367If you are writing functions in assembly code, and those functions
1368call other functions that throw exceptions, you must use assembly
1369pseudo ops to ensure that appropriate exception unwind information is
1370generated. Otherwise, if one of the functions called by your assembly
1371code throws an exception, the run-time library will be unable to
1372unwind the stack through your assembly code and your program will not
1373behave correctly.
1374
1375To illustrate the use of these pseudo ops, we will examine the code
1376that G++ generates for the following C++ input:
1377
1378@verbatim
1379void callee (int *);
1380
1381int
1382caller ()
1383{
1384 int i;
1385 callee (&i);
1386 return i;
1387}
1388@end verbatim
1389
1390This example does not show how to throw or catch an exception from
1391assembly code. That is a much more complex operation and should
1392always be done in a high-level language, such as C++, that directly
1393supports exceptions.
1394
1395The code generated by one particular version of G++ when compiling the
1396example above is:
1397
1398@verbatim
1399_Z6callerv:
1400 .fnstart
1401.LFB2:
1402 @ Function supports interworking.
1403 @ args = 0, pretend = 0, frame = 8
1404 @ frame_needed = 1, uses_anonymous_args = 0
1405 stmfd sp!, {fp, lr}
1406 .save {fp, lr}
1407.LCFI0:
1408 .setfp fp, sp, #4
1409 add fp, sp, #4
1410.LCFI1:
1411 .pad #8
1412 sub sp, sp, #8
1413.LCFI2:
1414 sub r3, fp, #8
1415 mov r0, r3
1416 bl _Z6calleePi
1417 ldr r3, [fp, #-8]
1418 mov r0, r3
1419 sub sp, fp, #4
1420 ldmfd sp!, {fp, lr}
1421 bx lr
1422.LFE2:
1423 .fnend
1424@end verbatim
1425
1426Of course, the sequence of instructions varies based on the options
1427you pass to GCC and on the version of GCC in use. The exact
1428instructions are not important since we are focusing on the pseudo ops
1429that are used to generate unwind information.
1430
1431An important assumption made by the unwinder is that the stack frame
1432does not change during the body of the function. In particular, since
1433we assume that the assembly code does not itself throw an exception,
1434the only point where an exception can be thrown is from a call, such
1435as the @code{bl} instruction above. At each call site, the same saved
1436registers (including @code{lr}, which indicates the return address)
1437must be located in the same locations relative to the frame pointer.
1438
1439The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1440op appears immediately before the first instruction of the function
1441while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1442op appears immediately after the last instruction of the function.
1443These pseudo ops specify the range of the function.
1444
1445Only the order of the other pseudos ops (e.g., @code{.setfp} or
1446@code{.pad}) matters; their exact locations are irrelevant. In the
1447example above, the compiler emits the pseudo ops with particular
1448instructions. That makes it easier to understand the code, but it is
1449not required for correctness. It would work just as well to emit all
1450of the pseudo ops other than @code{.fnend} in the same order, but
1451immediately after @code{.fnstart}.
1452
1453The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1454indicates registers that have been saved to the stack so that they can
1455be restored before the function returns. The argument to the
1456@code{.save} pseudo op is a list of registers to save. If a register
1457is ``callee-saved'' (as specified by the ABI) and is modified by the
1458function you are writing, then your code must save the value before it
1459is modified and restore the original value before the function
1460returns. If an exception is thrown, the run-time library restores the
1461values of these registers from their locations on the stack before
1462returning control to the exception handler. (Of course, if an
1463exception is not thrown, the function that contains the @code{.save}
1464pseudo op restores these registers in the function epilogue, as is
1465done with the @code{ldmfd} instruction above.)
1466
1467You do not have to save callee-saved registers at the very beginning
1468of the function and you do not need to use the @code{.save} pseudo op
1469immediately following the point at which the registers are saved.
1470However, if you modify a callee-saved register, you must save it on
1471the stack before modifying it and before calling any functions which
1472might throw an exception. And, you must use the @code{.save} pseudo
1473op to indicate that you have done so.
1474
1475The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1476modification of the stack pointer that does not save any registers.
1477The argument is the number of bytes (in decimal) that are subtracted
1478from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1479subtracting from the stack pointer increases the size of the stack.)
1480
1481The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1482indicates the register that contains the frame pointer. The first
1483argument is the register that is set, which is typically @code{fp}.
1484The second argument indicates the register from which the frame
1485pointer takes its value. The third argument, if present, is the value
1486(in decimal) added to the register specified by the second argument to
1487compute the value of the frame pointer. You should not modify the
1488frame pointer in the body of the function.
1489
1490If you do not use a frame pointer, then you should not use the
1491@code{.setfp} pseudo op. If you do not use a frame pointer, then you
1492should avoid modifying the stack pointer outside of the function
1493prologue. Otherwise, the run-time library will be unable to find
1494saved registers when it is unwinding the stack.
1495
1496The pseudo ops described above are sufficient for writing assembly
1497code that calls functions which may throw exceptions. If you need to
1498know more about the object-file format used to represent unwind
1499information, you may consult the @cite{Exception Handling ABI for the
1500ARM Architecture} available from @uref{http://infocenter.arm.com}.
1501
This page took 0.02729 seconds and 4 git commands to generate.