Reinstate readelf decoding of i860, i960 and i370 relocs
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
... / ...
CommitLineData
1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4@c man end
5
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80386 support
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
24@menu
25* i386-Options:: Options
26* i386-Directives:: X86 specific directives
27* i386-Syntax:: Syntactical considerations
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
32* i386-Jumps:: Handling of Jump Instructions
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-LWP:: AMD's Lightweight Profiling Instructions
36* i386-BMI:: Bit Manipulation Instruction
37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38* i386-16bit:: Writing 16-bit Code
39* i386-Arch:: Specifying an x86 CPU architecture
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
50@cindex x86-64 options
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
55@c man begin OPTIONS
56@table @gcctabopt
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
63@item --32 | --x32 | --64
64Select the word size, either 32 bits or 64 bits. @samp{--32}
65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
94processor names are recognized:
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
109@code{core},
110@code{core2},
111@code{corei7},
112@code{l1om},
113@code{k1om},
114@code{iamcu},
115@code{k6},
116@code{k6_2},
117@code{athlon},
118@code{opteron},
119@code{k8},
120@code{amdfam10},
121@code{bdver1},
122@code{bdver2},
123@code{bdver3},
124@code{bdver4},
125@code{znver1},
126@code{btver1},
127@code{btver2},
128@code{generic32} and
129@code{generic64}.
130
131In addition to the basic instruction set, the assembler can be told to
132accept various extension mnemonics. For example,
133@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134@var{vmx}. The following extensions are currently supported:
135@code{8087},
136@code{287},
137@code{387},
138@code{687},
139@code{no87},
140@code{no287},
141@code{no387},
142@code{no687},
143@code{mmx},
144@code{nommx},
145@code{sse},
146@code{sse2},
147@code{sse3},
148@code{ssse3},
149@code{sse4.1},
150@code{sse4.2},
151@code{sse4},
152@code{nosse},
153@code{nosse2},
154@code{nosse3},
155@code{nossse3},
156@code{nosse4.1},
157@code{nosse4.2},
158@code{nosse4},
159@code{avx},
160@code{avx2},
161@code{noavx},
162@code{noavx2},
163@code{adx},
164@code{rdseed},
165@code{prfchw},
166@code{smap},
167@code{mpx},
168@code{sha},
169@code{rdpid},
170@code{ptwrite},
171@code{cet},
172@code{gfni},
173@code{vaes},
174@code{vpclmulqdq},
175@code{prefetchwt1},
176@code{clflushopt},
177@code{se1},
178@code{clwb},
179@code{avx512f},
180@code{avx512cd},
181@code{avx512er},
182@code{avx512pf},
183@code{avx512vl},
184@code{avx512bw},
185@code{avx512dq},
186@code{avx512ifma},
187@code{avx512vbmi},
188@code{avx512_4fmaps},
189@code{avx512_4vnniw},
190@code{avx512_vpopcntdq},
191@code{avx512_vbmi2},
192@code{avx512_vnni},
193@code{avx512_bitalg},
194@code{noavx512f},
195@code{noavx512cd},
196@code{noavx512er},
197@code{noavx512pf},
198@code{noavx512vl},
199@code{noavx512bw},
200@code{noavx512dq},
201@code{noavx512ifma},
202@code{noavx512vbmi},
203@code{noavx512_4fmaps},
204@code{noavx512_4vnniw},
205@code{noavx512_vpopcntdq},
206@code{noavx512_vbmi2},
207@code{noavx512_vnni},
208@code{noavx512_bitalg},
209@code{vmx},
210@code{vmfunc},
211@code{smx},
212@code{xsave},
213@code{xsaveopt},
214@code{xsavec},
215@code{xsaves},
216@code{aes},
217@code{pclmul},
218@code{fsgsbase},
219@code{rdrnd},
220@code{f16c},
221@code{bmi2},
222@code{fma},
223@code{movbe},
224@code{ept},
225@code{lzcnt},
226@code{hle},
227@code{rtm},
228@code{invpcid},
229@code{clflush},
230@code{mwaitx},
231@code{clzero},
232@code{wbnoinvd},
233@code{pconfig},
234@code{waitpkg},
235@code{lwp},
236@code{fma4},
237@code{xop},
238@code{cx16},
239@code{syscall},
240@code{rdtscp},
241@code{3dnow},
242@code{3dnowa},
243@code{sse4a},
244@code{sse5},
245@code{svme},
246@code{abm} and
247@code{padlock}.
248Note that rather than extending a basic instruction set, the extension
249mnemonics starting with @code{no} revoke the respective functionality.
250
251When the @code{.arch} directive is used with @option{-march}, the
252@code{.arch} directive will take precedent.
253
254@cindex @samp{-mtune=} option, i386
255@cindex @samp{-mtune=} option, x86-64
256@item -mtune=@var{CPU}
257This option specifies a processor to optimize for. When used in
258conjunction with the @option{-march} option, only instructions
259of the processor specified by the @option{-march} option will be
260generated.
261
262Valid @var{CPU} values are identical to the processor list of
263@option{-march=@var{CPU}}.
264
265@cindex @samp{-msse2avx} option, i386
266@cindex @samp{-msse2avx} option, x86-64
267@item -msse2avx
268This option specifies that the assembler should encode SSE instructions
269with VEX prefix.
270
271@cindex @samp{-msse-check=} option, i386
272@cindex @samp{-msse-check=} option, x86-64
273@item -msse-check=@var{none}
274@itemx -msse-check=@var{warning}
275@itemx -msse-check=@var{error}
276These options control if the assembler should check SSE instructions.
277@option{-msse-check=@var{none}} will make the assembler not to check SSE
278instructions, which is the default. @option{-msse-check=@var{warning}}
279will make the assembler issue a warning for any SSE instruction.
280@option{-msse-check=@var{error}} will make the assembler issue an error
281for any SSE instruction.
282
283@cindex @samp{-mavxscalar=} option, i386
284@cindex @samp{-mavxscalar=} option, x86-64
285@item -mavxscalar=@var{128}
286@itemx -mavxscalar=@var{256}
287These options control how the assembler should encode scalar AVX
288instructions. @option{-mavxscalar=@var{128}} will encode scalar
289AVX instructions with 128bit vector length, which is the default.
290@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
291with 256bit vector length.
292
293@cindex @samp{-mevexlig=} option, i386
294@cindex @samp{-mevexlig=} option, x86-64
295@item -mevexlig=@var{128}
296@itemx -mevexlig=@var{256}
297@itemx -mevexlig=@var{512}
298These options control how the assembler should encode length-ignored
299(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
300EVEX instructions with 128bit vector length, which is the default.
301@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
302encode LIG EVEX instructions with 256bit and 512bit vector length,
303respectively.
304
305@cindex @samp{-mevexwig=} option, i386
306@cindex @samp{-mevexwig=} option, x86-64
307@item -mevexwig=@var{0}
308@itemx -mevexwig=@var{1}
309These options control how the assembler should encode w-ignored (WIG)
310EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
311EVEX instructions with evex.w = 0, which is the default.
312@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
313evex.w = 1.
314
315@cindex @samp{-mmnemonic=} option, i386
316@cindex @samp{-mmnemonic=} option, x86-64
317@item -mmnemonic=@var{att}
318@itemx -mmnemonic=@var{intel}
319This option specifies instruction mnemonic for matching instructions.
320The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
321take precedent.
322
323@cindex @samp{-msyntax=} option, i386
324@cindex @samp{-msyntax=} option, x86-64
325@item -msyntax=@var{att}
326@itemx -msyntax=@var{intel}
327This option specifies instruction syntax when processing instructions.
328The @code{.att_syntax} and @code{.intel_syntax} directives will
329take precedent.
330
331@cindex @samp{-mnaked-reg} option, i386
332@cindex @samp{-mnaked-reg} option, x86-64
333@item -mnaked-reg
334This option specifies that registers don't require a @samp{%} prefix.
335The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
336
337@cindex @samp{-madd-bnd-prefix} option, i386
338@cindex @samp{-madd-bnd-prefix} option, x86-64
339@item -madd-bnd-prefix
340This option forces the assembler to add BND prefix to all branches, even
341if such prefix was not explicitly specified in the source code.
342
343@cindex @samp{-mshared} option, i386
344@cindex @samp{-mshared} option, x86-64
345@item -mno-shared
346On ELF target, the assembler normally optimizes out non-PLT relocations
347against defined non-weak global branch targets with default visibility.
348The @samp{-mshared} option tells the assembler to generate code which
349may go into a shared library where all non-weak global branch targets
350with default visibility can be preempted. The resulting code is
351slightly bigger. This option only affects the handling of branch
352instructions.
353
354@cindex @samp{-mbig-obj} option, x86-64
355@item -mbig-obj
356On x86-64 PE/COFF target this option forces the use of big object file
357format, which allows more than 32768 sections.
358
359@cindex @samp{-momit-lock-prefix=} option, i386
360@cindex @samp{-momit-lock-prefix=} option, x86-64
361@item -momit-lock-prefix=@var{no}
362@itemx -momit-lock-prefix=@var{yes}
363These options control how the assembler should encode lock prefix.
364This option is intended as a workaround for processors, that fail on
365lock prefix. This option can only be safely used with single-core,
366single-thread computers
367@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
368@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
369which is the default.
370
371@cindex @samp{-mfence-as-lock-add=} option, i386
372@cindex @samp{-mfence-as-lock-add=} option, x86-64
373@item -mfence-as-lock-add=@var{no}
374@itemx -mfence-as-lock-add=@var{yes}
375These options control how the assembler should encode lfence, mfence and
376sfence.
377@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
378sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
379@samp{lock addl $0x0, (%esp)} in 32-bit mode.
380@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
381sfence as usual, which is the default.
382
383@cindex @samp{-mrelax-relocations=} option, i386
384@cindex @samp{-mrelax-relocations=} option, x86-64
385@item -mrelax-relocations=@var{no}
386@itemx -mrelax-relocations=@var{yes}
387These options control whether the assembler should generate relax
388relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
389R_X86_64_REX_GOTPCRELX, in 64-bit mode.
390@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
391@option{-mrelax-relocations=@var{no}} will not generate relax
392relocations. The default can be controlled by a configure option
393@option{--enable-x86-relax-relocations}.
394
395@cindex @samp{-mevexrcig=} option, i386
396@cindex @samp{-mevexrcig=} option, x86-64
397@item -mevexrcig=@var{rne}
398@itemx -mevexrcig=@var{rd}
399@itemx -mevexrcig=@var{ru}
400@itemx -mevexrcig=@var{rz}
401These options control how the assembler should encode SAE-only
402EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
403of EVEX instruction with 00, which is the default.
404@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
405and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
406with 01, 10 and 11 RC bits, respectively.
407
408@cindex @samp{-mamd64} option, x86-64
409@cindex @samp{-mintel64} option, x86-64
410@item -mamd64
411@itemx -mintel64
412This option specifies that the assembler should accept only AMD64 or
413Intel64 ISA in 64-bit mode. The default is to accept both.
414
415@cindex @samp{-O0} option, i386
416@cindex @samp{-O0} option, x86-64
417@cindex @samp{-O} option, i386
418@cindex @samp{-O} option, x86-64
419@cindex @samp{-O1} option, i386
420@cindex @samp{-O1} option, x86-64
421@cindex @samp{-O2} option, i386
422@cindex @samp{-O2} option, x86-64
423@cindex @samp{-Os} option, i386
424@cindex @samp{-Os} option, x86-64
425@item -O0 | -O | -O1 | -O2 | -Os
426Optimize instruction encoding with smaller instruction size. @samp{-O}
427and @samp{-O1} encode 64-bit register load instructions with 64-bit
428immediate as 32-bit register load instructions with 31-bit or 32-bits
429immediates and encode 64-bit register clearing instructions with 32-bit
430register clearing instructions. @samp{-O2} includes @samp{-O1}
431optimization plus encodes 256-bit and 512-bit vector register clearing
432instructions with 128-bit vector register clearing instructions.
433@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
434and 64-bit register tests with immediate as 8-bit register test with
435immediate. @samp{-O0} turns off this optimization.
436
437@end table
438@c man end
439
440@node i386-Directives
441@section x86 specific Directives
442
443@cindex machine directives, x86
444@cindex x86 machine directives
445@table @code
446
447@cindex @code{lcomm} directive, COFF
448@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
449Reserve @var{length} (an absolute expression) bytes for a local common
450denoted by @var{symbol}. The section and value of @var{symbol} are
451those of the new local common. The addresses are allocated in the bss
452section, so that at run-time the bytes start off zeroed. Since
453@var{symbol} is not declared global, it is normally not visible to
454@code{@value{LD}}. The optional third parameter, @var{alignment},
455specifies the desired alignment of the symbol in the bss section.
456
457This directive is only available for COFF based x86 targets.
458
459@cindex @code{largecomm} directive, ELF
460@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
461This directive behaves in the same way as the @code{comm} directive
462except that the data is placed into the @var{.lbss} section instead of
463the @var{.bss} section @ref{Comm}.
464
465The directive is intended to be used for data which requires a large
466amount of space, and it is only available for ELF based x86_64
467targets.
468
469@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
470
471@end table
472
473@node i386-Syntax
474@section i386 Syntactical Considerations
475@menu
476* i386-Variations:: AT&T Syntax versus Intel Syntax
477* i386-Chars:: Special Characters
478@end menu
479
480@node i386-Variations
481@subsection AT&T Syntax versus Intel Syntax
482
483@cindex i386 intel_syntax pseudo op
484@cindex intel_syntax pseudo op, i386
485@cindex i386 att_syntax pseudo op
486@cindex att_syntax pseudo op, i386
487@cindex i386 syntax compatibility
488@cindex syntax compatibility, i386
489@cindex x86-64 intel_syntax pseudo op
490@cindex intel_syntax pseudo op, x86-64
491@cindex x86-64 att_syntax pseudo op
492@cindex att_syntax pseudo op, x86-64
493@cindex x86-64 syntax compatibility
494@cindex syntax compatibility, x86-64
495
496@code{@value{AS}} now supports assembly using Intel assembler syntax.
497@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
498back to the usual AT&T mode for compatibility with the output of
499@code{@value{GCC}}. Either of these directives may have an optional
500argument, @code{prefix}, or @code{noprefix} specifying whether registers
501require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
502different from Intel syntax. We mention these differences because
503almost all 80386 documents use Intel syntax. Notable differences
504between the two syntaxes are:
505
506@cindex immediate operands, i386
507@cindex i386 immediate operands
508@cindex register operands, i386
509@cindex i386 register operands
510@cindex jump/call operands, i386
511@cindex i386 jump/call operands
512@cindex operand delimiters, i386
513
514@cindex immediate operands, x86-64
515@cindex x86-64 immediate operands
516@cindex register operands, x86-64
517@cindex x86-64 register operands
518@cindex jump/call operands, x86-64
519@cindex x86-64 jump/call operands
520@cindex operand delimiters, x86-64
521@itemize @bullet
522@item
523AT&T immediate operands are preceded by @samp{$}; Intel immediate
524operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
525AT&T register operands are preceded by @samp{%}; Intel register operands
526are undelimited. AT&T absolute (as opposed to PC relative) jump/call
527operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
528
529@cindex i386 source, destination operands
530@cindex source, destination operands; i386
531@cindex x86-64 source, destination operands
532@cindex source, destination operands; x86-64
533@item
534AT&T and Intel syntax use the opposite order for source and destination
535operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
536@samp{source, dest} convention is maintained for compatibility with
537previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
538instructions with 2 immediate operands, such as the @samp{enter}
539instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
540
541@cindex mnemonic suffixes, i386
542@cindex sizes operands, i386
543@cindex i386 size suffixes
544@cindex mnemonic suffixes, x86-64
545@cindex sizes operands, x86-64
546@cindex x86-64 size suffixes
547@item
548In AT&T syntax the size of memory operands is determined from the last
549character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
550@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
551(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
552this by prefixing memory operands (@emph{not} the instruction mnemonics) with
553@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
554Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
555syntax.
556
557In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
558instruction with the 64-bit displacement or immediate operand.
559
560@cindex return instructions, i386
561@cindex i386 jump, call, return
562@cindex return instructions, x86-64
563@cindex x86-64 jump, call, return
564@item
565Immediate form long jumps and calls are
566@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
567Intel syntax is
568@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
569instruction
570is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
571@samp{ret far @var{stack-adjust}}.
572
573@cindex sections, i386
574@cindex i386 sections
575@cindex sections, x86-64
576@cindex x86-64 sections
577@item
578The AT&T assembler does not provide support for multiple section
579programs. Unix style systems expect all programs to be single sections.
580@end itemize
581
582@node i386-Chars
583@subsection Special Characters
584
585@cindex line comment character, i386
586@cindex i386 line comment character
587The presence of a @samp{#} appearing anywhere on a line indicates the
588start of a comment that extends to the end of that line.
589
590If a @samp{#} appears as the first character of a line then the whole
591line is treated as a comment, but in this case the line can also be a
592logical line number directive (@pxref{Comments}) or a preprocessor
593control command (@pxref{Preprocessing}).
594
595If the @option{--divide} command line option has not been specified
596then the @samp{/} character appearing anywhere on a line also
597introduces a line comment.
598
599@cindex line separator, i386
600@cindex statement separator, i386
601@cindex i386 line separator
602The @samp{;} character can be used to separate statements on the same
603line.
604
605@node i386-Mnemonics
606@section i386-Mnemonics
607@subsection Instruction Naming
608
609@cindex i386 instruction naming
610@cindex instruction naming, i386
611@cindex x86-64 instruction naming
612@cindex instruction naming, x86-64
613
614Instruction mnemonics are suffixed with one character modifiers which
615specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
616and @samp{q} specify byte, word, long and quadruple word operands. If
617no suffix is specified by an instruction then @code{@value{AS}} tries to
618fill in the missing suffix based on the destination register operand
619(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
620to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
621@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
622assembler which assumes that a missing mnemonic suffix implies long
623operand size. (This incompatibility does not affect compiler output
624since compilers always explicitly specify the mnemonic suffix.)
625
626Almost all instructions have the same names in AT&T and Intel format.
627There are a few exceptions. The sign extend and zero extend
628instructions need two sizes to specify them. They need a size to
629sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
630is accomplished by using two instruction mnemonic suffixes in AT&T
631syntax. Base names for sign extend and zero extend are
632@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
633and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
634are tacked on to this base name, the @emph{from} suffix before the
635@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
636``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
637thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
638@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
639@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
640quadruple word).
641
642@cindex encoding options, i386
643@cindex encoding options, x86-64
644
645Different encoding options can be specified via pseudo prefixes:
646
647@itemize @bullet
648@item
649@samp{@{disp8@}} -- prefer 8-bit displacement.
650
651@item
652@samp{@{disp32@}} -- prefer 32-bit displacement.
653
654@item
655@samp{@{load@}} -- prefer load-form instruction.
656
657@item
658@samp{@{store@}} -- prefer store-form instruction.
659
660@item
661@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
662
663@item
664@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
665
666@item
667@samp{@{evex@}} -- encode with EVEX prefix.
668
669@item
670@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
671instructions (x86-64 only). Note that this differs from the @samp{rex}
672prefix which generates REX prefix unconditionally.
673
674@item
675@samp{@{nooptimize@}} -- disable instruction size optimization.
676@end itemize
677
678@cindex conversion instructions, i386
679@cindex i386 conversion instructions
680@cindex conversion instructions, x86-64
681@cindex x86-64 conversion instructions
682The Intel-syntax conversion instructions
683
684@itemize @bullet
685@item
686@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
687
688@item
689@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
690
691@item
692@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
693
694@item
695@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
696
697@item
698@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
699(x86-64 only),
700
701@item
702@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
703@samp{%rdx:%rax} (x86-64 only),
704@end itemize
705
706@noindent
707are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
708@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
709instructions.
710
711@cindex jump instructions, i386
712@cindex call instructions, i386
713@cindex jump instructions, x86-64
714@cindex call instructions, x86-64
715Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
716AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
717convention.
718
719@subsection AT&T Mnemonic versus Intel Mnemonic
720
721@cindex i386 mnemonic compatibility
722@cindex mnemonic compatibility, i386
723
724@code{@value{AS}} supports assembly using Intel mnemonic.
725@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
726@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
727syntax for compatibility with the output of @code{@value{GCC}}.
728Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
729@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
730@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
731assembler with different mnemonics from those in Intel IA32 specification.
732@code{@value{GCC}} generates those instructions with AT&T mnemonic.
733
734@node i386-Regs
735@section Register Naming
736
737@cindex i386 registers
738@cindex registers, i386
739@cindex x86-64 registers
740@cindex registers, x86-64
741Register operands are always prefixed with @samp{%}. The 80386 registers
742consist of
743
744@itemize @bullet
745@item
746the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
747@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
748frame pointer), and @samp{%esp} (the stack pointer).
749
750@item
751the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
752@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
753
754@item
755the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
756@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
757are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
758@samp{%cx}, and @samp{%dx})
759
760@item
761the 6 section registers @samp{%cs} (code section), @samp{%ds}
762(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
763and @samp{%gs}.
764
765@item
766the 5 processor control registers @samp{%cr0}, @samp{%cr2},
767@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
768
769@item
770the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
771@samp{%db3}, @samp{%db6}, and @samp{%db7}.
772
773@item
774the 2 test registers @samp{%tr6} and @samp{%tr7}.
775
776@item
777the 8 floating point register stack @samp{%st} or equivalently
778@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
779@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
780These registers are overloaded by 8 MMX registers @samp{%mm0},
781@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
782@samp{%mm6} and @samp{%mm7}.
783
784@item
785the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
786@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
787@end itemize
788
789The AMD x86-64 architecture extends the register set by:
790
791@itemize @bullet
792@item
793enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
794accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
795@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
796pointer)
797
798@item
799the 8 extended registers @samp{%r8}--@samp{%r15}.
800
801@item
802the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
803
804@item
805the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
806
807@item
808the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
809
810@item
811the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
812
813@item
814the 8 debug registers: @samp{%db8}--@samp{%db15}.
815
816@item
817the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
818@end itemize
819
820With the AVX extensions more registers were made available:
821
822@itemize @bullet
823
824@item
825the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
826available in 32-bit mode). The bottom 128 bits are overlaid with the
827@samp{xmm0}--@samp{xmm15} registers.
828
829@end itemize
830
831The AVX2 extensions made in 64-bit mode more registers available:
832
833@itemize @bullet
834
835@item
836the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
837registers @samp{%ymm16}--@samp{%ymm31}.
838
839@end itemize
840
841The AVX512 extensions added the following registers:
842
843@itemize @bullet
844
845@item
846the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
847available in 32-bit mode). The bottom 128 bits are overlaid with the
848@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
849overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
850
851@item
852the 8 mask registers @samp{%k0}--@samp{%k7}.
853
854@end itemize
855
856@node i386-Prefixes
857@section Instruction Prefixes
858
859@cindex i386 instruction prefixes
860@cindex instruction prefixes, i386
861@cindex prefixes, i386
862Instruction prefixes are used to modify the following instruction. They
863are used to repeat string instructions, to provide section overrides, to
864perform bus lock operations, and to change operand and address sizes.
865(Most instructions that normally operate on 32-bit operands will use
86616-bit operands if the instruction has an ``operand size'' prefix.)
867Instruction prefixes are best written on the same line as the instruction
868they act upon. For example, the @samp{scas} (scan string) instruction is
869repeated with:
870
871@smallexample
872 repne scas %es:(%edi),%al
873@end smallexample
874
875You may also place prefixes on the lines immediately preceding the
876instruction, but this circumvents checks that @code{@value{AS}} does
877with prefixes, and will not work with all prefixes.
878
879Here is a list of instruction prefixes:
880
881@cindex section override prefixes, i386
882@itemize @bullet
883@item
884Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
885@samp{fs}, @samp{gs}. These are automatically added by specifying
886using the @var{section}:@var{memory-operand} form for memory references.
887
888@cindex size prefixes, i386
889@item
890Operand/Address size prefixes @samp{data16} and @samp{addr16}
891change 32-bit operands/addresses into 16-bit operands/addresses,
892while @samp{data32} and @samp{addr32} change 16-bit ones (in a
893@code{.code16} section) into 32-bit operands/addresses. These prefixes
894@emph{must} appear on the same line of code as the instruction they
895modify. For example, in a 16-bit @code{.code16} section, you might
896write:
897
898@smallexample
899 addr32 jmpl *(%ebx)
900@end smallexample
901
902@cindex bus lock prefixes, i386
903@cindex inhibiting interrupts, i386
904@item
905The bus lock prefix @samp{lock} inhibits interrupts during execution of
906the instruction it precedes. (This is only valid with certain
907instructions; see a 80386 manual for details).
908
909@cindex coprocessor wait, i386
910@item
911The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
912complete the current instruction. This should never be needed for the
91380386/80387 combination.
914
915@cindex repeat prefixes, i386
916@item
917The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
918to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
919times if the current address size is 16-bits).
920@cindex REX prefixes, i386
921@item
922The @samp{rex} family of prefixes is used by x86-64 to encode
923extensions to i386 instruction set. The @samp{rex} prefix has four
924bits --- an operand size overwrite (@code{64}) used to change operand size
925from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
926register set.
927
928You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
929instruction emits @samp{rex} prefix with all the bits set. By omitting
930the @code{64}, @code{x}, @code{y} or @code{z} you may write other
931prefixes as well. Normally, there is no need to write the prefixes
932explicitly, since gas will automatically generate them based on the
933instruction operands.
934@end itemize
935
936@node i386-Memory
937@section Memory References
938
939@cindex i386 memory references
940@cindex memory references, i386
941@cindex x86-64 memory references
942@cindex memory references, x86-64
943An Intel syntax indirect memory reference of the form
944
945@smallexample
946@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
947@end smallexample
948
949@noindent
950is translated into the AT&T syntax
951
952@smallexample
953@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
954@end smallexample
955
956@noindent
957where @var{base} and @var{index} are the optional 32-bit base and
958index registers, @var{disp} is the optional displacement, and
959@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
960to calculate the address of the operand. If no @var{scale} is
961specified, @var{scale} is taken to be 1. @var{section} specifies the
962optional section register for the memory operand, and may override the
963default section register (see a 80386 manual for section register
964defaults). Note that section overrides in AT&T syntax @emph{must}
965be preceded by a @samp{%}. If you specify a section override which
966coincides with the default section register, @code{@value{AS}} does @emph{not}
967output any section register override prefixes to assemble the given
968instruction. Thus, section overrides can be specified to emphasize which
969section register is used for a given memory operand.
970
971Here are some examples of Intel and AT&T style memory references:
972
973@table @asis
974@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
975@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
976missing, and the default section is used (@samp{%ss} for addressing with
977@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
978
979@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
980@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
981@samp{foo}. All other fields are missing. The section register here
982defaults to @samp{%ds}.
983
984@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
985This uses the value pointed to by @samp{foo} as a memory operand.
986Note that @var{base} and @var{index} are both missing, but there is only
987@emph{one} @samp{,}. This is a syntactic exception.
988
989@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
990This selects the contents of the variable @samp{foo} with section
991register @var{section} being @samp{%gs}.
992@end table
993
994Absolute (as opposed to PC relative) call and jump operands must be
995prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
996always chooses PC relative addressing for jump/call labels.
997
998Any instruction that has a memory operand, but no register operand,
999@emph{must} specify its size (byte, word, long, or quadruple) with an
1000instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1001respectively).
1002
1003The x86-64 architecture adds an RIP (instruction pointer relative)
1004addressing. This addressing mode is specified by using @samp{rip} as a
1005base register. Only constant offsets are valid. For example:
1006
1007@table @asis
1008@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1009Points to the address 1234 bytes past the end of the current
1010instruction.
1011
1012@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1013Points to the @code{symbol} in RIP relative way, this is shorter than
1014the default absolute addressing.
1015@end table
1016
1017Other addressing modes remain unchanged in x86-64 architecture, except
1018registers used are 64-bit instead of 32-bit.
1019
1020@node i386-Jumps
1021@section Handling of Jump Instructions
1022
1023@cindex jump optimization, i386
1024@cindex i386 jump optimization
1025@cindex jump optimization, x86-64
1026@cindex x86-64 jump optimization
1027Jump instructions are always optimized to use the smallest possible
1028displacements. This is accomplished by using byte (8-bit) displacement
1029jumps whenever the target is sufficiently close. If a byte displacement
1030is insufficient a long displacement is used. We do not support
1031word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1032instruction with the @samp{data16} instruction prefix), since the 80386
1033insists upon masking @samp{%eip} to 16 bits after the word displacement
1034is added. (See also @pxref{i386-Arch})
1035
1036Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1037@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1038displacements, so that if you use these instructions (@code{@value{GCC}} does
1039not use them) you may get an error message (and incorrect code). The AT&T
104080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1041to
1042
1043@smallexample
1044 jcxz cx_zero
1045 jmp cx_nonzero
1046cx_zero: jmp foo
1047cx_nonzero:
1048@end smallexample
1049
1050@node i386-Float
1051@section Floating Point
1052
1053@cindex i386 floating point
1054@cindex floating point, i386
1055@cindex x86-64 floating point
1056@cindex floating point, x86-64
1057All 80387 floating point types except packed BCD are supported.
1058(BCD support may be added without much difficulty). These data
1059types are 16-, 32-, and 64- bit integers, and single (32-bit),
1060double (64-bit), and extended (80-bit) precision floating point.
1061Each supported type has an instruction mnemonic suffix and a constructor
1062associated with it. Instruction mnemonic suffixes specify the operand's
1063data type. Constructors build these data types into memory.
1064
1065@cindex @code{float} directive, i386
1066@cindex @code{single} directive, i386
1067@cindex @code{double} directive, i386
1068@cindex @code{tfloat} directive, i386
1069@cindex @code{float} directive, x86-64
1070@cindex @code{single} directive, x86-64
1071@cindex @code{double} directive, x86-64
1072@cindex @code{tfloat} directive, x86-64
1073@itemize @bullet
1074@item
1075Floating point constructors are @samp{.float} or @samp{.single},
1076@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1077These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1078and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1079only supports this format via the @samp{fldt} (load 80-bit real to stack
1080top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1081
1082@cindex @code{word} directive, i386
1083@cindex @code{long} directive, i386
1084@cindex @code{int} directive, i386
1085@cindex @code{quad} directive, i386
1086@cindex @code{word} directive, x86-64
1087@cindex @code{long} directive, x86-64
1088@cindex @code{int} directive, x86-64
1089@cindex @code{quad} directive, x86-64
1090@item
1091Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1092@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1093corresponding instruction mnemonic suffixes are @samp{s} (single),
1094@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1095the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1096quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1097stack) instructions.
1098@end itemize
1099
1100Register to register operations should not use instruction mnemonic suffixes.
1101@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1102wrote @samp{fst %st, %st(1)}, since all register to register operations
1103use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1104which converts @samp{%st} from 80-bit to 64-bit floating point format,
1105then stores the result in the 4 byte location @samp{mem})
1106
1107@node i386-SIMD
1108@section Intel's MMX and AMD's 3DNow! SIMD Operations
1109
1110@cindex MMX, i386
1111@cindex 3DNow!, i386
1112@cindex SIMD, i386
1113@cindex MMX, x86-64
1114@cindex 3DNow!, x86-64
1115@cindex SIMD, x86-64
1116
1117@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1118instructions for integer data), available on Intel's Pentium MMX
1119processors and Pentium II processors, AMD's K6 and K6-2 processors,
1120Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1121instruction set (SIMD instructions for 32-bit floating point data)
1122available on AMD's K6-2 processor and possibly others in the future.
1123
1124Currently, @code{@value{AS}} does not support Intel's floating point
1125SIMD, Katmai (KNI).
1126
1127The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1128@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
112916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1130floating point values. The MMX registers cannot be used at the same time
1131as the floating point stack.
1132
1133See Intel and AMD documentation, keeping in mind that the operand order in
1134instructions is reversed from the Intel syntax.
1135
1136@node i386-LWP
1137@section AMD's Lightweight Profiling Instructions
1138
1139@cindex LWP, i386
1140@cindex LWP, x86-64
1141
1142@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1143instruction set, available on AMD's Family 15h (Orochi) processors.
1144
1145LWP enables applications to collect and manage performance data, and
1146react to performance events. The collection of performance data
1147requires no context switches. LWP runs in the context of a thread and
1148so several counters can be used independently across multiple threads.
1149LWP can be used in both 64-bit and legacy 32-bit modes.
1150
1151For detailed information on the LWP instruction set, see the
1152@cite{AMD Lightweight Profiling Specification} available at
1153@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1154
1155@node i386-BMI
1156@section Bit Manipulation Instructions
1157
1158@cindex BMI, i386
1159@cindex BMI, x86-64
1160
1161@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1162
1163BMI instructions provide several instructions implementing individual
1164bit manipulation operations such as isolation, masking, setting, or
1165resetting.
1166
1167@c Need to add a specification citation here when available.
1168
1169@node i386-TBM
1170@section AMD's Trailing Bit Manipulation Instructions
1171
1172@cindex TBM, i386
1173@cindex TBM, x86-64
1174
1175@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1176instruction set, available on AMD's BDVER2 processors (Trinity and
1177Viperfish).
1178
1179TBM instructions provide instructions implementing individual bit
1180manipulation operations such as isolating, masking, setting, resetting,
1181complementing, and operations on trailing zeros and ones.
1182
1183@c Need to add a specification citation here when available.
1184
1185@node i386-16bit
1186@section Writing 16-bit Code
1187
1188@cindex i386 16-bit code
1189@cindex 16-bit code, i386
1190@cindex real-mode code, i386
1191@cindex @code{code16gcc} directive, i386
1192@cindex @code{code16} directive, i386
1193@cindex @code{code32} directive, i386
1194@cindex @code{code64} directive, i386
1195@cindex @code{code64} directive, x86-64
1196While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1197or 64-bit x86-64 code depending on the default configuration,
1198it also supports writing code to run in real mode or in 16-bit protected
1199mode code segments. To do this, put a @samp{.code16} or
1200@samp{.code16gcc} directive before the assembly language instructions to
1201be run in 16-bit mode. You can switch @code{@value{AS}} to writing
120232-bit code with the @samp{.code32} directive or 64-bit code with the
1203@samp{.code64} directive.
1204
1205@samp{.code16gcc} provides experimental support for generating 16-bit
1206code from gcc, and differs from @samp{.code16} in that @samp{call},
1207@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1208@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1209default to 32-bit size. This is so that the stack pointer is
1210manipulated in the same way over function calls, allowing access to
1211function parameters at the same stack offsets as in 32-bit mode.
1212@samp{.code16gcc} also automatically adds address size prefixes where
1213necessary to use the 32-bit addressing modes that gcc generates.
1214
1215The code which @code{@value{AS}} generates in 16-bit mode will not
1216necessarily run on a 16-bit pre-80386 processor. To write code that
1217runs on such a processor, you must refrain from using @emph{any} 32-bit
1218constructs which require @code{@value{AS}} to output address or operand
1219size prefixes.
1220
1221Note that writing 16-bit code instructions by explicitly specifying a
1222prefix or an instruction mnemonic suffix within a 32-bit code section
1223generates different machine instructions than those generated for a
122416-bit code segment. In a 32-bit code section, the following code
1225generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1226value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1227
1228@smallexample
1229 pushw $4
1230@end smallexample
1231
1232The same code in a 16-bit code section would generate the machine
1233opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1234is correct since the processor default operand size is assumed to be 16
1235bits in a 16-bit code section.
1236
1237@node i386-Arch
1238@section Specifying CPU Architecture
1239
1240@cindex arch directive, i386
1241@cindex i386 arch directive
1242@cindex arch directive, x86-64
1243@cindex x86-64 arch directive
1244
1245@code{@value{AS}} may be told to assemble for a particular CPU
1246(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1247directive enables a warning when gas detects an instruction that is not
1248supported on the CPU specified. The choices for @var{cpu_type} are:
1249
1250@multitable @columnfractions .20 .20 .20 .20
1251@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1252@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1253@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1254@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1255@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1256@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1257@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1258@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1259@item @samp{generic32} @tab @samp{generic64}
1260@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1261@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1262@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1263@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1264@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1265@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1266@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1267@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1268@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1269@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1270@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1271@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1272@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1273@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1274@item @samp{.avx512_bitalg}
1275@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1276@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg}
1277@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1278@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1279@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1280@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1281@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1282@end multitable
1283
1284Apart from the warning, there are only two other effects on
1285@code{@value{AS}} operation; Firstly, if you specify a CPU other than
1286@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1287will automatically use a two byte opcode sequence. The larger three
1288byte opcode sequence is used on the 486 (and when no architecture is
1289specified) because it executes faster on the 486. Note that you can
1290explicitly request the two byte opcode by writing @samp{sarl %eax}.
1291Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1292@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1293conditional jumps will be promoted when necessary to a two instruction
1294sequence consisting of a conditional jump of the opposite sense around
1295an unconditional jump to the target.
1296
1297Following the CPU architecture (but not a sub-architecture, which are those
1298starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1299control automatic promotion of conditional jumps. @samp{jumps} is the
1300default, and enables jump promotion; All external jumps will be of the long
1301variety, and file-local jumps will be promoted as necessary.
1302(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1303byte offset jumps, and warns about file-local conditional jumps that
1304@code{@value{AS}} promotes.
1305Unconditional jumps are treated as for @samp{jumps}.
1306
1307For example
1308
1309@smallexample
1310 .arch i8086,nojumps
1311@end smallexample
1312
1313@node i386-Bugs
1314@section AT&T Syntax bugs
1315
1316The UnixWare assembler, and probably other AT&T derived ix86 Unix
1317assemblers, generate floating point instructions with reversed source
1318and destination registers in certain cases. Unfortunately, gcc and
1319possibly many other programs use this reversed syntax, so we're stuck
1320with it.
1321
1322For example
1323
1324@smallexample
1325 fsub %st,%st(3)
1326@end smallexample
1327@noindent
1328results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1329than the expected @samp{%st(3) - %st}. This happens with all the
1330non-commutative arithmetic floating point operations with two register
1331operands where the source register is @samp{%st} and the destination
1332register is @samp{%st(i)}.
1333
1334@node i386-Notes
1335@section Notes
1336
1337@cindex i386 @code{mul}, @code{imul} instructions
1338@cindex @code{mul} instruction, i386
1339@cindex @code{imul} instruction, i386
1340@cindex @code{mul} instruction, x86-64
1341@cindex @code{imul} instruction, x86-64
1342There is some trickery concerning the @samp{mul} and @samp{imul}
1343instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1344multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1345for @samp{imul}) can be output only in the one operand form. Thus,
1346@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1347the expanding multiply would clobber the @samp{%edx} register, and this
1348would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
134964-bit product in @samp{%edx:%eax}.
1350
1351We have added a two operand form of @samp{imul} when the first operand
1352is an immediate mode expression and the second operand is a register.
1353This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1354example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1355$69, %eax, %eax}.
1356
This page took 0.02666 seconds and 4 git commands to generate.