[Ada] Do not cache lookup result if not full_search
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
... / ...
CommitLineData
1/* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22#include "defs.h"
23#include <stdio.h>
24#include "gdb_string.h"
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
28#include "gdb_regex.h"
29#include "frame.h"
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
42#include "hashtab.h"
43#include "gdb_obstack.h"
44#include "ada-lang.h"
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
48#include "ui-out.h"
49#endif
50#include "block.h"
51#include "infcall.h"
52#include "dictionary.h"
53#include "exceptions.h"
54#include "annotate.h"
55#include "valprint.h"
56#include "source.h"
57#include "observer.h"
58#include "vec.h"
59#include "stack.h"
60#include "gdb_vecs.h"
61
62#include "psymtab.h"
63#include "value.h"
64#include "mi/mi-common.h"
65#include "arch-utils.h"
66#include "exceptions.h"
67#include "cli/cli-utils.h"
68
69/* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
77static struct type *desc_base_type (struct type *);
78
79static struct type *desc_bounds_type (struct type *);
80
81static struct value *desc_bounds (struct value *);
82
83static int fat_pntr_bounds_bitpos (struct type *);
84
85static int fat_pntr_bounds_bitsize (struct type *);
86
87static struct type *desc_data_target_type (struct type *);
88
89static struct value *desc_data (struct value *);
90
91static int fat_pntr_data_bitpos (struct type *);
92
93static int fat_pntr_data_bitsize (struct type *);
94
95static struct value *desc_one_bound (struct value *, int, int);
96
97static int desc_bound_bitpos (struct type *, int, int);
98
99static int desc_bound_bitsize (struct type *, int, int);
100
101static struct type *desc_index_type (struct type *, int);
102
103static int desc_arity (struct type *);
104
105static int ada_type_match (struct type *, struct type *, int);
106
107static int ada_args_match (struct symbol *, struct value **, int);
108
109static int full_match (const char *, const char *);
110
111static struct value *make_array_descriptor (struct type *, struct value *);
112
113static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117static int is_nonfunction (struct ada_symbol_info *, int);
118
119static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
137
138static int numeric_type_p (struct type *);
139
140static int integer_type_p (struct type *);
141
142static int scalar_type_p (struct type *);
143
144static int discrete_type_p (struct type *);
145
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157static struct value *evaluate_subexp_type (struct expression *, int *);
158
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162static int is_dynamic_field (struct type *, int);
163
164static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170static struct type *to_fixed_range_type (struct type *, struct value *);
171
172static struct type *to_static_fixed_type (struct type *);
173static struct type *static_unwrap_type (struct type *type);
174
175static struct value *unwrap_value (struct value *);
176
177static struct type *constrained_packed_array_type (struct type *, long *);
178
179static struct type *decode_constrained_packed_array_type (struct type *);
180
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
188
189static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197static struct value *get_var_value (char *, char *);
198
199static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201static int equiv_types (struct type *, struct type *);
202
203static int is_name_suffix (const char *);
204
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
208
209static struct value *ada_coerce_ref (struct value *);
210
211static LONGEST pos_atr (struct value *);
212
213static struct value *value_pos_atr (struct type *, struct value *);
214
215static struct value *value_val_atr (struct type *, struct value *);
216
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236static int ada_is_direct_array_type (struct type *);
237
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241static void check_size (const struct type *);
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274\f
275
276
277/* Maximum-sized dynamic type. */
278static unsigned int varsize_limit;
279
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287#endif
288
289/* The name of the symbol to use to get the name of the main subprogram. */
290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
311 /* Inferior-specific data. */
312
313/* Per-inferior data for this module. */
314
315struct ada_inferior_data
316{
317 /* The ada__tags__type_specific_data type, which is used when decoding
318 tagged types. With older versions of GNAT, this type was directly
319 accessible through a component ("tsd") in the object tag. But this
320 is no longer the case, so we cache it for each inferior. */
321 struct type *tsd_type;
322
323 /* The exception_support_info data. This data is used to determine
324 how to implement support for Ada exception catchpoints in a given
325 inferior. */
326 const struct exception_support_info *exception_info;
327};
328
329/* Our key to this module's inferior data. */
330static const struct inferior_data *ada_inferior_data;
331
332/* A cleanup routine for our inferior data. */
333static void
334ada_inferior_data_cleanup (struct inferior *inf, void *arg)
335{
336 struct ada_inferior_data *data;
337
338 data = inferior_data (inf, ada_inferior_data);
339 if (data != NULL)
340 xfree (data);
341}
342
343/* Return our inferior data for the given inferior (INF).
344
345 This function always returns a valid pointer to an allocated
346 ada_inferior_data structure. If INF's inferior data has not
347 been previously set, this functions creates a new one with all
348 fields set to zero, sets INF's inferior to it, and then returns
349 a pointer to that newly allocated ada_inferior_data. */
350
351static struct ada_inferior_data *
352get_ada_inferior_data (struct inferior *inf)
353{
354 struct ada_inferior_data *data;
355
356 data = inferior_data (inf, ada_inferior_data);
357 if (data == NULL)
358 {
359 data = XZALLOC (struct ada_inferior_data);
360 set_inferior_data (inf, ada_inferior_data, data);
361 }
362
363 return data;
364}
365
366/* Perform all necessary cleanups regarding our module's inferior data
367 that is required after the inferior INF just exited. */
368
369static void
370ada_inferior_exit (struct inferior *inf)
371{
372 ada_inferior_data_cleanup (inf, NULL);
373 set_inferior_data (inf, ada_inferior_data, NULL);
374}
375
376 /* Utilities */
377
378/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
379 all typedef layers have been peeled. Otherwise, return TYPE.
380
381 Normally, we really expect a typedef type to only have 1 typedef layer.
382 In other words, we really expect the target type of a typedef type to be
383 a non-typedef type. This is particularly true for Ada units, because
384 the language does not have a typedef vs not-typedef distinction.
385 In that respect, the Ada compiler has been trying to eliminate as many
386 typedef definitions in the debugging information, since they generally
387 do not bring any extra information (we still use typedef under certain
388 circumstances related mostly to the GNAT encoding).
389
390 Unfortunately, we have seen situations where the debugging information
391 generated by the compiler leads to such multiple typedef layers. For
392 instance, consider the following example with stabs:
393
394 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
395 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
396
397 This is an error in the debugging information which causes type
398 pck__float_array___XUP to be defined twice, and the second time,
399 it is defined as a typedef of a typedef.
400
401 This is on the fringe of legality as far as debugging information is
402 concerned, and certainly unexpected. But it is easy to handle these
403 situations correctly, so we can afford to be lenient in this case. */
404
405static struct type *
406ada_typedef_target_type (struct type *type)
407{
408 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
409 type = TYPE_TARGET_TYPE (type);
410 return type;
411}
412
413/* Given DECODED_NAME a string holding a symbol name in its
414 decoded form (ie using the Ada dotted notation), returns
415 its unqualified name. */
416
417static const char *
418ada_unqualified_name (const char *decoded_name)
419{
420 const char *result = strrchr (decoded_name, '.');
421
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428}
429
430/* Return a string starting with '<', followed by STR, and '>'.
431 The result is good until the next call. */
432
433static char *
434add_angle_brackets (const char *str)
435{
436 static char *result = NULL;
437
438 xfree (result);
439 result = xstrprintf ("<%s>", str);
440 return result;
441}
442
443static char *
444ada_get_gdb_completer_word_break_characters (void)
445{
446 return ada_completer_word_break_characters;
447}
448
449/* Print an array element index using the Ada syntax. */
450
451static void
452ada_print_array_index (struct value *index_value, struct ui_file *stream,
453 const struct value_print_options *options)
454{
455 LA_VALUE_PRINT (index_value, stream, options);
456 fprintf_filtered (stream, " => ");
457}
458
459/* Assuming VECT points to an array of *SIZE objects of size
460 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
461 updating *SIZE as necessary and returning the (new) array. */
462
463void *
464grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
465{
466 if (*size < min_size)
467 {
468 *size *= 2;
469 if (*size < min_size)
470 *size = min_size;
471 vect = xrealloc (vect, *size * element_size);
472 }
473 return vect;
474}
475
476/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
477 suffix of FIELD_NAME beginning "___". */
478
479static int
480field_name_match (const char *field_name, const char *target)
481{
482 int len = strlen (target);
483
484 return
485 (strncmp (field_name, target, len) == 0
486 && (field_name[len] == '\0'
487 || (strncmp (field_name + len, "___", 3) == 0
488 && strcmp (field_name + strlen (field_name) - 6,
489 "___XVN") != 0)));
490}
491
492
493/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
494 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
495 and return its index. This function also handles fields whose name
496 have ___ suffixes because the compiler sometimes alters their name
497 by adding such a suffix to represent fields with certain constraints.
498 If the field could not be found, return a negative number if
499 MAYBE_MISSING is set. Otherwise raise an error. */
500
501int
502ada_get_field_index (const struct type *type, const char *field_name,
503 int maybe_missing)
504{
505 int fieldno;
506 struct type *struct_type = check_typedef ((struct type *) type);
507
508 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
509 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
510 return fieldno;
511
512 if (!maybe_missing)
513 error (_("Unable to find field %s in struct %s. Aborting"),
514 field_name, TYPE_NAME (struct_type));
515
516 return -1;
517}
518
519/* The length of the prefix of NAME prior to any "___" suffix. */
520
521int
522ada_name_prefix_len (const char *name)
523{
524 if (name == NULL)
525 return 0;
526 else
527 {
528 const char *p = strstr (name, "___");
529
530 if (p == NULL)
531 return strlen (name);
532 else
533 return p - name;
534 }
535}
536
537/* Return non-zero if SUFFIX is a suffix of STR.
538 Return zero if STR is null. */
539
540static int
541is_suffix (const char *str, const char *suffix)
542{
543 int len1, len2;
544
545 if (str == NULL)
546 return 0;
547 len1 = strlen (str);
548 len2 = strlen (suffix);
549 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
550}
551
552/* The contents of value VAL, treated as a value of type TYPE. The
553 result is an lval in memory if VAL is. */
554
555static struct value *
556coerce_unspec_val_to_type (struct value *val, struct type *type)
557{
558 type = ada_check_typedef (type);
559 if (value_type (val) == type)
560 return val;
561 else
562 {
563 struct value *result;
564
565 /* Make sure that the object size is not unreasonable before
566 trying to allocate some memory for it. */
567 check_size (type);
568
569 if (value_lazy (val)
570 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
571 result = allocate_value_lazy (type);
572 else
573 {
574 result = allocate_value (type);
575 memcpy (value_contents_raw (result), value_contents (val),
576 TYPE_LENGTH (type));
577 }
578 set_value_component_location (result, val);
579 set_value_bitsize (result, value_bitsize (val));
580 set_value_bitpos (result, value_bitpos (val));
581 set_value_address (result, value_address (val));
582 return result;
583 }
584}
585
586static const gdb_byte *
587cond_offset_host (const gdb_byte *valaddr, long offset)
588{
589 if (valaddr == NULL)
590 return NULL;
591 else
592 return valaddr + offset;
593}
594
595static CORE_ADDR
596cond_offset_target (CORE_ADDR address, long offset)
597{
598 if (address == 0)
599 return 0;
600 else
601 return address + offset;
602}
603
604/* Issue a warning (as for the definition of warning in utils.c, but
605 with exactly one argument rather than ...), unless the limit on the
606 number of warnings has passed during the evaluation of the current
607 expression. */
608
609/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
610 provided by "complaint". */
611static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
612
613static void
614lim_warning (const char *format, ...)
615{
616 va_list args;
617
618 va_start (args, format);
619 warnings_issued += 1;
620 if (warnings_issued <= warning_limit)
621 vwarning (format, args);
622
623 va_end (args);
624}
625
626/* Issue an error if the size of an object of type T is unreasonable,
627 i.e. if it would be a bad idea to allocate a value of this type in
628 GDB. */
629
630static void
631check_size (const struct type *type)
632{
633 if (TYPE_LENGTH (type) > varsize_limit)
634 error (_("object size is larger than varsize-limit"));
635}
636
637/* Maximum value of a SIZE-byte signed integer type. */
638static LONGEST
639max_of_size (int size)
640{
641 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
642
643 return top_bit | (top_bit - 1);
644}
645
646/* Minimum value of a SIZE-byte signed integer type. */
647static LONGEST
648min_of_size (int size)
649{
650 return -max_of_size (size) - 1;
651}
652
653/* Maximum value of a SIZE-byte unsigned integer type. */
654static ULONGEST
655umax_of_size (int size)
656{
657 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
658
659 return top_bit | (top_bit - 1);
660}
661
662/* Maximum value of integral type T, as a signed quantity. */
663static LONGEST
664max_of_type (struct type *t)
665{
666 if (TYPE_UNSIGNED (t))
667 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
668 else
669 return max_of_size (TYPE_LENGTH (t));
670}
671
672/* Minimum value of integral type T, as a signed quantity. */
673static LONGEST
674min_of_type (struct type *t)
675{
676 if (TYPE_UNSIGNED (t))
677 return 0;
678 else
679 return min_of_size (TYPE_LENGTH (t));
680}
681
682/* The largest value in the domain of TYPE, a discrete type, as an integer. */
683LONGEST
684ada_discrete_type_high_bound (struct type *type)
685{
686 switch (TYPE_CODE (type))
687 {
688 case TYPE_CODE_RANGE:
689 return TYPE_HIGH_BOUND (type);
690 case TYPE_CODE_ENUM:
691 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
692 case TYPE_CODE_BOOL:
693 return 1;
694 case TYPE_CODE_CHAR:
695 case TYPE_CODE_INT:
696 return max_of_type (type);
697 default:
698 error (_("Unexpected type in ada_discrete_type_high_bound."));
699 }
700}
701
702/* The largest value in the domain of TYPE, a discrete type, as an integer. */
703LONGEST
704ada_discrete_type_low_bound (struct type *type)
705{
706 switch (TYPE_CODE (type))
707 {
708 case TYPE_CODE_RANGE:
709 return TYPE_LOW_BOUND (type);
710 case TYPE_CODE_ENUM:
711 return TYPE_FIELD_BITPOS (type, 0);
712 case TYPE_CODE_BOOL:
713 return 0;
714 case TYPE_CODE_CHAR:
715 case TYPE_CODE_INT:
716 return min_of_type (type);
717 default:
718 error (_("Unexpected type in ada_discrete_type_low_bound."));
719 }
720}
721
722/* The identity on non-range types. For range types, the underlying
723 non-range scalar type. */
724
725static struct type *
726get_base_type (struct type *type)
727{
728 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
729 {
730 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
731 return type;
732 type = TYPE_TARGET_TYPE (type);
733 }
734 return type;
735}
736\f
737
738 /* Language Selection */
739
740/* If the main program is in Ada, return language_ada, otherwise return LANG
741 (the main program is in Ada iif the adainit symbol is found). */
742
743enum language
744ada_update_initial_language (enum language lang)
745{
746 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
747 (struct objfile *) NULL) != NULL)
748 return language_ada;
749
750 return lang;
751}
752
753/* If the main procedure is written in Ada, then return its name.
754 The result is good until the next call. Return NULL if the main
755 procedure doesn't appear to be in Ada. */
756
757char *
758ada_main_name (void)
759{
760 struct minimal_symbol *msym;
761 static char *main_program_name = NULL;
762
763 /* For Ada, the name of the main procedure is stored in a specific
764 string constant, generated by the binder. Look for that symbol,
765 extract its address, and then read that string. If we didn't find
766 that string, then most probably the main procedure is not written
767 in Ada. */
768 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
769
770 if (msym != NULL)
771 {
772 CORE_ADDR main_program_name_addr;
773 int err_code;
774
775 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
776 if (main_program_name_addr == 0)
777 error (_("Invalid address for Ada main program name."));
778
779 xfree (main_program_name);
780 target_read_string (main_program_name_addr, &main_program_name,
781 1024, &err_code);
782
783 if (err_code != 0)
784 return NULL;
785 return main_program_name;
786 }
787
788 /* The main procedure doesn't seem to be in Ada. */
789 return NULL;
790}
791\f
792 /* Symbols */
793
794/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
795 of NULLs. */
796
797const struct ada_opname_map ada_opname_table[] = {
798 {"Oadd", "\"+\"", BINOP_ADD},
799 {"Osubtract", "\"-\"", BINOP_SUB},
800 {"Omultiply", "\"*\"", BINOP_MUL},
801 {"Odivide", "\"/\"", BINOP_DIV},
802 {"Omod", "\"mod\"", BINOP_MOD},
803 {"Orem", "\"rem\"", BINOP_REM},
804 {"Oexpon", "\"**\"", BINOP_EXP},
805 {"Olt", "\"<\"", BINOP_LESS},
806 {"Ole", "\"<=\"", BINOP_LEQ},
807 {"Ogt", "\">\"", BINOP_GTR},
808 {"Oge", "\">=\"", BINOP_GEQ},
809 {"Oeq", "\"=\"", BINOP_EQUAL},
810 {"One", "\"/=\"", BINOP_NOTEQUAL},
811 {"Oand", "\"and\"", BINOP_BITWISE_AND},
812 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
813 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
814 {"Oconcat", "\"&\"", BINOP_CONCAT},
815 {"Oabs", "\"abs\"", UNOP_ABS},
816 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
817 {"Oadd", "\"+\"", UNOP_PLUS},
818 {"Osubtract", "\"-\"", UNOP_NEG},
819 {NULL, NULL}
820};
821
822/* The "encoded" form of DECODED, according to GNAT conventions.
823 The result is valid until the next call to ada_encode. */
824
825char *
826ada_encode (const char *decoded)
827{
828 static char *encoding_buffer = NULL;
829 static size_t encoding_buffer_size = 0;
830 const char *p;
831 int k;
832
833 if (decoded == NULL)
834 return NULL;
835
836 GROW_VECT (encoding_buffer, encoding_buffer_size,
837 2 * strlen (decoded) + 10);
838
839 k = 0;
840 for (p = decoded; *p != '\0'; p += 1)
841 {
842 if (*p == '.')
843 {
844 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
845 k += 2;
846 }
847 else if (*p == '"')
848 {
849 const struct ada_opname_map *mapping;
850
851 for (mapping = ada_opname_table;
852 mapping->encoded != NULL
853 && strncmp (mapping->decoded, p,
854 strlen (mapping->decoded)) != 0; mapping += 1)
855 ;
856 if (mapping->encoded == NULL)
857 error (_("invalid Ada operator name: %s"), p);
858 strcpy (encoding_buffer + k, mapping->encoded);
859 k += strlen (mapping->encoded);
860 break;
861 }
862 else
863 {
864 encoding_buffer[k] = *p;
865 k += 1;
866 }
867 }
868
869 encoding_buffer[k] = '\0';
870 return encoding_buffer;
871}
872
873/* Return NAME folded to lower case, or, if surrounded by single
874 quotes, unfolded, but with the quotes stripped away. Result good
875 to next call. */
876
877char *
878ada_fold_name (const char *name)
879{
880 static char *fold_buffer = NULL;
881 static size_t fold_buffer_size = 0;
882
883 int len = strlen (name);
884 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
885
886 if (name[0] == '\'')
887 {
888 strncpy (fold_buffer, name + 1, len - 2);
889 fold_buffer[len - 2] = '\000';
890 }
891 else
892 {
893 int i;
894
895 for (i = 0; i <= len; i += 1)
896 fold_buffer[i] = tolower (name[i]);
897 }
898
899 return fold_buffer;
900}
901
902/* Return nonzero if C is either a digit or a lowercase alphabet character. */
903
904static int
905is_lower_alphanum (const char c)
906{
907 return (isdigit (c) || (isalpha (c) && islower (c)));
908}
909
910/* ENCODED is the linkage name of a symbol and LEN contains its length.
911 This function saves in LEN the length of that same symbol name but
912 without either of these suffixes:
913 . .{DIGIT}+
914 . ${DIGIT}+
915 . ___{DIGIT}+
916 . __{DIGIT}+.
917
918 These are suffixes introduced by the compiler for entities such as
919 nested subprogram for instance, in order to avoid name clashes.
920 They do not serve any purpose for the debugger. */
921
922static void
923ada_remove_trailing_digits (const char *encoded, int *len)
924{
925 if (*len > 1 && isdigit (encoded[*len - 1]))
926 {
927 int i = *len - 2;
928
929 while (i > 0 && isdigit (encoded[i]))
930 i--;
931 if (i >= 0 && encoded[i] == '.')
932 *len = i;
933 else if (i >= 0 && encoded[i] == '$')
934 *len = i;
935 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
936 *len = i - 2;
937 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
938 *len = i - 1;
939 }
940}
941
942/* Remove the suffix introduced by the compiler for protected object
943 subprograms. */
944
945static void
946ada_remove_po_subprogram_suffix (const char *encoded, int *len)
947{
948 /* Remove trailing N. */
949
950 /* Protected entry subprograms are broken into two
951 separate subprograms: The first one is unprotected, and has
952 a 'N' suffix; the second is the protected version, and has
953 the 'P' suffix. The second calls the first one after handling
954 the protection. Since the P subprograms are internally generated,
955 we leave these names undecoded, giving the user a clue that this
956 entity is internal. */
957
958 if (*len > 1
959 && encoded[*len - 1] == 'N'
960 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
961 *len = *len - 1;
962}
963
964/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
965
966static void
967ada_remove_Xbn_suffix (const char *encoded, int *len)
968{
969 int i = *len - 1;
970
971 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
972 i--;
973
974 if (encoded[i] != 'X')
975 return;
976
977 if (i == 0)
978 return;
979
980 if (isalnum (encoded[i-1]))
981 *len = i;
982}
983
984/* If ENCODED follows the GNAT entity encoding conventions, then return
985 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
986 replaced by ENCODED.
987
988 The resulting string is valid until the next call of ada_decode.
989 If the string is unchanged by decoding, the original string pointer
990 is returned. */
991
992const char *
993ada_decode (const char *encoded)
994{
995 int i, j;
996 int len0;
997 const char *p;
998 char *decoded;
999 int at_start_name;
1000 static char *decoding_buffer = NULL;
1001 static size_t decoding_buffer_size = 0;
1002
1003 /* The name of the Ada main procedure starts with "_ada_".
1004 This prefix is not part of the decoded name, so skip this part
1005 if we see this prefix. */
1006 if (strncmp (encoded, "_ada_", 5) == 0)
1007 encoded += 5;
1008
1009 /* If the name starts with '_', then it is not a properly encoded
1010 name, so do not attempt to decode it. Similarly, if the name
1011 starts with '<', the name should not be decoded. */
1012 if (encoded[0] == '_' || encoded[0] == '<')
1013 goto Suppress;
1014
1015 len0 = strlen (encoded);
1016
1017 ada_remove_trailing_digits (encoded, &len0);
1018 ada_remove_po_subprogram_suffix (encoded, &len0);
1019
1020 /* Remove the ___X.* suffix if present. Do not forget to verify that
1021 the suffix is located before the current "end" of ENCODED. We want
1022 to avoid re-matching parts of ENCODED that have previously been
1023 marked as discarded (by decrementing LEN0). */
1024 p = strstr (encoded, "___");
1025 if (p != NULL && p - encoded < len0 - 3)
1026 {
1027 if (p[3] == 'X')
1028 len0 = p - encoded;
1029 else
1030 goto Suppress;
1031 }
1032
1033 /* Remove any trailing TKB suffix. It tells us that this symbol
1034 is for the body of a task, but that information does not actually
1035 appear in the decoded name. */
1036
1037 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1038 len0 -= 3;
1039
1040 /* Remove any trailing TB suffix. The TB suffix is slightly different
1041 from the TKB suffix because it is used for non-anonymous task
1042 bodies. */
1043
1044 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1045 len0 -= 2;
1046
1047 /* Remove trailing "B" suffixes. */
1048 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1049
1050 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1051 len0 -= 1;
1052
1053 /* Make decoded big enough for possible expansion by operator name. */
1054
1055 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1056 decoded = decoding_buffer;
1057
1058 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1059
1060 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1061 {
1062 i = len0 - 2;
1063 while ((i >= 0 && isdigit (encoded[i]))
1064 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1065 i -= 1;
1066 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1067 len0 = i - 1;
1068 else if (encoded[i] == '$')
1069 len0 = i;
1070 }
1071
1072 /* The first few characters that are not alphabetic are not part
1073 of any encoding we use, so we can copy them over verbatim. */
1074
1075 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1076 decoded[j] = encoded[i];
1077
1078 at_start_name = 1;
1079 while (i < len0)
1080 {
1081 /* Is this a symbol function? */
1082 if (at_start_name && encoded[i] == 'O')
1083 {
1084 int k;
1085
1086 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1087 {
1088 int op_len = strlen (ada_opname_table[k].encoded);
1089 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1090 op_len - 1) == 0)
1091 && !isalnum (encoded[i + op_len]))
1092 {
1093 strcpy (decoded + j, ada_opname_table[k].decoded);
1094 at_start_name = 0;
1095 i += op_len;
1096 j += strlen (ada_opname_table[k].decoded);
1097 break;
1098 }
1099 }
1100 if (ada_opname_table[k].encoded != NULL)
1101 continue;
1102 }
1103 at_start_name = 0;
1104
1105 /* Replace "TK__" with "__", which will eventually be translated
1106 into "." (just below). */
1107
1108 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1109 i += 2;
1110
1111 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1112 be translated into "." (just below). These are internal names
1113 generated for anonymous blocks inside which our symbol is nested. */
1114
1115 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1116 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1117 && isdigit (encoded [i+4]))
1118 {
1119 int k = i + 5;
1120
1121 while (k < len0 && isdigit (encoded[k]))
1122 k++; /* Skip any extra digit. */
1123
1124 /* Double-check that the "__B_{DIGITS}+" sequence we found
1125 is indeed followed by "__". */
1126 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1127 i = k;
1128 }
1129
1130 /* Remove _E{DIGITS}+[sb] */
1131
1132 /* Just as for protected object subprograms, there are 2 categories
1133 of subprograms created by the compiler for each entry. The first
1134 one implements the actual entry code, and has a suffix following
1135 the convention above; the second one implements the barrier and
1136 uses the same convention as above, except that the 'E' is replaced
1137 by a 'B'.
1138
1139 Just as above, we do not decode the name of barrier functions
1140 to give the user a clue that the code he is debugging has been
1141 internally generated. */
1142
1143 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1144 && isdigit (encoded[i+2]))
1145 {
1146 int k = i + 3;
1147
1148 while (k < len0 && isdigit (encoded[k]))
1149 k++;
1150
1151 if (k < len0
1152 && (encoded[k] == 'b' || encoded[k] == 's'))
1153 {
1154 k++;
1155 /* Just as an extra precaution, make sure that if this
1156 suffix is followed by anything else, it is a '_'.
1157 Otherwise, we matched this sequence by accident. */
1158 if (k == len0
1159 || (k < len0 && encoded[k] == '_'))
1160 i = k;
1161 }
1162 }
1163
1164 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1165 the GNAT front-end in protected object subprograms. */
1166
1167 if (i < len0 + 3
1168 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1169 {
1170 /* Backtrack a bit up until we reach either the begining of
1171 the encoded name, or "__". Make sure that we only find
1172 digits or lowercase characters. */
1173 const char *ptr = encoded + i - 1;
1174
1175 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1176 ptr--;
1177 if (ptr < encoded
1178 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1179 i++;
1180 }
1181
1182 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1183 {
1184 /* This is a X[bn]* sequence not separated from the previous
1185 part of the name with a non-alpha-numeric character (in other
1186 words, immediately following an alpha-numeric character), then
1187 verify that it is placed at the end of the encoded name. If
1188 not, then the encoding is not valid and we should abort the
1189 decoding. Otherwise, just skip it, it is used in body-nested
1190 package names. */
1191 do
1192 i += 1;
1193 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1194 if (i < len0)
1195 goto Suppress;
1196 }
1197 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1198 {
1199 /* Replace '__' by '.'. */
1200 decoded[j] = '.';
1201 at_start_name = 1;
1202 i += 2;
1203 j += 1;
1204 }
1205 else
1206 {
1207 /* It's a character part of the decoded name, so just copy it
1208 over. */
1209 decoded[j] = encoded[i];
1210 i += 1;
1211 j += 1;
1212 }
1213 }
1214 decoded[j] = '\000';
1215
1216 /* Decoded names should never contain any uppercase character.
1217 Double-check this, and abort the decoding if we find one. */
1218
1219 for (i = 0; decoded[i] != '\0'; i += 1)
1220 if (isupper (decoded[i]) || decoded[i] == ' ')
1221 goto Suppress;
1222
1223 if (strcmp (decoded, encoded) == 0)
1224 return encoded;
1225 else
1226 return decoded;
1227
1228Suppress:
1229 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1230 decoded = decoding_buffer;
1231 if (encoded[0] == '<')
1232 strcpy (decoded, encoded);
1233 else
1234 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1235 return decoded;
1236
1237}
1238
1239/* Table for keeping permanent unique copies of decoded names. Once
1240 allocated, names in this table are never released. While this is a
1241 storage leak, it should not be significant unless there are massive
1242 changes in the set of decoded names in successive versions of a
1243 symbol table loaded during a single session. */
1244static struct htab *decoded_names_store;
1245
1246/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1247 in the language-specific part of GSYMBOL, if it has not been
1248 previously computed. Tries to save the decoded name in the same
1249 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1250 in any case, the decoded symbol has a lifetime at least that of
1251 GSYMBOL).
1252 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1253 const, but nevertheless modified to a semantically equivalent form
1254 when a decoded name is cached in it. */
1255
1256char *
1257ada_decode_symbol (const struct general_symbol_info *gsymbol)
1258{
1259 char **resultp =
1260 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1261
1262 if (*resultp == NULL)
1263 {
1264 const char *decoded = ada_decode (gsymbol->name);
1265
1266 if (gsymbol->obj_section != NULL)
1267 {
1268 struct objfile *objf = gsymbol->obj_section->objfile;
1269
1270 *resultp = obsavestring (decoded, strlen (decoded),
1271 &objf->objfile_obstack);
1272 }
1273 /* Sometimes, we can't find a corresponding objfile, in which
1274 case, we put the result on the heap. Since we only decode
1275 when needed, we hope this usually does not cause a
1276 significant memory leak (FIXME). */
1277 if (*resultp == NULL)
1278 {
1279 char **slot = (char **) htab_find_slot (decoded_names_store,
1280 decoded, INSERT);
1281
1282 if (*slot == NULL)
1283 *slot = xstrdup (decoded);
1284 *resultp = *slot;
1285 }
1286 }
1287
1288 return *resultp;
1289}
1290
1291static char *
1292ada_la_decode (const char *encoded, int options)
1293{
1294 return xstrdup (ada_decode (encoded));
1295}
1296
1297/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1298 suffixes that encode debugging information or leading _ada_ on
1299 SYM_NAME (see is_name_suffix commentary for the debugging
1300 information that is ignored). If WILD, then NAME need only match a
1301 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1302 either argument is NULL. */
1303
1304static int
1305match_name (const char *sym_name, const char *name, int wild)
1306{
1307 if (sym_name == NULL || name == NULL)
1308 return 0;
1309 else if (wild)
1310 return wild_match (sym_name, name) == 0;
1311 else
1312 {
1313 int len_name = strlen (name);
1314
1315 return (strncmp (sym_name, name, len_name) == 0
1316 && is_name_suffix (sym_name + len_name))
1317 || (strncmp (sym_name, "_ada_", 5) == 0
1318 && strncmp (sym_name + 5, name, len_name) == 0
1319 && is_name_suffix (sym_name + len_name + 5));
1320 }
1321}
1322\f
1323
1324 /* Arrays */
1325
1326/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1327 generated by the GNAT compiler to describe the index type used
1328 for each dimension of an array, check whether it follows the latest
1329 known encoding. If not, fix it up to conform to the latest encoding.
1330 Otherwise, do nothing. This function also does nothing if
1331 INDEX_DESC_TYPE is NULL.
1332
1333 The GNAT encoding used to describle the array index type evolved a bit.
1334 Initially, the information would be provided through the name of each
1335 field of the structure type only, while the type of these fields was
1336 described as unspecified and irrelevant. The debugger was then expected
1337 to perform a global type lookup using the name of that field in order
1338 to get access to the full index type description. Because these global
1339 lookups can be very expensive, the encoding was later enhanced to make
1340 the global lookup unnecessary by defining the field type as being
1341 the full index type description.
1342
1343 The purpose of this routine is to allow us to support older versions
1344 of the compiler by detecting the use of the older encoding, and by
1345 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1346 we essentially replace each field's meaningless type by the associated
1347 index subtype). */
1348
1349void
1350ada_fixup_array_indexes_type (struct type *index_desc_type)
1351{
1352 int i;
1353
1354 if (index_desc_type == NULL)
1355 return;
1356 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1357
1358 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1359 to check one field only, no need to check them all). If not, return
1360 now.
1361
1362 If our INDEX_DESC_TYPE was generated using the older encoding,
1363 the field type should be a meaningless integer type whose name
1364 is not equal to the field name. */
1365 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1366 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1367 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1368 return;
1369
1370 /* Fixup each field of INDEX_DESC_TYPE. */
1371 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1372 {
1373 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1374 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1375
1376 if (raw_type)
1377 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1378 }
1379}
1380
1381/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1382
1383static char *bound_name[] = {
1384 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1385 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1386};
1387
1388/* Maximum number of array dimensions we are prepared to handle. */
1389
1390#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1391
1392
1393/* The desc_* routines return primitive portions of array descriptors
1394 (fat pointers). */
1395
1396/* The descriptor or array type, if any, indicated by TYPE; removes
1397 level of indirection, if needed. */
1398
1399static struct type *
1400desc_base_type (struct type *type)
1401{
1402 if (type == NULL)
1403 return NULL;
1404 type = ada_check_typedef (type);
1405 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1406 type = ada_typedef_target_type (type);
1407
1408 if (type != NULL
1409 && (TYPE_CODE (type) == TYPE_CODE_PTR
1410 || TYPE_CODE (type) == TYPE_CODE_REF))
1411 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1412 else
1413 return type;
1414}
1415
1416/* True iff TYPE indicates a "thin" array pointer type. */
1417
1418static int
1419is_thin_pntr (struct type *type)
1420{
1421 return
1422 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1423 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1424}
1425
1426/* The descriptor type for thin pointer type TYPE. */
1427
1428static struct type *
1429thin_descriptor_type (struct type *type)
1430{
1431 struct type *base_type = desc_base_type (type);
1432
1433 if (base_type == NULL)
1434 return NULL;
1435 if (is_suffix (ada_type_name (base_type), "___XVE"))
1436 return base_type;
1437 else
1438 {
1439 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1440
1441 if (alt_type == NULL)
1442 return base_type;
1443 else
1444 return alt_type;
1445 }
1446}
1447
1448/* A pointer to the array data for thin-pointer value VAL. */
1449
1450static struct value *
1451thin_data_pntr (struct value *val)
1452{
1453 struct type *type = ada_check_typedef (value_type (val));
1454 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1455
1456 data_type = lookup_pointer_type (data_type);
1457
1458 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1459 return value_cast (data_type, value_copy (val));
1460 else
1461 return value_from_longest (data_type, value_address (val));
1462}
1463
1464/* True iff TYPE indicates a "thick" array pointer type. */
1465
1466static int
1467is_thick_pntr (struct type *type)
1468{
1469 type = desc_base_type (type);
1470 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1471 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1472}
1473
1474/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1475 pointer to one, the type of its bounds data; otherwise, NULL. */
1476
1477static struct type *
1478desc_bounds_type (struct type *type)
1479{
1480 struct type *r;
1481
1482 type = desc_base_type (type);
1483
1484 if (type == NULL)
1485 return NULL;
1486 else if (is_thin_pntr (type))
1487 {
1488 type = thin_descriptor_type (type);
1489 if (type == NULL)
1490 return NULL;
1491 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1492 if (r != NULL)
1493 return ada_check_typedef (r);
1494 }
1495 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1496 {
1497 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1498 if (r != NULL)
1499 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1500 }
1501 return NULL;
1502}
1503
1504/* If ARR is an array descriptor (fat or thin pointer), or pointer to
1505 one, a pointer to its bounds data. Otherwise NULL. */
1506
1507static struct value *
1508desc_bounds (struct value *arr)
1509{
1510 struct type *type = ada_check_typedef (value_type (arr));
1511
1512 if (is_thin_pntr (type))
1513 {
1514 struct type *bounds_type =
1515 desc_bounds_type (thin_descriptor_type (type));
1516 LONGEST addr;
1517
1518 if (bounds_type == NULL)
1519 error (_("Bad GNAT array descriptor"));
1520
1521 /* NOTE: The following calculation is not really kosher, but
1522 since desc_type is an XVE-encoded type (and shouldn't be),
1523 the correct calculation is a real pain. FIXME (and fix GCC). */
1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1525 addr = value_as_long (arr);
1526 else
1527 addr = value_address (arr);
1528
1529 return
1530 value_from_longest (lookup_pointer_type (bounds_type),
1531 addr - TYPE_LENGTH (bounds_type));
1532 }
1533
1534 else if (is_thick_pntr (type))
1535 {
1536 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1537 _("Bad GNAT array descriptor"));
1538 struct type *p_bounds_type = value_type (p_bounds);
1539
1540 if (p_bounds_type
1541 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1542 {
1543 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1544
1545 if (TYPE_STUB (target_type))
1546 p_bounds = value_cast (lookup_pointer_type
1547 (ada_check_typedef (target_type)),
1548 p_bounds);
1549 }
1550 else
1551 error (_("Bad GNAT array descriptor"));
1552
1553 return p_bounds;
1554 }
1555 else
1556 return NULL;
1557}
1558
1559/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1560 position of the field containing the address of the bounds data. */
1561
1562static int
1563fat_pntr_bounds_bitpos (struct type *type)
1564{
1565 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1566}
1567
1568/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1569 size of the field containing the address of the bounds data. */
1570
1571static int
1572fat_pntr_bounds_bitsize (struct type *type)
1573{
1574 type = desc_base_type (type);
1575
1576 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1577 return TYPE_FIELD_BITSIZE (type, 1);
1578 else
1579 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1580}
1581
1582/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1583 pointer to one, the type of its array data (a array-with-no-bounds type);
1584 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1585 data. */
1586
1587static struct type *
1588desc_data_target_type (struct type *type)
1589{
1590 type = desc_base_type (type);
1591
1592 /* NOTE: The following is bogus; see comment in desc_bounds. */
1593 if (is_thin_pntr (type))
1594 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1595 else if (is_thick_pntr (type))
1596 {
1597 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1598
1599 if (data_type
1600 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1601 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1602 }
1603
1604 return NULL;
1605}
1606
1607/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1608 its array data. */
1609
1610static struct value *
1611desc_data (struct value *arr)
1612{
1613 struct type *type = value_type (arr);
1614
1615 if (is_thin_pntr (type))
1616 return thin_data_pntr (arr);
1617 else if (is_thick_pntr (type))
1618 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1619 _("Bad GNAT array descriptor"));
1620 else
1621 return NULL;
1622}
1623
1624
1625/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the data. */
1627
1628static int
1629fat_pntr_data_bitpos (struct type *type)
1630{
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1632}
1633
1634/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1635 size of the field containing the address of the data. */
1636
1637static int
1638fat_pntr_data_bitsize (struct type *type)
1639{
1640 type = desc_base_type (type);
1641
1642 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1643 return TYPE_FIELD_BITSIZE (type, 0);
1644 else
1645 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1646}
1647
1648/* If BOUNDS is an array-bounds structure (or pointer to one), return
1649 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1650 bound, if WHICH is 1. The first bound is I=1. */
1651
1652static struct value *
1653desc_one_bound (struct value *bounds, int i, int which)
1654{
1655 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1656 _("Bad GNAT array descriptor bounds"));
1657}
1658
1659/* If BOUNDS is an array-bounds structure type, return the bit position
1660 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1661 bound, if WHICH is 1. The first bound is I=1. */
1662
1663static int
1664desc_bound_bitpos (struct type *type, int i, int which)
1665{
1666 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1667}
1668
1669/* If BOUNDS is an array-bounds structure type, return the bit field size
1670 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1671 bound, if WHICH is 1. The first bound is I=1. */
1672
1673static int
1674desc_bound_bitsize (struct type *type, int i, int which)
1675{
1676 type = desc_base_type (type);
1677
1678 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1679 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1680 else
1681 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1682}
1683
1684/* If TYPE is the type of an array-bounds structure, the type of its
1685 Ith bound (numbering from 1). Otherwise, NULL. */
1686
1687static struct type *
1688desc_index_type (struct type *type, int i)
1689{
1690 type = desc_base_type (type);
1691
1692 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1694 else
1695 return NULL;
1696}
1697
1698/* The number of index positions in the array-bounds type TYPE.
1699 Return 0 if TYPE is NULL. */
1700
1701static int
1702desc_arity (struct type *type)
1703{
1704 type = desc_base_type (type);
1705
1706 if (type != NULL)
1707 return TYPE_NFIELDS (type) / 2;
1708 return 0;
1709}
1710
1711/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1712 an array descriptor type (representing an unconstrained array
1713 type). */
1714
1715static int
1716ada_is_direct_array_type (struct type *type)
1717{
1718 if (type == NULL)
1719 return 0;
1720 type = ada_check_typedef (type);
1721 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1722 || ada_is_array_descriptor_type (type));
1723}
1724
1725/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1726 * to one. */
1727
1728static int
1729ada_is_array_type (struct type *type)
1730{
1731 while (type != NULL
1732 && (TYPE_CODE (type) == TYPE_CODE_PTR
1733 || TYPE_CODE (type) == TYPE_CODE_REF))
1734 type = TYPE_TARGET_TYPE (type);
1735 return ada_is_direct_array_type (type);
1736}
1737
1738/* Non-zero iff TYPE is a simple array type or pointer to one. */
1739
1740int
1741ada_is_simple_array_type (struct type *type)
1742{
1743 if (type == NULL)
1744 return 0;
1745 type = ada_check_typedef (type);
1746 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1747 || (TYPE_CODE (type) == TYPE_CODE_PTR
1748 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1749 == TYPE_CODE_ARRAY));
1750}
1751
1752/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1753
1754int
1755ada_is_array_descriptor_type (struct type *type)
1756{
1757 struct type *data_type = desc_data_target_type (type);
1758
1759 if (type == NULL)
1760 return 0;
1761 type = ada_check_typedef (type);
1762 return (data_type != NULL
1763 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1764 && desc_arity (desc_bounds_type (type)) > 0);
1765}
1766
1767/* Non-zero iff type is a partially mal-formed GNAT array
1768 descriptor. FIXME: This is to compensate for some problems with
1769 debugging output from GNAT. Re-examine periodically to see if it
1770 is still needed. */
1771
1772int
1773ada_is_bogus_array_descriptor (struct type *type)
1774{
1775 return
1776 type != NULL
1777 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1779 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1780 && !ada_is_array_descriptor_type (type);
1781}
1782
1783
1784/* If ARR has a record type in the form of a standard GNAT array descriptor,
1785 (fat pointer) returns the type of the array data described---specifically,
1786 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1787 in from the descriptor; otherwise, they are left unspecified. If
1788 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1789 returns NULL. The result is simply the type of ARR if ARR is not
1790 a descriptor. */
1791struct type *
1792ada_type_of_array (struct value *arr, int bounds)
1793{
1794 if (ada_is_constrained_packed_array_type (value_type (arr)))
1795 return decode_constrained_packed_array_type (value_type (arr));
1796
1797 if (!ada_is_array_descriptor_type (value_type (arr)))
1798 return value_type (arr);
1799
1800 if (!bounds)
1801 {
1802 struct type *array_type =
1803 ada_check_typedef (desc_data_target_type (value_type (arr)));
1804
1805 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1806 TYPE_FIELD_BITSIZE (array_type, 0) =
1807 decode_packed_array_bitsize (value_type (arr));
1808
1809 return array_type;
1810 }
1811 else
1812 {
1813 struct type *elt_type;
1814 int arity;
1815 struct value *descriptor;
1816
1817 elt_type = ada_array_element_type (value_type (arr), -1);
1818 arity = ada_array_arity (value_type (arr));
1819
1820 if (elt_type == NULL || arity == 0)
1821 return ada_check_typedef (value_type (arr));
1822
1823 descriptor = desc_bounds (arr);
1824 if (value_as_long (descriptor) == 0)
1825 return NULL;
1826 while (arity > 0)
1827 {
1828 struct type *range_type = alloc_type_copy (value_type (arr));
1829 struct type *array_type = alloc_type_copy (value_type (arr));
1830 struct value *low = desc_one_bound (descriptor, arity, 0);
1831 struct value *high = desc_one_bound (descriptor, arity, 1);
1832
1833 arity -= 1;
1834 create_range_type (range_type, value_type (low),
1835 longest_to_int (value_as_long (low)),
1836 longest_to_int (value_as_long (high)));
1837 elt_type = create_array_type (array_type, elt_type, range_type);
1838
1839 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1840 {
1841 /* We need to store the element packed bitsize, as well as
1842 recompute the array size, because it was previously
1843 computed based on the unpacked element size. */
1844 LONGEST lo = value_as_long (low);
1845 LONGEST hi = value_as_long (high);
1846
1847 TYPE_FIELD_BITSIZE (elt_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849 /* If the array has no element, then the size is already
1850 zero, and does not need to be recomputed. */
1851 if (lo < hi)
1852 {
1853 int array_bitsize =
1854 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1855
1856 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1857 }
1858 }
1859 }
1860
1861 return lookup_pointer_type (elt_type);
1862 }
1863}
1864
1865/* If ARR does not represent an array, returns ARR unchanged.
1866 Otherwise, returns either a standard GDB array with bounds set
1867 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1868 GDB array. Returns NULL if ARR is a null fat pointer. */
1869
1870struct value *
1871ada_coerce_to_simple_array_ptr (struct value *arr)
1872{
1873 if (ada_is_array_descriptor_type (value_type (arr)))
1874 {
1875 struct type *arrType = ada_type_of_array (arr, 1);
1876
1877 if (arrType == NULL)
1878 return NULL;
1879 return value_cast (arrType, value_copy (desc_data (arr)));
1880 }
1881 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1882 return decode_constrained_packed_array (arr);
1883 else
1884 return arr;
1885}
1886
1887/* If ARR does not represent an array, returns ARR unchanged.
1888 Otherwise, returns a standard GDB array describing ARR (which may
1889 be ARR itself if it already is in the proper form). */
1890
1891struct value *
1892ada_coerce_to_simple_array (struct value *arr)
1893{
1894 if (ada_is_array_descriptor_type (value_type (arr)))
1895 {
1896 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1897
1898 if (arrVal == NULL)
1899 error (_("Bounds unavailable for null array pointer."));
1900 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1901 return value_ind (arrVal);
1902 }
1903 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array (arr);
1905 else
1906 return arr;
1907}
1908
1909/* If TYPE represents a GNAT array type, return it translated to an
1910 ordinary GDB array type (possibly with BITSIZE fields indicating
1911 packing). For other types, is the identity. */
1912
1913struct type *
1914ada_coerce_to_simple_array_type (struct type *type)
1915{
1916 if (ada_is_constrained_packed_array_type (type))
1917 return decode_constrained_packed_array_type (type);
1918
1919 if (ada_is_array_descriptor_type (type))
1920 return ada_check_typedef (desc_data_target_type (type));
1921
1922 return type;
1923}
1924
1925/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1926
1927static int
1928ada_is_packed_array_type (struct type *type)
1929{
1930 if (type == NULL)
1931 return 0;
1932 type = desc_base_type (type);
1933 type = ada_check_typedef (type);
1934 return
1935 ada_type_name (type) != NULL
1936 && strstr (ada_type_name (type), "___XP") != NULL;
1937}
1938
1939/* Non-zero iff TYPE represents a standard GNAT constrained
1940 packed-array type. */
1941
1942int
1943ada_is_constrained_packed_array_type (struct type *type)
1944{
1945 return ada_is_packed_array_type (type)
1946 && !ada_is_array_descriptor_type (type);
1947}
1948
1949/* Non-zero iff TYPE represents an array descriptor for a
1950 unconstrained packed-array type. */
1951
1952static int
1953ada_is_unconstrained_packed_array_type (struct type *type)
1954{
1955 return ada_is_packed_array_type (type)
1956 && ada_is_array_descriptor_type (type);
1957}
1958
1959/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1960 return the size of its elements in bits. */
1961
1962static long
1963decode_packed_array_bitsize (struct type *type)
1964{
1965 const char *raw_name;
1966 const char *tail;
1967 long bits;
1968
1969 /* Access to arrays implemented as fat pointers are encoded as a typedef
1970 of the fat pointer type. We need the name of the fat pointer type
1971 to do the decoding, so strip the typedef layer. */
1972 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1973 type = ada_typedef_target_type (type);
1974
1975 raw_name = ada_type_name (ada_check_typedef (type));
1976 if (!raw_name)
1977 raw_name = ada_type_name (desc_base_type (type));
1978
1979 if (!raw_name)
1980 return 0;
1981
1982 tail = strstr (raw_name, "___XP");
1983 gdb_assert (tail != NULL);
1984
1985 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1986 {
1987 lim_warning
1988 (_("could not understand bit size information on packed array"));
1989 return 0;
1990 }
1991
1992 return bits;
1993}
1994
1995/* Given that TYPE is a standard GDB array type with all bounds filled
1996 in, and that the element size of its ultimate scalar constituents
1997 (that is, either its elements, or, if it is an array of arrays, its
1998 elements' elements, etc.) is *ELT_BITS, return an identical type,
1999 but with the bit sizes of its elements (and those of any
2000 constituent arrays) recorded in the BITSIZE components of its
2001 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2002 in bits. */
2003
2004static struct type *
2005constrained_packed_array_type (struct type *type, long *elt_bits)
2006{
2007 struct type *new_elt_type;
2008 struct type *new_type;
2009 struct type *index_type_desc;
2010 struct type *index_type;
2011 LONGEST low_bound, high_bound;
2012
2013 type = ada_check_typedef (type);
2014 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2015 return type;
2016
2017 index_type_desc = ada_find_parallel_type (type, "___XA");
2018 if (index_type_desc)
2019 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2020 NULL);
2021 else
2022 index_type = TYPE_INDEX_TYPE (type);
2023
2024 new_type = alloc_type_copy (type);
2025 new_elt_type =
2026 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2027 elt_bits);
2028 create_array_type (new_type, new_elt_type, index_type);
2029 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2030 TYPE_NAME (new_type) = ada_type_name (type);
2031
2032 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2033 low_bound = high_bound = 0;
2034 if (high_bound < low_bound)
2035 *elt_bits = TYPE_LENGTH (new_type) = 0;
2036 else
2037 {
2038 *elt_bits *= (high_bound - low_bound + 1);
2039 TYPE_LENGTH (new_type) =
2040 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2041 }
2042
2043 TYPE_FIXED_INSTANCE (new_type) = 1;
2044 return new_type;
2045}
2046
2047/* The array type encoded by TYPE, where
2048 ada_is_constrained_packed_array_type (TYPE). */
2049
2050static struct type *
2051decode_constrained_packed_array_type (struct type *type)
2052{
2053 const char *raw_name = ada_type_name (ada_check_typedef (type));
2054 char *name;
2055 const char *tail;
2056 struct type *shadow_type;
2057 long bits;
2058
2059 if (!raw_name)
2060 raw_name = ada_type_name (desc_base_type (type));
2061
2062 if (!raw_name)
2063 return NULL;
2064
2065 name = (char *) alloca (strlen (raw_name) + 1);
2066 tail = strstr (raw_name, "___XP");
2067 type = desc_base_type (type);
2068
2069 memcpy (name, raw_name, tail - raw_name);
2070 name[tail - raw_name] = '\000';
2071
2072 shadow_type = ada_find_parallel_type_with_name (type, name);
2073
2074 if (shadow_type == NULL)
2075 {
2076 lim_warning (_("could not find bounds information on packed array"));
2077 return NULL;
2078 }
2079 CHECK_TYPEDEF (shadow_type);
2080
2081 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2082 {
2083 lim_warning (_("could not understand bounds "
2084 "information on packed array"));
2085 return NULL;
2086 }
2087
2088 bits = decode_packed_array_bitsize (type);
2089 return constrained_packed_array_type (shadow_type, &bits);
2090}
2091
2092/* Given that ARR is a struct value *indicating a GNAT constrained packed
2093 array, returns a simple array that denotes that array. Its type is a
2094 standard GDB array type except that the BITSIZEs of the array
2095 target types are set to the number of bits in each element, and the
2096 type length is set appropriately. */
2097
2098static struct value *
2099decode_constrained_packed_array (struct value *arr)
2100{
2101 struct type *type;
2102
2103 arr = ada_coerce_ref (arr);
2104
2105 /* If our value is a pointer, then dererence it. Make sure that
2106 this operation does not cause the target type to be fixed, as
2107 this would indirectly cause this array to be decoded. The rest
2108 of the routine assumes that the array hasn't been decoded yet,
2109 so we use the basic "value_ind" routine to perform the dereferencing,
2110 as opposed to using "ada_value_ind". */
2111 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2112 arr = value_ind (arr);
2113
2114 type = decode_constrained_packed_array_type (value_type (arr));
2115 if (type == NULL)
2116 {
2117 error (_("can't unpack array"));
2118 return NULL;
2119 }
2120
2121 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2122 && ada_is_modular_type (value_type (arr)))
2123 {
2124 /* This is a (right-justified) modular type representing a packed
2125 array with no wrapper. In order to interpret the value through
2126 the (left-justified) packed array type we just built, we must
2127 first left-justify it. */
2128 int bit_size, bit_pos;
2129 ULONGEST mod;
2130
2131 mod = ada_modulus (value_type (arr)) - 1;
2132 bit_size = 0;
2133 while (mod > 0)
2134 {
2135 bit_size += 1;
2136 mod >>= 1;
2137 }
2138 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2139 arr = ada_value_primitive_packed_val (arr, NULL,
2140 bit_pos / HOST_CHAR_BIT,
2141 bit_pos % HOST_CHAR_BIT,
2142 bit_size,
2143 type);
2144 }
2145
2146 return coerce_unspec_val_to_type (arr, type);
2147}
2148
2149
2150/* The value of the element of packed array ARR at the ARITY indices
2151 given in IND. ARR must be a simple array. */
2152
2153static struct value *
2154value_subscript_packed (struct value *arr, int arity, struct value **ind)
2155{
2156 int i;
2157 int bits, elt_off, bit_off;
2158 long elt_total_bit_offset;
2159 struct type *elt_type;
2160 struct value *v;
2161
2162 bits = 0;
2163 elt_total_bit_offset = 0;
2164 elt_type = ada_check_typedef (value_type (arr));
2165 for (i = 0; i < arity; i += 1)
2166 {
2167 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2168 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2169 error
2170 (_("attempt to do packed indexing of "
2171 "something other than a packed array"));
2172 else
2173 {
2174 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2175 LONGEST lowerbound, upperbound;
2176 LONGEST idx;
2177
2178 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2179 {
2180 lim_warning (_("don't know bounds of array"));
2181 lowerbound = upperbound = 0;
2182 }
2183
2184 idx = pos_atr (ind[i]);
2185 if (idx < lowerbound || idx > upperbound)
2186 lim_warning (_("packed array index %ld out of bounds"),
2187 (long) idx);
2188 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2189 elt_total_bit_offset += (idx - lowerbound) * bits;
2190 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2191 }
2192 }
2193 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2194 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2195
2196 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2197 bits, elt_type);
2198 return v;
2199}
2200
2201/* Non-zero iff TYPE includes negative integer values. */
2202
2203static int
2204has_negatives (struct type *type)
2205{
2206 switch (TYPE_CODE (type))
2207 {
2208 default:
2209 return 0;
2210 case TYPE_CODE_INT:
2211 return !TYPE_UNSIGNED (type);
2212 case TYPE_CODE_RANGE:
2213 return TYPE_LOW_BOUND (type) < 0;
2214 }
2215}
2216
2217
2218/* Create a new value of type TYPE from the contents of OBJ starting
2219 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2220 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2221 assigning through the result will set the field fetched from.
2222 VALADDR is ignored unless OBJ is NULL, in which case,
2223 VALADDR+OFFSET must address the start of storage containing the
2224 packed value. The value returned in this case is never an lval.
2225 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2226
2227struct value *
2228ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2229 long offset, int bit_offset, int bit_size,
2230 struct type *type)
2231{
2232 struct value *v;
2233 int src, /* Index into the source area */
2234 targ, /* Index into the target area */
2235 srcBitsLeft, /* Number of source bits left to move */
2236 nsrc, ntarg, /* Number of source and target bytes */
2237 unusedLS, /* Number of bits in next significant
2238 byte of source that are unused */
2239 accumSize; /* Number of meaningful bits in accum */
2240 unsigned char *bytes; /* First byte containing data to unpack */
2241 unsigned char *unpacked;
2242 unsigned long accum; /* Staging area for bits being transferred */
2243 unsigned char sign;
2244 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2245 /* Transmit bytes from least to most significant; delta is the direction
2246 the indices move. */
2247 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2248
2249 type = ada_check_typedef (type);
2250
2251 if (obj == NULL)
2252 {
2253 v = allocate_value (type);
2254 bytes = (unsigned char *) (valaddr + offset);
2255 }
2256 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2257 {
2258 v = value_at (type,
2259 value_address (obj) + offset);
2260 bytes = (unsigned char *) alloca (len);
2261 read_memory (value_address (v), bytes, len);
2262 }
2263 else
2264 {
2265 v = allocate_value (type);
2266 bytes = (unsigned char *) value_contents (obj) + offset;
2267 }
2268
2269 if (obj != NULL)
2270 {
2271 CORE_ADDR new_addr;
2272
2273 set_value_component_location (v, obj);
2274 new_addr = value_address (obj) + offset;
2275 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2276 set_value_bitsize (v, bit_size);
2277 if (value_bitpos (v) >= HOST_CHAR_BIT)
2278 {
2279 ++new_addr;
2280 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2281 }
2282 set_value_address (v, new_addr);
2283 }
2284 else
2285 set_value_bitsize (v, bit_size);
2286 unpacked = (unsigned char *) value_contents (v);
2287
2288 srcBitsLeft = bit_size;
2289 nsrc = len;
2290 ntarg = TYPE_LENGTH (type);
2291 sign = 0;
2292 if (bit_size == 0)
2293 {
2294 memset (unpacked, 0, TYPE_LENGTH (type));
2295 return v;
2296 }
2297 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2298 {
2299 src = len - 1;
2300 if (has_negatives (type)
2301 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2302 sign = ~0;
2303
2304 unusedLS =
2305 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2306 % HOST_CHAR_BIT;
2307
2308 switch (TYPE_CODE (type))
2309 {
2310 case TYPE_CODE_ARRAY:
2311 case TYPE_CODE_UNION:
2312 case TYPE_CODE_STRUCT:
2313 /* Non-scalar values must be aligned at a byte boundary... */
2314 accumSize =
2315 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2316 /* ... And are placed at the beginning (most-significant) bytes
2317 of the target. */
2318 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2319 ntarg = targ + 1;
2320 break;
2321 default:
2322 accumSize = 0;
2323 targ = TYPE_LENGTH (type) - 1;
2324 break;
2325 }
2326 }
2327 else
2328 {
2329 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2330
2331 src = targ = 0;
2332 unusedLS = bit_offset;
2333 accumSize = 0;
2334
2335 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2336 sign = ~0;
2337 }
2338
2339 accum = 0;
2340 while (nsrc > 0)
2341 {
2342 /* Mask for removing bits of the next source byte that are not
2343 part of the value. */
2344 unsigned int unusedMSMask =
2345 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2346 1;
2347 /* Sign-extend bits for this byte. */
2348 unsigned int signMask = sign & ~unusedMSMask;
2349
2350 accum |=
2351 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2352 accumSize += HOST_CHAR_BIT - unusedLS;
2353 if (accumSize >= HOST_CHAR_BIT)
2354 {
2355 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2356 accumSize -= HOST_CHAR_BIT;
2357 accum >>= HOST_CHAR_BIT;
2358 ntarg -= 1;
2359 targ += delta;
2360 }
2361 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2362 unusedLS = 0;
2363 nsrc -= 1;
2364 src += delta;
2365 }
2366 while (ntarg > 0)
2367 {
2368 accum |= sign << accumSize;
2369 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2370 accumSize -= HOST_CHAR_BIT;
2371 accum >>= HOST_CHAR_BIT;
2372 ntarg -= 1;
2373 targ += delta;
2374 }
2375
2376 return v;
2377}
2378
2379/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2380 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2381 not overlap. */
2382static void
2383move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2384 int src_offset, int n, int bits_big_endian_p)
2385{
2386 unsigned int accum, mask;
2387 int accum_bits, chunk_size;
2388
2389 target += targ_offset / HOST_CHAR_BIT;
2390 targ_offset %= HOST_CHAR_BIT;
2391 source += src_offset / HOST_CHAR_BIT;
2392 src_offset %= HOST_CHAR_BIT;
2393 if (bits_big_endian_p)
2394 {
2395 accum = (unsigned char) *source;
2396 source += 1;
2397 accum_bits = HOST_CHAR_BIT - src_offset;
2398
2399 while (n > 0)
2400 {
2401 int unused_right;
2402
2403 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2404 accum_bits += HOST_CHAR_BIT;
2405 source += 1;
2406 chunk_size = HOST_CHAR_BIT - targ_offset;
2407 if (chunk_size > n)
2408 chunk_size = n;
2409 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2410 mask = ((1 << chunk_size) - 1) << unused_right;
2411 *target =
2412 (*target & ~mask)
2413 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2414 n -= chunk_size;
2415 accum_bits -= chunk_size;
2416 target += 1;
2417 targ_offset = 0;
2418 }
2419 }
2420 else
2421 {
2422 accum = (unsigned char) *source >> src_offset;
2423 source += 1;
2424 accum_bits = HOST_CHAR_BIT - src_offset;
2425
2426 while (n > 0)
2427 {
2428 accum = accum + ((unsigned char) *source << accum_bits);
2429 accum_bits += HOST_CHAR_BIT;
2430 source += 1;
2431 chunk_size = HOST_CHAR_BIT - targ_offset;
2432 if (chunk_size > n)
2433 chunk_size = n;
2434 mask = ((1 << chunk_size) - 1) << targ_offset;
2435 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2436 n -= chunk_size;
2437 accum_bits -= chunk_size;
2438 accum >>= chunk_size;
2439 target += 1;
2440 targ_offset = 0;
2441 }
2442 }
2443}
2444
2445/* Store the contents of FROMVAL into the location of TOVAL.
2446 Return a new value with the location of TOVAL and contents of
2447 FROMVAL. Handles assignment into packed fields that have
2448 floating-point or non-scalar types. */
2449
2450static struct value *
2451ada_value_assign (struct value *toval, struct value *fromval)
2452{
2453 struct type *type = value_type (toval);
2454 int bits = value_bitsize (toval);
2455
2456 toval = ada_coerce_ref (toval);
2457 fromval = ada_coerce_ref (fromval);
2458
2459 if (ada_is_direct_array_type (value_type (toval)))
2460 toval = ada_coerce_to_simple_array (toval);
2461 if (ada_is_direct_array_type (value_type (fromval)))
2462 fromval = ada_coerce_to_simple_array (fromval);
2463
2464 if (!deprecated_value_modifiable (toval))
2465 error (_("Left operand of assignment is not a modifiable lvalue."));
2466
2467 if (VALUE_LVAL (toval) == lval_memory
2468 && bits > 0
2469 && (TYPE_CODE (type) == TYPE_CODE_FLT
2470 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2471 {
2472 int len = (value_bitpos (toval)
2473 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2474 int from_size;
2475 char *buffer = (char *) alloca (len);
2476 struct value *val;
2477 CORE_ADDR to_addr = value_address (toval);
2478
2479 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2480 fromval = value_cast (type, fromval);
2481
2482 read_memory (to_addr, buffer, len);
2483 from_size = value_bitsize (fromval);
2484 if (from_size == 0)
2485 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2486 if (gdbarch_bits_big_endian (get_type_arch (type)))
2487 move_bits (buffer, value_bitpos (toval),
2488 value_contents (fromval), from_size - bits, bits, 1);
2489 else
2490 move_bits (buffer, value_bitpos (toval),
2491 value_contents (fromval), 0, bits, 0);
2492 write_memory (to_addr, buffer, len);
2493 observer_notify_memory_changed (to_addr, len, buffer);
2494
2495 val = value_copy (toval);
2496 memcpy (value_contents_raw (val), value_contents (fromval),
2497 TYPE_LENGTH (type));
2498 deprecated_set_value_type (val, type);
2499
2500 return val;
2501 }
2502
2503 return value_assign (toval, fromval);
2504}
2505
2506
2507/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2508 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2509 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2510 * COMPONENT, and not the inferior's memory. The current contents
2511 * of COMPONENT are ignored. */
2512static void
2513value_assign_to_component (struct value *container, struct value *component,
2514 struct value *val)
2515{
2516 LONGEST offset_in_container =
2517 (LONGEST) (value_address (component) - value_address (container));
2518 int bit_offset_in_container =
2519 value_bitpos (component) - value_bitpos (container);
2520 int bits;
2521
2522 val = value_cast (value_type (component), val);
2523
2524 if (value_bitsize (component) == 0)
2525 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2526 else
2527 bits = value_bitsize (component);
2528
2529 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2530 move_bits (value_contents_writeable (container) + offset_in_container,
2531 value_bitpos (container) + bit_offset_in_container,
2532 value_contents (val),
2533 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2534 bits, 1);
2535 else
2536 move_bits (value_contents_writeable (container) + offset_in_container,
2537 value_bitpos (container) + bit_offset_in_container,
2538 value_contents (val), 0, bits, 0);
2539}
2540
2541/* The value of the element of array ARR at the ARITY indices given in IND.
2542 ARR may be either a simple array, GNAT array descriptor, or pointer
2543 thereto. */
2544
2545struct value *
2546ada_value_subscript (struct value *arr, int arity, struct value **ind)
2547{
2548 int k;
2549 struct value *elt;
2550 struct type *elt_type;
2551
2552 elt = ada_coerce_to_simple_array (arr);
2553
2554 elt_type = ada_check_typedef (value_type (elt));
2555 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2556 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2557 return value_subscript_packed (elt, arity, ind);
2558
2559 for (k = 0; k < arity; k += 1)
2560 {
2561 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2562 error (_("too many subscripts (%d expected)"), k);
2563 elt = value_subscript (elt, pos_atr (ind[k]));
2564 }
2565 return elt;
2566}
2567
2568/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2569 value of the element of *ARR at the ARITY indices given in
2570 IND. Does not read the entire array into memory. */
2571
2572static struct value *
2573ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2574 struct value **ind)
2575{
2576 int k;
2577
2578 for (k = 0; k < arity; k += 1)
2579 {
2580 LONGEST lwb, upb;
2581
2582 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2583 error (_("too many subscripts (%d expected)"), k);
2584 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2585 value_copy (arr));
2586 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2587 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2588 type = TYPE_TARGET_TYPE (type);
2589 }
2590
2591 return value_ind (arr);
2592}
2593
2594/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2595 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2596 elements starting at index LOW. The lower bound of this array is LOW, as
2597 per Ada rules. */
2598static struct value *
2599ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2600 int low, int high)
2601{
2602 struct type *type0 = ada_check_typedef (type);
2603 CORE_ADDR base = value_as_address (array_ptr)
2604 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2605 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2606 struct type *index_type =
2607 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2608 low, high);
2609 struct type *slice_type =
2610 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2611
2612 return value_at_lazy (slice_type, base);
2613}
2614
2615
2616static struct value *
2617ada_value_slice (struct value *array, int low, int high)
2618{
2619 struct type *type = ada_check_typedef (value_type (array));
2620 struct type *index_type =
2621 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2622 struct type *slice_type =
2623 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2624
2625 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2626}
2627
2628/* If type is a record type in the form of a standard GNAT array
2629 descriptor, returns the number of dimensions for type. If arr is a
2630 simple array, returns the number of "array of"s that prefix its
2631 type designation. Otherwise, returns 0. */
2632
2633int
2634ada_array_arity (struct type *type)
2635{
2636 int arity;
2637
2638 if (type == NULL)
2639 return 0;
2640
2641 type = desc_base_type (type);
2642
2643 arity = 0;
2644 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2645 return desc_arity (desc_bounds_type (type));
2646 else
2647 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2648 {
2649 arity += 1;
2650 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2651 }
2652
2653 return arity;
2654}
2655
2656/* If TYPE is a record type in the form of a standard GNAT array
2657 descriptor or a simple array type, returns the element type for
2658 TYPE after indexing by NINDICES indices, or by all indices if
2659 NINDICES is -1. Otherwise, returns NULL. */
2660
2661struct type *
2662ada_array_element_type (struct type *type, int nindices)
2663{
2664 type = desc_base_type (type);
2665
2666 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2667 {
2668 int k;
2669 struct type *p_array_type;
2670
2671 p_array_type = desc_data_target_type (type);
2672
2673 k = ada_array_arity (type);
2674 if (k == 0)
2675 return NULL;
2676
2677 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2678 if (nindices >= 0 && k > nindices)
2679 k = nindices;
2680 while (k > 0 && p_array_type != NULL)
2681 {
2682 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2683 k -= 1;
2684 }
2685 return p_array_type;
2686 }
2687 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2688 {
2689 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2690 {
2691 type = TYPE_TARGET_TYPE (type);
2692 nindices -= 1;
2693 }
2694 return type;
2695 }
2696
2697 return NULL;
2698}
2699
2700/* The type of nth index in arrays of given type (n numbering from 1).
2701 Does not examine memory. Throws an error if N is invalid or TYPE
2702 is not an array type. NAME is the name of the Ada attribute being
2703 evaluated ('range, 'first, 'last, or 'length); it is used in building
2704 the error message. */
2705
2706static struct type *
2707ada_index_type (struct type *type, int n, const char *name)
2708{
2709 struct type *result_type;
2710
2711 type = desc_base_type (type);
2712
2713 if (n < 0 || n > ada_array_arity (type))
2714 error (_("invalid dimension number to '%s"), name);
2715
2716 if (ada_is_simple_array_type (type))
2717 {
2718 int i;
2719
2720 for (i = 1; i < n; i += 1)
2721 type = TYPE_TARGET_TYPE (type);
2722 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2723 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2724 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2725 perhaps stabsread.c would make more sense. */
2726 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2727 result_type = NULL;
2728 }
2729 else
2730 {
2731 result_type = desc_index_type (desc_bounds_type (type), n);
2732 if (result_type == NULL)
2733 error (_("attempt to take bound of something that is not an array"));
2734 }
2735
2736 return result_type;
2737}
2738
2739/* Given that arr is an array type, returns the lower bound of the
2740 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2741 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2742 array-descriptor type. It works for other arrays with bounds supplied
2743 by run-time quantities other than discriminants. */
2744
2745static LONGEST
2746ada_array_bound_from_type (struct type * arr_type, int n, int which)
2747{
2748 struct type *type, *elt_type, *index_type_desc, *index_type;
2749 int i;
2750
2751 gdb_assert (which == 0 || which == 1);
2752
2753 if (ada_is_constrained_packed_array_type (arr_type))
2754 arr_type = decode_constrained_packed_array_type (arr_type);
2755
2756 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2757 return (LONGEST) - which;
2758
2759 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2760 type = TYPE_TARGET_TYPE (arr_type);
2761 else
2762 type = arr_type;
2763
2764 elt_type = type;
2765 for (i = n; i > 1; i--)
2766 elt_type = TYPE_TARGET_TYPE (type);
2767
2768 index_type_desc = ada_find_parallel_type (type, "___XA");
2769 ada_fixup_array_indexes_type (index_type_desc);
2770 if (index_type_desc != NULL)
2771 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2772 NULL);
2773 else
2774 index_type = TYPE_INDEX_TYPE (elt_type);
2775
2776 return
2777 (LONGEST) (which == 0
2778 ? ada_discrete_type_low_bound (index_type)
2779 : ada_discrete_type_high_bound (index_type));
2780}
2781
2782/* Given that arr is an array value, returns the lower bound of the
2783 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2784 WHICH is 1. This routine will also work for arrays with bounds
2785 supplied by run-time quantities other than discriminants. */
2786
2787static LONGEST
2788ada_array_bound (struct value *arr, int n, int which)
2789{
2790 struct type *arr_type = value_type (arr);
2791
2792 if (ada_is_constrained_packed_array_type (arr_type))
2793 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2794 else if (ada_is_simple_array_type (arr_type))
2795 return ada_array_bound_from_type (arr_type, n, which);
2796 else
2797 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2798}
2799
2800/* Given that arr is an array value, returns the length of the
2801 nth index. This routine will also work for arrays with bounds
2802 supplied by run-time quantities other than discriminants.
2803 Does not work for arrays indexed by enumeration types with representation
2804 clauses at the moment. */
2805
2806static LONGEST
2807ada_array_length (struct value *arr, int n)
2808{
2809 struct type *arr_type = ada_check_typedef (value_type (arr));
2810
2811 if (ada_is_constrained_packed_array_type (arr_type))
2812 return ada_array_length (decode_constrained_packed_array (arr), n);
2813
2814 if (ada_is_simple_array_type (arr_type))
2815 return (ada_array_bound_from_type (arr_type, n, 1)
2816 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2817 else
2818 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2819 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2820}
2821
2822/* An empty array whose type is that of ARR_TYPE (an array type),
2823 with bounds LOW to LOW-1. */
2824
2825static struct value *
2826empty_array (struct type *arr_type, int low)
2827{
2828 struct type *arr_type0 = ada_check_typedef (arr_type);
2829 struct type *index_type =
2830 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2831 low, low - 1);
2832 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2833
2834 return allocate_value (create_array_type (NULL, elt_type, index_type));
2835}
2836\f
2837
2838 /* Name resolution */
2839
2840/* The "decoded" name for the user-definable Ada operator corresponding
2841 to OP. */
2842
2843static const char *
2844ada_decoded_op_name (enum exp_opcode op)
2845{
2846 int i;
2847
2848 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2849 {
2850 if (ada_opname_table[i].op == op)
2851 return ada_opname_table[i].decoded;
2852 }
2853 error (_("Could not find operator name for opcode"));
2854}
2855
2856
2857/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2858 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2859 undefined namespace) and converts operators that are
2860 user-defined into appropriate function calls. If CONTEXT_TYPE is
2861 non-null, it provides a preferred result type [at the moment, only
2862 type void has any effect---causing procedures to be preferred over
2863 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2864 return type is preferred. May change (expand) *EXP. */
2865
2866static void
2867resolve (struct expression **expp, int void_context_p)
2868{
2869 struct type *context_type = NULL;
2870 int pc = 0;
2871
2872 if (void_context_p)
2873 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2874
2875 resolve_subexp (expp, &pc, 1, context_type);
2876}
2877
2878/* Resolve the operator of the subexpression beginning at
2879 position *POS of *EXPP. "Resolving" consists of replacing
2880 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2881 with their resolutions, replacing built-in operators with
2882 function calls to user-defined operators, where appropriate, and,
2883 when DEPROCEDURE_P is non-zero, converting function-valued variables
2884 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2885 are as in ada_resolve, above. */
2886
2887static struct value *
2888resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2889 struct type *context_type)
2890{
2891 int pc = *pos;
2892 int i;
2893 struct expression *exp; /* Convenience: == *expp. */
2894 enum exp_opcode op = (*expp)->elts[pc].opcode;
2895 struct value **argvec; /* Vector of operand types (alloca'ed). */
2896 int nargs; /* Number of operands. */
2897 int oplen;
2898
2899 argvec = NULL;
2900 nargs = 0;
2901 exp = *expp;
2902
2903 /* Pass one: resolve operands, saving their types and updating *pos,
2904 if needed. */
2905 switch (op)
2906 {
2907 case OP_FUNCALL:
2908 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2909 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2910 *pos += 7;
2911 else
2912 {
2913 *pos += 3;
2914 resolve_subexp (expp, pos, 0, NULL);
2915 }
2916 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2917 break;
2918
2919 case UNOP_ADDR:
2920 *pos += 1;
2921 resolve_subexp (expp, pos, 0, NULL);
2922 break;
2923
2924 case UNOP_QUAL:
2925 *pos += 3;
2926 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2927 break;
2928
2929 case OP_ATR_MODULUS:
2930 case OP_ATR_SIZE:
2931 case OP_ATR_TAG:
2932 case OP_ATR_FIRST:
2933 case OP_ATR_LAST:
2934 case OP_ATR_LENGTH:
2935 case OP_ATR_POS:
2936 case OP_ATR_VAL:
2937 case OP_ATR_MIN:
2938 case OP_ATR_MAX:
2939 case TERNOP_IN_RANGE:
2940 case BINOP_IN_BOUNDS:
2941 case UNOP_IN_RANGE:
2942 case OP_AGGREGATE:
2943 case OP_OTHERS:
2944 case OP_CHOICES:
2945 case OP_POSITIONAL:
2946 case OP_DISCRETE_RANGE:
2947 case OP_NAME:
2948 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2949 *pos += oplen;
2950 break;
2951
2952 case BINOP_ASSIGN:
2953 {
2954 struct value *arg1;
2955
2956 *pos += 1;
2957 arg1 = resolve_subexp (expp, pos, 0, NULL);
2958 if (arg1 == NULL)
2959 resolve_subexp (expp, pos, 1, NULL);
2960 else
2961 resolve_subexp (expp, pos, 1, value_type (arg1));
2962 break;
2963 }
2964
2965 case UNOP_CAST:
2966 *pos += 3;
2967 nargs = 1;
2968 break;
2969
2970 case BINOP_ADD:
2971 case BINOP_SUB:
2972 case BINOP_MUL:
2973 case BINOP_DIV:
2974 case BINOP_REM:
2975 case BINOP_MOD:
2976 case BINOP_EXP:
2977 case BINOP_CONCAT:
2978 case BINOP_LOGICAL_AND:
2979 case BINOP_LOGICAL_OR:
2980 case BINOP_BITWISE_AND:
2981 case BINOP_BITWISE_IOR:
2982 case BINOP_BITWISE_XOR:
2983
2984 case BINOP_EQUAL:
2985 case BINOP_NOTEQUAL:
2986 case BINOP_LESS:
2987 case BINOP_GTR:
2988 case BINOP_LEQ:
2989 case BINOP_GEQ:
2990
2991 case BINOP_REPEAT:
2992 case BINOP_SUBSCRIPT:
2993 case BINOP_COMMA:
2994 *pos += 1;
2995 nargs = 2;
2996 break;
2997
2998 case UNOP_NEG:
2999 case UNOP_PLUS:
3000 case UNOP_LOGICAL_NOT:
3001 case UNOP_ABS:
3002 case UNOP_IND:
3003 *pos += 1;
3004 nargs = 1;
3005 break;
3006
3007 case OP_LONG:
3008 case OP_DOUBLE:
3009 case OP_VAR_VALUE:
3010 *pos += 4;
3011 break;
3012
3013 case OP_TYPE:
3014 case OP_BOOL:
3015 case OP_LAST:
3016 case OP_INTERNALVAR:
3017 *pos += 3;
3018 break;
3019
3020 case UNOP_MEMVAL:
3021 *pos += 3;
3022 nargs = 1;
3023 break;
3024
3025 case OP_REGISTER:
3026 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3027 break;
3028
3029 case STRUCTOP_STRUCT:
3030 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3031 nargs = 1;
3032 break;
3033
3034 case TERNOP_SLICE:
3035 *pos += 1;
3036 nargs = 3;
3037 break;
3038
3039 case OP_STRING:
3040 break;
3041
3042 default:
3043 error (_("Unexpected operator during name resolution"));
3044 }
3045
3046 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3047 for (i = 0; i < nargs; i += 1)
3048 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3049 argvec[i] = NULL;
3050 exp = *expp;
3051
3052 /* Pass two: perform any resolution on principal operator. */
3053 switch (op)
3054 {
3055 default:
3056 break;
3057
3058 case OP_VAR_VALUE:
3059 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3060 {
3061 struct ada_symbol_info *candidates;
3062 int n_candidates;
3063
3064 n_candidates =
3065 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3066 (exp->elts[pc + 2].symbol),
3067 exp->elts[pc + 1].block, VAR_DOMAIN,
3068 &candidates, 1);
3069
3070 if (n_candidates > 1)
3071 {
3072 /* Types tend to get re-introduced locally, so if there
3073 are any local symbols that are not types, first filter
3074 out all types. */
3075 int j;
3076 for (j = 0; j < n_candidates; j += 1)
3077 switch (SYMBOL_CLASS (candidates[j].sym))
3078 {
3079 case LOC_REGISTER:
3080 case LOC_ARG:
3081 case LOC_REF_ARG:
3082 case LOC_REGPARM_ADDR:
3083 case LOC_LOCAL:
3084 case LOC_COMPUTED:
3085 goto FoundNonType;
3086 default:
3087 break;
3088 }
3089 FoundNonType:
3090 if (j < n_candidates)
3091 {
3092 j = 0;
3093 while (j < n_candidates)
3094 {
3095 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3096 {
3097 candidates[j] = candidates[n_candidates - 1];
3098 n_candidates -= 1;
3099 }
3100 else
3101 j += 1;
3102 }
3103 }
3104 }
3105
3106 if (n_candidates == 0)
3107 error (_("No definition found for %s"),
3108 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3109 else if (n_candidates == 1)
3110 i = 0;
3111 else if (deprocedure_p
3112 && !is_nonfunction (candidates, n_candidates))
3113 {
3114 i = ada_resolve_function
3115 (candidates, n_candidates, NULL, 0,
3116 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3117 context_type);
3118 if (i < 0)
3119 error (_("Could not find a match for %s"),
3120 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3121 }
3122 else
3123 {
3124 printf_filtered (_("Multiple matches for %s\n"),
3125 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3126 user_select_syms (candidates, n_candidates, 1);
3127 i = 0;
3128 }
3129
3130 exp->elts[pc + 1].block = candidates[i].block;
3131 exp->elts[pc + 2].symbol = candidates[i].sym;
3132 if (innermost_block == NULL
3133 || contained_in (candidates[i].block, innermost_block))
3134 innermost_block = candidates[i].block;
3135 }
3136
3137 if (deprocedure_p
3138 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3139 == TYPE_CODE_FUNC))
3140 {
3141 replace_operator_with_call (expp, pc, 0, 0,
3142 exp->elts[pc + 2].symbol,
3143 exp->elts[pc + 1].block);
3144 exp = *expp;
3145 }
3146 break;
3147
3148 case OP_FUNCALL:
3149 {
3150 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3151 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3152 {
3153 struct ada_symbol_info *candidates;
3154 int n_candidates;
3155
3156 n_candidates =
3157 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3158 (exp->elts[pc + 5].symbol),
3159 exp->elts[pc + 4].block, VAR_DOMAIN,
3160 &candidates, 1);
3161 if (n_candidates == 1)
3162 i = 0;
3163 else
3164 {
3165 i = ada_resolve_function
3166 (candidates, n_candidates,
3167 argvec, nargs,
3168 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3169 context_type);
3170 if (i < 0)
3171 error (_("Could not find a match for %s"),
3172 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3173 }
3174
3175 exp->elts[pc + 4].block = candidates[i].block;
3176 exp->elts[pc + 5].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181 }
3182 break;
3183 case BINOP_ADD:
3184 case BINOP_SUB:
3185 case BINOP_MUL:
3186 case BINOP_DIV:
3187 case BINOP_REM:
3188 case BINOP_MOD:
3189 case BINOP_CONCAT:
3190 case BINOP_BITWISE_AND:
3191 case BINOP_BITWISE_IOR:
3192 case BINOP_BITWISE_XOR:
3193 case BINOP_EQUAL:
3194 case BINOP_NOTEQUAL:
3195 case BINOP_LESS:
3196 case BINOP_GTR:
3197 case BINOP_LEQ:
3198 case BINOP_GEQ:
3199 case BINOP_EXP:
3200 case UNOP_NEG:
3201 case UNOP_PLUS:
3202 case UNOP_LOGICAL_NOT:
3203 case UNOP_ABS:
3204 if (possible_user_operator_p (op, argvec))
3205 {
3206 struct ada_symbol_info *candidates;
3207 int n_candidates;
3208
3209 n_candidates =
3210 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3211 (struct block *) NULL, VAR_DOMAIN,
3212 &candidates, 1);
3213 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3214 ada_decoded_op_name (op), NULL);
3215 if (i < 0)
3216 break;
3217
3218 replace_operator_with_call (expp, pc, nargs, 1,
3219 candidates[i].sym, candidates[i].block);
3220 exp = *expp;
3221 }
3222 break;
3223
3224 case OP_TYPE:
3225 case OP_REGISTER:
3226 return NULL;
3227 }
3228
3229 *pos = pc;
3230 return evaluate_subexp_type (exp, pos);
3231}
3232
3233/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3234 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3235 a non-pointer. */
3236/* The term "match" here is rather loose. The match is heuristic and
3237 liberal. */
3238
3239static int
3240ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3241{
3242 ftype = ada_check_typedef (ftype);
3243 atype = ada_check_typedef (atype);
3244
3245 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3246 ftype = TYPE_TARGET_TYPE (ftype);
3247 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3248 atype = TYPE_TARGET_TYPE (atype);
3249
3250 switch (TYPE_CODE (ftype))
3251 {
3252 default:
3253 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3254 case TYPE_CODE_PTR:
3255 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3256 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3257 TYPE_TARGET_TYPE (atype), 0);
3258 else
3259 return (may_deref
3260 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3261 case TYPE_CODE_INT:
3262 case TYPE_CODE_ENUM:
3263 case TYPE_CODE_RANGE:
3264 switch (TYPE_CODE (atype))
3265 {
3266 case TYPE_CODE_INT:
3267 case TYPE_CODE_ENUM:
3268 case TYPE_CODE_RANGE:
3269 return 1;
3270 default:
3271 return 0;
3272 }
3273
3274 case TYPE_CODE_ARRAY:
3275 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3276 || ada_is_array_descriptor_type (atype));
3277
3278 case TYPE_CODE_STRUCT:
3279 if (ada_is_array_descriptor_type (ftype))
3280 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3281 || ada_is_array_descriptor_type (atype));
3282 else
3283 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3284 && !ada_is_array_descriptor_type (atype));
3285
3286 case TYPE_CODE_UNION:
3287 case TYPE_CODE_FLT:
3288 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3289 }
3290}
3291
3292/* Return non-zero if the formals of FUNC "sufficiently match" the
3293 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3294 may also be an enumeral, in which case it is treated as a 0-
3295 argument function. */
3296
3297static int
3298ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3299{
3300 int i;
3301 struct type *func_type = SYMBOL_TYPE (func);
3302
3303 if (SYMBOL_CLASS (func) == LOC_CONST
3304 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3305 return (n_actuals == 0);
3306 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3307 return 0;
3308
3309 if (TYPE_NFIELDS (func_type) != n_actuals)
3310 return 0;
3311
3312 for (i = 0; i < n_actuals; i += 1)
3313 {
3314 if (actuals[i] == NULL)
3315 return 0;
3316 else
3317 {
3318 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3319 i));
3320 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3321
3322 if (!ada_type_match (ftype, atype, 1))
3323 return 0;
3324 }
3325 }
3326 return 1;
3327}
3328
3329/* False iff function type FUNC_TYPE definitely does not produce a value
3330 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3331 FUNC_TYPE is not a valid function type with a non-null return type
3332 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3333
3334static int
3335return_match (struct type *func_type, struct type *context_type)
3336{
3337 struct type *return_type;
3338
3339 if (func_type == NULL)
3340 return 1;
3341
3342 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3343 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3344 else
3345 return_type = get_base_type (func_type);
3346 if (return_type == NULL)
3347 return 1;
3348
3349 context_type = get_base_type (context_type);
3350
3351 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3352 return context_type == NULL || return_type == context_type;
3353 else if (context_type == NULL)
3354 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3355 else
3356 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3357}
3358
3359
3360/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3361 function (if any) that matches the types of the NARGS arguments in
3362 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3363 that returns that type, then eliminate matches that don't. If
3364 CONTEXT_TYPE is void and there is at least one match that does not
3365 return void, eliminate all matches that do.
3366
3367 Asks the user if there is more than one match remaining. Returns -1
3368 if there is no such symbol or none is selected. NAME is used
3369 solely for messages. May re-arrange and modify SYMS in
3370 the process; the index returned is for the modified vector. */
3371
3372static int
3373ada_resolve_function (struct ada_symbol_info syms[],
3374 int nsyms, struct value **args, int nargs,
3375 const char *name, struct type *context_type)
3376{
3377 int fallback;
3378 int k;
3379 int m; /* Number of hits */
3380
3381 m = 0;
3382 /* In the first pass of the loop, we only accept functions matching
3383 context_type. If none are found, we add a second pass of the loop
3384 where every function is accepted. */
3385 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3386 {
3387 for (k = 0; k < nsyms; k += 1)
3388 {
3389 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3390
3391 if (ada_args_match (syms[k].sym, args, nargs)
3392 && (fallback || return_match (type, context_type)))
3393 {
3394 syms[m] = syms[k];
3395 m += 1;
3396 }
3397 }
3398 }
3399
3400 if (m == 0)
3401 return -1;
3402 else if (m > 1)
3403 {
3404 printf_filtered (_("Multiple matches for %s\n"), name);
3405 user_select_syms (syms, m, 1);
3406 return 0;
3407 }
3408 return 0;
3409}
3410
3411/* Returns true (non-zero) iff decoded name N0 should appear before N1
3412 in a listing of choices during disambiguation (see sort_choices, below).
3413 The idea is that overloadings of a subprogram name from the
3414 same package should sort in their source order. We settle for ordering
3415 such symbols by their trailing number (__N or $N). */
3416
3417static int
3418encoded_ordered_before (const char *N0, const char *N1)
3419{
3420 if (N1 == NULL)
3421 return 0;
3422 else if (N0 == NULL)
3423 return 1;
3424 else
3425 {
3426 int k0, k1;
3427
3428 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3429 ;
3430 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3431 ;
3432 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3433 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3434 {
3435 int n0, n1;
3436
3437 n0 = k0;
3438 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3439 n0 -= 1;
3440 n1 = k1;
3441 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3442 n1 -= 1;
3443 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3444 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3445 }
3446 return (strcmp (N0, N1) < 0);
3447 }
3448}
3449
3450/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3451 encoded names. */
3452
3453static void
3454sort_choices (struct ada_symbol_info syms[], int nsyms)
3455{
3456 int i;
3457
3458 for (i = 1; i < nsyms; i += 1)
3459 {
3460 struct ada_symbol_info sym = syms[i];
3461 int j;
3462
3463 for (j = i - 1; j >= 0; j -= 1)
3464 {
3465 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3466 SYMBOL_LINKAGE_NAME (sym.sym)))
3467 break;
3468 syms[j + 1] = syms[j];
3469 }
3470 syms[j + 1] = sym;
3471 }
3472}
3473
3474/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3475 by asking the user (if necessary), returning the number selected,
3476 and setting the first elements of SYMS items. Error if no symbols
3477 selected. */
3478
3479/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3480 to be re-integrated one of these days. */
3481
3482int
3483user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3484{
3485 int i;
3486 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3487 int n_chosen;
3488 int first_choice = (max_results == 1) ? 1 : 2;
3489 const char *select_mode = multiple_symbols_select_mode ();
3490
3491 if (max_results < 1)
3492 error (_("Request to select 0 symbols!"));
3493 if (nsyms <= 1)
3494 return nsyms;
3495
3496 if (select_mode == multiple_symbols_cancel)
3497 error (_("\
3498canceled because the command is ambiguous\n\
3499See set/show multiple-symbol."));
3500
3501 /* If select_mode is "all", then return all possible symbols.
3502 Only do that if more than one symbol can be selected, of course.
3503 Otherwise, display the menu as usual. */
3504 if (select_mode == multiple_symbols_all && max_results > 1)
3505 return nsyms;
3506
3507 printf_unfiltered (_("[0] cancel\n"));
3508 if (max_results > 1)
3509 printf_unfiltered (_("[1] all\n"));
3510
3511 sort_choices (syms, nsyms);
3512
3513 for (i = 0; i < nsyms; i += 1)
3514 {
3515 if (syms[i].sym == NULL)
3516 continue;
3517
3518 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3519 {
3520 struct symtab_and_line sal =
3521 find_function_start_sal (syms[i].sym, 1);
3522
3523 if (sal.symtab == NULL)
3524 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3525 i + first_choice,
3526 SYMBOL_PRINT_NAME (syms[i].sym),
3527 sal.line);
3528 else
3529 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3530 SYMBOL_PRINT_NAME (syms[i].sym),
3531 sal.symtab->filename, sal.line);
3532 continue;
3533 }
3534 else
3535 {
3536 int is_enumeral =
3537 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3538 && SYMBOL_TYPE (syms[i].sym) != NULL
3539 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3540 struct symtab *symtab = syms[i].sym->symtab;
3541
3542 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3543 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3544 i + first_choice,
3545 SYMBOL_PRINT_NAME (syms[i].sym),
3546 symtab->filename, SYMBOL_LINE (syms[i].sym));
3547 else if (is_enumeral
3548 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3549 {
3550 printf_unfiltered (("[%d] "), i + first_choice);
3551 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3552 gdb_stdout, -1, 0);
3553 printf_unfiltered (_("'(%s) (enumeral)\n"),
3554 SYMBOL_PRINT_NAME (syms[i].sym));
3555 }
3556 else if (symtab != NULL)
3557 printf_unfiltered (is_enumeral
3558 ? _("[%d] %s in %s (enumeral)\n")
3559 : _("[%d] %s at %s:?\n"),
3560 i + first_choice,
3561 SYMBOL_PRINT_NAME (syms[i].sym),
3562 symtab->filename);
3563 else
3564 printf_unfiltered (is_enumeral
3565 ? _("[%d] %s (enumeral)\n")
3566 : _("[%d] %s at ?\n"),
3567 i + first_choice,
3568 SYMBOL_PRINT_NAME (syms[i].sym));
3569 }
3570 }
3571
3572 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3573 "overload-choice");
3574
3575 for (i = 0; i < n_chosen; i += 1)
3576 syms[i] = syms[chosen[i]];
3577
3578 return n_chosen;
3579}
3580
3581/* Read and validate a set of numeric choices from the user in the
3582 range 0 .. N_CHOICES-1. Place the results in increasing
3583 order in CHOICES[0 .. N-1], and return N.
3584
3585 The user types choices as a sequence of numbers on one line
3586 separated by blanks, encoding them as follows:
3587
3588 + A choice of 0 means to cancel the selection, throwing an error.
3589 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3590 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3591
3592 The user is not allowed to choose more than MAX_RESULTS values.
3593
3594 ANNOTATION_SUFFIX, if present, is used to annotate the input
3595 prompts (for use with the -f switch). */
3596
3597int
3598get_selections (int *choices, int n_choices, int max_results,
3599 int is_all_choice, char *annotation_suffix)
3600{
3601 char *args;
3602 char *prompt;
3603 int n_chosen;
3604 int first_choice = is_all_choice ? 2 : 1;
3605
3606 prompt = getenv ("PS2");
3607 if (prompt == NULL)
3608 prompt = "> ";
3609
3610 args = command_line_input (prompt, 0, annotation_suffix);
3611
3612 if (args == NULL)
3613 error_no_arg (_("one or more choice numbers"));
3614
3615 n_chosen = 0;
3616
3617 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3618 order, as given in args. Choices are validated. */
3619 while (1)
3620 {
3621 char *args2;
3622 int choice, j;
3623
3624 args = skip_spaces (args);
3625 if (*args == '\0' && n_chosen == 0)
3626 error_no_arg (_("one or more choice numbers"));
3627 else if (*args == '\0')
3628 break;
3629
3630 choice = strtol (args, &args2, 10);
3631 if (args == args2 || choice < 0
3632 || choice > n_choices + first_choice - 1)
3633 error (_("Argument must be choice number"));
3634 args = args2;
3635
3636 if (choice == 0)
3637 error (_("cancelled"));
3638
3639 if (choice < first_choice)
3640 {
3641 n_chosen = n_choices;
3642 for (j = 0; j < n_choices; j += 1)
3643 choices[j] = j;
3644 break;
3645 }
3646 choice -= first_choice;
3647
3648 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3649 {
3650 }
3651
3652 if (j < 0 || choice != choices[j])
3653 {
3654 int k;
3655
3656 for (k = n_chosen - 1; k > j; k -= 1)
3657 choices[k + 1] = choices[k];
3658 choices[j + 1] = choice;
3659 n_chosen += 1;
3660 }
3661 }
3662
3663 if (n_chosen > max_results)
3664 error (_("Select no more than %d of the above"), max_results);
3665
3666 return n_chosen;
3667}
3668
3669/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3670 on the function identified by SYM and BLOCK, and taking NARGS
3671 arguments. Update *EXPP as needed to hold more space. */
3672
3673static void
3674replace_operator_with_call (struct expression **expp, int pc, int nargs,
3675 int oplen, struct symbol *sym,
3676 struct block *block)
3677{
3678 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3679 symbol, -oplen for operator being replaced). */
3680 struct expression *newexp = (struct expression *)
3681 xzalloc (sizeof (struct expression)
3682 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3683 struct expression *exp = *expp;
3684
3685 newexp->nelts = exp->nelts + 7 - oplen;
3686 newexp->language_defn = exp->language_defn;
3687 newexp->gdbarch = exp->gdbarch;
3688 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3689 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3690 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3691
3692 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3693 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3694
3695 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3696 newexp->elts[pc + 4].block = block;
3697 newexp->elts[pc + 5].symbol = sym;
3698
3699 *expp = newexp;
3700 xfree (exp);
3701}
3702
3703/* Type-class predicates */
3704
3705/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3706 or FLOAT). */
3707
3708static int
3709numeric_type_p (struct type *type)
3710{
3711 if (type == NULL)
3712 return 0;
3713 else
3714 {
3715 switch (TYPE_CODE (type))
3716 {
3717 case TYPE_CODE_INT:
3718 case TYPE_CODE_FLT:
3719 return 1;
3720 case TYPE_CODE_RANGE:
3721 return (type == TYPE_TARGET_TYPE (type)
3722 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3723 default:
3724 return 0;
3725 }
3726 }
3727}
3728
3729/* True iff TYPE is integral (an INT or RANGE of INTs). */
3730
3731static int
3732integer_type_p (struct type *type)
3733{
3734 if (type == NULL)
3735 return 0;
3736 else
3737 {
3738 switch (TYPE_CODE (type))
3739 {
3740 case TYPE_CODE_INT:
3741 return 1;
3742 case TYPE_CODE_RANGE:
3743 return (type == TYPE_TARGET_TYPE (type)
3744 || integer_type_p (TYPE_TARGET_TYPE (type)));
3745 default:
3746 return 0;
3747 }
3748 }
3749}
3750
3751/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3752
3753static int
3754scalar_type_p (struct type *type)
3755{
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_RANGE:
3764 case TYPE_CODE_ENUM:
3765 case TYPE_CODE_FLT:
3766 return 1;
3767 default:
3768 return 0;
3769 }
3770 }
3771}
3772
3773/* True iff TYPE is discrete (INT, RANGE, ENUM). */
3774
3775static int
3776discrete_type_p (struct type *type)
3777{
3778 if (type == NULL)
3779 return 0;
3780 else
3781 {
3782 switch (TYPE_CODE (type))
3783 {
3784 case TYPE_CODE_INT:
3785 case TYPE_CODE_RANGE:
3786 case TYPE_CODE_ENUM:
3787 case TYPE_CODE_BOOL:
3788 return 1;
3789 default:
3790 return 0;
3791 }
3792 }
3793}
3794
3795/* Returns non-zero if OP with operands in the vector ARGS could be
3796 a user-defined function. Errs on the side of pre-defined operators
3797 (i.e., result 0). */
3798
3799static int
3800possible_user_operator_p (enum exp_opcode op, struct value *args[])
3801{
3802 struct type *type0 =
3803 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3804 struct type *type1 =
3805 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3806
3807 if (type0 == NULL)
3808 return 0;
3809
3810 switch (op)
3811 {
3812 default:
3813 return 0;
3814
3815 case BINOP_ADD:
3816 case BINOP_SUB:
3817 case BINOP_MUL:
3818 case BINOP_DIV:
3819 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3820
3821 case BINOP_REM:
3822 case BINOP_MOD:
3823 case BINOP_BITWISE_AND:
3824 case BINOP_BITWISE_IOR:
3825 case BINOP_BITWISE_XOR:
3826 return (!(integer_type_p (type0) && integer_type_p (type1)));
3827
3828 case BINOP_EQUAL:
3829 case BINOP_NOTEQUAL:
3830 case BINOP_LESS:
3831 case BINOP_GTR:
3832 case BINOP_LEQ:
3833 case BINOP_GEQ:
3834 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3835
3836 case BINOP_CONCAT:
3837 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3838
3839 case BINOP_EXP:
3840 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3841
3842 case UNOP_NEG:
3843 case UNOP_PLUS:
3844 case UNOP_LOGICAL_NOT:
3845 case UNOP_ABS:
3846 return (!numeric_type_p (type0));
3847
3848 }
3849}
3850\f
3851 /* Renaming */
3852
3853/* NOTES:
3854
3855 1. In the following, we assume that a renaming type's name may
3856 have an ___XD suffix. It would be nice if this went away at some
3857 point.
3858 2. We handle both the (old) purely type-based representation of
3859 renamings and the (new) variable-based encoding. At some point,
3860 it is devoutly to be hoped that the former goes away
3861 (FIXME: hilfinger-2007-07-09).
3862 3. Subprogram renamings are not implemented, although the XRS
3863 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3864
3865/* If SYM encodes a renaming,
3866
3867 <renaming> renames <renamed entity>,
3868
3869 sets *LEN to the length of the renamed entity's name,
3870 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3871 the string describing the subcomponent selected from the renamed
3872 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3873 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3874 are undefined). Otherwise, returns a value indicating the category
3875 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3876 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3877 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3878 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3879 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3880 may be NULL, in which case they are not assigned.
3881
3882 [Currently, however, GCC does not generate subprogram renamings.] */
3883
3884enum ada_renaming_category
3885ada_parse_renaming (struct symbol *sym,
3886 const char **renamed_entity, int *len,
3887 const char **renaming_expr)
3888{
3889 enum ada_renaming_category kind;
3890 const char *info;
3891 const char *suffix;
3892
3893 if (sym == NULL)
3894 return ADA_NOT_RENAMING;
3895 switch (SYMBOL_CLASS (sym))
3896 {
3897 default:
3898 return ADA_NOT_RENAMING;
3899 case LOC_TYPEDEF:
3900 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3901 renamed_entity, len, renaming_expr);
3902 case LOC_LOCAL:
3903 case LOC_STATIC:
3904 case LOC_COMPUTED:
3905 case LOC_OPTIMIZED_OUT:
3906 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3907 if (info == NULL)
3908 return ADA_NOT_RENAMING;
3909 switch (info[5])
3910 {
3911 case '_':
3912 kind = ADA_OBJECT_RENAMING;
3913 info += 6;
3914 break;
3915 case 'E':
3916 kind = ADA_EXCEPTION_RENAMING;
3917 info += 7;
3918 break;
3919 case 'P':
3920 kind = ADA_PACKAGE_RENAMING;
3921 info += 7;
3922 break;
3923 case 'S':
3924 kind = ADA_SUBPROGRAM_RENAMING;
3925 info += 7;
3926 break;
3927 default:
3928 return ADA_NOT_RENAMING;
3929 }
3930 }
3931
3932 if (renamed_entity != NULL)
3933 *renamed_entity = info;
3934 suffix = strstr (info, "___XE");
3935 if (suffix == NULL || suffix == info)
3936 return ADA_NOT_RENAMING;
3937 if (len != NULL)
3938 *len = strlen (info) - strlen (suffix);
3939 suffix += 5;
3940 if (renaming_expr != NULL)
3941 *renaming_expr = suffix;
3942 return kind;
3943}
3944
3945/* Assuming TYPE encodes a renaming according to the old encoding in
3946 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3947 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3948 ADA_NOT_RENAMING otherwise. */
3949static enum ada_renaming_category
3950parse_old_style_renaming (struct type *type,
3951 const char **renamed_entity, int *len,
3952 const char **renaming_expr)
3953{
3954 enum ada_renaming_category kind;
3955 const char *name;
3956 const char *info;
3957 const char *suffix;
3958
3959 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3960 || TYPE_NFIELDS (type) != 1)
3961 return ADA_NOT_RENAMING;
3962
3963 name = type_name_no_tag (type);
3964 if (name == NULL)
3965 return ADA_NOT_RENAMING;
3966
3967 name = strstr (name, "___XR");
3968 if (name == NULL)
3969 return ADA_NOT_RENAMING;
3970 switch (name[5])
3971 {
3972 case '\0':
3973 case '_':
3974 kind = ADA_OBJECT_RENAMING;
3975 break;
3976 case 'E':
3977 kind = ADA_EXCEPTION_RENAMING;
3978 break;
3979 case 'P':
3980 kind = ADA_PACKAGE_RENAMING;
3981 break;
3982 case 'S':
3983 kind = ADA_SUBPROGRAM_RENAMING;
3984 break;
3985 default:
3986 return ADA_NOT_RENAMING;
3987 }
3988
3989 info = TYPE_FIELD_NAME (type, 0);
3990 if (info == NULL)
3991 return ADA_NOT_RENAMING;
3992 if (renamed_entity != NULL)
3993 *renamed_entity = info;
3994 suffix = strstr (info, "___XE");
3995 if (renaming_expr != NULL)
3996 *renaming_expr = suffix + 5;
3997 if (suffix == NULL || suffix == info)
3998 return ADA_NOT_RENAMING;
3999 if (len != NULL)
4000 *len = suffix - info;
4001 return kind;
4002}
4003
4004\f
4005
4006 /* Evaluation: Function Calls */
4007
4008/* Return an lvalue containing the value VAL. This is the identity on
4009 lvalues, and otherwise has the side-effect of allocating memory
4010 in the inferior where a copy of the value contents is copied. */
4011
4012static struct value *
4013ensure_lval (struct value *val)
4014{
4015 if (VALUE_LVAL (val) == not_lval
4016 || VALUE_LVAL (val) == lval_internalvar)
4017 {
4018 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4019 const CORE_ADDR addr =
4020 value_as_long (value_allocate_space_in_inferior (len));
4021
4022 set_value_address (val, addr);
4023 VALUE_LVAL (val) = lval_memory;
4024 write_memory (addr, value_contents (val), len);
4025 }
4026
4027 return val;
4028}
4029
4030/* Return the value ACTUAL, converted to be an appropriate value for a
4031 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4032 allocating any necessary descriptors (fat pointers), or copies of
4033 values not residing in memory, updating it as needed. */
4034
4035struct value *
4036ada_convert_actual (struct value *actual, struct type *formal_type0)
4037{
4038 struct type *actual_type = ada_check_typedef (value_type (actual));
4039 struct type *formal_type = ada_check_typedef (formal_type0);
4040 struct type *formal_target =
4041 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4042 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4043 struct type *actual_target =
4044 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4045 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4046
4047 if (ada_is_array_descriptor_type (formal_target)
4048 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4049 return make_array_descriptor (formal_type, actual);
4050 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4051 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4052 {
4053 struct value *result;
4054
4055 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4056 && ada_is_array_descriptor_type (actual_target))
4057 result = desc_data (actual);
4058 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4059 {
4060 if (VALUE_LVAL (actual) != lval_memory)
4061 {
4062 struct value *val;
4063
4064 actual_type = ada_check_typedef (value_type (actual));
4065 val = allocate_value (actual_type);
4066 memcpy ((char *) value_contents_raw (val),
4067 (char *) value_contents (actual),
4068 TYPE_LENGTH (actual_type));
4069 actual = ensure_lval (val);
4070 }
4071 result = value_addr (actual);
4072 }
4073 else
4074 return actual;
4075 return value_cast_pointers (formal_type, result);
4076 }
4077 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4078 return ada_value_ind (actual);
4079
4080 return actual;
4081}
4082
4083/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4084 type TYPE. This is usually an inefficient no-op except on some targets
4085 (such as AVR) where the representation of a pointer and an address
4086 differs. */
4087
4088static CORE_ADDR
4089value_pointer (struct value *value, struct type *type)
4090{
4091 struct gdbarch *gdbarch = get_type_arch (type);
4092 unsigned len = TYPE_LENGTH (type);
4093 gdb_byte *buf = alloca (len);
4094 CORE_ADDR addr;
4095
4096 addr = value_address (value);
4097 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4098 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4099 return addr;
4100}
4101
4102
4103/* Push a descriptor of type TYPE for array value ARR on the stack at
4104 *SP, updating *SP to reflect the new descriptor. Return either
4105 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4106 to-descriptor type rather than a descriptor type), a struct value *
4107 representing a pointer to this descriptor. */
4108
4109static struct value *
4110make_array_descriptor (struct type *type, struct value *arr)
4111{
4112 struct type *bounds_type = desc_bounds_type (type);
4113 struct type *desc_type = desc_base_type (type);
4114 struct value *descriptor = allocate_value (desc_type);
4115 struct value *bounds = allocate_value (bounds_type);
4116 int i;
4117
4118 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4119 i > 0; i -= 1)
4120 {
4121 modify_field (value_type (bounds), value_contents_writeable (bounds),
4122 ada_array_bound (arr, i, 0),
4123 desc_bound_bitpos (bounds_type, i, 0),
4124 desc_bound_bitsize (bounds_type, i, 0));
4125 modify_field (value_type (bounds), value_contents_writeable (bounds),
4126 ada_array_bound (arr, i, 1),
4127 desc_bound_bitpos (bounds_type, i, 1),
4128 desc_bound_bitsize (bounds_type, i, 1));
4129 }
4130
4131 bounds = ensure_lval (bounds);
4132
4133 modify_field (value_type (descriptor),
4134 value_contents_writeable (descriptor),
4135 value_pointer (ensure_lval (arr),
4136 TYPE_FIELD_TYPE (desc_type, 0)),
4137 fat_pntr_data_bitpos (desc_type),
4138 fat_pntr_data_bitsize (desc_type));
4139
4140 modify_field (value_type (descriptor),
4141 value_contents_writeable (descriptor),
4142 value_pointer (bounds,
4143 TYPE_FIELD_TYPE (desc_type, 1)),
4144 fat_pntr_bounds_bitpos (desc_type),
4145 fat_pntr_bounds_bitsize (desc_type));
4146
4147 descriptor = ensure_lval (descriptor);
4148
4149 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4150 return value_addr (descriptor);
4151 else
4152 return descriptor;
4153}
4154\f
4155/* Dummy definitions for an experimental caching module that is not
4156 * used in the public sources. */
4157
4158static int
4159lookup_cached_symbol (const char *name, domain_enum namespace,
4160 struct symbol **sym, struct block **block)
4161{
4162 return 0;
4163}
4164
4165static void
4166cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4167 struct block *block)
4168{
4169}
4170\f
4171 /* Symbol Lookup */
4172
4173/* Return nonzero if wild matching should be used when searching for
4174 all symbols matching LOOKUP_NAME.
4175
4176 LOOKUP_NAME is expected to be a symbol name after transformation
4177 for Ada lookups (see ada_name_for_lookup). */
4178
4179static int
4180should_use_wild_match (const char *lookup_name)
4181{
4182 return (strstr (lookup_name, "__") == NULL);
4183}
4184
4185/* Return the result of a standard (literal, C-like) lookup of NAME in
4186 given DOMAIN, visible from lexical block BLOCK. */
4187
4188static struct symbol *
4189standard_lookup (const char *name, const struct block *block,
4190 domain_enum domain)
4191{
4192 struct symbol *sym;
4193
4194 if (lookup_cached_symbol (name, domain, &sym, NULL))
4195 return sym;
4196 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4197 cache_symbol (name, domain, sym, block_found);
4198 return sym;
4199}
4200
4201
4202/* Non-zero iff there is at least one non-function/non-enumeral symbol
4203 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4204 since they contend in overloading in the same way. */
4205static int
4206is_nonfunction (struct ada_symbol_info syms[], int n)
4207{
4208 int i;
4209
4210 for (i = 0; i < n; i += 1)
4211 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4212 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4213 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4214 return 1;
4215
4216 return 0;
4217}
4218
4219/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4220 struct types. Otherwise, they may not. */
4221
4222static int
4223equiv_types (struct type *type0, struct type *type1)
4224{
4225 if (type0 == type1)
4226 return 1;
4227 if (type0 == NULL || type1 == NULL
4228 || TYPE_CODE (type0) != TYPE_CODE (type1))
4229 return 0;
4230 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4231 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4232 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4233 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4234 return 1;
4235
4236 return 0;
4237}
4238
4239/* True iff SYM0 represents the same entity as SYM1, or one that is
4240 no more defined than that of SYM1. */
4241
4242static int
4243lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4244{
4245 if (sym0 == sym1)
4246 return 1;
4247 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4248 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4249 return 0;
4250
4251 switch (SYMBOL_CLASS (sym0))
4252 {
4253 case LOC_UNDEF:
4254 return 1;
4255 case LOC_TYPEDEF:
4256 {
4257 struct type *type0 = SYMBOL_TYPE (sym0);
4258 struct type *type1 = SYMBOL_TYPE (sym1);
4259 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4260 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4261 int len0 = strlen (name0);
4262
4263 return
4264 TYPE_CODE (type0) == TYPE_CODE (type1)
4265 && (equiv_types (type0, type1)
4266 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4267 && strncmp (name1 + len0, "___XV", 5) == 0));
4268 }
4269 case LOC_CONST:
4270 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4271 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4272 default:
4273 return 0;
4274 }
4275}
4276
4277/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4278 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4279
4280static void
4281add_defn_to_vec (struct obstack *obstackp,
4282 struct symbol *sym,
4283 struct block *block)
4284{
4285 int i;
4286 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4287
4288 /* Do not try to complete stub types, as the debugger is probably
4289 already scanning all symbols matching a certain name at the
4290 time when this function is called. Trying to replace the stub
4291 type by its associated full type will cause us to restart a scan
4292 which may lead to an infinite recursion. Instead, the client
4293 collecting the matching symbols will end up collecting several
4294 matches, with at least one of them complete. It can then filter
4295 out the stub ones if needed. */
4296
4297 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4298 {
4299 if (lesseq_defined_than (sym, prevDefns[i].sym))
4300 return;
4301 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4302 {
4303 prevDefns[i].sym = sym;
4304 prevDefns[i].block = block;
4305 return;
4306 }
4307 }
4308
4309 {
4310 struct ada_symbol_info info;
4311
4312 info.sym = sym;
4313 info.block = block;
4314 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4315 }
4316}
4317
4318/* Number of ada_symbol_info structures currently collected in
4319 current vector in *OBSTACKP. */
4320
4321static int
4322num_defns_collected (struct obstack *obstackp)
4323{
4324 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4325}
4326
4327/* Vector of ada_symbol_info structures currently collected in current
4328 vector in *OBSTACKP. If FINISH, close off the vector and return
4329 its final address. */
4330
4331static struct ada_symbol_info *
4332defns_collected (struct obstack *obstackp, int finish)
4333{
4334 if (finish)
4335 return obstack_finish (obstackp);
4336 else
4337 return (struct ada_symbol_info *) obstack_base (obstackp);
4338}
4339
4340/* Return a minimal symbol matching NAME according to Ada decoding
4341 rules. Returns NULL if there is no such minimal symbol. Names
4342 prefixed with "standard__" are handled specially: "standard__" is
4343 first stripped off, and only static and global symbols are searched. */
4344
4345struct minimal_symbol *
4346ada_lookup_simple_minsym (const char *name)
4347{
4348 struct objfile *objfile;
4349 struct minimal_symbol *msymbol;
4350 const int wild_match = should_use_wild_match (name);
4351
4352 /* Special case: If the user specifies a symbol name inside package
4353 Standard, do a non-wild matching of the symbol name without
4354 the "standard__" prefix. This was primarily introduced in order
4355 to allow the user to specifically access the standard exceptions
4356 using, for instance, Standard.Constraint_Error when Constraint_Error
4357 is ambiguous (due to the user defining its own Constraint_Error
4358 entity inside its program). */
4359 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4360 name += sizeof ("standard__") - 1;
4361
4362 ALL_MSYMBOLS (objfile, msymbol)
4363 {
4364 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4365 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4366 return msymbol;
4367 }
4368
4369 return NULL;
4370}
4371
4372/* For all subprograms that statically enclose the subprogram of the
4373 selected frame, add symbols matching identifier NAME in DOMAIN
4374 and their blocks to the list of data in OBSTACKP, as for
4375 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4376 wildcard prefix. */
4377
4378static void
4379add_symbols_from_enclosing_procs (struct obstack *obstackp,
4380 const char *name, domain_enum namespace,
4381 int wild_match)
4382{
4383}
4384
4385/* True if TYPE is definitely an artificial type supplied to a symbol
4386 for which no debugging information was given in the symbol file. */
4387
4388static int
4389is_nondebugging_type (struct type *type)
4390{
4391 const char *name = ada_type_name (type);
4392
4393 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4394}
4395
4396/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4397 that are deemed "identical" for practical purposes.
4398
4399 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4400 types and that their number of enumerals is identical (in other
4401 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4402
4403static int
4404ada_identical_enum_types_p (struct type *type1, struct type *type2)
4405{
4406 int i;
4407
4408 /* The heuristic we use here is fairly conservative. We consider
4409 that 2 enumerate types are identical if they have the same
4410 number of enumerals and that all enumerals have the same
4411 underlying value and name. */
4412
4413 /* All enums in the type should have an identical underlying value. */
4414 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4415 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4416 return 0;
4417
4418 /* All enumerals should also have the same name (modulo any numerical
4419 suffix). */
4420 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4421 {
4422 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4423 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4424 int len_1 = strlen (name_1);
4425 int len_2 = strlen (name_2);
4426
4427 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4428 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4429 if (len_1 != len_2
4430 || strncmp (TYPE_FIELD_NAME (type1, i),
4431 TYPE_FIELD_NAME (type2, i),
4432 len_1) != 0)
4433 return 0;
4434 }
4435
4436 return 1;
4437}
4438
4439/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4440 that are deemed "identical" for practical purposes. Sometimes,
4441 enumerals are not strictly identical, but their types are so similar
4442 that they can be considered identical.
4443
4444 For instance, consider the following code:
4445
4446 type Color is (Black, Red, Green, Blue, White);
4447 type RGB_Color is new Color range Red .. Blue;
4448
4449 Type RGB_Color is a subrange of an implicit type which is a copy
4450 of type Color. If we call that implicit type RGB_ColorB ("B" is
4451 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4452 As a result, when an expression references any of the enumeral
4453 by name (Eg. "print green"), the expression is technically
4454 ambiguous and the user should be asked to disambiguate. But
4455 doing so would only hinder the user, since it wouldn't matter
4456 what choice he makes, the outcome would always be the same.
4457 So, for practical purposes, we consider them as the same. */
4458
4459static int
4460symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4461{
4462 int i;
4463
4464 /* Before performing a thorough comparison check of each type,
4465 we perform a series of inexpensive checks. We expect that these
4466 checks will quickly fail in the vast majority of cases, and thus
4467 help prevent the unnecessary use of a more expensive comparison.
4468 Said comparison also expects us to make some of these checks
4469 (see ada_identical_enum_types_p). */
4470
4471 /* Quick check: All symbols should have an enum type. */
4472 for (i = 0; i < nsyms; i++)
4473 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4474 return 0;
4475
4476 /* Quick check: They should all have the same value. */
4477 for (i = 1; i < nsyms; i++)
4478 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4479 return 0;
4480
4481 /* Quick check: They should all have the same number of enumerals. */
4482 for (i = 1; i < nsyms; i++)
4483 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4484 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4485 return 0;
4486
4487 /* All the sanity checks passed, so we might have a set of
4488 identical enumeration types. Perform a more complete
4489 comparison of the type of each symbol. */
4490 for (i = 1; i < nsyms; i++)
4491 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4492 SYMBOL_TYPE (syms[0].sym)))
4493 return 0;
4494
4495 return 1;
4496}
4497
4498/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4499 duplicate other symbols in the list (The only case I know of where
4500 this happens is when object files containing stabs-in-ecoff are
4501 linked with files containing ordinary ecoff debugging symbols (or no
4502 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4503 Returns the number of items in the modified list. */
4504
4505static int
4506remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4507{
4508 int i, j;
4509
4510 /* We should never be called with less than 2 symbols, as there
4511 cannot be any extra symbol in that case. But it's easy to
4512 handle, since we have nothing to do in that case. */
4513 if (nsyms < 2)
4514 return nsyms;
4515
4516 i = 0;
4517 while (i < nsyms)
4518 {
4519 int remove_p = 0;
4520
4521 /* If two symbols have the same name and one of them is a stub type,
4522 the get rid of the stub. */
4523
4524 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4525 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4526 {
4527 for (j = 0; j < nsyms; j++)
4528 {
4529 if (j != i
4530 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4531 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4532 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4533 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4534 remove_p = 1;
4535 }
4536 }
4537
4538 /* Two symbols with the same name, same class and same address
4539 should be identical. */
4540
4541 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4542 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4543 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4544 {
4545 for (j = 0; j < nsyms; j += 1)
4546 {
4547 if (i != j
4548 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4549 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4550 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4551 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4552 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4553 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4554 remove_p = 1;
4555 }
4556 }
4557
4558 if (remove_p)
4559 {
4560 for (j = i + 1; j < nsyms; j += 1)
4561 syms[j - 1] = syms[j];
4562 nsyms -= 1;
4563 }
4564
4565 i += 1;
4566 }
4567
4568 /* If all the remaining symbols are identical enumerals, then
4569 just keep the first one and discard the rest.
4570
4571 Unlike what we did previously, we do not discard any entry
4572 unless they are ALL identical. This is because the symbol
4573 comparison is not a strict comparison, but rather a practical
4574 comparison. If all symbols are considered identical, then
4575 we can just go ahead and use the first one and discard the rest.
4576 But if we cannot reduce the list to a single element, we have
4577 to ask the user to disambiguate anyways. And if we have to
4578 present a multiple-choice menu, it's less confusing if the list
4579 isn't missing some choices that were identical and yet distinct. */
4580 if (symbols_are_identical_enums (syms, nsyms))
4581 nsyms = 1;
4582
4583 return nsyms;
4584}
4585
4586/* Given a type that corresponds to a renaming entity, use the type name
4587 to extract the scope (package name or function name, fully qualified,
4588 and following the GNAT encoding convention) where this renaming has been
4589 defined. The string returned needs to be deallocated after use. */
4590
4591static char *
4592xget_renaming_scope (struct type *renaming_type)
4593{
4594 /* The renaming types adhere to the following convention:
4595 <scope>__<rename>___<XR extension>.
4596 So, to extract the scope, we search for the "___XR" extension,
4597 and then backtrack until we find the first "__". */
4598
4599 const char *name = type_name_no_tag (renaming_type);
4600 char *suffix = strstr (name, "___XR");
4601 char *last;
4602 int scope_len;
4603 char *scope;
4604
4605 /* Now, backtrack a bit until we find the first "__". Start looking
4606 at suffix - 3, as the <rename> part is at least one character long. */
4607
4608 for (last = suffix - 3; last > name; last--)
4609 if (last[0] == '_' && last[1] == '_')
4610 break;
4611
4612 /* Make a copy of scope and return it. */
4613
4614 scope_len = last - name;
4615 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4616
4617 strncpy (scope, name, scope_len);
4618 scope[scope_len] = '\0';
4619
4620 return scope;
4621}
4622
4623/* Return nonzero if NAME corresponds to a package name. */
4624
4625static int
4626is_package_name (const char *name)
4627{
4628 /* Here, We take advantage of the fact that no symbols are generated
4629 for packages, while symbols are generated for each function.
4630 So the condition for NAME represent a package becomes equivalent
4631 to NAME not existing in our list of symbols. There is only one
4632 small complication with library-level functions (see below). */
4633
4634 char *fun_name;
4635
4636 /* If it is a function that has not been defined at library level,
4637 then we should be able to look it up in the symbols. */
4638 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4639 return 0;
4640
4641 /* Library-level function names start with "_ada_". See if function
4642 "_ada_" followed by NAME can be found. */
4643
4644 /* Do a quick check that NAME does not contain "__", since library-level
4645 functions names cannot contain "__" in them. */
4646 if (strstr (name, "__") != NULL)
4647 return 0;
4648
4649 fun_name = xstrprintf ("_ada_%s", name);
4650
4651 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4652}
4653
4654/* Return nonzero if SYM corresponds to a renaming entity that is
4655 not visible from FUNCTION_NAME. */
4656
4657static int
4658old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4659{
4660 char *scope;
4661
4662 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4663 return 0;
4664
4665 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4666
4667 make_cleanup (xfree, scope);
4668
4669 /* If the rename has been defined in a package, then it is visible. */
4670 if (is_package_name (scope))
4671 return 0;
4672
4673 /* Check that the rename is in the current function scope by checking
4674 that its name starts with SCOPE. */
4675
4676 /* If the function name starts with "_ada_", it means that it is
4677 a library-level function. Strip this prefix before doing the
4678 comparison, as the encoding for the renaming does not contain
4679 this prefix. */
4680 if (strncmp (function_name, "_ada_", 5) == 0)
4681 function_name += 5;
4682
4683 return (strncmp (function_name, scope, strlen (scope)) != 0);
4684}
4685
4686/* Remove entries from SYMS that corresponds to a renaming entity that
4687 is not visible from the function associated with CURRENT_BLOCK or
4688 that is superfluous due to the presence of more specific renaming
4689 information. Places surviving symbols in the initial entries of
4690 SYMS and returns the number of surviving symbols.
4691
4692 Rationale:
4693 First, in cases where an object renaming is implemented as a
4694 reference variable, GNAT may produce both the actual reference
4695 variable and the renaming encoding. In this case, we discard the
4696 latter.
4697
4698 Second, GNAT emits a type following a specified encoding for each renaming
4699 entity. Unfortunately, STABS currently does not support the definition
4700 of types that are local to a given lexical block, so all renamings types
4701 are emitted at library level. As a consequence, if an application
4702 contains two renaming entities using the same name, and a user tries to
4703 print the value of one of these entities, the result of the ada symbol
4704 lookup will also contain the wrong renaming type.
4705
4706 This function partially covers for this limitation by attempting to
4707 remove from the SYMS list renaming symbols that should be visible
4708 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4709 method with the current information available. The implementation
4710 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4711
4712 - When the user tries to print a rename in a function while there
4713 is another rename entity defined in a package: Normally, the
4714 rename in the function has precedence over the rename in the
4715 package, so the latter should be removed from the list. This is
4716 currently not the case.
4717
4718 - This function will incorrectly remove valid renames if
4719 the CURRENT_BLOCK corresponds to a function which symbol name
4720 has been changed by an "Export" pragma. As a consequence,
4721 the user will be unable to print such rename entities. */
4722
4723static int
4724remove_irrelevant_renamings (struct ada_symbol_info *syms,
4725 int nsyms, const struct block *current_block)
4726{
4727 struct symbol *current_function;
4728 const char *current_function_name;
4729 int i;
4730 int is_new_style_renaming;
4731
4732 /* If there is both a renaming foo___XR... encoded as a variable and
4733 a simple variable foo in the same block, discard the latter.
4734 First, zero out such symbols, then compress. */
4735 is_new_style_renaming = 0;
4736 for (i = 0; i < nsyms; i += 1)
4737 {
4738 struct symbol *sym = syms[i].sym;
4739 struct block *block = syms[i].block;
4740 const char *name;
4741 const char *suffix;
4742
4743 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4744 continue;
4745 name = SYMBOL_LINKAGE_NAME (sym);
4746 suffix = strstr (name, "___XR");
4747
4748 if (suffix != NULL)
4749 {
4750 int name_len = suffix - name;
4751 int j;
4752
4753 is_new_style_renaming = 1;
4754 for (j = 0; j < nsyms; j += 1)
4755 if (i != j && syms[j].sym != NULL
4756 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4757 name_len) == 0
4758 && block == syms[j].block)
4759 syms[j].sym = NULL;
4760 }
4761 }
4762 if (is_new_style_renaming)
4763 {
4764 int j, k;
4765
4766 for (j = k = 0; j < nsyms; j += 1)
4767 if (syms[j].sym != NULL)
4768 {
4769 syms[k] = syms[j];
4770 k += 1;
4771 }
4772 return k;
4773 }
4774
4775 /* Extract the function name associated to CURRENT_BLOCK.
4776 Abort if unable to do so. */
4777
4778 if (current_block == NULL)
4779 return nsyms;
4780
4781 current_function = block_linkage_function (current_block);
4782 if (current_function == NULL)
4783 return nsyms;
4784
4785 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4786 if (current_function_name == NULL)
4787 return nsyms;
4788
4789 /* Check each of the symbols, and remove it from the list if it is
4790 a type corresponding to a renaming that is out of the scope of
4791 the current block. */
4792
4793 i = 0;
4794 while (i < nsyms)
4795 {
4796 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4797 == ADA_OBJECT_RENAMING
4798 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4799 {
4800 int j;
4801
4802 for (j = i + 1; j < nsyms; j += 1)
4803 syms[j - 1] = syms[j];
4804 nsyms -= 1;
4805 }
4806 else
4807 i += 1;
4808 }
4809
4810 return nsyms;
4811}
4812
4813/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4814 whose name and domain match NAME and DOMAIN respectively.
4815 If no match was found, then extend the search to "enclosing"
4816 routines (in other words, if we're inside a nested function,
4817 search the symbols defined inside the enclosing functions).
4818
4819 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4820
4821static void
4822ada_add_local_symbols (struct obstack *obstackp, const char *name,
4823 struct block *block, domain_enum domain,
4824 int wild_match)
4825{
4826 int block_depth = 0;
4827
4828 while (block != NULL)
4829 {
4830 block_depth += 1;
4831 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4832
4833 /* If we found a non-function match, assume that's the one. */
4834 if (is_nonfunction (defns_collected (obstackp, 0),
4835 num_defns_collected (obstackp)))
4836 return;
4837
4838 block = BLOCK_SUPERBLOCK (block);
4839 }
4840
4841 /* If no luck so far, try to find NAME as a local symbol in some lexically
4842 enclosing subprogram. */
4843 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4844 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4845}
4846
4847/* An object of this type is used as the user_data argument when
4848 calling the map_matching_symbols method. */
4849
4850struct match_data
4851{
4852 struct objfile *objfile;
4853 struct obstack *obstackp;
4854 struct symbol *arg_sym;
4855 int found_sym;
4856};
4857
4858/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4859 to a list of symbols. DATA0 is a pointer to a struct match_data *
4860 containing the obstack that collects the symbol list, the file that SYM
4861 must come from, a flag indicating whether a non-argument symbol has
4862 been found in the current block, and the last argument symbol
4863 passed in SYM within the current block (if any). When SYM is null,
4864 marking the end of a block, the argument symbol is added if no
4865 other has been found. */
4866
4867static int
4868aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4869{
4870 struct match_data *data = (struct match_data *) data0;
4871
4872 if (sym == NULL)
4873 {
4874 if (!data->found_sym && data->arg_sym != NULL)
4875 add_defn_to_vec (data->obstackp,
4876 fixup_symbol_section (data->arg_sym, data->objfile),
4877 block);
4878 data->found_sym = 0;
4879 data->arg_sym = NULL;
4880 }
4881 else
4882 {
4883 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4884 return 0;
4885 else if (SYMBOL_IS_ARGUMENT (sym))
4886 data->arg_sym = sym;
4887 else
4888 {
4889 data->found_sym = 1;
4890 add_defn_to_vec (data->obstackp,
4891 fixup_symbol_section (sym, data->objfile),
4892 block);
4893 }
4894 }
4895 return 0;
4896}
4897
4898/* Compare STRING1 to STRING2, with results as for strcmp.
4899 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4900 implies compare_names (STRING1, STRING2) (they may differ as to
4901 what symbols compare equal). */
4902
4903static int
4904compare_names (const char *string1, const char *string2)
4905{
4906 while (*string1 != '\0' && *string2 != '\0')
4907 {
4908 if (isspace (*string1) || isspace (*string2))
4909 return strcmp_iw_ordered (string1, string2);
4910 if (*string1 != *string2)
4911 break;
4912 string1 += 1;
4913 string2 += 1;
4914 }
4915 switch (*string1)
4916 {
4917 case '(':
4918 return strcmp_iw_ordered (string1, string2);
4919 case '_':
4920 if (*string2 == '\0')
4921 {
4922 if (is_name_suffix (string1))
4923 return 0;
4924 else
4925 return 1;
4926 }
4927 /* FALLTHROUGH */
4928 default:
4929 if (*string2 == '(')
4930 return strcmp_iw_ordered (string1, string2);
4931 else
4932 return *string1 - *string2;
4933 }
4934}
4935
4936/* Add to OBSTACKP all non-local symbols whose name and domain match
4937 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4938 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4939
4940static void
4941add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4942 domain_enum domain, int global,
4943 int is_wild_match)
4944{
4945 struct objfile *objfile;
4946 struct match_data data;
4947
4948 memset (&data, 0, sizeof data);
4949 data.obstackp = obstackp;
4950
4951 ALL_OBJFILES (objfile)
4952 {
4953 data.objfile = objfile;
4954
4955 if (is_wild_match)
4956 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4957 aux_add_nonlocal_symbols, &data,
4958 wild_match, NULL);
4959 else
4960 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4961 aux_add_nonlocal_symbols, &data,
4962 full_match, compare_names);
4963 }
4964
4965 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4966 {
4967 ALL_OBJFILES (objfile)
4968 {
4969 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4970 strcpy (name1, "_ada_");
4971 strcpy (name1 + sizeof ("_ada_") - 1, name);
4972 data.objfile = objfile;
4973 objfile->sf->qf->map_matching_symbols (name1, domain,
4974 objfile, global,
4975 aux_add_nonlocal_symbols,
4976 &data,
4977 full_match, compare_names);
4978 }
4979 }
4980}
4981
4982/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4983 scope and in global scopes, returning the number of matches. Sets
4984 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4985 indicating the symbols found and the blocks and symbol tables (if
4986 any) in which they were found. This vector are transient---good only to
4987 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4988 symbol match within the nest of blocks whose innermost member is BLOCK0,
4989 is the one match returned (no other matches in that or
4990 enclosing blocks is returned). If there are any matches in or
4991 surrounding BLOCK0, then these alone are returned. Otherwise, if
4992 FULL_SEARCH is non-zero, then the search extends to global and
4993 file-scope (static) symbol tables.
4994 Names prefixed with "standard__" are handled specially: "standard__"
4995 is first stripped off, and only static and global symbols are searched. */
4996
4997int
4998ada_lookup_symbol_list (const char *name0, const struct block *block0,
4999 domain_enum namespace,
5000 struct ada_symbol_info **results,
5001 int full_search)
5002{
5003 struct symbol *sym;
5004 struct block *block;
5005 const char *name;
5006 const int wild_match = should_use_wild_match (name0);
5007 int cacheIfUnique;
5008 int ndefns;
5009
5010 obstack_free (&symbol_list_obstack, NULL);
5011 obstack_init (&symbol_list_obstack);
5012
5013 cacheIfUnique = 0;
5014
5015 /* Search specified block and its superiors. */
5016
5017 name = name0;
5018 block = (struct block *) block0; /* FIXME: No cast ought to be
5019 needed, but adding const will
5020 have a cascade effect. */
5021
5022 /* Special case: If the user specifies a symbol name inside package
5023 Standard, do a non-wild matching of the symbol name without
5024 the "standard__" prefix. This was primarily introduced in order
5025 to allow the user to specifically access the standard exceptions
5026 using, for instance, Standard.Constraint_Error when Constraint_Error
5027 is ambiguous (due to the user defining its own Constraint_Error
5028 entity inside its program). */
5029 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5030 {
5031 block = NULL;
5032 name = name0 + sizeof ("standard__") - 1;
5033 }
5034
5035 /* Check the non-global symbols. If we have ANY match, then we're done. */
5036
5037 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5038 wild_match);
5039 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5040 goto done;
5041
5042 /* No non-global symbols found. Check our cache to see if we have
5043 already performed this search before. If we have, then return
5044 the same result. */
5045
5046 cacheIfUnique = 1;
5047 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5048 {
5049 if (sym != NULL)
5050 add_defn_to_vec (&symbol_list_obstack, sym, block);
5051 goto done;
5052 }
5053
5054 /* Search symbols from all global blocks. */
5055
5056 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5057 wild_match);
5058
5059 /* Now add symbols from all per-file blocks if we've gotten no hits
5060 (not strictly correct, but perhaps better than an error). */
5061
5062 if (num_defns_collected (&symbol_list_obstack) == 0)
5063 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5064 wild_match);
5065
5066done:
5067 ndefns = num_defns_collected (&symbol_list_obstack);
5068 *results = defns_collected (&symbol_list_obstack, 1);
5069
5070 ndefns = remove_extra_symbols (*results, ndefns);
5071
5072 if (ndefns == 0 && full_search)
5073 cache_symbol (name0, namespace, NULL, NULL);
5074
5075 if (ndefns == 1 && full_search && cacheIfUnique)
5076 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5077
5078 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5079
5080 return ndefns;
5081}
5082
5083/* If NAME is the name of an entity, return a string that should
5084 be used to look that entity up in Ada units. This string should
5085 be deallocated after use using xfree.
5086
5087 NAME can have any form that the "break" or "print" commands might
5088 recognize. In other words, it does not have to be the "natural"
5089 name, or the "encoded" name. */
5090
5091char *
5092ada_name_for_lookup (const char *name)
5093{
5094 char *canon;
5095 int nlen = strlen (name);
5096
5097 if (name[0] == '<' && name[nlen - 1] == '>')
5098 {
5099 canon = xmalloc (nlen - 1);
5100 memcpy (canon, name + 1, nlen - 2);
5101 canon[nlen - 2] = '\0';
5102 }
5103 else
5104 canon = xstrdup (ada_encode (ada_fold_name (name)));
5105 return canon;
5106}
5107
5108/* Implementation of the la_iterate_over_symbols method. */
5109
5110static void
5111ada_iterate_over_symbols (const struct block *block,
5112 const char *name, domain_enum domain,
5113 symbol_found_callback_ftype *callback,
5114 void *data)
5115{
5116 int ndefs, i;
5117 struct ada_symbol_info *results;
5118
5119 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5120 for (i = 0; i < ndefs; ++i)
5121 {
5122 if (! (*callback) (results[i].sym, data))
5123 break;
5124 }
5125}
5126
5127struct symbol *
5128ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5129 domain_enum namespace, struct block **block_found)
5130{
5131 struct ada_symbol_info *candidates;
5132 int n_candidates;
5133
5134 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5135 1);
5136
5137 if (n_candidates == 0)
5138 return NULL;
5139
5140 if (block_found != NULL)
5141 *block_found = candidates[0].block;
5142
5143 return fixup_symbol_section (candidates[0].sym, NULL);
5144}
5145
5146/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5147 scope and in global scopes, or NULL if none. NAME is folded and
5148 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5149 choosing the first symbol if there are multiple choices.
5150 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5151 table in which the symbol was found (in both cases, these
5152 assignments occur only if the pointers are non-null). */
5153struct symbol *
5154ada_lookup_symbol (const char *name, const struct block *block0,
5155 domain_enum namespace, int *is_a_field_of_this)
5156{
5157 if (is_a_field_of_this != NULL)
5158 *is_a_field_of_this = 0;
5159
5160 return
5161 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5162 block0, namespace, NULL);
5163}
5164
5165static struct symbol *
5166ada_lookup_symbol_nonlocal (const char *name,
5167 const struct block *block,
5168 const domain_enum domain)
5169{
5170 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5171}
5172
5173
5174/* True iff STR is a possible encoded suffix of a normal Ada name
5175 that is to be ignored for matching purposes. Suffixes of parallel
5176 names (e.g., XVE) are not included here. Currently, the possible suffixes
5177 are given by any of the regular expressions:
5178
5179 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5180 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5181 TKB [subprogram suffix for task bodies]
5182 _E[0-9]+[bs]$ [protected object entry suffixes]
5183 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5184
5185 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5186 match is performed. This sequence is used to differentiate homonyms,
5187 is an optional part of a valid name suffix. */
5188
5189static int
5190is_name_suffix (const char *str)
5191{
5192 int k;
5193 const char *matching;
5194 const int len = strlen (str);
5195
5196 /* Skip optional leading __[0-9]+. */
5197
5198 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5199 {
5200 str += 3;
5201 while (isdigit (str[0]))
5202 str += 1;
5203 }
5204
5205 /* [.$][0-9]+ */
5206
5207 if (str[0] == '.' || str[0] == '$')
5208 {
5209 matching = str + 1;
5210 while (isdigit (matching[0]))
5211 matching += 1;
5212 if (matching[0] == '\0')
5213 return 1;
5214 }
5215
5216 /* ___[0-9]+ */
5217
5218 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5219 {
5220 matching = str + 3;
5221 while (isdigit (matching[0]))
5222 matching += 1;
5223 if (matching[0] == '\0')
5224 return 1;
5225 }
5226
5227 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5228
5229 if (strcmp (str, "TKB") == 0)
5230 return 1;
5231
5232#if 0
5233 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5234 with a N at the end. Unfortunately, the compiler uses the same
5235 convention for other internal types it creates. So treating
5236 all entity names that end with an "N" as a name suffix causes
5237 some regressions. For instance, consider the case of an enumerated
5238 type. To support the 'Image attribute, it creates an array whose
5239 name ends with N.
5240 Having a single character like this as a suffix carrying some
5241 information is a bit risky. Perhaps we should change the encoding
5242 to be something like "_N" instead. In the meantime, do not do
5243 the following check. */
5244 /* Protected Object Subprograms */
5245 if (len == 1 && str [0] == 'N')
5246 return 1;
5247#endif
5248
5249 /* _E[0-9]+[bs]$ */
5250 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5251 {
5252 matching = str + 3;
5253 while (isdigit (matching[0]))
5254 matching += 1;
5255 if ((matching[0] == 'b' || matching[0] == 's')
5256 && matching [1] == '\0')
5257 return 1;
5258 }
5259
5260 /* ??? We should not modify STR directly, as we are doing below. This
5261 is fine in this case, but may become problematic later if we find
5262 that this alternative did not work, and want to try matching
5263 another one from the begining of STR. Since we modified it, we
5264 won't be able to find the begining of the string anymore! */
5265 if (str[0] == 'X')
5266 {
5267 str += 1;
5268 while (str[0] != '_' && str[0] != '\0')
5269 {
5270 if (str[0] != 'n' && str[0] != 'b')
5271 return 0;
5272 str += 1;
5273 }
5274 }
5275
5276 if (str[0] == '\000')
5277 return 1;
5278
5279 if (str[0] == '_')
5280 {
5281 if (str[1] != '_' || str[2] == '\000')
5282 return 0;
5283 if (str[2] == '_')
5284 {
5285 if (strcmp (str + 3, "JM") == 0)
5286 return 1;
5287 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5288 the LJM suffix in favor of the JM one. But we will
5289 still accept LJM as a valid suffix for a reasonable
5290 amount of time, just to allow ourselves to debug programs
5291 compiled using an older version of GNAT. */
5292 if (strcmp (str + 3, "LJM") == 0)
5293 return 1;
5294 if (str[3] != 'X')
5295 return 0;
5296 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5297 || str[4] == 'U' || str[4] == 'P')
5298 return 1;
5299 if (str[4] == 'R' && str[5] != 'T')
5300 return 1;
5301 return 0;
5302 }
5303 if (!isdigit (str[2]))
5304 return 0;
5305 for (k = 3; str[k] != '\0'; k += 1)
5306 if (!isdigit (str[k]) && str[k] != '_')
5307 return 0;
5308 return 1;
5309 }
5310 if (str[0] == '$' && isdigit (str[1]))
5311 {
5312 for (k = 2; str[k] != '\0'; k += 1)
5313 if (!isdigit (str[k]) && str[k] != '_')
5314 return 0;
5315 return 1;
5316 }
5317 return 0;
5318}
5319
5320/* Return non-zero if the string starting at NAME and ending before
5321 NAME_END contains no capital letters. */
5322
5323static int
5324is_valid_name_for_wild_match (const char *name0)
5325{
5326 const char *decoded_name = ada_decode (name0);
5327 int i;
5328
5329 /* If the decoded name starts with an angle bracket, it means that
5330 NAME0 does not follow the GNAT encoding format. It should then
5331 not be allowed as a possible wild match. */
5332 if (decoded_name[0] == '<')
5333 return 0;
5334
5335 for (i=0; decoded_name[i] != '\0'; i++)
5336 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5337 return 0;
5338
5339 return 1;
5340}
5341
5342/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5343 that could start a simple name. Assumes that *NAMEP points into
5344 the string beginning at NAME0. */
5345
5346static int
5347advance_wild_match (const char **namep, const char *name0, int target0)
5348{
5349 const char *name = *namep;
5350
5351 while (1)
5352 {
5353 int t0, t1;
5354
5355 t0 = *name;
5356 if (t0 == '_')
5357 {
5358 t1 = name[1];
5359 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5360 {
5361 name += 1;
5362 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5363 break;
5364 else
5365 name += 1;
5366 }
5367 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5368 || name[2] == target0))
5369 {
5370 name += 2;
5371 break;
5372 }
5373 else
5374 return 0;
5375 }
5376 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5377 name += 1;
5378 else
5379 return 0;
5380 }
5381
5382 *namep = name;
5383 return 1;
5384}
5385
5386/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5387 informational suffixes of NAME (i.e., for which is_name_suffix is
5388 true). Assumes that PATN is a lower-cased Ada simple name. */
5389
5390static int
5391wild_match (const char *name, const char *patn)
5392{
5393 const char *p, *n;
5394 const char *name0 = name;
5395
5396 while (1)
5397 {
5398 const char *match = name;
5399
5400 if (*name == *patn)
5401 {
5402 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5403 if (*p != *name)
5404 break;
5405 if (*p == '\0' && is_name_suffix (name))
5406 return match != name0 && !is_valid_name_for_wild_match (name0);
5407
5408 if (name[-1] == '_')
5409 name -= 1;
5410 }
5411 if (!advance_wild_match (&name, name0, *patn))
5412 return 1;
5413 }
5414}
5415
5416/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5417 informational suffix. */
5418
5419static int
5420full_match (const char *sym_name, const char *search_name)
5421{
5422 return !match_name (sym_name, search_name, 0);
5423}
5424
5425
5426/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5427 vector *defn_symbols, updating the list of symbols in OBSTACKP
5428 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5429 OBJFILE is the section containing BLOCK.
5430 SYMTAB is recorded with each symbol added. */
5431
5432static void
5433ada_add_block_symbols (struct obstack *obstackp,
5434 struct block *block, const char *name,
5435 domain_enum domain, struct objfile *objfile,
5436 int wild)
5437{
5438 struct dict_iterator iter;
5439 int name_len = strlen (name);
5440 /* A matching argument symbol, if any. */
5441 struct symbol *arg_sym;
5442 /* Set true when we find a matching non-argument symbol. */
5443 int found_sym;
5444 struct symbol *sym;
5445
5446 arg_sym = NULL;
5447 found_sym = 0;
5448 if (wild)
5449 {
5450 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5451 wild_match, &iter);
5452 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5453 {
5454 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5455 SYMBOL_DOMAIN (sym), domain)
5456 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5457 {
5458 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5459 continue;
5460 else if (SYMBOL_IS_ARGUMENT (sym))
5461 arg_sym = sym;
5462 else
5463 {
5464 found_sym = 1;
5465 add_defn_to_vec (obstackp,
5466 fixup_symbol_section (sym, objfile),
5467 block);
5468 }
5469 }
5470 }
5471 }
5472 else
5473 {
5474 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5475 full_match, &iter);
5476 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5477 {
5478 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5479 SYMBOL_DOMAIN (sym), domain))
5480 {
5481 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5482 {
5483 if (SYMBOL_IS_ARGUMENT (sym))
5484 arg_sym = sym;
5485 else
5486 {
5487 found_sym = 1;
5488 add_defn_to_vec (obstackp,
5489 fixup_symbol_section (sym, objfile),
5490 block);
5491 }
5492 }
5493 }
5494 }
5495 }
5496
5497 if (!found_sym && arg_sym != NULL)
5498 {
5499 add_defn_to_vec (obstackp,
5500 fixup_symbol_section (arg_sym, objfile),
5501 block);
5502 }
5503
5504 if (!wild)
5505 {
5506 arg_sym = NULL;
5507 found_sym = 0;
5508
5509 ALL_BLOCK_SYMBOLS (block, iter, sym)
5510 {
5511 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5512 SYMBOL_DOMAIN (sym), domain))
5513 {
5514 int cmp;
5515
5516 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5517 if (cmp == 0)
5518 {
5519 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5520 if (cmp == 0)
5521 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5522 name_len);
5523 }
5524
5525 if (cmp == 0
5526 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5527 {
5528 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5529 {
5530 if (SYMBOL_IS_ARGUMENT (sym))
5531 arg_sym = sym;
5532 else
5533 {
5534 found_sym = 1;
5535 add_defn_to_vec (obstackp,
5536 fixup_symbol_section (sym, objfile),
5537 block);
5538 }
5539 }
5540 }
5541 }
5542 }
5543
5544 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5545 They aren't parameters, right? */
5546 if (!found_sym && arg_sym != NULL)
5547 {
5548 add_defn_to_vec (obstackp,
5549 fixup_symbol_section (arg_sym, objfile),
5550 block);
5551 }
5552 }
5553}
5554\f
5555
5556 /* Symbol Completion */
5557
5558/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5559 name in a form that's appropriate for the completion. The result
5560 does not need to be deallocated, but is only good until the next call.
5561
5562 TEXT_LEN is equal to the length of TEXT.
5563 Perform a wild match if WILD_MATCH is set.
5564 ENCODED should be set if TEXT represents the start of a symbol name
5565 in its encoded form. */
5566
5567static const char *
5568symbol_completion_match (const char *sym_name,
5569 const char *text, int text_len,
5570 int wild_match, int encoded)
5571{
5572 const int verbatim_match = (text[0] == '<');
5573 int match = 0;
5574
5575 if (verbatim_match)
5576 {
5577 /* Strip the leading angle bracket. */
5578 text = text + 1;
5579 text_len--;
5580 }
5581
5582 /* First, test against the fully qualified name of the symbol. */
5583
5584 if (strncmp (sym_name, text, text_len) == 0)
5585 match = 1;
5586
5587 if (match && !encoded)
5588 {
5589 /* One needed check before declaring a positive match is to verify
5590 that iff we are doing a verbatim match, the decoded version
5591 of the symbol name starts with '<'. Otherwise, this symbol name
5592 is not a suitable completion. */
5593 const char *sym_name_copy = sym_name;
5594 int has_angle_bracket;
5595
5596 sym_name = ada_decode (sym_name);
5597 has_angle_bracket = (sym_name[0] == '<');
5598 match = (has_angle_bracket == verbatim_match);
5599 sym_name = sym_name_copy;
5600 }
5601
5602 if (match && !verbatim_match)
5603 {
5604 /* When doing non-verbatim match, another check that needs to
5605 be done is to verify that the potentially matching symbol name
5606 does not include capital letters, because the ada-mode would
5607 not be able to understand these symbol names without the
5608 angle bracket notation. */
5609 const char *tmp;
5610
5611 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5612 if (*tmp != '\0')
5613 match = 0;
5614 }
5615
5616 /* Second: Try wild matching... */
5617
5618 if (!match && wild_match)
5619 {
5620 /* Since we are doing wild matching, this means that TEXT
5621 may represent an unqualified symbol name. We therefore must
5622 also compare TEXT against the unqualified name of the symbol. */
5623 sym_name = ada_unqualified_name (ada_decode (sym_name));
5624
5625 if (strncmp (sym_name, text, text_len) == 0)
5626 match = 1;
5627 }
5628
5629 /* Finally: If we found a mach, prepare the result to return. */
5630
5631 if (!match)
5632 return NULL;
5633
5634 if (verbatim_match)
5635 sym_name = add_angle_brackets (sym_name);
5636
5637 if (!encoded)
5638 sym_name = ada_decode (sym_name);
5639
5640 return sym_name;
5641}
5642
5643/* A companion function to ada_make_symbol_completion_list().
5644 Check if SYM_NAME represents a symbol which name would be suitable
5645 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5646 it is appended at the end of the given string vector SV.
5647
5648 ORIG_TEXT is the string original string from the user command
5649 that needs to be completed. WORD is the entire command on which
5650 completion should be performed. These two parameters are used to
5651 determine which part of the symbol name should be added to the
5652 completion vector.
5653 if WILD_MATCH is set, then wild matching is performed.
5654 ENCODED should be set if TEXT represents a symbol name in its
5655 encoded formed (in which case the completion should also be
5656 encoded). */
5657
5658static void
5659symbol_completion_add (VEC(char_ptr) **sv,
5660 const char *sym_name,
5661 const char *text, int text_len,
5662 const char *orig_text, const char *word,
5663 int wild_match, int encoded)
5664{
5665 const char *match = symbol_completion_match (sym_name, text, text_len,
5666 wild_match, encoded);
5667 char *completion;
5668
5669 if (match == NULL)
5670 return;
5671
5672 /* We found a match, so add the appropriate completion to the given
5673 string vector. */
5674
5675 if (word == orig_text)
5676 {
5677 completion = xmalloc (strlen (match) + 5);
5678 strcpy (completion, match);
5679 }
5680 else if (word > orig_text)
5681 {
5682 /* Return some portion of sym_name. */
5683 completion = xmalloc (strlen (match) + 5);
5684 strcpy (completion, match + (word - orig_text));
5685 }
5686 else
5687 {
5688 /* Return some of ORIG_TEXT plus sym_name. */
5689 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5690 strncpy (completion, word, orig_text - word);
5691 completion[orig_text - word] = '\0';
5692 strcat (completion, match);
5693 }
5694
5695 VEC_safe_push (char_ptr, *sv, completion);
5696}
5697
5698/* An object of this type is passed as the user_data argument to the
5699 expand_partial_symbol_names method. */
5700struct add_partial_datum
5701{
5702 VEC(char_ptr) **completions;
5703 char *text;
5704 int text_len;
5705 char *text0;
5706 char *word;
5707 int wild_match;
5708 int encoded;
5709};
5710
5711/* A callback for expand_partial_symbol_names. */
5712static int
5713ada_expand_partial_symbol_name (const char *name, void *user_data)
5714{
5715 struct add_partial_datum *data = user_data;
5716
5717 return symbol_completion_match (name, data->text, data->text_len,
5718 data->wild_match, data->encoded) != NULL;
5719}
5720
5721/* Return a list of possible symbol names completing TEXT0. The list
5722 is NULL terminated. WORD is the entire command on which completion
5723 is made. */
5724
5725static char **
5726ada_make_symbol_completion_list (char *text0, char *word)
5727{
5728 char *text;
5729 int text_len;
5730 int wild_match;
5731 int encoded;
5732 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5733 struct symbol *sym;
5734 struct symtab *s;
5735 struct minimal_symbol *msymbol;
5736 struct objfile *objfile;
5737 struct block *b, *surrounding_static_block = 0;
5738 int i;
5739 struct dict_iterator iter;
5740
5741 if (text0[0] == '<')
5742 {
5743 text = xstrdup (text0);
5744 make_cleanup (xfree, text);
5745 text_len = strlen (text);
5746 wild_match = 0;
5747 encoded = 1;
5748 }
5749 else
5750 {
5751 text = xstrdup (ada_encode (text0));
5752 make_cleanup (xfree, text);
5753 text_len = strlen (text);
5754 for (i = 0; i < text_len; i++)
5755 text[i] = tolower (text[i]);
5756
5757 encoded = (strstr (text0, "__") != NULL);
5758 /* If the name contains a ".", then the user is entering a fully
5759 qualified entity name, and the match must not be done in wild
5760 mode. Similarly, if the user wants to complete what looks like
5761 an encoded name, the match must not be done in wild mode. */
5762 wild_match = (strchr (text0, '.') == NULL && !encoded);
5763 }
5764
5765 /* First, look at the partial symtab symbols. */
5766 {
5767 struct add_partial_datum data;
5768
5769 data.completions = &completions;
5770 data.text = text;
5771 data.text_len = text_len;
5772 data.text0 = text0;
5773 data.word = word;
5774 data.wild_match = wild_match;
5775 data.encoded = encoded;
5776 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5777 }
5778
5779 /* At this point scan through the misc symbol vectors and add each
5780 symbol you find to the list. Eventually we want to ignore
5781 anything that isn't a text symbol (everything else will be
5782 handled by the psymtab code above). */
5783
5784 ALL_MSYMBOLS (objfile, msymbol)
5785 {
5786 QUIT;
5787 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5788 text, text_len, text0, word, wild_match, encoded);
5789 }
5790
5791 /* Search upwards from currently selected frame (so that we can
5792 complete on local vars. */
5793
5794 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5795 {
5796 if (!BLOCK_SUPERBLOCK (b))
5797 surrounding_static_block = b; /* For elmin of dups */
5798
5799 ALL_BLOCK_SYMBOLS (b, iter, sym)
5800 {
5801 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5802 text, text_len, text0, word,
5803 wild_match, encoded);
5804 }
5805 }
5806
5807 /* Go through the symtabs and check the externs and statics for
5808 symbols which match. */
5809
5810 ALL_SYMTABS (objfile, s)
5811 {
5812 QUIT;
5813 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5814 ALL_BLOCK_SYMBOLS (b, iter, sym)
5815 {
5816 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5817 text, text_len, text0, word,
5818 wild_match, encoded);
5819 }
5820 }
5821
5822 ALL_SYMTABS (objfile, s)
5823 {
5824 QUIT;
5825 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5826 /* Don't do this block twice. */
5827 if (b == surrounding_static_block)
5828 continue;
5829 ALL_BLOCK_SYMBOLS (b, iter, sym)
5830 {
5831 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5832 text, text_len, text0, word,
5833 wild_match, encoded);
5834 }
5835 }
5836
5837 /* Append the closing NULL entry. */
5838 VEC_safe_push (char_ptr, completions, NULL);
5839
5840 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5841 return the copy. It's unfortunate that we have to make a copy
5842 of an array that we're about to destroy, but there is nothing much
5843 we can do about it. Fortunately, it's typically not a very large
5844 array. */
5845 {
5846 const size_t completions_size =
5847 VEC_length (char_ptr, completions) * sizeof (char *);
5848 char **result = xmalloc (completions_size);
5849
5850 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5851
5852 VEC_free (char_ptr, completions);
5853 return result;
5854 }
5855}
5856
5857 /* Field Access */
5858
5859/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5860 for tagged types. */
5861
5862static int
5863ada_is_dispatch_table_ptr_type (struct type *type)
5864{
5865 const char *name;
5866
5867 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5868 return 0;
5869
5870 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5871 if (name == NULL)
5872 return 0;
5873
5874 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5875}
5876
5877/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5878 to be invisible to users. */
5879
5880int
5881ada_is_ignored_field (struct type *type, int field_num)
5882{
5883 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5884 return 1;
5885
5886 /* Check the name of that field. */
5887 {
5888 const char *name = TYPE_FIELD_NAME (type, field_num);
5889
5890 /* Anonymous field names should not be printed.
5891 brobecker/2007-02-20: I don't think this can actually happen
5892 but we don't want to print the value of annonymous fields anyway. */
5893 if (name == NULL)
5894 return 1;
5895
5896 /* A field named "_parent" is internally generated by GNAT for
5897 tagged types, and should not be printed either. */
5898 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5899 return 1;
5900 }
5901
5902 /* If this is the dispatch table of a tagged type, then ignore. */
5903 if (ada_is_tagged_type (type, 1)
5904 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5905 return 1;
5906
5907 /* Not a special field, so it should not be ignored. */
5908 return 0;
5909}
5910
5911/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5912 pointer or reference type whose ultimate target has a tag field. */
5913
5914int
5915ada_is_tagged_type (struct type *type, int refok)
5916{
5917 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5918}
5919
5920/* True iff TYPE represents the type of X'Tag */
5921
5922int
5923ada_is_tag_type (struct type *type)
5924{
5925 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5926 return 0;
5927 else
5928 {
5929 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5930
5931 return (name != NULL
5932 && strcmp (name, "ada__tags__dispatch_table") == 0);
5933 }
5934}
5935
5936/* The type of the tag on VAL. */
5937
5938struct type *
5939ada_tag_type (struct value *val)
5940{
5941 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5942}
5943
5944/* The value of the tag on VAL. */
5945
5946struct value *
5947ada_value_tag (struct value *val)
5948{
5949 return ada_value_struct_elt (val, "_tag", 0);
5950}
5951
5952/* The value of the tag on the object of type TYPE whose contents are
5953 saved at VALADDR, if it is non-null, or is at memory address
5954 ADDRESS. */
5955
5956static struct value *
5957value_tag_from_contents_and_address (struct type *type,
5958 const gdb_byte *valaddr,
5959 CORE_ADDR address)
5960{
5961 int tag_byte_offset;
5962 struct type *tag_type;
5963
5964 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5965 NULL, NULL, NULL))
5966 {
5967 const gdb_byte *valaddr1 = ((valaddr == NULL)
5968 ? NULL
5969 : valaddr + tag_byte_offset);
5970 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5971
5972 return value_from_contents_and_address (tag_type, valaddr1, address1);
5973 }
5974 return NULL;
5975}
5976
5977static struct type *
5978type_from_tag (struct value *tag)
5979{
5980 const char *type_name = ada_tag_name (tag);
5981
5982 if (type_name != NULL)
5983 return ada_find_any_type (ada_encode (type_name));
5984 return NULL;
5985}
5986
5987struct tag_args
5988{
5989 struct value *tag;
5990 char *name;
5991};
5992
5993
5994static int ada_tag_name_1 (void *);
5995static int ada_tag_name_2 (struct tag_args *);
5996
5997/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5998 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5999 The value stored in ARGS->name is valid until the next call to
6000 ada_tag_name_1. */
6001
6002static int
6003ada_tag_name_1 (void *args0)
6004{
6005 struct tag_args *args = (struct tag_args *) args0;
6006 static char name[1024];
6007 char *p;
6008 struct value *val;
6009
6010 args->name = NULL;
6011 val = ada_value_struct_elt (args->tag, "tsd", 1);
6012 if (val == NULL)
6013 return ada_tag_name_2 (args);
6014 val = ada_value_struct_elt (val, "expanded_name", 1);
6015 if (val == NULL)
6016 return 0;
6017 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6018 for (p = name; *p != '\0'; p += 1)
6019 if (isalpha (*p))
6020 *p = tolower (*p);
6021 args->name = name;
6022 return 0;
6023}
6024
6025/* Return the "ada__tags__type_specific_data" type. */
6026
6027static struct type *
6028ada_get_tsd_type (struct inferior *inf)
6029{
6030 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6031
6032 if (data->tsd_type == 0)
6033 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6034 return data->tsd_type;
6035}
6036
6037/* Utility function for ada_tag_name_1 that tries the second
6038 representation for the dispatch table (in which there is no
6039 explicit 'tsd' field in the referent of the tag pointer, and instead
6040 the tsd pointer is stored just before the dispatch table. */
6041
6042static int
6043ada_tag_name_2 (struct tag_args *args)
6044{
6045 struct type *info_type;
6046 static char name[1024];
6047 char *p;
6048 struct value *val, *valp;
6049
6050 args->name = NULL;
6051 info_type = ada_get_tsd_type (current_inferior());
6052 if (info_type == NULL)
6053 return 0;
6054 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6055 valp = value_cast (info_type, args->tag);
6056 if (valp == NULL)
6057 return 0;
6058 val = value_ind (value_ptradd (valp, -1));
6059 if (val == NULL)
6060 return 0;
6061 val = ada_value_struct_elt (val, "expanded_name", 1);
6062 if (val == NULL)
6063 return 0;
6064 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6065 for (p = name; *p != '\0'; p += 1)
6066 if (isalpha (*p))
6067 *p = tolower (*p);
6068 args->name = name;
6069 return 0;
6070}
6071
6072/* The type name of the dynamic type denoted by the 'tag value TAG, as
6073 a C string. */
6074
6075const char *
6076ada_tag_name (struct value *tag)
6077{
6078 struct tag_args args;
6079
6080 if (!ada_is_tag_type (value_type (tag)))
6081 return NULL;
6082 args.tag = tag;
6083 args.name = NULL;
6084 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6085 return args.name;
6086}
6087
6088/* The parent type of TYPE, or NULL if none. */
6089
6090struct type *
6091ada_parent_type (struct type *type)
6092{
6093 int i;
6094
6095 type = ada_check_typedef (type);
6096
6097 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6098 return NULL;
6099
6100 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6101 if (ada_is_parent_field (type, i))
6102 {
6103 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6104
6105 /* If the _parent field is a pointer, then dereference it. */
6106 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6107 parent_type = TYPE_TARGET_TYPE (parent_type);
6108 /* If there is a parallel XVS type, get the actual base type. */
6109 parent_type = ada_get_base_type (parent_type);
6110
6111 return ada_check_typedef (parent_type);
6112 }
6113
6114 return NULL;
6115}
6116
6117/* True iff field number FIELD_NUM of structure type TYPE contains the
6118 parent-type (inherited) fields of a derived type. Assumes TYPE is
6119 a structure type with at least FIELD_NUM+1 fields. */
6120
6121int
6122ada_is_parent_field (struct type *type, int field_num)
6123{
6124 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6125
6126 return (name != NULL
6127 && (strncmp (name, "PARENT", 6) == 0
6128 || strncmp (name, "_parent", 7) == 0));
6129}
6130
6131/* True iff field number FIELD_NUM of structure type TYPE is a
6132 transparent wrapper field (which should be silently traversed when doing
6133 field selection and flattened when printing). Assumes TYPE is a
6134 structure type with at least FIELD_NUM+1 fields. Such fields are always
6135 structures. */
6136
6137int
6138ada_is_wrapper_field (struct type *type, int field_num)
6139{
6140 const char *name = TYPE_FIELD_NAME (type, field_num);
6141
6142 return (name != NULL
6143 && (strncmp (name, "PARENT", 6) == 0
6144 || strcmp (name, "REP") == 0
6145 || strncmp (name, "_parent", 7) == 0
6146 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6147}
6148
6149/* True iff field number FIELD_NUM of structure or union type TYPE
6150 is a variant wrapper. Assumes TYPE is a structure type with at least
6151 FIELD_NUM+1 fields. */
6152
6153int
6154ada_is_variant_part (struct type *type, int field_num)
6155{
6156 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6157
6158 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6159 || (is_dynamic_field (type, field_num)
6160 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6161 == TYPE_CODE_UNION)));
6162}
6163
6164/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6165 whose discriminants are contained in the record type OUTER_TYPE,
6166 returns the type of the controlling discriminant for the variant.
6167 May return NULL if the type could not be found. */
6168
6169struct type *
6170ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6171{
6172 char *name = ada_variant_discrim_name (var_type);
6173
6174 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6175}
6176
6177/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6178 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6179 represents a 'when others' clause; otherwise 0. */
6180
6181int
6182ada_is_others_clause (struct type *type, int field_num)
6183{
6184 const char *name = TYPE_FIELD_NAME (type, field_num);
6185
6186 return (name != NULL && name[0] == 'O');
6187}
6188
6189/* Assuming that TYPE0 is the type of the variant part of a record,
6190 returns the name of the discriminant controlling the variant.
6191 The value is valid until the next call to ada_variant_discrim_name. */
6192
6193char *
6194ada_variant_discrim_name (struct type *type0)
6195{
6196 static char *result = NULL;
6197 static size_t result_len = 0;
6198 struct type *type;
6199 const char *name;
6200 const char *discrim_end;
6201 const char *discrim_start;
6202
6203 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6204 type = TYPE_TARGET_TYPE (type0);
6205 else
6206 type = type0;
6207
6208 name = ada_type_name (type);
6209
6210 if (name == NULL || name[0] == '\000')
6211 return "";
6212
6213 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6214 discrim_end -= 1)
6215 {
6216 if (strncmp (discrim_end, "___XVN", 6) == 0)
6217 break;
6218 }
6219 if (discrim_end == name)
6220 return "";
6221
6222 for (discrim_start = discrim_end; discrim_start != name + 3;
6223 discrim_start -= 1)
6224 {
6225 if (discrim_start == name + 1)
6226 return "";
6227 if ((discrim_start > name + 3
6228 && strncmp (discrim_start - 3, "___", 3) == 0)
6229 || discrim_start[-1] == '.')
6230 break;
6231 }
6232
6233 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6234 strncpy (result, discrim_start, discrim_end - discrim_start);
6235 result[discrim_end - discrim_start] = '\0';
6236 return result;
6237}
6238
6239/* Scan STR for a subtype-encoded number, beginning at position K.
6240 Put the position of the character just past the number scanned in
6241 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6242 Return 1 if there was a valid number at the given position, and 0
6243 otherwise. A "subtype-encoded" number consists of the absolute value
6244 in decimal, followed by the letter 'm' to indicate a negative number.
6245 Assumes 0m does not occur. */
6246
6247int
6248ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6249{
6250 ULONGEST RU;
6251
6252 if (!isdigit (str[k]))
6253 return 0;
6254
6255 /* Do it the hard way so as not to make any assumption about
6256 the relationship of unsigned long (%lu scan format code) and
6257 LONGEST. */
6258 RU = 0;
6259 while (isdigit (str[k]))
6260 {
6261 RU = RU * 10 + (str[k] - '0');
6262 k += 1;
6263 }
6264
6265 if (str[k] == 'm')
6266 {
6267 if (R != NULL)
6268 *R = (-(LONGEST) (RU - 1)) - 1;
6269 k += 1;
6270 }
6271 else if (R != NULL)
6272 *R = (LONGEST) RU;
6273
6274 /* NOTE on the above: Technically, C does not say what the results of
6275 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6276 number representable as a LONGEST (although either would probably work
6277 in most implementations). When RU>0, the locution in the then branch
6278 above is always equivalent to the negative of RU. */
6279
6280 if (new_k != NULL)
6281 *new_k = k;
6282 return 1;
6283}
6284
6285/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6286 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6287 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6288
6289int
6290ada_in_variant (LONGEST val, struct type *type, int field_num)
6291{
6292 const char *name = TYPE_FIELD_NAME (type, field_num);
6293 int p;
6294
6295 p = 0;
6296 while (1)
6297 {
6298 switch (name[p])
6299 {
6300 case '\0':
6301 return 0;
6302 case 'S':
6303 {
6304 LONGEST W;
6305
6306 if (!ada_scan_number (name, p + 1, &W, &p))
6307 return 0;
6308 if (val == W)
6309 return 1;
6310 break;
6311 }
6312 case 'R':
6313 {
6314 LONGEST L, U;
6315
6316 if (!ada_scan_number (name, p + 1, &L, &p)
6317 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6318 return 0;
6319 if (val >= L && val <= U)
6320 return 1;
6321 break;
6322 }
6323 case 'O':
6324 return 1;
6325 default:
6326 return 0;
6327 }
6328 }
6329}
6330
6331/* FIXME: Lots of redundancy below. Try to consolidate. */
6332
6333/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6334 ARG_TYPE, extract and return the value of one of its (non-static)
6335 fields. FIELDNO says which field. Differs from value_primitive_field
6336 only in that it can handle packed values of arbitrary type. */
6337
6338static struct value *
6339ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6340 struct type *arg_type)
6341{
6342 struct type *type;
6343
6344 arg_type = ada_check_typedef (arg_type);
6345 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6346
6347 /* Handle packed fields. */
6348
6349 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6350 {
6351 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6352 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6353
6354 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6355 offset + bit_pos / 8,
6356 bit_pos % 8, bit_size, type);
6357 }
6358 else
6359 return value_primitive_field (arg1, offset, fieldno, arg_type);
6360}
6361
6362/* Find field with name NAME in object of type TYPE. If found,
6363 set the following for each argument that is non-null:
6364 - *FIELD_TYPE_P to the field's type;
6365 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6366 an object of that type;
6367 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6368 - *BIT_SIZE_P to its size in bits if the field is packed, and
6369 0 otherwise;
6370 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6371 fields up to but not including the desired field, or by the total
6372 number of fields if not found. A NULL value of NAME never
6373 matches; the function just counts visible fields in this case.
6374
6375 Returns 1 if found, 0 otherwise. */
6376
6377static int
6378find_struct_field (const char *name, struct type *type, int offset,
6379 struct type **field_type_p,
6380 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6381 int *index_p)
6382{
6383 int i;
6384
6385 type = ada_check_typedef (type);
6386
6387 if (field_type_p != NULL)
6388 *field_type_p = NULL;
6389 if (byte_offset_p != NULL)
6390 *byte_offset_p = 0;
6391 if (bit_offset_p != NULL)
6392 *bit_offset_p = 0;
6393 if (bit_size_p != NULL)
6394 *bit_size_p = 0;
6395
6396 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6397 {
6398 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6399 int fld_offset = offset + bit_pos / 8;
6400 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6401
6402 if (t_field_name == NULL)
6403 continue;
6404
6405 else if (name != NULL && field_name_match (t_field_name, name))
6406 {
6407 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6408
6409 if (field_type_p != NULL)
6410 *field_type_p = TYPE_FIELD_TYPE (type, i);
6411 if (byte_offset_p != NULL)
6412 *byte_offset_p = fld_offset;
6413 if (bit_offset_p != NULL)
6414 *bit_offset_p = bit_pos % 8;
6415 if (bit_size_p != NULL)
6416 *bit_size_p = bit_size;
6417 return 1;
6418 }
6419 else if (ada_is_wrapper_field (type, i))
6420 {
6421 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6422 field_type_p, byte_offset_p, bit_offset_p,
6423 bit_size_p, index_p))
6424 return 1;
6425 }
6426 else if (ada_is_variant_part (type, i))
6427 {
6428 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6429 fixed type?? */
6430 int j;
6431 struct type *field_type
6432 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6433
6434 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6435 {
6436 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6437 fld_offset
6438 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6439 field_type_p, byte_offset_p,
6440 bit_offset_p, bit_size_p, index_p))
6441 return 1;
6442 }
6443 }
6444 else if (index_p != NULL)
6445 *index_p += 1;
6446 }
6447 return 0;
6448}
6449
6450/* Number of user-visible fields in record type TYPE. */
6451
6452static int
6453num_visible_fields (struct type *type)
6454{
6455 int n;
6456
6457 n = 0;
6458 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6459 return n;
6460}
6461
6462/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6463 and search in it assuming it has (class) type TYPE.
6464 If found, return value, else return NULL.
6465
6466 Searches recursively through wrapper fields (e.g., '_parent'). */
6467
6468static struct value *
6469ada_search_struct_field (char *name, struct value *arg, int offset,
6470 struct type *type)
6471{
6472 int i;
6473
6474 type = ada_check_typedef (type);
6475 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6476 {
6477 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6478
6479 if (t_field_name == NULL)
6480 continue;
6481
6482 else if (field_name_match (t_field_name, name))
6483 return ada_value_primitive_field (arg, offset, i, type);
6484
6485 else if (ada_is_wrapper_field (type, i))
6486 {
6487 struct value *v = /* Do not let indent join lines here. */
6488 ada_search_struct_field (name, arg,
6489 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6490 TYPE_FIELD_TYPE (type, i));
6491
6492 if (v != NULL)
6493 return v;
6494 }
6495
6496 else if (ada_is_variant_part (type, i))
6497 {
6498 /* PNH: Do we ever get here? See find_struct_field. */
6499 int j;
6500 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6501 i));
6502 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6503
6504 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6505 {
6506 struct value *v = ada_search_struct_field /* Force line
6507 break. */
6508 (name, arg,
6509 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6510 TYPE_FIELD_TYPE (field_type, j));
6511
6512 if (v != NULL)
6513 return v;
6514 }
6515 }
6516 }
6517 return NULL;
6518}
6519
6520static struct value *ada_index_struct_field_1 (int *, struct value *,
6521 int, struct type *);
6522
6523
6524/* Return field #INDEX in ARG, where the index is that returned by
6525 * find_struct_field through its INDEX_P argument. Adjust the address
6526 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6527 * If found, return value, else return NULL. */
6528
6529static struct value *
6530ada_index_struct_field (int index, struct value *arg, int offset,
6531 struct type *type)
6532{
6533 return ada_index_struct_field_1 (&index, arg, offset, type);
6534}
6535
6536
6537/* Auxiliary function for ada_index_struct_field. Like
6538 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6539 * *INDEX_P. */
6540
6541static struct value *
6542ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6543 struct type *type)
6544{
6545 int i;
6546 type = ada_check_typedef (type);
6547
6548 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6549 {
6550 if (TYPE_FIELD_NAME (type, i) == NULL)
6551 continue;
6552 else if (ada_is_wrapper_field (type, i))
6553 {
6554 struct value *v = /* Do not let indent join lines here. */
6555 ada_index_struct_field_1 (index_p, arg,
6556 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6557 TYPE_FIELD_TYPE (type, i));
6558
6559 if (v != NULL)
6560 return v;
6561 }
6562
6563 else if (ada_is_variant_part (type, i))
6564 {
6565 /* PNH: Do we ever get here? See ada_search_struct_field,
6566 find_struct_field. */
6567 error (_("Cannot assign this kind of variant record"));
6568 }
6569 else if (*index_p == 0)
6570 return ada_value_primitive_field (arg, offset, i, type);
6571 else
6572 *index_p -= 1;
6573 }
6574 return NULL;
6575}
6576
6577/* Given ARG, a value of type (pointer or reference to a)*
6578 structure/union, extract the component named NAME from the ultimate
6579 target structure/union and return it as a value with its
6580 appropriate type.
6581
6582 The routine searches for NAME among all members of the structure itself
6583 and (recursively) among all members of any wrapper members
6584 (e.g., '_parent').
6585
6586 If NO_ERR, then simply return NULL in case of error, rather than
6587 calling error. */
6588
6589struct value *
6590ada_value_struct_elt (struct value *arg, char *name, int no_err)
6591{
6592 struct type *t, *t1;
6593 struct value *v;
6594
6595 v = NULL;
6596 t1 = t = ada_check_typedef (value_type (arg));
6597 if (TYPE_CODE (t) == TYPE_CODE_REF)
6598 {
6599 t1 = TYPE_TARGET_TYPE (t);
6600 if (t1 == NULL)
6601 goto BadValue;
6602 t1 = ada_check_typedef (t1);
6603 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6604 {
6605 arg = coerce_ref (arg);
6606 t = t1;
6607 }
6608 }
6609
6610 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6611 {
6612 t1 = TYPE_TARGET_TYPE (t);
6613 if (t1 == NULL)
6614 goto BadValue;
6615 t1 = ada_check_typedef (t1);
6616 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6617 {
6618 arg = value_ind (arg);
6619 t = t1;
6620 }
6621 else
6622 break;
6623 }
6624
6625 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6626 goto BadValue;
6627
6628 if (t1 == t)
6629 v = ada_search_struct_field (name, arg, 0, t);
6630 else
6631 {
6632 int bit_offset, bit_size, byte_offset;
6633 struct type *field_type;
6634 CORE_ADDR address;
6635
6636 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6637 address = value_as_address (arg);
6638 else
6639 address = unpack_pointer (t, value_contents (arg));
6640
6641 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6642 if (find_struct_field (name, t1, 0,
6643 &field_type, &byte_offset, &bit_offset,
6644 &bit_size, NULL))
6645 {
6646 if (bit_size != 0)
6647 {
6648 if (TYPE_CODE (t) == TYPE_CODE_REF)
6649 arg = ada_coerce_ref (arg);
6650 else
6651 arg = ada_value_ind (arg);
6652 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6653 bit_offset, bit_size,
6654 field_type);
6655 }
6656 else
6657 v = value_at_lazy (field_type, address + byte_offset);
6658 }
6659 }
6660
6661 if (v != NULL || no_err)
6662 return v;
6663 else
6664 error (_("There is no member named %s."), name);
6665
6666 BadValue:
6667 if (no_err)
6668 return NULL;
6669 else
6670 error (_("Attempt to extract a component of "
6671 "a value that is not a record."));
6672}
6673
6674/* Given a type TYPE, look up the type of the component of type named NAME.
6675 If DISPP is non-null, add its byte displacement from the beginning of a
6676 structure (pointed to by a value) of type TYPE to *DISPP (does not
6677 work for packed fields).
6678
6679 Matches any field whose name has NAME as a prefix, possibly
6680 followed by "___".
6681
6682 TYPE can be either a struct or union. If REFOK, TYPE may also
6683 be a (pointer or reference)+ to a struct or union, and the
6684 ultimate target type will be searched.
6685
6686 Looks recursively into variant clauses and parent types.
6687
6688 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6689 TYPE is not a type of the right kind. */
6690
6691static struct type *
6692ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6693 int noerr, int *dispp)
6694{
6695 int i;
6696
6697 if (name == NULL)
6698 goto BadName;
6699
6700 if (refok && type != NULL)
6701 while (1)
6702 {
6703 type = ada_check_typedef (type);
6704 if (TYPE_CODE (type) != TYPE_CODE_PTR
6705 && TYPE_CODE (type) != TYPE_CODE_REF)
6706 break;
6707 type = TYPE_TARGET_TYPE (type);
6708 }
6709
6710 if (type == NULL
6711 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6712 && TYPE_CODE (type) != TYPE_CODE_UNION))
6713 {
6714 if (noerr)
6715 return NULL;
6716 else
6717 {
6718 target_terminal_ours ();
6719 gdb_flush (gdb_stdout);
6720 if (type == NULL)
6721 error (_("Type (null) is not a structure or union type"));
6722 else
6723 {
6724 /* XXX: type_sprint */
6725 fprintf_unfiltered (gdb_stderr, _("Type "));
6726 type_print (type, "", gdb_stderr, -1);
6727 error (_(" is not a structure or union type"));
6728 }
6729 }
6730 }
6731
6732 type = to_static_fixed_type (type);
6733
6734 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6735 {
6736 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6737 struct type *t;
6738 int disp;
6739
6740 if (t_field_name == NULL)
6741 continue;
6742
6743 else if (field_name_match (t_field_name, name))
6744 {
6745 if (dispp != NULL)
6746 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6747 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6748 }
6749
6750 else if (ada_is_wrapper_field (type, i))
6751 {
6752 disp = 0;
6753 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6754 0, 1, &disp);
6755 if (t != NULL)
6756 {
6757 if (dispp != NULL)
6758 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6759 return t;
6760 }
6761 }
6762
6763 else if (ada_is_variant_part (type, i))
6764 {
6765 int j;
6766 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6767 i));
6768
6769 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6770 {
6771 /* FIXME pnh 2008/01/26: We check for a field that is
6772 NOT wrapped in a struct, since the compiler sometimes
6773 generates these for unchecked variant types. Revisit
6774 if the compiler changes this practice. */
6775 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6776 disp = 0;
6777 if (v_field_name != NULL
6778 && field_name_match (v_field_name, name))
6779 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6780 else
6781 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6782 j),
6783 name, 0, 1, &disp);
6784
6785 if (t != NULL)
6786 {
6787 if (dispp != NULL)
6788 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6789 return t;
6790 }
6791 }
6792 }
6793
6794 }
6795
6796BadName:
6797 if (!noerr)
6798 {
6799 target_terminal_ours ();
6800 gdb_flush (gdb_stdout);
6801 if (name == NULL)
6802 {
6803 /* XXX: type_sprint */
6804 fprintf_unfiltered (gdb_stderr, _("Type "));
6805 type_print (type, "", gdb_stderr, -1);
6806 error (_(" has no component named <null>"));
6807 }
6808 else
6809 {
6810 /* XXX: type_sprint */
6811 fprintf_unfiltered (gdb_stderr, _("Type "));
6812 type_print (type, "", gdb_stderr, -1);
6813 error (_(" has no component named %s"), name);
6814 }
6815 }
6816
6817 return NULL;
6818}
6819
6820/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6821 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6822 represents an unchecked union (that is, the variant part of a
6823 record that is named in an Unchecked_Union pragma). */
6824
6825static int
6826is_unchecked_variant (struct type *var_type, struct type *outer_type)
6827{
6828 char *discrim_name = ada_variant_discrim_name (var_type);
6829
6830 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6831 == NULL);
6832}
6833
6834
6835/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6836 within a value of type OUTER_TYPE that is stored in GDB at
6837 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6838 numbering from 0) is applicable. Returns -1 if none are. */
6839
6840int
6841ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6842 const gdb_byte *outer_valaddr)
6843{
6844 int others_clause;
6845 int i;
6846 char *discrim_name = ada_variant_discrim_name (var_type);
6847 struct value *outer;
6848 struct value *discrim;
6849 LONGEST discrim_val;
6850
6851 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6852 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6853 if (discrim == NULL)
6854 return -1;
6855 discrim_val = value_as_long (discrim);
6856
6857 others_clause = -1;
6858 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6859 {
6860 if (ada_is_others_clause (var_type, i))
6861 others_clause = i;
6862 else if (ada_in_variant (discrim_val, var_type, i))
6863 return i;
6864 }
6865
6866 return others_clause;
6867}
6868\f
6869
6870
6871 /* Dynamic-Sized Records */
6872
6873/* Strategy: The type ostensibly attached to a value with dynamic size
6874 (i.e., a size that is not statically recorded in the debugging
6875 data) does not accurately reflect the size or layout of the value.
6876 Our strategy is to convert these values to values with accurate,
6877 conventional types that are constructed on the fly. */
6878
6879/* There is a subtle and tricky problem here. In general, we cannot
6880 determine the size of dynamic records without its data. However,
6881 the 'struct value' data structure, which GDB uses to represent
6882 quantities in the inferior process (the target), requires the size
6883 of the type at the time of its allocation in order to reserve space
6884 for GDB's internal copy of the data. That's why the
6885 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6886 rather than struct value*s.
6887
6888 However, GDB's internal history variables ($1, $2, etc.) are
6889 struct value*s containing internal copies of the data that are not, in
6890 general, the same as the data at their corresponding addresses in
6891 the target. Fortunately, the types we give to these values are all
6892 conventional, fixed-size types (as per the strategy described
6893 above), so that we don't usually have to perform the
6894 'to_fixed_xxx_type' conversions to look at their values.
6895 Unfortunately, there is one exception: if one of the internal
6896 history variables is an array whose elements are unconstrained
6897 records, then we will need to create distinct fixed types for each
6898 element selected. */
6899
6900/* The upshot of all of this is that many routines take a (type, host
6901 address, target address) triple as arguments to represent a value.
6902 The host address, if non-null, is supposed to contain an internal
6903 copy of the relevant data; otherwise, the program is to consult the
6904 target at the target address. */
6905
6906/* Assuming that VAL0 represents a pointer value, the result of
6907 dereferencing it. Differs from value_ind in its treatment of
6908 dynamic-sized types. */
6909
6910struct value *
6911ada_value_ind (struct value *val0)
6912{
6913 struct value *val = value_ind (val0);
6914
6915 return ada_to_fixed_value (val);
6916}
6917
6918/* The value resulting from dereferencing any "reference to"
6919 qualifiers on VAL0. */
6920
6921static struct value *
6922ada_coerce_ref (struct value *val0)
6923{
6924 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6925 {
6926 struct value *val = val0;
6927
6928 val = coerce_ref (val);
6929 return ada_to_fixed_value (val);
6930 }
6931 else
6932 return val0;
6933}
6934
6935/* Return OFF rounded upward if necessary to a multiple of
6936 ALIGNMENT (a power of 2). */
6937
6938static unsigned int
6939align_value (unsigned int off, unsigned int alignment)
6940{
6941 return (off + alignment - 1) & ~(alignment - 1);
6942}
6943
6944/* Return the bit alignment required for field #F of template type TYPE. */
6945
6946static unsigned int
6947field_alignment (struct type *type, int f)
6948{
6949 const char *name = TYPE_FIELD_NAME (type, f);
6950 int len;
6951 int align_offset;
6952
6953 /* The field name should never be null, unless the debugging information
6954 is somehow malformed. In this case, we assume the field does not
6955 require any alignment. */
6956 if (name == NULL)
6957 return 1;
6958
6959 len = strlen (name);
6960
6961 if (!isdigit (name[len - 1]))
6962 return 1;
6963
6964 if (isdigit (name[len - 2]))
6965 align_offset = len - 2;
6966 else
6967 align_offset = len - 1;
6968
6969 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6970 return TARGET_CHAR_BIT;
6971
6972 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6973}
6974
6975/* Find a symbol named NAME. Ignores ambiguity. */
6976
6977struct symbol *
6978ada_find_any_symbol (const char *name)
6979{
6980 struct symbol *sym;
6981
6982 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6983 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6984 return sym;
6985
6986 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6987 return sym;
6988}
6989
6990/* Find a type named NAME. Ignores ambiguity. This routine will look
6991 solely for types defined by debug info, it will not search the GDB
6992 primitive types. */
6993
6994struct type *
6995ada_find_any_type (const char *name)
6996{
6997 struct symbol *sym = ada_find_any_symbol (name);
6998
6999 if (sym != NULL)
7000 return SYMBOL_TYPE (sym);
7001
7002 return NULL;
7003}
7004
7005/* Given NAME and an associated BLOCK, search all symbols for
7006 NAME suffixed with "___XR", which is the ``renaming'' symbol
7007 associated to NAME. Return this symbol if found, return
7008 NULL otherwise. */
7009
7010struct symbol *
7011ada_find_renaming_symbol (const char *name, struct block *block)
7012{
7013 struct symbol *sym;
7014
7015 sym = find_old_style_renaming_symbol (name, block);
7016
7017 if (sym != NULL)
7018 return sym;
7019
7020 /* Not right yet. FIXME pnh 7/20/2007. */
7021 sym = ada_find_any_symbol (name);
7022 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7023 return sym;
7024 else
7025 return NULL;
7026}
7027
7028static struct symbol *
7029find_old_style_renaming_symbol (const char *name, struct block *block)
7030{
7031 const struct symbol *function_sym = block_linkage_function (block);
7032 char *rename;
7033
7034 if (function_sym != NULL)
7035 {
7036 /* If the symbol is defined inside a function, NAME is not fully
7037 qualified. This means we need to prepend the function name
7038 as well as adding the ``___XR'' suffix to build the name of
7039 the associated renaming symbol. */
7040 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7041 /* Function names sometimes contain suffixes used
7042 for instance to qualify nested subprograms. When building
7043 the XR type name, we need to make sure that this suffix is
7044 not included. So do not include any suffix in the function
7045 name length below. */
7046 int function_name_len = ada_name_prefix_len (function_name);
7047 const int rename_len = function_name_len + 2 /* "__" */
7048 + strlen (name) + 6 /* "___XR\0" */ ;
7049
7050 /* Strip the suffix if necessary. */
7051 ada_remove_trailing_digits (function_name, &function_name_len);
7052 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7053 ada_remove_Xbn_suffix (function_name, &function_name_len);
7054
7055 /* Library-level functions are a special case, as GNAT adds
7056 a ``_ada_'' prefix to the function name to avoid namespace
7057 pollution. However, the renaming symbols themselves do not
7058 have this prefix, so we need to skip this prefix if present. */
7059 if (function_name_len > 5 /* "_ada_" */
7060 && strstr (function_name, "_ada_") == function_name)
7061 {
7062 function_name += 5;
7063 function_name_len -= 5;
7064 }
7065
7066 rename = (char *) alloca (rename_len * sizeof (char));
7067 strncpy (rename, function_name, function_name_len);
7068 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7069 "__%s___XR", name);
7070 }
7071 else
7072 {
7073 const int rename_len = strlen (name) + 6;
7074
7075 rename = (char *) alloca (rename_len * sizeof (char));
7076 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7077 }
7078
7079 return ada_find_any_symbol (rename);
7080}
7081
7082/* Because of GNAT encoding conventions, several GDB symbols may match a
7083 given type name. If the type denoted by TYPE0 is to be preferred to
7084 that of TYPE1 for purposes of type printing, return non-zero;
7085 otherwise return 0. */
7086
7087int
7088ada_prefer_type (struct type *type0, struct type *type1)
7089{
7090 if (type1 == NULL)
7091 return 1;
7092 else if (type0 == NULL)
7093 return 0;
7094 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7095 return 1;
7096 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7097 return 0;
7098 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7099 return 1;
7100 else if (ada_is_constrained_packed_array_type (type0))
7101 return 1;
7102 else if (ada_is_array_descriptor_type (type0)
7103 && !ada_is_array_descriptor_type (type1))
7104 return 1;
7105 else
7106 {
7107 const char *type0_name = type_name_no_tag (type0);
7108 const char *type1_name = type_name_no_tag (type1);
7109
7110 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7111 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7112 return 1;
7113 }
7114 return 0;
7115}
7116
7117/* The name of TYPE, which is either its TYPE_NAME, or, if that is
7118 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7119
7120const char *
7121ada_type_name (struct type *type)
7122{
7123 if (type == NULL)
7124 return NULL;
7125 else if (TYPE_NAME (type) != NULL)
7126 return TYPE_NAME (type);
7127 else
7128 return TYPE_TAG_NAME (type);
7129}
7130
7131/* Search the list of "descriptive" types associated to TYPE for a type
7132 whose name is NAME. */
7133
7134static struct type *
7135find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7136{
7137 struct type *result;
7138
7139 /* If there no descriptive-type info, then there is no parallel type
7140 to be found. */
7141 if (!HAVE_GNAT_AUX_INFO (type))
7142 return NULL;
7143
7144 result = TYPE_DESCRIPTIVE_TYPE (type);
7145 while (result != NULL)
7146 {
7147 const char *result_name = ada_type_name (result);
7148
7149 if (result_name == NULL)
7150 {
7151 warning (_("unexpected null name on descriptive type"));
7152 return NULL;
7153 }
7154
7155 /* If the names match, stop. */
7156 if (strcmp (result_name, name) == 0)
7157 break;
7158
7159 /* Otherwise, look at the next item on the list, if any. */
7160 if (HAVE_GNAT_AUX_INFO (result))
7161 result = TYPE_DESCRIPTIVE_TYPE (result);
7162 else
7163 result = NULL;
7164 }
7165
7166 /* If we didn't find a match, see whether this is a packed array. With
7167 older compilers, the descriptive type information is either absent or
7168 irrelevant when it comes to packed arrays so the above lookup fails.
7169 Fall back to using a parallel lookup by name in this case. */
7170 if (result == NULL && ada_is_constrained_packed_array_type (type))
7171 return ada_find_any_type (name);
7172
7173 return result;
7174}
7175
7176/* Find a parallel type to TYPE with the specified NAME, using the
7177 descriptive type taken from the debugging information, if available,
7178 and otherwise using the (slower) name-based method. */
7179
7180static struct type *
7181ada_find_parallel_type_with_name (struct type *type, const char *name)
7182{
7183 struct type *result = NULL;
7184
7185 if (HAVE_GNAT_AUX_INFO (type))
7186 result = find_parallel_type_by_descriptive_type (type, name);
7187 else
7188 result = ada_find_any_type (name);
7189
7190 return result;
7191}
7192
7193/* Same as above, but specify the name of the parallel type by appending
7194 SUFFIX to the name of TYPE. */
7195
7196struct type *
7197ada_find_parallel_type (struct type *type, const char *suffix)
7198{
7199 char *name;
7200 const char *typename = ada_type_name (type);
7201 int len;
7202
7203 if (typename == NULL)
7204 return NULL;
7205
7206 len = strlen (typename);
7207
7208 name = (char *) alloca (len + strlen (suffix) + 1);
7209
7210 strcpy (name, typename);
7211 strcpy (name + len, suffix);
7212
7213 return ada_find_parallel_type_with_name (type, name);
7214}
7215
7216/* If TYPE is a variable-size record type, return the corresponding template
7217 type describing its fields. Otherwise, return NULL. */
7218
7219static struct type *
7220dynamic_template_type (struct type *type)
7221{
7222 type = ada_check_typedef (type);
7223
7224 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7225 || ada_type_name (type) == NULL)
7226 return NULL;
7227 else
7228 {
7229 int len = strlen (ada_type_name (type));
7230
7231 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7232 return type;
7233 else
7234 return ada_find_parallel_type (type, "___XVE");
7235 }
7236}
7237
7238/* Assuming that TEMPL_TYPE is a union or struct type, returns
7239 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7240
7241static int
7242is_dynamic_field (struct type *templ_type, int field_num)
7243{
7244 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7245
7246 return name != NULL
7247 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7248 && strstr (name, "___XVL") != NULL;
7249}
7250
7251/* The index of the variant field of TYPE, or -1 if TYPE does not
7252 represent a variant record type. */
7253
7254static int
7255variant_field_index (struct type *type)
7256{
7257 int f;
7258
7259 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7260 return -1;
7261
7262 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7263 {
7264 if (ada_is_variant_part (type, f))
7265 return f;
7266 }
7267 return -1;
7268}
7269
7270/* A record type with no fields. */
7271
7272static struct type *
7273empty_record (struct type *template)
7274{
7275 struct type *type = alloc_type_copy (template);
7276
7277 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7278 TYPE_NFIELDS (type) = 0;
7279 TYPE_FIELDS (type) = NULL;
7280 INIT_CPLUS_SPECIFIC (type);
7281 TYPE_NAME (type) = "<empty>";
7282 TYPE_TAG_NAME (type) = NULL;
7283 TYPE_LENGTH (type) = 0;
7284 return type;
7285}
7286
7287/* An ordinary record type (with fixed-length fields) that describes
7288 the value of type TYPE at VALADDR or ADDRESS (see comments at
7289 the beginning of this section) VAL according to GNAT conventions.
7290 DVAL0 should describe the (portion of a) record that contains any
7291 necessary discriminants. It should be NULL if value_type (VAL) is
7292 an outer-level type (i.e., as opposed to a branch of a variant.) A
7293 variant field (unless unchecked) is replaced by a particular branch
7294 of the variant.
7295
7296 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7297 length are not statically known are discarded. As a consequence,
7298 VALADDR, ADDRESS and DVAL0 are ignored.
7299
7300 NOTE: Limitations: For now, we assume that dynamic fields and
7301 variants occupy whole numbers of bytes. However, they need not be
7302 byte-aligned. */
7303
7304struct type *
7305ada_template_to_fixed_record_type_1 (struct type *type,
7306 const gdb_byte *valaddr,
7307 CORE_ADDR address, struct value *dval0,
7308 int keep_dynamic_fields)
7309{
7310 struct value *mark = value_mark ();
7311 struct value *dval;
7312 struct type *rtype;
7313 int nfields, bit_len;
7314 int variant_field;
7315 long off;
7316 int fld_bit_len;
7317 int f;
7318
7319 /* Compute the number of fields in this record type that are going
7320 to be processed: unless keep_dynamic_fields, this includes only
7321 fields whose position and length are static will be processed. */
7322 if (keep_dynamic_fields)
7323 nfields = TYPE_NFIELDS (type);
7324 else
7325 {
7326 nfields = 0;
7327 while (nfields < TYPE_NFIELDS (type)
7328 && !ada_is_variant_part (type, nfields)
7329 && !is_dynamic_field (type, nfields))
7330 nfields++;
7331 }
7332
7333 rtype = alloc_type_copy (type);
7334 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7335 INIT_CPLUS_SPECIFIC (rtype);
7336 TYPE_NFIELDS (rtype) = nfields;
7337 TYPE_FIELDS (rtype) = (struct field *)
7338 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7339 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7340 TYPE_NAME (rtype) = ada_type_name (type);
7341 TYPE_TAG_NAME (rtype) = NULL;
7342 TYPE_FIXED_INSTANCE (rtype) = 1;
7343
7344 off = 0;
7345 bit_len = 0;
7346 variant_field = -1;
7347
7348 for (f = 0; f < nfields; f += 1)
7349 {
7350 off = align_value (off, field_alignment (type, f))
7351 + TYPE_FIELD_BITPOS (type, f);
7352 TYPE_FIELD_BITPOS (rtype, f) = off;
7353 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7354
7355 if (ada_is_variant_part (type, f))
7356 {
7357 variant_field = f;
7358 fld_bit_len = 0;
7359 }
7360 else if (is_dynamic_field (type, f))
7361 {
7362 const gdb_byte *field_valaddr = valaddr;
7363 CORE_ADDR field_address = address;
7364 struct type *field_type =
7365 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7366
7367 if (dval0 == NULL)
7368 {
7369 /* rtype's length is computed based on the run-time
7370 value of discriminants. If the discriminants are not
7371 initialized, the type size may be completely bogus and
7372 GDB may fail to allocate a value for it. So check the
7373 size first before creating the value. */
7374 check_size (rtype);
7375 dval = value_from_contents_and_address (rtype, valaddr, address);
7376 }
7377 else
7378 dval = dval0;
7379
7380 /* If the type referenced by this field is an aligner type, we need
7381 to unwrap that aligner type, because its size might not be set.
7382 Keeping the aligner type would cause us to compute the wrong
7383 size for this field, impacting the offset of the all the fields
7384 that follow this one. */
7385 if (ada_is_aligner_type (field_type))
7386 {
7387 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7388
7389 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7390 field_address = cond_offset_target (field_address, field_offset);
7391 field_type = ada_aligned_type (field_type);
7392 }
7393
7394 field_valaddr = cond_offset_host (field_valaddr,
7395 off / TARGET_CHAR_BIT);
7396 field_address = cond_offset_target (field_address,
7397 off / TARGET_CHAR_BIT);
7398
7399 /* Get the fixed type of the field. Note that, in this case,
7400 we do not want to get the real type out of the tag: if
7401 the current field is the parent part of a tagged record,
7402 we will get the tag of the object. Clearly wrong: the real
7403 type of the parent is not the real type of the child. We
7404 would end up in an infinite loop. */
7405 field_type = ada_get_base_type (field_type);
7406 field_type = ada_to_fixed_type (field_type, field_valaddr,
7407 field_address, dval, 0);
7408 /* If the field size is already larger than the maximum
7409 object size, then the record itself will necessarily
7410 be larger than the maximum object size. We need to make
7411 this check now, because the size might be so ridiculously
7412 large (due to an uninitialized variable in the inferior)
7413 that it would cause an overflow when adding it to the
7414 record size. */
7415 check_size (field_type);
7416
7417 TYPE_FIELD_TYPE (rtype, f) = field_type;
7418 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7419 /* The multiplication can potentially overflow. But because
7420 the field length has been size-checked just above, and
7421 assuming that the maximum size is a reasonable value,
7422 an overflow should not happen in practice. So rather than
7423 adding overflow recovery code to this already complex code,
7424 we just assume that it's not going to happen. */
7425 fld_bit_len =
7426 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7427 }
7428 else
7429 {
7430 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7431
7432 /* If our field is a typedef type (most likely a typedef of
7433 a fat pointer, encoding an array access), then we need to
7434 look at its target type to determine its characteristics.
7435 In particular, we would miscompute the field size if we took
7436 the size of the typedef (zero), instead of the size of
7437 the target type. */
7438 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7439 field_type = ada_typedef_target_type (field_type);
7440
7441 TYPE_FIELD_TYPE (rtype, f) = field_type;
7442 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7443 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7444 fld_bit_len =
7445 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7446 else
7447 fld_bit_len =
7448 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7449 }
7450 if (off + fld_bit_len > bit_len)
7451 bit_len = off + fld_bit_len;
7452 off += fld_bit_len;
7453 TYPE_LENGTH (rtype) =
7454 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7455 }
7456
7457 /* We handle the variant part, if any, at the end because of certain
7458 odd cases in which it is re-ordered so as NOT to be the last field of
7459 the record. This can happen in the presence of representation
7460 clauses. */
7461 if (variant_field >= 0)
7462 {
7463 struct type *branch_type;
7464
7465 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7466
7467 if (dval0 == NULL)
7468 dval = value_from_contents_and_address (rtype, valaddr, address);
7469 else
7470 dval = dval0;
7471
7472 branch_type =
7473 to_fixed_variant_branch_type
7474 (TYPE_FIELD_TYPE (type, variant_field),
7475 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7476 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7477 if (branch_type == NULL)
7478 {
7479 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7480 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7481 TYPE_NFIELDS (rtype) -= 1;
7482 }
7483 else
7484 {
7485 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7486 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7487 fld_bit_len =
7488 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7489 TARGET_CHAR_BIT;
7490 if (off + fld_bit_len > bit_len)
7491 bit_len = off + fld_bit_len;
7492 TYPE_LENGTH (rtype) =
7493 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7494 }
7495 }
7496
7497 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7498 should contain the alignment of that record, which should be a strictly
7499 positive value. If null or negative, then something is wrong, most
7500 probably in the debug info. In that case, we don't round up the size
7501 of the resulting type. If this record is not part of another structure,
7502 the current RTYPE length might be good enough for our purposes. */
7503 if (TYPE_LENGTH (type) <= 0)
7504 {
7505 if (TYPE_NAME (rtype))
7506 warning (_("Invalid type size for `%s' detected: %d."),
7507 TYPE_NAME (rtype), TYPE_LENGTH (type));
7508 else
7509 warning (_("Invalid type size for <unnamed> detected: %d."),
7510 TYPE_LENGTH (type));
7511 }
7512 else
7513 {
7514 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7515 TYPE_LENGTH (type));
7516 }
7517
7518 value_free_to_mark (mark);
7519 if (TYPE_LENGTH (rtype) > varsize_limit)
7520 error (_("record type with dynamic size is larger than varsize-limit"));
7521 return rtype;
7522}
7523
7524/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7525 of 1. */
7526
7527static struct type *
7528template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7529 CORE_ADDR address, struct value *dval0)
7530{
7531 return ada_template_to_fixed_record_type_1 (type, valaddr,
7532 address, dval0, 1);
7533}
7534
7535/* An ordinary record type in which ___XVL-convention fields and
7536 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7537 static approximations, containing all possible fields. Uses
7538 no runtime values. Useless for use in values, but that's OK,
7539 since the results are used only for type determinations. Works on both
7540 structs and unions. Representation note: to save space, we memorize
7541 the result of this function in the TYPE_TARGET_TYPE of the
7542 template type. */
7543
7544static struct type *
7545template_to_static_fixed_type (struct type *type0)
7546{
7547 struct type *type;
7548 int nfields;
7549 int f;
7550
7551 if (TYPE_TARGET_TYPE (type0) != NULL)
7552 return TYPE_TARGET_TYPE (type0);
7553
7554 nfields = TYPE_NFIELDS (type0);
7555 type = type0;
7556
7557 for (f = 0; f < nfields; f += 1)
7558 {
7559 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7560 struct type *new_type;
7561
7562 if (is_dynamic_field (type0, f))
7563 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7564 else
7565 new_type = static_unwrap_type (field_type);
7566 if (type == type0 && new_type != field_type)
7567 {
7568 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7569 TYPE_CODE (type) = TYPE_CODE (type0);
7570 INIT_CPLUS_SPECIFIC (type);
7571 TYPE_NFIELDS (type) = nfields;
7572 TYPE_FIELDS (type) = (struct field *)
7573 TYPE_ALLOC (type, nfields * sizeof (struct field));
7574 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7575 sizeof (struct field) * nfields);
7576 TYPE_NAME (type) = ada_type_name (type0);
7577 TYPE_TAG_NAME (type) = NULL;
7578 TYPE_FIXED_INSTANCE (type) = 1;
7579 TYPE_LENGTH (type) = 0;
7580 }
7581 TYPE_FIELD_TYPE (type, f) = new_type;
7582 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7583 }
7584 return type;
7585}
7586
7587/* Given an object of type TYPE whose contents are at VALADDR and
7588 whose address in memory is ADDRESS, returns a revision of TYPE,
7589 which should be a non-dynamic-sized record, in which the variant
7590 part, if any, is replaced with the appropriate branch. Looks
7591 for discriminant values in DVAL0, which can be NULL if the record
7592 contains the necessary discriminant values. */
7593
7594static struct type *
7595to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7596 CORE_ADDR address, struct value *dval0)
7597{
7598 struct value *mark = value_mark ();
7599 struct value *dval;
7600 struct type *rtype;
7601 struct type *branch_type;
7602 int nfields = TYPE_NFIELDS (type);
7603 int variant_field = variant_field_index (type);
7604
7605 if (variant_field == -1)
7606 return type;
7607
7608 if (dval0 == NULL)
7609 dval = value_from_contents_and_address (type, valaddr, address);
7610 else
7611 dval = dval0;
7612
7613 rtype = alloc_type_copy (type);
7614 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7615 INIT_CPLUS_SPECIFIC (rtype);
7616 TYPE_NFIELDS (rtype) = nfields;
7617 TYPE_FIELDS (rtype) =
7618 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7619 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7620 sizeof (struct field) * nfields);
7621 TYPE_NAME (rtype) = ada_type_name (type);
7622 TYPE_TAG_NAME (rtype) = NULL;
7623 TYPE_FIXED_INSTANCE (rtype) = 1;
7624 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7625
7626 branch_type = to_fixed_variant_branch_type
7627 (TYPE_FIELD_TYPE (type, variant_field),
7628 cond_offset_host (valaddr,
7629 TYPE_FIELD_BITPOS (type, variant_field)
7630 / TARGET_CHAR_BIT),
7631 cond_offset_target (address,
7632 TYPE_FIELD_BITPOS (type, variant_field)
7633 / TARGET_CHAR_BIT), dval);
7634 if (branch_type == NULL)
7635 {
7636 int f;
7637
7638 for (f = variant_field + 1; f < nfields; f += 1)
7639 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7640 TYPE_NFIELDS (rtype) -= 1;
7641 }
7642 else
7643 {
7644 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7645 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7646 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7647 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7648 }
7649 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7650
7651 value_free_to_mark (mark);
7652 return rtype;
7653}
7654
7655/* An ordinary record type (with fixed-length fields) that describes
7656 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7657 beginning of this section]. Any necessary discriminants' values
7658 should be in DVAL, a record value; it may be NULL if the object
7659 at ADDR itself contains any necessary discriminant values.
7660 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7661 values from the record are needed. Except in the case that DVAL,
7662 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7663 unchecked) is replaced by a particular branch of the variant.
7664
7665 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7666 is questionable and may be removed. It can arise during the
7667 processing of an unconstrained-array-of-record type where all the
7668 variant branches have exactly the same size. This is because in
7669 such cases, the compiler does not bother to use the XVS convention
7670 when encoding the record. I am currently dubious of this
7671 shortcut and suspect the compiler should be altered. FIXME. */
7672
7673static struct type *
7674to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7675 CORE_ADDR address, struct value *dval)
7676{
7677 struct type *templ_type;
7678
7679 if (TYPE_FIXED_INSTANCE (type0))
7680 return type0;
7681
7682 templ_type = dynamic_template_type (type0);
7683
7684 if (templ_type != NULL)
7685 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7686 else if (variant_field_index (type0) >= 0)
7687 {
7688 if (dval == NULL && valaddr == NULL && address == 0)
7689 return type0;
7690 return to_record_with_fixed_variant_part (type0, valaddr, address,
7691 dval);
7692 }
7693 else
7694 {
7695 TYPE_FIXED_INSTANCE (type0) = 1;
7696 return type0;
7697 }
7698
7699}
7700
7701/* An ordinary record type (with fixed-length fields) that describes
7702 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7703 union type. Any necessary discriminants' values should be in DVAL,
7704 a record value. That is, this routine selects the appropriate
7705 branch of the union at ADDR according to the discriminant value
7706 indicated in the union's type name. Returns VAR_TYPE0 itself if
7707 it represents a variant subject to a pragma Unchecked_Union. */
7708
7709static struct type *
7710to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7711 CORE_ADDR address, struct value *dval)
7712{
7713 int which;
7714 struct type *templ_type;
7715 struct type *var_type;
7716
7717 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7718 var_type = TYPE_TARGET_TYPE (var_type0);
7719 else
7720 var_type = var_type0;
7721
7722 templ_type = ada_find_parallel_type (var_type, "___XVU");
7723
7724 if (templ_type != NULL)
7725 var_type = templ_type;
7726
7727 if (is_unchecked_variant (var_type, value_type (dval)))
7728 return var_type0;
7729 which =
7730 ada_which_variant_applies (var_type,
7731 value_type (dval), value_contents (dval));
7732
7733 if (which < 0)
7734 return empty_record (var_type);
7735 else if (is_dynamic_field (var_type, which))
7736 return to_fixed_record_type
7737 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7738 valaddr, address, dval);
7739 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7740 return
7741 to_fixed_record_type
7742 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7743 else
7744 return TYPE_FIELD_TYPE (var_type, which);
7745}
7746
7747/* Assuming that TYPE0 is an array type describing the type of a value
7748 at ADDR, and that DVAL describes a record containing any
7749 discriminants used in TYPE0, returns a type for the value that
7750 contains no dynamic components (that is, no components whose sizes
7751 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7752 true, gives an error message if the resulting type's size is over
7753 varsize_limit. */
7754
7755static struct type *
7756to_fixed_array_type (struct type *type0, struct value *dval,
7757 int ignore_too_big)
7758{
7759 struct type *index_type_desc;
7760 struct type *result;
7761 int constrained_packed_array_p;
7762
7763 type0 = ada_check_typedef (type0);
7764 if (TYPE_FIXED_INSTANCE (type0))
7765 return type0;
7766
7767 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7768 if (constrained_packed_array_p)
7769 type0 = decode_constrained_packed_array_type (type0);
7770
7771 index_type_desc = ada_find_parallel_type (type0, "___XA");
7772 ada_fixup_array_indexes_type (index_type_desc);
7773 if (index_type_desc == NULL)
7774 {
7775 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7776
7777 /* NOTE: elt_type---the fixed version of elt_type0---should never
7778 depend on the contents of the array in properly constructed
7779 debugging data. */
7780 /* Create a fixed version of the array element type.
7781 We're not providing the address of an element here,
7782 and thus the actual object value cannot be inspected to do
7783 the conversion. This should not be a problem, since arrays of
7784 unconstrained objects are not allowed. In particular, all
7785 the elements of an array of a tagged type should all be of
7786 the same type specified in the debugging info. No need to
7787 consult the object tag. */
7788 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7789
7790 /* Make sure we always create a new array type when dealing with
7791 packed array types, since we're going to fix-up the array
7792 type length and element bitsize a little further down. */
7793 if (elt_type0 == elt_type && !constrained_packed_array_p)
7794 result = type0;
7795 else
7796 result = create_array_type (alloc_type_copy (type0),
7797 elt_type, TYPE_INDEX_TYPE (type0));
7798 }
7799 else
7800 {
7801 int i;
7802 struct type *elt_type0;
7803
7804 elt_type0 = type0;
7805 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7806 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7807
7808 /* NOTE: result---the fixed version of elt_type0---should never
7809 depend on the contents of the array in properly constructed
7810 debugging data. */
7811 /* Create a fixed version of the array element type.
7812 We're not providing the address of an element here,
7813 and thus the actual object value cannot be inspected to do
7814 the conversion. This should not be a problem, since arrays of
7815 unconstrained objects are not allowed. In particular, all
7816 the elements of an array of a tagged type should all be of
7817 the same type specified in the debugging info. No need to
7818 consult the object tag. */
7819 result =
7820 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7821
7822 elt_type0 = type0;
7823 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7824 {
7825 struct type *range_type =
7826 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7827
7828 result = create_array_type (alloc_type_copy (elt_type0),
7829 result, range_type);
7830 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7831 }
7832 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7833 error (_("array type with dynamic size is larger than varsize-limit"));
7834 }
7835
7836 /* We want to preserve the type name. This can be useful when
7837 trying to get the type name of a value that has already been
7838 printed (for instance, if the user did "print VAR; whatis $". */
7839 TYPE_NAME (result) = TYPE_NAME (type0);
7840
7841 if (constrained_packed_array_p)
7842 {
7843 /* So far, the resulting type has been created as if the original
7844 type was a regular (non-packed) array type. As a result, the
7845 bitsize of the array elements needs to be set again, and the array
7846 length needs to be recomputed based on that bitsize. */
7847 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7848 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7849
7850 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7851 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7852 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7853 TYPE_LENGTH (result)++;
7854 }
7855
7856 TYPE_FIXED_INSTANCE (result) = 1;
7857 return result;
7858}
7859
7860
7861/* A standard type (containing no dynamically sized components)
7862 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7863 DVAL describes a record containing any discriminants used in TYPE0,
7864 and may be NULL if there are none, or if the object of type TYPE at
7865 ADDRESS or in VALADDR contains these discriminants.
7866
7867 If CHECK_TAG is not null, in the case of tagged types, this function
7868 attempts to locate the object's tag and use it to compute the actual
7869 type. However, when ADDRESS is null, we cannot use it to determine the
7870 location of the tag, and therefore compute the tagged type's actual type.
7871 So we return the tagged type without consulting the tag. */
7872
7873static struct type *
7874ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7875 CORE_ADDR address, struct value *dval, int check_tag)
7876{
7877 type = ada_check_typedef (type);
7878 switch (TYPE_CODE (type))
7879 {
7880 default:
7881 return type;
7882 case TYPE_CODE_STRUCT:
7883 {
7884 struct type *static_type = to_static_fixed_type (type);
7885 struct type *fixed_record_type =
7886 to_fixed_record_type (type, valaddr, address, NULL);
7887
7888 /* If STATIC_TYPE is a tagged type and we know the object's address,
7889 then we can determine its tag, and compute the object's actual
7890 type from there. Note that we have to use the fixed record
7891 type (the parent part of the record may have dynamic fields
7892 and the way the location of _tag is expressed may depend on
7893 them). */
7894
7895 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7896 {
7897 struct type *real_type =
7898 type_from_tag (value_tag_from_contents_and_address
7899 (fixed_record_type,
7900 valaddr,
7901 address));
7902
7903 if (real_type != NULL)
7904 return to_fixed_record_type (real_type, valaddr, address, NULL);
7905 }
7906
7907 /* Check to see if there is a parallel ___XVZ variable.
7908 If there is, then it provides the actual size of our type. */
7909 else if (ada_type_name (fixed_record_type) != NULL)
7910 {
7911 const char *name = ada_type_name (fixed_record_type);
7912 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7913 int xvz_found = 0;
7914 LONGEST size;
7915
7916 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7917 size = get_int_var_value (xvz_name, &xvz_found);
7918 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7919 {
7920 fixed_record_type = copy_type (fixed_record_type);
7921 TYPE_LENGTH (fixed_record_type) = size;
7922
7923 /* The FIXED_RECORD_TYPE may have be a stub. We have
7924 observed this when the debugging info is STABS, and
7925 apparently it is something that is hard to fix.
7926
7927 In practice, we don't need the actual type definition
7928 at all, because the presence of the XVZ variable allows us
7929 to assume that there must be a XVS type as well, which we
7930 should be able to use later, when we need the actual type
7931 definition.
7932
7933 In the meantime, pretend that the "fixed" type we are
7934 returning is NOT a stub, because this can cause trouble
7935 when using this type to create new types targeting it.
7936 Indeed, the associated creation routines often check
7937 whether the target type is a stub and will try to replace
7938 it, thus using a type with the wrong size. This, in turn,
7939 might cause the new type to have the wrong size too.
7940 Consider the case of an array, for instance, where the size
7941 of the array is computed from the number of elements in
7942 our array multiplied by the size of its element. */
7943 TYPE_STUB (fixed_record_type) = 0;
7944 }
7945 }
7946 return fixed_record_type;
7947 }
7948 case TYPE_CODE_ARRAY:
7949 return to_fixed_array_type (type, dval, 1);
7950 case TYPE_CODE_UNION:
7951 if (dval == NULL)
7952 return type;
7953 else
7954 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7955 }
7956}
7957
7958/* The same as ada_to_fixed_type_1, except that it preserves the type
7959 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7960
7961 The typedef layer needs be preserved in order to differentiate between
7962 arrays and array pointers when both types are implemented using the same
7963 fat pointer. In the array pointer case, the pointer is encoded as
7964 a typedef of the pointer type. For instance, considering:
7965
7966 type String_Access is access String;
7967 S1 : String_Access := null;
7968
7969 To the debugger, S1 is defined as a typedef of type String. But
7970 to the user, it is a pointer. So if the user tries to print S1,
7971 we should not dereference the array, but print the array address
7972 instead.
7973
7974 If we didn't preserve the typedef layer, we would lose the fact that
7975 the type is to be presented as a pointer (needs de-reference before
7976 being printed). And we would also use the source-level type name. */
7977
7978struct type *
7979ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7980 CORE_ADDR address, struct value *dval, int check_tag)
7981
7982{
7983 struct type *fixed_type =
7984 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7985
7986 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7987 then preserve the typedef layer.
7988
7989 Implementation note: We can only check the main-type portion of
7990 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7991 from TYPE now returns a type that has the same instance flags
7992 as TYPE. For instance, if TYPE is a "typedef const", and its
7993 target type is a "struct", then the typedef elimination will return
7994 a "const" version of the target type. See check_typedef for more
7995 details about how the typedef layer elimination is done.
7996
7997 brobecker/2010-11-19: It seems to me that the only case where it is
7998 useful to preserve the typedef layer is when dealing with fat pointers.
7999 Perhaps, we could add a check for that and preserve the typedef layer
8000 only in that situation. But this seems unecessary so far, probably
8001 because we call check_typedef/ada_check_typedef pretty much everywhere.
8002 */
8003 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8004 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8005 == TYPE_MAIN_TYPE (fixed_type)))
8006 return type;
8007
8008 return fixed_type;
8009}
8010
8011/* A standard (static-sized) type corresponding as well as possible to
8012 TYPE0, but based on no runtime data. */
8013
8014static struct type *
8015to_static_fixed_type (struct type *type0)
8016{
8017 struct type *type;
8018
8019 if (type0 == NULL)
8020 return NULL;
8021
8022 if (TYPE_FIXED_INSTANCE (type0))
8023 return type0;
8024
8025 type0 = ada_check_typedef (type0);
8026
8027 switch (TYPE_CODE (type0))
8028 {
8029 default:
8030 return type0;
8031 case TYPE_CODE_STRUCT:
8032 type = dynamic_template_type (type0);
8033 if (type != NULL)
8034 return template_to_static_fixed_type (type);
8035 else
8036 return template_to_static_fixed_type (type0);
8037 case TYPE_CODE_UNION:
8038 type = ada_find_parallel_type (type0, "___XVU");
8039 if (type != NULL)
8040 return template_to_static_fixed_type (type);
8041 else
8042 return template_to_static_fixed_type (type0);
8043 }
8044}
8045
8046/* A static approximation of TYPE with all type wrappers removed. */
8047
8048static struct type *
8049static_unwrap_type (struct type *type)
8050{
8051 if (ada_is_aligner_type (type))
8052 {
8053 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8054 if (ada_type_name (type1) == NULL)
8055 TYPE_NAME (type1) = ada_type_name (type);
8056
8057 return static_unwrap_type (type1);
8058 }
8059 else
8060 {
8061 struct type *raw_real_type = ada_get_base_type (type);
8062
8063 if (raw_real_type == type)
8064 return type;
8065 else
8066 return to_static_fixed_type (raw_real_type);
8067 }
8068}
8069
8070/* In some cases, incomplete and private types require
8071 cross-references that are not resolved as records (for example,
8072 type Foo;
8073 type FooP is access Foo;
8074 V: FooP;
8075 type Foo is array ...;
8076 ). In these cases, since there is no mechanism for producing
8077 cross-references to such types, we instead substitute for FooP a
8078 stub enumeration type that is nowhere resolved, and whose tag is
8079 the name of the actual type. Call these types "non-record stubs". */
8080
8081/* A type equivalent to TYPE that is not a non-record stub, if one
8082 exists, otherwise TYPE. */
8083
8084struct type *
8085ada_check_typedef (struct type *type)
8086{
8087 if (type == NULL)
8088 return NULL;
8089
8090 /* If our type is a typedef type of a fat pointer, then we're done.
8091 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8092 what allows us to distinguish between fat pointers that represent
8093 array types, and fat pointers that represent array access types
8094 (in both cases, the compiler implements them as fat pointers). */
8095 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8096 && is_thick_pntr (ada_typedef_target_type (type)))
8097 return type;
8098
8099 CHECK_TYPEDEF (type);
8100 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8101 || !TYPE_STUB (type)
8102 || TYPE_TAG_NAME (type) == NULL)
8103 return type;
8104 else
8105 {
8106 const char *name = TYPE_TAG_NAME (type);
8107 struct type *type1 = ada_find_any_type (name);
8108
8109 if (type1 == NULL)
8110 return type;
8111
8112 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8113 stubs pointing to arrays, as we don't create symbols for array
8114 types, only for the typedef-to-array types). If that's the case,
8115 strip the typedef layer. */
8116 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8117 type1 = ada_check_typedef (type1);
8118
8119 return type1;
8120 }
8121}
8122
8123/* A value representing the data at VALADDR/ADDRESS as described by
8124 type TYPE0, but with a standard (static-sized) type that correctly
8125 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8126 type, then return VAL0 [this feature is simply to avoid redundant
8127 creation of struct values]. */
8128
8129static struct value *
8130ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8131 struct value *val0)
8132{
8133 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8134
8135 if (type == type0 && val0 != NULL)
8136 return val0;
8137 else
8138 return value_from_contents_and_address (type, 0, address);
8139}
8140
8141/* A value representing VAL, but with a standard (static-sized) type
8142 that correctly describes it. Does not necessarily create a new
8143 value. */
8144
8145struct value *
8146ada_to_fixed_value (struct value *val)
8147{
8148 val = unwrap_value (val);
8149 val = ada_to_fixed_value_create (value_type (val),
8150 value_address (val),
8151 val);
8152 return val;
8153}
8154\f
8155
8156/* Attributes */
8157
8158/* Table mapping attribute numbers to names.
8159 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8160
8161static const char *attribute_names[] = {
8162 "<?>",
8163
8164 "first",
8165 "last",
8166 "length",
8167 "image",
8168 "max",
8169 "min",
8170 "modulus",
8171 "pos",
8172 "size",
8173 "tag",
8174 "val",
8175 0
8176};
8177
8178const char *
8179ada_attribute_name (enum exp_opcode n)
8180{
8181 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8182 return attribute_names[n - OP_ATR_FIRST + 1];
8183 else
8184 return attribute_names[0];
8185}
8186
8187/* Evaluate the 'POS attribute applied to ARG. */
8188
8189static LONGEST
8190pos_atr (struct value *arg)
8191{
8192 struct value *val = coerce_ref (arg);
8193 struct type *type = value_type (val);
8194
8195 if (!discrete_type_p (type))
8196 error (_("'POS only defined on discrete types"));
8197
8198 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8199 {
8200 int i;
8201 LONGEST v = value_as_long (val);
8202
8203 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8204 {
8205 if (v == TYPE_FIELD_BITPOS (type, i))
8206 return i;
8207 }
8208 error (_("enumeration value is invalid: can't find 'POS"));
8209 }
8210 else
8211 return value_as_long (val);
8212}
8213
8214static struct value *
8215value_pos_atr (struct type *type, struct value *arg)
8216{
8217 return value_from_longest (type, pos_atr (arg));
8218}
8219
8220/* Evaluate the TYPE'VAL attribute applied to ARG. */
8221
8222static struct value *
8223value_val_atr (struct type *type, struct value *arg)
8224{
8225 if (!discrete_type_p (type))
8226 error (_("'VAL only defined on discrete types"));
8227 if (!integer_type_p (value_type (arg)))
8228 error (_("'VAL requires integral argument"));
8229
8230 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8231 {
8232 long pos = value_as_long (arg);
8233
8234 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8235 error (_("argument to 'VAL out of range"));
8236 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8237 }
8238 else
8239 return value_from_longest (type, value_as_long (arg));
8240}
8241\f
8242
8243 /* Evaluation */
8244
8245/* True if TYPE appears to be an Ada character type.
8246 [At the moment, this is true only for Character and Wide_Character;
8247 It is a heuristic test that could stand improvement]. */
8248
8249int
8250ada_is_character_type (struct type *type)
8251{
8252 const char *name;
8253
8254 /* If the type code says it's a character, then assume it really is,
8255 and don't check any further. */
8256 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8257 return 1;
8258
8259 /* Otherwise, assume it's a character type iff it is a discrete type
8260 with a known character type name. */
8261 name = ada_type_name (type);
8262 return (name != NULL
8263 && (TYPE_CODE (type) == TYPE_CODE_INT
8264 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8265 && (strcmp (name, "character") == 0
8266 || strcmp (name, "wide_character") == 0
8267 || strcmp (name, "wide_wide_character") == 0
8268 || strcmp (name, "unsigned char") == 0));
8269}
8270
8271/* True if TYPE appears to be an Ada string type. */
8272
8273int
8274ada_is_string_type (struct type *type)
8275{
8276 type = ada_check_typedef (type);
8277 if (type != NULL
8278 && TYPE_CODE (type) != TYPE_CODE_PTR
8279 && (ada_is_simple_array_type (type)
8280 || ada_is_array_descriptor_type (type))
8281 && ada_array_arity (type) == 1)
8282 {
8283 struct type *elttype = ada_array_element_type (type, 1);
8284
8285 return ada_is_character_type (elttype);
8286 }
8287 else
8288 return 0;
8289}
8290
8291/* The compiler sometimes provides a parallel XVS type for a given
8292 PAD type. Normally, it is safe to follow the PAD type directly,
8293 but older versions of the compiler have a bug that causes the offset
8294 of its "F" field to be wrong. Following that field in that case
8295 would lead to incorrect results, but this can be worked around
8296 by ignoring the PAD type and using the associated XVS type instead.
8297
8298 Set to True if the debugger should trust the contents of PAD types.
8299 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8300static int trust_pad_over_xvs = 1;
8301
8302/* True if TYPE is a struct type introduced by the compiler to force the
8303 alignment of a value. Such types have a single field with a
8304 distinctive name. */
8305
8306int
8307ada_is_aligner_type (struct type *type)
8308{
8309 type = ada_check_typedef (type);
8310
8311 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8312 return 0;
8313
8314 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8315 && TYPE_NFIELDS (type) == 1
8316 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8317}
8318
8319/* If there is an ___XVS-convention type parallel to SUBTYPE, return
8320 the parallel type. */
8321
8322struct type *
8323ada_get_base_type (struct type *raw_type)
8324{
8325 struct type *real_type_namer;
8326 struct type *raw_real_type;
8327
8328 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8329 return raw_type;
8330
8331 if (ada_is_aligner_type (raw_type))
8332 /* The encoding specifies that we should always use the aligner type.
8333 So, even if this aligner type has an associated XVS type, we should
8334 simply ignore it.
8335
8336 According to the compiler gurus, an XVS type parallel to an aligner
8337 type may exist because of a stabs limitation. In stabs, aligner
8338 types are empty because the field has a variable-sized type, and
8339 thus cannot actually be used as an aligner type. As a result,
8340 we need the associated parallel XVS type to decode the type.
8341 Since the policy in the compiler is to not change the internal
8342 representation based on the debugging info format, we sometimes
8343 end up having a redundant XVS type parallel to the aligner type. */
8344 return raw_type;
8345
8346 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8347 if (real_type_namer == NULL
8348 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8349 || TYPE_NFIELDS (real_type_namer) != 1)
8350 return raw_type;
8351
8352 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8353 {
8354 /* This is an older encoding form where the base type needs to be
8355 looked up by name. We prefer the newer enconding because it is
8356 more efficient. */
8357 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8358 if (raw_real_type == NULL)
8359 return raw_type;
8360 else
8361 return raw_real_type;
8362 }
8363
8364 /* The field in our XVS type is a reference to the base type. */
8365 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8366}
8367
8368/* The type of value designated by TYPE, with all aligners removed. */
8369
8370struct type *
8371ada_aligned_type (struct type *type)
8372{
8373 if (ada_is_aligner_type (type))
8374 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8375 else
8376 return ada_get_base_type (type);
8377}
8378
8379
8380/* The address of the aligned value in an object at address VALADDR
8381 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8382
8383const gdb_byte *
8384ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8385{
8386 if (ada_is_aligner_type (type))
8387 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8388 valaddr +
8389 TYPE_FIELD_BITPOS (type,
8390 0) / TARGET_CHAR_BIT);
8391 else
8392 return valaddr;
8393}
8394
8395
8396
8397/* The printed representation of an enumeration literal with encoded
8398 name NAME. The value is good to the next call of ada_enum_name. */
8399const char *
8400ada_enum_name (const char *name)
8401{
8402 static char *result;
8403 static size_t result_len = 0;
8404 char *tmp;
8405
8406 /* First, unqualify the enumeration name:
8407 1. Search for the last '.' character. If we find one, then skip
8408 all the preceding characters, the unqualified name starts
8409 right after that dot.
8410 2. Otherwise, we may be debugging on a target where the compiler
8411 translates dots into "__". Search forward for double underscores,
8412 but stop searching when we hit an overloading suffix, which is
8413 of the form "__" followed by digits. */
8414
8415 tmp = strrchr (name, '.');
8416 if (tmp != NULL)
8417 name = tmp + 1;
8418 else
8419 {
8420 while ((tmp = strstr (name, "__")) != NULL)
8421 {
8422 if (isdigit (tmp[2]))
8423 break;
8424 else
8425 name = tmp + 2;
8426 }
8427 }
8428
8429 if (name[0] == 'Q')
8430 {
8431 int v;
8432
8433 if (name[1] == 'U' || name[1] == 'W')
8434 {
8435 if (sscanf (name + 2, "%x", &v) != 1)
8436 return name;
8437 }
8438 else
8439 return name;
8440
8441 GROW_VECT (result, result_len, 16);
8442 if (isascii (v) && isprint (v))
8443 xsnprintf (result, result_len, "'%c'", v);
8444 else if (name[1] == 'U')
8445 xsnprintf (result, result_len, "[\"%02x\"]", v);
8446 else
8447 xsnprintf (result, result_len, "[\"%04x\"]", v);
8448
8449 return result;
8450 }
8451 else
8452 {
8453 tmp = strstr (name, "__");
8454 if (tmp == NULL)
8455 tmp = strstr (name, "$");
8456 if (tmp != NULL)
8457 {
8458 GROW_VECT (result, result_len, tmp - name + 1);
8459 strncpy (result, name, tmp - name);
8460 result[tmp - name] = '\0';
8461 return result;
8462 }
8463
8464 return name;
8465 }
8466}
8467
8468/* Evaluate the subexpression of EXP starting at *POS as for
8469 evaluate_type, updating *POS to point just past the evaluated
8470 expression. */
8471
8472static struct value *
8473evaluate_subexp_type (struct expression *exp, int *pos)
8474{
8475 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8476}
8477
8478/* If VAL is wrapped in an aligner or subtype wrapper, return the
8479 value it wraps. */
8480
8481static struct value *
8482unwrap_value (struct value *val)
8483{
8484 struct type *type = ada_check_typedef (value_type (val));
8485
8486 if (ada_is_aligner_type (type))
8487 {
8488 struct value *v = ada_value_struct_elt (val, "F", 0);
8489 struct type *val_type = ada_check_typedef (value_type (v));
8490
8491 if (ada_type_name (val_type) == NULL)
8492 TYPE_NAME (val_type) = ada_type_name (type);
8493
8494 return unwrap_value (v);
8495 }
8496 else
8497 {
8498 struct type *raw_real_type =
8499 ada_check_typedef (ada_get_base_type (type));
8500
8501 /* If there is no parallel XVS or XVE type, then the value is
8502 already unwrapped. Return it without further modification. */
8503 if ((type == raw_real_type)
8504 && ada_find_parallel_type (type, "___XVE") == NULL)
8505 return val;
8506
8507 return
8508 coerce_unspec_val_to_type
8509 (val, ada_to_fixed_type (raw_real_type, 0,
8510 value_address (val),
8511 NULL, 1));
8512 }
8513}
8514
8515static struct value *
8516cast_to_fixed (struct type *type, struct value *arg)
8517{
8518 LONGEST val;
8519
8520 if (type == value_type (arg))
8521 return arg;
8522 else if (ada_is_fixed_point_type (value_type (arg)))
8523 val = ada_float_to_fixed (type,
8524 ada_fixed_to_float (value_type (arg),
8525 value_as_long (arg)));
8526 else
8527 {
8528 DOUBLEST argd = value_as_double (arg);
8529
8530 val = ada_float_to_fixed (type, argd);
8531 }
8532
8533 return value_from_longest (type, val);
8534}
8535
8536static struct value *
8537cast_from_fixed (struct type *type, struct value *arg)
8538{
8539 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8540 value_as_long (arg));
8541
8542 return value_from_double (type, val);
8543}
8544
8545/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8546 return the converted value. */
8547
8548static struct value *
8549coerce_for_assign (struct type *type, struct value *val)
8550{
8551 struct type *type2 = value_type (val);
8552
8553 if (type == type2)
8554 return val;
8555
8556 type2 = ada_check_typedef (type2);
8557 type = ada_check_typedef (type);
8558
8559 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8560 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8561 {
8562 val = ada_value_ind (val);
8563 type2 = value_type (val);
8564 }
8565
8566 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8567 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8568 {
8569 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8570 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8571 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8572 error (_("Incompatible types in assignment"));
8573 deprecated_set_value_type (val, type);
8574 }
8575 return val;
8576}
8577
8578static struct value *
8579ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8580{
8581 struct value *val;
8582 struct type *type1, *type2;
8583 LONGEST v, v1, v2;
8584
8585 arg1 = coerce_ref (arg1);
8586 arg2 = coerce_ref (arg2);
8587 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8588 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8589
8590 if (TYPE_CODE (type1) != TYPE_CODE_INT
8591 || TYPE_CODE (type2) != TYPE_CODE_INT)
8592 return value_binop (arg1, arg2, op);
8593
8594 switch (op)
8595 {
8596 case BINOP_MOD:
8597 case BINOP_DIV:
8598 case BINOP_REM:
8599 break;
8600 default:
8601 return value_binop (arg1, arg2, op);
8602 }
8603
8604 v2 = value_as_long (arg2);
8605 if (v2 == 0)
8606 error (_("second operand of %s must not be zero."), op_string (op));
8607
8608 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8609 return value_binop (arg1, arg2, op);
8610
8611 v1 = value_as_long (arg1);
8612 switch (op)
8613 {
8614 case BINOP_DIV:
8615 v = v1 / v2;
8616 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8617 v += v > 0 ? -1 : 1;
8618 break;
8619 case BINOP_REM:
8620 v = v1 % v2;
8621 if (v * v1 < 0)
8622 v -= v2;
8623 break;
8624 default:
8625 /* Should not reach this point. */
8626 v = 0;
8627 }
8628
8629 val = allocate_value (type1);
8630 store_unsigned_integer (value_contents_raw (val),
8631 TYPE_LENGTH (value_type (val)),
8632 gdbarch_byte_order (get_type_arch (type1)), v);
8633 return val;
8634}
8635
8636static int
8637ada_value_equal (struct value *arg1, struct value *arg2)
8638{
8639 if (ada_is_direct_array_type (value_type (arg1))
8640 || ada_is_direct_array_type (value_type (arg2)))
8641 {
8642 /* Automatically dereference any array reference before
8643 we attempt to perform the comparison. */
8644 arg1 = ada_coerce_ref (arg1);
8645 arg2 = ada_coerce_ref (arg2);
8646
8647 arg1 = ada_coerce_to_simple_array (arg1);
8648 arg2 = ada_coerce_to_simple_array (arg2);
8649 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8650 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8651 error (_("Attempt to compare array with non-array"));
8652 /* FIXME: The following works only for types whose
8653 representations use all bits (no padding or undefined bits)
8654 and do not have user-defined equality. */
8655 return
8656 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8657 && memcmp (value_contents (arg1), value_contents (arg2),
8658 TYPE_LENGTH (value_type (arg1))) == 0;
8659 }
8660 return value_equal (arg1, arg2);
8661}
8662
8663/* Total number of component associations in the aggregate starting at
8664 index PC in EXP. Assumes that index PC is the start of an
8665 OP_AGGREGATE. */
8666
8667static int
8668num_component_specs (struct expression *exp, int pc)
8669{
8670 int n, m, i;
8671
8672 m = exp->elts[pc + 1].longconst;
8673 pc += 3;
8674 n = 0;
8675 for (i = 0; i < m; i += 1)
8676 {
8677 switch (exp->elts[pc].opcode)
8678 {
8679 default:
8680 n += 1;
8681 break;
8682 case OP_CHOICES:
8683 n += exp->elts[pc + 1].longconst;
8684 break;
8685 }
8686 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8687 }
8688 return n;
8689}
8690
8691/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8692 component of LHS (a simple array or a record), updating *POS past
8693 the expression, assuming that LHS is contained in CONTAINER. Does
8694 not modify the inferior's memory, nor does it modify LHS (unless
8695 LHS == CONTAINER). */
8696
8697static void
8698assign_component (struct value *container, struct value *lhs, LONGEST index,
8699 struct expression *exp, int *pos)
8700{
8701 struct value *mark = value_mark ();
8702 struct value *elt;
8703
8704 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8705 {
8706 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8707 struct value *index_val = value_from_longest (index_type, index);
8708
8709 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8710 }
8711 else
8712 {
8713 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8714 elt = ada_to_fixed_value (elt);
8715 }
8716
8717 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8718 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8719 else
8720 value_assign_to_component (container, elt,
8721 ada_evaluate_subexp (NULL, exp, pos,
8722 EVAL_NORMAL));
8723
8724 value_free_to_mark (mark);
8725}
8726
8727/* Assuming that LHS represents an lvalue having a record or array
8728 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8729 of that aggregate's value to LHS, advancing *POS past the
8730 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8731 lvalue containing LHS (possibly LHS itself). Does not modify
8732 the inferior's memory, nor does it modify the contents of
8733 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8734
8735static struct value *
8736assign_aggregate (struct value *container,
8737 struct value *lhs, struct expression *exp,
8738 int *pos, enum noside noside)
8739{
8740 struct type *lhs_type;
8741 int n = exp->elts[*pos+1].longconst;
8742 LONGEST low_index, high_index;
8743 int num_specs;
8744 LONGEST *indices;
8745 int max_indices, num_indices;
8746 int is_array_aggregate;
8747 int i;
8748
8749 *pos += 3;
8750 if (noside != EVAL_NORMAL)
8751 {
8752 for (i = 0; i < n; i += 1)
8753 ada_evaluate_subexp (NULL, exp, pos, noside);
8754 return container;
8755 }
8756
8757 container = ada_coerce_ref (container);
8758 if (ada_is_direct_array_type (value_type (container)))
8759 container = ada_coerce_to_simple_array (container);
8760 lhs = ada_coerce_ref (lhs);
8761 if (!deprecated_value_modifiable (lhs))
8762 error (_("Left operand of assignment is not a modifiable lvalue."));
8763
8764 lhs_type = value_type (lhs);
8765 if (ada_is_direct_array_type (lhs_type))
8766 {
8767 lhs = ada_coerce_to_simple_array (lhs);
8768 lhs_type = value_type (lhs);
8769 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8770 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8771 is_array_aggregate = 1;
8772 }
8773 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8774 {
8775 low_index = 0;
8776 high_index = num_visible_fields (lhs_type) - 1;
8777 is_array_aggregate = 0;
8778 }
8779 else
8780 error (_("Left-hand side must be array or record."));
8781
8782 num_specs = num_component_specs (exp, *pos - 3);
8783 max_indices = 4 * num_specs + 4;
8784 indices = alloca (max_indices * sizeof (indices[0]));
8785 indices[0] = indices[1] = low_index - 1;
8786 indices[2] = indices[3] = high_index + 1;
8787 num_indices = 4;
8788
8789 for (i = 0; i < n; i += 1)
8790 {
8791 switch (exp->elts[*pos].opcode)
8792 {
8793 case OP_CHOICES:
8794 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8795 &num_indices, max_indices,
8796 low_index, high_index);
8797 break;
8798 case OP_POSITIONAL:
8799 aggregate_assign_positional (container, lhs, exp, pos, indices,
8800 &num_indices, max_indices,
8801 low_index, high_index);
8802 break;
8803 case OP_OTHERS:
8804 if (i != n-1)
8805 error (_("Misplaced 'others' clause"));
8806 aggregate_assign_others (container, lhs, exp, pos, indices,
8807 num_indices, low_index, high_index);
8808 break;
8809 default:
8810 error (_("Internal error: bad aggregate clause"));
8811 }
8812 }
8813
8814 return container;
8815}
8816
8817/* Assign into the component of LHS indexed by the OP_POSITIONAL
8818 construct at *POS, updating *POS past the construct, given that
8819 the positions are relative to lower bound LOW, where HIGH is the
8820 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8821 updating *NUM_INDICES as needed. CONTAINER is as for
8822 assign_aggregate. */
8823static void
8824aggregate_assign_positional (struct value *container,
8825 struct value *lhs, struct expression *exp,
8826 int *pos, LONGEST *indices, int *num_indices,
8827 int max_indices, LONGEST low, LONGEST high)
8828{
8829 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8830
8831 if (ind - 1 == high)
8832 warning (_("Extra components in aggregate ignored."));
8833 if (ind <= high)
8834 {
8835 add_component_interval (ind, ind, indices, num_indices, max_indices);
8836 *pos += 3;
8837 assign_component (container, lhs, ind, exp, pos);
8838 }
8839 else
8840 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8841}
8842
8843/* Assign into the components of LHS indexed by the OP_CHOICES
8844 construct at *POS, updating *POS past the construct, given that
8845 the allowable indices are LOW..HIGH. Record the indices assigned
8846 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8847 needed. CONTAINER is as for assign_aggregate. */
8848static void
8849aggregate_assign_from_choices (struct value *container,
8850 struct value *lhs, struct expression *exp,
8851 int *pos, LONGEST *indices, int *num_indices,
8852 int max_indices, LONGEST low, LONGEST high)
8853{
8854 int j;
8855 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8856 int choice_pos, expr_pc;
8857 int is_array = ada_is_direct_array_type (value_type (lhs));
8858
8859 choice_pos = *pos += 3;
8860
8861 for (j = 0; j < n_choices; j += 1)
8862 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8863 expr_pc = *pos;
8864 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8865
8866 for (j = 0; j < n_choices; j += 1)
8867 {
8868 LONGEST lower, upper;
8869 enum exp_opcode op = exp->elts[choice_pos].opcode;
8870
8871 if (op == OP_DISCRETE_RANGE)
8872 {
8873 choice_pos += 1;
8874 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8875 EVAL_NORMAL));
8876 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8877 EVAL_NORMAL));
8878 }
8879 else if (is_array)
8880 {
8881 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8882 EVAL_NORMAL));
8883 upper = lower;
8884 }
8885 else
8886 {
8887 int ind;
8888 const char *name;
8889
8890 switch (op)
8891 {
8892 case OP_NAME:
8893 name = &exp->elts[choice_pos + 2].string;
8894 break;
8895 case OP_VAR_VALUE:
8896 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8897 break;
8898 default:
8899 error (_("Invalid record component association."));
8900 }
8901 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8902 ind = 0;
8903 if (! find_struct_field (name, value_type (lhs), 0,
8904 NULL, NULL, NULL, NULL, &ind))
8905 error (_("Unknown component name: %s."), name);
8906 lower = upper = ind;
8907 }
8908
8909 if (lower <= upper && (lower < low || upper > high))
8910 error (_("Index in component association out of bounds."));
8911
8912 add_component_interval (lower, upper, indices, num_indices,
8913 max_indices);
8914 while (lower <= upper)
8915 {
8916 int pos1;
8917
8918 pos1 = expr_pc;
8919 assign_component (container, lhs, lower, exp, &pos1);
8920 lower += 1;
8921 }
8922 }
8923}
8924
8925/* Assign the value of the expression in the OP_OTHERS construct in
8926 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8927 have not been previously assigned. The index intervals already assigned
8928 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8929 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8930static void
8931aggregate_assign_others (struct value *container,
8932 struct value *lhs, struct expression *exp,
8933 int *pos, LONGEST *indices, int num_indices,
8934 LONGEST low, LONGEST high)
8935{
8936 int i;
8937 int expr_pc = *pos + 1;
8938
8939 for (i = 0; i < num_indices - 2; i += 2)
8940 {
8941 LONGEST ind;
8942
8943 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8944 {
8945 int localpos;
8946
8947 localpos = expr_pc;
8948 assign_component (container, lhs, ind, exp, &localpos);
8949 }
8950 }
8951 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8952}
8953
8954/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8955 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8956 modifying *SIZE as needed. It is an error if *SIZE exceeds
8957 MAX_SIZE. The resulting intervals do not overlap. */
8958static void
8959add_component_interval (LONGEST low, LONGEST high,
8960 LONGEST* indices, int *size, int max_size)
8961{
8962 int i, j;
8963
8964 for (i = 0; i < *size; i += 2) {
8965 if (high >= indices[i] && low <= indices[i + 1])
8966 {
8967 int kh;
8968
8969 for (kh = i + 2; kh < *size; kh += 2)
8970 if (high < indices[kh])
8971 break;
8972 if (low < indices[i])
8973 indices[i] = low;
8974 indices[i + 1] = indices[kh - 1];
8975 if (high > indices[i + 1])
8976 indices[i + 1] = high;
8977 memcpy (indices + i + 2, indices + kh, *size - kh);
8978 *size -= kh - i - 2;
8979 return;
8980 }
8981 else if (high < indices[i])
8982 break;
8983 }
8984
8985 if (*size == max_size)
8986 error (_("Internal error: miscounted aggregate components."));
8987 *size += 2;
8988 for (j = *size-1; j >= i+2; j -= 1)
8989 indices[j] = indices[j - 2];
8990 indices[i] = low;
8991 indices[i + 1] = high;
8992}
8993
8994/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8995 is different. */
8996
8997static struct value *
8998ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8999{
9000 if (type == ada_check_typedef (value_type (arg2)))
9001 return arg2;
9002
9003 if (ada_is_fixed_point_type (type))
9004 return (cast_to_fixed (type, arg2));
9005
9006 if (ada_is_fixed_point_type (value_type (arg2)))
9007 return cast_from_fixed (type, arg2);
9008
9009 return value_cast (type, arg2);
9010}
9011
9012/* Evaluating Ada expressions, and printing their result.
9013 ------------------------------------------------------
9014
9015 1. Introduction:
9016 ----------------
9017
9018 We usually evaluate an Ada expression in order to print its value.
9019 We also evaluate an expression in order to print its type, which
9020 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9021 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9022 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9023 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9024 similar.
9025
9026 Evaluating expressions is a little more complicated for Ada entities
9027 than it is for entities in languages such as C. The main reason for
9028 this is that Ada provides types whose definition might be dynamic.
9029 One example of such types is variant records. Or another example
9030 would be an array whose bounds can only be known at run time.
9031
9032 The following description is a general guide as to what should be
9033 done (and what should NOT be done) in order to evaluate an expression
9034 involving such types, and when. This does not cover how the semantic
9035 information is encoded by GNAT as this is covered separatly. For the
9036 document used as the reference for the GNAT encoding, see exp_dbug.ads
9037 in the GNAT sources.
9038
9039 Ideally, we should embed each part of this description next to its
9040 associated code. Unfortunately, the amount of code is so vast right
9041 now that it's hard to see whether the code handling a particular
9042 situation might be duplicated or not. One day, when the code is
9043 cleaned up, this guide might become redundant with the comments
9044 inserted in the code, and we might want to remove it.
9045
9046 2. ``Fixing'' an Entity, the Simple Case:
9047 -----------------------------------------
9048
9049 When evaluating Ada expressions, the tricky issue is that they may
9050 reference entities whose type contents and size are not statically
9051 known. Consider for instance a variant record:
9052
9053 type Rec (Empty : Boolean := True) is record
9054 case Empty is
9055 when True => null;
9056 when False => Value : Integer;
9057 end case;
9058 end record;
9059 Yes : Rec := (Empty => False, Value => 1);
9060 No : Rec := (empty => True);
9061
9062 The size and contents of that record depends on the value of the
9063 descriminant (Rec.Empty). At this point, neither the debugging
9064 information nor the associated type structure in GDB are able to
9065 express such dynamic types. So what the debugger does is to create
9066 "fixed" versions of the type that applies to the specific object.
9067 We also informally refer to this opperation as "fixing" an object,
9068 which means creating its associated fixed type.
9069
9070 Example: when printing the value of variable "Yes" above, its fixed
9071 type would look like this:
9072
9073 type Rec is record
9074 Empty : Boolean;
9075 Value : Integer;
9076 end record;
9077
9078 On the other hand, if we printed the value of "No", its fixed type
9079 would become:
9080
9081 type Rec is record
9082 Empty : Boolean;
9083 end record;
9084
9085 Things become a little more complicated when trying to fix an entity
9086 with a dynamic type that directly contains another dynamic type,
9087 such as an array of variant records, for instance. There are
9088 two possible cases: Arrays, and records.
9089
9090 3. ``Fixing'' Arrays:
9091 ---------------------
9092
9093 The type structure in GDB describes an array in terms of its bounds,
9094 and the type of its elements. By design, all elements in the array
9095 have the same type and we cannot represent an array of variant elements
9096 using the current type structure in GDB. When fixing an array,
9097 we cannot fix the array element, as we would potentially need one
9098 fixed type per element of the array. As a result, the best we can do
9099 when fixing an array is to produce an array whose bounds and size
9100 are correct (allowing us to read it from memory), but without having
9101 touched its element type. Fixing each element will be done later,
9102 when (if) necessary.
9103
9104 Arrays are a little simpler to handle than records, because the same
9105 amount of memory is allocated for each element of the array, even if
9106 the amount of space actually used by each element differs from element
9107 to element. Consider for instance the following array of type Rec:
9108
9109 type Rec_Array is array (1 .. 2) of Rec;
9110
9111 The actual amount of memory occupied by each element might be different
9112 from element to element, depending on the value of their discriminant.
9113 But the amount of space reserved for each element in the array remains
9114 fixed regardless. So we simply need to compute that size using
9115 the debugging information available, from which we can then determine
9116 the array size (we multiply the number of elements of the array by
9117 the size of each element).
9118
9119 The simplest case is when we have an array of a constrained element
9120 type. For instance, consider the following type declarations:
9121
9122 type Bounded_String (Max_Size : Integer) is
9123 Length : Integer;
9124 Buffer : String (1 .. Max_Size);
9125 end record;
9126 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9127
9128 In this case, the compiler describes the array as an array of
9129 variable-size elements (identified by its XVS suffix) for which
9130 the size can be read in the parallel XVZ variable.
9131
9132 In the case of an array of an unconstrained element type, the compiler
9133 wraps the array element inside a private PAD type. This type should not
9134 be shown to the user, and must be "unwrap"'ed before printing. Note
9135 that we also use the adjective "aligner" in our code to designate
9136 these wrapper types.
9137
9138 In some cases, the size allocated for each element is statically
9139 known. In that case, the PAD type already has the correct size,
9140 and the array element should remain unfixed.
9141
9142 But there are cases when this size is not statically known.
9143 For instance, assuming that "Five" is an integer variable:
9144
9145 type Dynamic is array (1 .. Five) of Integer;
9146 type Wrapper (Has_Length : Boolean := False) is record
9147 Data : Dynamic;
9148 case Has_Length is
9149 when True => Length : Integer;
9150 when False => null;
9151 end case;
9152 end record;
9153 type Wrapper_Array is array (1 .. 2) of Wrapper;
9154
9155 Hello : Wrapper_Array := (others => (Has_Length => True,
9156 Data => (others => 17),
9157 Length => 1));
9158
9159
9160 The debugging info would describe variable Hello as being an
9161 array of a PAD type. The size of that PAD type is not statically
9162 known, but can be determined using a parallel XVZ variable.
9163 In that case, a copy of the PAD type with the correct size should
9164 be used for the fixed array.
9165
9166 3. ``Fixing'' record type objects:
9167 ----------------------------------
9168
9169 Things are slightly different from arrays in the case of dynamic
9170 record types. In this case, in order to compute the associated
9171 fixed type, we need to determine the size and offset of each of
9172 its components. This, in turn, requires us to compute the fixed
9173 type of each of these components.
9174
9175 Consider for instance the example:
9176
9177 type Bounded_String (Max_Size : Natural) is record
9178 Str : String (1 .. Max_Size);
9179 Length : Natural;
9180 end record;
9181 My_String : Bounded_String (Max_Size => 10);
9182
9183 In that case, the position of field "Length" depends on the size
9184 of field Str, which itself depends on the value of the Max_Size
9185 discriminant. In order to fix the type of variable My_String,
9186 we need to fix the type of field Str. Therefore, fixing a variant
9187 record requires us to fix each of its components.
9188
9189 However, if a component does not have a dynamic size, the component
9190 should not be fixed. In particular, fields that use a PAD type
9191 should not fixed. Here is an example where this might happen
9192 (assuming type Rec above):
9193
9194 type Container (Big : Boolean) is record
9195 First : Rec;
9196 After : Integer;
9197 case Big is
9198 when True => Another : Integer;
9199 when False => null;
9200 end case;
9201 end record;
9202 My_Container : Container := (Big => False,
9203 First => (Empty => True),
9204 After => 42);
9205
9206 In that example, the compiler creates a PAD type for component First,
9207 whose size is constant, and then positions the component After just
9208 right after it. The offset of component After is therefore constant
9209 in this case.
9210
9211 The debugger computes the position of each field based on an algorithm
9212 that uses, among other things, the actual position and size of the field
9213 preceding it. Let's now imagine that the user is trying to print
9214 the value of My_Container. If the type fixing was recursive, we would
9215 end up computing the offset of field After based on the size of the
9216 fixed version of field First. And since in our example First has
9217 only one actual field, the size of the fixed type is actually smaller
9218 than the amount of space allocated to that field, and thus we would
9219 compute the wrong offset of field After.
9220
9221 To make things more complicated, we need to watch out for dynamic
9222 components of variant records (identified by the ___XVL suffix in
9223 the component name). Even if the target type is a PAD type, the size
9224 of that type might not be statically known. So the PAD type needs
9225 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9226 we might end up with the wrong size for our component. This can be
9227 observed with the following type declarations:
9228
9229 type Octal is new Integer range 0 .. 7;
9230 type Octal_Array is array (Positive range <>) of Octal;
9231 pragma Pack (Octal_Array);
9232
9233 type Octal_Buffer (Size : Positive) is record
9234 Buffer : Octal_Array (1 .. Size);
9235 Length : Integer;
9236 end record;
9237
9238 In that case, Buffer is a PAD type whose size is unset and needs
9239 to be computed by fixing the unwrapped type.
9240
9241 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9242 ----------------------------------------------------------
9243
9244 Lastly, when should the sub-elements of an entity that remained unfixed
9245 thus far, be actually fixed?
9246
9247 The answer is: Only when referencing that element. For instance
9248 when selecting one component of a record, this specific component
9249 should be fixed at that point in time. Or when printing the value
9250 of a record, each component should be fixed before its value gets
9251 printed. Similarly for arrays, the element of the array should be
9252 fixed when printing each element of the array, or when extracting
9253 one element out of that array. On the other hand, fixing should
9254 not be performed on the elements when taking a slice of an array!
9255
9256 Note that one of the side-effects of miscomputing the offset and
9257 size of each field is that we end up also miscomputing the size
9258 of the containing type. This can have adverse results when computing
9259 the value of an entity. GDB fetches the value of an entity based
9260 on the size of its type, and thus a wrong size causes GDB to fetch
9261 the wrong amount of memory. In the case where the computed size is
9262 too small, GDB fetches too little data to print the value of our
9263 entiry. Results in this case as unpredicatble, as we usually read
9264 past the buffer containing the data =:-o. */
9265
9266/* Implement the evaluate_exp routine in the exp_descriptor structure
9267 for the Ada language. */
9268
9269static struct value *
9270ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9271 int *pos, enum noside noside)
9272{
9273 enum exp_opcode op;
9274 int tem;
9275 int pc;
9276 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9277 struct type *type;
9278 int nargs, oplen;
9279 struct value **argvec;
9280
9281 pc = *pos;
9282 *pos += 1;
9283 op = exp->elts[pc].opcode;
9284
9285 switch (op)
9286 {
9287 default:
9288 *pos -= 1;
9289 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9290 arg1 = unwrap_value (arg1);
9291
9292 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9293 then we need to perform the conversion manually, because
9294 evaluate_subexp_standard doesn't do it. This conversion is
9295 necessary in Ada because the different kinds of float/fixed
9296 types in Ada have different representations.
9297
9298 Similarly, we need to perform the conversion from OP_LONG
9299 ourselves. */
9300 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9301 arg1 = ada_value_cast (expect_type, arg1, noside);
9302
9303 return arg1;
9304
9305 case OP_STRING:
9306 {
9307 struct value *result;
9308
9309 *pos -= 1;
9310 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9311 /* The result type will have code OP_STRING, bashed there from
9312 OP_ARRAY. Bash it back. */
9313 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9314 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9315 return result;
9316 }
9317
9318 case UNOP_CAST:
9319 (*pos) += 2;
9320 type = exp->elts[pc + 1].type;
9321 arg1 = evaluate_subexp (type, exp, pos, noside);
9322 if (noside == EVAL_SKIP)
9323 goto nosideret;
9324 arg1 = ada_value_cast (type, arg1, noside);
9325 return arg1;
9326
9327 case UNOP_QUAL:
9328 (*pos) += 2;
9329 type = exp->elts[pc + 1].type;
9330 return ada_evaluate_subexp (type, exp, pos, noside);
9331
9332 case BINOP_ASSIGN:
9333 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9334 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9335 {
9336 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9337 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9338 return arg1;
9339 return ada_value_assign (arg1, arg1);
9340 }
9341 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9342 except if the lhs of our assignment is a convenience variable.
9343 In the case of assigning to a convenience variable, the lhs
9344 should be exactly the result of the evaluation of the rhs. */
9345 type = value_type (arg1);
9346 if (VALUE_LVAL (arg1) == lval_internalvar)
9347 type = NULL;
9348 arg2 = evaluate_subexp (type, exp, pos, noside);
9349 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9350 return arg1;
9351 if (ada_is_fixed_point_type (value_type (arg1)))
9352 arg2 = cast_to_fixed (value_type (arg1), arg2);
9353 else if (ada_is_fixed_point_type (value_type (arg2)))
9354 error
9355 (_("Fixed-point values must be assigned to fixed-point variables"));
9356 else
9357 arg2 = coerce_for_assign (value_type (arg1), arg2);
9358 return ada_value_assign (arg1, arg2);
9359
9360 case BINOP_ADD:
9361 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9362 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9363 if (noside == EVAL_SKIP)
9364 goto nosideret;
9365 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9366 return (value_from_longest
9367 (value_type (arg1),
9368 value_as_long (arg1) + value_as_long (arg2)));
9369 if ((ada_is_fixed_point_type (value_type (arg1))
9370 || ada_is_fixed_point_type (value_type (arg2)))
9371 && value_type (arg1) != value_type (arg2))
9372 error (_("Operands of fixed-point addition must have the same type"));
9373 /* Do the addition, and cast the result to the type of the first
9374 argument. We cannot cast the result to a reference type, so if
9375 ARG1 is a reference type, find its underlying type. */
9376 type = value_type (arg1);
9377 while (TYPE_CODE (type) == TYPE_CODE_REF)
9378 type = TYPE_TARGET_TYPE (type);
9379 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9380 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9381
9382 case BINOP_SUB:
9383 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9384 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9385 if (noside == EVAL_SKIP)
9386 goto nosideret;
9387 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9388 return (value_from_longest
9389 (value_type (arg1),
9390 value_as_long (arg1) - value_as_long (arg2)));
9391 if ((ada_is_fixed_point_type (value_type (arg1))
9392 || ada_is_fixed_point_type (value_type (arg2)))
9393 && value_type (arg1) != value_type (arg2))
9394 error (_("Operands of fixed-point subtraction "
9395 "must have the same type"));
9396 /* Do the substraction, and cast the result to the type of the first
9397 argument. We cannot cast the result to a reference type, so if
9398 ARG1 is a reference type, find its underlying type. */
9399 type = value_type (arg1);
9400 while (TYPE_CODE (type) == TYPE_CODE_REF)
9401 type = TYPE_TARGET_TYPE (type);
9402 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9403 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9404
9405 case BINOP_MUL:
9406 case BINOP_DIV:
9407 case BINOP_REM:
9408 case BINOP_MOD:
9409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9410 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9411 if (noside == EVAL_SKIP)
9412 goto nosideret;
9413 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9414 {
9415 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9416 return value_zero (value_type (arg1), not_lval);
9417 }
9418 else
9419 {
9420 type = builtin_type (exp->gdbarch)->builtin_double;
9421 if (ada_is_fixed_point_type (value_type (arg1)))
9422 arg1 = cast_from_fixed (type, arg1);
9423 if (ada_is_fixed_point_type (value_type (arg2)))
9424 arg2 = cast_from_fixed (type, arg2);
9425 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9426 return ada_value_binop (arg1, arg2, op);
9427 }
9428
9429 case BINOP_EQUAL:
9430 case BINOP_NOTEQUAL:
9431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9432 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9433 if (noside == EVAL_SKIP)
9434 goto nosideret;
9435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9436 tem = 0;
9437 else
9438 {
9439 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9440 tem = ada_value_equal (arg1, arg2);
9441 }
9442 if (op == BINOP_NOTEQUAL)
9443 tem = !tem;
9444 type = language_bool_type (exp->language_defn, exp->gdbarch);
9445 return value_from_longest (type, (LONGEST) tem);
9446
9447 case UNOP_NEG:
9448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9449 if (noside == EVAL_SKIP)
9450 goto nosideret;
9451 else if (ada_is_fixed_point_type (value_type (arg1)))
9452 return value_cast (value_type (arg1), value_neg (arg1));
9453 else
9454 {
9455 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9456 return value_neg (arg1);
9457 }
9458
9459 case BINOP_LOGICAL_AND:
9460 case BINOP_LOGICAL_OR:
9461 case UNOP_LOGICAL_NOT:
9462 {
9463 struct value *val;
9464
9465 *pos -= 1;
9466 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9467 type = language_bool_type (exp->language_defn, exp->gdbarch);
9468 return value_cast (type, val);
9469 }
9470
9471 case BINOP_BITWISE_AND:
9472 case BINOP_BITWISE_IOR:
9473 case BINOP_BITWISE_XOR:
9474 {
9475 struct value *val;
9476
9477 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9478 *pos = pc;
9479 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9480
9481 return value_cast (value_type (arg1), val);
9482 }
9483
9484 case OP_VAR_VALUE:
9485 *pos -= 1;
9486
9487 if (noside == EVAL_SKIP)
9488 {
9489 *pos += 4;
9490 goto nosideret;
9491 }
9492 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9493 /* Only encountered when an unresolved symbol occurs in a
9494 context other than a function call, in which case, it is
9495 invalid. */
9496 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9497 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9498 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9499 {
9500 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9501 /* Check to see if this is a tagged type. We also need to handle
9502 the case where the type is a reference to a tagged type, but
9503 we have to be careful to exclude pointers to tagged types.
9504 The latter should be shown as usual (as a pointer), whereas
9505 a reference should mostly be transparent to the user. */
9506 if (ada_is_tagged_type (type, 0)
9507 || (TYPE_CODE(type) == TYPE_CODE_REF
9508 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9509 {
9510 /* Tagged types are a little special in the fact that the real
9511 type is dynamic and can only be determined by inspecting the
9512 object's tag. This means that we need to get the object's
9513 value first (EVAL_NORMAL) and then extract the actual object
9514 type from its tag.
9515
9516 Note that we cannot skip the final step where we extract
9517 the object type from its tag, because the EVAL_NORMAL phase
9518 results in dynamic components being resolved into fixed ones.
9519 This can cause problems when trying to print the type
9520 description of tagged types whose parent has a dynamic size:
9521 We use the type name of the "_parent" component in order
9522 to print the name of the ancestor type in the type description.
9523 If that component had a dynamic size, the resolution into
9524 a fixed type would result in the loss of that type name,
9525 thus preventing us from printing the name of the ancestor
9526 type in the type description. */
9527 struct type *actual_type;
9528
9529 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9530 actual_type = type_from_tag (ada_value_tag (arg1));
9531 if (actual_type == NULL)
9532 /* If, for some reason, we were unable to determine
9533 the actual type from the tag, then use the static
9534 approximation that we just computed as a fallback.
9535 This can happen if the debugging information is
9536 incomplete, for instance. */
9537 actual_type = type;
9538
9539 return value_zero (actual_type, not_lval);
9540 }
9541
9542 *pos += 4;
9543 return value_zero
9544 (to_static_fixed_type
9545 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9546 not_lval);
9547 }
9548 else
9549 {
9550 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9551 return ada_to_fixed_value (arg1);
9552 }
9553
9554 case OP_FUNCALL:
9555 (*pos) += 2;
9556
9557 /* Allocate arg vector, including space for the function to be
9558 called in argvec[0] and a terminating NULL. */
9559 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9560 argvec =
9561 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9562
9563 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9564 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9565 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9566 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9567 else
9568 {
9569 for (tem = 0; tem <= nargs; tem += 1)
9570 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9571 argvec[tem] = 0;
9572
9573 if (noside == EVAL_SKIP)
9574 goto nosideret;
9575 }
9576
9577 if (ada_is_constrained_packed_array_type
9578 (desc_base_type (value_type (argvec[0]))))
9579 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9580 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9581 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9582 /* This is a packed array that has already been fixed, and
9583 therefore already coerced to a simple array. Nothing further
9584 to do. */
9585 ;
9586 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9587 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9588 && VALUE_LVAL (argvec[0]) == lval_memory))
9589 argvec[0] = value_addr (argvec[0]);
9590
9591 type = ada_check_typedef (value_type (argvec[0]));
9592
9593 /* Ada allows us to implicitly dereference arrays when subscripting
9594 them. So, if this is an array typedef (encoding use for array
9595 access types encoded as fat pointers), strip it now. */
9596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9597 type = ada_typedef_target_type (type);
9598
9599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9600 {
9601 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9602 {
9603 case TYPE_CODE_FUNC:
9604 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9605 break;
9606 case TYPE_CODE_ARRAY:
9607 break;
9608 case TYPE_CODE_STRUCT:
9609 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9610 argvec[0] = ada_value_ind (argvec[0]);
9611 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9612 break;
9613 default:
9614 error (_("cannot subscript or call something of type `%s'"),
9615 ada_type_name (value_type (argvec[0])));
9616 break;
9617 }
9618 }
9619
9620 switch (TYPE_CODE (type))
9621 {
9622 case TYPE_CODE_FUNC:
9623 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9624 return allocate_value (TYPE_TARGET_TYPE (type));
9625 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9626 case TYPE_CODE_STRUCT:
9627 {
9628 int arity;
9629
9630 arity = ada_array_arity (type);
9631 type = ada_array_element_type (type, nargs);
9632 if (type == NULL)
9633 error (_("cannot subscript or call a record"));
9634 if (arity != nargs)
9635 error (_("wrong number of subscripts; expecting %d"), arity);
9636 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9637 return value_zero (ada_aligned_type (type), lval_memory);
9638 return
9639 unwrap_value (ada_value_subscript
9640 (argvec[0], nargs, argvec + 1));
9641 }
9642 case TYPE_CODE_ARRAY:
9643 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9644 {
9645 type = ada_array_element_type (type, nargs);
9646 if (type == NULL)
9647 error (_("element type of array unknown"));
9648 else
9649 return value_zero (ada_aligned_type (type), lval_memory);
9650 }
9651 return
9652 unwrap_value (ada_value_subscript
9653 (ada_coerce_to_simple_array (argvec[0]),
9654 nargs, argvec + 1));
9655 case TYPE_CODE_PTR: /* Pointer to array */
9656 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9657 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9658 {
9659 type = ada_array_element_type (type, nargs);
9660 if (type == NULL)
9661 error (_("element type of array unknown"));
9662 else
9663 return value_zero (ada_aligned_type (type), lval_memory);
9664 }
9665 return
9666 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9667 nargs, argvec + 1));
9668
9669 default:
9670 error (_("Attempt to index or call something other than an "
9671 "array or function"));
9672 }
9673
9674 case TERNOP_SLICE:
9675 {
9676 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9677 struct value *low_bound_val =
9678 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9679 struct value *high_bound_val =
9680 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9681 LONGEST low_bound;
9682 LONGEST high_bound;
9683
9684 low_bound_val = coerce_ref (low_bound_val);
9685 high_bound_val = coerce_ref (high_bound_val);
9686 low_bound = pos_atr (low_bound_val);
9687 high_bound = pos_atr (high_bound_val);
9688
9689 if (noside == EVAL_SKIP)
9690 goto nosideret;
9691
9692 /* If this is a reference to an aligner type, then remove all
9693 the aligners. */
9694 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9695 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9696 TYPE_TARGET_TYPE (value_type (array)) =
9697 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9698
9699 if (ada_is_constrained_packed_array_type (value_type (array)))
9700 error (_("cannot slice a packed array"));
9701
9702 /* If this is a reference to an array or an array lvalue,
9703 convert to a pointer. */
9704 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9705 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9706 && VALUE_LVAL (array) == lval_memory))
9707 array = value_addr (array);
9708
9709 if (noside == EVAL_AVOID_SIDE_EFFECTS
9710 && ada_is_array_descriptor_type (ada_check_typedef
9711 (value_type (array))))
9712 return empty_array (ada_type_of_array (array, 0), low_bound);
9713
9714 array = ada_coerce_to_simple_array_ptr (array);
9715
9716 /* If we have more than one level of pointer indirection,
9717 dereference the value until we get only one level. */
9718 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9719 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9720 == TYPE_CODE_PTR))
9721 array = value_ind (array);
9722
9723 /* Make sure we really do have an array type before going further,
9724 to avoid a SEGV when trying to get the index type or the target
9725 type later down the road if the debug info generated by
9726 the compiler is incorrect or incomplete. */
9727 if (!ada_is_simple_array_type (value_type (array)))
9728 error (_("cannot take slice of non-array"));
9729
9730 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9731 == TYPE_CODE_PTR)
9732 {
9733 struct type *type0 = ada_check_typedef (value_type (array));
9734
9735 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9736 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9737 else
9738 {
9739 struct type *arr_type0 =
9740 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9741
9742 return ada_value_slice_from_ptr (array, arr_type0,
9743 longest_to_int (low_bound),
9744 longest_to_int (high_bound));
9745 }
9746 }
9747 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9748 return array;
9749 else if (high_bound < low_bound)
9750 return empty_array (value_type (array), low_bound);
9751 else
9752 return ada_value_slice (array, longest_to_int (low_bound),
9753 longest_to_int (high_bound));
9754 }
9755
9756 case UNOP_IN_RANGE:
9757 (*pos) += 2;
9758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9759 type = check_typedef (exp->elts[pc + 1].type);
9760
9761 if (noside == EVAL_SKIP)
9762 goto nosideret;
9763
9764 switch (TYPE_CODE (type))
9765 {
9766 default:
9767 lim_warning (_("Membership test incompletely implemented; "
9768 "always returns true"));
9769 type = language_bool_type (exp->language_defn, exp->gdbarch);
9770 return value_from_longest (type, (LONGEST) 1);
9771
9772 case TYPE_CODE_RANGE:
9773 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9774 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9775 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9776 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9777 type = language_bool_type (exp->language_defn, exp->gdbarch);
9778 return
9779 value_from_longest (type,
9780 (value_less (arg1, arg3)
9781 || value_equal (arg1, arg3))
9782 && (value_less (arg2, arg1)
9783 || value_equal (arg2, arg1)));
9784 }
9785
9786 case BINOP_IN_BOUNDS:
9787 (*pos) += 2;
9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9789 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9790
9791 if (noside == EVAL_SKIP)
9792 goto nosideret;
9793
9794 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9795 {
9796 type = language_bool_type (exp->language_defn, exp->gdbarch);
9797 return value_zero (type, not_lval);
9798 }
9799
9800 tem = longest_to_int (exp->elts[pc + 1].longconst);
9801
9802 type = ada_index_type (value_type (arg2), tem, "range");
9803 if (!type)
9804 type = value_type (arg1);
9805
9806 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9807 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9808
9809 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9810 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9811 type = language_bool_type (exp->language_defn, exp->gdbarch);
9812 return
9813 value_from_longest (type,
9814 (value_less (arg1, arg3)
9815 || value_equal (arg1, arg3))
9816 && (value_less (arg2, arg1)
9817 || value_equal (arg2, arg1)));
9818
9819 case TERNOP_IN_RANGE:
9820 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9821 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9822 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9823
9824 if (noside == EVAL_SKIP)
9825 goto nosideret;
9826
9827 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9828 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9829 type = language_bool_type (exp->language_defn, exp->gdbarch);
9830 return
9831 value_from_longest (type,
9832 (value_less (arg1, arg3)
9833 || value_equal (arg1, arg3))
9834 && (value_less (arg2, arg1)
9835 || value_equal (arg2, arg1)));
9836
9837 case OP_ATR_FIRST:
9838 case OP_ATR_LAST:
9839 case OP_ATR_LENGTH:
9840 {
9841 struct type *type_arg;
9842
9843 if (exp->elts[*pos].opcode == OP_TYPE)
9844 {
9845 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9846 arg1 = NULL;
9847 type_arg = check_typedef (exp->elts[pc + 2].type);
9848 }
9849 else
9850 {
9851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9852 type_arg = NULL;
9853 }
9854
9855 if (exp->elts[*pos].opcode != OP_LONG)
9856 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9857 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9858 *pos += 4;
9859
9860 if (noside == EVAL_SKIP)
9861 goto nosideret;
9862
9863 if (type_arg == NULL)
9864 {
9865 arg1 = ada_coerce_ref (arg1);
9866
9867 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9868 arg1 = ada_coerce_to_simple_array (arg1);
9869
9870 type = ada_index_type (value_type (arg1), tem,
9871 ada_attribute_name (op));
9872 if (type == NULL)
9873 type = builtin_type (exp->gdbarch)->builtin_int;
9874
9875 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9876 return allocate_value (type);
9877
9878 switch (op)
9879 {
9880 default: /* Should never happen. */
9881 error (_("unexpected attribute encountered"));
9882 case OP_ATR_FIRST:
9883 return value_from_longest
9884 (type, ada_array_bound (arg1, tem, 0));
9885 case OP_ATR_LAST:
9886 return value_from_longest
9887 (type, ada_array_bound (arg1, tem, 1));
9888 case OP_ATR_LENGTH:
9889 return value_from_longest
9890 (type, ada_array_length (arg1, tem));
9891 }
9892 }
9893 else if (discrete_type_p (type_arg))
9894 {
9895 struct type *range_type;
9896 const char *name = ada_type_name (type_arg);
9897
9898 range_type = NULL;
9899 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9900 range_type = to_fixed_range_type (type_arg, NULL);
9901 if (range_type == NULL)
9902 range_type = type_arg;
9903 switch (op)
9904 {
9905 default:
9906 error (_("unexpected attribute encountered"));
9907 case OP_ATR_FIRST:
9908 return value_from_longest
9909 (range_type, ada_discrete_type_low_bound (range_type));
9910 case OP_ATR_LAST:
9911 return value_from_longest
9912 (range_type, ada_discrete_type_high_bound (range_type));
9913 case OP_ATR_LENGTH:
9914 error (_("the 'length attribute applies only to array types"));
9915 }
9916 }
9917 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9918 error (_("unimplemented type attribute"));
9919 else
9920 {
9921 LONGEST low, high;
9922
9923 if (ada_is_constrained_packed_array_type (type_arg))
9924 type_arg = decode_constrained_packed_array_type (type_arg);
9925
9926 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9927 if (type == NULL)
9928 type = builtin_type (exp->gdbarch)->builtin_int;
9929
9930 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9931 return allocate_value (type);
9932
9933 switch (op)
9934 {
9935 default:
9936 error (_("unexpected attribute encountered"));
9937 case OP_ATR_FIRST:
9938 low = ada_array_bound_from_type (type_arg, tem, 0);
9939 return value_from_longest (type, low);
9940 case OP_ATR_LAST:
9941 high = ada_array_bound_from_type (type_arg, tem, 1);
9942 return value_from_longest (type, high);
9943 case OP_ATR_LENGTH:
9944 low = ada_array_bound_from_type (type_arg, tem, 0);
9945 high = ada_array_bound_from_type (type_arg, tem, 1);
9946 return value_from_longest (type, high - low + 1);
9947 }
9948 }
9949 }
9950
9951 case OP_ATR_TAG:
9952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9953 if (noside == EVAL_SKIP)
9954 goto nosideret;
9955
9956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9957 return value_zero (ada_tag_type (arg1), not_lval);
9958
9959 return ada_value_tag (arg1);
9960
9961 case OP_ATR_MIN:
9962 case OP_ATR_MAX:
9963 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9964 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9965 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9966 if (noside == EVAL_SKIP)
9967 goto nosideret;
9968 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9969 return value_zero (value_type (arg1), not_lval);
9970 else
9971 {
9972 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9973 return value_binop (arg1, arg2,
9974 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9975 }
9976
9977 case OP_ATR_MODULUS:
9978 {
9979 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9980
9981 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9982 if (noside == EVAL_SKIP)
9983 goto nosideret;
9984
9985 if (!ada_is_modular_type (type_arg))
9986 error (_("'modulus must be applied to modular type"));
9987
9988 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9989 ada_modulus (type_arg));
9990 }
9991
9992
9993 case OP_ATR_POS:
9994 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9995 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9996 if (noside == EVAL_SKIP)
9997 goto nosideret;
9998 type = builtin_type (exp->gdbarch)->builtin_int;
9999 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10000 return value_zero (type, not_lval);
10001 else
10002 return value_pos_atr (type, arg1);
10003
10004 case OP_ATR_SIZE:
10005 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10006 type = value_type (arg1);
10007
10008 /* If the argument is a reference, then dereference its type, since
10009 the user is really asking for the size of the actual object,
10010 not the size of the pointer. */
10011 if (TYPE_CODE (type) == TYPE_CODE_REF)
10012 type = TYPE_TARGET_TYPE (type);
10013
10014 if (noside == EVAL_SKIP)
10015 goto nosideret;
10016 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10017 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10018 else
10019 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10020 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10021
10022 case OP_ATR_VAL:
10023 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10024 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10025 type = exp->elts[pc + 2].type;
10026 if (noside == EVAL_SKIP)
10027 goto nosideret;
10028 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10029 return value_zero (type, not_lval);
10030 else
10031 return value_val_atr (type, arg1);
10032
10033 case BINOP_EXP:
10034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10035 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10036 if (noside == EVAL_SKIP)
10037 goto nosideret;
10038 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10039 return value_zero (value_type (arg1), not_lval);
10040 else
10041 {
10042 /* For integer exponentiation operations,
10043 only promote the first argument. */
10044 if (is_integral_type (value_type (arg2)))
10045 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10046 else
10047 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10048
10049 return value_binop (arg1, arg2, op);
10050 }
10051
10052 case UNOP_PLUS:
10053 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10054 if (noside == EVAL_SKIP)
10055 goto nosideret;
10056 else
10057 return arg1;
10058
10059 case UNOP_ABS:
10060 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10061 if (noside == EVAL_SKIP)
10062 goto nosideret;
10063 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10064 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10065 return value_neg (arg1);
10066 else
10067 return arg1;
10068
10069 case UNOP_IND:
10070 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10071 if (noside == EVAL_SKIP)
10072 goto nosideret;
10073 type = ada_check_typedef (value_type (arg1));
10074 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10075 {
10076 if (ada_is_array_descriptor_type (type))
10077 /* GDB allows dereferencing GNAT array descriptors. */
10078 {
10079 struct type *arrType = ada_type_of_array (arg1, 0);
10080
10081 if (arrType == NULL)
10082 error (_("Attempt to dereference null array pointer."));
10083 return value_at_lazy (arrType, 0);
10084 }
10085 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10086 || TYPE_CODE (type) == TYPE_CODE_REF
10087 /* In C you can dereference an array to get the 1st elt. */
10088 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10089 {
10090 type = to_static_fixed_type
10091 (ada_aligned_type
10092 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10093 check_size (type);
10094 return value_zero (type, lval_memory);
10095 }
10096 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10097 {
10098 /* GDB allows dereferencing an int. */
10099 if (expect_type == NULL)
10100 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10101 lval_memory);
10102 else
10103 {
10104 expect_type =
10105 to_static_fixed_type (ada_aligned_type (expect_type));
10106 return value_zero (expect_type, lval_memory);
10107 }
10108 }
10109 else
10110 error (_("Attempt to take contents of a non-pointer value."));
10111 }
10112 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10113 type = ada_check_typedef (value_type (arg1));
10114
10115 if (TYPE_CODE (type) == TYPE_CODE_INT)
10116 /* GDB allows dereferencing an int. If we were given
10117 the expect_type, then use that as the target type.
10118 Otherwise, assume that the target type is an int. */
10119 {
10120 if (expect_type != NULL)
10121 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10122 arg1));
10123 else
10124 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10125 (CORE_ADDR) value_as_address (arg1));
10126 }
10127
10128 if (ada_is_array_descriptor_type (type))
10129 /* GDB allows dereferencing GNAT array descriptors. */
10130 return ada_coerce_to_simple_array (arg1);
10131 else
10132 return ada_value_ind (arg1);
10133
10134 case STRUCTOP_STRUCT:
10135 tem = longest_to_int (exp->elts[pc + 1].longconst);
10136 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10138 if (noside == EVAL_SKIP)
10139 goto nosideret;
10140 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10141 {
10142 struct type *type1 = value_type (arg1);
10143
10144 if (ada_is_tagged_type (type1, 1))
10145 {
10146 type = ada_lookup_struct_elt_type (type1,
10147 &exp->elts[pc + 2].string,
10148 1, 1, NULL);
10149 if (type == NULL)
10150 /* In this case, we assume that the field COULD exist
10151 in some extension of the type. Return an object of
10152 "type" void, which will match any formal
10153 (see ada_type_match). */
10154 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10155 lval_memory);
10156 }
10157 else
10158 type =
10159 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10160 0, NULL);
10161
10162 return value_zero (ada_aligned_type (type), lval_memory);
10163 }
10164 else
10165 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10166 arg1 = unwrap_value (arg1);
10167 return ada_to_fixed_value (arg1);
10168
10169 case OP_TYPE:
10170 /* The value is not supposed to be used. This is here to make it
10171 easier to accommodate expressions that contain types. */
10172 (*pos) += 2;
10173 if (noside == EVAL_SKIP)
10174 goto nosideret;
10175 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10176 return allocate_value (exp->elts[pc + 1].type);
10177 else
10178 error (_("Attempt to use a type name as an expression"));
10179
10180 case OP_AGGREGATE:
10181 case OP_CHOICES:
10182 case OP_OTHERS:
10183 case OP_DISCRETE_RANGE:
10184 case OP_POSITIONAL:
10185 case OP_NAME:
10186 if (noside == EVAL_NORMAL)
10187 switch (op)
10188 {
10189 case OP_NAME:
10190 error (_("Undefined name, ambiguous name, or renaming used in "
10191 "component association: %s."), &exp->elts[pc+2].string);
10192 case OP_AGGREGATE:
10193 error (_("Aggregates only allowed on the right of an assignment"));
10194 default:
10195 internal_error (__FILE__, __LINE__,
10196 _("aggregate apparently mangled"));
10197 }
10198
10199 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10200 *pos += oplen - 1;
10201 for (tem = 0; tem < nargs; tem += 1)
10202 ada_evaluate_subexp (NULL, exp, pos, noside);
10203 goto nosideret;
10204 }
10205
10206nosideret:
10207 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10208}
10209\f
10210
10211 /* Fixed point */
10212
10213/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10214 type name that encodes the 'small and 'delta information.
10215 Otherwise, return NULL. */
10216
10217static const char *
10218fixed_type_info (struct type *type)
10219{
10220 const char *name = ada_type_name (type);
10221 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10222
10223 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10224 {
10225 const char *tail = strstr (name, "___XF_");
10226
10227 if (tail == NULL)
10228 return NULL;
10229 else
10230 return tail + 5;
10231 }
10232 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10233 return fixed_type_info (TYPE_TARGET_TYPE (type));
10234 else
10235 return NULL;
10236}
10237
10238/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10239
10240int
10241ada_is_fixed_point_type (struct type *type)
10242{
10243 return fixed_type_info (type) != NULL;
10244}
10245
10246/* Return non-zero iff TYPE represents a System.Address type. */
10247
10248int
10249ada_is_system_address_type (struct type *type)
10250{
10251 return (TYPE_NAME (type)
10252 && strcmp (TYPE_NAME (type), "system__address") == 0);
10253}
10254
10255/* Assuming that TYPE is the representation of an Ada fixed-point
10256 type, return its delta, or -1 if the type is malformed and the
10257 delta cannot be determined. */
10258
10259DOUBLEST
10260ada_delta (struct type *type)
10261{
10262 const char *encoding = fixed_type_info (type);
10263 DOUBLEST num, den;
10264
10265 /* Strictly speaking, num and den are encoded as integer. However,
10266 they may not fit into a long, and they will have to be converted
10267 to DOUBLEST anyway. So scan them as DOUBLEST. */
10268 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10269 &num, &den) < 2)
10270 return -1.0;
10271 else
10272 return num / den;
10273}
10274
10275/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10276 factor ('SMALL value) associated with the type. */
10277
10278static DOUBLEST
10279scaling_factor (struct type *type)
10280{
10281 const char *encoding = fixed_type_info (type);
10282 DOUBLEST num0, den0, num1, den1;
10283 int n;
10284
10285 /* Strictly speaking, num's and den's are encoded as integer. However,
10286 they may not fit into a long, and they will have to be converted
10287 to DOUBLEST anyway. So scan them as DOUBLEST. */
10288 n = sscanf (encoding,
10289 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10290 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10291 &num0, &den0, &num1, &den1);
10292
10293 if (n < 2)
10294 return 1.0;
10295 else if (n == 4)
10296 return num1 / den1;
10297 else
10298 return num0 / den0;
10299}
10300
10301
10302/* Assuming that X is the representation of a value of fixed-point
10303 type TYPE, return its floating-point equivalent. */
10304
10305DOUBLEST
10306ada_fixed_to_float (struct type *type, LONGEST x)
10307{
10308 return (DOUBLEST) x *scaling_factor (type);
10309}
10310
10311/* The representation of a fixed-point value of type TYPE
10312 corresponding to the value X. */
10313
10314LONGEST
10315ada_float_to_fixed (struct type *type, DOUBLEST x)
10316{
10317 return (LONGEST) (x / scaling_factor (type) + 0.5);
10318}
10319
10320\f
10321
10322 /* Range types */
10323
10324/* Scan STR beginning at position K for a discriminant name, and
10325 return the value of that discriminant field of DVAL in *PX. If
10326 PNEW_K is not null, put the position of the character beyond the
10327 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10328 not alter *PX and *PNEW_K if unsuccessful. */
10329
10330static int
10331scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10332 int *pnew_k)
10333{
10334 static char *bound_buffer = NULL;
10335 static size_t bound_buffer_len = 0;
10336 char *bound;
10337 char *pend;
10338 struct value *bound_val;
10339
10340 if (dval == NULL || str == NULL || str[k] == '\0')
10341 return 0;
10342
10343 pend = strstr (str + k, "__");
10344 if (pend == NULL)
10345 {
10346 bound = str + k;
10347 k += strlen (bound);
10348 }
10349 else
10350 {
10351 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10352 bound = bound_buffer;
10353 strncpy (bound_buffer, str + k, pend - (str + k));
10354 bound[pend - (str + k)] = '\0';
10355 k = pend - str;
10356 }
10357
10358 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10359 if (bound_val == NULL)
10360 return 0;
10361
10362 *px = value_as_long (bound_val);
10363 if (pnew_k != NULL)
10364 *pnew_k = k;
10365 return 1;
10366}
10367
10368/* Value of variable named NAME in the current environment. If
10369 no such variable found, then if ERR_MSG is null, returns 0, and
10370 otherwise causes an error with message ERR_MSG. */
10371
10372static struct value *
10373get_var_value (char *name, char *err_msg)
10374{
10375 struct ada_symbol_info *syms;
10376 int nsyms;
10377
10378 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10379 &syms, 1);
10380
10381 if (nsyms != 1)
10382 {
10383 if (err_msg == NULL)
10384 return 0;
10385 else
10386 error (("%s"), err_msg);
10387 }
10388
10389 return value_of_variable (syms[0].sym, syms[0].block);
10390}
10391
10392/* Value of integer variable named NAME in the current environment. If
10393 no such variable found, returns 0, and sets *FLAG to 0. If
10394 successful, sets *FLAG to 1. */
10395
10396LONGEST
10397get_int_var_value (char *name, int *flag)
10398{
10399 struct value *var_val = get_var_value (name, 0);
10400
10401 if (var_val == 0)
10402 {
10403 if (flag != NULL)
10404 *flag = 0;
10405 return 0;
10406 }
10407 else
10408 {
10409 if (flag != NULL)
10410 *flag = 1;
10411 return value_as_long (var_val);
10412 }
10413}
10414
10415
10416/* Return a range type whose base type is that of the range type named
10417 NAME in the current environment, and whose bounds are calculated
10418 from NAME according to the GNAT range encoding conventions.
10419 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10420 corresponding range type from debug information; fall back to using it
10421 if symbol lookup fails. If a new type must be created, allocate it
10422 like ORIG_TYPE was. The bounds information, in general, is encoded
10423 in NAME, the base type given in the named range type. */
10424
10425static struct type *
10426to_fixed_range_type (struct type *raw_type, struct value *dval)
10427{
10428 const char *name;
10429 struct type *base_type;
10430 char *subtype_info;
10431
10432 gdb_assert (raw_type != NULL);
10433 gdb_assert (TYPE_NAME (raw_type) != NULL);
10434
10435 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10436 base_type = TYPE_TARGET_TYPE (raw_type);
10437 else
10438 base_type = raw_type;
10439
10440 name = TYPE_NAME (raw_type);
10441 subtype_info = strstr (name, "___XD");
10442 if (subtype_info == NULL)
10443 {
10444 LONGEST L = ada_discrete_type_low_bound (raw_type);
10445 LONGEST U = ada_discrete_type_high_bound (raw_type);
10446
10447 if (L < INT_MIN || U > INT_MAX)
10448 return raw_type;
10449 else
10450 return create_range_type (alloc_type_copy (raw_type), raw_type,
10451 ada_discrete_type_low_bound (raw_type),
10452 ada_discrete_type_high_bound (raw_type));
10453 }
10454 else
10455 {
10456 static char *name_buf = NULL;
10457 static size_t name_len = 0;
10458 int prefix_len = subtype_info - name;
10459 LONGEST L, U;
10460 struct type *type;
10461 char *bounds_str;
10462 int n;
10463
10464 GROW_VECT (name_buf, name_len, prefix_len + 5);
10465 strncpy (name_buf, name, prefix_len);
10466 name_buf[prefix_len] = '\0';
10467
10468 subtype_info += 5;
10469 bounds_str = strchr (subtype_info, '_');
10470 n = 1;
10471
10472 if (*subtype_info == 'L')
10473 {
10474 if (!ada_scan_number (bounds_str, n, &L, &n)
10475 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10476 return raw_type;
10477 if (bounds_str[n] == '_')
10478 n += 2;
10479 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10480 n += 1;
10481 subtype_info += 1;
10482 }
10483 else
10484 {
10485 int ok;
10486
10487 strcpy (name_buf + prefix_len, "___L");
10488 L = get_int_var_value (name_buf, &ok);
10489 if (!ok)
10490 {
10491 lim_warning (_("Unknown lower bound, using 1."));
10492 L = 1;
10493 }
10494 }
10495
10496 if (*subtype_info == 'U')
10497 {
10498 if (!ada_scan_number (bounds_str, n, &U, &n)
10499 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10500 return raw_type;
10501 }
10502 else
10503 {
10504 int ok;
10505
10506 strcpy (name_buf + prefix_len, "___U");
10507 U = get_int_var_value (name_buf, &ok);
10508 if (!ok)
10509 {
10510 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10511 U = L;
10512 }
10513 }
10514
10515 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10516 TYPE_NAME (type) = name;
10517 return type;
10518 }
10519}
10520
10521/* True iff NAME is the name of a range type. */
10522
10523int
10524ada_is_range_type_name (const char *name)
10525{
10526 return (name != NULL && strstr (name, "___XD"));
10527}
10528\f
10529
10530 /* Modular types */
10531
10532/* True iff TYPE is an Ada modular type. */
10533
10534int
10535ada_is_modular_type (struct type *type)
10536{
10537 struct type *subranged_type = get_base_type (type);
10538
10539 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10540 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10541 && TYPE_UNSIGNED (subranged_type));
10542}
10543
10544/* Try to determine the lower and upper bounds of the given modular type
10545 using the type name only. Return non-zero and set L and U as the lower
10546 and upper bounds (respectively) if successful. */
10547
10548int
10549ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10550{
10551 const char *name = ada_type_name (type);
10552 const char *suffix;
10553 int k;
10554 LONGEST U;
10555
10556 if (name == NULL)
10557 return 0;
10558
10559 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10560 we are looking for static bounds, which means an __XDLU suffix.
10561 Moreover, we know that the lower bound of modular types is always
10562 zero, so the actual suffix should start with "__XDLU_0__", and
10563 then be followed by the upper bound value. */
10564 suffix = strstr (name, "__XDLU_0__");
10565 if (suffix == NULL)
10566 return 0;
10567 k = 10;
10568 if (!ada_scan_number (suffix, k, &U, NULL))
10569 return 0;
10570
10571 *modulus = (ULONGEST) U + 1;
10572 return 1;
10573}
10574
10575/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10576
10577ULONGEST
10578ada_modulus (struct type *type)
10579{
10580 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10581}
10582\f
10583
10584/* Ada exception catchpoint support:
10585 ---------------------------------
10586
10587 We support 3 kinds of exception catchpoints:
10588 . catchpoints on Ada exceptions
10589 . catchpoints on unhandled Ada exceptions
10590 . catchpoints on failed assertions
10591
10592 Exceptions raised during failed assertions, or unhandled exceptions
10593 could perfectly be caught with the general catchpoint on Ada exceptions.
10594 However, we can easily differentiate these two special cases, and having
10595 the option to distinguish these two cases from the rest can be useful
10596 to zero-in on certain situations.
10597
10598 Exception catchpoints are a specialized form of breakpoint,
10599 since they rely on inserting breakpoints inside known routines
10600 of the GNAT runtime. The implementation therefore uses a standard
10601 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10602 of breakpoint_ops.
10603
10604 Support in the runtime for exception catchpoints have been changed
10605 a few times already, and these changes affect the implementation
10606 of these catchpoints. In order to be able to support several
10607 variants of the runtime, we use a sniffer that will determine
10608 the runtime variant used by the program being debugged. */
10609
10610/* The different types of catchpoints that we introduced for catching
10611 Ada exceptions. */
10612
10613enum exception_catchpoint_kind
10614{
10615 ex_catch_exception,
10616 ex_catch_exception_unhandled,
10617 ex_catch_assert
10618};
10619
10620/* Ada's standard exceptions. */
10621
10622static char *standard_exc[] = {
10623 "constraint_error",
10624 "program_error",
10625 "storage_error",
10626 "tasking_error"
10627};
10628
10629typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10630
10631/* A structure that describes how to support exception catchpoints
10632 for a given executable. */
10633
10634struct exception_support_info
10635{
10636 /* The name of the symbol to break on in order to insert
10637 a catchpoint on exceptions. */
10638 const char *catch_exception_sym;
10639
10640 /* The name of the symbol to break on in order to insert
10641 a catchpoint on unhandled exceptions. */
10642 const char *catch_exception_unhandled_sym;
10643
10644 /* The name of the symbol to break on in order to insert
10645 a catchpoint on failed assertions. */
10646 const char *catch_assert_sym;
10647
10648 /* Assuming that the inferior just triggered an unhandled exception
10649 catchpoint, this function is responsible for returning the address
10650 in inferior memory where the name of that exception is stored.
10651 Return zero if the address could not be computed. */
10652 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10653};
10654
10655static CORE_ADDR ada_unhandled_exception_name_addr (void);
10656static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10657
10658/* The following exception support info structure describes how to
10659 implement exception catchpoints with the latest version of the
10660 Ada runtime (as of 2007-03-06). */
10661
10662static const struct exception_support_info default_exception_support_info =
10663{
10664 "__gnat_debug_raise_exception", /* catch_exception_sym */
10665 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10666 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10667 ada_unhandled_exception_name_addr
10668};
10669
10670/* The following exception support info structure describes how to
10671 implement exception catchpoints with a slightly older version
10672 of the Ada runtime. */
10673
10674static const struct exception_support_info exception_support_info_fallback =
10675{
10676 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10677 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10678 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10679 ada_unhandled_exception_name_addr_from_raise
10680};
10681
10682/* Return nonzero if we can detect the exception support routines
10683 described in EINFO.
10684
10685 This function errors out if an abnormal situation is detected
10686 (for instance, if we find the exception support routines, but
10687 that support is found to be incomplete). */
10688
10689static int
10690ada_has_this_exception_support (const struct exception_support_info *einfo)
10691{
10692 struct symbol *sym;
10693
10694 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10695 that should be compiled with debugging information. As a result, we
10696 expect to find that symbol in the symtabs. */
10697
10698 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10699 if (sym == NULL)
10700 {
10701 /* Perhaps we did not find our symbol because the Ada runtime was
10702 compiled without debugging info, or simply stripped of it.
10703 It happens on some GNU/Linux distributions for instance, where
10704 users have to install a separate debug package in order to get
10705 the runtime's debugging info. In that situation, let the user
10706 know why we cannot insert an Ada exception catchpoint.
10707
10708 Note: Just for the purpose of inserting our Ada exception
10709 catchpoint, we could rely purely on the associated minimal symbol.
10710 But we would be operating in degraded mode anyway, since we are
10711 still lacking the debugging info needed later on to extract
10712 the name of the exception being raised (this name is printed in
10713 the catchpoint message, and is also used when trying to catch
10714 a specific exception). We do not handle this case for now. */
10715 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10716 error (_("Your Ada runtime appears to be missing some debugging "
10717 "information.\nCannot insert Ada exception catchpoint "
10718 "in this configuration."));
10719
10720 return 0;
10721 }
10722
10723 /* Make sure that the symbol we found corresponds to a function. */
10724
10725 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10726 error (_("Symbol \"%s\" is not a function (class = %d)"),
10727 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10728
10729 return 1;
10730}
10731
10732/* Inspect the Ada runtime and determine which exception info structure
10733 should be used to provide support for exception catchpoints.
10734
10735 This function will always set the per-inferior exception_info,
10736 or raise an error. */
10737
10738static void
10739ada_exception_support_info_sniffer (void)
10740{
10741 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10742 struct symbol *sym;
10743
10744 /* If the exception info is already known, then no need to recompute it. */
10745 if (data->exception_info != NULL)
10746 return;
10747
10748 /* Check the latest (default) exception support info. */
10749 if (ada_has_this_exception_support (&default_exception_support_info))
10750 {
10751 data->exception_info = &default_exception_support_info;
10752 return;
10753 }
10754
10755 /* Try our fallback exception suport info. */
10756 if (ada_has_this_exception_support (&exception_support_info_fallback))
10757 {
10758 data->exception_info = &exception_support_info_fallback;
10759 return;
10760 }
10761
10762 /* Sometimes, it is normal for us to not be able to find the routine
10763 we are looking for. This happens when the program is linked with
10764 the shared version of the GNAT runtime, and the program has not been
10765 started yet. Inform the user of these two possible causes if
10766 applicable. */
10767
10768 if (ada_update_initial_language (language_unknown) != language_ada)
10769 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10770
10771 /* If the symbol does not exist, then check that the program is
10772 already started, to make sure that shared libraries have been
10773 loaded. If it is not started, this may mean that the symbol is
10774 in a shared library. */
10775
10776 if (ptid_get_pid (inferior_ptid) == 0)
10777 error (_("Unable to insert catchpoint. Try to start the program first."));
10778
10779 /* At this point, we know that we are debugging an Ada program and
10780 that the inferior has been started, but we still are not able to
10781 find the run-time symbols. That can mean that we are in
10782 configurable run time mode, or that a-except as been optimized
10783 out by the linker... In any case, at this point it is not worth
10784 supporting this feature. */
10785
10786 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10787}
10788
10789/* True iff FRAME is very likely to be that of a function that is
10790 part of the runtime system. This is all very heuristic, but is
10791 intended to be used as advice as to what frames are uninteresting
10792 to most users. */
10793
10794static int
10795is_known_support_routine (struct frame_info *frame)
10796{
10797 struct symtab_and_line sal;
10798 const char *func_name;
10799 enum language func_lang;
10800 int i;
10801
10802 /* If this code does not have any debugging information (no symtab),
10803 This cannot be any user code. */
10804
10805 find_frame_sal (frame, &sal);
10806 if (sal.symtab == NULL)
10807 return 1;
10808
10809 /* If there is a symtab, but the associated source file cannot be
10810 located, then assume this is not user code: Selecting a frame
10811 for which we cannot display the code would not be very helpful
10812 for the user. This should also take care of case such as VxWorks
10813 where the kernel has some debugging info provided for a few units. */
10814
10815 if (symtab_to_fullname (sal.symtab) == NULL)
10816 return 1;
10817
10818 /* Check the unit filename againt the Ada runtime file naming.
10819 We also check the name of the objfile against the name of some
10820 known system libraries that sometimes come with debugging info
10821 too. */
10822
10823 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10824 {
10825 re_comp (known_runtime_file_name_patterns[i]);
10826 if (re_exec (sal.symtab->filename))
10827 return 1;
10828 if (sal.symtab->objfile != NULL
10829 && re_exec (sal.symtab->objfile->name))
10830 return 1;
10831 }
10832
10833 /* Check whether the function is a GNAT-generated entity. */
10834
10835 find_frame_funname (frame, &func_name, &func_lang, NULL);
10836 if (func_name == NULL)
10837 return 1;
10838
10839 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10840 {
10841 re_comp (known_auxiliary_function_name_patterns[i]);
10842 if (re_exec (func_name))
10843 return 1;
10844 }
10845
10846 return 0;
10847}
10848
10849/* Find the first frame that contains debugging information and that is not
10850 part of the Ada run-time, starting from FI and moving upward. */
10851
10852void
10853ada_find_printable_frame (struct frame_info *fi)
10854{
10855 for (; fi != NULL; fi = get_prev_frame (fi))
10856 {
10857 if (!is_known_support_routine (fi))
10858 {
10859 select_frame (fi);
10860 break;
10861 }
10862 }
10863
10864}
10865
10866/* Assuming that the inferior just triggered an unhandled exception
10867 catchpoint, return the address in inferior memory where the name
10868 of the exception is stored.
10869
10870 Return zero if the address could not be computed. */
10871
10872static CORE_ADDR
10873ada_unhandled_exception_name_addr (void)
10874{
10875 return parse_and_eval_address ("e.full_name");
10876}
10877
10878/* Same as ada_unhandled_exception_name_addr, except that this function
10879 should be used when the inferior uses an older version of the runtime,
10880 where the exception name needs to be extracted from a specific frame
10881 several frames up in the callstack. */
10882
10883static CORE_ADDR
10884ada_unhandled_exception_name_addr_from_raise (void)
10885{
10886 int frame_level;
10887 struct frame_info *fi;
10888 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10889
10890 /* To determine the name of this exception, we need to select
10891 the frame corresponding to RAISE_SYM_NAME. This frame is
10892 at least 3 levels up, so we simply skip the first 3 frames
10893 without checking the name of their associated function. */
10894 fi = get_current_frame ();
10895 for (frame_level = 0; frame_level < 3; frame_level += 1)
10896 if (fi != NULL)
10897 fi = get_prev_frame (fi);
10898
10899 while (fi != NULL)
10900 {
10901 const char *func_name;
10902 enum language func_lang;
10903
10904 find_frame_funname (fi, &func_name, &func_lang, NULL);
10905 if (func_name != NULL
10906 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10907 break; /* We found the frame we were looking for... */
10908 fi = get_prev_frame (fi);
10909 }
10910
10911 if (fi == NULL)
10912 return 0;
10913
10914 select_frame (fi);
10915 return parse_and_eval_address ("id.full_name");
10916}
10917
10918/* Assuming the inferior just triggered an Ada exception catchpoint
10919 (of any type), return the address in inferior memory where the name
10920 of the exception is stored, if applicable.
10921
10922 Return zero if the address could not be computed, or if not relevant. */
10923
10924static CORE_ADDR
10925ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10926 struct breakpoint *b)
10927{
10928 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10929
10930 switch (ex)
10931 {
10932 case ex_catch_exception:
10933 return (parse_and_eval_address ("e.full_name"));
10934 break;
10935
10936 case ex_catch_exception_unhandled:
10937 return data->exception_info->unhandled_exception_name_addr ();
10938 break;
10939
10940 case ex_catch_assert:
10941 return 0; /* Exception name is not relevant in this case. */
10942 break;
10943
10944 default:
10945 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10946 break;
10947 }
10948
10949 return 0; /* Should never be reached. */
10950}
10951
10952/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10953 any error that ada_exception_name_addr_1 might cause to be thrown.
10954 When an error is intercepted, a warning with the error message is printed,
10955 and zero is returned. */
10956
10957static CORE_ADDR
10958ada_exception_name_addr (enum exception_catchpoint_kind ex,
10959 struct breakpoint *b)
10960{
10961 volatile struct gdb_exception e;
10962 CORE_ADDR result = 0;
10963
10964 TRY_CATCH (e, RETURN_MASK_ERROR)
10965 {
10966 result = ada_exception_name_addr_1 (ex, b);
10967 }
10968
10969 if (e.reason < 0)
10970 {
10971 warning (_("failed to get exception name: %s"), e.message);
10972 return 0;
10973 }
10974
10975 return result;
10976}
10977
10978static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10979 char *, char **,
10980 const struct breakpoint_ops **);
10981static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10982
10983/* Ada catchpoints.
10984
10985 In the case of catchpoints on Ada exceptions, the catchpoint will
10986 stop the target on every exception the program throws. When a user
10987 specifies the name of a specific exception, we translate this
10988 request into a condition expression (in text form), and then parse
10989 it into an expression stored in each of the catchpoint's locations.
10990 We then use this condition to check whether the exception that was
10991 raised is the one the user is interested in. If not, then the
10992 target is resumed again. We store the name of the requested
10993 exception, in order to be able to re-set the condition expression
10994 when symbols change. */
10995
10996/* An instance of this type is used to represent an Ada catchpoint
10997 breakpoint location. It includes a "struct bp_location" as a kind
10998 of base class; users downcast to "struct bp_location *" when
10999 needed. */
11000
11001struct ada_catchpoint_location
11002{
11003 /* The base class. */
11004 struct bp_location base;
11005
11006 /* The condition that checks whether the exception that was raised
11007 is the specific exception the user specified on catchpoint
11008 creation. */
11009 struct expression *excep_cond_expr;
11010};
11011
11012/* Implement the DTOR method in the bp_location_ops structure for all
11013 Ada exception catchpoint kinds. */
11014
11015static void
11016ada_catchpoint_location_dtor (struct bp_location *bl)
11017{
11018 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11019
11020 xfree (al->excep_cond_expr);
11021}
11022
11023/* The vtable to be used in Ada catchpoint locations. */
11024
11025static const struct bp_location_ops ada_catchpoint_location_ops =
11026{
11027 ada_catchpoint_location_dtor
11028};
11029
11030/* An instance of this type is used to represent an Ada catchpoint.
11031 It includes a "struct breakpoint" as a kind of base class; users
11032 downcast to "struct breakpoint *" when needed. */
11033
11034struct ada_catchpoint
11035{
11036 /* The base class. */
11037 struct breakpoint base;
11038
11039 /* The name of the specific exception the user specified. */
11040 char *excep_string;
11041};
11042
11043/* Parse the exception condition string in the context of each of the
11044 catchpoint's locations, and store them for later evaluation. */
11045
11046static void
11047create_excep_cond_exprs (struct ada_catchpoint *c)
11048{
11049 struct cleanup *old_chain;
11050 struct bp_location *bl;
11051 char *cond_string;
11052
11053 /* Nothing to do if there's no specific exception to catch. */
11054 if (c->excep_string == NULL)
11055 return;
11056
11057 /* Same if there are no locations... */
11058 if (c->base.loc == NULL)
11059 return;
11060
11061 /* Compute the condition expression in text form, from the specific
11062 expection we want to catch. */
11063 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11064 old_chain = make_cleanup (xfree, cond_string);
11065
11066 /* Iterate over all the catchpoint's locations, and parse an
11067 expression for each. */
11068 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11069 {
11070 struct ada_catchpoint_location *ada_loc
11071 = (struct ada_catchpoint_location *) bl;
11072 struct expression *exp = NULL;
11073
11074 if (!bl->shlib_disabled)
11075 {
11076 volatile struct gdb_exception e;
11077 char *s;
11078
11079 s = cond_string;
11080 TRY_CATCH (e, RETURN_MASK_ERROR)
11081 {
11082 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11083 }
11084 if (e.reason < 0)
11085 warning (_("failed to reevaluate internal exception condition "
11086 "for catchpoint %d: %s"),
11087 c->base.number, e.message);
11088 }
11089
11090 ada_loc->excep_cond_expr = exp;
11091 }
11092
11093 do_cleanups (old_chain);
11094}
11095
11096/* Implement the DTOR method in the breakpoint_ops structure for all
11097 exception catchpoint kinds. */
11098
11099static void
11100dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11101{
11102 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11103
11104 xfree (c->excep_string);
11105
11106 bkpt_breakpoint_ops.dtor (b);
11107}
11108
11109/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11110 structure for all exception catchpoint kinds. */
11111
11112static struct bp_location *
11113allocate_location_exception (enum exception_catchpoint_kind ex,
11114 struct breakpoint *self)
11115{
11116 struct ada_catchpoint_location *loc;
11117
11118 loc = XNEW (struct ada_catchpoint_location);
11119 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11120 loc->excep_cond_expr = NULL;
11121 return &loc->base;
11122}
11123
11124/* Implement the RE_SET method in the breakpoint_ops structure for all
11125 exception catchpoint kinds. */
11126
11127static void
11128re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11129{
11130 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11131
11132 /* Call the base class's method. This updates the catchpoint's
11133 locations. */
11134 bkpt_breakpoint_ops.re_set (b);
11135
11136 /* Reparse the exception conditional expressions. One for each
11137 location. */
11138 create_excep_cond_exprs (c);
11139}
11140
11141/* Returns true if we should stop for this breakpoint hit. If the
11142 user specified a specific exception, we only want to cause a stop
11143 if the program thrown that exception. */
11144
11145static int
11146should_stop_exception (const struct bp_location *bl)
11147{
11148 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11149 const struct ada_catchpoint_location *ada_loc
11150 = (const struct ada_catchpoint_location *) bl;
11151 volatile struct gdb_exception ex;
11152 int stop;
11153
11154 /* With no specific exception, should always stop. */
11155 if (c->excep_string == NULL)
11156 return 1;
11157
11158 if (ada_loc->excep_cond_expr == NULL)
11159 {
11160 /* We will have a NULL expression if back when we were creating
11161 the expressions, this location's had failed to parse. */
11162 return 1;
11163 }
11164
11165 stop = 1;
11166 TRY_CATCH (ex, RETURN_MASK_ALL)
11167 {
11168 struct value *mark;
11169
11170 mark = value_mark ();
11171 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11172 value_free_to_mark (mark);
11173 }
11174 if (ex.reason < 0)
11175 exception_fprintf (gdb_stderr, ex,
11176 _("Error in testing exception condition:\n"));
11177 return stop;
11178}
11179
11180/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11181 for all exception catchpoint kinds. */
11182
11183static void
11184check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11185{
11186 bs->stop = should_stop_exception (bs->bp_location_at);
11187}
11188
11189/* Implement the PRINT_IT method in the breakpoint_ops structure
11190 for all exception catchpoint kinds. */
11191
11192static enum print_stop_action
11193print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11194{
11195 struct ui_out *uiout = current_uiout;
11196 struct breakpoint *b = bs->breakpoint_at;
11197
11198 annotate_catchpoint (b->number);
11199
11200 if (ui_out_is_mi_like_p (uiout))
11201 {
11202 ui_out_field_string (uiout, "reason",
11203 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11204 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11205 }
11206
11207 ui_out_text (uiout,
11208 b->disposition == disp_del ? "\nTemporary catchpoint "
11209 : "\nCatchpoint ");
11210 ui_out_field_int (uiout, "bkptno", b->number);
11211 ui_out_text (uiout, ", ");
11212
11213 switch (ex)
11214 {
11215 case ex_catch_exception:
11216 case ex_catch_exception_unhandled:
11217 {
11218 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11219 char exception_name[256];
11220
11221 if (addr != 0)
11222 {
11223 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11224 exception_name [sizeof (exception_name) - 1] = '\0';
11225 }
11226 else
11227 {
11228 /* For some reason, we were unable to read the exception
11229 name. This could happen if the Runtime was compiled
11230 without debugging info, for instance. In that case,
11231 just replace the exception name by the generic string
11232 "exception" - it will read as "an exception" in the
11233 notification we are about to print. */
11234 memcpy (exception_name, "exception", sizeof ("exception"));
11235 }
11236 /* In the case of unhandled exception breakpoints, we print
11237 the exception name as "unhandled EXCEPTION_NAME", to make
11238 it clearer to the user which kind of catchpoint just got
11239 hit. We used ui_out_text to make sure that this extra
11240 info does not pollute the exception name in the MI case. */
11241 if (ex == ex_catch_exception_unhandled)
11242 ui_out_text (uiout, "unhandled ");
11243 ui_out_field_string (uiout, "exception-name", exception_name);
11244 }
11245 break;
11246 case ex_catch_assert:
11247 /* In this case, the name of the exception is not really
11248 important. Just print "failed assertion" to make it clearer
11249 that his program just hit an assertion-failure catchpoint.
11250 We used ui_out_text because this info does not belong in
11251 the MI output. */
11252 ui_out_text (uiout, "failed assertion");
11253 break;
11254 }
11255 ui_out_text (uiout, " at ");
11256 ada_find_printable_frame (get_current_frame ());
11257
11258 return PRINT_SRC_AND_LOC;
11259}
11260
11261/* Implement the PRINT_ONE method in the breakpoint_ops structure
11262 for all exception catchpoint kinds. */
11263
11264static void
11265print_one_exception (enum exception_catchpoint_kind ex,
11266 struct breakpoint *b, struct bp_location **last_loc)
11267{
11268 struct ui_out *uiout = current_uiout;
11269 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11270 struct value_print_options opts;
11271
11272 get_user_print_options (&opts);
11273 if (opts.addressprint)
11274 {
11275 annotate_field (4);
11276 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11277 }
11278
11279 annotate_field (5);
11280 *last_loc = b->loc;
11281 switch (ex)
11282 {
11283 case ex_catch_exception:
11284 if (c->excep_string != NULL)
11285 {
11286 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11287
11288 ui_out_field_string (uiout, "what", msg);
11289 xfree (msg);
11290 }
11291 else
11292 ui_out_field_string (uiout, "what", "all Ada exceptions");
11293
11294 break;
11295
11296 case ex_catch_exception_unhandled:
11297 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11298 break;
11299
11300 case ex_catch_assert:
11301 ui_out_field_string (uiout, "what", "failed Ada assertions");
11302 break;
11303
11304 default:
11305 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11306 break;
11307 }
11308}
11309
11310/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11311 for all exception catchpoint kinds. */
11312
11313static void
11314print_mention_exception (enum exception_catchpoint_kind ex,
11315 struct breakpoint *b)
11316{
11317 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11318 struct ui_out *uiout = current_uiout;
11319
11320 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11321 : _("Catchpoint "));
11322 ui_out_field_int (uiout, "bkptno", b->number);
11323 ui_out_text (uiout, ": ");
11324
11325 switch (ex)
11326 {
11327 case ex_catch_exception:
11328 if (c->excep_string != NULL)
11329 {
11330 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11331 struct cleanup *old_chain = make_cleanup (xfree, info);
11332
11333 ui_out_text (uiout, info);
11334 do_cleanups (old_chain);
11335 }
11336 else
11337 ui_out_text (uiout, _("all Ada exceptions"));
11338 break;
11339
11340 case ex_catch_exception_unhandled:
11341 ui_out_text (uiout, _("unhandled Ada exceptions"));
11342 break;
11343
11344 case ex_catch_assert:
11345 ui_out_text (uiout, _("failed Ada assertions"));
11346 break;
11347
11348 default:
11349 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11350 break;
11351 }
11352}
11353
11354/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11355 for all exception catchpoint kinds. */
11356
11357static void
11358print_recreate_exception (enum exception_catchpoint_kind ex,
11359 struct breakpoint *b, struct ui_file *fp)
11360{
11361 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11362
11363 switch (ex)
11364 {
11365 case ex_catch_exception:
11366 fprintf_filtered (fp, "catch exception");
11367 if (c->excep_string != NULL)
11368 fprintf_filtered (fp, " %s", c->excep_string);
11369 break;
11370
11371 case ex_catch_exception_unhandled:
11372 fprintf_filtered (fp, "catch exception unhandled");
11373 break;
11374
11375 case ex_catch_assert:
11376 fprintf_filtered (fp, "catch assert");
11377 break;
11378
11379 default:
11380 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11381 }
11382 print_recreate_thread (b, fp);
11383}
11384
11385/* Virtual table for "catch exception" breakpoints. */
11386
11387static void
11388dtor_catch_exception (struct breakpoint *b)
11389{
11390 dtor_exception (ex_catch_exception, b);
11391}
11392
11393static struct bp_location *
11394allocate_location_catch_exception (struct breakpoint *self)
11395{
11396 return allocate_location_exception (ex_catch_exception, self);
11397}
11398
11399static void
11400re_set_catch_exception (struct breakpoint *b)
11401{
11402 re_set_exception (ex_catch_exception, b);
11403}
11404
11405static void
11406check_status_catch_exception (bpstat bs)
11407{
11408 check_status_exception (ex_catch_exception, bs);
11409}
11410
11411static enum print_stop_action
11412print_it_catch_exception (bpstat bs)
11413{
11414 return print_it_exception (ex_catch_exception, bs);
11415}
11416
11417static void
11418print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11419{
11420 print_one_exception (ex_catch_exception, b, last_loc);
11421}
11422
11423static void
11424print_mention_catch_exception (struct breakpoint *b)
11425{
11426 print_mention_exception (ex_catch_exception, b);
11427}
11428
11429static void
11430print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11431{
11432 print_recreate_exception (ex_catch_exception, b, fp);
11433}
11434
11435static struct breakpoint_ops catch_exception_breakpoint_ops;
11436
11437/* Virtual table for "catch exception unhandled" breakpoints. */
11438
11439static void
11440dtor_catch_exception_unhandled (struct breakpoint *b)
11441{
11442 dtor_exception (ex_catch_exception_unhandled, b);
11443}
11444
11445static struct bp_location *
11446allocate_location_catch_exception_unhandled (struct breakpoint *self)
11447{
11448 return allocate_location_exception (ex_catch_exception_unhandled, self);
11449}
11450
11451static void
11452re_set_catch_exception_unhandled (struct breakpoint *b)
11453{
11454 re_set_exception (ex_catch_exception_unhandled, b);
11455}
11456
11457static void
11458check_status_catch_exception_unhandled (bpstat bs)
11459{
11460 check_status_exception (ex_catch_exception_unhandled, bs);
11461}
11462
11463static enum print_stop_action
11464print_it_catch_exception_unhandled (bpstat bs)
11465{
11466 return print_it_exception (ex_catch_exception_unhandled, bs);
11467}
11468
11469static void
11470print_one_catch_exception_unhandled (struct breakpoint *b,
11471 struct bp_location **last_loc)
11472{
11473 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11474}
11475
11476static void
11477print_mention_catch_exception_unhandled (struct breakpoint *b)
11478{
11479 print_mention_exception (ex_catch_exception_unhandled, b);
11480}
11481
11482static void
11483print_recreate_catch_exception_unhandled (struct breakpoint *b,
11484 struct ui_file *fp)
11485{
11486 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11487}
11488
11489static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11490
11491/* Virtual table for "catch assert" breakpoints. */
11492
11493static void
11494dtor_catch_assert (struct breakpoint *b)
11495{
11496 dtor_exception (ex_catch_assert, b);
11497}
11498
11499static struct bp_location *
11500allocate_location_catch_assert (struct breakpoint *self)
11501{
11502 return allocate_location_exception (ex_catch_assert, self);
11503}
11504
11505static void
11506re_set_catch_assert (struct breakpoint *b)
11507{
11508 return re_set_exception (ex_catch_assert, b);
11509}
11510
11511static void
11512check_status_catch_assert (bpstat bs)
11513{
11514 check_status_exception (ex_catch_assert, bs);
11515}
11516
11517static enum print_stop_action
11518print_it_catch_assert (bpstat bs)
11519{
11520 return print_it_exception (ex_catch_assert, bs);
11521}
11522
11523static void
11524print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11525{
11526 print_one_exception (ex_catch_assert, b, last_loc);
11527}
11528
11529static void
11530print_mention_catch_assert (struct breakpoint *b)
11531{
11532 print_mention_exception (ex_catch_assert, b);
11533}
11534
11535static void
11536print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11537{
11538 print_recreate_exception (ex_catch_assert, b, fp);
11539}
11540
11541static struct breakpoint_ops catch_assert_breakpoint_ops;
11542
11543/* Return a newly allocated copy of the first space-separated token
11544 in ARGSP, and then adjust ARGSP to point immediately after that
11545 token.
11546
11547 Return NULL if ARGPS does not contain any more tokens. */
11548
11549static char *
11550ada_get_next_arg (char **argsp)
11551{
11552 char *args = *argsp;
11553 char *end;
11554 char *result;
11555
11556 args = skip_spaces (args);
11557 if (args[0] == '\0')
11558 return NULL; /* No more arguments. */
11559
11560 /* Find the end of the current argument. */
11561
11562 end = skip_to_space (args);
11563
11564 /* Adjust ARGSP to point to the start of the next argument. */
11565
11566 *argsp = end;
11567
11568 /* Make a copy of the current argument and return it. */
11569
11570 result = xmalloc (end - args + 1);
11571 strncpy (result, args, end - args);
11572 result[end - args] = '\0';
11573
11574 return result;
11575}
11576
11577/* Split the arguments specified in a "catch exception" command.
11578 Set EX to the appropriate catchpoint type.
11579 Set EXCEP_STRING to the name of the specific exception if
11580 specified by the user.
11581 If a condition is found at the end of the arguments, the condition
11582 expression is stored in COND_STRING (memory must be deallocated
11583 after use). Otherwise COND_STRING is set to NULL. */
11584
11585static void
11586catch_ada_exception_command_split (char *args,
11587 enum exception_catchpoint_kind *ex,
11588 char **excep_string,
11589 char **cond_string)
11590{
11591 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11592 char *exception_name;
11593 char *cond = NULL;
11594
11595 exception_name = ada_get_next_arg (&args);
11596 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11597 {
11598 /* This is not an exception name; this is the start of a condition
11599 expression for a catchpoint on all exceptions. So, "un-get"
11600 this token, and set exception_name to NULL. */
11601 xfree (exception_name);
11602 exception_name = NULL;
11603 args -= 2;
11604 }
11605 make_cleanup (xfree, exception_name);
11606
11607 /* Check to see if we have a condition. */
11608
11609 args = skip_spaces (args);
11610 if (strncmp (args, "if", 2) == 0
11611 && (isspace (args[2]) || args[2] == '\0'))
11612 {
11613 args += 2;
11614 args = skip_spaces (args);
11615
11616 if (args[0] == '\0')
11617 error (_("Condition missing after `if' keyword"));
11618 cond = xstrdup (args);
11619 make_cleanup (xfree, cond);
11620
11621 args += strlen (args);
11622 }
11623
11624 /* Check that we do not have any more arguments. Anything else
11625 is unexpected. */
11626
11627 if (args[0] != '\0')
11628 error (_("Junk at end of expression"));
11629
11630 discard_cleanups (old_chain);
11631
11632 if (exception_name == NULL)
11633 {
11634 /* Catch all exceptions. */
11635 *ex = ex_catch_exception;
11636 *excep_string = NULL;
11637 }
11638 else if (strcmp (exception_name, "unhandled") == 0)
11639 {
11640 /* Catch unhandled exceptions. */
11641 *ex = ex_catch_exception_unhandled;
11642 *excep_string = NULL;
11643 }
11644 else
11645 {
11646 /* Catch a specific exception. */
11647 *ex = ex_catch_exception;
11648 *excep_string = exception_name;
11649 }
11650 *cond_string = cond;
11651}
11652
11653/* Return the name of the symbol on which we should break in order to
11654 implement a catchpoint of the EX kind. */
11655
11656static const char *
11657ada_exception_sym_name (enum exception_catchpoint_kind ex)
11658{
11659 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11660
11661 gdb_assert (data->exception_info != NULL);
11662
11663 switch (ex)
11664 {
11665 case ex_catch_exception:
11666 return (data->exception_info->catch_exception_sym);
11667 break;
11668 case ex_catch_exception_unhandled:
11669 return (data->exception_info->catch_exception_unhandled_sym);
11670 break;
11671 case ex_catch_assert:
11672 return (data->exception_info->catch_assert_sym);
11673 break;
11674 default:
11675 internal_error (__FILE__, __LINE__,
11676 _("unexpected catchpoint kind (%d)"), ex);
11677 }
11678}
11679
11680/* Return the breakpoint ops "virtual table" used for catchpoints
11681 of the EX kind. */
11682
11683static const struct breakpoint_ops *
11684ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11685{
11686 switch (ex)
11687 {
11688 case ex_catch_exception:
11689 return (&catch_exception_breakpoint_ops);
11690 break;
11691 case ex_catch_exception_unhandled:
11692 return (&catch_exception_unhandled_breakpoint_ops);
11693 break;
11694 case ex_catch_assert:
11695 return (&catch_assert_breakpoint_ops);
11696 break;
11697 default:
11698 internal_error (__FILE__, __LINE__,
11699 _("unexpected catchpoint kind (%d)"), ex);
11700 }
11701}
11702
11703/* Return the condition that will be used to match the current exception
11704 being raised with the exception that the user wants to catch. This
11705 assumes that this condition is used when the inferior just triggered
11706 an exception catchpoint.
11707
11708 The string returned is a newly allocated string that needs to be
11709 deallocated later. */
11710
11711static char *
11712ada_exception_catchpoint_cond_string (const char *excep_string)
11713{
11714 int i;
11715
11716 /* The standard exceptions are a special case. They are defined in
11717 runtime units that have been compiled without debugging info; if
11718 EXCEP_STRING is the not-fully-qualified name of a standard
11719 exception (e.g. "constraint_error") then, during the evaluation
11720 of the condition expression, the symbol lookup on this name would
11721 *not* return this standard exception. The catchpoint condition
11722 may then be set only on user-defined exceptions which have the
11723 same not-fully-qualified name (e.g. my_package.constraint_error).
11724
11725 To avoid this unexcepted behavior, these standard exceptions are
11726 systematically prefixed by "standard". This means that "catch
11727 exception constraint_error" is rewritten into "catch exception
11728 standard.constraint_error".
11729
11730 If an exception named contraint_error is defined in another package of
11731 the inferior program, then the only way to specify this exception as a
11732 breakpoint condition is to use its fully-qualified named:
11733 e.g. my_package.constraint_error. */
11734
11735 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11736 {
11737 if (strcmp (standard_exc [i], excep_string) == 0)
11738 {
11739 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11740 excep_string);
11741 }
11742 }
11743 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11744}
11745
11746/* Return the symtab_and_line that should be used to insert an exception
11747 catchpoint of the TYPE kind.
11748
11749 EXCEP_STRING should contain the name of a specific exception that
11750 the catchpoint should catch, or NULL otherwise.
11751
11752 ADDR_STRING returns the name of the function where the real
11753 breakpoint that implements the catchpoints is set, depending on the
11754 type of catchpoint we need to create. */
11755
11756static struct symtab_and_line
11757ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11758 char **addr_string, const struct breakpoint_ops **ops)
11759{
11760 const char *sym_name;
11761 struct symbol *sym;
11762
11763 /* First, find out which exception support info to use. */
11764 ada_exception_support_info_sniffer ();
11765
11766 /* Then lookup the function on which we will break in order to catch
11767 the Ada exceptions requested by the user. */
11768 sym_name = ada_exception_sym_name (ex);
11769 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11770
11771 /* We can assume that SYM is not NULL at this stage. If the symbol
11772 did not exist, ada_exception_support_info_sniffer would have
11773 raised an exception.
11774
11775 Also, ada_exception_support_info_sniffer should have already
11776 verified that SYM is a function symbol. */
11777 gdb_assert (sym != NULL);
11778 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11779
11780 /* Set ADDR_STRING. */
11781 *addr_string = xstrdup (sym_name);
11782
11783 /* Set OPS. */
11784 *ops = ada_exception_breakpoint_ops (ex);
11785
11786 return find_function_start_sal (sym, 1);
11787}
11788
11789/* Parse the arguments (ARGS) of the "catch exception" command.
11790
11791 If the user asked the catchpoint to catch only a specific
11792 exception, then save the exception name in ADDR_STRING.
11793
11794 If the user provided a condition, then set COND_STRING to
11795 that condition expression (the memory must be deallocated
11796 after use). Otherwise, set COND_STRING to NULL.
11797
11798 See ada_exception_sal for a description of all the remaining
11799 function arguments of this function. */
11800
11801static struct symtab_and_line
11802ada_decode_exception_location (char *args, char **addr_string,
11803 char **excep_string,
11804 char **cond_string,
11805 const struct breakpoint_ops **ops)
11806{
11807 enum exception_catchpoint_kind ex;
11808
11809 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11810 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11811}
11812
11813/* Create an Ada exception catchpoint. */
11814
11815static void
11816create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11817 struct symtab_and_line sal,
11818 char *addr_string,
11819 char *excep_string,
11820 char *cond_string,
11821 const struct breakpoint_ops *ops,
11822 int tempflag,
11823 int from_tty)
11824{
11825 struct ada_catchpoint *c;
11826
11827 c = XNEW (struct ada_catchpoint);
11828 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11829 ops, tempflag, from_tty);
11830 c->excep_string = excep_string;
11831 create_excep_cond_exprs (c);
11832 if (cond_string != NULL)
11833 set_breakpoint_condition (&c->base, cond_string, from_tty);
11834 install_breakpoint (0, &c->base, 1);
11835}
11836
11837/* Implement the "catch exception" command. */
11838
11839static void
11840catch_ada_exception_command (char *arg, int from_tty,
11841 struct cmd_list_element *command)
11842{
11843 struct gdbarch *gdbarch = get_current_arch ();
11844 int tempflag;
11845 struct symtab_and_line sal;
11846 char *addr_string = NULL;
11847 char *excep_string = NULL;
11848 char *cond_string = NULL;
11849 const struct breakpoint_ops *ops = NULL;
11850
11851 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11852
11853 if (!arg)
11854 arg = "";
11855 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11856 &cond_string, &ops);
11857 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11858 excep_string, cond_string, ops,
11859 tempflag, from_tty);
11860}
11861
11862/* Assuming that ARGS contains the arguments of a "catch assert"
11863 command, parse those arguments and return a symtab_and_line object
11864 for a failed assertion catchpoint.
11865
11866 Set ADDR_STRING to the name of the function where the real
11867 breakpoint that implements the catchpoint is set.
11868
11869 If ARGS contains a condition, set COND_STRING to that condition
11870 (the memory needs to be deallocated after use). Otherwise, set
11871 COND_STRING to NULL. */
11872
11873static struct symtab_and_line
11874ada_decode_assert_location (char *args, char **addr_string,
11875 char **cond_string,
11876 const struct breakpoint_ops **ops)
11877{
11878 args = skip_spaces (args);
11879
11880 /* Check whether a condition was provided. */
11881 if (strncmp (args, "if", 2) == 0
11882 && (isspace (args[2]) || args[2] == '\0'))
11883 {
11884 args += 2;
11885 args = skip_spaces (args);
11886 if (args[0] == '\0')
11887 error (_("condition missing after `if' keyword"));
11888 *cond_string = xstrdup (args);
11889 }
11890
11891 /* Otherwise, there should be no other argument at the end of
11892 the command. */
11893 else if (args[0] != '\0')
11894 error (_("Junk at end of arguments."));
11895
11896 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11897}
11898
11899/* Implement the "catch assert" command. */
11900
11901static void
11902catch_assert_command (char *arg, int from_tty,
11903 struct cmd_list_element *command)
11904{
11905 struct gdbarch *gdbarch = get_current_arch ();
11906 int tempflag;
11907 struct symtab_and_line sal;
11908 char *addr_string = NULL;
11909 char *cond_string = NULL;
11910 const struct breakpoint_ops *ops = NULL;
11911
11912 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11913
11914 if (!arg)
11915 arg = "";
11916 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11917 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11918 NULL, cond_string, ops, tempflag,
11919 from_tty);
11920}
11921 /* Operators */
11922/* Information about operators given special treatment in functions
11923 below. */
11924/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11925
11926#define ADA_OPERATORS \
11927 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11928 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11929 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11930 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11931 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11932 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11933 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11934 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11935 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11936 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11937 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11938 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11939 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11940 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11941 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11942 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11943 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11944 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11945 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11946
11947static void
11948ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11949 int *argsp)
11950{
11951 switch (exp->elts[pc - 1].opcode)
11952 {
11953 default:
11954 operator_length_standard (exp, pc, oplenp, argsp);
11955 break;
11956
11957#define OP_DEFN(op, len, args, binop) \
11958 case op: *oplenp = len; *argsp = args; break;
11959 ADA_OPERATORS;
11960#undef OP_DEFN
11961
11962 case OP_AGGREGATE:
11963 *oplenp = 3;
11964 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11965 break;
11966
11967 case OP_CHOICES:
11968 *oplenp = 3;
11969 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11970 break;
11971 }
11972}
11973
11974/* Implementation of the exp_descriptor method operator_check. */
11975
11976static int
11977ada_operator_check (struct expression *exp, int pos,
11978 int (*objfile_func) (struct objfile *objfile, void *data),
11979 void *data)
11980{
11981 const union exp_element *const elts = exp->elts;
11982 struct type *type = NULL;
11983
11984 switch (elts[pos].opcode)
11985 {
11986 case UNOP_IN_RANGE:
11987 case UNOP_QUAL:
11988 type = elts[pos + 1].type;
11989 break;
11990
11991 default:
11992 return operator_check_standard (exp, pos, objfile_func, data);
11993 }
11994
11995 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11996
11997 if (type && TYPE_OBJFILE (type)
11998 && (*objfile_func) (TYPE_OBJFILE (type), data))
11999 return 1;
12000
12001 return 0;
12002}
12003
12004static char *
12005ada_op_name (enum exp_opcode opcode)
12006{
12007 switch (opcode)
12008 {
12009 default:
12010 return op_name_standard (opcode);
12011
12012#define OP_DEFN(op, len, args, binop) case op: return #op;
12013 ADA_OPERATORS;
12014#undef OP_DEFN
12015
12016 case OP_AGGREGATE:
12017 return "OP_AGGREGATE";
12018 case OP_CHOICES:
12019 return "OP_CHOICES";
12020 case OP_NAME:
12021 return "OP_NAME";
12022 }
12023}
12024
12025/* As for operator_length, but assumes PC is pointing at the first
12026 element of the operator, and gives meaningful results only for the
12027 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12028
12029static void
12030ada_forward_operator_length (struct expression *exp, int pc,
12031 int *oplenp, int *argsp)
12032{
12033 switch (exp->elts[pc].opcode)
12034 {
12035 default:
12036 *oplenp = *argsp = 0;
12037 break;
12038
12039#define OP_DEFN(op, len, args, binop) \
12040 case op: *oplenp = len; *argsp = args; break;
12041 ADA_OPERATORS;
12042#undef OP_DEFN
12043
12044 case OP_AGGREGATE:
12045 *oplenp = 3;
12046 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12047 break;
12048
12049 case OP_CHOICES:
12050 *oplenp = 3;
12051 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12052 break;
12053
12054 case OP_STRING:
12055 case OP_NAME:
12056 {
12057 int len = longest_to_int (exp->elts[pc + 1].longconst);
12058
12059 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12060 *argsp = 0;
12061 break;
12062 }
12063 }
12064}
12065
12066static int
12067ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12068{
12069 enum exp_opcode op = exp->elts[elt].opcode;
12070 int oplen, nargs;
12071 int pc = elt;
12072 int i;
12073
12074 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12075
12076 switch (op)
12077 {
12078 /* Ada attributes ('Foo). */
12079 case OP_ATR_FIRST:
12080 case OP_ATR_LAST:
12081 case OP_ATR_LENGTH:
12082 case OP_ATR_IMAGE:
12083 case OP_ATR_MAX:
12084 case OP_ATR_MIN:
12085 case OP_ATR_MODULUS:
12086 case OP_ATR_POS:
12087 case OP_ATR_SIZE:
12088 case OP_ATR_TAG:
12089 case OP_ATR_VAL:
12090 break;
12091
12092 case UNOP_IN_RANGE:
12093 case UNOP_QUAL:
12094 /* XXX: gdb_sprint_host_address, type_sprint */
12095 fprintf_filtered (stream, _("Type @"));
12096 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12097 fprintf_filtered (stream, " (");
12098 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12099 fprintf_filtered (stream, ")");
12100 break;
12101 case BINOP_IN_BOUNDS:
12102 fprintf_filtered (stream, " (%d)",
12103 longest_to_int (exp->elts[pc + 2].longconst));
12104 break;
12105 case TERNOP_IN_RANGE:
12106 break;
12107
12108 case OP_AGGREGATE:
12109 case OP_OTHERS:
12110 case OP_DISCRETE_RANGE:
12111 case OP_POSITIONAL:
12112 case OP_CHOICES:
12113 break;
12114
12115 case OP_NAME:
12116 case OP_STRING:
12117 {
12118 char *name = &exp->elts[elt + 2].string;
12119 int len = longest_to_int (exp->elts[elt + 1].longconst);
12120
12121 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12122 break;
12123 }
12124
12125 default:
12126 return dump_subexp_body_standard (exp, stream, elt);
12127 }
12128
12129 elt += oplen;
12130 for (i = 0; i < nargs; i += 1)
12131 elt = dump_subexp (exp, stream, elt);
12132
12133 return elt;
12134}
12135
12136/* The Ada extension of print_subexp (q.v.). */
12137
12138static void
12139ada_print_subexp (struct expression *exp, int *pos,
12140 struct ui_file *stream, enum precedence prec)
12141{
12142 int oplen, nargs, i;
12143 int pc = *pos;
12144 enum exp_opcode op = exp->elts[pc].opcode;
12145
12146 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12147
12148 *pos += oplen;
12149 switch (op)
12150 {
12151 default:
12152 *pos -= oplen;
12153 print_subexp_standard (exp, pos, stream, prec);
12154 return;
12155
12156 case OP_VAR_VALUE:
12157 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12158 return;
12159
12160 case BINOP_IN_BOUNDS:
12161 /* XXX: sprint_subexp */
12162 print_subexp (exp, pos, stream, PREC_SUFFIX);
12163 fputs_filtered (" in ", stream);
12164 print_subexp (exp, pos, stream, PREC_SUFFIX);
12165 fputs_filtered ("'range", stream);
12166 if (exp->elts[pc + 1].longconst > 1)
12167 fprintf_filtered (stream, "(%ld)",
12168 (long) exp->elts[pc + 1].longconst);
12169 return;
12170
12171 case TERNOP_IN_RANGE:
12172 if (prec >= PREC_EQUAL)
12173 fputs_filtered ("(", stream);
12174 /* XXX: sprint_subexp */
12175 print_subexp (exp, pos, stream, PREC_SUFFIX);
12176 fputs_filtered (" in ", stream);
12177 print_subexp (exp, pos, stream, PREC_EQUAL);
12178 fputs_filtered (" .. ", stream);
12179 print_subexp (exp, pos, stream, PREC_EQUAL);
12180 if (prec >= PREC_EQUAL)
12181 fputs_filtered (")", stream);
12182 return;
12183
12184 case OP_ATR_FIRST:
12185 case OP_ATR_LAST:
12186 case OP_ATR_LENGTH:
12187 case OP_ATR_IMAGE:
12188 case OP_ATR_MAX:
12189 case OP_ATR_MIN:
12190 case OP_ATR_MODULUS:
12191 case OP_ATR_POS:
12192 case OP_ATR_SIZE:
12193 case OP_ATR_TAG:
12194 case OP_ATR_VAL:
12195 if (exp->elts[*pos].opcode == OP_TYPE)
12196 {
12197 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12198 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12199 *pos += 3;
12200 }
12201 else
12202 print_subexp (exp, pos, stream, PREC_SUFFIX);
12203 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12204 if (nargs > 1)
12205 {
12206 int tem;
12207
12208 for (tem = 1; tem < nargs; tem += 1)
12209 {
12210 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12211 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12212 }
12213 fputs_filtered (")", stream);
12214 }
12215 return;
12216
12217 case UNOP_QUAL:
12218 type_print (exp->elts[pc + 1].type, "", stream, 0);
12219 fputs_filtered ("'(", stream);
12220 print_subexp (exp, pos, stream, PREC_PREFIX);
12221 fputs_filtered (")", stream);
12222 return;
12223
12224 case UNOP_IN_RANGE:
12225 /* XXX: sprint_subexp */
12226 print_subexp (exp, pos, stream, PREC_SUFFIX);
12227 fputs_filtered (" in ", stream);
12228 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12229 return;
12230
12231 case OP_DISCRETE_RANGE:
12232 print_subexp (exp, pos, stream, PREC_SUFFIX);
12233 fputs_filtered ("..", stream);
12234 print_subexp (exp, pos, stream, PREC_SUFFIX);
12235 return;
12236
12237 case OP_OTHERS:
12238 fputs_filtered ("others => ", stream);
12239 print_subexp (exp, pos, stream, PREC_SUFFIX);
12240 return;
12241
12242 case OP_CHOICES:
12243 for (i = 0; i < nargs-1; i += 1)
12244 {
12245 if (i > 0)
12246 fputs_filtered ("|", stream);
12247 print_subexp (exp, pos, stream, PREC_SUFFIX);
12248 }
12249 fputs_filtered (" => ", stream);
12250 print_subexp (exp, pos, stream, PREC_SUFFIX);
12251 return;
12252
12253 case OP_POSITIONAL:
12254 print_subexp (exp, pos, stream, PREC_SUFFIX);
12255 return;
12256
12257 case OP_AGGREGATE:
12258 fputs_filtered ("(", stream);
12259 for (i = 0; i < nargs; i += 1)
12260 {
12261 if (i > 0)
12262 fputs_filtered (", ", stream);
12263 print_subexp (exp, pos, stream, PREC_SUFFIX);
12264 }
12265 fputs_filtered (")", stream);
12266 return;
12267 }
12268}
12269
12270/* Table mapping opcodes into strings for printing operators
12271 and precedences of the operators. */
12272
12273static const struct op_print ada_op_print_tab[] = {
12274 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12275 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12276 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12277 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12278 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12279 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12280 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12281 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12282 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12283 {">=", BINOP_GEQ, PREC_ORDER, 0},
12284 {">", BINOP_GTR, PREC_ORDER, 0},
12285 {"<", BINOP_LESS, PREC_ORDER, 0},
12286 {">>", BINOP_RSH, PREC_SHIFT, 0},
12287 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12288 {"+", BINOP_ADD, PREC_ADD, 0},
12289 {"-", BINOP_SUB, PREC_ADD, 0},
12290 {"&", BINOP_CONCAT, PREC_ADD, 0},
12291 {"*", BINOP_MUL, PREC_MUL, 0},
12292 {"/", BINOP_DIV, PREC_MUL, 0},
12293 {"rem", BINOP_REM, PREC_MUL, 0},
12294 {"mod", BINOP_MOD, PREC_MUL, 0},
12295 {"**", BINOP_EXP, PREC_REPEAT, 0},
12296 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12297 {"-", UNOP_NEG, PREC_PREFIX, 0},
12298 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12299 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12300 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12301 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12302 {".all", UNOP_IND, PREC_SUFFIX, 1},
12303 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12304 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12305 {NULL, 0, 0, 0}
12306};
12307\f
12308enum ada_primitive_types {
12309 ada_primitive_type_int,
12310 ada_primitive_type_long,
12311 ada_primitive_type_short,
12312 ada_primitive_type_char,
12313 ada_primitive_type_float,
12314 ada_primitive_type_double,
12315 ada_primitive_type_void,
12316 ada_primitive_type_long_long,
12317 ada_primitive_type_long_double,
12318 ada_primitive_type_natural,
12319 ada_primitive_type_positive,
12320 ada_primitive_type_system_address,
12321 nr_ada_primitive_types
12322};
12323
12324static void
12325ada_language_arch_info (struct gdbarch *gdbarch,
12326 struct language_arch_info *lai)
12327{
12328 const struct builtin_type *builtin = builtin_type (gdbarch);
12329
12330 lai->primitive_type_vector
12331 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12332 struct type *);
12333
12334 lai->primitive_type_vector [ada_primitive_type_int]
12335 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12336 0, "integer");
12337 lai->primitive_type_vector [ada_primitive_type_long]
12338 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12339 0, "long_integer");
12340 lai->primitive_type_vector [ada_primitive_type_short]
12341 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12342 0, "short_integer");
12343 lai->string_char_type
12344 = lai->primitive_type_vector [ada_primitive_type_char]
12345 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12346 lai->primitive_type_vector [ada_primitive_type_float]
12347 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12348 "float", NULL);
12349 lai->primitive_type_vector [ada_primitive_type_double]
12350 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12351 "long_float", NULL);
12352 lai->primitive_type_vector [ada_primitive_type_long_long]
12353 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12354 0, "long_long_integer");
12355 lai->primitive_type_vector [ada_primitive_type_long_double]
12356 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12357 "long_long_float", NULL);
12358 lai->primitive_type_vector [ada_primitive_type_natural]
12359 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12360 0, "natural");
12361 lai->primitive_type_vector [ada_primitive_type_positive]
12362 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12363 0, "positive");
12364 lai->primitive_type_vector [ada_primitive_type_void]
12365 = builtin->builtin_void;
12366
12367 lai->primitive_type_vector [ada_primitive_type_system_address]
12368 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12369 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12370 = "system__address";
12371
12372 lai->bool_type_symbol = NULL;
12373 lai->bool_type_default = builtin->builtin_bool;
12374}
12375\f
12376 /* Language vector */
12377
12378/* Not really used, but needed in the ada_language_defn. */
12379
12380static void
12381emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12382{
12383 ada_emit_char (c, type, stream, quoter, 1);
12384}
12385
12386static int
12387parse (void)
12388{
12389 warnings_issued = 0;
12390 return ada_parse ();
12391}
12392
12393static const struct exp_descriptor ada_exp_descriptor = {
12394 ada_print_subexp,
12395 ada_operator_length,
12396 ada_operator_check,
12397 ada_op_name,
12398 ada_dump_subexp_body,
12399 ada_evaluate_subexp
12400};
12401
12402/* Implement the "la_get_symbol_name_cmp" language_defn method
12403 for Ada. */
12404
12405static symbol_name_cmp_ftype
12406ada_get_symbol_name_cmp (const char *lookup_name)
12407{
12408 if (should_use_wild_match (lookup_name))
12409 return wild_match;
12410 else
12411 return compare_names;
12412}
12413
12414const struct language_defn ada_language_defn = {
12415 "ada", /* Language name */
12416 language_ada,
12417 range_check_off,
12418 type_check_off,
12419 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12420 that's not quite what this means. */
12421 array_row_major,
12422 macro_expansion_no,
12423 &ada_exp_descriptor,
12424 parse,
12425 ada_error,
12426 resolve,
12427 ada_printchar, /* Print a character constant */
12428 ada_printstr, /* Function to print string constant */
12429 emit_char, /* Function to print single char (not used) */
12430 ada_print_type, /* Print a type using appropriate syntax */
12431 ada_print_typedef, /* Print a typedef using appropriate syntax */
12432 ada_val_print, /* Print a value using appropriate syntax */
12433 ada_value_print, /* Print a top-level value */
12434 NULL, /* Language specific skip_trampoline */
12435 NULL, /* name_of_this */
12436 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12437 basic_lookup_transparent_type, /* lookup_transparent_type */
12438 ada_la_decode, /* Language specific symbol demangler */
12439 NULL, /* Language specific
12440 class_name_from_physname */
12441 ada_op_print_tab, /* expression operators for printing */
12442 0, /* c-style arrays */
12443 1, /* String lower bound */
12444 ada_get_gdb_completer_word_break_characters,
12445 ada_make_symbol_completion_list,
12446 ada_language_arch_info,
12447 ada_print_array_index,
12448 default_pass_by_reference,
12449 c_get_string,
12450 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12451 ada_iterate_over_symbols,
12452 LANG_MAGIC
12453};
12454
12455/* Provide a prototype to silence -Wmissing-prototypes. */
12456extern initialize_file_ftype _initialize_ada_language;
12457
12458/* Command-list for the "set/show ada" prefix command. */
12459static struct cmd_list_element *set_ada_list;
12460static struct cmd_list_element *show_ada_list;
12461
12462/* Implement the "set ada" prefix command. */
12463
12464static void
12465set_ada_command (char *arg, int from_tty)
12466{
12467 printf_unfiltered (_(\
12468"\"set ada\" must be followed by the name of a setting.\n"));
12469 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12470}
12471
12472/* Implement the "show ada" prefix command. */
12473
12474static void
12475show_ada_command (char *args, int from_tty)
12476{
12477 cmd_show_list (show_ada_list, from_tty, "");
12478}
12479
12480static void
12481initialize_ada_catchpoint_ops (void)
12482{
12483 struct breakpoint_ops *ops;
12484
12485 initialize_breakpoint_ops ();
12486
12487 ops = &catch_exception_breakpoint_ops;
12488 *ops = bkpt_breakpoint_ops;
12489 ops->dtor = dtor_catch_exception;
12490 ops->allocate_location = allocate_location_catch_exception;
12491 ops->re_set = re_set_catch_exception;
12492 ops->check_status = check_status_catch_exception;
12493 ops->print_it = print_it_catch_exception;
12494 ops->print_one = print_one_catch_exception;
12495 ops->print_mention = print_mention_catch_exception;
12496 ops->print_recreate = print_recreate_catch_exception;
12497
12498 ops = &catch_exception_unhandled_breakpoint_ops;
12499 *ops = bkpt_breakpoint_ops;
12500 ops->dtor = dtor_catch_exception_unhandled;
12501 ops->allocate_location = allocate_location_catch_exception_unhandled;
12502 ops->re_set = re_set_catch_exception_unhandled;
12503 ops->check_status = check_status_catch_exception_unhandled;
12504 ops->print_it = print_it_catch_exception_unhandled;
12505 ops->print_one = print_one_catch_exception_unhandled;
12506 ops->print_mention = print_mention_catch_exception_unhandled;
12507 ops->print_recreate = print_recreate_catch_exception_unhandled;
12508
12509 ops = &catch_assert_breakpoint_ops;
12510 *ops = bkpt_breakpoint_ops;
12511 ops->dtor = dtor_catch_assert;
12512 ops->allocate_location = allocate_location_catch_assert;
12513 ops->re_set = re_set_catch_assert;
12514 ops->check_status = check_status_catch_assert;
12515 ops->print_it = print_it_catch_assert;
12516 ops->print_one = print_one_catch_assert;
12517 ops->print_mention = print_mention_catch_assert;
12518 ops->print_recreate = print_recreate_catch_assert;
12519}
12520
12521void
12522_initialize_ada_language (void)
12523{
12524 add_language (&ada_language_defn);
12525
12526 initialize_ada_catchpoint_ops ();
12527
12528 add_prefix_cmd ("ada", no_class, set_ada_command,
12529 _("Prefix command for changing Ada-specfic settings"),
12530 &set_ada_list, "set ada ", 0, &setlist);
12531
12532 add_prefix_cmd ("ada", no_class, show_ada_command,
12533 _("Generic command for showing Ada-specific settings."),
12534 &show_ada_list, "show ada ", 0, &showlist);
12535
12536 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12537 &trust_pad_over_xvs, _("\
12538Enable or disable an optimization trusting PAD types over XVS types"), _("\
12539Show whether an optimization trusting PAD types over XVS types is activated"),
12540 _("\
12541This is related to the encoding used by the GNAT compiler. The debugger\n\
12542should normally trust the contents of PAD types, but certain older versions\n\
12543of GNAT have a bug that sometimes causes the information in the PAD type\n\
12544to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12545work around this bug. It is always safe to turn this option \"off\", but\n\
12546this incurs a slight performance penalty, so it is recommended to NOT change\n\
12547this option to \"off\" unless necessary."),
12548 NULL, NULL, &set_ada_list, &show_ada_list);
12549
12550 add_catch_command ("exception", _("\
12551Catch Ada exceptions, when raised.\n\
12552With an argument, catch only exceptions with the given name."),
12553 catch_ada_exception_command,
12554 NULL,
12555 CATCH_PERMANENT,
12556 CATCH_TEMPORARY);
12557 add_catch_command ("assert", _("\
12558Catch failed Ada assertions, when raised.\n\
12559With an argument, catch only exceptions with the given name."),
12560 catch_assert_command,
12561 NULL,
12562 CATCH_PERMANENT,
12563 CATCH_TEMPORARY);
12564
12565 varsize_limit = 65536;
12566
12567 obstack_init (&symbol_list_obstack);
12568
12569 decoded_names_store = htab_create_alloc
12570 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12571 NULL, xcalloc, xfree);
12572
12573 /* Setup per-inferior data. */
12574 observer_attach_inferior_exit (ada_inferior_exit);
12575 ada_inferior_data
12576 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12577}
This page took 0.070592 seconds and 4 git commands to generate.