[AArch64] Fix mis-detection of unpredictable load/store operations with FP regs.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
... / ...
CommitLineData
1/* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21#include "defs.h"
22#include <ctype.h>
23#include "demangle.h"
24#include "gdb_regex.h"
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
39#include "hashtab.h"
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
46#include "infcall.h"
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
50#include "source.h"
51#include "observer.h"
52#include "vec.h"
53#include "stack.h"
54#include "gdb_vecs.h"
55#include "typeprint.h"
56
57#include "psymtab.h"
58#include "value.h"
59#include "mi/mi-common.h"
60#include "arch-utils.h"
61#include "cli/cli-utils.h"
62
63/* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
71static struct type *desc_base_type (struct type *);
72
73static struct type *desc_bounds_type (struct type *);
74
75static struct value *desc_bounds (struct value *);
76
77static int fat_pntr_bounds_bitpos (struct type *);
78
79static int fat_pntr_bounds_bitsize (struct type *);
80
81static struct type *desc_data_target_type (struct type *);
82
83static struct value *desc_data (struct value *);
84
85static int fat_pntr_data_bitpos (struct type *);
86
87static int fat_pntr_data_bitsize (struct type *);
88
89static struct value *desc_one_bound (struct value *, int, int);
90
91static int desc_bound_bitpos (struct type *, int, int);
92
93static int desc_bound_bitsize (struct type *, int, int);
94
95static struct type *desc_index_type (struct type *, int);
96
97static int desc_arity (struct type *);
98
99static int ada_type_match (struct type *, struct type *, int);
100
101static int ada_args_match (struct symbol *, struct value **, int);
102
103static int full_match (const char *, const char *);
104
105static struct value *make_array_descriptor (struct type *, struct value *);
106
107static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111static int is_nonfunction (struct ada_symbol_info *, int);
112
113static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
119
120static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
131
132static int numeric_type_p (struct type *);
133
134static int integer_type_p (struct type *);
135
136static int scalar_type_p (struct type *);
137
138static int discrete_type_p (struct type *);
139
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151static struct value *evaluate_subexp_type (struct expression *, int *);
152
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156static int is_dynamic_field (struct type *, int);
157
158static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164static struct type *to_fixed_range_type (struct type *, struct value *);
165
166static struct type *to_static_fixed_type (struct type *);
167static struct type *static_unwrap_type (struct type *type);
168
169static struct value *unwrap_value (struct value *);
170
171static struct type *constrained_packed_array_type (struct type *, long *);
172
173static struct type *decode_constrained_packed_array_type (struct type *);
174
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
182
183static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191static struct value *get_var_value (char *, char *);
192
193static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195static int equiv_types (struct type *, struct type *);
196
197static int is_name_suffix (const char *);
198
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
202
203static struct value *ada_coerce_ref (struct value *);
204
205static LONGEST pos_atr (struct value *);
206
207static struct value *value_pos_atr (struct type *, struct value *);
208
209static struct value *value_val_atr (struct type *, struct value *);
210
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230static int ada_is_direct_array_type (struct type *);
231
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235static void check_size (const struct type *);
236
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269static struct type *ada_find_any_type (const char *name);
270\f
271
272/* The result of a symbol lookup to be stored in our symbol cache. */
273
274struct cache_entry
275{
276 /* The name used to perform the lookup. */
277 const char *name;
278 /* The namespace used during the lookup. */
279 domain_enum namespace;
280 /* The symbol returned by the lookup, or NULL if no matching symbol
281 was found. */
282 struct symbol *sym;
283 /* The block where the symbol was found, or NULL if no matching
284 symbol was found. */
285 const struct block *block;
286 /* A pointer to the next entry with the same hash. */
287 struct cache_entry *next;
288};
289
290/* The Ada symbol cache, used to store the result of Ada-mode symbol
291 lookups in the course of executing the user's commands.
292
293 The cache is implemented using a simple, fixed-sized hash.
294 The size is fixed on the grounds that there are not likely to be
295 all that many symbols looked up during any given session, regardless
296 of the size of the symbol table. If we decide to go to a resizable
297 table, let's just use the stuff from libiberty instead. */
298
299#define HASH_SIZE 1009
300
301struct ada_symbol_cache
302{
303 /* An obstack used to store the entries in our cache. */
304 struct obstack cache_space;
305
306 /* The root of the hash table used to implement our symbol cache. */
307 struct cache_entry *root[HASH_SIZE];
308};
309
310static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
311
312/* Maximum-sized dynamic type. */
313static unsigned int varsize_limit;
314
315/* FIXME: brobecker/2003-09-17: No longer a const because it is
316 returned by a function that does not return a const char *. */
317static char *ada_completer_word_break_characters =
318#ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320#else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322#endif
323
324/* The name of the symbol to use to get the name of the main subprogram. */
325static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328/* Limit on the number of warnings to raise per expression evaluation. */
329static int warning_limit = 2;
330
331/* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333static int warnings_issued = 0;
334
335static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337};
338
339static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341};
342
343/* Space for allocating results of ada_lookup_symbol_list. */
344static struct obstack symbol_list_obstack;
345
346/* Maintenance-related settings for this module. */
347
348static struct cmd_list_element *maint_set_ada_cmdlist;
349static struct cmd_list_element *maint_show_ada_cmdlist;
350
351/* Implement the "maintenance set ada" (prefix) command. */
352
353static void
354maint_set_ada_cmd (char *args, int from_tty)
355{
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 gdb_stdout);
358}
359
360/* Implement the "maintenance show ada" (prefix) command. */
361
362static void
363maint_show_ada_cmd (char *args, int from_tty)
364{
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
366}
367
368/* The "maintenance ada set/show ignore-descriptive-type" value. */
369
370static int ada_ignore_descriptive_types_p = 0;
371
372 /* Inferior-specific data. */
373
374/* Per-inferior data for this module. */
375
376struct ada_inferior_data
377{
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
383
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
386 inferior. */
387 const struct exception_support_info *exception_info;
388};
389
390/* Our key to this module's inferior data. */
391static const struct inferior_data *ada_inferior_data;
392
393/* A cleanup routine for our inferior data. */
394static void
395ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396{
397 struct ada_inferior_data *data;
398
399 data = inferior_data (inf, ada_inferior_data);
400 if (data != NULL)
401 xfree (data);
402}
403
404/* Return our inferior data for the given inferior (INF).
405
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
411
412static struct ada_inferior_data *
413get_ada_inferior_data (struct inferior *inf)
414{
415 struct ada_inferior_data *data;
416
417 data = inferior_data (inf, ada_inferior_data);
418 if (data == NULL)
419 {
420 data = XCNEW (struct ada_inferior_data);
421 set_inferior_data (inf, ada_inferior_data, data);
422 }
423
424 return data;
425}
426
427/* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
429
430static void
431ada_inferior_exit (struct inferior *inf)
432{
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
435}
436
437
438 /* program-space-specific data. */
439
440/* This module's per-program-space data. */
441struct ada_pspace_data
442{
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
445};
446
447/* Key to our per-program-space data. */
448static const struct program_space_data *ada_pspace_data_handle;
449
450/* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
452
453 This function always returns a valid object. */
454
455static struct ada_pspace_data *
456get_ada_pspace_data (struct program_space *pspace)
457{
458 struct ada_pspace_data *data;
459
460 data = program_space_data (pspace, ada_pspace_data_handle);
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
475 struct ada_pspace_data *pspace_data = data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
482 /* Utilities */
483
484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
544/* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547static char *
548add_angle_brackets (const char *str)
549{
550 static char *result = NULL;
551
552 xfree (result);
553 result = xstrprintf ("<%s>", str);
554 return result;
555}
556
557static char *
558ada_get_gdb_completer_word_break_characters (void)
559{
560 return ada_completer_word_break_characters;
561}
562
563/* Print an array element index using the Ada syntax. */
564
565static void
566ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
568{
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
571}
572
573/* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
576
577void *
578grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
579{
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
584 *size = min_size;
585 vect = xrealloc (vect, *size * element_size);
586 }
587 return vect;
588}
589
590/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
592
593static int
594field_name_match (const char *field_name, const char *target)
595{
596 int len = strlen (target);
597
598 return
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (strncmp (field_name + len, "___", 3) == 0
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
604}
605
606
607/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
614
615int
616ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618{
619 int fieldno;
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
624 return fieldno;
625
626 if (!maybe_missing)
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
629
630 return -1;
631}
632
633/* The length of the prefix of NAME prior to any "___" suffix. */
634
635int
636ada_name_prefix_len (const char *name)
637{
638 if (name == NULL)
639 return 0;
640 else
641 {
642 const char *p = strstr (name, "___");
643
644 if (p == NULL)
645 return strlen (name);
646 else
647 return p - name;
648 }
649}
650
651/* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
654static int
655is_suffix (const char *str, const char *suffix)
656{
657 int len1, len2;
658
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
664}
665
666/* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
668
669static struct value *
670coerce_unspec_val_to_type (struct value *val, struct type *type)
671{
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
674 return val;
675 else
676 {
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 check_size (type);
682
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
690 }
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
695 return result;
696 }
697}
698
699static const gdb_byte *
700cond_offset_host (const gdb_byte *valaddr, long offset)
701{
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706}
707
708static CORE_ADDR
709cond_offset_target (CORE_ADDR address, long offset)
710{
711 if (address == 0)
712 return 0;
713 else
714 return address + offset;
715}
716
717/* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
721
722/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
725
726static void
727lim_warning (const char *format, ...)
728{
729 va_list args;
730
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
735
736 va_end (args);
737}
738
739/* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743static void
744check_size (const struct type *type)
745{
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
748}
749
750/* Maximum value of a SIZE-byte signed integer type. */
751static LONGEST
752max_of_size (int size)
753{
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
755
756 return top_bit | (top_bit - 1);
757}
758
759/* Minimum value of a SIZE-byte signed integer type. */
760static LONGEST
761min_of_size (int size)
762{
763 return -max_of_size (size) - 1;
764}
765
766/* Maximum value of a SIZE-byte unsigned integer type. */
767static ULONGEST
768umax_of_size (int size)
769{
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
771
772 return top_bit | (top_bit - 1);
773}
774
775/* Maximum value of integral type T, as a signed quantity. */
776static LONGEST
777max_of_type (struct type *t)
778{
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783}
784
785/* Minimum value of integral type T, as a signed quantity. */
786static LONGEST
787min_of_type (struct type *t)
788{
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
793}
794
795/* The largest value in the domain of TYPE, a discrete type, as an integer. */
796LONGEST
797ada_discrete_type_high_bound (struct type *type)
798{
799 type = resolve_dynamic_type (type, 0);
800 switch (TYPE_CODE (type))
801 {
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
804 case TYPE_CODE_ENUM:
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
809 case TYPE_CODE_INT:
810 return max_of_type (type);
811 default:
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
813 }
814}
815
816/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
817LONGEST
818ada_discrete_type_low_bound (struct type *type)
819{
820 type = resolve_dynamic_type (type, 0);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
825 case TYPE_CODE_ENUM:
826 return TYPE_FIELD_ENUMVAL (type, 0);
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
830 case TYPE_CODE_INT:
831 return min_of_type (type);
832 default:
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
834 }
835}
836
837/* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
839
840static struct type *
841get_base_type (struct type *type)
842{
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
850}
851
852/* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857struct value *
858ada_get_decoded_value (struct value *value)
859{
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875}
876
877/* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882struct type *
883ada_get_decoded_type (struct type *type)
884{
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889}
890
891\f
892
893 /* Language Selection */
894
895/* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
897
898enum language
899ada_update_initial_language (enum language lang)
900{
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
903 return language_ada;
904
905 return lang;
906}
907
908/* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912char *
913ada_main_name (void)
914{
915 struct bound_minimal_symbol msym;
916 static char *main_program_name = NULL;
917
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
925 if (msym.minsym != NULL)
926 {
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
933
934 xfree (main_program_name);
935 target_read_string (main_program_name_addr, &main_program_name,
936 1024, &err_code);
937
938 if (err_code != 0)
939 return NULL;
940 return main_program_name;
941 }
942
943 /* The main procedure doesn't seem to be in Ada. */
944 return NULL;
945}
946\f
947 /* Symbols */
948
949/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
950 of NULLs. */
951
952const struct ada_opname_map ada_opname_table[] = {
953 {"Oadd", "\"+\"", BINOP_ADD},
954 {"Osubtract", "\"-\"", BINOP_SUB},
955 {"Omultiply", "\"*\"", BINOP_MUL},
956 {"Odivide", "\"/\"", BINOP_DIV},
957 {"Omod", "\"mod\"", BINOP_MOD},
958 {"Orem", "\"rem\"", BINOP_REM},
959 {"Oexpon", "\"**\"", BINOP_EXP},
960 {"Olt", "\"<\"", BINOP_LESS},
961 {"Ole", "\"<=\"", BINOP_LEQ},
962 {"Ogt", "\">\"", BINOP_GTR},
963 {"Oge", "\">=\"", BINOP_GEQ},
964 {"Oeq", "\"=\"", BINOP_EQUAL},
965 {"One", "\"/=\"", BINOP_NOTEQUAL},
966 {"Oand", "\"and\"", BINOP_BITWISE_AND},
967 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
968 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
969 {"Oconcat", "\"&\"", BINOP_CONCAT},
970 {"Oabs", "\"abs\"", UNOP_ABS},
971 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
972 {"Oadd", "\"+\"", UNOP_PLUS},
973 {"Osubtract", "\"-\"", UNOP_NEG},
974 {NULL, NULL}
975};
976
977/* The "encoded" form of DECODED, according to GNAT conventions.
978 The result is valid until the next call to ada_encode. */
979
980char *
981ada_encode (const char *decoded)
982{
983 static char *encoding_buffer = NULL;
984 static size_t encoding_buffer_size = 0;
985 const char *p;
986 int k;
987
988 if (decoded == NULL)
989 return NULL;
990
991 GROW_VECT (encoding_buffer, encoding_buffer_size,
992 2 * strlen (decoded) + 10);
993
994 k = 0;
995 for (p = decoded; *p != '\0'; p += 1)
996 {
997 if (*p == '.')
998 {
999 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1000 k += 2;
1001 }
1002 else if (*p == '"')
1003 {
1004 const struct ada_opname_map *mapping;
1005
1006 for (mapping = ada_opname_table;
1007 mapping->encoded != NULL
1008 && strncmp (mapping->decoded, p,
1009 strlen (mapping->decoded)) != 0; mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 error (_("invalid Ada operator name: %s"), p);
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
1017 else
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
1022 }
1023
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
1026}
1027
1028/* Return NAME folded to lower case, or, if surrounded by single
1029 quotes, unfolded, but with the quotes stripped away. Result good
1030 to next call. */
1031
1032char *
1033ada_fold_name (const char *name)
1034{
1035 static char *fold_buffer = NULL;
1036 static size_t fold_buffer_size = 0;
1037
1038 int len = strlen (name);
1039 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1040
1041 if (name[0] == '\'')
1042 {
1043 strncpy (fold_buffer, name + 1, len - 2);
1044 fold_buffer[len - 2] = '\000';
1045 }
1046 else
1047 {
1048 int i;
1049
1050 for (i = 0; i <= len; i += 1)
1051 fold_buffer[i] = tolower (name[i]);
1052 }
1053
1054 return fold_buffer;
1055}
1056
1057/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1058
1059static int
1060is_lower_alphanum (const char c)
1061{
1062 return (isdigit (c) || (isalpha (c) && islower (c)));
1063}
1064
1065/* ENCODED is the linkage name of a symbol and LEN contains its length.
1066 This function saves in LEN the length of that same symbol name but
1067 without either of these suffixes:
1068 . .{DIGIT}+
1069 . ${DIGIT}+
1070 . ___{DIGIT}+
1071 . __{DIGIT}+.
1072
1073 These are suffixes introduced by the compiler for entities such as
1074 nested subprogram for instance, in order to avoid name clashes.
1075 They do not serve any purpose for the debugger. */
1076
1077static void
1078ada_remove_trailing_digits (const char *encoded, int *len)
1079{
1080 if (*len > 1 && isdigit (encoded[*len - 1]))
1081 {
1082 int i = *len - 2;
1083
1084 while (i > 0 && isdigit (encoded[i]))
1085 i--;
1086 if (i >= 0 && encoded[i] == '.')
1087 *len = i;
1088 else if (i >= 0 && encoded[i] == '$')
1089 *len = i;
1090 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1091 *len = i - 2;
1092 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1093 *len = i - 1;
1094 }
1095}
1096
1097/* Remove the suffix introduced by the compiler for protected object
1098 subprograms. */
1099
1100static void
1101ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1102{
1103 /* Remove trailing N. */
1104
1105 /* Protected entry subprograms are broken into two
1106 separate subprograms: The first one is unprotected, and has
1107 a 'N' suffix; the second is the protected version, and has
1108 the 'P' suffix. The second calls the first one after handling
1109 the protection. Since the P subprograms are internally generated,
1110 we leave these names undecoded, giving the user a clue that this
1111 entity is internal. */
1112
1113 if (*len > 1
1114 && encoded[*len - 1] == 'N'
1115 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1116 *len = *len - 1;
1117}
1118
1119/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1120
1121static void
1122ada_remove_Xbn_suffix (const char *encoded, int *len)
1123{
1124 int i = *len - 1;
1125
1126 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1127 i--;
1128
1129 if (encoded[i] != 'X')
1130 return;
1131
1132 if (i == 0)
1133 return;
1134
1135 if (isalnum (encoded[i-1]))
1136 *len = i;
1137}
1138
1139/* If ENCODED follows the GNAT entity encoding conventions, then return
1140 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1141 replaced by ENCODED.
1142
1143 The resulting string is valid until the next call of ada_decode.
1144 If the string is unchanged by decoding, the original string pointer
1145 is returned. */
1146
1147const char *
1148ada_decode (const char *encoded)
1149{
1150 int i, j;
1151 int len0;
1152 const char *p;
1153 char *decoded;
1154 int at_start_name;
1155 static char *decoding_buffer = NULL;
1156 static size_t decoding_buffer_size = 0;
1157
1158 /* The name of the Ada main procedure starts with "_ada_".
1159 This prefix is not part of the decoded name, so skip this part
1160 if we see this prefix. */
1161 if (strncmp (encoded, "_ada_", 5) == 0)
1162 encoded += 5;
1163
1164 /* If the name starts with '_', then it is not a properly encoded
1165 name, so do not attempt to decode it. Similarly, if the name
1166 starts with '<', the name should not be decoded. */
1167 if (encoded[0] == '_' || encoded[0] == '<')
1168 goto Suppress;
1169
1170 len0 = strlen (encoded);
1171
1172 ada_remove_trailing_digits (encoded, &len0);
1173 ada_remove_po_subprogram_suffix (encoded, &len0);
1174
1175 /* Remove the ___X.* suffix if present. Do not forget to verify that
1176 the suffix is located before the current "end" of ENCODED. We want
1177 to avoid re-matching parts of ENCODED that have previously been
1178 marked as discarded (by decrementing LEN0). */
1179 p = strstr (encoded, "___");
1180 if (p != NULL && p - encoded < len0 - 3)
1181 {
1182 if (p[3] == 'X')
1183 len0 = p - encoded;
1184 else
1185 goto Suppress;
1186 }
1187
1188 /* Remove any trailing TKB suffix. It tells us that this symbol
1189 is for the body of a task, but that information does not actually
1190 appear in the decoded name. */
1191
1192 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1193 len0 -= 3;
1194
1195 /* Remove any trailing TB suffix. The TB suffix is slightly different
1196 from the TKB suffix because it is used for non-anonymous task
1197 bodies. */
1198
1199 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1200 len0 -= 2;
1201
1202 /* Remove trailing "B" suffixes. */
1203 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1204
1205 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1206 len0 -= 1;
1207
1208 /* Make decoded big enough for possible expansion by operator name. */
1209
1210 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1211 decoded = decoding_buffer;
1212
1213 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1214
1215 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1216 {
1217 i = len0 - 2;
1218 while ((i >= 0 && isdigit (encoded[i]))
1219 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1220 i -= 1;
1221 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1222 len0 = i - 1;
1223 else if (encoded[i] == '$')
1224 len0 = i;
1225 }
1226
1227 /* The first few characters that are not alphabetic are not part
1228 of any encoding we use, so we can copy them over verbatim. */
1229
1230 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1231 decoded[j] = encoded[i];
1232
1233 at_start_name = 1;
1234 while (i < len0)
1235 {
1236 /* Is this a symbol function? */
1237 if (at_start_name && encoded[i] == 'O')
1238 {
1239 int k;
1240
1241 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1242 {
1243 int op_len = strlen (ada_opname_table[k].encoded);
1244 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1245 op_len - 1) == 0)
1246 && !isalnum (encoded[i + op_len]))
1247 {
1248 strcpy (decoded + j, ada_opname_table[k].decoded);
1249 at_start_name = 0;
1250 i += op_len;
1251 j += strlen (ada_opname_table[k].decoded);
1252 break;
1253 }
1254 }
1255 if (ada_opname_table[k].encoded != NULL)
1256 continue;
1257 }
1258 at_start_name = 0;
1259
1260 /* Replace "TK__" with "__", which will eventually be translated
1261 into "." (just below). */
1262
1263 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1264 i += 2;
1265
1266 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1267 be translated into "." (just below). These are internal names
1268 generated for anonymous blocks inside which our symbol is nested. */
1269
1270 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1271 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1272 && isdigit (encoded [i+4]))
1273 {
1274 int k = i + 5;
1275
1276 while (k < len0 && isdigit (encoded[k]))
1277 k++; /* Skip any extra digit. */
1278
1279 /* Double-check that the "__B_{DIGITS}+" sequence we found
1280 is indeed followed by "__". */
1281 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1282 i = k;
1283 }
1284
1285 /* Remove _E{DIGITS}+[sb] */
1286
1287 /* Just as for protected object subprograms, there are 2 categories
1288 of subprograms created by the compiler for each entry. The first
1289 one implements the actual entry code, and has a suffix following
1290 the convention above; the second one implements the barrier and
1291 uses the same convention as above, except that the 'E' is replaced
1292 by a 'B'.
1293
1294 Just as above, we do not decode the name of barrier functions
1295 to give the user a clue that the code he is debugging has been
1296 internally generated. */
1297
1298 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1299 && isdigit (encoded[i+2]))
1300 {
1301 int k = i + 3;
1302
1303 while (k < len0 && isdigit (encoded[k]))
1304 k++;
1305
1306 if (k < len0
1307 && (encoded[k] == 'b' || encoded[k] == 's'))
1308 {
1309 k++;
1310 /* Just as an extra precaution, make sure that if this
1311 suffix is followed by anything else, it is a '_'.
1312 Otherwise, we matched this sequence by accident. */
1313 if (k == len0
1314 || (k < len0 && encoded[k] == '_'))
1315 i = k;
1316 }
1317 }
1318
1319 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1320 the GNAT front-end in protected object subprograms. */
1321
1322 if (i < len0 + 3
1323 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1324 {
1325 /* Backtrack a bit up until we reach either the begining of
1326 the encoded name, or "__". Make sure that we only find
1327 digits or lowercase characters. */
1328 const char *ptr = encoded + i - 1;
1329
1330 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1331 ptr--;
1332 if (ptr < encoded
1333 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1334 i++;
1335 }
1336
1337 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1338 {
1339 /* This is a X[bn]* sequence not separated from the previous
1340 part of the name with a non-alpha-numeric character (in other
1341 words, immediately following an alpha-numeric character), then
1342 verify that it is placed at the end of the encoded name. If
1343 not, then the encoding is not valid and we should abort the
1344 decoding. Otherwise, just skip it, it is used in body-nested
1345 package names. */
1346 do
1347 i += 1;
1348 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1349 if (i < len0)
1350 goto Suppress;
1351 }
1352 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1353 {
1354 /* Replace '__' by '.'. */
1355 decoded[j] = '.';
1356 at_start_name = 1;
1357 i += 2;
1358 j += 1;
1359 }
1360 else
1361 {
1362 /* It's a character part of the decoded name, so just copy it
1363 over. */
1364 decoded[j] = encoded[i];
1365 i += 1;
1366 j += 1;
1367 }
1368 }
1369 decoded[j] = '\000';
1370
1371 /* Decoded names should never contain any uppercase character.
1372 Double-check this, and abort the decoding if we find one. */
1373
1374 for (i = 0; decoded[i] != '\0'; i += 1)
1375 if (isupper (decoded[i]) || decoded[i] == ' ')
1376 goto Suppress;
1377
1378 if (strcmp (decoded, encoded) == 0)
1379 return encoded;
1380 else
1381 return decoded;
1382
1383Suppress:
1384 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1385 decoded = decoding_buffer;
1386 if (encoded[0] == '<')
1387 strcpy (decoded, encoded);
1388 else
1389 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1390 return decoded;
1391
1392}
1393
1394/* Table for keeping permanent unique copies of decoded names. Once
1395 allocated, names in this table are never released. While this is a
1396 storage leak, it should not be significant unless there are massive
1397 changes in the set of decoded names in successive versions of a
1398 symbol table loaded during a single session. */
1399static struct htab *decoded_names_store;
1400
1401/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1402 in the language-specific part of GSYMBOL, if it has not been
1403 previously computed. Tries to save the decoded name in the same
1404 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1405 in any case, the decoded symbol has a lifetime at least that of
1406 GSYMBOL).
1407 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1408 const, but nevertheless modified to a semantically equivalent form
1409 when a decoded name is cached in it. */
1410
1411const char *
1412ada_decode_symbol (const struct general_symbol_info *arg)
1413{
1414 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1415 const char **resultp =
1416 &gsymbol->language_specific.mangled_lang.demangled_name;
1417
1418 if (!gsymbol->ada_mangled)
1419 {
1420 const char *decoded = ada_decode (gsymbol->name);
1421 struct obstack *obstack = gsymbol->language_specific.obstack;
1422
1423 gsymbol->ada_mangled = 1;
1424
1425 if (obstack != NULL)
1426 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1427 else
1428 {
1429 /* Sometimes, we can't find a corresponding objfile, in
1430 which case, we put the result on the heap. Since we only
1431 decode when needed, we hope this usually does not cause a
1432 significant memory leak (FIXME). */
1433
1434 char **slot = (char **) htab_find_slot (decoded_names_store,
1435 decoded, INSERT);
1436
1437 if (*slot == NULL)
1438 *slot = xstrdup (decoded);
1439 *resultp = *slot;
1440 }
1441 }
1442
1443 return *resultp;
1444}
1445
1446static char *
1447ada_la_decode (const char *encoded, int options)
1448{
1449 return xstrdup (ada_decode (encoded));
1450}
1451
1452/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1453 suffixes that encode debugging information or leading _ada_ on
1454 SYM_NAME (see is_name_suffix commentary for the debugging
1455 information that is ignored). If WILD, then NAME need only match a
1456 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1457 either argument is NULL. */
1458
1459static int
1460match_name (const char *sym_name, const char *name, int wild)
1461{
1462 if (sym_name == NULL || name == NULL)
1463 return 0;
1464 else if (wild)
1465 return wild_match (sym_name, name) == 0;
1466 else
1467 {
1468 int len_name = strlen (name);
1469
1470 return (strncmp (sym_name, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name))
1472 || (strncmp (sym_name, "_ada_", 5) == 0
1473 && strncmp (sym_name + 5, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name + 5));
1475 }
1476}
1477\f
1478
1479 /* Arrays */
1480
1481/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1482 generated by the GNAT compiler to describe the index type used
1483 for each dimension of an array, check whether it follows the latest
1484 known encoding. If not, fix it up to conform to the latest encoding.
1485 Otherwise, do nothing. This function also does nothing if
1486 INDEX_DESC_TYPE is NULL.
1487
1488 The GNAT encoding used to describle the array index type evolved a bit.
1489 Initially, the information would be provided through the name of each
1490 field of the structure type only, while the type of these fields was
1491 described as unspecified and irrelevant. The debugger was then expected
1492 to perform a global type lookup using the name of that field in order
1493 to get access to the full index type description. Because these global
1494 lookups can be very expensive, the encoding was later enhanced to make
1495 the global lookup unnecessary by defining the field type as being
1496 the full index type description.
1497
1498 The purpose of this routine is to allow us to support older versions
1499 of the compiler by detecting the use of the older encoding, and by
1500 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1501 we essentially replace each field's meaningless type by the associated
1502 index subtype). */
1503
1504void
1505ada_fixup_array_indexes_type (struct type *index_desc_type)
1506{
1507 int i;
1508
1509 if (index_desc_type == NULL)
1510 return;
1511 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1512
1513 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1514 to check one field only, no need to check them all). If not, return
1515 now.
1516
1517 If our INDEX_DESC_TYPE was generated using the older encoding,
1518 the field type should be a meaningless integer type whose name
1519 is not equal to the field name. */
1520 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1521 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1522 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1523 return;
1524
1525 /* Fixup each field of INDEX_DESC_TYPE. */
1526 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1527 {
1528 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1529 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1530
1531 if (raw_type)
1532 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1533 }
1534}
1535
1536/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1537
1538static char *bound_name[] = {
1539 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1540 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1541};
1542
1543/* Maximum number of array dimensions we are prepared to handle. */
1544
1545#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1546
1547
1548/* The desc_* routines return primitive portions of array descriptors
1549 (fat pointers). */
1550
1551/* The descriptor or array type, if any, indicated by TYPE; removes
1552 level of indirection, if needed. */
1553
1554static struct type *
1555desc_base_type (struct type *type)
1556{
1557 if (type == NULL)
1558 return NULL;
1559 type = ada_check_typedef (type);
1560 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1561 type = ada_typedef_target_type (type);
1562
1563 if (type != NULL
1564 && (TYPE_CODE (type) == TYPE_CODE_PTR
1565 || TYPE_CODE (type) == TYPE_CODE_REF))
1566 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1567 else
1568 return type;
1569}
1570
1571/* True iff TYPE indicates a "thin" array pointer type. */
1572
1573static int
1574is_thin_pntr (struct type *type)
1575{
1576 return
1577 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1578 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1579}
1580
1581/* The descriptor type for thin pointer type TYPE. */
1582
1583static struct type *
1584thin_descriptor_type (struct type *type)
1585{
1586 struct type *base_type = desc_base_type (type);
1587
1588 if (base_type == NULL)
1589 return NULL;
1590 if (is_suffix (ada_type_name (base_type), "___XVE"))
1591 return base_type;
1592 else
1593 {
1594 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1595
1596 if (alt_type == NULL)
1597 return base_type;
1598 else
1599 return alt_type;
1600 }
1601}
1602
1603/* A pointer to the array data for thin-pointer value VAL. */
1604
1605static struct value *
1606thin_data_pntr (struct value *val)
1607{
1608 struct type *type = ada_check_typedef (value_type (val));
1609 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1610
1611 data_type = lookup_pointer_type (data_type);
1612
1613 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1614 return value_cast (data_type, value_copy (val));
1615 else
1616 return value_from_longest (data_type, value_address (val));
1617}
1618
1619/* True iff TYPE indicates a "thick" array pointer type. */
1620
1621static int
1622is_thick_pntr (struct type *type)
1623{
1624 type = desc_base_type (type);
1625 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1626 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1627}
1628
1629/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1630 pointer to one, the type of its bounds data; otherwise, NULL. */
1631
1632static struct type *
1633desc_bounds_type (struct type *type)
1634{
1635 struct type *r;
1636
1637 type = desc_base_type (type);
1638
1639 if (type == NULL)
1640 return NULL;
1641 else if (is_thin_pntr (type))
1642 {
1643 type = thin_descriptor_type (type);
1644 if (type == NULL)
1645 return NULL;
1646 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1647 if (r != NULL)
1648 return ada_check_typedef (r);
1649 }
1650 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1651 {
1652 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1653 if (r != NULL)
1654 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1655 }
1656 return NULL;
1657}
1658
1659/* If ARR is an array descriptor (fat or thin pointer), or pointer to
1660 one, a pointer to its bounds data. Otherwise NULL. */
1661
1662static struct value *
1663desc_bounds (struct value *arr)
1664{
1665 struct type *type = ada_check_typedef (value_type (arr));
1666
1667 if (is_thin_pntr (type))
1668 {
1669 struct type *bounds_type =
1670 desc_bounds_type (thin_descriptor_type (type));
1671 LONGEST addr;
1672
1673 if (bounds_type == NULL)
1674 error (_("Bad GNAT array descriptor"));
1675
1676 /* NOTE: The following calculation is not really kosher, but
1677 since desc_type is an XVE-encoded type (and shouldn't be),
1678 the correct calculation is a real pain. FIXME (and fix GCC). */
1679 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1680 addr = value_as_long (arr);
1681 else
1682 addr = value_address (arr);
1683
1684 return
1685 value_from_longest (lookup_pointer_type (bounds_type),
1686 addr - TYPE_LENGTH (bounds_type));
1687 }
1688
1689 else if (is_thick_pntr (type))
1690 {
1691 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1692 _("Bad GNAT array descriptor"));
1693 struct type *p_bounds_type = value_type (p_bounds);
1694
1695 if (p_bounds_type
1696 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1697 {
1698 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1699
1700 if (TYPE_STUB (target_type))
1701 p_bounds = value_cast (lookup_pointer_type
1702 (ada_check_typedef (target_type)),
1703 p_bounds);
1704 }
1705 else
1706 error (_("Bad GNAT array descriptor"));
1707
1708 return p_bounds;
1709 }
1710 else
1711 return NULL;
1712}
1713
1714/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1715 position of the field containing the address of the bounds data. */
1716
1717static int
1718fat_pntr_bounds_bitpos (struct type *type)
1719{
1720 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1721}
1722
1723/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1724 size of the field containing the address of the bounds data. */
1725
1726static int
1727fat_pntr_bounds_bitsize (struct type *type)
1728{
1729 type = desc_base_type (type);
1730
1731 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1732 return TYPE_FIELD_BITSIZE (type, 1);
1733 else
1734 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1735}
1736
1737/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1738 pointer to one, the type of its array data (a array-with-no-bounds type);
1739 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1740 data. */
1741
1742static struct type *
1743desc_data_target_type (struct type *type)
1744{
1745 type = desc_base_type (type);
1746
1747 /* NOTE: The following is bogus; see comment in desc_bounds. */
1748 if (is_thin_pntr (type))
1749 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1750 else if (is_thick_pntr (type))
1751 {
1752 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1753
1754 if (data_type
1755 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1756 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1757 }
1758
1759 return NULL;
1760}
1761
1762/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1763 its array data. */
1764
1765static struct value *
1766desc_data (struct value *arr)
1767{
1768 struct type *type = value_type (arr);
1769
1770 if (is_thin_pntr (type))
1771 return thin_data_pntr (arr);
1772 else if (is_thick_pntr (type))
1773 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1774 _("Bad GNAT array descriptor"));
1775 else
1776 return NULL;
1777}
1778
1779
1780/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1781 position of the field containing the address of the data. */
1782
1783static int
1784fat_pntr_data_bitpos (struct type *type)
1785{
1786 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1787}
1788
1789/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1790 size of the field containing the address of the data. */
1791
1792static int
1793fat_pntr_data_bitsize (struct type *type)
1794{
1795 type = desc_base_type (type);
1796
1797 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1798 return TYPE_FIELD_BITSIZE (type, 0);
1799 else
1800 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1801}
1802
1803/* If BOUNDS is an array-bounds structure (or pointer to one), return
1804 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1805 bound, if WHICH is 1. The first bound is I=1. */
1806
1807static struct value *
1808desc_one_bound (struct value *bounds, int i, int which)
1809{
1810 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1811 _("Bad GNAT array descriptor bounds"));
1812}
1813
1814/* If BOUNDS is an array-bounds structure type, return the bit position
1815 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1816 bound, if WHICH is 1. The first bound is I=1. */
1817
1818static int
1819desc_bound_bitpos (struct type *type, int i, int which)
1820{
1821 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1822}
1823
1824/* If BOUNDS is an array-bounds structure type, return the bit field size
1825 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1826 bound, if WHICH is 1. The first bound is I=1. */
1827
1828static int
1829desc_bound_bitsize (struct type *type, int i, int which)
1830{
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1835 else
1836 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1837}
1838
1839/* If TYPE is the type of an array-bounds structure, the type of its
1840 Ith bound (numbering from 1). Otherwise, NULL. */
1841
1842static struct type *
1843desc_index_type (struct type *type, int i)
1844{
1845 type = desc_base_type (type);
1846
1847 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1848 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1849 else
1850 return NULL;
1851}
1852
1853/* The number of index positions in the array-bounds type TYPE.
1854 Return 0 if TYPE is NULL. */
1855
1856static int
1857desc_arity (struct type *type)
1858{
1859 type = desc_base_type (type);
1860
1861 if (type != NULL)
1862 return TYPE_NFIELDS (type) / 2;
1863 return 0;
1864}
1865
1866/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1867 an array descriptor type (representing an unconstrained array
1868 type). */
1869
1870static int
1871ada_is_direct_array_type (struct type *type)
1872{
1873 if (type == NULL)
1874 return 0;
1875 type = ada_check_typedef (type);
1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1877 || ada_is_array_descriptor_type (type));
1878}
1879
1880/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1881 * to one. */
1882
1883static int
1884ada_is_array_type (struct type *type)
1885{
1886 while (type != NULL
1887 && (TYPE_CODE (type) == TYPE_CODE_PTR
1888 || TYPE_CODE (type) == TYPE_CODE_REF))
1889 type = TYPE_TARGET_TYPE (type);
1890 return ada_is_direct_array_type (type);
1891}
1892
1893/* Non-zero iff TYPE is a simple array type or pointer to one. */
1894
1895int
1896ada_is_simple_array_type (struct type *type)
1897{
1898 if (type == NULL)
1899 return 0;
1900 type = ada_check_typedef (type);
1901 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1902 || (TYPE_CODE (type) == TYPE_CODE_PTR
1903 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1904 == TYPE_CODE_ARRAY));
1905}
1906
1907/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1908
1909int
1910ada_is_array_descriptor_type (struct type *type)
1911{
1912 struct type *data_type = desc_data_target_type (type);
1913
1914 if (type == NULL)
1915 return 0;
1916 type = ada_check_typedef (type);
1917 return (data_type != NULL
1918 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1919 && desc_arity (desc_bounds_type (type)) > 0);
1920}
1921
1922/* Non-zero iff type is a partially mal-formed GNAT array
1923 descriptor. FIXME: This is to compensate for some problems with
1924 debugging output from GNAT. Re-examine periodically to see if it
1925 is still needed. */
1926
1927int
1928ada_is_bogus_array_descriptor (struct type *type)
1929{
1930 return
1931 type != NULL
1932 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1933 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1934 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1935 && !ada_is_array_descriptor_type (type);
1936}
1937
1938
1939/* If ARR has a record type in the form of a standard GNAT array descriptor,
1940 (fat pointer) returns the type of the array data described---specifically,
1941 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1942 in from the descriptor; otherwise, they are left unspecified. If
1943 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1944 returns NULL. The result is simply the type of ARR if ARR is not
1945 a descriptor. */
1946struct type *
1947ada_type_of_array (struct value *arr, int bounds)
1948{
1949 if (ada_is_constrained_packed_array_type (value_type (arr)))
1950 return decode_constrained_packed_array_type (value_type (arr));
1951
1952 if (!ada_is_array_descriptor_type (value_type (arr)))
1953 return value_type (arr);
1954
1955 if (!bounds)
1956 {
1957 struct type *array_type =
1958 ada_check_typedef (desc_data_target_type (value_type (arr)));
1959
1960 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1961 TYPE_FIELD_BITSIZE (array_type, 0) =
1962 decode_packed_array_bitsize (value_type (arr));
1963
1964 return array_type;
1965 }
1966 else
1967 {
1968 struct type *elt_type;
1969 int arity;
1970 struct value *descriptor;
1971
1972 elt_type = ada_array_element_type (value_type (arr), -1);
1973 arity = ada_array_arity (value_type (arr));
1974
1975 if (elt_type == NULL || arity == 0)
1976 return ada_check_typedef (value_type (arr));
1977
1978 descriptor = desc_bounds (arr);
1979 if (value_as_long (descriptor) == 0)
1980 return NULL;
1981 while (arity > 0)
1982 {
1983 struct type *range_type = alloc_type_copy (value_type (arr));
1984 struct type *array_type = alloc_type_copy (value_type (arr));
1985 struct value *low = desc_one_bound (descriptor, arity, 0);
1986 struct value *high = desc_one_bound (descriptor, arity, 1);
1987
1988 arity -= 1;
1989 create_static_range_type (range_type, value_type (low),
1990 longest_to_int (value_as_long (low)),
1991 longest_to_int (value_as_long (high)));
1992 elt_type = create_array_type (array_type, elt_type, range_type);
1993
1994 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1995 {
1996 /* We need to store the element packed bitsize, as well as
1997 recompute the array size, because it was previously
1998 computed based on the unpacked element size. */
1999 LONGEST lo = value_as_long (low);
2000 LONGEST hi = value_as_long (high);
2001
2002 TYPE_FIELD_BITSIZE (elt_type, 0) =
2003 decode_packed_array_bitsize (value_type (arr));
2004 /* If the array has no element, then the size is already
2005 zero, and does not need to be recomputed. */
2006 if (lo < hi)
2007 {
2008 int array_bitsize =
2009 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2010
2011 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2012 }
2013 }
2014 }
2015
2016 return lookup_pointer_type (elt_type);
2017 }
2018}
2019
2020/* If ARR does not represent an array, returns ARR unchanged.
2021 Otherwise, returns either a standard GDB array with bounds set
2022 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2023 GDB array. Returns NULL if ARR is a null fat pointer. */
2024
2025struct value *
2026ada_coerce_to_simple_array_ptr (struct value *arr)
2027{
2028 if (ada_is_array_descriptor_type (value_type (arr)))
2029 {
2030 struct type *arrType = ada_type_of_array (arr, 1);
2031
2032 if (arrType == NULL)
2033 return NULL;
2034 return value_cast (arrType, value_copy (desc_data (arr)));
2035 }
2036 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2037 return decode_constrained_packed_array (arr);
2038 else
2039 return arr;
2040}
2041
2042/* If ARR does not represent an array, returns ARR unchanged.
2043 Otherwise, returns a standard GDB array describing ARR (which may
2044 be ARR itself if it already is in the proper form). */
2045
2046struct value *
2047ada_coerce_to_simple_array (struct value *arr)
2048{
2049 if (ada_is_array_descriptor_type (value_type (arr)))
2050 {
2051 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2052
2053 if (arrVal == NULL)
2054 error (_("Bounds unavailable for null array pointer."));
2055 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2056 return value_ind (arrVal);
2057 }
2058 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2059 return decode_constrained_packed_array (arr);
2060 else
2061 return arr;
2062}
2063
2064/* If TYPE represents a GNAT array type, return it translated to an
2065 ordinary GDB array type (possibly with BITSIZE fields indicating
2066 packing). For other types, is the identity. */
2067
2068struct type *
2069ada_coerce_to_simple_array_type (struct type *type)
2070{
2071 if (ada_is_constrained_packed_array_type (type))
2072 return decode_constrained_packed_array_type (type);
2073
2074 if (ada_is_array_descriptor_type (type))
2075 return ada_check_typedef (desc_data_target_type (type));
2076
2077 return type;
2078}
2079
2080/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2081
2082static int
2083ada_is_packed_array_type (struct type *type)
2084{
2085 if (type == NULL)
2086 return 0;
2087 type = desc_base_type (type);
2088 type = ada_check_typedef (type);
2089 return
2090 ada_type_name (type) != NULL
2091 && strstr (ada_type_name (type), "___XP") != NULL;
2092}
2093
2094/* Non-zero iff TYPE represents a standard GNAT constrained
2095 packed-array type. */
2096
2097int
2098ada_is_constrained_packed_array_type (struct type *type)
2099{
2100 return ada_is_packed_array_type (type)
2101 && !ada_is_array_descriptor_type (type);
2102}
2103
2104/* Non-zero iff TYPE represents an array descriptor for a
2105 unconstrained packed-array type. */
2106
2107static int
2108ada_is_unconstrained_packed_array_type (struct type *type)
2109{
2110 return ada_is_packed_array_type (type)
2111 && ada_is_array_descriptor_type (type);
2112}
2113
2114/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2115 return the size of its elements in bits. */
2116
2117static long
2118decode_packed_array_bitsize (struct type *type)
2119{
2120 const char *raw_name;
2121 const char *tail;
2122 long bits;
2123
2124 /* Access to arrays implemented as fat pointers are encoded as a typedef
2125 of the fat pointer type. We need the name of the fat pointer type
2126 to do the decoding, so strip the typedef layer. */
2127 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2128 type = ada_typedef_target_type (type);
2129
2130 raw_name = ada_type_name (ada_check_typedef (type));
2131 if (!raw_name)
2132 raw_name = ada_type_name (desc_base_type (type));
2133
2134 if (!raw_name)
2135 return 0;
2136
2137 tail = strstr (raw_name, "___XP");
2138 gdb_assert (tail != NULL);
2139
2140 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2141 {
2142 lim_warning
2143 (_("could not understand bit size information on packed array"));
2144 return 0;
2145 }
2146
2147 return bits;
2148}
2149
2150/* Given that TYPE is a standard GDB array type with all bounds filled
2151 in, and that the element size of its ultimate scalar constituents
2152 (that is, either its elements, or, if it is an array of arrays, its
2153 elements' elements, etc.) is *ELT_BITS, return an identical type,
2154 but with the bit sizes of its elements (and those of any
2155 constituent arrays) recorded in the BITSIZE components of its
2156 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2157 in bits.
2158
2159 Note that, for arrays whose index type has an XA encoding where
2160 a bound references a record discriminant, getting that discriminant,
2161 and therefore the actual value of that bound, is not possible
2162 because none of the given parameters gives us access to the record.
2163 This function assumes that it is OK in the context where it is being
2164 used to return an array whose bounds are still dynamic and where
2165 the length is arbitrary. */
2166
2167static struct type *
2168constrained_packed_array_type (struct type *type, long *elt_bits)
2169{
2170 struct type *new_elt_type;
2171 struct type *new_type;
2172 struct type *index_type_desc;
2173 struct type *index_type;
2174 LONGEST low_bound, high_bound;
2175
2176 type = ada_check_typedef (type);
2177 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2178 return type;
2179
2180 index_type_desc = ada_find_parallel_type (type, "___XA");
2181 if (index_type_desc)
2182 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2183 NULL);
2184 else
2185 index_type = TYPE_INDEX_TYPE (type);
2186
2187 new_type = alloc_type_copy (type);
2188 new_elt_type =
2189 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2190 elt_bits);
2191 create_array_type (new_type, new_elt_type, index_type);
2192 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2193 TYPE_NAME (new_type) = ada_type_name (type);
2194
2195 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2196 && is_dynamic_type (check_typedef (index_type)))
2197 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2198 low_bound = high_bound = 0;
2199 if (high_bound < low_bound)
2200 *elt_bits = TYPE_LENGTH (new_type) = 0;
2201 else
2202 {
2203 *elt_bits *= (high_bound - low_bound + 1);
2204 TYPE_LENGTH (new_type) =
2205 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2206 }
2207
2208 TYPE_FIXED_INSTANCE (new_type) = 1;
2209 return new_type;
2210}
2211
2212/* The array type encoded by TYPE, where
2213 ada_is_constrained_packed_array_type (TYPE). */
2214
2215static struct type *
2216decode_constrained_packed_array_type (struct type *type)
2217{
2218 const char *raw_name = ada_type_name (ada_check_typedef (type));
2219 char *name;
2220 const char *tail;
2221 struct type *shadow_type;
2222 long bits;
2223
2224 if (!raw_name)
2225 raw_name = ada_type_name (desc_base_type (type));
2226
2227 if (!raw_name)
2228 return NULL;
2229
2230 name = (char *) alloca (strlen (raw_name) + 1);
2231 tail = strstr (raw_name, "___XP");
2232 type = desc_base_type (type);
2233
2234 memcpy (name, raw_name, tail - raw_name);
2235 name[tail - raw_name] = '\000';
2236
2237 shadow_type = ada_find_parallel_type_with_name (type, name);
2238
2239 if (shadow_type == NULL)
2240 {
2241 lim_warning (_("could not find bounds information on packed array"));
2242 return NULL;
2243 }
2244 CHECK_TYPEDEF (shadow_type);
2245
2246 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2247 {
2248 lim_warning (_("could not understand bounds "
2249 "information on packed array"));
2250 return NULL;
2251 }
2252
2253 bits = decode_packed_array_bitsize (type);
2254 return constrained_packed_array_type (shadow_type, &bits);
2255}
2256
2257/* Given that ARR is a struct value *indicating a GNAT constrained packed
2258 array, returns a simple array that denotes that array. Its type is a
2259 standard GDB array type except that the BITSIZEs of the array
2260 target types are set to the number of bits in each element, and the
2261 type length is set appropriately. */
2262
2263static struct value *
2264decode_constrained_packed_array (struct value *arr)
2265{
2266 struct type *type;
2267
2268 /* If our value is a pointer, then dereference it. Likewise if
2269 the value is a reference. Make sure that this operation does not
2270 cause the target type to be fixed, as this would indirectly cause
2271 this array to be decoded. The rest of the routine assumes that
2272 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2273 and "value_ind" routines to perform the dereferencing, as opposed
2274 to using "ada_coerce_ref" or "ada_value_ind". */
2275 arr = coerce_ref (arr);
2276 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2277 arr = value_ind (arr);
2278
2279 type = decode_constrained_packed_array_type (value_type (arr));
2280 if (type == NULL)
2281 {
2282 error (_("can't unpack array"));
2283 return NULL;
2284 }
2285
2286 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2287 && ada_is_modular_type (value_type (arr)))
2288 {
2289 /* This is a (right-justified) modular type representing a packed
2290 array with no wrapper. In order to interpret the value through
2291 the (left-justified) packed array type we just built, we must
2292 first left-justify it. */
2293 int bit_size, bit_pos;
2294 ULONGEST mod;
2295
2296 mod = ada_modulus (value_type (arr)) - 1;
2297 bit_size = 0;
2298 while (mod > 0)
2299 {
2300 bit_size += 1;
2301 mod >>= 1;
2302 }
2303 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2304 arr = ada_value_primitive_packed_val (arr, NULL,
2305 bit_pos / HOST_CHAR_BIT,
2306 bit_pos % HOST_CHAR_BIT,
2307 bit_size,
2308 type);
2309 }
2310
2311 return coerce_unspec_val_to_type (arr, type);
2312}
2313
2314
2315/* The value of the element of packed array ARR at the ARITY indices
2316 given in IND. ARR must be a simple array. */
2317
2318static struct value *
2319value_subscript_packed (struct value *arr, int arity, struct value **ind)
2320{
2321 int i;
2322 int bits, elt_off, bit_off;
2323 long elt_total_bit_offset;
2324 struct type *elt_type;
2325 struct value *v;
2326
2327 bits = 0;
2328 elt_total_bit_offset = 0;
2329 elt_type = ada_check_typedef (value_type (arr));
2330 for (i = 0; i < arity; i += 1)
2331 {
2332 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2333 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2334 error
2335 (_("attempt to do packed indexing of "
2336 "something other than a packed array"));
2337 else
2338 {
2339 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2340 LONGEST lowerbound, upperbound;
2341 LONGEST idx;
2342
2343 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2344 {
2345 lim_warning (_("don't know bounds of array"));
2346 lowerbound = upperbound = 0;
2347 }
2348
2349 idx = pos_atr (ind[i]);
2350 if (idx < lowerbound || idx > upperbound)
2351 lim_warning (_("packed array index %ld out of bounds"),
2352 (long) idx);
2353 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2354 elt_total_bit_offset += (idx - lowerbound) * bits;
2355 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2356 }
2357 }
2358 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2359 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2360
2361 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2362 bits, elt_type);
2363 return v;
2364}
2365
2366/* Non-zero iff TYPE includes negative integer values. */
2367
2368static int
2369has_negatives (struct type *type)
2370{
2371 switch (TYPE_CODE (type))
2372 {
2373 default:
2374 return 0;
2375 case TYPE_CODE_INT:
2376 return !TYPE_UNSIGNED (type);
2377 case TYPE_CODE_RANGE:
2378 return TYPE_LOW_BOUND (type) < 0;
2379 }
2380}
2381
2382
2383/* Create a new value of type TYPE from the contents of OBJ starting
2384 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2385 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2386 assigning through the result will set the field fetched from.
2387 VALADDR is ignored unless OBJ is NULL, in which case,
2388 VALADDR+OFFSET must address the start of storage containing the
2389 packed value. The value returned in this case is never an lval.
2390 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2391
2392struct value *
2393ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2394 long offset, int bit_offset, int bit_size,
2395 struct type *type)
2396{
2397 struct value *v;
2398 int src, /* Index into the source area */
2399 targ, /* Index into the target area */
2400 srcBitsLeft, /* Number of source bits left to move */
2401 nsrc, ntarg, /* Number of source and target bytes */
2402 unusedLS, /* Number of bits in next significant
2403 byte of source that are unused */
2404 accumSize; /* Number of meaningful bits in accum */
2405 unsigned char *bytes; /* First byte containing data to unpack */
2406 unsigned char *unpacked;
2407 unsigned long accum; /* Staging area for bits being transferred */
2408 unsigned char sign;
2409 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2410 /* Transmit bytes from least to most significant; delta is the direction
2411 the indices move. */
2412 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2413
2414 type = ada_check_typedef (type);
2415
2416 if (obj == NULL)
2417 {
2418 v = allocate_value (type);
2419 bytes = (unsigned char *) (valaddr + offset);
2420 }
2421 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2422 {
2423 v = value_at (type, value_address (obj));
2424 type = value_type (v);
2425 bytes = (unsigned char *) alloca (len);
2426 read_memory (value_address (v) + offset, bytes, len);
2427 }
2428 else
2429 {
2430 v = allocate_value (type);
2431 bytes = (unsigned char *) value_contents (obj) + offset;
2432 }
2433
2434 if (obj != NULL)
2435 {
2436 long new_offset = offset;
2437
2438 set_value_component_location (v, obj);
2439 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2440 set_value_bitsize (v, bit_size);
2441 if (value_bitpos (v) >= HOST_CHAR_BIT)
2442 {
2443 ++new_offset;
2444 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2445 }
2446 set_value_offset (v, new_offset);
2447
2448 /* Also set the parent value. This is needed when trying to
2449 assign a new value (in inferior memory). */
2450 set_value_parent (v, obj);
2451 }
2452 else
2453 set_value_bitsize (v, bit_size);
2454 unpacked = (unsigned char *) value_contents (v);
2455
2456 srcBitsLeft = bit_size;
2457 nsrc = len;
2458 ntarg = TYPE_LENGTH (type);
2459 sign = 0;
2460 if (bit_size == 0)
2461 {
2462 memset (unpacked, 0, TYPE_LENGTH (type));
2463 return v;
2464 }
2465 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2466 {
2467 src = len - 1;
2468 if (has_negatives (type)
2469 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2470 sign = ~0;
2471
2472 unusedLS =
2473 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2474 % HOST_CHAR_BIT;
2475
2476 switch (TYPE_CODE (type))
2477 {
2478 case TYPE_CODE_ARRAY:
2479 case TYPE_CODE_UNION:
2480 case TYPE_CODE_STRUCT:
2481 /* Non-scalar values must be aligned at a byte boundary... */
2482 accumSize =
2483 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2484 /* ... And are placed at the beginning (most-significant) bytes
2485 of the target. */
2486 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2487 ntarg = targ + 1;
2488 break;
2489 default:
2490 accumSize = 0;
2491 targ = TYPE_LENGTH (type) - 1;
2492 break;
2493 }
2494 }
2495 else
2496 {
2497 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2498
2499 src = targ = 0;
2500 unusedLS = bit_offset;
2501 accumSize = 0;
2502
2503 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2504 sign = ~0;
2505 }
2506
2507 accum = 0;
2508 while (nsrc > 0)
2509 {
2510 /* Mask for removing bits of the next source byte that are not
2511 part of the value. */
2512 unsigned int unusedMSMask =
2513 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2514 1;
2515 /* Sign-extend bits for this byte. */
2516 unsigned int signMask = sign & ~unusedMSMask;
2517
2518 accum |=
2519 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2520 accumSize += HOST_CHAR_BIT - unusedLS;
2521 if (accumSize >= HOST_CHAR_BIT)
2522 {
2523 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2524 accumSize -= HOST_CHAR_BIT;
2525 accum >>= HOST_CHAR_BIT;
2526 ntarg -= 1;
2527 targ += delta;
2528 }
2529 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2530 unusedLS = 0;
2531 nsrc -= 1;
2532 src += delta;
2533 }
2534 while (ntarg > 0)
2535 {
2536 accum |= sign << accumSize;
2537 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2538 accumSize -= HOST_CHAR_BIT;
2539 accum >>= HOST_CHAR_BIT;
2540 ntarg -= 1;
2541 targ += delta;
2542 }
2543
2544 return v;
2545}
2546
2547/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2548 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2549 not overlap. */
2550static void
2551move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2552 int src_offset, int n, int bits_big_endian_p)
2553{
2554 unsigned int accum, mask;
2555 int accum_bits, chunk_size;
2556
2557 target += targ_offset / HOST_CHAR_BIT;
2558 targ_offset %= HOST_CHAR_BIT;
2559 source += src_offset / HOST_CHAR_BIT;
2560 src_offset %= HOST_CHAR_BIT;
2561 if (bits_big_endian_p)
2562 {
2563 accum = (unsigned char) *source;
2564 source += 1;
2565 accum_bits = HOST_CHAR_BIT - src_offset;
2566
2567 while (n > 0)
2568 {
2569 int unused_right;
2570
2571 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2572 accum_bits += HOST_CHAR_BIT;
2573 source += 1;
2574 chunk_size = HOST_CHAR_BIT - targ_offset;
2575 if (chunk_size > n)
2576 chunk_size = n;
2577 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2578 mask = ((1 << chunk_size) - 1) << unused_right;
2579 *target =
2580 (*target & ~mask)
2581 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2582 n -= chunk_size;
2583 accum_bits -= chunk_size;
2584 target += 1;
2585 targ_offset = 0;
2586 }
2587 }
2588 else
2589 {
2590 accum = (unsigned char) *source >> src_offset;
2591 source += 1;
2592 accum_bits = HOST_CHAR_BIT - src_offset;
2593
2594 while (n > 0)
2595 {
2596 accum = accum + ((unsigned char) *source << accum_bits);
2597 accum_bits += HOST_CHAR_BIT;
2598 source += 1;
2599 chunk_size = HOST_CHAR_BIT - targ_offset;
2600 if (chunk_size > n)
2601 chunk_size = n;
2602 mask = ((1 << chunk_size) - 1) << targ_offset;
2603 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2604 n -= chunk_size;
2605 accum_bits -= chunk_size;
2606 accum >>= chunk_size;
2607 target += 1;
2608 targ_offset = 0;
2609 }
2610 }
2611}
2612
2613/* Store the contents of FROMVAL into the location of TOVAL.
2614 Return a new value with the location of TOVAL and contents of
2615 FROMVAL. Handles assignment into packed fields that have
2616 floating-point or non-scalar types. */
2617
2618static struct value *
2619ada_value_assign (struct value *toval, struct value *fromval)
2620{
2621 struct type *type = value_type (toval);
2622 int bits = value_bitsize (toval);
2623
2624 toval = ada_coerce_ref (toval);
2625 fromval = ada_coerce_ref (fromval);
2626
2627 if (ada_is_direct_array_type (value_type (toval)))
2628 toval = ada_coerce_to_simple_array (toval);
2629 if (ada_is_direct_array_type (value_type (fromval)))
2630 fromval = ada_coerce_to_simple_array (fromval);
2631
2632 if (!deprecated_value_modifiable (toval))
2633 error (_("Left operand of assignment is not a modifiable lvalue."));
2634
2635 if (VALUE_LVAL (toval) == lval_memory
2636 && bits > 0
2637 && (TYPE_CODE (type) == TYPE_CODE_FLT
2638 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2639 {
2640 int len = (value_bitpos (toval)
2641 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2642 int from_size;
2643 gdb_byte *buffer = alloca (len);
2644 struct value *val;
2645 CORE_ADDR to_addr = value_address (toval);
2646
2647 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2648 fromval = value_cast (type, fromval);
2649
2650 read_memory (to_addr, buffer, len);
2651 from_size = value_bitsize (fromval);
2652 if (from_size == 0)
2653 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2654 if (gdbarch_bits_big_endian (get_type_arch (type)))
2655 move_bits (buffer, value_bitpos (toval),
2656 value_contents (fromval), from_size - bits, bits, 1);
2657 else
2658 move_bits (buffer, value_bitpos (toval),
2659 value_contents (fromval), 0, bits, 0);
2660 write_memory_with_notification (to_addr, buffer, len);
2661
2662 val = value_copy (toval);
2663 memcpy (value_contents_raw (val), value_contents (fromval),
2664 TYPE_LENGTH (type));
2665 deprecated_set_value_type (val, type);
2666
2667 return val;
2668 }
2669
2670 return value_assign (toval, fromval);
2671}
2672
2673
2674/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2675 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2676 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2677 * COMPONENT, and not the inferior's memory. The current contents
2678 * of COMPONENT are ignored. */
2679static void
2680value_assign_to_component (struct value *container, struct value *component,
2681 struct value *val)
2682{
2683 LONGEST offset_in_container =
2684 (LONGEST) (value_address (component) - value_address (container));
2685 int bit_offset_in_container =
2686 value_bitpos (component) - value_bitpos (container);
2687 int bits;
2688
2689 val = value_cast (value_type (component), val);
2690
2691 if (value_bitsize (component) == 0)
2692 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2693 else
2694 bits = value_bitsize (component);
2695
2696 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2697 move_bits (value_contents_writeable (container) + offset_in_container,
2698 value_bitpos (container) + bit_offset_in_container,
2699 value_contents (val),
2700 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2701 bits, 1);
2702 else
2703 move_bits (value_contents_writeable (container) + offset_in_container,
2704 value_bitpos (container) + bit_offset_in_container,
2705 value_contents (val), 0, bits, 0);
2706}
2707
2708/* The value of the element of array ARR at the ARITY indices given in IND.
2709 ARR may be either a simple array, GNAT array descriptor, or pointer
2710 thereto. */
2711
2712struct value *
2713ada_value_subscript (struct value *arr, int arity, struct value **ind)
2714{
2715 int k;
2716 struct value *elt;
2717 struct type *elt_type;
2718
2719 elt = ada_coerce_to_simple_array (arr);
2720
2721 elt_type = ada_check_typedef (value_type (elt));
2722 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2723 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2724 return value_subscript_packed (elt, arity, ind);
2725
2726 for (k = 0; k < arity; k += 1)
2727 {
2728 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2729 error (_("too many subscripts (%d expected)"), k);
2730 elt = value_subscript (elt, pos_atr (ind[k]));
2731 }
2732 return elt;
2733}
2734
2735/* Assuming ARR is a pointer to a GDB array, the value of the element
2736 of *ARR at the ARITY indices given in IND.
2737 Does not read the entire array into memory. */
2738
2739static struct value *
2740ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2741{
2742 int k;
2743 struct type *type
2744 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2745
2746 for (k = 0; k < arity; k += 1)
2747 {
2748 LONGEST lwb, upb;
2749
2750 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2751 error (_("too many subscripts (%d expected)"), k);
2752 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2753 value_copy (arr));
2754 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2755 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2756 type = TYPE_TARGET_TYPE (type);
2757 }
2758
2759 return value_ind (arr);
2760}
2761
2762/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2763 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2764 elements starting at index LOW. The lower bound of this array is LOW, as
2765 per Ada rules. */
2766static struct value *
2767ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2768 int low, int high)
2769{
2770 struct type *type0 = ada_check_typedef (type);
2771 CORE_ADDR base = value_as_address (array_ptr)
2772 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2773 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2774 struct type *index_type
2775 = create_static_range_type (NULL,
2776 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2777 low, high);
2778 struct type *slice_type =
2779 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2780
2781 return value_at_lazy (slice_type, base);
2782}
2783
2784
2785static struct value *
2786ada_value_slice (struct value *array, int low, int high)
2787{
2788 struct type *type = ada_check_typedef (value_type (array));
2789 struct type *index_type
2790 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2791 struct type *slice_type =
2792 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2793
2794 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2795}
2796
2797/* If type is a record type in the form of a standard GNAT array
2798 descriptor, returns the number of dimensions for type. If arr is a
2799 simple array, returns the number of "array of"s that prefix its
2800 type designation. Otherwise, returns 0. */
2801
2802int
2803ada_array_arity (struct type *type)
2804{
2805 int arity;
2806
2807 if (type == NULL)
2808 return 0;
2809
2810 type = desc_base_type (type);
2811
2812 arity = 0;
2813 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2814 return desc_arity (desc_bounds_type (type));
2815 else
2816 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2817 {
2818 arity += 1;
2819 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2820 }
2821
2822 return arity;
2823}
2824
2825/* If TYPE is a record type in the form of a standard GNAT array
2826 descriptor or a simple array type, returns the element type for
2827 TYPE after indexing by NINDICES indices, or by all indices if
2828 NINDICES is -1. Otherwise, returns NULL. */
2829
2830struct type *
2831ada_array_element_type (struct type *type, int nindices)
2832{
2833 type = desc_base_type (type);
2834
2835 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2836 {
2837 int k;
2838 struct type *p_array_type;
2839
2840 p_array_type = desc_data_target_type (type);
2841
2842 k = ada_array_arity (type);
2843 if (k == 0)
2844 return NULL;
2845
2846 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2847 if (nindices >= 0 && k > nindices)
2848 k = nindices;
2849 while (k > 0 && p_array_type != NULL)
2850 {
2851 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2852 k -= 1;
2853 }
2854 return p_array_type;
2855 }
2856 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2857 {
2858 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2859 {
2860 type = TYPE_TARGET_TYPE (type);
2861 nindices -= 1;
2862 }
2863 return type;
2864 }
2865
2866 return NULL;
2867}
2868
2869/* The type of nth index in arrays of given type (n numbering from 1).
2870 Does not examine memory. Throws an error if N is invalid or TYPE
2871 is not an array type. NAME is the name of the Ada attribute being
2872 evaluated ('range, 'first, 'last, or 'length); it is used in building
2873 the error message. */
2874
2875static struct type *
2876ada_index_type (struct type *type, int n, const char *name)
2877{
2878 struct type *result_type;
2879
2880 type = desc_base_type (type);
2881
2882 if (n < 0 || n > ada_array_arity (type))
2883 error (_("invalid dimension number to '%s"), name);
2884
2885 if (ada_is_simple_array_type (type))
2886 {
2887 int i;
2888
2889 for (i = 1; i < n; i += 1)
2890 type = TYPE_TARGET_TYPE (type);
2891 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2892 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2893 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2894 perhaps stabsread.c would make more sense. */
2895 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2896 result_type = NULL;
2897 }
2898 else
2899 {
2900 result_type = desc_index_type (desc_bounds_type (type), n);
2901 if (result_type == NULL)
2902 error (_("attempt to take bound of something that is not an array"));
2903 }
2904
2905 return result_type;
2906}
2907
2908/* Given that arr is an array type, returns the lower bound of the
2909 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2910 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2911 array-descriptor type. It works for other arrays with bounds supplied
2912 by run-time quantities other than discriminants. */
2913
2914static LONGEST
2915ada_array_bound_from_type (struct type *arr_type, int n, int which)
2916{
2917 struct type *type, *index_type_desc, *index_type;
2918 int i;
2919
2920 gdb_assert (which == 0 || which == 1);
2921
2922 if (ada_is_constrained_packed_array_type (arr_type))
2923 arr_type = decode_constrained_packed_array_type (arr_type);
2924
2925 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2926 return (LONGEST) - which;
2927
2928 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2929 type = TYPE_TARGET_TYPE (arr_type);
2930 else
2931 type = arr_type;
2932
2933 index_type_desc = ada_find_parallel_type (type, "___XA");
2934 ada_fixup_array_indexes_type (index_type_desc);
2935 if (index_type_desc != NULL)
2936 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2937 NULL);
2938 else
2939 {
2940 struct type *elt_type = check_typedef (type);
2941
2942 for (i = 1; i < n; i++)
2943 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2944
2945 index_type = TYPE_INDEX_TYPE (elt_type);
2946 }
2947
2948 return
2949 (LONGEST) (which == 0
2950 ? ada_discrete_type_low_bound (index_type)
2951 : ada_discrete_type_high_bound (index_type));
2952}
2953
2954/* Given that arr is an array value, returns the lower bound of the
2955 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2956 WHICH is 1. This routine will also work for arrays with bounds
2957 supplied by run-time quantities other than discriminants. */
2958
2959static LONGEST
2960ada_array_bound (struct value *arr, int n, int which)
2961{
2962 struct type *arr_type;
2963
2964 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2965 arr = value_ind (arr);
2966 arr_type = value_enclosing_type (arr);
2967
2968 if (ada_is_constrained_packed_array_type (arr_type))
2969 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2970 else if (ada_is_simple_array_type (arr_type))
2971 return ada_array_bound_from_type (arr_type, n, which);
2972 else
2973 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2974}
2975
2976/* Given that arr is an array value, returns the length of the
2977 nth index. This routine will also work for arrays with bounds
2978 supplied by run-time quantities other than discriminants.
2979 Does not work for arrays indexed by enumeration types with representation
2980 clauses at the moment. */
2981
2982static LONGEST
2983ada_array_length (struct value *arr, int n)
2984{
2985 struct type *arr_type;
2986
2987 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2988 arr = value_ind (arr);
2989 arr_type = value_enclosing_type (arr);
2990
2991 if (ada_is_constrained_packed_array_type (arr_type))
2992 return ada_array_length (decode_constrained_packed_array (arr), n);
2993
2994 if (ada_is_simple_array_type (arr_type))
2995 return (ada_array_bound_from_type (arr_type, n, 1)
2996 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2997 else
2998 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2999 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
3000}
3001
3002/* An empty array whose type is that of ARR_TYPE (an array type),
3003 with bounds LOW to LOW-1. */
3004
3005static struct value *
3006empty_array (struct type *arr_type, int low)
3007{
3008 struct type *arr_type0 = ada_check_typedef (arr_type);
3009 struct type *index_type
3010 = create_static_range_type
3011 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3012 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3013
3014 return allocate_value (create_array_type (NULL, elt_type, index_type));
3015}
3016\f
3017
3018 /* Name resolution */
3019
3020/* The "decoded" name for the user-definable Ada operator corresponding
3021 to OP. */
3022
3023static const char *
3024ada_decoded_op_name (enum exp_opcode op)
3025{
3026 int i;
3027
3028 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3029 {
3030 if (ada_opname_table[i].op == op)
3031 return ada_opname_table[i].decoded;
3032 }
3033 error (_("Could not find operator name for opcode"));
3034}
3035
3036
3037/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3038 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3039 undefined namespace) and converts operators that are
3040 user-defined into appropriate function calls. If CONTEXT_TYPE is
3041 non-null, it provides a preferred result type [at the moment, only
3042 type void has any effect---causing procedures to be preferred over
3043 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3044 return type is preferred. May change (expand) *EXP. */
3045
3046static void
3047resolve (struct expression **expp, int void_context_p)
3048{
3049 struct type *context_type = NULL;
3050 int pc = 0;
3051
3052 if (void_context_p)
3053 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3054
3055 resolve_subexp (expp, &pc, 1, context_type);
3056}
3057
3058/* Resolve the operator of the subexpression beginning at
3059 position *POS of *EXPP. "Resolving" consists of replacing
3060 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3061 with their resolutions, replacing built-in operators with
3062 function calls to user-defined operators, where appropriate, and,
3063 when DEPROCEDURE_P is non-zero, converting function-valued variables
3064 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3065 are as in ada_resolve, above. */
3066
3067static struct value *
3068resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3069 struct type *context_type)
3070{
3071 int pc = *pos;
3072 int i;
3073 struct expression *exp; /* Convenience: == *expp. */
3074 enum exp_opcode op = (*expp)->elts[pc].opcode;
3075 struct value **argvec; /* Vector of operand types (alloca'ed). */
3076 int nargs; /* Number of operands. */
3077 int oplen;
3078
3079 argvec = NULL;
3080 nargs = 0;
3081 exp = *expp;
3082
3083 /* Pass one: resolve operands, saving their types and updating *pos,
3084 if needed. */
3085 switch (op)
3086 {
3087 case OP_FUNCALL:
3088 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3089 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3090 *pos += 7;
3091 else
3092 {
3093 *pos += 3;
3094 resolve_subexp (expp, pos, 0, NULL);
3095 }
3096 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3097 break;
3098
3099 case UNOP_ADDR:
3100 *pos += 1;
3101 resolve_subexp (expp, pos, 0, NULL);
3102 break;
3103
3104 case UNOP_QUAL:
3105 *pos += 3;
3106 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3107 break;
3108
3109 case OP_ATR_MODULUS:
3110 case OP_ATR_SIZE:
3111 case OP_ATR_TAG:
3112 case OP_ATR_FIRST:
3113 case OP_ATR_LAST:
3114 case OP_ATR_LENGTH:
3115 case OP_ATR_POS:
3116 case OP_ATR_VAL:
3117 case OP_ATR_MIN:
3118 case OP_ATR_MAX:
3119 case TERNOP_IN_RANGE:
3120 case BINOP_IN_BOUNDS:
3121 case UNOP_IN_RANGE:
3122 case OP_AGGREGATE:
3123 case OP_OTHERS:
3124 case OP_CHOICES:
3125 case OP_POSITIONAL:
3126 case OP_DISCRETE_RANGE:
3127 case OP_NAME:
3128 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3129 *pos += oplen;
3130 break;
3131
3132 case BINOP_ASSIGN:
3133 {
3134 struct value *arg1;
3135
3136 *pos += 1;
3137 arg1 = resolve_subexp (expp, pos, 0, NULL);
3138 if (arg1 == NULL)
3139 resolve_subexp (expp, pos, 1, NULL);
3140 else
3141 resolve_subexp (expp, pos, 1, value_type (arg1));
3142 break;
3143 }
3144
3145 case UNOP_CAST:
3146 *pos += 3;
3147 nargs = 1;
3148 break;
3149
3150 case BINOP_ADD:
3151 case BINOP_SUB:
3152 case BINOP_MUL:
3153 case BINOP_DIV:
3154 case BINOP_REM:
3155 case BINOP_MOD:
3156 case BINOP_EXP:
3157 case BINOP_CONCAT:
3158 case BINOP_LOGICAL_AND:
3159 case BINOP_LOGICAL_OR:
3160 case BINOP_BITWISE_AND:
3161 case BINOP_BITWISE_IOR:
3162 case BINOP_BITWISE_XOR:
3163
3164 case BINOP_EQUAL:
3165 case BINOP_NOTEQUAL:
3166 case BINOP_LESS:
3167 case BINOP_GTR:
3168 case BINOP_LEQ:
3169 case BINOP_GEQ:
3170
3171 case BINOP_REPEAT:
3172 case BINOP_SUBSCRIPT:
3173 case BINOP_COMMA:
3174 *pos += 1;
3175 nargs = 2;
3176 break;
3177
3178 case UNOP_NEG:
3179 case UNOP_PLUS:
3180 case UNOP_LOGICAL_NOT:
3181 case UNOP_ABS:
3182 case UNOP_IND:
3183 *pos += 1;
3184 nargs = 1;
3185 break;
3186
3187 case OP_LONG:
3188 case OP_DOUBLE:
3189 case OP_VAR_VALUE:
3190 *pos += 4;
3191 break;
3192
3193 case OP_TYPE:
3194 case OP_BOOL:
3195 case OP_LAST:
3196 case OP_INTERNALVAR:
3197 *pos += 3;
3198 break;
3199
3200 case UNOP_MEMVAL:
3201 *pos += 3;
3202 nargs = 1;
3203 break;
3204
3205 case OP_REGISTER:
3206 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3207 break;
3208
3209 case STRUCTOP_STRUCT:
3210 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3211 nargs = 1;
3212 break;
3213
3214 case TERNOP_SLICE:
3215 *pos += 1;
3216 nargs = 3;
3217 break;
3218
3219 case OP_STRING:
3220 break;
3221
3222 default:
3223 error (_("Unexpected operator during name resolution"));
3224 }
3225
3226 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3227 for (i = 0; i < nargs; i += 1)
3228 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3229 argvec[i] = NULL;
3230 exp = *expp;
3231
3232 /* Pass two: perform any resolution on principal operator. */
3233 switch (op)
3234 {
3235 default:
3236 break;
3237
3238 case OP_VAR_VALUE:
3239 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3240 {
3241 struct ada_symbol_info *candidates;
3242 int n_candidates;
3243
3244 n_candidates =
3245 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3246 (exp->elts[pc + 2].symbol),
3247 exp->elts[pc + 1].block, VAR_DOMAIN,
3248 &candidates);
3249
3250 if (n_candidates > 1)
3251 {
3252 /* Types tend to get re-introduced locally, so if there
3253 are any local symbols that are not types, first filter
3254 out all types. */
3255 int j;
3256 for (j = 0; j < n_candidates; j += 1)
3257 switch (SYMBOL_CLASS (candidates[j].sym))
3258 {
3259 case LOC_REGISTER:
3260 case LOC_ARG:
3261 case LOC_REF_ARG:
3262 case LOC_REGPARM_ADDR:
3263 case LOC_LOCAL:
3264 case LOC_COMPUTED:
3265 goto FoundNonType;
3266 default:
3267 break;
3268 }
3269 FoundNonType:
3270 if (j < n_candidates)
3271 {
3272 j = 0;
3273 while (j < n_candidates)
3274 {
3275 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3276 {
3277 candidates[j] = candidates[n_candidates - 1];
3278 n_candidates -= 1;
3279 }
3280 else
3281 j += 1;
3282 }
3283 }
3284 }
3285
3286 if (n_candidates == 0)
3287 error (_("No definition found for %s"),
3288 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3289 else if (n_candidates == 1)
3290 i = 0;
3291 else if (deprocedure_p
3292 && !is_nonfunction (candidates, n_candidates))
3293 {
3294 i = ada_resolve_function
3295 (candidates, n_candidates, NULL, 0,
3296 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3297 context_type);
3298 if (i < 0)
3299 error (_("Could not find a match for %s"),
3300 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3301 }
3302 else
3303 {
3304 printf_filtered (_("Multiple matches for %s\n"),
3305 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3306 user_select_syms (candidates, n_candidates, 1);
3307 i = 0;
3308 }
3309
3310 exp->elts[pc + 1].block = candidates[i].block;
3311 exp->elts[pc + 2].symbol = candidates[i].sym;
3312 if (innermost_block == NULL
3313 || contained_in (candidates[i].block, innermost_block))
3314 innermost_block = candidates[i].block;
3315 }
3316
3317 if (deprocedure_p
3318 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3319 == TYPE_CODE_FUNC))
3320 {
3321 replace_operator_with_call (expp, pc, 0, 0,
3322 exp->elts[pc + 2].symbol,
3323 exp->elts[pc + 1].block);
3324 exp = *expp;
3325 }
3326 break;
3327
3328 case OP_FUNCALL:
3329 {
3330 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3331 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3332 {
3333 struct ada_symbol_info *candidates;
3334 int n_candidates;
3335
3336 n_candidates =
3337 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3338 (exp->elts[pc + 5].symbol),
3339 exp->elts[pc + 4].block, VAR_DOMAIN,
3340 &candidates);
3341 if (n_candidates == 1)
3342 i = 0;
3343 else
3344 {
3345 i = ada_resolve_function
3346 (candidates, n_candidates,
3347 argvec, nargs,
3348 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3349 context_type);
3350 if (i < 0)
3351 error (_("Could not find a match for %s"),
3352 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3353 }
3354
3355 exp->elts[pc + 4].block = candidates[i].block;
3356 exp->elts[pc + 5].symbol = candidates[i].sym;
3357 if (innermost_block == NULL
3358 || contained_in (candidates[i].block, innermost_block))
3359 innermost_block = candidates[i].block;
3360 }
3361 }
3362 break;
3363 case BINOP_ADD:
3364 case BINOP_SUB:
3365 case BINOP_MUL:
3366 case BINOP_DIV:
3367 case BINOP_REM:
3368 case BINOP_MOD:
3369 case BINOP_CONCAT:
3370 case BINOP_BITWISE_AND:
3371 case BINOP_BITWISE_IOR:
3372 case BINOP_BITWISE_XOR:
3373 case BINOP_EQUAL:
3374 case BINOP_NOTEQUAL:
3375 case BINOP_LESS:
3376 case BINOP_GTR:
3377 case BINOP_LEQ:
3378 case BINOP_GEQ:
3379 case BINOP_EXP:
3380 case UNOP_NEG:
3381 case UNOP_PLUS:
3382 case UNOP_LOGICAL_NOT:
3383 case UNOP_ABS:
3384 if (possible_user_operator_p (op, argvec))
3385 {
3386 struct ada_symbol_info *candidates;
3387 int n_candidates;
3388
3389 n_candidates =
3390 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3391 (struct block *) NULL, VAR_DOMAIN,
3392 &candidates);
3393 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3394 ada_decoded_op_name (op), NULL);
3395 if (i < 0)
3396 break;
3397
3398 replace_operator_with_call (expp, pc, nargs, 1,
3399 candidates[i].sym, candidates[i].block);
3400 exp = *expp;
3401 }
3402 break;
3403
3404 case OP_TYPE:
3405 case OP_REGISTER:
3406 return NULL;
3407 }
3408
3409 *pos = pc;
3410 return evaluate_subexp_type (exp, pos);
3411}
3412
3413/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3414 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3415 a non-pointer. */
3416/* The term "match" here is rather loose. The match is heuristic and
3417 liberal. */
3418
3419static int
3420ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3421{
3422 ftype = ada_check_typedef (ftype);
3423 atype = ada_check_typedef (atype);
3424
3425 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3426 ftype = TYPE_TARGET_TYPE (ftype);
3427 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3428 atype = TYPE_TARGET_TYPE (atype);
3429
3430 switch (TYPE_CODE (ftype))
3431 {
3432 default:
3433 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3434 case TYPE_CODE_PTR:
3435 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3436 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3437 TYPE_TARGET_TYPE (atype), 0);
3438 else
3439 return (may_deref
3440 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3441 case TYPE_CODE_INT:
3442 case TYPE_CODE_ENUM:
3443 case TYPE_CODE_RANGE:
3444 switch (TYPE_CODE (atype))
3445 {
3446 case TYPE_CODE_INT:
3447 case TYPE_CODE_ENUM:
3448 case TYPE_CODE_RANGE:
3449 return 1;
3450 default:
3451 return 0;
3452 }
3453
3454 case TYPE_CODE_ARRAY:
3455 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3456 || ada_is_array_descriptor_type (atype));
3457
3458 case TYPE_CODE_STRUCT:
3459 if (ada_is_array_descriptor_type (ftype))
3460 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3461 || ada_is_array_descriptor_type (atype));
3462 else
3463 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3464 && !ada_is_array_descriptor_type (atype));
3465
3466 case TYPE_CODE_UNION:
3467 case TYPE_CODE_FLT:
3468 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3469 }
3470}
3471
3472/* Return non-zero if the formals of FUNC "sufficiently match" the
3473 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3474 may also be an enumeral, in which case it is treated as a 0-
3475 argument function. */
3476
3477static int
3478ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3479{
3480 int i;
3481 struct type *func_type = SYMBOL_TYPE (func);
3482
3483 if (SYMBOL_CLASS (func) == LOC_CONST
3484 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3485 return (n_actuals == 0);
3486 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3487 return 0;
3488
3489 if (TYPE_NFIELDS (func_type) != n_actuals)
3490 return 0;
3491
3492 for (i = 0; i < n_actuals; i += 1)
3493 {
3494 if (actuals[i] == NULL)
3495 return 0;
3496 else
3497 {
3498 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3499 i));
3500 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3501
3502 if (!ada_type_match (ftype, atype, 1))
3503 return 0;
3504 }
3505 }
3506 return 1;
3507}
3508
3509/* False iff function type FUNC_TYPE definitely does not produce a value
3510 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3511 FUNC_TYPE is not a valid function type with a non-null return type
3512 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3513
3514static int
3515return_match (struct type *func_type, struct type *context_type)
3516{
3517 struct type *return_type;
3518
3519 if (func_type == NULL)
3520 return 1;
3521
3522 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3523 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3524 else
3525 return_type = get_base_type (func_type);
3526 if (return_type == NULL)
3527 return 1;
3528
3529 context_type = get_base_type (context_type);
3530
3531 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3532 return context_type == NULL || return_type == context_type;
3533 else if (context_type == NULL)
3534 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3535 else
3536 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3537}
3538
3539
3540/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3541 function (if any) that matches the types of the NARGS arguments in
3542 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3543 that returns that type, then eliminate matches that don't. If
3544 CONTEXT_TYPE is void and there is at least one match that does not
3545 return void, eliminate all matches that do.
3546
3547 Asks the user if there is more than one match remaining. Returns -1
3548 if there is no such symbol or none is selected. NAME is used
3549 solely for messages. May re-arrange and modify SYMS in
3550 the process; the index returned is for the modified vector. */
3551
3552static int
3553ada_resolve_function (struct ada_symbol_info syms[],
3554 int nsyms, struct value **args, int nargs,
3555 const char *name, struct type *context_type)
3556{
3557 int fallback;
3558 int k;
3559 int m; /* Number of hits */
3560
3561 m = 0;
3562 /* In the first pass of the loop, we only accept functions matching
3563 context_type. If none are found, we add a second pass of the loop
3564 where every function is accepted. */
3565 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3566 {
3567 for (k = 0; k < nsyms; k += 1)
3568 {
3569 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3570
3571 if (ada_args_match (syms[k].sym, args, nargs)
3572 && (fallback || return_match (type, context_type)))
3573 {
3574 syms[m] = syms[k];
3575 m += 1;
3576 }
3577 }
3578 }
3579
3580 if (m == 0)
3581 return -1;
3582 else if (m > 1)
3583 {
3584 printf_filtered (_("Multiple matches for %s\n"), name);
3585 user_select_syms (syms, m, 1);
3586 return 0;
3587 }
3588 return 0;
3589}
3590
3591/* Returns true (non-zero) iff decoded name N0 should appear before N1
3592 in a listing of choices during disambiguation (see sort_choices, below).
3593 The idea is that overloadings of a subprogram name from the
3594 same package should sort in their source order. We settle for ordering
3595 such symbols by their trailing number (__N or $N). */
3596
3597static int
3598encoded_ordered_before (const char *N0, const char *N1)
3599{
3600 if (N1 == NULL)
3601 return 0;
3602 else if (N0 == NULL)
3603 return 1;
3604 else
3605 {
3606 int k0, k1;
3607
3608 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3609 ;
3610 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3611 ;
3612 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3613 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3614 {
3615 int n0, n1;
3616
3617 n0 = k0;
3618 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3619 n0 -= 1;
3620 n1 = k1;
3621 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3622 n1 -= 1;
3623 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3624 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3625 }
3626 return (strcmp (N0, N1) < 0);
3627 }
3628}
3629
3630/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3631 encoded names. */
3632
3633static void
3634sort_choices (struct ada_symbol_info syms[], int nsyms)
3635{
3636 int i;
3637
3638 for (i = 1; i < nsyms; i += 1)
3639 {
3640 struct ada_symbol_info sym = syms[i];
3641 int j;
3642
3643 for (j = i - 1; j >= 0; j -= 1)
3644 {
3645 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3646 SYMBOL_LINKAGE_NAME (sym.sym)))
3647 break;
3648 syms[j + 1] = syms[j];
3649 }
3650 syms[j + 1] = sym;
3651 }
3652}
3653
3654/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3655 by asking the user (if necessary), returning the number selected,
3656 and setting the first elements of SYMS items. Error if no symbols
3657 selected. */
3658
3659/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3660 to be re-integrated one of these days. */
3661
3662int
3663user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3664{
3665 int i;
3666 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3667 int n_chosen;
3668 int first_choice = (max_results == 1) ? 1 : 2;
3669 const char *select_mode = multiple_symbols_select_mode ();
3670
3671 if (max_results < 1)
3672 error (_("Request to select 0 symbols!"));
3673 if (nsyms <= 1)
3674 return nsyms;
3675
3676 if (select_mode == multiple_symbols_cancel)
3677 error (_("\
3678canceled because the command is ambiguous\n\
3679See set/show multiple-symbol."));
3680
3681 /* If select_mode is "all", then return all possible symbols.
3682 Only do that if more than one symbol can be selected, of course.
3683 Otherwise, display the menu as usual. */
3684 if (select_mode == multiple_symbols_all && max_results > 1)
3685 return nsyms;
3686
3687 printf_unfiltered (_("[0] cancel\n"));
3688 if (max_results > 1)
3689 printf_unfiltered (_("[1] all\n"));
3690
3691 sort_choices (syms, nsyms);
3692
3693 for (i = 0; i < nsyms; i += 1)
3694 {
3695 if (syms[i].sym == NULL)
3696 continue;
3697
3698 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3699 {
3700 struct symtab_and_line sal =
3701 find_function_start_sal (syms[i].sym, 1);
3702
3703 if (sal.symtab == NULL)
3704 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3705 i + first_choice,
3706 SYMBOL_PRINT_NAME (syms[i].sym),
3707 sal.line);
3708 else
3709 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3710 SYMBOL_PRINT_NAME (syms[i].sym),
3711 symtab_to_filename_for_display (sal.symtab),
3712 sal.line);
3713 continue;
3714 }
3715 else
3716 {
3717 int is_enumeral =
3718 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3719 && SYMBOL_TYPE (syms[i].sym) != NULL
3720 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3721 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3722
3723 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3724 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3725 i + first_choice,
3726 SYMBOL_PRINT_NAME (syms[i].sym),
3727 symtab_to_filename_for_display (symtab),
3728 SYMBOL_LINE (syms[i].sym));
3729 else if (is_enumeral
3730 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3731 {
3732 printf_unfiltered (("[%d] "), i + first_choice);
3733 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3734 gdb_stdout, -1, 0, &type_print_raw_options);
3735 printf_unfiltered (_("'(%s) (enumeral)\n"),
3736 SYMBOL_PRINT_NAME (syms[i].sym));
3737 }
3738 else if (symtab != NULL)
3739 printf_unfiltered (is_enumeral
3740 ? _("[%d] %s in %s (enumeral)\n")
3741 : _("[%d] %s at %s:?\n"),
3742 i + first_choice,
3743 SYMBOL_PRINT_NAME (syms[i].sym),
3744 symtab_to_filename_for_display (symtab));
3745 else
3746 printf_unfiltered (is_enumeral
3747 ? _("[%d] %s (enumeral)\n")
3748 : _("[%d] %s at ?\n"),
3749 i + first_choice,
3750 SYMBOL_PRINT_NAME (syms[i].sym));
3751 }
3752 }
3753
3754 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3755 "overload-choice");
3756
3757 for (i = 0; i < n_chosen; i += 1)
3758 syms[i] = syms[chosen[i]];
3759
3760 return n_chosen;
3761}
3762
3763/* Read and validate a set of numeric choices from the user in the
3764 range 0 .. N_CHOICES-1. Place the results in increasing
3765 order in CHOICES[0 .. N-1], and return N.
3766
3767 The user types choices as a sequence of numbers on one line
3768 separated by blanks, encoding them as follows:
3769
3770 + A choice of 0 means to cancel the selection, throwing an error.
3771 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3772 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3773
3774 The user is not allowed to choose more than MAX_RESULTS values.
3775
3776 ANNOTATION_SUFFIX, if present, is used to annotate the input
3777 prompts (for use with the -f switch). */
3778
3779int
3780get_selections (int *choices, int n_choices, int max_results,
3781 int is_all_choice, char *annotation_suffix)
3782{
3783 char *args;
3784 char *prompt;
3785 int n_chosen;
3786 int first_choice = is_all_choice ? 2 : 1;
3787
3788 prompt = getenv ("PS2");
3789 if (prompt == NULL)
3790 prompt = "> ";
3791
3792 args = command_line_input (prompt, 0, annotation_suffix);
3793
3794 if (args == NULL)
3795 error_no_arg (_("one or more choice numbers"));
3796
3797 n_chosen = 0;
3798
3799 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3800 order, as given in args. Choices are validated. */
3801 while (1)
3802 {
3803 char *args2;
3804 int choice, j;
3805
3806 args = skip_spaces (args);
3807 if (*args == '\0' && n_chosen == 0)
3808 error_no_arg (_("one or more choice numbers"));
3809 else if (*args == '\0')
3810 break;
3811
3812 choice = strtol (args, &args2, 10);
3813 if (args == args2 || choice < 0
3814 || choice > n_choices + first_choice - 1)
3815 error (_("Argument must be choice number"));
3816 args = args2;
3817
3818 if (choice == 0)
3819 error (_("cancelled"));
3820
3821 if (choice < first_choice)
3822 {
3823 n_chosen = n_choices;
3824 for (j = 0; j < n_choices; j += 1)
3825 choices[j] = j;
3826 break;
3827 }
3828 choice -= first_choice;
3829
3830 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3831 {
3832 }
3833
3834 if (j < 0 || choice != choices[j])
3835 {
3836 int k;
3837
3838 for (k = n_chosen - 1; k > j; k -= 1)
3839 choices[k + 1] = choices[k];
3840 choices[j + 1] = choice;
3841 n_chosen += 1;
3842 }
3843 }
3844
3845 if (n_chosen > max_results)
3846 error (_("Select no more than %d of the above"), max_results);
3847
3848 return n_chosen;
3849}
3850
3851/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3852 on the function identified by SYM and BLOCK, and taking NARGS
3853 arguments. Update *EXPP as needed to hold more space. */
3854
3855static void
3856replace_operator_with_call (struct expression **expp, int pc, int nargs,
3857 int oplen, struct symbol *sym,
3858 const struct block *block)
3859{
3860 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3861 symbol, -oplen for operator being replaced). */
3862 struct expression *newexp = (struct expression *)
3863 xzalloc (sizeof (struct expression)
3864 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3865 struct expression *exp = *expp;
3866
3867 newexp->nelts = exp->nelts + 7 - oplen;
3868 newexp->language_defn = exp->language_defn;
3869 newexp->gdbarch = exp->gdbarch;
3870 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3871 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3872 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3873
3874 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3875 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3876
3877 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3878 newexp->elts[pc + 4].block = block;
3879 newexp->elts[pc + 5].symbol = sym;
3880
3881 *expp = newexp;
3882 xfree (exp);
3883}
3884
3885/* Type-class predicates */
3886
3887/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3888 or FLOAT). */
3889
3890static int
3891numeric_type_p (struct type *type)
3892{
3893 if (type == NULL)
3894 return 0;
3895 else
3896 {
3897 switch (TYPE_CODE (type))
3898 {
3899 case TYPE_CODE_INT:
3900 case TYPE_CODE_FLT:
3901 return 1;
3902 case TYPE_CODE_RANGE:
3903 return (type == TYPE_TARGET_TYPE (type)
3904 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3905 default:
3906 return 0;
3907 }
3908 }
3909}
3910
3911/* True iff TYPE is integral (an INT or RANGE of INTs). */
3912
3913static int
3914integer_type_p (struct type *type)
3915{
3916 if (type == NULL)
3917 return 0;
3918 else
3919 {
3920 switch (TYPE_CODE (type))
3921 {
3922 case TYPE_CODE_INT:
3923 return 1;
3924 case TYPE_CODE_RANGE:
3925 return (type == TYPE_TARGET_TYPE (type)
3926 || integer_type_p (TYPE_TARGET_TYPE (type)));
3927 default:
3928 return 0;
3929 }
3930 }
3931}
3932
3933/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3934
3935static int
3936scalar_type_p (struct type *type)
3937{
3938 if (type == NULL)
3939 return 0;
3940 else
3941 {
3942 switch (TYPE_CODE (type))
3943 {
3944 case TYPE_CODE_INT:
3945 case TYPE_CODE_RANGE:
3946 case TYPE_CODE_ENUM:
3947 case TYPE_CODE_FLT:
3948 return 1;
3949 default:
3950 return 0;
3951 }
3952 }
3953}
3954
3955/* True iff TYPE is discrete (INT, RANGE, ENUM). */
3956
3957static int
3958discrete_type_p (struct type *type)
3959{
3960 if (type == NULL)
3961 return 0;
3962 else
3963 {
3964 switch (TYPE_CODE (type))
3965 {
3966 case TYPE_CODE_INT:
3967 case TYPE_CODE_RANGE:
3968 case TYPE_CODE_ENUM:
3969 case TYPE_CODE_BOOL:
3970 return 1;
3971 default:
3972 return 0;
3973 }
3974 }
3975}
3976
3977/* Returns non-zero if OP with operands in the vector ARGS could be
3978 a user-defined function. Errs on the side of pre-defined operators
3979 (i.e., result 0). */
3980
3981static int
3982possible_user_operator_p (enum exp_opcode op, struct value *args[])
3983{
3984 struct type *type0 =
3985 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3986 struct type *type1 =
3987 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3988
3989 if (type0 == NULL)
3990 return 0;
3991
3992 switch (op)
3993 {
3994 default:
3995 return 0;
3996
3997 case BINOP_ADD:
3998 case BINOP_SUB:
3999 case BINOP_MUL:
4000 case BINOP_DIV:
4001 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4002
4003 case BINOP_REM:
4004 case BINOP_MOD:
4005 case BINOP_BITWISE_AND:
4006 case BINOP_BITWISE_IOR:
4007 case BINOP_BITWISE_XOR:
4008 return (!(integer_type_p (type0) && integer_type_p (type1)));
4009
4010 case BINOP_EQUAL:
4011 case BINOP_NOTEQUAL:
4012 case BINOP_LESS:
4013 case BINOP_GTR:
4014 case BINOP_LEQ:
4015 case BINOP_GEQ:
4016 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4017
4018 case BINOP_CONCAT:
4019 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4020
4021 case BINOP_EXP:
4022 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4023
4024 case UNOP_NEG:
4025 case UNOP_PLUS:
4026 case UNOP_LOGICAL_NOT:
4027 case UNOP_ABS:
4028 return (!numeric_type_p (type0));
4029
4030 }
4031}
4032\f
4033 /* Renaming */
4034
4035/* NOTES:
4036
4037 1. In the following, we assume that a renaming type's name may
4038 have an ___XD suffix. It would be nice if this went away at some
4039 point.
4040 2. We handle both the (old) purely type-based representation of
4041 renamings and the (new) variable-based encoding. At some point,
4042 it is devoutly to be hoped that the former goes away
4043 (FIXME: hilfinger-2007-07-09).
4044 3. Subprogram renamings are not implemented, although the XRS
4045 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4046
4047/* If SYM encodes a renaming,
4048
4049 <renaming> renames <renamed entity>,
4050
4051 sets *LEN to the length of the renamed entity's name,
4052 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4053 the string describing the subcomponent selected from the renamed
4054 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4055 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4056 are undefined). Otherwise, returns a value indicating the category
4057 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4058 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4059 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4060 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4061 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4062 may be NULL, in which case they are not assigned.
4063
4064 [Currently, however, GCC does not generate subprogram renamings.] */
4065
4066enum ada_renaming_category
4067ada_parse_renaming (struct symbol *sym,
4068 const char **renamed_entity, int *len,
4069 const char **renaming_expr)
4070{
4071 enum ada_renaming_category kind;
4072 const char *info;
4073 const char *suffix;
4074
4075 if (sym == NULL)
4076 return ADA_NOT_RENAMING;
4077 switch (SYMBOL_CLASS (sym))
4078 {
4079 default:
4080 return ADA_NOT_RENAMING;
4081 case LOC_TYPEDEF:
4082 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4083 renamed_entity, len, renaming_expr);
4084 case LOC_LOCAL:
4085 case LOC_STATIC:
4086 case LOC_COMPUTED:
4087 case LOC_OPTIMIZED_OUT:
4088 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4089 if (info == NULL)
4090 return ADA_NOT_RENAMING;
4091 switch (info[5])
4092 {
4093 case '_':
4094 kind = ADA_OBJECT_RENAMING;
4095 info += 6;
4096 break;
4097 case 'E':
4098 kind = ADA_EXCEPTION_RENAMING;
4099 info += 7;
4100 break;
4101 case 'P':
4102 kind = ADA_PACKAGE_RENAMING;
4103 info += 7;
4104 break;
4105 case 'S':
4106 kind = ADA_SUBPROGRAM_RENAMING;
4107 info += 7;
4108 break;
4109 default:
4110 return ADA_NOT_RENAMING;
4111 }
4112 }
4113
4114 if (renamed_entity != NULL)
4115 *renamed_entity = info;
4116 suffix = strstr (info, "___XE");
4117 if (suffix == NULL || suffix == info)
4118 return ADA_NOT_RENAMING;
4119 if (len != NULL)
4120 *len = strlen (info) - strlen (suffix);
4121 suffix += 5;
4122 if (renaming_expr != NULL)
4123 *renaming_expr = suffix;
4124 return kind;
4125}
4126
4127/* Assuming TYPE encodes a renaming according to the old encoding in
4128 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4129 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4130 ADA_NOT_RENAMING otherwise. */
4131static enum ada_renaming_category
4132parse_old_style_renaming (struct type *type,
4133 const char **renamed_entity, int *len,
4134 const char **renaming_expr)
4135{
4136 enum ada_renaming_category kind;
4137 const char *name;
4138 const char *info;
4139 const char *suffix;
4140
4141 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4142 || TYPE_NFIELDS (type) != 1)
4143 return ADA_NOT_RENAMING;
4144
4145 name = type_name_no_tag (type);
4146 if (name == NULL)
4147 return ADA_NOT_RENAMING;
4148
4149 name = strstr (name, "___XR");
4150 if (name == NULL)
4151 return ADA_NOT_RENAMING;
4152 switch (name[5])
4153 {
4154 case '\0':
4155 case '_':
4156 kind = ADA_OBJECT_RENAMING;
4157 break;
4158 case 'E':
4159 kind = ADA_EXCEPTION_RENAMING;
4160 break;
4161 case 'P':
4162 kind = ADA_PACKAGE_RENAMING;
4163 break;
4164 case 'S':
4165 kind = ADA_SUBPROGRAM_RENAMING;
4166 break;
4167 default:
4168 return ADA_NOT_RENAMING;
4169 }
4170
4171 info = TYPE_FIELD_NAME (type, 0);
4172 if (info == NULL)
4173 return ADA_NOT_RENAMING;
4174 if (renamed_entity != NULL)
4175 *renamed_entity = info;
4176 suffix = strstr (info, "___XE");
4177 if (renaming_expr != NULL)
4178 *renaming_expr = suffix + 5;
4179 if (suffix == NULL || suffix == info)
4180 return ADA_NOT_RENAMING;
4181 if (len != NULL)
4182 *len = suffix - info;
4183 return kind;
4184}
4185
4186/* Compute the value of the given RENAMING_SYM, which is expected to
4187 be a symbol encoding a renaming expression. BLOCK is the block
4188 used to evaluate the renaming. */
4189
4190static struct value *
4191ada_read_renaming_var_value (struct symbol *renaming_sym,
4192 const struct block *block)
4193{
4194 const char *sym_name;
4195 struct expression *expr;
4196 struct value *value;
4197 struct cleanup *old_chain = NULL;
4198
4199 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4200 expr = parse_exp_1 (&sym_name, 0, block, 0);
4201 old_chain = make_cleanup (free_current_contents, &expr);
4202 value = evaluate_expression (expr);
4203
4204 do_cleanups (old_chain);
4205 return value;
4206}
4207\f
4208
4209 /* Evaluation: Function Calls */
4210
4211/* Return an lvalue containing the value VAL. This is the identity on
4212 lvalues, and otherwise has the side-effect of allocating memory
4213 in the inferior where a copy of the value contents is copied. */
4214
4215static struct value *
4216ensure_lval (struct value *val)
4217{
4218 if (VALUE_LVAL (val) == not_lval
4219 || VALUE_LVAL (val) == lval_internalvar)
4220 {
4221 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4222 const CORE_ADDR addr =
4223 value_as_long (value_allocate_space_in_inferior (len));
4224
4225 set_value_address (val, addr);
4226 VALUE_LVAL (val) = lval_memory;
4227 write_memory (addr, value_contents (val), len);
4228 }
4229
4230 return val;
4231}
4232
4233/* Return the value ACTUAL, converted to be an appropriate value for a
4234 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4235 allocating any necessary descriptors (fat pointers), or copies of
4236 values not residing in memory, updating it as needed. */
4237
4238struct value *
4239ada_convert_actual (struct value *actual, struct type *formal_type0)
4240{
4241 struct type *actual_type = ada_check_typedef (value_type (actual));
4242 struct type *formal_type = ada_check_typedef (formal_type0);
4243 struct type *formal_target =
4244 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4245 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4246 struct type *actual_target =
4247 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4248 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4249
4250 if (ada_is_array_descriptor_type (formal_target)
4251 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4252 return make_array_descriptor (formal_type, actual);
4253 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4254 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4255 {
4256 struct value *result;
4257
4258 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4259 && ada_is_array_descriptor_type (actual_target))
4260 result = desc_data (actual);
4261 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4262 {
4263 if (VALUE_LVAL (actual) != lval_memory)
4264 {
4265 struct value *val;
4266
4267 actual_type = ada_check_typedef (value_type (actual));
4268 val = allocate_value (actual_type);
4269 memcpy ((char *) value_contents_raw (val),
4270 (char *) value_contents (actual),
4271 TYPE_LENGTH (actual_type));
4272 actual = ensure_lval (val);
4273 }
4274 result = value_addr (actual);
4275 }
4276 else
4277 return actual;
4278 return value_cast_pointers (formal_type, result, 0);
4279 }
4280 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4281 return ada_value_ind (actual);
4282
4283 return actual;
4284}
4285
4286/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4287 type TYPE. This is usually an inefficient no-op except on some targets
4288 (such as AVR) where the representation of a pointer and an address
4289 differs. */
4290
4291static CORE_ADDR
4292value_pointer (struct value *value, struct type *type)
4293{
4294 struct gdbarch *gdbarch = get_type_arch (type);
4295 unsigned len = TYPE_LENGTH (type);
4296 gdb_byte *buf = alloca (len);
4297 CORE_ADDR addr;
4298
4299 addr = value_address (value);
4300 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4301 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4302 return addr;
4303}
4304
4305
4306/* Push a descriptor of type TYPE for array value ARR on the stack at
4307 *SP, updating *SP to reflect the new descriptor. Return either
4308 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4309 to-descriptor type rather than a descriptor type), a struct value *
4310 representing a pointer to this descriptor. */
4311
4312static struct value *
4313make_array_descriptor (struct type *type, struct value *arr)
4314{
4315 struct type *bounds_type = desc_bounds_type (type);
4316 struct type *desc_type = desc_base_type (type);
4317 struct value *descriptor = allocate_value (desc_type);
4318 struct value *bounds = allocate_value (bounds_type);
4319 int i;
4320
4321 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4322 i > 0; i -= 1)
4323 {
4324 modify_field (value_type (bounds), value_contents_writeable (bounds),
4325 ada_array_bound (arr, i, 0),
4326 desc_bound_bitpos (bounds_type, i, 0),
4327 desc_bound_bitsize (bounds_type, i, 0));
4328 modify_field (value_type (bounds), value_contents_writeable (bounds),
4329 ada_array_bound (arr, i, 1),
4330 desc_bound_bitpos (bounds_type, i, 1),
4331 desc_bound_bitsize (bounds_type, i, 1));
4332 }
4333
4334 bounds = ensure_lval (bounds);
4335
4336 modify_field (value_type (descriptor),
4337 value_contents_writeable (descriptor),
4338 value_pointer (ensure_lval (arr),
4339 TYPE_FIELD_TYPE (desc_type, 0)),
4340 fat_pntr_data_bitpos (desc_type),
4341 fat_pntr_data_bitsize (desc_type));
4342
4343 modify_field (value_type (descriptor),
4344 value_contents_writeable (descriptor),
4345 value_pointer (bounds,
4346 TYPE_FIELD_TYPE (desc_type, 1)),
4347 fat_pntr_bounds_bitpos (desc_type),
4348 fat_pntr_bounds_bitsize (desc_type));
4349
4350 descriptor = ensure_lval (descriptor);
4351
4352 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4353 return value_addr (descriptor);
4354 else
4355 return descriptor;
4356}
4357\f
4358 /* Symbol Cache Module */
4359
4360/* Performance measurements made as of 2010-01-15 indicate that
4361 this cache does bring some noticeable improvements. Depending
4362 on the type of entity being printed, the cache can make it as much
4363 as an order of magnitude faster than without it.
4364
4365 The descriptive type DWARF extension has significantly reduced
4366 the need for this cache, at least when DWARF is being used. However,
4367 even in this case, some expensive name-based symbol searches are still
4368 sometimes necessary - to find an XVZ variable, mostly. */
4369
4370/* Initialize the contents of SYM_CACHE. */
4371
4372static void
4373ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4374{
4375 obstack_init (&sym_cache->cache_space);
4376 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4377}
4378
4379/* Free the memory used by SYM_CACHE. */
4380
4381static void
4382ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4383{
4384 obstack_free (&sym_cache->cache_space, NULL);
4385 xfree (sym_cache);
4386}
4387
4388/* Return the symbol cache associated to the given program space PSPACE.
4389 If not allocated for this PSPACE yet, allocate and initialize one. */
4390
4391static struct ada_symbol_cache *
4392ada_get_symbol_cache (struct program_space *pspace)
4393{
4394 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4395 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4396
4397 if (sym_cache == NULL)
4398 {
4399 sym_cache = XCNEW (struct ada_symbol_cache);
4400 ada_init_symbol_cache (sym_cache);
4401 }
4402
4403 return sym_cache;
4404}
4405
4406/* Clear all entries from the symbol cache. */
4407
4408static void
4409ada_clear_symbol_cache (void)
4410{
4411 struct ada_symbol_cache *sym_cache
4412 = ada_get_symbol_cache (current_program_space);
4413
4414 obstack_free (&sym_cache->cache_space, NULL);
4415 ada_init_symbol_cache (sym_cache);
4416}
4417
4418/* Search our cache for an entry matching NAME and NAMESPACE.
4419 Return it if found, or NULL otherwise. */
4420
4421static struct cache_entry **
4422find_entry (const char *name, domain_enum namespace)
4423{
4424 struct ada_symbol_cache *sym_cache
4425 = ada_get_symbol_cache (current_program_space);
4426 int h = msymbol_hash (name) % HASH_SIZE;
4427 struct cache_entry **e;
4428
4429 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4430 {
4431 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4432 return e;
4433 }
4434 return NULL;
4435}
4436
4437/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4438 Return 1 if found, 0 otherwise.
4439
4440 If an entry was found and SYM is not NULL, set *SYM to the entry's
4441 SYM. Same principle for BLOCK if not NULL. */
4442
4443static int
4444lookup_cached_symbol (const char *name, domain_enum namespace,
4445 struct symbol **sym, const struct block **block)
4446{
4447 struct cache_entry **e = find_entry (name, namespace);
4448
4449 if (e == NULL)
4450 return 0;
4451 if (sym != NULL)
4452 *sym = (*e)->sym;
4453 if (block != NULL)
4454 *block = (*e)->block;
4455 return 1;
4456}
4457
4458/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4459 in domain NAMESPACE, save this result in our symbol cache. */
4460
4461static void
4462cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4463 const struct block *block)
4464{
4465 struct ada_symbol_cache *sym_cache
4466 = ada_get_symbol_cache (current_program_space);
4467 int h;
4468 char *copy;
4469 struct cache_entry *e;
4470
4471 /* If the symbol is a local symbol, then do not cache it, as a search
4472 for that symbol depends on the context. To determine whether
4473 the symbol is local or not, we check the block where we found it
4474 against the global and static blocks of its associated symtab. */
4475 if (sym
4476 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4477 GLOBAL_BLOCK) != block
4478 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4479 STATIC_BLOCK) != block)
4480 return;
4481
4482 h = msymbol_hash (name) % HASH_SIZE;
4483 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4484 sizeof (*e));
4485 e->next = sym_cache->root[h];
4486 sym_cache->root[h] = e;
4487 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4488 strcpy (copy, name);
4489 e->sym = sym;
4490 e->namespace = namespace;
4491 e->block = block;
4492}
4493\f
4494 /* Symbol Lookup */
4495
4496/* Return nonzero if wild matching should be used when searching for
4497 all symbols matching LOOKUP_NAME.
4498
4499 LOOKUP_NAME is expected to be a symbol name after transformation
4500 for Ada lookups (see ada_name_for_lookup). */
4501
4502static int
4503should_use_wild_match (const char *lookup_name)
4504{
4505 return (strstr (lookup_name, "__") == NULL);
4506}
4507
4508/* Return the result of a standard (literal, C-like) lookup of NAME in
4509 given DOMAIN, visible from lexical block BLOCK. */
4510
4511static struct symbol *
4512standard_lookup (const char *name, const struct block *block,
4513 domain_enum domain)
4514{
4515 /* Initialize it just to avoid a GCC false warning. */
4516 struct symbol *sym = NULL;
4517
4518 if (lookup_cached_symbol (name, domain, &sym, NULL))
4519 return sym;
4520 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4521 cache_symbol (name, domain, sym, block_found);
4522 return sym;
4523}
4524
4525
4526/* Non-zero iff there is at least one non-function/non-enumeral symbol
4527 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4528 since they contend in overloading in the same way. */
4529static int
4530is_nonfunction (struct ada_symbol_info syms[], int n)
4531{
4532 int i;
4533
4534 for (i = 0; i < n; i += 1)
4535 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4536 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4537 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4538 return 1;
4539
4540 return 0;
4541}
4542
4543/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4544 struct types. Otherwise, they may not. */
4545
4546static int
4547equiv_types (struct type *type0, struct type *type1)
4548{
4549 if (type0 == type1)
4550 return 1;
4551 if (type0 == NULL || type1 == NULL
4552 || TYPE_CODE (type0) != TYPE_CODE (type1))
4553 return 0;
4554 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4555 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4556 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4557 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4558 return 1;
4559
4560 return 0;
4561}
4562
4563/* True iff SYM0 represents the same entity as SYM1, or one that is
4564 no more defined than that of SYM1. */
4565
4566static int
4567lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4568{
4569 if (sym0 == sym1)
4570 return 1;
4571 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4572 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4573 return 0;
4574
4575 switch (SYMBOL_CLASS (sym0))
4576 {
4577 case LOC_UNDEF:
4578 return 1;
4579 case LOC_TYPEDEF:
4580 {
4581 struct type *type0 = SYMBOL_TYPE (sym0);
4582 struct type *type1 = SYMBOL_TYPE (sym1);
4583 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4584 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4585 int len0 = strlen (name0);
4586
4587 return
4588 TYPE_CODE (type0) == TYPE_CODE (type1)
4589 && (equiv_types (type0, type1)
4590 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4591 && strncmp (name1 + len0, "___XV", 5) == 0));
4592 }
4593 case LOC_CONST:
4594 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4595 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4596 default:
4597 return 0;
4598 }
4599}
4600
4601/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4602 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4603
4604static void
4605add_defn_to_vec (struct obstack *obstackp,
4606 struct symbol *sym,
4607 const struct block *block)
4608{
4609 int i;
4610 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4611
4612 /* Do not try to complete stub types, as the debugger is probably
4613 already scanning all symbols matching a certain name at the
4614 time when this function is called. Trying to replace the stub
4615 type by its associated full type will cause us to restart a scan
4616 which may lead to an infinite recursion. Instead, the client
4617 collecting the matching symbols will end up collecting several
4618 matches, with at least one of them complete. It can then filter
4619 out the stub ones if needed. */
4620
4621 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4622 {
4623 if (lesseq_defined_than (sym, prevDefns[i].sym))
4624 return;
4625 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4626 {
4627 prevDefns[i].sym = sym;
4628 prevDefns[i].block = block;
4629 return;
4630 }
4631 }
4632
4633 {
4634 struct ada_symbol_info info;
4635
4636 info.sym = sym;
4637 info.block = block;
4638 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4639 }
4640}
4641
4642/* Number of ada_symbol_info structures currently collected in
4643 current vector in *OBSTACKP. */
4644
4645static int
4646num_defns_collected (struct obstack *obstackp)
4647{
4648 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4649}
4650
4651/* Vector of ada_symbol_info structures currently collected in current
4652 vector in *OBSTACKP. If FINISH, close off the vector and return
4653 its final address. */
4654
4655static struct ada_symbol_info *
4656defns_collected (struct obstack *obstackp, int finish)
4657{
4658 if (finish)
4659 return obstack_finish (obstackp);
4660 else
4661 return (struct ada_symbol_info *) obstack_base (obstackp);
4662}
4663
4664/* Return a bound minimal symbol matching NAME according to Ada
4665 decoding rules. Returns an invalid symbol if there is no such
4666 minimal symbol. Names prefixed with "standard__" are handled
4667 specially: "standard__" is first stripped off, and only static and
4668 global symbols are searched. */
4669
4670struct bound_minimal_symbol
4671ada_lookup_simple_minsym (const char *name)
4672{
4673 struct bound_minimal_symbol result;
4674 struct objfile *objfile;
4675 struct minimal_symbol *msymbol;
4676 const int wild_match_p = should_use_wild_match (name);
4677
4678 memset (&result, 0, sizeof (result));
4679
4680 /* Special case: If the user specifies a symbol name inside package
4681 Standard, do a non-wild matching of the symbol name without
4682 the "standard__" prefix. This was primarily introduced in order
4683 to allow the user to specifically access the standard exceptions
4684 using, for instance, Standard.Constraint_Error when Constraint_Error
4685 is ambiguous (due to the user defining its own Constraint_Error
4686 entity inside its program). */
4687 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4688 name += sizeof ("standard__") - 1;
4689
4690 ALL_MSYMBOLS (objfile, msymbol)
4691 {
4692 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4693 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4694 {
4695 result.minsym = msymbol;
4696 result.objfile = objfile;
4697 break;
4698 }
4699 }
4700
4701 return result;
4702}
4703
4704/* For all subprograms that statically enclose the subprogram of the
4705 selected frame, add symbols matching identifier NAME in DOMAIN
4706 and their blocks to the list of data in OBSTACKP, as for
4707 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4708 with a wildcard prefix. */
4709
4710static void
4711add_symbols_from_enclosing_procs (struct obstack *obstackp,
4712 const char *name, domain_enum namespace,
4713 int wild_match_p)
4714{
4715}
4716
4717/* True if TYPE is definitely an artificial type supplied to a symbol
4718 for which no debugging information was given in the symbol file. */
4719
4720static int
4721is_nondebugging_type (struct type *type)
4722{
4723 const char *name = ada_type_name (type);
4724
4725 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4726}
4727
4728/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4729 that are deemed "identical" for practical purposes.
4730
4731 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4732 types and that their number of enumerals is identical (in other
4733 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4734
4735static int
4736ada_identical_enum_types_p (struct type *type1, struct type *type2)
4737{
4738 int i;
4739
4740 /* The heuristic we use here is fairly conservative. We consider
4741 that 2 enumerate types are identical if they have the same
4742 number of enumerals and that all enumerals have the same
4743 underlying value and name. */
4744
4745 /* All enums in the type should have an identical underlying value. */
4746 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4747 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4748 return 0;
4749
4750 /* All enumerals should also have the same name (modulo any numerical
4751 suffix). */
4752 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4753 {
4754 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4755 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4756 int len_1 = strlen (name_1);
4757 int len_2 = strlen (name_2);
4758
4759 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4760 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4761 if (len_1 != len_2
4762 || strncmp (TYPE_FIELD_NAME (type1, i),
4763 TYPE_FIELD_NAME (type2, i),
4764 len_1) != 0)
4765 return 0;
4766 }
4767
4768 return 1;
4769}
4770
4771/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4772 that are deemed "identical" for practical purposes. Sometimes,
4773 enumerals are not strictly identical, but their types are so similar
4774 that they can be considered identical.
4775
4776 For instance, consider the following code:
4777
4778 type Color is (Black, Red, Green, Blue, White);
4779 type RGB_Color is new Color range Red .. Blue;
4780
4781 Type RGB_Color is a subrange of an implicit type which is a copy
4782 of type Color. If we call that implicit type RGB_ColorB ("B" is
4783 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4784 As a result, when an expression references any of the enumeral
4785 by name (Eg. "print green"), the expression is technically
4786 ambiguous and the user should be asked to disambiguate. But
4787 doing so would only hinder the user, since it wouldn't matter
4788 what choice he makes, the outcome would always be the same.
4789 So, for practical purposes, we consider them as the same. */
4790
4791static int
4792symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4793{
4794 int i;
4795
4796 /* Before performing a thorough comparison check of each type,
4797 we perform a series of inexpensive checks. We expect that these
4798 checks will quickly fail in the vast majority of cases, and thus
4799 help prevent the unnecessary use of a more expensive comparison.
4800 Said comparison also expects us to make some of these checks
4801 (see ada_identical_enum_types_p). */
4802
4803 /* Quick check: All symbols should have an enum type. */
4804 for (i = 0; i < nsyms; i++)
4805 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4806 return 0;
4807
4808 /* Quick check: They should all have the same value. */
4809 for (i = 1; i < nsyms; i++)
4810 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4811 return 0;
4812
4813 /* Quick check: They should all have the same number of enumerals. */
4814 for (i = 1; i < nsyms; i++)
4815 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4816 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4817 return 0;
4818
4819 /* All the sanity checks passed, so we might have a set of
4820 identical enumeration types. Perform a more complete
4821 comparison of the type of each symbol. */
4822 for (i = 1; i < nsyms; i++)
4823 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4824 SYMBOL_TYPE (syms[0].sym)))
4825 return 0;
4826
4827 return 1;
4828}
4829
4830/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4831 duplicate other symbols in the list (The only case I know of where
4832 this happens is when object files containing stabs-in-ecoff are
4833 linked with files containing ordinary ecoff debugging symbols (or no
4834 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4835 Returns the number of items in the modified list. */
4836
4837static int
4838remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4839{
4840 int i, j;
4841
4842 /* We should never be called with less than 2 symbols, as there
4843 cannot be any extra symbol in that case. But it's easy to
4844 handle, since we have nothing to do in that case. */
4845 if (nsyms < 2)
4846 return nsyms;
4847
4848 i = 0;
4849 while (i < nsyms)
4850 {
4851 int remove_p = 0;
4852
4853 /* If two symbols have the same name and one of them is a stub type,
4854 the get rid of the stub. */
4855
4856 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4857 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4858 {
4859 for (j = 0; j < nsyms; j++)
4860 {
4861 if (j != i
4862 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4863 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4864 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4865 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4866 remove_p = 1;
4867 }
4868 }
4869
4870 /* Two symbols with the same name, same class and same address
4871 should be identical. */
4872
4873 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4874 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4875 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4876 {
4877 for (j = 0; j < nsyms; j += 1)
4878 {
4879 if (i != j
4880 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4881 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4882 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4883 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4884 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4885 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4886 remove_p = 1;
4887 }
4888 }
4889
4890 if (remove_p)
4891 {
4892 for (j = i + 1; j < nsyms; j += 1)
4893 syms[j - 1] = syms[j];
4894 nsyms -= 1;
4895 }
4896
4897 i += 1;
4898 }
4899
4900 /* If all the remaining symbols are identical enumerals, then
4901 just keep the first one and discard the rest.
4902
4903 Unlike what we did previously, we do not discard any entry
4904 unless they are ALL identical. This is because the symbol
4905 comparison is not a strict comparison, but rather a practical
4906 comparison. If all symbols are considered identical, then
4907 we can just go ahead and use the first one and discard the rest.
4908 But if we cannot reduce the list to a single element, we have
4909 to ask the user to disambiguate anyways. And if we have to
4910 present a multiple-choice menu, it's less confusing if the list
4911 isn't missing some choices that were identical and yet distinct. */
4912 if (symbols_are_identical_enums (syms, nsyms))
4913 nsyms = 1;
4914
4915 return nsyms;
4916}
4917
4918/* Given a type that corresponds to a renaming entity, use the type name
4919 to extract the scope (package name or function name, fully qualified,
4920 and following the GNAT encoding convention) where this renaming has been
4921 defined. The string returned needs to be deallocated after use. */
4922
4923static char *
4924xget_renaming_scope (struct type *renaming_type)
4925{
4926 /* The renaming types adhere to the following convention:
4927 <scope>__<rename>___<XR extension>.
4928 So, to extract the scope, we search for the "___XR" extension,
4929 and then backtrack until we find the first "__". */
4930
4931 const char *name = type_name_no_tag (renaming_type);
4932 char *suffix = strstr (name, "___XR");
4933 char *last;
4934 int scope_len;
4935 char *scope;
4936
4937 /* Now, backtrack a bit until we find the first "__". Start looking
4938 at suffix - 3, as the <rename> part is at least one character long. */
4939
4940 for (last = suffix - 3; last > name; last--)
4941 if (last[0] == '_' && last[1] == '_')
4942 break;
4943
4944 /* Make a copy of scope and return it. */
4945
4946 scope_len = last - name;
4947 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4948
4949 strncpy (scope, name, scope_len);
4950 scope[scope_len] = '\0';
4951
4952 return scope;
4953}
4954
4955/* Return nonzero if NAME corresponds to a package name. */
4956
4957static int
4958is_package_name (const char *name)
4959{
4960 /* Here, We take advantage of the fact that no symbols are generated
4961 for packages, while symbols are generated for each function.
4962 So the condition for NAME represent a package becomes equivalent
4963 to NAME not existing in our list of symbols. There is only one
4964 small complication with library-level functions (see below). */
4965
4966 char *fun_name;
4967
4968 /* If it is a function that has not been defined at library level,
4969 then we should be able to look it up in the symbols. */
4970 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4971 return 0;
4972
4973 /* Library-level function names start with "_ada_". See if function
4974 "_ada_" followed by NAME can be found. */
4975
4976 /* Do a quick check that NAME does not contain "__", since library-level
4977 functions names cannot contain "__" in them. */
4978 if (strstr (name, "__") != NULL)
4979 return 0;
4980
4981 fun_name = xstrprintf ("_ada_%s", name);
4982
4983 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4984}
4985
4986/* Return nonzero if SYM corresponds to a renaming entity that is
4987 not visible from FUNCTION_NAME. */
4988
4989static int
4990old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4991{
4992 char *scope;
4993 struct cleanup *old_chain;
4994
4995 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4996 return 0;
4997
4998 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4999 old_chain = make_cleanup (xfree, scope);
5000
5001 /* If the rename has been defined in a package, then it is visible. */
5002 if (is_package_name (scope))
5003 {
5004 do_cleanups (old_chain);
5005 return 0;
5006 }
5007
5008 /* Check that the rename is in the current function scope by checking
5009 that its name starts with SCOPE. */
5010
5011 /* If the function name starts with "_ada_", it means that it is
5012 a library-level function. Strip this prefix before doing the
5013 comparison, as the encoding for the renaming does not contain
5014 this prefix. */
5015 if (strncmp (function_name, "_ada_", 5) == 0)
5016 function_name += 5;
5017
5018 {
5019 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5020
5021 do_cleanups (old_chain);
5022 return is_invisible;
5023 }
5024}
5025
5026/* Remove entries from SYMS that corresponds to a renaming entity that
5027 is not visible from the function associated with CURRENT_BLOCK or
5028 that is superfluous due to the presence of more specific renaming
5029 information. Places surviving symbols in the initial entries of
5030 SYMS and returns the number of surviving symbols.
5031
5032 Rationale:
5033 First, in cases where an object renaming is implemented as a
5034 reference variable, GNAT may produce both the actual reference
5035 variable and the renaming encoding. In this case, we discard the
5036 latter.
5037
5038 Second, GNAT emits a type following a specified encoding for each renaming
5039 entity. Unfortunately, STABS currently does not support the definition
5040 of types that are local to a given lexical block, so all renamings types
5041 are emitted at library level. As a consequence, if an application
5042 contains two renaming entities using the same name, and a user tries to
5043 print the value of one of these entities, the result of the ada symbol
5044 lookup will also contain the wrong renaming type.
5045
5046 This function partially covers for this limitation by attempting to
5047 remove from the SYMS list renaming symbols that should be visible
5048 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5049 method with the current information available. The implementation
5050 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5051
5052 - When the user tries to print a rename in a function while there
5053 is another rename entity defined in a package: Normally, the
5054 rename in the function has precedence over the rename in the
5055 package, so the latter should be removed from the list. This is
5056 currently not the case.
5057
5058 - This function will incorrectly remove valid renames if
5059 the CURRENT_BLOCK corresponds to a function which symbol name
5060 has been changed by an "Export" pragma. As a consequence,
5061 the user will be unable to print such rename entities. */
5062
5063static int
5064remove_irrelevant_renamings (struct ada_symbol_info *syms,
5065 int nsyms, const struct block *current_block)
5066{
5067 struct symbol *current_function;
5068 const char *current_function_name;
5069 int i;
5070 int is_new_style_renaming;
5071
5072 /* If there is both a renaming foo___XR... encoded as a variable and
5073 a simple variable foo in the same block, discard the latter.
5074 First, zero out such symbols, then compress. */
5075 is_new_style_renaming = 0;
5076 for (i = 0; i < nsyms; i += 1)
5077 {
5078 struct symbol *sym = syms[i].sym;
5079 const struct block *block = syms[i].block;
5080 const char *name;
5081 const char *suffix;
5082
5083 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5084 continue;
5085 name = SYMBOL_LINKAGE_NAME (sym);
5086 suffix = strstr (name, "___XR");
5087
5088 if (suffix != NULL)
5089 {
5090 int name_len = suffix - name;
5091 int j;
5092
5093 is_new_style_renaming = 1;
5094 for (j = 0; j < nsyms; j += 1)
5095 if (i != j && syms[j].sym != NULL
5096 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5097 name_len) == 0
5098 && block == syms[j].block)
5099 syms[j].sym = NULL;
5100 }
5101 }
5102 if (is_new_style_renaming)
5103 {
5104 int j, k;
5105
5106 for (j = k = 0; j < nsyms; j += 1)
5107 if (syms[j].sym != NULL)
5108 {
5109 syms[k] = syms[j];
5110 k += 1;
5111 }
5112 return k;
5113 }
5114
5115 /* Extract the function name associated to CURRENT_BLOCK.
5116 Abort if unable to do so. */
5117
5118 if (current_block == NULL)
5119 return nsyms;
5120
5121 current_function = block_linkage_function (current_block);
5122 if (current_function == NULL)
5123 return nsyms;
5124
5125 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5126 if (current_function_name == NULL)
5127 return nsyms;
5128
5129 /* Check each of the symbols, and remove it from the list if it is
5130 a type corresponding to a renaming that is out of the scope of
5131 the current block. */
5132
5133 i = 0;
5134 while (i < nsyms)
5135 {
5136 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5137 == ADA_OBJECT_RENAMING
5138 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5139 {
5140 int j;
5141
5142 for (j = i + 1; j < nsyms; j += 1)
5143 syms[j - 1] = syms[j];
5144 nsyms -= 1;
5145 }
5146 else
5147 i += 1;
5148 }
5149
5150 return nsyms;
5151}
5152
5153/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5154 whose name and domain match NAME and DOMAIN respectively.
5155 If no match was found, then extend the search to "enclosing"
5156 routines (in other words, if we're inside a nested function,
5157 search the symbols defined inside the enclosing functions).
5158 If WILD_MATCH_P is nonzero, perform the naming matching in
5159 "wild" mode (see function "wild_match" for more info).
5160
5161 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5162
5163static void
5164ada_add_local_symbols (struct obstack *obstackp, const char *name,
5165 const struct block *block, domain_enum domain,
5166 int wild_match_p)
5167{
5168 int block_depth = 0;
5169
5170 while (block != NULL)
5171 {
5172 block_depth += 1;
5173 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5174 wild_match_p);
5175
5176 /* If we found a non-function match, assume that's the one. */
5177 if (is_nonfunction (defns_collected (obstackp, 0),
5178 num_defns_collected (obstackp)))
5179 return;
5180
5181 block = BLOCK_SUPERBLOCK (block);
5182 }
5183
5184 /* If no luck so far, try to find NAME as a local symbol in some lexically
5185 enclosing subprogram. */
5186 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5187 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5188}
5189
5190/* An object of this type is used as the user_data argument when
5191 calling the map_matching_symbols method. */
5192
5193struct match_data
5194{
5195 struct objfile *objfile;
5196 struct obstack *obstackp;
5197 struct symbol *arg_sym;
5198 int found_sym;
5199};
5200
5201/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5202 to a list of symbols. DATA0 is a pointer to a struct match_data *
5203 containing the obstack that collects the symbol list, the file that SYM
5204 must come from, a flag indicating whether a non-argument symbol has
5205 been found in the current block, and the last argument symbol
5206 passed in SYM within the current block (if any). When SYM is null,
5207 marking the end of a block, the argument symbol is added if no
5208 other has been found. */
5209
5210static int
5211aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5212{
5213 struct match_data *data = (struct match_data *) data0;
5214
5215 if (sym == NULL)
5216 {
5217 if (!data->found_sym && data->arg_sym != NULL)
5218 add_defn_to_vec (data->obstackp,
5219 fixup_symbol_section (data->arg_sym, data->objfile),
5220 block);
5221 data->found_sym = 0;
5222 data->arg_sym = NULL;
5223 }
5224 else
5225 {
5226 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5227 return 0;
5228 else if (SYMBOL_IS_ARGUMENT (sym))
5229 data->arg_sym = sym;
5230 else
5231 {
5232 data->found_sym = 1;
5233 add_defn_to_vec (data->obstackp,
5234 fixup_symbol_section (sym, data->objfile),
5235 block);
5236 }
5237 }
5238 return 0;
5239}
5240
5241/* Implements compare_names, but only applying the comparision using
5242 the given CASING. */
5243
5244static int
5245compare_names_with_case (const char *string1, const char *string2,
5246 enum case_sensitivity casing)
5247{
5248 while (*string1 != '\0' && *string2 != '\0')
5249 {
5250 char c1, c2;
5251
5252 if (isspace (*string1) || isspace (*string2))
5253 return strcmp_iw_ordered (string1, string2);
5254
5255 if (casing == case_sensitive_off)
5256 {
5257 c1 = tolower (*string1);
5258 c2 = tolower (*string2);
5259 }
5260 else
5261 {
5262 c1 = *string1;
5263 c2 = *string2;
5264 }
5265 if (c1 != c2)
5266 break;
5267
5268 string1 += 1;
5269 string2 += 1;
5270 }
5271
5272 switch (*string1)
5273 {
5274 case '(':
5275 return strcmp_iw_ordered (string1, string2);
5276 case '_':
5277 if (*string2 == '\0')
5278 {
5279 if (is_name_suffix (string1))
5280 return 0;
5281 else
5282 return 1;
5283 }
5284 /* FALLTHROUGH */
5285 default:
5286 if (*string2 == '(')
5287 return strcmp_iw_ordered (string1, string2);
5288 else
5289 {
5290 if (casing == case_sensitive_off)
5291 return tolower (*string1) - tolower (*string2);
5292 else
5293 return *string1 - *string2;
5294 }
5295 }
5296}
5297
5298/* Compare STRING1 to STRING2, with results as for strcmp.
5299 Compatible with strcmp_iw_ordered in that...
5300
5301 strcmp_iw_ordered (STRING1, STRING2) <= 0
5302
5303 ... implies...
5304
5305 compare_names (STRING1, STRING2) <= 0
5306
5307 (they may differ as to what symbols compare equal). */
5308
5309static int
5310compare_names (const char *string1, const char *string2)
5311{
5312 int result;
5313
5314 /* Similar to what strcmp_iw_ordered does, we need to perform
5315 a case-insensitive comparison first, and only resort to
5316 a second, case-sensitive, comparison if the first one was
5317 not sufficient to differentiate the two strings. */
5318
5319 result = compare_names_with_case (string1, string2, case_sensitive_off);
5320 if (result == 0)
5321 result = compare_names_with_case (string1, string2, case_sensitive_on);
5322
5323 return result;
5324}
5325
5326/* Add to OBSTACKP all non-local symbols whose name and domain match
5327 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5328 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5329
5330static void
5331add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5332 domain_enum domain, int global,
5333 int is_wild_match)
5334{
5335 struct objfile *objfile;
5336 struct match_data data;
5337
5338 memset (&data, 0, sizeof data);
5339 data.obstackp = obstackp;
5340
5341 ALL_OBJFILES (objfile)
5342 {
5343 data.objfile = objfile;
5344
5345 if (is_wild_match)
5346 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5347 aux_add_nonlocal_symbols, &data,
5348 wild_match, NULL);
5349 else
5350 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5351 aux_add_nonlocal_symbols, &data,
5352 full_match, compare_names);
5353 }
5354
5355 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5356 {
5357 ALL_OBJFILES (objfile)
5358 {
5359 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5360 strcpy (name1, "_ada_");
5361 strcpy (name1 + sizeof ("_ada_") - 1, name);
5362 data.objfile = objfile;
5363 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5364 global,
5365 aux_add_nonlocal_symbols,
5366 &data,
5367 full_match, compare_names);
5368 }
5369 }
5370}
5371
5372/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5373 non-zero, enclosing scope and in global scopes, returning the number of
5374 matches.
5375 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5376 indicating the symbols found and the blocks and symbol tables (if
5377 any) in which they were found. This vector is transient---good only to
5378 the next call of ada_lookup_symbol_list.
5379
5380 When full_search is non-zero, any non-function/non-enumeral
5381 symbol match within the nest of blocks whose innermost member is BLOCK0,
5382 is the one match returned (no other matches in that or
5383 enclosing blocks is returned). If there are any matches in or
5384 surrounding BLOCK0, then these alone are returned.
5385
5386 Names prefixed with "standard__" are handled specially: "standard__"
5387 is first stripped off, and only static and global symbols are searched. */
5388
5389static int
5390ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5391 domain_enum namespace,
5392 struct ada_symbol_info **results,
5393 int full_search)
5394{
5395 struct symbol *sym;
5396 const struct block *block;
5397 const char *name;
5398 const int wild_match_p = should_use_wild_match (name0);
5399 int cacheIfUnique;
5400 int ndefns;
5401
5402 obstack_free (&symbol_list_obstack, NULL);
5403 obstack_init (&symbol_list_obstack);
5404
5405 cacheIfUnique = 0;
5406
5407 /* Search specified block and its superiors. */
5408
5409 name = name0;
5410 block = block0;
5411
5412 /* Special case: If the user specifies a symbol name inside package
5413 Standard, do a non-wild matching of the symbol name without
5414 the "standard__" prefix. This was primarily introduced in order
5415 to allow the user to specifically access the standard exceptions
5416 using, for instance, Standard.Constraint_Error when Constraint_Error
5417 is ambiguous (due to the user defining its own Constraint_Error
5418 entity inside its program). */
5419 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5420 {
5421 block = NULL;
5422 name = name0 + sizeof ("standard__") - 1;
5423 }
5424
5425 /* Check the non-global symbols. If we have ANY match, then we're done. */
5426
5427 if (block != NULL)
5428 {
5429 if (full_search)
5430 {
5431 ada_add_local_symbols (&symbol_list_obstack, name, block,
5432 namespace, wild_match_p);
5433 }
5434 else
5435 {
5436 /* In the !full_search case we're are being called by
5437 ada_iterate_over_symbols, and we don't want to search
5438 superblocks. */
5439 ada_add_block_symbols (&symbol_list_obstack, block, name,
5440 namespace, NULL, wild_match_p);
5441 }
5442 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5443 goto done;
5444 }
5445
5446 /* No non-global symbols found. Check our cache to see if we have
5447 already performed this search before. If we have, then return
5448 the same result. */
5449
5450 cacheIfUnique = 1;
5451 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5452 {
5453 if (sym != NULL)
5454 add_defn_to_vec (&symbol_list_obstack, sym, block);
5455 goto done;
5456 }
5457
5458 /* Search symbols from all global blocks. */
5459
5460 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5461 wild_match_p);
5462
5463 /* Now add symbols from all per-file blocks if we've gotten no hits
5464 (not strictly correct, but perhaps better than an error). */
5465
5466 if (num_defns_collected (&symbol_list_obstack) == 0)
5467 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5468 wild_match_p);
5469
5470done:
5471 ndefns = num_defns_collected (&symbol_list_obstack);
5472 *results = defns_collected (&symbol_list_obstack, 1);
5473
5474 ndefns = remove_extra_symbols (*results, ndefns);
5475
5476 if (ndefns == 0 && full_search)
5477 cache_symbol (name0, namespace, NULL, NULL);
5478
5479 if (ndefns == 1 && full_search && cacheIfUnique)
5480 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5481
5482 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5483
5484 return ndefns;
5485}
5486
5487/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5488 in global scopes, returning the number of matches, and setting *RESULTS
5489 to a vector of (SYM,BLOCK) tuples.
5490 See ada_lookup_symbol_list_worker for further details. */
5491
5492int
5493ada_lookup_symbol_list (const char *name0, const struct block *block0,
5494 domain_enum domain, struct ada_symbol_info **results)
5495{
5496 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5497}
5498
5499/* Implementation of the la_iterate_over_symbols method. */
5500
5501static void
5502ada_iterate_over_symbols (const struct block *block,
5503 const char *name, domain_enum domain,
5504 symbol_found_callback_ftype *callback,
5505 void *data)
5506{
5507 int ndefs, i;
5508 struct ada_symbol_info *results;
5509
5510 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5511 for (i = 0; i < ndefs; ++i)
5512 {
5513 if (! (*callback) (results[i].sym, data))
5514 break;
5515 }
5516}
5517
5518/* If NAME is the name of an entity, return a string that should
5519 be used to look that entity up in Ada units. This string should
5520 be deallocated after use using xfree.
5521
5522 NAME can have any form that the "break" or "print" commands might
5523 recognize. In other words, it does not have to be the "natural"
5524 name, or the "encoded" name. */
5525
5526char *
5527ada_name_for_lookup (const char *name)
5528{
5529 char *canon;
5530 int nlen = strlen (name);
5531
5532 if (name[0] == '<' && name[nlen - 1] == '>')
5533 {
5534 canon = xmalloc (nlen - 1);
5535 memcpy (canon, name + 1, nlen - 2);
5536 canon[nlen - 2] = '\0';
5537 }
5538 else
5539 canon = xstrdup (ada_encode (ada_fold_name (name)));
5540 return canon;
5541}
5542
5543/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5544 to 1, but choosing the first symbol found if there are multiple
5545 choices.
5546
5547 The result is stored in *INFO, which must be non-NULL.
5548 If no match is found, INFO->SYM is set to NULL. */
5549
5550void
5551ada_lookup_encoded_symbol (const char *name, const struct block *block,
5552 domain_enum namespace,
5553 struct ada_symbol_info *info)
5554{
5555 struct ada_symbol_info *candidates;
5556 int n_candidates;
5557
5558 gdb_assert (info != NULL);
5559 memset (info, 0, sizeof (struct ada_symbol_info));
5560
5561 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5562 if (n_candidates == 0)
5563 return;
5564
5565 *info = candidates[0];
5566 info->sym = fixup_symbol_section (info->sym, NULL);
5567}
5568
5569/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5570 scope and in global scopes, or NULL if none. NAME is folded and
5571 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5572 choosing the first symbol if there are multiple choices.
5573 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5574
5575struct symbol *
5576ada_lookup_symbol (const char *name, const struct block *block0,
5577 domain_enum namespace, int *is_a_field_of_this)
5578{
5579 struct ada_symbol_info info;
5580
5581 if (is_a_field_of_this != NULL)
5582 *is_a_field_of_this = 0;
5583
5584 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5585 block0, namespace, &info);
5586 return info.sym;
5587}
5588
5589static struct symbol *
5590ada_lookup_symbol_nonlocal (const char *name,
5591 const struct block *block,
5592 const domain_enum domain)
5593{
5594 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5595}
5596
5597
5598/* True iff STR is a possible encoded suffix of a normal Ada name
5599 that is to be ignored for matching purposes. Suffixes of parallel
5600 names (e.g., XVE) are not included here. Currently, the possible suffixes
5601 are given by any of the regular expressions:
5602
5603 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5604 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5605 TKB [subprogram suffix for task bodies]
5606 _E[0-9]+[bs]$ [protected object entry suffixes]
5607 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5608
5609 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5610 match is performed. This sequence is used to differentiate homonyms,
5611 is an optional part of a valid name suffix. */
5612
5613static int
5614is_name_suffix (const char *str)
5615{
5616 int k;
5617 const char *matching;
5618 const int len = strlen (str);
5619
5620 /* Skip optional leading __[0-9]+. */
5621
5622 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5623 {
5624 str += 3;
5625 while (isdigit (str[0]))
5626 str += 1;
5627 }
5628
5629 /* [.$][0-9]+ */
5630
5631 if (str[0] == '.' || str[0] == '$')
5632 {
5633 matching = str + 1;
5634 while (isdigit (matching[0]))
5635 matching += 1;
5636 if (matching[0] == '\0')
5637 return 1;
5638 }
5639
5640 /* ___[0-9]+ */
5641
5642 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5643 {
5644 matching = str + 3;
5645 while (isdigit (matching[0]))
5646 matching += 1;
5647 if (matching[0] == '\0')
5648 return 1;
5649 }
5650
5651 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5652
5653 if (strcmp (str, "TKB") == 0)
5654 return 1;
5655
5656#if 0
5657 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5658 with a N at the end. Unfortunately, the compiler uses the same
5659 convention for other internal types it creates. So treating
5660 all entity names that end with an "N" as a name suffix causes
5661 some regressions. For instance, consider the case of an enumerated
5662 type. To support the 'Image attribute, it creates an array whose
5663 name ends with N.
5664 Having a single character like this as a suffix carrying some
5665 information is a bit risky. Perhaps we should change the encoding
5666 to be something like "_N" instead. In the meantime, do not do
5667 the following check. */
5668 /* Protected Object Subprograms */
5669 if (len == 1 && str [0] == 'N')
5670 return 1;
5671#endif
5672
5673 /* _E[0-9]+[bs]$ */
5674 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5675 {
5676 matching = str + 3;
5677 while (isdigit (matching[0]))
5678 matching += 1;
5679 if ((matching[0] == 'b' || matching[0] == 's')
5680 && matching [1] == '\0')
5681 return 1;
5682 }
5683
5684 /* ??? We should not modify STR directly, as we are doing below. This
5685 is fine in this case, but may become problematic later if we find
5686 that this alternative did not work, and want to try matching
5687 another one from the begining of STR. Since we modified it, we
5688 won't be able to find the begining of the string anymore! */
5689 if (str[0] == 'X')
5690 {
5691 str += 1;
5692 while (str[0] != '_' && str[0] != '\0')
5693 {
5694 if (str[0] != 'n' && str[0] != 'b')
5695 return 0;
5696 str += 1;
5697 }
5698 }
5699
5700 if (str[0] == '\000')
5701 return 1;
5702
5703 if (str[0] == '_')
5704 {
5705 if (str[1] != '_' || str[2] == '\000')
5706 return 0;
5707 if (str[2] == '_')
5708 {
5709 if (strcmp (str + 3, "JM") == 0)
5710 return 1;
5711 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5712 the LJM suffix in favor of the JM one. But we will
5713 still accept LJM as a valid suffix for a reasonable
5714 amount of time, just to allow ourselves to debug programs
5715 compiled using an older version of GNAT. */
5716 if (strcmp (str + 3, "LJM") == 0)
5717 return 1;
5718 if (str[3] != 'X')
5719 return 0;
5720 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5721 || str[4] == 'U' || str[4] == 'P')
5722 return 1;
5723 if (str[4] == 'R' && str[5] != 'T')
5724 return 1;
5725 return 0;
5726 }
5727 if (!isdigit (str[2]))
5728 return 0;
5729 for (k = 3; str[k] != '\0'; k += 1)
5730 if (!isdigit (str[k]) && str[k] != '_')
5731 return 0;
5732 return 1;
5733 }
5734 if (str[0] == '$' && isdigit (str[1]))
5735 {
5736 for (k = 2; str[k] != '\0'; k += 1)
5737 if (!isdigit (str[k]) && str[k] != '_')
5738 return 0;
5739 return 1;
5740 }
5741 return 0;
5742}
5743
5744/* Return non-zero if the string starting at NAME and ending before
5745 NAME_END contains no capital letters. */
5746
5747static int
5748is_valid_name_for_wild_match (const char *name0)
5749{
5750 const char *decoded_name = ada_decode (name0);
5751 int i;
5752
5753 /* If the decoded name starts with an angle bracket, it means that
5754 NAME0 does not follow the GNAT encoding format. It should then
5755 not be allowed as a possible wild match. */
5756 if (decoded_name[0] == '<')
5757 return 0;
5758
5759 for (i=0; decoded_name[i] != '\0'; i++)
5760 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5761 return 0;
5762
5763 return 1;
5764}
5765
5766/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5767 that could start a simple name. Assumes that *NAMEP points into
5768 the string beginning at NAME0. */
5769
5770static int
5771advance_wild_match (const char **namep, const char *name0, int target0)
5772{
5773 const char *name = *namep;
5774
5775 while (1)
5776 {
5777 int t0, t1;
5778
5779 t0 = *name;
5780 if (t0 == '_')
5781 {
5782 t1 = name[1];
5783 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5784 {
5785 name += 1;
5786 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5787 break;
5788 else
5789 name += 1;
5790 }
5791 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5792 || name[2] == target0))
5793 {
5794 name += 2;
5795 break;
5796 }
5797 else
5798 return 0;
5799 }
5800 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5801 name += 1;
5802 else
5803 return 0;
5804 }
5805
5806 *namep = name;
5807 return 1;
5808}
5809
5810/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5811 informational suffixes of NAME (i.e., for which is_name_suffix is
5812 true). Assumes that PATN is a lower-cased Ada simple name. */
5813
5814static int
5815wild_match (const char *name, const char *patn)
5816{
5817 const char *p;
5818 const char *name0 = name;
5819
5820 while (1)
5821 {
5822 const char *match = name;
5823
5824 if (*name == *patn)
5825 {
5826 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5827 if (*p != *name)
5828 break;
5829 if (*p == '\0' && is_name_suffix (name))
5830 return match != name0 && !is_valid_name_for_wild_match (name0);
5831
5832 if (name[-1] == '_')
5833 name -= 1;
5834 }
5835 if (!advance_wild_match (&name, name0, *patn))
5836 return 1;
5837 }
5838}
5839
5840/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5841 informational suffix. */
5842
5843static int
5844full_match (const char *sym_name, const char *search_name)
5845{
5846 return !match_name (sym_name, search_name, 0);
5847}
5848
5849
5850/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5851 vector *defn_symbols, updating the list of symbols in OBSTACKP
5852 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5853 OBJFILE is the section containing BLOCK. */
5854
5855static void
5856ada_add_block_symbols (struct obstack *obstackp,
5857 const struct block *block, const char *name,
5858 domain_enum domain, struct objfile *objfile,
5859 int wild)
5860{
5861 struct block_iterator iter;
5862 int name_len = strlen (name);
5863 /* A matching argument symbol, if any. */
5864 struct symbol *arg_sym;
5865 /* Set true when we find a matching non-argument symbol. */
5866 int found_sym;
5867 struct symbol *sym;
5868
5869 arg_sym = NULL;
5870 found_sym = 0;
5871 if (wild)
5872 {
5873 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5874 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5875 {
5876 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5877 SYMBOL_DOMAIN (sym), domain)
5878 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5879 {
5880 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5881 continue;
5882 else if (SYMBOL_IS_ARGUMENT (sym))
5883 arg_sym = sym;
5884 else
5885 {
5886 found_sym = 1;
5887 add_defn_to_vec (obstackp,
5888 fixup_symbol_section (sym, objfile),
5889 block);
5890 }
5891 }
5892 }
5893 }
5894 else
5895 {
5896 for (sym = block_iter_match_first (block, name, full_match, &iter);
5897 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5898 {
5899 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5900 SYMBOL_DOMAIN (sym), domain))
5901 {
5902 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5903 {
5904 if (SYMBOL_IS_ARGUMENT (sym))
5905 arg_sym = sym;
5906 else
5907 {
5908 found_sym = 1;
5909 add_defn_to_vec (obstackp,
5910 fixup_symbol_section (sym, objfile),
5911 block);
5912 }
5913 }
5914 }
5915 }
5916 }
5917
5918 if (!found_sym && arg_sym != NULL)
5919 {
5920 add_defn_to_vec (obstackp,
5921 fixup_symbol_section (arg_sym, objfile),
5922 block);
5923 }
5924
5925 if (!wild)
5926 {
5927 arg_sym = NULL;
5928 found_sym = 0;
5929
5930 ALL_BLOCK_SYMBOLS (block, iter, sym)
5931 {
5932 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5933 SYMBOL_DOMAIN (sym), domain))
5934 {
5935 int cmp;
5936
5937 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5938 if (cmp == 0)
5939 {
5940 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5941 if (cmp == 0)
5942 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5943 name_len);
5944 }
5945
5946 if (cmp == 0
5947 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5948 {
5949 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5950 {
5951 if (SYMBOL_IS_ARGUMENT (sym))
5952 arg_sym = sym;
5953 else
5954 {
5955 found_sym = 1;
5956 add_defn_to_vec (obstackp,
5957 fixup_symbol_section (sym, objfile),
5958 block);
5959 }
5960 }
5961 }
5962 }
5963 }
5964
5965 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5966 They aren't parameters, right? */
5967 if (!found_sym && arg_sym != NULL)
5968 {
5969 add_defn_to_vec (obstackp,
5970 fixup_symbol_section (arg_sym, objfile),
5971 block);
5972 }
5973 }
5974}
5975\f
5976
5977 /* Symbol Completion */
5978
5979/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5980 name in a form that's appropriate for the completion. The result
5981 does not need to be deallocated, but is only good until the next call.
5982
5983 TEXT_LEN is equal to the length of TEXT.
5984 Perform a wild match if WILD_MATCH_P is set.
5985 ENCODED_P should be set if TEXT represents the start of a symbol name
5986 in its encoded form. */
5987
5988static const char *
5989symbol_completion_match (const char *sym_name,
5990 const char *text, int text_len,
5991 int wild_match_p, int encoded_p)
5992{
5993 const int verbatim_match = (text[0] == '<');
5994 int match = 0;
5995
5996 if (verbatim_match)
5997 {
5998 /* Strip the leading angle bracket. */
5999 text = text + 1;
6000 text_len--;
6001 }
6002
6003 /* First, test against the fully qualified name of the symbol. */
6004
6005 if (strncmp (sym_name, text, text_len) == 0)
6006 match = 1;
6007
6008 if (match && !encoded_p)
6009 {
6010 /* One needed check before declaring a positive match is to verify
6011 that iff we are doing a verbatim match, the decoded version
6012 of the symbol name starts with '<'. Otherwise, this symbol name
6013 is not a suitable completion. */
6014 const char *sym_name_copy = sym_name;
6015 int has_angle_bracket;
6016
6017 sym_name = ada_decode (sym_name);
6018 has_angle_bracket = (sym_name[0] == '<');
6019 match = (has_angle_bracket == verbatim_match);
6020 sym_name = sym_name_copy;
6021 }
6022
6023 if (match && !verbatim_match)
6024 {
6025 /* When doing non-verbatim match, another check that needs to
6026 be done is to verify that the potentially matching symbol name
6027 does not include capital letters, because the ada-mode would
6028 not be able to understand these symbol names without the
6029 angle bracket notation. */
6030 const char *tmp;
6031
6032 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6033 if (*tmp != '\0')
6034 match = 0;
6035 }
6036
6037 /* Second: Try wild matching... */
6038
6039 if (!match && wild_match_p)
6040 {
6041 /* Since we are doing wild matching, this means that TEXT
6042 may represent an unqualified symbol name. We therefore must
6043 also compare TEXT against the unqualified name of the symbol. */
6044 sym_name = ada_unqualified_name (ada_decode (sym_name));
6045
6046 if (strncmp (sym_name, text, text_len) == 0)
6047 match = 1;
6048 }
6049
6050 /* Finally: If we found a mach, prepare the result to return. */
6051
6052 if (!match)
6053 return NULL;
6054
6055 if (verbatim_match)
6056 sym_name = add_angle_brackets (sym_name);
6057
6058 if (!encoded_p)
6059 sym_name = ada_decode (sym_name);
6060
6061 return sym_name;
6062}
6063
6064/* A companion function to ada_make_symbol_completion_list().
6065 Check if SYM_NAME represents a symbol which name would be suitable
6066 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6067 it is appended at the end of the given string vector SV.
6068
6069 ORIG_TEXT is the string original string from the user command
6070 that needs to be completed. WORD is the entire command on which
6071 completion should be performed. These two parameters are used to
6072 determine which part of the symbol name should be added to the
6073 completion vector.
6074 if WILD_MATCH_P is set, then wild matching is performed.
6075 ENCODED_P should be set if TEXT represents a symbol name in its
6076 encoded formed (in which case the completion should also be
6077 encoded). */
6078
6079static void
6080symbol_completion_add (VEC(char_ptr) **sv,
6081 const char *sym_name,
6082 const char *text, int text_len,
6083 const char *orig_text, const char *word,
6084 int wild_match_p, int encoded_p)
6085{
6086 const char *match = symbol_completion_match (sym_name, text, text_len,
6087 wild_match_p, encoded_p);
6088 char *completion;
6089
6090 if (match == NULL)
6091 return;
6092
6093 /* We found a match, so add the appropriate completion to the given
6094 string vector. */
6095
6096 if (word == orig_text)
6097 {
6098 completion = xmalloc (strlen (match) + 5);
6099 strcpy (completion, match);
6100 }
6101 else if (word > orig_text)
6102 {
6103 /* Return some portion of sym_name. */
6104 completion = xmalloc (strlen (match) + 5);
6105 strcpy (completion, match + (word - orig_text));
6106 }
6107 else
6108 {
6109 /* Return some of ORIG_TEXT plus sym_name. */
6110 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6111 strncpy (completion, word, orig_text - word);
6112 completion[orig_text - word] = '\0';
6113 strcat (completion, match);
6114 }
6115
6116 VEC_safe_push (char_ptr, *sv, completion);
6117}
6118
6119/* An object of this type is passed as the user_data argument to the
6120 expand_symtabs_matching method. */
6121struct add_partial_datum
6122{
6123 VEC(char_ptr) **completions;
6124 const char *text;
6125 int text_len;
6126 const char *text0;
6127 const char *word;
6128 int wild_match;
6129 int encoded;
6130};
6131
6132/* A callback for expand_symtabs_matching. */
6133
6134static int
6135ada_complete_symbol_matcher (const char *name, void *user_data)
6136{
6137 struct add_partial_datum *data = user_data;
6138
6139 return symbol_completion_match (name, data->text, data->text_len,
6140 data->wild_match, data->encoded) != NULL;
6141}
6142
6143/* Return a list of possible symbol names completing TEXT0. WORD is
6144 the entire command on which completion is made. */
6145
6146static VEC (char_ptr) *
6147ada_make_symbol_completion_list (const char *text0, const char *word,
6148 enum type_code code)
6149{
6150 char *text;
6151 int text_len;
6152 int wild_match_p;
6153 int encoded_p;
6154 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6155 struct symbol *sym;
6156 struct symtab *s;
6157 struct minimal_symbol *msymbol;
6158 struct objfile *objfile;
6159 const struct block *b, *surrounding_static_block = 0;
6160 int i;
6161 struct block_iterator iter;
6162 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6163
6164 gdb_assert (code == TYPE_CODE_UNDEF);
6165
6166 if (text0[0] == '<')
6167 {
6168 text = xstrdup (text0);
6169 make_cleanup (xfree, text);
6170 text_len = strlen (text);
6171 wild_match_p = 0;
6172 encoded_p = 1;
6173 }
6174 else
6175 {
6176 text = xstrdup (ada_encode (text0));
6177 make_cleanup (xfree, text);
6178 text_len = strlen (text);
6179 for (i = 0; i < text_len; i++)
6180 text[i] = tolower (text[i]);
6181
6182 encoded_p = (strstr (text0, "__") != NULL);
6183 /* If the name contains a ".", then the user is entering a fully
6184 qualified entity name, and the match must not be done in wild
6185 mode. Similarly, if the user wants to complete what looks like
6186 an encoded name, the match must not be done in wild mode. */
6187 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6188 }
6189
6190 /* First, look at the partial symtab symbols. */
6191 {
6192 struct add_partial_datum data;
6193
6194 data.completions = &completions;
6195 data.text = text;
6196 data.text_len = text_len;
6197 data.text0 = text0;
6198 data.word = word;
6199 data.wild_match = wild_match_p;
6200 data.encoded = encoded_p;
6201 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6202 &data);
6203 }
6204
6205 /* At this point scan through the misc symbol vectors and add each
6206 symbol you find to the list. Eventually we want to ignore
6207 anything that isn't a text symbol (everything else will be
6208 handled by the psymtab code above). */
6209
6210 ALL_MSYMBOLS (objfile, msymbol)
6211 {
6212 QUIT;
6213 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6214 text, text_len, text0, word, wild_match_p,
6215 encoded_p);
6216 }
6217
6218 /* Search upwards from currently selected frame (so that we can
6219 complete on local vars. */
6220
6221 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6222 {
6223 if (!BLOCK_SUPERBLOCK (b))
6224 surrounding_static_block = b; /* For elmin of dups */
6225
6226 ALL_BLOCK_SYMBOLS (b, iter, sym)
6227 {
6228 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6229 text, text_len, text0, word,
6230 wild_match_p, encoded_p);
6231 }
6232 }
6233
6234 /* Go through the symtabs and check the externs and statics for
6235 symbols which match.
6236 Non-primary symtabs share the block vector with their primary symtabs
6237 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
6238
6239 ALL_PRIMARY_SYMTABS (objfile, s)
6240 {
6241 QUIT;
6242 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
6243 ALL_BLOCK_SYMBOLS (b, iter, sym)
6244 {
6245 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6246 text, text_len, text0, word,
6247 wild_match_p, encoded_p);
6248 }
6249 }
6250
6251 ALL_PRIMARY_SYMTABS (objfile, s)
6252 {
6253 QUIT;
6254 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
6255 /* Don't do this block twice. */
6256 if (b == surrounding_static_block)
6257 continue;
6258 ALL_BLOCK_SYMBOLS (b, iter, sym)
6259 {
6260 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6261 text, text_len, text0, word,
6262 wild_match_p, encoded_p);
6263 }
6264 }
6265
6266 do_cleanups (old_chain);
6267 return completions;
6268}
6269
6270 /* Field Access */
6271
6272/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6273 for tagged types. */
6274
6275static int
6276ada_is_dispatch_table_ptr_type (struct type *type)
6277{
6278 const char *name;
6279
6280 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6281 return 0;
6282
6283 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6284 if (name == NULL)
6285 return 0;
6286
6287 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6288}
6289
6290/* Return non-zero if TYPE is an interface tag. */
6291
6292static int
6293ada_is_interface_tag (struct type *type)
6294{
6295 const char *name = TYPE_NAME (type);
6296
6297 if (name == NULL)
6298 return 0;
6299
6300 return (strcmp (name, "ada__tags__interface_tag") == 0);
6301}
6302
6303/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6304 to be invisible to users. */
6305
6306int
6307ada_is_ignored_field (struct type *type, int field_num)
6308{
6309 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6310 return 1;
6311
6312 /* Check the name of that field. */
6313 {
6314 const char *name = TYPE_FIELD_NAME (type, field_num);
6315
6316 /* Anonymous field names should not be printed.
6317 brobecker/2007-02-20: I don't think this can actually happen
6318 but we don't want to print the value of annonymous fields anyway. */
6319 if (name == NULL)
6320 return 1;
6321
6322 /* Normally, fields whose name start with an underscore ("_")
6323 are fields that have been internally generated by the compiler,
6324 and thus should not be printed. The "_parent" field is special,
6325 however: This is a field internally generated by the compiler
6326 for tagged types, and it contains the components inherited from
6327 the parent type. This field should not be printed as is, but
6328 should not be ignored either. */
6329 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6330 return 1;
6331 }
6332
6333 /* If this is the dispatch table of a tagged type or an interface tag,
6334 then ignore. */
6335 if (ada_is_tagged_type (type, 1)
6336 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6337 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6338 return 1;
6339
6340 /* Not a special field, so it should not be ignored. */
6341 return 0;
6342}
6343
6344/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6345 pointer or reference type whose ultimate target has a tag field. */
6346
6347int
6348ada_is_tagged_type (struct type *type, int refok)
6349{
6350 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6351}
6352
6353/* True iff TYPE represents the type of X'Tag */
6354
6355int
6356ada_is_tag_type (struct type *type)
6357{
6358 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6359 return 0;
6360 else
6361 {
6362 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6363
6364 return (name != NULL
6365 && strcmp (name, "ada__tags__dispatch_table") == 0);
6366 }
6367}
6368
6369/* The type of the tag on VAL. */
6370
6371struct type *
6372ada_tag_type (struct value *val)
6373{
6374 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6375}
6376
6377/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6378 retired at Ada 05). */
6379
6380static int
6381is_ada95_tag (struct value *tag)
6382{
6383 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6384}
6385
6386/* The value of the tag on VAL. */
6387
6388struct value *
6389ada_value_tag (struct value *val)
6390{
6391 return ada_value_struct_elt (val, "_tag", 0);
6392}
6393
6394/* The value of the tag on the object of type TYPE whose contents are
6395 saved at VALADDR, if it is non-null, or is at memory address
6396 ADDRESS. */
6397
6398static struct value *
6399value_tag_from_contents_and_address (struct type *type,
6400 const gdb_byte *valaddr,
6401 CORE_ADDR address)
6402{
6403 int tag_byte_offset;
6404 struct type *tag_type;
6405
6406 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6407 NULL, NULL, NULL))
6408 {
6409 const gdb_byte *valaddr1 = ((valaddr == NULL)
6410 ? NULL
6411 : valaddr + tag_byte_offset);
6412 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6413
6414 return value_from_contents_and_address (tag_type, valaddr1, address1);
6415 }
6416 return NULL;
6417}
6418
6419static struct type *
6420type_from_tag (struct value *tag)
6421{
6422 const char *type_name = ada_tag_name (tag);
6423
6424 if (type_name != NULL)
6425 return ada_find_any_type (ada_encode (type_name));
6426 return NULL;
6427}
6428
6429/* Given a value OBJ of a tagged type, return a value of this
6430 type at the base address of the object. The base address, as
6431 defined in Ada.Tags, it is the address of the primary tag of
6432 the object, and therefore where the field values of its full
6433 view can be fetched. */
6434
6435struct value *
6436ada_tag_value_at_base_address (struct value *obj)
6437{
6438 volatile struct gdb_exception e;
6439 struct value *val;
6440 LONGEST offset_to_top = 0;
6441 struct type *ptr_type, *obj_type;
6442 struct value *tag;
6443 CORE_ADDR base_address;
6444
6445 obj_type = value_type (obj);
6446
6447 /* It is the responsability of the caller to deref pointers. */
6448
6449 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6450 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6451 return obj;
6452
6453 tag = ada_value_tag (obj);
6454 if (!tag)
6455 return obj;
6456
6457 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6458
6459 if (is_ada95_tag (tag))
6460 return obj;
6461
6462 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6463 ptr_type = lookup_pointer_type (ptr_type);
6464 val = value_cast (ptr_type, tag);
6465 if (!val)
6466 return obj;
6467
6468 /* It is perfectly possible that an exception be raised while
6469 trying to determine the base address, just like for the tag;
6470 see ada_tag_name for more details. We do not print the error
6471 message for the same reason. */
6472
6473 TRY_CATCH (e, RETURN_MASK_ERROR)
6474 {
6475 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6476 }
6477
6478 if (e.reason < 0)
6479 return obj;
6480
6481 /* If offset is null, nothing to do. */
6482
6483 if (offset_to_top == 0)
6484 return obj;
6485
6486 /* -1 is a special case in Ada.Tags; however, what should be done
6487 is not quite clear from the documentation. So do nothing for
6488 now. */
6489
6490 if (offset_to_top == -1)
6491 return obj;
6492
6493 base_address = value_address (obj) - offset_to_top;
6494 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6495
6496 /* Make sure that we have a proper tag at the new address.
6497 Otherwise, offset_to_top is bogus (which can happen when
6498 the object is not initialized yet). */
6499
6500 if (!tag)
6501 return obj;
6502
6503 obj_type = type_from_tag (tag);
6504
6505 if (!obj_type)
6506 return obj;
6507
6508 return value_from_contents_and_address (obj_type, NULL, base_address);
6509}
6510
6511/* Return the "ada__tags__type_specific_data" type. */
6512
6513static struct type *
6514ada_get_tsd_type (struct inferior *inf)
6515{
6516 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6517
6518 if (data->tsd_type == 0)
6519 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6520 return data->tsd_type;
6521}
6522
6523/* Return the TSD (type-specific data) associated to the given TAG.
6524 TAG is assumed to be the tag of a tagged-type entity.
6525
6526 May return NULL if we are unable to get the TSD. */
6527
6528static struct value *
6529ada_get_tsd_from_tag (struct value *tag)
6530{
6531 struct value *val;
6532 struct type *type;
6533
6534 /* First option: The TSD is simply stored as a field of our TAG.
6535 Only older versions of GNAT would use this format, but we have
6536 to test it first, because there are no visible markers for
6537 the current approach except the absence of that field. */
6538
6539 val = ada_value_struct_elt (tag, "tsd", 1);
6540 if (val)
6541 return val;
6542
6543 /* Try the second representation for the dispatch table (in which
6544 there is no explicit 'tsd' field in the referent of the tag pointer,
6545 and instead the tsd pointer is stored just before the dispatch
6546 table. */
6547
6548 type = ada_get_tsd_type (current_inferior());
6549 if (type == NULL)
6550 return NULL;
6551 type = lookup_pointer_type (lookup_pointer_type (type));
6552 val = value_cast (type, tag);
6553 if (val == NULL)
6554 return NULL;
6555 return value_ind (value_ptradd (val, -1));
6556}
6557
6558/* Given the TSD of a tag (type-specific data), return a string
6559 containing the name of the associated type.
6560
6561 The returned value is good until the next call. May return NULL
6562 if we are unable to determine the tag name. */
6563
6564static char *
6565ada_tag_name_from_tsd (struct value *tsd)
6566{
6567 static char name[1024];
6568 char *p;
6569 struct value *val;
6570
6571 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6572 if (val == NULL)
6573 return NULL;
6574 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6575 for (p = name; *p != '\0'; p += 1)
6576 if (isalpha (*p))
6577 *p = tolower (*p);
6578 return name;
6579}
6580
6581/* The type name of the dynamic type denoted by the 'tag value TAG, as
6582 a C string.
6583
6584 Return NULL if the TAG is not an Ada tag, or if we were unable to
6585 determine the name of that tag. The result is good until the next
6586 call. */
6587
6588const char *
6589ada_tag_name (struct value *tag)
6590{
6591 volatile struct gdb_exception e;
6592 char *name = NULL;
6593
6594 if (!ada_is_tag_type (value_type (tag)))
6595 return NULL;
6596
6597 /* It is perfectly possible that an exception be raised while trying
6598 to determine the TAG's name, even under normal circumstances:
6599 The associated variable may be uninitialized or corrupted, for
6600 instance. We do not let any exception propagate past this point.
6601 instead we return NULL.
6602
6603 We also do not print the error message either (which often is very
6604 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6605 the caller print a more meaningful message if necessary. */
6606 TRY_CATCH (e, RETURN_MASK_ERROR)
6607 {
6608 struct value *tsd = ada_get_tsd_from_tag (tag);
6609
6610 if (tsd != NULL)
6611 name = ada_tag_name_from_tsd (tsd);
6612 }
6613
6614 return name;
6615}
6616
6617/* The parent type of TYPE, or NULL if none. */
6618
6619struct type *
6620ada_parent_type (struct type *type)
6621{
6622 int i;
6623
6624 type = ada_check_typedef (type);
6625
6626 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6627 return NULL;
6628
6629 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6630 if (ada_is_parent_field (type, i))
6631 {
6632 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6633
6634 /* If the _parent field is a pointer, then dereference it. */
6635 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6636 parent_type = TYPE_TARGET_TYPE (parent_type);
6637 /* If there is a parallel XVS type, get the actual base type. */
6638 parent_type = ada_get_base_type (parent_type);
6639
6640 return ada_check_typedef (parent_type);
6641 }
6642
6643 return NULL;
6644}
6645
6646/* True iff field number FIELD_NUM of structure type TYPE contains the
6647 parent-type (inherited) fields of a derived type. Assumes TYPE is
6648 a structure type with at least FIELD_NUM+1 fields. */
6649
6650int
6651ada_is_parent_field (struct type *type, int field_num)
6652{
6653 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6654
6655 return (name != NULL
6656 && (strncmp (name, "PARENT", 6) == 0
6657 || strncmp (name, "_parent", 7) == 0));
6658}
6659
6660/* True iff field number FIELD_NUM of structure type TYPE is a
6661 transparent wrapper field (which should be silently traversed when doing
6662 field selection and flattened when printing). Assumes TYPE is a
6663 structure type with at least FIELD_NUM+1 fields. Such fields are always
6664 structures. */
6665
6666int
6667ada_is_wrapper_field (struct type *type, int field_num)
6668{
6669 const char *name = TYPE_FIELD_NAME (type, field_num);
6670
6671 return (name != NULL
6672 && (strncmp (name, "PARENT", 6) == 0
6673 || strcmp (name, "REP") == 0
6674 || strncmp (name, "_parent", 7) == 0
6675 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6676}
6677
6678/* True iff field number FIELD_NUM of structure or union type TYPE
6679 is a variant wrapper. Assumes TYPE is a structure type with at least
6680 FIELD_NUM+1 fields. */
6681
6682int
6683ada_is_variant_part (struct type *type, int field_num)
6684{
6685 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6686
6687 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6688 || (is_dynamic_field (type, field_num)
6689 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6690 == TYPE_CODE_UNION)));
6691}
6692
6693/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6694 whose discriminants are contained in the record type OUTER_TYPE,
6695 returns the type of the controlling discriminant for the variant.
6696 May return NULL if the type could not be found. */
6697
6698struct type *
6699ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6700{
6701 char *name = ada_variant_discrim_name (var_type);
6702
6703 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6704}
6705
6706/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6707 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6708 represents a 'when others' clause; otherwise 0. */
6709
6710int
6711ada_is_others_clause (struct type *type, int field_num)
6712{
6713 const char *name = TYPE_FIELD_NAME (type, field_num);
6714
6715 return (name != NULL && name[0] == 'O');
6716}
6717
6718/* Assuming that TYPE0 is the type of the variant part of a record,
6719 returns the name of the discriminant controlling the variant.
6720 The value is valid until the next call to ada_variant_discrim_name. */
6721
6722char *
6723ada_variant_discrim_name (struct type *type0)
6724{
6725 static char *result = NULL;
6726 static size_t result_len = 0;
6727 struct type *type;
6728 const char *name;
6729 const char *discrim_end;
6730 const char *discrim_start;
6731
6732 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6733 type = TYPE_TARGET_TYPE (type0);
6734 else
6735 type = type0;
6736
6737 name = ada_type_name (type);
6738
6739 if (name == NULL || name[0] == '\000')
6740 return "";
6741
6742 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6743 discrim_end -= 1)
6744 {
6745 if (strncmp (discrim_end, "___XVN", 6) == 0)
6746 break;
6747 }
6748 if (discrim_end == name)
6749 return "";
6750
6751 for (discrim_start = discrim_end; discrim_start != name + 3;
6752 discrim_start -= 1)
6753 {
6754 if (discrim_start == name + 1)
6755 return "";
6756 if ((discrim_start > name + 3
6757 && strncmp (discrim_start - 3, "___", 3) == 0)
6758 || discrim_start[-1] == '.')
6759 break;
6760 }
6761
6762 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6763 strncpy (result, discrim_start, discrim_end - discrim_start);
6764 result[discrim_end - discrim_start] = '\0';
6765 return result;
6766}
6767
6768/* Scan STR for a subtype-encoded number, beginning at position K.
6769 Put the position of the character just past the number scanned in
6770 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6771 Return 1 if there was a valid number at the given position, and 0
6772 otherwise. A "subtype-encoded" number consists of the absolute value
6773 in decimal, followed by the letter 'm' to indicate a negative number.
6774 Assumes 0m does not occur. */
6775
6776int
6777ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6778{
6779 ULONGEST RU;
6780
6781 if (!isdigit (str[k]))
6782 return 0;
6783
6784 /* Do it the hard way so as not to make any assumption about
6785 the relationship of unsigned long (%lu scan format code) and
6786 LONGEST. */
6787 RU = 0;
6788 while (isdigit (str[k]))
6789 {
6790 RU = RU * 10 + (str[k] - '0');
6791 k += 1;
6792 }
6793
6794 if (str[k] == 'm')
6795 {
6796 if (R != NULL)
6797 *R = (-(LONGEST) (RU - 1)) - 1;
6798 k += 1;
6799 }
6800 else if (R != NULL)
6801 *R = (LONGEST) RU;
6802
6803 /* NOTE on the above: Technically, C does not say what the results of
6804 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6805 number representable as a LONGEST (although either would probably work
6806 in most implementations). When RU>0, the locution in the then branch
6807 above is always equivalent to the negative of RU. */
6808
6809 if (new_k != NULL)
6810 *new_k = k;
6811 return 1;
6812}
6813
6814/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6815 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6816 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6817
6818int
6819ada_in_variant (LONGEST val, struct type *type, int field_num)
6820{
6821 const char *name = TYPE_FIELD_NAME (type, field_num);
6822 int p;
6823
6824 p = 0;
6825 while (1)
6826 {
6827 switch (name[p])
6828 {
6829 case '\0':
6830 return 0;
6831 case 'S':
6832 {
6833 LONGEST W;
6834
6835 if (!ada_scan_number (name, p + 1, &W, &p))
6836 return 0;
6837 if (val == W)
6838 return 1;
6839 break;
6840 }
6841 case 'R':
6842 {
6843 LONGEST L, U;
6844
6845 if (!ada_scan_number (name, p + 1, &L, &p)
6846 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6847 return 0;
6848 if (val >= L && val <= U)
6849 return 1;
6850 break;
6851 }
6852 case 'O':
6853 return 1;
6854 default:
6855 return 0;
6856 }
6857 }
6858}
6859
6860/* FIXME: Lots of redundancy below. Try to consolidate. */
6861
6862/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6863 ARG_TYPE, extract and return the value of one of its (non-static)
6864 fields. FIELDNO says which field. Differs from value_primitive_field
6865 only in that it can handle packed values of arbitrary type. */
6866
6867static struct value *
6868ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6869 struct type *arg_type)
6870{
6871 struct type *type;
6872
6873 arg_type = ada_check_typedef (arg_type);
6874 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6875
6876 /* Handle packed fields. */
6877
6878 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6879 {
6880 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6881 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6882
6883 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6884 offset + bit_pos / 8,
6885 bit_pos % 8, bit_size, type);
6886 }
6887 else
6888 return value_primitive_field (arg1, offset, fieldno, arg_type);
6889}
6890
6891/* Find field with name NAME in object of type TYPE. If found,
6892 set the following for each argument that is non-null:
6893 - *FIELD_TYPE_P to the field's type;
6894 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6895 an object of that type;
6896 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6897 - *BIT_SIZE_P to its size in bits if the field is packed, and
6898 0 otherwise;
6899 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6900 fields up to but not including the desired field, or by the total
6901 number of fields if not found. A NULL value of NAME never
6902 matches; the function just counts visible fields in this case.
6903
6904 Returns 1 if found, 0 otherwise. */
6905
6906static int
6907find_struct_field (const char *name, struct type *type, int offset,
6908 struct type **field_type_p,
6909 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6910 int *index_p)
6911{
6912 int i;
6913
6914 type = ada_check_typedef (type);
6915
6916 if (field_type_p != NULL)
6917 *field_type_p = NULL;
6918 if (byte_offset_p != NULL)
6919 *byte_offset_p = 0;
6920 if (bit_offset_p != NULL)
6921 *bit_offset_p = 0;
6922 if (bit_size_p != NULL)
6923 *bit_size_p = 0;
6924
6925 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6926 {
6927 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6928 int fld_offset = offset + bit_pos / 8;
6929 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6930
6931 if (t_field_name == NULL)
6932 continue;
6933
6934 else if (name != NULL && field_name_match (t_field_name, name))
6935 {
6936 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6937
6938 if (field_type_p != NULL)
6939 *field_type_p = TYPE_FIELD_TYPE (type, i);
6940 if (byte_offset_p != NULL)
6941 *byte_offset_p = fld_offset;
6942 if (bit_offset_p != NULL)
6943 *bit_offset_p = bit_pos % 8;
6944 if (bit_size_p != NULL)
6945 *bit_size_p = bit_size;
6946 return 1;
6947 }
6948 else if (ada_is_wrapper_field (type, i))
6949 {
6950 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6951 field_type_p, byte_offset_p, bit_offset_p,
6952 bit_size_p, index_p))
6953 return 1;
6954 }
6955 else if (ada_is_variant_part (type, i))
6956 {
6957 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6958 fixed type?? */
6959 int j;
6960 struct type *field_type
6961 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6962
6963 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6964 {
6965 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6966 fld_offset
6967 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6968 field_type_p, byte_offset_p,
6969 bit_offset_p, bit_size_p, index_p))
6970 return 1;
6971 }
6972 }
6973 else if (index_p != NULL)
6974 *index_p += 1;
6975 }
6976 return 0;
6977}
6978
6979/* Number of user-visible fields in record type TYPE. */
6980
6981static int
6982num_visible_fields (struct type *type)
6983{
6984 int n;
6985
6986 n = 0;
6987 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6988 return n;
6989}
6990
6991/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6992 and search in it assuming it has (class) type TYPE.
6993 If found, return value, else return NULL.
6994
6995 Searches recursively through wrapper fields (e.g., '_parent'). */
6996
6997static struct value *
6998ada_search_struct_field (char *name, struct value *arg, int offset,
6999 struct type *type)
7000{
7001 int i;
7002
7003 type = ada_check_typedef (type);
7004 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7005 {
7006 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7007
7008 if (t_field_name == NULL)
7009 continue;
7010
7011 else if (field_name_match (t_field_name, name))
7012 return ada_value_primitive_field (arg, offset, i, type);
7013
7014 else if (ada_is_wrapper_field (type, i))
7015 {
7016 struct value *v = /* Do not let indent join lines here. */
7017 ada_search_struct_field (name, arg,
7018 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7019 TYPE_FIELD_TYPE (type, i));
7020
7021 if (v != NULL)
7022 return v;
7023 }
7024
7025 else if (ada_is_variant_part (type, i))
7026 {
7027 /* PNH: Do we ever get here? See find_struct_field. */
7028 int j;
7029 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7030 i));
7031 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7032
7033 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7034 {
7035 struct value *v = ada_search_struct_field /* Force line
7036 break. */
7037 (name, arg,
7038 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7039 TYPE_FIELD_TYPE (field_type, j));
7040
7041 if (v != NULL)
7042 return v;
7043 }
7044 }
7045 }
7046 return NULL;
7047}
7048
7049static struct value *ada_index_struct_field_1 (int *, struct value *,
7050 int, struct type *);
7051
7052
7053/* Return field #INDEX in ARG, where the index is that returned by
7054 * find_struct_field through its INDEX_P argument. Adjust the address
7055 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7056 * If found, return value, else return NULL. */
7057
7058static struct value *
7059ada_index_struct_field (int index, struct value *arg, int offset,
7060 struct type *type)
7061{
7062 return ada_index_struct_field_1 (&index, arg, offset, type);
7063}
7064
7065
7066/* Auxiliary function for ada_index_struct_field. Like
7067 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7068 * *INDEX_P. */
7069
7070static struct value *
7071ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7072 struct type *type)
7073{
7074 int i;
7075 type = ada_check_typedef (type);
7076
7077 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7078 {
7079 if (TYPE_FIELD_NAME (type, i) == NULL)
7080 continue;
7081 else if (ada_is_wrapper_field (type, i))
7082 {
7083 struct value *v = /* Do not let indent join lines here. */
7084 ada_index_struct_field_1 (index_p, arg,
7085 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7086 TYPE_FIELD_TYPE (type, i));
7087
7088 if (v != NULL)
7089 return v;
7090 }
7091
7092 else if (ada_is_variant_part (type, i))
7093 {
7094 /* PNH: Do we ever get here? See ada_search_struct_field,
7095 find_struct_field. */
7096 error (_("Cannot assign this kind of variant record"));
7097 }
7098 else if (*index_p == 0)
7099 return ada_value_primitive_field (arg, offset, i, type);
7100 else
7101 *index_p -= 1;
7102 }
7103 return NULL;
7104}
7105
7106/* Given ARG, a value of type (pointer or reference to a)*
7107 structure/union, extract the component named NAME from the ultimate
7108 target structure/union and return it as a value with its
7109 appropriate type.
7110
7111 The routine searches for NAME among all members of the structure itself
7112 and (recursively) among all members of any wrapper members
7113 (e.g., '_parent').
7114
7115 If NO_ERR, then simply return NULL in case of error, rather than
7116 calling error. */
7117
7118struct value *
7119ada_value_struct_elt (struct value *arg, char *name, int no_err)
7120{
7121 struct type *t, *t1;
7122 struct value *v;
7123
7124 v = NULL;
7125 t1 = t = ada_check_typedef (value_type (arg));
7126 if (TYPE_CODE (t) == TYPE_CODE_REF)
7127 {
7128 t1 = TYPE_TARGET_TYPE (t);
7129 if (t1 == NULL)
7130 goto BadValue;
7131 t1 = ada_check_typedef (t1);
7132 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7133 {
7134 arg = coerce_ref (arg);
7135 t = t1;
7136 }
7137 }
7138
7139 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7140 {
7141 t1 = TYPE_TARGET_TYPE (t);
7142 if (t1 == NULL)
7143 goto BadValue;
7144 t1 = ada_check_typedef (t1);
7145 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7146 {
7147 arg = value_ind (arg);
7148 t = t1;
7149 }
7150 else
7151 break;
7152 }
7153
7154 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7155 goto BadValue;
7156
7157 if (t1 == t)
7158 v = ada_search_struct_field (name, arg, 0, t);
7159 else
7160 {
7161 int bit_offset, bit_size, byte_offset;
7162 struct type *field_type;
7163 CORE_ADDR address;
7164
7165 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7166 address = value_address (ada_value_ind (arg));
7167 else
7168 address = value_address (ada_coerce_ref (arg));
7169
7170 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7171 if (find_struct_field (name, t1, 0,
7172 &field_type, &byte_offset, &bit_offset,
7173 &bit_size, NULL))
7174 {
7175 if (bit_size != 0)
7176 {
7177 if (TYPE_CODE (t) == TYPE_CODE_REF)
7178 arg = ada_coerce_ref (arg);
7179 else
7180 arg = ada_value_ind (arg);
7181 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7182 bit_offset, bit_size,
7183 field_type);
7184 }
7185 else
7186 v = value_at_lazy (field_type, address + byte_offset);
7187 }
7188 }
7189
7190 if (v != NULL || no_err)
7191 return v;
7192 else
7193 error (_("There is no member named %s."), name);
7194
7195 BadValue:
7196 if (no_err)
7197 return NULL;
7198 else
7199 error (_("Attempt to extract a component of "
7200 "a value that is not a record."));
7201}
7202
7203/* Given a type TYPE, look up the type of the component of type named NAME.
7204 If DISPP is non-null, add its byte displacement from the beginning of a
7205 structure (pointed to by a value) of type TYPE to *DISPP (does not
7206 work for packed fields).
7207
7208 Matches any field whose name has NAME as a prefix, possibly
7209 followed by "___".
7210
7211 TYPE can be either a struct or union. If REFOK, TYPE may also
7212 be a (pointer or reference)+ to a struct or union, and the
7213 ultimate target type will be searched.
7214
7215 Looks recursively into variant clauses and parent types.
7216
7217 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7218 TYPE is not a type of the right kind. */
7219
7220static struct type *
7221ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7222 int noerr, int *dispp)
7223{
7224 int i;
7225
7226 if (name == NULL)
7227 goto BadName;
7228
7229 if (refok && type != NULL)
7230 while (1)
7231 {
7232 type = ada_check_typedef (type);
7233 if (TYPE_CODE (type) != TYPE_CODE_PTR
7234 && TYPE_CODE (type) != TYPE_CODE_REF)
7235 break;
7236 type = TYPE_TARGET_TYPE (type);
7237 }
7238
7239 if (type == NULL
7240 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7241 && TYPE_CODE (type) != TYPE_CODE_UNION))
7242 {
7243 if (noerr)
7244 return NULL;
7245 else
7246 {
7247 target_terminal_ours ();
7248 gdb_flush (gdb_stdout);
7249 if (type == NULL)
7250 error (_("Type (null) is not a structure or union type"));
7251 else
7252 {
7253 /* XXX: type_sprint */
7254 fprintf_unfiltered (gdb_stderr, _("Type "));
7255 type_print (type, "", gdb_stderr, -1);
7256 error (_(" is not a structure or union type"));
7257 }
7258 }
7259 }
7260
7261 type = to_static_fixed_type (type);
7262
7263 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7264 {
7265 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7266 struct type *t;
7267 int disp;
7268
7269 if (t_field_name == NULL)
7270 continue;
7271
7272 else if (field_name_match (t_field_name, name))
7273 {
7274 if (dispp != NULL)
7275 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7276 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7277 }
7278
7279 else if (ada_is_wrapper_field (type, i))
7280 {
7281 disp = 0;
7282 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7283 0, 1, &disp);
7284 if (t != NULL)
7285 {
7286 if (dispp != NULL)
7287 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7288 return t;
7289 }
7290 }
7291
7292 else if (ada_is_variant_part (type, i))
7293 {
7294 int j;
7295 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7296 i));
7297
7298 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7299 {
7300 /* FIXME pnh 2008/01/26: We check for a field that is
7301 NOT wrapped in a struct, since the compiler sometimes
7302 generates these for unchecked variant types. Revisit
7303 if the compiler changes this practice. */
7304 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7305 disp = 0;
7306 if (v_field_name != NULL
7307 && field_name_match (v_field_name, name))
7308 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7309 else
7310 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7311 j),
7312 name, 0, 1, &disp);
7313
7314 if (t != NULL)
7315 {
7316 if (dispp != NULL)
7317 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7318 return t;
7319 }
7320 }
7321 }
7322
7323 }
7324
7325BadName:
7326 if (!noerr)
7327 {
7328 target_terminal_ours ();
7329 gdb_flush (gdb_stdout);
7330 if (name == NULL)
7331 {
7332 /* XXX: type_sprint */
7333 fprintf_unfiltered (gdb_stderr, _("Type "));
7334 type_print (type, "", gdb_stderr, -1);
7335 error (_(" has no component named <null>"));
7336 }
7337 else
7338 {
7339 /* XXX: type_sprint */
7340 fprintf_unfiltered (gdb_stderr, _("Type "));
7341 type_print (type, "", gdb_stderr, -1);
7342 error (_(" has no component named %s"), name);
7343 }
7344 }
7345
7346 return NULL;
7347}
7348
7349/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7350 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7351 represents an unchecked union (that is, the variant part of a
7352 record that is named in an Unchecked_Union pragma). */
7353
7354static int
7355is_unchecked_variant (struct type *var_type, struct type *outer_type)
7356{
7357 char *discrim_name = ada_variant_discrim_name (var_type);
7358
7359 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7360 == NULL);
7361}
7362
7363
7364/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7365 within a value of type OUTER_TYPE that is stored in GDB at
7366 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7367 numbering from 0) is applicable. Returns -1 if none are. */
7368
7369int
7370ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7371 const gdb_byte *outer_valaddr)
7372{
7373 int others_clause;
7374 int i;
7375 char *discrim_name = ada_variant_discrim_name (var_type);
7376 struct value *outer;
7377 struct value *discrim;
7378 LONGEST discrim_val;
7379
7380 /* Using plain value_from_contents_and_address here causes problems
7381 because we will end up trying to resolve a type that is currently
7382 being constructed. */
7383 outer = value_from_contents_and_address_unresolved (outer_type,
7384 outer_valaddr, 0);
7385 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7386 if (discrim == NULL)
7387 return -1;
7388 discrim_val = value_as_long (discrim);
7389
7390 others_clause = -1;
7391 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7392 {
7393 if (ada_is_others_clause (var_type, i))
7394 others_clause = i;
7395 else if (ada_in_variant (discrim_val, var_type, i))
7396 return i;
7397 }
7398
7399 return others_clause;
7400}
7401\f
7402
7403
7404 /* Dynamic-Sized Records */
7405
7406/* Strategy: The type ostensibly attached to a value with dynamic size
7407 (i.e., a size that is not statically recorded in the debugging
7408 data) does not accurately reflect the size or layout of the value.
7409 Our strategy is to convert these values to values with accurate,
7410 conventional types that are constructed on the fly. */
7411
7412/* There is a subtle and tricky problem here. In general, we cannot
7413 determine the size of dynamic records without its data. However,
7414 the 'struct value' data structure, which GDB uses to represent
7415 quantities in the inferior process (the target), requires the size
7416 of the type at the time of its allocation in order to reserve space
7417 for GDB's internal copy of the data. That's why the
7418 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7419 rather than struct value*s.
7420
7421 However, GDB's internal history variables ($1, $2, etc.) are
7422 struct value*s containing internal copies of the data that are not, in
7423 general, the same as the data at their corresponding addresses in
7424 the target. Fortunately, the types we give to these values are all
7425 conventional, fixed-size types (as per the strategy described
7426 above), so that we don't usually have to perform the
7427 'to_fixed_xxx_type' conversions to look at their values.
7428 Unfortunately, there is one exception: if one of the internal
7429 history variables is an array whose elements are unconstrained
7430 records, then we will need to create distinct fixed types for each
7431 element selected. */
7432
7433/* The upshot of all of this is that many routines take a (type, host
7434 address, target address) triple as arguments to represent a value.
7435 The host address, if non-null, is supposed to contain an internal
7436 copy of the relevant data; otherwise, the program is to consult the
7437 target at the target address. */
7438
7439/* Assuming that VAL0 represents a pointer value, the result of
7440 dereferencing it. Differs from value_ind in its treatment of
7441 dynamic-sized types. */
7442
7443struct value *
7444ada_value_ind (struct value *val0)
7445{
7446 struct value *val = value_ind (val0);
7447
7448 if (ada_is_tagged_type (value_type (val), 0))
7449 val = ada_tag_value_at_base_address (val);
7450
7451 return ada_to_fixed_value (val);
7452}
7453
7454/* The value resulting from dereferencing any "reference to"
7455 qualifiers on VAL0. */
7456
7457static struct value *
7458ada_coerce_ref (struct value *val0)
7459{
7460 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7461 {
7462 struct value *val = val0;
7463
7464 val = coerce_ref (val);
7465
7466 if (ada_is_tagged_type (value_type (val), 0))
7467 val = ada_tag_value_at_base_address (val);
7468
7469 return ada_to_fixed_value (val);
7470 }
7471 else
7472 return val0;
7473}
7474
7475/* Return OFF rounded upward if necessary to a multiple of
7476 ALIGNMENT (a power of 2). */
7477
7478static unsigned int
7479align_value (unsigned int off, unsigned int alignment)
7480{
7481 return (off + alignment - 1) & ~(alignment - 1);
7482}
7483
7484/* Return the bit alignment required for field #F of template type TYPE. */
7485
7486static unsigned int
7487field_alignment (struct type *type, int f)
7488{
7489 const char *name = TYPE_FIELD_NAME (type, f);
7490 int len;
7491 int align_offset;
7492
7493 /* The field name should never be null, unless the debugging information
7494 is somehow malformed. In this case, we assume the field does not
7495 require any alignment. */
7496 if (name == NULL)
7497 return 1;
7498
7499 len = strlen (name);
7500
7501 if (!isdigit (name[len - 1]))
7502 return 1;
7503
7504 if (isdigit (name[len - 2]))
7505 align_offset = len - 2;
7506 else
7507 align_offset = len - 1;
7508
7509 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7510 return TARGET_CHAR_BIT;
7511
7512 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7513}
7514
7515/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7516
7517static struct symbol *
7518ada_find_any_type_symbol (const char *name)
7519{
7520 struct symbol *sym;
7521
7522 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7523 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7524 return sym;
7525
7526 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7527 return sym;
7528}
7529
7530/* Find a type named NAME. Ignores ambiguity. This routine will look
7531 solely for types defined by debug info, it will not search the GDB
7532 primitive types. */
7533
7534static struct type *
7535ada_find_any_type (const char *name)
7536{
7537 struct symbol *sym = ada_find_any_type_symbol (name);
7538
7539 if (sym != NULL)
7540 return SYMBOL_TYPE (sym);
7541
7542 return NULL;
7543}
7544
7545/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7546 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7547 symbol, in which case it is returned. Otherwise, this looks for
7548 symbols whose name is that of NAME_SYM suffixed with "___XR".
7549 Return symbol if found, and NULL otherwise. */
7550
7551struct symbol *
7552ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7553{
7554 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7555 struct symbol *sym;
7556
7557 if (strstr (name, "___XR") != NULL)
7558 return name_sym;
7559
7560 sym = find_old_style_renaming_symbol (name, block);
7561
7562 if (sym != NULL)
7563 return sym;
7564
7565 /* Not right yet. FIXME pnh 7/20/2007. */
7566 sym = ada_find_any_type_symbol (name);
7567 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7568 return sym;
7569 else
7570 return NULL;
7571}
7572
7573static struct symbol *
7574find_old_style_renaming_symbol (const char *name, const struct block *block)
7575{
7576 const struct symbol *function_sym = block_linkage_function (block);
7577 char *rename;
7578
7579 if (function_sym != NULL)
7580 {
7581 /* If the symbol is defined inside a function, NAME is not fully
7582 qualified. This means we need to prepend the function name
7583 as well as adding the ``___XR'' suffix to build the name of
7584 the associated renaming symbol. */
7585 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7586 /* Function names sometimes contain suffixes used
7587 for instance to qualify nested subprograms. When building
7588 the XR type name, we need to make sure that this suffix is
7589 not included. So do not include any suffix in the function
7590 name length below. */
7591 int function_name_len = ada_name_prefix_len (function_name);
7592 const int rename_len = function_name_len + 2 /* "__" */
7593 + strlen (name) + 6 /* "___XR\0" */ ;
7594
7595 /* Strip the suffix if necessary. */
7596 ada_remove_trailing_digits (function_name, &function_name_len);
7597 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7598 ada_remove_Xbn_suffix (function_name, &function_name_len);
7599
7600 /* Library-level functions are a special case, as GNAT adds
7601 a ``_ada_'' prefix to the function name to avoid namespace
7602 pollution. However, the renaming symbols themselves do not
7603 have this prefix, so we need to skip this prefix if present. */
7604 if (function_name_len > 5 /* "_ada_" */
7605 && strstr (function_name, "_ada_") == function_name)
7606 {
7607 function_name += 5;
7608 function_name_len -= 5;
7609 }
7610
7611 rename = (char *) alloca (rename_len * sizeof (char));
7612 strncpy (rename, function_name, function_name_len);
7613 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7614 "__%s___XR", name);
7615 }
7616 else
7617 {
7618 const int rename_len = strlen (name) + 6;
7619
7620 rename = (char *) alloca (rename_len * sizeof (char));
7621 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7622 }
7623
7624 return ada_find_any_type_symbol (rename);
7625}
7626
7627/* Because of GNAT encoding conventions, several GDB symbols may match a
7628 given type name. If the type denoted by TYPE0 is to be preferred to
7629 that of TYPE1 for purposes of type printing, return non-zero;
7630 otherwise return 0. */
7631
7632int
7633ada_prefer_type (struct type *type0, struct type *type1)
7634{
7635 if (type1 == NULL)
7636 return 1;
7637 else if (type0 == NULL)
7638 return 0;
7639 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7640 return 1;
7641 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7642 return 0;
7643 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7644 return 1;
7645 else if (ada_is_constrained_packed_array_type (type0))
7646 return 1;
7647 else if (ada_is_array_descriptor_type (type0)
7648 && !ada_is_array_descriptor_type (type1))
7649 return 1;
7650 else
7651 {
7652 const char *type0_name = type_name_no_tag (type0);
7653 const char *type1_name = type_name_no_tag (type1);
7654
7655 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7656 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7657 return 1;
7658 }
7659 return 0;
7660}
7661
7662/* The name of TYPE, which is either its TYPE_NAME, or, if that is
7663 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7664
7665const char *
7666ada_type_name (struct type *type)
7667{
7668 if (type == NULL)
7669 return NULL;
7670 else if (TYPE_NAME (type) != NULL)
7671 return TYPE_NAME (type);
7672 else
7673 return TYPE_TAG_NAME (type);
7674}
7675
7676/* Search the list of "descriptive" types associated to TYPE for a type
7677 whose name is NAME. */
7678
7679static struct type *
7680find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7681{
7682 struct type *result;
7683
7684 if (ada_ignore_descriptive_types_p)
7685 return NULL;
7686
7687 /* If there no descriptive-type info, then there is no parallel type
7688 to be found. */
7689 if (!HAVE_GNAT_AUX_INFO (type))
7690 return NULL;
7691
7692 result = TYPE_DESCRIPTIVE_TYPE (type);
7693 while (result != NULL)
7694 {
7695 const char *result_name = ada_type_name (result);
7696
7697 if (result_name == NULL)
7698 {
7699 warning (_("unexpected null name on descriptive type"));
7700 return NULL;
7701 }
7702
7703 /* If the names match, stop. */
7704 if (strcmp (result_name, name) == 0)
7705 break;
7706
7707 /* Otherwise, look at the next item on the list, if any. */
7708 if (HAVE_GNAT_AUX_INFO (result))
7709 result = TYPE_DESCRIPTIVE_TYPE (result);
7710 else
7711 result = NULL;
7712 }
7713
7714 /* If we didn't find a match, see whether this is a packed array. With
7715 older compilers, the descriptive type information is either absent or
7716 irrelevant when it comes to packed arrays so the above lookup fails.
7717 Fall back to using a parallel lookup by name in this case. */
7718 if (result == NULL && ada_is_constrained_packed_array_type (type))
7719 return ada_find_any_type (name);
7720
7721 return result;
7722}
7723
7724/* Find a parallel type to TYPE with the specified NAME, using the
7725 descriptive type taken from the debugging information, if available,
7726 and otherwise using the (slower) name-based method. */
7727
7728static struct type *
7729ada_find_parallel_type_with_name (struct type *type, const char *name)
7730{
7731 struct type *result = NULL;
7732
7733 if (HAVE_GNAT_AUX_INFO (type))
7734 result = find_parallel_type_by_descriptive_type (type, name);
7735 else
7736 result = ada_find_any_type (name);
7737
7738 return result;
7739}
7740
7741/* Same as above, but specify the name of the parallel type by appending
7742 SUFFIX to the name of TYPE. */
7743
7744struct type *
7745ada_find_parallel_type (struct type *type, const char *suffix)
7746{
7747 char *name;
7748 const char *typename = ada_type_name (type);
7749 int len;
7750
7751 if (typename == NULL)
7752 return NULL;
7753
7754 len = strlen (typename);
7755
7756 name = (char *) alloca (len + strlen (suffix) + 1);
7757
7758 strcpy (name, typename);
7759 strcpy (name + len, suffix);
7760
7761 return ada_find_parallel_type_with_name (type, name);
7762}
7763
7764/* If TYPE is a variable-size record type, return the corresponding template
7765 type describing its fields. Otherwise, return NULL. */
7766
7767static struct type *
7768dynamic_template_type (struct type *type)
7769{
7770 type = ada_check_typedef (type);
7771
7772 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7773 || ada_type_name (type) == NULL)
7774 return NULL;
7775 else
7776 {
7777 int len = strlen (ada_type_name (type));
7778
7779 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7780 return type;
7781 else
7782 return ada_find_parallel_type (type, "___XVE");
7783 }
7784}
7785
7786/* Assuming that TEMPL_TYPE is a union or struct type, returns
7787 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7788
7789static int
7790is_dynamic_field (struct type *templ_type, int field_num)
7791{
7792 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7793
7794 return name != NULL
7795 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7796 && strstr (name, "___XVL") != NULL;
7797}
7798
7799/* The index of the variant field of TYPE, or -1 if TYPE does not
7800 represent a variant record type. */
7801
7802static int
7803variant_field_index (struct type *type)
7804{
7805 int f;
7806
7807 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7808 return -1;
7809
7810 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7811 {
7812 if (ada_is_variant_part (type, f))
7813 return f;
7814 }
7815 return -1;
7816}
7817
7818/* A record type with no fields. */
7819
7820static struct type *
7821empty_record (struct type *template)
7822{
7823 struct type *type = alloc_type_copy (template);
7824
7825 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7826 TYPE_NFIELDS (type) = 0;
7827 TYPE_FIELDS (type) = NULL;
7828 INIT_CPLUS_SPECIFIC (type);
7829 TYPE_NAME (type) = "<empty>";
7830 TYPE_TAG_NAME (type) = NULL;
7831 TYPE_LENGTH (type) = 0;
7832 return type;
7833}
7834
7835/* An ordinary record type (with fixed-length fields) that describes
7836 the value of type TYPE at VALADDR or ADDRESS (see comments at
7837 the beginning of this section) VAL according to GNAT conventions.
7838 DVAL0 should describe the (portion of a) record that contains any
7839 necessary discriminants. It should be NULL if value_type (VAL) is
7840 an outer-level type (i.e., as opposed to a branch of a variant.) A
7841 variant field (unless unchecked) is replaced by a particular branch
7842 of the variant.
7843
7844 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7845 length are not statically known are discarded. As a consequence,
7846 VALADDR, ADDRESS and DVAL0 are ignored.
7847
7848 NOTE: Limitations: For now, we assume that dynamic fields and
7849 variants occupy whole numbers of bytes. However, they need not be
7850 byte-aligned. */
7851
7852struct type *
7853ada_template_to_fixed_record_type_1 (struct type *type,
7854 const gdb_byte *valaddr,
7855 CORE_ADDR address, struct value *dval0,
7856 int keep_dynamic_fields)
7857{
7858 struct value *mark = value_mark ();
7859 struct value *dval;
7860 struct type *rtype;
7861 int nfields, bit_len;
7862 int variant_field;
7863 long off;
7864 int fld_bit_len;
7865 int f;
7866
7867 /* Compute the number of fields in this record type that are going
7868 to be processed: unless keep_dynamic_fields, this includes only
7869 fields whose position and length are static will be processed. */
7870 if (keep_dynamic_fields)
7871 nfields = TYPE_NFIELDS (type);
7872 else
7873 {
7874 nfields = 0;
7875 while (nfields < TYPE_NFIELDS (type)
7876 && !ada_is_variant_part (type, nfields)
7877 && !is_dynamic_field (type, nfields))
7878 nfields++;
7879 }
7880
7881 rtype = alloc_type_copy (type);
7882 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7883 INIT_CPLUS_SPECIFIC (rtype);
7884 TYPE_NFIELDS (rtype) = nfields;
7885 TYPE_FIELDS (rtype) = (struct field *)
7886 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7887 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7888 TYPE_NAME (rtype) = ada_type_name (type);
7889 TYPE_TAG_NAME (rtype) = NULL;
7890 TYPE_FIXED_INSTANCE (rtype) = 1;
7891
7892 off = 0;
7893 bit_len = 0;
7894 variant_field = -1;
7895
7896 for (f = 0; f < nfields; f += 1)
7897 {
7898 off = align_value (off, field_alignment (type, f))
7899 + TYPE_FIELD_BITPOS (type, f);
7900 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7901 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7902
7903 if (ada_is_variant_part (type, f))
7904 {
7905 variant_field = f;
7906 fld_bit_len = 0;
7907 }
7908 else if (is_dynamic_field (type, f))
7909 {
7910 const gdb_byte *field_valaddr = valaddr;
7911 CORE_ADDR field_address = address;
7912 struct type *field_type =
7913 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7914
7915 if (dval0 == NULL)
7916 {
7917 /* rtype's length is computed based on the run-time
7918 value of discriminants. If the discriminants are not
7919 initialized, the type size may be completely bogus and
7920 GDB may fail to allocate a value for it. So check the
7921 size first before creating the value. */
7922 check_size (rtype);
7923 /* Using plain value_from_contents_and_address here
7924 causes problems because we will end up trying to
7925 resolve a type that is currently being
7926 constructed. */
7927 dval = value_from_contents_and_address_unresolved (rtype,
7928 valaddr,
7929 address);
7930 rtype = value_type (dval);
7931 }
7932 else
7933 dval = dval0;
7934
7935 /* If the type referenced by this field is an aligner type, we need
7936 to unwrap that aligner type, because its size might not be set.
7937 Keeping the aligner type would cause us to compute the wrong
7938 size for this field, impacting the offset of the all the fields
7939 that follow this one. */
7940 if (ada_is_aligner_type (field_type))
7941 {
7942 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7943
7944 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7945 field_address = cond_offset_target (field_address, field_offset);
7946 field_type = ada_aligned_type (field_type);
7947 }
7948
7949 field_valaddr = cond_offset_host (field_valaddr,
7950 off / TARGET_CHAR_BIT);
7951 field_address = cond_offset_target (field_address,
7952 off / TARGET_CHAR_BIT);
7953
7954 /* Get the fixed type of the field. Note that, in this case,
7955 we do not want to get the real type out of the tag: if
7956 the current field is the parent part of a tagged record,
7957 we will get the tag of the object. Clearly wrong: the real
7958 type of the parent is not the real type of the child. We
7959 would end up in an infinite loop. */
7960 field_type = ada_get_base_type (field_type);
7961 field_type = ada_to_fixed_type (field_type, field_valaddr,
7962 field_address, dval, 0);
7963 /* If the field size is already larger than the maximum
7964 object size, then the record itself will necessarily
7965 be larger than the maximum object size. We need to make
7966 this check now, because the size might be so ridiculously
7967 large (due to an uninitialized variable in the inferior)
7968 that it would cause an overflow when adding it to the
7969 record size. */
7970 check_size (field_type);
7971
7972 TYPE_FIELD_TYPE (rtype, f) = field_type;
7973 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7974 /* The multiplication can potentially overflow. But because
7975 the field length has been size-checked just above, and
7976 assuming that the maximum size is a reasonable value,
7977 an overflow should not happen in practice. So rather than
7978 adding overflow recovery code to this already complex code,
7979 we just assume that it's not going to happen. */
7980 fld_bit_len =
7981 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7982 }
7983 else
7984 {
7985 /* Note: If this field's type is a typedef, it is important
7986 to preserve the typedef layer.
7987
7988 Otherwise, we might be transforming a typedef to a fat
7989 pointer (encoding a pointer to an unconstrained array),
7990 into a basic fat pointer (encoding an unconstrained
7991 array). As both types are implemented using the same
7992 structure, the typedef is the only clue which allows us
7993 to distinguish between the two options. Stripping it
7994 would prevent us from printing this field appropriately. */
7995 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7996 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7997 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7998 fld_bit_len =
7999 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8000 else
8001 {
8002 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8003
8004 /* We need to be careful of typedefs when computing
8005 the length of our field. If this is a typedef,
8006 get the length of the target type, not the length
8007 of the typedef. */
8008 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8009 field_type = ada_typedef_target_type (field_type);
8010
8011 fld_bit_len =
8012 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8013 }
8014 }
8015 if (off + fld_bit_len > bit_len)
8016 bit_len = off + fld_bit_len;
8017 off += fld_bit_len;
8018 TYPE_LENGTH (rtype) =
8019 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8020 }
8021
8022 /* We handle the variant part, if any, at the end because of certain
8023 odd cases in which it is re-ordered so as NOT to be the last field of
8024 the record. This can happen in the presence of representation
8025 clauses. */
8026 if (variant_field >= 0)
8027 {
8028 struct type *branch_type;
8029
8030 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8031
8032 if (dval0 == NULL)
8033 {
8034 /* Using plain value_from_contents_and_address here causes
8035 problems because we will end up trying to resolve a type
8036 that is currently being constructed. */
8037 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8038 address);
8039 rtype = value_type (dval);
8040 }
8041 else
8042 dval = dval0;
8043
8044 branch_type =
8045 to_fixed_variant_branch_type
8046 (TYPE_FIELD_TYPE (type, variant_field),
8047 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8048 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8049 if (branch_type == NULL)
8050 {
8051 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8052 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8053 TYPE_NFIELDS (rtype) -= 1;
8054 }
8055 else
8056 {
8057 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8058 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8059 fld_bit_len =
8060 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8061 TARGET_CHAR_BIT;
8062 if (off + fld_bit_len > bit_len)
8063 bit_len = off + fld_bit_len;
8064 TYPE_LENGTH (rtype) =
8065 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8066 }
8067 }
8068
8069 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8070 should contain the alignment of that record, which should be a strictly
8071 positive value. If null or negative, then something is wrong, most
8072 probably in the debug info. In that case, we don't round up the size
8073 of the resulting type. If this record is not part of another structure,
8074 the current RTYPE length might be good enough for our purposes. */
8075 if (TYPE_LENGTH (type) <= 0)
8076 {
8077 if (TYPE_NAME (rtype))
8078 warning (_("Invalid type size for `%s' detected: %d."),
8079 TYPE_NAME (rtype), TYPE_LENGTH (type));
8080 else
8081 warning (_("Invalid type size for <unnamed> detected: %d."),
8082 TYPE_LENGTH (type));
8083 }
8084 else
8085 {
8086 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8087 TYPE_LENGTH (type));
8088 }
8089
8090 value_free_to_mark (mark);
8091 if (TYPE_LENGTH (rtype) > varsize_limit)
8092 error (_("record type with dynamic size is larger than varsize-limit"));
8093 return rtype;
8094}
8095
8096/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8097 of 1. */
8098
8099static struct type *
8100template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8101 CORE_ADDR address, struct value *dval0)
8102{
8103 return ada_template_to_fixed_record_type_1 (type, valaddr,
8104 address, dval0, 1);
8105}
8106
8107/* An ordinary record type in which ___XVL-convention fields and
8108 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8109 static approximations, containing all possible fields. Uses
8110 no runtime values. Useless for use in values, but that's OK,
8111 since the results are used only for type determinations. Works on both
8112 structs and unions. Representation note: to save space, we memorize
8113 the result of this function in the TYPE_TARGET_TYPE of the
8114 template type. */
8115
8116static struct type *
8117template_to_static_fixed_type (struct type *type0)
8118{
8119 struct type *type;
8120 int nfields;
8121 int f;
8122
8123 if (TYPE_TARGET_TYPE (type0) != NULL)
8124 return TYPE_TARGET_TYPE (type0);
8125
8126 nfields = TYPE_NFIELDS (type0);
8127 type = type0;
8128
8129 for (f = 0; f < nfields; f += 1)
8130 {
8131 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8132 struct type *new_type;
8133
8134 if (is_dynamic_field (type0, f))
8135 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8136 else
8137 new_type = static_unwrap_type (field_type);
8138 if (type == type0 && new_type != field_type)
8139 {
8140 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8141 TYPE_CODE (type) = TYPE_CODE (type0);
8142 INIT_CPLUS_SPECIFIC (type);
8143 TYPE_NFIELDS (type) = nfields;
8144 TYPE_FIELDS (type) = (struct field *)
8145 TYPE_ALLOC (type, nfields * sizeof (struct field));
8146 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8147 sizeof (struct field) * nfields);
8148 TYPE_NAME (type) = ada_type_name (type0);
8149 TYPE_TAG_NAME (type) = NULL;
8150 TYPE_FIXED_INSTANCE (type) = 1;
8151 TYPE_LENGTH (type) = 0;
8152 }
8153 TYPE_FIELD_TYPE (type, f) = new_type;
8154 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8155 }
8156 return type;
8157}
8158
8159/* Given an object of type TYPE whose contents are at VALADDR and
8160 whose address in memory is ADDRESS, returns a revision of TYPE,
8161 which should be a non-dynamic-sized record, in which the variant
8162 part, if any, is replaced with the appropriate branch. Looks
8163 for discriminant values in DVAL0, which can be NULL if the record
8164 contains the necessary discriminant values. */
8165
8166static struct type *
8167to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8168 CORE_ADDR address, struct value *dval0)
8169{
8170 struct value *mark = value_mark ();
8171 struct value *dval;
8172 struct type *rtype;
8173 struct type *branch_type;
8174 int nfields = TYPE_NFIELDS (type);
8175 int variant_field = variant_field_index (type);
8176
8177 if (variant_field == -1)
8178 return type;
8179
8180 if (dval0 == NULL)
8181 {
8182 dval = value_from_contents_and_address (type, valaddr, address);
8183 type = value_type (dval);
8184 }
8185 else
8186 dval = dval0;
8187
8188 rtype = alloc_type_copy (type);
8189 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8190 INIT_CPLUS_SPECIFIC (rtype);
8191 TYPE_NFIELDS (rtype) = nfields;
8192 TYPE_FIELDS (rtype) =
8193 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8194 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8195 sizeof (struct field) * nfields);
8196 TYPE_NAME (rtype) = ada_type_name (type);
8197 TYPE_TAG_NAME (rtype) = NULL;
8198 TYPE_FIXED_INSTANCE (rtype) = 1;
8199 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8200
8201 branch_type = to_fixed_variant_branch_type
8202 (TYPE_FIELD_TYPE (type, variant_field),
8203 cond_offset_host (valaddr,
8204 TYPE_FIELD_BITPOS (type, variant_field)
8205 / TARGET_CHAR_BIT),
8206 cond_offset_target (address,
8207 TYPE_FIELD_BITPOS (type, variant_field)
8208 / TARGET_CHAR_BIT), dval);
8209 if (branch_type == NULL)
8210 {
8211 int f;
8212
8213 for (f = variant_field + 1; f < nfields; f += 1)
8214 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8215 TYPE_NFIELDS (rtype) -= 1;
8216 }
8217 else
8218 {
8219 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8220 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8221 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8222 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8223 }
8224 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8225
8226 value_free_to_mark (mark);
8227 return rtype;
8228}
8229
8230/* An ordinary record type (with fixed-length fields) that describes
8231 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8232 beginning of this section]. Any necessary discriminants' values
8233 should be in DVAL, a record value; it may be NULL if the object
8234 at ADDR itself contains any necessary discriminant values.
8235 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8236 values from the record are needed. Except in the case that DVAL,
8237 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8238 unchecked) is replaced by a particular branch of the variant.
8239
8240 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8241 is questionable and may be removed. It can arise during the
8242 processing of an unconstrained-array-of-record type where all the
8243 variant branches have exactly the same size. This is because in
8244 such cases, the compiler does not bother to use the XVS convention
8245 when encoding the record. I am currently dubious of this
8246 shortcut and suspect the compiler should be altered. FIXME. */
8247
8248static struct type *
8249to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8250 CORE_ADDR address, struct value *dval)
8251{
8252 struct type *templ_type;
8253
8254 if (TYPE_FIXED_INSTANCE (type0))
8255 return type0;
8256
8257 templ_type = dynamic_template_type (type0);
8258
8259 if (templ_type != NULL)
8260 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8261 else if (variant_field_index (type0) >= 0)
8262 {
8263 if (dval == NULL && valaddr == NULL && address == 0)
8264 return type0;
8265 return to_record_with_fixed_variant_part (type0, valaddr, address,
8266 dval);
8267 }
8268 else
8269 {
8270 TYPE_FIXED_INSTANCE (type0) = 1;
8271 return type0;
8272 }
8273
8274}
8275
8276/* An ordinary record type (with fixed-length fields) that describes
8277 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8278 union type. Any necessary discriminants' values should be in DVAL,
8279 a record value. That is, this routine selects the appropriate
8280 branch of the union at ADDR according to the discriminant value
8281 indicated in the union's type name. Returns VAR_TYPE0 itself if
8282 it represents a variant subject to a pragma Unchecked_Union. */
8283
8284static struct type *
8285to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8286 CORE_ADDR address, struct value *dval)
8287{
8288 int which;
8289 struct type *templ_type;
8290 struct type *var_type;
8291
8292 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8293 var_type = TYPE_TARGET_TYPE (var_type0);
8294 else
8295 var_type = var_type0;
8296
8297 templ_type = ada_find_parallel_type (var_type, "___XVU");
8298
8299 if (templ_type != NULL)
8300 var_type = templ_type;
8301
8302 if (is_unchecked_variant (var_type, value_type (dval)))
8303 return var_type0;
8304 which =
8305 ada_which_variant_applies (var_type,
8306 value_type (dval), value_contents (dval));
8307
8308 if (which < 0)
8309 return empty_record (var_type);
8310 else if (is_dynamic_field (var_type, which))
8311 return to_fixed_record_type
8312 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8313 valaddr, address, dval);
8314 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8315 return
8316 to_fixed_record_type
8317 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8318 else
8319 return TYPE_FIELD_TYPE (var_type, which);
8320}
8321
8322/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8323 ENCODING_TYPE, a type following the GNAT conventions for discrete
8324 type encodings, only carries redundant information. */
8325
8326static int
8327ada_is_redundant_range_encoding (struct type *range_type,
8328 struct type *encoding_type)
8329{
8330 struct type *fixed_range_type;
8331 char *bounds_str;
8332 int n;
8333 LONGEST lo, hi;
8334
8335 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8336
8337 if (TYPE_CODE (get_base_type (range_type))
8338 != TYPE_CODE (get_base_type (encoding_type)))
8339 {
8340 /* The compiler probably used a simple base type to describe
8341 the range type instead of the range's actual base type,
8342 expecting us to get the real base type from the encoding
8343 anyway. In this situation, the encoding cannot be ignored
8344 as redundant. */
8345 return 0;
8346 }
8347
8348 if (is_dynamic_type (range_type))
8349 return 0;
8350
8351 if (TYPE_NAME (encoding_type) == NULL)
8352 return 0;
8353
8354 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8355 if (bounds_str == NULL)
8356 return 0;
8357
8358 n = 8; /* Skip "___XDLU_". */
8359 if (!ada_scan_number (bounds_str, n, &lo, &n))
8360 return 0;
8361 if (TYPE_LOW_BOUND (range_type) != lo)
8362 return 0;
8363
8364 n += 2; /* Skip the "__" separator between the two bounds. */
8365 if (!ada_scan_number (bounds_str, n, &hi, &n))
8366 return 0;
8367 if (TYPE_HIGH_BOUND (range_type) != hi)
8368 return 0;
8369
8370 return 1;
8371}
8372
8373/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8374 a type following the GNAT encoding for describing array type
8375 indices, only carries redundant information. */
8376
8377static int
8378ada_is_redundant_index_type_desc (struct type *array_type,
8379 struct type *desc_type)
8380{
8381 struct type *this_layer = check_typedef (array_type);
8382 int i;
8383
8384 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8385 {
8386 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8387 TYPE_FIELD_TYPE (desc_type, i)))
8388 return 0;
8389 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8390 }
8391
8392 return 1;
8393}
8394
8395/* Assuming that TYPE0 is an array type describing the type of a value
8396 at ADDR, and that DVAL describes a record containing any
8397 discriminants used in TYPE0, returns a type for the value that
8398 contains no dynamic components (that is, no components whose sizes
8399 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8400 true, gives an error message if the resulting type's size is over
8401 varsize_limit. */
8402
8403static struct type *
8404to_fixed_array_type (struct type *type0, struct value *dval,
8405 int ignore_too_big)
8406{
8407 struct type *index_type_desc;
8408 struct type *result;
8409 int constrained_packed_array_p;
8410
8411 type0 = ada_check_typedef (type0);
8412 if (TYPE_FIXED_INSTANCE (type0))
8413 return type0;
8414
8415 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8416 if (constrained_packed_array_p)
8417 type0 = decode_constrained_packed_array_type (type0);
8418
8419 index_type_desc = ada_find_parallel_type (type0, "___XA");
8420 ada_fixup_array_indexes_type (index_type_desc);
8421 if (index_type_desc != NULL
8422 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8423 {
8424 /* Ignore this ___XA parallel type, as it does not bring any
8425 useful information. This allows us to avoid creating fixed
8426 versions of the array's index types, which would be identical
8427 to the original ones. This, in turn, can also help avoid
8428 the creation of fixed versions of the array itself. */
8429 index_type_desc = NULL;
8430 }
8431
8432 if (index_type_desc == NULL)
8433 {
8434 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8435
8436 /* NOTE: elt_type---the fixed version of elt_type0---should never
8437 depend on the contents of the array in properly constructed
8438 debugging data. */
8439 /* Create a fixed version of the array element type.
8440 We're not providing the address of an element here,
8441 and thus the actual object value cannot be inspected to do
8442 the conversion. This should not be a problem, since arrays of
8443 unconstrained objects are not allowed. In particular, all
8444 the elements of an array of a tagged type should all be of
8445 the same type specified in the debugging info. No need to
8446 consult the object tag. */
8447 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8448
8449 /* Make sure we always create a new array type when dealing with
8450 packed array types, since we're going to fix-up the array
8451 type length and element bitsize a little further down. */
8452 if (elt_type0 == elt_type && !constrained_packed_array_p)
8453 result = type0;
8454 else
8455 result = create_array_type (alloc_type_copy (type0),
8456 elt_type, TYPE_INDEX_TYPE (type0));
8457 }
8458 else
8459 {
8460 int i;
8461 struct type *elt_type0;
8462
8463 elt_type0 = type0;
8464 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8465 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8466
8467 /* NOTE: result---the fixed version of elt_type0---should never
8468 depend on the contents of the array in properly constructed
8469 debugging data. */
8470 /* Create a fixed version of the array element type.
8471 We're not providing the address of an element here,
8472 and thus the actual object value cannot be inspected to do
8473 the conversion. This should not be a problem, since arrays of
8474 unconstrained objects are not allowed. In particular, all
8475 the elements of an array of a tagged type should all be of
8476 the same type specified in the debugging info. No need to
8477 consult the object tag. */
8478 result =
8479 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8480
8481 elt_type0 = type0;
8482 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8483 {
8484 struct type *range_type =
8485 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8486
8487 result = create_array_type (alloc_type_copy (elt_type0),
8488 result, range_type);
8489 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8490 }
8491 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8492 error (_("array type with dynamic size is larger than varsize-limit"));
8493 }
8494
8495 /* We want to preserve the type name. This can be useful when
8496 trying to get the type name of a value that has already been
8497 printed (for instance, if the user did "print VAR; whatis $". */
8498 TYPE_NAME (result) = TYPE_NAME (type0);
8499
8500 if (constrained_packed_array_p)
8501 {
8502 /* So far, the resulting type has been created as if the original
8503 type was a regular (non-packed) array type. As a result, the
8504 bitsize of the array elements needs to be set again, and the array
8505 length needs to be recomputed based on that bitsize. */
8506 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8507 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8508
8509 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8510 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8511 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8512 TYPE_LENGTH (result)++;
8513 }
8514
8515 TYPE_FIXED_INSTANCE (result) = 1;
8516 return result;
8517}
8518
8519
8520/* A standard type (containing no dynamically sized components)
8521 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8522 DVAL describes a record containing any discriminants used in TYPE0,
8523 and may be NULL if there are none, or if the object of type TYPE at
8524 ADDRESS or in VALADDR contains these discriminants.
8525
8526 If CHECK_TAG is not null, in the case of tagged types, this function
8527 attempts to locate the object's tag and use it to compute the actual
8528 type. However, when ADDRESS is null, we cannot use it to determine the
8529 location of the tag, and therefore compute the tagged type's actual type.
8530 So we return the tagged type without consulting the tag. */
8531
8532static struct type *
8533ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8534 CORE_ADDR address, struct value *dval, int check_tag)
8535{
8536 type = ada_check_typedef (type);
8537 switch (TYPE_CODE (type))
8538 {
8539 default:
8540 return type;
8541 case TYPE_CODE_STRUCT:
8542 {
8543 struct type *static_type = to_static_fixed_type (type);
8544 struct type *fixed_record_type =
8545 to_fixed_record_type (type, valaddr, address, NULL);
8546
8547 /* If STATIC_TYPE is a tagged type and we know the object's address,
8548 then we can determine its tag, and compute the object's actual
8549 type from there. Note that we have to use the fixed record
8550 type (the parent part of the record may have dynamic fields
8551 and the way the location of _tag is expressed may depend on
8552 them). */
8553
8554 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8555 {
8556 struct value *tag =
8557 value_tag_from_contents_and_address
8558 (fixed_record_type,
8559 valaddr,
8560 address);
8561 struct type *real_type = type_from_tag (tag);
8562 struct value *obj =
8563 value_from_contents_and_address (fixed_record_type,
8564 valaddr,
8565 address);
8566 fixed_record_type = value_type (obj);
8567 if (real_type != NULL)
8568 return to_fixed_record_type
8569 (real_type, NULL,
8570 value_address (ada_tag_value_at_base_address (obj)), NULL);
8571 }
8572
8573 /* Check to see if there is a parallel ___XVZ variable.
8574 If there is, then it provides the actual size of our type. */
8575 else if (ada_type_name (fixed_record_type) != NULL)
8576 {
8577 const char *name = ada_type_name (fixed_record_type);
8578 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8579 int xvz_found = 0;
8580 LONGEST size;
8581
8582 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8583 size = get_int_var_value (xvz_name, &xvz_found);
8584 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8585 {
8586 fixed_record_type = copy_type (fixed_record_type);
8587 TYPE_LENGTH (fixed_record_type) = size;
8588
8589 /* The FIXED_RECORD_TYPE may have be a stub. We have
8590 observed this when the debugging info is STABS, and
8591 apparently it is something that is hard to fix.
8592
8593 In practice, we don't need the actual type definition
8594 at all, because the presence of the XVZ variable allows us
8595 to assume that there must be a XVS type as well, which we
8596 should be able to use later, when we need the actual type
8597 definition.
8598
8599 In the meantime, pretend that the "fixed" type we are
8600 returning is NOT a stub, because this can cause trouble
8601 when using this type to create new types targeting it.
8602 Indeed, the associated creation routines often check
8603 whether the target type is a stub and will try to replace
8604 it, thus using a type with the wrong size. This, in turn,
8605 might cause the new type to have the wrong size too.
8606 Consider the case of an array, for instance, where the size
8607 of the array is computed from the number of elements in
8608 our array multiplied by the size of its element. */
8609 TYPE_STUB (fixed_record_type) = 0;
8610 }
8611 }
8612 return fixed_record_type;
8613 }
8614 case TYPE_CODE_ARRAY:
8615 return to_fixed_array_type (type, dval, 1);
8616 case TYPE_CODE_UNION:
8617 if (dval == NULL)
8618 return type;
8619 else
8620 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8621 }
8622}
8623
8624/* The same as ada_to_fixed_type_1, except that it preserves the type
8625 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8626
8627 The typedef layer needs be preserved in order to differentiate between
8628 arrays and array pointers when both types are implemented using the same
8629 fat pointer. In the array pointer case, the pointer is encoded as
8630 a typedef of the pointer type. For instance, considering:
8631
8632 type String_Access is access String;
8633 S1 : String_Access := null;
8634
8635 To the debugger, S1 is defined as a typedef of type String. But
8636 to the user, it is a pointer. So if the user tries to print S1,
8637 we should not dereference the array, but print the array address
8638 instead.
8639
8640 If we didn't preserve the typedef layer, we would lose the fact that
8641 the type is to be presented as a pointer (needs de-reference before
8642 being printed). And we would also use the source-level type name. */
8643
8644struct type *
8645ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8646 CORE_ADDR address, struct value *dval, int check_tag)
8647
8648{
8649 struct type *fixed_type =
8650 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8651
8652 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8653 then preserve the typedef layer.
8654
8655 Implementation note: We can only check the main-type portion of
8656 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8657 from TYPE now returns a type that has the same instance flags
8658 as TYPE. For instance, if TYPE is a "typedef const", and its
8659 target type is a "struct", then the typedef elimination will return
8660 a "const" version of the target type. See check_typedef for more
8661 details about how the typedef layer elimination is done.
8662
8663 brobecker/2010-11-19: It seems to me that the only case where it is
8664 useful to preserve the typedef layer is when dealing with fat pointers.
8665 Perhaps, we could add a check for that and preserve the typedef layer
8666 only in that situation. But this seems unecessary so far, probably
8667 because we call check_typedef/ada_check_typedef pretty much everywhere.
8668 */
8669 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8670 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8671 == TYPE_MAIN_TYPE (fixed_type)))
8672 return type;
8673
8674 return fixed_type;
8675}
8676
8677/* A standard (static-sized) type corresponding as well as possible to
8678 TYPE0, but based on no runtime data. */
8679
8680static struct type *
8681to_static_fixed_type (struct type *type0)
8682{
8683 struct type *type;
8684
8685 if (type0 == NULL)
8686 return NULL;
8687
8688 if (TYPE_FIXED_INSTANCE (type0))
8689 return type0;
8690
8691 type0 = ada_check_typedef (type0);
8692
8693 switch (TYPE_CODE (type0))
8694 {
8695 default:
8696 return type0;
8697 case TYPE_CODE_STRUCT:
8698 type = dynamic_template_type (type0);
8699 if (type != NULL)
8700 return template_to_static_fixed_type (type);
8701 else
8702 return template_to_static_fixed_type (type0);
8703 case TYPE_CODE_UNION:
8704 type = ada_find_parallel_type (type0, "___XVU");
8705 if (type != NULL)
8706 return template_to_static_fixed_type (type);
8707 else
8708 return template_to_static_fixed_type (type0);
8709 }
8710}
8711
8712/* A static approximation of TYPE with all type wrappers removed. */
8713
8714static struct type *
8715static_unwrap_type (struct type *type)
8716{
8717 if (ada_is_aligner_type (type))
8718 {
8719 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8720 if (ada_type_name (type1) == NULL)
8721 TYPE_NAME (type1) = ada_type_name (type);
8722
8723 return static_unwrap_type (type1);
8724 }
8725 else
8726 {
8727 struct type *raw_real_type = ada_get_base_type (type);
8728
8729 if (raw_real_type == type)
8730 return type;
8731 else
8732 return to_static_fixed_type (raw_real_type);
8733 }
8734}
8735
8736/* In some cases, incomplete and private types require
8737 cross-references that are not resolved as records (for example,
8738 type Foo;
8739 type FooP is access Foo;
8740 V: FooP;
8741 type Foo is array ...;
8742 ). In these cases, since there is no mechanism for producing
8743 cross-references to such types, we instead substitute for FooP a
8744 stub enumeration type that is nowhere resolved, and whose tag is
8745 the name of the actual type. Call these types "non-record stubs". */
8746
8747/* A type equivalent to TYPE that is not a non-record stub, if one
8748 exists, otherwise TYPE. */
8749
8750struct type *
8751ada_check_typedef (struct type *type)
8752{
8753 if (type == NULL)
8754 return NULL;
8755
8756 /* If our type is a typedef type of a fat pointer, then we're done.
8757 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8758 what allows us to distinguish between fat pointers that represent
8759 array types, and fat pointers that represent array access types
8760 (in both cases, the compiler implements them as fat pointers). */
8761 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8762 && is_thick_pntr (ada_typedef_target_type (type)))
8763 return type;
8764
8765 CHECK_TYPEDEF (type);
8766 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8767 || !TYPE_STUB (type)
8768 || TYPE_TAG_NAME (type) == NULL)
8769 return type;
8770 else
8771 {
8772 const char *name = TYPE_TAG_NAME (type);
8773 struct type *type1 = ada_find_any_type (name);
8774
8775 if (type1 == NULL)
8776 return type;
8777
8778 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8779 stubs pointing to arrays, as we don't create symbols for array
8780 types, only for the typedef-to-array types). If that's the case,
8781 strip the typedef layer. */
8782 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8783 type1 = ada_check_typedef (type1);
8784
8785 return type1;
8786 }
8787}
8788
8789/* A value representing the data at VALADDR/ADDRESS as described by
8790 type TYPE0, but with a standard (static-sized) type that correctly
8791 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8792 type, then return VAL0 [this feature is simply to avoid redundant
8793 creation of struct values]. */
8794
8795static struct value *
8796ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8797 struct value *val0)
8798{
8799 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8800
8801 if (type == type0 && val0 != NULL)
8802 return val0;
8803 else
8804 return value_from_contents_and_address (type, 0, address);
8805}
8806
8807/* A value representing VAL, but with a standard (static-sized) type
8808 that correctly describes it. Does not necessarily create a new
8809 value. */
8810
8811struct value *
8812ada_to_fixed_value (struct value *val)
8813{
8814 val = unwrap_value (val);
8815 val = ada_to_fixed_value_create (value_type (val),
8816 value_address (val),
8817 val);
8818 return val;
8819}
8820\f
8821
8822/* Attributes */
8823
8824/* Table mapping attribute numbers to names.
8825 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8826
8827static const char *attribute_names[] = {
8828 "<?>",
8829
8830 "first",
8831 "last",
8832 "length",
8833 "image",
8834 "max",
8835 "min",
8836 "modulus",
8837 "pos",
8838 "size",
8839 "tag",
8840 "val",
8841 0
8842};
8843
8844const char *
8845ada_attribute_name (enum exp_opcode n)
8846{
8847 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8848 return attribute_names[n - OP_ATR_FIRST + 1];
8849 else
8850 return attribute_names[0];
8851}
8852
8853/* Evaluate the 'POS attribute applied to ARG. */
8854
8855static LONGEST
8856pos_atr (struct value *arg)
8857{
8858 struct value *val = coerce_ref (arg);
8859 struct type *type = value_type (val);
8860
8861 if (!discrete_type_p (type))
8862 error (_("'POS only defined on discrete types"));
8863
8864 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8865 {
8866 int i;
8867 LONGEST v = value_as_long (val);
8868
8869 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8870 {
8871 if (v == TYPE_FIELD_ENUMVAL (type, i))
8872 return i;
8873 }
8874 error (_("enumeration value is invalid: can't find 'POS"));
8875 }
8876 else
8877 return value_as_long (val);
8878}
8879
8880static struct value *
8881value_pos_atr (struct type *type, struct value *arg)
8882{
8883 return value_from_longest (type, pos_atr (arg));
8884}
8885
8886/* Evaluate the TYPE'VAL attribute applied to ARG. */
8887
8888static struct value *
8889value_val_atr (struct type *type, struct value *arg)
8890{
8891 if (!discrete_type_p (type))
8892 error (_("'VAL only defined on discrete types"));
8893 if (!integer_type_p (value_type (arg)))
8894 error (_("'VAL requires integral argument"));
8895
8896 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8897 {
8898 long pos = value_as_long (arg);
8899
8900 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8901 error (_("argument to 'VAL out of range"));
8902 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8903 }
8904 else
8905 return value_from_longest (type, value_as_long (arg));
8906}
8907\f
8908
8909 /* Evaluation */
8910
8911/* True if TYPE appears to be an Ada character type.
8912 [At the moment, this is true only for Character and Wide_Character;
8913 It is a heuristic test that could stand improvement]. */
8914
8915int
8916ada_is_character_type (struct type *type)
8917{
8918 const char *name;
8919
8920 /* If the type code says it's a character, then assume it really is,
8921 and don't check any further. */
8922 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8923 return 1;
8924
8925 /* Otherwise, assume it's a character type iff it is a discrete type
8926 with a known character type name. */
8927 name = ada_type_name (type);
8928 return (name != NULL
8929 && (TYPE_CODE (type) == TYPE_CODE_INT
8930 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8931 && (strcmp (name, "character") == 0
8932 || strcmp (name, "wide_character") == 0
8933 || strcmp (name, "wide_wide_character") == 0
8934 || strcmp (name, "unsigned char") == 0));
8935}
8936
8937/* True if TYPE appears to be an Ada string type. */
8938
8939int
8940ada_is_string_type (struct type *type)
8941{
8942 type = ada_check_typedef (type);
8943 if (type != NULL
8944 && TYPE_CODE (type) != TYPE_CODE_PTR
8945 && (ada_is_simple_array_type (type)
8946 || ada_is_array_descriptor_type (type))
8947 && ada_array_arity (type) == 1)
8948 {
8949 struct type *elttype = ada_array_element_type (type, 1);
8950
8951 return ada_is_character_type (elttype);
8952 }
8953 else
8954 return 0;
8955}
8956
8957/* The compiler sometimes provides a parallel XVS type for a given
8958 PAD type. Normally, it is safe to follow the PAD type directly,
8959 but older versions of the compiler have a bug that causes the offset
8960 of its "F" field to be wrong. Following that field in that case
8961 would lead to incorrect results, but this can be worked around
8962 by ignoring the PAD type and using the associated XVS type instead.
8963
8964 Set to True if the debugger should trust the contents of PAD types.
8965 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8966static int trust_pad_over_xvs = 1;
8967
8968/* True if TYPE is a struct type introduced by the compiler to force the
8969 alignment of a value. Such types have a single field with a
8970 distinctive name. */
8971
8972int
8973ada_is_aligner_type (struct type *type)
8974{
8975 type = ada_check_typedef (type);
8976
8977 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8978 return 0;
8979
8980 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8981 && TYPE_NFIELDS (type) == 1
8982 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8983}
8984
8985/* If there is an ___XVS-convention type parallel to SUBTYPE, return
8986 the parallel type. */
8987
8988struct type *
8989ada_get_base_type (struct type *raw_type)
8990{
8991 struct type *real_type_namer;
8992 struct type *raw_real_type;
8993
8994 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8995 return raw_type;
8996
8997 if (ada_is_aligner_type (raw_type))
8998 /* The encoding specifies that we should always use the aligner type.
8999 So, even if this aligner type has an associated XVS type, we should
9000 simply ignore it.
9001
9002 According to the compiler gurus, an XVS type parallel to an aligner
9003 type may exist because of a stabs limitation. In stabs, aligner
9004 types are empty because the field has a variable-sized type, and
9005 thus cannot actually be used as an aligner type. As a result,
9006 we need the associated parallel XVS type to decode the type.
9007 Since the policy in the compiler is to not change the internal
9008 representation based on the debugging info format, we sometimes
9009 end up having a redundant XVS type parallel to the aligner type. */
9010 return raw_type;
9011
9012 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9013 if (real_type_namer == NULL
9014 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9015 || TYPE_NFIELDS (real_type_namer) != 1)
9016 return raw_type;
9017
9018 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9019 {
9020 /* This is an older encoding form where the base type needs to be
9021 looked up by name. We prefer the newer enconding because it is
9022 more efficient. */
9023 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9024 if (raw_real_type == NULL)
9025 return raw_type;
9026 else
9027 return raw_real_type;
9028 }
9029
9030 /* The field in our XVS type is a reference to the base type. */
9031 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9032}
9033
9034/* The type of value designated by TYPE, with all aligners removed. */
9035
9036struct type *
9037ada_aligned_type (struct type *type)
9038{
9039 if (ada_is_aligner_type (type))
9040 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9041 else
9042 return ada_get_base_type (type);
9043}
9044
9045
9046/* The address of the aligned value in an object at address VALADDR
9047 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9048
9049const gdb_byte *
9050ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9051{
9052 if (ada_is_aligner_type (type))
9053 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9054 valaddr +
9055 TYPE_FIELD_BITPOS (type,
9056 0) / TARGET_CHAR_BIT);
9057 else
9058 return valaddr;
9059}
9060
9061
9062
9063/* The printed representation of an enumeration literal with encoded
9064 name NAME. The value is good to the next call of ada_enum_name. */
9065const char *
9066ada_enum_name (const char *name)
9067{
9068 static char *result;
9069 static size_t result_len = 0;
9070 char *tmp;
9071
9072 /* First, unqualify the enumeration name:
9073 1. Search for the last '.' character. If we find one, then skip
9074 all the preceding characters, the unqualified name starts
9075 right after that dot.
9076 2. Otherwise, we may be debugging on a target where the compiler
9077 translates dots into "__". Search forward for double underscores,
9078 but stop searching when we hit an overloading suffix, which is
9079 of the form "__" followed by digits. */
9080
9081 tmp = strrchr (name, '.');
9082 if (tmp != NULL)
9083 name = tmp + 1;
9084 else
9085 {
9086 while ((tmp = strstr (name, "__")) != NULL)
9087 {
9088 if (isdigit (tmp[2]))
9089 break;
9090 else
9091 name = tmp + 2;
9092 }
9093 }
9094
9095 if (name[0] == 'Q')
9096 {
9097 int v;
9098
9099 if (name[1] == 'U' || name[1] == 'W')
9100 {
9101 if (sscanf (name + 2, "%x", &v) != 1)
9102 return name;
9103 }
9104 else
9105 return name;
9106
9107 GROW_VECT (result, result_len, 16);
9108 if (isascii (v) && isprint (v))
9109 xsnprintf (result, result_len, "'%c'", v);
9110 else if (name[1] == 'U')
9111 xsnprintf (result, result_len, "[\"%02x\"]", v);
9112 else
9113 xsnprintf (result, result_len, "[\"%04x\"]", v);
9114
9115 return result;
9116 }
9117 else
9118 {
9119 tmp = strstr (name, "__");
9120 if (tmp == NULL)
9121 tmp = strstr (name, "$");
9122 if (tmp != NULL)
9123 {
9124 GROW_VECT (result, result_len, tmp - name + 1);
9125 strncpy (result, name, tmp - name);
9126 result[tmp - name] = '\0';
9127 return result;
9128 }
9129
9130 return name;
9131 }
9132}
9133
9134/* Evaluate the subexpression of EXP starting at *POS as for
9135 evaluate_type, updating *POS to point just past the evaluated
9136 expression. */
9137
9138static struct value *
9139evaluate_subexp_type (struct expression *exp, int *pos)
9140{
9141 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9142}
9143
9144/* If VAL is wrapped in an aligner or subtype wrapper, return the
9145 value it wraps. */
9146
9147static struct value *
9148unwrap_value (struct value *val)
9149{
9150 struct type *type = ada_check_typedef (value_type (val));
9151
9152 if (ada_is_aligner_type (type))
9153 {
9154 struct value *v = ada_value_struct_elt (val, "F", 0);
9155 struct type *val_type = ada_check_typedef (value_type (v));
9156
9157 if (ada_type_name (val_type) == NULL)
9158 TYPE_NAME (val_type) = ada_type_name (type);
9159
9160 return unwrap_value (v);
9161 }
9162 else
9163 {
9164 struct type *raw_real_type =
9165 ada_check_typedef (ada_get_base_type (type));
9166
9167 /* If there is no parallel XVS or XVE type, then the value is
9168 already unwrapped. Return it without further modification. */
9169 if ((type == raw_real_type)
9170 && ada_find_parallel_type (type, "___XVE") == NULL)
9171 return val;
9172
9173 return
9174 coerce_unspec_val_to_type
9175 (val, ada_to_fixed_type (raw_real_type, 0,
9176 value_address (val),
9177 NULL, 1));
9178 }
9179}
9180
9181static struct value *
9182cast_to_fixed (struct type *type, struct value *arg)
9183{
9184 LONGEST val;
9185
9186 if (type == value_type (arg))
9187 return arg;
9188 else if (ada_is_fixed_point_type (value_type (arg)))
9189 val = ada_float_to_fixed (type,
9190 ada_fixed_to_float (value_type (arg),
9191 value_as_long (arg)));
9192 else
9193 {
9194 DOUBLEST argd = value_as_double (arg);
9195
9196 val = ada_float_to_fixed (type, argd);
9197 }
9198
9199 return value_from_longest (type, val);
9200}
9201
9202static struct value *
9203cast_from_fixed (struct type *type, struct value *arg)
9204{
9205 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9206 value_as_long (arg));
9207
9208 return value_from_double (type, val);
9209}
9210
9211/* Given two array types T1 and T2, return nonzero iff both arrays
9212 contain the same number of elements. */
9213
9214static int
9215ada_same_array_size_p (struct type *t1, struct type *t2)
9216{
9217 LONGEST lo1, hi1, lo2, hi2;
9218
9219 /* Get the array bounds in order to verify that the size of
9220 the two arrays match. */
9221 if (!get_array_bounds (t1, &lo1, &hi1)
9222 || !get_array_bounds (t2, &lo2, &hi2))
9223 error (_("unable to determine array bounds"));
9224
9225 /* To make things easier for size comparison, normalize a bit
9226 the case of empty arrays by making sure that the difference
9227 between upper bound and lower bound is always -1. */
9228 if (lo1 > hi1)
9229 hi1 = lo1 - 1;
9230 if (lo2 > hi2)
9231 hi2 = lo2 - 1;
9232
9233 return (hi1 - lo1 == hi2 - lo2);
9234}
9235
9236/* Assuming that VAL is an array of integrals, and TYPE represents
9237 an array with the same number of elements, but with wider integral
9238 elements, return an array "casted" to TYPE. In practice, this
9239 means that the returned array is built by casting each element
9240 of the original array into TYPE's (wider) element type. */
9241
9242static struct value *
9243ada_promote_array_of_integrals (struct type *type, struct value *val)
9244{
9245 struct type *elt_type = TYPE_TARGET_TYPE (type);
9246 LONGEST lo, hi;
9247 struct value *res;
9248 LONGEST i;
9249
9250 /* Verify that both val and type are arrays of scalars, and
9251 that the size of val's elements is smaller than the size
9252 of type's element. */
9253 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9254 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9255 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9256 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9257 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9258 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9259
9260 if (!get_array_bounds (type, &lo, &hi))
9261 error (_("unable to determine array bounds"));
9262
9263 res = allocate_value (type);
9264
9265 /* Promote each array element. */
9266 for (i = 0; i < hi - lo + 1; i++)
9267 {
9268 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9269
9270 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9271 value_contents_all (elt), TYPE_LENGTH (elt_type));
9272 }
9273
9274 return res;
9275}
9276
9277/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9278 return the converted value. */
9279
9280static struct value *
9281coerce_for_assign (struct type *type, struct value *val)
9282{
9283 struct type *type2 = value_type (val);
9284
9285 if (type == type2)
9286 return val;
9287
9288 type2 = ada_check_typedef (type2);
9289 type = ada_check_typedef (type);
9290
9291 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9292 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9293 {
9294 val = ada_value_ind (val);
9295 type2 = value_type (val);
9296 }
9297
9298 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9299 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9300 {
9301 if (!ada_same_array_size_p (type, type2))
9302 error (_("cannot assign arrays of different length"));
9303
9304 if (is_integral_type (TYPE_TARGET_TYPE (type))
9305 && is_integral_type (TYPE_TARGET_TYPE (type2))
9306 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9307 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9308 {
9309 /* Allow implicit promotion of the array elements to
9310 a wider type. */
9311 return ada_promote_array_of_integrals (type, val);
9312 }
9313
9314 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9315 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9316 error (_("Incompatible types in assignment"));
9317 deprecated_set_value_type (val, type);
9318 }
9319 return val;
9320}
9321
9322static struct value *
9323ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9324{
9325 struct value *val;
9326 struct type *type1, *type2;
9327 LONGEST v, v1, v2;
9328
9329 arg1 = coerce_ref (arg1);
9330 arg2 = coerce_ref (arg2);
9331 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9332 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9333
9334 if (TYPE_CODE (type1) != TYPE_CODE_INT
9335 || TYPE_CODE (type2) != TYPE_CODE_INT)
9336 return value_binop (arg1, arg2, op);
9337
9338 switch (op)
9339 {
9340 case BINOP_MOD:
9341 case BINOP_DIV:
9342 case BINOP_REM:
9343 break;
9344 default:
9345 return value_binop (arg1, arg2, op);
9346 }
9347
9348 v2 = value_as_long (arg2);
9349 if (v2 == 0)
9350 error (_("second operand of %s must not be zero."), op_string (op));
9351
9352 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9353 return value_binop (arg1, arg2, op);
9354
9355 v1 = value_as_long (arg1);
9356 switch (op)
9357 {
9358 case BINOP_DIV:
9359 v = v1 / v2;
9360 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9361 v += v > 0 ? -1 : 1;
9362 break;
9363 case BINOP_REM:
9364 v = v1 % v2;
9365 if (v * v1 < 0)
9366 v -= v2;
9367 break;
9368 default:
9369 /* Should not reach this point. */
9370 v = 0;
9371 }
9372
9373 val = allocate_value (type1);
9374 store_unsigned_integer (value_contents_raw (val),
9375 TYPE_LENGTH (value_type (val)),
9376 gdbarch_byte_order (get_type_arch (type1)), v);
9377 return val;
9378}
9379
9380static int
9381ada_value_equal (struct value *arg1, struct value *arg2)
9382{
9383 if (ada_is_direct_array_type (value_type (arg1))
9384 || ada_is_direct_array_type (value_type (arg2)))
9385 {
9386 /* Automatically dereference any array reference before
9387 we attempt to perform the comparison. */
9388 arg1 = ada_coerce_ref (arg1);
9389 arg2 = ada_coerce_ref (arg2);
9390
9391 arg1 = ada_coerce_to_simple_array (arg1);
9392 arg2 = ada_coerce_to_simple_array (arg2);
9393 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9394 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9395 error (_("Attempt to compare array with non-array"));
9396 /* FIXME: The following works only for types whose
9397 representations use all bits (no padding or undefined bits)
9398 and do not have user-defined equality. */
9399 return
9400 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9401 && memcmp (value_contents (arg1), value_contents (arg2),
9402 TYPE_LENGTH (value_type (arg1))) == 0;
9403 }
9404 return value_equal (arg1, arg2);
9405}
9406
9407/* Total number of component associations in the aggregate starting at
9408 index PC in EXP. Assumes that index PC is the start of an
9409 OP_AGGREGATE. */
9410
9411static int
9412num_component_specs (struct expression *exp, int pc)
9413{
9414 int n, m, i;
9415
9416 m = exp->elts[pc + 1].longconst;
9417 pc += 3;
9418 n = 0;
9419 for (i = 0; i < m; i += 1)
9420 {
9421 switch (exp->elts[pc].opcode)
9422 {
9423 default:
9424 n += 1;
9425 break;
9426 case OP_CHOICES:
9427 n += exp->elts[pc + 1].longconst;
9428 break;
9429 }
9430 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9431 }
9432 return n;
9433}
9434
9435/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9436 component of LHS (a simple array or a record), updating *POS past
9437 the expression, assuming that LHS is contained in CONTAINER. Does
9438 not modify the inferior's memory, nor does it modify LHS (unless
9439 LHS == CONTAINER). */
9440
9441static void
9442assign_component (struct value *container, struct value *lhs, LONGEST index,
9443 struct expression *exp, int *pos)
9444{
9445 struct value *mark = value_mark ();
9446 struct value *elt;
9447
9448 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9449 {
9450 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9451 struct value *index_val = value_from_longest (index_type, index);
9452
9453 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9454 }
9455 else
9456 {
9457 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9458 elt = ada_to_fixed_value (elt);
9459 }
9460
9461 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9462 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9463 else
9464 value_assign_to_component (container, elt,
9465 ada_evaluate_subexp (NULL, exp, pos,
9466 EVAL_NORMAL));
9467
9468 value_free_to_mark (mark);
9469}
9470
9471/* Assuming that LHS represents an lvalue having a record or array
9472 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9473 of that aggregate's value to LHS, advancing *POS past the
9474 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9475 lvalue containing LHS (possibly LHS itself). Does not modify
9476 the inferior's memory, nor does it modify the contents of
9477 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9478
9479static struct value *
9480assign_aggregate (struct value *container,
9481 struct value *lhs, struct expression *exp,
9482 int *pos, enum noside noside)
9483{
9484 struct type *lhs_type;
9485 int n = exp->elts[*pos+1].longconst;
9486 LONGEST low_index, high_index;
9487 int num_specs;
9488 LONGEST *indices;
9489 int max_indices, num_indices;
9490 int i;
9491
9492 *pos += 3;
9493 if (noside != EVAL_NORMAL)
9494 {
9495 for (i = 0; i < n; i += 1)
9496 ada_evaluate_subexp (NULL, exp, pos, noside);
9497 return container;
9498 }
9499
9500 container = ada_coerce_ref (container);
9501 if (ada_is_direct_array_type (value_type (container)))
9502 container = ada_coerce_to_simple_array (container);
9503 lhs = ada_coerce_ref (lhs);
9504 if (!deprecated_value_modifiable (lhs))
9505 error (_("Left operand of assignment is not a modifiable lvalue."));
9506
9507 lhs_type = value_type (lhs);
9508 if (ada_is_direct_array_type (lhs_type))
9509 {
9510 lhs = ada_coerce_to_simple_array (lhs);
9511 lhs_type = value_type (lhs);
9512 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9513 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9514 }
9515 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9516 {
9517 low_index = 0;
9518 high_index = num_visible_fields (lhs_type) - 1;
9519 }
9520 else
9521 error (_("Left-hand side must be array or record."));
9522
9523 num_specs = num_component_specs (exp, *pos - 3);
9524 max_indices = 4 * num_specs + 4;
9525 indices = alloca (max_indices * sizeof (indices[0]));
9526 indices[0] = indices[1] = low_index - 1;
9527 indices[2] = indices[3] = high_index + 1;
9528 num_indices = 4;
9529
9530 for (i = 0; i < n; i += 1)
9531 {
9532 switch (exp->elts[*pos].opcode)
9533 {
9534 case OP_CHOICES:
9535 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9536 &num_indices, max_indices,
9537 low_index, high_index);
9538 break;
9539 case OP_POSITIONAL:
9540 aggregate_assign_positional (container, lhs, exp, pos, indices,
9541 &num_indices, max_indices,
9542 low_index, high_index);
9543 break;
9544 case OP_OTHERS:
9545 if (i != n-1)
9546 error (_("Misplaced 'others' clause"));
9547 aggregate_assign_others (container, lhs, exp, pos, indices,
9548 num_indices, low_index, high_index);
9549 break;
9550 default:
9551 error (_("Internal error: bad aggregate clause"));
9552 }
9553 }
9554
9555 return container;
9556}
9557
9558/* Assign into the component of LHS indexed by the OP_POSITIONAL
9559 construct at *POS, updating *POS past the construct, given that
9560 the positions are relative to lower bound LOW, where HIGH is the
9561 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9562 updating *NUM_INDICES as needed. CONTAINER is as for
9563 assign_aggregate. */
9564static void
9565aggregate_assign_positional (struct value *container,
9566 struct value *lhs, struct expression *exp,
9567 int *pos, LONGEST *indices, int *num_indices,
9568 int max_indices, LONGEST low, LONGEST high)
9569{
9570 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9571
9572 if (ind - 1 == high)
9573 warning (_("Extra components in aggregate ignored."));
9574 if (ind <= high)
9575 {
9576 add_component_interval (ind, ind, indices, num_indices, max_indices);
9577 *pos += 3;
9578 assign_component (container, lhs, ind, exp, pos);
9579 }
9580 else
9581 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9582}
9583
9584/* Assign into the components of LHS indexed by the OP_CHOICES
9585 construct at *POS, updating *POS past the construct, given that
9586 the allowable indices are LOW..HIGH. Record the indices assigned
9587 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9588 needed. CONTAINER is as for assign_aggregate. */
9589static void
9590aggregate_assign_from_choices (struct value *container,
9591 struct value *lhs, struct expression *exp,
9592 int *pos, LONGEST *indices, int *num_indices,
9593 int max_indices, LONGEST low, LONGEST high)
9594{
9595 int j;
9596 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9597 int choice_pos, expr_pc;
9598 int is_array = ada_is_direct_array_type (value_type (lhs));
9599
9600 choice_pos = *pos += 3;
9601
9602 for (j = 0; j < n_choices; j += 1)
9603 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9604 expr_pc = *pos;
9605 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9606
9607 for (j = 0; j < n_choices; j += 1)
9608 {
9609 LONGEST lower, upper;
9610 enum exp_opcode op = exp->elts[choice_pos].opcode;
9611
9612 if (op == OP_DISCRETE_RANGE)
9613 {
9614 choice_pos += 1;
9615 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9616 EVAL_NORMAL));
9617 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9618 EVAL_NORMAL));
9619 }
9620 else if (is_array)
9621 {
9622 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9623 EVAL_NORMAL));
9624 upper = lower;
9625 }
9626 else
9627 {
9628 int ind;
9629 const char *name;
9630
9631 switch (op)
9632 {
9633 case OP_NAME:
9634 name = &exp->elts[choice_pos + 2].string;
9635 break;
9636 case OP_VAR_VALUE:
9637 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9638 break;
9639 default:
9640 error (_("Invalid record component association."));
9641 }
9642 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9643 ind = 0;
9644 if (! find_struct_field (name, value_type (lhs), 0,
9645 NULL, NULL, NULL, NULL, &ind))
9646 error (_("Unknown component name: %s."), name);
9647 lower = upper = ind;
9648 }
9649
9650 if (lower <= upper && (lower < low || upper > high))
9651 error (_("Index in component association out of bounds."));
9652
9653 add_component_interval (lower, upper, indices, num_indices,
9654 max_indices);
9655 while (lower <= upper)
9656 {
9657 int pos1;
9658
9659 pos1 = expr_pc;
9660 assign_component (container, lhs, lower, exp, &pos1);
9661 lower += 1;
9662 }
9663 }
9664}
9665
9666/* Assign the value of the expression in the OP_OTHERS construct in
9667 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9668 have not been previously assigned. The index intervals already assigned
9669 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9670 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9671static void
9672aggregate_assign_others (struct value *container,
9673 struct value *lhs, struct expression *exp,
9674 int *pos, LONGEST *indices, int num_indices,
9675 LONGEST low, LONGEST high)
9676{
9677 int i;
9678 int expr_pc = *pos + 1;
9679
9680 for (i = 0; i < num_indices - 2; i += 2)
9681 {
9682 LONGEST ind;
9683
9684 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9685 {
9686 int localpos;
9687
9688 localpos = expr_pc;
9689 assign_component (container, lhs, ind, exp, &localpos);
9690 }
9691 }
9692 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9693}
9694
9695/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9696 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9697 modifying *SIZE as needed. It is an error if *SIZE exceeds
9698 MAX_SIZE. The resulting intervals do not overlap. */
9699static void
9700add_component_interval (LONGEST low, LONGEST high,
9701 LONGEST* indices, int *size, int max_size)
9702{
9703 int i, j;
9704
9705 for (i = 0; i < *size; i += 2) {
9706 if (high >= indices[i] && low <= indices[i + 1])
9707 {
9708 int kh;
9709
9710 for (kh = i + 2; kh < *size; kh += 2)
9711 if (high < indices[kh])
9712 break;
9713 if (low < indices[i])
9714 indices[i] = low;
9715 indices[i + 1] = indices[kh - 1];
9716 if (high > indices[i + 1])
9717 indices[i + 1] = high;
9718 memcpy (indices + i + 2, indices + kh, *size - kh);
9719 *size -= kh - i - 2;
9720 return;
9721 }
9722 else if (high < indices[i])
9723 break;
9724 }
9725
9726 if (*size == max_size)
9727 error (_("Internal error: miscounted aggregate components."));
9728 *size += 2;
9729 for (j = *size-1; j >= i+2; j -= 1)
9730 indices[j] = indices[j - 2];
9731 indices[i] = low;
9732 indices[i + 1] = high;
9733}
9734
9735/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9736 is different. */
9737
9738static struct value *
9739ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9740{
9741 if (type == ada_check_typedef (value_type (arg2)))
9742 return arg2;
9743
9744 if (ada_is_fixed_point_type (type))
9745 return (cast_to_fixed (type, arg2));
9746
9747 if (ada_is_fixed_point_type (value_type (arg2)))
9748 return cast_from_fixed (type, arg2);
9749
9750 return value_cast (type, arg2);
9751}
9752
9753/* Evaluating Ada expressions, and printing their result.
9754 ------------------------------------------------------
9755
9756 1. Introduction:
9757 ----------------
9758
9759 We usually evaluate an Ada expression in order to print its value.
9760 We also evaluate an expression in order to print its type, which
9761 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9762 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9763 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9764 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9765 similar.
9766
9767 Evaluating expressions is a little more complicated for Ada entities
9768 than it is for entities in languages such as C. The main reason for
9769 this is that Ada provides types whose definition might be dynamic.
9770 One example of such types is variant records. Or another example
9771 would be an array whose bounds can only be known at run time.
9772
9773 The following description is a general guide as to what should be
9774 done (and what should NOT be done) in order to evaluate an expression
9775 involving such types, and when. This does not cover how the semantic
9776 information is encoded by GNAT as this is covered separatly. For the
9777 document used as the reference for the GNAT encoding, see exp_dbug.ads
9778 in the GNAT sources.
9779
9780 Ideally, we should embed each part of this description next to its
9781 associated code. Unfortunately, the amount of code is so vast right
9782 now that it's hard to see whether the code handling a particular
9783 situation might be duplicated or not. One day, when the code is
9784 cleaned up, this guide might become redundant with the comments
9785 inserted in the code, and we might want to remove it.
9786
9787 2. ``Fixing'' an Entity, the Simple Case:
9788 -----------------------------------------
9789
9790 When evaluating Ada expressions, the tricky issue is that they may
9791 reference entities whose type contents and size are not statically
9792 known. Consider for instance a variant record:
9793
9794 type Rec (Empty : Boolean := True) is record
9795 case Empty is
9796 when True => null;
9797 when False => Value : Integer;
9798 end case;
9799 end record;
9800 Yes : Rec := (Empty => False, Value => 1);
9801 No : Rec := (empty => True);
9802
9803 The size and contents of that record depends on the value of the
9804 descriminant (Rec.Empty). At this point, neither the debugging
9805 information nor the associated type structure in GDB are able to
9806 express such dynamic types. So what the debugger does is to create
9807 "fixed" versions of the type that applies to the specific object.
9808 We also informally refer to this opperation as "fixing" an object,
9809 which means creating its associated fixed type.
9810
9811 Example: when printing the value of variable "Yes" above, its fixed
9812 type would look like this:
9813
9814 type Rec is record
9815 Empty : Boolean;
9816 Value : Integer;
9817 end record;
9818
9819 On the other hand, if we printed the value of "No", its fixed type
9820 would become:
9821
9822 type Rec is record
9823 Empty : Boolean;
9824 end record;
9825
9826 Things become a little more complicated when trying to fix an entity
9827 with a dynamic type that directly contains another dynamic type,
9828 such as an array of variant records, for instance. There are
9829 two possible cases: Arrays, and records.
9830
9831 3. ``Fixing'' Arrays:
9832 ---------------------
9833
9834 The type structure in GDB describes an array in terms of its bounds,
9835 and the type of its elements. By design, all elements in the array
9836 have the same type and we cannot represent an array of variant elements
9837 using the current type structure in GDB. When fixing an array,
9838 we cannot fix the array element, as we would potentially need one
9839 fixed type per element of the array. As a result, the best we can do
9840 when fixing an array is to produce an array whose bounds and size
9841 are correct (allowing us to read it from memory), but without having
9842 touched its element type. Fixing each element will be done later,
9843 when (if) necessary.
9844
9845 Arrays are a little simpler to handle than records, because the same
9846 amount of memory is allocated for each element of the array, even if
9847 the amount of space actually used by each element differs from element
9848 to element. Consider for instance the following array of type Rec:
9849
9850 type Rec_Array is array (1 .. 2) of Rec;
9851
9852 The actual amount of memory occupied by each element might be different
9853 from element to element, depending on the value of their discriminant.
9854 But the amount of space reserved for each element in the array remains
9855 fixed regardless. So we simply need to compute that size using
9856 the debugging information available, from which we can then determine
9857 the array size (we multiply the number of elements of the array by
9858 the size of each element).
9859
9860 The simplest case is when we have an array of a constrained element
9861 type. For instance, consider the following type declarations:
9862
9863 type Bounded_String (Max_Size : Integer) is
9864 Length : Integer;
9865 Buffer : String (1 .. Max_Size);
9866 end record;
9867 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9868
9869 In this case, the compiler describes the array as an array of
9870 variable-size elements (identified by its XVS suffix) for which
9871 the size can be read in the parallel XVZ variable.
9872
9873 In the case of an array of an unconstrained element type, the compiler
9874 wraps the array element inside a private PAD type. This type should not
9875 be shown to the user, and must be "unwrap"'ed before printing. Note
9876 that we also use the adjective "aligner" in our code to designate
9877 these wrapper types.
9878
9879 In some cases, the size allocated for each element is statically
9880 known. In that case, the PAD type already has the correct size,
9881 and the array element should remain unfixed.
9882
9883 But there are cases when this size is not statically known.
9884 For instance, assuming that "Five" is an integer variable:
9885
9886 type Dynamic is array (1 .. Five) of Integer;
9887 type Wrapper (Has_Length : Boolean := False) is record
9888 Data : Dynamic;
9889 case Has_Length is
9890 when True => Length : Integer;
9891 when False => null;
9892 end case;
9893 end record;
9894 type Wrapper_Array is array (1 .. 2) of Wrapper;
9895
9896 Hello : Wrapper_Array := (others => (Has_Length => True,
9897 Data => (others => 17),
9898 Length => 1));
9899
9900
9901 The debugging info would describe variable Hello as being an
9902 array of a PAD type. The size of that PAD type is not statically
9903 known, but can be determined using a parallel XVZ variable.
9904 In that case, a copy of the PAD type with the correct size should
9905 be used for the fixed array.
9906
9907 3. ``Fixing'' record type objects:
9908 ----------------------------------
9909
9910 Things are slightly different from arrays in the case of dynamic
9911 record types. In this case, in order to compute the associated
9912 fixed type, we need to determine the size and offset of each of
9913 its components. This, in turn, requires us to compute the fixed
9914 type of each of these components.
9915
9916 Consider for instance the example:
9917
9918 type Bounded_String (Max_Size : Natural) is record
9919 Str : String (1 .. Max_Size);
9920 Length : Natural;
9921 end record;
9922 My_String : Bounded_String (Max_Size => 10);
9923
9924 In that case, the position of field "Length" depends on the size
9925 of field Str, which itself depends on the value of the Max_Size
9926 discriminant. In order to fix the type of variable My_String,
9927 we need to fix the type of field Str. Therefore, fixing a variant
9928 record requires us to fix each of its components.
9929
9930 However, if a component does not have a dynamic size, the component
9931 should not be fixed. In particular, fields that use a PAD type
9932 should not fixed. Here is an example where this might happen
9933 (assuming type Rec above):
9934
9935 type Container (Big : Boolean) is record
9936 First : Rec;
9937 After : Integer;
9938 case Big is
9939 when True => Another : Integer;
9940 when False => null;
9941 end case;
9942 end record;
9943 My_Container : Container := (Big => False,
9944 First => (Empty => True),
9945 After => 42);
9946
9947 In that example, the compiler creates a PAD type for component First,
9948 whose size is constant, and then positions the component After just
9949 right after it. The offset of component After is therefore constant
9950 in this case.
9951
9952 The debugger computes the position of each field based on an algorithm
9953 that uses, among other things, the actual position and size of the field
9954 preceding it. Let's now imagine that the user is trying to print
9955 the value of My_Container. If the type fixing was recursive, we would
9956 end up computing the offset of field After based on the size of the
9957 fixed version of field First. And since in our example First has
9958 only one actual field, the size of the fixed type is actually smaller
9959 than the amount of space allocated to that field, and thus we would
9960 compute the wrong offset of field After.
9961
9962 To make things more complicated, we need to watch out for dynamic
9963 components of variant records (identified by the ___XVL suffix in
9964 the component name). Even if the target type is a PAD type, the size
9965 of that type might not be statically known. So the PAD type needs
9966 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9967 we might end up with the wrong size for our component. This can be
9968 observed with the following type declarations:
9969
9970 type Octal is new Integer range 0 .. 7;
9971 type Octal_Array is array (Positive range <>) of Octal;
9972 pragma Pack (Octal_Array);
9973
9974 type Octal_Buffer (Size : Positive) is record
9975 Buffer : Octal_Array (1 .. Size);
9976 Length : Integer;
9977 end record;
9978
9979 In that case, Buffer is a PAD type whose size is unset and needs
9980 to be computed by fixing the unwrapped type.
9981
9982 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9983 ----------------------------------------------------------
9984
9985 Lastly, when should the sub-elements of an entity that remained unfixed
9986 thus far, be actually fixed?
9987
9988 The answer is: Only when referencing that element. For instance
9989 when selecting one component of a record, this specific component
9990 should be fixed at that point in time. Or when printing the value
9991 of a record, each component should be fixed before its value gets
9992 printed. Similarly for arrays, the element of the array should be
9993 fixed when printing each element of the array, or when extracting
9994 one element out of that array. On the other hand, fixing should
9995 not be performed on the elements when taking a slice of an array!
9996
9997 Note that one of the side-effects of miscomputing the offset and
9998 size of each field is that we end up also miscomputing the size
9999 of the containing type. This can have adverse results when computing
10000 the value of an entity. GDB fetches the value of an entity based
10001 on the size of its type, and thus a wrong size causes GDB to fetch
10002 the wrong amount of memory. In the case where the computed size is
10003 too small, GDB fetches too little data to print the value of our
10004 entiry. Results in this case as unpredicatble, as we usually read
10005 past the buffer containing the data =:-o. */
10006
10007/* Implement the evaluate_exp routine in the exp_descriptor structure
10008 for the Ada language. */
10009
10010static struct value *
10011ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10012 int *pos, enum noside noside)
10013{
10014 enum exp_opcode op;
10015 int tem;
10016 int pc;
10017 int preeval_pos;
10018 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10019 struct type *type;
10020 int nargs, oplen;
10021 struct value **argvec;
10022
10023 pc = *pos;
10024 *pos += 1;
10025 op = exp->elts[pc].opcode;
10026
10027 switch (op)
10028 {
10029 default:
10030 *pos -= 1;
10031 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10032
10033 if (noside == EVAL_NORMAL)
10034 arg1 = unwrap_value (arg1);
10035
10036 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10037 then we need to perform the conversion manually, because
10038 evaluate_subexp_standard doesn't do it. This conversion is
10039 necessary in Ada because the different kinds of float/fixed
10040 types in Ada have different representations.
10041
10042 Similarly, we need to perform the conversion from OP_LONG
10043 ourselves. */
10044 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10045 arg1 = ada_value_cast (expect_type, arg1, noside);
10046
10047 return arg1;
10048
10049 case OP_STRING:
10050 {
10051 struct value *result;
10052
10053 *pos -= 1;
10054 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10055 /* The result type will have code OP_STRING, bashed there from
10056 OP_ARRAY. Bash it back. */
10057 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10058 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10059 return result;
10060 }
10061
10062 case UNOP_CAST:
10063 (*pos) += 2;
10064 type = exp->elts[pc + 1].type;
10065 arg1 = evaluate_subexp (type, exp, pos, noside);
10066 if (noside == EVAL_SKIP)
10067 goto nosideret;
10068 arg1 = ada_value_cast (type, arg1, noside);
10069 return arg1;
10070
10071 case UNOP_QUAL:
10072 (*pos) += 2;
10073 type = exp->elts[pc + 1].type;
10074 return ada_evaluate_subexp (type, exp, pos, noside);
10075
10076 case BINOP_ASSIGN:
10077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10078 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10079 {
10080 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10081 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10082 return arg1;
10083 return ada_value_assign (arg1, arg1);
10084 }
10085 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10086 except if the lhs of our assignment is a convenience variable.
10087 In the case of assigning to a convenience variable, the lhs
10088 should be exactly the result of the evaluation of the rhs. */
10089 type = value_type (arg1);
10090 if (VALUE_LVAL (arg1) == lval_internalvar)
10091 type = NULL;
10092 arg2 = evaluate_subexp (type, exp, pos, noside);
10093 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10094 return arg1;
10095 if (ada_is_fixed_point_type (value_type (arg1)))
10096 arg2 = cast_to_fixed (value_type (arg1), arg2);
10097 else if (ada_is_fixed_point_type (value_type (arg2)))
10098 error
10099 (_("Fixed-point values must be assigned to fixed-point variables"));
10100 else
10101 arg2 = coerce_for_assign (value_type (arg1), arg2);
10102 return ada_value_assign (arg1, arg2);
10103
10104 case BINOP_ADD:
10105 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10106 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10107 if (noside == EVAL_SKIP)
10108 goto nosideret;
10109 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10110 return (value_from_longest
10111 (value_type (arg1),
10112 value_as_long (arg1) + value_as_long (arg2)));
10113 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10114 return (value_from_longest
10115 (value_type (arg2),
10116 value_as_long (arg1) + value_as_long (arg2)));
10117 if ((ada_is_fixed_point_type (value_type (arg1))
10118 || ada_is_fixed_point_type (value_type (arg2)))
10119 && value_type (arg1) != value_type (arg2))
10120 error (_("Operands of fixed-point addition must have the same type"));
10121 /* Do the addition, and cast the result to the type of the first
10122 argument. We cannot cast the result to a reference type, so if
10123 ARG1 is a reference type, find its underlying type. */
10124 type = value_type (arg1);
10125 while (TYPE_CODE (type) == TYPE_CODE_REF)
10126 type = TYPE_TARGET_TYPE (type);
10127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10128 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10129
10130 case BINOP_SUB:
10131 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10132 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10133 if (noside == EVAL_SKIP)
10134 goto nosideret;
10135 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10136 return (value_from_longest
10137 (value_type (arg1),
10138 value_as_long (arg1) - value_as_long (arg2)));
10139 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10140 return (value_from_longest
10141 (value_type (arg2),
10142 value_as_long (arg1) - value_as_long (arg2)));
10143 if ((ada_is_fixed_point_type (value_type (arg1))
10144 || ada_is_fixed_point_type (value_type (arg2)))
10145 && value_type (arg1) != value_type (arg2))
10146 error (_("Operands of fixed-point subtraction "
10147 "must have the same type"));
10148 /* Do the substraction, and cast the result to the type of the first
10149 argument. We cannot cast the result to a reference type, so if
10150 ARG1 is a reference type, find its underlying type. */
10151 type = value_type (arg1);
10152 while (TYPE_CODE (type) == TYPE_CODE_REF)
10153 type = TYPE_TARGET_TYPE (type);
10154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10155 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10156
10157 case BINOP_MUL:
10158 case BINOP_DIV:
10159 case BINOP_REM:
10160 case BINOP_MOD:
10161 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10162 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10163 if (noside == EVAL_SKIP)
10164 goto nosideret;
10165 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10166 {
10167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10168 return value_zero (value_type (arg1), not_lval);
10169 }
10170 else
10171 {
10172 type = builtin_type (exp->gdbarch)->builtin_double;
10173 if (ada_is_fixed_point_type (value_type (arg1)))
10174 arg1 = cast_from_fixed (type, arg1);
10175 if (ada_is_fixed_point_type (value_type (arg2)))
10176 arg2 = cast_from_fixed (type, arg2);
10177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10178 return ada_value_binop (arg1, arg2, op);
10179 }
10180
10181 case BINOP_EQUAL:
10182 case BINOP_NOTEQUAL:
10183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10184 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10185 if (noside == EVAL_SKIP)
10186 goto nosideret;
10187 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10188 tem = 0;
10189 else
10190 {
10191 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10192 tem = ada_value_equal (arg1, arg2);
10193 }
10194 if (op == BINOP_NOTEQUAL)
10195 tem = !tem;
10196 type = language_bool_type (exp->language_defn, exp->gdbarch);
10197 return value_from_longest (type, (LONGEST) tem);
10198
10199 case UNOP_NEG:
10200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10201 if (noside == EVAL_SKIP)
10202 goto nosideret;
10203 else if (ada_is_fixed_point_type (value_type (arg1)))
10204 return value_cast (value_type (arg1), value_neg (arg1));
10205 else
10206 {
10207 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10208 return value_neg (arg1);
10209 }
10210
10211 case BINOP_LOGICAL_AND:
10212 case BINOP_LOGICAL_OR:
10213 case UNOP_LOGICAL_NOT:
10214 {
10215 struct value *val;
10216
10217 *pos -= 1;
10218 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10219 type = language_bool_type (exp->language_defn, exp->gdbarch);
10220 return value_cast (type, val);
10221 }
10222
10223 case BINOP_BITWISE_AND:
10224 case BINOP_BITWISE_IOR:
10225 case BINOP_BITWISE_XOR:
10226 {
10227 struct value *val;
10228
10229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10230 *pos = pc;
10231 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10232
10233 return value_cast (value_type (arg1), val);
10234 }
10235
10236 case OP_VAR_VALUE:
10237 *pos -= 1;
10238
10239 if (noside == EVAL_SKIP)
10240 {
10241 *pos += 4;
10242 goto nosideret;
10243 }
10244
10245 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10246 /* Only encountered when an unresolved symbol occurs in a
10247 context other than a function call, in which case, it is
10248 invalid. */
10249 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10250 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10251
10252 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10253 {
10254 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10255 /* Check to see if this is a tagged type. We also need to handle
10256 the case where the type is a reference to a tagged type, but
10257 we have to be careful to exclude pointers to tagged types.
10258 The latter should be shown as usual (as a pointer), whereas
10259 a reference should mostly be transparent to the user. */
10260 if (ada_is_tagged_type (type, 0)
10261 || (TYPE_CODE (type) == TYPE_CODE_REF
10262 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10263 {
10264 /* Tagged types are a little special in the fact that the real
10265 type is dynamic and can only be determined by inspecting the
10266 object's tag. This means that we need to get the object's
10267 value first (EVAL_NORMAL) and then extract the actual object
10268 type from its tag.
10269
10270 Note that we cannot skip the final step where we extract
10271 the object type from its tag, because the EVAL_NORMAL phase
10272 results in dynamic components being resolved into fixed ones.
10273 This can cause problems when trying to print the type
10274 description of tagged types whose parent has a dynamic size:
10275 We use the type name of the "_parent" component in order
10276 to print the name of the ancestor type in the type description.
10277 If that component had a dynamic size, the resolution into
10278 a fixed type would result in the loss of that type name,
10279 thus preventing us from printing the name of the ancestor
10280 type in the type description. */
10281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10282
10283 if (TYPE_CODE (type) != TYPE_CODE_REF)
10284 {
10285 struct type *actual_type;
10286
10287 actual_type = type_from_tag (ada_value_tag (arg1));
10288 if (actual_type == NULL)
10289 /* If, for some reason, we were unable to determine
10290 the actual type from the tag, then use the static
10291 approximation that we just computed as a fallback.
10292 This can happen if the debugging information is
10293 incomplete, for instance. */
10294 actual_type = type;
10295 return value_zero (actual_type, not_lval);
10296 }
10297 else
10298 {
10299 /* In the case of a ref, ada_coerce_ref takes care
10300 of determining the actual type. But the evaluation
10301 should return a ref as it should be valid to ask
10302 for its address; so rebuild a ref after coerce. */
10303 arg1 = ada_coerce_ref (arg1);
10304 return value_ref (arg1);
10305 }
10306 }
10307
10308 /* Records and unions for which GNAT encodings have been
10309 generated need to be statically fixed as well.
10310 Otherwise, non-static fixing produces a type where
10311 all dynamic properties are removed, which prevents "ptype"
10312 from being able to completely describe the type.
10313 For instance, a case statement in a variant record would be
10314 replaced by the relevant components based on the actual
10315 value of the discriminants. */
10316 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10317 && dynamic_template_type (type) != NULL)
10318 || (TYPE_CODE (type) == TYPE_CODE_UNION
10319 && ada_find_parallel_type (type, "___XVU") != NULL))
10320 {
10321 *pos += 4;
10322 return value_zero (to_static_fixed_type (type), not_lval);
10323 }
10324 }
10325
10326 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10327 return ada_to_fixed_value (arg1);
10328
10329 case OP_FUNCALL:
10330 (*pos) += 2;
10331
10332 /* Allocate arg vector, including space for the function to be
10333 called in argvec[0] and a terminating NULL. */
10334 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10335 argvec =
10336 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10337
10338 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10339 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10340 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10341 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10342 else
10343 {
10344 for (tem = 0; tem <= nargs; tem += 1)
10345 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10346 argvec[tem] = 0;
10347
10348 if (noside == EVAL_SKIP)
10349 goto nosideret;
10350 }
10351
10352 if (ada_is_constrained_packed_array_type
10353 (desc_base_type (value_type (argvec[0]))))
10354 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10355 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10356 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10357 /* This is a packed array that has already been fixed, and
10358 therefore already coerced to a simple array. Nothing further
10359 to do. */
10360 ;
10361 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10362 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10363 && VALUE_LVAL (argvec[0]) == lval_memory))
10364 argvec[0] = value_addr (argvec[0]);
10365
10366 type = ada_check_typedef (value_type (argvec[0]));
10367
10368 /* Ada allows us to implicitly dereference arrays when subscripting
10369 them. So, if this is an array typedef (encoding use for array
10370 access types encoded as fat pointers), strip it now. */
10371 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10372 type = ada_typedef_target_type (type);
10373
10374 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10375 {
10376 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10377 {
10378 case TYPE_CODE_FUNC:
10379 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10380 break;
10381 case TYPE_CODE_ARRAY:
10382 break;
10383 case TYPE_CODE_STRUCT:
10384 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10385 argvec[0] = ada_value_ind (argvec[0]);
10386 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10387 break;
10388 default:
10389 error (_("cannot subscript or call something of type `%s'"),
10390 ada_type_name (value_type (argvec[0])));
10391 break;
10392 }
10393 }
10394
10395 switch (TYPE_CODE (type))
10396 {
10397 case TYPE_CODE_FUNC:
10398 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10399 {
10400 struct type *rtype = TYPE_TARGET_TYPE (type);
10401
10402 if (TYPE_GNU_IFUNC (type))
10403 return allocate_value (TYPE_TARGET_TYPE (rtype));
10404 return allocate_value (rtype);
10405 }
10406 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10407 case TYPE_CODE_INTERNAL_FUNCTION:
10408 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10409 /* We don't know anything about what the internal
10410 function might return, but we have to return
10411 something. */
10412 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10413 not_lval);
10414 else
10415 return call_internal_function (exp->gdbarch, exp->language_defn,
10416 argvec[0], nargs, argvec + 1);
10417
10418 case TYPE_CODE_STRUCT:
10419 {
10420 int arity;
10421
10422 arity = ada_array_arity (type);
10423 type = ada_array_element_type (type, nargs);
10424 if (type == NULL)
10425 error (_("cannot subscript or call a record"));
10426 if (arity != nargs)
10427 error (_("wrong number of subscripts; expecting %d"), arity);
10428 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10429 return value_zero (ada_aligned_type (type), lval_memory);
10430 return
10431 unwrap_value (ada_value_subscript
10432 (argvec[0], nargs, argvec + 1));
10433 }
10434 case TYPE_CODE_ARRAY:
10435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10436 {
10437 type = ada_array_element_type (type, nargs);
10438 if (type == NULL)
10439 error (_("element type of array unknown"));
10440 else
10441 return value_zero (ada_aligned_type (type), lval_memory);
10442 }
10443 return
10444 unwrap_value (ada_value_subscript
10445 (ada_coerce_to_simple_array (argvec[0]),
10446 nargs, argvec + 1));
10447 case TYPE_CODE_PTR: /* Pointer to array */
10448 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10449 {
10450 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10451 type = ada_array_element_type (type, nargs);
10452 if (type == NULL)
10453 error (_("element type of array unknown"));
10454 else
10455 return value_zero (ada_aligned_type (type), lval_memory);
10456 }
10457 return
10458 unwrap_value (ada_value_ptr_subscript (argvec[0],
10459 nargs, argvec + 1));
10460
10461 default:
10462 error (_("Attempt to index or call something other than an "
10463 "array or function"));
10464 }
10465
10466 case TERNOP_SLICE:
10467 {
10468 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469 struct value *low_bound_val =
10470 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10471 struct value *high_bound_val =
10472 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10473 LONGEST low_bound;
10474 LONGEST high_bound;
10475
10476 low_bound_val = coerce_ref (low_bound_val);
10477 high_bound_val = coerce_ref (high_bound_val);
10478 low_bound = pos_atr (low_bound_val);
10479 high_bound = pos_atr (high_bound_val);
10480
10481 if (noside == EVAL_SKIP)
10482 goto nosideret;
10483
10484 /* If this is a reference to an aligner type, then remove all
10485 the aligners. */
10486 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10487 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10488 TYPE_TARGET_TYPE (value_type (array)) =
10489 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10490
10491 if (ada_is_constrained_packed_array_type (value_type (array)))
10492 error (_("cannot slice a packed array"));
10493
10494 /* If this is a reference to an array or an array lvalue,
10495 convert to a pointer. */
10496 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10497 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10498 && VALUE_LVAL (array) == lval_memory))
10499 array = value_addr (array);
10500
10501 if (noside == EVAL_AVOID_SIDE_EFFECTS
10502 && ada_is_array_descriptor_type (ada_check_typedef
10503 (value_type (array))))
10504 return empty_array (ada_type_of_array (array, 0), low_bound);
10505
10506 array = ada_coerce_to_simple_array_ptr (array);
10507
10508 /* If we have more than one level of pointer indirection,
10509 dereference the value until we get only one level. */
10510 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10511 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10512 == TYPE_CODE_PTR))
10513 array = value_ind (array);
10514
10515 /* Make sure we really do have an array type before going further,
10516 to avoid a SEGV when trying to get the index type or the target
10517 type later down the road if the debug info generated by
10518 the compiler is incorrect or incomplete. */
10519 if (!ada_is_simple_array_type (value_type (array)))
10520 error (_("cannot take slice of non-array"));
10521
10522 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10523 == TYPE_CODE_PTR)
10524 {
10525 struct type *type0 = ada_check_typedef (value_type (array));
10526
10527 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10528 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10529 else
10530 {
10531 struct type *arr_type0 =
10532 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10533
10534 return ada_value_slice_from_ptr (array, arr_type0,
10535 longest_to_int (low_bound),
10536 longest_to_int (high_bound));
10537 }
10538 }
10539 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10540 return array;
10541 else if (high_bound < low_bound)
10542 return empty_array (value_type (array), low_bound);
10543 else
10544 return ada_value_slice (array, longest_to_int (low_bound),
10545 longest_to_int (high_bound));
10546 }
10547
10548 case UNOP_IN_RANGE:
10549 (*pos) += 2;
10550 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10551 type = check_typedef (exp->elts[pc + 1].type);
10552
10553 if (noside == EVAL_SKIP)
10554 goto nosideret;
10555
10556 switch (TYPE_CODE (type))
10557 {
10558 default:
10559 lim_warning (_("Membership test incompletely implemented; "
10560 "always returns true"));
10561 type = language_bool_type (exp->language_defn, exp->gdbarch);
10562 return value_from_longest (type, (LONGEST) 1);
10563
10564 case TYPE_CODE_RANGE:
10565 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10566 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10567 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10568 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10569 type = language_bool_type (exp->language_defn, exp->gdbarch);
10570 return
10571 value_from_longest (type,
10572 (value_less (arg1, arg3)
10573 || value_equal (arg1, arg3))
10574 && (value_less (arg2, arg1)
10575 || value_equal (arg2, arg1)));
10576 }
10577
10578 case BINOP_IN_BOUNDS:
10579 (*pos) += 2;
10580 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10581 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10582
10583 if (noside == EVAL_SKIP)
10584 goto nosideret;
10585
10586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10587 {
10588 type = language_bool_type (exp->language_defn, exp->gdbarch);
10589 return value_zero (type, not_lval);
10590 }
10591
10592 tem = longest_to_int (exp->elts[pc + 1].longconst);
10593
10594 type = ada_index_type (value_type (arg2), tem, "range");
10595 if (!type)
10596 type = value_type (arg1);
10597
10598 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10599 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10600
10601 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10602 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10603 type = language_bool_type (exp->language_defn, exp->gdbarch);
10604 return
10605 value_from_longest (type,
10606 (value_less (arg1, arg3)
10607 || value_equal (arg1, arg3))
10608 && (value_less (arg2, arg1)
10609 || value_equal (arg2, arg1)));
10610
10611 case TERNOP_IN_RANGE:
10612 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10613 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10614 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10615
10616 if (noside == EVAL_SKIP)
10617 goto nosideret;
10618
10619 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10620 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10621 type = language_bool_type (exp->language_defn, exp->gdbarch);
10622 return
10623 value_from_longest (type,
10624 (value_less (arg1, arg3)
10625 || value_equal (arg1, arg3))
10626 && (value_less (arg2, arg1)
10627 || value_equal (arg2, arg1)));
10628
10629 case OP_ATR_FIRST:
10630 case OP_ATR_LAST:
10631 case OP_ATR_LENGTH:
10632 {
10633 struct type *type_arg;
10634
10635 if (exp->elts[*pos].opcode == OP_TYPE)
10636 {
10637 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10638 arg1 = NULL;
10639 type_arg = check_typedef (exp->elts[pc + 2].type);
10640 }
10641 else
10642 {
10643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10644 type_arg = NULL;
10645 }
10646
10647 if (exp->elts[*pos].opcode != OP_LONG)
10648 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10649 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10650 *pos += 4;
10651
10652 if (noside == EVAL_SKIP)
10653 goto nosideret;
10654
10655 if (type_arg == NULL)
10656 {
10657 arg1 = ada_coerce_ref (arg1);
10658
10659 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10660 arg1 = ada_coerce_to_simple_array (arg1);
10661
10662 if (op == OP_ATR_LENGTH)
10663 type = builtin_type (exp->gdbarch)->builtin_int;
10664 else
10665 {
10666 type = ada_index_type (value_type (arg1), tem,
10667 ada_attribute_name (op));
10668 if (type == NULL)
10669 type = builtin_type (exp->gdbarch)->builtin_int;
10670 }
10671
10672 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10673 return allocate_value (type);
10674
10675 switch (op)
10676 {
10677 default: /* Should never happen. */
10678 error (_("unexpected attribute encountered"));
10679 case OP_ATR_FIRST:
10680 return value_from_longest
10681 (type, ada_array_bound (arg1, tem, 0));
10682 case OP_ATR_LAST:
10683 return value_from_longest
10684 (type, ada_array_bound (arg1, tem, 1));
10685 case OP_ATR_LENGTH:
10686 return value_from_longest
10687 (type, ada_array_length (arg1, tem));
10688 }
10689 }
10690 else if (discrete_type_p (type_arg))
10691 {
10692 struct type *range_type;
10693 const char *name = ada_type_name (type_arg);
10694
10695 range_type = NULL;
10696 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10697 range_type = to_fixed_range_type (type_arg, NULL);
10698 if (range_type == NULL)
10699 range_type = type_arg;
10700 switch (op)
10701 {
10702 default:
10703 error (_("unexpected attribute encountered"));
10704 case OP_ATR_FIRST:
10705 return value_from_longest
10706 (range_type, ada_discrete_type_low_bound (range_type));
10707 case OP_ATR_LAST:
10708 return value_from_longest
10709 (range_type, ada_discrete_type_high_bound (range_type));
10710 case OP_ATR_LENGTH:
10711 error (_("the 'length attribute applies only to array types"));
10712 }
10713 }
10714 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10715 error (_("unimplemented type attribute"));
10716 else
10717 {
10718 LONGEST low, high;
10719
10720 if (ada_is_constrained_packed_array_type (type_arg))
10721 type_arg = decode_constrained_packed_array_type (type_arg);
10722
10723 if (op == OP_ATR_LENGTH)
10724 type = builtin_type (exp->gdbarch)->builtin_int;
10725 else
10726 {
10727 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10728 if (type == NULL)
10729 type = builtin_type (exp->gdbarch)->builtin_int;
10730 }
10731
10732 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10733 return allocate_value (type);
10734
10735 switch (op)
10736 {
10737 default:
10738 error (_("unexpected attribute encountered"));
10739 case OP_ATR_FIRST:
10740 low = ada_array_bound_from_type (type_arg, tem, 0);
10741 return value_from_longest (type, low);
10742 case OP_ATR_LAST:
10743 high = ada_array_bound_from_type (type_arg, tem, 1);
10744 return value_from_longest (type, high);
10745 case OP_ATR_LENGTH:
10746 low = ada_array_bound_from_type (type_arg, tem, 0);
10747 high = ada_array_bound_from_type (type_arg, tem, 1);
10748 return value_from_longest (type, high - low + 1);
10749 }
10750 }
10751 }
10752
10753 case OP_ATR_TAG:
10754 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10755 if (noside == EVAL_SKIP)
10756 goto nosideret;
10757
10758 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10759 return value_zero (ada_tag_type (arg1), not_lval);
10760
10761 return ada_value_tag (arg1);
10762
10763 case OP_ATR_MIN:
10764 case OP_ATR_MAX:
10765 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10767 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10768 if (noside == EVAL_SKIP)
10769 goto nosideret;
10770 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10771 return value_zero (value_type (arg1), not_lval);
10772 else
10773 {
10774 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10775 return value_binop (arg1, arg2,
10776 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10777 }
10778
10779 case OP_ATR_MODULUS:
10780 {
10781 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10782
10783 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10784 if (noside == EVAL_SKIP)
10785 goto nosideret;
10786
10787 if (!ada_is_modular_type (type_arg))
10788 error (_("'modulus must be applied to modular type"));
10789
10790 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10791 ada_modulus (type_arg));
10792 }
10793
10794
10795 case OP_ATR_POS:
10796 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10797 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10798 if (noside == EVAL_SKIP)
10799 goto nosideret;
10800 type = builtin_type (exp->gdbarch)->builtin_int;
10801 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10802 return value_zero (type, not_lval);
10803 else
10804 return value_pos_atr (type, arg1);
10805
10806 case OP_ATR_SIZE:
10807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10808 type = value_type (arg1);
10809
10810 /* If the argument is a reference, then dereference its type, since
10811 the user is really asking for the size of the actual object,
10812 not the size of the pointer. */
10813 if (TYPE_CODE (type) == TYPE_CODE_REF)
10814 type = TYPE_TARGET_TYPE (type);
10815
10816 if (noside == EVAL_SKIP)
10817 goto nosideret;
10818 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10819 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10820 else
10821 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10822 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10823
10824 case OP_ATR_VAL:
10825 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10826 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10827 type = exp->elts[pc + 2].type;
10828 if (noside == EVAL_SKIP)
10829 goto nosideret;
10830 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10831 return value_zero (type, not_lval);
10832 else
10833 return value_val_atr (type, arg1);
10834
10835 case BINOP_EXP:
10836 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10837 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10838 if (noside == EVAL_SKIP)
10839 goto nosideret;
10840 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10841 return value_zero (value_type (arg1), not_lval);
10842 else
10843 {
10844 /* For integer exponentiation operations,
10845 only promote the first argument. */
10846 if (is_integral_type (value_type (arg2)))
10847 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10848 else
10849 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10850
10851 return value_binop (arg1, arg2, op);
10852 }
10853
10854 case UNOP_PLUS:
10855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10856 if (noside == EVAL_SKIP)
10857 goto nosideret;
10858 else
10859 return arg1;
10860
10861 case UNOP_ABS:
10862 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10863 if (noside == EVAL_SKIP)
10864 goto nosideret;
10865 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10866 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10867 return value_neg (arg1);
10868 else
10869 return arg1;
10870
10871 case UNOP_IND:
10872 preeval_pos = *pos;
10873 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10874 if (noside == EVAL_SKIP)
10875 goto nosideret;
10876 type = ada_check_typedef (value_type (arg1));
10877 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10878 {
10879 if (ada_is_array_descriptor_type (type))
10880 /* GDB allows dereferencing GNAT array descriptors. */
10881 {
10882 struct type *arrType = ada_type_of_array (arg1, 0);
10883
10884 if (arrType == NULL)
10885 error (_("Attempt to dereference null array pointer."));
10886 return value_at_lazy (arrType, 0);
10887 }
10888 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10889 || TYPE_CODE (type) == TYPE_CODE_REF
10890 /* In C you can dereference an array to get the 1st elt. */
10891 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10892 {
10893 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10894 only be determined by inspecting the object's tag.
10895 This means that we need to evaluate completely the
10896 expression in order to get its type. */
10897
10898 if ((TYPE_CODE (type) == TYPE_CODE_REF
10899 || TYPE_CODE (type) == TYPE_CODE_PTR)
10900 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10901 {
10902 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10903 EVAL_NORMAL);
10904 type = value_type (ada_value_ind (arg1));
10905 }
10906 else
10907 {
10908 type = to_static_fixed_type
10909 (ada_aligned_type
10910 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10911 }
10912 check_size (type);
10913 return value_zero (type, lval_memory);
10914 }
10915 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10916 {
10917 /* GDB allows dereferencing an int. */
10918 if (expect_type == NULL)
10919 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10920 lval_memory);
10921 else
10922 {
10923 expect_type =
10924 to_static_fixed_type (ada_aligned_type (expect_type));
10925 return value_zero (expect_type, lval_memory);
10926 }
10927 }
10928 else
10929 error (_("Attempt to take contents of a non-pointer value."));
10930 }
10931 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10932 type = ada_check_typedef (value_type (arg1));
10933
10934 if (TYPE_CODE (type) == TYPE_CODE_INT)
10935 /* GDB allows dereferencing an int. If we were given
10936 the expect_type, then use that as the target type.
10937 Otherwise, assume that the target type is an int. */
10938 {
10939 if (expect_type != NULL)
10940 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10941 arg1));
10942 else
10943 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10944 (CORE_ADDR) value_as_address (arg1));
10945 }
10946
10947 if (ada_is_array_descriptor_type (type))
10948 /* GDB allows dereferencing GNAT array descriptors. */
10949 return ada_coerce_to_simple_array (arg1);
10950 else
10951 return ada_value_ind (arg1);
10952
10953 case STRUCTOP_STRUCT:
10954 tem = longest_to_int (exp->elts[pc + 1].longconst);
10955 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10956 preeval_pos = *pos;
10957 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10958 if (noside == EVAL_SKIP)
10959 goto nosideret;
10960 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10961 {
10962 struct type *type1 = value_type (arg1);
10963
10964 if (ada_is_tagged_type (type1, 1))
10965 {
10966 type = ada_lookup_struct_elt_type (type1,
10967 &exp->elts[pc + 2].string,
10968 1, 1, NULL);
10969
10970 /* If the field is not found, check if it exists in the
10971 extension of this object's type. This means that we
10972 need to evaluate completely the expression. */
10973
10974 if (type == NULL)
10975 {
10976 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10977 EVAL_NORMAL);
10978 arg1 = ada_value_struct_elt (arg1,
10979 &exp->elts[pc + 2].string,
10980 0);
10981 arg1 = unwrap_value (arg1);
10982 type = value_type (ada_to_fixed_value (arg1));
10983 }
10984 }
10985 else
10986 type =
10987 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10988 0, NULL);
10989
10990 return value_zero (ada_aligned_type (type), lval_memory);
10991 }
10992 else
10993 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10994 arg1 = unwrap_value (arg1);
10995 return ada_to_fixed_value (arg1);
10996
10997 case OP_TYPE:
10998 /* The value is not supposed to be used. This is here to make it
10999 easier to accommodate expressions that contain types. */
11000 (*pos) += 2;
11001 if (noside == EVAL_SKIP)
11002 goto nosideret;
11003 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11004 return allocate_value (exp->elts[pc + 1].type);
11005 else
11006 error (_("Attempt to use a type name as an expression"));
11007
11008 case OP_AGGREGATE:
11009 case OP_CHOICES:
11010 case OP_OTHERS:
11011 case OP_DISCRETE_RANGE:
11012 case OP_POSITIONAL:
11013 case OP_NAME:
11014 if (noside == EVAL_NORMAL)
11015 switch (op)
11016 {
11017 case OP_NAME:
11018 error (_("Undefined name, ambiguous name, or renaming used in "
11019 "component association: %s."), &exp->elts[pc+2].string);
11020 case OP_AGGREGATE:
11021 error (_("Aggregates only allowed on the right of an assignment"));
11022 default:
11023 internal_error (__FILE__, __LINE__,
11024 _("aggregate apparently mangled"));
11025 }
11026
11027 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11028 *pos += oplen - 1;
11029 for (tem = 0; tem < nargs; tem += 1)
11030 ada_evaluate_subexp (NULL, exp, pos, noside);
11031 goto nosideret;
11032 }
11033
11034nosideret:
11035 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11036}
11037\f
11038
11039 /* Fixed point */
11040
11041/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11042 type name that encodes the 'small and 'delta information.
11043 Otherwise, return NULL. */
11044
11045static const char *
11046fixed_type_info (struct type *type)
11047{
11048 const char *name = ada_type_name (type);
11049 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11050
11051 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11052 {
11053 const char *tail = strstr (name, "___XF_");
11054
11055 if (tail == NULL)
11056 return NULL;
11057 else
11058 return tail + 5;
11059 }
11060 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11061 return fixed_type_info (TYPE_TARGET_TYPE (type));
11062 else
11063 return NULL;
11064}
11065
11066/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11067
11068int
11069ada_is_fixed_point_type (struct type *type)
11070{
11071 return fixed_type_info (type) != NULL;
11072}
11073
11074/* Return non-zero iff TYPE represents a System.Address type. */
11075
11076int
11077ada_is_system_address_type (struct type *type)
11078{
11079 return (TYPE_NAME (type)
11080 && strcmp (TYPE_NAME (type), "system__address") == 0);
11081}
11082
11083/* Assuming that TYPE is the representation of an Ada fixed-point
11084 type, return its delta, or -1 if the type is malformed and the
11085 delta cannot be determined. */
11086
11087DOUBLEST
11088ada_delta (struct type *type)
11089{
11090 const char *encoding = fixed_type_info (type);
11091 DOUBLEST num, den;
11092
11093 /* Strictly speaking, num and den are encoded as integer. However,
11094 they may not fit into a long, and they will have to be converted
11095 to DOUBLEST anyway. So scan them as DOUBLEST. */
11096 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11097 &num, &den) < 2)
11098 return -1.0;
11099 else
11100 return num / den;
11101}
11102
11103/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11104 factor ('SMALL value) associated with the type. */
11105
11106static DOUBLEST
11107scaling_factor (struct type *type)
11108{
11109 const char *encoding = fixed_type_info (type);
11110 DOUBLEST num0, den0, num1, den1;
11111 int n;
11112
11113 /* Strictly speaking, num's and den's are encoded as integer. However,
11114 they may not fit into a long, and they will have to be converted
11115 to DOUBLEST anyway. So scan them as DOUBLEST. */
11116 n = sscanf (encoding,
11117 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11118 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11119 &num0, &den0, &num1, &den1);
11120
11121 if (n < 2)
11122 return 1.0;
11123 else if (n == 4)
11124 return num1 / den1;
11125 else
11126 return num0 / den0;
11127}
11128
11129
11130/* Assuming that X is the representation of a value of fixed-point
11131 type TYPE, return its floating-point equivalent. */
11132
11133DOUBLEST
11134ada_fixed_to_float (struct type *type, LONGEST x)
11135{
11136 return (DOUBLEST) x *scaling_factor (type);
11137}
11138
11139/* The representation of a fixed-point value of type TYPE
11140 corresponding to the value X. */
11141
11142LONGEST
11143ada_float_to_fixed (struct type *type, DOUBLEST x)
11144{
11145 return (LONGEST) (x / scaling_factor (type) + 0.5);
11146}
11147
11148\f
11149
11150 /* Range types */
11151
11152/* Scan STR beginning at position K for a discriminant name, and
11153 return the value of that discriminant field of DVAL in *PX. If
11154 PNEW_K is not null, put the position of the character beyond the
11155 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11156 not alter *PX and *PNEW_K if unsuccessful. */
11157
11158static int
11159scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11160 int *pnew_k)
11161{
11162 static char *bound_buffer = NULL;
11163 static size_t bound_buffer_len = 0;
11164 char *bound;
11165 char *pend;
11166 struct value *bound_val;
11167
11168 if (dval == NULL || str == NULL || str[k] == '\0')
11169 return 0;
11170
11171 pend = strstr (str + k, "__");
11172 if (pend == NULL)
11173 {
11174 bound = str + k;
11175 k += strlen (bound);
11176 }
11177 else
11178 {
11179 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11180 bound = bound_buffer;
11181 strncpy (bound_buffer, str + k, pend - (str + k));
11182 bound[pend - (str + k)] = '\0';
11183 k = pend - str;
11184 }
11185
11186 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11187 if (bound_val == NULL)
11188 return 0;
11189
11190 *px = value_as_long (bound_val);
11191 if (pnew_k != NULL)
11192 *pnew_k = k;
11193 return 1;
11194}
11195
11196/* Value of variable named NAME in the current environment. If
11197 no such variable found, then if ERR_MSG is null, returns 0, and
11198 otherwise causes an error with message ERR_MSG. */
11199
11200static struct value *
11201get_var_value (char *name, char *err_msg)
11202{
11203 struct ada_symbol_info *syms;
11204 int nsyms;
11205
11206 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11207 &syms);
11208
11209 if (nsyms != 1)
11210 {
11211 if (err_msg == NULL)
11212 return 0;
11213 else
11214 error (("%s"), err_msg);
11215 }
11216
11217 return value_of_variable (syms[0].sym, syms[0].block);
11218}
11219
11220/* Value of integer variable named NAME in the current environment. If
11221 no such variable found, returns 0, and sets *FLAG to 0. If
11222 successful, sets *FLAG to 1. */
11223
11224LONGEST
11225get_int_var_value (char *name, int *flag)
11226{
11227 struct value *var_val = get_var_value (name, 0);
11228
11229 if (var_val == 0)
11230 {
11231 if (flag != NULL)
11232 *flag = 0;
11233 return 0;
11234 }
11235 else
11236 {
11237 if (flag != NULL)
11238 *flag = 1;
11239 return value_as_long (var_val);
11240 }
11241}
11242
11243
11244/* Return a range type whose base type is that of the range type named
11245 NAME in the current environment, and whose bounds are calculated
11246 from NAME according to the GNAT range encoding conventions.
11247 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11248 corresponding range type from debug information; fall back to using it
11249 if symbol lookup fails. If a new type must be created, allocate it
11250 like ORIG_TYPE was. The bounds information, in general, is encoded
11251 in NAME, the base type given in the named range type. */
11252
11253static struct type *
11254to_fixed_range_type (struct type *raw_type, struct value *dval)
11255{
11256 const char *name;
11257 struct type *base_type;
11258 char *subtype_info;
11259
11260 gdb_assert (raw_type != NULL);
11261 gdb_assert (TYPE_NAME (raw_type) != NULL);
11262
11263 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11264 base_type = TYPE_TARGET_TYPE (raw_type);
11265 else
11266 base_type = raw_type;
11267
11268 name = TYPE_NAME (raw_type);
11269 subtype_info = strstr (name, "___XD");
11270 if (subtype_info == NULL)
11271 {
11272 LONGEST L = ada_discrete_type_low_bound (raw_type);
11273 LONGEST U = ada_discrete_type_high_bound (raw_type);
11274
11275 if (L < INT_MIN || U > INT_MAX)
11276 return raw_type;
11277 else
11278 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11279 L, U);
11280 }
11281 else
11282 {
11283 static char *name_buf = NULL;
11284 static size_t name_len = 0;
11285 int prefix_len = subtype_info - name;
11286 LONGEST L, U;
11287 struct type *type;
11288 char *bounds_str;
11289 int n;
11290
11291 GROW_VECT (name_buf, name_len, prefix_len + 5);
11292 strncpy (name_buf, name, prefix_len);
11293 name_buf[prefix_len] = '\0';
11294
11295 subtype_info += 5;
11296 bounds_str = strchr (subtype_info, '_');
11297 n = 1;
11298
11299 if (*subtype_info == 'L')
11300 {
11301 if (!ada_scan_number (bounds_str, n, &L, &n)
11302 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11303 return raw_type;
11304 if (bounds_str[n] == '_')
11305 n += 2;
11306 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11307 n += 1;
11308 subtype_info += 1;
11309 }
11310 else
11311 {
11312 int ok;
11313
11314 strcpy (name_buf + prefix_len, "___L");
11315 L = get_int_var_value (name_buf, &ok);
11316 if (!ok)
11317 {
11318 lim_warning (_("Unknown lower bound, using 1."));
11319 L = 1;
11320 }
11321 }
11322
11323 if (*subtype_info == 'U')
11324 {
11325 if (!ada_scan_number (bounds_str, n, &U, &n)
11326 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11327 return raw_type;
11328 }
11329 else
11330 {
11331 int ok;
11332
11333 strcpy (name_buf + prefix_len, "___U");
11334 U = get_int_var_value (name_buf, &ok);
11335 if (!ok)
11336 {
11337 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11338 U = L;
11339 }
11340 }
11341
11342 type = create_static_range_type (alloc_type_copy (raw_type),
11343 base_type, L, U);
11344 TYPE_NAME (type) = name;
11345 return type;
11346 }
11347}
11348
11349/* True iff NAME is the name of a range type. */
11350
11351int
11352ada_is_range_type_name (const char *name)
11353{
11354 return (name != NULL && strstr (name, "___XD"));
11355}
11356\f
11357
11358 /* Modular types */
11359
11360/* True iff TYPE is an Ada modular type. */
11361
11362int
11363ada_is_modular_type (struct type *type)
11364{
11365 struct type *subranged_type = get_base_type (type);
11366
11367 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11368 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11369 && TYPE_UNSIGNED (subranged_type));
11370}
11371
11372/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11373
11374ULONGEST
11375ada_modulus (struct type *type)
11376{
11377 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11378}
11379\f
11380
11381/* Ada exception catchpoint support:
11382 ---------------------------------
11383
11384 We support 3 kinds of exception catchpoints:
11385 . catchpoints on Ada exceptions
11386 . catchpoints on unhandled Ada exceptions
11387 . catchpoints on failed assertions
11388
11389 Exceptions raised during failed assertions, or unhandled exceptions
11390 could perfectly be caught with the general catchpoint on Ada exceptions.
11391 However, we can easily differentiate these two special cases, and having
11392 the option to distinguish these two cases from the rest can be useful
11393 to zero-in on certain situations.
11394
11395 Exception catchpoints are a specialized form of breakpoint,
11396 since they rely on inserting breakpoints inside known routines
11397 of the GNAT runtime. The implementation therefore uses a standard
11398 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11399 of breakpoint_ops.
11400
11401 Support in the runtime for exception catchpoints have been changed
11402 a few times already, and these changes affect the implementation
11403 of these catchpoints. In order to be able to support several
11404 variants of the runtime, we use a sniffer that will determine
11405 the runtime variant used by the program being debugged. */
11406
11407/* Ada's standard exceptions.
11408
11409 The Ada 83 standard also defined Numeric_Error. But there so many
11410 situations where it was unclear from the Ada 83 Reference Manual
11411 (RM) whether Constraint_Error or Numeric_Error should be raised,
11412 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11413 Interpretation saying that anytime the RM says that Numeric_Error
11414 should be raised, the implementation may raise Constraint_Error.
11415 Ada 95 went one step further and pretty much removed Numeric_Error
11416 from the list of standard exceptions (it made it a renaming of
11417 Constraint_Error, to help preserve compatibility when compiling
11418 an Ada83 compiler). As such, we do not include Numeric_Error from
11419 this list of standard exceptions. */
11420
11421static char *standard_exc[] = {
11422 "constraint_error",
11423 "program_error",
11424 "storage_error",
11425 "tasking_error"
11426};
11427
11428typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11429
11430/* A structure that describes how to support exception catchpoints
11431 for a given executable. */
11432
11433struct exception_support_info
11434{
11435 /* The name of the symbol to break on in order to insert
11436 a catchpoint on exceptions. */
11437 const char *catch_exception_sym;
11438
11439 /* The name of the symbol to break on in order to insert
11440 a catchpoint on unhandled exceptions. */
11441 const char *catch_exception_unhandled_sym;
11442
11443 /* The name of the symbol to break on in order to insert
11444 a catchpoint on failed assertions. */
11445 const char *catch_assert_sym;
11446
11447 /* Assuming that the inferior just triggered an unhandled exception
11448 catchpoint, this function is responsible for returning the address
11449 in inferior memory where the name of that exception is stored.
11450 Return zero if the address could not be computed. */
11451 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11452};
11453
11454static CORE_ADDR ada_unhandled_exception_name_addr (void);
11455static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11456
11457/* The following exception support info structure describes how to
11458 implement exception catchpoints with the latest version of the
11459 Ada runtime (as of 2007-03-06). */
11460
11461static const struct exception_support_info default_exception_support_info =
11462{
11463 "__gnat_debug_raise_exception", /* catch_exception_sym */
11464 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11465 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11466 ada_unhandled_exception_name_addr
11467};
11468
11469/* The following exception support info structure describes how to
11470 implement exception catchpoints with a slightly older version
11471 of the Ada runtime. */
11472
11473static const struct exception_support_info exception_support_info_fallback =
11474{
11475 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11476 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11477 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11478 ada_unhandled_exception_name_addr_from_raise
11479};
11480
11481/* Return nonzero if we can detect the exception support routines
11482 described in EINFO.
11483
11484 This function errors out if an abnormal situation is detected
11485 (for instance, if we find the exception support routines, but
11486 that support is found to be incomplete). */
11487
11488static int
11489ada_has_this_exception_support (const struct exception_support_info *einfo)
11490{
11491 struct symbol *sym;
11492
11493 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11494 that should be compiled with debugging information. As a result, we
11495 expect to find that symbol in the symtabs. */
11496
11497 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11498 if (sym == NULL)
11499 {
11500 /* Perhaps we did not find our symbol because the Ada runtime was
11501 compiled without debugging info, or simply stripped of it.
11502 It happens on some GNU/Linux distributions for instance, where
11503 users have to install a separate debug package in order to get
11504 the runtime's debugging info. In that situation, let the user
11505 know why we cannot insert an Ada exception catchpoint.
11506
11507 Note: Just for the purpose of inserting our Ada exception
11508 catchpoint, we could rely purely on the associated minimal symbol.
11509 But we would be operating in degraded mode anyway, since we are
11510 still lacking the debugging info needed later on to extract
11511 the name of the exception being raised (this name is printed in
11512 the catchpoint message, and is also used when trying to catch
11513 a specific exception). We do not handle this case for now. */
11514 struct bound_minimal_symbol msym
11515 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11516
11517 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11518 error (_("Your Ada runtime appears to be missing some debugging "
11519 "information.\nCannot insert Ada exception catchpoint "
11520 "in this configuration."));
11521
11522 return 0;
11523 }
11524
11525 /* Make sure that the symbol we found corresponds to a function. */
11526
11527 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11528 error (_("Symbol \"%s\" is not a function (class = %d)"),
11529 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11530
11531 return 1;
11532}
11533
11534/* Inspect the Ada runtime and determine which exception info structure
11535 should be used to provide support for exception catchpoints.
11536
11537 This function will always set the per-inferior exception_info,
11538 or raise an error. */
11539
11540static void
11541ada_exception_support_info_sniffer (void)
11542{
11543 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11544
11545 /* If the exception info is already known, then no need to recompute it. */
11546 if (data->exception_info != NULL)
11547 return;
11548
11549 /* Check the latest (default) exception support info. */
11550 if (ada_has_this_exception_support (&default_exception_support_info))
11551 {
11552 data->exception_info = &default_exception_support_info;
11553 return;
11554 }
11555
11556 /* Try our fallback exception suport info. */
11557 if (ada_has_this_exception_support (&exception_support_info_fallback))
11558 {
11559 data->exception_info = &exception_support_info_fallback;
11560 return;
11561 }
11562
11563 /* Sometimes, it is normal for us to not be able to find the routine
11564 we are looking for. This happens when the program is linked with
11565 the shared version of the GNAT runtime, and the program has not been
11566 started yet. Inform the user of these two possible causes if
11567 applicable. */
11568
11569 if (ada_update_initial_language (language_unknown) != language_ada)
11570 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11571
11572 /* If the symbol does not exist, then check that the program is
11573 already started, to make sure that shared libraries have been
11574 loaded. If it is not started, this may mean that the symbol is
11575 in a shared library. */
11576
11577 if (ptid_get_pid (inferior_ptid) == 0)
11578 error (_("Unable to insert catchpoint. Try to start the program first."));
11579
11580 /* At this point, we know that we are debugging an Ada program and
11581 that the inferior has been started, but we still are not able to
11582 find the run-time symbols. That can mean that we are in
11583 configurable run time mode, or that a-except as been optimized
11584 out by the linker... In any case, at this point it is not worth
11585 supporting this feature. */
11586
11587 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11588}
11589
11590/* True iff FRAME is very likely to be that of a function that is
11591 part of the runtime system. This is all very heuristic, but is
11592 intended to be used as advice as to what frames are uninteresting
11593 to most users. */
11594
11595static int
11596is_known_support_routine (struct frame_info *frame)
11597{
11598 struct symtab_and_line sal;
11599 char *func_name;
11600 enum language func_lang;
11601 int i;
11602 const char *fullname;
11603
11604 /* If this code does not have any debugging information (no symtab),
11605 This cannot be any user code. */
11606
11607 find_frame_sal (frame, &sal);
11608 if (sal.symtab == NULL)
11609 return 1;
11610
11611 /* If there is a symtab, but the associated source file cannot be
11612 located, then assume this is not user code: Selecting a frame
11613 for which we cannot display the code would not be very helpful
11614 for the user. This should also take care of case such as VxWorks
11615 where the kernel has some debugging info provided for a few units. */
11616
11617 fullname = symtab_to_fullname (sal.symtab);
11618 if (access (fullname, R_OK) != 0)
11619 return 1;
11620
11621 /* Check the unit filename againt the Ada runtime file naming.
11622 We also check the name of the objfile against the name of some
11623 known system libraries that sometimes come with debugging info
11624 too. */
11625
11626 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11627 {
11628 re_comp (known_runtime_file_name_patterns[i]);
11629 if (re_exec (lbasename (sal.symtab->filename)))
11630 return 1;
11631 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11632 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11633 return 1;
11634 }
11635
11636 /* Check whether the function is a GNAT-generated entity. */
11637
11638 find_frame_funname (frame, &func_name, &func_lang, NULL);
11639 if (func_name == NULL)
11640 return 1;
11641
11642 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11643 {
11644 re_comp (known_auxiliary_function_name_patterns[i]);
11645 if (re_exec (func_name))
11646 {
11647 xfree (func_name);
11648 return 1;
11649 }
11650 }
11651
11652 xfree (func_name);
11653 return 0;
11654}
11655
11656/* Find the first frame that contains debugging information and that is not
11657 part of the Ada run-time, starting from FI and moving upward. */
11658
11659void
11660ada_find_printable_frame (struct frame_info *fi)
11661{
11662 for (; fi != NULL; fi = get_prev_frame (fi))
11663 {
11664 if (!is_known_support_routine (fi))
11665 {
11666 select_frame (fi);
11667 break;
11668 }
11669 }
11670
11671}
11672
11673/* Assuming that the inferior just triggered an unhandled exception
11674 catchpoint, return the address in inferior memory where the name
11675 of the exception is stored.
11676
11677 Return zero if the address could not be computed. */
11678
11679static CORE_ADDR
11680ada_unhandled_exception_name_addr (void)
11681{
11682 return parse_and_eval_address ("e.full_name");
11683}
11684
11685/* Same as ada_unhandled_exception_name_addr, except that this function
11686 should be used when the inferior uses an older version of the runtime,
11687 where the exception name needs to be extracted from a specific frame
11688 several frames up in the callstack. */
11689
11690static CORE_ADDR
11691ada_unhandled_exception_name_addr_from_raise (void)
11692{
11693 int frame_level;
11694 struct frame_info *fi;
11695 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11696 struct cleanup *old_chain;
11697
11698 /* To determine the name of this exception, we need to select
11699 the frame corresponding to RAISE_SYM_NAME. This frame is
11700 at least 3 levels up, so we simply skip the first 3 frames
11701 without checking the name of their associated function. */
11702 fi = get_current_frame ();
11703 for (frame_level = 0; frame_level < 3; frame_level += 1)
11704 if (fi != NULL)
11705 fi = get_prev_frame (fi);
11706
11707 old_chain = make_cleanup (null_cleanup, NULL);
11708 while (fi != NULL)
11709 {
11710 char *func_name;
11711 enum language func_lang;
11712
11713 find_frame_funname (fi, &func_name, &func_lang, NULL);
11714 if (func_name != NULL)
11715 {
11716 make_cleanup (xfree, func_name);
11717
11718 if (strcmp (func_name,
11719 data->exception_info->catch_exception_sym) == 0)
11720 break; /* We found the frame we were looking for... */
11721 fi = get_prev_frame (fi);
11722 }
11723 }
11724 do_cleanups (old_chain);
11725
11726 if (fi == NULL)
11727 return 0;
11728
11729 select_frame (fi);
11730 return parse_and_eval_address ("id.full_name");
11731}
11732
11733/* Assuming the inferior just triggered an Ada exception catchpoint
11734 (of any type), return the address in inferior memory where the name
11735 of the exception is stored, if applicable.
11736
11737 Return zero if the address could not be computed, or if not relevant. */
11738
11739static CORE_ADDR
11740ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11741 struct breakpoint *b)
11742{
11743 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11744
11745 switch (ex)
11746 {
11747 case ada_catch_exception:
11748 return (parse_and_eval_address ("e.full_name"));
11749 break;
11750
11751 case ada_catch_exception_unhandled:
11752 return data->exception_info->unhandled_exception_name_addr ();
11753 break;
11754
11755 case ada_catch_assert:
11756 return 0; /* Exception name is not relevant in this case. */
11757 break;
11758
11759 default:
11760 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11761 break;
11762 }
11763
11764 return 0; /* Should never be reached. */
11765}
11766
11767/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11768 any error that ada_exception_name_addr_1 might cause to be thrown.
11769 When an error is intercepted, a warning with the error message is printed,
11770 and zero is returned. */
11771
11772static CORE_ADDR
11773ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11774 struct breakpoint *b)
11775{
11776 volatile struct gdb_exception e;
11777 CORE_ADDR result = 0;
11778
11779 TRY_CATCH (e, RETURN_MASK_ERROR)
11780 {
11781 result = ada_exception_name_addr_1 (ex, b);
11782 }
11783
11784 if (e.reason < 0)
11785 {
11786 warning (_("failed to get exception name: %s"), e.message);
11787 return 0;
11788 }
11789
11790 return result;
11791}
11792
11793static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11794
11795/* Ada catchpoints.
11796
11797 In the case of catchpoints on Ada exceptions, the catchpoint will
11798 stop the target on every exception the program throws. When a user
11799 specifies the name of a specific exception, we translate this
11800 request into a condition expression (in text form), and then parse
11801 it into an expression stored in each of the catchpoint's locations.
11802 We then use this condition to check whether the exception that was
11803 raised is the one the user is interested in. If not, then the
11804 target is resumed again. We store the name of the requested
11805 exception, in order to be able to re-set the condition expression
11806 when symbols change. */
11807
11808/* An instance of this type is used to represent an Ada catchpoint
11809 breakpoint location. It includes a "struct bp_location" as a kind
11810 of base class; users downcast to "struct bp_location *" when
11811 needed. */
11812
11813struct ada_catchpoint_location
11814{
11815 /* The base class. */
11816 struct bp_location base;
11817
11818 /* The condition that checks whether the exception that was raised
11819 is the specific exception the user specified on catchpoint
11820 creation. */
11821 struct expression *excep_cond_expr;
11822};
11823
11824/* Implement the DTOR method in the bp_location_ops structure for all
11825 Ada exception catchpoint kinds. */
11826
11827static void
11828ada_catchpoint_location_dtor (struct bp_location *bl)
11829{
11830 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11831
11832 xfree (al->excep_cond_expr);
11833}
11834
11835/* The vtable to be used in Ada catchpoint locations. */
11836
11837static const struct bp_location_ops ada_catchpoint_location_ops =
11838{
11839 ada_catchpoint_location_dtor
11840};
11841
11842/* An instance of this type is used to represent an Ada catchpoint.
11843 It includes a "struct breakpoint" as a kind of base class; users
11844 downcast to "struct breakpoint *" when needed. */
11845
11846struct ada_catchpoint
11847{
11848 /* The base class. */
11849 struct breakpoint base;
11850
11851 /* The name of the specific exception the user specified. */
11852 char *excep_string;
11853};
11854
11855/* Parse the exception condition string in the context of each of the
11856 catchpoint's locations, and store them for later evaluation. */
11857
11858static void
11859create_excep_cond_exprs (struct ada_catchpoint *c)
11860{
11861 struct cleanup *old_chain;
11862 struct bp_location *bl;
11863 char *cond_string;
11864
11865 /* Nothing to do if there's no specific exception to catch. */
11866 if (c->excep_string == NULL)
11867 return;
11868
11869 /* Same if there are no locations... */
11870 if (c->base.loc == NULL)
11871 return;
11872
11873 /* Compute the condition expression in text form, from the specific
11874 expection we want to catch. */
11875 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11876 old_chain = make_cleanup (xfree, cond_string);
11877
11878 /* Iterate over all the catchpoint's locations, and parse an
11879 expression for each. */
11880 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11881 {
11882 struct ada_catchpoint_location *ada_loc
11883 = (struct ada_catchpoint_location *) bl;
11884 struct expression *exp = NULL;
11885
11886 if (!bl->shlib_disabled)
11887 {
11888 volatile struct gdb_exception e;
11889 const char *s;
11890
11891 s = cond_string;
11892 TRY_CATCH (e, RETURN_MASK_ERROR)
11893 {
11894 exp = parse_exp_1 (&s, bl->address,
11895 block_for_pc (bl->address), 0);
11896 }
11897 if (e.reason < 0)
11898 {
11899 warning (_("failed to reevaluate internal exception condition "
11900 "for catchpoint %d: %s"),
11901 c->base.number, e.message);
11902 /* There is a bug in GCC on sparc-solaris when building with
11903 optimization which causes EXP to change unexpectedly
11904 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11905 The problem should be fixed starting with GCC 4.9.
11906 In the meantime, work around it by forcing EXP back
11907 to NULL. */
11908 exp = NULL;
11909 }
11910 }
11911
11912 ada_loc->excep_cond_expr = exp;
11913 }
11914
11915 do_cleanups (old_chain);
11916}
11917
11918/* Implement the DTOR method in the breakpoint_ops structure for all
11919 exception catchpoint kinds. */
11920
11921static void
11922dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11923{
11924 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11925
11926 xfree (c->excep_string);
11927
11928 bkpt_breakpoint_ops.dtor (b);
11929}
11930
11931/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11932 structure for all exception catchpoint kinds. */
11933
11934static struct bp_location *
11935allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11936 struct breakpoint *self)
11937{
11938 struct ada_catchpoint_location *loc;
11939
11940 loc = XNEW (struct ada_catchpoint_location);
11941 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11942 loc->excep_cond_expr = NULL;
11943 return &loc->base;
11944}
11945
11946/* Implement the RE_SET method in the breakpoint_ops structure for all
11947 exception catchpoint kinds. */
11948
11949static void
11950re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11951{
11952 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11953
11954 /* Call the base class's method. This updates the catchpoint's
11955 locations. */
11956 bkpt_breakpoint_ops.re_set (b);
11957
11958 /* Reparse the exception conditional expressions. One for each
11959 location. */
11960 create_excep_cond_exprs (c);
11961}
11962
11963/* Returns true if we should stop for this breakpoint hit. If the
11964 user specified a specific exception, we only want to cause a stop
11965 if the program thrown that exception. */
11966
11967static int
11968should_stop_exception (const struct bp_location *bl)
11969{
11970 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11971 const struct ada_catchpoint_location *ada_loc
11972 = (const struct ada_catchpoint_location *) bl;
11973 volatile struct gdb_exception ex;
11974 int stop;
11975
11976 /* With no specific exception, should always stop. */
11977 if (c->excep_string == NULL)
11978 return 1;
11979
11980 if (ada_loc->excep_cond_expr == NULL)
11981 {
11982 /* We will have a NULL expression if back when we were creating
11983 the expressions, this location's had failed to parse. */
11984 return 1;
11985 }
11986
11987 stop = 1;
11988 TRY_CATCH (ex, RETURN_MASK_ALL)
11989 {
11990 struct value *mark;
11991
11992 mark = value_mark ();
11993 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11994 value_free_to_mark (mark);
11995 }
11996 if (ex.reason < 0)
11997 exception_fprintf (gdb_stderr, ex,
11998 _("Error in testing exception condition:\n"));
11999 return stop;
12000}
12001
12002/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12003 for all exception catchpoint kinds. */
12004
12005static void
12006check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12007{
12008 bs->stop = should_stop_exception (bs->bp_location_at);
12009}
12010
12011/* Implement the PRINT_IT method in the breakpoint_ops structure
12012 for all exception catchpoint kinds. */
12013
12014static enum print_stop_action
12015print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12016{
12017 struct ui_out *uiout = current_uiout;
12018 struct breakpoint *b = bs->breakpoint_at;
12019
12020 annotate_catchpoint (b->number);
12021
12022 if (ui_out_is_mi_like_p (uiout))
12023 {
12024 ui_out_field_string (uiout, "reason",
12025 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12026 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12027 }
12028
12029 ui_out_text (uiout,
12030 b->disposition == disp_del ? "\nTemporary catchpoint "
12031 : "\nCatchpoint ");
12032 ui_out_field_int (uiout, "bkptno", b->number);
12033 ui_out_text (uiout, ", ");
12034
12035 switch (ex)
12036 {
12037 case ada_catch_exception:
12038 case ada_catch_exception_unhandled:
12039 {
12040 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12041 char exception_name[256];
12042
12043 if (addr != 0)
12044 {
12045 read_memory (addr, (gdb_byte *) exception_name,
12046 sizeof (exception_name) - 1);
12047 exception_name [sizeof (exception_name) - 1] = '\0';
12048 }
12049 else
12050 {
12051 /* For some reason, we were unable to read the exception
12052 name. This could happen if the Runtime was compiled
12053 without debugging info, for instance. In that case,
12054 just replace the exception name by the generic string
12055 "exception" - it will read as "an exception" in the
12056 notification we are about to print. */
12057 memcpy (exception_name, "exception", sizeof ("exception"));
12058 }
12059 /* In the case of unhandled exception breakpoints, we print
12060 the exception name as "unhandled EXCEPTION_NAME", to make
12061 it clearer to the user which kind of catchpoint just got
12062 hit. We used ui_out_text to make sure that this extra
12063 info does not pollute the exception name in the MI case. */
12064 if (ex == ada_catch_exception_unhandled)
12065 ui_out_text (uiout, "unhandled ");
12066 ui_out_field_string (uiout, "exception-name", exception_name);
12067 }
12068 break;
12069 case ada_catch_assert:
12070 /* In this case, the name of the exception is not really
12071 important. Just print "failed assertion" to make it clearer
12072 that his program just hit an assertion-failure catchpoint.
12073 We used ui_out_text because this info does not belong in
12074 the MI output. */
12075 ui_out_text (uiout, "failed assertion");
12076 break;
12077 }
12078 ui_out_text (uiout, " at ");
12079 ada_find_printable_frame (get_current_frame ());
12080
12081 return PRINT_SRC_AND_LOC;
12082}
12083
12084/* Implement the PRINT_ONE method in the breakpoint_ops structure
12085 for all exception catchpoint kinds. */
12086
12087static void
12088print_one_exception (enum ada_exception_catchpoint_kind ex,
12089 struct breakpoint *b, struct bp_location **last_loc)
12090{
12091 struct ui_out *uiout = current_uiout;
12092 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12093 struct value_print_options opts;
12094
12095 get_user_print_options (&opts);
12096 if (opts.addressprint)
12097 {
12098 annotate_field (4);
12099 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12100 }
12101
12102 annotate_field (5);
12103 *last_loc = b->loc;
12104 switch (ex)
12105 {
12106 case ada_catch_exception:
12107 if (c->excep_string != NULL)
12108 {
12109 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12110
12111 ui_out_field_string (uiout, "what", msg);
12112 xfree (msg);
12113 }
12114 else
12115 ui_out_field_string (uiout, "what", "all Ada exceptions");
12116
12117 break;
12118
12119 case ada_catch_exception_unhandled:
12120 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12121 break;
12122
12123 case ada_catch_assert:
12124 ui_out_field_string (uiout, "what", "failed Ada assertions");
12125 break;
12126
12127 default:
12128 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12129 break;
12130 }
12131}
12132
12133/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12134 for all exception catchpoint kinds. */
12135
12136static void
12137print_mention_exception (enum ada_exception_catchpoint_kind ex,
12138 struct breakpoint *b)
12139{
12140 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12141 struct ui_out *uiout = current_uiout;
12142
12143 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12144 : _("Catchpoint "));
12145 ui_out_field_int (uiout, "bkptno", b->number);
12146 ui_out_text (uiout, ": ");
12147
12148 switch (ex)
12149 {
12150 case ada_catch_exception:
12151 if (c->excep_string != NULL)
12152 {
12153 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12154 struct cleanup *old_chain = make_cleanup (xfree, info);
12155
12156 ui_out_text (uiout, info);
12157 do_cleanups (old_chain);
12158 }
12159 else
12160 ui_out_text (uiout, _("all Ada exceptions"));
12161 break;
12162
12163 case ada_catch_exception_unhandled:
12164 ui_out_text (uiout, _("unhandled Ada exceptions"));
12165 break;
12166
12167 case ada_catch_assert:
12168 ui_out_text (uiout, _("failed Ada assertions"));
12169 break;
12170
12171 default:
12172 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12173 break;
12174 }
12175}
12176
12177/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12178 for all exception catchpoint kinds. */
12179
12180static void
12181print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12182 struct breakpoint *b, struct ui_file *fp)
12183{
12184 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12185
12186 switch (ex)
12187 {
12188 case ada_catch_exception:
12189 fprintf_filtered (fp, "catch exception");
12190 if (c->excep_string != NULL)
12191 fprintf_filtered (fp, " %s", c->excep_string);
12192 break;
12193
12194 case ada_catch_exception_unhandled:
12195 fprintf_filtered (fp, "catch exception unhandled");
12196 break;
12197
12198 case ada_catch_assert:
12199 fprintf_filtered (fp, "catch assert");
12200 break;
12201
12202 default:
12203 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12204 }
12205 print_recreate_thread (b, fp);
12206}
12207
12208/* Virtual table for "catch exception" breakpoints. */
12209
12210static void
12211dtor_catch_exception (struct breakpoint *b)
12212{
12213 dtor_exception (ada_catch_exception, b);
12214}
12215
12216static struct bp_location *
12217allocate_location_catch_exception (struct breakpoint *self)
12218{
12219 return allocate_location_exception (ada_catch_exception, self);
12220}
12221
12222static void
12223re_set_catch_exception (struct breakpoint *b)
12224{
12225 re_set_exception (ada_catch_exception, b);
12226}
12227
12228static void
12229check_status_catch_exception (bpstat bs)
12230{
12231 check_status_exception (ada_catch_exception, bs);
12232}
12233
12234static enum print_stop_action
12235print_it_catch_exception (bpstat bs)
12236{
12237 return print_it_exception (ada_catch_exception, bs);
12238}
12239
12240static void
12241print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12242{
12243 print_one_exception (ada_catch_exception, b, last_loc);
12244}
12245
12246static void
12247print_mention_catch_exception (struct breakpoint *b)
12248{
12249 print_mention_exception (ada_catch_exception, b);
12250}
12251
12252static void
12253print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12254{
12255 print_recreate_exception (ada_catch_exception, b, fp);
12256}
12257
12258static struct breakpoint_ops catch_exception_breakpoint_ops;
12259
12260/* Virtual table for "catch exception unhandled" breakpoints. */
12261
12262static void
12263dtor_catch_exception_unhandled (struct breakpoint *b)
12264{
12265 dtor_exception (ada_catch_exception_unhandled, b);
12266}
12267
12268static struct bp_location *
12269allocate_location_catch_exception_unhandled (struct breakpoint *self)
12270{
12271 return allocate_location_exception (ada_catch_exception_unhandled, self);
12272}
12273
12274static void
12275re_set_catch_exception_unhandled (struct breakpoint *b)
12276{
12277 re_set_exception (ada_catch_exception_unhandled, b);
12278}
12279
12280static void
12281check_status_catch_exception_unhandled (bpstat bs)
12282{
12283 check_status_exception (ada_catch_exception_unhandled, bs);
12284}
12285
12286static enum print_stop_action
12287print_it_catch_exception_unhandled (bpstat bs)
12288{
12289 return print_it_exception (ada_catch_exception_unhandled, bs);
12290}
12291
12292static void
12293print_one_catch_exception_unhandled (struct breakpoint *b,
12294 struct bp_location **last_loc)
12295{
12296 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12297}
12298
12299static void
12300print_mention_catch_exception_unhandled (struct breakpoint *b)
12301{
12302 print_mention_exception (ada_catch_exception_unhandled, b);
12303}
12304
12305static void
12306print_recreate_catch_exception_unhandled (struct breakpoint *b,
12307 struct ui_file *fp)
12308{
12309 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12310}
12311
12312static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12313
12314/* Virtual table for "catch assert" breakpoints. */
12315
12316static void
12317dtor_catch_assert (struct breakpoint *b)
12318{
12319 dtor_exception (ada_catch_assert, b);
12320}
12321
12322static struct bp_location *
12323allocate_location_catch_assert (struct breakpoint *self)
12324{
12325 return allocate_location_exception (ada_catch_assert, self);
12326}
12327
12328static void
12329re_set_catch_assert (struct breakpoint *b)
12330{
12331 re_set_exception (ada_catch_assert, b);
12332}
12333
12334static void
12335check_status_catch_assert (bpstat bs)
12336{
12337 check_status_exception (ada_catch_assert, bs);
12338}
12339
12340static enum print_stop_action
12341print_it_catch_assert (bpstat bs)
12342{
12343 return print_it_exception (ada_catch_assert, bs);
12344}
12345
12346static void
12347print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12348{
12349 print_one_exception (ada_catch_assert, b, last_loc);
12350}
12351
12352static void
12353print_mention_catch_assert (struct breakpoint *b)
12354{
12355 print_mention_exception (ada_catch_assert, b);
12356}
12357
12358static void
12359print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12360{
12361 print_recreate_exception (ada_catch_assert, b, fp);
12362}
12363
12364static struct breakpoint_ops catch_assert_breakpoint_ops;
12365
12366/* Return a newly allocated copy of the first space-separated token
12367 in ARGSP, and then adjust ARGSP to point immediately after that
12368 token.
12369
12370 Return NULL if ARGPS does not contain any more tokens. */
12371
12372static char *
12373ada_get_next_arg (char **argsp)
12374{
12375 char *args = *argsp;
12376 char *end;
12377 char *result;
12378
12379 args = skip_spaces (args);
12380 if (args[0] == '\0')
12381 return NULL; /* No more arguments. */
12382
12383 /* Find the end of the current argument. */
12384
12385 end = skip_to_space (args);
12386
12387 /* Adjust ARGSP to point to the start of the next argument. */
12388
12389 *argsp = end;
12390
12391 /* Make a copy of the current argument and return it. */
12392
12393 result = xmalloc (end - args + 1);
12394 strncpy (result, args, end - args);
12395 result[end - args] = '\0';
12396
12397 return result;
12398}
12399
12400/* Split the arguments specified in a "catch exception" command.
12401 Set EX to the appropriate catchpoint type.
12402 Set EXCEP_STRING to the name of the specific exception if
12403 specified by the user.
12404 If a condition is found at the end of the arguments, the condition
12405 expression is stored in COND_STRING (memory must be deallocated
12406 after use). Otherwise COND_STRING is set to NULL. */
12407
12408static void
12409catch_ada_exception_command_split (char *args,
12410 enum ada_exception_catchpoint_kind *ex,
12411 char **excep_string,
12412 char **cond_string)
12413{
12414 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12415 char *exception_name;
12416 char *cond = NULL;
12417
12418 exception_name = ada_get_next_arg (&args);
12419 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12420 {
12421 /* This is not an exception name; this is the start of a condition
12422 expression for a catchpoint on all exceptions. So, "un-get"
12423 this token, and set exception_name to NULL. */
12424 xfree (exception_name);
12425 exception_name = NULL;
12426 args -= 2;
12427 }
12428 make_cleanup (xfree, exception_name);
12429
12430 /* Check to see if we have a condition. */
12431
12432 args = skip_spaces (args);
12433 if (strncmp (args, "if", 2) == 0
12434 && (isspace (args[2]) || args[2] == '\0'))
12435 {
12436 args += 2;
12437 args = skip_spaces (args);
12438
12439 if (args[0] == '\0')
12440 error (_("Condition missing after `if' keyword"));
12441 cond = xstrdup (args);
12442 make_cleanup (xfree, cond);
12443
12444 args += strlen (args);
12445 }
12446
12447 /* Check that we do not have any more arguments. Anything else
12448 is unexpected. */
12449
12450 if (args[0] != '\0')
12451 error (_("Junk at end of expression"));
12452
12453 discard_cleanups (old_chain);
12454
12455 if (exception_name == NULL)
12456 {
12457 /* Catch all exceptions. */
12458 *ex = ada_catch_exception;
12459 *excep_string = NULL;
12460 }
12461 else if (strcmp (exception_name, "unhandled") == 0)
12462 {
12463 /* Catch unhandled exceptions. */
12464 *ex = ada_catch_exception_unhandled;
12465 *excep_string = NULL;
12466 }
12467 else
12468 {
12469 /* Catch a specific exception. */
12470 *ex = ada_catch_exception;
12471 *excep_string = exception_name;
12472 }
12473 *cond_string = cond;
12474}
12475
12476/* Return the name of the symbol on which we should break in order to
12477 implement a catchpoint of the EX kind. */
12478
12479static const char *
12480ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12481{
12482 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12483
12484 gdb_assert (data->exception_info != NULL);
12485
12486 switch (ex)
12487 {
12488 case ada_catch_exception:
12489 return (data->exception_info->catch_exception_sym);
12490 break;
12491 case ada_catch_exception_unhandled:
12492 return (data->exception_info->catch_exception_unhandled_sym);
12493 break;
12494 case ada_catch_assert:
12495 return (data->exception_info->catch_assert_sym);
12496 break;
12497 default:
12498 internal_error (__FILE__, __LINE__,
12499 _("unexpected catchpoint kind (%d)"), ex);
12500 }
12501}
12502
12503/* Return the breakpoint ops "virtual table" used for catchpoints
12504 of the EX kind. */
12505
12506static const struct breakpoint_ops *
12507ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12508{
12509 switch (ex)
12510 {
12511 case ada_catch_exception:
12512 return (&catch_exception_breakpoint_ops);
12513 break;
12514 case ada_catch_exception_unhandled:
12515 return (&catch_exception_unhandled_breakpoint_ops);
12516 break;
12517 case ada_catch_assert:
12518 return (&catch_assert_breakpoint_ops);
12519 break;
12520 default:
12521 internal_error (__FILE__, __LINE__,
12522 _("unexpected catchpoint kind (%d)"), ex);
12523 }
12524}
12525
12526/* Return the condition that will be used to match the current exception
12527 being raised with the exception that the user wants to catch. This
12528 assumes that this condition is used when the inferior just triggered
12529 an exception catchpoint.
12530
12531 The string returned is a newly allocated string that needs to be
12532 deallocated later. */
12533
12534static char *
12535ada_exception_catchpoint_cond_string (const char *excep_string)
12536{
12537 int i;
12538
12539 /* The standard exceptions are a special case. They are defined in
12540 runtime units that have been compiled without debugging info; if
12541 EXCEP_STRING is the not-fully-qualified name of a standard
12542 exception (e.g. "constraint_error") then, during the evaluation
12543 of the condition expression, the symbol lookup on this name would
12544 *not* return this standard exception. The catchpoint condition
12545 may then be set only on user-defined exceptions which have the
12546 same not-fully-qualified name (e.g. my_package.constraint_error).
12547
12548 To avoid this unexcepted behavior, these standard exceptions are
12549 systematically prefixed by "standard". This means that "catch
12550 exception constraint_error" is rewritten into "catch exception
12551 standard.constraint_error".
12552
12553 If an exception named contraint_error is defined in another package of
12554 the inferior program, then the only way to specify this exception as a
12555 breakpoint condition is to use its fully-qualified named:
12556 e.g. my_package.constraint_error. */
12557
12558 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12559 {
12560 if (strcmp (standard_exc [i], excep_string) == 0)
12561 {
12562 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12563 excep_string);
12564 }
12565 }
12566 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12567}
12568
12569/* Return the symtab_and_line that should be used to insert an exception
12570 catchpoint of the TYPE kind.
12571
12572 EXCEP_STRING should contain the name of a specific exception that
12573 the catchpoint should catch, or NULL otherwise.
12574
12575 ADDR_STRING returns the name of the function where the real
12576 breakpoint that implements the catchpoints is set, depending on the
12577 type of catchpoint we need to create. */
12578
12579static struct symtab_and_line
12580ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12581 char **addr_string, const struct breakpoint_ops **ops)
12582{
12583 const char *sym_name;
12584 struct symbol *sym;
12585
12586 /* First, find out which exception support info to use. */
12587 ada_exception_support_info_sniffer ();
12588
12589 /* Then lookup the function on which we will break in order to catch
12590 the Ada exceptions requested by the user. */
12591 sym_name = ada_exception_sym_name (ex);
12592 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12593
12594 /* We can assume that SYM is not NULL at this stage. If the symbol
12595 did not exist, ada_exception_support_info_sniffer would have
12596 raised an exception.
12597
12598 Also, ada_exception_support_info_sniffer should have already
12599 verified that SYM is a function symbol. */
12600 gdb_assert (sym != NULL);
12601 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12602
12603 /* Set ADDR_STRING. */
12604 *addr_string = xstrdup (sym_name);
12605
12606 /* Set OPS. */
12607 *ops = ada_exception_breakpoint_ops (ex);
12608
12609 return find_function_start_sal (sym, 1);
12610}
12611
12612/* Create an Ada exception catchpoint.
12613
12614 EX_KIND is the kind of exception catchpoint to be created.
12615
12616 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12617 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12618 of the exception to which this catchpoint applies. When not NULL,
12619 the string must be allocated on the heap, and its deallocation
12620 is no longer the responsibility of the caller.
12621
12622 COND_STRING, if not NULL, is the catchpoint condition. This string
12623 must be allocated on the heap, and its deallocation is no longer
12624 the responsibility of the caller.
12625
12626 TEMPFLAG, if nonzero, means that the underlying breakpoint
12627 should be temporary.
12628
12629 FROM_TTY is the usual argument passed to all commands implementations. */
12630
12631void
12632create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12633 enum ada_exception_catchpoint_kind ex_kind,
12634 char *excep_string,
12635 char *cond_string,
12636 int tempflag,
12637 int disabled,
12638 int from_tty)
12639{
12640 struct ada_catchpoint *c;
12641 char *addr_string = NULL;
12642 const struct breakpoint_ops *ops = NULL;
12643 struct symtab_and_line sal
12644 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12645
12646 c = XNEW (struct ada_catchpoint);
12647 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12648 ops, tempflag, disabled, from_tty);
12649 c->excep_string = excep_string;
12650 create_excep_cond_exprs (c);
12651 if (cond_string != NULL)
12652 set_breakpoint_condition (&c->base, cond_string, from_tty);
12653 install_breakpoint (0, &c->base, 1);
12654}
12655
12656/* Implement the "catch exception" command. */
12657
12658static void
12659catch_ada_exception_command (char *arg, int from_tty,
12660 struct cmd_list_element *command)
12661{
12662 struct gdbarch *gdbarch = get_current_arch ();
12663 int tempflag;
12664 enum ada_exception_catchpoint_kind ex_kind;
12665 char *excep_string = NULL;
12666 char *cond_string = NULL;
12667
12668 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12669
12670 if (!arg)
12671 arg = "";
12672 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12673 &cond_string);
12674 create_ada_exception_catchpoint (gdbarch, ex_kind,
12675 excep_string, cond_string,
12676 tempflag, 1 /* enabled */,
12677 from_tty);
12678}
12679
12680/* Split the arguments specified in a "catch assert" command.
12681
12682 ARGS contains the command's arguments (or the empty string if
12683 no arguments were passed).
12684
12685 If ARGS contains a condition, set COND_STRING to that condition
12686 (the memory needs to be deallocated after use). */
12687
12688static void
12689catch_ada_assert_command_split (char *args, char **cond_string)
12690{
12691 args = skip_spaces (args);
12692
12693 /* Check whether a condition was provided. */
12694 if (strncmp (args, "if", 2) == 0
12695 && (isspace (args[2]) || args[2] == '\0'))
12696 {
12697 args += 2;
12698 args = skip_spaces (args);
12699 if (args[0] == '\0')
12700 error (_("condition missing after `if' keyword"));
12701 *cond_string = xstrdup (args);
12702 }
12703
12704 /* Otherwise, there should be no other argument at the end of
12705 the command. */
12706 else if (args[0] != '\0')
12707 error (_("Junk at end of arguments."));
12708}
12709
12710/* Implement the "catch assert" command. */
12711
12712static void
12713catch_assert_command (char *arg, int from_tty,
12714 struct cmd_list_element *command)
12715{
12716 struct gdbarch *gdbarch = get_current_arch ();
12717 int tempflag;
12718 char *cond_string = NULL;
12719
12720 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12721
12722 if (!arg)
12723 arg = "";
12724 catch_ada_assert_command_split (arg, &cond_string);
12725 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12726 NULL, cond_string,
12727 tempflag, 1 /* enabled */,
12728 from_tty);
12729}
12730
12731/* Return non-zero if the symbol SYM is an Ada exception object. */
12732
12733static int
12734ada_is_exception_sym (struct symbol *sym)
12735{
12736 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12737
12738 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12739 && SYMBOL_CLASS (sym) != LOC_BLOCK
12740 && SYMBOL_CLASS (sym) != LOC_CONST
12741 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12742 && type_name != NULL && strcmp (type_name, "exception") == 0);
12743}
12744
12745/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12746 Ada exception object. This matches all exceptions except the ones
12747 defined by the Ada language. */
12748
12749static int
12750ada_is_non_standard_exception_sym (struct symbol *sym)
12751{
12752 int i;
12753
12754 if (!ada_is_exception_sym (sym))
12755 return 0;
12756
12757 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12758 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12759 return 0; /* A standard exception. */
12760
12761 /* Numeric_Error is also a standard exception, so exclude it.
12762 See the STANDARD_EXC description for more details as to why
12763 this exception is not listed in that array. */
12764 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12765 return 0;
12766
12767 return 1;
12768}
12769
12770/* A helper function for qsort, comparing two struct ada_exc_info
12771 objects.
12772
12773 The comparison is determined first by exception name, and then
12774 by exception address. */
12775
12776static int
12777compare_ada_exception_info (const void *a, const void *b)
12778{
12779 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12780 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12781 int result;
12782
12783 result = strcmp (exc_a->name, exc_b->name);
12784 if (result != 0)
12785 return result;
12786
12787 if (exc_a->addr < exc_b->addr)
12788 return -1;
12789 if (exc_a->addr > exc_b->addr)
12790 return 1;
12791
12792 return 0;
12793}
12794
12795/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12796 routine, but keeping the first SKIP elements untouched.
12797
12798 All duplicates are also removed. */
12799
12800static void
12801sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12802 int skip)
12803{
12804 struct ada_exc_info *to_sort
12805 = VEC_address (ada_exc_info, *exceptions) + skip;
12806 int to_sort_len
12807 = VEC_length (ada_exc_info, *exceptions) - skip;
12808 int i, j;
12809
12810 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12811 compare_ada_exception_info);
12812
12813 for (i = 1, j = 1; i < to_sort_len; i++)
12814 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12815 to_sort[j++] = to_sort[i];
12816 to_sort_len = j;
12817 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12818}
12819
12820/* A function intended as the "name_matcher" callback in the struct
12821 quick_symbol_functions' expand_symtabs_matching method.
12822
12823 SEARCH_NAME is the symbol's search name.
12824
12825 If USER_DATA is not NULL, it is a pointer to a regext_t object
12826 used to match the symbol (by natural name). Otherwise, when USER_DATA
12827 is null, no filtering is performed, and all symbols are a positive
12828 match. */
12829
12830static int
12831ada_exc_search_name_matches (const char *search_name, void *user_data)
12832{
12833 regex_t *preg = user_data;
12834
12835 if (preg == NULL)
12836 return 1;
12837
12838 /* In Ada, the symbol "search name" is a linkage name, whereas
12839 the regular expression used to do the matching refers to
12840 the natural name. So match against the decoded name. */
12841 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12842}
12843
12844/* Add all exceptions defined by the Ada standard whose name match
12845 a regular expression.
12846
12847 If PREG is not NULL, then this regexp_t object is used to
12848 perform the symbol name matching. Otherwise, no name-based
12849 filtering is performed.
12850
12851 EXCEPTIONS is a vector of exceptions to which matching exceptions
12852 gets pushed. */
12853
12854static void
12855ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12856{
12857 int i;
12858
12859 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12860 {
12861 if (preg == NULL
12862 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12863 {
12864 struct bound_minimal_symbol msymbol
12865 = ada_lookup_simple_minsym (standard_exc[i]);
12866
12867 if (msymbol.minsym != NULL)
12868 {
12869 struct ada_exc_info info
12870 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12871
12872 VEC_safe_push (ada_exc_info, *exceptions, &info);
12873 }
12874 }
12875 }
12876}
12877
12878/* Add all Ada exceptions defined locally and accessible from the given
12879 FRAME.
12880
12881 If PREG is not NULL, then this regexp_t object is used to
12882 perform the symbol name matching. Otherwise, no name-based
12883 filtering is performed.
12884
12885 EXCEPTIONS is a vector of exceptions to which matching exceptions
12886 gets pushed. */
12887
12888static void
12889ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12890 VEC(ada_exc_info) **exceptions)
12891{
12892 const struct block *block = get_frame_block (frame, 0);
12893
12894 while (block != 0)
12895 {
12896 struct block_iterator iter;
12897 struct symbol *sym;
12898
12899 ALL_BLOCK_SYMBOLS (block, iter, sym)
12900 {
12901 switch (SYMBOL_CLASS (sym))
12902 {
12903 case LOC_TYPEDEF:
12904 case LOC_BLOCK:
12905 case LOC_CONST:
12906 break;
12907 default:
12908 if (ada_is_exception_sym (sym))
12909 {
12910 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12911 SYMBOL_VALUE_ADDRESS (sym)};
12912
12913 VEC_safe_push (ada_exc_info, *exceptions, &info);
12914 }
12915 }
12916 }
12917 if (BLOCK_FUNCTION (block) != NULL)
12918 break;
12919 block = BLOCK_SUPERBLOCK (block);
12920 }
12921}
12922
12923/* Add all exceptions defined globally whose name name match
12924 a regular expression, excluding standard exceptions.
12925
12926 The reason we exclude standard exceptions is that they need
12927 to be handled separately: Standard exceptions are defined inside
12928 a runtime unit which is normally not compiled with debugging info,
12929 and thus usually do not show up in our symbol search. However,
12930 if the unit was in fact built with debugging info, we need to
12931 exclude them because they would duplicate the entry we found
12932 during the special loop that specifically searches for those
12933 standard exceptions.
12934
12935 If PREG is not NULL, then this regexp_t object is used to
12936 perform the symbol name matching. Otherwise, no name-based
12937 filtering is performed.
12938
12939 EXCEPTIONS is a vector of exceptions to which matching exceptions
12940 gets pushed. */
12941
12942static void
12943ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12944{
12945 struct objfile *objfile;
12946 struct symtab *s;
12947
12948 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12949 VARIABLES_DOMAIN, preg);
12950
12951 ALL_PRIMARY_SYMTABS (objfile, s)
12952 {
12953 const struct blockvector *bv = SYMTAB_BLOCKVECTOR (s);
12954 int i;
12955
12956 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12957 {
12958 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12959 struct block_iterator iter;
12960 struct symbol *sym;
12961
12962 ALL_BLOCK_SYMBOLS (b, iter, sym)
12963 if (ada_is_non_standard_exception_sym (sym)
12964 && (preg == NULL
12965 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12966 0, NULL, 0) == 0))
12967 {
12968 struct ada_exc_info info
12969 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12970
12971 VEC_safe_push (ada_exc_info, *exceptions, &info);
12972 }
12973 }
12974 }
12975}
12976
12977/* Implements ada_exceptions_list with the regular expression passed
12978 as a regex_t, rather than a string.
12979
12980 If not NULL, PREG is used to filter out exceptions whose names
12981 do not match. Otherwise, all exceptions are listed. */
12982
12983static VEC(ada_exc_info) *
12984ada_exceptions_list_1 (regex_t *preg)
12985{
12986 VEC(ada_exc_info) *result = NULL;
12987 struct cleanup *old_chain
12988 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12989 int prev_len;
12990
12991 /* First, list the known standard exceptions. These exceptions
12992 need to be handled separately, as they are usually defined in
12993 runtime units that have been compiled without debugging info. */
12994
12995 ada_add_standard_exceptions (preg, &result);
12996
12997 /* Next, find all exceptions whose scope is local and accessible
12998 from the currently selected frame. */
12999
13000 if (has_stack_frames ())
13001 {
13002 prev_len = VEC_length (ada_exc_info, result);
13003 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13004 &result);
13005 if (VEC_length (ada_exc_info, result) > prev_len)
13006 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13007 }
13008
13009 /* Add all exceptions whose scope is global. */
13010
13011 prev_len = VEC_length (ada_exc_info, result);
13012 ada_add_global_exceptions (preg, &result);
13013 if (VEC_length (ada_exc_info, result) > prev_len)
13014 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13015
13016 discard_cleanups (old_chain);
13017 return result;
13018}
13019
13020/* Return a vector of ada_exc_info.
13021
13022 If REGEXP is NULL, all exceptions are included in the result.
13023 Otherwise, it should contain a valid regular expression,
13024 and only the exceptions whose names match that regular expression
13025 are included in the result.
13026
13027 The exceptions are sorted in the following order:
13028 - Standard exceptions (defined by the Ada language), in
13029 alphabetical order;
13030 - Exceptions only visible from the current frame, in
13031 alphabetical order;
13032 - Exceptions whose scope is global, in alphabetical order. */
13033
13034VEC(ada_exc_info) *
13035ada_exceptions_list (const char *regexp)
13036{
13037 VEC(ada_exc_info) *result = NULL;
13038 struct cleanup *old_chain = NULL;
13039 regex_t reg;
13040
13041 if (regexp != NULL)
13042 old_chain = compile_rx_or_error (&reg, regexp,
13043 _("invalid regular expression"));
13044
13045 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13046
13047 if (old_chain != NULL)
13048 do_cleanups (old_chain);
13049 return result;
13050}
13051
13052/* Implement the "info exceptions" command. */
13053
13054static void
13055info_exceptions_command (char *regexp, int from_tty)
13056{
13057 VEC(ada_exc_info) *exceptions;
13058 struct cleanup *cleanup;
13059 struct gdbarch *gdbarch = get_current_arch ();
13060 int ix;
13061 struct ada_exc_info *info;
13062
13063 exceptions = ada_exceptions_list (regexp);
13064 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13065
13066 if (regexp != NULL)
13067 printf_filtered
13068 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13069 else
13070 printf_filtered (_("All defined Ada exceptions:\n"));
13071
13072 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13073 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13074
13075 do_cleanups (cleanup);
13076}
13077
13078 /* Operators */
13079/* Information about operators given special treatment in functions
13080 below. */
13081/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13082
13083#define ADA_OPERATORS \
13084 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13085 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13086 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13087 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13088 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13089 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13090 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13091 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13092 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13093 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13094 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13095 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13096 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13097 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13098 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13099 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13100 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13101 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13102 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13103
13104static void
13105ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13106 int *argsp)
13107{
13108 switch (exp->elts[pc - 1].opcode)
13109 {
13110 default:
13111 operator_length_standard (exp, pc, oplenp, argsp);
13112 break;
13113
13114#define OP_DEFN(op, len, args, binop) \
13115 case op: *oplenp = len; *argsp = args; break;
13116 ADA_OPERATORS;
13117#undef OP_DEFN
13118
13119 case OP_AGGREGATE:
13120 *oplenp = 3;
13121 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13122 break;
13123
13124 case OP_CHOICES:
13125 *oplenp = 3;
13126 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13127 break;
13128 }
13129}
13130
13131/* Implementation of the exp_descriptor method operator_check. */
13132
13133static int
13134ada_operator_check (struct expression *exp, int pos,
13135 int (*objfile_func) (struct objfile *objfile, void *data),
13136 void *data)
13137{
13138 const union exp_element *const elts = exp->elts;
13139 struct type *type = NULL;
13140
13141 switch (elts[pos].opcode)
13142 {
13143 case UNOP_IN_RANGE:
13144 case UNOP_QUAL:
13145 type = elts[pos + 1].type;
13146 break;
13147
13148 default:
13149 return operator_check_standard (exp, pos, objfile_func, data);
13150 }
13151
13152 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13153
13154 if (type && TYPE_OBJFILE (type)
13155 && (*objfile_func) (TYPE_OBJFILE (type), data))
13156 return 1;
13157
13158 return 0;
13159}
13160
13161static char *
13162ada_op_name (enum exp_opcode opcode)
13163{
13164 switch (opcode)
13165 {
13166 default:
13167 return op_name_standard (opcode);
13168
13169#define OP_DEFN(op, len, args, binop) case op: return #op;
13170 ADA_OPERATORS;
13171#undef OP_DEFN
13172
13173 case OP_AGGREGATE:
13174 return "OP_AGGREGATE";
13175 case OP_CHOICES:
13176 return "OP_CHOICES";
13177 case OP_NAME:
13178 return "OP_NAME";
13179 }
13180}
13181
13182/* As for operator_length, but assumes PC is pointing at the first
13183 element of the operator, and gives meaningful results only for the
13184 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13185
13186static void
13187ada_forward_operator_length (struct expression *exp, int pc,
13188 int *oplenp, int *argsp)
13189{
13190 switch (exp->elts[pc].opcode)
13191 {
13192 default:
13193 *oplenp = *argsp = 0;
13194 break;
13195
13196#define OP_DEFN(op, len, args, binop) \
13197 case op: *oplenp = len; *argsp = args; break;
13198 ADA_OPERATORS;
13199#undef OP_DEFN
13200
13201 case OP_AGGREGATE:
13202 *oplenp = 3;
13203 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13204 break;
13205
13206 case OP_CHOICES:
13207 *oplenp = 3;
13208 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13209 break;
13210
13211 case OP_STRING:
13212 case OP_NAME:
13213 {
13214 int len = longest_to_int (exp->elts[pc + 1].longconst);
13215
13216 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13217 *argsp = 0;
13218 break;
13219 }
13220 }
13221}
13222
13223static int
13224ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13225{
13226 enum exp_opcode op = exp->elts[elt].opcode;
13227 int oplen, nargs;
13228 int pc = elt;
13229 int i;
13230
13231 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13232
13233 switch (op)
13234 {
13235 /* Ada attributes ('Foo). */
13236 case OP_ATR_FIRST:
13237 case OP_ATR_LAST:
13238 case OP_ATR_LENGTH:
13239 case OP_ATR_IMAGE:
13240 case OP_ATR_MAX:
13241 case OP_ATR_MIN:
13242 case OP_ATR_MODULUS:
13243 case OP_ATR_POS:
13244 case OP_ATR_SIZE:
13245 case OP_ATR_TAG:
13246 case OP_ATR_VAL:
13247 break;
13248
13249 case UNOP_IN_RANGE:
13250 case UNOP_QUAL:
13251 /* XXX: gdb_sprint_host_address, type_sprint */
13252 fprintf_filtered (stream, _("Type @"));
13253 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13254 fprintf_filtered (stream, " (");
13255 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13256 fprintf_filtered (stream, ")");
13257 break;
13258 case BINOP_IN_BOUNDS:
13259 fprintf_filtered (stream, " (%d)",
13260 longest_to_int (exp->elts[pc + 2].longconst));
13261 break;
13262 case TERNOP_IN_RANGE:
13263 break;
13264
13265 case OP_AGGREGATE:
13266 case OP_OTHERS:
13267 case OP_DISCRETE_RANGE:
13268 case OP_POSITIONAL:
13269 case OP_CHOICES:
13270 break;
13271
13272 case OP_NAME:
13273 case OP_STRING:
13274 {
13275 char *name = &exp->elts[elt + 2].string;
13276 int len = longest_to_int (exp->elts[elt + 1].longconst);
13277
13278 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13279 break;
13280 }
13281
13282 default:
13283 return dump_subexp_body_standard (exp, stream, elt);
13284 }
13285
13286 elt += oplen;
13287 for (i = 0; i < nargs; i += 1)
13288 elt = dump_subexp (exp, stream, elt);
13289
13290 return elt;
13291}
13292
13293/* The Ada extension of print_subexp (q.v.). */
13294
13295static void
13296ada_print_subexp (struct expression *exp, int *pos,
13297 struct ui_file *stream, enum precedence prec)
13298{
13299 int oplen, nargs, i;
13300 int pc = *pos;
13301 enum exp_opcode op = exp->elts[pc].opcode;
13302
13303 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13304
13305 *pos += oplen;
13306 switch (op)
13307 {
13308 default:
13309 *pos -= oplen;
13310 print_subexp_standard (exp, pos, stream, prec);
13311 return;
13312
13313 case OP_VAR_VALUE:
13314 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13315 return;
13316
13317 case BINOP_IN_BOUNDS:
13318 /* XXX: sprint_subexp */
13319 print_subexp (exp, pos, stream, PREC_SUFFIX);
13320 fputs_filtered (" in ", stream);
13321 print_subexp (exp, pos, stream, PREC_SUFFIX);
13322 fputs_filtered ("'range", stream);
13323 if (exp->elts[pc + 1].longconst > 1)
13324 fprintf_filtered (stream, "(%ld)",
13325 (long) exp->elts[pc + 1].longconst);
13326 return;
13327
13328 case TERNOP_IN_RANGE:
13329 if (prec >= PREC_EQUAL)
13330 fputs_filtered ("(", stream);
13331 /* XXX: sprint_subexp */
13332 print_subexp (exp, pos, stream, PREC_SUFFIX);
13333 fputs_filtered (" in ", stream);
13334 print_subexp (exp, pos, stream, PREC_EQUAL);
13335 fputs_filtered (" .. ", stream);
13336 print_subexp (exp, pos, stream, PREC_EQUAL);
13337 if (prec >= PREC_EQUAL)
13338 fputs_filtered (")", stream);
13339 return;
13340
13341 case OP_ATR_FIRST:
13342 case OP_ATR_LAST:
13343 case OP_ATR_LENGTH:
13344 case OP_ATR_IMAGE:
13345 case OP_ATR_MAX:
13346 case OP_ATR_MIN:
13347 case OP_ATR_MODULUS:
13348 case OP_ATR_POS:
13349 case OP_ATR_SIZE:
13350 case OP_ATR_TAG:
13351 case OP_ATR_VAL:
13352 if (exp->elts[*pos].opcode == OP_TYPE)
13353 {
13354 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13355 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13356 &type_print_raw_options);
13357 *pos += 3;
13358 }
13359 else
13360 print_subexp (exp, pos, stream, PREC_SUFFIX);
13361 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13362 if (nargs > 1)
13363 {
13364 int tem;
13365
13366 for (tem = 1; tem < nargs; tem += 1)
13367 {
13368 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13369 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13370 }
13371 fputs_filtered (")", stream);
13372 }
13373 return;
13374
13375 case UNOP_QUAL:
13376 type_print (exp->elts[pc + 1].type, "", stream, 0);
13377 fputs_filtered ("'(", stream);
13378 print_subexp (exp, pos, stream, PREC_PREFIX);
13379 fputs_filtered (")", stream);
13380 return;
13381
13382 case UNOP_IN_RANGE:
13383 /* XXX: sprint_subexp */
13384 print_subexp (exp, pos, stream, PREC_SUFFIX);
13385 fputs_filtered (" in ", stream);
13386 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13387 &type_print_raw_options);
13388 return;
13389
13390 case OP_DISCRETE_RANGE:
13391 print_subexp (exp, pos, stream, PREC_SUFFIX);
13392 fputs_filtered ("..", stream);
13393 print_subexp (exp, pos, stream, PREC_SUFFIX);
13394 return;
13395
13396 case OP_OTHERS:
13397 fputs_filtered ("others => ", stream);
13398 print_subexp (exp, pos, stream, PREC_SUFFIX);
13399 return;
13400
13401 case OP_CHOICES:
13402 for (i = 0; i < nargs-1; i += 1)
13403 {
13404 if (i > 0)
13405 fputs_filtered ("|", stream);
13406 print_subexp (exp, pos, stream, PREC_SUFFIX);
13407 }
13408 fputs_filtered (" => ", stream);
13409 print_subexp (exp, pos, stream, PREC_SUFFIX);
13410 return;
13411
13412 case OP_POSITIONAL:
13413 print_subexp (exp, pos, stream, PREC_SUFFIX);
13414 return;
13415
13416 case OP_AGGREGATE:
13417 fputs_filtered ("(", stream);
13418 for (i = 0; i < nargs; i += 1)
13419 {
13420 if (i > 0)
13421 fputs_filtered (", ", stream);
13422 print_subexp (exp, pos, stream, PREC_SUFFIX);
13423 }
13424 fputs_filtered (")", stream);
13425 return;
13426 }
13427}
13428
13429/* Table mapping opcodes into strings for printing operators
13430 and precedences of the operators. */
13431
13432static const struct op_print ada_op_print_tab[] = {
13433 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13434 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13435 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13436 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13437 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13438 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13439 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13440 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13441 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13442 {">=", BINOP_GEQ, PREC_ORDER, 0},
13443 {">", BINOP_GTR, PREC_ORDER, 0},
13444 {"<", BINOP_LESS, PREC_ORDER, 0},
13445 {">>", BINOP_RSH, PREC_SHIFT, 0},
13446 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13447 {"+", BINOP_ADD, PREC_ADD, 0},
13448 {"-", BINOP_SUB, PREC_ADD, 0},
13449 {"&", BINOP_CONCAT, PREC_ADD, 0},
13450 {"*", BINOP_MUL, PREC_MUL, 0},
13451 {"/", BINOP_DIV, PREC_MUL, 0},
13452 {"rem", BINOP_REM, PREC_MUL, 0},
13453 {"mod", BINOP_MOD, PREC_MUL, 0},
13454 {"**", BINOP_EXP, PREC_REPEAT, 0},
13455 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13456 {"-", UNOP_NEG, PREC_PREFIX, 0},
13457 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13458 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13459 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13460 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13461 {".all", UNOP_IND, PREC_SUFFIX, 1},
13462 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13463 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13464 {NULL, 0, 0, 0}
13465};
13466\f
13467enum ada_primitive_types {
13468 ada_primitive_type_int,
13469 ada_primitive_type_long,
13470 ada_primitive_type_short,
13471 ada_primitive_type_char,
13472 ada_primitive_type_float,
13473 ada_primitive_type_double,
13474 ada_primitive_type_void,
13475 ada_primitive_type_long_long,
13476 ada_primitive_type_long_double,
13477 ada_primitive_type_natural,
13478 ada_primitive_type_positive,
13479 ada_primitive_type_system_address,
13480 nr_ada_primitive_types
13481};
13482
13483static void
13484ada_language_arch_info (struct gdbarch *gdbarch,
13485 struct language_arch_info *lai)
13486{
13487 const struct builtin_type *builtin = builtin_type (gdbarch);
13488
13489 lai->primitive_type_vector
13490 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13491 struct type *);
13492
13493 lai->primitive_type_vector [ada_primitive_type_int]
13494 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13495 0, "integer");
13496 lai->primitive_type_vector [ada_primitive_type_long]
13497 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13498 0, "long_integer");
13499 lai->primitive_type_vector [ada_primitive_type_short]
13500 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13501 0, "short_integer");
13502 lai->string_char_type
13503 = lai->primitive_type_vector [ada_primitive_type_char]
13504 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13505 lai->primitive_type_vector [ada_primitive_type_float]
13506 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13507 "float", NULL);
13508 lai->primitive_type_vector [ada_primitive_type_double]
13509 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13510 "long_float", NULL);
13511 lai->primitive_type_vector [ada_primitive_type_long_long]
13512 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13513 0, "long_long_integer");
13514 lai->primitive_type_vector [ada_primitive_type_long_double]
13515 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13516 "long_long_float", NULL);
13517 lai->primitive_type_vector [ada_primitive_type_natural]
13518 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13519 0, "natural");
13520 lai->primitive_type_vector [ada_primitive_type_positive]
13521 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13522 0, "positive");
13523 lai->primitive_type_vector [ada_primitive_type_void]
13524 = builtin->builtin_void;
13525
13526 lai->primitive_type_vector [ada_primitive_type_system_address]
13527 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13528 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13529 = "system__address";
13530
13531 lai->bool_type_symbol = NULL;
13532 lai->bool_type_default = builtin->builtin_bool;
13533}
13534\f
13535 /* Language vector */
13536
13537/* Not really used, but needed in the ada_language_defn. */
13538
13539static void
13540emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13541{
13542 ada_emit_char (c, type, stream, quoter, 1);
13543}
13544
13545static int
13546parse (struct parser_state *ps)
13547{
13548 warnings_issued = 0;
13549 return ada_parse (ps);
13550}
13551
13552static const struct exp_descriptor ada_exp_descriptor = {
13553 ada_print_subexp,
13554 ada_operator_length,
13555 ada_operator_check,
13556 ada_op_name,
13557 ada_dump_subexp_body,
13558 ada_evaluate_subexp
13559};
13560
13561/* Implement the "la_get_symbol_name_cmp" language_defn method
13562 for Ada. */
13563
13564static symbol_name_cmp_ftype
13565ada_get_symbol_name_cmp (const char *lookup_name)
13566{
13567 if (should_use_wild_match (lookup_name))
13568 return wild_match;
13569 else
13570 return compare_names;
13571}
13572
13573/* Implement the "la_read_var_value" language_defn method for Ada. */
13574
13575static struct value *
13576ada_read_var_value (struct symbol *var, struct frame_info *frame)
13577{
13578 const struct block *frame_block = NULL;
13579 struct symbol *renaming_sym = NULL;
13580
13581 /* The only case where default_read_var_value is not sufficient
13582 is when VAR is a renaming... */
13583 if (frame)
13584 frame_block = get_frame_block (frame, NULL);
13585 if (frame_block)
13586 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13587 if (renaming_sym != NULL)
13588 return ada_read_renaming_var_value (renaming_sym, frame_block);
13589
13590 /* This is a typical case where we expect the default_read_var_value
13591 function to work. */
13592 return default_read_var_value (var, frame);
13593}
13594
13595const struct language_defn ada_language_defn = {
13596 "ada", /* Language name */
13597 "Ada",
13598 language_ada,
13599 range_check_off,
13600 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13601 that's not quite what this means. */
13602 array_row_major,
13603 macro_expansion_no,
13604 &ada_exp_descriptor,
13605 parse,
13606 ada_error,
13607 resolve,
13608 ada_printchar, /* Print a character constant */
13609 ada_printstr, /* Function to print string constant */
13610 emit_char, /* Function to print single char (not used) */
13611 ada_print_type, /* Print a type using appropriate syntax */
13612 ada_print_typedef, /* Print a typedef using appropriate syntax */
13613 ada_val_print, /* Print a value using appropriate syntax */
13614 ada_value_print, /* Print a top-level value */
13615 ada_read_var_value, /* la_read_var_value */
13616 NULL, /* Language specific skip_trampoline */
13617 NULL, /* name_of_this */
13618 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13619 basic_lookup_transparent_type, /* lookup_transparent_type */
13620 ada_la_decode, /* Language specific symbol demangler */
13621 NULL, /* Language specific
13622 class_name_from_physname */
13623 ada_op_print_tab, /* expression operators for printing */
13624 0, /* c-style arrays */
13625 1, /* String lower bound */
13626 ada_get_gdb_completer_word_break_characters,
13627 ada_make_symbol_completion_list,
13628 ada_language_arch_info,
13629 ada_print_array_index,
13630 default_pass_by_reference,
13631 c_get_string,
13632 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13633 ada_iterate_over_symbols,
13634 &ada_varobj_ops,
13635 LANG_MAGIC
13636};
13637
13638/* Provide a prototype to silence -Wmissing-prototypes. */
13639extern initialize_file_ftype _initialize_ada_language;
13640
13641/* Command-list for the "set/show ada" prefix command. */
13642static struct cmd_list_element *set_ada_list;
13643static struct cmd_list_element *show_ada_list;
13644
13645/* Implement the "set ada" prefix command. */
13646
13647static void
13648set_ada_command (char *arg, int from_tty)
13649{
13650 printf_unfiltered (_(\
13651"\"set ada\" must be followed by the name of a setting.\n"));
13652 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13653}
13654
13655/* Implement the "show ada" prefix command. */
13656
13657static void
13658show_ada_command (char *args, int from_tty)
13659{
13660 cmd_show_list (show_ada_list, from_tty, "");
13661}
13662
13663static void
13664initialize_ada_catchpoint_ops (void)
13665{
13666 struct breakpoint_ops *ops;
13667
13668 initialize_breakpoint_ops ();
13669
13670 ops = &catch_exception_breakpoint_ops;
13671 *ops = bkpt_breakpoint_ops;
13672 ops->dtor = dtor_catch_exception;
13673 ops->allocate_location = allocate_location_catch_exception;
13674 ops->re_set = re_set_catch_exception;
13675 ops->check_status = check_status_catch_exception;
13676 ops->print_it = print_it_catch_exception;
13677 ops->print_one = print_one_catch_exception;
13678 ops->print_mention = print_mention_catch_exception;
13679 ops->print_recreate = print_recreate_catch_exception;
13680
13681 ops = &catch_exception_unhandled_breakpoint_ops;
13682 *ops = bkpt_breakpoint_ops;
13683 ops->dtor = dtor_catch_exception_unhandled;
13684 ops->allocate_location = allocate_location_catch_exception_unhandled;
13685 ops->re_set = re_set_catch_exception_unhandled;
13686 ops->check_status = check_status_catch_exception_unhandled;
13687 ops->print_it = print_it_catch_exception_unhandled;
13688 ops->print_one = print_one_catch_exception_unhandled;
13689 ops->print_mention = print_mention_catch_exception_unhandled;
13690 ops->print_recreate = print_recreate_catch_exception_unhandled;
13691
13692 ops = &catch_assert_breakpoint_ops;
13693 *ops = bkpt_breakpoint_ops;
13694 ops->dtor = dtor_catch_assert;
13695 ops->allocate_location = allocate_location_catch_assert;
13696 ops->re_set = re_set_catch_assert;
13697 ops->check_status = check_status_catch_assert;
13698 ops->print_it = print_it_catch_assert;
13699 ops->print_one = print_one_catch_assert;
13700 ops->print_mention = print_mention_catch_assert;
13701 ops->print_recreate = print_recreate_catch_assert;
13702}
13703
13704/* This module's 'new_objfile' observer. */
13705
13706static void
13707ada_new_objfile_observer (struct objfile *objfile)
13708{
13709 ada_clear_symbol_cache ();
13710}
13711
13712/* This module's 'free_objfile' observer. */
13713
13714static void
13715ada_free_objfile_observer (struct objfile *objfile)
13716{
13717 ada_clear_symbol_cache ();
13718}
13719
13720void
13721_initialize_ada_language (void)
13722{
13723 add_language (&ada_language_defn);
13724
13725 initialize_ada_catchpoint_ops ();
13726
13727 add_prefix_cmd ("ada", no_class, set_ada_command,
13728 _("Prefix command for changing Ada-specfic settings"),
13729 &set_ada_list, "set ada ", 0, &setlist);
13730
13731 add_prefix_cmd ("ada", no_class, show_ada_command,
13732 _("Generic command for showing Ada-specific settings."),
13733 &show_ada_list, "show ada ", 0, &showlist);
13734
13735 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13736 &trust_pad_over_xvs, _("\
13737Enable or disable an optimization trusting PAD types over XVS types"), _("\
13738Show whether an optimization trusting PAD types over XVS types is activated"),
13739 _("\
13740This is related to the encoding used by the GNAT compiler. The debugger\n\
13741should normally trust the contents of PAD types, but certain older versions\n\
13742of GNAT have a bug that sometimes causes the information in the PAD type\n\
13743to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13744work around this bug. It is always safe to turn this option \"off\", but\n\
13745this incurs a slight performance penalty, so it is recommended to NOT change\n\
13746this option to \"off\" unless necessary."),
13747 NULL, NULL, &set_ada_list, &show_ada_list);
13748
13749 add_catch_command ("exception", _("\
13750Catch Ada exceptions, when raised.\n\
13751With an argument, catch only exceptions with the given name."),
13752 catch_ada_exception_command,
13753 NULL,
13754 CATCH_PERMANENT,
13755 CATCH_TEMPORARY);
13756 add_catch_command ("assert", _("\
13757Catch failed Ada assertions, when raised.\n\
13758With an argument, catch only exceptions with the given name."),
13759 catch_assert_command,
13760 NULL,
13761 CATCH_PERMANENT,
13762 CATCH_TEMPORARY);
13763
13764 varsize_limit = 65536;
13765
13766 add_info ("exceptions", info_exceptions_command,
13767 _("\
13768List all Ada exception names.\n\
13769If a regular expression is passed as an argument, only those matching\n\
13770the regular expression are listed."));
13771
13772 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13773 _("Set Ada maintenance-related variables."),
13774 &maint_set_ada_cmdlist, "maintenance set ada ",
13775 0/*allow-unknown*/, &maintenance_set_cmdlist);
13776
13777 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13778 _("Show Ada maintenance-related variables"),
13779 &maint_show_ada_cmdlist, "maintenance show ada ",
13780 0/*allow-unknown*/, &maintenance_show_cmdlist);
13781
13782 add_setshow_boolean_cmd
13783 ("ignore-descriptive-types", class_maintenance,
13784 &ada_ignore_descriptive_types_p,
13785 _("Set whether descriptive types generated by GNAT should be ignored."),
13786 _("Show whether descriptive types generated by GNAT should be ignored."),
13787 _("\
13788When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13789DWARF attribute."),
13790 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13791
13792 obstack_init (&symbol_list_obstack);
13793
13794 decoded_names_store = htab_create_alloc
13795 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13796 NULL, xcalloc, xfree);
13797
13798 /* The ada-lang observers. */
13799 observer_attach_new_objfile (ada_new_objfile_observer);
13800 observer_attach_free_objfile (ada_free_objfile_observer);
13801 observer_attach_inferior_exit (ada_inferior_exit);
13802
13803 /* Setup various context-specific data. */
13804 ada_inferior_data
13805 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13806 ada_pspace_data_handle
13807 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13808}
This page took 0.076622 seconds and 4 git commands to generate.