PR binutils/13482
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
... / ...
CommitLineData
1/* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22#include "defs.h"
23#include <stdio.h>
24#include "gdb_string.h"
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
28#include "gdb_regex.h"
29#include "frame.h"
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
42#include "hashtab.h"
43#include "gdb_obstack.h"
44#include "ada-lang.h"
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
48#include "ui-out.h"
49#endif
50#include "block.h"
51#include "infcall.h"
52#include "dictionary.h"
53#include "exceptions.h"
54#include "annotate.h"
55#include "valprint.h"
56#include "source.h"
57#include "observer.h"
58#include "vec.h"
59#include "stack.h"
60#include "gdb_vecs.h"
61
62#include "psymtab.h"
63#include "value.h"
64#include "mi/mi-common.h"
65#include "arch-utils.h"
66#include "exceptions.h"
67#include "cli/cli-utils.h"
68
69/* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
77static struct type *desc_base_type (struct type *);
78
79static struct type *desc_bounds_type (struct type *);
80
81static struct value *desc_bounds (struct value *);
82
83static int fat_pntr_bounds_bitpos (struct type *);
84
85static int fat_pntr_bounds_bitsize (struct type *);
86
87static struct type *desc_data_target_type (struct type *);
88
89static struct value *desc_data (struct value *);
90
91static int fat_pntr_data_bitpos (struct type *);
92
93static int fat_pntr_data_bitsize (struct type *);
94
95static struct value *desc_one_bound (struct value *, int, int);
96
97static int desc_bound_bitpos (struct type *, int, int);
98
99static int desc_bound_bitsize (struct type *, int, int);
100
101static struct type *desc_index_type (struct type *, int);
102
103static int desc_arity (struct type *);
104
105static int ada_type_match (struct type *, struct type *, int);
106
107static int ada_args_match (struct symbol *, struct value **, int);
108
109static int full_match (const char *, const char *);
110
111static struct value *make_array_descriptor (struct type *, struct value *);
112
113static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117static int is_nonfunction (struct ada_symbol_info *, int);
118
119static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
137
138static int numeric_type_p (struct type *);
139
140static int integer_type_p (struct type *);
141
142static int scalar_type_p (struct type *);
143
144static int discrete_type_p (struct type *);
145
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157static struct value *evaluate_subexp_type (struct expression *, int *);
158
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162static int is_dynamic_field (struct type *, int);
163
164static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170static struct type *to_fixed_range_type (struct type *, struct value *);
171
172static struct type *to_static_fixed_type (struct type *);
173static struct type *static_unwrap_type (struct type *type);
174
175static struct value *unwrap_value (struct value *);
176
177static struct type *constrained_packed_array_type (struct type *, long *);
178
179static struct type *decode_constrained_packed_array_type (struct type *);
180
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
188
189static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197static struct value *get_var_value (char *, char *);
198
199static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201static int equiv_types (struct type *, struct type *);
202
203static int is_name_suffix (const char *);
204
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
208
209static struct value *ada_coerce_ref (struct value *);
210
211static LONGEST pos_atr (struct value *);
212
213static struct value *value_pos_atr (struct type *, struct value *);
214
215static struct value *value_val_atr (struct type *, struct value *);
216
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226static int find_struct_field (char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236static int ada_is_direct_array_type (struct type *);
237
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241static void check_size (const struct type *);
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274\f
275
276
277/* Maximum-sized dynamic type. */
278static unsigned int varsize_limit;
279
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287#endif
288
289/* The name of the symbol to use to get the name of the main subprogram. */
290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
311 /* Inferior-specific data. */
312
313/* Per-inferior data for this module. */
314
315struct ada_inferior_data
316{
317 /* The ada__tags__type_specific_data type, which is used when decoding
318 tagged types. With older versions of GNAT, this type was directly
319 accessible through a component ("tsd") in the object tag. But this
320 is no longer the case, so we cache it for each inferior. */
321 struct type *tsd_type;
322
323 /* The exception_support_info data. This data is used to determine
324 how to implement support for Ada exception catchpoints in a given
325 inferior. */
326 const struct exception_support_info *exception_info;
327};
328
329/* Our key to this module's inferior data. */
330static const struct inferior_data *ada_inferior_data;
331
332/* A cleanup routine for our inferior data. */
333static void
334ada_inferior_data_cleanup (struct inferior *inf, void *arg)
335{
336 struct ada_inferior_data *data;
337
338 data = inferior_data (inf, ada_inferior_data);
339 if (data != NULL)
340 xfree (data);
341}
342
343/* Return our inferior data for the given inferior (INF).
344
345 This function always returns a valid pointer to an allocated
346 ada_inferior_data structure. If INF's inferior data has not
347 been previously set, this functions creates a new one with all
348 fields set to zero, sets INF's inferior to it, and then returns
349 a pointer to that newly allocated ada_inferior_data. */
350
351static struct ada_inferior_data *
352get_ada_inferior_data (struct inferior *inf)
353{
354 struct ada_inferior_data *data;
355
356 data = inferior_data (inf, ada_inferior_data);
357 if (data == NULL)
358 {
359 data = XZALLOC (struct ada_inferior_data);
360 set_inferior_data (inf, ada_inferior_data, data);
361 }
362
363 return data;
364}
365
366/* Perform all necessary cleanups regarding our module's inferior data
367 that is required after the inferior INF just exited. */
368
369static void
370ada_inferior_exit (struct inferior *inf)
371{
372 ada_inferior_data_cleanup (inf, NULL);
373 set_inferior_data (inf, ada_inferior_data, NULL);
374}
375
376 /* Utilities */
377
378/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
379 all typedef layers have been peeled. Otherwise, return TYPE.
380
381 Normally, we really expect a typedef type to only have 1 typedef layer.
382 In other words, we really expect the target type of a typedef type to be
383 a non-typedef type. This is particularly true for Ada units, because
384 the language does not have a typedef vs not-typedef distinction.
385 In that respect, the Ada compiler has been trying to eliminate as many
386 typedef definitions in the debugging information, since they generally
387 do not bring any extra information (we still use typedef under certain
388 circumstances related mostly to the GNAT encoding).
389
390 Unfortunately, we have seen situations where the debugging information
391 generated by the compiler leads to such multiple typedef layers. For
392 instance, consider the following example with stabs:
393
394 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
395 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
396
397 This is an error in the debugging information which causes type
398 pck__float_array___XUP to be defined twice, and the second time,
399 it is defined as a typedef of a typedef.
400
401 This is on the fringe of legality as far as debugging information is
402 concerned, and certainly unexpected. But it is easy to handle these
403 situations correctly, so we can afford to be lenient in this case. */
404
405static struct type *
406ada_typedef_target_type (struct type *type)
407{
408 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
409 type = TYPE_TARGET_TYPE (type);
410 return type;
411}
412
413/* Given DECODED_NAME a string holding a symbol name in its
414 decoded form (ie using the Ada dotted notation), returns
415 its unqualified name. */
416
417static const char *
418ada_unqualified_name (const char *decoded_name)
419{
420 const char *result = strrchr (decoded_name, '.');
421
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428}
429
430/* Return a string starting with '<', followed by STR, and '>'.
431 The result is good until the next call. */
432
433static char *
434add_angle_brackets (const char *str)
435{
436 static char *result = NULL;
437
438 xfree (result);
439 result = xstrprintf ("<%s>", str);
440 return result;
441}
442
443static char *
444ada_get_gdb_completer_word_break_characters (void)
445{
446 return ada_completer_word_break_characters;
447}
448
449/* Print an array element index using the Ada syntax. */
450
451static void
452ada_print_array_index (struct value *index_value, struct ui_file *stream,
453 const struct value_print_options *options)
454{
455 LA_VALUE_PRINT (index_value, stream, options);
456 fprintf_filtered (stream, " => ");
457}
458
459/* Assuming VECT points to an array of *SIZE objects of size
460 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
461 updating *SIZE as necessary and returning the (new) array. */
462
463void *
464grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
465{
466 if (*size < min_size)
467 {
468 *size *= 2;
469 if (*size < min_size)
470 *size = min_size;
471 vect = xrealloc (vect, *size * element_size);
472 }
473 return vect;
474}
475
476/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
477 suffix of FIELD_NAME beginning "___". */
478
479static int
480field_name_match (const char *field_name, const char *target)
481{
482 int len = strlen (target);
483
484 return
485 (strncmp (field_name, target, len) == 0
486 && (field_name[len] == '\0'
487 || (strncmp (field_name + len, "___", 3) == 0
488 && strcmp (field_name + strlen (field_name) - 6,
489 "___XVN") != 0)));
490}
491
492
493/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
494 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
495 and return its index. This function also handles fields whose name
496 have ___ suffixes because the compiler sometimes alters their name
497 by adding such a suffix to represent fields with certain constraints.
498 If the field could not be found, return a negative number if
499 MAYBE_MISSING is set. Otherwise raise an error. */
500
501int
502ada_get_field_index (const struct type *type, const char *field_name,
503 int maybe_missing)
504{
505 int fieldno;
506 struct type *struct_type = check_typedef ((struct type *) type);
507
508 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
509 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
510 return fieldno;
511
512 if (!maybe_missing)
513 error (_("Unable to find field %s in struct %s. Aborting"),
514 field_name, TYPE_NAME (struct_type));
515
516 return -1;
517}
518
519/* The length of the prefix of NAME prior to any "___" suffix. */
520
521int
522ada_name_prefix_len (const char *name)
523{
524 if (name == NULL)
525 return 0;
526 else
527 {
528 const char *p = strstr (name, "___");
529
530 if (p == NULL)
531 return strlen (name);
532 else
533 return p - name;
534 }
535}
536
537/* Return non-zero if SUFFIX is a suffix of STR.
538 Return zero if STR is null. */
539
540static int
541is_suffix (const char *str, const char *suffix)
542{
543 int len1, len2;
544
545 if (str == NULL)
546 return 0;
547 len1 = strlen (str);
548 len2 = strlen (suffix);
549 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
550}
551
552/* The contents of value VAL, treated as a value of type TYPE. The
553 result is an lval in memory if VAL is. */
554
555static struct value *
556coerce_unspec_val_to_type (struct value *val, struct type *type)
557{
558 type = ada_check_typedef (type);
559 if (value_type (val) == type)
560 return val;
561 else
562 {
563 struct value *result;
564
565 /* Make sure that the object size is not unreasonable before
566 trying to allocate some memory for it. */
567 check_size (type);
568
569 if (value_lazy (val)
570 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
571 result = allocate_value_lazy (type);
572 else
573 {
574 result = allocate_value (type);
575 memcpy (value_contents_raw (result), value_contents (val),
576 TYPE_LENGTH (type));
577 }
578 set_value_component_location (result, val);
579 set_value_bitsize (result, value_bitsize (val));
580 set_value_bitpos (result, value_bitpos (val));
581 set_value_address (result, value_address (val));
582 return result;
583 }
584}
585
586static const gdb_byte *
587cond_offset_host (const gdb_byte *valaddr, long offset)
588{
589 if (valaddr == NULL)
590 return NULL;
591 else
592 return valaddr + offset;
593}
594
595static CORE_ADDR
596cond_offset_target (CORE_ADDR address, long offset)
597{
598 if (address == 0)
599 return 0;
600 else
601 return address + offset;
602}
603
604/* Issue a warning (as for the definition of warning in utils.c, but
605 with exactly one argument rather than ...), unless the limit on the
606 number of warnings has passed during the evaluation of the current
607 expression. */
608
609/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
610 provided by "complaint". */
611static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
612
613static void
614lim_warning (const char *format, ...)
615{
616 va_list args;
617
618 va_start (args, format);
619 warnings_issued += 1;
620 if (warnings_issued <= warning_limit)
621 vwarning (format, args);
622
623 va_end (args);
624}
625
626/* Issue an error if the size of an object of type T is unreasonable,
627 i.e. if it would be a bad idea to allocate a value of this type in
628 GDB. */
629
630static void
631check_size (const struct type *type)
632{
633 if (TYPE_LENGTH (type) > varsize_limit)
634 error (_("object size is larger than varsize-limit"));
635}
636
637/* Maximum value of a SIZE-byte signed integer type. */
638static LONGEST
639max_of_size (int size)
640{
641 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
642
643 return top_bit | (top_bit - 1);
644}
645
646/* Minimum value of a SIZE-byte signed integer type. */
647static LONGEST
648min_of_size (int size)
649{
650 return -max_of_size (size) - 1;
651}
652
653/* Maximum value of a SIZE-byte unsigned integer type. */
654static ULONGEST
655umax_of_size (int size)
656{
657 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
658
659 return top_bit | (top_bit - 1);
660}
661
662/* Maximum value of integral type T, as a signed quantity. */
663static LONGEST
664max_of_type (struct type *t)
665{
666 if (TYPE_UNSIGNED (t))
667 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
668 else
669 return max_of_size (TYPE_LENGTH (t));
670}
671
672/* Minimum value of integral type T, as a signed quantity. */
673static LONGEST
674min_of_type (struct type *t)
675{
676 if (TYPE_UNSIGNED (t))
677 return 0;
678 else
679 return min_of_size (TYPE_LENGTH (t));
680}
681
682/* The largest value in the domain of TYPE, a discrete type, as an integer. */
683LONGEST
684ada_discrete_type_high_bound (struct type *type)
685{
686 switch (TYPE_CODE (type))
687 {
688 case TYPE_CODE_RANGE:
689 return TYPE_HIGH_BOUND (type);
690 case TYPE_CODE_ENUM:
691 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
692 case TYPE_CODE_BOOL:
693 return 1;
694 case TYPE_CODE_CHAR:
695 case TYPE_CODE_INT:
696 return max_of_type (type);
697 default:
698 error (_("Unexpected type in ada_discrete_type_high_bound."));
699 }
700}
701
702/* The largest value in the domain of TYPE, a discrete type, as an integer. */
703LONGEST
704ada_discrete_type_low_bound (struct type *type)
705{
706 switch (TYPE_CODE (type))
707 {
708 case TYPE_CODE_RANGE:
709 return TYPE_LOW_BOUND (type);
710 case TYPE_CODE_ENUM:
711 return TYPE_FIELD_BITPOS (type, 0);
712 case TYPE_CODE_BOOL:
713 return 0;
714 case TYPE_CODE_CHAR:
715 case TYPE_CODE_INT:
716 return min_of_type (type);
717 default:
718 error (_("Unexpected type in ada_discrete_type_low_bound."));
719 }
720}
721
722/* The identity on non-range types. For range types, the underlying
723 non-range scalar type. */
724
725static struct type *
726get_base_type (struct type *type)
727{
728 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
729 {
730 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
731 return type;
732 type = TYPE_TARGET_TYPE (type);
733 }
734 return type;
735}
736\f
737
738 /* Language Selection */
739
740/* If the main program is in Ada, return language_ada, otherwise return LANG
741 (the main program is in Ada iif the adainit symbol is found). */
742
743enum language
744ada_update_initial_language (enum language lang)
745{
746 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
747 (struct objfile *) NULL) != NULL)
748 return language_ada;
749
750 return lang;
751}
752
753/* If the main procedure is written in Ada, then return its name.
754 The result is good until the next call. Return NULL if the main
755 procedure doesn't appear to be in Ada. */
756
757char *
758ada_main_name (void)
759{
760 struct minimal_symbol *msym;
761 static char *main_program_name = NULL;
762
763 /* For Ada, the name of the main procedure is stored in a specific
764 string constant, generated by the binder. Look for that symbol,
765 extract its address, and then read that string. If we didn't find
766 that string, then most probably the main procedure is not written
767 in Ada. */
768 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
769
770 if (msym != NULL)
771 {
772 CORE_ADDR main_program_name_addr;
773 int err_code;
774
775 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
776 if (main_program_name_addr == 0)
777 error (_("Invalid address for Ada main program name."));
778
779 xfree (main_program_name);
780 target_read_string (main_program_name_addr, &main_program_name,
781 1024, &err_code);
782
783 if (err_code != 0)
784 return NULL;
785 return main_program_name;
786 }
787
788 /* The main procedure doesn't seem to be in Ada. */
789 return NULL;
790}
791\f
792 /* Symbols */
793
794/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
795 of NULLs. */
796
797const struct ada_opname_map ada_opname_table[] = {
798 {"Oadd", "\"+\"", BINOP_ADD},
799 {"Osubtract", "\"-\"", BINOP_SUB},
800 {"Omultiply", "\"*\"", BINOP_MUL},
801 {"Odivide", "\"/\"", BINOP_DIV},
802 {"Omod", "\"mod\"", BINOP_MOD},
803 {"Orem", "\"rem\"", BINOP_REM},
804 {"Oexpon", "\"**\"", BINOP_EXP},
805 {"Olt", "\"<\"", BINOP_LESS},
806 {"Ole", "\"<=\"", BINOP_LEQ},
807 {"Ogt", "\">\"", BINOP_GTR},
808 {"Oge", "\">=\"", BINOP_GEQ},
809 {"Oeq", "\"=\"", BINOP_EQUAL},
810 {"One", "\"/=\"", BINOP_NOTEQUAL},
811 {"Oand", "\"and\"", BINOP_BITWISE_AND},
812 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
813 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
814 {"Oconcat", "\"&\"", BINOP_CONCAT},
815 {"Oabs", "\"abs\"", UNOP_ABS},
816 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
817 {"Oadd", "\"+\"", UNOP_PLUS},
818 {"Osubtract", "\"-\"", UNOP_NEG},
819 {NULL, NULL}
820};
821
822/* The "encoded" form of DECODED, according to GNAT conventions.
823 The result is valid until the next call to ada_encode. */
824
825char *
826ada_encode (const char *decoded)
827{
828 static char *encoding_buffer = NULL;
829 static size_t encoding_buffer_size = 0;
830 const char *p;
831 int k;
832
833 if (decoded == NULL)
834 return NULL;
835
836 GROW_VECT (encoding_buffer, encoding_buffer_size,
837 2 * strlen (decoded) + 10);
838
839 k = 0;
840 for (p = decoded; *p != '\0'; p += 1)
841 {
842 if (*p == '.')
843 {
844 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
845 k += 2;
846 }
847 else if (*p == '"')
848 {
849 const struct ada_opname_map *mapping;
850
851 for (mapping = ada_opname_table;
852 mapping->encoded != NULL
853 && strncmp (mapping->decoded, p,
854 strlen (mapping->decoded)) != 0; mapping += 1)
855 ;
856 if (mapping->encoded == NULL)
857 error (_("invalid Ada operator name: %s"), p);
858 strcpy (encoding_buffer + k, mapping->encoded);
859 k += strlen (mapping->encoded);
860 break;
861 }
862 else
863 {
864 encoding_buffer[k] = *p;
865 k += 1;
866 }
867 }
868
869 encoding_buffer[k] = '\0';
870 return encoding_buffer;
871}
872
873/* Return NAME folded to lower case, or, if surrounded by single
874 quotes, unfolded, but with the quotes stripped away. Result good
875 to next call. */
876
877char *
878ada_fold_name (const char *name)
879{
880 static char *fold_buffer = NULL;
881 static size_t fold_buffer_size = 0;
882
883 int len = strlen (name);
884 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
885
886 if (name[0] == '\'')
887 {
888 strncpy (fold_buffer, name + 1, len - 2);
889 fold_buffer[len - 2] = '\000';
890 }
891 else
892 {
893 int i;
894
895 for (i = 0; i <= len; i += 1)
896 fold_buffer[i] = tolower (name[i]);
897 }
898
899 return fold_buffer;
900}
901
902/* Return nonzero if C is either a digit or a lowercase alphabet character. */
903
904static int
905is_lower_alphanum (const char c)
906{
907 return (isdigit (c) || (isalpha (c) && islower (c)));
908}
909
910/* ENCODED is the linkage name of a symbol and LEN contains its length.
911 This function saves in LEN the length of that same symbol name but
912 without either of these suffixes:
913 . .{DIGIT}+
914 . ${DIGIT}+
915 . ___{DIGIT}+
916 . __{DIGIT}+.
917
918 These are suffixes introduced by the compiler for entities such as
919 nested subprogram for instance, in order to avoid name clashes.
920 They do not serve any purpose for the debugger. */
921
922static void
923ada_remove_trailing_digits (const char *encoded, int *len)
924{
925 if (*len > 1 && isdigit (encoded[*len - 1]))
926 {
927 int i = *len - 2;
928
929 while (i > 0 && isdigit (encoded[i]))
930 i--;
931 if (i >= 0 && encoded[i] == '.')
932 *len = i;
933 else if (i >= 0 && encoded[i] == '$')
934 *len = i;
935 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
936 *len = i - 2;
937 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
938 *len = i - 1;
939 }
940}
941
942/* Remove the suffix introduced by the compiler for protected object
943 subprograms. */
944
945static void
946ada_remove_po_subprogram_suffix (const char *encoded, int *len)
947{
948 /* Remove trailing N. */
949
950 /* Protected entry subprograms are broken into two
951 separate subprograms: The first one is unprotected, and has
952 a 'N' suffix; the second is the protected version, and has
953 the 'P' suffix. The second calls the first one after handling
954 the protection. Since the P subprograms are internally generated,
955 we leave these names undecoded, giving the user a clue that this
956 entity is internal. */
957
958 if (*len > 1
959 && encoded[*len - 1] == 'N'
960 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
961 *len = *len - 1;
962}
963
964/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
965
966static void
967ada_remove_Xbn_suffix (const char *encoded, int *len)
968{
969 int i = *len - 1;
970
971 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
972 i--;
973
974 if (encoded[i] != 'X')
975 return;
976
977 if (i == 0)
978 return;
979
980 if (isalnum (encoded[i-1]))
981 *len = i;
982}
983
984/* If ENCODED follows the GNAT entity encoding conventions, then return
985 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
986 replaced by ENCODED.
987
988 The resulting string is valid until the next call of ada_decode.
989 If the string is unchanged by decoding, the original string pointer
990 is returned. */
991
992const char *
993ada_decode (const char *encoded)
994{
995 int i, j;
996 int len0;
997 const char *p;
998 char *decoded;
999 int at_start_name;
1000 static char *decoding_buffer = NULL;
1001 static size_t decoding_buffer_size = 0;
1002
1003 /* The name of the Ada main procedure starts with "_ada_".
1004 This prefix is not part of the decoded name, so skip this part
1005 if we see this prefix. */
1006 if (strncmp (encoded, "_ada_", 5) == 0)
1007 encoded += 5;
1008
1009 /* If the name starts with '_', then it is not a properly encoded
1010 name, so do not attempt to decode it. Similarly, if the name
1011 starts with '<', the name should not be decoded. */
1012 if (encoded[0] == '_' || encoded[0] == '<')
1013 goto Suppress;
1014
1015 len0 = strlen (encoded);
1016
1017 ada_remove_trailing_digits (encoded, &len0);
1018 ada_remove_po_subprogram_suffix (encoded, &len0);
1019
1020 /* Remove the ___X.* suffix if present. Do not forget to verify that
1021 the suffix is located before the current "end" of ENCODED. We want
1022 to avoid re-matching parts of ENCODED that have previously been
1023 marked as discarded (by decrementing LEN0). */
1024 p = strstr (encoded, "___");
1025 if (p != NULL && p - encoded < len0 - 3)
1026 {
1027 if (p[3] == 'X')
1028 len0 = p - encoded;
1029 else
1030 goto Suppress;
1031 }
1032
1033 /* Remove any trailing TKB suffix. It tells us that this symbol
1034 is for the body of a task, but that information does not actually
1035 appear in the decoded name. */
1036
1037 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1038 len0 -= 3;
1039
1040 /* Remove any trailing TB suffix. The TB suffix is slightly different
1041 from the TKB suffix because it is used for non-anonymous task
1042 bodies. */
1043
1044 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1045 len0 -= 2;
1046
1047 /* Remove trailing "B" suffixes. */
1048 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1049
1050 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1051 len0 -= 1;
1052
1053 /* Make decoded big enough for possible expansion by operator name. */
1054
1055 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1056 decoded = decoding_buffer;
1057
1058 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1059
1060 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1061 {
1062 i = len0 - 2;
1063 while ((i >= 0 && isdigit (encoded[i]))
1064 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1065 i -= 1;
1066 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1067 len0 = i - 1;
1068 else if (encoded[i] == '$')
1069 len0 = i;
1070 }
1071
1072 /* The first few characters that are not alphabetic are not part
1073 of any encoding we use, so we can copy them over verbatim. */
1074
1075 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1076 decoded[j] = encoded[i];
1077
1078 at_start_name = 1;
1079 while (i < len0)
1080 {
1081 /* Is this a symbol function? */
1082 if (at_start_name && encoded[i] == 'O')
1083 {
1084 int k;
1085
1086 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1087 {
1088 int op_len = strlen (ada_opname_table[k].encoded);
1089 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1090 op_len - 1) == 0)
1091 && !isalnum (encoded[i + op_len]))
1092 {
1093 strcpy (decoded + j, ada_opname_table[k].decoded);
1094 at_start_name = 0;
1095 i += op_len;
1096 j += strlen (ada_opname_table[k].decoded);
1097 break;
1098 }
1099 }
1100 if (ada_opname_table[k].encoded != NULL)
1101 continue;
1102 }
1103 at_start_name = 0;
1104
1105 /* Replace "TK__" with "__", which will eventually be translated
1106 into "." (just below). */
1107
1108 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1109 i += 2;
1110
1111 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1112 be translated into "." (just below). These are internal names
1113 generated for anonymous blocks inside which our symbol is nested. */
1114
1115 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1116 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1117 && isdigit (encoded [i+4]))
1118 {
1119 int k = i + 5;
1120
1121 while (k < len0 && isdigit (encoded[k]))
1122 k++; /* Skip any extra digit. */
1123
1124 /* Double-check that the "__B_{DIGITS}+" sequence we found
1125 is indeed followed by "__". */
1126 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1127 i = k;
1128 }
1129
1130 /* Remove _E{DIGITS}+[sb] */
1131
1132 /* Just as for protected object subprograms, there are 2 categories
1133 of subprograms created by the compiler for each entry. The first
1134 one implements the actual entry code, and has a suffix following
1135 the convention above; the second one implements the barrier and
1136 uses the same convention as above, except that the 'E' is replaced
1137 by a 'B'.
1138
1139 Just as above, we do not decode the name of barrier functions
1140 to give the user a clue that the code he is debugging has been
1141 internally generated. */
1142
1143 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1144 && isdigit (encoded[i+2]))
1145 {
1146 int k = i + 3;
1147
1148 while (k < len0 && isdigit (encoded[k]))
1149 k++;
1150
1151 if (k < len0
1152 && (encoded[k] == 'b' || encoded[k] == 's'))
1153 {
1154 k++;
1155 /* Just as an extra precaution, make sure that if this
1156 suffix is followed by anything else, it is a '_'.
1157 Otherwise, we matched this sequence by accident. */
1158 if (k == len0
1159 || (k < len0 && encoded[k] == '_'))
1160 i = k;
1161 }
1162 }
1163
1164 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1165 the GNAT front-end in protected object subprograms. */
1166
1167 if (i < len0 + 3
1168 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1169 {
1170 /* Backtrack a bit up until we reach either the begining of
1171 the encoded name, or "__". Make sure that we only find
1172 digits or lowercase characters. */
1173 const char *ptr = encoded + i - 1;
1174
1175 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1176 ptr--;
1177 if (ptr < encoded
1178 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1179 i++;
1180 }
1181
1182 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1183 {
1184 /* This is a X[bn]* sequence not separated from the previous
1185 part of the name with a non-alpha-numeric character (in other
1186 words, immediately following an alpha-numeric character), then
1187 verify that it is placed at the end of the encoded name. If
1188 not, then the encoding is not valid and we should abort the
1189 decoding. Otherwise, just skip it, it is used in body-nested
1190 package names. */
1191 do
1192 i += 1;
1193 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1194 if (i < len0)
1195 goto Suppress;
1196 }
1197 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1198 {
1199 /* Replace '__' by '.'. */
1200 decoded[j] = '.';
1201 at_start_name = 1;
1202 i += 2;
1203 j += 1;
1204 }
1205 else
1206 {
1207 /* It's a character part of the decoded name, so just copy it
1208 over. */
1209 decoded[j] = encoded[i];
1210 i += 1;
1211 j += 1;
1212 }
1213 }
1214 decoded[j] = '\000';
1215
1216 /* Decoded names should never contain any uppercase character.
1217 Double-check this, and abort the decoding if we find one. */
1218
1219 for (i = 0; decoded[i] != '\0'; i += 1)
1220 if (isupper (decoded[i]) || decoded[i] == ' ')
1221 goto Suppress;
1222
1223 if (strcmp (decoded, encoded) == 0)
1224 return encoded;
1225 else
1226 return decoded;
1227
1228Suppress:
1229 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1230 decoded = decoding_buffer;
1231 if (encoded[0] == '<')
1232 strcpy (decoded, encoded);
1233 else
1234 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1235 return decoded;
1236
1237}
1238
1239/* Table for keeping permanent unique copies of decoded names. Once
1240 allocated, names in this table are never released. While this is a
1241 storage leak, it should not be significant unless there are massive
1242 changes in the set of decoded names in successive versions of a
1243 symbol table loaded during a single session. */
1244static struct htab *decoded_names_store;
1245
1246/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1247 in the language-specific part of GSYMBOL, if it has not been
1248 previously computed. Tries to save the decoded name in the same
1249 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1250 in any case, the decoded symbol has a lifetime at least that of
1251 GSYMBOL).
1252 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1253 const, but nevertheless modified to a semantically equivalent form
1254 when a decoded name is cached in it. */
1255
1256char *
1257ada_decode_symbol (const struct general_symbol_info *gsymbol)
1258{
1259 char **resultp =
1260 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1261
1262 if (*resultp == NULL)
1263 {
1264 const char *decoded = ada_decode (gsymbol->name);
1265
1266 if (gsymbol->obj_section != NULL)
1267 {
1268 struct objfile *objf = gsymbol->obj_section->objfile;
1269
1270 *resultp = obsavestring (decoded, strlen (decoded),
1271 &objf->objfile_obstack);
1272 }
1273 /* Sometimes, we can't find a corresponding objfile, in which
1274 case, we put the result on the heap. Since we only decode
1275 when needed, we hope this usually does not cause a
1276 significant memory leak (FIXME). */
1277 if (*resultp == NULL)
1278 {
1279 char **slot = (char **) htab_find_slot (decoded_names_store,
1280 decoded, INSERT);
1281
1282 if (*slot == NULL)
1283 *slot = xstrdup (decoded);
1284 *resultp = *slot;
1285 }
1286 }
1287
1288 return *resultp;
1289}
1290
1291static char *
1292ada_la_decode (const char *encoded, int options)
1293{
1294 return xstrdup (ada_decode (encoded));
1295}
1296
1297/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1298 suffixes that encode debugging information or leading _ada_ on
1299 SYM_NAME (see is_name_suffix commentary for the debugging
1300 information that is ignored). If WILD, then NAME need only match a
1301 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1302 either argument is NULL. */
1303
1304static int
1305match_name (const char *sym_name, const char *name, int wild)
1306{
1307 if (sym_name == NULL || name == NULL)
1308 return 0;
1309 else if (wild)
1310 return wild_match (sym_name, name) == 0;
1311 else
1312 {
1313 int len_name = strlen (name);
1314
1315 return (strncmp (sym_name, name, len_name) == 0
1316 && is_name_suffix (sym_name + len_name))
1317 || (strncmp (sym_name, "_ada_", 5) == 0
1318 && strncmp (sym_name + 5, name, len_name) == 0
1319 && is_name_suffix (sym_name + len_name + 5));
1320 }
1321}
1322\f
1323
1324 /* Arrays */
1325
1326/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1327 generated by the GNAT compiler to describe the index type used
1328 for each dimension of an array, check whether it follows the latest
1329 known encoding. If not, fix it up to conform to the latest encoding.
1330 Otherwise, do nothing. This function also does nothing if
1331 INDEX_DESC_TYPE is NULL.
1332
1333 The GNAT encoding used to describle the array index type evolved a bit.
1334 Initially, the information would be provided through the name of each
1335 field of the structure type only, while the type of these fields was
1336 described as unspecified and irrelevant. The debugger was then expected
1337 to perform a global type lookup using the name of that field in order
1338 to get access to the full index type description. Because these global
1339 lookups can be very expensive, the encoding was later enhanced to make
1340 the global lookup unnecessary by defining the field type as being
1341 the full index type description.
1342
1343 The purpose of this routine is to allow us to support older versions
1344 of the compiler by detecting the use of the older encoding, and by
1345 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1346 we essentially replace each field's meaningless type by the associated
1347 index subtype). */
1348
1349void
1350ada_fixup_array_indexes_type (struct type *index_desc_type)
1351{
1352 int i;
1353
1354 if (index_desc_type == NULL)
1355 return;
1356 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1357
1358 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1359 to check one field only, no need to check them all). If not, return
1360 now.
1361
1362 If our INDEX_DESC_TYPE was generated using the older encoding,
1363 the field type should be a meaningless integer type whose name
1364 is not equal to the field name. */
1365 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1366 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1367 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1368 return;
1369
1370 /* Fixup each field of INDEX_DESC_TYPE. */
1371 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1372 {
1373 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1374 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1375
1376 if (raw_type)
1377 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1378 }
1379}
1380
1381/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1382
1383static char *bound_name[] = {
1384 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1385 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1386};
1387
1388/* Maximum number of array dimensions we are prepared to handle. */
1389
1390#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1391
1392
1393/* The desc_* routines return primitive portions of array descriptors
1394 (fat pointers). */
1395
1396/* The descriptor or array type, if any, indicated by TYPE; removes
1397 level of indirection, if needed. */
1398
1399static struct type *
1400desc_base_type (struct type *type)
1401{
1402 if (type == NULL)
1403 return NULL;
1404 type = ada_check_typedef (type);
1405 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1406 type = ada_typedef_target_type (type);
1407
1408 if (type != NULL
1409 && (TYPE_CODE (type) == TYPE_CODE_PTR
1410 || TYPE_CODE (type) == TYPE_CODE_REF))
1411 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1412 else
1413 return type;
1414}
1415
1416/* True iff TYPE indicates a "thin" array pointer type. */
1417
1418static int
1419is_thin_pntr (struct type *type)
1420{
1421 return
1422 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1423 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1424}
1425
1426/* The descriptor type for thin pointer type TYPE. */
1427
1428static struct type *
1429thin_descriptor_type (struct type *type)
1430{
1431 struct type *base_type = desc_base_type (type);
1432
1433 if (base_type == NULL)
1434 return NULL;
1435 if (is_suffix (ada_type_name (base_type), "___XVE"))
1436 return base_type;
1437 else
1438 {
1439 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1440
1441 if (alt_type == NULL)
1442 return base_type;
1443 else
1444 return alt_type;
1445 }
1446}
1447
1448/* A pointer to the array data for thin-pointer value VAL. */
1449
1450static struct value *
1451thin_data_pntr (struct value *val)
1452{
1453 struct type *type = ada_check_typedef (value_type (val));
1454 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1455
1456 data_type = lookup_pointer_type (data_type);
1457
1458 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1459 return value_cast (data_type, value_copy (val));
1460 else
1461 return value_from_longest (data_type, value_address (val));
1462}
1463
1464/* True iff TYPE indicates a "thick" array pointer type. */
1465
1466static int
1467is_thick_pntr (struct type *type)
1468{
1469 type = desc_base_type (type);
1470 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1471 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1472}
1473
1474/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1475 pointer to one, the type of its bounds data; otherwise, NULL. */
1476
1477static struct type *
1478desc_bounds_type (struct type *type)
1479{
1480 struct type *r;
1481
1482 type = desc_base_type (type);
1483
1484 if (type == NULL)
1485 return NULL;
1486 else if (is_thin_pntr (type))
1487 {
1488 type = thin_descriptor_type (type);
1489 if (type == NULL)
1490 return NULL;
1491 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1492 if (r != NULL)
1493 return ada_check_typedef (r);
1494 }
1495 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1496 {
1497 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1498 if (r != NULL)
1499 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1500 }
1501 return NULL;
1502}
1503
1504/* If ARR is an array descriptor (fat or thin pointer), or pointer to
1505 one, a pointer to its bounds data. Otherwise NULL. */
1506
1507static struct value *
1508desc_bounds (struct value *arr)
1509{
1510 struct type *type = ada_check_typedef (value_type (arr));
1511
1512 if (is_thin_pntr (type))
1513 {
1514 struct type *bounds_type =
1515 desc_bounds_type (thin_descriptor_type (type));
1516 LONGEST addr;
1517
1518 if (bounds_type == NULL)
1519 error (_("Bad GNAT array descriptor"));
1520
1521 /* NOTE: The following calculation is not really kosher, but
1522 since desc_type is an XVE-encoded type (and shouldn't be),
1523 the correct calculation is a real pain. FIXME (and fix GCC). */
1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1525 addr = value_as_long (arr);
1526 else
1527 addr = value_address (arr);
1528
1529 return
1530 value_from_longest (lookup_pointer_type (bounds_type),
1531 addr - TYPE_LENGTH (bounds_type));
1532 }
1533
1534 else if (is_thick_pntr (type))
1535 {
1536 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1537 _("Bad GNAT array descriptor"));
1538 struct type *p_bounds_type = value_type (p_bounds);
1539
1540 if (p_bounds_type
1541 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1542 {
1543 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1544
1545 if (TYPE_STUB (target_type))
1546 p_bounds = value_cast (lookup_pointer_type
1547 (ada_check_typedef (target_type)),
1548 p_bounds);
1549 }
1550 else
1551 error (_("Bad GNAT array descriptor"));
1552
1553 return p_bounds;
1554 }
1555 else
1556 return NULL;
1557}
1558
1559/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1560 position of the field containing the address of the bounds data. */
1561
1562static int
1563fat_pntr_bounds_bitpos (struct type *type)
1564{
1565 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1566}
1567
1568/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1569 size of the field containing the address of the bounds data. */
1570
1571static int
1572fat_pntr_bounds_bitsize (struct type *type)
1573{
1574 type = desc_base_type (type);
1575
1576 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1577 return TYPE_FIELD_BITSIZE (type, 1);
1578 else
1579 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1580}
1581
1582/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1583 pointer to one, the type of its array data (a array-with-no-bounds type);
1584 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1585 data. */
1586
1587static struct type *
1588desc_data_target_type (struct type *type)
1589{
1590 type = desc_base_type (type);
1591
1592 /* NOTE: The following is bogus; see comment in desc_bounds. */
1593 if (is_thin_pntr (type))
1594 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1595 else if (is_thick_pntr (type))
1596 {
1597 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1598
1599 if (data_type
1600 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1601 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1602 }
1603
1604 return NULL;
1605}
1606
1607/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1608 its array data. */
1609
1610static struct value *
1611desc_data (struct value *arr)
1612{
1613 struct type *type = value_type (arr);
1614
1615 if (is_thin_pntr (type))
1616 return thin_data_pntr (arr);
1617 else if (is_thick_pntr (type))
1618 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1619 _("Bad GNAT array descriptor"));
1620 else
1621 return NULL;
1622}
1623
1624
1625/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the data. */
1627
1628static int
1629fat_pntr_data_bitpos (struct type *type)
1630{
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1632}
1633
1634/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1635 size of the field containing the address of the data. */
1636
1637static int
1638fat_pntr_data_bitsize (struct type *type)
1639{
1640 type = desc_base_type (type);
1641
1642 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1643 return TYPE_FIELD_BITSIZE (type, 0);
1644 else
1645 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1646}
1647
1648/* If BOUNDS is an array-bounds structure (or pointer to one), return
1649 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1650 bound, if WHICH is 1. The first bound is I=1. */
1651
1652static struct value *
1653desc_one_bound (struct value *bounds, int i, int which)
1654{
1655 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1656 _("Bad GNAT array descriptor bounds"));
1657}
1658
1659/* If BOUNDS is an array-bounds structure type, return the bit position
1660 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1661 bound, if WHICH is 1. The first bound is I=1. */
1662
1663static int
1664desc_bound_bitpos (struct type *type, int i, int which)
1665{
1666 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1667}
1668
1669/* If BOUNDS is an array-bounds structure type, return the bit field size
1670 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1671 bound, if WHICH is 1. The first bound is I=1. */
1672
1673static int
1674desc_bound_bitsize (struct type *type, int i, int which)
1675{
1676 type = desc_base_type (type);
1677
1678 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1679 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1680 else
1681 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1682}
1683
1684/* If TYPE is the type of an array-bounds structure, the type of its
1685 Ith bound (numbering from 1). Otherwise, NULL. */
1686
1687static struct type *
1688desc_index_type (struct type *type, int i)
1689{
1690 type = desc_base_type (type);
1691
1692 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1694 else
1695 return NULL;
1696}
1697
1698/* The number of index positions in the array-bounds type TYPE.
1699 Return 0 if TYPE is NULL. */
1700
1701static int
1702desc_arity (struct type *type)
1703{
1704 type = desc_base_type (type);
1705
1706 if (type != NULL)
1707 return TYPE_NFIELDS (type) / 2;
1708 return 0;
1709}
1710
1711/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1712 an array descriptor type (representing an unconstrained array
1713 type). */
1714
1715static int
1716ada_is_direct_array_type (struct type *type)
1717{
1718 if (type == NULL)
1719 return 0;
1720 type = ada_check_typedef (type);
1721 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1722 || ada_is_array_descriptor_type (type));
1723}
1724
1725/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1726 * to one. */
1727
1728static int
1729ada_is_array_type (struct type *type)
1730{
1731 while (type != NULL
1732 && (TYPE_CODE (type) == TYPE_CODE_PTR
1733 || TYPE_CODE (type) == TYPE_CODE_REF))
1734 type = TYPE_TARGET_TYPE (type);
1735 return ada_is_direct_array_type (type);
1736}
1737
1738/* Non-zero iff TYPE is a simple array type or pointer to one. */
1739
1740int
1741ada_is_simple_array_type (struct type *type)
1742{
1743 if (type == NULL)
1744 return 0;
1745 type = ada_check_typedef (type);
1746 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1747 || (TYPE_CODE (type) == TYPE_CODE_PTR
1748 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1749 == TYPE_CODE_ARRAY));
1750}
1751
1752/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1753
1754int
1755ada_is_array_descriptor_type (struct type *type)
1756{
1757 struct type *data_type = desc_data_target_type (type);
1758
1759 if (type == NULL)
1760 return 0;
1761 type = ada_check_typedef (type);
1762 return (data_type != NULL
1763 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1764 && desc_arity (desc_bounds_type (type)) > 0);
1765}
1766
1767/* Non-zero iff type is a partially mal-formed GNAT array
1768 descriptor. FIXME: This is to compensate for some problems with
1769 debugging output from GNAT. Re-examine periodically to see if it
1770 is still needed. */
1771
1772int
1773ada_is_bogus_array_descriptor (struct type *type)
1774{
1775 return
1776 type != NULL
1777 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1779 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1780 && !ada_is_array_descriptor_type (type);
1781}
1782
1783
1784/* If ARR has a record type in the form of a standard GNAT array descriptor,
1785 (fat pointer) returns the type of the array data described---specifically,
1786 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1787 in from the descriptor; otherwise, they are left unspecified. If
1788 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1789 returns NULL. The result is simply the type of ARR if ARR is not
1790 a descriptor. */
1791struct type *
1792ada_type_of_array (struct value *arr, int bounds)
1793{
1794 if (ada_is_constrained_packed_array_type (value_type (arr)))
1795 return decode_constrained_packed_array_type (value_type (arr));
1796
1797 if (!ada_is_array_descriptor_type (value_type (arr)))
1798 return value_type (arr);
1799
1800 if (!bounds)
1801 {
1802 struct type *array_type =
1803 ada_check_typedef (desc_data_target_type (value_type (arr)));
1804
1805 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1806 TYPE_FIELD_BITSIZE (array_type, 0) =
1807 decode_packed_array_bitsize (value_type (arr));
1808
1809 return array_type;
1810 }
1811 else
1812 {
1813 struct type *elt_type;
1814 int arity;
1815 struct value *descriptor;
1816
1817 elt_type = ada_array_element_type (value_type (arr), -1);
1818 arity = ada_array_arity (value_type (arr));
1819
1820 if (elt_type == NULL || arity == 0)
1821 return ada_check_typedef (value_type (arr));
1822
1823 descriptor = desc_bounds (arr);
1824 if (value_as_long (descriptor) == 0)
1825 return NULL;
1826 while (arity > 0)
1827 {
1828 struct type *range_type = alloc_type_copy (value_type (arr));
1829 struct type *array_type = alloc_type_copy (value_type (arr));
1830 struct value *low = desc_one_bound (descriptor, arity, 0);
1831 struct value *high = desc_one_bound (descriptor, arity, 1);
1832
1833 arity -= 1;
1834 create_range_type (range_type, value_type (low),
1835 longest_to_int (value_as_long (low)),
1836 longest_to_int (value_as_long (high)));
1837 elt_type = create_array_type (array_type, elt_type, range_type);
1838
1839 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1840 {
1841 /* We need to store the element packed bitsize, as well as
1842 recompute the array size, because it was previously
1843 computed based on the unpacked element size. */
1844 LONGEST lo = value_as_long (low);
1845 LONGEST hi = value_as_long (high);
1846
1847 TYPE_FIELD_BITSIZE (elt_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849 /* If the array has no element, then the size is already
1850 zero, and does not need to be recomputed. */
1851 if (lo < hi)
1852 {
1853 int array_bitsize =
1854 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1855
1856 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1857 }
1858 }
1859 }
1860
1861 return lookup_pointer_type (elt_type);
1862 }
1863}
1864
1865/* If ARR does not represent an array, returns ARR unchanged.
1866 Otherwise, returns either a standard GDB array with bounds set
1867 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1868 GDB array. Returns NULL if ARR is a null fat pointer. */
1869
1870struct value *
1871ada_coerce_to_simple_array_ptr (struct value *arr)
1872{
1873 if (ada_is_array_descriptor_type (value_type (arr)))
1874 {
1875 struct type *arrType = ada_type_of_array (arr, 1);
1876
1877 if (arrType == NULL)
1878 return NULL;
1879 return value_cast (arrType, value_copy (desc_data (arr)));
1880 }
1881 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1882 return decode_constrained_packed_array (arr);
1883 else
1884 return arr;
1885}
1886
1887/* If ARR does not represent an array, returns ARR unchanged.
1888 Otherwise, returns a standard GDB array describing ARR (which may
1889 be ARR itself if it already is in the proper form). */
1890
1891struct value *
1892ada_coerce_to_simple_array (struct value *arr)
1893{
1894 if (ada_is_array_descriptor_type (value_type (arr)))
1895 {
1896 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1897
1898 if (arrVal == NULL)
1899 error (_("Bounds unavailable for null array pointer."));
1900 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1901 return value_ind (arrVal);
1902 }
1903 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array (arr);
1905 else
1906 return arr;
1907}
1908
1909/* If TYPE represents a GNAT array type, return it translated to an
1910 ordinary GDB array type (possibly with BITSIZE fields indicating
1911 packing). For other types, is the identity. */
1912
1913struct type *
1914ada_coerce_to_simple_array_type (struct type *type)
1915{
1916 if (ada_is_constrained_packed_array_type (type))
1917 return decode_constrained_packed_array_type (type);
1918
1919 if (ada_is_array_descriptor_type (type))
1920 return ada_check_typedef (desc_data_target_type (type));
1921
1922 return type;
1923}
1924
1925/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1926
1927static int
1928ada_is_packed_array_type (struct type *type)
1929{
1930 if (type == NULL)
1931 return 0;
1932 type = desc_base_type (type);
1933 type = ada_check_typedef (type);
1934 return
1935 ada_type_name (type) != NULL
1936 && strstr (ada_type_name (type), "___XP") != NULL;
1937}
1938
1939/* Non-zero iff TYPE represents a standard GNAT constrained
1940 packed-array type. */
1941
1942int
1943ada_is_constrained_packed_array_type (struct type *type)
1944{
1945 return ada_is_packed_array_type (type)
1946 && !ada_is_array_descriptor_type (type);
1947}
1948
1949/* Non-zero iff TYPE represents an array descriptor for a
1950 unconstrained packed-array type. */
1951
1952static int
1953ada_is_unconstrained_packed_array_type (struct type *type)
1954{
1955 return ada_is_packed_array_type (type)
1956 && ada_is_array_descriptor_type (type);
1957}
1958
1959/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1960 return the size of its elements in bits. */
1961
1962static long
1963decode_packed_array_bitsize (struct type *type)
1964{
1965 char *raw_name;
1966 char *tail;
1967 long bits;
1968
1969 /* Access to arrays implemented as fat pointers are encoded as a typedef
1970 of the fat pointer type. We need the name of the fat pointer type
1971 to do the decoding, so strip the typedef layer. */
1972 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1973 type = ada_typedef_target_type (type);
1974
1975 raw_name = ada_type_name (ada_check_typedef (type));
1976 if (!raw_name)
1977 raw_name = ada_type_name (desc_base_type (type));
1978
1979 if (!raw_name)
1980 return 0;
1981
1982 tail = strstr (raw_name, "___XP");
1983 gdb_assert (tail != NULL);
1984
1985 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1986 {
1987 lim_warning
1988 (_("could not understand bit size information on packed array"));
1989 return 0;
1990 }
1991
1992 return bits;
1993}
1994
1995/* Given that TYPE is a standard GDB array type with all bounds filled
1996 in, and that the element size of its ultimate scalar constituents
1997 (that is, either its elements, or, if it is an array of arrays, its
1998 elements' elements, etc.) is *ELT_BITS, return an identical type,
1999 but with the bit sizes of its elements (and those of any
2000 constituent arrays) recorded in the BITSIZE components of its
2001 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2002 in bits. */
2003
2004static struct type *
2005constrained_packed_array_type (struct type *type, long *elt_bits)
2006{
2007 struct type *new_elt_type;
2008 struct type *new_type;
2009 LONGEST low_bound, high_bound;
2010
2011 type = ada_check_typedef (type);
2012 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2013 return type;
2014
2015 new_type = alloc_type_copy (type);
2016 new_elt_type =
2017 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2018 elt_bits);
2019 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2020 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2021 TYPE_NAME (new_type) = ada_type_name (type);
2022
2023 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2024 &low_bound, &high_bound) < 0)
2025 low_bound = high_bound = 0;
2026 if (high_bound < low_bound)
2027 *elt_bits = TYPE_LENGTH (new_type) = 0;
2028 else
2029 {
2030 *elt_bits *= (high_bound - low_bound + 1);
2031 TYPE_LENGTH (new_type) =
2032 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2033 }
2034
2035 TYPE_FIXED_INSTANCE (new_type) = 1;
2036 return new_type;
2037}
2038
2039/* The array type encoded by TYPE, where
2040 ada_is_constrained_packed_array_type (TYPE). */
2041
2042static struct type *
2043decode_constrained_packed_array_type (struct type *type)
2044{
2045 char *raw_name = ada_type_name (ada_check_typedef (type));
2046 char *name;
2047 char *tail;
2048 struct type *shadow_type;
2049 long bits;
2050
2051 if (!raw_name)
2052 raw_name = ada_type_name (desc_base_type (type));
2053
2054 if (!raw_name)
2055 return NULL;
2056
2057 name = (char *) alloca (strlen (raw_name) + 1);
2058 tail = strstr (raw_name, "___XP");
2059 type = desc_base_type (type);
2060
2061 memcpy (name, raw_name, tail - raw_name);
2062 name[tail - raw_name] = '\000';
2063
2064 shadow_type = ada_find_parallel_type_with_name (type, name);
2065
2066 if (shadow_type == NULL)
2067 {
2068 lim_warning (_("could not find bounds information on packed array"));
2069 return NULL;
2070 }
2071 CHECK_TYPEDEF (shadow_type);
2072
2073 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2074 {
2075 lim_warning (_("could not understand bounds "
2076 "information on packed array"));
2077 return NULL;
2078 }
2079
2080 bits = decode_packed_array_bitsize (type);
2081 return constrained_packed_array_type (shadow_type, &bits);
2082}
2083
2084/* Given that ARR is a struct value *indicating a GNAT constrained packed
2085 array, returns a simple array that denotes that array. Its type is a
2086 standard GDB array type except that the BITSIZEs of the array
2087 target types are set to the number of bits in each element, and the
2088 type length is set appropriately. */
2089
2090static struct value *
2091decode_constrained_packed_array (struct value *arr)
2092{
2093 struct type *type;
2094
2095 arr = ada_coerce_ref (arr);
2096
2097 /* If our value is a pointer, then dererence it. Make sure that
2098 this operation does not cause the target type to be fixed, as
2099 this would indirectly cause this array to be decoded. The rest
2100 of the routine assumes that the array hasn't been decoded yet,
2101 so we use the basic "value_ind" routine to perform the dereferencing,
2102 as opposed to using "ada_value_ind". */
2103 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2104 arr = value_ind (arr);
2105
2106 type = decode_constrained_packed_array_type (value_type (arr));
2107 if (type == NULL)
2108 {
2109 error (_("can't unpack array"));
2110 return NULL;
2111 }
2112
2113 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2114 && ada_is_modular_type (value_type (arr)))
2115 {
2116 /* This is a (right-justified) modular type representing a packed
2117 array with no wrapper. In order to interpret the value through
2118 the (left-justified) packed array type we just built, we must
2119 first left-justify it. */
2120 int bit_size, bit_pos;
2121 ULONGEST mod;
2122
2123 mod = ada_modulus (value_type (arr)) - 1;
2124 bit_size = 0;
2125 while (mod > 0)
2126 {
2127 bit_size += 1;
2128 mod >>= 1;
2129 }
2130 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2131 arr = ada_value_primitive_packed_val (arr, NULL,
2132 bit_pos / HOST_CHAR_BIT,
2133 bit_pos % HOST_CHAR_BIT,
2134 bit_size,
2135 type);
2136 }
2137
2138 return coerce_unspec_val_to_type (arr, type);
2139}
2140
2141
2142/* The value of the element of packed array ARR at the ARITY indices
2143 given in IND. ARR must be a simple array. */
2144
2145static struct value *
2146value_subscript_packed (struct value *arr, int arity, struct value **ind)
2147{
2148 int i;
2149 int bits, elt_off, bit_off;
2150 long elt_total_bit_offset;
2151 struct type *elt_type;
2152 struct value *v;
2153
2154 bits = 0;
2155 elt_total_bit_offset = 0;
2156 elt_type = ada_check_typedef (value_type (arr));
2157 for (i = 0; i < arity; i += 1)
2158 {
2159 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2160 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2161 error
2162 (_("attempt to do packed indexing of "
2163 "something other than a packed array"));
2164 else
2165 {
2166 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2167 LONGEST lowerbound, upperbound;
2168 LONGEST idx;
2169
2170 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2171 {
2172 lim_warning (_("don't know bounds of array"));
2173 lowerbound = upperbound = 0;
2174 }
2175
2176 idx = pos_atr (ind[i]);
2177 if (idx < lowerbound || idx > upperbound)
2178 lim_warning (_("packed array index %ld out of bounds"),
2179 (long) idx);
2180 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2181 elt_total_bit_offset += (idx - lowerbound) * bits;
2182 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2183 }
2184 }
2185 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2186 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2187
2188 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2189 bits, elt_type);
2190 return v;
2191}
2192
2193/* Non-zero iff TYPE includes negative integer values. */
2194
2195static int
2196has_negatives (struct type *type)
2197{
2198 switch (TYPE_CODE (type))
2199 {
2200 default:
2201 return 0;
2202 case TYPE_CODE_INT:
2203 return !TYPE_UNSIGNED (type);
2204 case TYPE_CODE_RANGE:
2205 return TYPE_LOW_BOUND (type) < 0;
2206 }
2207}
2208
2209
2210/* Create a new value of type TYPE from the contents of OBJ starting
2211 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2212 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2213 assigning through the result will set the field fetched from.
2214 VALADDR is ignored unless OBJ is NULL, in which case,
2215 VALADDR+OFFSET must address the start of storage containing the
2216 packed value. The value returned in this case is never an lval.
2217 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2218
2219struct value *
2220ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2221 long offset, int bit_offset, int bit_size,
2222 struct type *type)
2223{
2224 struct value *v;
2225 int src, /* Index into the source area */
2226 targ, /* Index into the target area */
2227 srcBitsLeft, /* Number of source bits left to move */
2228 nsrc, ntarg, /* Number of source and target bytes */
2229 unusedLS, /* Number of bits in next significant
2230 byte of source that are unused */
2231 accumSize; /* Number of meaningful bits in accum */
2232 unsigned char *bytes; /* First byte containing data to unpack */
2233 unsigned char *unpacked;
2234 unsigned long accum; /* Staging area for bits being transferred */
2235 unsigned char sign;
2236 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2237 /* Transmit bytes from least to most significant; delta is the direction
2238 the indices move. */
2239 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2240
2241 type = ada_check_typedef (type);
2242
2243 if (obj == NULL)
2244 {
2245 v = allocate_value (type);
2246 bytes = (unsigned char *) (valaddr + offset);
2247 }
2248 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2249 {
2250 v = value_at (type,
2251 value_address (obj) + offset);
2252 bytes = (unsigned char *) alloca (len);
2253 read_memory (value_address (v), bytes, len);
2254 }
2255 else
2256 {
2257 v = allocate_value (type);
2258 bytes = (unsigned char *) value_contents (obj) + offset;
2259 }
2260
2261 if (obj != NULL)
2262 {
2263 CORE_ADDR new_addr;
2264
2265 set_value_component_location (v, obj);
2266 new_addr = value_address (obj) + offset;
2267 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2268 set_value_bitsize (v, bit_size);
2269 if (value_bitpos (v) >= HOST_CHAR_BIT)
2270 {
2271 ++new_addr;
2272 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2273 }
2274 set_value_address (v, new_addr);
2275 }
2276 else
2277 set_value_bitsize (v, bit_size);
2278 unpacked = (unsigned char *) value_contents (v);
2279
2280 srcBitsLeft = bit_size;
2281 nsrc = len;
2282 ntarg = TYPE_LENGTH (type);
2283 sign = 0;
2284 if (bit_size == 0)
2285 {
2286 memset (unpacked, 0, TYPE_LENGTH (type));
2287 return v;
2288 }
2289 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2290 {
2291 src = len - 1;
2292 if (has_negatives (type)
2293 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2294 sign = ~0;
2295
2296 unusedLS =
2297 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2298 % HOST_CHAR_BIT;
2299
2300 switch (TYPE_CODE (type))
2301 {
2302 case TYPE_CODE_ARRAY:
2303 case TYPE_CODE_UNION:
2304 case TYPE_CODE_STRUCT:
2305 /* Non-scalar values must be aligned at a byte boundary... */
2306 accumSize =
2307 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2308 /* ... And are placed at the beginning (most-significant) bytes
2309 of the target. */
2310 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2311 ntarg = targ + 1;
2312 break;
2313 default:
2314 accumSize = 0;
2315 targ = TYPE_LENGTH (type) - 1;
2316 break;
2317 }
2318 }
2319 else
2320 {
2321 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2322
2323 src = targ = 0;
2324 unusedLS = bit_offset;
2325 accumSize = 0;
2326
2327 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2328 sign = ~0;
2329 }
2330
2331 accum = 0;
2332 while (nsrc > 0)
2333 {
2334 /* Mask for removing bits of the next source byte that are not
2335 part of the value. */
2336 unsigned int unusedMSMask =
2337 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2338 1;
2339 /* Sign-extend bits for this byte. */
2340 unsigned int signMask = sign & ~unusedMSMask;
2341
2342 accum |=
2343 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2344 accumSize += HOST_CHAR_BIT - unusedLS;
2345 if (accumSize >= HOST_CHAR_BIT)
2346 {
2347 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2348 accumSize -= HOST_CHAR_BIT;
2349 accum >>= HOST_CHAR_BIT;
2350 ntarg -= 1;
2351 targ += delta;
2352 }
2353 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2354 unusedLS = 0;
2355 nsrc -= 1;
2356 src += delta;
2357 }
2358 while (ntarg > 0)
2359 {
2360 accum |= sign << accumSize;
2361 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
2364 ntarg -= 1;
2365 targ += delta;
2366 }
2367
2368 return v;
2369}
2370
2371/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2372 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2373 not overlap. */
2374static void
2375move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2376 int src_offset, int n, int bits_big_endian_p)
2377{
2378 unsigned int accum, mask;
2379 int accum_bits, chunk_size;
2380
2381 target += targ_offset / HOST_CHAR_BIT;
2382 targ_offset %= HOST_CHAR_BIT;
2383 source += src_offset / HOST_CHAR_BIT;
2384 src_offset %= HOST_CHAR_BIT;
2385 if (bits_big_endian_p)
2386 {
2387 accum = (unsigned char) *source;
2388 source += 1;
2389 accum_bits = HOST_CHAR_BIT - src_offset;
2390
2391 while (n > 0)
2392 {
2393 int unused_right;
2394
2395 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2396 accum_bits += HOST_CHAR_BIT;
2397 source += 1;
2398 chunk_size = HOST_CHAR_BIT - targ_offset;
2399 if (chunk_size > n)
2400 chunk_size = n;
2401 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2402 mask = ((1 << chunk_size) - 1) << unused_right;
2403 *target =
2404 (*target & ~mask)
2405 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2406 n -= chunk_size;
2407 accum_bits -= chunk_size;
2408 target += 1;
2409 targ_offset = 0;
2410 }
2411 }
2412 else
2413 {
2414 accum = (unsigned char) *source >> src_offset;
2415 source += 1;
2416 accum_bits = HOST_CHAR_BIT - src_offset;
2417
2418 while (n > 0)
2419 {
2420 accum = accum + ((unsigned char) *source << accum_bits);
2421 accum_bits += HOST_CHAR_BIT;
2422 source += 1;
2423 chunk_size = HOST_CHAR_BIT - targ_offset;
2424 if (chunk_size > n)
2425 chunk_size = n;
2426 mask = ((1 << chunk_size) - 1) << targ_offset;
2427 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2428 n -= chunk_size;
2429 accum_bits -= chunk_size;
2430 accum >>= chunk_size;
2431 target += 1;
2432 targ_offset = 0;
2433 }
2434 }
2435}
2436
2437/* Store the contents of FROMVAL into the location of TOVAL.
2438 Return a new value with the location of TOVAL and contents of
2439 FROMVAL. Handles assignment into packed fields that have
2440 floating-point or non-scalar types. */
2441
2442static struct value *
2443ada_value_assign (struct value *toval, struct value *fromval)
2444{
2445 struct type *type = value_type (toval);
2446 int bits = value_bitsize (toval);
2447
2448 toval = ada_coerce_ref (toval);
2449 fromval = ada_coerce_ref (fromval);
2450
2451 if (ada_is_direct_array_type (value_type (toval)))
2452 toval = ada_coerce_to_simple_array (toval);
2453 if (ada_is_direct_array_type (value_type (fromval)))
2454 fromval = ada_coerce_to_simple_array (fromval);
2455
2456 if (!deprecated_value_modifiable (toval))
2457 error (_("Left operand of assignment is not a modifiable lvalue."));
2458
2459 if (VALUE_LVAL (toval) == lval_memory
2460 && bits > 0
2461 && (TYPE_CODE (type) == TYPE_CODE_FLT
2462 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2463 {
2464 int len = (value_bitpos (toval)
2465 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2466 int from_size;
2467 char *buffer = (char *) alloca (len);
2468 struct value *val;
2469 CORE_ADDR to_addr = value_address (toval);
2470
2471 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2472 fromval = value_cast (type, fromval);
2473
2474 read_memory (to_addr, buffer, len);
2475 from_size = value_bitsize (fromval);
2476 if (from_size == 0)
2477 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2478 if (gdbarch_bits_big_endian (get_type_arch (type)))
2479 move_bits (buffer, value_bitpos (toval),
2480 value_contents (fromval), from_size - bits, bits, 1);
2481 else
2482 move_bits (buffer, value_bitpos (toval),
2483 value_contents (fromval), 0, bits, 0);
2484 write_memory (to_addr, buffer, len);
2485 observer_notify_memory_changed (to_addr, len, buffer);
2486
2487 val = value_copy (toval);
2488 memcpy (value_contents_raw (val), value_contents (fromval),
2489 TYPE_LENGTH (type));
2490 deprecated_set_value_type (val, type);
2491
2492 return val;
2493 }
2494
2495 return value_assign (toval, fromval);
2496}
2497
2498
2499/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2500 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2501 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2502 * COMPONENT, and not the inferior's memory. The current contents
2503 * of COMPONENT are ignored. */
2504static void
2505value_assign_to_component (struct value *container, struct value *component,
2506 struct value *val)
2507{
2508 LONGEST offset_in_container =
2509 (LONGEST) (value_address (component) - value_address (container));
2510 int bit_offset_in_container =
2511 value_bitpos (component) - value_bitpos (container);
2512 int bits;
2513
2514 val = value_cast (value_type (component), val);
2515
2516 if (value_bitsize (component) == 0)
2517 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2518 else
2519 bits = value_bitsize (component);
2520
2521 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2522 move_bits (value_contents_writeable (container) + offset_in_container,
2523 value_bitpos (container) + bit_offset_in_container,
2524 value_contents (val),
2525 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2526 bits, 1);
2527 else
2528 move_bits (value_contents_writeable (container) + offset_in_container,
2529 value_bitpos (container) + bit_offset_in_container,
2530 value_contents (val), 0, bits, 0);
2531}
2532
2533/* The value of the element of array ARR at the ARITY indices given in IND.
2534 ARR may be either a simple array, GNAT array descriptor, or pointer
2535 thereto. */
2536
2537struct value *
2538ada_value_subscript (struct value *arr, int arity, struct value **ind)
2539{
2540 int k;
2541 struct value *elt;
2542 struct type *elt_type;
2543
2544 elt = ada_coerce_to_simple_array (arr);
2545
2546 elt_type = ada_check_typedef (value_type (elt));
2547 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2548 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2549 return value_subscript_packed (elt, arity, ind);
2550
2551 for (k = 0; k < arity; k += 1)
2552 {
2553 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2554 error (_("too many subscripts (%d expected)"), k);
2555 elt = value_subscript (elt, pos_atr (ind[k]));
2556 }
2557 return elt;
2558}
2559
2560/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2561 value of the element of *ARR at the ARITY indices given in
2562 IND. Does not read the entire array into memory. */
2563
2564static struct value *
2565ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2566 struct value **ind)
2567{
2568 int k;
2569
2570 for (k = 0; k < arity; k += 1)
2571 {
2572 LONGEST lwb, upb;
2573
2574 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2575 error (_("too many subscripts (%d expected)"), k);
2576 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2577 value_copy (arr));
2578 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2579 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2580 type = TYPE_TARGET_TYPE (type);
2581 }
2582
2583 return value_ind (arr);
2584}
2585
2586/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2587 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2588 elements starting at index LOW. The lower bound of this array is LOW, as
2589 per Ada rules. */
2590static struct value *
2591ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2592 int low, int high)
2593{
2594 struct type *type0 = ada_check_typedef (type);
2595 CORE_ADDR base = value_as_address (array_ptr)
2596 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2597 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2598 struct type *index_type =
2599 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2600 low, high);
2601 struct type *slice_type =
2602 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2603
2604 return value_at_lazy (slice_type, base);
2605}
2606
2607
2608static struct value *
2609ada_value_slice (struct value *array, int low, int high)
2610{
2611 struct type *type = ada_check_typedef (value_type (array));
2612 struct type *index_type =
2613 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2614 struct type *slice_type =
2615 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2616
2617 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2618}
2619
2620/* If type is a record type in the form of a standard GNAT array
2621 descriptor, returns the number of dimensions for type. If arr is a
2622 simple array, returns the number of "array of"s that prefix its
2623 type designation. Otherwise, returns 0. */
2624
2625int
2626ada_array_arity (struct type *type)
2627{
2628 int arity;
2629
2630 if (type == NULL)
2631 return 0;
2632
2633 type = desc_base_type (type);
2634
2635 arity = 0;
2636 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2637 return desc_arity (desc_bounds_type (type));
2638 else
2639 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2640 {
2641 arity += 1;
2642 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2643 }
2644
2645 return arity;
2646}
2647
2648/* If TYPE is a record type in the form of a standard GNAT array
2649 descriptor or a simple array type, returns the element type for
2650 TYPE after indexing by NINDICES indices, or by all indices if
2651 NINDICES is -1. Otherwise, returns NULL. */
2652
2653struct type *
2654ada_array_element_type (struct type *type, int nindices)
2655{
2656 type = desc_base_type (type);
2657
2658 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2659 {
2660 int k;
2661 struct type *p_array_type;
2662
2663 p_array_type = desc_data_target_type (type);
2664
2665 k = ada_array_arity (type);
2666 if (k == 0)
2667 return NULL;
2668
2669 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2670 if (nindices >= 0 && k > nindices)
2671 k = nindices;
2672 while (k > 0 && p_array_type != NULL)
2673 {
2674 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2675 k -= 1;
2676 }
2677 return p_array_type;
2678 }
2679 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2680 {
2681 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2682 {
2683 type = TYPE_TARGET_TYPE (type);
2684 nindices -= 1;
2685 }
2686 return type;
2687 }
2688
2689 return NULL;
2690}
2691
2692/* The type of nth index in arrays of given type (n numbering from 1).
2693 Does not examine memory. Throws an error if N is invalid or TYPE
2694 is not an array type. NAME is the name of the Ada attribute being
2695 evaluated ('range, 'first, 'last, or 'length); it is used in building
2696 the error message. */
2697
2698static struct type *
2699ada_index_type (struct type *type, int n, const char *name)
2700{
2701 struct type *result_type;
2702
2703 type = desc_base_type (type);
2704
2705 if (n < 0 || n > ada_array_arity (type))
2706 error (_("invalid dimension number to '%s"), name);
2707
2708 if (ada_is_simple_array_type (type))
2709 {
2710 int i;
2711
2712 for (i = 1; i < n; i += 1)
2713 type = TYPE_TARGET_TYPE (type);
2714 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2715 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2716 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2717 perhaps stabsread.c would make more sense. */
2718 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2719 result_type = NULL;
2720 }
2721 else
2722 {
2723 result_type = desc_index_type (desc_bounds_type (type), n);
2724 if (result_type == NULL)
2725 error (_("attempt to take bound of something that is not an array"));
2726 }
2727
2728 return result_type;
2729}
2730
2731/* Given that arr is an array type, returns the lower bound of the
2732 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2733 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2734 array-descriptor type. It works for other arrays with bounds supplied
2735 by run-time quantities other than discriminants. */
2736
2737static LONGEST
2738ada_array_bound_from_type (struct type * arr_type, int n, int which)
2739{
2740 struct type *type, *elt_type, *index_type_desc, *index_type;
2741 int i;
2742
2743 gdb_assert (which == 0 || which == 1);
2744
2745 if (ada_is_constrained_packed_array_type (arr_type))
2746 arr_type = decode_constrained_packed_array_type (arr_type);
2747
2748 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2749 return (LONGEST) - which;
2750
2751 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2752 type = TYPE_TARGET_TYPE (arr_type);
2753 else
2754 type = arr_type;
2755
2756 elt_type = type;
2757 for (i = n; i > 1; i--)
2758 elt_type = TYPE_TARGET_TYPE (type);
2759
2760 index_type_desc = ada_find_parallel_type (type, "___XA");
2761 ada_fixup_array_indexes_type (index_type_desc);
2762 if (index_type_desc != NULL)
2763 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2764 NULL);
2765 else
2766 index_type = TYPE_INDEX_TYPE (elt_type);
2767
2768 return
2769 (LONGEST) (which == 0
2770 ? ada_discrete_type_low_bound (index_type)
2771 : ada_discrete_type_high_bound (index_type));
2772}
2773
2774/* Given that arr is an array value, returns the lower bound of the
2775 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2776 WHICH is 1. This routine will also work for arrays with bounds
2777 supplied by run-time quantities other than discriminants. */
2778
2779static LONGEST
2780ada_array_bound (struct value *arr, int n, int which)
2781{
2782 struct type *arr_type = value_type (arr);
2783
2784 if (ada_is_constrained_packed_array_type (arr_type))
2785 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2786 else if (ada_is_simple_array_type (arr_type))
2787 return ada_array_bound_from_type (arr_type, n, which);
2788 else
2789 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2790}
2791
2792/* Given that arr is an array value, returns the length of the
2793 nth index. This routine will also work for arrays with bounds
2794 supplied by run-time quantities other than discriminants.
2795 Does not work for arrays indexed by enumeration types with representation
2796 clauses at the moment. */
2797
2798static LONGEST
2799ada_array_length (struct value *arr, int n)
2800{
2801 struct type *arr_type = ada_check_typedef (value_type (arr));
2802
2803 if (ada_is_constrained_packed_array_type (arr_type))
2804 return ada_array_length (decode_constrained_packed_array (arr), n);
2805
2806 if (ada_is_simple_array_type (arr_type))
2807 return (ada_array_bound_from_type (arr_type, n, 1)
2808 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2809 else
2810 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2811 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2812}
2813
2814/* An empty array whose type is that of ARR_TYPE (an array type),
2815 with bounds LOW to LOW-1. */
2816
2817static struct value *
2818empty_array (struct type *arr_type, int low)
2819{
2820 struct type *arr_type0 = ada_check_typedef (arr_type);
2821 struct type *index_type =
2822 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2823 low, low - 1);
2824 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2825
2826 return allocate_value (create_array_type (NULL, elt_type, index_type));
2827}
2828\f
2829
2830 /* Name resolution */
2831
2832/* The "decoded" name for the user-definable Ada operator corresponding
2833 to OP. */
2834
2835static const char *
2836ada_decoded_op_name (enum exp_opcode op)
2837{
2838 int i;
2839
2840 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2841 {
2842 if (ada_opname_table[i].op == op)
2843 return ada_opname_table[i].decoded;
2844 }
2845 error (_("Could not find operator name for opcode"));
2846}
2847
2848
2849/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2850 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2851 undefined namespace) and converts operators that are
2852 user-defined into appropriate function calls. If CONTEXT_TYPE is
2853 non-null, it provides a preferred result type [at the moment, only
2854 type void has any effect---causing procedures to be preferred over
2855 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2856 return type is preferred. May change (expand) *EXP. */
2857
2858static void
2859resolve (struct expression **expp, int void_context_p)
2860{
2861 struct type *context_type = NULL;
2862 int pc = 0;
2863
2864 if (void_context_p)
2865 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2866
2867 resolve_subexp (expp, &pc, 1, context_type);
2868}
2869
2870/* Resolve the operator of the subexpression beginning at
2871 position *POS of *EXPP. "Resolving" consists of replacing
2872 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2873 with their resolutions, replacing built-in operators with
2874 function calls to user-defined operators, where appropriate, and,
2875 when DEPROCEDURE_P is non-zero, converting function-valued variables
2876 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2877 are as in ada_resolve, above. */
2878
2879static struct value *
2880resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2881 struct type *context_type)
2882{
2883 int pc = *pos;
2884 int i;
2885 struct expression *exp; /* Convenience: == *expp. */
2886 enum exp_opcode op = (*expp)->elts[pc].opcode;
2887 struct value **argvec; /* Vector of operand types (alloca'ed). */
2888 int nargs; /* Number of operands. */
2889 int oplen;
2890
2891 argvec = NULL;
2892 nargs = 0;
2893 exp = *expp;
2894
2895 /* Pass one: resolve operands, saving their types and updating *pos,
2896 if needed. */
2897 switch (op)
2898 {
2899 case OP_FUNCALL:
2900 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2901 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2902 *pos += 7;
2903 else
2904 {
2905 *pos += 3;
2906 resolve_subexp (expp, pos, 0, NULL);
2907 }
2908 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2909 break;
2910
2911 case UNOP_ADDR:
2912 *pos += 1;
2913 resolve_subexp (expp, pos, 0, NULL);
2914 break;
2915
2916 case UNOP_QUAL:
2917 *pos += 3;
2918 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2919 break;
2920
2921 case OP_ATR_MODULUS:
2922 case OP_ATR_SIZE:
2923 case OP_ATR_TAG:
2924 case OP_ATR_FIRST:
2925 case OP_ATR_LAST:
2926 case OP_ATR_LENGTH:
2927 case OP_ATR_POS:
2928 case OP_ATR_VAL:
2929 case OP_ATR_MIN:
2930 case OP_ATR_MAX:
2931 case TERNOP_IN_RANGE:
2932 case BINOP_IN_BOUNDS:
2933 case UNOP_IN_RANGE:
2934 case OP_AGGREGATE:
2935 case OP_OTHERS:
2936 case OP_CHOICES:
2937 case OP_POSITIONAL:
2938 case OP_DISCRETE_RANGE:
2939 case OP_NAME:
2940 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2941 *pos += oplen;
2942 break;
2943
2944 case BINOP_ASSIGN:
2945 {
2946 struct value *arg1;
2947
2948 *pos += 1;
2949 arg1 = resolve_subexp (expp, pos, 0, NULL);
2950 if (arg1 == NULL)
2951 resolve_subexp (expp, pos, 1, NULL);
2952 else
2953 resolve_subexp (expp, pos, 1, value_type (arg1));
2954 break;
2955 }
2956
2957 case UNOP_CAST:
2958 *pos += 3;
2959 nargs = 1;
2960 break;
2961
2962 case BINOP_ADD:
2963 case BINOP_SUB:
2964 case BINOP_MUL:
2965 case BINOP_DIV:
2966 case BINOP_REM:
2967 case BINOP_MOD:
2968 case BINOP_EXP:
2969 case BINOP_CONCAT:
2970 case BINOP_LOGICAL_AND:
2971 case BINOP_LOGICAL_OR:
2972 case BINOP_BITWISE_AND:
2973 case BINOP_BITWISE_IOR:
2974 case BINOP_BITWISE_XOR:
2975
2976 case BINOP_EQUAL:
2977 case BINOP_NOTEQUAL:
2978 case BINOP_LESS:
2979 case BINOP_GTR:
2980 case BINOP_LEQ:
2981 case BINOP_GEQ:
2982
2983 case BINOP_REPEAT:
2984 case BINOP_SUBSCRIPT:
2985 case BINOP_COMMA:
2986 *pos += 1;
2987 nargs = 2;
2988 break;
2989
2990 case UNOP_NEG:
2991 case UNOP_PLUS:
2992 case UNOP_LOGICAL_NOT:
2993 case UNOP_ABS:
2994 case UNOP_IND:
2995 *pos += 1;
2996 nargs = 1;
2997 break;
2998
2999 case OP_LONG:
3000 case OP_DOUBLE:
3001 case OP_VAR_VALUE:
3002 *pos += 4;
3003 break;
3004
3005 case OP_TYPE:
3006 case OP_BOOL:
3007 case OP_LAST:
3008 case OP_INTERNALVAR:
3009 *pos += 3;
3010 break;
3011
3012 case UNOP_MEMVAL:
3013 *pos += 3;
3014 nargs = 1;
3015 break;
3016
3017 case OP_REGISTER:
3018 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3019 break;
3020
3021 case STRUCTOP_STRUCT:
3022 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3023 nargs = 1;
3024 break;
3025
3026 case TERNOP_SLICE:
3027 *pos += 1;
3028 nargs = 3;
3029 break;
3030
3031 case OP_STRING:
3032 break;
3033
3034 default:
3035 error (_("Unexpected operator during name resolution"));
3036 }
3037
3038 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3039 for (i = 0; i < nargs; i += 1)
3040 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3041 argvec[i] = NULL;
3042 exp = *expp;
3043
3044 /* Pass two: perform any resolution on principal operator. */
3045 switch (op)
3046 {
3047 default:
3048 break;
3049
3050 case OP_VAR_VALUE:
3051 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3052 {
3053 struct ada_symbol_info *candidates;
3054 int n_candidates;
3055
3056 n_candidates =
3057 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3058 (exp->elts[pc + 2].symbol),
3059 exp->elts[pc + 1].block, VAR_DOMAIN,
3060 &candidates);
3061
3062 if (n_candidates > 1)
3063 {
3064 /* Types tend to get re-introduced locally, so if there
3065 are any local symbols that are not types, first filter
3066 out all types. */
3067 int j;
3068 for (j = 0; j < n_candidates; j += 1)
3069 switch (SYMBOL_CLASS (candidates[j].sym))
3070 {
3071 case LOC_REGISTER:
3072 case LOC_ARG:
3073 case LOC_REF_ARG:
3074 case LOC_REGPARM_ADDR:
3075 case LOC_LOCAL:
3076 case LOC_COMPUTED:
3077 goto FoundNonType;
3078 default:
3079 break;
3080 }
3081 FoundNonType:
3082 if (j < n_candidates)
3083 {
3084 j = 0;
3085 while (j < n_candidates)
3086 {
3087 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3088 {
3089 candidates[j] = candidates[n_candidates - 1];
3090 n_candidates -= 1;
3091 }
3092 else
3093 j += 1;
3094 }
3095 }
3096 }
3097
3098 if (n_candidates == 0)
3099 error (_("No definition found for %s"),
3100 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101 else if (n_candidates == 1)
3102 i = 0;
3103 else if (deprocedure_p
3104 && !is_nonfunction (candidates, n_candidates))
3105 {
3106 i = ada_resolve_function
3107 (candidates, n_candidates, NULL, 0,
3108 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3109 context_type);
3110 if (i < 0)
3111 error (_("Could not find a match for %s"),
3112 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3113 }
3114 else
3115 {
3116 printf_filtered (_("Multiple matches for %s\n"),
3117 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3118 user_select_syms (candidates, n_candidates, 1);
3119 i = 0;
3120 }
3121
3122 exp->elts[pc + 1].block = candidates[i].block;
3123 exp->elts[pc + 2].symbol = candidates[i].sym;
3124 if (innermost_block == NULL
3125 || contained_in (candidates[i].block, innermost_block))
3126 innermost_block = candidates[i].block;
3127 }
3128
3129 if (deprocedure_p
3130 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3131 == TYPE_CODE_FUNC))
3132 {
3133 replace_operator_with_call (expp, pc, 0, 0,
3134 exp->elts[pc + 2].symbol,
3135 exp->elts[pc + 1].block);
3136 exp = *expp;
3137 }
3138 break;
3139
3140 case OP_FUNCALL:
3141 {
3142 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3143 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3144 {
3145 struct ada_symbol_info *candidates;
3146 int n_candidates;
3147
3148 n_candidates =
3149 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3150 (exp->elts[pc + 5].symbol),
3151 exp->elts[pc + 4].block, VAR_DOMAIN,
3152 &candidates);
3153 if (n_candidates == 1)
3154 i = 0;
3155 else
3156 {
3157 i = ada_resolve_function
3158 (candidates, n_candidates,
3159 argvec, nargs,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3161 context_type);
3162 if (i < 0)
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3165 }
3166
3167 exp->elts[pc + 4].block = candidates[i].block;
3168 exp->elts[pc + 5].symbol = candidates[i].sym;
3169 if (innermost_block == NULL
3170 || contained_in (candidates[i].block, innermost_block))
3171 innermost_block = candidates[i].block;
3172 }
3173 }
3174 break;
3175 case BINOP_ADD:
3176 case BINOP_SUB:
3177 case BINOP_MUL:
3178 case BINOP_DIV:
3179 case BINOP_REM:
3180 case BINOP_MOD:
3181 case BINOP_CONCAT:
3182 case BINOP_BITWISE_AND:
3183 case BINOP_BITWISE_IOR:
3184 case BINOP_BITWISE_XOR:
3185 case BINOP_EQUAL:
3186 case BINOP_NOTEQUAL:
3187 case BINOP_LESS:
3188 case BINOP_GTR:
3189 case BINOP_LEQ:
3190 case BINOP_GEQ:
3191 case BINOP_EXP:
3192 case UNOP_NEG:
3193 case UNOP_PLUS:
3194 case UNOP_LOGICAL_NOT:
3195 case UNOP_ABS:
3196 if (possible_user_operator_p (op, argvec))
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3203 (struct block *) NULL, VAR_DOMAIN,
3204 &candidates);
3205 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3206 ada_decoded_op_name (op), NULL);
3207 if (i < 0)
3208 break;
3209
3210 replace_operator_with_call (expp, pc, nargs, 1,
3211 candidates[i].sym, candidates[i].block);
3212 exp = *expp;
3213 }
3214 break;
3215
3216 case OP_TYPE:
3217 case OP_REGISTER:
3218 return NULL;
3219 }
3220
3221 *pos = pc;
3222 return evaluate_subexp_type (exp, pos);
3223}
3224
3225/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3226 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3227 a non-pointer. */
3228/* The term "match" here is rather loose. The match is heuristic and
3229 liberal. */
3230
3231static int
3232ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3233{
3234 ftype = ada_check_typedef (ftype);
3235 atype = ada_check_typedef (atype);
3236
3237 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3238 ftype = TYPE_TARGET_TYPE (ftype);
3239 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3240 atype = TYPE_TARGET_TYPE (atype);
3241
3242 switch (TYPE_CODE (ftype))
3243 {
3244 default:
3245 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3246 case TYPE_CODE_PTR:
3247 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3248 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3249 TYPE_TARGET_TYPE (atype), 0);
3250 else
3251 return (may_deref
3252 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3253 case TYPE_CODE_INT:
3254 case TYPE_CODE_ENUM:
3255 case TYPE_CODE_RANGE:
3256 switch (TYPE_CODE (atype))
3257 {
3258 case TYPE_CODE_INT:
3259 case TYPE_CODE_ENUM:
3260 case TYPE_CODE_RANGE:
3261 return 1;
3262 default:
3263 return 0;
3264 }
3265
3266 case TYPE_CODE_ARRAY:
3267 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3268 || ada_is_array_descriptor_type (atype));
3269
3270 case TYPE_CODE_STRUCT:
3271 if (ada_is_array_descriptor_type (ftype))
3272 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3273 || ada_is_array_descriptor_type (atype));
3274 else
3275 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3276 && !ada_is_array_descriptor_type (atype));
3277
3278 case TYPE_CODE_UNION:
3279 case TYPE_CODE_FLT:
3280 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3281 }
3282}
3283
3284/* Return non-zero if the formals of FUNC "sufficiently match" the
3285 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3286 may also be an enumeral, in which case it is treated as a 0-
3287 argument function. */
3288
3289static int
3290ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3291{
3292 int i;
3293 struct type *func_type = SYMBOL_TYPE (func);
3294
3295 if (SYMBOL_CLASS (func) == LOC_CONST
3296 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3297 return (n_actuals == 0);
3298 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3299 return 0;
3300
3301 if (TYPE_NFIELDS (func_type) != n_actuals)
3302 return 0;
3303
3304 for (i = 0; i < n_actuals; i += 1)
3305 {
3306 if (actuals[i] == NULL)
3307 return 0;
3308 else
3309 {
3310 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3311 i));
3312 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3313
3314 if (!ada_type_match (ftype, atype, 1))
3315 return 0;
3316 }
3317 }
3318 return 1;
3319}
3320
3321/* False iff function type FUNC_TYPE definitely does not produce a value
3322 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3323 FUNC_TYPE is not a valid function type with a non-null return type
3324 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3325
3326static int
3327return_match (struct type *func_type, struct type *context_type)
3328{
3329 struct type *return_type;
3330
3331 if (func_type == NULL)
3332 return 1;
3333
3334 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3335 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3336 else
3337 return_type = get_base_type (func_type);
3338 if (return_type == NULL)
3339 return 1;
3340
3341 context_type = get_base_type (context_type);
3342
3343 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3344 return context_type == NULL || return_type == context_type;
3345 else if (context_type == NULL)
3346 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3347 else
3348 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3349}
3350
3351
3352/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3353 function (if any) that matches the types of the NARGS arguments in
3354 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3355 that returns that type, then eliminate matches that don't. If
3356 CONTEXT_TYPE is void and there is at least one match that does not
3357 return void, eliminate all matches that do.
3358
3359 Asks the user if there is more than one match remaining. Returns -1
3360 if there is no such symbol or none is selected. NAME is used
3361 solely for messages. May re-arrange and modify SYMS in
3362 the process; the index returned is for the modified vector. */
3363
3364static int
3365ada_resolve_function (struct ada_symbol_info syms[],
3366 int nsyms, struct value **args, int nargs,
3367 const char *name, struct type *context_type)
3368{
3369 int fallback;
3370 int k;
3371 int m; /* Number of hits */
3372
3373 m = 0;
3374 /* In the first pass of the loop, we only accept functions matching
3375 context_type. If none are found, we add a second pass of the loop
3376 where every function is accepted. */
3377 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3378 {
3379 for (k = 0; k < nsyms; k += 1)
3380 {
3381 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3382
3383 if (ada_args_match (syms[k].sym, args, nargs)
3384 && (fallback || return_match (type, context_type)))
3385 {
3386 syms[m] = syms[k];
3387 m += 1;
3388 }
3389 }
3390 }
3391
3392 if (m == 0)
3393 return -1;
3394 else if (m > 1)
3395 {
3396 printf_filtered (_("Multiple matches for %s\n"), name);
3397 user_select_syms (syms, m, 1);
3398 return 0;
3399 }
3400 return 0;
3401}
3402
3403/* Returns true (non-zero) iff decoded name N0 should appear before N1
3404 in a listing of choices during disambiguation (see sort_choices, below).
3405 The idea is that overloadings of a subprogram name from the
3406 same package should sort in their source order. We settle for ordering
3407 such symbols by their trailing number (__N or $N). */
3408
3409static int
3410encoded_ordered_before (char *N0, char *N1)
3411{
3412 if (N1 == NULL)
3413 return 0;
3414 else if (N0 == NULL)
3415 return 1;
3416 else
3417 {
3418 int k0, k1;
3419
3420 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3421 ;
3422 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3423 ;
3424 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3425 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3426 {
3427 int n0, n1;
3428
3429 n0 = k0;
3430 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3431 n0 -= 1;
3432 n1 = k1;
3433 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3434 n1 -= 1;
3435 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3436 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3437 }
3438 return (strcmp (N0, N1) < 0);
3439 }
3440}
3441
3442/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3443 encoded names. */
3444
3445static void
3446sort_choices (struct ada_symbol_info syms[], int nsyms)
3447{
3448 int i;
3449
3450 for (i = 1; i < nsyms; i += 1)
3451 {
3452 struct ada_symbol_info sym = syms[i];
3453 int j;
3454
3455 for (j = i - 1; j >= 0; j -= 1)
3456 {
3457 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3458 SYMBOL_LINKAGE_NAME (sym.sym)))
3459 break;
3460 syms[j + 1] = syms[j];
3461 }
3462 syms[j + 1] = sym;
3463 }
3464}
3465
3466/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3467 by asking the user (if necessary), returning the number selected,
3468 and setting the first elements of SYMS items. Error if no symbols
3469 selected. */
3470
3471/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3472 to be re-integrated one of these days. */
3473
3474int
3475user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3476{
3477 int i;
3478 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3479 int n_chosen;
3480 int first_choice = (max_results == 1) ? 1 : 2;
3481 const char *select_mode = multiple_symbols_select_mode ();
3482
3483 if (max_results < 1)
3484 error (_("Request to select 0 symbols!"));
3485 if (nsyms <= 1)
3486 return nsyms;
3487
3488 if (select_mode == multiple_symbols_cancel)
3489 error (_("\
3490canceled because the command is ambiguous\n\
3491See set/show multiple-symbol."));
3492
3493 /* If select_mode is "all", then return all possible symbols.
3494 Only do that if more than one symbol can be selected, of course.
3495 Otherwise, display the menu as usual. */
3496 if (select_mode == multiple_symbols_all && max_results > 1)
3497 return nsyms;
3498
3499 printf_unfiltered (_("[0] cancel\n"));
3500 if (max_results > 1)
3501 printf_unfiltered (_("[1] all\n"));
3502
3503 sort_choices (syms, nsyms);
3504
3505 for (i = 0; i < nsyms; i += 1)
3506 {
3507 if (syms[i].sym == NULL)
3508 continue;
3509
3510 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3511 {
3512 struct symtab_and_line sal =
3513 find_function_start_sal (syms[i].sym, 1);
3514
3515 if (sal.symtab == NULL)
3516 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3517 i + first_choice,
3518 SYMBOL_PRINT_NAME (syms[i].sym),
3519 sal.line);
3520 else
3521 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3522 SYMBOL_PRINT_NAME (syms[i].sym),
3523 sal.symtab->filename, sal.line);
3524 continue;
3525 }
3526 else
3527 {
3528 int is_enumeral =
3529 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3530 && SYMBOL_TYPE (syms[i].sym) != NULL
3531 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3532 struct symtab *symtab = syms[i].sym->symtab;
3533
3534 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3535 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3536 i + first_choice,
3537 SYMBOL_PRINT_NAME (syms[i].sym),
3538 symtab->filename, SYMBOL_LINE (syms[i].sym));
3539 else if (is_enumeral
3540 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3541 {
3542 printf_unfiltered (("[%d] "), i + first_choice);
3543 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3544 gdb_stdout, -1, 0);
3545 printf_unfiltered (_("'(%s) (enumeral)\n"),
3546 SYMBOL_PRINT_NAME (syms[i].sym));
3547 }
3548 else if (symtab != NULL)
3549 printf_unfiltered (is_enumeral
3550 ? _("[%d] %s in %s (enumeral)\n")
3551 : _("[%d] %s at %s:?\n"),
3552 i + first_choice,
3553 SYMBOL_PRINT_NAME (syms[i].sym),
3554 symtab->filename);
3555 else
3556 printf_unfiltered (is_enumeral
3557 ? _("[%d] %s (enumeral)\n")
3558 : _("[%d] %s at ?\n"),
3559 i + first_choice,
3560 SYMBOL_PRINT_NAME (syms[i].sym));
3561 }
3562 }
3563
3564 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3565 "overload-choice");
3566
3567 for (i = 0; i < n_chosen; i += 1)
3568 syms[i] = syms[chosen[i]];
3569
3570 return n_chosen;
3571}
3572
3573/* Read and validate a set of numeric choices from the user in the
3574 range 0 .. N_CHOICES-1. Place the results in increasing
3575 order in CHOICES[0 .. N-1], and return N.
3576
3577 The user types choices as a sequence of numbers on one line
3578 separated by blanks, encoding them as follows:
3579
3580 + A choice of 0 means to cancel the selection, throwing an error.
3581 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3582 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3583
3584 The user is not allowed to choose more than MAX_RESULTS values.
3585
3586 ANNOTATION_SUFFIX, if present, is used to annotate the input
3587 prompts (for use with the -f switch). */
3588
3589int
3590get_selections (int *choices, int n_choices, int max_results,
3591 int is_all_choice, char *annotation_suffix)
3592{
3593 char *args;
3594 char *prompt;
3595 int n_chosen;
3596 int first_choice = is_all_choice ? 2 : 1;
3597
3598 prompt = getenv ("PS2");
3599 if (prompt == NULL)
3600 prompt = "> ";
3601
3602 args = command_line_input (prompt, 0, annotation_suffix);
3603
3604 if (args == NULL)
3605 error_no_arg (_("one or more choice numbers"));
3606
3607 n_chosen = 0;
3608
3609 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3610 order, as given in args. Choices are validated. */
3611 while (1)
3612 {
3613 char *args2;
3614 int choice, j;
3615
3616 args = skip_spaces (args);
3617 if (*args == '\0' && n_chosen == 0)
3618 error_no_arg (_("one or more choice numbers"));
3619 else if (*args == '\0')
3620 break;
3621
3622 choice = strtol (args, &args2, 10);
3623 if (args == args2 || choice < 0
3624 || choice > n_choices + first_choice - 1)
3625 error (_("Argument must be choice number"));
3626 args = args2;
3627
3628 if (choice == 0)
3629 error (_("cancelled"));
3630
3631 if (choice < first_choice)
3632 {
3633 n_chosen = n_choices;
3634 for (j = 0; j < n_choices; j += 1)
3635 choices[j] = j;
3636 break;
3637 }
3638 choice -= first_choice;
3639
3640 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3641 {
3642 }
3643
3644 if (j < 0 || choice != choices[j])
3645 {
3646 int k;
3647
3648 for (k = n_chosen - 1; k > j; k -= 1)
3649 choices[k + 1] = choices[k];
3650 choices[j + 1] = choice;
3651 n_chosen += 1;
3652 }
3653 }
3654
3655 if (n_chosen > max_results)
3656 error (_("Select no more than %d of the above"), max_results);
3657
3658 return n_chosen;
3659}
3660
3661/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3662 on the function identified by SYM and BLOCK, and taking NARGS
3663 arguments. Update *EXPP as needed to hold more space. */
3664
3665static void
3666replace_operator_with_call (struct expression **expp, int pc, int nargs,
3667 int oplen, struct symbol *sym,
3668 struct block *block)
3669{
3670 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3671 symbol, -oplen for operator being replaced). */
3672 struct expression *newexp = (struct expression *)
3673 xzalloc (sizeof (struct expression)
3674 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3675 struct expression *exp = *expp;
3676
3677 newexp->nelts = exp->nelts + 7 - oplen;
3678 newexp->language_defn = exp->language_defn;
3679 newexp->gdbarch = exp->gdbarch;
3680 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3681 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3682 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3683
3684 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3685 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3686
3687 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3688 newexp->elts[pc + 4].block = block;
3689 newexp->elts[pc + 5].symbol = sym;
3690
3691 *expp = newexp;
3692 xfree (exp);
3693}
3694
3695/* Type-class predicates */
3696
3697/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3698 or FLOAT). */
3699
3700static int
3701numeric_type_p (struct type *type)
3702{
3703 if (type == NULL)
3704 return 0;
3705 else
3706 {
3707 switch (TYPE_CODE (type))
3708 {
3709 case TYPE_CODE_INT:
3710 case TYPE_CODE_FLT:
3711 return 1;
3712 case TYPE_CODE_RANGE:
3713 return (type == TYPE_TARGET_TYPE (type)
3714 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3715 default:
3716 return 0;
3717 }
3718 }
3719}
3720
3721/* True iff TYPE is integral (an INT or RANGE of INTs). */
3722
3723static int
3724integer_type_p (struct type *type)
3725{
3726 if (type == NULL)
3727 return 0;
3728 else
3729 {
3730 switch (TYPE_CODE (type))
3731 {
3732 case TYPE_CODE_INT:
3733 return 1;
3734 case TYPE_CODE_RANGE:
3735 return (type == TYPE_TARGET_TYPE (type)
3736 || integer_type_p (TYPE_TARGET_TYPE (type)));
3737 default:
3738 return 0;
3739 }
3740 }
3741}
3742
3743/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3744
3745static int
3746scalar_type_p (struct type *type)
3747{
3748 if (type == NULL)
3749 return 0;
3750 else
3751 {
3752 switch (TYPE_CODE (type))
3753 {
3754 case TYPE_CODE_INT:
3755 case TYPE_CODE_RANGE:
3756 case TYPE_CODE_ENUM:
3757 case TYPE_CODE_FLT:
3758 return 1;
3759 default:
3760 return 0;
3761 }
3762 }
3763}
3764
3765/* True iff TYPE is discrete (INT, RANGE, ENUM). */
3766
3767static int
3768discrete_type_p (struct type *type)
3769{
3770 if (type == NULL)
3771 return 0;
3772 else
3773 {
3774 switch (TYPE_CODE (type))
3775 {
3776 case TYPE_CODE_INT:
3777 case TYPE_CODE_RANGE:
3778 case TYPE_CODE_ENUM:
3779 case TYPE_CODE_BOOL:
3780 return 1;
3781 default:
3782 return 0;
3783 }
3784 }
3785}
3786
3787/* Returns non-zero if OP with operands in the vector ARGS could be
3788 a user-defined function. Errs on the side of pre-defined operators
3789 (i.e., result 0). */
3790
3791static int
3792possible_user_operator_p (enum exp_opcode op, struct value *args[])
3793{
3794 struct type *type0 =
3795 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3796 struct type *type1 =
3797 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3798
3799 if (type0 == NULL)
3800 return 0;
3801
3802 switch (op)
3803 {
3804 default:
3805 return 0;
3806
3807 case BINOP_ADD:
3808 case BINOP_SUB:
3809 case BINOP_MUL:
3810 case BINOP_DIV:
3811 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3812
3813 case BINOP_REM:
3814 case BINOP_MOD:
3815 case BINOP_BITWISE_AND:
3816 case BINOP_BITWISE_IOR:
3817 case BINOP_BITWISE_XOR:
3818 return (!(integer_type_p (type0) && integer_type_p (type1)));
3819
3820 case BINOP_EQUAL:
3821 case BINOP_NOTEQUAL:
3822 case BINOP_LESS:
3823 case BINOP_GTR:
3824 case BINOP_LEQ:
3825 case BINOP_GEQ:
3826 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3827
3828 case BINOP_CONCAT:
3829 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3830
3831 case BINOP_EXP:
3832 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3833
3834 case UNOP_NEG:
3835 case UNOP_PLUS:
3836 case UNOP_LOGICAL_NOT:
3837 case UNOP_ABS:
3838 return (!numeric_type_p (type0));
3839
3840 }
3841}
3842\f
3843 /* Renaming */
3844
3845/* NOTES:
3846
3847 1. In the following, we assume that a renaming type's name may
3848 have an ___XD suffix. It would be nice if this went away at some
3849 point.
3850 2. We handle both the (old) purely type-based representation of
3851 renamings and the (new) variable-based encoding. At some point,
3852 it is devoutly to be hoped that the former goes away
3853 (FIXME: hilfinger-2007-07-09).
3854 3. Subprogram renamings are not implemented, although the XRS
3855 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3856
3857/* If SYM encodes a renaming,
3858
3859 <renaming> renames <renamed entity>,
3860
3861 sets *LEN to the length of the renamed entity's name,
3862 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3863 the string describing the subcomponent selected from the renamed
3864 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3865 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3866 are undefined). Otherwise, returns a value indicating the category
3867 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3868 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3869 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3870 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3871 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3872 may be NULL, in which case they are not assigned.
3873
3874 [Currently, however, GCC does not generate subprogram renamings.] */
3875
3876enum ada_renaming_category
3877ada_parse_renaming (struct symbol *sym,
3878 const char **renamed_entity, int *len,
3879 const char **renaming_expr)
3880{
3881 enum ada_renaming_category kind;
3882 const char *info;
3883 const char *suffix;
3884
3885 if (sym == NULL)
3886 return ADA_NOT_RENAMING;
3887 switch (SYMBOL_CLASS (sym))
3888 {
3889 default:
3890 return ADA_NOT_RENAMING;
3891 case LOC_TYPEDEF:
3892 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3893 renamed_entity, len, renaming_expr);
3894 case LOC_LOCAL:
3895 case LOC_STATIC:
3896 case LOC_COMPUTED:
3897 case LOC_OPTIMIZED_OUT:
3898 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3899 if (info == NULL)
3900 return ADA_NOT_RENAMING;
3901 switch (info[5])
3902 {
3903 case '_':
3904 kind = ADA_OBJECT_RENAMING;
3905 info += 6;
3906 break;
3907 case 'E':
3908 kind = ADA_EXCEPTION_RENAMING;
3909 info += 7;
3910 break;
3911 case 'P':
3912 kind = ADA_PACKAGE_RENAMING;
3913 info += 7;
3914 break;
3915 case 'S':
3916 kind = ADA_SUBPROGRAM_RENAMING;
3917 info += 7;
3918 break;
3919 default:
3920 return ADA_NOT_RENAMING;
3921 }
3922 }
3923
3924 if (renamed_entity != NULL)
3925 *renamed_entity = info;
3926 suffix = strstr (info, "___XE");
3927 if (suffix == NULL || suffix == info)
3928 return ADA_NOT_RENAMING;
3929 if (len != NULL)
3930 *len = strlen (info) - strlen (suffix);
3931 suffix += 5;
3932 if (renaming_expr != NULL)
3933 *renaming_expr = suffix;
3934 return kind;
3935}
3936
3937/* Assuming TYPE encodes a renaming according to the old encoding in
3938 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3939 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3940 ADA_NOT_RENAMING otherwise. */
3941static enum ada_renaming_category
3942parse_old_style_renaming (struct type *type,
3943 const char **renamed_entity, int *len,
3944 const char **renaming_expr)
3945{
3946 enum ada_renaming_category kind;
3947 const char *name;
3948 const char *info;
3949 const char *suffix;
3950
3951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3952 || TYPE_NFIELDS (type) != 1)
3953 return ADA_NOT_RENAMING;
3954
3955 name = type_name_no_tag (type);
3956 if (name == NULL)
3957 return ADA_NOT_RENAMING;
3958
3959 name = strstr (name, "___XR");
3960 if (name == NULL)
3961 return ADA_NOT_RENAMING;
3962 switch (name[5])
3963 {
3964 case '\0':
3965 case '_':
3966 kind = ADA_OBJECT_RENAMING;
3967 break;
3968 case 'E':
3969 kind = ADA_EXCEPTION_RENAMING;
3970 break;
3971 case 'P':
3972 kind = ADA_PACKAGE_RENAMING;
3973 break;
3974 case 'S':
3975 kind = ADA_SUBPROGRAM_RENAMING;
3976 break;
3977 default:
3978 return ADA_NOT_RENAMING;
3979 }
3980
3981 info = TYPE_FIELD_NAME (type, 0);
3982 if (info == NULL)
3983 return ADA_NOT_RENAMING;
3984 if (renamed_entity != NULL)
3985 *renamed_entity = info;
3986 suffix = strstr (info, "___XE");
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix + 5;
3989 if (suffix == NULL || suffix == info)
3990 return ADA_NOT_RENAMING;
3991 if (len != NULL)
3992 *len = suffix - info;
3993 return kind;
3994}
3995
3996\f
3997
3998 /* Evaluation: Function Calls */
3999
4000/* Return an lvalue containing the value VAL. This is the identity on
4001 lvalues, and otherwise has the side-effect of allocating memory
4002 in the inferior where a copy of the value contents is copied. */
4003
4004static struct value *
4005ensure_lval (struct value *val)
4006{
4007 if (VALUE_LVAL (val) == not_lval
4008 || VALUE_LVAL (val) == lval_internalvar)
4009 {
4010 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4011 const CORE_ADDR addr =
4012 value_as_long (value_allocate_space_in_inferior (len));
4013
4014 set_value_address (val, addr);
4015 VALUE_LVAL (val) = lval_memory;
4016 write_memory (addr, value_contents (val), len);
4017 }
4018
4019 return val;
4020}
4021
4022/* Return the value ACTUAL, converted to be an appropriate value for a
4023 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4024 allocating any necessary descriptors (fat pointers), or copies of
4025 values not residing in memory, updating it as needed. */
4026
4027struct value *
4028ada_convert_actual (struct value *actual, struct type *formal_type0)
4029{
4030 struct type *actual_type = ada_check_typedef (value_type (actual));
4031 struct type *formal_type = ada_check_typedef (formal_type0);
4032 struct type *formal_target =
4033 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4034 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4035 struct type *actual_target =
4036 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4037 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4038
4039 if (ada_is_array_descriptor_type (formal_target)
4040 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4041 return make_array_descriptor (formal_type, actual);
4042 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4043 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4044 {
4045 struct value *result;
4046
4047 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4048 && ada_is_array_descriptor_type (actual_target))
4049 result = desc_data (actual);
4050 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4051 {
4052 if (VALUE_LVAL (actual) != lval_memory)
4053 {
4054 struct value *val;
4055
4056 actual_type = ada_check_typedef (value_type (actual));
4057 val = allocate_value (actual_type);
4058 memcpy ((char *) value_contents_raw (val),
4059 (char *) value_contents (actual),
4060 TYPE_LENGTH (actual_type));
4061 actual = ensure_lval (val);
4062 }
4063 result = value_addr (actual);
4064 }
4065 else
4066 return actual;
4067 return value_cast_pointers (formal_type, result);
4068 }
4069 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4070 return ada_value_ind (actual);
4071
4072 return actual;
4073}
4074
4075/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4076 type TYPE. This is usually an inefficient no-op except on some targets
4077 (such as AVR) where the representation of a pointer and an address
4078 differs. */
4079
4080static CORE_ADDR
4081value_pointer (struct value *value, struct type *type)
4082{
4083 struct gdbarch *gdbarch = get_type_arch (type);
4084 unsigned len = TYPE_LENGTH (type);
4085 gdb_byte *buf = alloca (len);
4086 CORE_ADDR addr;
4087
4088 addr = value_address (value);
4089 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4090 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4091 return addr;
4092}
4093
4094
4095/* Push a descriptor of type TYPE for array value ARR on the stack at
4096 *SP, updating *SP to reflect the new descriptor. Return either
4097 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4098 to-descriptor type rather than a descriptor type), a struct value *
4099 representing a pointer to this descriptor. */
4100
4101static struct value *
4102make_array_descriptor (struct type *type, struct value *arr)
4103{
4104 struct type *bounds_type = desc_bounds_type (type);
4105 struct type *desc_type = desc_base_type (type);
4106 struct value *descriptor = allocate_value (desc_type);
4107 struct value *bounds = allocate_value (bounds_type);
4108 int i;
4109
4110 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4111 i > 0; i -= 1)
4112 {
4113 modify_field (value_type (bounds), value_contents_writeable (bounds),
4114 ada_array_bound (arr, i, 0),
4115 desc_bound_bitpos (bounds_type, i, 0),
4116 desc_bound_bitsize (bounds_type, i, 0));
4117 modify_field (value_type (bounds), value_contents_writeable (bounds),
4118 ada_array_bound (arr, i, 1),
4119 desc_bound_bitpos (bounds_type, i, 1),
4120 desc_bound_bitsize (bounds_type, i, 1));
4121 }
4122
4123 bounds = ensure_lval (bounds);
4124
4125 modify_field (value_type (descriptor),
4126 value_contents_writeable (descriptor),
4127 value_pointer (ensure_lval (arr),
4128 TYPE_FIELD_TYPE (desc_type, 0)),
4129 fat_pntr_data_bitpos (desc_type),
4130 fat_pntr_data_bitsize (desc_type));
4131
4132 modify_field (value_type (descriptor),
4133 value_contents_writeable (descriptor),
4134 value_pointer (bounds,
4135 TYPE_FIELD_TYPE (desc_type, 1)),
4136 fat_pntr_bounds_bitpos (desc_type),
4137 fat_pntr_bounds_bitsize (desc_type));
4138
4139 descriptor = ensure_lval (descriptor);
4140
4141 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4142 return value_addr (descriptor);
4143 else
4144 return descriptor;
4145}
4146\f
4147/* Dummy definitions for an experimental caching module that is not
4148 * used in the public sources. */
4149
4150static int
4151lookup_cached_symbol (const char *name, domain_enum namespace,
4152 struct symbol **sym, struct block **block)
4153{
4154 return 0;
4155}
4156
4157static void
4158cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4159 struct block *block)
4160{
4161}
4162\f
4163 /* Symbol Lookup */
4164
4165/* Return nonzero if wild matching should be used when searching for
4166 all symbols matching LOOKUP_NAME.
4167
4168 LOOKUP_NAME is expected to be a symbol name after transformation
4169 for Ada lookups (see ada_name_for_lookup). */
4170
4171static int
4172should_use_wild_match (const char *lookup_name)
4173{
4174 return (strstr (lookup_name, "__") == NULL);
4175}
4176
4177/* Return the result of a standard (literal, C-like) lookup of NAME in
4178 given DOMAIN, visible from lexical block BLOCK. */
4179
4180static struct symbol *
4181standard_lookup (const char *name, const struct block *block,
4182 domain_enum domain)
4183{
4184 struct symbol *sym;
4185
4186 if (lookup_cached_symbol (name, domain, &sym, NULL))
4187 return sym;
4188 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4189 cache_symbol (name, domain, sym, block_found);
4190 return sym;
4191}
4192
4193
4194/* Non-zero iff there is at least one non-function/non-enumeral symbol
4195 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4196 since they contend in overloading in the same way. */
4197static int
4198is_nonfunction (struct ada_symbol_info syms[], int n)
4199{
4200 int i;
4201
4202 for (i = 0; i < n; i += 1)
4203 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4204 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4205 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4206 return 1;
4207
4208 return 0;
4209}
4210
4211/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4212 struct types. Otherwise, they may not. */
4213
4214static int
4215equiv_types (struct type *type0, struct type *type1)
4216{
4217 if (type0 == type1)
4218 return 1;
4219 if (type0 == NULL || type1 == NULL
4220 || TYPE_CODE (type0) != TYPE_CODE (type1))
4221 return 0;
4222 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4223 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4224 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4225 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4226 return 1;
4227
4228 return 0;
4229}
4230
4231/* True iff SYM0 represents the same entity as SYM1, or one that is
4232 no more defined than that of SYM1. */
4233
4234static int
4235lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4236{
4237 if (sym0 == sym1)
4238 return 1;
4239 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4240 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4241 return 0;
4242
4243 switch (SYMBOL_CLASS (sym0))
4244 {
4245 case LOC_UNDEF:
4246 return 1;
4247 case LOC_TYPEDEF:
4248 {
4249 struct type *type0 = SYMBOL_TYPE (sym0);
4250 struct type *type1 = SYMBOL_TYPE (sym1);
4251 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4252 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4253 int len0 = strlen (name0);
4254
4255 return
4256 TYPE_CODE (type0) == TYPE_CODE (type1)
4257 && (equiv_types (type0, type1)
4258 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4259 && strncmp (name1 + len0, "___XV", 5) == 0));
4260 }
4261 case LOC_CONST:
4262 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4263 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4264 default:
4265 return 0;
4266 }
4267}
4268
4269/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4270 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4271
4272static void
4273add_defn_to_vec (struct obstack *obstackp,
4274 struct symbol *sym,
4275 struct block *block)
4276{
4277 int i;
4278 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4279
4280 /* Do not try to complete stub types, as the debugger is probably
4281 already scanning all symbols matching a certain name at the
4282 time when this function is called. Trying to replace the stub
4283 type by its associated full type will cause us to restart a scan
4284 which may lead to an infinite recursion. Instead, the client
4285 collecting the matching symbols will end up collecting several
4286 matches, with at least one of them complete. It can then filter
4287 out the stub ones if needed. */
4288
4289 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4290 {
4291 if (lesseq_defined_than (sym, prevDefns[i].sym))
4292 return;
4293 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4294 {
4295 prevDefns[i].sym = sym;
4296 prevDefns[i].block = block;
4297 return;
4298 }
4299 }
4300
4301 {
4302 struct ada_symbol_info info;
4303
4304 info.sym = sym;
4305 info.block = block;
4306 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4307 }
4308}
4309
4310/* Number of ada_symbol_info structures currently collected in
4311 current vector in *OBSTACKP. */
4312
4313static int
4314num_defns_collected (struct obstack *obstackp)
4315{
4316 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4317}
4318
4319/* Vector of ada_symbol_info structures currently collected in current
4320 vector in *OBSTACKP. If FINISH, close off the vector and return
4321 its final address. */
4322
4323static struct ada_symbol_info *
4324defns_collected (struct obstack *obstackp, int finish)
4325{
4326 if (finish)
4327 return obstack_finish (obstackp);
4328 else
4329 return (struct ada_symbol_info *) obstack_base (obstackp);
4330}
4331
4332/* Return a minimal symbol matching NAME according to Ada decoding
4333 rules. Returns NULL if there is no such minimal symbol. Names
4334 prefixed with "standard__" are handled specially: "standard__" is
4335 first stripped off, and only static and global symbols are searched. */
4336
4337struct minimal_symbol *
4338ada_lookup_simple_minsym (const char *name)
4339{
4340 struct objfile *objfile;
4341 struct minimal_symbol *msymbol;
4342 const int wild_match = should_use_wild_match (name);
4343
4344 /* Special case: If the user specifies a symbol name inside package
4345 Standard, do a non-wild matching of the symbol name without
4346 the "standard__" prefix. This was primarily introduced in order
4347 to allow the user to specifically access the standard exceptions
4348 using, for instance, Standard.Constraint_Error when Constraint_Error
4349 is ambiguous (due to the user defining its own Constraint_Error
4350 entity inside its program). */
4351 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4352 name += sizeof ("standard__") - 1;
4353
4354 ALL_MSYMBOLS (objfile, msymbol)
4355 {
4356 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4357 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4358 return msymbol;
4359 }
4360
4361 return NULL;
4362}
4363
4364/* For all subprograms that statically enclose the subprogram of the
4365 selected frame, add symbols matching identifier NAME in DOMAIN
4366 and their blocks to the list of data in OBSTACKP, as for
4367 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4368 wildcard prefix. */
4369
4370static void
4371add_symbols_from_enclosing_procs (struct obstack *obstackp,
4372 const char *name, domain_enum namespace,
4373 int wild_match)
4374{
4375}
4376
4377/* True if TYPE is definitely an artificial type supplied to a symbol
4378 for which no debugging information was given in the symbol file. */
4379
4380static int
4381is_nondebugging_type (struct type *type)
4382{
4383 char *name = ada_type_name (type);
4384
4385 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4386}
4387
4388/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4389 that are deemed "identical" for practical purposes.
4390
4391 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4392 types and that their number of enumerals is identical (in other
4393 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4394
4395static int
4396ada_identical_enum_types_p (struct type *type1, struct type *type2)
4397{
4398 int i;
4399
4400 /* The heuristic we use here is fairly conservative. We consider
4401 that 2 enumerate types are identical if they have the same
4402 number of enumerals and that all enumerals have the same
4403 underlying value and name. */
4404
4405 /* All enums in the type should have an identical underlying value. */
4406 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4407 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4408 return 0;
4409
4410 /* All enumerals should also have the same name (modulo any numerical
4411 suffix). */
4412 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4413 {
4414 char *name_1 = TYPE_FIELD_NAME (type1, i);
4415 char *name_2 = TYPE_FIELD_NAME (type2, i);
4416 int len_1 = strlen (name_1);
4417 int len_2 = strlen (name_2);
4418
4419 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4420 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4421 if (len_1 != len_2
4422 || strncmp (TYPE_FIELD_NAME (type1, i),
4423 TYPE_FIELD_NAME (type2, i),
4424 len_1) != 0)
4425 return 0;
4426 }
4427
4428 return 1;
4429}
4430
4431/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4432 that are deemed "identical" for practical purposes. Sometimes,
4433 enumerals are not strictly identical, but their types are so similar
4434 that they can be considered identical.
4435
4436 For instance, consider the following code:
4437
4438 type Color is (Black, Red, Green, Blue, White);
4439 type RGB_Color is new Color range Red .. Blue;
4440
4441 Type RGB_Color is a subrange of an implicit type which is a copy
4442 of type Color. If we call that implicit type RGB_ColorB ("B" is
4443 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4444 As a result, when an expression references any of the enumeral
4445 by name (Eg. "print green"), the expression is technically
4446 ambiguous and the user should be asked to disambiguate. But
4447 doing so would only hinder the user, since it wouldn't matter
4448 what choice he makes, the outcome would always be the same.
4449 So, for practical purposes, we consider them as the same. */
4450
4451static int
4452symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4453{
4454 int i;
4455
4456 /* Before performing a thorough comparison check of each type,
4457 we perform a series of inexpensive checks. We expect that these
4458 checks will quickly fail in the vast majority of cases, and thus
4459 help prevent the unnecessary use of a more expensive comparison.
4460 Said comparison also expects us to make some of these checks
4461 (see ada_identical_enum_types_p). */
4462
4463 /* Quick check: All symbols should have an enum type. */
4464 for (i = 0; i < nsyms; i++)
4465 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4466 return 0;
4467
4468 /* Quick check: They should all have the same value. */
4469 for (i = 1; i < nsyms; i++)
4470 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4471 return 0;
4472
4473 /* Quick check: They should all have the same number of enumerals. */
4474 for (i = 1; i < nsyms; i++)
4475 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4476 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4477 return 0;
4478
4479 /* All the sanity checks passed, so we might have a set of
4480 identical enumeration types. Perform a more complete
4481 comparison of the type of each symbol. */
4482 for (i = 1; i < nsyms; i++)
4483 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4484 SYMBOL_TYPE (syms[0].sym)))
4485 return 0;
4486
4487 return 1;
4488}
4489
4490/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4491 duplicate other symbols in the list (The only case I know of where
4492 this happens is when object files containing stabs-in-ecoff are
4493 linked with files containing ordinary ecoff debugging symbols (or no
4494 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4495 Returns the number of items in the modified list. */
4496
4497static int
4498remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4499{
4500 int i, j;
4501
4502 /* We should never be called with less than 2 symbols, as there
4503 cannot be any extra symbol in that case. But it's easy to
4504 handle, since we have nothing to do in that case. */
4505 if (nsyms < 2)
4506 return nsyms;
4507
4508 i = 0;
4509 while (i < nsyms)
4510 {
4511 int remove_p = 0;
4512
4513 /* If two symbols have the same name and one of them is a stub type,
4514 the get rid of the stub. */
4515
4516 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4517 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4518 {
4519 for (j = 0; j < nsyms; j++)
4520 {
4521 if (j != i
4522 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4523 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4524 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4525 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4526 remove_p = 1;
4527 }
4528 }
4529
4530 /* Two symbols with the same name, same class and same address
4531 should be identical. */
4532
4533 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4534 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4535 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4536 {
4537 for (j = 0; j < nsyms; j += 1)
4538 {
4539 if (i != j
4540 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4541 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4542 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4543 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4544 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4545 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4546 remove_p = 1;
4547 }
4548 }
4549
4550 if (remove_p)
4551 {
4552 for (j = i + 1; j < nsyms; j += 1)
4553 syms[j - 1] = syms[j];
4554 nsyms -= 1;
4555 }
4556
4557 i += 1;
4558 }
4559
4560 /* If all the remaining symbols are identical enumerals, then
4561 just keep the first one and discard the rest.
4562
4563 Unlike what we did previously, we do not discard any entry
4564 unless they are ALL identical. This is because the symbol
4565 comparison is not a strict comparison, but rather a practical
4566 comparison. If all symbols are considered identical, then
4567 we can just go ahead and use the first one and discard the rest.
4568 But if we cannot reduce the list to a single element, we have
4569 to ask the user to disambiguate anyways. And if we have to
4570 present a multiple-choice menu, it's less confusing if the list
4571 isn't missing some choices that were identical and yet distinct. */
4572 if (symbols_are_identical_enums (syms, nsyms))
4573 nsyms = 1;
4574
4575 return nsyms;
4576}
4577
4578/* Given a type that corresponds to a renaming entity, use the type name
4579 to extract the scope (package name or function name, fully qualified,
4580 and following the GNAT encoding convention) where this renaming has been
4581 defined. The string returned needs to be deallocated after use. */
4582
4583static char *
4584xget_renaming_scope (struct type *renaming_type)
4585{
4586 /* The renaming types adhere to the following convention:
4587 <scope>__<rename>___<XR extension>.
4588 So, to extract the scope, we search for the "___XR" extension,
4589 and then backtrack until we find the first "__". */
4590
4591 const char *name = type_name_no_tag (renaming_type);
4592 char *suffix = strstr (name, "___XR");
4593 char *last;
4594 int scope_len;
4595 char *scope;
4596
4597 /* Now, backtrack a bit until we find the first "__". Start looking
4598 at suffix - 3, as the <rename> part is at least one character long. */
4599
4600 for (last = suffix - 3; last > name; last--)
4601 if (last[0] == '_' && last[1] == '_')
4602 break;
4603
4604 /* Make a copy of scope and return it. */
4605
4606 scope_len = last - name;
4607 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4608
4609 strncpy (scope, name, scope_len);
4610 scope[scope_len] = '\0';
4611
4612 return scope;
4613}
4614
4615/* Return nonzero if NAME corresponds to a package name. */
4616
4617static int
4618is_package_name (const char *name)
4619{
4620 /* Here, We take advantage of the fact that no symbols are generated
4621 for packages, while symbols are generated for each function.
4622 So the condition for NAME represent a package becomes equivalent
4623 to NAME not existing in our list of symbols. There is only one
4624 small complication with library-level functions (see below). */
4625
4626 char *fun_name;
4627
4628 /* If it is a function that has not been defined at library level,
4629 then we should be able to look it up in the symbols. */
4630 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4631 return 0;
4632
4633 /* Library-level function names start with "_ada_". See if function
4634 "_ada_" followed by NAME can be found. */
4635
4636 /* Do a quick check that NAME does not contain "__", since library-level
4637 functions names cannot contain "__" in them. */
4638 if (strstr (name, "__") != NULL)
4639 return 0;
4640
4641 fun_name = xstrprintf ("_ada_%s", name);
4642
4643 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4644}
4645
4646/* Return nonzero if SYM corresponds to a renaming entity that is
4647 not visible from FUNCTION_NAME. */
4648
4649static int
4650old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4651{
4652 char *scope;
4653
4654 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4655 return 0;
4656
4657 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4658
4659 make_cleanup (xfree, scope);
4660
4661 /* If the rename has been defined in a package, then it is visible. */
4662 if (is_package_name (scope))
4663 return 0;
4664
4665 /* Check that the rename is in the current function scope by checking
4666 that its name starts with SCOPE. */
4667
4668 /* If the function name starts with "_ada_", it means that it is
4669 a library-level function. Strip this prefix before doing the
4670 comparison, as the encoding for the renaming does not contain
4671 this prefix. */
4672 if (strncmp (function_name, "_ada_", 5) == 0)
4673 function_name += 5;
4674
4675 return (strncmp (function_name, scope, strlen (scope)) != 0);
4676}
4677
4678/* Remove entries from SYMS that corresponds to a renaming entity that
4679 is not visible from the function associated with CURRENT_BLOCK or
4680 that is superfluous due to the presence of more specific renaming
4681 information. Places surviving symbols in the initial entries of
4682 SYMS and returns the number of surviving symbols.
4683
4684 Rationale:
4685 First, in cases where an object renaming is implemented as a
4686 reference variable, GNAT may produce both the actual reference
4687 variable and the renaming encoding. In this case, we discard the
4688 latter.
4689
4690 Second, GNAT emits a type following a specified encoding for each renaming
4691 entity. Unfortunately, STABS currently does not support the definition
4692 of types that are local to a given lexical block, so all renamings types
4693 are emitted at library level. As a consequence, if an application
4694 contains two renaming entities using the same name, and a user tries to
4695 print the value of one of these entities, the result of the ada symbol
4696 lookup will also contain the wrong renaming type.
4697
4698 This function partially covers for this limitation by attempting to
4699 remove from the SYMS list renaming symbols that should be visible
4700 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4701 method with the current information available. The implementation
4702 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4703
4704 - When the user tries to print a rename in a function while there
4705 is another rename entity defined in a package: Normally, the
4706 rename in the function has precedence over the rename in the
4707 package, so the latter should be removed from the list. This is
4708 currently not the case.
4709
4710 - This function will incorrectly remove valid renames if
4711 the CURRENT_BLOCK corresponds to a function which symbol name
4712 has been changed by an "Export" pragma. As a consequence,
4713 the user will be unable to print such rename entities. */
4714
4715static int
4716remove_irrelevant_renamings (struct ada_symbol_info *syms,
4717 int nsyms, const struct block *current_block)
4718{
4719 struct symbol *current_function;
4720 char *current_function_name;
4721 int i;
4722 int is_new_style_renaming;
4723
4724 /* If there is both a renaming foo___XR... encoded as a variable and
4725 a simple variable foo in the same block, discard the latter.
4726 First, zero out such symbols, then compress. */
4727 is_new_style_renaming = 0;
4728 for (i = 0; i < nsyms; i += 1)
4729 {
4730 struct symbol *sym = syms[i].sym;
4731 struct block *block = syms[i].block;
4732 const char *name;
4733 const char *suffix;
4734
4735 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4736 continue;
4737 name = SYMBOL_LINKAGE_NAME (sym);
4738 suffix = strstr (name, "___XR");
4739
4740 if (suffix != NULL)
4741 {
4742 int name_len = suffix - name;
4743 int j;
4744
4745 is_new_style_renaming = 1;
4746 for (j = 0; j < nsyms; j += 1)
4747 if (i != j && syms[j].sym != NULL
4748 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4749 name_len) == 0
4750 && block == syms[j].block)
4751 syms[j].sym = NULL;
4752 }
4753 }
4754 if (is_new_style_renaming)
4755 {
4756 int j, k;
4757
4758 for (j = k = 0; j < nsyms; j += 1)
4759 if (syms[j].sym != NULL)
4760 {
4761 syms[k] = syms[j];
4762 k += 1;
4763 }
4764 return k;
4765 }
4766
4767 /* Extract the function name associated to CURRENT_BLOCK.
4768 Abort if unable to do so. */
4769
4770 if (current_block == NULL)
4771 return nsyms;
4772
4773 current_function = block_linkage_function (current_block);
4774 if (current_function == NULL)
4775 return nsyms;
4776
4777 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4778 if (current_function_name == NULL)
4779 return nsyms;
4780
4781 /* Check each of the symbols, and remove it from the list if it is
4782 a type corresponding to a renaming that is out of the scope of
4783 the current block. */
4784
4785 i = 0;
4786 while (i < nsyms)
4787 {
4788 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4789 == ADA_OBJECT_RENAMING
4790 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4791 {
4792 int j;
4793
4794 for (j = i + 1; j < nsyms; j += 1)
4795 syms[j - 1] = syms[j];
4796 nsyms -= 1;
4797 }
4798 else
4799 i += 1;
4800 }
4801
4802 return nsyms;
4803}
4804
4805/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4806 whose name and domain match NAME and DOMAIN respectively.
4807 If no match was found, then extend the search to "enclosing"
4808 routines (in other words, if we're inside a nested function,
4809 search the symbols defined inside the enclosing functions).
4810
4811 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4812
4813static void
4814ada_add_local_symbols (struct obstack *obstackp, const char *name,
4815 struct block *block, domain_enum domain,
4816 int wild_match)
4817{
4818 int block_depth = 0;
4819
4820 while (block != NULL)
4821 {
4822 block_depth += 1;
4823 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4824
4825 /* If we found a non-function match, assume that's the one. */
4826 if (is_nonfunction (defns_collected (obstackp, 0),
4827 num_defns_collected (obstackp)))
4828 return;
4829
4830 block = BLOCK_SUPERBLOCK (block);
4831 }
4832
4833 /* If no luck so far, try to find NAME as a local symbol in some lexically
4834 enclosing subprogram. */
4835 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4836 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4837}
4838
4839/* An object of this type is used as the user_data argument when
4840 calling the map_matching_symbols method. */
4841
4842struct match_data
4843{
4844 struct objfile *objfile;
4845 struct obstack *obstackp;
4846 struct symbol *arg_sym;
4847 int found_sym;
4848};
4849
4850/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4851 to a list of symbols. DATA0 is a pointer to a struct match_data *
4852 containing the obstack that collects the symbol list, the file that SYM
4853 must come from, a flag indicating whether a non-argument symbol has
4854 been found in the current block, and the last argument symbol
4855 passed in SYM within the current block (if any). When SYM is null,
4856 marking the end of a block, the argument symbol is added if no
4857 other has been found. */
4858
4859static int
4860aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4861{
4862 struct match_data *data = (struct match_data *) data0;
4863
4864 if (sym == NULL)
4865 {
4866 if (!data->found_sym && data->arg_sym != NULL)
4867 add_defn_to_vec (data->obstackp,
4868 fixup_symbol_section (data->arg_sym, data->objfile),
4869 block);
4870 data->found_sym = 0;
4871 data->arg_sym = NULL;
4872 }
4873 else
4874 {
4875 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4876 return 0;
4877 else if (SYMBOL_IS_ARGUMENT (sym))
4878 data->arg_sym = sym;
4879 else
4880 {
4881 data->found_sym = 1;
4882 add_defn_to_vec (data->obstackp,
4883 fixup_symbol_section (sym, data->objfile),
4884 block);
4885 }
4886 }
4887 return 0;
4888}
4889
4890/* Compare STRING1 to STRING2, with results as for strcmp.
4891 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4892 implies compare_names (STRING1, STRING2) (they may differ as to
4893 what symbols compare equal). */
4894
4895static int
4896compare_names (const char *string1, const char *string2)
4897{
4898 while (*string1 != '\0' && *string2 != '\0')
4899 {
4900 if (isspace (*string1) || isspace (*string2))
4901 return strcmp_iw_ordered (string1, string2);
4902 if (*string1 != *string2)
4903 break;
4904 string1 += 1;
4905 string2 += 1;
4906 }
4907 switch (*string1)
4908 {
4909 case '(':
4910 return strcmp_iw_ordered (string1, string2);
4911 case '_':
4912 if (*string2 == '\0')
4913 {
4914 if (is_name_suffix (string1))
4915 return 0;
4916 else
4917 return 1;
4918 }
4919 /* FALLTHROUGH */
4920 default:
4921 if (*string2 == '(')
4922 return strcmp_iw_ordered (string1, string2);
4923 else
4924 return *string1 - *string2;
4925 }
4926}
4927
4928/* Add to OBSTACKP all non-local symbols whose name and domain match
4929 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4930 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4931
4932static void
4933add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4934 domain_enum domain, int global,
4935 int is_wild_match)
4936{
4937 struct objfile *objfile;
4938 struct match_data data;
4939
4940 memset (&data, 0, sizeof data);
4941 data.obstackp = obstackp;
4942
4943 ALL_OBJFILES (objfile)
4944 {
4945 data.objfile = objfile;
4946
4947 if (is_wild_match)
4948 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4949 aux_add_nonlocal_symbols, &data,
4950 wild_match, NULL);
4951 else
4952 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4953 aux_add_nonlocal_symbols, &data,
4954 full_match, compare_names);
4955 }
4956
4957 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4958 {
4959 ALL_OBJFILES (objfile)
4960 {
4961 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4962 strcpy (name1, "_ada_");
4963 strcpy (name1 + sizeof ("_ada_") - 1, name);
4964 data.objfile = objfile;
4965 objfile->sf->qf->map_matching_symbols (name1, domain,
4966 objfile, global,
4967 aux_add_nonlocal_symbols,
4968 &data,
4969 full_match, compare_names);
4970 }
4971 }
4972}
4973
4974/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4975 scope and in global scopes, returning the number of matches. Sets
4976 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4977 indicating the symbols found and the blocks and symbol tables (if
4978 any) in which they were found. This vector are transient---good only to
4979 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4980 symbol match within the nest of blocks whose innermost member is BLOCK0,
4981 is the one match returned (no other matches in that or
4982 enclosing blocks is returned). If there are any matches in or
4983 surrounding BLOCK0, then these alone are returned. Otherwise, the
4984 search extends to global and file-scope (static) symbol tables.
4985 Names prefixed with "standard__" are handled specially: "standard__"
4986 is first stripped off, and only static and global symbols are searched. */
4987
4988int
4989ada_lookup_symbol_list (const char *name0, const struct block *block0,
4990 domain_enum namespace,
4991 struct ada_symbol_info **results)
4992{
4993 struct symbol *sym;
4994 struct block *block;
4995 const char *name;
4996 const int wild_match = should_use_wild_match (name0);
4997 int cacheIfUnique;
4998 int ndefns;
4999
5000 obstack_free (&symbol_list_obstack, NULL);
5001 obstack_init (&symbol_list_obstack);
5002
5003 cacheIfUnique = 0;
5004
5005 /* Search specified block and its superiors. */
5006
5007 name = name0;
5008 block = (struct block *) block0; /* FIXME: No cast ought to be
5009 needed, but adding const will
5010 have a cascade effect. */
5011
5012 /* Special case: If the user specifies a symbol name inside package
5013 Standard, do a non-wild matching of the symbol name without
5014 the "standard__" prefix. This was primarily introduced in order
5015 to allow the user to specifically access the standard exceptions
5016 using, for instance, Standard.Constraint_Error when Constraint_Error
5017 is ambiguous (due to the user defining its own Constraint_Error
5018 entity inside its program). */
5019 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5020 {
5021 block = NULL;
5022 name = name0 + sizeof ("standard__") - 1;
5023 }
5024
5025 /* Check the non-global symbols. If we have ANY match, then we're done. */
5026
5027 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5028 wild_match);
5029 if (num_defns_collected (&symbol_list_obstack) > 0)
5030 goto done;
5031
5032 /* No non-global symbols found. Check our cache to see if we have
5033 already performed this search before. If we have, then return
5034 the same result. */
5035
5036 cacheIfUnique = 1;
5037 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5038 {
5039 if (sym != NULL)
5040 add_defn_to_vec (&symbol_list_obstack, sym, block);
5041 goto done;
5042 }
5043
5044 /* Search symbols from all global blocks. */
5045
5046 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5047 wild_match);
5048
5049 /* Now add symbols from all per-file blocks if we've gotten no hits
5050 (not strictly correct, but perhaps better than an error). */
5051
5052 if (num_defns_collected (&symbol_list_obstack) == 0)
5053 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5054 wild_match);
5055
5056done:
5057 ndefns = num_defns_collected (&symbol_list_obstack);
5058 *results = defns_collected (&symbol_list_obstack, 1);
5059
5060 ndefns = remove_extra_symbols (*results, ndefns);
5061
5062 if (ndefns == 0)
5063 cache_symbol (name0, namespace, NULL, NULL);
5064
5065 if (ndefns == 1 && cacheIfUnique)
5066 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5067
5068 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5069
5070 return ndefns;
5071}
5072
5073/* If NAME is the name of an entity, return a string that should
5074 be used to look that entity up in Ada units. This string should
5075 be deallocated after use using xfree.
5076
5077 NAME can have any form that the "break" or "print" commands might
5078 recognize. In other words, it does not have to be the "natural"
5079 name, or the "encoded" name. */
5080
5081char *
5082ada_name_for_lookup (const char *name)
5083{
5084 char *canon;
5085 int nlen = strlen (name);
5086
5087 if (name[0] == '<' && name[nlen - 1] == '>')
5088 {
5089 canon = xmalloc (nlen - 1);
5090 memcpy (canon, name + 1, nlen - 2);
5091 canon[nlen - 2] = '\0';
5092 }
5093 else
5094 canon = xstrdup (ada_encode (ada_fold_name (name)));
5095 return canon;
5096}
5097
5098/* Implementation of the la_iterate_over_symbols method. */
5099
5100static void
5101ada_iterate_over_symbols (const struct block *block,
5102 const char *name, domain_enum domain,
5103 int (*callback) (struct symbol *, void *),
5104 void *data)
5105{
5106 int ndefs, i;
5107 struct ada_symbol_info *results;
5108
5109 ndefs = ada_lookup_symbol_list (name, block, domain, &results);
5110 for (i = 0; i < ndefs; ++i)
5111 {
5112 if (! (*callback) (results[i].sym, data))
5113 break;
5114 }
5115}
5116
5117struct symbol *
5118ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5119 domain_enum namespace, struct block **block_found)
5120{
5121 struct ada_symbol_info *candidates;
5122 int n_candidates;
5123
5124 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
5125
5126 if (n_candidates == 0)
5127 return NULL;
5128
5129 if (block_found != NULL)
5130 *block_found = candidates[0].block;
5131
5132 return fixup_symbol_section (candidates[0].sym, NULL);
5133}
5134
5135/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5136 scope and in global scopes, or NULL if none. NAME is folded and
5137 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5138 choosing the first symbol if there are multiple choices.
5139 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5140 table in which the symbol was found (in both cases, these
5141 assignments occur only if the pointers are non-null). */
5142struct symbol *
5143ada_lookup_symbol (const char *name, const struct block *block0,
5144 domain_enum namespace, int *is_a_field_of_this)
5145{
5146 if (is_a_field_of_this != NULL)
5147 *is_a_field_of_this = 0;
5148
5149 return
5150 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5151 block0, namespace, NULL);
5152}
5153
5154static struct symbol *
5155ada_lookup_symbol_nonlocal (const char *name,
5156 const struct block *block,
5157 const domain_enum domain)
5158{
5159 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5160}
5161
5162
5163/* True iff STR is a possible encoded suffix of a normal Ada name
5164 that is to be ignored for matching purposes. Suffixes of parallel
5165 names (e.g., XVE) are not included here. Currently, the possible suffixes
5166 are given by any of the regular expressions:
5167
5168 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5169 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5170 TKB [subprogram suffix for task bodies]
5171 _E[0-9]+[bs]$ [protected object entry suffixes]
5172 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5173
5174 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5175 match is performed. This sequence is used to differentiate homonyms,
5176 is an optional part of a valid name suffix. */
5177
5178static int
5179is_name_suffix (const char *str)
5180{
5181 int k;
5182 const char *matching;
5183 const int len = strlen (str);
5184
5185 /* Skip optional leading __[0-9]+. */
5186
5187 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5188 {
5189 str += 3;
5190 while (isdigit (str[0]))
5191 str += 1;
5192 }
5193
5194 /* [.$][0-9]+ */
5195
5196 if (str[0] == '.' || str[0] == '$')
5197 {
5198 matching = str + 1;
5199 while (isdigit (matching[0]))
5200 matching += 1;
5201 if (matching[0] == '\0')
5202 return 1;
5203 }
5204
5205 /* ___[0-9]+ */
5206
5207 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5208 {
5209 matching = str + 3;
5210 while (isdigit (matching[0]))
5211 matching += 1;
5212 if (matching[0] == '\0')
5213 return 1;
5214 }
5215
5216 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5217
5218 if (strcmp (str, "TKB") == 0)
5219 return 1;
5220
5221#if 0
5222 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5223 with a N at the end. Unfortunately, the compiler uses the same
5224 convention for other internal types it creates. So treating
5225 all entity names that end with an "N" as a name suffix causes
5226 some regressions. For instance, consider the case of an enumerated
5227 type. To support the 'Image attribute, it creates an array whose
5228 name ends with N.
5229 Having a single character like this as a suffix carrying some
5230 information is a bit risky. Perhaps we should change the encoding
5231 to be something like "_N" instead. In the meantime, do not do
5232 the following check. */
5233 /* Protected Object Subprograms */
5234 if (len == 1 && str [0] == 'N')
5235 return 1;
5236#endif
5237
5238 /* _E[0-9]+[bs]$ */
5239 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5240 {
5241 matching = str + 3;
5242 while (isdigit (matching[0]))
5243 matching += 1;
5244 if ((matching[0] == 'b' || matching[0] == 's')
5245 && matching [1] == '\0')
5246 return 1;
5247 }
5248
5249 /* ??? We should not modify STR directly, as we are doing below. This
5250 is fine in this case, but may become problematic later if we find
5251 that this alternative did not work, and want to try matching
5252 another one from the begining of STR. Since we modified it, we
5253 won't be able to find the begining of the string anymore! */
5254 if (str[0] == 'X')
5255 {
5256 str += 1;
5257 while (str[0] != '_' && str[0] != '\0')
5258 {
5259 if (str[0] != 'n' && str[0] != 'b')
5260 return 0;
5261 str += 1;
5262 }
5263 }
5264
5265 if (str[0] == '\000')
5266 return 1;
5267
5268 if (str[0] == '_')
5269 {
5270 if (str[1] != '_' || str[2] == '\000')
5271 return 0;
5272 if (str[2] == '_')
5273 {
5274 if (strcmp (str + 3, "JM") == 0)
5275 return 1;
5276 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5277 the LJM suffix in favor of the JM one. But we will
5278 still accept LJM as a valid suffix for a reasonable
5279 amount of time, just to allow ourselves to debug programs
5280 compiled using an older version of GNAT. */
5281 if (strcmp (str + 3, "LJM") == 0)
5282 return 1;
5283 if (str[3] != 'X')
5284 return 0;
5285 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5286 || str[4] == 'U' || str[4] == 'P')
5287 return 1;
5288 if (str[4] == 'R' && str[5] != 'T')
5289 return 1;
5290 return 0;
5291 }
5292 if (!isdigit (str[2]))
5293 return 0;
5294 for (k = 3; str[k] != '\0'; k += 1)
5295 if (!isdigit (str[k]) && str[k] != '_')
5296 return 0;
5297 return 1;
5298 }
5299 if (str[0] == '$' && isdigit (str[1]))
5300 {
5301 for (k = 2; str[k] != '\0'; k += 1)
5302 if (!isdigit (str[k]) && str[k] != '_')
5303 return 0;
5304 return 1;
5305 }
5306 return 0;
5307}
5308
5309/* Return non-zero if the string starting at NAME and ending before
5310 NAME_END contains no capital letters. */
5311
5312static int
5313is_valid_name_for_wild_match (const char *name0)
5314{
5315 const char *decoded_name = ada_decode (name0);
5316 int i;
5317
5318 /* If the decoded name starts with an angle bracket, it means that
5319 NAME0 does not follow the GNAT encoding format. It should then
5320 not be allowed as a possible wild match. */
5321 if (decoded_name[0] == '<')
5322 return 0;
5323
5324 for (i=0; decoded_name[i] != '\0'; i++)
5325 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5326 return 0;
5327
5328 return 1;
5329}
5330
5331/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5332 that could start a simple name. Assumes that *NAMEP points into
5333 the string beginning at NAME0. */
5334
5335static int
5336advance_wild_match (const char **namep, const char *name0, int target0)
5337{
5338 const char *name = *namep;
5339
5340 while (1)
5341 {
5342 int t0, t1;
5343
5344 t0 = *name;
5345 if (t0 == '_')
5346 {
5347 t1 = name[1];
5348 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5349 {
5350 name += 1;
5351 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5352 break;
5353 else
5354 name += 1;
5355 }
5356 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5357 || name[2] == target0))
5358 {
5359 name += 2;
5360 break;
5361 }
5362 else
5363 return 0;
5364 }
5365 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5366 name += 1;
5367 else
5368 return 0;
5369 }
5370
5371 *namep = name;
5372 return 1;
5373}
5374
5375/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5376 informational suffixes of NAME (i.e., for which is_name_suffix is
5377 true). Assumes that PATN is a lower-cased Ada simple name. */
5378
5379static int
5380wild_match (const char *name, const char *patn)
5381{
5382 const char *p, *n;
5383 const char *name0 = name;
5384
5385 while (1)
5386 {
5387 const char *match = name;
5388
5389 if (*name == *patn)
5390 {
5391 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5392 if (*p != *name)
5393 break;
5394 if (*p == '\0' && is_name_suffix (name))
5395 return match != name0 && !is_valid_name_for_wild_match (name0);
5396
5397 if (name[-1] == '_')
5398 name -= 1;
5399 }
5400 if (!advance_wild_match (&name, name0, *patn))
5401 return 1;
5402 }
5403}
5404
5405/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5406 informational suffix. */
5407
5408static int
5409full_match (const char *sym_name, const char *search_name)
5410{
5411 return !match_name (sym_name, search_name, 0);
5412}
5413
5414
5415/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5416 vector *defn_symbols, updating the list of symbols in OBSTACKP
5417 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5418 OBJFILE is the section containing BLOCK.
5419 SYMTAB is recorded with each symbol added. */
5420
5421static void
5422ada_add_block_symbols (struct obstack *obstackp,
5423 struct block *block, const char *name,
5424 domain_enum domain, struct objfile *objfile,
5425 int wild)
5426{
5427 struct dict_iterator iter;
5428 int name_len = strlen (name);
5429 /* A matching argument symbol, if any. */
5430 struct symbol *arg_sym;
5431 /* Set true when we find a matching non-argument symbol. */
5432 int found_sym;
5433 struct symbol *sym;
5434
5435 arg_sym = NULL;
5436 found_sym = 0;
5437 if (wild)
5438 {
5439 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5440 wild_match, &iter);
5441 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5442 {
5443 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5444 SYMBOL_DOMAIN (sym), domain)
5445 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5446 {
5447 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5448 continue;
5449 else if (SYMBOL_IS_ARGUMENT (sym))
5450 arg_sym = sym;
5451 else
5452 {
5453 found_sym = 1;
5454 add_defn_to_vec (obstackp,
5455 fixup_symbol_section (sym, objfile),
5456 block);
5457 }
5458 }
5459 }
5460 }
5461 else
5462 {
5463 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5464 full_match, &iter);
5465 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5466 {
5467 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5468 SYMBOL_DOMAIN (sym), domain))
5469 {
5470 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5471 {
5472 if (SYMBOL_IS_ARGUMENT (sym))
5473 arg_sym = sym;
5474 else
5475 {
5476 found_sym = 1;
5477 add_defn_to_vec (obstackp,
5478 fixup_symbol_section (sym, objfile),
5479 block);
5480 }
5481 }
5482 }
5483 }
5484 }
5485
5486 if (!found_sym && arg_sym != NULL)
5487 {
5488 add_defn_to_vec (obstackp,
5489 fixup_symbol_section (arg_sym, objfile),
5490 block);
5491 }
5492
5493 if (!wild)
5494 {
5495 arg_sym = NULL;
5496 found_sym = 0;
5497
5498 ALL_BLOCK_SYMBOLS (block, iter, sym)
5499 {
5500 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5501 SYMBOL_DOMAIN (sym), domain))
5502 {
5503 int cmp;
5504
5505 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5506 if (cmp == 0)
5507 {
5508 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5509 if (cmp == 0)
5510 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5511 name_len);
5512 }
5513
5514 if (cmp == 0
5515 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5516 {
5517 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5518 {
5519 if (SYMBOL_IS_ARGUMENT (sym))
5520 arg_sym = sym;
5521 else
5522 {
5523 found_sym = 1;
5524 add_defn_to_vec (obstackp,
5525 fixup_symbol_section (sym, objfile),
5526 block);
5527 }
5528 }
5529 }
5530 }
5531 }
5532
5533 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5534 They aren't parameters, right? */
5535 if (!found_sym && arg_sym != NULL)
5536 {
5537 add_defn_to_vec (obstackp,
5538 fixup_symbol_section (arg_sym, objfile),
5539 block);
5540 }
5541 }
5542}
5543\f
5544
5545 /* Symbol Completion */
5546
5547/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5548 name in a form that's appropriate for the completion. The result
5549 does not need to be deallocated, but is only good until the next call.
5550
5551 TEXT_LEN is equal to the length of TEXT.
5552 Perform a wild match if WILD_MATCH is set.
5553 ENCODED should be set if TEXT represents the start of a symbol name
5554 in its encoded form. */
5555
5556static const char *
5557symbol_completion_match (const char *sym_name,
5558 const char *text, int text_len,
5559 int wild_match, int encoded)
5560{
5561 const int verbatim_match = (text[0] == '<');
5562 int match = 0;
5563
5564 if (verbatim_match)
5565 {
5566 /* Strip the leading angle bracket. */
5567 text = text + 1;
5568 text_len--;
5569 }
5570
5571 /* First, test against the fully qualified name of the symbol. */
5572
5573 if (strncmp (sym_name, text, text_len) == 0)
5574 match = 1;
5575
5576 if (match && !encoded)
5577 {
5578 /* One needed check before declaring a positive match is to verify
5579 that iff we are doing a verbatim match, the decoded version
5580 of the symbol name starts with '<'. Otherwise, this symbol name
5581 is not a suitable completion. */
5582 const char *sym_name_copy = sym_name;
5583 int has_angle_bracket;
5584
5585 sym_name = ada_decode (sym_name);
5586 has_angle_bracket = (sym_name[0] == '<');
5587 match = (has_angle_bracket == verbatim_match);
5588 sym_name = sym_name_copy;
5589 }
5590
5591 if (match && !verbatim_match)
5592 {
5593 /* When doing non-verbatim match, another check that needs to
5594 be done is to verify that the potentially matching symbol name
5595 does not include capital letters, because the ada-mode would
5596 not be able to understand these symbol names without the
5597 angle bracket notation. */
5598 const char *tmp;
5599
5600 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5601 if (*tmp != '\0')
5602 match = 0;
5603 }
5604
5605 /* Second: Try wild matching... */
5606
5607 if (!match && wild_match)
5608 {
5609 /* Since we are doing wild matching, this means that TEXT
5610 may represent an unqualified symbol name. We therefore must
5611 also compare TEXT against the unqualified name of the symbol. */
5612 sym_name = ada_unqualified_name (ada_decode (sym_name));
5613
5614 if (strncmp (sym_name, text, text_len) == 0)
5615 match = 1;
5616 }
5617
5618 /* Finally: If we found a mach, prepare the result to return. */
5619
5620 if (!match)
5621 return NULL;
5622
5623 if (verbatim_match)
5624 sym_name = add_angle_brackets (sym_name);
5625
5626 if (!encoded)
5627 sym_name = ada_decode (sym_name);
5628
5629 return sym_name;
5630}
5631
5632/* A companion function to ada_make_symbol_completion_list().
5633 Check if SYM_NAME represents a symbol which name would be suitable
5634 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5635 it is appended at the end of the given string vector SV.
5636
5637 ORIG_TEXT is the string original string from the user command
5638 that needs to be completed. WORD is the entire command on which
5639 completion should be performed. These two parameters are used to
5640 determine which part of the symbol name should be added to the
5641 completion vector.
5642 if WILD_MATCH is set, then wild matching is performed.
5643 ENCODED should be set if TEXT represents a symbol name in its
5644 encoded formed (in which case the completion should also be
5645 encoded). */
5646
5647static void
5648symbol_completion_add (VEC(char_ptr) **sv,
5649 const char *sym_name,
5650 const char *text, int text_len,
5651 const char *orig_text, const char *word,
5652 int wild_match, int encoded)
5653{
5654 const char *match = symbol_completion_match (sym_name, text, text_len,
5655 wild_match, encoded);
5656 char *completion;
5657
5658 if (match == NULL)
5659 return;
5660
5661 /* We found a match, so add the appropriate completion to the given
5662 string vector. */
5663
5664 if (word == orig_text)
5665 {
5666 completion = xmalloc (strlen (match) + 5);
5667 strcpy (completion, match);
5668 }
5669 else if (word > orig_text)
5670 {
5671 /* Return some portion of sym_name. */
5672 completion = xmalloc (strlen (match) + 5);
5673 strcpy (completion, match + (word - orig_text));
5674 }
5675 else
5676 {
5677 /* Return some of ORIG_TEXT plus sym_name. */
5678 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5679 strncpy (completion, word, orig_text - word);
5680 completion[orig_text - word] = '\0';
5681 strcat (completion, match);
5682 }
5683
5684 VEC_safe_push (char_ptr, *sv, completion);
5685}
5686
5687/* An object of this type is passed as the user_data argument to the
5688 expand_partial_symbol_names method. */
5689struct add_partial_datum
5690{
5691 VEC(char_ptr) **completions;
5692 char *text;
5693 int text_len;
5694 char *text0;
5695 char *word;
5696 int wild_match;
5697 int encoded;
5698};
5699
5700/* A callback for expand_partial_symbol_names. */
5701static int
5702ada_expand_partial_symbol_name (const char *name, void *user_data)
5703{
5704 struct add_partial_datum *data = user_data;
5705
5706 return symbol_completion_match (name, data->text, data->text_len,
5707 data->wild_match, data->encoded) != NULL;
5708}
5709
5710/* Return a list of possible symbol names completing TEXT0. The list
5711 is NULL terminated. WORD is the entire command on which completion
5712 is made. */
5713
5714static char **
5715ada_make_symbol_completion_list (char *text0, char *word)
5716{
5717 char *text;
5718 int text_len;
5719 int wild_match;
5720 int encoded;
5721 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5722 struct symbol *sym;
5723 struct symtab *s;
5724 struct minimal_symbol *msymbol;
5725 struct objfile *objfile;
5726 struct block *b, *surrounding_static_block = 0;
5727 int i;
5728 struct dict_iterator iter;
5729
5730 if (text0[0] == '<')
5731 {
5732 text = xstrdup (text0);
5733 make_cleanup (xfree, text);
5734 text_len = strlen (text);
5735 wild_match = 0;
5736 encoded = 1;
5737 }
5738 else
5739 {
5740 text = xstrdup (ada_encode (text0));
5741 make_cleanup (xfree, text);
5742 text_len = strlen (text);
5743 for (i = 0; i < text_len; i++)
5744 text[i] = tolower (text[i]);
5745
5746 encoded = (strstr (text0, "__") != NULL);
5747 /* If the name contains a ".", then the user is entering a fully
5748 qualified entity name, and the match must not be done in wild
5749 mode. Similarly, if the user wants to complete what looks like
5750 an encoded name, the match must not be done in wild mode. */
5751 wild_match = (strchr (text0, '.') == NULL && !encoded);
5752 }
5753
5754 /* First, look at the partial symtab symbols. */
5755 {
5756 struct add_partial_datum data;
5757
5758 data.completions = &completions;
5759 data.text = text;
5760 data.text_len = text_len;
5761 data.text0 = text0;
5762 data.word = word;
5763 data.wild_match = wild_match;
5764 data.encoded = encoded;
5765 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5766 }
5767
5768 /* At this point scan through the misc symbol vectors and add each
5769 symbol you find to the list. Eventually we want to ignore
5770 anything that isn't a text symbol (everything else will be
5771 handled by the psymtab code above). */
5772
5773 ALL_MSYMBOLS (objfile, msymbol)
5774 {
5775 QUIT;
5776 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5777 text, text_len, text0, word, wild_match, encoded);
5778 }
5779
5780 /* Search upwards from currently selected frame (so that we can
5781 complete on local vars. */
5782
5783 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5784 {
5785 if (!BLOCK_SUPERBLOCK (b))
5786 surrounding_static_block = b; /* For elmin of dups */
5787
5788 ALL_BLOCK_SYMBOLS (b, iter, sym)
5789 {
5790 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5791 text, text_len, text0, word,
5792 wild_match, encoded);
5793 }
5794 }
5795
5796 /* Go through the symtabs and check the externs and statics for
5797 symbols which match. */
5798
5799 ALL_SYMTABS (objfile, s)
5800 {
5801 QUIT;
5802 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5803 ALL_BLOCK_SYMBOLS (b, iter, sym)
5804 {
5805 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5806 text, text_len, text0, word,
5807 wild_match, encoded);
5808 }
5809 }
5810
5811 ALL_SYMTABS (objfile, s)
5812 {
5813 QUIT;
5814 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5815 /* Don't do this block twice. */
5816 if (b == surrounding_static_block)
5817 continue;
5818 ALL_BLOCK_SYMBOLS (b, iter, sym)
5819 {
5820 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5821 text, text_len, text0, word,
5822 wild_match, encoded);
5823 }
5824 }
5825
5826 /* Append the closing NULL entry. */
5827 VEC_safe_push (char_ptr, completions, NULL);
5828
5829 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5830 return the copy. It's unfortunate that we have to make a copy
5831 of an array that we're about to destroy, but there is nothing much
5832 we can do about it. Fortunately, it's typically not a very large
5833 array. */
5834 {
5835 const size_t completions_size =
5836 VEC_length (char_ptr, completions) * sizeof (char *);
5837 char **result = xmalloc (completions_size);
5838
5839 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5840
5841 VEC_free (char_ptr, completions);
5842 return result;
5843 }
5844}
5845
5846 /* Field Access */
5847
5848/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5849 for tagged types. */
5850
5851static int
5852ada_is_dispatch_table_ptr_type (struct type *type)
5853{
5854 char *name;
5855
5856 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5857 return 0;
5858
5859 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5860 if (name == NULL)
5861 return 0;
5862
5863 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5864}
5865
5866/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5867 to be invisible to users. */
5868
5869int
5870ada_is_ignored_field (struct type *type, int field_num)
5871{
5872 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5873 return 1;
5874
5875 /* Check the name of that field. */
5876 {
5877 const char *name = TYPE_FIELD_NAME (type, field_num);
5878
5879 /* Anonymous field names should not be printed.
5880 brobecker/2007-02-20: I don't think this can actually happen
5881 but we don't want to print the value of annonymous fields anyway. */
5882 if (name == NULL)
5883 return 1;
5884
5885 /* A field named "_parent" is internally generated by GNAT for
5886 tagged types, and should not be printed either. */
5887 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5888 return 1;
5889 }
5890
5891 /* If this is the dispatch table of a tagged type, then ignore. */
5892 if (ada_is_tagged_type (type, 1)
5893 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5894 return 1;
5895
5896 /* Not a special field, so it should not be ignored. */
5897 return 0;
5898}
5899
5900/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5901 pointer or reference type whose ultimate target has a tag field. */
5902
5903int
5904ada_is_tagged_type (struct type *type, int refok)
5905{
5906 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5907}
5908
5909/* True iff TYPE represents the type of X'Tag */
5910
5911int
5912ada_is_tag_type (struct type *type)
5913{
5914 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5915 return 0;
5916 else
5917 {
5918 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5919
5920 return (name != NULL
5921 && strcmp (name, "ada__tags__dispatch_table") == 0);
5922 }
5923}
5924
5925/* The type of the tag on VAL. */
5926
5927struct type *
5928ada_tag_type (struct value *val)
5929{
5930 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5931}
5932
5933/* The value of the tag on VAL. */
5934
5935struct value *
5936ada_value_tag (struct value *val)
5937{
5938 return ada_value_struct_elt (val, "_tag", 0);
5939}
5940
5941/* The value of the tag on the object of type TYPE whose contents are
5942 saved at VALADDR, if it is non-null, or is at memory address
5943 ADDRESS. */
5944
5945static struct value *
5946value_tag_from_contents_and_address (struct type *type,
5947 const gdb_byte *valaddr,
5948 CORE_ADDR address)
5949{
5950 int tag_byte_offset;
5951 struct type *tag_type;
5952
5953 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5954 NULL, NULL, NULL))
5955 {
5956 const gdb_byte *valaddr1 = ((valaddr == NULL)
5957 ? NULL
5958 : valaddr + tag_byte_offset);
5959 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5960
5961 return value_from_contents_and_address (tag_type, valaddr1, address1);
5962 }
5963 return NULL;
5964}
5965
5966static struct type *
5967type_from_tag (struct value *tag)
5968{
5969 const char *type_name = ada_tag_name (tag);
5970
5971 if (type_name != NULL)
5972 return ada_find_any_type (ada_encode (type_name));
5973 return NULL;
5974}
5975
5976struct tag_args
5977{
5978 struct value *tag;
5979 char *name;
5980};
5981
5982
5983static int ada_tag_name_1 (void *);
5984static int ada_tag_name_2 (struct tag_args *);
5985
5986/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5987 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5988 The value stored in ARGS->name is valid until the next call to
5989 ada_tag_name_1. */
5990
5991static int
5992ada_tag_name_1 (void *args0)
5993{
5994 struct tag_args *args = (struct tag_args *) args0;
5995 static char name[1024];
5996 char *p;
5997 struct value *val;
5998
5999 args->name = NULL;
6000 val = ada_value_struct_elt (args->tag, "tsd", 1);
6001 if (val == NULL)
6002 return ada_tag_name_2 (args);
6003 val = ada_value_struct_elt (val, "expanded_name", 1);
6004 if (val == NULL)
6005 return 0;
6006 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6007 for (p = name; *p != '\0'; p += 1)
6008 if (isalpha (*p))
6009 *p = tolower (*p);
6010 args->name = name;
6011 return 0;
6012}
6013
6014/* Return the "ada__tags__type_specific_data" type. */
6015
6016static struct type *
6017ada_get_tsd_type (struct inferior *inf)
6018{
6019 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6020
6021 if (data->tsd_type == 0)
6022 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6023 return data->tsd_type;
6024}
6025
6026/* Utility function for ada_tag_name_1 that tries the second
6027 representation for the dispatch table (in which there is no
6028 explicit 'tsd' field in the referent of the tag pointer, and instead
6029 the tsd pointer is stored just before the dispatch table. */
6030
6031static int
6032ada_tag_name_2 (struct tag_args *args)
6033{
6034 struct type *info_type;
6035 static char name[1024];
6036 char *p;
6037 struct value *val, *valp;
6038
6039 args->name = NULL;
6040 info_type = ada_get_tsd_type (current_inferior());
6041 if (info_type == NULL)
6042 return 0;
6043 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6044 valp = value_cast (info_type, args->tag);
6045 if (valp == NULL)
6046 return 0;
6047 val = value_ind (value_ptradd (valp, -1));
6048 if (val == NULL)
6049 return 0;
6050 val = ada_value_struct_elt (val, "expanded_name", 1);
6051 if (val == NULL)
6052 return 0;
6053 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6054 for (p = name; *p != '\0'; p += 1)
6055 if (isalpha (*p))
6056 *p = tolower (*p);
6057 args->name = name;
6058 return 0;
6059}
6060
6061/* The type name of the dynamic type denoted by the 'tag value TAG, as
6062 a C string. */
6063
6064const char *
6065ada_tag_name (struct value *tag)
6066{
6067 struct tag_args args;
6068
6069 if (!ada_is_tag_type (value_type (tag)))
6070 return NULL;
6071 args.tag = tag;
6072 args.name = NULL;
6073 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6074 return args.name;
6075}
6076
6077/* The parent type of TYPE, or NULL if none. */
6078
6079struct type *
6080ada_parent_type (struct type *type)
6081{
6082 int i;
6083
6084 type = ada_check_typedef (type);
6085
6086 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6087 return NULL;
6088
6089 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6090 if (ada_is_parent_field (type, i))
6091 {
6092 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6093
6094 /* If the _parent field is a pointer, then dereference it. */
6095 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6096 parent_type = TYPE_TARGET_TYPE (parent_type);
6097 /* If there is a parallel XVS type, get the actual base type. */
6098 parent_type = ada_get_base_type (parent_type);
6099
6100 return ada_check_typedef (parent_type);
6101 }
6102
6103 return NULL;
6104}
6105
6106/* True iff field number FIELD_NUM of structure type TYPE contains the
6107 parent-type (inherited) fields of a derived type. Assumes TYPE is
6108 a structure type with at least FIELD_NUM+1 fields. */
6109
6110int
6111ada_is_parent_field (struct type *type, int field_num)
6112{
6113 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6114
6115 return (name != NULL
6116 && (strncmp (name, "PARENT", 6) == 0
6117 || strncmp (name, "_parent", 7) == 0));
6118}
6119
6120/* True iff field number FIELD_NUM of structure type TYPE is a
6121 transparent wrapper field (which should be silently traversed when doing
6122 field selection and flattened when printing). Assumes TYPE is a
6123 structure type with at least FIELD_NUM+1 fields. Such fields are always
6124 structures. */
6125
6126int
6127ada_is_wrapper_field (struct type *type, int field_num)
6128{
6129 const char *name = TYPE_FIELD_NAME (type, field_num);
6130
6131 return (name != NULL
6132 && (strncmp (name, "PARENT", 6) == 0
6133 || strcmp (name, "REP") == 0
6134 || strncmp (name, "_parent", 7) == 0
6135 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6136}
6137
6138/* True iff field number FIELD_NUM of structure or union type TYPE
6139 is a variant wrapper. Assumes TYPE is a structure type with at least
6140 FIELD_NUM+1 fields. */
6141
6142int
6143ada_is_variant_part (struct type *type, int field_num)
6144{
6145 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6146
6147 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6148 || (is_dynamic_field (type, field_num)
6149 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6150 == TYPE_CODE_UNION)));
6151}
6152
6153/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6154 whose discriminants are contained in the record type OUTER_TYPE,
6155 returns the type of the controlling discriminant for the variant.
6156 May return NULL if the type could not be found. */
6157
6158struct type *
6159ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6160{
6161 char *name = ada_variant_discrim_name (var_type);
6162
6163 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6164}
6165
6166/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6167 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6168 represents a 'when others' clause; otherwise 0. */
6169
6170int
6171ada_is_others_clause (struct type *type, int field_num)
6172{
6173 const char *name = TYPE_FIELD_NAME (type, field_num);
6174
6175 return (name != NULL && name[0] == 'O');
6176}
6177
6178/* Assuming that TYPE0 is the type of the variant part of a record,
6179 returns the name of the discriminant controlling the variant.
6180 The value is valid until the next call to ada_variant_discrim_name. */
6181
6182char *
6183ada_variant_discrim_name (struct type *type0)
6184{
6185 static char *result = NULL;
6186 static size_t result_len = 0;
6187 struct type *type;
6188 const char *name;
6189 const char *discrim_end;
6190 const char *discrim_start;
6191
6192 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6193 type = TYPE_TARGET_TYPE (type0);
6194 else
6195 type = type0;
6196
6197 name = ada_type_name (type);
6198
6199 if (name == NULL || name[0] == '\000')
6200 return "";
6201
6202 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6203 discrim_end -= 1)
6204 {
6205 if (strncmp (discrim_end, "___XVN", 6) == 0)
6206 break;
6207 }
6208 if (discrim_end == name)
6209 return "";
6210
6211 for (discrim_start = discrim_end; discrim_start != name + 3;
6212 discrim_start -= 1)
6213 {
6214 if (discrim_start == name + 1)
6215 return "";
6216 if ((discrim_start > name + 3
6217 && strncmp (discrim_start - 3, "___", 3) == 0)
6218 || discrim_start[-1] == '.')
6219 break;
6220 }
6221
6222 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6223 strncpy (result, discrim_start, discrim_end - discrim_start);
6224 result[discrim_end - discrim_start] = '\0';
6225 return result;
6226}
6227
6228/* Scan STR for a subtype-encoded number, beginning at position K.
6229 Put the position of the character just past the number scanned in
6230 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6231 Return 1 if there was a valid number at the given position, and 0
6232 otherwise. A "subtype-encoded" number consists of the absolute value
6233 in decimal, followed by the letter 'm' to indicate a negative number.
6234 Assumes 0m does not occur. */
6235
6236int
6237ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6238{
6239 ULONGEST RU;
6240
6241 if (!isdigit (str[k]))
6242 return 0;
6243
6244 /* Do it the hard way so as not to make any assumption about
6245 the relationship of unsigned long (%lu scan format code) and
6246 LONGEST. */
6247 RU = 0;
6248 while (isdigit (str[k]))
6249 {
6250 RU = RU * 10 + (str[k] - '0');
6251 k += 1;
6252 }
6253
6254 if (str[k] == 'm')
6255 {
6256 if (R != NULL)
6257 *R = (-(LONGEST) (RU - 1)) - 1;
6258 k += 1;
6259 }
6260 else if (R != NULL)
6261 *R = (LONGEST) RU;
6262
6263 /* NOTE on the above: Technically, C does not say what the results of
6264 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6265 number representable as a LONGEST (although either would probably work
6266 in most implementations). When RU>0, the locution in the then branch
6267 above is always equivalent to the negative of RU. */
6268
6269 if (new_k != NULL)
6270 *new_k = k;
6271 return 1;
6272}
6273
6274/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6275 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6276 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6277
6278int
6279ada_in_variant (LONGEST val, struct type *type, int field_num)
6280{
6281 const char *name = TYPE_FIELD_NAME (type, field_num);
6282 int p;
6283
6284 p = 0;
6285 while (1)
6286 {
6287 switch (name[p])
6288 {
6289 case '\0':
6290 return 0;
6291 case 'S':
6292 {
6293 LONGEST W;
6294
6295 if (!ada_scan_number (name, p + 1, &W, &p))
6296 return 0;
6297 if (val == W)
6298 return 1;
6299 break;
6300 }
6301 case 'R':
6302 {
6303 LONGEST L, U;
6304
6305 if (!ada_scan_number (name, p + 1, &L, &p)
6306 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6307 return 0;
6308 if (val >= L && val <= U)
6309 return 1;
6310 break;
6311 }
6312 case 'O':
6313 return 1;
6314 default:
6315 return 0;
6316 }
6317 }
6318}
6319
6320/* FIXME: Lots of redundancy below. Try to consolidate. */
6321
6322/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6323 ARG_TYPE, extract and return the value of one of its (non-static)
6324 fields. FIELDNO says which field. Differs from value_primitive_field
6325 only in that it can handle packed values of arbitrary type. */
6326
6327static struct value *
6328ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6329 struct type *arg_type)
6330{
6331 struct type *type;
6332
6333 arg_type = ada_check_typedef (arg_type);
6334 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6335
6336 /* Handle packed fields. */
6337
6338 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6339 {
6340 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6341 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6342
6343 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6344 offset + bit_pos / 8,
6345 bit_pos % 8, bit_size, type);
6346 }
6347 else
6348 return value_primitive_field (arg1, offset, fieldno, arg_type);
6349}
6350
6351/* Find field with name NAME in object of type TYPE. If found,
6352 set the following for each argument that is non-null:
6353 - *FIELD_TYPE_P to the field's type;
6354 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6355 an object of that type;
6356 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6357 - *BIT_SIZE_P to its size in bits if the field is packed, and
6358 0 otherwise;
6359 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6360 fields up to but not including the desired field, or by the total
6361 number of fields if not found. A NULL value of NAME never
6362 matches; the function just counts visible fields in this case.
6363
6364 Returns 1 if found, 0 otherwise. */
6365
6366static int
6367find_struct_field (char *name, struct type *type, int offset,
6368 struct type **field_type_p,
6369 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6370 int *index_p)
6371{
6372 int i;
6373
6374 type = ada_check_typedef (type);
6375
6376 if (field_type_p != NULL)
6377 *field_type_p = NULL;
6378 if (byte_offset_p != NULL)
6379 *byte_offset_p = 0;
6380 if (bit_offset_p != NULL)
6381 *bit_offset_p = 0;
6382 if (bit_size_p != NULL)
6383 *bit_size_p = 0;
6384
6385 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6386 {
6387 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6388 int fld_offset = offset + bit_pos / 8;
6389 char *t_field_name = TYPE_FIELD_NAME (type, i);
6390
6391 if (t_field_name == NULL)
6392 continue;
6393
6394 else if (name != NULL && field_name_match (t_field_name, name))
6395 {
6396 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6397
6398 if (field_type_p != NULL)
6399 *field_type_p = TYPE_FIELD_TYPE (type, i);
6400 if (byte_offset_p != NULL)
6401 *byte_offset_p = fld_offset;
6402 if (bit_offset_p != NULL)
6403 *bit_offset_p = bit_pos % 8;
6404 if (bit_size_p != NULL)
6405 *bit_size_p = bit_size;
6406 return 1;
6407 }
6408 else if (ada_is_wrapper_field (type, i))
6409 {
6410 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6411 field_type_p, byte_offset_p, bit_offset_p,
6412 bit_size_p, index_p))
6413 return 1;
6414 }
6415 else if (ada_is_variant_part (type, i))
6416 {
6417 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6418 fixed type?? */
6419 int j;
6420 struct type *field_type
6421 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6422
6423 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6424 {
6425 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6426 fld_offset
6427 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6428 field_type_p, byte_offset_p,
6429 bit_offset_p, bit_size_p, index_p))
6430 return 1;
6431 }
6432 }
6433 else if (index_p != NULL)
6434 *index_p += 1;
6435 }
6436 return 0;
6437}
6438
6439/* Number of user-visible fields in record type TYPE. */
6440
6441static int
6442num_visible_fields (struct type *type)
6443{
6444 int n;
6445
6446 n = 0;
6447 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6448 return n;
6449}
6450
6451/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6452 and search in it assuming it has (class) type TYPE.
6453 If found, return value, else return NULL.
6454
6455 Searches recursively through wrapper fields (e.g., '_parent'). */
6456
6457static struct value *
6458ada_search_struct_field (char *name, struct value *arg, int offset,
6459 struct type *type)
6460{
6461 int i;
6462
6463 type = ada_check_typedef (type);
6464 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6465 {
6466 char *t_field_name = TYPE_FIELD_NAME (type, i);
6467
6468 if (t_field_name == NULL)
6469 continue;
6470
6471 else if (field_name_match (t_field_name, name))
6472 return ada_value_primitive_field (arg, offset, i, type);
6473
6474 else if (ada_is_wrapper_field (type, i))
6475 {
6476 struct value *v = /* Do not let indent join lines here. */
6477 ada_search_struct_field (name, arg,
6478 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6479 TYPE_FIELD_TYPE (type, i));
6480
6481 if (v != NULL)
6482 return v;
6483 }
6484
6485 else if (ada_is_variant_part (type, i))
6486 {
6487 /* PNH: Do we ever get here? See find_struct_field. */
6488 int j;
6489 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6490 i));
6491 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6492
6493 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6494 {
6495 struct value *v = ada_search_struct_field /* Force line
6496 break. */
6497 (name, arg,
6498 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6499 TYPE_FIELD_TYPE (field_type, j));
6500
6501 if (v != NULL)
6502 return v;
6503 }
6504 }
6505 }
6506 return NULL;
6507}
6508
6509static struct value *ada_index_struct_field_1 (int *, struct value *,
6510 int, struct type *);
6511
6512
6513/* Return field #INDEX in ARG, where the index is that returned by
6514 * find_struct_field through its INDEX_P argument. Adjust the address
6515 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6516 * If found, return value, else return NULL. */
6517
6518static struct value *
6519ada_index_struct_field (int index, struct value *arg, int offset,
6520 struct type *type)
6521{
6522 return ada_index_struct_field_1 (&index, arg, offset, type);
6523}
6524
6525
6526/* Auxiliary function for ada_index_struct_field. Like
6527 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6528 * *INDEX_P. */
6529
6530static struct value *
6531ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6532 struct type *type)
6533{
6534 int i;
6535 type = ada_check_typedef (type);
6536
6537 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6538 {
6539 if (TYPE_FIELD_NAME (type, i) == NULL)
6540 continue;
6541 else if (ada_is_wrapper_field (type, i))
6542 {
6543 struct value *v = /* Do not let indent join lines here. */
6544 ada_index_struct_field_1 (index_p, arg,
6545 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6546 TYPE_FIELD_TYPE (type, i));
6547
6548 if (v != NULL)
6549 return v;
6550 }
6551
6552 else if (ada_is_variant_part (type, i))
6553 {
6554 /* PNH: Do we ever get here? See ada_search_struct_field,
6555 find_struct_field. */
6556 error (_("Cannot assign this kind of variant record"));
6557 }
6558 else if (*index_p == 0)
6559 return ada_value_primitive_field (arg, offset, i, type);
6560 else
6561 *index_p -= 1;
6562 }
6563 return NULL;
6564}
6565
6566/* Given ARG, a value of type (pointer or reference to a)*
6567 structure/union, extract the component named NAME from the ultimate
6568 target structure/union and return it as a value with its
6569 appropriate type.
6570
6571 The routine searches for NAME among all members of the structure itself
6572 and (recursively) among all members of any wrapper members
6573 (e.g., '_parent').
6574
6575 If NO_ERR, then simply return NULL in case of error, rather than
6576 calling error. */
6577
6578struct value *
6579ada_value_struct_elt (struct value *arg, char *name, int no_err)
6580{
6581 struct type *t, *t1;
6582 struct value *v;
6583
6584 v = NULL;
6585 t1 = t = ada_check_typedef (value_type (arg));
6586 if (TYPE_CODE (t) == TYPE_CODE_REF)
6587 {
6588 t1 = TYPE_TARGET_TYPE (t);
6589 if (t1 == NULL)
6590 goto BadValue;
6591 t1 = ada_check_typedef (t1);
6592 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6593 {
6594 arg = coerce_ref (arg);
6595 t = t1;
6596 }
6597 }
6598
6599 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6600 {
6601 t1 = TYPE_TARGET_TYPE (t);
6602 if (t1 == NULL)
6603 goto BadValue;
6604 t1 = ada_check_typedef (t1);
6605 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6606 {
6607 arg = value_ind (arg);
6608 t = t1;
6609 }
6610 else
6611 break;
6612 }
6613
6614 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6615 goto BadValue;
6616
6617 if (t1 == t)
6618 v = ada_search_struct_field (name, arg, 0, t);
6619 else
6620 {
6621 int bit_offset, bit_size, byte_offset;
6622 struct type *field_type;
6623 CORE_ADDR address;
6624
6625 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6626 address = value_as_address (arg);
6627 else
6628 address = unpack_pointer (t, value_contents (arg));
6629
6630 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6631 if (find_struct_field (name, t1, 0,
6632 &field_type, &byte_offset, &bit_offset,
6633 &bit_size, NULL))
6634 {
6635 if (bit_size != 0)
6636 {
6637 if (TYPE_CODE (t) == TYPE_CODE_REF)
6638 arg = ada_coerce_ref (arg);
6639 else
6640 arg = ada_value_ind (arg);
6641 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6642 bit_offset, bit_size,
6643 field_type);
6644 }
6645 else
6646 v = value_at_lazy (field_type, address + byte_offset);
6647 }
6648 }
6649
6650 if (v != NULL || no_err)
6651 return v;
6652 else
6653 error (_("There is no member named %s."), name);
6654
6655 BadValue:
6656 if (no_err)
6657 return NULL;
6658 else
6659 error (_("Attempt to extract a component of "
6660 "a value that is not a record."));
6661}
6662
6663/* Given a type TYPE, look up the type of the component of type named NAME.
6664 If DISPP is non-null, add its byte displacement from the beginning of a
6665 structure (pointed to by a value) of type TYPE to *DISPP (does not
6666 work for packed fields).
6667
6668 Matches any field whose name has NAME as a prefix, possibly
6669 followed by "___".
6670
6671 TYPE can be either a struct or union. If REFOK, TYPE may also
6672 be a (pointer or reference)+ to a struct or union, and the
6673 ultimate target type will be searched.
6674
6675 Looks recursively into variant clauses and parent types.
6676
6677 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6678 TYPE is not a type of the right kind. */
6679
6680static struct type *
6681ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6682 int noerr, int *dispp)
6683{
6684 int i;
6685
6686 if (name == NULL)
6687 goto BadName;
6688
6689 if (refok && type != NULL)
6690 while (1)
6691 {
6692 type = ada_check_typedef (type);
6693 if (TYPE_CODE (type) != TYPE_CODE_PTR
6694 && TYPE_CODE (type) != TYPE_CODE_REF)
6695 break;
6696 type = TYPE_TARGET_TYPE (type);
6697 }
6698
6699 if (type == NULL
6700 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6701 && TYPE_CODE (type) != TYPE_CODE_UNION))
6702 {
6703 if (noerr)
6704 return NULL;
6705 else
6706 {
6707 target_terminal_ours ();
6708 gdb_flush (gdb_stdout);
6709 if (type == NULL)
6710 error (_("Type (null) is not a structure or union type"));
6711 else
6712 {
6713 /* XXX: type_sprint */
6714 fprintf_unfiltered (gdb_stderr, _("Type "));
6715 type_print (type, "", gdb_stderr, -1);
6716 error (_(" is not a structure or union type"));
6717 }
6718 }
6719 }
6720
6721 type = to_static_fixed_type (type);
6722
6723 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6724 {
6725 char *t_field_name = TYPE_FIELD_NAME (type, i);
6726 struct type *t;
6727 int disp;
6728
6729 if (t_field_name == NULL)
6730 continue;
6731
6732 else if (field_name_match (t_field_name, name))
6733 {
6734 if (dispp != NULL)
6735 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6736 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6737 }
6738
6739 else if (ada_is_wrapper_field (type, i))
6740 {
6741 disp = 0;
6742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6743 0, 1, &disp);
6744 if (t != NULL)
6745 {
6746 if (dispp != NULL)
6747 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6748 return t;
6749 }
6750 }
6751
6752 else if (ada_is_variant_part (type, i))
6753 {
6754 int j;
6755 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6756 i));
6757
6758 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6759 {
6760 /* FIXME pnh 2008/01/26: We check for a field that is
6761 NOT wrapped in a struct, since the compiler sometimes
6762 generates these for unchecked variant types. Revisit
6763 if the compiler changes this practice. */
6764 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6765 disp = 0;
6766 if (v_field_name != NULL
6767 && field_name_match (v_field_name, name))
6768 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6769 else
6770 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6771 j),
6772 name, 0, 1, &disp);
6773
6774 if (t != NULL)
6775 {
6776 if (dispp != NULL)
6777 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6778 return t;
6779 }
6780 }
6781 }
6782
6783 }
6784
6785BadName:
6786 if (!noerr)
6787 {
6788 target_terminal_ours ();
6789 gdb_flush (gdb_stdout);
6790 if (name == NULL)
6791 {
6792 /* XXX: type_sprint */
6793 fprintf_unfiltered (gdb_stderr, _("Type "));
6794 type_print (type, "", gdb_stderr, -1);
6795 error (_(" has no component named <null>"));
6796 }
6797 else
6798 {
6799 /* XXX: type_sprint */
6800 fprintf_unfiltered (gdb_stderr, _("Type "));
6801 type_print (type, "", gdb_stderr, -1);
6802 error (_(" has no component named %s"), name);
6803 }
6804 }
6805
6806 return NULL;
6807}
6808
6809/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6810 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6811 represents an unchecked union (that is, the variant part of a
6812 record that is named in an Unchecked_Union pragma). */
6813
6814static int
6815is_unchecked_variant (struct type *var_type, struct type *outer_type)
6816{
6817 char *discrim_name = ada_variant_discrim_name (var_type);
6818
6819 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6820 == NULL);
6821}
6822
6823
6824/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6825 within a value of type OUTER_TYPE that is stored in GDB at
6826 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6827 numbering from 0) is applicable. Returns -1 if none are. */
6828
6829int
6830ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6831 const gdb_byte *outer_valaddr)
6832{
6833 int others_clause;
6834 int i;
6835 char *discrim_name = ada_variant_discrim_name (var_type);
6836 struct value *outer;
6837 struct value *discrim;
6838 LONGEST discrim_val;
6839
6840 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6841 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6842 if (discrim == NULL)
6843 return -1;
6844 discrim_val = value_as_long (discrim);
6845
6846 others_clause = -1;
6847 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6848 {
6849 if (ada_is_others_clause (var_type, i))
6850 others_clause = i;
6851 else if (ada_in_variant (discrim_val, var_type, i))
6852 return i;
6853 }
6854
6855 return others_clause;
6856}
6857\f
6858
6859
6860 /* Dynamic-Sized Records */
6861
6862/* Strategy: The type ostensibly attached to a value with dynamic size
6863 (i.e., a size that is not statically recorded in the debugging
6864 data) does not accurately reflect the size or layout of the value.
6865 Our strategy is to convert these values to values with accurate,
6866 conventional types that are constructed on the fly. */
6867
6868/* There is a subtle and tricky problem here. In general, we cannot
6869 determine the size of dynamic records without its data. However,
6870 the 'struct value' data structure, which GDB uses to represent
6871 quantities in the inferior process (the target), requires the size
6872 of the type at the time of its allocation in order to reserve space
6873 for GDB's internal copy of the data. That's why the
6874 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6875 rather than struct value*s.
6876
6877 However, GDB's internal history variables ($1, $2, etc.) are
6878 struct value*s containing internal copies of the data that are not, in
6879 general, the same as the data at their corresponding addresses in
6880 the target. Fortunately, the types we give to these values are all
6881 conventional, fixed-size types (as per the strategy described
6882 above), so that we don't usually have to perform the
6883 'to_fixed_xxx_type' conversions to look at their values.
6884 Unfortunately, there is one exception: if one of the internal
6885 history variables is an array whose elements are unconstrained
6886 records, then we will need to create distinct fixed types for each
6887 element selected. */
6888
6889/* The upshot of all of this is that many routines take a (type, host
6890 address, target address) triple as arguments to represent a value.
6891 The host address, if non-null, is supposed to contain an internal
6892 copy of the relevant data; otherwise, the program is to consult the
6893 target at the target address. */
6894
6895/* Assuming that VAL0 represents a pointer value, the result of
6896 dereferencing it. Differs from value_ind in its treatment of
6897 dynamic-sized types. */
6898
6899struct value *
6900ada_value_ind (struct value *val0)
6901{
6902 struct value *val = unwrap_value (value_ind (val0));
6903
6904 return ada_to_fixed_value (val);
6905}
6906
6907/* The value resulting from dereferencing any "reference to"
6908 qualifiers on VAL0. */
6909
6910static struct value *
6911ada_coerce_ref (struct value *val0)
6912{
6913 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6914 {
6915 struct value *val = val0;
6916
6917 val = coerce_ref (val);
6918 val = unwrap_value (val);
6919 return ada_to_fixed_value (val);
6920 }
6921 else
6922 return val0;
6923}
6924
6925/* Return OFF rounded upward if necessary to a multiple of
6926 ALIGNMENT (a power of 2). */
6927
6928static unsigned int
6929align_value (unsigned int off, unsigned int alignment)
6930{
6931 return (off + alignment - 1) & ~(alignment - 1);
6932}
6933
6934/* Return the bit alignment required for field #F of template type TYPE. */
6935
6936static unsigned int
6937field_alignment (struct type *type, int f)
6938{
6939 const char *name = TYPE_FIELD_NAME (type, f);
6940 int len;
6941 int align_offset;
6942
6943 /* The field name should never be null, unless the debugging information
6944 is somehow malformed. In this case, we assume the field does not
6945 require any alignment. */
6946 if (name == NULL)
6947 return 1;
6948
6949 len = strlen (name);
6950
6951 if (!isdigit (name[len - 1]))
6952 return 1;
6953
6954 if (isdigit (name[len - 2]))
6955 align_offset = len - 2;
6956 else
6957 align_offset = len - 1;
6958
6959 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6960 return TARGET_CHAR_BIT;
6961
6962 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6963}
6964
6965/* Find a symbol named NAME. Ignores ambiguity. */
6966
6967struct symbol *
6968ada_find_any_symbol (const char *name)
6969{
6970 struct symbol *sym;
6971
6972 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6973 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6974 return sym;
6975
6976 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6977 return sym;
6978}
6979
6980/* Find a type named NAME. Ignores ambiguity. This routine will look
6981 solely for types defined by debug info, it will not search the GDB
6982 primitive types. */
6983
6984struct type *
6985ada_find_any_type (const char *name)
6986{
6987 struct symbol *sym = ada_find_any_symbol (name);
6988
6989 if (sym != NULL)
6990 return SYMBOL_TYPE (sym);
6991
6992 return NULL;
6993}
6994
6995/* Given NAME and an associated BLOCK, search all symbols for
6996 NAME suffixed with "___XR", which is the ``renaming'' symbol
6997 associated to NAME. Return this symbol if found, return
6998 NULL otherwise. */
6999
7000struct symbol *
7001ada_find_renaming_symbol (const char *name, struct block *block)
7002{
7003 struct symbol *sym;
7004
7005 sym = find_old_style_renaming_symbol (name, block);
7006
7007 if (sym != NULL)
7008 return sym;
7009
7010 /* Not right yet. FIXME pnh 7/20/2007. */
7011 sym = ada_find_any_symbol (name);
7012 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7013 return sym;
7014 else
7015 return NULL;
7016}
7017
7018static struct symbol *
7019find_old_style_renaming_symbol (const char *name, struct block *block)
7020{
7021 const struct symbol *function_sym = block_linkage_function (block);
7022 char *rename;
7023
7024 if (function_sym != NULL)
7025 {
7026 /* If the symbol is defined inside a function, NAME is not fully
7027 qualified. This means we need to prepend the function name
7028 as well as adding the ``___XR'' suffix to build the name of
7029 the associated renaming symbol. */
7030 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7031 /* Function names sometimes contain suffixes used
7032 for instance to qualify nested subprograms. When building
7033 the XR type name, we need to make sure that this suffix is
7034 not included. So do not include any suffix in the function
7035 name length below. */
7036 int function_name_len = ada_name_prefix_len (function_name);
7037 const int rename_len = function_name_len + 2 /* "__" */
7038 + strlen (name) + 6 /* "___XR\0" */ ;
7039
7040 /* Strip the suffix if necessary. */
7041 ada_remove_trailing_digits (function_name, &function_name_len);
7042 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7043 ada_remove_Xbn_suffix (function_name, &function_name_len);
7044
7045 /* Library-level functions are a special case, as GNAT adds
7046 a ``_ada_'' prefix to the function name to avoid namespace
7047 pollution. However, the renaming symbols themselves do not
7048 have this prefix, so we need to skip this prefix if present. */
7049 if (function_name_len > 5 /* "_ada_" */
7050 && strstr (function_name, "_ada_") == function_name)
7051 {
7052 function_name += 5;
7053 function_name_len -= 5;
7054 }
7055
7056 rename = (char *) alloca (rename_len * sizeof (char));
7057 strncpy (rename, function_name, function_name_len);
7058 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7059 "__%s___XR", name);
7060 }
7061 else
7062 {
7063 const int rename_len = strlen (name) + 6;
7064
7065 rename = (char *) alloca (rename_len * sizeof (char));
7066 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7067 }
7068
7069 return ada_find_any_symbol (rename);
7070}
7071
7072/* Because of GNAT encoding conventions, several GDB symbols may match a
7073 given type name. If the type denoted by TYPE0 is to be preferred to
7074 that of TYPE1 for purposes of type printing, return non-zero;
7075 otherwise return 0. */
7076
7077int
7078ada_prefer_type (struct type *type0, struct type *type1)
7079{
7080 if (type1 == NULL)
7081 return 1;
7082 else if (type0 == NULL)
7083 return 0;
7084 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7085 return 1;
7086 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7087 return 0;
7088 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7089 return 1;
7090 else if (ada_is_constrained_packed_array_type (type0))
7091 return 1;
7092 else if (ada_is_array_descriptor_type (type0)
7093 && !ada_is_array_descriptor_type (type1))
7094 return 1;
7095 else
7096 {
7097 const char *type0_name = type_name_no_tag (type0);
7098 const char *type1_name = type_name_no_tag (type1);
7099
7100 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7101 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7102 return 1;
7103 }
7104 return 0;
7105}
7106
7107/* The name of TYPE, which is either its TYPE_NAME, or, if that is
7108 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7109
7110char *
7111ada_type_name (struct type *type)
7112{
7113 if (type == NULL)
7114 return NULL;
7115 else if (TYPE_NAME (type) != NULL)
7116 return TYPE_NAME (type);
7117 else
7118 return TYPE_TAG_NAME (type);
7119}
7120
7121/* Search the list of "descriptive" types associated to TYPE for a type
7122 whose name is NAME. */
7123
7124static struct type *
7125find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7126{
7127 struct type *result;
7128
7129 /* If there no descriptive-type info, then there is no parallel type
7130 to be found. */
7131 if (!HAVE_GNAT_AUX_INFO (type))
7132 return NULL;
7133
7134 result = TYPE_DESCRIPTIVE_TYPE (type);
7135 while (result != NULL)
7136 {
7137 char *result_name = ada_type_name (result);
7138
7139 if (result_name == NULL)
7140 {
7141 warning (_("unexpected null name on descriptive type"));
7142 return NULL;
7143 }
7144
7145 /* If the names match, stop. */
7146 if (strcmp (result_name, name) == 0)
7147 break;
7148
7149 /* Otherwise, look at the next item on the list, if any. */
7150 if (HAVE_GNAT_AUX_INFO (result))
7151 result = TYPE_DESCRIPTIVE_TYPE (result);
7152 else
7153 result = NULL;
7154 }
7155
7156 /* If we didn't find a match, see whether this is a packed array. With
7157 older compilers, the descriptive type information is either absent or
7158 irrelevant when it comes to packed arrays so the above lookup fails.
7159 Fall back to using a parallel lookup by name in this case. */
7160 if (result == NULL && ada_is_constrained_packed_array_type (type))
7161 return ada_find_any_type (name);
7162
7163 return result;
7164}
7165
7166/* Find a parallel type to TYPE with the specified NAME, using the
7167 descriptive type taken from the debugging information, if available,
7168 and otherwise using the (slower) name-based method. */
7169
7170static struct type *
7171ada_find_parallel_type_with_name (struct type *type, const char *name)
7172{
7173 struct type *result = NULL;
7174
7175 if (HAVE_GNAT_AUX_INFO (type))
7176 result = find_parallel_type_by_descriptive_type (type, name);
7177 else
7178 result = ada_find_any_type (name);
7179
7180 return result;
7181}
7182
7183/* Same as above, but specify the name of the parallel type by appending
7184 SUFFIX to the name of TYPE. */
7185
7186struct type *
7187ada_find_parallel_type (struct type *type, const char *suffix)
7188{
7189 char *name, *typename = ada_type_name (type);
7190 int len;
7191
7192 if (typename == NULL)
7193 return NULL;
7194
7195 len = strlen (typename);
7196
7197 name = (char *) alloca (len + strlen (suffix) + 1);
7198
7199 strcpy (name, typename);
7200 strcpy (name + len, suffix);
7201
7202 return ada_find_parallel_type_with_name (type, name);
7203}
7204
7205/* If TYPE is a variable-size record type, return the corresponding template
7206 type describing its fields. Otherwise, return NULL. */
7207
7208static struct type *
7209dynamic_template_type (struct type *type)
7210{
7211 type = ada_check_typedef (type);
7212
7213 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7214 || ada_type_name (type) == NULL)
7215 return NULL;
7216 else
7217 {
7218 int len = strlen (ada_type_name (type));
7219
7220 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7221 return type;
7222 else
7223 return ada_find_parallel_type (type, "___XVE");
7224 }
7225}
7226
7227/* Assuming that TEMPL_TYPE is a union or struct type, returns
7228 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7229
7230static int
7231is_dynamic_field (struct type *templ_type, int field_num)
7232{
7233 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7234
7235 return name != NULL
7236 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7237 && strstr (name, "___XVL") != NULL;
7238}
7239
7240/* The index of the variant field of TYPE, or -1 if TYPE does not
7241 represent a variant record type. */
7242
7243static int
7244variant_field_index (struct type *type)
7245{
7246 int f;
7247
7248 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7249 return -1;
7250
7251 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7252 {
7253 if (ada_is_variant_part (type, f))
7254 return f;
7255 }
7256 return -1;
7257}
7258
7259/* A record type with no fields. */
7260
7261static struct type *
7262empty_record (struct type *template)
7263{
7264 struct type *type = alloc_type_copy (template);
7265
7266 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7267 TYPE_NFIELDS (type) = 0;
7268 TYPE_FIELDS (type) = NULL;
7269 INIT_CPLUS_SPECIFIC (type);
7270 TYPE_NAME (type) = "<empty>";
7271 TYPE_TAG_NAME (type) = NULL;
7272 TYPE_LENGTH (type) = 0;
7273 return type;
7274}
7275
7276/* An ordinary record type (with fixed-length fields) that describes
7277 the value of type TYPE at VALADDR or ADDRESS (see comments at
7278 the beginning of this section) VAL according to GNAT conventions.
7279 DVAL0 should describe the (portion of a) record that contains any
7280 necessary discriminants. It should be NULL if value_type (VAL) is
7281 an outer-level type (i.e., as opposed to a branch of a variant.) A
7282 variant field (unless unchecked) is replaced by a particular branch
7283 of the variant.
7284
7285 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7286 length are not statically known are discarded. As a consequence,
7287 VALADDR, ADDRESS and DVAL0 are ignored.
7288
7289 NOTE: Limitations: For now, we assume that dynamic fields and
7290 variants occupy whole numbers of bytes. However, they need not be
7291 byte-aligned. */
7292
7293struct type *
7294ada_template_to_fixed_record_type_1 (struct type *type,
7295 const gdb_byte *valaddr,
7296 CORE_ADDR address, struct value *dval0,
7297 int keep_dynamic_fields)
7298{
7299 struct value *mark = value_mark ();
7300 struct value *dval;
7301 struct type *rtype;
7302 int nfields, bit_len;
7303 int variant_field;
7304 long off;
7305 int fld_bit_len;
7306 int f;
7307
7308 /* Compute the number of fields in this record type that are going
7309 to be processed: unless keep_dynamic_fields, this includes only
7310 fields whose position and length are static will be processed. */
7311 if (keep_dynamic_fields)
7312 nfields = TYPE_NFIELDS (type);
7313 else
7314 {
7315 nfields = 0;
7316 while (nfields < TYPE_NFIELDS (type)
7317 && !ada_is_variant_part (type, nfields)
7318 && !is_dynamic_field (type, nfields))
7319 nfields++;
7320 }
7321
7322 rtype = alloc_type_copy (type);
7323 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7324 INIT_CPLUS_SPECIFIC (rtype);
7325 TYPE_NFIELDS (rtype) = nfields;
7326 TYPE_FIELDS (rtype) = (struct field *)
7327 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7328 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7329 TYPE_NAME (rtype) = ada_type_name (type);
7330 TYPE_TAG_NAME (rtype) = NULL;
7331 TYPE_FIXED_INSTANCE (rtype) = 1;
7332
7333 off = 0;
7334 bit_len = 0;
7335 variant_field = -1;
7336
7337 for (f = 0; f < nfields; f += 1)
7338 {
7339 off = align_value (off, field_alignment (type, f))
7340 + TYPE_FIELD_BITPOS (type, f);
7341 TYPE_FIELD_BITPOS (rtype, f) = off;
7342 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7343
7344 if (ada_is_variant_part (type, f))
7345 {
7346 variant_field = f;
7347 fld_bit_len = 0;
7348 }
7349 else if (is_dynamic_field (type, f))
7350 {
7351 const gdb_byte *field_valaddr = valaddr;
7352 CORE_ADDR field_address = address;
7353 struct type *field_type =
7354 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7355
7356 if (dval0 == NULL)
7357 {
7358 /* rtype's length is computed based on the run-time
7359 value of discriminants. If the discriminants are not
7360 initialized, the type size may be completely bogus and
7361 GDB may fail to allocate a value for it. So check the
7362 size first before creating the value. */
7363 check_size (rtype);
7364 dval = value_from_contents_and_address (rtype, valaddr, address);
7365 }
7366 else
7367 dval = dval0;
7368
7369 /* If the type referenced by this field is an aligner type, we need
7370 to unwrap that aligner type, because its size might not be set.
7371 Keeping the aligner type would cause us to compute the wrong
7372 size for this field, impacting the offset of the all the fields
7373 that follow this one. */
7374 if (ada_is_aligner_type (field_type))
7375 {
7376 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7377
7378 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7379 field_address = cond_offset_target (field_address, field_offset);
7380 field_type = ada_aligned_type (field_type);
7381 }
7382
7383 field_valaddr = cond_offset_host (field_valaddr,
7384 off / TARGET_CHAR_BIT);
7385 field_address = cond_offset_target (field_address,
7386 off / TARGET_CHAR_BIT);
7387
7388 /* Get the fixed type of the field. Note that, in this case,
7389 we do not want to get the real type out of the tag: if
7390 the current field is the parent part of a tagged record,
7391 we will get the tag of the object. Clearly wrong: the real
7392 type of the parent is not the real type of the child. We
7393 would end up in an infinite loop. */
7394 field_type = ada_get_base_type (field_type);
7395 field_type = ada_to_fixed_type (field_type, field_valaddr,
7396 field_address, dval, 0);
7397 /* If the field size is already larger than the maximum
7398 object size, then the record itself will necessarily
7399 be larger than the maximum object size. We need to make
7400 this check now, because the size might be so ridiculously
7401 large (due to an uninitialized variable in the inferior)
7402 that it would cause an overflow when adding it to the
7403 record size. */
7404 check_size (field_type);
7405
7406 TYPE_FIELD_TYPE (rtype, f) = field_type;
7407 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7408 /* The multiplication can potentially overflow. But because
7409 the field length has been size-checked just above, and
7410 assuming that the maximum size is a reasonable value,
7411 an overflow should not happen in practice. So rather than
7412 adding overflow recovery code to this already complex code,
7413 we just assume that it's not going to happen. */
7414 fld_bit_len =
7415 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7416 }
7417 else
7418 {
7419 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7420
7421 /* If our field is a typedef type (most likely a typedef of
7422 a fat pointer, encoding an array access), then we need to
7423 look at its target type to determine its characteristics.
7424 In particular, we would miscompute the field size if we took
7425 the size of the typedef (zero), instead of the size of
7426 the target type. */
7427 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7428 field_type = ada_typedef_target_type (field_type);
7429
7430 TYPE_FIELD_TYPE (rtype, f) = field_type;
7431 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7432 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7433 fld_bit_len =
7434 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7435 else
7436 fld_bit_len =
7437 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7438 }
7439 if (off + fld_bit_len > bit_len)
7440 bit_len = off + fld_bit_len;
7441 off += fld_bit_len;
7442 TYPE_LENGTH (rtype) =
7443 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7444 }
7445
7446 /* We handle the variant part, if any, at the end because of certain
7447 odd cases in which it is re-ordered so as NOT to be the last field of
7448 the record. This can happen in the presence of representation
7449 clauses. */
7450 if (variant_field >= 0)
7451 {
7452 struct type *branch_type;
7453
7454 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7455
7456 if (dval0 == NULL)
7457 dval = value_from_contents_and_address (rtype, valaddr, address);
7458 else
7459 dval = dval0;
7460
7461 branch_type =
7462 to_fixed_variant_branch_type
7463 (TYPE_FIELD_TYPE (type, variant_field),
7464 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7465 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7466 if (branch_type == NULL)
7467 {
7468 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7469 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7470 TYPE_NFIELDS (rtype) -= 1;
7471 }
7472 else
7473 {
7474 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7475 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7476 fld_bit_len =
7477 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7478 TARGET_CHAR_BIT;
7479 if (off + fld_bit_len > bit_len)
7480 bit_len = off + fld_bit_len;
7481 TYPE_LENGTH (rtype) =
7482 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7483 }
7484 }
7485
7486 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7487 should contain the alignment of that record, which should be a strictly
7488 positive value. If null or negative, then something is wrong, most
7489 probably in the debug info. In that case, we don't round up the size
7490 of the resulting type. If this record is not part of another structure,
7491 the current RTYPE length might be good enough for our purposes. */
7492 if (TYPE_LENGTH (type) <= 0)
7493 {
7494 if (TYPE_NAME (rtype))
7495 warning (_("Invalid type size for `%s' detected: %d."),
7496 TYPE_NAME (rtype), TYPE_LENGTH (type));
7497 else
7498 warning (_("Invalid type size for <unnamed> detected: %d."),
7499 TYPE_LENGTH (type));
7500 }
7501 else
7502 {
7503 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7504 TYPE_LENGTH (type));
7505 }
7506
7507 value_free_to_mark (mark);
7508 if (TYPE_LENGTH (rtype) > varsize_limit)
7509 error (_("record type with dynamic size is larger than varsize-limit"));
7510 return rtype;
7511}
7512
7513/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7514 of 1. */
7515
7516static struct type *
7517template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7518 CORE_ADDR address, struct value *dval0)
7519{
7520 return ada_template_to_fixed_record_type_1 (type, valaddr,
7521 address, dval0, 1);
7522}
7523
7524/* An ordinary record type in which ___XVL-convention fields and
7525 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7526 static approximations, containing all possible fields. Uses
7527 no runtime values. Useless for use in values, but that's OK,
7528 since the results are used only for type determinations. Works on both
7529 structs and unions. Representation note: to save space, we memorize
7530 the result of this function in the TYPE_TARGET_TYPE of the
7531 template type. */
7532
7533static struct type *
7534template_to_static_fixed_type (struct type *type0)
7535{
7536 struct type *type;
7537 int nfields;
7538 int f;
7539
7540 if (TYPE_TARGET_TYPE (type0) != NULL)
7541 return TYPE_TARGET_TYPE (type0);
7542
7543 nfields = TYPE_NFIELDS (type0);
7544 type = type0;
7545
7546 for (f = 0; f < nfields; f += 1)
7547 {
7548 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7549 struct type *new_type;
7550
7551 if (is_dynamic_field (type0, f))
7552 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7553 else
7554 new_type = static_unwrap_type (field_type);
7555 if (type == type0 && new_type != field_type)
7556 {
7557 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7558 TYPE_CODE (type) = TYPE_CODE (type0);
7559 INIT_CPLUS_SPECIFIC (type);
7560 TYPE_NFIELDS (type) = nfields;
7561 TYPE_FIELDS (type) = (struct field *)
7562 TYPE_ALLOC (type, nfields * sizeof (struct field));
7563 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7564 sizeof (struct field) * nfields);
7565 TYPE_NAME (type) = ada_type_name (type0);
7566 TYPE_TAG_NAME (type) = NULL;
7567 TYPE_FIXED_INSTANCE (type) = 1;
7568 TYPE_LENGTH (type) = 0;
7569 }
7570 TYPE_FIELD_TYPE (type, f) = new_type;
7571 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7572 }
7573 return type;
7574}
7575
7576/* Given an object of type TYPE whose contents are at VALADDR and
7577 whose address in memory is ADDRESS, returns a revision of TYPE,
7578 which should be a non-dynamic-sized record, in which the variant
7579 part, if any, is replaced with the appropriate branch. Looks
7580 for discriminant values in DVAL0, which can be NULL if the record
7581 contains the necessary discriminant values. */
7582
7583static struct type *
7584to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7585 CORE_ADDR address, struct value *dval0)
7586{
7587 struct value *mark = value_mark ();
7588 struct value *dval;
7589 struct type *rtype;
7590 struct type *branch_type;
7591 int nfields = TYPE_NFIELDS (type);
7592 int variant_field = variant_field_index (type);
7593
7594 if (variant_field == -1)
7595 return type;
7596
7597 if (dval0 == NULL)
7598 dval = value_from_contents_and_address (type, valaddr, address);
7599 else
7600 dval = dval0;
7601
7602 rtype = alloc_type_copy (type);
7603 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7604 INIT_CPLUS_SPECIFIC (rtype);
7605 TYPE_NFIELDS (rtype) = nfields;
7606 TYPE_FIELDS (rtype) =
7607 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7608 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7609 sizeof (struct field) * nfields);
7610 TYPE_NAME (rtype) = ada_type_name (type);
7611 TYPE_TAG_NAME (rtype) = NULL;
7612 TYPE_FIXED_INSTANCE (rtype) = 1;
7613 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7614
7615 branch_type = to_fixed_variant_branch_type
7616 (TYPE_FIELD_TYPE (type, variant_field),
7617 cond_offset_host (valaddr,
7618 TYPE_FIELD_BITPOS (type, variant_field)
7619 / TARGET_CHAR_BIT),
7620 cond_offset_target (address,
7621 TYPE_FIELD_BITPOS (type, variant_field)
7622 / TARGET_CHAR_BIT), dval);
7623 if (branch_type == NULL)
7624 {
7625 int f;
7626
7627 for (f = variant_field + 1; f < nfields; f += 1)
7628 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7629 TYPE_NFIELDS (rtype) -= 1;
7630 }
7631 else
7632 {
7633 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7634 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7635 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7636 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7637 }
7638 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7639
7640 value_free_to_mark (mark);
7641 return rtype;
7642}
7643
7644/* An ordinary record type (with fixed-length fields) that describes
7645 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7646 beginning of this section]. Any necessary discriminants' values
7647 should be in DVAL, a record value; it may be NULL if the object
7648 at ADDR itself contains any necessary discriminant values.
7649 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7650 values from the record are needed. Except in the case that DVAL,
7651 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7652 unchecked) is replaced by a particular branch of the variant.
7653
7654 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7655 is questionable and may be removed. It can arise during the
7656 processing of an unconstrained-array-of-record type where all the
7657 variant branches have exactly the same size. This is because in
7658 such cases, the compiler does not bother to use the XVS convention
7659 when encoding the record. I am currently dubious of this
7660 shortcut and suspect the compiler should be altered. FIXME. */
7661
7662static struct type *
7663to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7664 CORE_ADDR address, struct value *dval)
7665{
7666 struct type *templ_type;
7667
7668 if (TYPE_FIXED_INSTANCE (type0))
7669 return type0;
7670
7671 templ_type = dynamic_template_type (type0);
7672
7673 if (templ_type != NULL)
7674 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7675 else if (variant_field_index (type0) >= 0)
7676 {
7677 if (dval == NULL && valaddr == NULL && address == 0)
7678 return type0;
7679 return to_record_with_fixed_variant_part (type0, valaddr, address,
7680 dval);
7681 }
7682 else
7683 {
7684 TYPE_FIXED_INSTANCE (type0) = 1;
7685 return type0;
7686 }
7687
7688}
7689
7690/* An ordinary record type (with fixed-length fields) that describes
7691 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7692 union type. Any necessary discriminants' values should be in DVAL,
7693 a record value. That is, this routine selects the appropriate
7694 branch of the union at ADDR according to the discriminant value
7695 indicated in the union's type name. Returns VAR_TYPE0 itself if
7696 it represents a variant subject to a pragma Unchecked_Union. */
7697
7698static struct type *
7699to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7700 CORE_ADDR address, struct value *dval)
7701{
7702 int which;
7703 struct type *templ_type;
7704 struct type *var_type;
7705
7706 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7707 var_type = TYPE_TARGET_TYPE (var_type0);
7708 else
7709 var_type = var_type0;
7710
7711 templ_type = ada_find_parallel_type (var_type, "___XVU");
7712
7713 if (templ_type != NULL)
7714 var_type = templ_type;
7715
7716 if (is_unchecked_variant (var_type, value_type (dval)))
7717 return var_type0;
7718 which =
7719 ada_which_variant_applies (var_type,
7720 value_type (dval), value_contents (dval));
7721
7722 if (which < 0)
7723 return empty_record (var_type);
7724 else if (is_dynamic_field (var_type, which))
7725 return to_fixed_record_type
7726 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7727 valaddr, address, dval);
7728 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7729 return
7730 to_fixed_record_type
7731 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7732 else
7733 return TYPE_FIELD_TYPE (var_type, which);
7734}
7735
7736/* Assuming that TYPE0 is an array type describing the type of a value
7737 at ADDR, and that DVAL describes a record containing any
7738 discriminants used in TYPE0, returns a type for the value that
7739 contains no dynamic components (that is, no components whose sizes
7740 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7741 true, gives an error message if the resulting type's size is over
7742 varsize_limit. */
7743
7744static struct type *
7745to_fixed_array_type (struct type *type0, struct value *dval,
7746 int ignore_too_big)
7747{
7748 struct type *index_type_desc;
7749 struct type *result;
7750 int constrained_packed_array_p;
7751
7752 type0 = ada_check_typedef (type0);
7753 if (TYPE_FIXED_INSTANCE (type0))
7754 return type0;
7755
7756 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7757 if (constrained_packed_array_p)
7758 type0 = decode_constrained_packed_array_type (type0);
7759
7760 index_type_desc = ada_find_parallel_type (type0, "___XA");
7761 ada_fixup_array_indexes_type (index_type_desc);
7762 if (index_type_desc == NULL)
7763 {
7764 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7765
7766 /* NOTE: elt_type---the fixed version of elt_type0---should never
7767 depend on the contents of the array in properly constructed
7768 debugging data. */
7769 /* Create a fixed version of the array element type.
7770 We're not providing the address of an element here,
7771 and thus the actual object value cannot be inspected to do
7772 the conversion. This should not be a problem, since arrays of
7773 unconstrained objects are not allowed. In particular, all
7774 the elements of an array of a tagged type should all be of
7775 the same type specified in the debugging info. No need to
7776 consult the object tag. */
7777 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7778
7779 /* Make sure we always create a new array type when dealing with
7780 packed array types, since we're going to fix-up the array
7781 type length and element bitsize a little further down. */
7782 if (elt_type0 == elt_type && !constrained_packed_array_p)
7783 result = type0;
7784 else
7785 result = create_array_type (alloc_type_copy (type0),
7786 elt_type, TYPE_INDEX_TYPE (type0));
7787 }
7788 else
7789 {
7790 int i;
7791 struct type *elt_type0;
7792
7793 elt_type0 = type0;
7794 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7795 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7796
7797 /* NOTE: result---the fixed version of elt_type0---should never
7798 depend on the contents of the array in properly constructed
7799 debugging data. */
7800 /* Create a fixed version of the array element type.
7801 We're not providing the address of an element here,
7802 and thus the actual object value cannot be inspected to do
7803 the conversion. This should not be a problem, since arrays of
7804 unconstrained objects are not allowed. In particular, all
7805 the elements of an array of a tagged type should all be of
7806 the same type specified in the debugging info. No need to
7807 consult the object tag. */
7808 result =
7809 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7810
7811 elt_type0 = type0;
7812 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7813 {
7814 struct type *range_type =
7815 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7816
7817 result = create_array_type (alloc_type_copy (elt_type0),
7818 result, range_type);
7819 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7820 }
7821 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7822 error (_("array type with dynamic size is larger than varsize-limit"));
7823 }
7824
7825 if (constrained_packed_array_p)
7826 {
7827 /* So far, the resulting type has been created as if the original
7828 type was a regular (non-packed) array type. As a result, the
7829 bitsize of the array elements needs to be set again, and the array
7830 length needs to be recomputed based on that bitsize. */
7831 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7832 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7833
7834 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7835 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7836 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7837 TYPE_LENGTH (result)++;
7838 }
7839
7840 TYPE_FIXED_INSTANCE (result) = 1;
7841 return result;
7842}
7843
7844
7845/* A standard type (containing no dynamically sized components)
7846 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7847 DVAL describes a record containing any discriminants used in TYPE0,
7848 and may be NULL if there are none, or if the object of type TYPE at
7849 ADDRESS or in VALADDR contains these discriminants.
7850
7851 If CHECK_TAG is not null, in the case of tagged types, this function
7852 attempts to locate the object's tag and use it to compute the actual
7853 type. However, when ADDRESS is null, we cannot use it to determine the
7854 location of the tag, and therefore compute the tagged type's actual type.
7855 So we return the tagged type without consulting the tag. */
7856
7857static struct type *
7858ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7859 CORE_ADDR address, struct value *dval, int check_tag)
7860{
7861 type = ada_check_typedef (type);
7862 switch (TYPE_CODE (type))
7863 {
7864 default:
7865 return type;
7866 case TYPE_CODE_STRUCT:
7867 {
7868 struct type *static_type = to_static_fixed_type (type);
7869 struct type *fixed_record_type =
7870 to_fixed_record_type (type, valaddr, address, NULL);
7871
7872 /* If STATIC_TYPE is a tagged type and we know the object's address,
7873 then we can determine its tag, and compute the object's actual
7874 type from there. Note that we have to use the fixed record
7875 type (the parent part of the record may have dynamic fields
7876 and the way the location of _tag is expressed may depend on
7877 them). */
7878
7879 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7880 {
7881 struct type *real_type =
7882 type_from_tag (value_tag_from_contents_and_address
7883 (fixed_record_type,
7884 valaddr,
7885 address));
7886
7887 if (real_type != NULL)
7888 return to_fixed_record_type (real_type, valaddr, address, NULL);
7889 }
7890
7891 /* Check to see if there is a parallel ___XVZ variable.
7892 If there is, then it provides the actual size of our type. */
7893 else if (ada_type_name (fixed_record_type) != NULL)
7894 {
7895 char *name = ada_type_name (fixed_record_type);
7896 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7897 int xvz_found = 0;
7898 LONGEST size;
7899
7900 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7901 size = get_int_var_value (xvz_name, &xvz_found);
7902 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7903 {
7904 fixed_record_type = copy_type (fixed_record_type);
7905 TYPE_LENGTH (fixed_record_type) = size;
7906
7907 /* The FIXED_RECORD_TYPE may have be a stub. We have
7908 observed this when the debugging info is STABS, and
7909 apparently it is something that is hard to fix.
7910
7911 In practice, we don't need the actual type definition
7912 at all, because the presence of the XVZ variable allows us
7913 to assume that there must be a XVS type as well, which we
7914 should be able to use later, when we need the actual type
7915 definition.
7916
7917 In the meantime, pretend that the "fixed" type we are
7918 returning is NOT a stub, because this can cause trouble
7919 when using this type to create new types targeting it.
7920 Indeed, the associated creation routines often check
7921 whether the target type is a stub and will try to replace
7922 it, thus using a type with the wrong size. This, in turn,
7923 might cause the new type to have the wrong size too.
7924 Consider the case of an array, for instance, where the size
7925 of the array is computed from the number of elements in
7926 our array multiplied by the size of its element. */
7927 TYPE_STUB (fixed_record_type) = 0;
7928 }
7929 }
7930 return fixed_record_type;
7931 }
7932 case TYPE_CODE_ARRAY:
7933 return to_fixed_array_type (type, dval, 1);
7934 case TYPE_CODE_UNION:
7935 if (dval == NULL)
7936 return type;
7937 else
7938 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7939 }
7940}
7941
7942/* The same as ada_to_fixed_type_1, except that it preserves the type
7943 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7944
7945 The typedef layer needs be preserved in order to differentiate between
7946 arrays and array pointers when both types are implemented using the same
7947 fat pointer. In the array pointer case, the pointer is encoded as
7948 a typedef of the pointer type. For instance, considering:
7949
7950 type String_Access is access String;
7951 S1 : String_Access := null;
7952
7953 To the debugger, S1 is defined as a typedef of type String. But
7954 to the user, it is a pointer. So if the user tries to print S1,
7955 we should not dereference the array, but print the array address
7956 instead.
7957
7958 If we didn't preserve the typedef layer, we would lose the fact that
7959 the type is to be presented as a pointer (needs de-reference before
7960 being printed). And we would also use the source-level type name. */
7961
7962struct type *
7963ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7964 CORE_ADDR address, struct value *dval, int check_tag)
7965
7966{
7967 struct type *fixed_type =
7968 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7969
7970 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7971 then preserve the typedef layer.
7972
7973 Implementation note: We can only check the main-type portion of
7974 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7975 from TYPE now returns a type that has the same instance flags
7976 as TYPE. For instance, if TYPE is a "typedef const", and its
7977 target type is a "struct", then the typedef elimination will return
7978 a "const" version of the target type. See check_typedef for more
7979 details about how the typedef layer elimination is done.
7980
7981 brobecker/2010-11-19: It seems to me that the only case where it is
7982 useful to preserve the typedef layer is when dealing with fat pointers.
7983 Perhaps, we could add a check for that and preserve the typedef layer
7984 only in that situation. But this seems unecessary so far, probably
7985 because we call check_typedef/ada_check_typedef pretty much everywhere.
7986 */
7987 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7988 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7989 == TYPE_MAIN_TYPE (fixed_type)))
7990 return type;
7991
7992 return fixed_type;
7993}
7994
7995/* A standard (static-sized) type corresponding as well as possible to
7996 TYPE0, but based on no runtime data. */
7997
7998static struct type *
7999to_static_fixed_type (struct type *type0)
8000{
8001 struct type *type;
8002
8003 if (type0 == NULL)
8004 return NULL;
8005
8006 if (TYPE_FIXED_INSTANCE (type0))
8007 return type0;
8008
8009 type0 = ada_check_typedef (type0);
8010
8011 switch (TYPE_CODE (type0))
8012 {
8013 default:
8014 return type0;
8015 case TYPE_CODE_STRUCT:
8016 type = dynamic_template_type (type0);
8017 if (type != NULL)
8018 return template_to_static_fixed_type (type);
8019 else
8020 return template_to_static_fixed_type (type0);
8021 case TYPE_CODE_UNION:
8022 type = ada_find_parallel_type (type0, "___XVU");
8023 if (type != NULL)
8024 return template_to_static_fixed_type (type);
8025 else
8026 return template_to_static_fixed_type (type0);
8027 }
8028}
8029
8030/* A static approximation of TYPE with all type wrappers removed. */
8031
8032static struct type *
8033static_unwrap_type (struct type *type)
8034{
8035 if (ada_is_aligner_type (type))
8036 {
8037 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8038 if (ada_type_name (type1) == NULL)
8039 TYPE_NAME (type1) = ada_type_name (type);
8040
8041 return static_unwrap_type (type1);
8042 }
8043 else
8044 {
8045 struct type *raw_real_type = ada_get_base_type (type);
8046
8047 if (raw_real_type == type)
8048 return type;
8049 else
8050 return to_static_fixed_type (raw_real_type);
8051 }
8052}
8053
8054/* In some cases, incomplete and private types require
8055 cross-references that are not resolved as records (for example,
8056 type Foo;
8057 type FooP is access Foo;
8058 V: FooP;
8059 type Foo is array ...;
8060 ). In these cases, since there is no mechanism for producing
8061 cross-references to such types, we instead substitute for FooP a
8062 stub enumeration type that is nowhere resolved, and whose tag is
8063 the name of the actual type. Call these types "non-record stubs". */
8064
8065/* A type equivalent to TYPE that is not a non-record stub, if one
8066 exists, otherwise TYPE. */
8067
8068struct type *
8069ada_check_typedef (struct type *type)
8070{
8071 if (type == NULL)
8072 return NULL;
8073
8074 /* If our type is a typedef type of a fat pointer, then we're done.
8075 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8076 what allows us to distinguish between fat pointers that represent
8077 array types, and fat pointers that represent array access types
8078 (in both cases, the compiler implements them as fat pointers). */
8079 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8080 && is_thick_pntr (ada_typedef_target_type (type)))
8081 return type;
8082
8083 CHECK_TYPEDEF (type);
8084 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8085 || !TYPE_STUB (type)
8086 || TYPE_TAG_NAME (type) == NULL)
8087 return type;
8088 else
8089 {
8090 char *name = TYPE_TAG_NAME (type);
8091 struct type *type1 = ada_find_any_type (name);
8092
8093 if (type1 == NULL)
8094 return type;
8095
8096 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8097 stubs pointing to arrays, as we don't create symbols for array
8098 types, only for the typedef-to-array types). If that's the case,
8099 strip the typedef layer. */
8100 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8101 type1 = ada_check_typedef (type1);
8102
8103 return type1;
8104 }
8105}
8106
8107/* A value representing the data at VALADDR/ADDRESS as described by
8108 type TYPE0, but with a standard (static-sized) type that correctly
8109 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8110 type, then return VAL0 [this feature is simply to avoid redundant
8111 creation of struct values]. */
8112
8113static struct value *
8114ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8115 struct value *val0)
8116{
8117 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8118
8119 if (type == type0 && val0 != NULL)
8120 return val0;
8121 else
8122 return value_from_contents_and_address (type, 0, address);
8123}
8124
8125/* A value representing VAL, but with a standard (static-sized) type
8126 that correctly describes it. Does not necessarily create a new
8127 value. */
8128
8129struct value *
8130ada_to_fixed_value (struct value *val)
8131{
8132 return ada_to_fixed_value_create (value_type (val),
8133 value_address (val),
8134 val);
8135}
8136\f
8137
8138/* Attributes */
8139
8140/* Table mapping attribute numbers to names.
8141 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8142
8143static const char *attribute_names[] = {
8144 "<?>",
8145
8146 "first",
8147 "last",
8148 "length",
8149 "image",
8150 "max",
8151 "min",
8152 "modulus",
8153 "pos",
8154 "size",
8155 "tag",
8156 "val",
8157 0
8158};
8159
8160const char *
8161ada_attribute_name (enum exp_opcode n)
8162{
8163 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8164 return attribute_names[n - OP_ATR_FIRST + 1];
8165 else
8166 return attribute_names[0];
8167}
8168
8169/* Evaluate the 'POS attribute applied to ARG. */
8170
8171static LONGEST
8172pos_atr (struct value *arg)
8173{
8174 struct value *val = coerce_ref (arg);
8175 struct type *type = value_type (val);
8176
8177 if (!discrete_type_p (type))
8178 error (_("'POS only defined on discrete types"));
8179
8180 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8181 {
8182 int i;
8183 LONGEST v = value_as_long (val);
8184
8185 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8186 {
8187 if (v == TYPE_FIELD_BITPOS (type, i))
8188 return i;
8189 }
8190 error (_("enumeration value is invalid: can't find 'POS"));
8191 }
8192 else
8193 return value_as_long (val);
8194}
8195
8196static struct value *
8197value_pos_atr (struct type *type, struct value *arg)
8198{
8199 return value_from_longest (type, pos_atr (arg));
8200}
8201
8202/* Evaluate the TYPE'VAL attribute applied to ARG. */
8203
8204static struct value *
8205value_val_atr (struct type *type, struct value *arg)
8206{
8207 if (!discrete_type_p (type))
8208 error (_("'VAL only defined on discrete types"));
8209 if (!integer_type_p (value_type (arg)))
8210 error (_("'VAL requires integral argument"));
8211
8212 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8213 {
8214 long pos = value_as_long (arg);
8215
8216 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8217 error (_("argument to 'VAL out of range"));
8218 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8219 }
8220 else
8221 return value_from_longest (type, value_as_long (arg));
8222}
8223\f
8224
8225 /* Evaluation */
8226
8227/* True if TYPE appears to be an Ada character type.
8228 [At the moment, this is true only for Character and Wide_Character;
8229 It is a heuristic test that could stand improvement]. */
8230
8231int
8232ada_is_character_type (struct type *type)
8233{
8234 const char *name;
8235
8236 /* If the type code says it's a character, then assume it really is,
8237 and don't check any further. */
8238 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8239 return 1;
8240
8241 /* Otherwise, assume it's a character type iff it is a discrete type
8242 with a known character type name. */
8243 name = ada_type_name (type);
8244 return (name != NULL
8245 && (TYPE_CODE (type) == TYPE_CODE_INT
8246 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8247 && (strcmp (name, "character") == 0
8248 || strcmp (name, "wide_character") == 0
8249 || strcmp (name, "wide_wide_character") == 0
8250 || strcmp (name, "unsigned char") == 0));
8251}
8252
8253/* True if TYPE appears to be an Ada string type. */
8254
8255int
8256ada_is_string_type (struct type *type)
8257{
8258 type = ada_check_typedef (type);
8259 if (type != NULL
8260 && TYPE_CODE (type) != TYPE_CODE_PTR
8261 && (ada_is_simple_array_type (type)
8262 || ada_is_array_descriptor_type (type))
8263 && ada_array_arity (type) == 1)
8264 {
8265 struct type *elttype = ada_array_element_type (type, 1);
8266
8267 return ada_is_character_type (elttype);
8268 }
8269 else
8270 return 0;
8271}
8272
8273/* The compiler sometimes provides a parallel XVS type for a given
8274 PAD type. Normally, it is safe to follow the PAD type directly,
8275 but older versions of the compiler have a bug that causes the offset
8276 of its "F" field to be wrong. Following that field in that case
8277 would lead to incorrect results, but this can be worked around
8278 by ignoring the PAD type and using the associated XVS type instead.
8279
8280 Set to True if the debugger should trust the contents of PAD types.
8281 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8282static int trust_pad_over_xvs = 1;
8283
8284/* True if TYPE is a struct type introduced by the compiler to force the
8285 alignment of a value. Such types have a single field with a
8286 distinctive name. */
8287
8288int
8289ada_is_aligner_type (struct type *type)
8290{
8291 type = ada_check_typedef (type);
8292
8293 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8294 return 0;
8295
8296 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8297 && TYPE_NFIELDS (type) == 1
8298 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8299}
8300
8301/* If there is an ___XVS-convention type parallel to SUBTYPE, return
8302 the parallel type. */
8303
8304struct type *
8305ada_get_base_type (struct type *raw_type)
8306{
8307 struct type *real_type_namer;
8308 struct type *raw_real_type;
8309
8310 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8311 return raw_type;
8312
8313 if (ada_is_aligner_type (raw_type))
8314 /* The encoding specifies that we should always use the aligner type.
8315 So, even if this aligner type has an associated XVS type, we should
8316 simply ignore it.
8317
8318 According to the compiler gurus, an XVS type parallel to an aligner
8319 type may exist because of a stabs limitation. In stabs, aligner
8320 types are empty because the field has a variable-sized type, and
8321 thus cannot actually be used as an aligner type. As a result,
8322 we need the associated parallel XVS type to decode the type.
8323 Since the policy in the compiler is to not change the internal
8324 representation based on the debugging info format, we sometimes
8325 end up having a redundant XVS type parallel to the aligner type. */
8326 return raw_type;
8327
8328 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8329 if (real_type_namer == NULL
8330 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8331 || TYPE_NFIELDS (real_type_namer) != 1)
8332 return raw_type;
8333
8334 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8335 {
8336 /* This is an older encoding form where the base type needs to be
8337 looked up by name. We prefer the newer enconding because it is
8338 more efficient. */
8339 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8340 if (raw_real_type == NULL)
8341 return raw_type;
8342 else
8343 return raw_real_type;
8344 }
8345
8346 /* The field in our XVS type is a reference to the base type. */
8347 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8348}
8349
8350/* The type of value designated by TYPE, with all aligners removed. */
8351
8352struct type *
8353ada_aligned_type (struct type *type)
8354{
8355 if (ada_is_aligner_type (type))
8356 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8357 else
8358 return ada_get_base_type (type);
8359}
8360
8361
8362/* The address of the aligned value in an object at address VALADDR
8363 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8364
8365const gdb_byte *
8366ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8367{
8368 if (ada_is_aligner_type (type))
8369 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8370 valaddr +
8371 TYPE_FIELD_BITPOS (type,
8372 0) / TARGET_CHAR_BIT);
8373 else
8374 return valaddr;
8375}
8376
8377
8378
8379/* The printed representation of an enumeration literal with encoded
8380 name NAME. The value is good to the next call of ada_enum_name. */
8381const char *
8382ada_enum_name (const char *name)
8383{
8384 static char *result;
8385 static size_t result_len = 0;
8386 char *tmp;
8387
8388 /* First, unqualify the enumeration name:
8389 1. Search for the last '.' character. If we find one, then skip
8390 all the preceding characters, the unqualified name starts
8391 right after that dot.
8392 2. Otherwise, we may be debugging on a target where the compiler
8393 translates dots into "__". Search forward for double underscores,
8394 but stop searching when we hit an overloading suffix, which is
8395 of the form "__" followed by digits. */
8396
8397 tmp = strrchr (name, '.');
8398 if (tmp != NULL)
8399 name = tmp + 1;
8400 else
8401 {
8402 while ((tmp = strstr (name, "__")) != NULL)
8403 {
8404 if (isdigit (tmp[2]))
8405 break;
8406 else
8407 name = tmp + 2;
8408 }
8409 }
8410
8411 if (name[0] == 'Q')
8412 {
8413 int v;
8414
8415 if (name[1] == 'U' || name[1] == 'W')
8416 {
8417 if (sscanf (name + 2, "%x", &v) != 1)
8418 return name;
8419 }
8420 else
8421 return name;
8422
8423 GROW_VECT (result, result_len, 16);
8424 if (isascii (v) && isprint (v))
8425 xsnprintf (result, result_len, "'%c'", v);
8426 else if (name[1] == 'U')
8427 xsnprintf (result, result_len, "[\"%02x\"]", v);
8428 else
8429 xsnprintf (result, result_len, "[\"%04x\"]", v);
8430
8431 return result;
8432 }
8433 else
8434 {
8435 tmp = strstr (name, "__");
8436 if (tmp == NULL)
8437 tmp = strstr (name, "$");
8438 if (tmp != NULL)
8439 {
8440 GROW_VECT (result, result_len, tmp - name + 1);
8441 strncpy (result, name, tmp - name);
8442 result[tmp - name] = '\0';
8443 return result;
8444 }
8445
8446 return name;
8447 }
8448}
8449
8450/* Evaluate the subexpression of EXP starting at *POS as for
8451 evaluate_type, updating *POS to point just past the evaluated
8452 expression. */
8453
8454static struct value *
8455evaluate_subexp_type (struct expression *exp, int *pos)
8456{
8457 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8458}
8459
8460/* If VAL is wrapped in an aligner or subtype wrapper, return the
8461 value it wraps. */
8462
8463static struct value *
8464unwrap_value (struct value *val)
8465{
8466 struct type *type = ada_check_typedef (value_type (val));
8467
8468 if (ada_is_aligner_type (type))
8469 {
8470 struct value *v = ada_value_struct_elt (val, "F", 0);
8471 struct type *val_type = ada_check_typedef (value_type (v));
8472
8473 if (ada_type_name (val_type) == NULL)
8474 TYPE_NAME (val_type) = ada_type_name (type);
8475
8476 return unwrap_value (v);
8477 }
8478 else
8479 {
8480 struct type *raw_real_type =
8481 ada_check_typedef (ada_get_base_type (type));
8482
8483 /* If there is no parallel XVS or XVE type, then the value is
8484 already unwrapped. Return it without further modification. */
8485 if ((type == raw_real_type)
8486 && ada_find_parallel_type (type, "___XVE") == NULL)
8487 return val;
8488
8489 return
8490 coerce_unspec_val_to_type
8491 (val, ada_to_fixed_type (raw_real_type, 0,
8492 value_address (val),
8493 NULL, 1));
8494 }
8495}
8496
8497static struct value *
8498cast_to_fixed (struct type *type, struct value *arg)
8499{
8500 LONGEST val;
8501
8502 if (type == value_type (arg))
8503 return arg;
8504 else if (ada_is_fixed_point_type (value_type (arg)))
8505 val = ada_float_to_fixed (type,
8506 ada_fixed_to_float (value_type (arg),
8507 value_as_long (arg)));
8508 else
8509 {
8510 DOUBLEST argd = value_as_double (arg);
8511
8512 val = ada_float_to_fixed (type, argd);
8513 }
8514
8515 return value_from_longest (type, val);
8516}
8517
8518static struct value *
8519cast_from_fixed (struct type *type, struct value *arg)
8520{
8521 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8522 value_as_long (arg));
8523
8524 return value_from_double (type, val);
8525}
8526
8527/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8528 return the converted value. */
8529
8530static struct value *
8531coerce_for_assign (struct type *type, struct value *val)
8532{
8533 struct type *type2 = value_type (val);
8534
8535 if (type == type2)
8536 return val;
8537
8538 type2 = ada_check_typedef (type2);
8539 type = ada_check_typedef (type);
8540
8541 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8542 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8543 {
8544 val = ada_value_ind (val);
8545 type2 = value_type (val);
8546 }
8547
8548 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8549 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8550 {
8551 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8552 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8553 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8554 error (_("Incompatible types in assignment"));
8555 deprecated_set_value_type (val, type);
8556 }
8557 return val;
8558}
8559
8560static struct value *
8561ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8562{
8563 struct value *val;
8564 struct type *type1, *type2;
8565 LONGEST v, v1, v2;
8566
8567 arg1 = coerce_ref (arg1);
8568 arg2 = coerce_ref (arg2);
8569 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8570 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8571
8572 if (TYPE_CODE (type1) != TYPE_CODE_INT
8573 || TYPE_CODE (type2) != TYPE_CODE_INT)
8574 return value_binop (arg1, arg2, op);
8575
8576 switch (op)
8577 {
8578 case BINOP_MOD:
8579 case BINOP_DIV:
8580 case BINOP_REM:
8581 break;
8582 default:
8583 return value_binop (arg1, arg2, op);
8584 }
8585
8586 v2 = value_as_long (arg2);
8587 if (v2 == 0)
8588 error (_("second operand of %s must not be zero."), op_string (op));
8589
8590 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8591 return value_binop (arg1, arg2, op);
8592
8593 v1 = value_as_long (arg1);
8594 switch (op)
8595 {
8596 case BINOP_DIV:
8597 v = v1 / v2;
8598 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8599 v += v > 0 ? -1 : 1;
8600 break;
8601 case BINOP_REM:
8602 v = v1 % v2;
8603 if (v * v1 < 0)
8604 v -= v2;
8605 break;
8606 default:
8607 /* Should not reach this point. */
8608 v = 0;
8609 }
8610
8611 val = allocate_value (type1);
8612 store_unsigned_integer (value_contents_raw (val),
8613 TYPE_LENGTH (value_type (val)),
8614 gdbarch_byte_order (get_type_arch (type1)), v);
8615 return val;
8616}
8617
8618static int
8619ada_value_equal (struct value *arg1, struct value *arg2)
8620{
8621 if (ada_is_direct_array_type (value_type (arg1))
8622 || ada_is_direct_array_type (value_type (arg2)))
8623 {
8624 /* Automatically dereference any array reference before
8625 we attempt to perform the comparison. */
8626 arg1 = ada_coerce_ref (arg1);
8627 arg2 = ada_coerce_ref (arg2);
8628
8629 arg1 = ada_coerce_to_simple_array (arg1);
8630 arg2 = ada_coerce_to_simple_array (arg2);
8631 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8632 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8633 error (_("Attempt to compare array with non-array"));
8634 /* FIXME: The following works only for types whose
8635 representations use all bits (no padding or undefined bits)
8636 and do not have user-defined equality. */
8637 return
8638 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8639 && memcmp (value_contents (arg1), value_contents (arg2),
8640 TYPE_LENGTH (value_type (arg1))) == 0;
8641 }
8642 return value_equal (arg1, arg2);
8643}
8644
8645/* Total number of component associations in the aggregate starting at
8646 index PC in EXP. Assumes that index PC is the start of an
8647 OP_AGGREGATE. */
8648
8649static int
8650num_component_specs (struct expression *exp, int pc)
8651{
8652 int n, m, i;
8653
8654 m = exp->elts[pc + 1].longconst;
8655 pc += 3;
8656 n = 0;
8657 for (i = 0; i < m; i += 1)
8658 {
8659 switch (exp->elts[pc].opcode)
8660 {
8661 default:
8662 n += 1;
8663 break;
8664 case OP_CHOICES:
8665 n += exp->elts[pc + 1].longconst;
8666 break;
8667 }
8668 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8669 }
8670 return n;
8671}
8672
8673/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8674 component of LHS (a simple array or a record), updating *POS past
8675 the expression, assuming that LHS is contained in CONTAINER. Does
8676 not modify the inferior's memory, nor does it modify LHS (unless
8677 LHS == CONTAINER). */
8678
8679static void
8680assign_component (struct value *container, struct value *lhs, LONGEST index,
8681 struct expression *exp, int *pos)
8682{
8683 struct value *mark = value_mark ();
8684 struct value *elt;
8685
8686 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8687 {
8688 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8689 struct value *index_val = value_from_longest (index_type, index);
8690
8691 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8692 }
8693 else
8694 {
8695 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8696 elt = ada_to_fixed_value (unwrap_value (elt));
8697 }
8698
8699 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8700 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8701 else
8702 value_assign_to_component (container, elt,
8703 ada_evaluate_subexp (NULL, exp, pos,
8704 EVAL_NORMAL));
8705
8706 value_free_to_mark (mark);
8707}
8708
8709/* Assuming that LHS represents an lvalue having a record or array
8710 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8711 of that aggregate's value to LHS, advancing *POS past the
8712 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8713 lvalue containing LHS (possibly LHS itself). Does not modify
8714 the inferior's memory, nor does it modify the contents of
8715 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8716
8717static struct value *
8718assign_aggregate (struct value *container,
8719 struct value *lhs, struct expression *exp,
8720 int *pos, enum noside noside)
8721{
8722 struct type *lhs_type;
8723 int n = exp->elts[*pos+1].longconst;
8724 LONGEST low_index, high_index;
8725 int num_specs;
8726 LONGEST *indices;
8727 int max_indices, num_indices;
8728 int is_array_aggregate;
8729 int i;
8730
8731 *pos += 3;
8732 if (noside != EVAL_NORMAL)
8733 {
8734 for (i = 0; i < n; i += 1)
8735 ada_evaluate_subexp (NULL, exp, pos, noside);
8736 return container;
8737 }
8738
8739 container = ada_coerce_ref (container);
8740 if (ada_is_direct_array_type (value_type (container)))
8741 container = ada_coerce_to_simple_array (container);
8742 lhs = ada_coerce_ref (lhs);
8743 if (!deprecated_value_modifiable (lhs))
8744 error (_("Left operand of assignment is not a modifiable lvalue."));
8745
8746 lhs_type = value_type (lhs);
8747 if (ada_is_direct_array_type (lhs_type))
8748 {
8749 lhs = ada_coerce_to_simple_array (lhs);
8750 lhs_type = value_type (lhs);
8751 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8752 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8753 is_array_aggregate = 1;
8754 }
8755 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8756 {
8757 low_index = 0;
8758 high_index = num_visible_fields (lhs_type) - 1;
8759 is_array_aggregate = 0;
8760 }
8761 else
8762 error (_("Left-hand side must be array or record."));
8763
8764 num_specs = num_component_specs (exp, *pos - 3);
8765 max_indices = 4 * num_specs + 4;
8766 indices = alloca (max_indices * sizeof (indices[0]));
8767 indices[0] = indices[1] = low_index - 1;
8768 indices[2] = indices[3] = high_index + 1;
8769 num_indices = 4;
8770
8771 for (i = 0; i < n; i += 1)
8772 {
8773 switch (exp->elts[*pos].opcode)
8774 {
8775 case OP_CHOICES:
8776 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8777 &num_indices, max_indices,
8778 low_index, high_index);
8779 break;
8780 case OP_POSITIONAL:
8781 aggregate_assign_positional (container, lhs, exp, pos, indices,
8782 &num_indices, max_indices,
8783 low_index, high_index);
8784 break;
8785 case OP_OTHERS:
8786 if (i != n-1)
8787 error (_("Misplaced 'others' clause"));
8788 aggregate_assign_others (container, lhs, exp, pos, indices,
8789 num_indices, low_index, high_index);
8790 break;
8791 default:
8792 error (_("Internal error: bad aggregate clause"));
8793 }
8794 }
8795
8796 return container;
8797}
8798
8799/* Assign into the component of LHS indexed by the OP_POSITIONAL
8800 construct at *POS, updating *POS past the construct, given that
8801 the positions are relative to lower bound LOW, where HIGH is the
8802 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8803 updating *NUM_INDICES as needed. CONTAINER is as for
8804 assign_aggregate. */
8805static void
8806aggregate_assign_positional (struct value *container,
8807 struct value *lhs, struct expression *exp,
8808 int *pos, LONGEST *indices, int *num_indices,
8809 int max_indices, LONGEST low, LONGEST high)
8810{
8811 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8812
8813 if (ind - 1 == high)
8814 warning (_("Extra components in aggregate ignored."));
8815 if (ind <= high)
8816 {
8817 add_component_interval (ind, ind, indices, num_indices, max_indices);
8818 *pos += 3;
8819 assign_component (container, lhs, ind, exp, pos);
8820 }
8821 else
8822 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8823}
8824
8825/* Assign into the components of LHS indexed by the OP_CHOICES
8826 construct at *POS, updating *POS past the construct, given that
8827 the allowable indices are LOW..HIGH. Record the indices assigned
8828 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8829 needed. CONTAINER is as for assign_aggregate. */
8830static void
8831aggregate_assign_from_choices (struct value *container,
8832 struct value *lhs, struct expression *exp,
8833 int *pos, LONGEST *indices, int *num_indices,
8834 int max_indices, LONGEST low, LONGEST high)
8835{
8836 int j;
8837 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8838 int choice_pos, expr_pc;
8839 int is_array = ada_is_direct_array_type (value_type (lhs));
8840
8841 choice_pos = *pos += 3;
8842
8843 for (j = 0; j < n_choices; j += 1)
8844 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8845 expr_pc = *pos;
8846 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8847
8848 for (j = 0; j < n_choices; j += 1)
8849 {
8850 LONGEST lower, upper;
8851 enum exp_opcode op = exp->elts[choice_pos].opcode;
8852
8853 if (op == OP_DISCRETE_RANGE)
8854 {
8855 choice_pos += 1;
8856 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8857 EVAL_NORMAL));
8858 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8859 EVAL_NORMAL));
8860 }
8861 else if (is_array)
8862 {
8863 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8864 EVAL_NORMAL));
8865 upper = lower;
8866 }
8867 else
8868 {
8869 int ind;
8870 char *name;
8871
8872 switch (op)
8873 {
8874 case OP_NAME:
8875 name = &exp->elts[choice_pos + 2].string;
8876 break;
8877 case OP_VAR_VALUE:
8878 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8879 break;
8880 default:
8881 error (_("Invalid record component association."));
8882 }
8883 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8884 ind = 0;
8885 if (! find_struct_field (name, value_type (lhs), 0,
8886 NULL, NULL, NULL, NULL, &ind))
8887 error (_("Unknown component name: %s."), name);
8888 lower = upper = ind;
8889 }
8890
8891 if (lower <= upper && (lower < low || upper > high))
8892 error (_("Index in component association out of bounds."));
8893
8894 add_component_interval (lower, upper, indices, num_indices,
8895 max_indices);
8896 while (lower <= upper)
8897 {
8898 int pos1;
8899
8900 pos1 = expr_pc;
8901 assign_component (container, lhs, lower, exp, &pos1);
8902 lower += 1;
8903 }
8904 }
8905}
8906
8907/* Assign the value of the expression in the OP_OTHERS construct in
8908 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8909 have not been previously assigned. The index intervals already assigned
8910 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8911 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8912static void
8913aggregate_assign_others (struct value *container,
8914 struct value *lhs, struct expression *exp,
8915 int *pos, LONGEST *indices, int num_indices,
8916 LONGEST low, LONGEST high)
8917{
8918 int i;
8919 int expr_pc = *pos + 1;
8920
8921 for (i = 0; i < num_indices - 2; i += 2)
8922 {
8923 LONGEST ind;
8924
8925 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8926 {
8927 int localpos;
8928
8929 localpos = expr_pc;
8930 assign_component (container, lhs, ind, exp, &localpos);
8931 }
8932 }
8933 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8934}
8935
8936/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8937 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8938 modifying *SIZE as needed. It is an error if *SIZE exceeds
8939 MAX_SIZE. The resulting intervals do not overlap. */
8940static void
8941add_component_interval (LONGEST low, LONGEST high,
8942 LONGEST* indices, int *size, int max_size)
8943{
8944 int i, j;
8945
8946 for (i = 0; i < *size; i += 2) {
8947 if (high >= indices[i] && low <= indices[i + 1])
8948 {
8949 int kh;
8950
8951 for (kh = i + 2; kh < *size; kh += 2)
8952 if (high < indices[kh])
8953 break;
8954 if (low < indices[i])
8955 indices[i] = low;
8956 indices[i + 1] = indices[kh - 1];
8957 if (high > indices[i + 1])
8958 indices[i + 1] = high;
8959 memcpy (indices + i + 2, indices + kh, *size - kh);
8960 *size -= kh - i - 2;
8961 return;
8962 }
8963 else if (high < indices[i])
8964 break;
8965 }
8966
8967 if (*size == max_size)
8968 error (_("Internal error: miscounted aggregate components."));
8969 *size += 2;
8970 for (j = *size-1; j >= i+2; j -= 1)
8971 indices[j] = indices[j - 2];
8972 indices[i] = low;
8973 indices[i + 1] = high;
8974}
8975
8976/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8977 is different. */
8978
8979static struct value *
8980ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8981{
8982 if (type == ada_check_typedef (value_type (arg2)))
8983 return arg2;
8984
8985 if (ada_is_fixed_point_type (type))
8986 return (cast_to_fixed (type, arg2));
8987
8988 if (ada_is_fixed_point_type (value_type (arg2)))
8989 return cast_from_fixed (type, arg2);
8990
8991 return value_cast (type, arg2);
8992}
8993
8994/* Evaluating Ada expressions, and printing their result.
8995 ------------------------------------------------------
8996
8997 1. Introduction:
8998 ----------------
8999
9000 We usually evaluate an Ada expression in order to print its value.
9001 We also evaluate an expression in order to print its type, which
9002 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9003 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9004 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9005 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9006 similar.
9007
9008 Evaluating expressions is a little more complicated for Ada entities
9009 than it is for entities in languages such as C. The main reason for
9010 this is that Ada provides types whose definition might be dynamic.
9011 One example of such types is variant records. Or another example
9012 would be an array whose bounds can only be known at run time.
9013
9014 The following description is a general guide as to what should be
9015 done (and what should NOT be done) in order to evaluate an expression
9016 involving such types, and when. This does not cover how the semantic
9017 information is encoded by GNAT as this is covered separatly. For the
9018 document used as the reference for the GNAT encoding, see exp_dbug.ads
9019 in the GNAT sources.
9020
9021 Ideally, we should embed each part of this description next to its
9022 associated code. Unfortunately, the amount of code is so vast right
9023 now that it's hard to see whether the code handling a particular
9024 situation might be duplicated or not. One day, when the code is
9025 cleaned up, this guide might become redundant with the comments
9026 inserted in the code, and we might want to remove it.
9027
9028 2. ``Fixing'' an Entity, the Simple Case:
9029 -----------------------------------------
9030
9031 When evaluating Ada expressions, the tricky issue is that they may
9032 reference entities whose type contents and size are not statically
9033 known. Consider for instance a variant record:
9034
9035 type Rec (Empty : Boolean := True) is record
9036 case Empty is
9037 when True => null;
9038 when False => Value : Integer;
9039 end case;
9040 end record;
9041 Yes : Rec := (Empty => False, Value => 1);
9042 No : Rec := (empty => True);
9043
9044 The size and contents of that record depends on the value of the
9045 descriminant (Rec.Empty). At this point, neither the debugging
9046 information nor the associated type structure in GDB are able to
9047 express such dynamic types. So what the debugger does is to create
9048 "fixed" versions of the type that applies to the specific object.
9049 We also informally refer to this opperation as "fixing" an object,
9050 which means creating its associated fixed type.
9051
9052 Example: when printing the value of variable "Yes" above, its fixed
9053 type would look like this:
9054
9055 type Rec is record
9056 Empty : Boolean;
9057 Value : Integer;
9058 end record;
9059
9060 On the other hand, if we printed the value of "No", its fixed type
9061 would become:
9062
9063 type Rec is record
9064 Empty : Boolean;
9065 end record;
9066
9067 Things become a little more complicated when trying to fix an entity
9068 with a dynamic type that directly contains another dynamic type,
9069 such as an array of variant records, for instance. There are
9070 two possible cases: Arrays, and records.
9071
9072 3. ``Fixing'' Arrays:
9073 ---------------------
9074
9075 The type structure in GDB describes an array in terms of its bounds,
9076 and the type of its elements. By design, all elements in the array
9077 have the same type and we cannot represent an array of variant elements
9078 using the current type structure in GDB. When fixing an array,
9079 we cannot fix the array element, as we would potentially need one
9080 fixed type per element of the array. As a result, the best we can do
9081 when fixing an array is to produce an array whose bounds and size
9082 are correct (allowing us to read it from memory), but without having
9083 touched its element type. Fixing each element will be done later,
9084 when (if) necessary.
9085
9086 Arrays are a little simpler to handle than records, because the same
9087 amount of memory is allocated for each element of the array, even if
9088 the amount of space actually used by each element differs from element
9089 to element. Consider for instance the following array of type Rec:
9090
9091 type Rec_Array is array (1 .. 2) of Rec;
9092
9093 The actual amount of memory occupied by each element might be different
9094 from element to element, depending on the value of their discriminant.
9095 But the amount of space reserved for each element in the array remains
9096 fixed regardless. So we simply need to compute that size using
9097 the debugging information available, from which we can then determine
9098 the array size (we multiply the number of elements of the array by
9099 the size of each element).
9100
9101 The simplest case is when we have an array of a constrained element
9102 type. For instance, consider the following type declarations:
9103
9104 type Bounded_String (Max_Size : Integer) is
9105 Length : Integer;
9106 Buffer : String (1 .. Max_Size);
9107 end record;
9108 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9109
9110 In this case, the compiler describes the array as an array of
9111 variable-size elements (identified by its XVS suffix) for which
9112 the size can be read in the parallel XVZ variable.
9113
9114 In the case of an array of an unconstrained element type, the compiler
9115 wraps the array element inside a private PAD type. This type should not
9116 be shown to the user, and must be "unwrap"'ed before printing. Note
9117 that we also use the adjective "aligner" in our code to designate
9118 these wrapper types.
9119
9120 In some cases, the size allocated for each element is statically
9121 known. In that case, the PAD type already has the correct size,
9122 and the array element should remain unfixed.
9123
9124 But there are cases when this size is not statically known.
9125 For instance, assuming that "Five" is an integer variable:
9126
9127 type Dynamic is array (1 .. Five) of Integer;
9128 type Wrapper (Has_Length : Boolean := False) is record
9129 Data : Dynamic;
9130 case Has_Length is
9131 when True => Length : Integer;
9132 when False => null;
9133 end case;
9134 end record;
9135 type Wrapper_Array is array (1 .. 2) of Wrapper;
9136
9137 Hello : Wrapper_Array := (others => (Has_Length => True,
9138 Data => (others => 17),
9139 Length => 1));
9140
9141
9142 The debugging info would describe variable Hello as being an
9143 array of a PAD type. The size of that PAD type is not statically
9144 known, but can be determined using a parallel XVZ variable.
9145 In that case, a copy of the PAD type with the correct size should
9146 be used for the fixed array.
9147
9148 3. ``Fixing'' record type objects:
9149 ----------------------------------
9150
9151 Things are slightly different from arrays in the case of dynamic
9152 record types. In this case, in order to compute the associated
9153 fixed type, we need to determine the size and offset of each of
9154 its components. This, in turn, requires us to compute the fixed
9155 type of each of these components.
9156
9157 Consider for instance the example:
9158
9159 type Bounded_String (Max_Size : Natural) is record
9160 Str : String (1 .. Max_Size);
9161 Length : Natural;
9162 end record;
9163 My_String : Bounded_String (Max_Size => 10);
9164
9165 In that case, the position of field "Length" depends on the size
9166 of field Str, which itself depends on the value of the Max_Size
9167 discriminant. In order to fix the type of variable My_String,
9168 we need to fix the type of field Str. Therefore, fixing a variant
9169 record requires us to fix each of its components.
9170
9171 However, if a component does not have a dynamic size, the component
9172 should not be fixed. In particular, fields that use a PAD type
9173 should not fixed. Here is an example where this might happen
9174 (assuming type Rec above):
9175
9176 type Container (Big : Boolean) is record
9177 First : Rec;
9178 After : Integer;
9179 case Big is
9180 when True => Another : Integer;
9181 when False => null;
9182 end case;
9183 end record;
9184 My_Container : Container := (Big => False,
9185 First => (Empty => True),
9186 After => 42);
9187
9188 In that example, the compiler creates a PAD type for component First,
9189 whose size is constant, and then positions the component After just
9190 right after it. The offset of component After is therefore constant
9191 in this case.
9192
9193 The debugger computes the position of each field based on an algorithm
9194 that uses, among other things, the actual position and size of the field
9195 preceding it. Let's now imagine that the user is trying to print
9196 the value of My_Container. If the type fixing was recursive, we would
9197 end up computing the offset of field After based on the size of the
9198 fixed version of field First. And since in our example First has
9199 only one actual field, the size of the fixed type is actually smaller
9200 than the amount of space allocated to that field, and thus we would
9201 compute the wrong offset of field After.
9202
9203 To make things more complicated, we need to watch out for dynamic
9204 components of variant records (identified by the ___XVL suffix in
9205 the component name). Even if the target type is a PAD type, the size
9206 of that type might not be statically known. So the PAD type needs
9207 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9208 we might end up with the wrong size for our component. This can be
9209 observed with the following type declarations:
9210
9211 type Octal is new Integer range 0 .. 7;
9212 type Octal_Array is array (Positive range <>) of Octal;
9213 pragma Pack (Octal_Array);
9214
9215 type Octal_Buffer (Size : Positive) is record
9216 Buffer : Octal_Array (1 .. Size);
9217 Length : Integer;
9218 end record;
9219
9220 In that case, Buffer is a PAD type whose size is unset and needs
9221 to be computed by fixing the unwrapped type.
9222
9223 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9224 ----------------------------------------------------------
9225
9226 Lastly, when should the sub-elements of an entity that remained unfixed
9227 thus far, be actually fixed?
9228
9229 The answer is: Only when referencing that element. For instance
9230 when selecting one component of a record, this specific component
9231 should be fixed at that point in time. Or when printing the value
9232 of a record, each component should be fixed before its value gets
9233 printed. Similarly for arrays, the element of the array should be
9234 fixed when printing each element of the array, or when extracting
9235 one element out of that array. On the other hand, fixing should
9236 not be performed on the elements when taking a slice of an array!
9237
9238 Note that one of the side-effects of miscomputing the offset and
9239 size of each field is that we end up also miscomputing the size
9240 of the containing type. This can have adverse results when computing
9241 the value of an entity. GDB fetches the value of an entity based
9242 on the size of its type, and thus a wrong size causes GDB to fetch
9243 the wrong amount of memory. In the case where the computed size is
9244 too small, GDB fetches too little data to print the value of our
9245 entiry. Results in this case as unpredicatble, as we usually read
9246 past the buffer containing the data =:-o. */
9247
9248/* Implement the evaluate_exp routine in the exp_descriptor structure
9249 for the Ada language. */
9250
9251static struct value *
9252ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9253 int *pos, enum noside noside)
9254{
9255 enum exp_opcode op;
9256 int tem;
9257 int pc;
9258 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9259 struct type *type;
9260 int nargs, oplen;
9261 struct value **argvec;
9262
9263 pc = *pos;
9264 *pos += 1;
9265 op = exp->elts[pc].opcode;
9266
9267 switch (op)
9268 {
9269 default:
9270 *pos -= 1;
9271 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9272 arg1 = unwrap_value (arg1);
9273
9274 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9275 then we need to perform the conversion manually, because
9276 evaluate_subexp_standard doesn't do it. This conversion is
9277 necessary in Ada because the different kinds of float/fixed
9278 types in Ada have different representations.
9279
9280 Similarly, we need to perform the conversion from OP_LONG
9281 ourselves. */
9282 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9283 arg1 = ada_value_cast (expect_type, arg1, noside);
9284
9285 return arg1;
9286
9287 case OP_STRING:
9288 {
9289 struct value *result;
9290
9291 *pos -= 1;
9292 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9293 /* The result type will have code OP_STRING, bashed there from
9294 OP_ARRAY. Bash it back. */
9295 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9296 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9297 return result;
9298 }
9299
9300 case UNOP_CAST:
9301 (*pos) += 2;
9302 type = exp->elts[pc + 1].type;
9303 arg1 = evaluate_subexp (type, exp, pos, noside);
9304 if (noside == EVAL_SKIP)
9305 goto nosideret;
9306 arg1 = ada_value_cast (type, arg1, noside);
9307 return arg1;
9308
9309 case UNOP_QUAL:
9310 (*pos) += 2;
9311 type = exp->elts[pc + 1].type;
9312 return ada_evaluate_subexp (type, exp, pos, noside);
9313
9314 case BINOP_ASSIGN:
9315 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9316 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9317 {
9318 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9319 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9320 return arg1;
9321 return ada_value_assign (arg1, arg1);
9322 }
9323 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9324 except if the lhs of our assignment is a convenience variable.
9325 In the case of assigning to a convenience variable, the lhs
9326 should be exactly the result of the evaluation of the rhs. */
9327 type = value_type (arg1);
9328 if (VALUE_LVAL (arg1) == lval_internalvar)
9329 type = NULL;
9330 arg2 = evaluate_subexp (type, exp, pos, noside);
9331 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9332 return arg1;
9333 if (ada_is_fixed_point_type (value_type (arg1)))
9334 arg2 = cast_to_fixed (value_type (arg1), arg2);
9335 else if (ada_is_fixed_point_type (value_type (arg2)))
9336 error
9337 (_("Fixed-point values must be assigned to fixed-point variables"));
9338 else
9339 arg2 = coerce_for_assign (value_type (arg1), arg2);
9340 return ada_value_assign (arg1, arg2);
9341
9342 case BINOP_ADD:
9343 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9344 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9345 if (noside == EVAL_SKIP)
9346 goto nosideret;
9347 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9348 return (value_from_longest
9349 (value_type (arg1),
9350 value_as_long (arg1) + value_as_long (arg2)));
9351 if ((ada_is_fixed_point_type (value_type (arg1))
9352 || ada_is_fixed_point_type (value_type (arg2)))
9353 && value_type (arg1) != value_type (arg2))
9354 error (_("Operands of fixed-point addition must have the same type"));
9355 /* Do the addition, and cast the result to the type of the first
9356 argument. We cannot cast the result to a reference type, so if
9357 ARG1 is a reference type, find its underlying type. */
9358 type = value_type (arg1);
9359 while (TYPE_CODE (type) == TYPE_CODE_REF)
9360 type = TYPE_TARGET_TYPE (type);
9361 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9362 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9363
9364 case BINOP_SUB:
9365 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9366 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9367 if (noside == EVAL_SKIP)
9368 goto nosideret;
9369 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9370 return (value_from_longest
9371 (value_type (arg1),
9372 value_as_long (arg1) - value_as_long (arg2)));
9373 if ((ada_is_fixed_point_type (value_type (arg1))
9374 || ada_is_fixed_point_type (value_type (arg2)))
9375 && value_type (arg1) != value_type (arg2))
9376 error (_("Operands of fixed-point subtraction "
9377 "must have the same type"));
9378 /* Do the substraction, and cast the result to the type of the first
9379 argument. We cannot cast the result to a reference type, so if
9380 ARG1 is a reference type, find its underlying type. */
9381 type = value_type (arg1);
9382 while (TYPE_CODE (type) == TYPE_CODE_REF)
9383 type = TYPE_TARGET_TYPE (type);
9384 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9385 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9386
9387 case BINOP_MUL:
9388 case BINOP_DIV:
9389 case BINOP_REM:
9390 case BINOP_MOD:
9391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9392 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9393 if (noside == EVAL_SKIP)
9394 goto nosideret;
9395 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9396 {
9397 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9398 return value_zero (value_type (arg1), not_lval);
9399 }
9400 else
9401 {
9402 type = builtin_type (exp->gdbarch)->builtin_double;
9403 if (ada_is_fixed_point_type (value_type (arg1)))
9404 arg1 = cast_from_fixed (type, arg1);
9405 if (ada_is_fixed_point_type (value_type (arg2)))
9406 arg2 = cast_from_fixed (type, arg2);
9407 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9408 return ada_value_binop (arg1, arg2, op);
9409 }
9410
9411 case BINOP_EQUAL:
9412 case BINOP_NOTEQUAL:
9413 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9414 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9415 if (noside == EVAL_SKIP)
9416 goto nosideret;
9417 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9418 tem = 0;
9419 else
9420 {
9421 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9422 tem = ada_value_equal (arg1, arg2);
9423 }
9424 if (op == BINOP_NOTEQUAL)
9425 tem = !tem;
9426 type = language_bool_type (exp->language_defn, exp->gdbarch);
9427 return value_from_longest (type, (LONGEST) tem);
9428
9429 case UNOP_NEG:
9430 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9431 if (noside == EVAL_SKIP)
9432 goto nosideret;
9433 else if (ada_is_fixed_point_type (value_type (arg1)))
9434 return value_cast (value_type (arg1), value_neg (arg1));
9435 else
9436 {
9437 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9438 return value_neg (arg1);
9439 }
9440
9441 case BINOP_LOGICAL_AND:
9442 case BINOP_LOGICAL_OR:
9443 case UNOP_LOGICAL_NOT:
9444 {
9445 struct value *val;
9446
9447 *pos -= 1;
9448 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9449 type = language_bool_type (exp->language_defn, exp->gdbarch);
9450 return value_cast (type, val);
9451 }
9452
9453 case BINOP_BITWISE_AND:
9454 case BINOP_BITWISE_IOR:
9455 case BINOP_BITWISE_XOR:
9456 {
9457 struct value *val;
9458
9459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9460 *pos = pc;
9461 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9462
9463 return value_cast (value_type (arg1), val);
9464 }
9465
9466 case OP_VAR_VALUE:
9467 *pos -= 1;
9468
9469 if (noside == EVAL_SKIP)
9470 {
9471 *pos += 4;
9472 goto nosideret;
9473 }
9474 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9475 /* Only encountered when an unresolved symbol occurs in a
9476 context other than a function call, in which case, it is
9477 invalid. */
9478 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9479 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9480 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9481 {
9482 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9483 /* Check to see if this is a tagged type. We also need to handle
9484 the case where the type is a reference to a tagged type, but
9485 we have to be careful to exclude pointers to tagged types.
9486 The latter should be shown as usual (as a pointer), whereas
9487 a reference should mostly be transparent to the user. */
9488 if (ada_is_tagged_type (type, 0)
9489 || (TYPE_CODE(type) == TYPE_CODE_REF
9490 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9491 {
9492 /* Tagged types are a little special in the fact that the real
9493 type is dynamic and can only be determined by inspecting the
9494 object's tag. This means that we need to get the object's
9495 value first (EVAL_NORMAL) and then extract the actual object
9496 type from its tag.
9497
9498 Note that we cannot skip the final step where we extract
9499 the object type from its tag, because the EVAL_NORMAL phase
9500 results in dynamic components being resolved into fixed ones.
9501 This can cause problems when trying to print the type
9502 description of tagged types whose parent has a dynamic size:
9503 We use the type name of the "_parent" component in order
9504 to print the name of the ancestor type in the type description.
9505 If that component had a dynamic size, the resolution into
9506 a fixed type would result in the loss of that type name,
9507 thus preventing us from printing the name of the ancestor
9508 type in the type description. */
9509 struct type *actual_type;
9510
9511 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9512 actual_type = type_from_tag (ada_value_tag (arg1));
9513 if (actual_type == NULL)
9514 /* If, for some reason, we were unable to determine
9515 the actual type from the tag, then use the static
9516 approximation that we just computed as a fallback.
9517 This can happen if the debugging information is
9518 incomplete, for instance. */
9519 actual_type = type;
9520
9521 return value_zero (actual_type, not_lval);
9522 }
9523
9524 *pos += 4;
9525 return value_zero
9526 (to_static_fixed_type
9527 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9528 not_lval);
9529 }
9530 else
9531 {
9532 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9533 arg1 = unwrap_value (arg1);
9534 return ada_to_fixed_value (arg1);
9535 }
9536
9537 case OP_FUNCALL:
9538 (*pos) += 2;
9539
9540 /* Allocate arg vector, including space for the function to be
9541 called in argvec[0] and a terminating NULL. */
9542 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9543 argvec =
9544 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9545
9546 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9547 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9548 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9549 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9550 else
9551 {
9552 for (tem = 0; tem <= nargs; tem += 1)
9553 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9554 argvec[tem] = 0;
9555
9556 if (noside == EVAL_SKIP)
9557 goto nosideret;
9558 }
9559
9560 if (ada_is_constrained_packed_array_type
9561 (desc_base_type (value_type (argvec[0]))))
9562 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9563 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9564 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9565 /* This is a packed array that has already been fixed, and
9566 therefore already coerced to a simple array. Nothing further
9567 to do. */
9568 ;
9569 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9570 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9571 && VALUE_LVAL (argvec[0]) == lval_memory))
9572 argvec[0] = value_addr (argvec[0]);
9573
9574 type = ada_check_typedef (value_type (argvec[0]));
9575
9576 /* Ada allows us to implicitly dereference arrays when subscripting
9577 them. So, if this is an array typedef (encoding use for array
9578 access types encoded as fat pointers), strip it now. */
9579 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9580 type = ada_typedef_target_type (type);
9581
9582 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9583 {
9584 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9585 {
9586 case TYPE_CODE_FUNC:
9587 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9588 break;
9589 case TYPE_CODE_ARRAY:
9590 break;
9591 case TYPE_CODE_STRUCT:
9592 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9593 argvec[0] = ada_value_ind (argvec[0]);
9594 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9595 break;
9596 default:
9597 error (_("cannot subscript or call something of type `%s'"),
9598 ada_type_name (value_type (argvec[0])));
9599 break;
9600 }
9601 }
9602
9603 switch (TYPE_CODE (type))
9604 {
9605 case TYPE_CODE_FUNC:
9606 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9607 return allocate_value (TYPE_TARGET_TYPE (type));
9608 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9609 case TYPE_CODE_STRUCT:
9610 {
9611 int arity;
9612
9613 arity = ada_array_arity (type);
9614 type = ada_array_element_type (type, nargs);
9615 if (type == NULL)
9616 error (_("cannot subscript or call a record"));
9617 if (arity != nargs)
9618 error (_("wrong number of subscripts; expecting %d"), arity);
9619 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9620 return value_zero (ada_aligned_type (type), lval_memory);
9621 return
9622 unwrap_value (ada_value_subscript
9623 (argvec[0], nargs, argvec + 1));
9624 }
9625 case TYPE_CODE_ARRAY:
9626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9627 {
9628 type = ada_array_element_type (type, nargs);
9629 if (type == NULL)
9630 error (_("element type of array unknown"));
9631 else
9632 return value_zero (ada_aligned_type (type), lval_memory);
9633 }
9634 return
9635 unwrap_value (ada_value_subscript
9636 (ada_coerce_to_simple_array (argvec[0]),
9637 nargs, argvec + 1));
9638 case TYPE_CODE_PTR: /* Pointer to array */
9639 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9640 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9641 {
9642 type = ada_array_element_type (type, nargs);
9643 if (type == NULL)
9644 error (_("element type of array unknown"));
9645 else
9646 return value_zero (ada_aligned_type (type), lval_memory);
9647 }
9648 return
9649 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9650 nargs, argvec + 1));
9651
9652 default:
9653 error (_("Attempt to index or call something other than an "
9654 "array or function"));
9655 }
9656
9657 case TERNOP_SLICE:
9658 {
9659 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9660 struct value *low_bound_val =
9661 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9662 struct value *high_bound_val =
9663 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9664 LONGEST low_bound;
9665 LONGEST high_bound;
9666
9667 low_bound_val = coerce_ref (low_bound_val);
9668 high_bound_val = coerce_ref (high_bound_val);
9669 low_bound = pos_atr (low_bound_val);
9670 high_bound = pos_atr (high_bound_val);
9671
9672 if (noside == EVAL_SKIP)
9673 goto nosideret;
9674
9675 /* If this is a reference to an aligner type, then remove all
9676 the aligners. */
9677 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9678 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9679 TYPE_TARGET_TYPE (value_type (array)) =
9680 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9681
9682 if (ada_is_constrained_packed_array_type (value_type (array)))
9683 error (_("cannot slice a packed array"));
9684
9685 /* If this is a reference to an array or an array lvalue,
9686 convert to a pointer. */
9687 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9688 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9689 && VALUE_LVAL (array) == lval_memory))
9690 array = value_addr (array);
9691
9692 if (noside == EVAL_AVOID_SIDE_EFFECTS
9693 && ada_is_array_descriptor_type (ada_check_typedef
9694 (value_type (array))))
9695 return empty_array (ada_type_of_array (array, 0), low_bound);
9696
9697 array = ada_coerce_to_simple_array_ptr (array);
9698
9699 /* If we have more than one level of pointer indirection,
9700 dereference the value until we get only one level. */
9701 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9702 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9703 == TYPE_CODE_PTR))
9704 array = value_ind (array);
9705
9706 /* Make sure we really do have an array type before going further,
9707 to avoid a SEGV when trying to get the index type or the target
9708 type later down the road if the debug info generated by
9709 the compiler is incorrect or incomplete. */
9710 if (!ada_is_simple_array_type (value_type (array)))
9711 error (_("cannot take slice of non-array"));
9712
9713 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9714 == TYPE_CODE_PTR)
9715 {
9716 struct type *type0 = ada_check_typedef (value_type (array));
9717
9718 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9719 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9720 else
9721 {
9722 struct type *arr_type0 =
9723 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9724
9725 return ada_value_slice_from_ptr (array, arr_type0,
9726 longest_to_int (low_bound),
9727 longest_to_int (high_bound));
9728 }
9729 }
9730 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9731 return array;
9732 else if (high_bound < low_bound)
9733 return empty_array (value_type (array), low_bound);
9734 else
9735 return ada_value_slice (array, longest_to_int (low_bound),
9736 longest_to_int (high_bound));
9737 }
9738
9739 case UNOP_IN_RANGE:
9740 (*pos) += 2;
9741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9742 type = check_typedef (exp->elts[pc + 1].type);
9743
9744 if (noside == EVAL_SKIP)
9745 goto nosideret;
9746
9747 switch (TYPE_CODE (type))
9748 {
9749 default:
9750 lim_warning (_("Membership test incompletely implemented; "
9751 "always returns true"));
9752 type = language_bool_type (exp->language_defn, exp->gdbarch);
9753 return value_from_longest (type, (LONGEST) 1);
9754
9755 case TYPE_CODE_RANGE:
9756 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9757 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9758 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9759 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9760 type = language_bool_type (exp->language_defn, exp->gdbarch);
9761 return
9762 value_from_longest (type,
9763 (value_less (arg1, arg3)
9764 || value_equal (arg1, arg3))
9765 && (value_less (arg2, arg1)
9766 || value_equal (arg2, arg1)));
9767 }
9768
9769 case BINOP_IN_BOUNDS:
9770 (*pos) += 2;
9771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9772 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9773
9774 if (noside == EVAL_SKIP)
9775 goto nosideret;
9776
9777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9778 {
9779 type = language_bool_type (exp->language_defn, exp->gdbarch);
9780 return value_zero (type, not_lval);
9781 }
9782
9783 tem = longest_to_int (exp->elts[pc + 1].longconst);
9784
9785 type = ada_index_type (value_type (arg2), tem, "range");
9786 if (!type)
9787 type = value_type (arg1);
9788
9789 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9790 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9791
9792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9793 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9794 type = language_bool_type (exp->language_defn, exp->gdbarch);
9795 return
9796 value_from_longest (type,
9797 (value_less (arg1, arg3)
9798 || value_equal (arg1, arg3))
9799 && (value_less (arg2, arg1)
9800 || value_equal (arg2, arg1)));
9801
9802 case TERNOP_IN_RANGE:
9803 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9804 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9805 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9806
9807 if (noside == EVAL_SKIP)
9808 goto nosideret;
9809
9810 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9811 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9812 type = language_bool_type (exp->language_defn, exp->gdbarch);
9813 return
9814 value_from_longest (type,
9815 (value_less (arg1, arg3)
9816 || value_equal (arg1, arg3))
9817 && (value_less (arg2, arg1)
9818 || value_equal (arg2, arg1)));
9819
9820 case OP_ATR_FIRST:
9821 case OP_ATR_LAST:
9822 case OP_ATR_LENGTH:
9823 {
9824 struct type *type_arg;
9825
9826 if (exp->elts[*pos].opcode == OP_TYPE)
9827 {
9828 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9829 arg1 = NULL;
9830 type_arg = check_typedef (exp->elts[pc + 2].type);
9831 }
9832 else
9833 {
9834 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9835 type_arg = NULL;
9836 }
9837
9838 if (exp->elts[*pos].opcode != OP_LONG)
9839 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9840 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9841 *pos += 4;
9842
9843 if (noside == EVAL_SKIP)
9844 goto nosideret;
9845
9846 if (type_arg == NULL)
9847 {
9848 arg1 = ada_coerce_ref (arg1);
9849
9850 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9851 arg1 = ada_coerce_to_simple_array (arg1);
9852
9853 type = ada_index_type (value_type (arg1), tem,
9854 ada_attribute_name (op));
9855 if (type == NULL)
9856 type = builtin_type (exp->gdbarch)->builtin_int;
9857
9858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9859 return allocate_value (type);
9860
9861 switch (op)
9862 {
9863 default: /* Should never happen. */
9864 error (_("unexpected attribute encountered"));
9865 case OP_ATR_FIRST:
9866 return value_from_longest
9867 (type, ada_array_bound (arg1, tem, 0));
9868 case OP_ATR_LAST:
9869 return value_from_longest
9870 (type, ada_array_bound (arg1, tem, 1));
9871 case OP_ATR_LENGTH:
9872 return value_from_longest
9873 (type, ada_array_length (arg1, tem));
9874 }
9875 }
9876 else if (discrete_type_p (type_arg))
9877 {
9878 struct type *range_type;
9879 char *name = ada_type_name (type_arg);
9880
9881 range_type = NULL;
9882 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9883 range_type = to_fixed_range_type (type_arg, NULL);
9884 if (range_type == NULL)
9885 range_type = type_arg;
9886 switch (op)
9887 {
9888 default:
9889 error (_("unexpected attribute encountered"));
9890 case OP_ATR_FIRST:
9891 return value_from_longest
9892 (range_type, ada_discrete_type_low_bound (range_type));
9893 case OP_ATR_LAST:
9894 return value_from_longest
9895 (range_type, ada_discrete_type_high_bound (range_type));
9896 case OP_ATR_LENGTH:
9897 error (_("the 'length attribute applies only to array types"));
9898 }
9899 }
9900 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9901 error (_("unimplemented type attribute"));
9902 else
9903 {
9904 LONGEST low, high;
9905
9906 if (ada_is_constrained_packed_array_type (type_arg))
9907 type_arg = decode_constrained_packed_array_type (type_arg);
9908
9909 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9910 if (type == NULL)
9911 type = builtin_type (exp->gdbarch)->builtin_int;
9912
9913 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9914 return allocate_value (type);
9915
9916 switch (op)
9917 {
9918 default:
9919 error (_("unexpected attribute encountered"));
9920 case OP_ATR_FIRST:
9921 low = ada_array_bound_from_type (type_arg, tem, 0);
9922 return value_from_longest (type, low);
9923 case OP_ATR_LAST:
9924 high = ada_array_bound_from_type (type_arg, tem, 1);
9925 return value_from_longest (type, high);
9926 case OP_ATR_LENGTH:
9927 low = ada_array_bound_from_type (type_arg, tem, 0);
9928 high = ada_array_bound_from_type (type_arg, tem, 1);
9929 return value_from_longest (type, high - low + 1);
9930 }
9931 }
9932 }
9933
9934 case OP_ATR_TAG:
9935 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9936 if (noside == EVAL_SKIP)
9937 goto nosideret;
9938
9939 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9940 return value_zero (ada_tag_type (arg1), not_lval);
9941
9942 return ada_value_tag (arg1);
9943
9944 case OP_ATR_MIN:
9945 case OP_ATR_MAX:
9946 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9947 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9948 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9949 if (noside == EVAL_SKIP)
9950 goto nosideret;
9951 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9952 return value_zero (value_type (arg1), not_lval);
9953 else
9954 {
9955 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9956 return value_binop (arg1, arg2,
9957 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9958 }
9959
9960 case OP_ATR_MODULUS:
9961 {
9962 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9963
9964 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9965 if (noside == EVAL_SKIP)
9966 goto nosideret;
9967
9968 if (!ada_is_modular_type (type_arg))
9969 error (_("'modulus must be applied to modular type"));
9970
9971 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9972 ada_modulus (type_arg));
9973 }
9974
9975
9976 case OP_ATR_POS:
9977 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9978 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9979 if (noside == EVAL_SKIP)
9980 goto nosideret;
9981 type = builtin_type (exp->gdbarch)->builtin_int;
9982 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9983 return value_zero (type, not_lval);
9984 else
9985 return value_pos_atr (type, arg1);
9986
9987 case OP_ATR_SIZE:
9988 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9989 type = value_type (arg1);
9990
9991 /* If the argument is a reference, then dereference its type, since
9992 the user is really asking for the size of the actual object,
9993 not the size of the pointer. */
9994 if (TYPE_CODE (type) == TYPE_CODE_REF)
9995 type = TYPE_TARGET_TYPE (type);
9996
9997 if (noside == EVAL_SKIP)
9998 goto nosideret;
9999 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10000 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10001 else
10002 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10003 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10004
10005 case OP_ATR_VAL:
10006 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10007 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10008 type = exp->elts[pc + 2].type;
10009 if (noside == EVAL_SKIP)
10010 goto nosideret;
10011 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10012 return value_zero (type, not_lval);
10013 else
10014 return value_val_atr (type, arg1);
10015
10016 case BINOP_EXP:
10017 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10018 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10019 if (noside == EVAL_SKIP)
10020 goto nosideret;
10021 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10022 return value_zero (value_type (arg1), not_lval);
10023 else
10024 {
10025 /* For integer exponentiation operations,
10026 only promote the first argument. */
10027 if (is_integral_type (value_type (arg2)))
10028 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10029 else
10030 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10031
10032 return value_binop (arg1, arg2, op);
10033 }
10034
10035 case UNOP_PLUS:
10036 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10037 if (noside == EVAL_SKIP)
10038 goto nosideret;
10039 else
10040 return arg1;
10041
10042 case UNOP_ABS:
10043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10044 if (noside == EVAL_SKIP)
10045 goto nosideret;
10046 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10047 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10048 return value_neg (arg1);
10049 else
10050 return arg1;
10051
10052 case UNOP_IND:
10053 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10054 if (noside == EVAL_SKIP)
10055 goto nosideret;
10056 type = ada_check_typedef (value_type (arg1));
10057 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10058 {
10059 if (ada_is_array_descriptor_type (type))
10060 /* GDB allows dereferencing GNAT array descriptors. */
10061 {
10062 struct type *arrType = ada_type_of_array (arg1, 0);
10063
10064 if (arrType == NULL)
10065 error (_("Attempt to dereference null array pointer."));
10066 return value_at_lazy (arrType, 0);
10067 }
10068 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10069 || TYPE_CODE (type) == TYPE_CODE_REF
10070 /* In C you can dereference an array to get the 1st elt. */
10071 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10072 {
10073 type = to_static_fixed_type
10074 (ada_aligned_type
10075 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10076 check_size (type);
10077 return value_zero (type, lval_memory);
10078 }
10079 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10080 {
10081 /* GDB allows dereferencing an int. */
10082 if (expect_type == NULL)
10083 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10084 lval_memory);
10085 else
10086 {
10087 expect_type =
10088 to_static_fixed_type (ada_aligned_type (expect_type));
10089 return value_zero (expect_type, lval_memory);
10090 }
10091 }
10092 else
10093 error (_("Attempt to take contents of a non-pointer value."));
10094 }
10095 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10096 type = ada_check_typedef (value_type (arg1));
10097
10098 if (TYPE_CODE (type) == TYPE_CODE_INT)
10099 /* GDB allows dereferencing an int. If we were given
10100 the expect_type, then use that as the target type.
10101 Otherwise, assume that the target type is an int. */
10102 {
10103 if (expect_type != NULL)
10104 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10105 arg1));
10106 else
10107 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10108 (CORE_ADDR) value_as_address (arg1));
10109 }
10110
10111 if (ada_is_array_descriptor_type (type))
10112 /* GDB allows dereferencing GNAT array descriptors. */
10113 return ada_coerce_to_simple_array (arg1);
10114 else
10115 return ada_value_ind (arg1);
10116
10117 case STRUCTOP_STRUCT:
10118 tem = longest_to_int (exp->elts[pc + 1].longconst);
10119 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10121 if (noside == EVAL_SKIP)
10122 goto nosideret;
10123 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10124 {
10125 struct type *type1 = value_type (arg1);
10126
10127 if (ada_is_tagged_type (type1, 1))
10128 {
10129 type = ada_lookup_struct_elt_type (type1,
10130 &exp->elts[pc + 2].string,
10131 1, 1, NULL);
10132 if (type == NULL)
10133 /* In this case, we assume that the field COULD exist
10134 in some extension of the type. Return an object of
10135 "type" void, which will match any formal
10136 (see ada_type_match). */
10137 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10138 lval_memory);
10139 }
10140 else
10141 type =
10142 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10143 0, NULL);
10144
10145 return value_zero (ada_aligned_type (type), lval_memory);
10146 }
10147 else
10148 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10149 arg1 = unwrap_value (arg1);
10150 return ada_to_fixed_value (arg1);
10151
10152 case OP_TYPE:
10153 /* The value is not supposed to be used. This is here to make it
10154 easier to accommodate expressions that contain types. */
10155 (*pos) += 2;
10156 if (noside == EVAL_SKIP)
10157 goto nosideret;
10158 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10159 return allocate_value (exp->elts[pc + 1].type);
10160 else
10161 error (_("Attempt to use a type name as an expression"));
10162
10163 case OP_AGGREGATE:
10164 case OP_CHOICES:
10165 case OP_OTHERS:
10166 case OP_DISCRETE_RANGE:
10167 case OP_POSITIONAL:
10168 case OP_NAME:
10169 if (noside == EVAL_NORMAL)
10170 switch (op)
10171 {
10172 case OP_NAME:
10173 error (_("Undefined name, ambiguous name, or renaming used in "
10174 "component association: %s."), &exp->elts[pc+2].string);
10175 case OP_AGGREGATE:
10176 error (_("Aggregates only allowed on the right of an assignment"));
10177 default:
10178 internal_error (__FILE__, __LINE__,
10179 _("aggregate apparently mangled"));
10180 }
10181
10182 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10183 *pos += oplen - 1;
10184 for (tem = 0; tem < nargs; tem += 1)
10185 ada_evaluate_subexp (NULL, exp, pos, noside);
10186 goto nosideret;
10187 }
10188
10189nosideret:
10190 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10191}
10192\f
10193
10194 /* Fixed point */
10195
10196/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10197 type name that encodes the 'small and 'delta information.
10198 Otherwise, return NULL. */
10199
10200static const char *
10201fixed_type_info (struct type *type)
10202{
10203 const char *name = ada_type_name (type);
10204 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10205
10206 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10207 {
10208 const char *tail = strstr (name, "___XF_");
10209
10210 if (tail == NULL)
10211 return NULL;
10212 else
10213 return tail + 5;
10214 }
10215 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10216 return fixed_type_info (TYPE_TARGET_TYPE (type));
10217 else
10218 return NULL;
10219}
10220
10221/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10222
10223int
10224ada_is_fixed_point_type (struct type *type)
10225{
10226 return fixed_type_info (type) != NULL;
10227}
10228
10229/* Return non-zero iff TYPE represents a System.Address type. */
10230
10231int
10232ada_is_system_address_type (struct type *type)
10233{
10234 return (TYPE_NAME (type)
10235 && strcmp (TYPE_NAME (type), "system__address") == 0);
10236}
10237
10238/* Assuming that TYPE is the representation of an Ada fixed-point
10239 type, return its delta, or -1 if the type is malformed and the
10240 delta cannot be determined. */
10241
10242DOUBLEST
10243ada_delta (struct type *type)
10244{
10245 const char *encoding = fixed_type_info (type);
10246 DOUBLEST num, den;
10247
10248 /* Strictly speaking, num and den are encoded as integer. However,
10249 they may not fit into a long, and they will have to be converted
10250 to DOUBLEST anyway. So scan them as DOUBLEST. */
10251 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10252 &num, &den) < 2)
10253 return -1.0;
10254 else
10255 return num / den;
10256}
10257
10258/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10259 factor ('SMALL value) associated with the type. */
10260
10261static DOUBLEST
10262scaling_factor (struct type *type)
10263{
10264 const char *encoding = fixed_type_info (type);
10265 DOUBLEST num0, den0, num1, den1;
10266 int n;
10267
10268 /* Strictly speaking, num's and den's are encoded as integer. However,
10269 they may not fit into a long, and they will have to be converted
10270 to DOUBLEST anyway. So scan them as DOUBLEST. */
10271 n = sscanf (encoding,
10272 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10273 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10274 &num0, &den0, &num1, &den1);
10275
10276 if (n < 2)
10277 return 1.0;
10278 else if (n == 4)
10279 return num1 / den1;
10280 else
10281 return num0 / den0;
10282}
10283
10284
10285/* Assuming that X is the representation of a value of fixed-point
10286 type TYPE, return its floating-point equivalent. */
10287
10288DOUBLEST
10289ada_fixed_to_float (struct type *type, LONGEST x)
10290{
10291 return (DOUBLEST) x *scaling_factor (type);
10292}
10293
10294/* The representation of a fixed-point value of type TYPE
10295 corresponding to the value X. */
10296
10297LONGEST
10298ada_float_to_fixed (struct type *type, DOUBLEST x)
10299{
10300 return (LONGEST) (x / scaling_factor (type) + 0.5);
10301}
10302
10303\f
10304
10305 /* Range types */
10306
10307/* Scan STR beginning at position K for a discriminant name, and
10308 return the value of that discriminant field of DVAL in *PX. If
10309 PNEW_K is not null, put the position of the character beyond the
10310 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10311 not alter *PX and *PNEW_K if unsuccessful. */
10312
10313static int
10314scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10315 int *pnew_k)
10316{
10317 static char *bound_buffer = NULL;
10318 static size_t bound_buffer_len = 0;
10319 char *bound;
10320 char *pend;
10321 struct value *bound_val;
10322
10323 if (dval == NULL || str == NULL || str[k] == '\0')
10324 return 0;
10325
10326 pend = strstr (str + k, "__");
10327 if (pend == NULL)
10328 {
10329 bound = str + k;
10330 k += strlen (bound);
10331 }
10332 else
10333 {
10334 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10335 bound = bound_buffer;
10336 strncpy (bound_buffer, str + k, pend - (str + k));
10337 bound[pend - (str + k)] = '\0';
10338 k = pend - str;
10339 }
10340
10341 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10342 if (bound_val == NULL)
10343 return 0;
10344
10345 *px = value_as_long (bound_val);
10346 if (pnew_k != NULL)
10347 *pnew_k = k;
10348 return 1;
10349}
10350
10351/* Value of variable named NAME in the current environment. If
10352 no such variable found, then if ERR_MSG is null, returns 0, and
10353 otherwise causes an error with message ERR_MSG. */
10354
10355static struct value *
10356get_var_value (char *name, char *err_msg)
10357{
10358 struct ada_symbol_info *syms;
10359 int nsyms;
10360
10361 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10362 &syms);
10363
10364 if (nsyms != 1)
10365 {
10366 if (err_msg == NULL)
10367 return 0;
10368 else
10369 error (("%s"), err_msg);
10370 }
10371
10372 return value_of_variable (syms[0].sym, syms[0].block);
10373}
10374
10375/* Value of integer variable named NAME in the current environment. If
10376 no such variable found, returns 0, and sets *FLAG to 0. If
10377 successful, sets *FLAG to 1. */
10378
10379LONGEST
10380get_int_var_value (char *name, int *flag)
10381{
10382 struct value *var_val = get_var_value (name, 0);
10383
10384 if (var_val == 0)
10385 {
10386 if (flag != NULL)
10387 *flag = 0;
10388 return 0;
10389 }
10390 else
10391 {
10392 if (flag != NULL)
10393 *flag = 1;
10394 return value_as_long (var_val);
10395 }
10396}
10397
10398
10399/* Return a range type whose base type is that of the range type named
10400 NAME in the current environment, and whose bounds are calculated
10401 from NAME according to the GNAT range encoding conventions.
10402 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10403 corresponding range type from debug information; fall back to using it
10404 if symbol lookup fails. If a new type must be created, allocate it
10405 like ORIG_TYPE was. The bounds information, in general, is encoded
10406 in NAME, the base type given in the named range type. */
10407
10408static struct type *
10409to_fixed_range_type (struct type *raw_type, struct value *dval)
10410{
10411 char *name;
10412 struct type *base_type;
10413 char *subtype_info;
10414
10415 gdb_assert (raw_type != NULL);
10416 gdb_assert (TYPE_NAME (raw_type) != NULL);
10417
10418 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10419 base_type = TYPE_TARGET_TYPE (raw_type);
10420 else
10421 base_type = raw_type;
10422
10423 name = TYPE_NAME (raw_type);
10424 subtype_info = strstr (name, "___XD");
10425 if (subtype_info == NULL)
10426 {
10427 LONGEST L = ada_discrete_type_low_bound (raw_type);
10428 LONGEST U = ada_discrete_type_high_bound (raw_type);
10429
10430 if (L < INT_MIN || U > INT_MAX)
10431 return raw_type;
10432 else
10433 return create_range_type (alloc_type_copy (raw_type), raw_type,
10434 ada_discrete_type_low_bound (raw_type),
10435 ada_discrete_type_high_bound (raw_type));
10436 }
10437 else
10438 {
10439 static char *name_buf = NULL;
10440 static size_t name_len = 0;
10441 int prefix_len = subtype_info - name;
10442 LONGEST L, U;
10443 struct type *type;
10444 char *bounds_str;
10445 int n;
10446
10447 GROW_VECT (name_buf, name_len, prefix_len + 5);
10448 strncpy (name_buf, name, prefix_len);
10449 name_buf[prefix_len] = '\0';
10450
10451 subtype_info += 5;
10452 bounds_str = strchr (subtype_info, '_');
10453 n = 1;
10454
10455 if (*subtype_info == 'L')
10456 {
10457 if (!ada_scan_number (bounds_str, n, &L, &n)
10458 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10459 return raw_type;
10460 if (bounds_str[n] == '_')
10461 n += 2;
10462 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10463 n += 1;
10464 subtype_info += 1;
10465 }
10466 else
10467 {
10468 int ok;
10469
10470 strcpy (name_buf + prefix_len, "___L");
10471 L = get_int_var_value (name_buf, &ok);
10472 if (!ok)
10473 {
10474 lim_warning (_("Unknown lower bound, using 1."));
10475 L = 1;
10476 }
10477 }
10478
10479 if (*subtype_info == 'U')
10480 {
10481 if (!ada_scan_number (bounds_str, n, &U, &n)
10482 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10483 return raw_type;
10484 }
10485 else
10486 {
10487 int ok;
10488
10489 strcpy (name_buf + prefix_len, "___U");
10490 U = get_int_var_value (name_buf, &ok);
10491 if (!ok)
10492 {
10493 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10494 U = L;
10495 }
10496 }
10497
10498 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10499 TYPE_NAME (type) = name;
10500 return type;
10501 }
10502}
10503
10504/* True iff NAME is the name of a range type. */
10505
10506int
10507ada_is_range_type_name (const char *name)
10508{
10509 return (name != NULL && strstr (name, "___XD"));
10510}
10511\f
10512
10513 /* Modular types */
10514
10515/* True iff TYPE is an Ada modular type. */
10516
10517int
10518ada_is_modular_type (struct type *type)
10519{
10520 struct type *subranged_type = get_base_type (type);
10521
10522 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10523 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10524 && TYPE_UNSIGNED (subranged_type));
10525}
10526
10527/* Try to determine the lower and upper bounds of the given modular type
10528 using the type name only. Return non-zero and set L and U as the lower
10529 and upper bounds (respectively) if successful. */
10530
10531int
10532ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10533{
10534 char *name = ada_type_name (type);
10535 char *suffix;
10536 int k;
10537 LONGEST U;
10538
10539 if (name == NULL)
10540 return 0;
10541
10542 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10543 we are looking for static bounds, which means an __XDLU suffix.
10544 Moreover, we know that the lower bound of modular types is always
10545 zero, so the actual suffix should start with "__XDLU_0__", and
10546 then be followed by the upper bound value. */
10547 suffix = strstr (name, "__XDLU_0__");
10548 if (suffix == NULL)
10549 return 0;
10550 k = 10;
10551 if (!ada_scan_number (suffix, k, &U, NULL))
10552 return 0;
10553
10554 *modulus = (ULONGEST) U + 1;
10555 return 1;
10556}
10557
10558/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10559
10560ULONGEST
10561ada_modulus (struct type *type)
10562{
10563 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10564}
10565\f
10566
10567/* Ada exception catchpoint support:
10568 ---------------------------------
10569
10570 We support 3 kinds of exception catchpoints:
10571 . catchpoints on Ada exceptions
10572 . catchpoints on unhandled Ada exceptions
10573 . catchpoints on failed assertions
10574
10575 Exceptions raised during failed assertions, or unhandled exceptions
10576 could perfectly be caught with the general catchpoint on Ada exceptions.
10577 However, we can easily differentiate these two special cases, and having
10578 the option to distinguish these two cases from the rest can be useful
10579 to zero-in on certain situations.
10580
10581 Exception catchpoints are a specialized form of breakpoint,
10582 since they rely on inserting breakpoints inside known routines
10583 of the GNAT runtime. The implementation therefore uses a standard
10584 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10585 of breakpoint_ops.
10586
10587 Support in the runtime for exception catchpoints have been changed
10588 a few times already, and these changes affect the implementation
10589 of these catchpoints. In order to be able to support several
10590 variants of the runtime, we use a sniffer that will determine
10591 the runtime variant used by the program being debugged. */
10592
10593/* The different types of catchpoints that we introduced for catching
10594 Ada exceptions. */
10595
10596enum exception_catchpoint_kind
10597{
10598 ex_catch_exception,
10599 ex_catch_exception_unhandled,
10600 ex_catch_assert
10601};
10602
10603/* Ada's standard exceptions. */
10604
10605static char *standard_exc[] = {
10606 "constraint_error",
10607 "program_error",
10608 "storage_error",
10609 "tasking_error"
10610};
10611
10612typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10613
10614/* A structure that describes how to support exception catchpoints
10615 for a given executable. */
10616
10617struct exception_support_info
10618{
10619 /* The name of the symbol to break on in order to insert
10620 a catchpoint on exceptions. */
10621 const char *catch_exception_sym;
10622
10623 /* The name of the symbol to break on in order to insert
10624 a catchpoint on unhandled exceptions. */
10625 const char *catch_exception_unhandled_sym;
10626
10627 /* The name of the symbol to break on in order to insert
10628 a catchpoint on failed assertions. */
10629 const char *catch_assert_sym;
10630
10631 /* Assuming that the inferior just triggered an unhandled exception
10632 catchpoint, this function is responsible for returning the address
10633 in inferior memory where the name of that exception is stored.
10634 Return zero if the address could not be computed. */
10635 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10636};
10637
10638static CORE_ADDR ada_unhandled_exception_name_addr (void);
10639static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10640
10641/* The following exception support info structure describes how to
10642 implement exception catchpoints with the latest version of the
10643 Ada runtime (as of 2007-03-06). */
10644
10645static const struct exception_support_info default_exception_support_info =
10646{
10647 "__gnat_debug_raise_exception", /* catch_exception_sym */
10648 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10649 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10650 ada_unhandled_exception_name_addr
10651};
10652
10653/* The following exception support info structure describes how to
10654 implement exception catchpoints with a slightly older version
10655 of the Ada runtime. */
10656
10657static const struct exception_support_info exception_support_info_fallback =
10658{
10659 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10660 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10661 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10662 ada_unhandled_exception_name_addr_from_raise
10663};
10664
10665/* Return nonzero if we can detect the exception support routines
10666 described in EINFO.
10667
10668 This function errors out if an abnormal situation is detected
10669 (for instance, if we find the exception support routines, but
10670 that support is found to be incomplete). */
10671
10672static int
10673ada_has_this_exception_support (const struct exception_support_info *einfo)
10674{
10675 struct symbol *sym;
10676
10677 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10678 that should be compiled with debugging information. As a result, we
10679 expect to find that symbol in the symtabs. */
10680
10681 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10682 if (sym == NULL)
10683 {
10684 /* Perhaps we did not find our symbol because the Ada runtime was
10685 compiled without debugging info, or simply stripped of it.
10686 It happens on some GNU/Linux distributions for instance, where
10687 users have to install a separate debug package in order to get
10688 the runtime's debugging info. In that situation, let the user
10689 know why we cannot insert an Ada exception catchpoint.
10690
10691 Note: Just for the purpose of inserting our Ada exception
10692 catchpoint, we could rely purely on the associated minimal symbol.
10693 But we would be operating in degraded mode anyway, since we are
10694 still lacking the debugging info needed later on to extract
10695 the name of the exception being raised (this name is printed in
10696 the catchpoint message, and is also used when trying to catch
10697 a specific exception). We do not handle this case for now. */
10698 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10699 error (_("Your Ada runtime appears to be missing some debugging "
10700 "information.\nCannot insert Ada exception catchpoint "
10701 "in this configuration."));
10702
10703 return 0;
10704 }
10705
10706 /* Make sure that the symbol we found corresponds to a function. */
10707
10708 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10709 error (_("Symbol \"%s\" is not a function (class = %d)"),
10710 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10711
10712 return 1;
10713}
10714
10715/* Inspect the Ada runtime and determine which exception info structure
10716 should be used to provide support for exception catchpoints.
10717
10718 This function will always set the per-inferior exception_info,
10719 or raise an error. */
10720
10721static void
10722ada_exception_support_info_sniffer (void)
10723{
10724 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10725 struct symbol *sym;
10726
10727 /* If the exception info is already known, then no need to recompute it. */
10728 if (data->exception_info != NULL)
10729 return;
10730
10731 /* Check the latest (default) exception support info. */
10732 if (ada_has_this_exception_support (&default_exception_support_info))
10733 {
10734 data->exception_info = &default_exception_support_info;
10735 return;
10736 }
10737
10738 /* Try our fallback exception suport info. */
10739 if (ada_has_this_exception_support (&exception_support_info_fallback))
10740 {
10741 data->exception_info = &exception_support_info_fallback;
10742 return;
10743 }
10744
10745 /* Sometimes, it is normal for us to not be able to find the routine
10746 we are looking for. This happens when the program is linked with
10747 the shared version of the GNAT runtime, and the program has not been
10748 started yet. Inform the user of these two possible causes if
10749 applicable. */
10750
10751 if (ada_update_initial_language (language_unknown) != language_ada)
10752 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10753
10754 /* If the symbol does not exist, then check that the program is
10755 already started, to make sure that shared libraries have been
10756 loaded. If it is not started, this may mean that the symbol is
10757 in a shared library. */
10758
10759 if (ptid_get_pid (inferior_ptid) == 0)
10760 error (_("Unable to insert catchpoint. Try to start the program first."));
10761
10762 /* At this point, we know that we are debugging an Ada program and
10763 that the inferior has been started, but we still are not able to
10764 find the run-time symbols. That can mean that we are in
10765 configurable run time mode, or that a-except as been optimized
10766 out by the linker... In any case, at this point it is not worth
10767 supporting this feature. */
10768
10769 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10770}
10771
10772/* True iff FRAME is very likely to be that of a function that is
10773 part of the runtime system. This is all very heuristic, but is
10774 intended to be used as advice as to what frames are uninteresting
10775 to most users. */
10776
10777static int
10778is_known_support_routine (struct frame_info *frame)
10779{
10780 struct symtab_and_line sal;
10781 char *func_name;
10782 enum language func_lang;
10783 int i;
10784
10785 /* If this code does not have any debugging information (no symtab),
10786 This cannot be any user code. */
10787
10788 find_frame_sal (frame, &sal);
10789 if (sal.symtab == NULL)
10790 return 1;
10791
10792 /* If there is a symtab, but the associated source file cannot be
10793 located, then assume this is not user code: Selecting a frame
10794 for which we cannot display the code would not be very helpful
10795 for the user. This should also take care of case such as VxWorks
10796 where the kernel has some debugging info provided for a few units. */
10797
10798 if (symtab_to_fullname (sal.symtab) == NULL)
10799 return 1;
10800
10801 /* Check the unit filename againt the Ada runtime file naming.
10802 We also check the name of the objfile against the name of some
10803 known system libraries that sometimes come with debugging info
10804 too. */
10805
10806 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10807 {
10808 re_comp (known_runtime_file_name_patterns[i]);
10809 if (re_exec (sal.symtab->filename))
10810 return 1;
10811 if (sal.symtab->objfile != NULL
10812 && re_exec (sal.symtab->objfile->name))
10813 return 1;
10814 }
10815
10816 /* Check whether the function is a GNAT-generated entity. */
10817
10818 find_frame_funname (frame, &func_name, &func_lang, NULL);
10819 if (func_name == NULL)
10820 return 1;
10821
10822 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10823 {
10824 re_comp (known_auxiliary_function_name_patterns[i]);
10825 if (re_exec (func_name))
10826 return 1;
10827 }
10828
10829 return 0;
10830}
10831
10832/* Find the first frame that contains debugging information and that is not
10833 part of the Ada run-time, starting from FI and moving upward. */
10834
10835void
10836ada_find_printable_frame (struct frame_info *fi)
10837{
10838 for (; fi != NULL; fi = get_prev_frame (fi))
10839 {
10840 if (!is_known_support_routine (fi))
10841 {
10842 select_frame (fi);
10843 break;
10844 }
10845 }
10846
10847}
10848
10849/* Assuming that the inferior just triggered an unhandled exception
10850 catchpoint, return the address in inferior memory where the name
10851 of the exception is stored.
10852
10853 Return zero if the address could not be computed. */
10854
10855static CORE_ADDR
10856ada_unhandled_exception_name_addr (void)
10857{
10858 return parse_and_eval_address ("e.full_name");
10859}
10860
10861/* Same as ada_unhandled_exception_name_addr, except that this function
10862 should be used when the inferior uses an older version of the runtime,
10863 where the exception name needs to be extracted from a specific frame
10864 several frames up in the callstack. */
10865
10866static CORE_ADDR
10867ada_unhandled_exception_name_addr_from_raise (void)
10868{
10869 int frame_level;
10870 struct frame_info *fi;
10871 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10872
10873 /* To determine the name of this exception, we need to select
10874 the frame corresponding to RAISE_SYM_NAME. This frame is
10875 at least 3 levels up, so we simply skip the first 3 frames
10876 without checking the name of their associated function. */
10877 fi = get_current_frame ();
10878 for (frame_level = 0; frame_level < 3; frame_level += 1)
10879 if (fi != NULL)
10880 fi = get_prev_frame (fi);
10881
10882 while (fi != NULL)
10883 {
10884 char *func_name;
10885 enum language func_lang;
10886
10887 find_frame_funname (fi, &func_name, &func_lang, NULL);
10888 if (func_name != NULL
10889 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10890 break; /* We found the frame we were looking for... */
10891 fi = get_prev_frame (fi);
10892 }
10893
10894 if (fi == NULL)
10895 return 0;
10896
10897 select_frame (fi);
10898 return parse_and_eval_address ("id.full_name");
10899}
10900
10901/* Assuming the inferior just triggered an Ada exception catchpoint
10902 (of any type), return the address in inferior memory where the name
10903 of the exception is stored, if applicable.
10904
10905 Return zero if the address could not be computed, or if not relevant. */
10906
10907static CORE_ADDR
10908ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10909 struct breakpoint *b)
10910{
10911 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10912
10913 switch (ex)
10914 {
10915 case ex_catch_exception:
10916 return (parse_and_eval_address ("e.full_name"));
10917 break;
10918
10919 case ex_catch_exception_unhandled:
10920 return data->exception_info->unhandled_exception_name_addr ();
10921 break;
10922
10923 case ex_catch_assert:
10924 return 0; /* Exception name is not relevant in this case. */
10925 break;
10926
10927 default:
10928 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10929 break;
10930 }
10931
10932 return 0; /* Should never be reached. */
10933}
10934
10935/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10936 any error that ada_exception_name_addr_1 might cause to be thrown.
10937 When an error is intercepted, a warning with the error message is printed,
10938 and zero is returned. */
10939
10940static CORE_ADDR
10941ada_exception_name_addr (enum exception_catchpoint_kind ex,
10942 struct breakpoint *b)
10943{
10944 volatile struct gdb_exception e;
10945 CORE_ADDR result = 0;
10946
10947 TRY_CATCH (e, RETURN_MASK_ERROR)
10948 {
10949 result = ada_exception_name_addr_1 (ex, b);
10950 }
10951
10952 if (e.reason < 0)
10953 {
10954 warning (_("failed to get exception name: %s"), e.message);
10955 return 0;
10956 }
10957
10958 return result;
10959}
10960
10961static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10962 char *, char **,
10963 const struct breakpoint_ops **);
10964static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10965
10966/* Ada catchpoints.
10967
10968 In the case of catchpoints on Ada exceptions, the catchpoint will
10969 stop the target on every exception the program throws. When a user
10970 specifies the name of a specific exception, we translate this
10971 request into a condition expression (in text form), and then parse
10972 it into an expression stored in each of the catchpoint's locations.
10973 We then use this condition to check whether the exception that was
10974 raised is the one the user is interested in. If not, then the
10975 target is resumed again. We store the name of the requested
10976 exception, in order to be able to re-set the condition expression
10977 when symbols change. */
10978
10979/* An instance of this type is used to represent an Ada catchpoint
10980 breakpoint location. It includes a "struct bp_location" as a kind
10981 of base class; users downcast to "struct bp_location *" when
10982 needed. */
10983
10984struct ada_catchpoint_location
10985{
10986 /* The base class. */
10987 struct bp_location base;
10988
10989 /* The condition that checks whether the exception that was raised
10990 is the specific exception the user specified on catchpoint
10991 creation. */
10992 struct expression *excep_cond_expr;
10993};
10994
10995/* Implement the DTOR method in the bp_location_ops structure for all
10996 Ada exception catchpoint kinds. */
10997
10998static void
10999ada_catchpoint_location_dtor (struct bp_location *bl)
11000{
11001 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11002
11003 xfree (al->excep_cond_expr);
11004}
11005
11006/* The vtable to be used in Ada catchpoint locations. */
11007
11008static const struct bp_location_ops ada_catchpoint_location_ops =
11009{
11010 ada_catchpoint_location_dtor
11011};
11012
11013/* An instance of this type is used to represent an Ada catchpoint.
11014 It includes a "struct breakpoint" as a kind of base class; users
11015 downcast to "struct breakpoint *" when needed. */
11016
11017struct ada_catchpoint
11018{
11019 /* The base class. */
11020 struct breakpoint base;
11021
11022 /* The name of the specific exception the user specified. */
11023 char *excep_string;
11024};
11025
11026/* Parse the exception condition string in the context of each of the
11027 catchpoint's locations, and store them for later evaluation. */
11028
11029static void
11030create_excep_cond_exprs (struct ada_catchpoint *c)
11031{
11032 struct cleanup *old_chain;
11033 struct bp_location *bl;
11034 char *cond_string;
11035
11036 /* Nothing to do if there's no specific exception to catch. */
11037 if (c->excep_string == NULL)
11038 return;
11039
11040 /* Same if there are no locations... */
11041 if (c->base.loc == NULL)
11042 return;
11043
11044 /* Compute the condition expression in text form, from the specific
11045 expection we want to catch. */
11046 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11047 old_chain = make_cleanup (xfree, cond_string);
11048
11049 /* Iterate over all the catchpoint's locations, and parse an
11050 expression for each. */
11051 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11052 {
11053 struct ada_catchpoint_location *ada_loc
11054 = (struct ada_catchpoint_location *) bl;
11055 struct expression *exp = NULL;
11056
11057 if (!bl->shlib_disabled)
11058 {
11059 volatile struct gdb_exception e;
11060 char *s;
11061
11062 s = cond_string;
11063 TRY_CATCH (e, RETURN_MASK_ERROR)
11064 {
11065 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11066 }
11067 if (e.reason < 0)
11068 warning (_("failed to reevaluate internal exception condition "
11069 "for catchpoint %d: %s"),
11070 c->base.number, e.message);
11071 }
11072
11073 ada_loc->excep_cond_expr = exp;
11074 }
11075
11076 do_cleanups (old_chain);
11077}
11078
11079/* Implement the DTOR method in the breakpoint_ops structure for all
11080 exception catchpoint kinds. */
11081
11082static void
11083dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11084{
11085 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11086
11087 xfree (c->excep_string);
11088
11089 bkpt_breakpoint_ops.dtor (b);
11090}
11091
11092/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11093 structure for all exception catchpoint kinds. */
11094
11095static struct bp_location *
11096allocate_location_exception (enum exception_catchpoint_kind ex,
11097 struct breakpoint *self)
11098{
11099 struct ada_catchpoint_location *loc;
11100
11101 loc = XNEW (struct ada_catchpoint_location);
11102 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11103 loc->excep_cond_expr = NULL;
11104 return &loc->base;
11105}
11106
11107/* Implement the RE_SET method in the breakpoint_ops structure for all
11108 exception catchpoint kinds. */
11109
11110static void
11111re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11112{
11113 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11114
11115 /* Call the base class's method. This updates the catchpoint's
11116 locations. */
11117 bkpt_breakpoint_ops.re_set (b);
11118
11119 /* Reparse the exception conditional expressions. One for each
11120 location. */
11121 create_excep_cond_exprs (c);
11122}
11123
11124/* Returns true if we should stop for this breakpoint hit. If the
11125 user specified a specific exception, we only want to cause a stop
11126 if the program thrown that exception. */
11127
11128static int
11129should_stop_exception (const struct bp_location *bl)
11130{
11131 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11132 const struct ada_catchpoint_location *ada_loc
11133 = (const struct ada_catchpoint_location *) bl;
11134 volatile struct gdb_exception ex;
11135 int stop;
11136
11137 /* With no specific exception, should always stop. */
11138 if (c->excep_string == NULL)
11139 return 1;
11140
11141 if (ada_loc->excep_cond_expr == NULL)
11142 {
11143 /* We will have a NULL expression if back when we were creating
11144 the expressions, this location's had failed to parse. */
11145 return 1;
11146 }
11147
11148 stop = 1;
11149 TRY_CATCH (ex, RETURN_MASK_ALL)
11150 {
11151 struct value *mark;
11152
11153 mark = value_mark ();
11154 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11155 value_free_to_mark (mark);
11156 }
11157 if (ex.reason < 0)
11158 exception_fprintf (gdb_stderr, ex,
11159 _("Error in testing exception condition:\n"));
11160 return stop;
11161}
11162
11163/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11164 for all exception catchpoint kinds. */
11165
11166static void
11167check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11168{
11169 bs->stop = should_stop_exception (bs->bp_location_at);
11170}
11171
11172/* Implement the PRINT_IT method in the breakpoint_ops structure
11173 for all exception catchpoint kinds. */
11174
11175static enum print_stop_action
11176print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11177{
11178 struct ui_out *uiout = current_uiout;
11179 struct breakpoint *b = bs->breakpoint_at;
11180
11181 annotate_catchpoint (b->number);
11182
11183 if (ui_out_is_mi_like_p (uiout))
11184 {
11185 ui_out_field_string (uiout, "reason",
11186 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11187 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11188 }
11189
11190 ui_out_text (uiout,
11191 b->disposition == disp_del ? "\nTemporary catchpoint "
11192 : "\nCatchpoint ");
11193 ui_out_field_int (uiout, "bkptno", b->number);
11194 ui_out_text (uiout, ", ");
11195
11196 switch (ex)
11197 {
11198 case ex_catch_exception:
11199 case ex_catch_exception_unhandled:
11200 {
11201 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11202 char exception_name[256];
11203
11204 if (addr != 0)
11205 {
11206 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11207 exception_name [sizeof (exception_name) - 1] = '\0';
11208 }
11209 else
11210 {
11211 /* For some reason, we were unable to read the exception
11212 name. This could happen if the Runtime was compiled
11213 without debugging info, for instance. In that case,
11214 just replace the exception name by the generic string
11215 "exception" - it will read as "an exception" in the
11216 notification we are about to print. */
11217 memcpy (exception_name, "exception", sizeof ("exception"));
11218 }
11219 /* In the case of unhandled exception breakpoints, we print
11220 the exception name as "unhandled EXCEPTION_NAME", to make
11221 it clearer to the user which kind of catchpoint just got
11222 hit. We used ui_out_text to make sure that this extra
11223 info does not pollute the exception name in the MI case. */
11224 if (ex == ex_catch_exception_unhandled)
11225 ui_out_text (uiout, "unhandled ");
11226 ui_out_field_string (uiout, "exception-name", exception_name);
11227 }
11228 break;
11229 case ex_catch_assert:
11230 /* In this case, the name of the exception is not really
11231 important. Just print "failed assertion" to make it clearer
11232 that his program just hit an assertion-failure catchpoint.
11233 We used ui_out_text because this info does not belong in
11234 the MI output. */
11235 ui_out_text (uiout, "failed assertion");
11236 break;
11237 }
11238 ui_out_text (uiout, " at ");
11239 ada_find_printable_frame (get_current_frame ());
11240
11241 return PRINT_SRC_AND_LOC;
11242}
11243
11244/* Implement the PRINT_ONE method in the breakpoint_ops structure
11245 for all exception catchpoint kinds. */
11246
11247static void
11248print_one_exception (enum exception_catchpoint_kind ex,
11249 struct breakpoint *b, struct bp_location **last_loc)
11250{
11251 struct ui_out *uiout = current_uiout;
11252 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11253 struct value_print_options opts;
11254
11255 get_user_print_options (&opts);
11256 if (opts.addressprint)
11257 {
11258 annotate_field (4);
11259 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11260 }
11261
11262 annotate_field (5);
11263 *last_loc = b->loc;
11264 switch (ex)
11265 {
11266 case ex_catch_exception:
11267 if (c->excep_string != NULL)
11268 {
11269 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11270
11271 ui_out_field_string (uiout, "what", msg);
11272 xfree (msg);
11273 }
11274 else
11275 ui_out_field_string (uiout, "what", "all Ada exceptions");
11276
11277 break;
11278
11279 case ex_catch_exception_unhandled:
11280 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11281 break;
11282
11283 case ex_catch_assert:
11284 ui_out_field_string (uiout, "what", "failed Ada assertions");
11285 break;
11286
11287 default:
11288 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11289 break;
11290 }
11291}
11292
11293/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11294 for all exception catchpoint kinds. */
11295
11296static void
11297print_mention_exception (enum exception_catchpoint_kind ex,
11298 struct breakpoint *b)
11299{
11300 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11301 struct ui_out *uiout = current_uiout;
11302
11303 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11304 : _("Catchpoint "));
11305 ui_out_field_int (uiout, "bkptno", b->number);
11306 ui_out_text (uiout, ": ");
11307
11308 switch (ex)
11309 {
11310 case ex_catch_exception:
11311 if (c->excep_string != NULL)
11312 {
11313 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11314 struct cleanup *old_chain = make_cleanup (xfree, info);
11315
11316 ui_out_text (uiout, info);
11317 do_cleanups (old_chain);
11318 }
11319 else
11320 ui_out_text (uiout, _("all Ada exceptions"));
11321 break;
11322
11323 case ex_catch_exception_unhandled:
11324 ui_out_text (uiout, _("unhandled Ada exceptions"));
11325 break;
11326
11327 case ex_catch_assert:
11328 ui_out_text (uiout, _("failed Ada assertions"));
11329 break;
11330
11331 default:
11332 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11333 break;
11334 }
11335}
11336
11337/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11338 for all exception catchpoint kinds. */
11339
11340static void
11341print_recreate_exception (enum exception_catchpoint_kind ex,
11342 struct breakpoint *b, struct ui_file *fp)
11343{
11344 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11345
11346 switch (ex)
11347 {
11348 case ex_catch_exception:
11349 fprintf_filtered (fp, "catch exception");
11350 if (c->excep_string != NULL)
11351 fprintf_filtered (fp, " %s", c->excep_string);
11352 break;
11353
11354 case ex_catch_exception_unhandled:
11355 fprintf_filtered (fp, "catch exception unhandled");
11356 break;
11357
11358 case ex_catch_assert:
11359 fprintf_filtered (fp, "catch assert");
11360 break;
11361
11362 default:
11363 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11364 }
11365 print_recreate_thread (b, fp);
11366}
11367
11368/* Virtual table for "catch exception" breakpoints. */
11369
11370static void
11371dtor_catch_exception (struct breakpoint *b)
11372{
11373 dtor_exception (ex_catch_exception, b);
11374}
11375
11376static struct bp_location *
11377allocate_location_catch_exception (struct breakpoint *self)
11378{
11379 return allocate_location_exception (ex_catch_exception, self);
11380}
11381
11382static void
11383re_set_catch_exception (struct breakpoint *b)
11384{
11385 re_set_exception (ex_catch_exception, b);
11386}
11387
11388static void
11389check_status_catch_exception (bpstat bs)
11390{
11391 check_status_exception (ex_catch_exception, bs);
11392}
11393
11394static enum print_stop_action
11395print_it_catch_exception (bpstat bs)
11396{
11397 return print_it_exception (ex_catch_exception, bs);
11398}
11399
11400static void
11401print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11402{
11403 print_one_exception (ex_catch_exception, b, last_loc);
11404}
11405
11406static void
11407print_mention_catch_exception (struct breakpoint *b)
11408{
11409 print_mention_exception (ex_catch_exception, b);
11410}
11411
11412static void
11413print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11414{
11415 print_recreate_exception (ex_catch_exception, b, fp);
11416}
11417
11418static struct breakpoint_ops catch_exception_breakpoint_ops;
11419
11420/* Virtual table for "catch exception unhandled" breakpoints. */
11421
11422static void
11423dtor_catch_exception_unhandled (struct breakpoint *b)
11424{
11425 dtor_exception (ex_catch_exception_unhandled, b);
11426}
11427
11428static struct bp_location *
11429allocate_location_catch_exception_unhandled (struct breakpoint *self)
11430{
11431 return allocate_location_exception (ex_catch_exception_unhandled, self);
11432}
11433
11434static void
11435re_set_catch_exception_unhandled (struct breakpoint *b)
11436{
11437 re_set_exception (ex_catch_exception_unhandled, b);
11438}
11439
11440static void
11441check_status_catch_exception_unhandled (bpstat bs)
11442{
11443 check_status_exception (ex_catch_exception_unhandled, bs);
11444}
11445
11446static enum print_stop_action
11447print_it_catch_exception_unhandled (bpstat bs)
11448{
11449 return print_it_exception (ex_catch_exception_unhandled, bs);
11450}
11451
11452static void
11453print_one_catch_exception_unhandled (struct breakpoint *b,
11454 struct bp_location **last_loc)
11455{
11456 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11457}
11458
11459static void
11460print_mention_catch_exception_unhandled (struct breakpoint *b)
11461{
11462 print_mention_exception (ex_catch_exception_unhandled, b);
11463}
11464
11465static void
11466print_recreate_catch_exception_unhandled (struct breakpoint *b,
11467 struct ui_file *fp)
11468{
11469 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11470}
11471
11472static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11473
11474/* Virtual table for "catch assert" breakpoints. */
11475
11476static void
11477dtor_catch_assert (struct breakpoint *b)
11478{
11479 dtor_exception (ex_catch_assert, b);
11480}
11481
11482static struct bp_location *
11483allocate_location_catch_assert (struct breakpoint *self)
11484{
11485 return allocate_location_exception (ex_catch_assert, self);
11486}
11487
11488static void
11489re_set_catch_assert (struct breakpoint *b)
11490{
11491 return re_set_exception (ex_catch_assert, b);
11492}
11493
11494static void
11495check_status_catch_assert (bpstat bs)
11496{
11497 check_status_exception (ex_catch_assert, bs);
11498}
11499
11500static enum print_stop_action
11501print_it_catch_assert (bpstat bs)
11502{
11503 return print_it_exception (ex_catch_assert, bs);
11504}
11505
11506static void
11507print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11508{
11509 print_one_exception (ex_catch_assert, b, last_loc);
11510}
11511
11512static void
11513print_mention_catch_assert (struct breakpoint *b)
11514{
11515 print_mention_exception (ex_catch_assert, b);
11516}
11517
11518static void
11519print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11520{
11521 print_recreate_exception (ex_catch_assert, b, fp);
11522}
11523
11524static struct breakpoint_ops catch_assert_breakpoint_ops;
11525
11526/* Return a newly allocated copy of the first space-separated token
11527 in ARGSP, and then adjust ARGSP to point immediately after that
11528 token.
11529
11530 Return NULL if ARGPS does not contain any more tokens. */
11531
11532static char *
11533ada_get_next_arg (char **argsp)
11534{
11535 char *args = *argsp;
11536 char *end;
11537 char *result;
11538
11539 args = skip_spaces (args);
11540 if (args[0] == '\0')
11541 return NULL; /* No more arguments. */
11542
11543 /* Find the end of the current argument. */
11544
11545 end = skip_to_space (args);
11546
11547 /* Adjust ARGSP to point to the start of the next argument. */
11548
11549 *argsp = end;
11550
11551 /* Make a copy of the current argument and return it. */
11552
11553 result = xmalloc (end - args + 1);
11554 strncpy (result, args, end - args);
11555 result[end - args] = '\0';
11556
11557 return result;
11558}
11559
11560/* Split the arguments specified in a "catch exception" command.
11561 Set EX to the appropriate catchpoint type.
11562 Set EXCEP_STRING to the name of the specific exception if
11563 specified by the user. */
11564
11565static void
11566catch_ada_exception_command_split (char *args,
11567 enum exception_catchpoint_kind *ex,
11568 char **excep_string)
11569{
11570 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11571 char *exception_name;
11572
11573 exception_name = ada_get_next_arg (&args);
11574 make_cleanup (xfree, exception_name);
11575
11576 /* Check that we do not have any more arguments. Anything else
11577 is unexpected. */
11578
11579 args = skip_spaces (args);
11580
11581 if (args[0] != '\0')
11582 error (_("Junk at end of expression"));
11583
11584 discard_cleanups (old_chain);
11585
11586 if (exception_name == NULL)
11587 {
11588 /* Catch all exceptions. */
11589 *ex = ex_catch_exception;
11590 *excep_string = NULL;
11591 }
11592 else if (strcmp (exception_name, "unhandled") == 0)
11593 {
11594 /* Catch unhandled exceptions. */
11595 *ex = ex_catch_exception_unhandled;
11596 *excep_string = NULL;
11597 }
11598 else
11599 {
11600 /* Catch a specific exception. */
11601 *ex = ex_catch_exception;
11602 *excep_string = exception_name;
11603 }
11604}
11605
11606/* Return the name of the symbol on which we should break in order to
11607 implement a catchpoint of the EX kind. */
11608
11609static const char *
11610ada_exception_sym_name (enum exception_catchpoint_kind ex)
11611{
11612 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11613
11614 gdb_assert (data->exception_info != NULL);
11615
11616 switch (ex)
11617 {
11618 case ex_catch_exception:
11619 return (data->exception_info->catch_exception_sym);
11620 break;
11621 case ex_catch_exception_unhandled:
11622 return (data->exception_info->catch_exception_unhandled_sym);
11623 break;
11624 case ex_catch_assert:
11625 return (data->exception_info->catch_assert_sym);
11626 break;
11627 default:
11628 internal_error (__FILE__, __LINE__,
11629 _("unexpected catchpoint kind (%d)"), ex);
11630 }
11631}
11632
11633/* Return the breakpoint ops "virtual table" used for catchpoints
11634 of the EX kind. */
11635
11636static const struct breakpoint_ops *
11637ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11638{
11639 switch (ex)
11640 {
11641 case ex_catch_exception:
11642 return (&catch_exception_breakpoint_ops);
11643 break;
11644 case ex_catch_exception_unhandled:
11645 return (&catch_exception_unhandled_breakpoint_ops);
11646 break;
11647 case ex_catch_assert:
11648 return (&catch_assert_breakpoint_ops);
11649 break;
11650 default:
11651 internal_error (__FILE__, __LINE__,
11652 _("unexpected catchpoint kind (%d)"), ex);
11653 }
11654}
11655
11656/* Return the condition that will be used to match the current exception
11657 being raised with the exception that the user wants to catch. This
11658 assumes that this condition is used when the inferior just triggered
11659 an exception catchpoint.
11660
11661 The string returned is a newly allocated string that needs to be
11662 deallocated later. */
11663
11664static char *
11665ada_exception_catchpoint_cond_string (const char *excep_string)
11666{
11667 int i;
11668
11669 /* The standard exceptions are a special case. They are defined in
11670 runtime units that have been compiled without debugging info; if
11671 EXCEP_STRING is the not-fully-qualified name of a standard
11672 exception (e.g. "constraint_error") then, during the evaluation
11673 of the condition expression, the symbol lookup on this name would
11674 *not* return this standard exception. The catchpoint condition
11675 may then be set only on user-defined exceptions which have the
11676 same not-fully-qualified name (e.g. my_package.constraint_error).
11677
11678 To avoid this unexcepted behavior, these standard exceptions are
11679 systematically prefixed by "standard". This means that "catch
11680 exception constraint_error" is rewritten into "catch exception
11681 standard.constraint_error".
11682
11683 If an exception named contraint_error is defined in another package of
11684 the inferior program, then the only way to specify this exception as a
11685 breakpoint condition is to use its fully-qualified named:
11686 e.g. my_package.constraint_error. */
11687
11688 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11689 {
11690 if (strcmp (standard_exc [i], excep_string) == 0)
11691 {
11692 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11693 excep_string);
11694 }
11695 }
11696 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11697}
11698
11699/* Return the symtab_and_line that should be used to insert an exception
11700 catchpoint of the TYPE kind.
11701
11702 EXCEP_STRING should contain the name of a specific exception that
11703 the catchpoint should catch, or NULL otherwise.
11704
11705 ADDR_STRING returns the name of the function where the real
11706 breakpoint that implements the catchpoints is set, depending on the
11707 type of catchpoint we need to create. */
11708
11709static struct symtab_and_line
11710ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11711 char **addr_string, const struct breakpoint_ops **ops)
11712{
11713 const char *sym_name;
11714 struct symbol *sym;
11715
11716 /* First, find out which exception support info to use. */
11717 ada_exception_support_info_sniffer ();
11718
11719 /* Then lookup the function on which we will break in order to catch
11720 the Ada exceptions requested by the user. */
11721 sym_name = ada_exception_sym_name (ex);
11722 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11723
11724 /* We can assume that SYM is not NULL at this stage. If the symbol
11725 did not exist, ada_exception_support_info_sniffer would have
11726 raised an exception.
11727
11728 Also, ada_exception_support_info_sniffer should have already
11729 verified that SYM is a function symbol. */
11730 gdb_assert (sym != NULL);
11731 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11732
11733 /* Set ADDR_STRING. */
11734 *addr_string = xstrdup (sym_name);
11735
11736 /* Set OPS. */
11737 *ops = ada_exception_breakpoint_ops (ex);
11738
11739 return find_function_start_sal (sym, 1);
11740}
11741
11742/* Parse the arguments (ARGS) of the "catch exception" command.
11743
11744 If the user asked the catchpoint to catch only a specific
11745 exception, then save the exception name in ADDR_STRING.
11746
11747 See ada_exception_sal for a description of all the remaining
11748 function arguments of this function. */
11749
11750static struct symtab_and_line
11751ada_decode_exception_location (char *args, char **addr_string,
11752 char **excep_string,
11753 const struct breakpoint_ops **ops)
11754{
11755 enum exception_catchpoint_kind ex;
11756
11757 catch_ada_exception_command_split (args, &ex, excep_string);
11758 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11759}
11760
11761/* Create an Ada exception catchpoint. */
11762
11763static void
11764create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11765 struct symtab_and_line sal,
11766 char *addr_string,
11767 char *excep_string,
11768 const struct breakpoint_ops *ops,
11769 int tempflag,
11770 int from_tty)
11771{
11772 struct ada_catchpoint *c;
11773
11774 c = XNEW (struct ada_catchpoint);
11775 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11776 ops, tempflag, from_tty);
11777 c->excep_string = excep_string;
11778 create_excep_cond_exprs (c);
11779 install_breakpoint (0, &c->base, 1);
11780}
11781
11782/* Implement the "catch exception" command. */
11783
11784static void
11785catch_ada_exception_command (char *arg, int from_tty,
11786 struct cmd_list_element *command)
11787{
11788 struct gdbarch *gdbarch = get_current_arch ();
11789 int tempflag;
11790 struct symtab_and_line sal;
11791 char *addr_string = NULL;
11792 char *excep_string = NULL;
11793 const struct breakpoint_ops *ops = NULL;
11794
11795 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11796
11797 if (!arg)
11798 arg = "";
11799 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11800 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11801 excep_string, ops, tempflag, from_tty);
11802}
11803
11804static struct symtab_and_line
11805ada_decode_assert_location (char *args, char **addr_string,
11806 const struct breakpoint_ops **ops)
11807{
11808 /* Check that no argument where provided at the end of the command. */
11809
11810 if (args != NULL)
11811 {
11812 args = skip_spaces (args);
11813 if (*args != '\0')
11814 error (_("Junk at end of arguments."));
11815 }
11816
11817 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11818}
11819
11820/* Implement the "catch assert" command. */
11821
11822static void
11823catch_assert_command (char *arg, int from_tty,
11824 struct cmd_list_element *command)
11825{
11826 struct gdbarch *gdbarch = get_current_arch ();
11827 int tempflag;
11828 struct symtab_and_line sal;
11829 char *addr_string = NULL;
11830 const struct breakpoint_ops *ops = NULL;
11831
11832 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11833
11834 if (!arg)
11835 arg = "";
11836 sal = ada_decode_assert_location (arg, &addr_string, &ops);
11837 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11838 NULL, ops, tempflag, from_tty);
11839}
11840 /* Operators */
11841/* Information about operators given special treatment in functions
11842 below. */
11843/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11844
11845#define ADA_OPERATORS \
11846 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11847 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11848 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11849 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11850 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11851 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11852 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11853 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11854 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11855 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11856 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11857 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11858 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11859 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11860 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11861 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11862 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11863 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11864 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11865
11866static void
11867ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11868 int *argsp)
11869{
11870 switch (exp->elts[pc - 1].opcode)
11871 {
11872 default:
11873 operator_length_standard (exp, pc, oplenp, argsp);
11874 break;
11875
11876#define OP_DEFN(op, len, args, binop) \
11877 case op: *oplenp = len; *argsp = args; break;
11878 ADA_OPERATORS;
11879#undef OP_DEFN
11880
11881 case OP_AGGREGATE:
11882 *oplenp = 3;
11883 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11884 break;
11885
11886 case OP_CHOICES:
11887 *oplenp = 3;
11888 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11889 break;
11890 }
11891}
11892
11893/* Implementation of the exp_descriptor method operator_check. */
11894
11895static int
11896ada_operator_check (struct expression *exp, int pos,
11897 int (*objfile_func) (struct objfile *objfile, void *data),
11898 void *data)
11899{
11900 const union exp_element *const elts = exp->elts;
11901 struct type *type = NULL;
11902
11903 switch (elts[pos].opcode)
11904 {
11905 case UNOP_IN_RANGE:
11906 case UNOP_QUAL:
11907 type = elts[pos + 1].type;
11908 break;
11909
11910 default:
11911 return operator_check_standard (exp, pos, objfile_func, data);
11912 }
11913
11914 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11915
11916 if (type && TYPE_OBJFILE (type)
11917 && (*objfile_func) (TYPE_OBJFILE (type), data))
11918 return 1;
11919
11920 return 0;
11921}
11922
11923static char *
11924ada_op_name (enum exp_opcode opcode)
11925{
11926 switch (opcode)
11927 {
11928 default:
11929 return op_name_standard (opcode);
11930
11931#define OP_DEFN(op, len, args, binop) case op: return #op;
11932 ADA_OPERATORS;
11933#undef OP_DEFN
11934
11935 case OP_AGGREGATE:
11936 return "OP_AGGREGATE";
11937 case OP_CHOICES:
11938 return "OP_CHOICES";
11939 case OP_NAME:
11940 return "OP_NAME";
11941 }
11942}
11943
11944/* As for operator_length, but assumes PC is pointing at the first
11945 element of the operator, and gives meaningful results only for the
11946 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11947
11948static void
11949ada_forward_operator_length (struct expression *exp, int pc,
11950 int *oplenp, int *argsp)
11951{
11952 switch (exp->elts[pc].opcode)
11953 {
11954 default:
11955 *oplenp = *argsp = 0;
11956 break;
11957
11958#define OP_DEFN(op, len, args, binop) \
11959 case op: *oplenp = len; *argsp = args; break;
11960 ADA_OPERATORS;
11961#undef OP_DEFN
11962
11963 case OP_AGGREGATE:
11964 *oplenp = 3;
11965 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11966 break;
11967
11968 case OP_CHOICES:
11969 *oplenp = 3;
11970 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11971 break;
11972
11973 case OP_STRING:
11974 case OP_NAME:
11975 {
11976 int len = longest_to_int (exp->elts[pc + 1].longconst);
11977
11978 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11979 *argsp = 0;
11980 break;
11981 }
11982 }
11983}
11984
11985static int
11986ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11987{
11988 enum exp_opcode op = exp->elts[elt].opcode;
11989 int oplen, nargs;
11990 int pc = elt;
11991 int i;
11992
11993 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11994
11995 switch (op)
11996 {
11997 /* Ada attributes ('Foo). */
11998 case OP_ATR_FIRST:
11999 case OP_ATR_LAST:
12000 case OP_ATR_LENGTH:
12001 case OP_ATR_IMAGE:
12002 case OP_ATR_MAX:
12003 case OP_ATR_MIN:
12004 case OP_ATR_MODULUS:
12005 case OP_ATR_POS:
12006 case OP_ATR_SIZE:
12007 case OP_ATR_TAG:
12008 case OP_ATR_VAL:
12009 break;
12010
12011 case UNOP_IN_RANGE:
12012 case UNOP_QUAL:
12013 /* XXX: gdb_sprint_host_address, type_sprint */
12014 fprintf_filtered (stream, _("Type @"));
12015 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12016 fprintf_filtered (stream, " (");
12017 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12018 fprintf_filtered (stream, ")");
12019 break;
12020 case BINOP_IN_BOUNDS:
12021 fprintf_filtered (stream, " (%d)",
12022 longest_to_int (exp->elts[pc + 2].longconst));
12023 break;
12024 case TERNOP_IN_RANGE:
12025 break;
12026
12027 case OP_AGGREGATE:
12028 case OP_OTHERS:
12029 case OP_DISCRETE_RANGE:
12030 case OP_POSITIONAL:
12031 case OP_CHOICES:
12032 break;
12033
12034 case OP_NAME:
12035 case OP_STRING:
12036 {
12037 char *name = &exp->elts[elt + 2].string;
12038 int len = longest_to_int (exp->elts[elt + 1].longconst);
12039
12040 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12041 break;
12042 }
12043
12044 default:
12045 return dump_subexp_body_standard (exp, stream, elt);
12046 }
12047
12048 elt += oplen;
12049 for (i = 0; i < nargs; i += 1)
12050 elt = dump_subexp (exp, stream, elt);
12051
12052 return elt;
12053}
12054
12055/* The Ada extension of print_subexp (q.v.). */
12056
12057static void
12058ada_print_subexp (struct expression *exp, int *pos,
12059 struct ui_file *stream, enum precedence prec)
12060{
12061 int oplen, nargs, i;
12062 int pc = *pos;
12063 enum exp_opcode op = exp->elts[pc].opcode;
12064
12065 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12066
12067 *pos += oplen;
12068 switch (op)
12069 {
12070 default:
12071 *pos -= oplen;
12072 print_subexp_standard (exp, pos, stream, prec);
12073 return;
12074
12075 case OP_VAR_VALUE:
12076 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12077 return;
12078
12079 case BINOP_IN_BOUNDS:
12080 /* XXX: sprint_subexp */
12081 print_subexp (exp, pos, stream, PREC_SUFFIX);
12082 fputs_filtered (" in ", stream);
12083 print_subexp (exp, pos, stream, PREC_SUFFIX);
12084 fputs_filtered ("'range", stream);
12085 if (exp->elts[pc + 1].longconst > 1)
12086 fprintf_filtered (stream, "(%ld)",
12087 (long) exp->elts[pc + 1].longconst);
12088 return;
12089
12090 case TERNOP_IN_RANGE:
12091 if (prec >= PREC_EQUAL)
12092 fputs_filtered ("(", stream);
12093 /* XXX: sprint_subexp */
12094 print_subexp (exp, pos, stream, PREC_SUFFIX);
12095 fputs_filtered (" in ", stream);
12096 print_subexp (exp, pos, stream, PREC_EQUAL);
12097 fputs_filtered (" .. ", stream);
12098 print_subexp (exp, pos, stream, PREC_EQUAL);
12099 if (prec >= PREC_EQUAL)
12100 fputs_filtered (")", stream);
12101 return;
12102
12103 case OP_ATR_FIRST:
12104 case OP_ATR_LAST:
12105 case OP_ATR_LENGTH:
12106 case OP_ATR_IMAGE:
12107 case OP_ATR_MAX:
12108 case OP_ATR_MIN:
12109 case OP_ATR_MODULUS:
12110 case OP_ATR_POS:
12111 case OP_ATR_SIZE:
12112 case OP_ATR_TAG:
12113 case OP_ATR_VAL:
12114 if (exp->elts[*pos].opcode == OP_TYPE)
12115 {
12116 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12117 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12118 *pos += 3;
12119 }
12120 else
12121 print_subexp (exp, pos, stream, PREC_SUFFIX);
12122 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12123 if (nargs > 1)
12124 {
12125 int tem;
12126
12127 for (tem = 1; tem < nargs; tem += 1)
12128 {
12129 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12130 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12131 }
12132 fputs_filtered (")", stream);
12133 }
12134 return;
12135
12136 case UNOP_QUAL:
12137 type_print (exp->elts[pc + 1].type, "", stream, 0);
12138 fputs_filtered ("'(", stream);
12139 print_subexp (exp, pos, stream, PREC_PREFIX);
12140 fputs_filtered (")", stream);
12141 return;
12142
12143 case UNOP_IN_RANGE:
12144 /* XXX: sprint_subexp */
12145 print_subexp (exp, pos, stream, PREC_SUFFIX);
12146 fputs_filtered (" in ", stream);
12147 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12148 return;
12149
12150 case OP_DISCRETE_RANGE:
12151 print_subexp (exp, pos, stream, PREC_SUFFIX);
12152 fputs_filtered ("..", stream);
12153 print_subexp (exp, pos, stream, PREC_SUFFIX);
12154 return;
12155
12156 case OP_OTHERS:
12157 fputs_filtered ("others => ", stream);
12158 print_subexp (exp, pos, stream, PREC_SUFFIX);
12159 return;
12160
12161 case OP_CHOICES:
12162 for (i = 0; i < nargs-1; i += 1)
12163 {
12164 if (i > 0)
12165 fputs_filtered ("|", stream);
12166 print_subexp (exp, pos, stream, PREC_SUFFIX);
12167 }
12168 fputs_filtered (" => ", stream);
12169 print_subexp (exp, pos, stream, PREC_SUFFIX);
12170 return;
12171
12172 case OP_POSITIONAL:
12173 print_subexp (exp, pos, stream, PREC_SUFFIX);
12174 return;
12175
12176 case OP_AGGREGATE:
12177 fputs_filtered ("(", stream);
12178 for (i = 0; i < nargs; i += 1)
12179 {
12180 if (i > 0)
12181 fputs_filtered (", ", stream);
12182 print_subexp (exp, pos, stream, PREC_SUFFIX);
12183 }
12184 fputs_filtered (")", stream);
12185 return;
12186 }
12187}
12188
12189/* Table mapping opcodes into strings for printing operators
12190 and precedences of the operators. */
12191
12192static const struct op_print ada_op_print_tab[] = {
12193 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12194 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12195 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12196 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12197 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12198 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12199 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12200 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12201 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12202 {">=", BINOP_GEQ, PREC_ORDER, 0},
12203 {">", BINOP_GTR, PREC_ORDER, 0},
12204 {"<", BINOP_LESS, PREC_ORDER, 0},
12205 {">>", BINOP_RSH, PREC_SHIFT, 0},
12206 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12207 {"+", BINOP_ADD, PREC_ADD, 0},
12208 {"-", BINOP_SUB, PREC_ADD, 0},
12209 {"&", BINOP_CONCAT, PREC_ADD, 0},
12210 {"*", BINOP_MUL, PREC_MUL, 0},
12211 {"/", BINOP_DIV, PREC_MUL, 0},
12212 {"rem", BINOP_REM, PREC_MUL, 0},
12213 {"mod", BINOP_MOD, PREC_MUL, 0},
12214 {"**", BINOP_EXP, PREC_REPEAT, 0},
12215 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12216 {"-", UNOP_NEG, PREC_PREFIX, 0},
12217 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12218 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12219 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12220 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12221 {".all", UNOP_IND, PREC_SUFFIX, 1},
12222 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12223 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12224 {NULL, 0, 0, 0}
12225};
12226\f
12227enum ada_primitive_types {
12228 ada_primitive_type_int,
12229 ada_primitive_type_long,
12230 ada_primitive_type_short,
12231 ada_primitive_type_char,
12232 ada_primitive_type_float,
12233 ada_primitive_type_double,
12234 ada_primitive_type_void,
12235 ada_primitive_type_long_long,
12236 ada_primitive_type_long_double,
12237 ada_primitive_type_natural,
12238 ada_primitive_type_positive,
12239 ada_primitive_type_system_address,
12240 nr_ada_primitive_types
12241};
12242
12243static void
12244ada_language_arch_info (struct gdbarch *gdbarch,
12245 struct language_arch_info *lai)
12246{
12247 const struct builtin_type *builtin = builtin_type (gdbarch);
12248
12249 lai->primitive_type_vector
12250 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12251 struct type *);
12252
12253 lai->primitive_type_vector [ada_primitive_type_int]
12254 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12255 0, "integer");
12256 lai->primitive_type_vector [ada_primitive_type_long]
12257 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12258 0, "long_integer");
12259 lai->primitive_type_vector [ada_primitive_type_short]
12260 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12261 0, "short_integer");
12262 lai->string_char_type
12263 = lai->primitive_type_vector [ada_primitive_type_char]
12264 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12265 lai->primitive_type_vector [ada_primitive_type_float]
12266 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12267 "float", NULL);
12268 lai->primitive_type_vector [ada_primitive_type_double]
12269 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12270 "long_float", NULL);
12271 lai->primitive_type_vector [ada_primitive_type_long_long]
12272 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12273 0, "long_long_integer");
12274 lai->primitive_type_vector [ada_primitive_type_long_double]
12275 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12276 "long_long_float", NULL);
12277 lai->primitive_type_vector [ada_primitive_type_natural]
12278 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12279 0, "natural");
12280 lai->primitive_type_vector [ada_primitive_type_positive]
12281 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12282 0, "positive");
12283 lai->primitive_type_vector [ada_primitive_type_void]
12284 = builtin->builtin_void;
12285
12286 lai->primitive_type_vector [ada_primitive_type_system_address]
12287 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12288 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12289 = "system__address";
12290
12291 lai->bool_type_symbol = NULL;
12292 lai->bool_type_default = builtin->builtin_bool;
12293}
12294\f
12295 /* Language vector */
12296
12297/* Not really used, but needed in the ada_language_defn. */
12298
12299static void
12300emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12301{
12302 ada_emit_char (c, type, stream, quoter, 1);
12303}
12304
12305static int
12306parse (void)
12307{
12308 warnings_issued = 0;
12309 return ada_parse ();
12310}
12311
12312static const struct exp_descriptor ada_exp_descriptor = {
12313 ada_print_subexp,
12314 ada_operator_length,
12315 ada_operator_check,
12316 ada_op_name,
12317 ada_dump_subexp_body,
12318 ada_evaluate_subexp
12319};
12320
12321/* Implement the "la_get_symbol_name_match_p" language_defn method
12322 for Ada. */
12323
12324static symbol_name_match_p_ftype
12325ada_get_symbol_name_match_p (const char *lookup_name)
12326{
12327 if (should_use_wild_match (lookup_name))
12328 return wild_match;
12329 else
12330 return compare_names;
12331}
12332
12333const struct language_defn ada_language_defn = {
12334 "ada", /* Language name */
12335 language_ada,
12336 range_check_off,
12337 type_check_off,
12338 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12339 that's not quite what this means. */
12340 array_row_major,
12341 macro_expansion_no,
12342 &ada_exp_descriptor,
12343 parse,
12344 ada_error,
12345 resolve,
12346 ada_printchar, /* Print a character constant */
12347 ada_printstr, /* Function to print string constant */
12348 emit_char, /* Function to print single char (not used) */
12349 ada_print_type, /* Print a type using appropriate syntax */
12350 ada_print_typedef, /* Print a typedef using appropriate syntax */
12351 ada_val_print, /* Print a value using appropriate syntax */
12352 ada_value_print, /* Print a top-level value */
12353 NULL, /* Language specific skip_trampoline */
12354 NULL, /* name_of_this */
12355 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12356 basic_lookup_transparent_type, /* lookup_transparent_type */
12357 ada_la_decode, /* Language specific symbol demangler */
12358 NULL, /* Language specific
12359 class_name_from_physname */
12360 ada_op_print_tab, /* expression operators for printing */
12361 0, /* c-style arrays */
12362 1, /* String lower bound */
12363 ada_get_gdb_completer_word_break_characters,
12364 ada_make_symbol_completion_list,
12365 ada_language_arch_info,
12366 ada_print_array_index,
12367 default_pass_by_reference,
12368 c_get_string,
12369 ada_get_symbol_name_match_p, /* la_get_symbol_name_match_p */
12370 ada_iterate_over_symbols,
12371 LANG_MAGIC
12372};
12373
12374/* Provide a prototype to silence -Wmissing-prototypes. */
12375extern initialize_file_ftype _initialize_ada_language;
12376
12377/* Command-list for the "set/show ada" prefix command. */
12378static struct cmd_list_element *set_ada_list;
12379static struct cmd_list_element *show_ada_list;
12380
12381/* Implement the "set ada" prefix command. */
12382
12383static void
12384set_ada_command (char *arg, int from_tty)
12385{
12386 printf_unfiltered (_(\
12387"\"set ada\" must be followed by the name of a setting.\n"));
12388 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12389}
12390
12391/* Implement the "show ada" prefix command. */
12392
12393static void
12394show_ada_command (char *args, int from_tty)
12395{
12396 cmd_show_list (show_ada_list, from_tty, "");
12397}
12398
12399static void
12400initialize_ada_catchpoint_ops (void)
12401{
12402 struct breakpoint_ops *ops;
12403
12404 initialize_breakpoint_ops ();
12405
12406 ops = &catch_exception_breakpoint_ops;
12407 *ops = bkpt_breakpoint_ops;
12408 ops->dtor = dtor_catch_exception;
12409 ops->allocate_location = allocate_location_catch_exception;
12410 ops->re_set = re_set_catch_exception;
12411 ops->check_status = check_status_catch_exception;
12412 ops->print_it = print_it_catch_exception;
12413 ops->print_one = print_one_catch_exception;
12414 ops->print_mention = print_mention_catch_exception;
12415 ops->print_recreate = print_recreate_catch_exception;
12416
12417 ops = &catch_exception_unhandled_breakpoint_ops;
12418 *ops = bkpt_breakpoint_ops;
12419 ops->dtor = dtor_catch_exception_unhandled;
12420 ops->allocate_location = allocate_location_catch_exception_unhandled;
12421 ops->re_set = re_set_catch_exception_unhandled;
12422 ops->check_status = check_status_catch_exception_unhandled;
12423 ops->print_it = print_it_catch_exception_unhandled;
12424 ops->print_one = print_one_catch_exception_unhandled;
12425 ops->print_mention = print_mention_catch_exception_unhandled;
12426 ops->print_recreate = print_recreate_catch_exception_unhandled;
12427
12428 ops = &catch_assert_breakpoint_ops;
12429 *ops = bkpt_breakpoint_ops;
12430 ops->dtor = dtor_catch_assert;
12431 ops->allocate_location = allocate_location_catch_assert;
12432 ops->re_set = re_set_catch_assert;
12433 ops->check_status = check_status_catch_assert;
12434 ops->print_it = print_it_catch_assert;
12435 ops->print_one = print_one_catch_assert;
12436 ops->print_mention = print_mention_catch_assert;
12437 ops->print_recreate = print_recreate_catch_assert;
12438}
12439
12440void
12441_initialize_ada_language (void)
12442{
12443 add_language (&ada_language_defn);
12444
12445 initialize_ada_catchpoint_ops ();
12446
12447 add_prefix_cmd ("ada", no_class, set_ada_command,
12448 _("Prefix command for changing Ada-specfic settings"),
12449 &set_ada_list, "set ada ", 0, &setlist);
12450
12451 add_prefix_cmd ("ada", no_class, show_ada_command,
12452 _("Generic command for showing Ada-specific settings."),
12453 &show_ada_list, "show ada ", 0, &showlist);
12454
12455 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12456 &trust_pad_over_xvs, _("\
12457Enable or disable an optimization trusting PAD types over XVS types"), _("\
12458Show whether an optimization trusting PAD types over XVS types is activated"),
12459 _("\
12460This is related to the encoding used by the GNAT compiler. The debugger\n\
12461should normally trust the contents of PAD types, but certain older versions\n\
12462of GNAT have a bug that sometimes causes the information in the PAD type\n\
12463to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12464work around this bug. It is always safe to turn this option \"off\", but\n\
12465this incurs a slight performance penalty, so it is recommended to NOT change\n\
12466this option to \"off\" unless necessary."),
12467 NULL, NULL, &set_ada_list, &show_ada_list);
12468
12469 add_catch_command ("exception", _("\
12470Catch Ada exceptions, when raised.\n\
12471With an argument, catch only exceptions with the given name."),
12472 catch_ada_exception_command,
12473 NULL,
12474 CATCH_PERMANENT,
12475 CATCH_TEMPORARY);
12476 add_catch_command ("assert", _("\
12477Catch failed Ada assertions, when raised.\n\
12478With an argument, catch only exceptions with the given name."),
12479 catch_assert_command,
12480 NULL,
12481 CATCH_PERMANENT,
12482 CATCH_TEMPORARY);
12483
12484 varsize_limit = 65536;
12485
12486 obstack_init (&symbol_list_obstack);
12487
12488 decoded_names_store = htab_create_alloc
12489 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12490 NULL, xcalloc, xfree);
12491
12492 /* Setup per-inferior data. */
12493 observer_attach_inferior_exit (ada_inferior_exit);
12494 ada_inferior_data
12495 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12496}
This page took 0.071024 seconds and 4 git commands to generate.