Add support for dynamic DW_AT_byte_stride.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
... / ...
CommitLineData
1/* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21#include "defs.h"
22#include <ctype.h>
23#include "demangle.h"
24#include "gdb_regex.h"
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
39#include "hashtab.h"
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
46#include "infcall.h"
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
50#include "source.h"
51#include "observer.h"
52#include "vec.h"
53#include "stack.h"
54#include "gdb_vecs.h"
55#include "typeprint.h"
56#include "namespace.h"
57
58#include "psymtab.h"
59#include "value.h"
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
63#include "common/function-view.h"
64#include "common/byte-vector.h"
65#include <algorithm>
66
67/* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
75static struct type *desc_base_type (struct type *);
76
77static struct type *desc_bounds_type (struct type *);
78
79static struct value *desc_bounds (struct value *);
80
81static int fat_pntr_bounds_bitpos (struct type *);
82
83static int fat_pntr_bounds_bitsize (struct type *);
84
85static struct type *desc_data_target_type (struct type *);
86
87static struct value *desc_data (struct value *);
88
89static int fat_pntr_data_bitpos (struct type *);
90
91static int fat_pntr_data_bitsize (struct type *);
92
93static struct value *desc_one_bound (struct value *, int, int);
94
95static int desc_bound_bitpos (struct type *, int, int);
96
97static int desc_bound_bitsize (struct type *, int, int);
98
99static struct type *desc_index_type (struct type *, int);
100
101static int desc_arity (struct type *);
102
103static int ada_type_match (struct type *, struct type *, int);
104
105static int ada_args_match (struct symbol *, struct value **, int);
106
107static struct value *make_array_descriptor (struct type *, struct value *);
108
109static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118static int is_nonfunction (struct block_symbol *, int);
119
120static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123static int num_defns_collected (struct obstack *);
124
125static struct block_symbol *defns_collected (struct obstack *, int);
126
127static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135static const char *ada_op_name (enum exp_opcode);
136
137static const char *ada_decoded_op_name (enum exp_opcode);
138
139static int numeric_type_p (struct type *);
140
141static int integer_type_p (struct type *);
142
143static int scalar_type_p (struct type *);
144
145static int discrete_type_p (struct type *);
146
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158static struct value *evaluate_subexp_type (struct expression *, int *);
159
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163static int is_dynamic_field (struct type *, int);
164
165static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171static struct type *to_fixed_range_type (struct type *, struct value *);
172
173static struct type *to_static_fixed_type (struct type *);
174static struct type *static_unwrap_type (struct type *type);
175
176static struct value *unwrap_value (struct value *);
177
178static struct type *constrained_packed_array_type (struct type *, long *);
179
180static struct type *decode_constrained_packed_array_type (struct type *);
181
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
189
190static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200static int equiv_types (struct type *, struct type *);
201
202static int is_name_suffix (const char *);
203
204static int advance_wild_match (const char **, const char *, int);
205
206static bool wild_match (const char *name, const char *patn);
207
208static struct value *ada_coerce_ref (struct value *);
209
210static LONGEST pos_atr (struct value *);
211
212static struct value *value_pos_atr (struct type *, struct value *);
213
214static struct value *value_val_atr (struct type *, struct value *);
215
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235static int ada_is_direct_array_type (struct type *);
236
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272static struct type *ada_find_any_type (const char *name);
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277\f
278
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319/* Maximum-sized dynamic type. */
320static unsigned int varsize_limit;
321
322static const char ada_completer_word_break_characters[] =
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327#endif
328
329/* The name of the symbol to use to get the name of the main subprogram. */
330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (const char *args, int from_tty)
357{
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (const char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
485 /* Utilities */
486
487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558}
559
560static const char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571{
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574}
575
576/* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582{
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596static int
597field_name_match (const char *field_name, const char *target)
598{
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607}
608
609
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
637
638int
639ada_name_prefix_len (const char *name)
640{
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652}
653
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657static int
658is_suffix (const char *str, const char *suffix)
659{
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667}
668
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672static struct value *
673coerce_unspec_val_to_type (struct value *val, struct type *type)
674{
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700}
701
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
712cond_offset_target (CORE_ADDR address, long offset)
713{
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718}
719
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729static void
730lim_warning (const char *format, ...)
731{
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740}
741
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746void
747ada_ensure_varsize_limit (const struct type *type)
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751}
752
753/* Maximum value of a SIZE-byte signed integer type. */
754static LONGEST
755max_of_size (int size)
756{
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760}
761
762/* Minimum value of a SIZE-byte signed integer type. */
763static LONGEST
764min_of_size (int size)
765{
766 return -max_of_size (size) - 1;
767}
768
769/* Maximum value of a SIZE-byte unsigned integer type. */
770static ULONGEST
771umax_of_size (int size)
772{
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776}
777
778/* Maximum value of integral type T, as a signed quantity. */
779static LONGEST
780max_of_type (struct type *t)
781{
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
788/* Minimum value of integral type T, as a signed quantity. */
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
801{
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817}
818
819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
822{
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843static struct type *
844get_base_type (struct type *type)
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853}
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
894\f
895
896 /* Language Selection */
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901enum language
902ada_update_initial_language (enum language lang)
903{
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909}
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
949\f
950 /* Symbols */
951
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978};
979
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
987{
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035}
1036
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
1046/* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050char *
1051ada_fold_name (const char *name)
1052{
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073}
1074
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
1167{
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
1179 if (startswith (encoded, "_ada_"))
1180 encoded += 5;
1181
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
1185 if (encoded[0] == '_' || encoded[0] == '<')
1186 goto Suppress;
1187
1188 len0 = strlen (encoded);
1189
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
1192
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
1199 {
1200 if (p[3] == 'X')
1201 len0 = p - encoded;
1202 else
1203 goto Suppress;
1204 }
1205
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1211 len0 -= 3;
1212
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1218 len0 -= 2;
1219
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1224 len0 -= 1;
1225
1226 /* Make decoded big enough for possible expansion by operator name. */
1227
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
1230
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1234 {
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
1243 }
1244
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
1254 /* Is this a symbol function? */
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
1258
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
1276 at_start_name = 0;
1277
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1282 i += 2;
1283
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
1306 of subprograms created by the compiler for each entry. The first
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1371 {
1372 /* Replace '__' by '.'. */
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
1378 else
1379 {
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
1386 }
1387 decoded[j] = '\000';
1388
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
1394 goto Suppress;
1395
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
1400
1401Suppress:
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
1406 else
1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1408 return decoded;
1409
1410}
1411
1412/* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417static struct htab *decoded_names_store;
1418
1419/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
1424 GSYMBOL).
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
1427 when a decoded name is cached in it. */
1428
1429const char *
1430ada_decode_symbol (const struct general_symbol_info *arg)
1431{
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
1434 &gsymbol->language_specific.demangled_name;
1435
1436 if (!gsymbol->ada_mangled)
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
1439 struct obstack *obstack = gsymbol->language_specific.obstack;
1440
1441 gsymbol->ada_mangled = 1;
1442
1443 if (obstack != NULL)
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1446 else
1447 {
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
1455
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
1460 }
1461
1462 return *resultp;
1463}
1464
1465static char *
1466ada_la_decode (const char *encoded, int options)
1467{
1468 return xstrdup (ada_decode (encoded));
1469}
1470
1471/* Implement la_sniff_from_mangled_name for Ada. */
1472
1473static int
1474ada_sniff_from_mangled_name (const char *mangled, char **out)
1475{
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508}
1509
1510\f
1511
1512 /* Arrays */
1513
1514/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537void
1538ada_fixup_array_indexes_type (struct type *index_desc_type)
1539{
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567}
1568
1569/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1570
1571static const char *bound_name[] = {
1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574};
1575
1576/* Maximum number of array dimensions we are prepared to handle. */
1577
1578#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1579
1580
1581/* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
1583
1584/* The descriptor or array type, if any, indicated by TYPE; removes
1585 level of indirection, if needed. */
1586
1587static struct type *
1588desc_base_type (struct type *type)
1589{
1590 if (type == NULL)
1591 return NULL;
1592 type = ada_check_typedef (type);
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1600 else
1601 return type;
1602}
1603
1604/* True iff TYPE indicates a "thin" array pointer type. */
1605
1606static int
1607is_thin_pntr (struct type *type)
1608{
1609 return
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612}
1613
1614/* The descriptor type for thin pointer type TYPE. */
1615
1616static struct type *
1617thin_descriptor_type (struct type *type)
1618{
1619 struct type *base_type = desc_base_type (type);
1620
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
1625 else
1626 {
1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1628
1629 if (alt_type == NULL)
1630 return base_type;
1631 else
1632 return alt_type;
1633 }
1634}
1635
1636/* A pointer to the array data for thin-pointer value VAL. */
1637
1638static struct value *
1639thin_data_pntr (struct value *val)
1640{
1641 struct type *type = ada_check_typedef (value_type (val));
1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1643
1644 data_type = lookup_pointer_type (data_type);
1645
1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1647 return value_cast (data_type, value_copy (val));
1648 else
1649 return value_from_longest (data_type, value_address (val));
1650}
1651
1652/* True iff TYPE indicates a "thick" array pointer type. */
1653
1654static int
1655is_thick_pntr (struct type *type)
1656{
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1660}
1661
1662/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
1664
1665static struct type *
1666desc_bounds_type (struct type *type)
1667{
1668 struct type *r;
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
1678 return NULL;
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
1681 return ada_check_typedef (r);
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1688 }
1689 return NULL;
1690}
1691
1692/* If ARR is an array descriptor (fat or thin pointer), or pointer to
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
1695static struct value *
1696desc_bounds (struct value *arr)
1697{
1698 struct type *type = ada_check_typedef (value_type (arr));
1699
1700 if (is_thin_pntr (type))
1701 {
1702 struct type *bounds_type =
1703 desc_bounds_type (thin_descriptor_type (type));
1704 LONGEST addr;
1705
1706 if (bounds_type == NULL)
1707 error (_("Bad GNAT array descriptor"));
1708
1709 /* NOTE: The following calculation is not really kosher, but
1710 since desc_type is an XVE-encoded type (and shouldn't be),
1711 the correct calculation is a real pain. FIXME (and fix GCC). */
1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1713 addr = value_as_long (arr);
1714 else
1715 addr = value_address (arr);
1716
1717 return
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
1720 }
1721
1722 else if (is_thick_pntr (type))
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
1743 else
1744 return NULL;
1745}
1746
1747/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
1750static int
1751fat_pntr_bounds_bitpos (struct type *type)
1752{
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754}
1755
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 size of the field containing the address of the bounds data. */
1758
1759static int
1760fat_pntr_bounds_bitsize (struct type *type)
1761{
1762 type = desc_base_type (type);
1763
1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1768}
1769
1770/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
1774
1775static struct type *
1776desc_data_target_type (struct type *type)
1777{
1778 type = desc_base_type (type);
1779
1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
1781 if (is_thin_pntr (type))
1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1783 else if (is_thick_pntr (type))
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1790 }
1791
1792 return NULL;
1793}
1794
1795/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
1797
1798static struct value *
1799desc_data (struct value *arr)
1800{
1801 struct type *type = value_type (arr);
1802
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1807 _("Bad GNAT array descriptor"));
1808 else
1809 return NULL;
1810}
1811
1812
1813/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1814 position of the field containing the address of the data. */
1815
1816static int
1817fat_pntr_data_bitpos (struct type *type)
1818{
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820}
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 size of the field containing the address of the data. */
1824
1825static int
1826fat_pntr_data_bitsize (struct type *type)
1827{
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
1832 else
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834}
1835
1836/* If BOUNDS is an array-bounds structure (or pointer to one), return
1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
1840static struct value *
1841desc_one_bound (struct value *bounds, int i, int which)
1842{
1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1844 _("Bad GNAT array descriptor bounds"));
1845}
1846
1847/* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
1851static int
1852desc_bound_bitpos (struct type *type, int i, int which)
1853{
1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1855}
1856
1857/* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
1861static int
1862desc_bound_bitsize (struct type *type, int i, int which)
1863{
1864 type = desc_base_type (type);
1865
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1870}
1871
1872/* If TYPE is the type of an array-bounds structure, the type of its
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
1875static struct type *
1876desc_index_type (struct type *type, int i)
1877{
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
1883 return NULL;
1884}
1885
1886/* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
1889static int
1890desc_arity (struct type *type)
1891{
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897}
1898
1899/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
1903static int
1904ada_is_direct_array_type (struct type *type)
1905{
1906 if (type == NULL)
1907 return 0;
1908 type = ada_check_typedef (type);
1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1910 || ada_is_array_descriptor_type (type));
1911}
1912
1913/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1914 * to one. */
1915
1916static int
1917ada_is_array_type (struct type *type)
1918{
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924}
1925
1926/* Non-zero iff TYPE is a simple array type or pointer to one. */
1927
1928int
1929ada_is_simple_array_type (struct type *type)
1930{
1931 if (type == NULL)
1932 return 0;
1933 type = ada_check_typedef (type);
1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
1938}
1939
1940/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
1942int
1943ada_is_array_descriptor_type (struct type *type)
1944{
1945 struct type *data_type = desc_data_target_type (type);
1946
1947 if (type == NULL)
1948 return 0;
1949 type = ada_check_typedef (type);
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
1953}
1954
1955/* Non-zero iff type is a partially mal-formed GNAT array
1956 descriptor. FIXME: This is to compensate for some problems with
1957 debugging output from GNAT. Re-examine periodically to see if it
1958 is still needed. */
1959
1960int
1961ada_is_bogus_array_descriptor (struct type *type)
1962{
1963 return
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
1969}
1970
1971
1972/* If ARR has a record type in the form of a standard GNAT array descriptor,
1973 (fat pointer) returns the type of the array data described---specifically,
1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1975 in from the descriptor; otherwise, they are left unspecified. If
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
1978 a descriptor. */
1979struct type *
1980ada_type_of_array (struct value *arr, int bounds)
1981{
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
1984
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
1987
1988 if (!bounds)
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
1999 else
2000 {
2001 struct type *elt_type;
2002 int arity;
2003 struct value *descriptor;
2004
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
2007
2008 if (elt_type == NULL || arity == 0)
2009 return ada_check_typedef (value_type (arr));
2010
2011 descriptor = desc_bounds (arr);
2012 if (value_as_long (descriptor) == 0)
2013 return NULL;
2014 while (arity > 0)
2015 {
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
2020
2021 arity -= 1;
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
2025 elt_type = create_array_type (array_type, elt_type, range_type);
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
2047 }
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051}
2052
2053/* If ARR does not represent an array, returns ARR unchanged.
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
2058struct value *
2059ada_coerce_to_simple_array_ptr (struct value *arr)
2060{
2061 if (ada_is_array_descriptor_type (value_type (arr)))
2062 {
2063 struct type *arrType = ada_type_of_array (arr, 1);
2064
2065 if (arrType == NULL)
2066 return NULL;
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
2071 else
2072 return arr;
2073}
2074
2075/* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
2077 be ARR itself if it already is in the proper form). */
2078
2079struct value *
2080ada_coerce_to_simple_array (struct value *arr)
2081{
2082 if (ada_is_array_descriptor_type (value_type (arr)))
2083 {
2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2085
2086 if (arrVal == NULL)
2087 error (_("Bounds unavailable for null array pointer."));
2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2089 return value_ind (arrVal);
2090 }
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
2093 else
2094 return arr;
2095}
2096
2097/* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
2099 packing). For other types, is the identity. */
2100
2101struct type *
2102ada_coerce_to_simple_array_type (struct type *type)
2103{
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
2106
2107 if (ada_is_array_descriptor_type (type))
2108 return ada_check_typedef (desc_data_target_type (type));
2109
2110 return type;
2111}
2112
2113/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
2115static int
2116ada_is_packed_array_type (struct type *type)
2117{
2118 if (type == NULL)
2119 return 0;
2120 type = desc_base_type (type);
2121 type = ada_check_typedef (type);
2122 return
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125}
2126
2127/* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130int
2131ada_is_constrained_packed_array_type (struct type *type)
2132{
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135}
2136
2137/* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140static int
2141ada_is_unconstrained_packed_array_type (struct type *type)
2142{
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145}
2146
2147/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150static long
2151decode_packed_array_bitsize (struct type *type)
2152{
2153 const char *raw_name;
2154 const char *tail;
2155 long bits;
2156
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
2171 gdb_assert (tail != NULL);
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181}
2182
2183/* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
2199
2200static struct type *
2201constrained_packed_array_type (struct type *type, long *elt_bits)
2202{
2203 struct type *new_elt_type;
2204 struct type *new_type;
2205 struct type *index_type_desc;
2206 struct type *index_type;
2207 LONGEST low_bound, high_bound;
2208
2209 type = ada_check_typedef (type);
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
2220 new_type = alloc_type_copy (type);
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
2224 create_array_type (new_type, new_elt_type, index_type);
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
2234 else
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
2237 TYPE_LENGTH (new_type) =
2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2239 }
2240
2241 TYPE_FIXED_INSTANCE (new_type) = 1;
2242 return new_type;
2243}
2244
2245/* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
2247
2248static struct type *
2249decode_constrained_packed_array_type (struct type *type)
2250{
2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
2252 char *name;
2253 const char *tail;
2254 struct type *shadow_type;
2255 long bits;
2256
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
2265 type = desc_base_type (type);
2266
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
2273 {
2274 lim_warning (_("could not find bounds information on packed array"));
2275 return NULL;
2276 }
2277 shadow_type = check_typedef (shadow_type);
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
2283 return NULL;
2284 }
2285
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
2288}
2289
2290/* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
2294 type length is set appropriately. */
2295
2296static struct value *
2297decode_constrained_packed_array (struct value *arr)
2298{
2299 struct type *type;
2300
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2310 arr = value_ind (arr);
2311
2312 type = decode_constrained_packed_array_type (value_type (arr));
2313 if (type == NULL)
2314 {
2315 error (_("can't unpack array"));
2316 return NULL;
2317 }
2318
2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2320 && ada_is_modular_type (value_type (arr)))
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
2329 mod = ada_modulus (value_type (arr)) - 1;
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
2344 return coerce_unspec_val_to_type (arr, type);
2345}
2346
2347
2348/* The value of the element of packed array ARR at the ARITY indices
2349 given in IND. ARR must be a simple array. */
2350
2351static struct value *
2352value_subscript_packed (struct value *arr, int arity, struct value **ind)
2353{
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
2357 struct type *elt_type;
2358 struct value *v;
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
2362 elt_type = ada_check_typedef (value_type (arr));
2363 for (i = 0; i < arity; i += 1)
2364 {
2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
2370 else
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
2378 lim_warning (_("don't know bounds of array"));
2379 lowerbound = upperbound = 0;
2380 }
2381
2382 idx = pos_atr (ind[i]);
2383 if (idx < lowerbound || idx > upperbound)
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2389 }
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2395 bits, elt_type);
2396 return v;
2397}
2398
2399/* Non-zero iff TYPE includes negative integer values. */
2400
2401static int
2402has_negatives (struct type *type)
2403{
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
2413}
2414
2415/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2417 the unpacked buffer.
2418
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
2424
2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2426
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429static void
2430ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434{
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
2445 unsigned long accum; /* Staging area for bits being transferred */
2446 int accumSize; /* Number of meaningful bits in accum */
2447 unsigned char sign;
2448
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
2451 int delta = is_big_endian ? -1 : 1;
2452
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
2459 srcBitsLeft = bit_size;
2460 src_bytes_left = src_len;
2461 unpacked_bytes_left = unpacked_len;
2462 sign = 0;
2463
2464 if (is_big_endian)
2465 {
2466 src_idx = src_len - 1;
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2469 sign = ~0;
2470
2471 unusedLS =
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
2474
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
2489 }
2490 }
2491 else
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
2495 src_idx = unpacked_idx = 0;
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2500 sign = ~0;
2501 }
2502
2503 accum = 0;
2504 while (src_bytes_left > 0)
2505 {
2506 /* Mask for removing bits of the next source byte that are not
2507 part of the value. */
2508 unsigned int unusedMSMask =
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
2512 unsigned int signMask = sign & ~unusedMSMask;
2513
2514 accum |=
2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2516 accumSize += HOST_CHAR_BIT - unusedLS;
2517 if (accumSize >= HOST_CHAR_BIT)
2518 {
2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
2524 }
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
2527 src_bytes_left -= 1;
2528 src_idx += delta;
2529 }
2530 while (unpacked_bytes_left > 0)
2531 {
2532 accum |= sign << accumSize;
2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2534 accumSize -= HOST_CHAR_BIT;
2535 if (accumSize < 0)
2536 accumSize = 0;
2537 accum >>= HOST_CHAR_BIT;
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
2540 }
2541}
2542
2543/* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552struct value *
2553ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556{
2557 struct value *v;
2558 const gdb_byte *src; /* First byte containing data to unpack */
2559 gdb_byte *unpacked;
2560 const int is_scalar = is_scalar_type (type);
2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2562 gdb::byte_vector staging;
2563
2564 type = ada_check_typedef (type);
2565
2566 if (obj == NULL)
2567 src = valaddr + offset;
2568 else
2569 src = value_contents (obj) + offset;
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
2584 staging.data (), staging.size (),
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
2587 type = resolve_dynamic_type (type, staging.data (), 0);
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
2599 }
2600
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
2604 src = valaddr + offset;
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2609 gdb_byte *buf;
2610
2611 v = value_at (type, value_address (obj) + offset);
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
2619 src = value_contents (obj) + offset;
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
2642 unpacked = value_contents_writeable (v);
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
2650 if (staging.size () == TYPE_LENGTH (type))
2651 {
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
2655 memcpy (unpacked, staging.data (), staging.size ());
2656 }
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
2661
2662 return v;
2663}
2664
2665/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2667 not overlap. */
2668static void
2669move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2670 int src_offset, int n, int bits_big_endian_p)
2671{
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
2679 if (bits_big_endian_p)
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
2685 while (n > 0)
2686 {
2687 int unused_right;
2688
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
2712 while (n > 0)
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
2728 }
2729}
2730
2731/* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
2734 floating-point or non-scalar types. */
2735
2736static struct value *
2737ada_value_assign (struct value *toval, struct value *fromval)
2738{
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
2741
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
2750 if (!deprecated_value_modifiable (toval))
2751 error (_("Left operand of assignment is not a modifiable lvalue."));
2752
2753 if (VALUE_LVAL (toval) == lval_memory
2754 && bits > 0
2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2757 {
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2760 int from_size;
2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
2762 struct value *val;
2763 CORE_ADDR to_addr = value_address (toval);
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2766 fromval = value_cast (type, fromval);
2767
2768 read_memory (to_addr, buffer, len);
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
2773 move_bits (buffer, value_bitpos (toval),
2774 value_contents (fromval), from_size - bits, bits, 1);
2775 else
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
2778 write_memory_with_notification (to_addr, buffer, len);
2779
2780 val = value_copy (toval);
2781 memcpy (value_contents_raw (val), value_contents (fromval),
2782 TYPE_LENGTH (type));
2783 deprecated_set_value_type (val, type);
2784
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789}
2790
2791
2792/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
2803static void
2804value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806{
2807 LONGEST offset_in_container =
2808 (LONGEST) (value_address (component) - value_address (container));
2809 int bit_offset_in_container =
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
2812
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2821 move_bits (value_contents_writeable (container) + offset_in_container,
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2825 bits, 1);
2826 else
2827 move_bits (value_contents_writeable (container) + offset_in_container,
2828 value_bitpos (container) + bit_offset_in_container,
2829 value_contents (val), 0, bits, 0);
2830}
2831
2832/* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
2834 thereto. */
2835
2836struct value *
2837ada_value_subscript (struct value *arr, int arity, struct value **ind)
2838{
2839 int k;
2840 struct value *elt;
2841 struct type *elt_type;
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
2845 elt_type = ada_check_typedef (value_type (elt));
2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2853 error (_("too many subscripts (%d expected)"), k);
2854 elt = value_subscript (elt, pos_atr (ind[k]));
2855 }
2856 return elt;
2857}
2858
2859/* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
2870
2871static struct value *
2872ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2873{
2874 int k;
2875 struct value *array_ind = ada_value_ind (arr);
2876 struct type *type
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
2886 struct value *lwb_value;
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2889 error (_("too many subscripts (%d expected)"), k);
2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2891 value_copy (arr));
2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899}
2900
2901/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
2905static struct value *
2906ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
2908{
2909 struct type *type0 = ada_check_typedef (type);
2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2911 struct type *index_type
2912 = create_static_range_type (NULL, base_index_type, low, high);
2913 struct type *slice_type =
2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2917 CORE_ADDR base;
2918
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2921 {
2922 warning (_("unable to get positions in slice, use bounds instead"));
2923 low_pos = low;
2924 base_low_pos = base_low;
2925 }
2926
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2930 return value_at_lazy (slice_type, base);
2931}
2932
2933
2934static struct value *
2935ada_value_slice (struct value *array, int low, int high)
2936{
2937 struct type *type = ada_check_typedef (value_type (array));
2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2941 struct type *slice_type =
2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955}
2956
2957/* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962int
2963ada_array_arity (struct type *type)
2964{
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983}
2984
2985/* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990struct type *
2991ada_array_element_type (struct type *type, int nindices)
2992{
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027}
3028
3029/* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035static struct type *
3036ada_index_type (struct type *type, int n, const char *name)
3037{
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066}
3067
3068/* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074static LONGEST
3075ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076{
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123}
3124
3125/* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130static LONGEST
3131ada_array_bound (struct value *arr, int n, int which)
3132{
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145}
3146
3147/* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153static LONGEST
3154ada_array_length (struct value *arr, int n)
3155{
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191}
3192
3193/* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196static struct value *
3197empty_array (struct type *arr_type, int low)
3198{
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206}
3207\f
3208
3209 /* Name resolution */
3210
3211/* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214static const char *
3215ada_decoded_op_name (enum exp_opcode op)
3216{
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225}
3226
3227
3228/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237static void
3238resolve (expression_up *expp, int void_context_p)
3239{
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247}
3248
3249/* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258static struct value *
3259resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261{
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = expp->get ();
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = expp->get ();
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
3508 innermost_block = candidates[i].block;
3509 }
3510
3511 if (deprocedure_p
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 == TYPE_CODE_FUNC))
3514 {
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
3518 exp = expp->get ();
3519 }
3520 break;
3521
3522 case OP_FUNCALL:
3523 {
3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3526 {
3527 struct block_symbol *candidates;
3528 int n_candidates;
3529
3530 n_candidates =
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
3534 &candidates);
3535 make_cleanup (xfree, candidates);
3536
3537 if (n_candidates == 1)
3538 i = 0;
3539 else
3540 {
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3543 argvec, nargs,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 context_type);
3546 if (i < 0)
3547 error (_("Could not find a match for %s"),
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 }
3550
3551 exp->elts[pc + 4].block = candidates[i].block;
3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
3555 innermost_block = candidates[i].block;
3556 }
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
3581 {
3582 struct block_symbol *candidates;
3583 int n_candidates;
3584
3585 n_candidates =
3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
3587 (struct block *) NULL, VAR_DOMAIN,
3588 &candidates);
3589 make_cleanup (xfree, candidates);
3590
3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3592 ada_decoded_op_name (op), NULL);
3593 if (i < 0)
3594 break;
3595
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
3599 exp = expp->get ();
3600 }
3601 break;
3602
3603 case OP_TYPE:
3604 case OP_REGISTER:
3605 do_cleanups (old_chain);
3606 return NULL;
3607 }
3608
3609 *pos = pc;
3610 do_cleanups (old_chain);
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
3617}
3618
3619/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621 a non-pointer. */
3622/* The term "match" here is rather loose. The match is heuristic and
3623 liberal. */
3624
3625static int
3626ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627{
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
3636 switch (TYPE_CODE (ftype))
3637 {
3638 default:
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3644 else
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
3659
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3668 else
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676}
3677
3678/* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3682
3683static int
3684ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685{
3686 int i;
3687 struct type *func_type = SYMBOL_TYPE (func);
3688
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
3700 if (actuals[i] == NULL)
3701 return 0;
3702 else
3703 {
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
3711 }
3712 return 1;
3713}
3714
3715/* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720static int
3721return_match (struct type *func_type, struct type *context_type)
3722{
3723 struct type *return_type;
3724
3725 if (func_type == NULL)
3726 return 1;
3727
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730 else
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3733 return 1;
3734
3735 context_type = get_base_type (context_type);
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743}
3744
3745
3746/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3757
3758static int
3759ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3762{
3763 int fallback;
3764 int k;
3765 int m; /* Number of hits */
3766
3767 m = 0;
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772 {
3773 for (k = 0; k < nsyms; k += 1)
3774 {
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
3784 }
3785
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3790 if (m == 0)
3791 return -1;
3792 else if (m > 1 && !parse_completion)
3793 {
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3796 return 0;
3797 }
3798 return 0;
3799}
3800
3801/* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
3807static int
3808encoded_ordered_before (const char *N0, const char *N1)
3809{
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
3817
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819 ;
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821 ;
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
3826
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
3836 return (strcmp (N0, N1) < 0);
3837 }
3838}
3839
3840/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
3843static void
3844sort_choices (struct block_symbol syms[], int nsyms)
3845{
3846 int i;
3847
3848 for (i = 1; i < nsyms; i += 1)
3849 {
3850 struct block_symbol sym = syms[i];
3851 int j;
3852
3853 for (j = i - 1; j >= 0; j -= 1)
3854 {
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
3860 syms[j + 1] = sym;
3861 }
3862}
3863
3864/* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866static int print_signatures = 1;
3867
3868/* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873static void
3874ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876{
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905}
3906
3907/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
3911
3912/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3914
3915int
3916user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917{
3918 int i;
3919 int *chosen = XALLOCAVEC (int , nsyms);
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3923
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3926 if (nsyms <= 1)
3927 return nsyms;
3928
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931canceled because the command is ambiguous\n\
3932See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3943
3944 sort_choices (syms, nsyms);
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
3948 if (syms[i].symbol == NULL)
3949 continue;
3950
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952 {
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3955
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 sal.line);
3962 else
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
3966 continue;
3967 }
3968 else
3969 {
3970 int is_enumeral =
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3975
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3978
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990 {
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3996 }
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4013 }
4014 }
4015
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017 "overload-choice");
4018
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4021
4022 return n_chosen;
4023}
4024
4025/* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4036 The user is not allowed to choose more than MAX_RESULTS values.
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4040
4041int
4042get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, const char *annotation_suffix)
4044{
4045 char *args;
4046 const char *prompt;
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
4049
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
4052 prompt = "> ";
4053
4054 args = command_line_input (prompt, 0, annotation_suffix);
4055
4056 if (args == NULL)
4057 error_no_arg (_("one or more choice numbers"));
4058
4059 n_chosen = 0;
4060
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4063 while (1)
4064 {
4065 char *args2;
4066 int choice, j;
4067
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4072 break;
4073
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4078 args = args2;
4079
4080 if (choice == 0)
4081 error (_("cancelled"));
4082
4083 if (choice < first_choice)
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
4090 choice -= first_choice;
4091
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093 {
4094 }
4095
4096 if (j < 0 || choice != choices[j])
4097 {
4098 int k;
4099
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
4105 }
4106
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4109
4110 return n_chosen;
4111}
4112
4113/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4116
4117static void
4118replace_operator_with_call (expression_up *expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4121{
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = expp->get ();
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 expp->reset (newexp);
4144}
4145
4146/* Type-class predicates */
4147
4148/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4149 or FLOAT). */
4150
4151static int
4152numeric_type_p (struct type *type)
4153{
4154 if (type == NULL)
4155 return 0;
4156 else
4157 {
4158 switch (TYPE_CODE (type))
4159 {
4160 case TYPE_CODE_INT:
4161 case TYPE_CODE_FLT:
4162 return 1;
4163 case TYPE_CODE_RANGE:
4164 return (type == TYPE_TARGET_TYPE (type)
4165 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4166 default:
4167 return 0;
4168 }
4169 }
4170}
4171
4172/* True iff TYPE is integral (an INT or RANGE of INTs). */
4173
4174static int
4175integer_type_p (struct type *type)
4176{
4177 if (type == NULL)
4178 return 0;
4179 else
4180 {
4181 switch (TYPE_CODE (type))
4182 {
4183 case TYPE_CODE_INT:
4184 return 1;
4185 case TYPE_CODE_RANGE:
4186 return (type == TYPE_TARGET_TYPE (type)
4187 || integer_type_p (TYPE_TARGET_TYPE (type)));
4188 default:
4189 return 0;
4190 }
4191 }
4192}
4193
4194/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4195
4196static int
4197scalar_type_p (struct type *type)
4198{
4199 if (type == NULL)
4200 return 0;
4201 else
4202 {
4203 switch (TYPE_CODE (type))
4204 {
4205 case TYPE_CODE_INT:
4206 case TYPE_CODE_RANGE:
4207 case TYPE_CODE_ENUM:
4208 case TYPE_CODE_FLT:
4209 return 1;
4210 default:
4211 return 0;
4212 }
4213 }
4214}
4215
4216/* True iff TYPE is discrete (INT, RANGE, ENUM). */
4217
4218static int
4219discrete_type_p (struct type *type)
4220{
4221 if (type == NULL)
4222 return 0;
4223 else
4224 {
4225 switch (TYPE_CODE (type))
4226 {
4227 case TYPE_CODE_INT:
4228 case TYPE_CODE_RANGE:
4229 case TYPE_CODE_ENUM:
4230 case TYPE_CODE_BOOL:
4231 return 1;
4232 default:
4233 return 0;
4234 }
4235 }
4236}
4237
4238/* Returns non-zero if OP with operands in the vector ARGS could be
4239 a user-defined function. Errs on the side of pre-defined operators
4240 (i.e., result 0). */
4241
4242static int
4243possible_user_operator_p (enum exp_opcode op, struct value *args[])
4244{
4245 struct type *type0 =
4246 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4247 struct type *type1 =
4248 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4249
4250 if (type0 == NULL)
4251 return 0;
4252
4253 switch (op)
4254 {
4255 default:
4256 return 0;
4257
4258 case BINOP_ADD:
4259 case BINOP_SUB:
4260 case BINOP_MUL:
4261 case BINOP_DIV:
4262 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4263
4264 case BINOP_REM:
4265 case BINOP_MOD:
4266 case BINOP_BITWISE_AND:
4267 case BINOP_BITWISE_IOR:
4268 case BINOP_BITWISE_XOR:
4269 return (!(integer_type_p (type0) && integer_type_p (type1)));
4270
4271 case BINOP_EQUAL:
4272 case BINOP_NOTEQUAL:
4273 case BINOP_LESS:
4274 case BINOP_GTR:
4275 case BINOP_LEQ:
4276 case BINOP_GEQ:
4277 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4278
4279 case BINOP_CONCAT:
4280 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4281
4282 case BINOP_EXP:
4283 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4284
4285 case UNOP_NEG:
4286 case UNOP_PLUS:
4287 case UNOP_LOGICAL_NOT:
4288 case UNOP_ABS:
4289 return (!numeric_type_p (type0));
4290
4291 }
4292}
4293\f
4294 /* Renaming */
4295
4296/* NOTES:
4297
4298 1. In the following, we assume that a renaming type's name may
4299 have an ___XD suffix. It would be nice if this went away at some
4300 point.
4301 2. We handle both the (old) purely type-based representation of
4302 renamings and the (new) variable-based encoding. At some point,
4303 it is devoutly to be hoped that the former goes away
4304 (FIXME: hilfinger-2007-07-09).
4305 3. Subprogram renamings are not implemented, although the XRS
4306 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4307
4308/* If SYM encodes a renaming,
4309
4310 <renaming> renames <renamed entity>,
4311
4312 sets *LEN to the length of the renamed entity's name,
4313 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4314 the string describing the subcomponent selected from the renamed
4315 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4316 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4317 are undefined). Otherwise, returns a value indicating the category
4318 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4319 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4320 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4321 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4322 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4323 may be NULL, in which case they are not assigned.
4324
4325 [Currently, however, GCC does not generate subprogram renamings.] */
4326
4327enum ada_renaming_category
4328ada_parse_renaming (struct symbol *sym,
4329 const char **renamed_entity, int *len,
4330 const char **renaming_expr)
4331{
4332 enum ada_renaming_category kind;
4333 const char *info;
4334 const char *suffix;
4335
4336 if (sym == NULL)
4337 return ADA_NOT_RENAMING;
4338 switch (SYMBOL_CLASS (sym))
4339 {
4340 default:
4341 return ADA_NOT_RENAMING;
4342 case LOC_TYPEDEF:
4343 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4344 renamed_entity, len, renaming_expr);
4345 case LOC_LOCAL:
4346 case LOC_STATIC:
4347 case LOC_COMPUTED:
4348 case LOC_OPTIMIZED_OUT:
4349 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4350 if (info == NULL)
4351 return ADA_NOT_RENAMING;
4352 switch (info[5])
4353 {
4354 case '_':
4355 kind = ADA_OBJECT_RENAMING;
4356 info += 6;
4357 break;
4358 case 'E':
4359 kind = ADA_EXCEPTION_RENAMING;
4360 info += 7;
4361 break;
4362 case 'P':
4363 kind = ADA_PACKAGE_RENAMING;
4364 info += 7;
4365 break;
4366 case 'S':
4367 kind = ADA_SUBPROGRAM_RENAMING;
4368 info += 7;
4369 break;
4370 default:
4371 return ADA_NOT_RENAMING;
4372 }
4373 }
4374
4375 if (renamed_entity != NULL)
4376 *renamed_entity = info;
4377 suffix = strstr (info, "___XE");
4378 if (suffix == NULL || suffix == info)
4379 return ADA_NOT_RENAMING;
4380 if (len != NULL)
4381 *len = strlen (info) - strlen (suffix);
4382 suffix += 5;
4383 if (renaming_expr != NULL)
4384 *renaming_expr = suffix;
4385 return kind;
4386}
4387
4388/* Assuming TYPE encodes a renaming according to the old encoding in
4389 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4390 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4391 ADA_NOT_RENAMING otherwise. */
4392static enum ada_renaming_category
4393parse_old_style_renaming (struct type *type,
4394 const char **renamed_entity, int *len,
4395 const char **renaming_expr)
4396{
4397 enum ada_renaming_category kind;
4398 const char *name;
4399 const char *info;
4400 const char *suffix;
4401
4402 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4403 || TYPE_NFIELDS (type) != 1)
4404 return ADA_NOT_RENAMING;
4405
4406 name = type_name_no_tag (type);
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409
4410 name = strstr (name, "___XR");
4411 if (name == NULL)
4412 return ADA_NOT_RENAMING;
4413 switch (name[5])
4414 {
4415 case '\0':
4416 case '_':
4417 kind = ADA_OBJECT_RENAMING;
4418 break;
4419 case 'E':
4420 kind = ADA_EXCEPTION_RENAMING;
4421 break;
4422 case 'P':
4423 kind = ADA_PACKAGE_RENAMING;
4424 break;
4425 case 'S':
4426 kind = ADA_SUBPROGRAM_RENAMING;
4427 break;
4428 default:
4429 return ADA_NOT_RENAMING;
4430 }
4431
4432 info = TYPE_FIELD_NAME (type, 0);
4433 if (info == NULL)
4434 return ADA_NOT_RENAMING;
4435 if (renamed_entity != NULL)
4436 *renamed_entity = info;
4437 suffix = strstr (info, "___XE");
4438 if (renaming_expr != NULL)
4439 *renaming_expr = suffix + 5;
4440 if (suffix == NULL || suffix == info)
4441 return ADA_NOT_RENAMING;
4442 if (len != NULL)
4443 *len = suffix - info;
4444 return kind;
4445}
4446
4447/* Compute the value of the given RENAMING_SYM, which is expected to
4448 be a symbol encoding a renaming expression. BLOCK is the block
4449 used to evaluate the renaming. */
4450
4451static struct value *
4452ada_read_renaming_var_value (struct symbol *renaming_sym,
4453 const struct block *block)
4454{
4455 const char *sym_name;
4456
4457 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4458 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4459 return evaluate_expression (expr.get ());
4460}
4461\f
4462
4463 /* Evaluation: Function Calls */
4464
4465/* Return an lvalue containing the value VAL. This is the identity on
4466 lvalues, and otherwise has the side-effect of allocating memory
4467 in the inferior where a copy of the value contents is copied. */
4468
4469static struct value *
4470ensure_lval (struct value *val)
4471{
4472 if (VALUE_LVAL (val) == not_lval
4473 || VALUE_LVAL (val) == lval_internalvar)
4474 {
4475 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4476 const CORE_ADDR addr =
4477 value_as_long (value_allocate_space_in_inferior (len));
4478
4479 VALUE_LVAL (val) = lval_memory;
4480 set_value_address (val, addr);
4481 write_memory (addr, value_contents (val), len);
4482 }
4483
4484 return val;
4485}
4486
4487/* Return the value ACTUAL, converted to be an appropriate value for a
4488 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4489 allocating any necessary descriptors (fat pointers), or copies of
4490 values not residing in memory, updating it as needed. */
4491
4492struct value *
4493ada_convert_actual (struct value *actual, struct type *formal_type0)
4494{
4495 struct type *actual_type = ada_check_typedef (value_type (actual));
4496 struct type *formal_type = ada_check_typedef (formal_type0);
4497 struct type *formal_target =
4498 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4499 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4500 struct type *actual_target =
4501 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4502 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4503
4504 if (ada_is_array_descriptor_type (formal_target)
4505 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4506 return make_array_descriptor (formal_type, actual);
4507 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4508 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4509 {
4510 struct value *result;
4511
4512 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4513 && ada_is_array_descriptor_type (actual_target))
4514 result = desc_data (actual);
4515 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4516 {
4517 if (VALUE_LVAL (actual) != lval_memory)
4518 {
4519 struct value *val;
4520
4521 actual_type = ada_check_typedef (value_type (actual));
4522 val = allocate_value (actual_type);
4523 memcpy ((char *) value_contents_raw (val),
4524 (char *) value_contents (actual),
4525 TYPE_LENGTH (actual_type));
4526 actual = ensure_lval (val);
4527 }
4528 result = value_addr (actual);
4529 }
4530 else
4531 return actual;
4532 return value_cast_pointers (formal_type, result, 0);
4533 }
4534 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4535 return ada_value_ind (actual);
4536 else if (ada_is_aligner_type (formal_type))
4537 {
4538 /* We need to turn this parameter into an aligner type
4539 as well. */
4540 struct value *aligner = allocate_value (formal_type);
4541 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4542
4543 value_assign_to_component (aligner, component, actual);
4544 return aligner;
4545 }
4546
4547 return actual;
4548}
4549
4550/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4551 type TYPE. This is usually an inefficient no-op except on some targets
4552 (such as AVR) where the representation of a pointer and an address
4553 differs. */
4554
4555static CORE_ADDR
4556value_pointer (struct value *value, struct type *type)
4557{
4558 struct gdbarch *gdbarch = get_type_arch (type);
4559 unsigned len = TYPE_LENGTH (type);
4560 gdb_byte *buf = (gdb_byte *) alloca (len);
4561 CORE_ADDR addr;
4562
4563 addr = value_address (value);
4564 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4565 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4566 return addr;
4567}
4568
4569
4570/* Push a descriptor of type TYPE for array value ARR on the stack at
4571 *SP, updating *SP to reflect the new descriptor. Return either
4572 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4573 to-descriptor type rather than a descriptor type), a struct value *
4574 representing a pointer to this descriptor. */
4575
4576static struct value *
4577make_array_descriptor (struct type *type, struct value *arr)
4578{
4579 struct type *bounds_type = desc_bounds_type (type);
4580 struct type *desc_type = desc_base_type (type);
4581 struct value *descriptor = allocate_value (desc_type);
4582 struct value *bounds = allocate_value (bounds_type);
4583 int i;
4584
4585 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4586 i > 0; i -= 1)
4587 {
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 0),
4590 desc_bound_bitpos (bounds_type, i, 0),
4591 desc_bound_bitsize (bounds_type, i, 0));
4592 modify_field (value_type (bounds), value_contents_writeable (bounds),
4593 ada_array_bound (arr, i, 1),
4594 desc_bound_bitpos (bounds_type, i, 1),
4595 desc_bound_bitsize (bounds_type, i, 1));
4596 }
4597
4598 bounds = ensure_lval (bounds);
4599
4600 modify_field (value_type (descriptor),
4601 value_contents_writeable (descriptor),
4602 value_pointer (ensure_lval (arr),
4603 TYPE_FIELD_TYPE (desc_type, 0)),
4604 fat_pntr_data_bitpos (desc_type),
4605 fat_pntr_data_bitsize (desc_type));
4606
4607 modify_field (value_type (descriptor),
4608 value_contents_writeable (descriptor),
4609 value_pointer (bounds,
4610 TYPE_FIELD_TYPE (desc_type, 1)),
4611 fat_pntr_bounds_bitpos (desc_type),
4612 fat_pntr_bounds_bitsize (desc_type));
4613
4614 descriptor = ensure_lval (descriptor);
4615
4616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4617 return value_addr (descriptor);
4618 else
4619 return descriptor;
4620}
4621\f
4622 /* Symbol Cache Module */
4623
4624/* Performance measurements made as of 2010-01-15 indicate that
4625 this cache does bring some noticeable improvements. Depending
4626 on the type of entity being printed, the cache can make it as much
4627 as an order of magnitude faster than without it.
4628
4629 The descriptive type DWARF extension has significantly reduced
4630 the need for this cache, at least when DWARF is being used. However,
4631 even in this case, some expensive name-based symbol searches are still
4632 sometimes necessary - to find an XVZ variable, mostly. */
4633
4634/* Initialize the contents of SYM_CACHE. */
4635
4636static void
4637ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4638{
4639 obstack_init (&sym_cache->cache_space);
4640 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4641}
4642
4643/* Free the memory used by SYM_CACHE. */
4644
4645static void
4646ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4647{
4648 obstack_free (&sym_cache->cache_space, NULL);
4649 xfree (sym_cache);
4650}
4651
4652/* Return the symbol cache associated to the given program space PSPACE.
4653 If not allocated for this PSPACE yet, allocate and initialize one. */
4654
4655static struct ada_symbol_cache *
4656ada_get_symbol_cache (struct program_space *pspace)
4657{
4658 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4659
4660 if (pspace_data->sym_cache == NULL)
4661 {
4662 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4663 ada_init_symbol_cache (pspace_data->sym_cache);
4664 }
4665
4666 return pspace_data->sym_cache;
4667}
4668
4669/* Clear all entries from the symbol cache. */
4670
4671static void
4672ada_clear_symbol_cache (void)
4673{
4674 struct ada_symbol_cache *sym_cache
4675 = ada_get_symbol_cache (current_program_space);
4676
4677 obstack_free (&sym_cache->cache_space, NULL);
4678 ada_init_symbol_cache (sym_cache);
4679}
4680
4681/* Search our cache for an entry matching NAME and DOMAIN.
4682 Return it if found, or NULL otherwise. */
4683
4684static struct cache_entry **
4685find_entry (const char *name, domain_enum domain)
4686{
4687 struct ada_symbol_cache *sym_cache
4688 = ada_get_symbol_cache (current_program_space);
4689 int h = msymbol_hash (name) % HASH_SIZE;
4690 struct cache_entry **e;
4691
4692 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4693 {
4694 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4695 return e;
4696 }
4697 return NULL;
4698}
4699
4700/* Search the symbol cache for an entry matching NAME and DOMAIN.
4701 Return 1 if found, 0 otherwise.
4702
4703 If an entry was found and SYM is not NULL, set *SYM to the entry's
4704 SYM. Same principle for BLOCK if not NULL. */
4705
4706static int
4707lookup_cached_symbol (const char *name, domain_enum domain,
4708 struct symbol **sym, const struct block **block)
4709{
4710 struct cache_entry **e = find_entry (name, domain);
4711
4712 if (e == NULL)
4713 return 0;
4714 if (sym != NULL)
4715 *sym = (*e)->sym;
4716 if (block != NULL)
4717 *block = (*e)->block;
4718 return 1;
4719}
4720
4721/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4722 in domain DOMAIN, save this result in our symbol cache. */
4723
4724static void
4725cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4726 const struct block *block)
4727{
4728 struct ada_symbol_cache *sym_cache
4729 = ada_get_symbol_cache (current_program_space);
4730 int h;
4731 char *copy;
4732 struct cache_entry *e;
4733
4734 /* Symbols for builtin types don't have a block.
4735 For now don't cache such symbols. */
4736 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4737 return;
4738
4739 /* If the symbol is a local symbol, then do not cache it, as a search
4740 for that symbol depends on the context. To determine whether
4741 the symbol is local or not, we check the block where we found it
4742 against the global and static blocks of its associated symtab. */
4743 if (sym
4744 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4745 GLOBAL_BLOCK) != block
4746 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4747 STATIC_BLOCK) != block)
4748 return;
4749
4750 h = msymbol_hash (name) % HASH_SIZE;
4751 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4752 sizeof (*e));
4753 e->next = sym_cache->root[h];
4754 sym_cache->root[h] = e;
4755 e->name = copy
4756 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4757 strcpy (copy, name);
4758 e->sym = sym;
4759 e->domain = domain;
4760 e->block = block;
4761}
4762\f
4763 /* Symbol Lookup */
4764
4765/* Return the symbol name match type that should be used used when
4766 searching for all symbols matching LOOKUP_NAME.
4767
4768 LOOKUP_NAME is expected to be a symbol name after transformation
4769 for Ada lookups (see ada_name_for_lookup). */
4770
4771static symbol_name_match_type
4772name_match_type_from_name (const char *lookup_name)
4773{
4774 return (strstr (lookup_name, "__") == NULL
4775 ? symbol_name_match_type::WILD
4776 : symbol_name_match_type::FULL);
4777}
4778
4779/* Return the result of a standard (literal, C-like) lookup of NAME in
4780 given DOMAIN, visible from lexical block BLOCK. */
4781
4782static struct symbol *
4783standard_lookup (const char *name, const struct block *block,
4784 domain_enum domain)
4785{
4786 /* Initialize it just to avoid a GCC false warning. */
4787 struct block_symbol sym = {NULL, NULL};
4788
4789 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4790 return sym.symbol;
4791 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4792 cache_symbol (name, domain, sym.symbol, sym.block);
4793 return sym.symbol;
4794}
4795
4796
4797/* Non-zero iff there is at least one non-function/non-enumeral symbol
4798 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4799 since they contend in overloading in the same way. */
4800static int
4801is_nonfunction (struct block_symbol syms[], int n)
4802{
4803 int i;
4804
4805 for (i = 0; i < n; i += 1)
4806 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4807 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4808 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4809 return 1;
4810
4811 return 0;
4812}
4813
4814/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4815 struct types. Otherwise, they may not. */
4816
4817static int
4818equiv_types (struct type *type0, struct type *type1)
4819{
4820 if (type0 == type1)
4821 return 1;
4822 if (type0 == NULL || type1 == NULL
4823 || TYPE_CODE (type0) != TYPE_CODE (type1))
4824 return 0;
4825 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4826 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4827 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4828 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4829 return 1;
4830
4831 return 0;
4832}
4833
4834/* True iff SYM0 represents the same entity as SYM1, or one that is
4835 no more defined than that of SYM1. */
4836
4837static int
4838lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4839{
4840 if (sym0 == sym1)
4841 return 1;
4842 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4843 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4844 return 0;
4845
4846 switch (SYMBOL_CLASS (sym0))
4847 {
4848 case LOC_UNDEF:
4849 return 1;
4850 case LOC_TYPEDEF:
4851 {
4852 struct type *type0 = SYMBOL_TYPE (sym0);
4853 struct type *type1 = SYMBOL_TYPE (sym1);
4854 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4855 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4856 int len0 = strlen (name0);
4857
4858 return
4859 TYPE_CODE (type0) == TYPE_CODE (type1)
4860 && (equiv_types (type0, type1)
4861 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4862 && startswith (name1 + len0, "___XV")));
4863 }
4864 case LOC_CONST:
4865 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4866 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4867 default:
4868 return 0;
4869 }
4870}
4871
4872/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4873 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4874
4875static void
4876add_defn_to_vec (struct obstack *obstackp,
4877 struct symbol *sym,
4878 const struct block *block)
4879{
4880 int i;
4881 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4882
4883 /* Do not try to complete stub types, as the debugger is probably
4884 already scanning all symbols matching a certain name at the
4885 time when this function is called. Trying to replace the stub
4886 type by its associated full type will cause us to restart a scan
4887 which may lead to an infinite recursion. Instead, the client
4888 collecting the matching symbols will end up collecting several
4889 matches, with at least one of them complete. It can then filter
4890 out the stub ones if needed. */
4891
4892 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4893 {
4894 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4895 return;
4896 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4897 {
4898 prevDefns[i].symbol = sym;
4899 prevDefns[i].block = block;
4900 return;
4901 }
4902 }
4903
4904 {
4905 struct block_symbol info;
4906
4907 info.symbol = sym;
4908 info.block = block;
4909 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4910 }
4911}
4912
4913/* Number of block_symbol structures currently collected in current vector in
4914 OBSTACKP. */
4915
4916static int
4917num_defns_collected (struct obstack *obstackp)
4918{
4919 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4920}
4921
4922/* Vector of block_symbol structures currently collected in current vector in
4923 OBSTACKP. If FINISH, close off the vector and return its final address. */
4924
4925static struct block_symbol *
4926defns_collected (struct obstack *obstackp, int finish)
4927{
4928 if (finish)
4929 return (struct block_symbol *) obstack_finish (obstackp);
4930 else
4931 return (struct block_symbol *) obstack_base (obstackp);
4932}
4933
4934/* Return a bound minimal symbol matching NAME according to Ada
4935 decoding rules. Returns an invalid symbol if there is no such
4936 minimal symbol. Names prefixed with "standard__" are handled
4937 specially: "standard__" is first stripped off, and only static and
4938 global symbols are searched. */
4939
4940struct bound_minimal_symbol
4941ada_lookup_simple_minsym (const char *name)
4942{
4943 struct bound_minimal_symbol result;
4944 struct objfile *objfile;
4945 struct minimal_symbol *msymbol;
4946
4947 memset (&result, 0, sizeof (result));
4948
4949 symbol_name_match_type match_type = name_match_type_from_name (name);
4950 lookup_name_info lookup_name (name, match_type);
4951
4952 symbol_name_matcher_ftype *match_name
4953 = ada_get_symbol_name_matcher (lookup_name);
4954
4955 ALL_MSYMBOLS (objfile, msymbol)
4956 {
4957 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4958 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4959 {
4960 result.minsym = msymbol;
4961 result.objfile = objfile;
4962 break;
4963 }
4964 }
4965
4966 return result;
4967}
4968
4969/* For all subprograms that statically enclose the subprogram of the
4970 selected frame, add symbols matching identifier NAME in DOMAIN
4971 and their blocks to the list of data in OBSTACKP, as for
4972 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4973 with a wildcard prefix. */
4974
4975static void
4976add_symbols_from_enclosing_procs (struct obstack *obstackp,
4977 const lookup_name_info &lookup_name,
4978 domain_enum domain)
4979{
4980}
4981
4982/* True if TYPE is definitely an artificial type supplied to a symbol
4983 for which no debugging information was given in the symbol file. */
4984
4985static int
4986is_nondebugging_type (struct type *type)
4987{
4988 const char *name = ada_type_name (type);
4989
4990 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4991}
4992
4993/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4994 that are deemed "identical" for practical purposes.
4995
4996 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4997 types and that their number of enumerals is identical (in other
4998 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4999
5000static int
5001ada_identical_enum_types_p (struct type *type1, struct type *type2)
5002{
5003 int i;
5004
5005 /* The heuristic we use here is fairly conservative. We consider
5006 that 2 enumerate types are identical if they have the same
5007 number of enumerals and that all enumerals have the same
5008 underlying value and name. */
5009
5010 /* All enums in the type should have an identical underlying value. */
5011 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5012 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5013 return 0;
5014
5015 /* All enumerals should also have the same name (modulo any numerical
5016 suffix). */
5017 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 {
5019 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5020 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5021 int len_1 = strlen (name_1);
5022 int len_2 = strlen (name_2);
5023
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 if (len_1 != len_2
5027 || strncmp (TYPE_FIELD_NAME (type1, i),
5028 TYPE_FIELD_NAME (type2, i),
5029 len_1) != 0)
5030 return 0;
5031 }
5032
5033 return 1;
5034}
5035
5036/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5037 that are deemed "identical" for practical purposes. Sometimes,
5038 enumerals are not strictly identical, but their types are so similar
5039 that they can be considered identical.
5040
5041 For instance, consider the following code:
5042
5043 type Color is (Black, Red, Green, Blue, White);
5044 type RGB_Color is new Color range Red .. Blue;
5045
5046 Type RGB_Color is a subrange of an implicit type which is a copy
5047 of type Color. If we call that implicit type RGB_ColorB ("B" is
5048 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5049 As a result, when an expression references any of the enumeral
5050 by name (Eg. "print green"), the expression is technically
5051 ambiguous and the user should be asked to disambiguate. But
5052 doing so would only hinder the user, since it wouldn't matter
5053 what choice he makes, the outcome would always be the same.
5054 So, for practical purposes, we consider them as the same. */
5055
5056static int
5057symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5058{
5059 int i;
5060
5061 /* Before performing a thorough comparison check of each type,
5062 we perform a series of inexpensive checks. We expect that these
5063 checks will quickly fail in the vast majority of cases, and thus
5064 help prevent the unnecessary use of a more expensive comparison.
5065 Said comparison also expects us to make some of these checks
5066 (see ada_identical_enum_types_p). */
5067
5068 /* Quick check: All symbols should have an enum type. */
5069 for (i = 0; i < nsyms; i++)
5070 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5071 return 0;
5072
5073 /* Quick check: They should all have the same value. */
5074 for (i = 1; i < nsyms; i++)
5075 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5076 return 0;
5077
5078 /* Quick check: They should all have the same number of enumerals. */
5079 for (i = 1; i < nsyms; i++)
5080 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5081 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5082 return 0;
5083
5084 /* All the sanity checks passed, so we might have a set of
5085 identical enumeration types. Perform a more complete
5086 comparison of the type of each symbol. */
5087 for (i = 1; i < nsyms; i++)
5088 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5089 SYMBOL_TYPE (syms[0].symbol)))
5090 return 0;
5091
5092 return 1;
5093}
5094
5095/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5096 duplicate other symbols in the list (The only case I know of where
5097 this happens is when object files containing stabs-in-ecoff are
5098 linked with files containing ordinary ecoff debugging symbols (or no
5099 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5100 Returns the number of items in the modified list. */
5101
5102static int
5103remove_extra_symbols (struct block_symbol *syms, int nsyms)
5104{
5105 int i, j;
5106
5107 /* We should never be called with less than 2 symbols, as there
5108 cannot be any extra symbol in that case. But it's easy to
5109 handle, since we have nothing to do in that case. */
5110 if (nsyms < 2)
5111 return nsyms;
5112
5113 i = 0;
5114 while (i < nsyms)
5115 {
5116 int remove_p = 0;
5117
5118 /* If two symbols have the same name and one of them is a stub type,
5119 the get rid of the stub. */
5120
5121 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5122 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5123 {
5124 for (j = 0; j < nsyms; j++)
5125 {
5126 if (j != i
5127 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5128 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5130 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5131 remove_p = 1;
5132 }
5133 }
5134
5135 /* Two symbols with the same name, same class and same address
5136 should be identical. */
5137
5138 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5139 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5140 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5141 {
5142 for (j = 0; j < nsyms; j += 1)
5143 {
5144 if (i != j
5145 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5146 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5147 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5148 && SYMBOL_CLASS (syms[i].symbol)
5149 == SYMBOL_CLASS (syms[j].symbol)
5150 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5151 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5152 remove_p = 1;
5153 }
5154 }
5155
5156 if (remove_p)
5157 {
5158 for (j = i + 1; j < nsyms; j += 1)
5159 syms[j - 1] = syms[j];
5160 nsyms -= 1;
5161 }
5162
5163 i += 1;
5164 }
5165
5166 /* If all the remaining symbols are identical enumerals, then
5167 just keep the first one and discard the rest.
5168
5169 Unlike what we did previously, we do not discard any entry
5170 unless they are ALL identical. This is because the symbol
5171 comparison is not a strict comparison, but rather a practical
5172 comparison. If all symbols are considered identical, then
5173 we can just go ahead and use the first one and discard the rest.
5174 But if we cannot reduce the list to a single element, we have
5175 to ask the user to disambiguate anyways. And if we have to
5176 present a multiple-choice menu, it's less confusing if the list
5177 isn't missing some choices that were identical and yet distinct. */
5178 if (symbols_are_identical_enums (syms, nsyms))
5179 nsyms = 1;
5180
5181 return nsyms;
5182}
5183
5184/* Given a type that corresponds to a renaming entity, use the type name
5185 to extract the scope (package name or function name, fully qualified,
5186 and following the GNAT encoding convention) where this renaming has been
5187 defined. The string returned needs to be deallocated after use. */
5188
5189static char *
5190xget_renaming_scope (struct type *renaming_type)
5191{
5192 /* The renaming types adhere to the following convention:
5193 <scope>__<rename>___<XR extension>.
5194 So, to extract the scope, we search for the "___XR" extension,
5195 and then backtrack until we find the first "__". */
5196
5197 const char *name = type_name_no_tag (renaming_type);
5198 const char *suffix = strstr (name, "___XR");
5199 const char *last;
5200 int scope_len;
5201 char *scope;
5202
5203 /* Now, backtrack a bit until we find the first "__". Start looking
5204 at suffix - 3, as the <rename> part is at least one character long. */
5205
5206 for (last = suffix - 3; last > name; last--)
5207 if (last[0] == '_' && last[1] == '_')
5208 break;
5209
5210 /* Make a copy of scope and return it. */
5211
5212 scope_len = last - name;
5213 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5214
5215 strncpy (scope, name, scope_len);
5216 scope[scope_len] = '\0';
5217
5218 return scope;
5219}
5220
5221/* Return nonzero if NAME corresponds to a package name. */
5222
5223static int
5224is_package_name (const char *name)
5225{
5226 /* Here, We take advantage of the fact that no symbols are generated
5227 for packages, while symbols are generated for each function.
5228 So the condition for NAME represent a package becomes equivalent
5229 to NAME not existing in our list of symbols. There is only one
5230 small complication with library-level functions (see below). */
5231
5232 char *fun_name;
5233
5234 /* If it is a function that has not been defined at library level,
5235 then we should be able to look it up in the symbols. */
5236 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5237 return 0;
5238
5239 /* Library-level function names start with "_ada_". See if function
5240 "_ada_" followed by NAME can be found. */
5241
5242 /* Do a quick check that NAME does not contain "__", since library-level
5243 functions names cannot contain "__" in them. */
5244 if (strstr (name, "__") != NULL)
5245 return 0;
5246
5247 fun_name = xstrprintf ("_ada_%s", name);
5248
5249 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5250}
5251
5252/* Return nonzero if SYM corresponds to a renaming entity that is
5253 not visible from FUNCTION_NAME. */
5254
5255static int
5256old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5257{
5258 char *scope;
5259 struct cleanup *old_chain;
5260
5261 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5262 return 0;
5263
5264 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5265 old_chain = make_cleanup (xfree, scope);
5266
5267 /* If the rename has been defined in a package, then it is visible. */
5268 if (is_package_name (scope))
5269 {
5270 do_cleanups (old_chain);
5271 return 0;
5272 }
5273
5274 /* Check that the rename is in the current function scope by checking
5275 that its name starts with SCOPE. */
5276
5277 /* If the function name starts with "_ada_", it means that it is
5278 a library-level function. Strip this prefix before doing the
5279 comparison, as the encoding for the renaming does not contain
5280 this prefix. */
5281 if (startswith (function_name, "_ada_"))
5282 function_name += 5;
5283
5284 {
5285 int is_invisible = !startswith (function_name, scope);
5286
5287 do_cleanups (old_chain);
5288 return is_invisible;
5289 }
5290}
5291
5292/* Remove entries from SYMS that corresponds to a renaming entity that
5293 is not visible from the function associated with CURRENT_BLOCK or
5294 that is superfluous due to the presence of more specific renaming
5295 information. Places surviving symbols in the initial entries of
5296 SYMS and returns the number of surviving symbols.
5297
5298 Rationale:
5299 First, in cases where an object renaming is implemented as a
5300 reference variable, GNAT may produce both the actual reference
5301 variable and the renaming encoding. In this case, we discard the
5302 latter.
5303
5304 Second, GNAT emits a type following a specified encoding for each renaming
5305 entity. Unfortunately, STABS currently does not support the definition
5306 of types that are local to a given lexical block, so all renamings types
5307 are emitted at library level. As a consequence, if an application
5308 contains two renaming entities using the same name, and a user tries to
5309 print the value of one of these entities, the result of the ada symbol
5310 lookup will also contain the wrong renaming type.
5311
5312 This function partially covers for this limitation by attempting to
5313 remove from the SYMS list renaming symbols that should be visible
5314 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5315 method with the current information available. The implementation
5316 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317
5318 - When the user tries to print a rename in a function while there
5319 is another rename entity defined in a package: Normally, the
5320 rename in the function has precedence over the rename in the
5321 package, so the latter should be removed from the list. This is
5322 currently not the case.
5323
5324 - This function will incorrectly remove valid renames if
5325 the CURRENT_BLOCK corresponds to a function which symbol name
5326 has been changed by an "Export" pragma. As a consequence,
5327 the user will be unable to print such rename entities. */
5328
5329static int
5330remove_irrelevant_renamings (struct block_symbol *syms,
5331 int nsyms, const struct block *current_block)
5332{
5333 struct symbol *current_function;
5334 const char *current_function_name;
5335 int i;
5336 int is_new_style_renaming;
5337
5338 /* If there is both a renaming foo___XR... encoded as a variable and
5339 a simple variable foo in the same block, discard the latter.
5340 First, zero out such symbols, then compress. */
5341 is_new_style_renaming = 0;
5342 for (i = 0; i < nsyms; i += 1)
5343 {
5344 struct symbol *sym = syms[i].symbol;
5345 const struct block *block = syms[i].block;
5346 const char *name;
5347 const char *suffix;
5348
5349 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 continue;
5351 name = SYMBOL_LINKAGE_NAME (sym);
5352 suffix = strstr (name, "___XR");
5353
5354 if (suffix != NULL)
5355 {
5356 int name_len = suffix - name;
5357 int j;
5358
5359 is_new_style_renaming = 1;
5360 for (j = 0; j < nsyms; j += 1)
5361 if (i != j && syms[j].symbol != NULL
5362 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5363 name_len) == 0
5364 && block == syms[j].block)
5365 syms[j].symbol = NULL;
5366 }
5367 }
5368 if (is_new_style_renaming)
5369 {
5370 int j, k;
5371
5372 for (j = k = 0; j < nsyms; j += 1)
5373 if (syms[j].symbol != NULL)
5374 {
5375 syms[k] = syms[j];
5376 k += 1;
5377 }
5378 return k;
5379 }
5380
5381 /* Extract the function name associated to CURRENT_BLOCK.
5382 Abort if unable to do so. */
5383
5384 if (current_block == NULL)
5385 return nsyms;
5386
5387 current_function = block_linkage_function (current_block);
5388 if (current_function == NULL)
5389 return nsyms;
5390
5391 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5392 if (current_function_name == NULL)
5393 return nsyms;
5394
5395 /* Check each of the symbols, and remove it from the list if it is
5396 a type corresponding to a renaming that is out of the scope of
5397 the current block. */
5398
5399 i = 0;
5400 while (i < nsyms)
5401 {
5402 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5403 == ADA_OBJECT_RENAMING
5404 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5405 {
5406 int j;
5407
5408 for (j = i + 1; j < nsyms; j += 1)
5409 syms[j - 1] = syms[j];
5410 nsyms -= 1;
5411 }
5412 else
5413 i += 1;
5414 }
5415
5416 return nsyms;
5417}
5418
5419/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5420 whose name and domain match NAME and DOMAIN respectively.
5421 If no match was found, then extend the search to "enclosing"
5422 routines (in other words, if we're inside a nested function,
5423 search the symbols defined inside the enclosing functions).
5424 If WILD_MATCH_P is nonzero, perform the naming matching in
5425 "wild" mode (see function "wild_match" for more info).
5426
5427 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5428
5429static void
5430ada_add_local_symbols (struct obstack *obstackp,
5431 const lookup_name_info &lookup_name,
5432 const struct block *block, domain_enum domain)
5433{
5434 int block_depth = 0;
5435
5436 while (block != NULL)
5437 {
5438 block_depth += 1;
5439 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5440
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5444 return;
5445
5446 block = BLOCK_SUPERBLOCK (block);
5447 }
5448
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5452 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5453}
5454
5455/* An object of this type is used as the user_data argument when
5456 calling the map_matching_symbols method. */
5457
5458struct match_data
5459{
5460 struct objfile *objfile;
5461 struct obstack *obstackp;
5462 struct symbol *arg_sym;
5463 int found_sym;
5464};
5465
5466/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
5474
5475static int
5476aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5477{
5478 struct match_data *data = (struct match_data *) data0;
5479
5480 if (sym == NULL)
5481 {
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5485 block);
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5488 }
5489 else
5490 {
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 return 0;
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5495 else
5496 {
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5500 block);
5501 }
5502 }
5503 return 0;
5504}
5505
5506/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5507 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5508 symbols to OBSTACKP. Return whether we found such symbols. */
5509
5510static int
5511ada_add_block_renamings (struct obstack *obstackp,
5512 const struct block *block,
5513 const lookup_name_info &lookup_name,
5514 domain_enum domain)
5515{
5516 struct using_direct *renaming;
5517 int defns_mark = num_defns_collected (obstackp);
5518
5519 symbol_name_matcher_ftype *name_match
5520 = ada_get_symbol_name_matcher (lookup_name);
5521
5522 for (renaming = block_using (block);
5523 renaming != NULL;
5524 renaming = renaming->next)
5525 {
5526 const char *r_name;
5527
5528 /* Avoid infinite recursions: skip this renaming if we are actually
5529 already traversing it.
5530
5531 Currently, symbol lookup in Ada don't use the namespace machinery from
5532 C++/Fortran support: skip namespace imports that use them. */
5533 if (renaming->searched
5534 || (renaming->import_src != NULL
5535 && renaming->import_src[0] != '\0')
5536 || (renaming->import_dest != NULL
5537 && renaming->import_dest[0] != '\0'))
5538 continue;
5539 renaming->searched = 1;
5540
5541 /* TODO: here, we perform another name-based symbol lookup, which can
5542 pull its own multiple overloads. In theory, we should be able to do
5543 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5544 not a simple name. But in order to do this, we would need to enhance
5545 the DWARF reader to associate a symbol to this renaming, instead of a
5546 name. So, for now, we do something simpler: re-use the C++/Fortran
5547 namespace machinery. */
5548 r_name = (renaming->alias != NULL
5549 ? renaming->alias
5550 : renaming->declaration);
5551 if (name_match (r_name, lookup_name, NULL))
5552 {
5553 lookup_name_info decl_lookup_name (renaming->declaration,
5554 lookup_name.match_type ());
5555 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5556 1, NULL);
5557 }
5558 renaming->searched = 0;
5559 }
5560 return num_defns_collected (obstackp) != defns_mark;
5561}
5562
5563/* Implements compare_names, but only applying the comparision using
5564 the given CASING. */
5565
5566static int
5567compare_names_with_case (const char *string1, const char *string2,
5568 enum case_sensitivity casing)
5569{
5570 while (*string1 != '\0' && *string2 != '\0')
5571 {
5572 char c1, c2;
5573
5574 if (isspace (*string1) || isspace (*string2))
5575 return strcmp_iw_ordered (string1, string2);
5576
5577 if (casing == case_sensitive_off)
5578 {
5579 c1 = tolower (*string1);
5580 c2 = tolower (*string2);
5581 }
5582 else
5583 {
5584 c1 = *string1;
5585 c2 = *string2;
5586 }
5587 if (c1 != c2)
5588 break;
5589
5590 string1 += 1;
5591 string2 += 1;
5592 }
5593
5594 switch (*string1)
5595 {
5596 case '(':
5597 return strcmp_iw_ordered (string1, string2);
5598 case '_':
5599 if (*string2 == '\0')
5600 {
5601 if (is_name_suffix (string1))
5602 return 0;
5603 else
5604 return 1;
5605 }
5606 /* FALLTHROUGH */
5607 default:
5608 if (*string2 == '(')
5609 return strcmp_iw_ordered (string1, string2);
5610 else
5611 {
5612 if (casing == case_sensitive_off)
5613 return tolower (*string1) - tolower (*string2);
5614 else
5615 return *string1 - *string2;
5616 }
5617 }
5618}
5619
5620/* Compare STRING1 to STRING2, with results as for strcmp.
5621 Compatible with strcmp_iw_ordered in that...
5622
5623 strcmp_iw_ordered (STRING1, STRING2) <= 0
5624
5625 ... implies...
5626
5627 compare_names (STRING1, STRING2) <= 0
5628
5629 (they may differ as to what symbols compare equal). */
5630
5631static int
5632compare_names (const char *string1, const char *string2)
5633{
5634 int result;
5635
5636 /* Similar to what strcmp_iw_ordered does, we need to perform
5637 a case-insensitive comparison first, and only resort to
5638 a second, case-sensitive, comparison if the first one was
5639 not sufficient to differentiate the two strings. */
5640
5641 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 if (result == 0)
5643 result = compare_names_with_case (string1, string2, case_sensitive_on);
5644
5645 return result;
5646}
5647
5648/* Convenience function to get at the Ada encoded lookup name for
5649 LOOKUP_NAME, as a C string. */
5650
5651static const char *
5652ada_lookup_name (const lookup_name_info &lookup_name)
5653{
5654 return lookup_name.ada ().lookup_name ().c_str ();
5655}
5656
5657/* Add to OBSTACKP all non-local symbols whose name and domain match
5658 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5659 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5660 symbols otherwise. */
5661
5662static void
5663add_nonlocal_symbols (struct obstack *obstackp,
5664 const lookup_name_info &lookup_name,
5665 domain_enum domain, int global)
5666{
5667 struct objfile *objfile;
5668 struct compunit_symtab *cu;
5669 struct match_data data;
5670
5671 memset (&data, 0, sizeof data);
5672 data.obstackp = obstackp;
5673
5674 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5675
5676 ALL_OBJFILES (objfile)
5677 {
5678 data.objfile = objfile;
5679
5680 if (is_wild_match)
5681 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5682 domain, global,
5683 aux_add_nonlocal_symbols, &data,
5684 symbol_name_match_type::WILD,
5685 NULL);
5686 else
5687 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5688 domain, global,
5689 aux_add_nonlocal_symbols, &data,
5690 symbol_name_match_type::FULL,
5691 compare_names);
5692
5693 ALL_OBJFILE_COMPUNITS (objfile, cu)
5694 {
5695 const struct block *global_block
5696 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5697
5698 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5699 domain))
5700 data.found_sym = 1;
5701 }
5702 }
5703
5704 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5705 {
5706 const char *name = ada_lookup_name (lookup_name);
5707 std::string name1 = std::string ("<_ada_") + name + '>';
5708
5709 ALL_OBJFILES (objfile)
5710 {
5711 data.objfile = objfile;
5712 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5713 domain, global,
5714 aux_add_nonlocal_symbols,
5715 &data,
5716 symbol_name_match_type::FULL,
5717 compare_names);
5718 }
5719 }
5720}
5721
5722/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5723 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5724 returning the number of matches. Add these to OBSTACKP.
5725
5726 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5727 symbol match within the nest of blocks whose innermost member is BLOCK,
5728 is the one match returned (no other matches in that or
5729 enclosing blocks is returned). If there are any matches in or
5730 surrounding BLOCK, then these alone are returned.
5731
5732 Names prefixed with "standard__" are handled specially:
5733 "standard__" is first stripped off (by the lookup_name
5734 constructor), and only static and global symbols are searched.
5735
5736 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5737 to lookup global symbols. */
5738
5739static void
5740ada_add_all_symbols (struct obstack *obstackp,
5741 const struct block *block,
5742 const lookup_name_info &lookup_name,
5743 domain_enum domain,
5744 int full_search,
5745 int *made_global_lookup_p)
5746{
5747 struct symbol *sym;
5748
5749 if (made_global_lookup_p)
5750 *made_global_lookup_p = 0;
5751
5752 /* Special case: If the user specifies a symbol name inside package
5753 Standard, do a non-wild matching of the symbol name without
5754 the "standard__" prefix. This was primarily introduced in order
5755 to allow the user to specifically access the standard exceptions
5756 using, for instance, Standard.Constraint_Error when Constraint_Error
5757 is ambiguous (due to the user defining its own Constraint_Error
5758 entity inside its program). */
5759 if (lookup_name.ada ().standard_p ())
5760 block = NULL;
5761
5762 /* Check the non-global symbols. If we have ANY match, then we're done. */
5763
5764 if (block != NULL)
5765 {
5766 if (full_search)
5767 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5768 else
5769 {
5770 /* In the !full_search case we're are being called by
5771 ada_iterate_over_symbols, and we don't want to search
5772 superblocks. */
5773 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5774 }
5775 if (num_defns_collected (obstackp) > 0 || !full_search)
5776 return;
5777 }
5778
5779 /* No non-global symbols found. Check our cache to see if we have
5780 already performed this search before. If we have, then return
5781 the same result. */
5782
5783 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5784 domain, &sym, &block))
5785 {
5786 if (sym != NULL)
5787 add_defn_to_vec (obstackp, sym, block);
5788 return;
5789 }
5790
5791 if (made_global_lookup_p)
5792 *made_global_lookup_p = 1;
5793
5794 /* Search symbols from all global blocks. */
5795
5796 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5797
5798 /* Now add symbols from all per-file blocks if we've gotten no hits
5799 (not strictly correct, but perhaps better than an error). */
5800
5801 if (num_defns_collected (obstackp) == 0)
5802 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5803}
5804
5805/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5806 is non-zero, enclosing scope and in global scopes, returning the number of
5807 matches.
5808 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5809 indicating the symbols found and the blocks and symbol tables (if
5810 any) in which they were found. This vector should be freed when
5811 no longer useful.
5812
5813 When full_search is non-zero, any non-function/non-enumeral
5814 symbol match within the nest of blocks whose innermost member is BLOCK,
5815 is the one match returned (no other matches in that or
5816 enclosing blocks is returned). If there are any matches in or
5817 surrounding BLOCK, then these alone are returned.
5818
5819 Names prefixed with "standard__" are handled specially: "standard__"
5820 is first stripped off, and only static and global symbols are searched. */
5821
5822static int
5823ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5824 const struct block *block,
5825 domain_enum domain,
5826 struct block_symbol **results,
5827 int full_search)
5828{
5829 int syms_from_global_search;
5830 int ndefns;
5831 int results_size;
5832 auto_obstack obstack;
5833
5834 ada_add_all_symbols (&obstack, block, lookup_name,
5835 domain, full_search, &syms_from_global_search);
5836
5837 ndefns = num_defns_collected (&obstack);
5838
5839 results_size = obstack_object_size (&obstack);
5840 *results = (struct block_symbol *) malloc (results_size);
5841 memcpy (*results, defns_collected (&obstack, 1), results_size);
5842
5843 ndefns = remove_extra_symbols (*results, ndefns);
5844
5845 if (ndefns == 0 && full_search && syms_from_global_search)
5846 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5847
5848 if (ndefns == 1 && full_search && syms_from_global_search)
5849 cache_symbol (ada_lookup_name (lookup_name), domain,
5850 (*results)[0].symbol, (*results)[0].block);
5851
5852 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5853
5854 return ndefns;
5855}
5856
5857/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5858 in global scopes, returning the number of matches, and setting *RESULTS
5859 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5860 vector should be freed when no longer useful.
5861
5862 See ada_lookup_symbol_list_worker for further details. */
5863
5864int
5865ada_lookup_symbol_list (const char *name, const struct block *block,
5866 domain_enum domain, struct block_symbol **results)
5867{
5868 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5869 lookup_name_info lookup_name (name, name_match_type);
5870
5871 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5872}
5873
5874/* Implementation of the la_iterate_over_symbols method. */
5875
5876static void
5877ada_iterate_over_symbols
5878 (const struct block *block, const lookup_name_info &name,
5879 domain_enum domain,
5880 gdb::function_view<symbol_found_callback_ftype> callback)
5881{
5882 int ndefs, i;
5883 struct block_symbol *results;
5884 struct cleanup *old_chain;
5885
5886 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5887 old_chain = make_cleanup (xfree, results);
5888
5889 for (i = 0; i < ndefs; ++i)
5890 {
5891 if (!callback (results[i].symbol))
5892 break;
5893 }
5894
5895 do_cleanups (old_chain);
5896}
5897
5898/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5899 to 1, but choosing the first symbol found if there are multiple
5900 choices.
5901
5902 The result is stored in *INFO, which must be non-NULL.
5903 If no match is found, INFO->SYM is set to NULL. */
5904
5905void
5906ada_lookup_encoded_symbol (const char *name, const struct block *block,
5907 domain_enum domain,
5908 struct block_symbol *info)
5909{
5910 struct block_symbol *candidates;
5911 int n_candidates;
5912 struct cleanup *old_chain;
5913
5914 /* Since we already have an encoded name, wrap it in '<>' to force a
5915 verbatim match. Otherwise, if the name happens to not look like
5916 an encoded name (because it doesn't include a "__"),
5917 ada_lookup_name_info would re-encode/fold it again, and that
5918 would e.g., incorrectly lowercase object renaming names like
5919 "R28b" -> "r28b". */
5920 std::string verbatim = std::string ("<") + name + '>';
5921
5922 gdb_assert (info != NULL);
5923 memset (info, 0, sizeof (struct block_symbol));
5924
5925 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5926 domain, &candidates);
5927 old_chain = make_cleanup (xfree, candidates);
5928
5929 if (n_candidates == 0)
5930 {
5931 do_cleanups (old_chain);
5932 return;
5933 }
5934
5935 *info = candidates[0];
5936 info->symbol = fixup_symbol_section (info->symbol, NULL);
5937
5938 do_cleanups (old_chain);
5939}
5940
5941/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5942 scope and in global scopes, or NULL if none. NAME is folded and
5943 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5944 choosing the first symbol if there are multiple choices.
5945 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5946
5947struct block_symbol
5948ada_lookup_symbol (const char *name, const struct block *block0,
5949 domain_enum domain, int *is_a_field_of_this)
5950{
5951 struct block_symbol info;
5952
5953 if (is_a_field_of_this != NULL)
5954 *is_a_field_of_this = 0;
5955
5956 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5957 block0, domain, &info);
5958 return info;
5959}
5960
5961static struct block_symbol
5962ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5963 const char *name,
5964 const struct block *block,
5965 const domain_enum domain)
5966{
5967 struct block_symbol sym;
5968
5969 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5970 if (sym.symbol != NULL)
5971 return sym;
5972
5973 /* If we haven't found a match at this point, try the primitive
5974 types. In other languages, this search is performed before
5975 searching for global symbols in order to short-circuit that
5976 global-symbol search if it happens that the name corresponds
5977 to a primitive type. But we cannot do the same in Ada, because
5978 it is perfectly legitimate for a program to declare a type which
5979 has the same name as a standard type. If looking up a type in
5980 that situation, we have traditionally ignored the primitive type
5981 in favor of user-defined types. This is why, unlike most other
5982 languages, we search the primitive types this late and only after
5983 having searched the global symbols without success. */
5984
5985 if (domain == VAR_DOMAIN)
5986 {
5987 struct gdbarch *gdbarch;
5988
5989 if (block == NULL)
5990 gdbarch = target_gdbarch ();
5991 else
5992 gdbarch = block_gdbarch (block);
5993 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5994 if (sym.symbol != NULL)
5995 return sym;
5996 }
5997
5998 return (struct block_symbol) {NULL, NULL};
5999}
6000
6001
6002/* True iff STR is a possible encoded suffix of a normal Ada name
6003 that is to be ignored for matching purposes. Suffixes of parallel
6004 names (e.g., XVE) are not included here. Currently, the possible suffixes
6005 are given by any of the regular expressions:
6006
6007 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6008 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
6009 TKB [subprogram suffix for task bodies]
6010 _E[0-9]+[bs]$ [protected object entry suffixes]
6011 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6012
6013 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6014 match is performed. This sequence is used to differentiate homonyms,
6015 is an optional part of a valid name suffix. */
6016
6017static int
6018is_name_suffix (const char *str)
6019{
6020 int k;
6021 const char *matching;
6022 const int len = strlen (str);
6023
6024 /* Skip optional leading __[0-9]+. */
6025
6026 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6027 {
6028 str += 3;
6029 while (isdigit (str[0]))
6030 str += 1;
6031 }
6032
6033 /* [.$][0-9]+ */
6034
6035 if (str[0] == '.' || str[0] == '$')
6036 {
6037 matching = str + 1;
6038 while (isdigit (matching[0]))
6039 matching += 1;
6040 if (matching[0] == '\0')
6041 return 1;
6042 }
6043
6044 /* ___[0-9]+ */
6045
6046 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6047 {
6048 matching = str + 3;
6049 while (isdigit (matching[0]))
6050 matching += 1;
6051 if (matching[0] == '\0')
6052 return 1;
6053 }
6054
6055 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6056
6057 if (strcmp (str, "TKB") == 0)
6058 return 1;
6059
6060#if 0
6061 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6062 with a N at the end. Unfortunately, the compiler uses the same
6063 convention for other internal types it creates. So treating
6064 all entity names that end with an "N" as a name suffix causes
6065 some regressions. For instance, consider the case of an enumerated
6066 type. To support the 'Image attribute, it creates an array whose
6067 name ends with N.
6068 Having a single character like this as a suffix carrying some
6069 information is a bit risky. Perhaps we should change the encoding
6070 to be something like "_N" instead. In the meantime, do not do
6071 the following check. */
6072 /* Protected Object Subprograms */
6073 if (len == 1 && str [0] == 'N')
6074 return 1;
6075#endif
6076
6077 /* _E[0-9]+[bs]$ */
6078 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6079 {
6080 matching = str + 3;
6081 while (isdigit (matching[0]))
6082 matching += 1;
6083 if ((matching[0] == 'b' || matching[0] == 's')
6084 && matching [1] == '\0')
6085 return 1;
6086 }
6087
6088 /* ??? We should not modify STR directly, as we are doing below. This
6089 is fine in this case, but may become problematic later if we find
6090 that this alternative did not work, and want to try matching
6091 another one from the begining of STR. Since we modified it, we
6092 won't be able to find the begining of the string anymore! */
6093 if (str[0] == 'X')
6094 {
6095 str += 1;
6096 while (str[0] != '_' && str[0] != '\0')
6097 {
6098 if (str[0] != 'n' && str[0] != 'b')
6099 return 0;
6100 str += 1;
6101 }
6102 }
6103
6104 if (str[0] == '\000')
6105 return 1;
6106
6107 if (str[0] == '_')
6108 {
6109 if (str[1] != '_' || str[2] == '\000')
6110 return 0;
6111 if (str[2] == '_')
6112 {
6113 if (strcmp (str + 3, "JM") == 0)
6114 return 1;
6115 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6116 the LJM suffix in favor of the JM one. But we will
6117 still accept LJM as a valid suffix for a reasonable
6118 amount of time, just to allow ourselves to debug programs
6119 compiled using an older version of GNAT. */
6120 if (strcmp (str + 3, "LJM") == 0)
6121 return 1;
6122 if (str[3] != 'X')
6123 return 0;
6124 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6125 || str[4] == 'U' || str[4] == 'P')
6126 return 1;
6127 if (str[4] == 'R' && str[5] != 'T')
6128 return 1;
6129 return 0;
6130 }
6131 if (!isdigit (str[2]))
6132 return 0;
6133 for (k = 3; str[k] != '\0'; k += 1)
6134 if (!isdigit (str[k]) && str[k] != '_')
6135 return 0;
6136 return 1;
6137 }
6138 if (str[0] == '$' && isdigit (str[1]))
6139 {
6140 for (k = 2; str[k] != '\0'; k += 1)
6141 if (!isdigit (str[k]) && str[k] != '_')
6142 return 0;
6143 return 1;
6144 }
6145 return 0;
6146}
6147
6148/* Return non-zero if the string starting at NAME and ending before
6149 NAME_END contains no capital letters. */
6150
6151static int
6152is_valid_name_for_wild_match (const char *name0)
6153{
6154 const char *decoded_name = ada_decode (name0);
6155 int i;
6156
6157 /* If the decoded name starts with an angle bracket, it means that
6158 NAME0 does not follow the GNAT encoding format. It should then
6159 not be allowed as a possible wild match. */
6160 if (decoded_name[0] == '<')
6161 return 0;
6162
6163 for (i=0; decoded_name[i] != '\0'; i++)
6164 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6165 return 0;
6166
6167 return 1;
6168}
6169
6170/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6171 that could start a simple name. Assumes that *NAMEP points into
6172 the string beginning at NAME0. */
6173
6174static int
6175advance_wild_match (const char **namep, const char *name0, int target0)
6176{
6177 const char *name = *namep;
6178
6179 while (1)
6180 {
6181 int t0, t1;
6182
6183 t0 = *name;
6184 if (t0 == '_')
6185 {
6186 t1 = name[1];
6187 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6188 {
6189 name += 1;
6190 if (name == name0 + 5 && startswith (name0, "_ada"))
6191 break;
6192 else
6193 name += 1;
6194 }
6195 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6196 || name[2] == target0))
6197 {
6198 name += 2;
6199 break;
6200 }
6201 else
6202 return 0;
6203 }
6204 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6205 name += 1;
6206 else
6207 return 0;
6208 }
6209
6210 *namep = name;
6211 return 1;
6212}
6213
6214/* Return true iff NAME encodes a name of the form prefix.PATN.
6215 Ignores any informational suffixes of NAME (i.e., for which
6216 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6217 simple name. */
6218
6219static bool
6220wild_match (const char *name, const char *patn)
6221{
6222 const char *p;
6223 const char *name0 = name;
6224
6225 while (1)
6226 {
6227 const char *match = name;
6228
6229 if (*name == *patn)
6230 {
6231 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6232 if (*p != *name)
6233 break;
6234 if (*p == '\0' && is_name_suffix (name))
6235 return match == name0 || is_valid_name_for_wild_match (name0);
6236
6237 if (name[-1] == '_')
6238 name -= 1;
6239 }
6240 if (!advance_wild_match (&name, name0, *patn))
6241 return false;
6242 }
6243}
6244
6245/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6246 any trailing suffixes that encode debugging information or leading
6247 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6248 information that is ignored). */
6249
6250static bool
6251full_match (const char *sym_name, const char *search_name)
6252{
6253 size_t search_name_len = strlen (search_name);
6254
6255 if (strncmp (sym_name, search_name, search_name_len) == 0
6256 && is_name_suffix (sym_name + search_name_len))
6257 return true;
6258
6259 if (startswith (sym_name, "_ada_")
6260 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6261 && is_name_suffix (sym_name + search_name_len + 5))
6262 return true;
6263
6264 return false;
6265}
6266
6267/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6268 *defn_symbols, updating the list of symbols in OBSTACKP (if
6269 necessary). OBJFILE is the section containing BLOCK. */
6270
6271static void
6272ada_add_block_symbols (struct obstack *obstackp,
6273 const struct block *block,
6274 const lookup_name_info &lookup_name,
6275 domain_enum domain, struct objfile *objfile)
6276{
6277 struct block_iterator iter;
6278 /* A matching argument symbol, if any. */
6279 struct symbol *arg_sym;
6280 /* Set true when we find a matching non-argument symbol. */
6281 int found_sym;
6282 struct symbol *sym;
6283
6284 arg_sym = NULL;
6285 found_sym = 0;
6286 for (sym = block_iter_match_first (block, lookup_name, &iter);
6287 sym != NULL;
6288 sym = block_iter_match_next (lookup_name, &iter))
6289 {
6290 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6291 SYMBOL_DOMAIN (sym), domain))
6292 {
6293 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6294 {
6295 if (SYMBOL_IS_ARGUMENT (sym))
6296 arg_sym = sym;
6297 else
6298 {
6299 found_sym = 1;
6300 add_defn_to_vec (obstackp,
6301 fixup_symbol_section (sym, objfile),
6302 block);
6303 }
6304 }
6305 }
6306 }
6307
6308 /* Handle renamings. */
6309
6310 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6311 found_sym = 1;
6312
6313 if (!found_sym && arg_sym != NULL)
6314 {
6315 add_defn_to_vec (obstackp,
6316 fixup_symbol_section (arg_sym, objfile),
6317 block);
6318 }
6319
6320 if (!lookup_name.ada ().wild_match_p ())
6321 {
6322 arg_sym = NULL;
6323 found_sym = 0;
6324 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6325 const char *name = ada_lookup_name.c_str ();
6326 size_t name_len = ada_lookup_name.size ();
6327
6328 ALL_BLOCK_SYMBOLS (block, iter, sym)
6329 {
6330 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6331 SYMBOL_DOMAIN (sym), domain))
6332 {
6333 int cmp;
6334
6335 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6336 if (cmp == 0)
6337 {
6338 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6339 if (cmp == 0)
6340 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6341 name_len);
6342 }
6343
6344 if (cmp == 0
6345 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6346 {
6347 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6348 {
6349 if (SYMBOL_IS_ARGUMENT (sym))
6350 arg_sym = sym;
6351 else
6352 {
6353 found_sym = 1;
6354 add_defn_to_vec (obstackp,
6355 fixup_symbol_section (sym, objfile),
6356 block);
6357 }
6358 }
6359 }
6360 }
6361 }
6362
6363 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6364 They aren't parameters, right? */
6365 if (!found_sym && arg_sym != NULL)
6366 {
6367 add_defn_to_vec (obstackp,
6368 fixup_symbol_section (arg_sym, objfile),
6369 block);
6370 }
6371 }
6372}
6373\f
6374
6375 /* Symbol Completion */
6376
6377/* See symtab.h. */
6378
6379bool
6380ada_lookup_name_info::matches
6381 (const char *sym_name,
6382 symbol_name_match_type match_type,
6383 completion_match_result *comp_match_res) const
6384{
6385 bool match = false;
6386 const char *text = m_encoded_name.c_str ();
6387 size_t text_len = m_encoded_name.size ();
6388
6389 /* First, test against the fully qualified name of the symbol. */
6390
6391 if (strncmp (sym_name, text, text_len) == 0)
6392 match = true;
6393
6394 if (match && !m_encoded_p)
6395 {
6396 /* One needed check before declaring a positive match is to verify
6397 that iff we are doing a verbatim match, the decoded version
6398 of the symbol name starts with '<'. Otherwise, this symbol name
6399 is not a suitable completion. */
6400 const char *sym_name_copy = sym_name;
6401 bool has_angle_bracket;
6402
6403 sym_name = ada_decode (sym_name);
6404 has_angle_bracket = (sym_name[0] == '<');
6405 match = (has_angle_bracket == m_verbatim_p);
6406 sym_name = sym_name_copy;
6407 }
6408
6409 if (match && !m_verbatim_p)
6410 {
6411 /* When doing non-verbatim match, another check that needs to
6412 be done is to verify that the potentially matching symbol name
6413 does not include capital letters, because the ada-mode would
6414 not be able to understand these symbol names without the
6415 angle bracket notation. */
6416 const char *tmp;
6417
6418 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6419 if (*tmp != '\0')
6420 match = false;
6421 }
6422
6423 /* Second: Try wild matching... */
6424
6425 if (!match && m_wild_match_p)
6426 {
6427 /* Since we are doing wild matching, this means that TEXT
6428 may represent an unqualified symbol name. We therefore must
6429 also compare TEXT against the unqualified name of the symbol. */
6430 sym_name = ada_unqualified_name (ada_decode (sym_name));
6431
6432 if (strncmp (sym_name, text, text_len) == 0)
6433 match = true;
6434 }
6435
6436 /* Finally: If we found a match, prepare the result to return. */
6437
6438 if (!match)
6439 return false;
6440
6441 if (comp_match_res != NULL)
6442 {
6443 std::string &match_str = comp_match_res->match.storage ();
6444
6445 if (!m_encoded_p)
6446 match_str = ada_decode (sym_name);
6447 else
6448 {
6449 if (m_verbatim_p)
6450 match_str = add_angle_brackets (sym_name);
6451 else
6452 match_str = sym_name;
6453
6454 }
6455
6456 comp_match_res->set_match (match_str.c_str ());
6457 }
6458
6459 return true;
6460}
6461
6462/* Add the list of possible symbol names completing TEXT to TRACKER.
6463 WORD is the entire command on which completion is made. */
6464
6465static void
6466ada_collect_symbol_completion_matches (completion_tracker &tracker,
6467 complete_symbol_mode mode,
6468 symbol_name_match_type name_match_type,
6469 const char *text, const char *word,
6470 enum type_code code)
6471{
6472 struct symbol *sym;
6473 struct compunit_symtab *s;
6474 struct minimal_symbol *msymbol;
6475 struct objfile *objfile;
6476 const struct block *b, *surrounding_static_block = 0;
6477 struct block_iterator iter;
6478 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6479
6480 gdb_assert (code == TYPE_CODE_UNDEF);
6481
6482 lookup_name_info lookup_name (text, name_match_type, true);
6483
6484 /* First, look at the partial symtab symbols. */
6485 expand_symtabs_matching (NULL,
6486 lookup_name,
6487 NULL,
6488 NULL,
6489 ALL_DOMAIN);
6490
6491 /* At this point scan through the misc symbol vectors and add each
6492 symbol you find to the list. Eventually we want to ignore
6493 anything that isn't a text symbol (everything else will be
6494 handled by the psymtab code above). */
6495
6496 ALL_MSYMBOLS (objfile, msymbol)
6497 {
6498 QUIT;
6499
6500 if (completion_skip_symbol (mode, msymbol))
6501 continue;
6502
6503 completion_list_add_name (tracker,
6504 MSYMBOL_LANGUAGE (msymbol),
6505 MSYMBOL_LINKAGE_NAME (msymbol),
6506 lookup_name, text, word);
6507 }
6508
6509 /* Search upwards from currently selected frame (so that we can
6510 complete on local vars. */
6511
6512 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6513 {
6514 if (!BLOCK_SUPERBLOCK (b))
6515 surrounding_static_block = b; /* For elmin of dups */
6516
6517 ALL_BLOCK_SYMBOLS (b, iter, sym)
6518 {
6519 if (completion_skip_symbol (mode, sym))
6520 continue;
6521
6522 completion_list_add_name (tracker,
6523 SYMBOL_LANGUAGE (sym),
6524 SYMBOL_LINKAGE_NAME (sym),
6525 lookup_name, text, word);
6526 }
6527 }
6528
6529 /* Go through the symtabs and check the externs and statics for
6530 symbols which match. */
6531
6532 ALL_COMPUNITS (objfile, s)
6533 {
6534 QUIT;
6535 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6536 ALL_BLOCK_SYMBOLS (b, iter, sym)
6537 {
6538 if (completion_skip_symbol (mode, sym))
6539 continue;
6540
6541 completion_list_add_name (tracker,
6542 SYMBOL_LANGUAGE (sym),
6543 SYMBOL_LINKAGE_NAME (sym),
6544 lookup_name, text, word);
6545 }
6546 }
6547
6548 ALL_COMPUNITS (objfile, s)
6549 {
6550 QUIT;
6551 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6552 /* Don't do this block twice. */
6553 if (b == surrounding_static_block)
6554 continue;
6555 ALL_BLOCK_SYMBOLS (b, iter, sym)
6556 {
6557 if (completion_skip_symbol (mode, sym))
6558 continue;
6559
6560 completion_list_add_name (tracker,
6561 SYMBOL_LANGUAGE (sym),
6562 SYMBOL_LINKAGE_NAME (sym),
6563 lookup_name, text, word);
6564 }
6565 }
6566
6567 do_cleanups (old_chain);
6568}
6569
6570 /* Field Access */
6571
6572/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6573 for tagged types. */
6574
6575static int
6576ada_is_dispatch_table_ptr_type (struct type *type)
6577{
6578 const char *name;
6579
6580 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6581 return 0;
6582
6583 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6584 if (name == NULL)
6585 return 0;
6586
6587 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6588}
6589
6590/* Return non-zero if TYPE is an interface tag. */
6591
6592static int
6593ada_is_interface_tag (struct type *type)
6594{
6595 const char *name = TYPE_NAME (type);
6596
6597 if (name == NULL)
6598 return 0;
6599
6600 return (strcmp (name, "ada__tags__interface_tag") == 0);
6601}
6602
6603/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6604 to be invisible to users. */
6605
6606int
6607ada_is_ignored_field (struct type *type, int field_num)
6608{
6609 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6610 return 1;
6611
6612 /* Check the name of that field. */
6613 {
6614 const char *name = TYPE_FIELD_NAME (type, field_num);
6615
6616 /* Anonymous field names should not be printed.
6617 brobecker/2007-02-20: I don't think this can actually happen
6618 but we don't want to print the value of annonymous fields anyway. */
6619 if (name == NULL)
6620 return 1;
6621
6622 /* Normally, fields whose name start with an underscore ("_")
6623 are fields that have been internally generated by the compiler,
6624 and thus should not be printed. The "_parent" field is special,
6625 however: This is a field internally generated by the compiler
6626 for tagged types, and it contains the components inherited from
6627 the parent type. This field should not be printed as is, but
6628 should not be ignored either. */
6629 if (name[0] == '_' && !startswith (name, "_parent"))
6630 return 1;
6631 }
6632
6633 /* If this is the dispatch table of a tagged type or an interface tag,
6634 then ignore. */
6635 if (ada_is_tagged_type (type, 1)
6636 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6637 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6638 return 1;
6639
6640 /* Not a special field, so it should not be ignored. */
6641 return 0;
6642}
6643
6644/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6645 pointer or reference type whose ultimate target has a tag field. */
6646
6647int
6648ada_is_tagged_type (struct type *type, int refok)
6649{
6650 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6651}
6652
6653/* True iff TYPE represents the type of X'Tag */
6654
6655int
6656ada_is_tag_type (struct type *type)
6657{
6658 type = ada_check_typedef (type);
6659
6660 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6661 return 0;
6662 else
6663 {
6664 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6665
6666 return (name != NULL
6667 && strcmp (name, "ada__tags__dispatch_table") == 0);
6668 }
6669}
6670
6671/* The type of the tag on VAL. */
6672
6673struct type *
6674ada_tag_type (struct value *val)
6675{
6676 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6677}
6678
6679/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6680 retired at Ada 05). */
6681
6682static int
6683is_ada95_tag (struct value *tag)
6684{
6685 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6686}
6687
6688/* The value of the tag on VAL. */
6689
6690struct value *
6691ada_value_tag (struct value *val)
6692{
6693 return ada_value_struct_elt (val, "_tag", 0);
6694}
6695
6696/* The value of the tag on the object of type TYPE whose contents are
6697 saved at VALADDR, if it is non-null, or is at memory address
6698 ADDRESS. */
6699
6700static struct value *
6701value_tag_from_contents_and_address (struct type *type,
6702 const gdb_byte *valaddr,
6703 CORE_ADDR address)
6704{
6705 int tag_byte_offset;
6706 struct type *tag_type;
6707
6708 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6709 NULL, NULL, NULL))
6710 {
6711 const gdb_byte *valaddr1 = ((valaddr == NULL)
6712 ? NULL
6713 : valaddr + tag_byte_offset);
6714 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6715
6716 return value_from_contents_and_address (tag_type, valaddr1, address1);
6717 }
6718 return NULL;
6719}
6720
6721static struct type *
6722type_from_tag (struct value *tag)
6723{
6724 const char *type_name = ada_tag_name (tag);
6725
6726 if (type_name != NULL)
6727 return ada_find_any_type (ada_encode (type_name));
6728 return NULL;
6729}
6730
6731/* Given a value OBJ of a tagged type, return a value of this
6732 type at the base address of the object. The base address, as
6733 defined in Ada.Tags, it is the address of the primary tag of
6734 the object, and therefore where the field values of its full
6735 view can be fetched. */
6736
6737struct value *
6738ada_tag_value_at_base_address (struct value *obj)
6739{
6740 struct value *val;
6741 LONGEST offset_to_top = 0;
6742 struct type *ptr_type, *obj_type;
6743 struct value *tag;
6744 CORE_ADDR base_address;
6745
6746 obj_type = value_type (obj);
6747
6748 /* It is the responsability of the caller to deref pointers. */
6749
6750 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6751 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6752 return obj;
6753
6754 tag = ada_value_tag (obj);
6755 if (!tag)
6756 return obj;
6757
6758 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6759
6760 if (is_ada95_tag (tag))
6761 return obj;
6762
6763 ptr_type = language_lookup_primitive_type
6764 (language_def (language_ada), target_gdbarch(), "storage_offset");
6765 ptr_type = lookup_pointer_type (ptr_type);
6766 val = value_cast (ptr_type, tag);
6767 if (!val)
6768 return obj;
6769
6770 /* It is perfectly possible that an exception be raised while
6771 trying to determine the base address, just like for the tag;
6772 see ada_tag_name for more details. We do not print the error
6773 message for the same reason. */
6774
6775 TRY
6776 {
6777 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6778 }
6779
6780 CATCH (e, RETURN_MASK_ERROR)
6781 {
6782 return obj;
6783 }
6784 END_CATCH
6785
6786 /* If offset is null, nothing to do. */
6787
6788 if (offset_to_top == 0)
6789 return obj;
6790
6791 /* -1 is a special case in Ada.Tags; however, what should be done
6792 is not quite clear from the documentation. So do nothing for
6793 now. */
6794
6795 if (offset_to_top == -1)
6796 return obj;
6797
6798 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6799 from the base address. This was however incompatible with
6800 C++ dispatch table: C++ uses a *negative* value to *add*
6801 to the base address. Ada's convention has therefore been
6802 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6803 use the same convention. Here, we support both cases by
6804 checking the sign of OFFSET_TO_TOP. */
6805
6806 if (offset_to_top > 0)
6807 offset_to_top = -offset_to_top;
6808
6809 base_address = value_address (obj) + offset_to_top;
6810 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6811
6812 /* Make sure that we have a proper tag at the new address.
6813 Otherwise, offset_to_top is bogus (which can happen when
6814 the object is not initialized yet). */
6815
6816 if (!tag)
6817 return obj;
6818
6819 obj_type = type_from_tag (tag);
6820
6821 if (!obj_type)
6822 return obj;
6823
6824 return value_from_contents_and_address (obj_type, NULL, base_address);
6825}
6826
6827/* Return the "ada__tags__type_specific_data" type. */
6828
6829static struct type *
6830ada_get_tsd_type (struct inferior *inf)
6831{
6832 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6833
6834 if (data->tsd_type == 0)
6835 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6836 return data->tsd_type;
6837}
6838
6839/* Return the TSD (type-specific data) associated to the given TAG.
6840 TAG is assumed to be the tag of a tagged-type entity.
6841
6842 May return NULL if we are unable to get the TSD. */
6843
6844static struct value *
6845ada_get_tsd_from_tag (struct value *tag)
6846{
6847 struct value *val;
6848 struct type *type;
6849
6850 /* First option: The TSD is simply stored as a field of our TAG.
6851 Only older versions of GNAT would use this format, but we have
6852 to test it first, because there are no visible markers for
6853 the current approach except the absence of that field. */
6854
6855 val = ada_value_struct_elt (tag, "tsd", 1);
6856 if (val)
6857 return val;
6858
6859 /* Try the second representation for the dispatch table (in which
6860 there is no explicit 'tsd' field in the referent of the tag pointer,
6861 and instead the tsd pointer is stored just before the dispatch
6862 table. */
6863
6864 type = ada_get_tsd_type (current_inferior());
6865 if (type == NULL)
6866 return NULL;
6867 type = lookup_pointer_type (lookup_pointer_type (type));
6868 val = value_cast (type, tag);
6869 if (val == NULL)
6870 return NULL;
6871 return value_ind (value_ptradd (val, -1));
6872}
6873
6874/* Given the TSD of a tag (type-specific data), return a string
6875 containing the name of the associated type.
6876
6877 The returned value is good until the next call. May return NULL
6878 if we are unable to determine the tag name. */
6879
6880static char *
6881ada_tag_name_from_tsd (struct value *tsd)
6882{
6883 static char name[1024];
6884 char *p;
6885 struct value *val;
6886
6887 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6888 if (val == NULL)
6889 return NULL;
6890 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6891 for (p = name; *p != '\0'; p += 1)
6892 if (isalpha (*p))
6893 *p = tolower (*p);
6894 return name;
6895}
6896
6897/* The type name of the dynamic type denoted by the 'tag value TAG, as
6898 a C string.
6899
6900 Return NULL if the TAG is not an Ada tag, or if we were unable to
6901 determine the name of that tag. The result is good until the next
6902 call. */
6903
6904const char *
6905ada_tag_name (struct value *tag)
6906{
6907 char *name = NULL;
6908
6909 if (!ada_is_tag_type (value_type (tag)))
6910 return NULL;
6911
6912 /* It is perfectly possible that an exception be raised while trying
6913 to determine the TAG's name, even under normal circumstances:
6914 The associated variable may be uninitialized or corrupted, for
6915 instance. We do not let any exception propagate past this point.
6916 instead we return NULL.
6917
6918 We also do not print the error message either (which often is very
6919 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6920 the caller print a more meaningful message if necessary. */
6921 TRY
6922 {
6923 struct value *tsd = ada_get_tsd_from_tag (tag);
6924
6925 if (tsd != NULL)
6926 name = ada_tag_name_from_tsd (tsd);
6927 }
6928 CATCH (e, RETURN_MASK_ERROR)
6929 {
6930 }
6931 END_CATCH
6932
6933 return name;
6934}
6935
6936/* The parent type of TYPE, or NULL if none. */
6937
6938struct type *
6939ada_parent_type (struct type *type)
6940{
6941 int i;
6942
6943 type = ada_check_typedef (type);
6944
6945 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6946 return NULL;
6947
6948 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6949 if (ada_is_parent_field (type, i))
6950 {
6951 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6952
6953 /* If the _parent field is a pointer, then dereference it. */
6954 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6955 parent_type = TYPE_TARGET_TYPE (parent_type);
6956 /* If there is a parallel XVS type, get the actual base type. */
6957 parent_type = ada_get_base_type (parent_type);
6958
6959 return ada_check_typedef (parent_type);
6960 }
6961
6962 return NULL;
6963}
6964
6965/* True iff field number FIELD_NUM of structure type TYPE contains the
6966 parent-type (inherited) fields of a derived type. Assumes TYPE is
6967 a structure type with at least FIELD_NUM+1 fields. */
6968
6969int
6970ada_is_parent_field (struct type *type, int field_num)
6971{
6972 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6973
6974 return (name != NULL
6975 && (startswith (name, "PARENT")
6976 || startswith (name, "_parent")));
6977}
6978
6979/* True iff field number FIELD_NUM of structure type TYPE is a
6980 transparent wrapper field (which should be silently traversed when doing
6981 field selection and flattened when printing). Assumes TYPE is a
6982 structure type with at least FIELD_NUM+1 fields. Such fields are always
6983 structures. */
6984
6985int
6986ada_is_wrapper_field (struct type *type, int field_num)
6987{
6988 const char *name = TYPE_FIELD_NAME (type, field_num);
6989
6990 if (name != NULL && strcmp (name, "RETVAL") == 0)
6991 {
6992 /* This happens in functions with "out" or "in out" parameters
6993 which are passed by copy. For such functions, GNAT describes
6994 the function's return type as being a struct where the return
6995 value is in a field called RETVAL, and where the other "out"
6996 or "in out" parameters are fields of that struct. This is not
6997 a wrapper. */
6998 return 0;
6999 }
7000
7001 return (name != NULL
7002 && (startswith (name, "PARENT")
7003 || strcmp (name, "REP") == 0
7004 || startswith (name, "_parent")
7005 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7006}
7007
7008/* True iff field number FIELD_NUM of structure or union type TYPE
7009 is a variant wrapper. Assumes TYPE is a structure type with at least
7010 FIELD_NUM+1 fields. */
7011
7012int
7013ada_is_variant_part (struct type *type, int field_num)
7014{
7015 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7016
7017 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7018 || (is_dynamic_field (type, field_num)
7019 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7020 == TYPE_CODE_UNION)));
7021}
7022
7023/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7024 whose discriminants are contained in the record type OUTER_TYPE,
7025 returns the type of the controlling discriminant for the variant.
7026 May return NULL if the type could not be found. */
7027
7028struct type *
7029ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7030{
7031 const char *name = ada_variant_discrim_name (var_type);
7032
7033 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7034}
7035
7036/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7037 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7038 represents a 'when others' clause; otherwise 0. */
7039
7040int
7041ada_is_others_clause (struct type *type, int field_num)
7042{
7043 const char *name = TYPE_FIELD_NAME (type, field_num);
7044
7045 return (name != NULL && name[0] == 'O');
7046}
7047
7048/* Assuming that TYPE0 is the type of the variant part of a record,
7049 returns the name of the discriminant controlling the variant.
7050 The value is valid until the next call to ada_variant_discrim_name. */
7051
7052const char *
7053ada_variant_discrim_name (struct type *type0)
7054{
7055 static char *result = NULL;
7056 static size_t result_len = 0;
7057 struct type *type;
7058 const char *name;
7059 const char *discrim_end;
7060 const char *discrim_start;
7061
7062 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7063 type = TYPE_TARGET_TYPE (type0);
7064 else
7065 type = type0;
7066
7067 name = ada_type_name (type);
7068
7069 if (name == NULL || name[0] == '\000')
7070 return "";
7071
7072 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7073 discrim_end -= 1)
7074 {
7075 if (startswith (discrim_end, "___XVN"))
7076 break;
7077 }
7078 if (discrim_end == name)
7079 return "";
7080
7081 for (discrim_start = discrim_end; discrim_start != name + 3;
7082 discrim_start -= 1)
7083 {
7084 if (discrim_start == name + 1)
7085 return "";
7086 if ((discrim_start > name + 3
7087 && startswith (discrim_start - 3, "___"))
7088 || discrim_start[-1] == '.')
7089 break;
7090 }
7091
7092 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7093 strncpy (result, discrim_start, discrim_end - discrim_start);
7094 result[discrim_end - discrim_start] = '\0';
7095 return result;
7096}
7097
7098/* Scan STR for a subtype-encoded number, beginning at position K.
7099 Put the position of the character just past the number scanned in
7100 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7101 Return 1 if there was a valid number at the given position, and 0
7102 otherwise. A "subtype-encoded" number consists of the absolute value
7103 in decimal, followed by the letter 'm' to indicate a negative number.
7104 Assumes 0m does not occur. */
7105
7106int
7107ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7108{
7109 ULONGEST RU;
7110
7111 if (!isdigit (str[k]))
7112 return 0;
7113
7114 /* Do it the hard way so as not to make any assumption about
7115 the relationship of unsigned long (%lu scan format code) and
7116 LONGEST. */
7117 RU = 0;
7118 while (isdigit (str[k]))
7119 {
7120 RU = RU * 10 + (str[k] - '0');
7121 k += 1;
7122 }
7123
7124 if (str[k] == 'm')
7125 {
7126 if (R != NULL)
7127 *R = (-(LONGEST) (RU - 1)) - 1;
7128 k += 1;
7129 }
7130 else if (R != NULL)
7131 *R = (LONGEST) RU;
7132
7133 /* NOTE on the above: Technically, C does not say what the results of
7134 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7135 number representable as a LONGEST (although either would probably work
7136 in most implementations). When RU>0, the locution in the then branch
7137 above is always equivalent to the negative of RU. */
7138
7139 if (new_k != NULL)
7140 *new_k = k;
7141 return 1;
7142}
7143
7144/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7145 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7146 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7147
7148int
7149ada_in_variant (LONGEST val, struct type *type, int field_num)
7150{
7151 const char *name = TYPE_FIELD_NAME (type, field_num);
7152 int p;
7153
7154 p = 0;
7155 while (1)
7156 {
7157 switch (name[p])
7158 {
7159 case '\0':
7160 return 0;
7161 case 'S':
7162 {
7163 LONGEST W;
7164
7165 if (!ada_scan_number (name, p + 1, &W, &p))
7166 return 0;
7167 if (val == W)
7168 return 1;
7169 break;
7170 }
7171 case 'R':
7172 {
7173 LONGEST L, U;
7174
7175 if (!ada_scan_number (name, p + 1, &L, &p)
7176 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7177 return 0;
7178 if (val >= L && val <= U)
7179 return 1;
7180 break;
7181 }
7182 case 'O':
7183 return 1;
7184 default:
7185 return 0;
7186 }
7187 }
7188}
7189
7190/* FIXME: Lots of redundancy below. Try to consolidate. */
7191
7192/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7193 ARG_TYPE, extract and return the value of one of its (non-static)
7194 fields. FIELDNO says which field. Differs from value_primitive_field
7195 only in that it can handle packed values of arbitrary type. */
7196
7197static struct value *
7198ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7199 struct type *arg_type)
7200{
7201 struct type *type;
7202
7203 arg_type = ada_check_typedef (arg_type);
7204 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7205
7206 /* Handle packed fields. */
7207
7208 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7209 {
7210 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7211 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7212
7213 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7214 offset + bit_pos / 8,
7215 bit_pos % 8, bit_size, type);
7216 }
7217 else
7218 return value_primitive_field (arg1, offset, fieldno, arg_type);
7219}
7220
7221/* Find field with name NAME in object of type TYPE. If found,
7222 set the following for each argument that is non-null:
7223 - *FIELD_TYPE_P to the field's type;
7224 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7225 an object of that type;
7226 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7227 - *BIT_SIZE_P to its size in bits if the field is packed, and
7228 0 otherwise;
7229 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7230 fields up to but not including the desired field, or by the total
7231 number of fields if not found. A NULL value of NAME never
7232 matches; the function just counts visible fields in this case.
7233
7234 Notice that we need to handle when a tagged record hierarchy
7235 has some components with the same name, like in this scenario:
7236
7237 type Top_T is tagged record
7238 N : Integer := 1;
7239 U : Integer := 974;
7240 A : Integer := 48;
7241 end record;
7242
7243 type Middle_T is new Top.Top_T with record
7244 N : Character := 'a';
7245 C : Integer := 3;
7246 end record;
7247
7248 type Bottom_T is new Middle.Middle_T with record
7249 N : Float := 4.0;
7250 C : Character := '5';
7251 X : Integer := 6;
7252 A : Character := 'J';
7253 end record;
7254
7255 Let's say we now have a variable declared and initialized as follow:
7256
7257 TC : Top_A := new Bottom_T;
7258
7259 And then we use this variable to call this function
7260
7261 procedure Assign (Obj: in out Top_T; TV : Integer);
7262
7263 as follow:
7264
7265 Assign (Top_T (B), 12);
7266
7267 Now, we're in the debugger, and we're inside that procedure
7268 then and we want to print the value of obj.c:
7269
7270 Usually, the tagged record or one of the parent type owns the
7271 component to print and there's no issue but in this particular
7272 case, what does it mean to ask for Obj.C? Since the actual
7273 type for object is type Bottom_T, it could mean two things: type
7274 component C from the Middle_T view, but also component C from
7275 Bottom_T. So in that "undefined" case, when the component is
7276 not found in the non-resolved type (which includes all the
7277 components of the parent type), then resolve it and see if we
7278 get better luck once expanded.
7279
7280 In the case of homonyms in the derived tagged type, we don't
7281 guaranty anything, and pick the one that's easiest for us
7282 to program.
7283
7284 Returns 1 if found, 0 otherwise. */
7285
7286static int
7287find_struct_field (const char *name, struct type *type, int offset,
7288 struct type **field_type_p,
7289 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7290 int *index_p)
7291{
7292 int i;
7293 int parent_offset = -1;
7294
7295 type = ada_check_typedef (type);
7296
7297 if (field_type_p != NULL)
7298 *field_type_p = NULL;
7299 if (byte_offset_p != NULL)
7300 *byte_offset_p = 0;
7301 if (bit_offset_p != NULL)
7302 *bit_offset_p = 0;
7303 if (bit_size_p != NULL)
7304 *bit_size_p = 0;
7305
7306 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7307 {
7308 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7309 int fld_offset = offset + bit_pos / 8;
7310 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7311
7312 if (t_field_name == NULL)
7313 continue;
7314
7315 else if (ada_is_parent_field (type, i))
7316 {
7317 /* This is a field pointing us to the parent type of a tagged
7318 type. As hinted in this function's documentation, we give
7319 preference to fields in the current record first, so what
7320 we do here is just record the index of this field before
7321 we skip it. If it turns out we couldn't find our field
7322 in the current record, then we'll get back to it and search
7323 inside it whether the field might exist in the parent. */
7324
7325 parent_offset = i;
7326 continue;
7327 }
7328
7329 else if (name != NULL && field_name_match (t_field_name, name))
7330 {
7331 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7332
7333 if (field_type_p != NULL)
7334 *field_type_p = TYPE_FIELD_TYPE (type, i);
7335 if (byte_offset_p != NULL)
7336 *byte_offset_p = fld_offset;
7337 if (bit_offset_p != NULL)
7338 *bit_offset_p = bit_pos % 8;
7339 if (bit_size_p != NULL)
7340 *bit_size_p = bit_size;
7341 return 1;
7342 }
7343 else if (ada_is_wrapper_field (type, i))
7344 {
7345 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7346 field_type_p, byte_offset_p, bit_offset_p,
7347 bit_size_p, index_p))
7348 return 1;
7349 }
7350 else if (ada_is_variant_part (type, i))
7351 {
7352 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7353 fixed type?? */
7354 int j;
7355 struct type *field_type
7356 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7357
7358 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7359 {
7360 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7361 fld_offset
7362 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7363 field_type_p, byte_offset_p,
7364 bit_offset_p, bit_size_p, index_p))
7365 return 1;
7366 }
7367 }
7368 else if (index_p != NULL)
7369 *index_p += 1;
7370 }
7371
7372 /* Field not found so far. If this is a tagged type which
7373 has a parent, try finding that field in the parent now. */
7374
7375 if (parent_offset != -1)
7376 {
7377 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7378 int fld_offset = offset + bit_pos / 8;
7379
7380 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7381 fld_offset, field_type_p, byte_offset_p,
7382 bit_offset_p, bit_size_p, index_p))
7383 return 1;
7384 }
7385
7386 return 0;
7387}
7388
7389/* Number of user-visible fields in record type TYPE. */
7390
7391static int
7392num_visible_fields (struct type *type)
7393{
7394 int n;
7395
7396 n = 0;
7397 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7398 return n;
7399}
7400
7401/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7402 and search in it assuming it has (class) type TYPE.
7403 If found, return value, else return NULL.
7404
7405 Searches recursively through wrapper fields (e.g., '_parent').
7406
7407 In the case of homonyms in the tagged types, please refer to the
7408 long explanation in find_struct_field's function documentation. */
7409
7410static struct value *
7411ada_search_struct_field (const char *name, struct value *arg, int offset,
7412 struct type *type)
7413{
7414 int i;
7415 int parent_offset = -1;
7416
7417 type = ada_check_typedef (type);
7418 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7419 {
7420 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7421
7422 if (t_field_name == NULL)
7423 continue;
7424
7425 else if (ada_is_parent_field (type, i))
7426 {
7427 /* This is a field pointing us to the parent type of a tagged
7428 type. As hinted in this function's documentation, we give
7429 preference to fields in the current record first, so what
7430 we do here is just record the index of this field before
7431 we skip it. If it turns out we couldn't find our field
7432 in the current record, then we'll get back to it and search
7433 inside it whether the field might exist in the parent. */
7434
7435 parent_offset = i;
7436 continue;
7437 }
7438
7439 else if (field_name_match (t_field_name, name))
7440 return ada_value_primitive_field (arg, offset, i, type);
7441
7442 else if (ada_is_wrapper_field (type, i))
7443 {
7444 struct value *v = /* Do not let indent join lines here. */
7445 ada_search_struct_field (name, arg,
7446 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7447 TYPE_FIELD_TYPE (type, i));
7448
7449 if (v != NULL)
7450 return v;
7451 }
7452
7453 else if (ada_is_variant_part (type, i))
7454 {
7455 /* PNH: Do we ever get here? See find_struct_field. */
7456 int j;
7457 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7458 i));
7459 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7460
7461 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7462 {
7463 struct value *v = ada_search_struct_field /* Force line
7464 break. */
7465 (name, arg,
7466 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7467 TYPE_FIELD_TYPE (field_type, j));
7468
7469 if (v != NULL)
7470 return v;
7471 }
7472 }
7473 }
7474
7475 /* Field not found so far. If this is a tagged type which
7476 has a parent, try finding that field in the parent now. */
7477
7478 if (parent_offset != -1)
7479 {
7480 struct value *v = ada_search_struct_field (
7481 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7482 TYPE_FIELD_TYPE (type, parent_offset));
7483
7484 if (v != NULL)
7485 return v;
7486 }
7487
7488 return NULL;
7489}
7490
7491static struct value *ada_index_struct_field_1 (int *, struct value *,
7492 int, struct type *);
7493
7494
7495/* Return field #INDEX in ARG, where the index is that returned by
7496 * find_struct_field through its INDEX_P argument. Adjust the address
7497 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7498 * If found, return value, else return NULL. */
7499
7500static struct value *
7501ada_index_struct_field (int index, struct value *arg, int offset,
7502 struct type *type)
7503{
7504 return ada_index_struct_field_1 (&index, arg, offset, type);
7505}
7506
7507
7508/* Auxiliary function for ada_index_struct_field. Like
7509 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7510 * *INDEX_P. */
7511
7512static struct value *
7513ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7514 struct type *type)
7515{
7516 int i;
7517 type = ada_check_typedef (type);
7518
7519 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7520 {
7521 if (TYPE_FIELD_NAME (type, i) == NULL)
7522 continue;
7523 else if (ada_is_wrapper_field (type, i))
7524 {
7525 struct value *v = /* Do not let indent join lines here. */
7526 ada_index_struct_field_1 (index_p, arg,
7527 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7528 TYPE_FIELD_TYPE (type, i));
7529
7530 if (v != NULL)
7531 return v;
7532 }
7533
7534 else if (ada_is_variant_part (type, i))
7535 {
7536 /* PNH: Do we ever get here? See ada_search_struct_field,
7537 find_struct_field. */
7538 error (_("Cannot assign this kind of variant record"));
7539 }
7540 else if (*index_p == 0)
7541 return ada_value_primitive_field (arg, offset, i, type);
7542 else
7543 *index_p -= 1;
7544 }
7545 return NULL;
7546}
7547
7548/* Given ARG, a value of type (pointer or reference to a)*
7549 structure/union, extract the component named NAME from the ultimate
7550 target structure/union and return it as a value with its
7551 appropriate type.
7552
7553 The routine searches for NAME among all members of the structure itself
7554 and (recursively) among all members of any wrapper members
7555 (e.g., '_parent').
7556
7557 If NO_ERR, then simply return NULL in case of error, rather than
7558 calling error. */
7559
7560struct value *
7561ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7562{
7563 struct type *t, *t1;
7564 struct value *v;
7565
7566 v = NULL;
7567 t1 = t = ada_check_typedef (value_type (arg));
7568 if (TYPE_CODE (t) == TYPE_CODE_REF)
7569 {
7570 t1 = TYPE_TARGET_TYPE (t);
7571 if (t1 == NULL)
7572 goto BadValue;
7573 t1 = ada_check_typedef (t1);
7574 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7575 {
7576 arg = coerce_ref (arg);
7577 t = t1;
7578 }
7579 }
7580
7581 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7582 {
7583 t1 = TYPE_TARGET_TYPE (t);
7584 if (t1 == NULL)
7585 goto BadValue;
7586 t1 = ada_check_typedef (t1);
7587 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7588 {
7589 arg = value_ind (arg);
7590 t = t1;
7591 }
7592 else
7593 break;
7594 }
7595
7596 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7597 goto BadValue;
7598
7599 if (t1 == t)
7600 v = ada_search_struct_field (name, arg, 0, t);
7601 else
7602 {
7603 int bit_offset, bit_size, byte_offset;
7604 struct type *field_type;
7605 CORE_ADDR address;
7606
7607 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7608 address = value_address (ada_value_ind (arg));
7609 else
7610 address = value_address (ada_coerce_ref (arg));
7611
7612 /* Check to see if this is a tagged type. We also need to handle
7613 the case where the type is a reference to a tagged type, but
7614 we have to be careful to exclude pointers to tagged types.
7615 The latter should be shown as usual (as a pointer), whereas
7616 a reference should mostly be transparent to the user. */
7617
7618 if (ada_is_tagged_type (t1, 0)
7619 || (TYPE_CODE (t1) == TYPE_CODE_REF
7620 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7621 {
7622 /* We first try to find the searched field in the current type.
7623 If not found then let's look in the fixed type. */
7624
7625 if (!find_struct_field (name, t1, 0,
7626 &field_type, &byte_offset, &bit_offset,
7627 &bit_size, NULL))
7628 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7629 address, NULL, 1);
7630 }
7631 else
7632 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7633 address, NULL, 1);
7634
7635 if (find_struct_field (name, t1, 0,
7636 &field_type, &byte_offset, &bit_offset,
7637 &bit_size, NULL))
7638 {
7639 if (bit_size != 0)
7640 {
7641 if (TYPE_CODE (t) == TYPE_CODE_REF)
7642 arg = ada_coerce_ref (arg);
7643 else
7644 arg = ada_value_ind (arg);
7645 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7646 bit_offset, bit_size,
7647 field_type);
7648 }
7649 else
7650 v = value_at_lazy (field_type, address + byte_offset);
7651 }
7652 }
7653
7654 if (v != NULL || no_err)
7655 return v;
7656 else
7657 error (_("There is no member named %s."), name);
7658
7659 BadValue:
7660 if (no_err)
7661 return NULL;
7662 else
7663 error (_("Attempt to extract a component of "
7664 "a value that is not a record."));
7665}
7666
7667/* Return a string representation of type TYPE. */
7668
7669static std::string
7670type_as_string (struct type *type)
7671{
7672 string_file tmp_stream;
7673
7674 type_print (type, "", &tmp_stream, -1);
7675
7676 return std::move (tmp_stream.string ());
7677}
7678
7679/* Given a type TYPE, look up the type of the component of type named NAME.
7680 If DISPP is non-null, add its byte displacement from the beginning of a
7681 structure (pointed to by a value) of type TYPE to *DISPP (does not
7682 work for packed fields).
7683
7684 Matches any field whose name has NAME as a prefix, possibly
7685 followed by "___".
7686
7687 TYPE can be either a struct or union. If REFOK, TYPE may also
7688 be a (pointer or reference)+ to a struct or union, and the
7689 ultimate target type will be searched.
7690
7691 Looks recursively into variant clauses and parent types.
7692
7693 In the case of homonyms in the tagged types, please refer to the
7694 long explanation in find_struct_field's function documentation.
7695
7696 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7697 TYPE is not a type of the right kind. */
7698
7699static struct type *
7700ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7701 int noerr)
7702{
7703 int i;
7704 int parent_offset = -1;
7705
7706 if (name == NULL)
7707 goto BadName;
7708
7709 if (refok && type != NULL)
7710 while (1)
7711 {
7712 type = ada_check_typedef (type);
7713 if (TYPE_CODE (type) != TYPE_CODE_PTR
7714 && TYPE_CODE (type) != TYPE_CODE_REF)
7715 break;
7716 type = TYPE_TARGET_TYPE (type);
7717 }
7718
7719 if (type == NULL
7720 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7721 && TYPE_CODE (type) != TYPE_CODE_UNION))
7722 {
7723 if (noerr)
7724 return NULL;
7725
7726 error (_("Type %s is not a structure or union type"),
7727 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7728 }
7729
7730 type = to_static_fixed_type (type);
7731
7732 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7733 {
7734 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7735 struct type *t;
7736
7737 if (t_field_name == NULL)
7738 continue;
7739
7740 else if (ada_is_parent_field (type, i))
7741 {
7742 /* This is a field pointing us to the parent type of a tagged
7743 type. As hinted in this function's documentation, we give
7744 preference to fields in the current record first, so what
7745 we do here is just record the index of this field before
7746 we skip it. If it turns out we couldn't find our field
7747 in the current record, then we'll get back to it and search
7748 inside it whether the field might exist in the parent. */
7749
7750 parent_offset = i;
7751 continue;
7752 }
7753
7754 else if (field_name_match (t_field_name, name))
7755 return TYPE_FIELD_TYPE (type, i);
7756
7757 else if (ada_is_wrapper_field (type, i))
7758 {
7759 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7760 0, 1);
7761 if (t != NULL)
7762 return t;
7763 }
7764
7765 else if (ada_is_variant_part (type, i))
7766 {
7767 int j;
7768 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7769 i));
7770
7771 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7772 {
7773 /* FIXME pnh 2008/01/26: We check for a field that is
7774 NOT wrapped in a struct, since the compiler sometimes
7775 generates these for unchecked variant types. Revisit
7776 if the compiler changes this practice. */
7777 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7778
7779 if (v_field_name != NULL
7780 && field_name_match (v_field_name, name))
7781 t = TYPE_FIELD_TYPE (field_type, j);
7782 else
7783 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7784 j),
7785 name, 0, 1);
7786
7787 if (t != NULL)
7788 return t;
7789 }
7790 }
7791
7792 }
7793
7794 /* Field not found so far. If this is a tagged type which
7795 has a parent, try finding that field in the parent now. */
7796
7797 if (parent_offset != -1)
7798 {
7799 struct type *t;
7800
7801 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7802 name, 0, 1);
7803 if (t != NULL)
7804 return t;
7805 }
7806
7807BadName:
7808 if (!noerr)
7809 {
7810 const char *name_str = name != NULL ? name : _("<null>");
7811
7812 error (_("Type %s has no component named %s"),
7813 type_as_string (type).c_str (), name_str);
7814 }
7815
7816 return NULL;
7817}
7818
7819/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7820 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7821 represents an unchecked union (that is, the variant part of a
7822 record that is named in an Unchecked_Union pragma). */
7823
7824static int
7825is_unchecked_variant (struct type *var_type, struct type *outer_type)
7826{
7827 const char *discrim_name = ada_variant_discrim_name (var_type);
7828
7829 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7830}
7831
7832
7833/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7834 within a value of type OUTER_TYPE that is stored in GDB at
7835 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7836 numbering from 0) is applicable. Returns -1 if none are. */
7837
7838int
7839ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7840 const gdb_byte *outer_valaddr)
7841{
7842 int others_clause;
7843 int i;
7844 const char *discrim_name = ada_variant_discrim_name (var_type);
7845 struct value *outer;
7846 struct value *discrim;
7847 LONGEST discrim_val;
7848
7849 /* Using plain value_from_contents_and_address here causes problems
7850 because we will end up trying to resolve a type that is currently
7851 being constructed. */
7852 outer = value_from_contents_and_address_unresolved (outer_type,
7853 outer_valaddr, 0);
7854 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7855 if (discrim == NULL)
7856 return -1;
7857 discrim_val = value_as_long (discrim);
7858
7859 others_clause = -1;
7860 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7861 {
7862 if (ada_is_others_clause (var_type, i))
7863 others_clause = i;
7864 else if (ada_in_variant (discrim_val, var_type, i))
7865 return i;
7866 }
7867
7868 return others_clause;
7869}
7870\f
7871
7872
7873 /* Dynamic-Sized Records */
7874
7875/* Strategy: The type ostensibly attached to a value with dynamic size
7876 (i.e., a size that is not statically recorded in the debugging
7877 data) does not accurately reflect the size or layout of the value.
7878 Our strategy is to convert these values to values with accurate,
7879 conventional types that are constructed on the fly. */
7880
7881/* There is a subtle and tricky problem here. In general, we cannot
7882 determine the size of dynamic records without its data. However,
7883 the 'struct value' data structure, which GDB uses to represent
7884 quantities in the inferior process (the target), requires the size
7885 of the type at the time of its allocation in order to reserve space
7886 for GDB's internal copy of the data. That's why the
7887 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7888 rather than struct value*s.
7889
7890 However, GDB's internal history variables ($1, $2, etc.) are
7891 struct value*s containing internal copies of the data that are not, in
7892 general, the same as the data at their corresponding addresses in
7893 the target. Fortunately, the types we give to these values are all
7894 conventional, fixed-size types (as per the strategy described
7895 above), so that we don't usually have to perform the
7896 'to_fixed_xxx_type' conversions to look at their values.
7897 Unfortunately, there is one exception: if one of the internal
7898 history variables is an array whose elements are unconstrained
7899 records, then we will need to create distinct fixed types for each
7900 element selected. */
7901
7902/* The upshot of all of this is that many routines take a (type, host
7903 address, target address) triple as arguments to represent a value.
7904 The host address, if non-null, is supposed to contain an internal
7905 copy of the relevant data; otherwise, the program is to consult the
7906 target at the target address. */
7907
7908/* Assuming that VAL0 represents a pointer value, the result of
7909 dereferencing it. Differs from value_ind in its treatment of
7910 dynamic-sized types. */
7911
7912struct value *
7913ada_value_ind (struct value *val0)
7914{
7915 struct value *val = value_ind (val0);
7916
7917 if (ada_is_tagged_type (value_type (val), 0))
7918 val = ada_tag_value_at_base_address (val);
7919
7920 return ada_to_fixed_value (val);
7921}
7922
7923/* The value resulting from dereferencing any "reference to"
7924 qualifiers on VAL0. */
7925
7926static struct value *
7927ada_coerce_ref (struct value *val0)
7928{
7929 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7930 {
7931 struct value *val = val0;
7932
7933 val = coerce_ref (val);
7934
7935 if (ada_is_tagged_type (value_type (val), 0))
7936 val = ada_tag_value_at_base_address (val);
7937
7938 return ada_to_fixed_value (val);
7939 }
7940 else
7941 return val0;
7942}
7943
7944/* Return OFF rounded upward if necessary to a multiple of
7945 ALIGNMENT (a power of 2). */
7946
7947static unsigned int
7948align_value (unsigned int off, unsigned int alignment)
7949{
7950 return (off + alignment - 1) & ~(alignment - 1);
7951}
7952
7953/* Return the bit alignment required for field #F of template type TYPE. */
7954
7955static unsigned int
7956field_alignment (struct type *type, int f)
7957{
7958 const char *name = TYPE_FIELD_NAME (type, f);
7959 int len;
7960 int align_offset;
7961
7962 /* The field name should never be null, unless the debugging information
7963 is somehow malformed. In this case, we assume the field does not
7964 require any alignment. */
7965 if (name == NULL)
7966 return 1;
7967
7968 len = strlen (name);
7969
7970 if (!isdigit (name[len - 1]))
7971 return 1;
7972
7973 if (isdigit (name[len - 2]))
7974 align_offset = len - 2;
7975 else
7976 align_offset = len - 1;
7977
7978 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7979 return TARGET_CHAR_BIT;
7980
7981 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7982}
7983
7984/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7985
7986static struct symbol *
7987ada_find_any_type_symbol (const char *name)
7988{
7989 struct symbol *sym;
7990
7991 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7992 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7993 return sym;
7994
7995 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7996 return sym;
7997}
7998
7999/* Find a type named NAME. Ignores ambiguity. This routine will look
8000 solely for types defined by debug info, it will not search the GDB
8001 primitive types. */
8002
8003static struct type *
8004ada_find_any_type (const char *name)
8005{
8006 struct symbol *sym = ada_find_any_type_symbol (name);
8007
8008 if (sym != NULL)
8009 return SYMBOL_TYPE (sym);
8010
8011 return NULL;
8012}
8013
8014/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8015 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8016 symbol, in which case it is returned. Otherwise, this looks for
8017 symbols whose name is that of NAME_SYM suffixed with "___XR".
8018 Return symbol if found, and NULL otherwise. */
8019
8020struct symbol *
8021ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8022{
8023 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8024 struct symbol *sym;
8025
8026 if (strstr (name, "___XR") != NULL)
8027 return name_sym;
8028
8029 sym = find_old_style_renaming_symbol (name, block);
8030
8031 if (sym != NULL)
8032 return sym;
8033
8034 /* Not right yet. FIXME pnh 7/20/2007. */
8035 sym = ada_find_any_type_symbol (name);
8036 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8037 return sym;
8038 else
8039 return NULL;
8040}
8041
8042static struct symbol *
8043find_old_style_renaming_symbol (const char *name, const struct block *block)
8044{
8045 const struct symbol *function_sym = block_linkage_function (block);
8046 char *rename;
8047
8048 if (function_sym != NULL)
8049 {
8050 /* If the symbol is defined inside a function, NAME is not fully
8051 qualified. This means we need to prepend the function name
8052 as well as adding the ``___XR'' suffix to build the name of
8053 the associated renaming symbol. */
8054 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8055 /* Function names sometimes contain suffixes used
8056 for instance to qualify nested subprograms. When building
8057 the XR type name, we need to make sure that this suffix is
8058 not included. So do not include any suffix in the function
8059 name length below. */
8060 int function_name_len = ada_name_prefix_len (function_name);
8061 const int rename_len = function_name_len + 2 /* "__" */
8062 + strlen (name) + 6 /* "___XR\0" */ ;
8063
8064 /* Strip the suffix if necessary. */
8065 ada_remove_trailing_digits (function_name, &function_name_len);
8066 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8067 ada_remove_Xbn_suffix (function_name, &function_name_len);
8068
8069 /* Library-level functions are a special case, as GNAT adds
8070 a ``_ada_'' prefix to the function name to avoid namespace
8071 pollution. However, the renaming symbols themselves do not
8072 have this prefix, so we need to skip this prefix if present. */
8073 if (function_name_len > 5 /* "_ada_" */
8074 && strstr (function_name, "_ada_") == function_name)
8075 {
8076 function_name += 5;
8077 function_name_len -= 5;
8078 }
8079
8080 rename = (char *) alloca (rename_len * sizeof (char));
8081 strncpy (rename, function_name, function_name_len);
8082 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8083 "__%s___XR", name);
8084 }
8085 else
8086 {
8087 const int rename_len = strlen (name) + 6;
8088
8089 rename = (char *) alloca (rename_len * sizeof (char));
8090 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8091 }
8092
8093 return ada_find_any_type_symbol (rename);
8094}
8095
8096/* Because of GNAT encoding conventions, several GDB symbols may match a
8097 given type name. If the type denoted by TYPE0 is to be preferred to
8098 that of TYPE1 for purposes of type printing, return non-zero;
8099 otherwise return 0. */
8100
8101int
8102ada_prefer_type (struct type *type0, struct type *type1)
8103{
8104 if (type1 == NULL)
8105 return 1;
8106 else if (type0 == NULL)
8107 return 0;
8108 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8109 return 1;
8110 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8111 return 0;
8112 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8113 return 1;
8114 else if (ada_is_constrained_packed_array_type (type0))
8115 return 1;
8116 else if (ada_is_array_descriptor_type (type0)
8117 && !ada_is_array_descriptor_type (type1))
8118 return 1;
8119 else
8120 {
8121 const char *type0_name = type_name_no_tag (type0);
8122 const char *type1_name = type_name_no_tag (type1);
8123
8124 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8125 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8126 return 1;
8127 }
8128 return 0;
8129}
8130
8131/* The name of TYPE, which is either its TYPE_NAME, or, if that is
8132 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8133
8134const char *
8135ada_type_name (struct type *type)
8136{
8137 if (type == NULL)
8138 return NULL;
8139 else if (TYPE_NAME (type) != NULL)
8140 return TYPE_NAME (type);
8141 else
8142 return TYPE_TAG_NAME (type);
8143}
8144
8145/* Search the list of "descriptive" types associated to TYPE for a type
8146 whose name is NAME. */
8147
8148static struct type *
8149find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8150{
8151 struct type *result, *tmp;
8152
8153 if (ada_ignore_descriptive_types_p)
8154 return NULL;
8155
8156 /* If there no descriptive-type info, then there is no parallel type
8157 to be found. */
8158 if (!HAVE_GNAT_AUX_INFO (type))
8159 return NULL;
8160
8161 result = TYPE_DESCRIPTIVE_TYPE (type);
8162 while (result != NULL)
8163 {
8164 const char *result_name = ada_type_name (result);
8165
8166 if (result_name == NULL)
8167 {
8168 warning (_("unexpected null name on descriptive type"));
8169 return NULL;
8170 }
8171
8172 /* If the names match, stop. */
8173 if (strcmp (result_name, name) == 0)
8174 break;
8175
8176 /* Otherwise, look at the next item on the list, if any. */
8177 if (HAVE_GNAT_AUX_INFO (result))
8178 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8179 else
8180 tmp = NULL;
8181
8182 /* If not found either, try after having resolved the typedef. */
8183 if (tmp != NULL)
8184 result = tmp;
8185 else
8186 {
8187 result = check_typedef (result);
8188 if (HAVE_GNAT_AUX_INFO (result))
8189 result = TYPE_DESCRIPTIVE_TYPE (result);
8190 else
8191 result = NULL;
8192 }
8193 }
8194
8195 /* If we didn't find a match, see whether this is a packed array. With
8196 older compilers, the descriptive type information is either absent or
8197 irrelevant when it comes to packed arrays so the above lookup fails.
8198 Fall back to using a parallel lookup by name in this case. */
8199 if (result == NULL && ada_is_constrained_packed_array_type (type))
8200 return ada_find_any_type (name);
8201
8202 return result;
8203}
8204
8205/* Find a parallel type to TYPE with the specified NAME, using the
8206 descriptive type taken from the debugging information, if available,
8207 and otherwise using the (slower) name-based method. */
8208
8209static struct type *
8210ada_find_parallel_type_with_name (struct type *type, const char *name)
8211{
8212 struct type *result = NULL;
8213
8214 if (HAVE_GNAT_AUX_INFO (type))
8215 result = find_parallel_type_by_descriptive_type (type, name);
8216 else
8217 result = ada_find_any_type (name);
8218
8219 return result;
8220}
8221
8222/* Same as above, but specify the name of the parallel type by appending
8223 SUFFIX to the name of TYPE. */
8224
8225struct type *
8226ada_find_parallel_type (struct type *type, const char *suffix)
8227{
8228 char *name;
8229 const char *type_name = ada_type_name (type);
8230 int len;
8231
8232 if (type_name == NULL)
8233 return NULL;
8234
8235 len = strlen (type_name);
8236
8237 name = (char *) alloca (len + strlen (suffix) + 1);
8238
8239 strcpy (name, type_name);
8240 strcpy (name + len, suffix);
8241
8242 return ada_find_parallel_type_with_name (type, name);
8243}
8244
8245/* If TYPE is a variable-size record type, return the corresponding template
8246 type describing its fields. Otherwise, return NULL. */
8247
8248static struct type *
8249dynamic_template_type (struct type *type)
8250{
8251 type = ada_check_typedef (type);
8252
8253 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8254 || ada_type_name (type) == NULL)
8255 return NULL;
8256 else
8257 {
8258 int len = strlen (ada_type_name (type));
8259
8260 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8261 return type;
8262 else
8263 return ada_find_parallel_type (type, "___XVE");
8264 }
8265}
8266
8267/* Assuming that TEMPL_TYPE is a union or struct type, returns
8268 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8269
8270static int
8271is_dynamic_field (struct type *templ_type, int field_num)
8272{
8273 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8274
8275 return name != NULL
8276 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8277 && strstr (name, "___XVL") != NULL;
8278}
8279
8280/* The index of the variant field of TYPE, or -1 if TYPE does not
8281 represent a variant record type. */
8282
8283static int
8284variant_field_index (struct type *type)
8285{
8286 int f;
8287
8288 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8289 return -1;
8290
8291 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8292 {
8293 if (ada_is_variant_part (type, f))
8294 return f;
8295 }
8296 return -1;
8297}
8298
8299/* A record type with no fields. */
8300
8301static struct type *
8302empty_record (struct type *templ)
8303{
8304 struct type *type = alloc_type_copy (templ);
8305
8306 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8307 TYPE_NFIELDS (type) = 0;
8308 TYPE_FIELDS (type) = NULL;
8309 INIT_CPLUS_SPECIFIC (type);
8310 TYPE_NAME (type) = "<empty>";
8311 TYPE_TAG_NAME (type) = NULL;
8312 TYPE_LENGTH (type) = 0;
8313 return type;
8314}
8315
8316/* An ordinary record type (with fixed-length fields) that describes
8317 the value of type TYPE at VALADDR or ADDRESS (see comments at
8318 the beginning of this section) VAL according to GNAT conventions.
8319 DVAL0 should describe the (portion of a) record that contains any
8320 necessary discriminants. It should be NULL if value_type (VAL) is
8321 an outer-level type (i.e., as opposed to a branch of a variant.) A
8322 variant field (unless unchecked) is replaced by a particular branch
8323 of the variant.
8324
8325 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8326 length are not statically known are discarded. As a consequence,
8327 VALADDR, ADDRESS and DVAL0 are ignored.
8328
8329 NOTE: Limitations: For now, we assume that dynamic fields and
8330 variants occupy whole numbers of bytes. However, they need not be
8331 byte-aligned. */
8332
8333struct type *
8334ada_template_to_fixed_record_type_1 (struct type *type,
8335 const gdb_byte *valaddr,
8336 CORE_ADDR address, struct value *dval0,
8337 int keep_dynamic_fields)
8338{
8339 struct value *mark = value_mark ();
8340 struct value *dval;
8341 struct type *rtype;
8342 int nfields, bit_len;
8343 int variant_field;
8344 long off;
8345 int fld_bit_len;
8346 int f;
8347
8348 /* Compute the number of fields in this record type that are going
8349 to be processed: unless keep_dynamic_fields, this includes only
8350 fields whose position and length are static will be processed. */
8351 if (keep_dynamic_fields)
8352 nfields = TYPE_NFIELDS (type);
8353 else
8354 {
8355 nfields = 0;
8356 while (nfields < TYPE_NFIELDS (type)
8357 && !ada_is_variant_part (type, nfields)
8358 && !is_dynamic_field (type, nfields))
8359 nfields++;
8360 }
8361
8362 rtype = alloc_type_copy (type);
8363 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8364 INIT_CPLUS_SPECIFIC (rtype);
8365 TYPE_NFIELDS (rtype) = nfields;
8366 TYPE_FIELDS (rtype) = (struct field *)
8367 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8368 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8369 TYPE_NAME (rtype) = ada_type_name (type);
8370 TYPE_TAG_NAME (rtype) = NULL;
8371 TYPE_FIXED_INSTANCE (rtype) = 1;
8372
8373 off = 0;
8374 bit_len = 0;
8375 variant_field = -1;
8376
8377 for (f = 0; f < nfields; f += 1)
8378 {
8379 off = align_value (off, field_alignment (type, f))
8380 + TYPE_FIELD_BITPOS (type, f);
8381 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8382 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8383
8384 if (ada_is_variant_part (type, f))
8385 {
8386 variant_field = f;
8387 fld_bit_len = 0;
8388 }
8389 else if (is_dynamic_field (type, f))
8390 {
8391 const gdb_byte *field_valaddr = valaddr;
8392 CORE_ADDR field_address = address;
8393 struct type *field_type =
8394 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8395
8396 if (dval0 == NULL)
8397 {
8398 /* rtype's length is computed based on the run-time
8399 value of discriminants. If the discriminants are not
8400 initialized, the type size may be completely bogus and
8401 GDB may fail to allocate a value for it. So check the
8402 size first before creating the value. */
8403 ada_ensure_varsize_limit (rtype);
8404 /* Using plain value_from_contents_and_address here
8405 causes problems because we will end up trying to
8406 resolve a type that is currently being
8407 constructed. */
8408 dval = value_from_contents_and_address_unresolved (rtype,
8409 valaddr,
8410 address);
8411 rtype = value_type (dval);
8412 }
8413 else
8414 dval = dval0;
8415
8416 /* If the type referenced by this field is an aligner type, we need
8417 to unwrap that aligner type, because its size might not be set.
8418 Keeping the aligner type would cause us to compute the wrong
8419 size for this field, impacting the offset of the all the fields
8420 that follow this one. */
8421 if (ada_is_aligner_type (field_type))
8422 {
8423 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8424
8425 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8426 field_address = cond_offset_target (field_address, field_offset);
8427 field_type = ada_aligned_type (field_type);
8428 }
8429
8430 field_valaddr = cond_offset_host (field_valaddr,
8431 off / TARGET_CHAR_BIT);
8432 field_address = cond_offset_target (field_address,
8433 off / TARGET_CHAR_BIT);
8434
8435 /* Get the fixed type of the field. Note that, in this case,
8436 we do not want to get the real type out of the tag: if
8437 the current field is the parent part of a tagged record,
8438 we will get the tag of the object. Clearly wrong: the real
8439 type of the parent is not the real type of the child. We
8440 would end up in an infinite loop. */
8441 field_type = ada_get_base_type (field_type);
8442 field_type = ada_to_fixed_type (field_type, field_valaddr,
8443 field_address, dval, 0);
8444 /* If the field size is already larger than the maximum
8445 object size, then the record itself will necessarily
8446 be larger than the maximum object size. We need to make
8447 this check now, because the size might be so ridiculously
8448 large (due to an uninitialized variable in the inferior)
8449 that it would cause an overflow when adding it to the
8450 record size. */
8451 ada_ensure_varsize_limit (field_type);
8452
8453 TYPE_FIELD_TYPE (rtype, f) = field_type;
8454 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8455 /* The multiplication can potentially overflow. But because
8456 the field length has been size-checked just above, and
8457 assuming that the maximum size is a reasonable value,
8458 an overflow should not happen in practice. So rather than
8459 adding overflow recovery code to this already complex code,
8460 we just assume that it's not going to happen. */
8461 fld_bit_len =
8462 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8463 }
8464 else
8465 {
8466 /* Note: If this field's type is a typedef, it is important
8467 to preserve the typedef layer.
8468
8469 Otherwise, we might be transforming a typedef to a fat
8470 pointer (encoding a pointer to an unconstrained array),
8471 into a basic fat pointer (encoding an unconstrained
8472 array). As both types are implemented using the same
8473 structure, the typedef is the only clue which allows us
8474 to distinguish between the two options. Stripping it
8475 would prevent us from printing this field appropriately. */
8476 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8477 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8478 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8479 fld_bit_len =
8480 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8481 else
8482 {
8483 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8484
8485 /* We need to be careful of typedefs when computing
8486 the length of our field. If this is a typedef,
8487 get the length of the target type, not the length
8488 of the typedef. */
8489 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8490 field_type = ada_typedef_target_type (field_type);
8491
8492 fld_bit_len =
8493 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8494 }
8495 }
8496 if (off + fld_bit_len > bit_len)
8497 bit_len = off + fld_bit_len;
8498 off += fld_bit_len;
8499 TYPE_LENGTH (rtype) =
8500 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8501 }
8502
8503 /* We handle the variant part, if any, at the end because of certain
8504 odd cases in which it is re-ordered so as NOT to be the last field of
8505 the record. This can happen in the presence of representation
8506 clauses. */
8507 if (variant_field >= 0)
8508 {
8509 struct type *branch_type;
8510
8511 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8512
8513 if (dval0 == NULL)
8514 {
8515 /* Using plain value_from_contents_and_address here causes
8516 problems because we will end up trying to resolve a type
8517 that is currently being constructed. */
8518 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8519 address);
8520 rtype = value_type (dval);
8521 }
8522 else
8523 dval = dval0;
8524
8525 branch_type =
8526 to_fixed_variant_branch_type
8527 (TYPE_FIELD_TYPE (type, variant_field),
8528 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8529 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8530 if (branch_type == NULL)
8531 {
8532 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8533 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8534 TYPE_NFIELDS (rtype) -= 1;
8535 }
8536 else
8537 {
8538 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8539 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8540 fld_bit_len =
8541 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8542 TARGET_CHAR_BIT;
8543 if (off + fld_bit_len > bit_len)
8544 bit_len = off + fld_bit_len;
8545 TYPE_LENGTH (rtype) =
8546 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8547 }
8548 }
8549
8550 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8551 should contain the alignment of that record, which should be a strictly
8552 positive value. If null or negative, then something is wrong, most
8553 probably in the debug info. In that case, we don't round up the size
8554 of the resulting type. If this record is not part of another structure,
8555 the current RTYPE length might be good enough for our purposes. */
8556 if (TYPE_LENGTH (type) <= 0)
8557 {
8558 if (TYPE_NAME (rtype))
8559 warning (_("Invalid type size for `%s' detected: %d."),
8560 TYPE_NAME (rtype), TYPE_LENGTH (type));
8561 else
8562 warning (_("Invalid type size for <unnamed> detected: %d."),
8563 TYPE_LENGTH (type));
8564 }
8565 else
8566 {
8567 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8568 TYPE_LENGTH (type));
8569 }
8570
8571 value_free_to_mark (mark);
8572 if (TYPE_LENGTH (rtype) > varsize_limit)
8573 error (_("record type with dynamic size is larger than varsize-limit"));
8574 return rtype;
8575}
8576
8577/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8578 of 1. */
8579
8580static struct type *
8581template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8582 CORE_ADDR address, struct value *dval0)
8583{
8584 return ada_template_to_fixed_record_type_1 (type, valaddr,
8585 address, dval0, 1);
8586}
8587
8588/* An ordinary record type in which ___XVL-convention fields and
8589 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8590 static approximations, containing all possible fields. Uses
8591 no runtime values. Useless for use in values, but that's OK,
8592 since the results are used only for type determinations. Works on both
8593 structs and unions. Representation note: to save space, we memorize
8594 the result of this function in the TYPE_TARGET_TYPE of the
8595 template type. */
8596
8597static struct type *
8598template_to_static_fixed_type (struct type *type0)
8599{
8600 struct type *type;
8601 int nfields;
8602 int f;
8603
8604 /* No need no do anything if the input type is already fixed. */
8605 if (TYPE_FIXED_INSTANCE (type0))
8606 return type0;
8607
8608 /* Likewise if we already have computed the static approximation. */
8609 if (TYPE_TARGET_TYPE (type0) != NULL)
8610 return TYPE_TARGET_TYPE (type0);
8611
8612 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8613 type = type0;
8614 nfields = TYPE_NFIELDS (type0);
8615
8616 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8617 recompute all over next time. */
8618 TYPE_TARGET_TYPE (type0) = type;
8619
8620 for (f = 0; f < nfields; f += 1)
8621 {
8622 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8623 struct type *new_type;
8624
8625 if (is_dynamic_field (type0, f))
8626 {
8627 field_type = ada_check_typedef (field_type);
8628 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8629 }
8630 else
8631 new_type = static_unwrap_type (field_type);
8632
8633 if (new_type != field_type)
8634 {
8635 /* Clone TYPE0 only the first time we get a new field type. */
8636 if (type == type0)
8637 {
8638 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8639 TYPE_CODE (type) = TYPE_CODE (type0);
8640 INIT_CPLUS_SPECIFIC (type);
8641 TYPE_NFIELDS (type) = nfields;
8642 TYPE_FIELDS (type) = (struct field *)
8643 TYPE_ALLOC (type, nfields * sizeof (struct field));
8644 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8645 sizeof (struct field) * nfields);
8646 TYPE_NAME (type) = ada_type_name (type0);
8647 TYPE_TAG_NAME (type) = NULL;
8648 TYPE_FIXED_INSTANCE (type) = 1;
8649 TYPE_LENGTH (type) = 0;
8650 }
8651 TYPE_FIELD_TYPE (type, f) = new_type;
8652 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8653 }
8654 }
8655
8656 return type;
8657}
8658
8659/* Given an object of type TYPE whose contents are at VALADDR and
8660 whose address in memory is ADDRESS, returns a revision of TYPE,
8661 which should be a non-dynamic-sized record, in which the variant
8662 part, if any, is replaced with the appropriate branch. Looks
8663 for discriminant values in DVAL0, which can be NULL if the record
8664 contains the necessary discriminant values. */
8665
8666static struct type *
8667to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8668 CORE_ADDR address, struct value *dval0)
8669{
8670 struct value *mark = value_mark ();
8671 struct value *dval;
8672 struct type *rtype;
8673 struct type *branch_type;
8674 int nfields = TYPE_NFIELDS (type);
8675 int variant_field = variant_field_index (type);
8676
8677 if (variant_field == -1)
8678 return type;
8679
8680 if (dval0 == NULL)
8681 {
8682 dval = value_from_contents_and_address (type, valaddr, address);
8683 type = value_type (dval);
8684 }
8685 else
8686 dval = dval0;
8687
8688 rtype = alloc_type_copy (type);
8689 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8690 INIT_CPLUS_SPECIFIC (rtype);
8691 TYPE_NFIELDS (rtype) = nfields;
8692 TYPE_FIELDS (rtype) =
8693 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8694 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8695 sizeof (struct field) * nfields);
8696 TYPE_NAME (rtype) = ada_type_name (type);
8697 TYPE_TAG_NAME (rtype) = NULL;
8698 TYPE_FIXED_INSTANCE (rtype) = 1;
8699 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8700
8701 branch_type = to_fixed_variant_branch_type
8702 (TYPE_FIELD_TYPE (type, variant_field),
8703 cond_offset_host (valaddr,
8704 TYPE_FIELD_BITPOS (type, variant_field)
8705 / TARGET_CHAR_BIT),
8706 cond_offset_target (address,
8707 TYPE_FIELD_BITPOS (type, variant_field)
8708 / TARGET_CHAR_BIT), dval);
8709 if (branch_type == NULL)
8710 {
8711 int f;
8712
8713 for (f = variant_field + 1; f < nfields; f += 1)
8714 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8715 TYPE_NFIELDS (rtype) -= 1;
8716 }
8717 else
8718 {
8719 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8720 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8721 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8722 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8723 }
8724 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8725
8726 value_free_to_mark (mark);
8727 return rtype;
8728}
8729
8730/* An ordinary record type (with fixed-length fields) that describes
8731 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8732 beginning of this section]. Any necessary discriminants' values
8733 should be in DVAL, a record value; it may be NULL if the object
8734 at ADDR itself contains any necessary discriminant values.
8735 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8736 values from the record are needed. Except in the case that DVAL,
8737 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8738 unchecked) is replaced by a particular branch of the variant.
8739
8740 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8741 is questionable and may be removed. It can arise during the
8742 processing of an unconstrained-array-of-record type where all the
8743 variant branches have exactly the same size. This is because in
8744 such cases, the compiler does not bother to use the XVS convention
8745 when encoding the record. I am currently dubious of this
8746 shortcut and suspect the compiler should be altered. FIXME. */
8747
8748static struct type *
8749to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8750 CORE_ADDR address, struct value *dval)
8751{
8752 struct type *templ_type;
8753
8754 if (TYPE_FIXED_INSTANCE (type0))
8755 return type0;
8756
8757 templ_type = dynamic_template_type (type0);
8758
8759 if (templ_type != NULL)
8760 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8761 else if (variant_field_index (type0) >= 0)
8762 {
8763 if (dval == NULL && valaddr == NULL && address == 0)
8764 return type0;
8765 return to_record_with_fixed_variant_part (type0, valaddr, address,
8766 dval);
8767 }
8768 else
8769 {
8770 TYPE_FIXED_INSTANCE (type0) = 1;
8771 return type0;
8772 }
8773
8774}
8775
8776/* An ordinary record type (with fixed-length fields) that describes
8777 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8778 union type. Any necessary discriminants' values should be in DVAL,
8779 a record value. That is, this routine selects the appropriate
8780 branch of the union at ADDR according to the discriminant value
8781 indicated in the union's type name. Returns VAR_TYPE0 itself if
8782 it represents a variant subject to a pragma Unchecked_Union. */
8783
8784static struct type *
8785to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8786 CORE_ADDR address, struct value *dval)
8787{
8788 int which;
8789 struct type *templ_type;
8790 struct type *var_type;
8791
8792 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8793 var_type = TYPE_TARGET_TYPE (var_type0);
8794 else
8795 var_type = var_type0;
8796
8797 templ_type = ada_find_parallel_type (var_type, "___XVU");
8798
8799 if (templ_type != NULL)
8800 var_type = templ_type;
8801
8802 if (is_unchecked_variant (var_type, value_type (dval)))
8803 return var_type0;
8804 which =
8805 ada_which_variant_applies (var_type,
8806 value_type (dval), value_contents (dval));
8807
8808 if (which < 0)
8809 return empty_record (var_type);
8810 else if (is_dynamic_field (var_type, which))
8811 return to_fixed_record_type
8812 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8813 valaddr, address, dval);
8814 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8815 return
8816 to_fixed_record_type
8817 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8818 else
8819 return TYPE_FIELD_TYPE (var_type, which);
8820}
8821
8822/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8823 ENCODING_TYPE, a type following the GNAT conventions for discrete
8824 type encodings, only carries redundant information. */
8825
8826static int
8827ada_is_redundant_range_encoding (struct type *range_type,
8828 struct type *encoding_type)
8829{
8830 const char *bounds_str;
8831 int n;
8832 LONGEST lo, hi;
8833
8834 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8835
8836 if (TYPE_CODE (get_base_type (range_type))
8837 != TYPE_CODE (get_base_type (encoding_type)))
8838 {
8839 /* The compiler probably used a simple base type to describe
8840 the range type instead of the range's actual base type,
8841 expecting us to get the real base type from the encoding
8842 anyway. In this situation, the encoding cannot be ignored
8843 as redundant. */
8844 return 0;
8845 }
8846
8847 if (is_dynamic_type (range_type))
8848 return 0;
8849
8850 if (TYPE_NAME (encoding_type) == NULL)
8851 return 0;
8852
8853 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8854 if (bounds_str == NULL)
8855 return 0;
8856
8857 n = 8; /* Skip "___XDLU_". */
8858 if (!ada_scan_number (bounds_str, n, &lo, &n))
8859 return 0;
8860 if (TYPE_LOW_BOUND (range_type) != lo)
8861 return 0;
8862
8863 n += 2; /* Skip the "__" separator between the two bounds. */
8864 if (!ada_scan_number (bounds_str, n, &hi, &n))
8865 return 0;
8866 if (TYPE_HIGH_BOUND (range_type) != hi)
8867 return 0;
8868
8869 return 1;
8870}
8871
8872/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8873 a type following the GNAT encoding for describing array type
8874 indices, only carries redundant information. */
8875
8876static int
8877ada_is_redundant_index_type_desc (struct type *array_type,
8878 struct type *desc_type)
8879{
8880 struct type *this_layer = check_typedef (array_type);
8881 int i;
8882
8883 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8884 {
8885 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8886 TYPE_FIELD_TYPE (desc_type, i)))
8887 return 0;
8888 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8889 }
8890
8891 return 1;
8892}
8893
8894/* Assuming that TYPE0 is an array type describing the type of a value
8895 at ADDR, and that DVAL describes a record containing any
8896 discriminants used in TYPE0, returns a type for the value that
8897 contains no dynamic components (that is, no components whose sizes
8898 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8899 true, gives an error message if the resulting type's size is over
8900 varsize_limit. */
8901
8902static struct type *
8903to_fixed_array_type (struct type *type0, struct value *dval,
8904 int ignore_too_big)
8905{
8906 struct type *index_type_desc;
8907 struct type *result;
8908 int constrained_packed_array_p;
8909 static const char *xa_suffix = "___XA";
8910
8911 type0 = ada_check_typedef (type0);
8912 if (TYPE_FIXED_INSTANCE (type0))
8913 return type0;
8914
8915 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8916 if (constrained_packed_array_p)
8917 type0 = decode_constrained_packed_array_type (type0);
8918
8919 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8920
8921 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8922 encoding suffixed with 'P' may still be generated. If so,
8923 it should be used to find the XA type. */
8924
8925 if (index_type_desc == NULL)
8926 {
8927 const char *type_name = ada_type_name (type0);
8928
8929 if (type_name != NULL)
8930 {
8931 const int len = strlen (type_name);
8932 char *name = (char *) alloca (len + strlen (xa_suffix));
8933
8934 if (type_name[len - 1] == 'P')
8935 {
8936 strcpy (name, type_name);
8937 strcpy (name + len - 1, xa_suffix);
8938 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8939 }
8940 }
8941 }
8942
8943 ada_fixup_array_indexes_type (index_type_desc);
8944 if (index_type_desc != NULL
8945 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8946 {
8947 /* Ignore this ___XA parallel type, as it does not bring any
8948 useful information. This allows us to avoid creating fixed
8949 versions of the array's index types, which would be identical
8950 to the original ones. This, in turn, can also help avoid
8951 the creation of fixed versions of the array itself. */
8952 index_type_desc = NULL;
8953 }
8954
8955 if (index_type_desc == NULL)
8956 {
8957 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8958
8959 /* NOTE: elt_type---the fixed version of elt_type0---should never
8960 depend on the contents of the array in properly constructed
8961 debugging data. */
8962 /* Create a fixed version of the array element type.
8963 We're not providing the address of an element here,
8964 and thus the actual object value cannot be inspected to do
8965 the conversion. This should not be a problem, since arrays of
8966 unconstrained objects are not allowed. In particular, all
8967 the elements of an array of a tagged type should all be of
8968 the same type specified in the debugging info. No need to
8969 consult the object tag. */
8970 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8971
8972 /* Make sure we always create a new array type when dealing with
8973 packed array types, since we're going to fix-up the array
8974 type length and element bitsize a little further down. */
8975 if (elt_type0 == elt_type && !constrained_packed_array_p)
8976 result = type0;
8977 else
8978 result = create_array_type (alloc_type_copy (type0),
8979 elt_type, TYPE_INDEX_TYPE (type0));
8980 }
8981 else
8982 {
8983 int i;
8984 struct type *elt_type0;
8985
8986 elt_type0 = type0;
8987 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8988 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8989
8990 /* NOTE: result---the fixed version of elt_type0---should never
8991 depend on the contents of the array in properly constructed
8992 debugging data. */
8993 /* Create a fixed version of the array element type.
8994 We're not providing the address of an element here,
8995 and thus the actual object value cannot be inspected to do
8996 the conversion. This should not be a problem, since arrays of
8997 unconstrained objects are not allowed. In particular, all
8998 the elements of an array of a tagged type should all be of
8999 the same type specified in the debugging info. No need to
9000 consult the object tag. */
9001 result =
9002 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
9003
9004 elt_type0 = type0;
9005 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
9006 {
9007 struct type *range_type =
9008 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
9009
9010 result = create_array_type (alloc_type_copy (elt_type0),
9011 result, range_type);
9012 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9013 }
9014 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9015 error (_("array type with dynamic size is larger than varsize-limit"));
9016 }
9017
9018 /* We want to preserve the type name. This can be useful when
9019 trying to get the type name of a value that has already been
9020 printed (for instance, if the user did "print VAR; whatis $". */
9021 TYPE_NAME (result) = TYPE_NAME (type0);
9022
9023 if (constrained_packed_array_p)
9024 {
9025 /* So far, the resulting type has been created as if the original
9026 type was a regular (non-packed) array type. As a result, the
9027 bitsize of the array elements needs to be set again, and the array
9028 length needs to be recomputed based on that bitsize. */
9029 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9030 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9031
9032 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9033 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9034 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9035 TYPE_LENGTH (result)++;
9036 }
9037
9038 TYPE_FIXED_INSTANCE (result) = 1;
9039 return result;
9040}
9041
9042
9043/* A standard type (containing no dynamically sized components)
9044 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9045 DVAL describes a record containing any discriminants used in TYPE0,
9046 and may be NULL if there are none, or if the object of type TYPE at
9047 ADDRESS or in VALADDR contains these discriminants.
9048
9049 If CHECK_TAG is not null, in the case of tagged types, this function
9050 attempts to locate the object's tag and use it to compute the actual
9051 type. However, when ADDRESS is null, we cannot use it to determine the
9052 location of the tag, and therefore compute the tagged type's actual type.
9053 So we return the tagged type without consulting the tag. */
9054
9055static struct type *
9056ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9057 CORE_ADDR address, struct value *dval, int check_tag)
9058{
9059 type = ada_check_typedef (type);
9060 switch (TYPE_CODE (type))
9061 {
9062 default:
9063 return type;
9064 case TYPE_CODE_STRUCT:
9065 {
9066 struct type *static_type = to_static_fixed_type (type);
9067 struct type *fixed_record_type =
9068 to_fixed_record_type (type, valaddr, address, NULL);
9069
9070 /* If STATIC_TYPE is a tagged type and we know the object's address,
9071 then we can determine its tag, and compute the object's actual
9072 type from there. Note that we have to use the fixed record
9073 type (the parent part of the record may have dynamic fields
9074 and the way the location of _tag is expressed may depend on
9075 them). */
9076
9077 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9078 {
9079 struct value *tag =
9080 value_tag_from_contents_and_address
9081 (fixed_record_type,
9082 valaddr,
9083 address);
9084 struct type *real_type = type_from_tag (tag);
9085 struct value *obj =
9086 value_from_contents_and_address (fixed_record_type,
9087 valaddr,
9088 address);
9089 fixed_record_type = value_type (obj);
9090 if (real_type != NULL)
9091 return to_fixed_record_type
9092 (real_type, NULL,
9093 value_address (ada_tag_value_at_base_address (obj)), NULL);
9094 }
9095
9096 /* Check to see if there is a parallel ___XVZ variable.
9097 If there is, then it provides the actual size of our type. */
9098 else if (ada_type_name (fixed_record_type) != NULL)
9099 {
9100 const char *name = ada_type_name (fixed_record_type);
9101 char *xvz_name
9102 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9103 bool xvz_found = false;
9104 LONGEST size;
9105
9106 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9107 TRY
9108 {
9109 xvz_found = get_int_var_value (xvz_name, size);
9110 }
9111 CATCH (except, RETURN_MASK_ERROR)
9112 {
9113 /* We found the variable, but somehow failed to read
9114 its value. Rethrow the same error, but with a little
9115 bit more information, to help the user understand
9116 what went wrong (Eg: the variable might have been
9117 optimized out). */
9118 throw_error (except.error,
9119 _("unable to read value of %s (%s)"),
9120 xvz_name, except.message);
9121 }
9122 END_CATCH
9123
9124 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9125 {
9126 fixed_record_type = copy_type (fixed_record_type);
9127 TYPE_LENGTH (fixed_record_type) = size;
9128
9129 /* The FIXED_RECORD_TYPE may have be a stub. We have
9130 observed this when the debugging info is STABS, and
9131 apparently it is something that is hard to fix.
9132
9133 In practice, we don't need the actual type definition
9134 at all, because the presence of the XVZ variable allows us
9135 to assume that there must be a XVS type as well, which we
9136 should be able to use later, when we need the actual type
9137 definition.
9138
9139 In the meantime, pretend that the "fixed" type we are
9140 returning is NOT a stub, because this can cause trouble
9141 when using this type to create new types targeting it.
9142 Indeed, the associated creation routines often check
9143 whether the target type is a stub and will try to replace
9144 it, thus using a type with the wrong size. This, in turn,
9145 might cause the new type to have the wrong size too.
9146 Consider the case of an array, for instance, where the size
9147 of the array is computed from the number of elements in
9148 our array multiplied by the size of its element. */
9149 TYPE_STUB (fixed_record_type) = 0;
9150 }
9151 }
9152 return fixed_record_type;
9153 }
9154 case TYPE_CODE_ARRAY:
9155 return to_fixed_array_type (type, dval, 1);
9156 case TYPE_CODE_UNION:
9157 if (dval == NULL)
9158 return type;
9159 else
9160 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9161 }
9162}
9163
9164/* The same as ada_to_fixed_type_1, except that it preserves the type
9165 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9166
9167 The typedef layer needs be preserved in order to differentiate between
9168 arrays and array pointers when both types are implemented using the same
9169 fat pointer. In the array pointer case, the pointer is encoded as
9170 a typedef of the pointer type. For instance, considering:
9171
9172 type String_Access is access String;
9173 S1 : String_Access := null;
9174
9175 To the debugger, S1 is defined as a typedef of type String. But
9176 to the user, it is a pointer. So if the user tries to print S1,
9177 we should not dereference the array, but print the array address
9178 instead.
9179
9180 If we didn't preserve the typedef layer, we would lose the fact that
9181 the type is to be presented as a pointer (needs de-reference before
9182 being printed). And we would also use the source-level type name. */
9183
9184struct type *
9185ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9186 CORE_ADDR address, struct value *dval, int check_tag)
9187
9188{
9189 struct type *fixed_type =
9190 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9191
9192 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9193 then preserve the typedef layer.
9194
9195 Implementation note: We can only check the main-type portion of
9196 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9197 from TYPE now returns a type that has the same instance flags
9198 as TYPE. For instance, if TYPE is a "typedef const", and its
9199 target type is a "struct", then the typedef elimination will return
9200 a "const" version of the target type. See check_typedef for more
9201 details about how the typedef layer elimination is done.
9202
9203 brobecker/2010-11-19: It seems to me that the only case where it is
9204 useful to preserve the typedef layer is when dealing with fat pointers.
9205 Perhaps, we could add a check for that and preserve the typedef layer
9206 only in that situation. But this seems unecessary so far, probably
9207 because we call check_typedef/ada_check_typedef pretty much everywhere.
9208 */
9209 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9210 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9211 == TYPE_MAIN_TYPE (fixed_type)))
9212 return type;
9213
9214 return fixed_type;
9215}
9216
9217/* A standard (static-sized) type corresponding as well as possible to
9218 TYPE0, but based on no runtime data. */
9219
9220static struct type *
9221to_static_fixed_type (struct type *type0)
9222{
9223 struct type *type;
9224
9225 if (type0 == NULL)
9226 return NULL;
9227
9228 if (TYPE_FIXED_INSTANCE (type0))
9229 return type0;
9230
9231 type0 = ada_check_typedef (type0);
9232
9233 switch (TYPE_CODE (type0))
9234 {
9235 default:
9236 return type0;
9237 case TYPE_CODE_STRUCT:
9238 type = dynamic_template_type (type0);
9239 if (type != NULL)
9240 return template_to_static_fixed_type (type);
9241 else
9242 return template_to_static_fixed_type (type0);
9243 case TYPE_CODE_UNION:
9244 type = ada_find_parallel_type (type0, "___XVU");
9245 if (type != NULL)
9246 return template_to_static_fixed_type (type);
9247 else
9248 return template_to_static_fixed_type (type0);
9249 }
9250}
9251
9252/* A static approximation of TYPE with all type wrappers removed. */
9253
9254static struct type *
9255static_unwrap_type (struct type *type)
9256{
9257 if (ada_is_aligner_type (type))
9258 {
9259 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9260 if (ada_type_name (type1) == NULL)
9261 TYPE_NAME (type1) = ada_type_name (type);
9262
9263 return static_unwrap_type (type1);
9264 }
9265 else
9266 {
9267 struct type *raw_real_type = ada_get_base_type (type);
9268
9269 if (raw_real_type == type)
9270 return type;
9271 else
9272 return to_static_fixed_type (raw_real_type);
9273 }
9274}
9275
9276/* In some cases, incomplete and private types require
9277 cross-references that are not resolved as records (for example,
9278 type Foo;
9279 type FooP is access Foo;
9280 V: FooP;
9281 type Foo is array ...;
9282 ). In these cases, since there is no mechanism for producing
9283 cross-references to such types, we instead substitute for FooP a
9284 stub enumeration type that is nowhere resolved, and whose tag is
9285 the name of the actual type. Call these types "non-record stubs". */
9286
9287/* A type equivalent to TYPE that is not a non-record stub, if one
9288 exists, otherwise TYPE. */
9289
9290struct type *
9291ada_check_typedef (struct type *type)
9292{
9293 if (type == NULL)
9294 return NULL;
9295
9296 /* If our type is a typedef type of a fat pointer, then we're done.
9297 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9298 what allows us to distinguish between fat pointers that represent
9299 array types, and fat pointers that represent array access types
9300 (in both cases, the compiler implements them as fat pointers). */
9301 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9302 && is_thick_pntr (ada_typedef_target_type (type)))
9303 return type;
9304
9305 type = check_typedef (type);
9306 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9307 || !TYPE_STUB (type)
9308 || TYPE_TAG_NAME (type) == NULL)
9309 return type;
9310 else
9311 {
9312 const char *name = TYPE_TAG_NAME (type);
9313 struct type *type1 = ada_find_any_type (name);
9314
9315 if (type1 == NULL)
9316 return type;
9317
9318 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9319 stubs pointing to arrays, as we don't create symbols for array
9320 types, only for the typedef-to-array types). If that's the case,
9321 strip the typedef layer. */
9322 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9323 type1 = ada_check_typedef (type1);
9324
9325 return type1;
9326 }
9327}
9328
9329/* A value representing the data at VALADDR/ADDRESS as described by
9330 type TYPE0, but with a standard (static-sized) type that correctly
9331 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9332 type, then return VAL0 [this feature is simply to avoid redundant
9333 creation of struct values]. */
9334
9335static struct value *
9336ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9337 struct value *val0)
9338{
9339 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9340
9341 if (type == type0 && val0 != NULL)
9342 return val0;
9343 else
9344 return value_from_contents_and_address (type, 0, address);
9345}
9346
9347/* A value representing VAL, but with a standard (static-sized) type
9348 that correctly describes it. Does not necessarily create a new
9349 value. */
9350
9351struct value *
9352ada_to_fixed_value (struct value *val)
9353{
9354 val = unwrap_value (val);
9355 val = ada_to_fixed_value_create (value_type (val),
9356 value_address (val),
9357 val);
9358 return val;
9359}
9360\f
9361
9362/* Attributes */
9363
9364/* Table mapping attribute numbers to names.
9365 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9366
9367static const char *attribute_names[] = {
9368 "<?>",
9369
9370 "first",
9371 "last",
9372 "length",
9373 "image",
9374 "max",
9375 "min",
9376 "modulus",
9377 "pos",
9378 "size",
9379 "tag",
9380 "val",
9381 0
9382};
9383
9384const char *
9385ada_attribute_name (enum exp_opcode n)
9386{
9387 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9388 return attribute_names[n - OP_ATR_FIRST + 1];
9389 else
9390 return attribute_names[0];
9391}
9392
9393/* Evaluate the 'POS attribute applied to ARG. */
9394
9395static LONGEST
9396pos_atr (struct value *arg)
9397{
9398 struct value *val = coerce_ref (arg);
9399 struct type *type = value_type (val);
9400 LONGEST result;
9401
9402 if (!discrete_type_p (type))
9403 error (_("'POS only defined on discrete types"));
9404
9405 if (!discrete_position (type, value_as_long (val), &result))
9406 error (_("enumeration value is invalid: can't find 'POS"));
9407
9408 return result;
9409}
9410
9411static struct value *
9412value_pos_atr (struct type *type, struct value *arg)
9413{
9414 return value_from_longest (type, pos_atr (arg));
9415}
9416
9417/* Evaluate the TYPE'VAL attribute applied to ARG. */
9418
9419static struct value *
9420value_val_atr (struct type *type, struct value *arg)
9421{
9422 if (!discrete_type_p (type))
9423 error (_("'VAL only defined on discrete types"));
9424 if (!integer_type_p (value_type (arg)))
9425 error (_("'VAL requires integral argument"));
9426
9427 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9428 {
9429 long pos = value_as_long (arg);
9430
9431 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9432 error (_("argument to 'VAL out of range"));
9433 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9434 }
9435 else
9436 return value_from_longest (type, value_as_long (arg));
9437}
9438\f
9439
9440 /* Evaluation */
9441
9442/* True if TYPE appears to be an Ada character type.
9443 [At the moment, this is true only for Character and Wide_Character;
9444 It is a heuristic test that could stand improvement]. */
9445
9446int
9447ada_is_character_type (struct type *type)
9448{
9449 const char *name;
9450
9451 /* If the type code says it's a character, then assume it really is,
9452 and don't check any further. */
9453 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9454 return 1;
9455
9456 /* Otherwise, assume it's a character type iff it is a discrete type
9457 with a known character type name. */
9458 name = ada_type_name (type);
9459 return (name != NULL
9460 && (TYPE_CODE (type) == TYPE_CODE_INT
9461 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9462 && (strcmp (name, "character") == 0
9463 || strcmp (name, "wide_character") == 0
9464 || strcmp (name, "wide_wide_character") == 0
9465 || strcmp (name, "unsigned char") == 0));
9466}
9467
9468/* True if TYPE appears to be an Ada string type. */
9469
9470int
9471ada_is_string_type (struct type *type)
9472{
9473 type = ada_check_typedef (type);
9474 if (type != NULL
9475 && TYPE_CODE (type) != TYPE_CODE_PTR
9476 && (ada_is_simple_array_type (type)
9477 || ada_is_array_descriptor_type (type))
9478 && ada_array_arity (type) == 1)
9479 {
9480 struct type *elttype = ada_array_element_type (type, 1);
9481
9482 return ada_is_character_type (elttype);
9483 }
9484 else
9485 return 0;
9486}
9487
9488/* The compiler sometimes provides a parallel XVS type for a given
9489 PAD type. Normally, it is safe to follow the PAD type directly,
9490 but older versions of the compiler have a bug that causes the offset
9491 of its "F" field to be wrong. Following that field in that case
9492 would lead to incorrect results, but this can be worked around
9493 by ignoring the PAD type and using the associated XVS type instead.
9494
9495 Set to True if the debugger should trust the contents of PAD types.
9496 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9497static int trust_pad_over_xvs = 1;
9498
9499/* True if TYPE is a struct type introduced by the compiler to force the
9500 alignment of a value. Such types have a single field with a
9501 distinctive name. */
9502
9503int
9504ada_is_aligner_type (struct type *type)
9505{
9506 type = ada_check_typedef (type);
9507
9508 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9509 return 0;
9510
9511 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9512 && TYPE_NFIELDS (type) == 1
9513 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9514}
9515
9516/* If there is an ___XVS-convention type parallel to SUBTYPE, return
9517 the parallel type. */
9518
9519struct type *
9520ada_get_base_type (struct type *raw_type)
9521{
9522 struct type *real_type_namer;
9523 struct type *raw_real_type;
9524
9525 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9526 return raw_type;
9527
9528 if (ada_is_aligner_type (raw_type))
9529 /* The encoding specifies that we should always use the aligner type.
9530 So, even if this aligner type has an associated XVS type, we should
9531 simply ignore it.
9532
9533 According to the compiler gurus, an XVS type parallel to an aligner
9534 type may exist because of a stabs limitation. In stabs, aligner
9535 types are empty because the field has a variable-sized type, and
9536 thus cannot actually be used as an aligner type. As a result,
9537 we need the associated parallel XVS type to decode the type.
9538 Since the policy in the compiler is to not change the internal
9539 representation based on the debugging info format, we sometimes
9540 end up having a redundant XVS type parallel to the aligner type. */
9541 return raw_type;
9542
9543 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9544 if (real_type_namer == NULL
9545 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9546 || TYPE_NFIELDS (real_type_namer) != 1)
9547 return raw_type;
9548
9549 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9550 {
9551 /* This is an older encoding form where the base type needs to be
9552 looked up by name. We prefer the newer enconding because it is
9553 more efficient. */
9554 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9555 if (raw_real_type == NULL)
9556 return raw_type;
9557 else
9558 return raw_real_type;
9559 }
9560
9561 /* The field in our XVS type is a reference to the base type. */
9562 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9563}
9564
9565/* The type of value designated by TYPE, with all aligners removed. */
9566
9567struct type *
9568ada_aligned_type (struct type *type)
9569{
9570 if (ada_is_aligner_type (type))
9571 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9572 else
9573 return ada_get_base_type (type);
9574}
9575
9576
9577/* The address of the aligned value in an object at address VALADDR
9578 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9579
9580const gdb_byte *
9581ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9582{
9583 if (ada_is_aligner_type (type))
9584 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9585 valaddr +
9586 TYPE_FIELD_BITPOS (type,
9587 0) / TARGET_CHAR_BIT);
9588 else
9589 return valaddr;
9590}
9591
9592
9593
9594/* The printed representation of an enumeration literal with encoded
9595 name NAME. The value is good to the next call of ada_enum_name. */
9596const char *
9597ada_enum_name (const char *name)
9598{
9599 static char *result;
9600 static size_t result_len = 0;
9601 const char *tmp;
9602
9603 /* First, unqualify the enumeration name:
9604 1. Search for the last '.' character. If we find one, then skip
9605 all the preceding characters, the unqualified name starts
9606 right after that dot.
9607 2. Otherwise, we may be debugging on a target where the compiler
9608 translates dots into "__". Search forward for double underscores,
9609 but stop searching when we hit an overloading suffix, which is
9610 of the form "__" followed by digits. */
9611
9612 tmp = strrchr (name, '.');
9613 if (tmp != NULL)
9614 name = tmp + 1;
9615 else
9616 {
9617 while ((tmp = strstr (name, "__")) != NULL)
9618 {
9619 if (isdigit (tmp[2]))
9620 break;
9621 else
9622 name = tmp + 2;
9623 }
9624 }
9625
9626 if (name[0] == 'Q')
9627 {
9628 int v;
9629
9630 if (name[1] == 'U' || name[1] == 'W')
9631 {
9632 if (sscanf (name + 2, "%x", &v) != 1)
9633 return name;
9634 }
9635 else
9636 return name;
9637
9638 GROW_VECT (result, result_len, 16);
9639 if (isascii (v) && isprint (v))
9640 xsnprintf (result, result_len, "'%c'", v);
9641 else if (name[1] == 'U')
9642 xsnprintf (result, result_len, "[\"%02x\"]", v);
9643 else
9644 xsnprintf (result, result_len, "[\"%04x\"]", v);
9645
9646 return result;
9647 }
9648 else
9649 {
9650 tmp = strstr (name, "__");
9651 if (tmp == NULL)
9652 tmp = strstr (name, "$");
9653 if (tmp != NULL)
9654 {
9655 GROW_VECT (result, result_len, tmp - name + 1);
9656 strncpy (result, name, tmp - name);
9657 result[tmp - name] = '\0';
9658 return result;
9659 }
9660
9661 return name;
9662 }
9663}
9664
9665/* Evaluate the subexpression of EXP starting at *POS as for
9666 evaluate_type, updating *POS to point just past the evaluated
9667 expression. */
9668
9669static struct value *
9670evaluate_subexp_type (struct expression *exp, int *pos)
9671{
9672 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9673}
9674
9675/* If VAL is wrapped in an aligner or subtype wrapper, return the
9676 value it wraps. */
9677
9678static struct value *
9679unwrap_value (struct value *val)
9680{
9681 struct type *type = ada_check_typedef (value_type (val));
9682
9683 if (ada_is_aligner_type (type))
9684 {
9685 struct value *v = ada_value_struct_elt (val, "F", 0);
9686 struct type *val_type = ada_check_typedef (value_type (v));
9687
9688 if (ada_type_name (val_type) == NULL)
9689 TYPE_NAME (val_type) = ada_type_name (type);
9690
9691 return unwrap_value (v);
9692 }
9693 else
9694 {
9695 struct type *raw_real_type =
9696 ada_check_typedef (ada_get_base_type (type));
9697
9698 /* If there is no parallel XVS or XVE type, then the value is
9699 already unwrapped. Return it without further modification. */
9700 if ((type == raw_real_type)
9701 && ada_find_parallel_type (type, "___XVE") == NULL)
9702 return val;
9703
9704 return
9705 coerce_unspec_val_to_type
9706 (val, ada_to_fixed_type (raw_real_type, 0,
9707 value_address (val),
9708 NULL, 1));
9709 }
9710}
9711
9712static struct value *
9713cast_from_fixed (struct type *type, struct value *arg)
9714{
9715 struct value *scale = ada_scaling_factor (value_type (arg));
9716 arg = value_cast (value_type (scale), arg);
9717
9718 arg = value_binop (arg, scale, BINOP_MUL);
9719 return value_cast (type, arg);
9720}
9721
9722static struct value *
9723cast_to_fixed (struct type *type, struct value *arg)
9724{
9725 if (type == value_type (arg))
9726 return arg;
9727
9728 struct value *scale = ada_scaling_factor (type);
9729 if (ada_is_fixed_point_type (value_type (arg)))
9730 arg = cast_from_fixed (value_type (scale), arg);
9731 else
9732 arg = value_cast (value_type (scale), arg);
9733
9734 arg = value_binop (arg, scale, BINOP_DIV);
9735 return value_cast (type, arg);
9736}
9737
9738/* Given two array types T1 and T2, return nonzero iff both arrays
9739 contain the same number of elements. */
9740
9741static int
9742ada_same_array_size_p (struct type *t1, struct type *t2)
9743{
9744 LONGEST lo1, hi1, lo2, hi2;
9745
9746 /* Get the array bounds in order to verify that the size of
9747 the two arrays match. */
9748 if (!get_array_bounds (t1, &lo1, &hi1)
9749 || !get_array_bounds (t2, &lo2, &hi2))
9750 error (_("unable to determine array bounds"));
9751
9752 /* To make things easier for size comparison, normalize a bit
9753 the case of empty arrays by making sure that the difference
9754 between upper bound and lower bound is always -1. */
9755 if (lo1 > hi1)
9756 hi1 = lo1 - 1;
9757 if (lo2 > hi2)
9758 hi2 = lo2 - 1;
9759
9760 return (hi1 - lo1 == hi2 - lo2);
9761}
9762
9763/* Assuming that VAL is an array of integrals, and TYPE represents
9764 an array with the same number of elements, but with wider integral
9765 elements, return an array "casted" to TYPE. In practice, this
9766 means that the returned array is built by casting each element
9767 of the original array into TYPE's (wider) element type. */
9768
9769static struct value *
9770ada_promote_array_of_integrals (struct type *type, struct value *val)
9771{
9772 struct type *elt_type = TYPE_TARGET_TYPE (type);
9773 LONGEST lo, hi;
9774 struct value *res;
9775 LONGEST i;
9776
9777 /* Verify that both val and type are arrays of scalars, and
9778 that the size of val's elements is smaller than the size
9779 of type's element. */
9780 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9781 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9782 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9783 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9784 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9785 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9786
9787 if (!get_array_bounds (type, &lo, &hi))
9788 error (_("unable to determine array bounds"));
9789
9790 res = allocate_value (type);
9791
9792 /* Promote each array element. */
9793 for (i = 0; i < hi - lo + 1; i++)
9794 {
9795 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9796
9797 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9798 value_contents_all (elt), TYPE_LENGTH (elt_type));
9799 }
9800
9801 return res;
9802}
9803
9804/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9805 return the converted value. */
9806
9807static struct value *
9808coerce_for_assign (struct type *type, struct value *val)
9809{
9810 struct type *type2 = value_type (val);
9811
9812 if (type == type2)
9813 return val;
9814
9815 type2 = ada_check_typedef (type2);
9816 type = ada_check_typedef (type);
9817
9818 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9819 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9820 {
9821 val = ada_value_ind (val);
9822 type2 = value_type (val);
9823 }
9824
9825 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9826 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9827 {
9828 if (!ada_same_array_size_p (type, type2))
9829 error (_("cannot assign arrays of different length"));
9830
9831 if (is_integral_type (TYPE_TARGET_TYPE (type))
9832 && is_integral_type (TYPE_TARGET_TYPE (type2))
9833 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9834 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9835 {
9836 /* Allow implicit promotion of the array elements to
9837 a wider type. */
9838 return ada_promote_array_of_integrals (type, val);
9839 }
9840
9841 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9842 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9843 error (_("Incompatible types in assignment"));
9844 deprecated_set_value_type (val, type);
9845 }
9846 return val;
9847}
9848
9849static struct value *
9850ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9851{
9852 struct value *val;
9853 struct type *type1, *type2;
9854 LONGEST v, v1, v2;
9855
9856 arg1 = coerce_ref (arg1);
9857 arg2 = coerce_ref (arg2);
9858 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9859 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9860
9861 if (TYPE_CODE (type1) != TYPE_CODE_INT
9862 || TYPE_CODE (type2) != TYPE_CODE_INT)
9863 return value_binop (arg1, arg2, op);
9864
9865 switch (op)
9866 {
9867 case BINOP_MOD:
9868 case BINOP_DIV:
9869 case BINOP_REM:
9870 break;
9871 default:
9872 return value_binop (arg1, arg2, op);
9873 }
9874
9875 v2 = value_as_long (arg2);
9876 if (v2 == 0)
9877 error (_("second operand of %s must not be zero."), op_string (op));
9878
9879 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9880 return value_binop (arg1, arg2, op);
9881
9882 v1 = value_as_long (arg1);
9883 switch (op)
9884 {
9885 case BINOP_DIV:
9886 v = v1 / v2;
9887 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9888 v += v > 0 ? -1 : 1;
9889 break;
9890 case BINOP_REM:
9891 v = v1 % v2;
9892 if (v * v1 < 0)
9893 v -= v2;
9894 break;
9895 default:
9896 /* Should not reach this point. */
9897 v = 0;
9898 }
9899
9900 val = allocate_value (type1);
9901 store_unsigned_integer (value_contents_raw (val),
9902 TYPE_LENGTH (value_type (val)),
9903 gdbarch_byte_order (get_type_arch (type1)), v);
9904 return val;
9905}
9906
9907static int
9908ada_value_equal (struct value *arg1, struct value *arg2)
9909{
9910 if (ada_is_direct_array_type (value_type (arg1))
9911 || ada_is_direct_array_type (value_type (arg2)))
9912 {
9913 struct type *arg1_type, *arg2_type;
9914
9915 /* Automatically dereference any array reference before
9916 we attempt to perform the comparison. */
9917 arg1 = ada_coerce_ref (arg1);
9918 arg2 = ada_coerce_ref (arg2);
9919
9920 arg1 = ada_coerce_to_simple_array (arg1);
9921 arg2 = ada_coerce_to_simple_array (arg2);
9922
9923 arg1_type = ada_check_typedef (value_type (arg1));
9924 arg2_type = ada_check_typedef (value_type (arg2));
9925
9926 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9927 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9928 error (_("Attempt to compare array with non-array"));
9929 /* FIXME: The following works only for types whose
9930 representations use all bits (no padding or undefined bits)
9931 and do not have user-defined equality. */
9932 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9933 && memcmp (value_contents (arg1), value_contents (arg2),
9934 TYPE_LENGTH (arg1_type)) == 0);
9935 }
9936 return value_equal (arg1, arg2);
9937}
9938
9939/* Total number of component associations in the aggregate starting at
9940 index PC in EXP. Assumes that index PC is the start of an
9941 OP_AGGREGATE. */
9942
9943static int
9944num_component_specs (struct expression *exp, int pc)
9945{
9946 int n, m, i;
9947
9948 m = exp->elts[pc + 1].longconst;
9949 pc += 3;
9950 n = 0;
9951 for (i = 0; i < m; i += 1)
9952 {
9953 switch (exp->elts[pc].opcode)
9954 {
9955 default:
9956 n += 1;
9957 break;
9958 case OP_CHOICES:
9959 n += exp->elts[pc + 1].longconst;
9960 break;
9961 }
9962 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9963 }
9964 return n;
9965}
9966
9967/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9968 component of LHS (a simple array or a record), updating *POS past
9969 the expression, assuming that LHS is contained in CONTAINER. Does
9970 not modify the inferior's memory, nor does it modify LHS (unless
9971 LHS == CONTAINER). */
9972
9973static void
9974assign_component (struct value *container, struct value *lhs, LONGEST index,
9975 struct expression *exp, int *pos)
9976{
9977 struct value *mark = value_mark ();
9978 struct value *elt;
9979 struct type *lhs_type = check_typedef (value_type (lhs));
9980
9981 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9982 {
9983 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9984 struct value *index_val = value_from_longest (index_type, index);
9985
9986 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9987 }
9988 else
9989 {
9990 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9991 elt = ada_to_fixed_value (elt);
9992 }
9993
9994 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9995 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9996 else
9997 value_assign_to_component (container, elt,
9998 ada_evaluate_subexp (NULL, exp, pos,
9999 EVAL_NORMAL));
10000
10001 value_free_to_mark (mark);
10002}
10003
10004/* Assuming that LHS represents an lvalue having a record or array
10005 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10006 of that aggregate's value to LHS, advancing *POS past the
10007 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10008 lvalue containing LHS (possibly LHS itself). Does not modify
10009 the inferior's memory, nor does it modify the contents of
10010 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10011
10012static struct value *
10013assign_aggregate (struct value *container,
10014 struct value *lhs, struct expression *exp,
10015 int *pos, enum noside noside)
10016{
10017 struct type *lhs_type;
10018 int n = exp->elts[*pos+1].longconst;
10019 LONGEST low_index, high_index;
10020 int num_specs;
10021 LONGEST *indices;
10022 int max_indices, num_indices;
10023 int i;
10024
10025 *pos += 3;
10026 if (noside != EVAL_NORMAL)
10027 {
10028 for (i = 0; i < n; i += 1)
10029 ada_evaluate_subexp (NULL, exp, pos, noside);
10030 return container;
10031 }
10032
10033 container = ada_coerce_ref (container);
10034 if (ada_is_direct_array_type (value_type (container)))
10035 container = ada_coerce_to_simple_array (container);
10036 lhs = ada_coerce_ref (lhs);
10037 if (!deprecated_value_modifiable (lhs))
10038 error (_("Left operand of assignment is not a modifiable lvalue."));
10039
10040 lhs_type = check_typedef (value_type (lhs));
10041 if (ada_is_direct_array_type (lhs_type))
10042 {
10043 lhs = ada_coerce_to_simple_array (lhs);
10044 lhs_type = check_typedef (value_type (lhs));
10045 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10046 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10047 }
10048 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10049 {
10050 low_index = 0;
10051 high_index = num_visible_fields (lhs_type) - 1;
10052 }
10053 else
10054 error (_("Left-hand side must be array or record."));
10055
10056 num_specs = num_component_specs (exp, *pos - 3);
10057 max_indices = 4 * num_specs + 4;
10058 indices = XALLOCAVEC (LONGEST, max_indices);
10059 indices[0] = indices[1] = low_index - 1;
10060 indices[2] = indices[3] = high_index + 1;
10061 num_indices = 4;
10062
10063 for (i = 0; i < n; i += 1)
10064 {
10065 switch (exp->elts[*pos].opcode)
10066 {
10067 case OP_CHOICES:
10068 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10069 &num_indices, max_indices,
10070 low_index, high_index);
10071 break;
10072 case OP_POSITIONAL:
10073 aggregate_assign_positional (container, lhs, exp, pos, indices,
10074 &num_indices, max_indices,
10075 low_index, high_index);
10076 break;
10077 case OP_OTHERS:
10078 if (i != n-1)
10079 error (_("Misplaced 'others' clause"));
10080 aggregate_assign_others (container, lhs, exp, pos, indices,
10081 num_indices, low_index, high_index);
10082 break;
10083 default:
10084 error (_("Internal error: bad aggregate clause"));
10085 }
10086 }
10087
10088 return container;
10089}
10090
10091/* Assign into the component of LHS indexed by the OP_POSITIONAL
10092 construct at *POS, updating *POS past the construct, given that
10093 the positions are relative to lower bound LOW, where HIGH is the
10094 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10095 updating *NUM_INDICES as needed. CONTAINER is as for
10096 assign_aggregate. */
10097static void
10098aggregate_assign_positional (struct value *container,
10099 struct value *lhs, struct expression *exp,
10100 int *pos, LONGEST *indices, int *num_indices,
10101 int max_indices, LONGEST low, LONGEST high)
10102{
10103 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10104
10105 if (ind - 1 == high)
10106 warning (_("Extra components in aggregate ignored."));
10107 if (ind <= high)
10108 {
10109 add_component_interval (ind, ind, indices, num_indices, max_indices);
10110 *pos += 3;
10111 assign_component (container, lhs, ind, exp, pos);
10112 }
10113 else
10114 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10115}
10116
10117/* Assign into the components of LHS indexed by the OP_CHOICES
10118 construct at *POS, updating *POS past the construct, given that
10119 the allowable indices are LOW..HIGH. Record the indices assigned
10120 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10121 needed. CONTAINER is as for assign_aggregate. */
10122static void
10123aggregate_assign_from_choices (struct value *container,
10124 struct value *lhs, struct expression *exp,
10125 int *pos, LONGEST *indices, int *num_indices,
10126 int max_indices, LONGEST low, LONGEST high)
10127{
10128 int j;
10129 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10130 int choice_pos, expr_pc;
10131 int is_array = ada_is_direct_array_type (value_type (lhs));
10132
10133 choice_pos = *pos += 3;
10134
10135 for (j = 0; j < n_choices; j += 1)
10136 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10137 expr_pc = *pos;
10138 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10139
10140 for (j = 0; j < n_choices; j += 1)
10141 {
10142 LONGEST lower, upper;
10143 enum exp_opcode op = exp->elts[choice_pos].opcode;
10144
10145 if (op == OP_DISCRETE_RANGE)
10146 {
10147 choice_pos += 1;
10148 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10149 EVAL_NORMAL));
10150 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10151 EVAL_NORMAL));
10152 }
10153 else if (is_array)
10154 {
10155 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10156 EVAL_NORMAL));
10157 upper = lower;
10158 }
10159 else
10160 {
10161 int ind;
10162 const char *name;
10163
10164 switch (op)
10165 {
10166 case OP_NAME:
10167 name = &exp->elts[choice_pos + 2].string;
10168 break;
10169 case OP_VAR_VALUE:
10170 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10171 break;
10172 default:
10173 error (_("Invalid record component association."));
10174 }
10175 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10176 ind = 0;
10177 if (! find_struct_field (name, value_type (lhs), 0,
10178 NULL, NULL, NULL, NULL, &ind))
10179 error (_("Unknown component name: %s."), name);
10180 lower = upper = ind;
10181 }
10182
10183 if (lower <= upper && (lower < low || upper > high))
10184 error (_("Index in component association out of bounds."));
10185
10186 add_component_interval (lower, upper, indices, num_indices,
10187 max_indices);
10188 while (lower <= upper)
10189 {
10190 int pos1;
10191
10192 pos1 = expr_pc;
10193 assign_component (container, lhs, lower, exp, &pos1);
10194 lower += 1;
10195 }
10196 }
10197}
10198
10199/* Assign the value of the expression in the OP_OTHERS construct in
10200 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10201 have not been previously assigned. The index intervals already assigned
10202 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10203 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10204static void
10205aggregate_assign_others (struct value *container,
10206 struct value *lhs, struct expression *exp,
10207 int *pos, LONGEST *indices, int num_indices,
10208 LONGEST low, LONGEST high)
10209{
10210 int i;
10211 int expr_pc = *pos + 1;
10212
10213 for (i = 0; i < num_indices - 2; i += 2)
10214 {
10215 LONGEST ind;
10216
10217 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10218 {
10219 int localpos;
10220
10221 localpos = expr_pc;
10222 assign_component (container, lhs, ind, exp, &localpos);
10223 }
10224 }
10225 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10226}
10227
10228/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10229 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10230 modifying *SIZE as needed. It is an error if *SIZE exceeds
10231 MAX_SIZE. The resulting intervals do not overlap. */
10232static void
10233add_component_interval (LONGEST low, LONGEST high,
10234 LONGEST* indices, int *size, int max_size)
10235{
10236 int i, j;
10237
10238 for (i = 0; i < *size; i += 2) {
10239 if (high >= indices[i] && low <= indices[i + 1])
10240 {
10241 int kh;
10242
10243 for (kh = i + 2; kh < *size; kh += 2)
10244 if (high < indices[kh])
10245 break;
10246 if (low < indices[i])
10247 indices[i] = low;
10248 indices[i + 1] = indices[kh - 1];
10249 if (high > indices[i + 1])
10250 indices[i + 1] = high;
10251 memcpy (indices + i + 2, indices + kh, *size - kh);
10252 *size -= kh - i - 2;
10253 return;
10254 }
10255 else if (high < indices[i])
10256 break;
10257 }
10258
10259 if (*size == max_size)
10260 error (_("Internal error: miscounted aggregate components."));
10261 *size += 2;
10262 for (j = *size-1; j >= i+2; j -= 1)
10263 indices[j] = indices[j - 2];
10264 indices[i] = low;
10265 indices[i + 1] = high;
10266}
10267
10268/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10269 is different. */
10270
10271static struct value *
10272ada_value_cast (struct type *type, struct value *arg2)
10273{
10274 if (type == ada_check_typedef (value_type (arg2)))
10275 return arg2;
10276
10277 if (ada_is_fixed_point_type (type))
10278 return (cast_to_fixed (type, arg2));
10279
10280 if (ada_is_fixed_point_type (value_type (arg2)))
10281 return cast_from_fixed (type, arg2);
10282
10283 return value_cast (type, arg2);
10284}
10285
10286/* Evaluating Ada expressions, and printing their result.
10287 ------------------------------------------------------
10288
10289 1. Introduction:
10290 ----------------
10291
10292 We usually evaluate an Ada expression in order to print its value.
10293 We also evaluate an expression in order to print its type, which
10294 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10295 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10296 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10297 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10298 similar.
10299
10300 Evaluating expressions is a little more complicated for Ada entities
10301 than it is for entities in languages such as C. The main reason for
10302 this is that Ada provides types whose definition might be dynamic.
10303 One example of such types is variant records. Or another example
10304 would be an array whose bounds can only be known at run time.
10305
10306 The following description is a general guide as to what should be
10307 done (and what should NOT be done) in order to evaluate an expression
10308 involving such types, and when. This does not cover how the semantic
10309 information is encoded by GNAT as this is covered separatly. For the
10310 document used as the reference for the GNAT encoding, see exp_dbug.ads
10311 in the GNAT sources.
10312
10313 Ideally, we should embed each part of this description next to its
10314 associated code. Unfortunately, the amount of code is so vast right
10315 now that it's hard to see whether the code handling a particular
10316 situation might be duplicated or not. One day, when the code is
10317 cleaned up, this guide might become redundant with the comments
10318 inserted in the code, and we might want to remove it.
10319
10320 2. ``Fixing'' an Entity, the Simple Case:
10321 -----------------------------------------
10322
10323 When evaluating Ada expressions, the tricky issue is that they may
10324 reference entities whose type contents and size are not statically
10325 known. Consider for instance a variant record:
10326
10327 type Rec (Empty : Boolean := True) is record
10328 case Empty is
10329 when True => null;
10330 when False => Value : Integer;
10331 end case;
10332 end record;
10333 Yes : Rec := (Empty => False, Value => 1);
10334 No : Rec := (empty => True);
10335
10336 The size and contents of that record depends on the value of the
10337 descriminant (Rec.Empty). At this point, neither the debugging
10338 information nor the associated type structure in GDB are able to
10339 express such dynamic types. So what the debugger does is to create
10340 "fixed" versions of the type that applies to the specific object.
10341 We also informally refer to this opperation as "fixing" an object,
10342 which means creating its associated fixed type.
10343
10344 Example: when printing the value of variable "Yes" above, its fixed
10345 type would look like this:
10346
10347 type Rec is record
10348 Empty : Boolean;
10349 Value : Integer;
10350 end record;
10351
10352 On the other hand, if we printed the value of "No", its fixed type
10353 would become:
10354
10355 type Rec is record
10356 Empty : Boolean;
10357 end record;
10358
10359 Things become a little more complicated when trying to fix an entity
10360 with a dynamic type that directly contains another dynamic type,
10361 such as an array of variant records, for instance. There are
10362 two possible cases: Arrays, and records.
10363
10364 3. ``Fixing'' Arrays:
10365 ---------------------
10366
10367 The type structure in GDB describes an array in terms of its bounds,
10368 and the type of its elements. By design, all elements in the array
10369 have the same type and we cannot represent an array of variant elements
10370 using the current type structure in GDB. When fixing an array,
10371 we cannot fix the array element, as we would potentially need one
10372 fixed type per element of the array. As a result, the best we can do
10373 when fixing an array is to produce an array whose bounds and size
10374 are correct (allowing us to read it from memory), but without having
10375 touched its element type. Fixing each element will be done later,
10376 when (if) necessary.
10377
10378 Arrays are a little simpler to handle than records, because the same
10379 amount of memory is allocated for each element of the array, even if
10380 the amount of space actually used by each element differs from element
10381 to element. Consider for instance the following array of type Rec:
10382
10383 type Rec_Array is array (1 .. 2) of Rec;
10384
10385 The actual amount of memory occupied by each element might be different
10386 from element to element, depending on the value of their discriminant.
10387 But the amount of space reserved for each element in the array remains
10388 fixed regardless. So we simply need to compute that size using
10389 the debugging information available, from which we can then determine
10390 the array size (we multiply the number of elements of the array by
10391 the size of each element).
10392
10393 The simplest case is when we have an array of a constrained element
10394 type. For instance, consider the following type declarations:
10395
10396 type Bounded_String (Max_Size : Integer) is
10397 Length : Integer;
10398 Buffer : String (1 .. Max_Size);
10399 end record;
10400 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10401
10402 In this case, the compiler describes the array as an array of
10403 variable-size elements (identified by its XVS suffix) for which
10404 the size can be read in the parallel XVZ variable.
10405
10406 In the case of an array of an unconstrained element type, the compiler
10407 wraps the array element inside a private PAD type. This type should not
10408 be shown to the user, and must be "unwrap"'ed before printing. Note
10409 that we also use the adjective "aligner" in our code to designate
10410 these wrapper types.
10411
10412 In some cases, the size allocated for each element is statically
10413 known. In that case, the PAD type already has the correct size,
10414 and the array element should remain unfixed.
10415
10416 But there are cases when this size is not statically known.
10417 For instance, assuming that "Five" is an integer variable:
10418
10419 type Dynamic is array (1 .. Five) of Integer;
10420 type Wrapper (Has_Length : Boolean := False) is record
10421 Data : Dynamic;
10422 case Has_Length is
10423 when True => Length : Integer;
10424 when False => null;
10425 end case;
10426 end record;
10427 type Wrapper_Array is array (1 .. 2) of Wrapper;
10428
10429 Hello : Wrapper_Array := (others => (Has_Length => True,
10430 Data => (others => 17),
10431 Length => 1));
10432
10433
10434 The debugging info would describe variable Hello as being an
10435 array of a PAD type. The size of that PAD type is not statically
10436 known, but can be determined using a parallel XVZ variable.
10437 In that case, a copy of the PAD type with the correct size should
10438 be used for the fixed array.
10439
10440 3. ``Fixing'' record type objects:
10441 ----------------------------------
10442
10443 Things are slightly different from arrays in the case of dynamic
10444 record types. In this case, in order to compute the associated
10445 fixed type, we need to determine the size and offset of each of
10446 its components. This, in turn, requires us to compute the fixed
10447 type of each of these components.
10448
10449 Consider for instance the example:
10450
10451 type Bounded_String (Max_Size : Natural) is record
10452 Str : String (1 .. Max_Size);
10453 Length : Natural;
10454 end record;
10455 My_String : Bounded_String (Max_Size => 10);
10456
10457 In that case, the position of field "Length" depends on the size
10458 of field Str, which itself depends on the value of the Max_Size
10459 discriminant. In order to fix the type of variable My_String,
10460 we need to fix the type of field Str. Therefore, fixing a variant
10461 record requires us to fix each of its components.
10462
10463 However, if a component does not have a dynamic size, the component
10464 should not be fixed. In particular, fields that use a PAD type
10465 should not fixed. Here is an example where this might happen
10466 (assuming type Rec above):
10467
10468 type Container (Big : Boolean) is record
10469 First : Rec;
10470 After : Integer;
10471 case Big is
10472 when True => Another : Integer;
10473 when False => null;
10474 end case;
10475 end record;
10476 My_Container : Container := (Big => False,
10477 First => (Empty => True),
10478 After => 42);
10479
10480 In that example, the compiler creates a PAD type for component First,
10481 whose size is constant, and then positions the component After just
10482 right after it. The offset of component After is therefore constant
10483 in this case.
10484
10485 The debugger computes the position of each field based on an algorithm
10486 that uses, among other things, the actual position and size of the field
10487 preceding it. Let's now imagine that the user is trying to print
10488 the value of My_Container. If the type fixing was recursive, we would
10489 end up computing the offset of field After based on the size of the
10490 fixed version of field First. And since in our example First has
10491 only one actual field, the size of the fixed type is actually smaller
10492 than the amount of space allocated to that field, and thus we would
10493 compute the wrong offset of field After.
10494
10495 To make things more complicated, we need to watch out for dynamic
10496 components of variant records (identified by the ___XVL suffix in
10497 the component name). Even if the target type is a PAD type, the size
10498 of that type might not be statically known. So the PAD type needs
10499 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10500 we might end up with the wrong size for our component. This can be
10501 observed with the following type declarations:
10502
10503 type Octal is new Integer range 0 .. 7;
10504 type Octal_Array is array (Positive range <>) of Octal;
10505 pragma Pack (Octal_Array);
10506
10507 type Octal_Buffer (Size : Positive) is record
10508 Buffer : Octal_Array (1 .. Size);
10509 Length : Integer;
10510 end record;
10511
10512 In that case, Buffer is a PAD type whose size is unset and needs
10513 to be computed by fixing the unwrapped type.
10514
10515 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10516 ----------------------------------------------------------
10517
10518 Lastly, when should the sub-elements of an entity that remained unfixed
10519 thus far, be actually fixed?
10520
10521 The answer is: Only when referencing that element. For instance
10522 when selecting one component of a record, this specific component
10523 should be fixed at that point in time. Or when printing the value
10524 of a record, each component should be fixed before its value gets
10525 printed. Similarly for arrays, the element of the array should be
10526 fixed when printing each element of the array, or when extracting
10527 one element out of that array. On the other hand, fixing should
10528 not be performed on the elements when taking a slice of an array!
10529
10530 Note that one of the side effects of miscomputing the offset and
10531 size of each field is that we end up also miscomputing the size
10532 of the containing type. This can have adverse results when computing
10533 the value of an entity. GDB fetches the value of an entity based
10534 on the size of its type, and thus a wrong size causes GDB to fetch
10535 the wrong amount of memory. In the case where the computed size is
10536 too small, GDB fetches too little data to print the value of our
10537 entity. Results in this case are unpredictable, as we usually read
10538 past the buffer containing the data =:-o. */
10539
10540/* Evaluate a subexpression of EXP, at index *POS, and return a value
10541 for that subexpression cast to TO_TYPE. Advance *POS over the
10542 subexpression. */
10543
10544static value *
10545ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10546 enum noside noside, struct type *to_type)
10547{
10548 int pc = *pos;
10549
10550 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10551 || exp->elts[pc].opcode == OP_VAR_VALUE)
10552 {
10553 (*pos) += 4;
10554
10555 value *val;
10556 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10557 {
10558 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10559 return value_zero (to_type, not_lval);
10560
10561 val = evaluate_var_msym_value (noside,
10562 exp->elts[pc + 1].objfile,
10563 exp->elts[pc + 2].msymbol);
10564 }
10565 else
10566 val = evaluate_var_value (noside,
10567 exp->elts[pc + 1].block,
10568 exp->elts[pc + 2].symbol);
10569
10570 if (noside == EVAL_SKIP)
10571 return eval_skip_value (exp);
10572
10573 val = ada_value_cast (to_type, val);
10574
10575 /* Follow the Ada language semantics that do not allow taking
10576 an address of the result of a cast (view conversion in Ada). */
10577 if (VALUE_LVAL (val) == lval_memory)
10578 {
10579 if (value_lazy (val))
10580 value_fetch_lazy (val);
10581 VALUE_LVAL (val) = not_lval;
10582 }
10583 return val;
10584 }
10585
10586 value *val = evaluate_subexp (to_type, exp, pos, noside);
10587 if (noside == EVAL_SKIP)
10588 return eval_skip_value (exp);
10589 return ada_value_cast (to_type, val);
10590}
10591
10592/* Implement the evaluate_exp routine in the exp_descriptor structure
10593 for the Ada language. */
10594
10595static struct value *
10596ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10597 int *pos, enum noside noside)
10598{
10599 enum exp_opcode op;
10600 int tem;
10601 int pc;
10602 int preeval_pos;
10603 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10604 struct type *type;
10605 int nargs, oplen;
10606 struct value **argvec;
10607
10608 pc = *pos;
10609 *pos += 1;
10610 op = exp->elts[pc].opcode;
10611
10612 switch (op)
10613 {
10614 default:
10615 *pos -= 1;
10616 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10617
10618 if (noside == EVAL_NORMAL)
10619 arg1 = unwrap_value (arg1);
10620
10621 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10622 then we need to perform the conversion manually, because
10623 evaluate_subexp_standard doesn't do it. This conversion is
10624 necessary in Ada because the different kinds of float/fixed
10625 types in Ada have different representations.
10626
10627 Similarly, we need to perform the conversion from OP_LONG
10628 ourselves. */
10629 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10630 arg1 = ada_value_cast (expect_type, arg1);
10631
10632 return arg1;
10633
10634 case OP_STRING:
10635 {
10636 struct value *result;
10637
10638 *pos -= 1;
10639 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10640 /* The result type will have code OP_STRING, bashed there from
10641 OP_ARRAY. Bash it back. */
10642 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10643 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10644 return result;
10645 }
10646
10647 case UNOP_CAST:
10648 (*pos) += 2;
10649 type = exp->elts[pc + 1].type;
10650 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10651
10652 case UNOP_QUAL:
10653 (*pos) += 2;
10654 type = exp->elts[pc + 1].type;
10655 return ada_evaluate_subexp (type, exp, pos, noside);
10656
10657 case BINOP_ASSIGN:
10658 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10659 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10660 {
10661 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10662 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10663 return arg1;
10664 return ada_value_assign (arg1, arg1);
10665 }
10666 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10667 except if the lhs of our assignment is a convenience variable.
10668 In the case of assigning to a convenience variable, the lhs
10669 should be exactly the result of the evaluation of the rhs. */
10670 type = value_type (arg1);
10671 if (VALUE_LVAL (arg1) == lval_internalvar)
10672 type = NULL;
10673 arg2 = evaluate_subexp (type, exp, pos, noside);
10674 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10675 return arg1;
10676 if (ada_is_fixed_point_type (value_type (arg1)))
10677 arg2 = cast_to_fixed (value_type (arg1), arg2);
10678 else if (ada_is_fixed_point_type (value_type (arg2)))
10679 error
10680 (_("Fixed-point values must be assigned to fixed-point variables"));
10681 else
10682 arg2 = coerce_for_assign (value_type (arg1), arg2);
10683 return ada_value_assign (arg1, arg2);
10684
10685 case BINOP_ADD:
10686 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10687 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10688 if (noside == EVAL_SKIP)
10689 goto nosideret;
10690 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10691 return (value_from_longest
10692 (value_type (arg1),
10693 value_as_long (arg1) + value_as_long (arg2)));
10694 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10695 return (value_from_longest
10696 (value_type (arg2),
10697 value_as_long (arg1) + value_as_long (arg2)));
10698 if ((ada_is_fixed_point_type (value_type (arg1))
10699 || ada_is_fixed_point_type (value_type (arg2)))
10700 && value_type (arg1) != value_type (arg2))
10701 error (_("Operands of fixed-point addition must have the same type"));
10702 /* Do the addition, and cast the result to the type of the first
10703 argument. We cannot cast the result to a reference type, so if
10704 ARG1 is a reference type, find its underlying type. */
10705 type = value_type (arg1);
10706 while (TYPE_CODE (type) == TYPE_CODE_REF)
10707 type = TYPE_TARGET_TYPE (type);
10708 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10709 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10710
10711 case BINOP_SUB:
10712 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10713 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10714 if (noside == EVAL_SKIP)
10715 goto nosideret;
10716 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10717 return (value_from_longest
10718 (value_type (arg1),
10719 value_as_long (arg1) - value_as_long (arg2)));
10720 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10721 return (value_from_longest
10722 (value_type (arg2),
10723 value_as_long (arg1) - value_as_long (arg2)));
10724 if ((ada_is_fixed_point_type (value_type (arg1))
10725 || ada_is_fixed_point_type (value_type (arg2)))
10726 && value_type (arg1) != value_type (arg2))
10727 error (_("Operands of fixed-point subtraction "
10728 "must have the same type"));
10729 /* Do the substraction, and cast the result to the type of the first
10730 argument. We cannot cast the result to a reference type, so if
10731 ARG1 is a reference type, find its underlying type. */
10732 type = value_type (arg1);
10733 while (TYPE_CODE (type) == TYPE_CODE_REF)
10734 type = TYPE_TARGET_TYPE (type);
10735 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10736 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10737
10738 case BINOP_MUL:
10739 case BINOP_DIV:
10740 case BINOP_REM:
10741 case BINOP_MOD:
10742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10743 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 if (noside == EVAL_SKIP)
10745 goto nosideret;
10746 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10747 {
10748 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10749 return value_zero (value_type (arg1), not_lval);
10750 }
10751 else
10752 {
10753 type = builtin_type (exp->gdbarch)->builtin_double;
10754 if (ada_is_fixed_point_type (value_type (arg1)))
10755 arg1 = cast_from_fixed (type, arg1);
10756 if (ada_is_fixed_point_type (value_type (arg2)))
10757 arg2 = cast_from_fixed (type, arg2);
10758 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10759 return ada_value_binop (arg1, arg2, op);
10760 }
10761
10762 case BINOP_EQUAL:
10763 case BINOP_NOTEQUAL:
10764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10765 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10766 if (noside == EVAL_SKIP)
10767 goto nosideret;
10768 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10769 tem = 0;
10770 else
10771 {
10772 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10773 tem = ada_value_equal (arg1, arg2);
10774 }
10775 if (op == BINOP_NOTEQUAL)
10776 tem = !tem;
10777 type = language_bool_type (exp->language_defn, exp->gdbarch);
10778 return value_from_longest (type, (LONGEST) tem);
10779
10780 case UNOP_NEG:
10781 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10782 if (noside == EVAL_SKIP)
10783 goto nosideret;
10784 else if (ada_is_fixed_point_type (value_type (arg1)))
10785 return value_cast (value_type (arg1), value_neg (arg1));
10786 else
10787 {
10788 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10789 return value_neg (arg1);
10790 }
10791
10792 case BINOP_LOGICAL_AND:
10793 case BINOP_LOGICAL_OR:
10794 case UNOP_LOGICAL_NOT:
10795 {
10796 struct value *val;
10797
10798 *pos -= 1;
10799 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10800 type = language_bool_type (exp->language_defn, exp->gdbarch);
10801 return value_cast (type, val);
10802 }
10803
10804 case BINOP_BITWISE_AND:
10805 case BINOP_BITWISE_IOR:
10806 case BINOP_BITWISE_XOR:
10807 {
10808 struct value *val;
10809
10810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10811 *pos = pc;
10812 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10813
10814 return value_cast (value_type (arg1), val);
10815 }
10816
10817 case OP_VAR_VALUE:
10818 *pos -= 1;
10819
10820 if (noside == EVAL_SKIP)
10821 {
10822 *pos += 4;
10823 goto nosideret;
10824 }
10825
10826 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10827 /* Only encountered when an unresolved symbol occurs in a
10828 context other than a function call, in which case, it is
10829 invalid. */
10830 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10831 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10832
10833 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10834 {
10835 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10836 /* Check to see if this is a tagged type. We also need to handle
10837 the case where the type is a reference to a tagged type, but
10838 we have to be careful to exclude pointers to tagged types.
10839 The latter should be shown as usual (as a pointer), whereas
10840 a reference should mostly be transparent to the user. */
10841 if (ada_is_tagged_type (type, 0)
10842 || (TYPE_CODE (type) == TYPE_CODE_REF
10843 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10844 {
10845 /* Tagged types are a little special in the fact that the real
10846 type is dynamic and can only be determined by inspecting the
10847 object's tag. This means that we need to get the object's
10848 value first (EVAL_NORMAL) and then extract the actual object
10849 type from its tag.
10850
10851 Note that we cannot skip the final step where we extract
10852 the object type from its tag, because the EVAL_NORMAL phase
10853 results in dynamic components being resolved into fixed ones.
10854 This can cause problems when trying to print the type
10855 description of tagged types whose parent has a dynamic size:
10856 We use the type name of the "_parent" component in order
10857 to print the name of the ancestor type in the type description.
10858 If that component had a dynamic size, the resolution into
10859 a fixed type would result in the loss of that type name,
10860 thus preventing us from printing the name of the ancestor
10861 type in the type description. */
10862 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10863
10864 if (TYPE_CODE (type) != TYPE_CODE_REF)
10865 {
10866 struct type *actual_type;
10867
10868 actual_type = type_from_tag (ada_value_tag (arg1));
10869 if (actual_type == NULL)
10870 /* If, for some reason, we were unable to determine
10871 the actual type from the tag, then use the static
10872 approximation that we just computed as a fallback.
10873 This can happen if the debugging information is
10874 incomplete, for instance. */
10875 actual_type = type;
10876 return value_zero (actual_type, not_lval);
10877 }
10878 else
10879 {
10880 /* In the case of a ref, ada_coerce_ref takes care
10881 of determining the actual type. But the evaluation
10882 should return a ref as it should be valid to ask
10883 for its address; so rebuild a ref after coerce. */
10884 arg1 = ada_coerce_ref (arg1);
10885 return value_ref (arg1, TYPE_CODE_REF);
10886 }
10887 }
10888
10889 /* Records and unions for which GNAT encodings have been
10890 generated need to be statically fixed as well.
10891 Otherwise, non-static fixing produces a type where
10892 all dynamic properties are removed, which prevents "ptype"
10893 from being able to completely describe the type.
10894 For instance, a case statement in a variant record would be
10895 replaced by the relevant components based on the actual
10896 value of the discriminants. */
10897 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10898 && dynamic_template_type (type) != NULL)
10899 || (TYPE_CODE (type) == TYPE_CODE_UNION
10900 && ada_find_parallel_type (type, "___XVU") != NULL))
10901 {
10902 *pos += 4;
10903 return value_zero (to_static_fixed_type (type), not_lval);
10904 }
10905 }
10906
10907 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10908 return ada_to_fixed_value (arg1);
10909
10910 case OP_FUNCALL:
10911 (*pos) += 2;
10912
10913 /* Allocate arg vector, including space for the function to be
10914 called in argvec[0] and a terminating NULL. */
10915 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10916 argvec = XALLOCAVEC (struct value *, nargs + 2);
10917
10918 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10919 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10920 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10921 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10922 else
10923 {
10924 for (tem = 0; tem <= nargs; tem += 1)
10925 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10926 argvec[tem] = 0;
10927
10928 if (noside == EVAL_SKIP)
10929 goto nosideret;
10930 }
10931
10932 if (ada_is_constrained_packed_array_type
10933 (desc_base_type (value_type (argvec[0]))))
10934 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10935 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10936 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10937 /* This is a packed array that has already been fixed, and
10938 therefore already coerced to a simple array. Nothing further
10939 to do. */
10940 ;
10941 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10942 {
10943 /* Make sure we dereference references so that all the code below
10944 feels like it's really handling the referenced value. Wrapping
10945 types (for alignment) may be there, so make sure we strip them as
10946 well. */
10947 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10948 }
10949 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10950 && VALUE_LVAL (argvec[0]) == lval_memory)
10951 argvec[0] = value_addr (argvec[0]);
10952
10953 type = ada_check_typedef (value_type (argvec[0]));
10954
10955 /* Ada allows us to implicitly dereference arrays when subscripting
10956 them. So, if this is an array typedef (encoding use for array
10957 access types encoded as fat pointers), strip it now. */
10958 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10959 type = ada_typedef_target_type (type);
10960
10961 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10962 {
10963 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10964 {
10965 case TYPE_CODE_FUNC:
10966 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10967 break;
10968 case TYPE_CODE_ARRAY:
10969 break;
10970 case TYPE_CODE_STRUCT:
10971 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10972 argvec[0] = ada_value_ind (argvec[0]);
10973 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10974 break;
10975 default:
10976 error (_("cannot subscript or call something of type `%s'"),
10977 ada_type_name (value_type (argvec[0])));
10978 break;
10979 }
10980 }
10981
10982 switch (TYPE_CODE (type))
10983 {
10984 case TYPE_CODE_FUNC:
10985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10986 {
10987 if (TYPE_TARGET_TYPE (type) == NULL)
10988 error_call_unknown_return_type (NULL);
10989 return allocate_value (TYPE_TARGET_TYPE (type));
10990 }
10991 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10992 case TYPE_CODE_INTERNAL_FUNCTION:
10993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10994 /* We don't know anything about what the internal
10995 function might return, but we have to return
10996 something. */
10997 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10998 not_lval);
10999 else
11000 return call_internal_function (exp->gdbarch, exp->language_defn,
11001 argvec[0], nargs, argvec + 1);
11002
11003 case TYPE_CODE_STRUCT:
11004 {
11005 int arity;
11006
11007 arity = ada_array_arity (type);
11008 type = ada_array_element_type (type, nargs);
11009 if (type == NULL)
11010 error (_("cannot subscript or call a record"));
11011 if (arity != nargs)
11012 error (_("wrong number of subscripts; expecting %d"), arity);
11013 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11014 return value_zero (ada_aligned_type (type), lval_memory);
11015 return
11016 unwrap_value (ada_value_subscript
11017 (argvec[0], nargs, argvec + 1));
11018 }
11019 case TYPE_CODE_ARRAY:
11020 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11021 {
11022 type = ada_array_element_type (type, nargs);
11023 if (type == NULL)
11024 error (_("element type of array unknown"));
11025 else
11026 return value_zero (ada_aligned_type (type), lval_memory);
11027 }
11028 return
11029 unwrap_value (ada_value_subscript
11030 (ada_coerce_to_simple_array (argvec[0]),
11031 nargs, argvec + 1));
11032 case TYPE_CODE_PTR: /* Pointer to array */
11033 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11034 {
11035 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11036 type = ada_array_element_type (type, nargs);
11037 if (type == NULL)
11038 error (_("element type of array unknown"));
11039 else
11040 return value_zero (ada_aligned_type (type), lval_memory);
11041 }
11042 return
11043 unwrap_value (ada_value_ptr_subscript (argvec[0],
11044 nargs, argvec + 1));
11045
11046 default:
11047 error (_("Attempt to index or call something other than an "
11048 "array or function"));
11049 }
11050
11051 case TERNOP_SLICE:
11052 {
11053 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11054 struct value *low_bound_val =
11055 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 struct value *high_bound_val =
11057 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11058 LONGEST low_bound;
11059 LONGEST high_bound;
11060
11061 low_bound_val = coerce_ref (low_bound_val);
11062 high_bound_val = coerce_ref (high_bound_val);
11063 low_bound = value_as_long (low_bound_val);
11064 high_bound = value_as_long (high_bound_val);
11065
11066 if (noside == EVAL_SKIP)
11067 goto nosideret;
11068
11069 /* If this is a reference to an aligner type, then remove all
11070 the aligners. */
11071 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11072 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11073 TYPE_TARGET_TYPE (value_type (array)) =
11074 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11075
11076 if (ada_is_constrained_packed_array_type (value_type (array)))
11077 error (_("cannot slice a packed array"));
11078
11079 /* If this is a reference to an array or an array lvalue,
11080 convert to a pointer. */
11081 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11082 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11083 && VALUE_LVAL (array) == lval_memory))
11084 array = value_addr (array);
11085
11086 if (noside == EVAL_AVOID_SIDE_EFFECTS
11087 && ada_is_array_descriptor_type (ada_check_typedef
11088 (value_type (array))))
11089 return empty_array (ada_type_of_array (array, 0), low_bound);
11090
11091 array = ada_coerce_to_simple_array_ptr (array);
11092
11093 /* If we have more than one level of pointer indirection,
11094 dereference the value until we get only one level. */
11095 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11096 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11097 == TYPE_CODE_PTR))
11098 array = value_ind (array);
11099
11100 /* Make sure we really do have an array type before going further,
11101 to avoid a SEGV when trying to get the index type or the target
11102 type later down the road if the debug info generated by
11103 the compiler is incorrect or incomplete. */
11104 if (!ada_is_simple_array_type (value_type (array)))
11105 error (_("cannot take slice of non-array"));
11106
11107 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11108 == TYPE_CODE_PTR)
11109 {
11110 struct type *type0 = ada_check_typedef (value_type (array));
11111
11112 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11113 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11114 else
11115 {
11116 struct type *arr_type0 =
11117 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11118
11119 return ada_value_slice_from_ptr (array, arr_type0,
11120 longest_to_int (low_bound),
11121 longest_to_int (high_bound));
11122 }
11123 }
11124 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11125 return array;
11126 else if (high_bound < low_bound)
11127 return empty_array (value_type (array), low_bound);
11128 else
11129 return ada_value_slice (array, longest_to_int (low_bound),
11130 longest_to_int (high_bound));
11131 }
11132
11133 case UNOP_IN_RANGE:
11134 (*pos) += 2;
11135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11136 type = check_typedef (exp->elts[pc + 1].type);
11137
11138 if (noside == EVAL_SKIP)
11139 goto nosideret;
11140
11141 switch (TYPE_CODE (type))
11142 {
11143 default:
11144 lim_warning (_("Membership test incompletely implemented; "
11145 "always returns true"));
11146 type = language_bool_type (exp->language_defn, exp->gdbarch);
11147 return value_from_longest (type, (LONGEST) 1);
11148
11149 case TYPE_CODE_RANGE:
11150 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11151 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11153 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11154 type = language_bool_type (exp->language_defn, exp->gdbarch);
11155 return
11156 value_from_longest (type,
11157 (value_less (arg1, arg3)
11158 || value_equal (arg1, arg3))
11159 && (value_less (arg2, arg1)
11160 || value_equal (arg2, arg1)));
11161 }
11162
11163 case BINOP_IN_BOUNDS:
11164 (*pos) += 2;
11165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11166 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11167
11168 if (noside == EVAL_SKIP)
11169 goto nosideret;
11170
11171 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11172 {
11173 type = language_bool_type (exp->language_defn, exp->gdbarch);
11174 return value_zero (type, not_lval);
11175 }
11176
11177 tem = longest_to_int (exp->elts[pc + 1].longconst);
11178
11179 type = ada_index_type (value_type (arg2), tem, "range");
11180 if (!type)
11181 type = value_type (arg1);
11182
11183 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11184 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11185
11186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11188 type = language_bool_type (exp->language_defn, exp->gdbarch);
11189 return
11190 value_from_longest (type,
11191 (value_less (arg1, arg3)
11192 || value_equal (arg1, arg3))
11193 && (value_less (arg2, arg1)
11194 || value_equal (arg2, arg1)));
11195
11196 case TERNOP_IN_RANGE:
11197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200
11201 if (noside == EVAL_SKIP)
11202 goto nosideret;
11203
11204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11206 type = language_bool_type (exp->language_defn, exp->gdbarch);
11207 return
11208 value_from_longest (type,
11209 (value_less (arg1, arg3)
11210 || value_equal (arg1, arg3))
11211 && (value_less (arg2, arg1)
11212 || value_equal (arg2, arg1)));
11213
11214 case OP_ATR_FIRST:
11215 case OP_ATR_LAST:
11216 case OP_ATR_LENGTH:
11217 {
11218 struct type *type_arg;
11219
11220 if (exp->elts[*pos].opcode == OP_TYPE)
11221 {
11222 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11223 arg1 = NULL;
11224 type_arg = check_typedef (exp->elts[pc + 2].type);
11225 }
11226 else
11227 {
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 type_arg = NULL;
11230 }
11231
11232 if (exp->elts[*pos].opcode != OP_LONG)
11233 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11234 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11235 *pos += 4;
11236
11237 if (noside == EVAL_SKIP)
11238 goto nosideret;
11239
11240 if (type_arg == NULL)
11241 {
11242 arg1 = ada_coerce_ref (arg1);
11243
11244 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11245 arg1 = ada_coerce_to_simple_array (arg1);
11246
11247 if (op == OP_ATR_LENGTH)
11248 type = builtin_type (exp->gdbarch)->builtin_int;
11249 else
11250 {
11251 type = ada_index_type (value_type (arg1), tem,
11252 ada_attribute_name (op));
11253 if (type == NULL)
11254 type = builtin_type (exp->gdbarch)->builtin_int;
11255 }
11256
11257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11258 return allocate_value (type);
11259
11260 switch (op)
11261 {
11262 default: /* Should never happen. */
11263 error (_("unexpected attribute encountered"));
11264 case OP_ATR_FIRST:
11265 return value_from_longest
11266 (type, ada_array_bound (arg1, tem, 0));
11267 case OP_ATR_LAST:
11268 return value_from_longest
11269 (type, ada_array_bound (arg1, tem, 1));
11270 case OP_ATR_LENGTH:
11271 return value_from_longest
11272 (type, ada_array_length (arg1, tem));
11273 }
11274 }
11275 else if (discrete_type_p (type_arg))
11276 {
11277 struct type *range_type;
11278 const char *name = ada_type_name (type_arg);
11279
11280 range_type = NULL;
11281 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11282 range_type = to_fixed_range_type (type_arg, NULL);
11283 if (range_type == NULL)
11284 range_type = type_arg;
11285 switch (op)
11286 {
11287 default:
11288 error (_("unexpected attribute encountered"));
11289 case OP_ATR_FIRST:
11290 return value_from_longest
11291 (range_type, ada_discrete_type_low_bound (range_type));
11292 case OP_ATR_LAST:
11293 return value_from_longest
11294 (range_type, ada_discrete_type_high_bound (range_type));
11295 case OP_ATR_LENGTH:
11296 error (_("the 'length attribute applies only to array types"));
11297 }
11298 }
11299 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11300 error (_("unimplemented type attribute"));
11301 else
11302 {
11303 LONGEST low, high;
11304
11305 if (ada_is_constrained_packed_array_type (type_arg))
11306 type_arg = decode_constrained_packed_array_type (type_arg);
11307
11308 if (op == OP_ATR_LENGTH)
11309 type = builtin_type (exp->gdbarch)->builtin_int;
11310 else
11311 {
11312 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11313 if (type == NULL)
11314 type = builtin_type (exp->gdbarch)->builtin_int;
11315 }
11316
11317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11318 return allocate_value (type);
11319
11320 switch (op)
11321 {
11322 default:
11323 error (_("unexpected attribute encountered"));
11324 case OP_ATR_FIRST:
11325 low = ada_array_bound_from_type (type_arg, tem, 0);
11326 return value_from_longest (type, low);
11327 case OP_ATR_LAST:
11328 high = ada_array_bound_from_type (type_arg, tem, 1);
11329 return value_from_longest (type, high);
11330 case OP_ATR_LENGTH:
11331 low = ada_array_bound_from_type (type_arg, tem, 0);
11332 high = ada_array_bound_from_type (type_arg, tem, 1);
11333 return value_from_longest (type, high - low + 1);
11334 }
11335 }
11336 }
11337
11338 case OP_ATR_TAG:
11339 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11340 if (noside == EVAL_SKIP)
11341 goto nosideret;
11342
11343 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11344 return value_zero (ada_tag_type (arg1), not_lval);
11345
11346 return ada_value_tag (arg1);
11347
11348 case OP_ATR_MIN:
11349 case OP_ATR_MAX:
11350 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11352 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11353 if (noside == EVAL_SKIP)
11354 goto nosideret;
11355 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11356 return value_zero (value_type (arg1), not_lval);
11357 else
11358 {
11359 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11360 return value_binop (arg1, arg2,
11361 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11362 }
11363
11364 case OP_ATR_MODULUS:
11365 {
11366 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11367
11368 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11369 if (noside == EVAL_SKIP)
11370 goto nosideret;
11371
11372 if (!ada_is_modular_type (type_arg))
11373 error (_("'modulus must be applied to modular type"));
11374
11375 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11376 ada_modulus (type_arg));
11377 }
11378
11379
11380 case OP_ATR_POS:
11381 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11383 if (noside == EVAL_SKIP)
11384 goto nosideret;
11385 type = builtin_type (exp->gdbarch)->builtin_int;
11386 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11387 return value_zero (type, not_lval);
11388 else
11389 return value_pos_atr (type, arg1);
11390
11391 case OP_ATR_SIZE:
11392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11393 type = value_type (arg1);
11394
11395 /* If the argument is a reference, then dereference its type, since
11396 the user is really asking for the size of the actual object,
11397 not the size of the pointer. */
11398 if (TYPE_CODE (type) == TYPE_CODE_REF)
11399 type = TYPE_TARGET_TYPE (type);
11400
11401 if (noside == EVAL_SKIP)
11402 goto nosideret;
11403 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11404 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11405 else
11406 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11407 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11408
11409 case OP_ATR_VAL:
11410 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11412 type = exp->elts[pc + 2].type;
11413 if (noside == EVAL_SKIP)
11414 goto nosideret;
11415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11416 return value_zero (type, not_lval);
11417 else
11418 return value_val_atr (type, arg1);
11419
11420 case BINOP_EXP:
11421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11422 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11423 if (noside == EVAL_SKIP)
11424 goto nosideret;
11425 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11426 return value_zero (value_type (arg1), not_lval);
11427 else
11428 {
11429 /* For integer exponentiation operations,
11430 only promote the first argument. */
11431 if (is_integral_type (value_type (arg2)))
11432 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11433 else
11434 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11435
11436 return value_binop (arg1, arg2, op);
11437 }
11438
11439 case UNOP_PLUS:
11440 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11441 if (noside == EVAL_SKIP)
11442 goto nosideret;
11443 else
11444 return arg1;
11445
11446 case UNOP_ABS:
11447 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11448 if (noside == EVAL_SKIP)
11449 goto nosideret;
11450 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11451 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11452 return value_neg (arg1);
11453 else
11454 return arg1;
11455
11456 case UNOP_IND:
11457 preeval_pos = *pos;
11458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11459 if (noside == EVAL_SKIP)
11460 goto nosideret;
11461 type = ada_check_typedef (value_type (arg1));
11462 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11463 {
11464 if (ada_is_array_descriptor_type (type))
11465 /* GDB allows dereferencing GNAT array descriptors. */
11466 {
11467 struct type *arrType = ada_type_of_array (arg1, 0);
11468
11469 if (arrType == NULL)
11470 error (_("Attempt to dereference null array pointer."));
11471 return value_at_lazy (arrType, 0);
11472 }
11473 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11474 || TYPE_CODE (type) == TYPE_CODE_REF
11475 /* In C you can dereference an array to get the 1st elt. */
11476 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11477 {
11478 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11479 only be determined by inspecting the object's tag.
11480 This means that we need to evaluate completely the
11481 expression in order to get its type. */
11482
11483 if ((TYPE_CODE (type) == TYPE_CODE_REF
11484 || TYPE_CODE (type) == TYPE_CODE_PTR)
11485 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11486 {
11487 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11488 EVAL_NORMAL);
11489 type = value_type (ada_value_ind (arg1));
11490 }
11491 else
11492 {
11493 type = to_static_fixed_type
11494 (ada_aligned_type
11495 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11496 }
11497 ada_ensure_varsize_limit (type);
11498 return value_zero (type, lval_memory);
11499 }
11500 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11501 {
11502 /* GDB allows dereferencing an int. */
11503 if (expect_type == NULL)
11504 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11505 lval_memory);
11506 else
11507 {
11508 expect_type =
11509 to_static_fixed_type (ada_aligned_type (expect_type));
11510 return value_zero (expect_type, lval_memory);
11511 }
11512 }
11513 else
11514 error (_("Attempt to take contents of a non-pointer value."));
11515 }
11516 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11517 type = ada_check_typedef (value_type (arg1));
11518
11519 if (TYPE_CODE (type) == TYPE_CODE_INT)
11520 /* GDB allows dereferencing an int. If we were given
11521 the expect_type, then use that as the target type.
11522 Otherwise, assume that the target type is an int. */
11523 {
11524 if (expect_type != NULL)
11525 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11526 arg1));
11527 else
11528 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11529 (CORE_ADDR) value_as_address (arg1));
11530 }
11531
11532 if (ada_is_array_descriptor_type (type))
11533 /* GDB allows dereferencing GNAT array descriptors. */
11534 return ada_coerce_to_simple_array (arg1);
11535 else
11536 return ada_value_ind (arg1);
11537
11538 case STRUCTOP_STRUCT:
11539 tem = longest_to_int (exp->elts[pc + 1].longconst);
11540 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11541 preeval_pos = *pos;
11542 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11543 if (noside == EVAL_SKIP)
11544 goto nosideret;
11545 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11546 {
11547 struct type *type1 = value_type (arg1);
11548
11549 if (ada_is_tagged_type (type1, 1))
11550 {
11551 type = ada_lookup_struct_elt_type (type1,
11552 &exp->elts[pc + 2].string,
11553 1, 1);
11554
11555 /* If the field is not found, check if it exists in the
11556 extension of this object's type. This means that we
11557 need to evaluate completely the expression. */
11558
11559 if (type == NULL)
11560 {
11561 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11562 EVAL_NORMAL);
11563 arg1 = ada_value_struct_elt (arg1,
11564 &exp->elts[pc + 2].string,
11565 0);
11566 arg1 = unwrap_value (arg1);
11567 type = value_type (ada_to_fixed_value (arg1));
11568 }
11569 }
11570 else
11571 type =
11572 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11573 0);
11574
11575 return value_zero (ada_aligned_type (type), lval_memory);
11576 }
11577 else
11578 {
11579 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11580 arg1 = unwrap_value (arg1);
11581 return ada_to_fixed_value (arg1);
11582 }
11583
11584 case OP_TYPE:
11585 /* The value is not supposed to be used. This is here to make it
11586 easier to accommodate expressions that contain types. */
11587 (*pos) += 2;
11588 if (noside == EVAL_SKIP)
11589 goto nosideret;
11590 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11591 return allocate_value (exp->elts[pc + 1].type);
11592 else
11593 error (_("Attempt to use a type name as an expression"));
11594
11595 case OP_AGGREGATE:
11596 case OP_CHOICES:
11597 case OP_OTHERS:
11598 case OP_DISCRETE_RANGE:
11599 case OP_POSITIONAL:
11600 case OP_NAME:
11601 if (noside == EVAL_NORMAL)
11602 switch (op)
11603 {
11604 case OP_NAME:
11605 error (_("Undefined name, ambiguous name, or renaming used in "
11606 "component association: %s."), &exp->elts[pc+2].string);
11607 case OP_AGGREGATE:
11608 error (_("Aggregates only allowed on the right of an assignment"));
11609 default:
11610 internal_error (__FILE__, __LINE__,
11611 _("aggregate apparently mangled"));
11612 }
11613
11614 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11615 *pos += oplen - 1;
11616 for (tem = 0; tem < nargs; tem += 1)
11617 ada_evaluate_subexp (NULL, exp, pos, noside);
11618 goto nosideret;
11619 }
11620
11621nosideret:
11622 return eval_skip_value (exp);
11623}
11624\f
11625
11626 /* Fixed point */
11627
11628/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11629 type name that encodes the 'small and 'delta information.
11630 Otherwise, return NULL. */
11631
11632static const char *
11633fixed_type_info (struct type *type)
11634{
11635 const char *name = ada_type_name (type);
11636 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11637
11638 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11639 {
11640 const char *tail = strstr (name, "___XF_");
11641
11642 if (tail == NULL)
11643 return NULL;
11644 else
11645 return tail + 5;
11646 }
11647 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11648 return fixed_type_info (TYPE_TARGET_TYPE (type));
11649 else
11650 return NULL;
11651}
11652
11653/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11654
11655int
11656ada_is_fixed_point_type (struct type *type)
11657{
11658 return fixed_type_info (type) != NULL;
11659}
11660
11661/* Return non-zero iff TYPE represents a System.Address type. */
11662
11663int
11664ada_is_system_address_type (struct type *type)
11665{
11666 return (TYPE_NAME (type)
11667 && strcmp (TYPE_NAME (type), "system__address") == 0);
11668}
11669
11670/* Assuming that TYPE is the representation of an Ada fixed-point
11671 type, return the target floating-point type to be used to represent
11672 of this type during internal computation. */
11673
11674static struct type *
11675ada_scaling_type (struct type *type)
11676{
11677 return builtin_type (get_type_arch (type))->builtin_long_double;
11678}
11679
11680/* Assuming that TYPE is the representation of an Ada fixed-point
11681 type, return its delta, or NULL if the type is malformed and the
11682 delta cannot be determined. */
11683
11684struct value *
11685ada_delta (struct type *type)
11686{
11687 const char *encoding = fixed_type_info (type);
11688 struct type *scale_type = ada_scaling_type (type);
11689
11690 long long num, den;
11691
11692 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11693 return nullptr;
11694 else
11695 return value_binop (value_from_longest (scale_type, num),
11696 value_from_longest (scale_type, den), BINOP_DIV);
11697}
11698
11699/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11700 factor ('SMALL value) associated with the type. */
11701
11702struct value *
11703ada_scaling_factor (struct type *type)
11704{
11705 const char *encoding = fixed_type_info (type);
11706 struct type *scale_type = ada_scaling_type (type);
11707
11708 long long num0, den0, num1, den1;
11709 int n;
11710
11711 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11712 &num0, &den0, &num1, &den1);
11713
11714 if (n < 2)
11715 return value_from_longest (scale_type, 1);
11716 else if (n == 4)
11717 return value_binop (value_from_longest (scale_type, num1),
11718 value_from_longest (scale_type, den1), BINOP_DIV);
11719 else
11720 return value_binop (value_from_longest (scale_type, num0),
11721 value_from_longest (scale_type, den0), BINOP_DIV);
11722}
11723
11724\f
11725
11726 /* Range types */
11727
11728/* Scan STR beginning at position K for a discriminant name, and
11729 return the value of that discriminant field of DVAL in *PX. If
11730 PNEW_K is not null, put the position of the character beyond the
11731 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11732 not alter *PX and *PNEW_K if unsuccessful. */
11733
11734static int
11735scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11736 int *pnew_k)
11737{
11738 static char *bound_buffer = NULL;
11739 static size_t bound_buffer_len = 0;
11740 const char *pstart, *pend, *bound;
11741 struct value *bound_val;
11742
11743 if (dval == NULL || str == NULL || str[k] == '\0')
11744 return 0;
11745
11746 pstart = str + k;
11747 pend = strstr (pstart, "__");
11748 if (pend == NULL)
11749 {
11750 bound = pstart;
11751 k += strlen (bound);
11752 }
11753 else
11754 {
11755 int len = pend - pstart;
11756
11757 /* Strip __ and beyond. */
11758 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11759 strncpy (bound_buffer, pstart, len);
11760 bound_buffer[len] = '\0';
11761
11762 bound = bound_buffer;
11763 k = pend - str;
11764 }
11765
11766 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11767 if (bound_val == NULL)
11768 return 0;
11769
11770 *px = value_as_long (bound_val);
11771 if (pnew_k != NULL)
11772 *pnew_k = k;
11773 return 1;
11774}
11775
11776/* Value of variable named NAME in the current environment. If
11777 no such variable found, then if ERR_MSG is null, returns 0, and
11778 otherwise causes an error with message ERR_MSG. */
11779
11780static struct value *
11781get_var_value (const char *name, const char *err_msg)
11782{
11783 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11784
11785 struct block_symbol *syms;
11786 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11787 get_selected_block (0),
11788 VAR_DOMAIN, &syms, 1);
11789 struct cleanup *old_chain = make_cleanup (xfree, syms);
11790
11791 if (nsyms != 1)
11792 {
11793 do_cleanups (old_chain);
11794 if (err_msg == NULL)
11795 return 0;
11796 else
11797 error (("%s"), err_msg);
11798 }
11799
11800 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11801 do_cleanups (old_chain);
11802 return result;
11803}
11804
11805/* Value of integer variable named NAME in the current environment.
11806 If no such variable is found, returns false. Otherwise, sets VALUE
11807 to the variable's value and returns true. */
11808
11809bool
11810get_int_var_value (const char *name, LONGEST &value)
11811{
11812 struct value *var_val = get_var_value (name, 0);
11813
11814 if (var_val == 0)
11815 return false;
11816
11817 value = value_as_long (var_val);
11818 return true;
11819}
11820
11821
11822/* Return a range type whose base type is that of the range type named
11823 NAME in the current environment, and whose bounds are calculated
11824 from NAME according to the GNAT range encoding conventions.
11825 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11826 corresponding range type from debug information; fall back to using it
11827 if symbol lookup fails. If a new type must be created, allocate it
11828 like ORIG_TYPE was. The bounds information, in general, is encoded
11829 in NAME, the base type given in the named range type. */
11830
11831static struct type *
11832to_fixed_range_type (struct type *raw_type, struct value *dval)
11833{
11834 const char *name;
11835 struct type *base_type;
11836 const char *subtype_info;
11837
11838 gdb_assert (raw_type != NULL);
11839 gdb_assert (TYPE_NAME (raw_type) != NULL);
11840
11841 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11842 base_type = TYPE_TARGET_TYPE (raw_type);
11843 else
11844 base_type = raw_type;
11845
11846 name = TYPE_NAME (raw_type);
11847 subtype_info = strstr (name, "___XD");
11848 if (subtype_info == NULL)
11849 {
11850 LONGEST L = ada_discrete_type_low_bound (raw_type);
11851 LONGEST U = ada_discrete_type_high_bound (raw_type);
11852
11853 if (L < INT_MIN || U > INT_MAX)
11854 return raw_type;
11855 else
11856 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11857 L, U);
11858 }
11859 else
11860 {
11861 static char *name_buf = NULL;
11862 static size_t name_len = 0;
11863 int prefix_len = subtype_info - name;
11864 LONGEST L, U;
11865 struct type *type;
11866 const char *bounds_str;
11867 int n;
11868
11869 GROW_VECT (name_buf, name_len, prefix_len + 5);
11870 strncpy (name_buf, name, prefix_len);
11871 name_buf[prefix_len] = '\0';
11872
11873 subtype_info += 5;
11874 bounds_str = strchr (subtype_info, '_');
11875 n = 1;
11876
11877 if (*subtype_info == 'L')
11878 {
11879 if (!ada_scan_number (bounds_str, n, &L, &n)
11880 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11881 return raw_type;
11882 if (bounds_str[n] == '_')
11883 n += 2;
11884 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11885 n += 1;
11886 subtype_info += 1;
11887 }
11888 else
11889 {
11890 strcpy (name_buf + prefix_len, "___L");
11891 if (!get_int_var_value (name_buf, L))
11892 {
11893 lim_warning (_("Unknown lower bound, using 1."));
11894 L = 1;
11895 }
11896 }
11897
11898 if (*subtype_info == 'U')
11899 {
11900 if (!ada_scan_number (bounds_str, n, &U, &n)
11901 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11902 return raw_type;
11903 }
11904 else
11905 {
11906 strcpy (name_buf + prefix_len, "___U");
11907 if (!get_int_var_value (name_buf, U))
11908 {
11909 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11910 U = L;
11911 }
11912 }
11913
11914 type = create_static_range_type (alloc_type_copy (raw_type),
11915 base_type, L, U);
11916 /* create_static_range_type alters the resulting type's length
11917 to match the size of the base_type, which is not what we want.
11918 Set it back to the original range type's length. */
11919 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11920 TYPE_NAME (type) = name;
11921 return type;
11922 }
11923}
11924
11925/* True iff NAME is the name of a range type. */
11926
11927int
11928ada_is_range_type_name (const char *name)
11929{
11930 return (name != NULL && strstr (name, "___XD"));
11931}
11932\f
11933
11934 /* Modular types */
11935
11936/* True iff TYPE is an Ada modular type. */
11937
11938int
11939ada_is_modular_type (struct type *type)
11940{
11941 struct type *subranged_type = get_base_type (type);
11942
11943 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11944 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11945 && TYPE_UNSIGNED (subranged_type));
11946}
11947
11948/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11949
11950ULONGEST
11951ada_modulus (struct type *type)
11952{
11953 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11954}
11955\f
11956
11957/* Ada exception catchpoint support:
11958 ---------------------------------
11959
11960 We support 3 kinds of exception catchpoints:
11961 . catchpoints on Ada exceptions
11962 . catchpoints on unhandled Ada exceptions
11963 . catchpoints on failed assertions
11964
11965 Exceptions raised during failed assertions, or unhandled exceptions
11966 could perfectly be caught with the general catchpoint on Ada exceptions.
11967 However, we can easily differentiate these two special cases, and having
11968 the option to distinguish these two cases from the rest can be useful
11969 to zero-in on certain situations.
11970
11971 Exception catchpoints are a specialized form of breakpoint,
11972 since they rely on inserting breakpoints inside known routines
11973 of the GNAT runtime. The implementation therefore uses a standard
11974 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11975 of breakpoint_ops.
11976
11977 Support in the runtime for exception catchpoints have been changed
11978 a few times already, and these changes affect the implementation
11979 of these catchpoints. In order to be able to support several
11980 variants of the runtime, we use a sniffer that will determine
11981 the runtime variant used by the program being debugged. */
11982
11983/* Ada's standard exceptions.
11984
11985 The Ada 83 standard also defined Numeric_Error. But there so many
11986 situations where it was unclear from the Ada 83 Reference Manual
11987 (RM) whether Constraint_Error or Numeric_Error should be raised,
11988 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11989 Interpretation saying that anytime the RM says that Numeric_Error
11990 should be raised, the implementation may raise Constraint_Error.
11991 Ada 95 went one step further and pretty much removed Numeric_Error
11992 from the list of standard exceptions (it made it a renaming of
11993 Constraint_Error, to help preserve compatibility when compiling
11994 an Ada83 compiler). As such, we do not include Numeric_Error from
11995 this list of standard exceptions. */
11996
11997static const char *standard_exc[] = {
11998 "constraint_error",
11999 "program_error",
12000 "storage_error",
12001 "tasking_error"
12002};
12003
12004typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12005
12006/* A structure that describes how to support exception catchpoints
12007 for a given executable. */
12008
12009struct exception_support_info
12010{
12011 /* The name of the symbol to break on in order to insert
12012 a catchpoint on exceptions. */
12013 const char *catch_exception_sym;
12014
12015 /* The name of the symbol to break on in order to insert
12016 a catchpoint on unhandled exceptions. */
12017 const char *catch_exception_unhandled_sym;
12018
12019 /* The name of the symbol to break on in order to insert
12020 a catchpoint on failed assertions. */
12021 const char *catch_assert_sym;
12022
12023 /* Assuming that the inferior just triggered an unhandled exception
12024 catchpoint, this function is responsible for returning the address
12025 in inferior memory where the name of that exception is stored.
12026 Return zero if the address could not be computed. */
12027 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12028};
12029
12030static CORE_ADDR ada_unhandled_exception_name_addr (void);
12031static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12032
12033/* The following exception support info structure describes how to
12034 implement exception catchpoints with the latest version of the
12035 Ada runtime (as of 2007-03-06). */
12036
12037static const struct exception_support_info default_exception_support_info =
12038{
12039 "__gnat_debug_raise_exception", /* catch_exception_sym */
12040 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12041 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12042 ada_unhandled_exception_name_addr
12043};
12044
12045/* The following exception support info structure describes how to
12046 implement exception catchpoints with a slightly older version
12047 of the Ada runtime. */
12048
12049static const struct exception_support_info exception_support_info_fallback =
12050{
12051 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12052 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12053 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12054 ada_unhandled_exception_name_addr_from_raise
12055};
12056
12057/* Return nonzero if we can detect the exception support routines
12058 described in EINFO.
12059
12060 This function errors out if an abnormal situation is detected
12061 (for instance, if we find the exception support routines, but
12062 that support is found to be incomplete). */
12063
12064static int
12065ada_has_this_exception_support (const struct exception_support_info *einfo)
12066{
12067 struct symbol *sym;
12068
12069 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12070 that should be compiled with debugging information. As a result, we
12071 expect to find that symbol in the symtabs. */
12072
12073 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12074 if (sym == NULL)
12075 {
12076 /* Perhaps we did not find our symbol because the Ada runtime was
12077 compiled without debugging info, or simply stripped of it.
12078 It happens on some GNU/Linux distributions for instance, where
12079 users have to install a separate debug package in order to get
12080 the runtime's debugging info. In that situation, let the user
12081 know why we cannot insert an Ada exception catchpoint.
12082
12083 Note: Just for the purpose of inserting our Ada exception
12084 catchpoint, we could rely purely on the associated minimal symbol.
12085 But we would be operating in degraded mode anyway, since we are
12086 still lacking the debugging info needed later on to extract
12087 the name of the exception being raised (this name is printed in
12088 the catchpoint message, and is also used when trying to catch
12089 a specific exception). We do not handle this case for now. */
12090 struct bound_minimal_symbol msym
12091 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12092
12093 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12094 error (_("Your Ada runtime appears to be missing some debugging "
12095 "information.\nCannot insert Ada exception catchpoint "
12096 "in this configuration."));
12097
12098 return 0;
12099 }
12100
12101 /* Make sure that the symbol we found corresponds to a function. */
12102
12103 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12104 error (_("Symbol \"%s\" is not a function (class = %d)"),
12105 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12106
12107 return 1;
12108}
12109
12110/* Inspect the Ada runtime and determine which exception info structure
12111 should be used to provide support for exception catchpoints.
12112
12113 This function will always set the per-inferior exception_info,
12114 or raise an error. */
12115
12116static void
12117ada_exception_support_info_sniffer (void)
12118{
12119 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12120
12121 /* If the exception info is already known, then no need to recompute it. */
12122 if (data->exception_info != NULL)
12123 return;
12124
12125 /* Check the latest (default) exception support info. */
12126 if (ada_has_this_exception_support (&default_exception_support_info))
12127 {
12128 data->exception_info = &default_exception_support_info;
12129 return;
12130 }
12131
12132 /* Try our fallback exception suport info. */
12133 if (ada_has_this_exception_support (&exception_support_info_fallback))
12134 {
12135 data->exception_info = &exception_support_info_fallback;
12136 return;
12137 }
12138
12139 /* Sometimes, it is normal for us to not be able to find the routine
12140 we are looking for. This happens when the program is linked with
12141 the shared version of the GNAT runtime, and the program has not been
12142 started yet. Inform the user of these two possible causes if
12143 applicable. */
12144
12145 if (ada_update_initial_language (language_unknown) != language_ada)
12146 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12147
12148 /* If the symbol does not exist, then check that the program is
12149 already started, to make sure that shared libraries have been
12150 loaded. If it is not started, this may mean that the symbol is
12151 in a shared library. */
12152
12153 if (ptid_get_pid (inferior_ptid) == 0)
12154 error (_("Unable to insert catchpoint. Try to start the program first."));
12155
12156 /* At this point, we know that we are debugging an Ada program and
12157 that the inferior has been started, but we still are not able to
12158 find the run-time symbols. That can mean that we are in
12159 configurable run time mode, or that a-except as been optimized
12160 out by the linker... In any case, at this point it is not worth
12161 supporting this feature. */
12162
12163 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12164}
12165
12166/* True iff FRAME is very likely to be that of a function that is
12167 part of the runtime system. This is all very heuristic, but is
12168 intended to be used as advice as to what frames are uninteresting
12169 to most users. */
12170
12171static int
12172is_known_support_routine (struct frame_info *frame)
12173{
12174 enum language func_lang;
12175 int i;
12176 const char *fullname;
12177
12178 /* If this code does not have any debugging information (no symtab),
12179 This cannot be any user code. */
12180
12181 symtab_and_line sal = find_frame_sal (frame);
12182 if (sal.symtab == NULL)
12183 return 1;
12184
12185 /* If there is a symtab, but the associated source file cannot be
12186 located, then assume this is not user code: Selecting a frame
12187 for which we cannot display the code would not be very helpful
12188 for the user. This should also take care of case such as VxWorks
12189 where the kernel has some debugging info provided for a few units. */
12190
12191 fullname = symtab_to_fullname (sal.symtab);
12192 if (access (fullname, R_OK) != 0)
12193 return 1;
12194
12195 /* Check the unit filename againt the Ada runtime file naming.
12196 We also check the name of the objfile against the name of some
12197 known system libraries that sometimes come with debugging info
12198 too. */
12199
12200 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12201 {
12202 re_comp (known_runtime_file_name_patterns[i]);
12203 if (re_exec (lbasename (sal.symtab->filename)))
12204 return 1;
12205 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12206 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12207 return 1;
12208 }
12209
12210 /* Check whether the function is a GNAT-generated entity. */
12211
12212 gdb::unique_xmalloc_ptr<char> func_name
12213 = find_frame_funname (frame, &func_lang, NULL);
12214 if (func_name == NULL)
12215 return 1;
12216
12217 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12218 {
12219 re_comp (known_auxiliary_function_name_patterns[i]);
12220 if (re_exec (func_name.get ()))
12221 return 1;
12222 }
12223
12224 return 0;
12225}
12226
12227/* Find the first frame that contains debugging information and that is not
12228 part of the Ada run-time, starting from FI and moving upward. */
12229
12230void
12231ada_find_printable_frame (struct frame_info *fi)
12232{
12233 for (; fi != NULL; fi = get_prev_frame (fi))
12234 {
12235 if (!is_known_support_routine (fi))
12236 {
12237 select_frame (fi);
12238 break;
12239 }
12240 }
12241
12242}
12243
12244/* Assuming that the inferior just triggered an unhandled exception
12245 catchpoint, return the address in inferior memory where the name
12246 of the exception is stored.
12247
12248 Return zero if the address could not be computed. */
12249
12250static CORE_ADDR
12251ada_unhandled_exception_name_addr (void)
12252{
12253 return parse_and_eval_address ("e.full_name");
12254}
12255
12256/* Same as ada_unhandled_exception_name_addr, except that this function
12257 should be used when the inferior uses an older version of the runtime,
12258 where the exception name needs to be extracted from a specific frame
12259 several frames up in the callstack. */
12260
12261static CORE_ADDR
12262ada_unhandled_exception_name_addr_from_raise (void)
12263{
12264 int frame_level;
12265 struct frame_info *fi;
12266 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12267
12268 /* To determine the name of this exception, we need to select
12269 the frame corresponding to RAISE_SYM_NAME. This frame is
12270 at least 3 levels up, so we simply skip the first 3 frames
12271 without checking the name of their associated function. */
12272 fi = get_current_frame ();
12273 for (frame_level = 0; frame_level < 3; frame_level += 1)
12274 if (fi != NULL)
12275 fi = get_prev_frame (fi);
12276
12277 while (fi != NULL)
12278 {
12279 enum language func_lang;
12280
12281 gdb::unique_xmalloc_ptr<char> func_name
12282 = find_frame_funname (fi, &func_lang, NULL);
12283 if (func_name != NULL)
12284 {
12285 if (strcmp (func_name.get (),
12286 data->exception_info->catch_exception_sym) == 0)
12287 break; /* We found the frame we were looking for... */
12288 fi = get_prev_frame (fi);
12289 }
12290 }
12291
12292 if (fi == NULL)
12293 return 0;
12294
12295 select_frame (fi);
12296 return parse_and_eval_address ("id.full_name");
12297}
12298
12299/* Assuming the inferior just triggered an Ada exception catchpoint
12300 (of any type), return the address in inferior memory where the name
12301 of the exception is stored, if applicable.
12302
12303 Assumes the selected frame is the current frame.
12304
12305 Return zero if the address could not be computed, or if not relevant. */
12306
12307static CORE_ADDR
12308ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12309 struct breakpoint *b)
12310{
12311 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12312
12313 switch (ex)
12314 {
12315 case ada_catch_exception:
12316 return (parse_and_eval_address ("e.full_name"));
12317 break;
12318
12319 case ada_catch_exception_unhandled:
12320 return data->exception_info->unhandled_exception_name_addr ();
12321 break;
12322
12323 case ada_catch_assert:
12324 return 0; /* Exception name is not relevant in this case. */
12325 break;
12326
12327 default:
12328 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12329 break;
12330 }
12331
12332 return 0; /* Should never be reached. */
12333}
12334
12335/* Assuming the inferior is stopped at an exception catchpoint,
12336 return the message which was associated to the exception, if
12337 available. Return NULL if the message could not be retrieved.
12338
12339 The caller must xfree the string after use.
12340
12341 Note: The exception message can be associated to an exception
12342 either through the use of the Raise_Exception function, or
12343 more simply (Ada 2005 and later), via:
12344
12345 raise Exception_Name with "exception message";
12346
12347 */
12348
12349static char *
12350ada_exception_message_1 (void)
12351{
12352 struct value *e_msg_val;
12353 char *e_msg = NULL;
12354 int e_msg_len;
12355 struct cleanup *cleanups;
12356
12357 /* For runtimes that support this feature, the exception message
12358 is passed as an unbounded string argument called "message". */
12359 e_msg_val = parse_and_eval ("message");
12360 if (e_msg_val == NULL)
12361 return NULL; /* Exception message not supported. */
12362
12363 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12364 gdb_assert (e_msg_val != NULL);
12365 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12366
12367 /* If the message string is empty, then treat it as if there was
12368 no exception message. */
12369 if (e_msg_len <= 0)
12370 return NULL;
12371
12372 e_msg = (char *) xmalloc (e_msg_len + 1);
12373 cleanups = make_cleanup (xfree, e_msg);
12374 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12375 e_msg[e_msg_len] = '\0';
12376
12377 discard_cleanups (cleanups);
12378 return e_msg;
12379}
12380
12381/* Same as ada_exception_message_1, except that all exceptions are
12382 contained here (returning NULL instead). */
12383
12384static char *
12385ada_exception_message (void)
12386{
12387 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12388
12389 TRY
12390 {
12391 e_msg = ada_exception_message_1 ();
12392 }
12393 CATCH (e, RETURN_MASK_ERROR)
12394 {
12395 e_msg = NULL;
12396 }
12397 END_CATCH
12398
12399 return e_msg;
12400}
12401
12402/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12403 any error that ada_exception_name_addr_1 might cause to be thrown.
12404 When an error is intercepted, a warning with the error message is printed,
12405 and zero is returned. */
12406
12407static CORE_ADDR
12408ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12409 struct breakpoint *b)
12410{
12411 CORE_ADDR result = 0;
12412
12413 TRY
12414 {
12415 result = ada_exception_name_addr_1 (ex, b);
12416 }
12417
12418 CATCH (e, RETURN_MASK_ERROR)
12419 {
12420 warning (_("failed to get exception name: %s"), e.message);
12421 return 0;
12422 }
12423 END_CATCH
12424
12425 return result;
12426}
12427
12428static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12429
12430/* Ada catchpoints.
12431
12432 In the case of catchpoints on Ada exceptions, the catchpoint will
12433 stop the target on every exception the program throws. When a user
12434 specifies the name of a specific exception, we translate this
12435 request into a condition expression (in text form), and then parse
12436 it into an expression stored in each of the catchpoint's locations.
12437 We then use this condition to check whether the exception that was
12438 raised is the one the user is interested in. If not, then the
12439 target is resumed again. We store the name of the requested
12440 exception, in order to be able to re-set the condition expression
12441 when symbols change. */
12442
12443/* An instance of this type is used to represent an Ada catchpoint
12444 breakpoint location. */
12445
12446class ada_catchpoint_location : public bp_location
12447{
12448public:
12449 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12450 : bp_location (ops, owner)
12451 {}
12452
12453 /* The condition that checks whether the exception that was raised
12454 is the specific exception the user specified on catchpoint
12455 creation. */
12456 expression_up excep_cond_expr;
12457};
12458
12459/* Implement the DTOR method in the bp_location_ops structure for all
12460 Ada exception catchpoint kinds. */
12461
12462static void
12463ada_catchpoint_location_dtor (struct bp_location *bl)
12464{
12465 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12466
12467 al->excep_cond_expr.reset ();
12468}
12469
12470/* The vtable to be used in Ada catchpoint locations. */
12471
12472static const struct bp_location_ops ada_catchpoint_location_ops =
12473{
12474 ada_catchpoint_location_dtor
12475};
12476
12477/* An instance of this type is used to represent an Ada catchpoint. */
12478
12479struct ada_catchpoint : public breakpoint
12480{
12481 ~ada_catchpoint () override;
12482
12483 /* The name of the specific exception the user specified. */
12484 char *excep_string;
12485};
12486
12487/* Parse the exception condition string in the context of each of the
12488 catchpoint's locations, and store them for later evaluation. */
12489
12490static void
12491create_excep_cond_exprs (struct ada_catchpoint *c)
12492{
12493 struct cleanup *old_chain;
12494 struct bp_location *bl;
12495 char *cond_string;
12496
12497 /* Nothing to do if there's no specific exception to catch. */
12498 if (c->excep_string == NULL)
12499 return;
12500
12501 /* Same if there are no locations... */
12502 if (c->loc == NULL)
12503 return;
12504
12505 /* Compute the condition expression in text form, from the specific
12506 expection we want to catch. */
12507 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12508 old_chain = make_cleanup (xfree, cond_string);
12509
12510 /* Iterate over all the catchpoint's locations, and parse an
12511 expression for each. */
12512 for (bl = c->loc; bl != NULL; bl = bl->next)
12513 {
12514 struct ada_catchpoint_location *ada_loc
12515 = (struct ada_catchpoint_location *) bl;
12516 expression_up exp;
12517
12518 if (!bl->shlib_disabled)
12519 {
12520 const char *s;
12521
12522 s = cond_string;
12523 TRY
12524 {
12525 exp = parse_exp_1 (&s, bl->address,
12526 block_for_pc (bl->address),
12527 0);
12528 }
12529 CATCH (e, RETURN_MASK_ERROR)
12530 {
12531 warning (_("failed to reevaluate internal exception condition "
12532 "for catchpoint %d: %s"),
12533 c->number, e.message);
12534 }
12535 END_CATCH
12536 }
12537
12538 ada_loc->excep_cond_expr = std::move (exp);
12539 }
12540
12541 do_cleanups (old_chain);
12542}
12543
12544/* ada_catchpoint destructor. */
12545
12546ada_catchpoint::~ada_catchpoint ()
12547{
12548 xfree (this->excep_string);
12549}
12550
12551/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12552 structure for all exception catchpoint kinds. */
12553
12554static struct bp_location *
12555allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12556 struct breakpoint *self)
12557{
12558 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12559}
12560
12561/* Implement the RE_SET method in the breakpoint_ops structure for all
12562 exception catchpoint kinds. */
12563
12564static void
12565re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12566{
12567 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12568
12569 /* Call the base class's method. This updates the catchpoint's
12570 locations. */
12571 bkpt_breakpoint_ops.re_set (b);
12572
12573 /* Reparse the exception conditional expressions. One for each
12574 location. */
12575 create_excep_cond_exprs (c);
12576}
12577
12578/* Returns true if we should stop for this breakpoint hit. If the
12579 user specified a specific exception, we only want to cause a stop
12580 if the program thrown that exception. */
12581
12582static int
12583should_stop_exception (const struct bp_location *bl)
12584{
12585 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12586 const struct ada_catchpoint_location *ada_loc
12587 = (const struct ada_catchpoint_location *) bl;
12588 int stop;
12589
12590 /* With no specific exception, should always stop. */
12591 if (c->excep_string == NULL)
12592 return 1;
12593
12594 if (ada_loc->excep_cond_expr == NULL)
12595 {
12596 /* We will have a NULL expression if back when we were creating
12597 the expressions, this location's had failed to parse. */
12598 return 1;
12599 }
12600
12601 stop = 1;
12602 TRY
12603 {
12604 struct value *mark;
12605
12606 mark = value_mark ();
12607 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12608 value_free_to_mark (mark);
12609 }
12610 CATCH (ex, RETURN_MASK_ALL)
12611 {
12612 exception_fprintf (gdb_stderr, ex,
12613 _("Error in testing exception condition:\n"));
12614 }
12615 END_CATCH
12616
12617 return stop;
12618}
12619
12620/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12621 for all exception catchpoint kinds. */
12622
12623static void
12624check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12625{
12626 bs->stop = should_stop_exception (bs->bp_location_at);
12627}
12628
12629/* Implement the PRINT_IT method in the breakpoint_ops structure
12630 for all exception catchpoint kinds. */
12631
12632static enum print_stop_action
12633print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12634{
12635 struct ui_out *uiout = current_uiout;
12636 struct breakpoint *b = bs->breakpoint_at;
12637 char *exception_message;
12638
12639 annotate_catchpoint (b->number);
12640
12641 if (uiout->is_mi_like_p ())
12642 {
12643 uiout->field_string ("reason",
12644 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12645 uiout->field_string ("disp", bpdisp_text (b->disposition));
12646 }
12647
12648 uiout->text (b->disposition == disp_del
12649 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12650 uiout->field_int ("bkptno", b->number);
12651 uiout->text (", ");
12652
12653 /* ada_exception_name_addr relies on the selected frame being the
12654 current frame. Need to do this here because this function may be
12655 called more than once when printing a stop, and below, we'll
12656 select the first frame past the Ada run-time (see
12657 ada_find_printable_frame). */
12658 select_frame (get_current_frame ());
12659
12660 switch (ex)
12661 {
12662 case ada_catch_exception:
12663 case ada_catch_exception_unhandled:
12664 {
12665 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12666 char exception_name[256];
12667
12668 if (addr != 0)
12669 {
12670 read_memory (addr, (gdb_byte *) exception_name,
12671 sizeof (exception_name) - 1);
12672 exception_name [sizeof (exception_name) - 1] = '\0';
12673 }
12674 else
12675 {
12676 /* For some reason, we were unable to read the exception
12677 name. This could happen if the Runtime was compiled
12678 without debugging info, for instance. In that case,
12679 just replace the exception name by the generic string
12680 "exception" - it will read as "an exception" in the
12681 notification we are about to print. */
12682 memcpy (exception_name, "exception", sizeof ("exception"));
12683 }
12684 /* In the case of unhandled exception breakpoints, we print
12685 the exception name as "unhandled EXCEPTION_NAME", to make
12686 it clearer to the user which kind of catchpoint just got
12687 hit. We used ui_out_text to make sure that this extra
12688 info does not pollute the exception name in the MI case. */
12689 if (ex == ada_catch_exception_unhandled)
12690 uiout->text ("unhandled ");
12691 uiout->field_string ("exception-name", exception_name);
12692 }
12693 break;
12694 case ada_catch_assert:
12695 /* In this case, the name of the exception is not really
12696 important. Just print "failed assertion" to make it clearer
12697 that his program just hit an assertion-failure catchpoint.
12698 We used ui_out_text because this info does not belong in
12699 the MI output. */
12700 uiout->text ("failed assertion");
12701 break;
12702 }
12703
12704 exception_message = ada_exception_message ();
12705 if (exception_message != NULL)
12706 {
12707 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12708
12709 uiout->text (" (");
12710 uiout->field_string ("exception-message", exception_message);
12711 uiout->text (")");
12712
12713 do_cleanups (cleanups);
12714 }
12715
12716 uiout->text (" at ");
12717 ada_find_printable_frame (get_current_frame ());
12718
12719 return PRINT_SRC_AND_LOC;
12720}
12721
12722/* Implement the PRINT_ONE method in the breakpoint_ops structure
12723 for all exception catchpoint kinds. */
12724
12725static void
12726print_one_exception (enum ada_exception_catchpoint_kind ex,
12727 struct breakpoint *b, struct bp_location **last_loc)
12728{
12729 struct ui_out *uiout = current_uiout;
12730 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12731 struct value_print_options opts;
12732
12733 get_user_print_options (&opts);
12734 if (opts.addressprint)
12735 {
12736 annotate_field (4);
12737 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12738 }
12739
12740 annotate_field (5);
12741 *last_loc = b->loc;
12742 switch (ex)
12743 {
12744 case ada_catch_exception:
12745 if (c->excep_string != NULL)
12746 {
12747 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12748
12749 uiout->field_string ("what", msg);
12750 xfree (msg);
12751 }
12752 else
12753 uiout->field_string ("what", "all Ada exceptions");
12754
12755 break;
12756
12757 case ada_catch_exception_unhandled:
12758 uiout->field_string ("what", "unhandled Ada exceptions");
12759 break;
12760
12761 case ada_catch_assert:
12762 uiout->field_string ("what", "failed Ada assertions");
12763 break;
12764
12765 default:
12766 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12767 break;
12768 }
12769}
12770
12771/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12772 for all exception catchpoint kinds. */
12773
12774static void
12775print_mention_exception (enum ada_exception_catchpoint_kind ex,
12776 struct breakpoint *b)
12777{
12778 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12779 struct ui_out *uiout = current_uiout;
12780
12781 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12782 : _("Catchpoint "));
12783 uiout->field_int ("bkptno", b->number);
12784 uiout->text (": ");
12785
12786 switch (ex)
12787 {
12788 case ada_catch_exception:
12789 if (c->excep_string != NULL)
12790 {
12791 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12792 struct cleanup *old_chain = make_cleanup (xfree, info);
12793
12794 uiout->text (info);
12795 do_cleanups (old_chain);
12796 }
12797 else
12798 uiout->text (_("all Ada exceptions"));
12799 break;
12800
12801 case ada_catch_exception_unhandled:
12802 uiout->text (_("unhandled Ada exceptions"));
12803 break;
12804
12805 case ada_catch_assert:
12806 uiout->text (_("failed Ada assertions"));
12807 break;
12808
12809 default:
12810 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12811 break;
12812 }
12813}
12814
12815/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12816 for all exception catchpoint kinds. */
12817
12818static void
12819print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12820 struct breakpoint *b, struct ui_file *fp)
12821{
12822 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12823
12824 switch (ex)
12825 {
12826 case ada_catch_exception:
12827 fprintf_filtered (fp, "catch exception");
12828 if (c->excep_string != NULL)
12829 fprintf_filtered (fp, " %s", c->excep_string);
12830 break;
12831
12832 case ada_catch_exception_unhandled:
12833 fprintf_filtered (fp, "catch exception unhandled");
12834 break;
12835
12836 case ada_catch_assert:
12837 fprintf_filtered (fp, "catch assert");
12838 break;
12839
12840 default:
12841 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12842 }
12843 print_recreate_thread (b, fp);
12844}
12845
12846/* Virtual table for "catch exception" breakpoints. */
12847
12848static struct bp_location *
12849allocate_location_catch_exception (struct breakpoint *self)
12850{
12851 return allocate_location_exception (ada_catch_exception, self);
12852}
12853
12854static void
12855re_set_catch_exception (struct breakpoint *b)
12856{
12857 re_set_exception (ada_catch_exception, b);
12858}
12859
12860static void
12861check_status_catch_exception (bpstat bs)
12862{
12863 check_status_exception (ada_catch_exception, bs);
12864}
12865
12866static enum print_stop_action
12867print_it_catch_exception (bpstat bs)
12868{
12869 return print_it_exception (ada_catch_exception, bs);
12870}
12871
12872static void
12873print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12874{
12875 print_one_exception (ada_catch_exception, b, last_loc);
12876}
12877
12878static void
12879print_mention_catch_exception (struct breakpoint *b)
12880{
12881 print_mention_exception (ada_catch_exception, b);
12882}
12883
12884static void
12885print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12886{
12887 print_recreate_exception (ada_catch_exception, b, fp);
12888}
12889
12890static struct breakpoint_ops catch_exception_breakpoint_ops;
12891
12892/* Virtual table for "catch exception unhandled" breakpoints. */
12893
12894static struct bp_location *
12895allocate_location_catch_exception_unhandled (struct breakpoint *self)
12896{
12897 return allocate_location_exception (ada_catch_exception_unhandled, self);
12898}
12899
12900static void
12901re_set_catch_exception_unhandled (struct breakpoint *b)
12902{
12903 re_set_exception (ada_catch_exception_unhandled, b);
12904}
12905
12906static void
12907check_status_catch_exception_unhandled (bpstat bs)
12908{
12909 check_status_exception (ada_catch_exception_unhandled, bs);
12910}
12911
12912static enum print_stop_action
12913print_it_catch_exception_unhandled (bpstat bs)
12914{
12915 return print_it_exception (ada_catch_exception_unhandled, bs);
12916}
12917
12918static void
12919print_one_catch_exception_unhandled (struct breakpoint *b,
12920 struct bp_location **last_loc)
12921{
12922 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12923}
12924
12925static void
12926print_mention_catch_exception_unhandled (struct breakpoint *b)
12927{
12928 print_mention_exception (ada_catch_exception_unhandled, b);
12929}
12930
12931static void
12932print_recreate_catch_exception_unhandled (struct breakpoint *b,
12933 struct ui_file *fp)
12934{
12935 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12936}
12937
12938static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12939
12940/* Virtual table for "catch assert" breakpoints. */
12941
12942static struct bp_location *
12943allocate_location_catch_assert (struct breakpoint *self)
12944{
12945 return allocate_location_exception (ada_catch_assert, self);
12946}
12947
12948static void
12949re_set_catch_assert (struct breakpoint *b)
12950{
12951 re_set_exception (ada_catch_assert, b);
12952}
12953
12954static void
12955check_status_catch_assert (bpstat bs)
12956{
12957 check_status_exception (ada_catch_assert, bs);
12958}
12959
12960static enum print_stop_action
12961print_it_catch_assert (bpstat bs)
12962{
12963 return print_it_exception (ada_catch_assert, bs);
12964}
12965
12966static void
12967print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12968{
12969 print_one_exception (ada_catch_assert, b, last_loc);
12970}
12971
12972static void
12973print_mention_catch_assert (struct breakpoint *b)
12974{
12975 print_mention_exception (ada_catch_assert, b);
12976}
12977
12978static void
12979print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12980{
12981 print_recreate_exception (ada_catch_assert, b, fp);
12982}
12983
12984static struct breakpoint_ops catch_assert_breakpoint_ops;
12985
12986/* Return a newly allocated copy of the first space-separated token
12987 in ARGSP, and then adjust ARGSP to point immediately after that
12988 token.
12989
12990 Return NULL if ARGPS does not contain any more tokens. */
12991
12992static char *
12993ada_get_next_arg (const char **argsp)
12994{
12995 const char *args = *argsp;
12996 const char *end;
12997 char *result;
12998
12999 args = skip_spaces (args);
13000 if (args[0] == '\0')
13001 return NULL; /* No more arguments. */
13002
13003 /* Find the end of the current argument. */
13004
13005 end = skip_to_space (args);
13006
13007 /* Adjust ARGSP to point to the start of the next argument. */
13008
13009 *argsp = end;
13010
13011 /* Make a copy of the current argument and return it. */
13012
13013 result = (char *) xmalloc (end - args + 1);
13014 strncpy (result, args, end - args);
13015 result[end - args] = '\0';
13016
13017 return result;
13018}
13019
13020/* Split the arguments specified in a "catch exception" command.
13021 Set EX to the appropriate catchpoint type.
13022 Set EXCEP_STRING to the name of the specific exception if
13023 specified by the user.
13024 If a condition is found at the end of the arguments, the condition
13025 expression is stored in COND_STRING (memory must be deallocated
13026 after use). Otherwise COND_STRING is set to NULL. */
13027
13028static void
13029catch_ada_exception_command_split (const char *args,
13030 enum ada_exception_catchpoint_kind *ex,
13031 char **excep_string,
13032 char **cond_string)
13033{
13034 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13035 char *exception_name;
13036 char *cond = NULL;
13037
13038 exception_name = ada_get_next_arg (&args);
13039 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13040 {
13041 /* This is not an exception name; this is the start of a condition
13042 expression for a catchpoint on all exceptions. So, "un-get"
13043 this token, and set exception_name to NULL. */
13044 xfree (exception_name);
13045 exception_name = NULL;
13046 args -= 2;
13047 }
13048 make_cleanup (xfree, exception_name);
13049
13050 /* Check to see if we have a condition. */
13051
13052 args = skip_spaces (args);
13053 if (startswith (args, "if")
13054 && (isspace (args[2]) || args[2] == '\0'))
13055 {
13056 args += 2;
13057 args = skip_spaces (args);
13058
13059 if (args[0] == '\0')
13060 error (_("Condition missing after `if' keyword"));
13061 cond = xstrdup (args);
13062 make_cleanup (xfree, cond);
13063
13064 args += strlen (args);
13065 }
13066
13067 /* Check that we do not have any more arguments. Anything else
13068 is unexpected. */
13069
13070 if (args[0] != '\0')
13071 error (_("Junk at end of expression"));
13072
13073 discard_cleanups (old_chain);
13074
13075 if (exception_name == NULL)
13076 {
13077 /* Catch all exceptions. */
13078 *ex = ada_catch_exception;
13079 *excep_string = NULL;
13080 }
13081 else if (strcmp (exception_name, "unhandled") == 0)
13082 {
13083 /* Catch unhandled exceptions. */
13084 *ex = ada_catch_exception_unhandled;
13085 *excep_string = NULL;
13086 }
13087 else
13088 {
13089 /* Catch a specific exception. */
13090 *ex = ada_catch_exception;
13091 *excep_string = exception_name;
13092 }
13093 *cond_string = cond;
13094}
13095
13096/* Return the name of the symbol on which we should break in order to
13097 implement a catchpoint of the EX kind. */
13098
13099static const char *
13100ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13101{
13102 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13103
13104 gdb_assert (data->exception_info != NULL);
13105
13106 switch (ex)
13107 {
13108 case ada_catch_exception:
13109 return (data->exception_info->catch_exception_sym);
13110 break;
13111 case ada_catch_exception_unhandled:
13112 return (data->exception_info->catch_exception_unhandled_sym);
13113 break;
13114 case ada_catch_assert:
13115 return (data->exception_info->catch_assert_sym);
13116 break;
13117 default:
13118 internal_error (__FILE__, __LINE__,
13119 _("unexpected catchpoint kind (%d)"), ex);
13120 }
13121}
13122
13123/* Return the breakpoint ops "virtual table" used for catchpoints
13124 of the EX kind. */
13125
13126static const struct breakpoint_ops *
13127ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13128{
13129 switch (ex)
13130 {
13131 case ada_catch_exception:
13132 return (&catch_exception_breakpoint_ops);
13133 break;
13134 case ada_catch_exception_unhandled:
13135 return (&catch_exception_unhandled_breakpoint_ops);
13136 break;
13137 case ada_catch_assert:
13138 return (&catch_assert_breakpoint_ops);
13139 break;
13140 default:
13141 internal_error (__FILE__, __LINE__,
13142 _("unexpected catchpoint kind (%d)"), ex);
13143 }
13144}
13145
13146/* Return the condition that will be used to match the current exception
13147 being raised with the exception that the user wants to catch. This
13148 assumes that this condition is used when the inferior just triggered
13149 an exception catchpoint.
13150
13151 The string returned is a newly allocated string that needs to be
13152 deallocated later. */
13153
13154static char *
13155ada_exception_catchpoint_cond_string (const char *excep_string)
13156{
13157 int i;
13158
13159 /* The standard exceptions are a special case. They are defined in
13160 runtime units that have been compiled without debugging info; if
13161 EXCEP_STRING is the not-fully-qualified name of a standard
13162 exception (e.g. "constraint_error") then, during the evaluation
13163 of the condition expression, the symbol lookup on this name would
13164 *not* return this standard exception. The catchpoint condition
13165 may then be set only on user-defined exceptions which have the
13166 same not-fully-qualified name (e.g. my_package.constraint_error).
13167
13168 To avoid this unexcepted behavior, these standard exceptions are
13169 systematically prefixed by "standard". This means that "catch
13170 exception constraint_error" is rewritten into "catch exception
13171 standard.constraint_error".
13172
13173 If an exception named contraint_error is defined in another package of
13174 the inferior program, then the only way to specify this exception as a
13175 breakpoint condition is to use its fully-qualified named:
13176 e.g. my_package.constraint_error. */
13177
13178 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13179 {
13180 if (strcmp (standard_exc [i], excep_string) == 0)
13181 {
13182 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13183 excep_string);
13184 }
13185 }
13186 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13187}
13188
13189/* Return the symtab_and_line that should be used to insert an exception
13190 catchpoint of the TYPE kind.
13191
13192 EXCEP_STRING should contain the name of a specific exception that
13193 the catchpoint should catch, or NULL otherwise.
13194
13195 ADDR_STRING returns the name of the function where the real
13196 breakpoint that implements the catchpoints is set, depending on the
13197 type of catchpoint we need to create. */
13198
13199static struct symtab_and_line
13200ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13201 const char **addr_string, const struct breakpoint_ops **ops)
13202{
13203 const char *sym_name;
13204 struct symbol *sym;
13205
13206 /* First, find out which exception support info to use. */
13207 ada_exception_support_info_sniffer ();
13208
13209 /* Then lookup the function on which we will break in order to catch
13210 the Ada exceptions requested by the user. */
13211 sym_name = ada_exception_sym_name (ex);
13212 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13213
13214 /* We can assume that SYM is not NULL at this stage. If the symbol
13215 did not exist, ada_exception_support_info_sniffer would have
13216 raised an exception.
13217
13218 Also, ada_exception_support_info_sniffer should have already
13219 verified that SYM is a function symbol. */
13220 gdb_assert (sym != NULL);
13221 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13222
13223 /* Set ADDR_STRING. */
13224 *addr_string = xstrdup (sym_name);
13225
13226 /* Set OPS. */
13227 *ops = ada_exception_breakpoint_ops (ex);
13228
13229 return find_function_start_sal (sym, 1);
13230}
13231
13232/* Create an Ada exception catchpoint.
13233
13234 EX_KIND is the kind of exception catchpoint to be created.
13235
13236 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13237 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13238 of the exception to which this catchpoint applies. When not NULL,
13239 the string must be allocated on the heap, and its deallocation
13240 is no longer the responsibility of the caller.
13241
13242 COND_STRING, if not NULL, is the catchpoint condition. This string
13243 must be allocated on the heap, and its deallocation is no longer
13244 the responsibility of the caller.
13245
13246 TEMPFLAG, if nonzero, means that the underlying breakpoint
13247 should be temporary.
13248
13249 FROM_TTY is the usual argument passed to all commands implementations. */
13250
13251void
13252create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13253 enum ada_exception_catchpoint_kind ex_kind,
13254 char *excep_string,
13255 char *cond_string,
13256 int tempflag,
13257 int disabled,
13258 int from_tty)
13259{
13260 const char *addr_string = NULL;
13261 const struct breakpoint_ops *ops = NULL;
13262 struct symtab_and_line sal
13263 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13264
13265 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13266 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13267 ops, tempflag, disabled, from_tty);
13268 c->excep_string = excep_string;
13269 create_excep_cond_exprs (c.get ());
13270 if (cond_string != NULL)
13271 set_breakpoint_condition (c.get (), cond_string, from_tty);
13272 install_breakpoint (0, std::move (c), 1);
13273}
13274
13275/* Implement the "catch exception" command. */
13276
13277static void
13278catch_ada_exception_command (const char *arg_entry, int from_tty,
13279 struct cmd_list_element *command)
13280{
13281 const char *arg = arg_entry;
13282 struct gdbarch *gdbarch = get_current_arch ();
13283 int tempflag;
13284 enum ada_exception_catchpoint_kind ex_kind;
13285 char *excep_string = NULL;
13286 char *cond_string = NULL;
13287
13288 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13289
13290 if (!arg)
13291 arg = "";
13292 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13293 &cond_string);
13294 create_ada_exception_catchpoint (gdbarch, ex_kind,
13295 excep_string, cond_string,
13296 tempflag, 1 /* enabled */,
13297 from_tty);
13298}
13299
13300/* Split the arguments specified in a "catch assert" command.
13301
13302 ARGS contains the command's arguments (or the empty string if
13303 no arguments were passed).
13304
13305 If ARGS contains a condition, set COND_STRING to that condition
13306 (the memory needs to be deallocated after use). */
13307
13308static void
13309catch_ada_assert_command_split (const char *args, char **cond_string)
13310{
13311 args = skip_spaces (args);
13312
13313 /* Check whether a condition was provided. */
13314 if (startswith (args, "if")
13315 && (isspace (args[2]) || args[2] == '\0'))
13316 {
13317 args += 2;
13318 args = skip_spaces (args);
13319 if (args[0] == '\0')
13320 error (_("condition missing after `if' keyword"));
13321 *cond_string = xstrdup (args);
13322 }
13323
13324 /* Otherwise, there should be no other argument at the end of
13325 the command. */
13326 else if (args[0] != '\0')
13327 error (_("Junk at end of arguments."));
13328}
13329
13330/* Implement the "catch assert" command. */
13331
13332static void
13333catch_assert_command (const char *arg_entry, int from_tty,
13334 struct cmd_list_element *command)
13335{
13336 const char *arg = arg_entry;
13337 struct gdbarch *gdbarch = get_current_arch ();
13338 int tempflag;
13339 char *cond_string = NULL;
13340
13341 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13342
13343 if (!arg)
13344 arg = "";
13345 catch_ada_assert_command_split (arg, &cond_string);
13346 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13347 NULL, cond_string,
13348 tempflag, 1 /* enabled */,
13349 from_tty);
13350}
13351
13352/* Return non-zero if the symbol SYM is an Ada exception object. */
13353
13354static int
13355ada_is_exception_sym (struct symbol *sym)
13356{
13357 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13358
13359 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13360 && SYMBOL_CLASS (sym) != LOC_BLOCK
13361 && SYMBOL_CLASS (sym) != LOC_CONST
13362 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13363 && type_name != NULL && strcmp (type_name, "exception") == 0);
13364}
13365
13366/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13367 Ada exception object. This matches all exceptions except the ones
13368 defined by the Ada language. */
13369
13370static int
13371ada_is_non_standard_exception_sym (struct symbol *sym)
13372{
13373 int i;
13374
13375 if (!ada_is_exception_sym (sym))
13376 return 0;
13377
13378 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13379 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13380 return 0; /* A standard exception. */
13381
13382 /* Numeric_Error is also a standard exception, so exclude it.
13383 See the STANDARD_EXC description for more details as to why
13384 this exception is not listed in that array. */
13385 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13386 return 0;
13387
13388 return 1;
13389}
13390
13391/* A helper function for std::sort, comparing two struct ada_exc_info
13392 objects.
13393
13394 The comparison is determined first by exception name, and then
13395 by exception address. */
13396
13397bool
13398ada_exc_info::operator< (const ada_exc_info &other) const
13399{
13400 int result;
13401
13402 result = strcmp (name, other.name);
13403 if (result < 0)
13404 return true;
13405 if (result == 0 && addr < other.addr)
13406 return true;
13407 return false;
13408}
13409
13410bool
13411ada_exc_info::operator== (const ada_exc_info &other) const
13412{
13413 return addr == other.addr && strcmp (name, other.name) == 0;
13414}
13415
13416/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13417 routine, but keeping the first SKIP elements untouched.
13418
13419 All duplicates are also removed. */
13420
13421static void
13422sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13423 int skip)
13424{
13425 std::sort (exceptions->begin () + skip, exceptions->end ());
13426 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13427 exceptions->end ());
13428}
13429
13430/* Add all exceptions defined by the Ada standard whose name match
13431 a regular expression.
13432
13433 If PREG is not NULL, then this regexp_t object is used to
13434 perform the symbol name matching. Otherwise, no name-based
13435 filtering is performed.
13436
13437 EXCEPTIONS is a vector of exceptions to which matching exceptions
13438 gets pushed. */
13439
13440static void
13441ada_add_standard_exceptions (compiled_regex *preg,
13442 std::vector<ada_exc_info> *exceptions)
13443{
13444 int i;
13445
13446 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13447 {
13448 if (preg == NULL
13449 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13450 {
13451 struct bound_minimal_symbol msymbol
13452 = ada_lookup_simple_minsym (standard_exc[i]);
13453
13454 if (msymbol.minsym != NULL)
13455 {
13456 struct ada_exc_info info
13457 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13458
13459 exceptions->push_back (info);
13460 }
13461 }
13462 }
13463}
13464
13465/* Add all Ada exceptions defined locally and accessible from the given
13466 FRAME.
13467
13468 If PREG is not NULL, then this regexp_t object is used to
13469 perform the symbol name matching. Otherwise, no name-based
13470 filtering is performed.
13471
13472 EXCEPTIONS is a vector of exceptions to which matching exceptions
13473 gets pushed. */
13474
13475static void
13476ada_add_exceptions_from_frame (compiled_regex *preg,
13477 struct frame_info *frame,
13478 std::vector<ada_exc_info> *exceptions)
13479{
13480 const struct block *block = get_frame_block (frame, 0);
13481
13482 while (block != 0)
13483 {
13484 struct block_iterator iter;
13485 struct symbol *sym;
13486
13487 ALL_BLOCK_SYMBOLS (block, iter, sym)
13488 {
13489 switch (SYMBOL_CLASS (sym))
13490 {
13491 case LOC_TYPEDEF:
13492 case LOC_BLOCK:
13493 case LOC_CONST:
13494 break;
13495 default:
13496 if (ada_is_exception_sym (sym))
13497 {
13498 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13499 SYMBOL_VALUE_ADDRESS (sym)};
13500
13501 exceptions->push_back (info);
13502 }
13503 }
13504 }
13505 if (BLOCK_FUNCTION (block) != NULL)
13506 break;
13507 block = BLOCK_SUPERBLOCK (block);
13508 }
13509}
13510
13511/* Return true if NAME matches PREG or if PREG is NULL. */
13512
13513static bool
13514name_matches_regex (const char *name, compiled_regex *preg)
13515{
13516 return (preg == NULL
13517 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13518}
13519
13520/* Add all exceptions defined globally whose name name match
13521 a regular expression, excluding standard exceptions.
13522
13523 The reason we exclude standard exceptions is that they need
13524 to be handled separately: Standard exceptions are defined inside
13525 a runtime unit which is normally not compiled with debugging info,
13526 and thus usually do not show up in our symbol search. However,
13527 if the unit was in fact built with debugging info, we need to
13528 exclude them because they would duplicate the entry we found
13529 during the special loop that specifically searches for those
13530 standard exceptions.
13531
13532 If PREG is not NULL, then this regexp_t object is used to
13533 perform the symbol name matching. Otherwise, no name-based
13534 filtering is performed.
13535
13536 EXCEPTIONS is a vector of exceptions to which matching exceptions
13537 gets pushed. */
13538
13539static void
13540ada_add_global_exceptions (compiled_regex *preg,
13541 std::vector<ada_exc_info> *exceptions)
13542{
13543 struct objfile *objfile;
13544 struct compunit_symtab *s;
13545
13546 /* In Ada, the symbol "search name" is a linkage name, whereas the
13547 regular expression used to do the matching refers to the natural
13548 name. So match against the decoded name. */
13549 expand_symtabs_matching (NULL,
13550 lookup_name_info::match_any (),
13551 [&] (const char *search_name)
13552 {
13553 const char *decoded = ada_decode (search_name);
13554 return name_matches_regex (decoded, preg);
13555 },
13556 NULL,
13557 VARIABLES_DOMAIN);
13558
13559 ALL_COMPUNITS (objfile, s)
13560 {
13561 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13562 int i;
13563
13564 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13565 {
13566 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13567 struct block_iterator iter;
13568 struct symbol *sym;
13569
13570 ALL_BLOCK_SYMBOLS (b, iter, sym)
13571 if (ada_is_non_standard_exception_sym (sym)
13572 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13573 {
13574 struct ada_exc_info info
13575 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13576
13577 exceptions->push_back (info);
13578 }
13579 }
13580 }
13581}
13582
13583/* Implements ada_exceptions_list with the regular expression passed
13584 as a regex_t, rather than a string.
13585
13586 If not NULL, PREG is used to filter out exceptions whose names
13587 do not match. Otherwise, all exceptions are listed. */
13588
13589static std::vector<ada_exc_info>
13590ada_exceptions_list_1 (compiled_regex *preg)
13591{
13592 std::vector<ada_exc_info> result;
13593 int prev_len;
13594
13595 /* First, list the known standard exceptions. These exceptions
13596 need to be handled separately, as they are usually defined in
13597 runtime units that have been compiled without debugging info. */
13598
13599 ada_add_standard_exceptions (preg, &result);
13600
13601 /* Next, find all exceptions whose scope is local and accessible
13602 from the currently selected frame. */
13603
13604 if (has_stack_frames ())
13605 {
13606 prev_len = result.size ();
13607 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13608 &result);
13609 if (result.size () > prev_len)
13610 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13611 }
13612
13613 /* Add all exceptions whose scope is global. */
13614
13615 prev_len = result.size ();
13616 ada_add_global_exceptions (preg, &result);
13617 if (result.size () > prev_len)
13618 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13619
13620 return result;
13621}
13622
13623/* Return a vector of ada_exc_info.
13624
13625 If REGEXP is NULL, all exceptions are included in the result.
13626 Otherwise, it should contain a valid regular expression,
13627 and only the exceptions whose names match that regular expression
13628 are included in the result.
13629
13630 The exceptions are sorted in the following order:
13631 - Standard exceptions (defined by the Ada language), in
13632 alphabetical order;
13633 - Exceptions only visible from the current frame, in
13634 alphabetical order;
13635 - Exceptions whose scope is global, in alphabetical order. */
13636
13637std::vector<ada_exc_info>
13638ada_exceptions_list (const char *regexp)
13639{
13640 if (regexp == NULL)
13641 return ada_exceptions_list_1 (NULL);
13642
13643 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13644 return ada_exceptions_list_1 (&reg);
13645}
13646
13647/* Implement the "info exceptions" command. */
13648
13649static void
13650info_exceptions_command (const char *regexp, int from_tty)
13651{
13652 struct gdbarch *gdbarch = get_current_arch ();
13653
13654 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13655
13656 if (regexp != NULL)
13657 printf_filtered
13658 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13659 else
13660 printf_filtered (_("All defined Ada exceptions:\n"));
13661
13662 for (const ada_exc_info &info : exceptions)
13663 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13664}
13665
13666 /* Operators */
13667/* Information about operators given special treatment in functions
13668 below. */
13669/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13670
13671#define ADA_OPERATORS \
13672 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13673 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13674 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13675 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13676 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13679 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13680 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13681 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13682 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13683 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13684 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13685 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13686 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13687 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13688 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13689 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13690 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13691
13692static void
13693ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13694 int *argsp)
13695{
13696 switch (exp->elts[pc - 1].opcode)
13697 {
13698 default:
13699 operator_length_standard (exp, pc, oplenp, argsp);
13700 break;
13701
13702#define OP_DEFN(op, len, args, binop) \
13703 case op: *oplenp = len; *argsp = args; break;
13704 ADA_OPERATORS;
13705#undef OP_DEFN
13706
13707 case OP_AGGREGATE:
13708 *oplenp = 3;
13709 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13710 break;
13711
13712 case OP_CHOICES:
13713 *oplenp = 3;
13714 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13715 break;
13716 }
13717}
13718
13719/* Implementation of the exp_descriptor method operator_check. */
13720
13721static int
13722ada_operator_check (struct expression *exp, int pos,
13723 int (*objfile_func) (struct objfile *objfile, void *data),
13724 void *data)
13725{
13726 const union exp_element *const elts = exp->elts;
13727 struct type *type = NULL;
13728
13729 switch (elts[pos].opcode)
13730 {
13731 case UNOP_IN_RANGE:
13732 case UNOP_QUAL:
13733 type = elts[pos + 1].type;
13734 break;
13735
13736 default:
13737 return operator_check_standard (exp, pos, objfile_func, data);
13738 }
13739
13740 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13741
13742 if (type && TYPE_OBJFILE (type)
13743 && (*objfile_func) (TYPE_OBJFILE (type), data))
13744 return 1;
13745
13746 return 0;
13747}
13748
13749static const char *
13750ada_op_name (enum exp_opcode opcode)
13751{
13752 switch (opcode)
13753 {
13754 default:
13755 return op_name_standard (opcode);
13756
13757#define OP_DEFN(op, len, args, binop) case op: return #op;
13758 ADA_OPERATORS;
13759#undef OP_DEFN
13760
13761 case OP_AGGREGATE:
13762 return "OP_AGGREGATE";
13763 case OP_CHOICES:
13764 return "OP_CHOICES";
13765 case OP_NAME:
13766 return "OP_NAME";
13767 }
13768}
13769
13770/* As for operator_length, but assumes PC is pointing at the first
13771 element of the operator, and gives meaningful results only for the
13772 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13773
13774static void
13775ada_forward_operator_length (struct expression *exp, int pc,
13776 int *oplenp, int *argsp)
13777{
13778 switch (exp->elts[pc].opcode)
13779 {
13780 default:
13781 *oplenp = *argsp = 0;
13782 break;
13783
13784#define OP_DEFN(op, len, args, binop) \
13785 case op: *oplenp = len; *argsp = args; break;
13786 ADA_OPERATORS;
13787#undef OP_DEFN
13788
13789 case OP_AGGREGATE:
13790 *oplenp = 3;
13791 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13792 break;
13793
13794 case OP_CHOICES:
13795 *oplenp = 3;
13796 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13797 break;
13798
13799 case OP_STRING:
13800 case OP_NAME:
13801 {
13802 int len = longest_to_int (exp->elts[pc + 1].longconst);
13803
13804 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13805 *argsp = 0;
13806 break;
13807 }
13808 }
13809}
13810
13811static int
13812ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13813{
13814 enum exp_opcode op = exp->elts[elt].opcode;
13815 int oplen, nargs;
13816 int pc = elt;
13817 int i;
13818
13819 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13820
13821 switch (op)
13822 {
13823 /* Ada attributes ('Foo). */
13824 case OP_ATR_FIRST:
13825 case OP_ATR_LAST:
13826 case OP_ATR_LENGTH:
13827 case OP_ATR_IMAGE:
13828 case OP_ATR_MAX:
13829 case OP_ATR_MIN:
13830 case OP_ATR_MODULUS:
13831 case OP_ATR_POS:
13832 case OP_ATR_SIZE:
13833 case OP_ATR_TAG:
13834 case OP_ATR_VAL:
13835 break;
13836
13837 case UNOP_IN_RANGE:
13838 case UNOP_QUAL:
13839 /* XXX: gdb_sprint_host_address, type_sprint */
13840 fprintf_filtered (stream, _("Type @"));
13841 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13842 fprintf_filtered (stream, " (");
13843 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13844 fprintf_filtered (stream, ")");
13845 break;
13846 case BINOP_IN_BOUNDS:
13847 fprintf_filtered (stream, " (%d)",
13848 longest_to_int (exp->elts[pc + 2].longconst));
13849 break;
13850 case TERNOP_IN_RANGE:
13851 break;
13852
13853 case OP_AGGREGATE:
13854 case OP_OTHERS:
13855 case OP_DISCRETE_RANGE:
13856 case OP_POSITIONAL:
13857 case OP_CHOICES:
13858 break;
13859
13860 case OP_NAME:
13861 case OP_STRING:
13862 {
13863 char *name = &exp->elts[elt + 2].string;
13864 int len = longest_to_int (exp->elts[elt + 1].longconst);
13865
13866 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13867 break;
13868 }
13869
13870 default:
13871 return dump_subexp_body_standard (exp, stream, elt);
13872 }
13873
13874 elt += oplen;
13875 for (i = 0; i < nargs; i += 1)
13876 elt = dump_subexp (exp, stream, elt);
13877
13878 return elt;
13879}
13880
13881/* The Ada extension of print_subexp (q.v.). */
13882
13883static void
13884ada_print_subexp (struct expression *exp, int *pos,
13885 struct ui_file *stream, enum precedence prec)
13886{
13887 int oplen, nargs, i;
13888 int pc = *pos;
13889 enum exp_opcode op = exp->elts[pc].opcode;
13890
13891 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13892
13893 *pos += oplen;
13894 switch (op)
13895 {
13896 default:
13897 *pos -= oplen;
13898 print_subexp_standard (exp, pos, stream, prec);
13899 return;
13900
13901 case OP_VAR_VALUE:
13902 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13903 return;
13904
13905 case BINOP_IN_BOUNDS:
13906 /* XXX: sprint_subexp */
13907 print_subexp (exp, pos, stream, PREC_SUFFIX);
13908 fputs_filtered (" in ", stream);
13909 print_subexp (exp, pos, stream, PREC_SUFFIX);
13910 fputs_filtered ("'range", stream);
13911 if (exp->elts[pc + 1].longconst > 1)
13912 fprintf_filtered (stream, "(%ld)",
13913 (long) exp->elts[pc + 1].longconst);
13914 return;
13915
13916 case TERNOP_IN_RANGE:
13917 if (prec >= PREC_EQUAL)
13918 fputs_filtered ("(", stream);
13919 /* XXX: sprint_subexp */
13920 print_subexp (exp, pos, stream, PREC_SUFFIX);
13921 fputs_filtered (" in ", stream);
13922 print_subexp (exp, pos, stream, PREC_EQUAL);
13923 fputs_filtered (" .. ", stream);
13924 print_subexp (exp, pos, stream, PREC_EQUAL);
13925 if (prec >= PREC_EQUAL)
13926 fputs_filtered (")", stream);
13927 return;
13928
13929 case OP_ATR_FIRST:
13930 case OP_ATR_LAST:
13931 case OP_ATR_LENGTH:
13932 case OP_ATR_IMAGE:
13933 case OP_ATR_MAX:
13934 case OP_ATR_MIN:
13935 case OP_ATR_MODULUS:
13936 case OP_ATR_POS:
13937 case OP_ATR_SIZE:
13938 case OP_ATR_TAG:
13939 case OP_ATR_VAL:
13940 if (exp->elts[*pos].opcode == OP_TYPE)
13941 {
13942 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13943 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13944 &type_print_raw_options);
13945 *pos += 3;
13946 }
13947 else
13948 print_subexp (exp, pos, stream, PREC_SUFFIX);
13949 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13950 if (nargs > 1)
13951 {
13952 int tem;
13953
13954 for (tem = 1; tem < nargs; tem += 1)
13955 {
13956 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13957 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13958 }
13959 fputs_filtered (")", stream);
13960 }
13961 return;
13962
13963 case UNOP_QUAL:
13964 type_print (exp->elts[pc + 1].type, "", stream, 0);
13965 fputs_filtered ("'(", stream);
13966 print_subexp (exp, pos, stream, PREC_PREFIX);
13967 fputs_filtered (")", stream);
13968 return;
13969
13970 case UNOP_IN_RANGE:
13971 /* XXX: sprint_subexp */
13972 print_subexp (exp, pos, stream, PREC_SUFFIX);
13973 fputs_filtered (" in ", stream);
13974 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13975 &type_print_raw_options);
13976 return;
13977
13978 case OP_DISCRETE_RANGE:
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13980 fputs_filtered ("..", stream);
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 return;
13983
13984 case OP_OTHERS:
13985 fputs_filtered ("others => ", stream);
13986 print_subexp (exp, pos, stream, PREC_SUFFIX);
13987 return;
13988
13989 case OP_CHOICES:
13990 for (i = 0; i < nargs-1; i += 1)
13991 {
13992 if (i > 0)
13993 fputs_filtered ("|", stream);
13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
13995 }
13996 fputs_filtered (" => ", stream);
13997 print_subexp (exp, pos, stream, PREC_SUFFIX);
13998 return;
13999
14000 case OP_POSITIONAL:
14001 print_subexp (exp, pos, stream, PREC_SUFFIX);
14002 return;
14003
14004 case OP_AGGREGATE:
14005 fputs_filtered ("(", stream);
14006 for (i = 0; i < nargs; i += 1)
14007 {
14008 if (i > 0)
14009 fputs_filtered (", ", stream);
14010 print_subexp (exp, pos, stream, PREC_SUFFIX);
14011 }
14012 fputs_filtered (")", stream);
14013 return;
14014 }
14015}
14016
14017/* Table mapping opcodes into strings for printing operators
14018 and precedences of the operators. */
14019
14020static const struct op_print ada_op_print_tab[] = {
14021 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14022 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14023 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14024 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14025 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14026 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14027 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14028 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14029 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14030 {">=", BINOP_GEQ, PREC_ORDER, 0},
14031 {">", BINOP_GTR, PREC_ORDER, 0},
14032 {"<", BINOP_LESS, PREC_ORDER, 0},
14033 {">>", BINOP_RSH, PREC_SHIFT, 0},
14034 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14035 {"+", BINOP_ADD, PREC_ADD, 0},
14036 {"-", BINOP_SUB, PREC_ADD, 0},
14037 {"&", BINOP_CONCAT, PREC_ADD, 0},
14038 {"*", BINOP_MUL, PREC_MUL, 0},
14039 {"/", BINOP_DIV, PREC_MUL, 0},
14040 {"rem", BINOP_REM, PREC_MUL, 0},
14041 {"mod", BINOP_MOD, PREC_MUL, 0},
14042 {"**", BINOP_EXP, PREC_REPEAT, 0},
14043 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14044 {"-", UNOP_NEG, PREC_PREFIX, 0},
14045 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14046 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14047 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14048 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14049 {".all", UNOP_IND, PREC_SUFFIX, 1},
14050 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14051 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14052 {NULL, OP_NULL, PREC_SUFFIX, 0}
14053};
14054\f
14055enum ada_primitive_types {
14056 ada_primitive_type_int,
14057 ada_primitive_type_long,
14058 ada_primitive_type_short,
14059 ada_primitive_type_char,
14060 ada_primitive_type_float,
14061 ada_primitive_type_double,
14062 ada_primitive_type_void,
14063 ada_primitive_type_long_long,
14064 ada_primitive_type_long_double,
14065 ada_primitive_type_natural,
14066 ada_primitive_type_positive,
14067 ada_primitive_type_system_address,
14068 ada_primitive_type_storage_offset,
14069 nr_ada_primitive_types
14070};
14071
14072static void
14073ada_language_arch_info (struct gdbarch *gdbarch,
14074 struct language_arch_info *lai)
14075{
14076 const struct builtin_type *builtin = builtin_type (gdbarch);
14077
14078 lai->primitive_type_vector
14079 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14080 struct type *);
14081
14082 lai->primitive_type_vector [ada_primitive_type_int]
14083 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14084 0, "integer");
14085 lai->primitive_type_vector [ada_primitive_type_long]
14086 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14087 0, "long_integer");
14088 lai->primitive_type_vector [ada_primitive_type_short]
14089 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14090 0, "short_integer");
14091 lai->string_char_type
14092 = lai->primitive_type_vector [ada_primitive_type_char]
14093 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14094 lai->primitive_type_vector [ada_primitive_type_float]
14095 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14096 "float", gdbarch_float_format (gdbarch));
14097 lai->primitive_type_vector [ada_primitive_type_double]
14098 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14099 "long_float", gdbarch_double_format (gdbarch));
14100 lai->primitive_type_vector [ada_primitive_type_long_long]
14101 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14102 0, "long_long_integer");
14103 lai->primitive_type_vector [ada_primitive_type_long_double]
14104 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14105 "long_long_float", gdbarch_long_double_format (gdbarch));
14106 lai->primitive_type_vector [ada_primitive_type_natural]
14107 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14108 0, "natural");
14109 lai->primitive_type_vector [ada_primitive_type_positive]
14110 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14111 0, "positive");
14112 lai->primitive_type_vector [ada_primitive_type_void]
14113 = builtin->builtin_void;
14114
14115 lai->primitive_type_vector [ada_primitive_type_system_address]
14116 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14117 "void"));
14118 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14119 = "system__address";
14120
14121 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14122 type. This is a signed integral type whose size is the same as
14123 the size of addresses. */
14124 {
14125 unsigned int addr_length = TYPE_LENGTH
14126 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14127
14128 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14129 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14130 "storage_offset");
14131 }
14132
14133 lai->bool_type_symbol = NULL;
14134 lai->bool_type_default = builtin->builtin_bool;
14135}
14136\f
14137 /* Language vector */
14138
14139/* Not really used, but needed in the ada_language_defn. */
14140
14141static void
14142emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14143{
14144 ada_emit_char (c, type, stream, quoter, 1);
14145}
14146
14147static int
14148parse (struct parser_state *ps)
14149{
14150 warnings_issued = 0;
14151 return ada_parse (ps);
14152}
14153
14154static const struct exp_descriptor ada_exp_descriptor = {
14155 ada_print_subexp,
14156 ada_operator_length,
14157 ada_operator_check,
14158 ada_op_name,
14159 ada_dump_subexp_body,
14160 ada_evaluate_subexp
14161};
14162
14163/* symbol_name_matcher_ftype adapter for wild_match. */
14164
14165static bool
14166do_wild_match (const char *symbol_search_name,
14167 const lookup_name_info &lookup_name,
14168 completion_match_result *comp_match_res)
14169{
14170 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14171}
14172
14173/* symbol_name_matcher_ftype adapter for full_match. */
14174
14175static bool
14176do_full_match (const char *symbol_search_name,
14177 const lookup_name_info &lookup_name,
14178 completion_match_result *comp_match_res)
14179{
14180 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14181}
14182
14183/* Build the Ada lookup name for LOOKUP_NAME. */
14184
14185ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14186{
14187 const std::string &user_name = lookup_name.name ();
14188
14189 if (user_name[0] == '<')
14190 {
14191 if (user_name.back () == '>')
14192 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14193 else
14194 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14195 m_encoded_p = true;
14196 m_verbatim_p = true;
14197 m_wild_match_p = false;
14198 m_standard_p = false;
14199 }
14200 else
14201 {
14202 m_verbatim_p = false;
14203
14204 m_encoded_p = user_name.find ("__") != std::string::npos;
14205
14206 if (!m_encoded_p)
14207 {
14208 const char *folded = ada_fold_name (user_name.c_str ());
14209 const char *encoded = ada_encode_1 (folded, false);
14210 if (encoded != NULL)
14211 m_encoded_name = encoded;
14212 else
14213 m_encoded_name = user_name;
14214 }
14215 else
14216 m_encoded_name = user_name;
14217
14218 /* Handle the 'package Standard' special case. See description
14219 of m_standard_p. */
14220 if (startswith (m_encoded_name.c_str (), "standard__"))
14221 {
14222 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14223 m_standard_p = true;
14224 }
14225 else
14226 m_standard_p = false;
14227
14228 /* If the name contains a ".", then the user is entering a fully
14229 qualified entity name, and the match must not be done in wild
14230 mode. Similarly, if the user wants to complete what looks
14231 like an encoded name, the match must not be done in wild
14232 mode. Also, in the standard__ special case always do
14233 non-wild matching. */
14234 m_wild_match_p
14235 = (lookup_name.match_type () != symbol_name_match_type::FULL
14236 && !m_encoded_p
14237 && !m_standard_p
14238 && user_name.find ('.') == std::string::npos);
14239 }
14240}
14241
14242/* symbol_name_matcher_ftype method for Ada. This only handles
14243 completion mode. */
14244
14245static bool
14246ada_symbol_name_matches (const char *symbol_search_name,
14247 const lookup_name_info &lookup_name,
14248 completion_match_result *comp_match_res)
14249{
14250 return lookup_name.ada ().matches (symbol_search_name,
14251 lookup_name.match_type (),
14252 comp_match_res);
14253}
14254
14255/* Implement the "la_get_symbol_name_matcher" language_defn method for
14256 Ada. */
14257
14258static symbol_name_matcher_ftype *
14259ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14260{
14261 if (lookup_name.completion_mode ())
14262 return ada_symbol_name_matches;
14263 else
14264 {
14265 if (lookup_name.ada ().wild_match_p ())
14266 return do_wild_match;
14267 else
14268 return do_full_match;
14269 }
14270}
14271
14272/* Implement the "la_read_var_value" language_defn method for Ada. */
14273
14274static struct value *
14275ada_read_var_value (struct symbol *var, const struct block *var_block,
14276 struct frame_info *frame)
14277{
14278 const struct block *frame_block = NULL;
14279 struct symbol *renaming_sym = NULL;
14280
14281 /* The only case where default_read_var_value is not sufficient
14282 is when VAR is a renaming... */
14283 if (frame)
14284 frame_block = get_frame_block (frame, NULL);
14285 if (frame_block)
14286 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14287 if (renaming_sym != NULL)
14288 return ada_read_renaming_var_value (renaming_sym, frame_block);
14289
14290 /* This is a typical case where we expect the default_read_var_value
14291 function to work. */
14292 return default_read_var_value (var, var_block, frame);
14293}
14294
14295static const char *ada_extensions[] =
14296{
14297 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14298};
14299
14300extern const struct language_defn ada_language_defn = {
14301 "ada", /* Language name */
14302 "Ada",
14303 language_ada,
14304 range_check_off,
14305 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14306 that's not quite what this means. */
14307 array_row_major,
14308 macro_expansion_no,
14309 ada_extensions,
14310 &ada_exp_descriptor,
14311 parse,
14312 ada_yyerror,
14313 resolve,
14314 ada_printchar, /* Print a character constant */
14315 ada_printstr, /* Function to print string constant */
14316 emit_char, /* Function to print single char (not used) */
14317 ada_print_type, /* Print a type using appropriate syntax */
14318 ada_print_typedef, /* Print a typedef using appropriate syntax */
14319 ada_val_print, /* Print a value using appropriate syntax */
14320 ada_value_print, /* Print a top-level value */
14321 ada_read_var_value, /* la_read_var_value */
14322 NULL, /* Language specific skip_trampoline */
14323 NULL, /* name_of_this */
14324 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14325 basic_lookup_transparent_type, /* lookup_transparent_type */
14326 ada_la_decode, /* Language specific symbol demangler */
14327 ada_sniff_from_mangled_name,
14328 NULL, /* Language specific
14329 class_name_from_physname */
14330 ada_op_print_tab, /* expression operators for printing */
14331 0, /* c-style arrays */
14332 1, /* String lower bound */
14333 ada_get_gdb_completer_word_break_characters,
14334 ada_collect_symbol_completion_matches,
14335 ada_language_arch_info,
14336 ada_print_array_index,
14337 default_pass_by_reference,
14338 c_get_string,
14339 c_watch_location_expression,
14340 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14341 ada_iterate_over_symbols,
14342 default_search_name_hash,
14343 &ada_varobj_ops,
14344 NULL,
14345 NULL,
14346 LANG_MAGIC
14347};
14348
14349/* Command-list for the "set/show ada" prefix command. */
14350static struct cmd_list_element *set_ada_list;
14351static struct cmd_list_element *show_ada_list;
14352
14353/* Implement the "set ada" prefix command. */
14354
14355static void
14356set_ada_command (const char *arg, int from_tty)
14357{
14358 printf_unfiltered (_(\
14359"\"set ada\" must be followed by the name of a setting.\n"));
14360 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14361}
14362
14363/* Implement the "show ada" prefix command. */
14364
14365static void
14366show_ada_command (const char *args, int from_tty)
14367{
14368 cmd_show_list (show_ada_list, from_tty, "");
14369}
14370
14371static void
14372initialize_ada_catchpoint_ops (void)
14373{
14374 struct breakpoint_ops *ops;
14375
14376 initialize_breakpoint_ops ();
14377
14378 ops = &catch_exception_breakpoint_ops;
14379 *ops = bkpt_breakpoint_ops;
14380 ops->allocate_location = allocate_location_catch_exception;
14381 ops->re_set = re_set_catch_exception;
14382 ops->check_status = check_status_catch_exception;
14383 ops->print_it = print_it_catch_exception;
14384 ops->print_one = print_one_catch_exception;
14385 ops->print_mention = print_mention_catch_exception;
14386 ops->print_recreate = print_recreate_catch_exception;
14387
14388 ops = &catch_exception_unhandled_breakpoint_ops;
14389 *ops = bkpt_breakpoint_ops;
14390 ops->allocate_location = allocate_location_catch_exception_unhandled;
14391 ops->re_set = re_set_catch_exception_unhandled;
14392 ops->check_status = check_status_catch_exception_unhandled;
14393 ops->print_it = print_it_catch_exception_unhandled;
14394 ops->print_one = print_one_catch_exception_unhandled;
14395 ops->print_mention = print_mention_catch_exception_unhandled;
14396 ops->print_recreate = print_recreate_catch_exception_unhandled;
14397
14398 ops = &catch_assert_breakpoint_ops;
14399 *ops = bkpt_breakpoint_ops;
14400 ops->allocate_location = allocate_location_catch_assert;
14401 ops->re_set = re_set_catch_assert;
14402 ops->check_status = check_status_catch_assert;
14403 ops->print_it = print_it_catch_assert;
14404 ops->print_one = print_one_catch_assert;
14405 ops->print_mention = print_mention_catch_assert;
14406 ops->print_recreate = print_recreate_catch_assert;
14407}
14408
14409/* This module's 'new_objfile' observer. */
14410
14411static void
14412ada_new_objfile_observer (struct objfile *objfile)
14413{
14414 ada_clear_symbol_cache ();
14415}
14416
14417/* This module's 'free_objfile' observer. */
14418
14419static void
14420ada_free_objfile_observer (struct objfile *objfile)
14421{
14422 ada_clear_symbol_cache ();
14423}
14424
14425void
14426_initialize_ada_language (void)
14427{
14428 initialize_ada_catchpoint_ops ();
14429
14430 add_prefix_cmd ("ada", no_class, set_ada_command,
14431 _("Prefix command for changing Ada-specfic settings"),
14432 &set_ada_list, "set ada ", 0, &setlist);
14433
14434 add_prefix_cmd ("ada", no_class, show_ada_command,
14435 _("Generic command for showing Ada-specific settings."),
14436 &show_ada_list, "show ada ", 0, &showlist);
14437
14438 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14439 &trust_pad_over_xvs, _("\
14440Enable or disable an optimization trusting PAD types over XVS types"), _("\
14441Show whether an optimization trusting PAD types over XVS types is activated"),
14442 _("\
14443This is related to the encoding used by the GNAT compiler. The debugger\n\
14444should normally trust the contents of PAD types, but certain older versions\n\
14445of GNAT have a bug that sometimes causes the information in the PAD type\n\
14446to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14447work around this bug. It is always safe to turn this option \"off\", but\n\
14448this incurs a slight performance penalty, so it is recommended to NOT change\n\
14449this option to \"off\" unless necessary."),
14450 NULL, NULL, &set_ada_list, &show_ada_list);
14451
14452 add_setshow_boolean_cmd ("print-signatures", class_vars,
14453 &print_signatures, _("\
14454Enable or disable the output of formal and return types for functions in the \
14455overloads selection menu"), _("\
14456Show whether the output of formal and return types for functions in the \
14457overloads selection menu is activated"),
14458 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14459
14460 add_catch_command ("exception", _("\
14461Catch Ada exceptions, when raised.\n\
14462With an argument, catch only exceptions with the given name."),
14463 catch_ada_exception_command,
14464 NULL,
14465 CATCH_PERMANENT,
14466 CATCH_TEMPORARY);
14467 add_catch_command ("assert", _("\
14468Catch failed Ada assertions, when raised.\n\
14469With an argument, catch only exceptions with the given name."),
14470 catch_assert_command,
14471 NULL,
14472 CATCH_PERMANENT,
14473 CATCH_TEMPORARY);
14474
14475 varsize_limit = 65536;
14476
14477 add_info ("exceptions", info_exceptions_command,
14478 _("\
14479List all Ada exception names.\n\
14480If a regular expression is passed as an argument, only those matching\n\
14481the regular expression are listed."));
14482
14483 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14484 _("Set Ada maintenance-related variables."),
14485 &maint_set_ada_cmdlist, "maintenance set ada ",
14486 0/*allow-unknown*/, &maintenance_set_cmdlist);
14487
14488 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14489 _("Show Ada maintenance-related variables"),
14490 &maint_show_ada_cmdlist, "maintenance show ada ",
14491 0/*allow-unknown*/, &maintenance_show_cmdlist);
14492
14493 add_setshow_boolean_cmd
14494 ("ignore-descriptive-types", class_maintenance,
14495 &ada_ignore_descriptive_types_p,
14496 _("Set whether descriptive types generated by GNAT should be ignored."),
14497 _("Show whether descriptive types generated by GNAT should be ignored."),
14498 _("\
14499When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14500DWARF attribute."),
14501 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14502
14503 decoded_names_store = htab_create_alloc
14504 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14505 NULL, xcalloc, xfree);
14506
14507 /* The ada-lang observers. */
14508 observer_attach_new_objfile (ada_new_objfile_observer);
14509 observer_attach_free_objfile (ada_free_objfile_observer);
14510 observer_attach_inferior_exit (ada_inferior_exit);
14511
14512 /* Setup various context-specific data. */
14513 ada_inferior_data
14514 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14515 ada_pspace_data_handle
14516 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14517}
This page took 0.070276 seconds and 4 git commands to generate.