i386: Fix type of gdbarch_tdep::register_reggroup_p
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
... / ...
CommitLineData
1/* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21#include "defs.h"
22#include <ctype.h>
23#include "demangle.h"
24#include "gdb_regex.h"
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
39#include "hashtab.h"
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
46#include "infcall.h"
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
50#include "source.h"
51#include "observer.h"
52#include "vec.h"
53#include "stack.h"
54#include "gdb_vecs.h"
55#include "typeprint.h"
56#include "namespace.h"
57
58#include "psymtab.h"
59#include "value.h"
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
63
64/* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
72static struct type *desc_base_type (struct type *);
73
74static struct type *desc_bounds_type (struct type *);
75
76static struct value *desc_bounds (struct value *);
77
78static int fat_pntr_bounds_bitpos (struct type *);
79
80static int fat_pntr_bounds_bitsize (struct type *);
81
82static struct type *desc_data_target_type (struct type *);
83
84static struct value *desc_data (struct value *);
85
86static int fat_pntr_data_bitpos (struct type *);
87
88static int fat_pntr_data_bitsize (struct type *);
89
90static struct value *desc_one_bound (struct value *, int, int);
91
92static int desc_bound_bitpos (struct type *, int, int);
93
94static int desc_bound_bitsize (struct type *, int, int);
95
96static struct type *desc_index_type (struct type *, int);
97
98static int desc_arity (struct type *);
99
100static int ada_type_match (struct type *, struct type *, int);
101
102static int ada_args_match (struct symbol *, struct value **, int);
103
104static int full_match (const char *, const char *);
105
106static struct value *make_array_descriptor (struct type *, struct value *);
107
108static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115static int is_nonfunction (struct block_symbol *, int);
116
117static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120static int num_defns_collected (struct obstack *);
121
122static struct block_symbol *defns_collected (struct obstack *, int);
123
124static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
135
136static int numeric_type_p (struct type *);
137
138static int integer_type_p (struct type *);
139
140static int scalar_type_p (struct type *);
141
142static int discrete_type_p (struct type *);
143
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155static struct value *evaluate_subexp_type (struct expression *, int *);
156
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160static int is_dynamic_field (struct type *, int);
161
162static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168static struct type *to_fixed_range_type (struct type *, struct value *);
169
170static struct type *to_static_fixed_type (struct type *);
171static struct type *static_unwrap_type (struct type *type);
172
173static struct value *unwrap_value (struct value *);
174
175static struct type *constrained_packed_array_type (struct type *, long *);
176
177static struct type *decode_constrained_packed_array_type (struct type *);
178
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
186
187static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195static struct value *get_var_value (char *, char *);
196
197static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199static int equiv_types (struct type *, struct type *);
200
201static int is_name_suffix (const char *);
202
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
206
207static struct value *ada_coerce_ref (struct value *);
208
209static LONGEST pos_atr (struct value *);
210
211static struct value *value_pos_atr (struct type *, struct value *);
212
213static struct value *value_val_atr (struct type *, struct value *);
214
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234static int ada_is_direct_array_type (struct type *);
235
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271static struct type *ada_find_any_type (const char *name);
272\f
273
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314/* Maximum-sized dynamic type. */
315static unsigned int varsize_limit;
316
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324#endif
325
326/* The name of the symbol to use to get the name of the main subprogram. */
327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
485 /* Utilities */
486
487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558}
559
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571{
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574}
575
576/* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582{
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596static int
597field_name_match (const char *field_name, const char *target)
598{
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607}
608
609
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
637
638int
639ada_name_prefix_len (const char *name)
640{
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652}
653
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657static int
658is_suffix (const char *str, const char *suffix)
659{
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667}
668
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672static struct value *
673coerce_unspec_val_to_type (struct value *val, struct type *type)
674{
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700}
701
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
712cond_offset_target (CORE_ADDR address, long offset)
713{
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718}
719
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729static void
730lim_warning (const char *format, ...)
731{
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740}
741
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746void
747ada_ensure_varsize_limit (const struct type *type)
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751}
752
753/* Maximum value of a SIZE-byte signed integer type. */
754static LONGEST
755max_of_size (int size)
756{
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760}
761
762/* Minimum value of a SIZE-byte signed integer type. */
763static LONGEST
764min_of_size (int size)
765{
766 return -max_of_size (size) - 1;
767}
768
769/* Maximum value of a SIZE-byte unsigned integer type. */
770static ULONGEST
771umax_of_size (int size)
772{
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776}
777
778/* Maximum value of integral type T, as a signed quantity. */
779static LONGEST
780max_of_type (struct type *t)
781{
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
788/* Minimum value of integral type T, as a signed quantity. */
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
801{
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817}
818
819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
822{
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843static struct type *
844get_base_type (struct type *type)
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853}
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
894\f
895
896 /* Language Selection */
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901enum language
902ada_update_initial_language (enum language lang)
903{
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909}
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
949\f
950 /* Symbols */
951
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978};
979
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983char *
984ada_encode (const char *decoded)
985{
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034char *
1035ada_fold_name (const char *name)
1036{
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057}
1058
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
1151{
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413const char *
1414ada_decode_symbol (const struct general_symbol_info *arg)
1415{
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447}
1448
1449static char *
1450ada_la_decode (const char *encoded, int options)
1451{
1452 return xstrdup (ada_decode (encoded));
1453}
1454
1455/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
1461
1462static int
1463match_name (const char *sym_name, const char *name, int wild)
1464{
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
1468 return wild_match (sym_name, name) == 0;
1469 else
1470 {
1471 int len_name = strlen (name);
1472
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
1475 || (startswith (sym_name, "_ada_")
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
1478 }
1479}
1480\f
1481
1482 /* Arrays */
1483
1484/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507void
1508ada_fixup_array_indexes_type (struct type *index_desc_type)
1509{
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537}
1538
1539/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1540
1541static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544};
1545
1546/* Maximum number of array dimensions we are prepared to handle. */
1547
1548#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1549
1550
1551/* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
1553
1554/* The descriptor or array type, if any, indicated by TYPE; removes
1555 level of indirection, if needed. */
1556
1557static struct type *
1558desc_base_type (struct type *type)
1559{
1560 if (type == NULL)
1561 return NULL;
1562 type = ada_check_typedef (type);
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1570 else
1571 return type;
1572}
1573
1574/* True iff TYPE indicates a "thin" array pointer type. */
1575
1576static int
1577is_thin_pntr (struct type *type)
1578{
1579 return
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582}
1583
1584/* The descriptor type for thin pointer type TYPE. */
1585
1586static struct type *
1587thin_descriptor_type (struct type *type)
1588{
1589 struct type *base_type = desc_base_type (type);
1590
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
1595 else
1596 {
1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1598
1599 if (alt_type == NULL)
1600 return base_type;
1601 else
1602 return alt_type;
1603 }
1604}
1605
1606/* A pointer to the array data for thin-pointer value VAL. */
1607
1608static struct value *
1609thin_data_pntr (struct value *val)
1610{
1611 struct type *type = ada_check_typedef (value_type (val));
1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1613
1614 data_type = lookup_pointer_type (data_type);
1615
1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1617 return value_cast (data_type, value_copy (val));
1618 else
1619 return value_from_longest (data_type, value_address (val));
1620}
1621
1622/* True iff TYPE indicates a "thick" array pointer type. */
1623
1624static int
1625is_thick_pntr (struct type *type)
1626{
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1630}
1631
1632/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
1634
1635static struct type *
1636desc_bounds_type (struct type *type)
1637{
1638 struct type *r;
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
1648 return NULL;
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (r);
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1658 }
1659 return NULL;
1660}
1661
1662/* If ARR is an array descriptor (fat or thin pointer), or pointer to
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
1665static struct value *
1666desc_bounds (struct value *arr)
1667{
1668 struct type *type = ada_check_typedef (value_type (arr));
1669
1670 if (is_thin_pntr (type))
1671 {
1672 struct type *bounds_type =
1673 desc_bounds_type (thin_descriptor_type (type));
1674 LONGEST addr;
1675
1676 if (bounds_type == NULL)
1677 error (_("Bad GNAT array descriptor"));
1678
1679 /* NOTE: The following calculation is not really kosher, but
1680 since desc_type is an XVE-encoded type (and shouldn't be),
1681 the correct calculation is a real pain. FIXME (and fix GCC). */
1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1683 addr = value_as_long (arr);
1684 else
1685 addr = value_address (arr);
1686
1687 return
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
1690 }
1691
1692 else if (is_thick_pntr (type))
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
1713 else
1714 return NULL;
1715}
1716
1717/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
1720static int
1721fat_pntr_bounds_bitpos (struct type *type)
1722{
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724}
1725
1726/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1727 size of the field containing the address of the bounds data. */
1728
1729static int
1730fat_pntr_bounds_bitsize (struct type *type)
1731{
1732 type = desc_base_type (type);
1733
1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1738}
1739
1740/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
1744
1745static struct type *
1746desc_data_target_type (struct type *type)
1747{
1748 type = desc_base_type (type);
1749
1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
1751 if (is_thin_pntr (type))
1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1753 else if (is_thick_pntr (type))
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1760 }
1761
1762 return NULL;
1763}
1764
1765/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
1767
1768static struct value *
1769desc_data (struct value *arr)
1770{
1771 struct type *type = value_type (arr);
1772
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1777 _("Bad GNAT array descriptor"));
1778 else
1779 return NULL;
1780}
1781
1782
1783/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1784 position of the field containing the address of the data. */
1785
1786static int
1787fat_pntr_data_bitpos (struct type *type)
1788{
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790}
1791
1792/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1793 size of the field containing the address of the data. */
1794
1795static int
1796fat_pntr_data_bitsize (struct type *type)
1797{
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
1802 else
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804}
1805
1806/* If BOUNDS is an array-bounds structure (or pointer to one), return
1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
1810static struct value *
1811desc_one_bound (struct value *bounds, int i, int which)
1812{
1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1814 _("Bad GNAT array descriptor bounds"));
1815}
1816
1817/* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
1821static int
1822desc_bound_bitpos (struct type *type, int i, int which)
1823{
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1825}
1826
1827/* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
1831static int
1832desc_bound_bitsize (struct type *type, int i, int which)
1833{
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1840}
1841
1842/* If TYPE is the type of an array-bounds structure, the type of its
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
1845static struct type *
1846desc_index_type (struct type *type, int i)
1847{
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
1853 return NULL;
1854}
1855
1856/* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
1859static int
1860desc_arity (struct type *type)
1861{
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867}
1868
1869/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
1873static int
1874ada_is_direct_array_type (struct type *type)
1875{
1876 if (type == NULL)
1877 return 0;
1878 type = ada_check_typedef (type);
1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1880 || ada_is_array_descriptor_type (type));
1881}
1882
1883/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1884 * to one. */
1885
1886static int
1887ada_is_array_type (struct type *type)
1888{
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894}
1895
1896/* Non-zero iff TYPE is a simple array type or pointer to one. */
1897
1898int
1899ada_is_simple_array_type (struct type *type)
1900{
1901 if (type == NULL)
1902 return 0;
1903 type = ada_check_typedef (type);
1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
1908}
1909
1910/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
1912int
1913ada_is_array_descriptor_type (struct type *type)
1914{
1915 struct type *data_type = desc_data_target_type (type);
1916
1917 if (type == NULL)
1918 return 0;
1919 type = ada_check_typedef (type);
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
1923}
1924
1925/* Non-zero iff type is a partially mal-formed GNAT array
1926 descriptor. FIXME: This is to compensate for some problems with
1927 debugging output from GNAT. Re-examine periodically to see if it
1928 is still needed. */
1929
1930int
1931ada_is_bogus_array_descriptor (struct type *type)
1932{
1933 return
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
1939}
1940
1941
1942/* If ARR has a record type in the form of a standard GNAT array descriptor,
1943 (fat pointer) returns the type of the array data described---specifically,
1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1945 in from the descriptor; otherwise, they are left unspecified. If
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
1948 a descriptor. */
1949struct type *
1950ada_type_of_array (struct value *arr, int bounds)
1951{
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
1954
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
1957
1958 if (!bounds)
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
1969 else
1970 {
1971 struct type *elt_type;
1972 int arity;
1973 struct value *descriptor;
1974
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
1977
1978 if (elt_type == NULL || arity == 0)
1979 return ada_check_typedef (value_type (arr));
1980
1981 descriptor = desc_bounds (arr);
1982 if (value_as_long (descriptor) == 0)
1983 return NULL;
1984 while (arity > 0)
1985 {
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
1990
1991 arity -= 1;
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
1995 elt_type = create_array_type (array_type, elt_type, range_type);
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
2017 }
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021}
2022
2023/* If ARR does not represent an array, returns ARR unchanged.
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
2028struct value *
2029ada_coerce_to_simple_array_ptr (struct value *arr)
2030{
2031 if (ada_is_array_descriptor_type (value_type (arr)))
2032 {
2033 struct type *arrType = ada_type_of_array (arr, 1);
2034
2035 if (arrType == NULL)
2036 return NULL;
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
2041 else
2042 return arr;
2043}
2044
2045/* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
2047 be ARR itself if it already is in the proper form). */
2048
2049struct value *
2050ada_coerce_to_simple_array (struct value *arr)
2051{
2052 if (ada_is_array_descriptor_type (value_type (arr)))
2053 {
2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2055
2056 if (arrVal == NULL)
2057 error (_("Bounds unavailable for null array pointer."));
2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2059 return value_ind (arrVal);
2060 }
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
2063 else
2064 return arr;
2065}
2066
2067/* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
2069 packing). For other types, is the identity. */
2070
2071struct type *
2072ada_coerce_to_simple_array_type (struct type *type)
2073{
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
2076
2077 if (ada_is_array_descriptor_type (type))
2078 return ada_check_typedef (desc_data_target_type (type));
2079
2080 return type;
2081}
2082
2083/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
2085static int
2086ada_is_packed_array_type (struct type *type)
2087{
2088 if (type == NULL)
2089 return 0;
2090 type = desc_base_type (type);
2091 type = ada_check_typedef (type);
2092 return
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095}
2096
2097/* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100int
2101ada_is_constrained_packed_array_type (struct type *type)
2102{
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105}
2106
2107/* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110static int
2111ada_is_unconstrained_packed_array_type (struct type *type)
2112{
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115}
2116
2117/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120static long
2121decode_packed_array_bitsize (struct type *type)
2122{
2123 const char *raw_name;
2124 const char *tail;
2125 long bits;
2126
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
2141 gdb_assert (tail != NULL);
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151}
2152
2153/* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
2169
2170static struct type *
2171constrained_packed_array_type (struct type *type, long *elt_bits)
2172{
2173 struct type *new_elt_type;
2174 struct type *new_type;
2175 struct type *index_type_desc;
2176 struct type *index_type;
2177 LONGEST low_bound, high_bound;
2178
2179 type = ada_check_typedef (type);
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
2190 new_type = alloc_type_copy (type);
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
2194 create_array_type (new_type, new_elt_type, index_type);
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
2204 else
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
2207 TYPE_LENGTH (new_type) =
2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2209 }
2210
2211 TYPE_FIXED_INSTANCE (new_type) = 1;
2212 return new_type;
2213}
2214
2215/* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
2217
2218static struct type *
2219decode_constrained_packed_array_type (struct type *type)
2220{
2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
2222 char *name;
2223 const char *tail;
2224 struct type *shadow_type;
2225 long bits;
2226
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
2235 type = desc_base_type (type);
2236
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
2243 {
2244 lim_warning (_("could not find bounds information on packed array"));
2245 return NULL;
2246 }
2247 shadow_type = check_typedef (shadow_type);
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
2253 return NULL;
2254 }
2255
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
2258}
2259
2260/* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
2264 type length is set appropriately. */
2265
2266static struct value *
2267decode_constrained_packed_array (struct value *arr)
2268{
2269 struct type *type;
2270
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2280 arr = value_ind (arr);
2281
2282 type = decode_constrained_packed_array_type (value_type (arr));
2283 if (type == NULL)
2284 {
2285 error (_("can't unpack array"));
2286 return NULL;
2287 }
2288
2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2290 && ada_is_modular_type (value_type (arr)))
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
2299 mod = ada_modulus (value_type (arr)) - 1;
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
2314 return coerce_unspec_val_to_type (arr, type);
2315}
2316
2317
2318/* The value of the element of packed array ARR at the ARITY indices
2319 given in IND. ARR must be a simple array. */
2320
2321static struct value *
2322value_subscript_packed (struct value *arr, int arity, struct value **ind)
2323{
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
2327 struct type *elt_type;
2328 struct value *v;
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
2332 elt_type = ada_check_typedef (value_type (arr));
2333 for (i = 0; i < arity; i += 1)
2334 {
2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
2340 else
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
2348 lim_warning (_("don't know bounds of array"));
2349 lowerbound = upperbound = 0;
2350 }
2351
2352 idx = pos_atr (ind[i]);
2353 if (idx < lowerbound || idx > upperbound)
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2359 }
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2365 bits, elt_type);
2366 return v;
2367}
2368
2369/* Non-zero iff TYPE includes negative integer values. */
2370
2371static int
2372has_negatives (struct type *type)
2373{
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
2383}
2384
2385
2386/* Create a new value of type TYPE from the contents of OBJ starting
2387 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2388 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2389 assigning through the result will set the field fetched from.
2390 VALADDR is ignored unless OBJ is NULL, in which case,
2391 VALADDR+OFFSET must address the start of storage containing the
2392 packed value. The value returned in this case is never an lval.
2393 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2394
2395struct value *
2396ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2397 long offset, int bit_offset, int bit_size,
2398 struct type *type)
2399{
2400 struct value *v;
2401 int src, /* Index into the source area */
2402 targ, /* Index into the target area */
2403 srcBitsLeft, /* Number of source bits left to move */
2404 nsrc, ntarg, /* Number of source and target bytes */
2405 unusedLS, /* Number of bits in next significant
2406 byte of source that are unused */
2407 accumSize; /* Number of meaningful bits in accum */
2408 unsigned char *bytes; /* First byte containing data to unpack */
2409 unsigned char *unpacked;
2410 unsigned long accum; /* Staging area for bits being transferred */
2411 unsigned char sign;
2412 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2413 /* Transmit bytes from least to most significant; delta is the direction
2414 the indices move. */
2415 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2416
2417 type = ada_check_typedef (type);
2418
2419 if (obj == NULL)
2420 {
2421 v = allocate_value (type);
2422 bytes = (unsigned char *) (valaddr + offset);
2423 }
2424 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2425 {
2426 v = value_at (type, value_address (obj) + offset);
2427 type = value_type (v);
2428 if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size)
2429 {
2430 /* This can happen in the case of an array of dynamic objects,
2431 where the size of each element changes from element to element.
2432 In that case, we're initially given the array stride, but
2433 after resolving the element type, we find that its size is
2434 less than this stride. In that case, adjust bit_size to
2435 match TYPE's length, and recompute LEN accordingly. */
2436 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2437 len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8;
2438 }
2439 bytes = (unsigned char *) alloca (len);
2440 read_memory (value_address (v), bytes, len);
2441 }
2442 else
2443 {
2444 v = allocate_value (type);
2445 bytes = (unsigned char *) value_contents (obj) + offset;
2446 }
2447
2448 if (obj != NULL)
2449 {
2450 long new_offset = offset;
2451
2452 set_value_component_location (v, obj);
2453 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2454 set_value_bitsize (v, bit_size);
2455 if (value_bitpos (v) >= HOST_CHAR_BIT)
2456 {
2457 ++new_offset;
2458 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2459 }
2460 set_value_offset (v, new_offset);
2461
2462 /* Also set the parent value. This is needed when trying to
2463 assign a new value (in inferior memory). */
2464 set_value_parent (v, obj);
2465 }
2466 else
2467 set_value_bitsize (v, bit_size);
2468 unpacked = (unsigned char *) value_contents (v);
2469
2470 srcBitsLeft = bit_size;
2471 nsrc = len;
2472 ntarg = TYPE_LENGTH (type);
2473 sign = 0;
2474 if (bit_size == 0)
2475 {
2476 memset (unpacked, 0, TYPE_LENGTH (type));
2477 return v;
2478 }
2479 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2480 {
2481 src = len - 1;
2482 if (has_negatives (type)
2483 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2484 sign = ~0;
2485
2486 unusedLS =
2487 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2488 % HOST_CHAR_BIT;
2489
2490 switch (TYPE_CODE (type))
2491 {
2492 case TYPE_CODE_ARRAY:
2493 case TYPE_CODE_UNION:
2494 case TYPE_CODE_STRUCT:
2495 /* Non-scalar values must be aligned at a byte boundary... */
2496 accumSize =
2497 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2498 /* ... And are placed at the beginning (most-significant) bytes
2499 of the target. */
2500 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2501 ntarg = targ + 1;
2502 break;
2503 default:
2504 accumSize = 0;
2505 targ = TYPE_LENGTH (type) - 1;
2506 break;
2507 }
2508 }
2509 else
2510 {
2511 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2512
2513 src = targ = 0;
2514 unusedLS = bit_offset;
2515 accumSize = 0;
2516
2517 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2518 sign = ~0;
2519 }
2520
2521 accum = 0;
2522 while (nsrc > 0)
2523 {
2524 /* Mask for removing bits of the next source byte that are not
2525 part of the value. */
2526 unsigned int unusedMSMask =
2527 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2528 1;
2529 /* Sign-extend bits for this byte. */
2530 unsigned int signMask = sign & ~unusedMSMask;
2531
2532 accum |=
2533 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2534 accumSize += HOST_CHAR_BIT - unusedLS;
2535 if (accumSize >= HOST_CHAR_BIT)
2536 {
2537 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2538 accumSize -= HOST_CHAR_BIT;
2539 accum >>= HOST_CHAR_BIT;
2540 ntarg -= 1;
2541 targ += delta;
2542 }
2543 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2544 unusedLS = 0;
2545 nsrc -= 1;
2546 src += delta;
2547 }
2548 while (ntarg > 0)
2549 {
2550 accum |= sign << accumSize;
2551 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2552 accumSize -= HOST_CHAR_BIT;
2553 if (accumSize < 0)
2554 accumSize = 0;
2555 accum >>= HOST_CHAR_BIT;
2556 ntarg -= 1;
2557 targ += delta;
2558 }
2559
2560 if (is_dynamic_type (value_type (v)))
2561 v = value_from_contents_and_address (value_type (v), value_contents (v),
2562 0);
2563 return v;
2564}
2565
2566/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2567 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2568 not overlap. */
2569static void
2570move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2571 int src_offset, int n, int bits_big_endian_p)
2572{
2573 unsigned int accum, mask;
2574 int accum_bits, chunk_size;
2575
2576 target += targ_offset / HOST_CHAR_BIT;
2577 targ_offset %= HOST_CHAR_BIT;
2578 source += src_offset / HOST_CHAR_BIT;
2579 src_offset %= HOST_CHAR_BIT;
2580 if (bits_big_endian_p)
2581 {
2582 accum = (unsigned char) *source;
2583 source += 1;
2584 accum_bits = HOST_CHAR_BIT - src_offset;
2585
2586 while (n > 0)
2587 {
2588 int unused_right;
2589
2590 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2591 accum_bits += HOST_CHAR_BIT;
2592 source += 1;
2593 chunk_size = HOST_CHAR_BIT - targ_offset;
2594 if (chunk_size > n)
2595 chunk_size = n;
2596 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2597 mask = ((1 << chunk_size) - 1) << unused_right;
2598 *target =
2599 (*target & ~mask)
2600 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2601 n -= chunk_size;
2602 accum_bits -= chunk_size;
2603 target += 1;
2604 targ_offset = 0;
2605 }
2606 }
2607 else
2608 {
2609 accum = (unsigned char) *source >> src_offset;
2610 source += 1;
2611 accum_bits = HOST_CHAR_BIT - src_offset;
2612
2613 while (n > 0)
2614 {
2615 accum = accum + ((unsigned char) *source << accum_bits);
2616 accum_bits += HOST_CHAR_BIT;
2617 source += 1;
2618 chunk_size = HOST_CHAR_BIT - targ_offset;
2619 if (chunk_size > n)
2620 chunk_size = n;
2621 mask = ((1 << chunk_size) - 1) << targ_offset;
2622 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2623 n -= chunk_size;
2624 accum_bits -= chunk_size;
2625 accum >>= chunk_size;
2626 target += 1;
2627 targ_offset = 0;
2628 }
2629 }
2630}
2631
2632/* Store the contents of FROMVAL into the location of TOVAL.
2633 Return a new value with the location of TOVAL and contents of
2634 FROMVAL. Handles assignment into packed fields that have
2635 floating-point or non-scalar types. */
2636
2637static struct value *
2638ada_value_assign (struct value *toval, struct value *fromval)
2639{
2640 struct type *type = value_type (toval);
2641 int bits = value_bitsize (toval);
2642
2643 toval = ada_coerce_ref (toval);
2644 fromval = ada_coerce_ref (fromval);
2645
2646 if (ada_is_direct_array_type (value_type (toval)))
2647 toval = ada_coerce_to_simple_array (toval);
2648 if (ada_is_direct_array_type (value_type (fromval)))
2649 fromval = ada_coerce_to_simple_array (fromval);
2650
2651 if (!deprecated_value_modifiable (toval))
2652 error (_("Left operand of assignment is not a modifiable lvalue."));
2653
2654 if (VALUE_LVAL (toval) == lval_memory
2655 && bits > 0
2656 && (TYPE_CODE (type) == TYPE_CODE_FLT
2657 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2658 {
2659 int len = (value_bitpos (toval)
2660 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2661 int from_size;
2662 gdb_byte *buffer = (gdb_byte *) alloca (len);
2663 struct value *val;
2664 CORE_ADDR to_addr = value_address (toval);
2665
2666 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2667 fromval = value_cast (type, fromval);
2668
2669 read_memory (to_addr, buffer, len);
2670 from_size = value_bitsize (fromval);
2671 if (from_size == 0)
2672 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2673 if (gdbarch_bits_big_endian (get_type_arch (type)))
2674 move_bits (buffer, value_bitpos (toval),
2675 value_contents (fromval), from_size - bits, bits, 1);
2676 else
2677 move_bits (buffer, value_bitpos (toval),
2678 value_contents (fromval), 0, bits, 0);
2679 write_memory_with_notification (to_addr, buffer, len);
2680
2681 val = value_copy (toval);
2682 memcpy (value_contents_raw (val), value_contents (fromval),
2683 TYPE_LENGTH (type));
2684 deprecated_set_value_type (val, type);
2685
2686 return val;
2687 }
2688
2689 return value_assign (toval, fromval);
2690}
2691
2692
2693/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2694 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2695 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2696 COMPONENT, and not the inferior's memory. The current contents
2697 of COMPONENT are ignored.
2698
2699 Although not part of the initial design, this function also works
2700 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2701 had a null address, and COMPONENT had an address which is equal to
2702 its offset inside CONTAINER. */
2703
2704static void
2705value_assign_to_component (struct value *container, struct value *component,
2706 struct value *val)
2707{
2708 LONGEST offset_in_container =
2709 (LONGEST) (value_address (component) - value_address (container));
2710 int bit_offset_in_container =
2711 value_bitpos (component) - value_bitpos (container);
2712 int bits;
2713
2714 val = value_cast (value_type (component), val);
2715
2716 if (value_bitsize (component) == 0)
2717 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2718 else
2719 bits = value_bitsize (component);
2720
2721 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2722 move_bits (value_contents_writeable (container) + offset_in_container,
2723 value_bitpos (container) + bit_offset_in_container,
2724 value_contents (val),
2725 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2726 bits, 1);
2727 else
2728 move_bits (value_contents_writeable (container) + offset_in_container,
2729 value_bitpos (container) + bit_offset_in_container,
2730 value_contents (val), 0, bits, 0);
2731}
2732
2733/* The value of the element of array ARR at the ARITY indices given in IND.
2734 ARR may be either a simple array, GNAT array descriptor, or pointer
2735 thereto. */
2736
2737struct value *
2738ada_value_subscript (struct value *arr, int arity, struct value **ind)
2739{
2740 int k;
2741 struct value *elt;
2742 struct type *elt_type;
2743
2744 elt = ada_coerce_to_simple_array (arr);
2745
2746 elt_type = ada_check_typedef (value_type (elt));
2747 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2748 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2749 return value_subscript_packed (elt, arity, ind);
2750
2751 for (k = 0; k < arity; k += 1)
2752 {
2753 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2754 error (_("too many subscripts (%d expected)"), k);
2755 elt = value_subscript (elt, pos_atr (ind[k]));
2756 }
2757 return elt;
2758}
2759
2760/* Assuming ARR is a pointer to a GDB array, the value of the element
2761 of *ARR at the ARITY indices given in IND.
2762 Does not read the entire array into memory.
2763
2764 Note: Unlike what one would expect, this function is used instead of
2765 ada_value_subscript for basically all non-packed array types. The reason
2766 for this is that a side effect of doing our own pointer arithmetics instead
2767 of relying on value_subscript is that there is no implicit typedef peeling.
2768 This is important for arrays of array accesses, where it allows us to
2769 preserve the fact that the array's element is an array access, where the
2770 access part os encoded in a typedef layer. */
2771
2772static struct value *
2773ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2774{
2775 int k;
2776 struct value *array_ind = ada_value_ind (arr);
2777 struct type *type
2778 = check_typedef (value_enclosing_type (array_ind));
2779
2780 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2781 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2782 return value_subscript_packed (array_ind, arity, ind);
2783
2784 for (k = 0; k < arity; k += 1)
2785 {
2786 LONGEST lwb, upb;
2787 struct value *lwb_value;
2788
2789 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2790 error (_("too many subscripts (%d expected)"), k);
2791 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2792 value_copy (arr));
2793 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2794 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2795 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2796 type = TYPE_TARGET_TYPE (type);
2797 }
2798
2799 return value_ind (arr);
2800}
2801
2802/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2803 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2804 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2805 this array is LOW, as per Ada rules. */
2806static struct value *
2807ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2808 int low, int high)
2809{
2810 struct type *type0 = ada_check_typedef (type);
2811 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2812 struct type *index_type
2813 = create_static_range_type (NULL, base_index_type, low, high);
2814 struct type *slice_type =
2815 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2816 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2817 LONGEST base_low_pos, low_pos;
2818 CORE_ADDR base;
2819
2820 if (!discrete_position (base_index_type, low, &low_pos)
2821 || !discrete_position (base_index_type, base_low, &base_low_pos))
2822 {
2823 warning (_("unable to get positions in slice, use bounds instead"));
2824 low_pos = low;
2825 base_low_pos = base_low;
2826 }
2827
2828 base = value_as_address (array_ptr)
2829 + ((low_pos - base_low_pos)
2830 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2831 return value_at_lazy (slice_type, base);
2832}
2833
2834
2835static struct value *
2836ada_value_slice (struct value *array, int low, int high)
2837{
2838 struct type *type = ada_check_typedef (value_type (array));
2839 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2840 struct type *index_type
2841 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2842 struct type *slice_type =
2843 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2844 LONGEST low_pos, high_pos;
2845
2846 if (!discrete_position (base_index_type, low, &low_pos)
2847 || !discrete_position (base_index_type, high, &high_pos))
2848 {
2849 warning (_("unable to get positions in slice, use bounds instead"));
2850 low_pos = low;
2851 high_pos = high;
2852 }
2853
2854 return value_cast (slice_type,
2855 value_slice (array, low, high_pos - low_pos + 1));
2856}
2857
2858/* If type is a record type in the form of a standard GNAT array
2859 descriptor, returns the number of dimensions for type. If arr is a
2860 simple array, returns the number of "array of"s that prefix its
2861 type designation. Otherwise, returns 0. */
2862
2863int
2864ada_array_arity (struct type *type)
2865{
2866 int arity;
2867
2868 if (type == NULL)
2869 return 0;
2870
2871 type = desc_base_type (type);
2872
2873 arity = 0;
2874 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2875 return desc_arity (desc_bounds_type (type));
2876 else
2877 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2878 {
2879 arity += 1;
2880 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2881 }
2882
2883 return arity;
2884}
2885
2886/* If TYPE is a record type in the form of a standard GNAT array
2887 descriptor or a simple array type, returns the element type for
2888 TYPE after indexing by NINDICES indices, or by all indices if
2889 NINDICES is -1. Otherwise, returns NULL. */
2890
2891struct type *
2892ada_array_element_type (struct type *type, int nindices)
2893{
2894 type = desc_base_type (type);
2895
2896 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2897 {
2898 int k;
2899 struct type *p_array_type;
2900
2901 p_array_type = desc_data_target_type (type);
2902
2903 k = ada_array_arity (type);
2904 if (k == 0)
2905 return NULL;
2906
2907 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2908 if (nindices >= 0 && k > nindices)
2909 k = nindices;
2910 while (k > 0 && p_array_type != NULL)
2911 {
2912 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2913 k -= 1;
2914 }
2915 return p_array_type;
2916 }
2917 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2918 {
2919 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2920 {
2921 type = TYPE_TARGET_TYPE (type);
2922 nindices -= 1;
2923 }
2924 return type;
2925 }
2926
2927 return NULL;
2928}
2929
2930/* The type of nth index in arrays of given type (n numbering from 1).
2931 Does not examine memory. Throws an error if N is invalid or TYPE
2932 is not an array type. NAME is the name of the Ada attribute being
2933 evaluated ('range, 'first, 'last, or 'length); it is used in building
2934 the error message. */
2935
2936static struct type *
2937ada_index_type (struct type *type, int n, const char *name)
2938{
2939 struct type *result_type;
2940
2941 type = desc_base_type (type);
2942
2943 if (n < 0 || n > ada_array_arity (type))
2944 error (_("invalid dimension number to '%s"), name);
2945
2946 if (ada_is_simple_array_type (type))
2947 {
2948 int i;
2949
2950 for (i = 1; i < n; i += 1)
2951 type = TYPE_TARGET_TYPE (type);
2952 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2953 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2954 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2955 perhaps stabsread.c would make more sense. */
2956 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2957 result_type = NULL;
2958 }
2959 else
2960 {
2961 result_type = desc_index_type (desc_bounds_type (type), n);
2962 if (result_type == NULL)
2963 error (_("attempt to take bound of something that is not an array"));
2964 }
2965
2966 return result_type;
2967}
2968
2969/* Given that arr is an array type, returns the lower bound of the
2970 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2971 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2972 array-descriptor type. It works for other arrays with bounds supplied
2973 by run-time quantities other than discriminants. */
2974
2975static LONGEST
2976ada_array_bound_from_type (struct type *arr_type, int n, int which)
2977{
2978 struct type *type, *index_type_desc, *index_type;
2979 int i;
2980
2981 gdb_assert (which == 0 || which == 1);
2982
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 arr_type = decode_constrained_packed_array_type (arr_type);
2985
2986 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2987 return (LONGEST) - which;
2988
2989 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2990 type = TYPE_TARGET_TYPE (arr_type);
2991 else
2992 type = arr_type;
2993
2994 if (TYPE_FIXED_INSTANCE (type))
2995 {
2996 /* The array has already been fixed, so we do not need to
2997 check the parallel ___XA type again. That encoding has
2998 already been applied, so ignore it now. */
2999 index_type_desc = NULL;
3000 }
3001 else
3002 {
3003 index_type_desc = ada_find_parallel_type (type, "___XA");
3004 ada_fixup_array_indexes_type (index_type_desc);
3005 }
3006
3007 if (index_type_desc != NULL)
3008 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3009 NULL);
3010 else
3011 {
3012 struct type *elt_type = check_typedef (type);
3013
3014 for (i = 1; i < n; i++)
3015 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3016
3017 index_type = TYPE_INDEX_TYPE (elt_type);
3018 }
3019
3020 return
3021 (LONGEST) (which == 0
3022 ? ada_discrete_type_low_bound (index_type)
3023 : ada_discrete_type_high_bound (index_type));
3024}
3025
3026/* Given that arr is an array value, returns the lower bound of the
3027 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3028 WHICH is 1. This routine will also work for arrays with bounds
3029 supplied by run-time quantities other than discriminants. */
3030
3031static LONGEST
3032ada_array_bound (struct value *arr, int n, int which)
3033{
3034 struct type *arr_type;
3035
3036 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3037 arr = value_ind (arr);
3038 arr_type = value_enclosing_type (arr);
3039
3040 if (ada_is_constrained_packed_array_type (arr_type))
3041 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3042 else if (ada_is_simple_array_type (arr_type))
3043 return ada_array_bound_from_type (arr_type, n, which);
3044 else
3045 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3046}
3047
3048/* Given that arr is an array value, returns the length of the
3049 nth index. This routine will also work for arrays with bounds
3050 supplied by run-time quantities other than discriminants.
3051 Does not work for arrays indexed by enumeration types with representation
3052 clauses at the moment. */
3053
3054static LONGEST
3055ada_array_length (struct value *arr, int n)
3056{
3057 struct type *arr_type, *index_type;
3058 int low, high;
3059
3060 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3061 arr = value_ind (arr);
3062 arr_type = value_enclosing_type (arr);
3063
3064 if (ada_is_constrained_packed_array_type (arr_type))
3065 return ada_array_length (decode_constrained_packed_array (arr), n);
3066
3067 if (ada_is_simple_array_type (arr_type))
3068 {
3069 low = ada_array_bound_from_type (arr_type, n, 0);
3070 high = ada_array_bound_from_type (arr_type, n, 1);
3071 }
3072 else
3073 {
3074 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3075 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3076 }
3077
3078 arr_type = check_typedef (arr_type);
3079 index_type = TYPE_INDEX_TYPE (arr_type);
3080 if (index_type != NULL)
3081 {
3082 struct type *base_type;
3083 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3084 base_type = TYPE_TARGET_TYPE (index_type);
3085 else
3086 base_type = index_type;
3087
3088 low = pos_atr (value_from_longest (base_type, low));
3089 high = pos_atr (value_from_longest (base_type, high));
3090 }
3091 return high - low + 1;
3092}
3093
3094/* An empty array whose type is that of ARR_TYPE (an array type),
3095 with bounds LOW to LOW-1. */
3096
3097static struct value *
3098empty_array (struct type *arr_type, int low)
3099{
3100 struct type *arr_type0 = ada_check_typedef (arr_type);
3101 struct type *index_type
3102 = create_static_range_type
3103 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3104 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3105
3106 return allocate_value (create_array_type (NULL, elt_type, index_type));
3107}
3108\f
3109
3110 /* Name resolution */
3111
3112/* The "decoded" name for the user-definable Ada operator corresponding
3113 to OP. */
3114
3115static const char *
3116ada_decoded_op_name (enum exp_opcode op)
3117{
3118 int i;
3119
3120 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3121 {
3122 if (ada_opname_table[i].op == op)
3123 return ada_opname_table[i].decoded;
3124 }
3125 error (_("Could not find operator name for opcode"));
3126}
3127
3128
3129/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3130 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3131 undefined namespace) and converts operators that are
3132 user-defined into appropriate function calls. If CONTEXT_TYPE is
3133 non-null, it provides a preferred result type [at the moment, only
3134 type void has any effect---causing procedures to be preferred over
3135 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3136 return type is preferred. May change (expand) *EXP. */
3137
3138static void
3139resolve (struct expression **expp, int void_context_p)
3140{
3141 struct type *context_type = NULL;
3142 int pc = 0;
3143
3144 if (void_context_p)
3145 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3146
3147 resolve_subexp (expp, &pc, 1, context_type);
3148}
3149
3150/* Resolve the operator of the subexpression beginning at
3151 position *POS of *EXPP. "Resolving" consists of replacing
3152 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3153 with their resolutions, replacing built-in operators with
3154 function calls to user-defined operators, where appropriate, and,
3155 when DEPROCEDURE_P is non-zero, converting function-valued variables
3156 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3157 are as in ada_resolve, above. */
3158
3159static struct value *
3160resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3161 struct type *context_type)
3162{
3163 int pc = *pos;
3164 int i;
3165 struct expression *exp; /* Convenience: == *expp. */
3166 enum exp_opcode op = (*expp)->elts[pc].opcode;
3167 struct value **argvec; /* Vector of operand types (alloca'ed). */
3168 int nargs; /* Number of operands. */
3169 int oplen;
3170
3171 argvec = NULL;
3172 nargs = 0;
3173 exp = *expp;
3174
3175 /* Pass one: resolve operands, saving their types and updating *pos,
3176 if needed. */
3177 switch (op)
3178 {
3179 case OP_FUNCALL:
3180 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3181 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3182 *pos += 7;
3183 else
3184 {
3185 *pos += 3;
3186 resolve_subexp (expp, pos, 0, NULL);
3187 }
3188 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3189 break;
3190
3191 case UNOP_ADDR:
3192 *pos += 1;
3193 resolve_subexp (expp, pos, 0, NULL);
3194 break;
3195
3196 case UNOP_QUAL:
3197 *pos += 3;
3198 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3199 break;
3200
3201 case OP_ATR_MODULUS:
3202 case OP_ATR_SIZE:
3203 case OP_ATR_TAG:
3204 case OP_ATR_FIRST:
3205 case OP_ATR_LAST:
3206 case OP_ATR_LENGTH:
3207 case OP_ATR_POS:
3208 case OP_ATR_VAL:
3209 case OP_ATR_MIN:
3210 case OP_ATR_MAX:
3211 case TERNOP_IN_RANGE:
3212 case BINOP_IN_BOUNDS:
3213 case UNOP_IN_RANGE:
3214 case OP_AGGREGATE:
3215 case OP_OTHERS:
3216 case OP_CHOICES:
3217 case OP_POSITIONAL:
3218 case OP_DISCRETE_RANGE:
3219 case OP_NAME:
3220 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3221 *pos += oplen;
3222 break;
3223
3224 case BINOP_ASSIGN:
3225 {
3226 struct value *arg1;
3227
3228 *pos += 1;
3229 arg1 = resolve_subexp (expp, pos, 0, NULL);
3230 if (arg1 == NULL)
3231 resolve_subexp (expp, pos, 1, NULL);
3232 else
3233 resolve_subexp (expp, pos, 1, value_type (arg1));
3234 break;
3235 }
3236
3237 case UNOP_CAST:
3238 *pos += 3;
3239 nargs = 1;
3240 break;
3241
3242 case BINOP_ADD:
3243 case BINOP_SUB:
3244 case BINOP_MUL:
3245 case BINOP_DIV:
3246 case BINOP_REM:
3247 case BINOP_MOD:
3248 case BINOP_EXP:
3249 case BINOP_CONCAT:
3250 case BINOP_LOGICAL_AND:
3251 case BINOP_LOGICAL_OR:
3252 case BINOP_BITWISE_AND:
3253 case BINOP_BITWISE_IOR:
3254 case BINOP_BITWISE_XOR:
3255
3256 case BINOP_EQUAL:
3257 case BINOP_NOTEQUAL:
3258 case BINOP_LESS:
3259 case BINOP_GTR:
3260 case BINOP_LEQ:
3261 case BINOP_GEQ:
3262
3263 case BINOP_REPEAT:
3264 case BINOP_SUBSCRIPT:
3265 case BINOP_COMMA:
3266 *pos += 1;
3267 nargs = 2;
3268 break;
3269
3270 case UNOP_NEG:
3271 case UNOP_PLUS:
3272 case UNOP_LOGICAL_NOT:
3273 case UNOP_ABS:
3274 case UNOP_IND:
3275 *pos += 1;
3276 nargs = 1;
3277 break;
3278
3279 case OP_LONG:
3280 case OP_DOUBLE:
3281 case OP_VAR_VALUE:
3282 *pos += 4;
3283 break;
3284
3285 case OP_TYPE:
3286 case OP_BOOL:
3287 case OP_LAST:
3288 case OP_INTERNALVAR:
3289 *pos += 3;
3290 break;
3291
3292 case UNOP_MEMVAL:
3293 *pos += 3;
3294 nargs = 1;
3295 break;
3296
3297 case OP_REGISTER:
3298 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3299 break;
3300
3301 case STRUCTOP_STRUCT:
3302 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3303 nargs = 1;
3304 break;
3305
3306 case TERNOP_SLICE:
3307 *pos += 1;
3308 nargs = 3;
3309 break;
3310
3311 case OP_STRING:
3312 break;
3313
3314 default:
3315 error (_("Unexpected operator during name resolution"));
3316 }
3317
3318 argvec = XALLOCAVEC (struct value *, nargs + 1);
3319 for (i = 0; i < nargs; i += 1)
3320 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3321 argvec[i] = NULL;
3322 exp = *expp;
3323
3324 /* Pass two: perform any resolution on principal operator. */
3325 switch (op)
3326 {
3327 default:
3328 break;
3329
3330 case OP_VAR_VALUE:
3331 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3332 {
3333 struct block_symbol *candidates;
3334 int n_candidates;
3335
3336 n_candidates =
3337 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3338 (exp->elts[pc + 2].symbol),
3339 exp->elts[pc + 1].block, VAR_DOMAIN,
3340 &candidates);
3341
3342 if (n_candidates > 1)
3343 {
3344 /* Types tend to get re-introduced locally, so if there
3345 are any local symbols that are not types, first filter
3346 out all types. */
3347 int j;
3348 for (j = 0; j < n_candidates; j += 1)
3349 switch (SYMBOL_CLASS (candidates[j].symbol))
3350 {
3351 case LOC_REGISTER:
3352 case LOC_ARG:
3353 case LOC_REF_ARG:
3354 case LOC_REGPARM_ADDR:
3355 case LOC_LOCAL:
3356 case LOC_COMPUTED:
3357 goto FoundNonType;
3358 default:
3359 break;
3360 }
3361 FoundNonType:
3362 if (j < n_candidates)
3363 {
3364 j = 0;
3365 while (j < n_candidates)
3366 {
3367 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3368 {
3369 candidates[j] = candidates[n_candidates - 1];
3370 n_candidates -= 1;
3371 }
3372 else
3373 j += 1;
3374 }
3375 }
3376 }
3377
3378 if (n_candidates == 0)
3379 error (_("No definition found for %s"),
3380 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3381 else if (n_candidates == 1)
3382 i = 0;
3383 else if (deprocedure_p
3384 && !is_nonfunction (candidates, n_candidates))
3385 {
3386 i = ada_resolve_function
3387 (candidates, n_candidates, NULL, 0,
3388 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3389 context_type);
3390 if (i < 0)
3391 error (_("Could not find a match for %s"),
3392 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3393 }
3394 else
3395 {
3396 printf_filtered (_("Multiple matches for %s\n"),
3397 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3398 user_select_syms (candidates, n_candidates, 1);
3399 i = 0;
3400 }
3401
3402 exp->elts[pc + 1].block = candidates[i].block;
3403 exp->elts[pc + 2].symbol = candidates[i].symbol;
3404 if (innermost_block == NULL
3405 || contained_in (candidates[i].block, innermost_block))
3406 innermost_block = candidates[i].block;
3407 }
3408
3409 if (deprocedure_p
3410 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3411 == TYPE_CODE_FUNC))
3412 {
3413 replace_operator_with_call (expp, pc, 0, 0,
3414 exp->elts[pc + 2].symbol,
3415 exp->elts[pc + 1].block);
3416 exp = *expp;
3417 }
3418 break;
3419
3420 case OP_FUNCALL:
3421 {
3422 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3423 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3424 {
3425 struct block_symbol *candidates;
3426 int n_candidates;
3427
3428 n_candidates =
3429 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3430 (exp->elts[pc + 5].symbol),
3431 exp->elts[pc + 4].block, VAR_DOMAIN,
3432 &candidates);
3433 if (n_candidates == 1)
3434 i = 0;
3435 else
3436 {
3437 i = ada_resolve_function
3438 (candidates, n_candidates,
3439 argvec, nargs,
3440 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3441 context_type);
3442 if (i < 0)
3443 error (_("Could not find a match for %s"),
3444 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3445 }
3446
3447 exp->elts[pc + 4].block = candidates[i].block;
3448 exp->elts[pc + 5].symbol = candidates[i].symbol;
3449 if (innermost_block == NULL
3450 || contained_in (candidates[i].block, innermost_block))
3451 innermost_block = candidates[i].block;
3452 }
3453 }
3454 break;
3455 case BINOP_ADD:
3456 case BINOP_SUB:
3457 case BINOP_MUL:
3458 case BINOP_DIV:
3459 case BINOP_REM:
3460 case BINOP_MOD:
3461 case BINOP_CONCAT:
3462 case BINOP_BITWISE_AND:
3463 case BINOP_BITWISE_IOR:
3464 case BINOP_BITWISE_XOR:
3465 case BINOP_EQUAL:
3466 case BINOP_NOTEQUAL:
3467 case BINOP_LESS:
3468 case BINOP_GTR:
3469 case BINOP_LEQ:
3470 case BINOP_GEQ:
3471 case BINOP_EXP:
3472 case UNOP_NEG:
3473 case UNOP_PLUS:
3474 case UNOP_LOGICAL_NOT:
3475 case UNOP_ABS:
3476 if (possible_user_operator_p (op, argvec))
3477 {
3478 struct block_symbol *candidates;
3479 int n_candidates;
3480
3481 n_candidates =
3482 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3483 (struct block *) NULL, VAR_DOMAIN,
3484 &candidates);
3485 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3486 ada_decoded_op_name (op), NULL);
3487 if (i < 0)
3488 break;
3489
3490 replace_operator_with_call (expp, pc, nargs, 1,
3491 candidates[i].symbol,
3492 candidates[i].block);
3493 exp = *expp;
3494 }
3495 break;
3496
3497 case OP_TYPE:
3498 case OP_REGISTER:
3499 return NULL;
3500 }
3501
3502 *pos = pc;
3503 return evaluate_subexp_type (exp, pos);
3504}
3505
3506/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3507 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3508 a non-pointer. */
3509/* The term "match" here is rather loose. The match is heuristic and
3510 liberal. */
3511
3512static int
3513ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3514{
3515 ftype = ada_check_typedef (ftype);
3516 atype = ada_check_typedef (atype);
3517
3518 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3519 ftype = TYPE_TARGET_TYPE (ftype);
3520 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3521 atype = TYPE_TARGET_TYPE (atype);
3522
3523 switch (TYPE_CODE (ftype))
3524 {
3525 default:
3526 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3527 case TYPE_CODE_PTR:
3528 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3529 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3530 TYPE_TARGET_TYPE (atype), 0);
3531 else
3532 return (may_deref
3533 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3534 case TYPE_CODE_INT:
3535 case TYPE_CODE_ENUM:
3536 case TYPE_CODE_RANGE:
3537 switch (TYPE_CODE (atype))
3538 {
3539 case TYPE_CODE_INT:
3540 case TYPE_CODE_ENUM:
3541 case TYPE_CODE_RANGE:
3542 return 1;
3543 default:
3544 return 0;
3545 }
3546
3547 case TYPE_CODE_ARRAY:
3548 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3549 || ada_is_array_descriptor_type (atype));
3550
3551 case TYPE_CODE_STRUCT:
3552 if (ada_is_array_descriptor_type (ftype))
3553 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3554 || ada_is_array_descriptor_type (atype));
3555 else
3556 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3557 && !ada_is_array_descriptor_type (atype));
3558
3559 case TYPE_CODE_UNION:
3560 case TYPE_CODE_FLT:
3561 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3562 }
3563}
3564
3565/* Return non-zero if the formals of FUNC "sufficiently match" the
3566 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3567 may also be an enumeral, in which case it is treated as a 0-
3568 argument function. */
3569
3570static int
3571ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3572{
3573 int i;
3574 struct type *func_type = SYMBOL_TYPE (func);
3575
3576 if (SYMBOL_CLASS (func) == LOC_CONST
3577 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3578 return (n_actuals == 0);
3579 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3580 return 0;
3581
3582 if (TYPE_NFIELDS (func_type) != n_actuals)
3583 return 0;
3584
3585 for (i = 0; i < n_actuals; i += 1)
3586 {
3587 if (actuals[i] == NULL)
3588 return 0;
3589 else
3590 {
3591 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3592 i));
3593 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3594
3595 if (!ada_type_match (ftype, atype, 1))
3596 return 0;
3597 }
3598 }
3599 return 1;
3600}
3601
3602/* False iff function type FUNC_TYPE definitely does not produce a value
3603 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3604 FUNC_TYPE is not a valid function type with a non-null return type
3605 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3606
3607static int
3608return_match (struct type *func_type, struct type *context_type)
3609{
3610 struct type *return_type;
3611
3612 if (func_type == NULL)
3613 return 1;
3614
3615 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3616 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3617 else
3618 return_type = get_base_type (func_type);
3619 if (return_type == NULL)
3620 return 1;
3621
3622 context_type = get_base_type (context_type);
3623
3624 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3625 return context_type == NULL || return_type == context_type;
3626 else if (context_type == NULL)
3627 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3628 else
3629 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3630}
3631
3632
3633/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3634 function (if any) that matches the types of the NARGS arguments in
3635 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3636 that returns that type, then eliminate matches that don't. If
3637 CONTEXT_TYPE is void and there is at least one match that does not
3638 return void, eliminate all matches that do.
3639
3640 Asks the user if there is more than one match remaining. Returns -1
3641 if there is no such symbol or none is selected. NAME is used
3642 solely for messages. May re-arrange and modify SYMS in
3643 the process; the index returned is for the modified vector. */
3644
3645static int
3646ada_resolve_function (struct block_symbol syms[],
3647 int nsyms, struct value **args, int nargs,
3648 const char *name, struct type *context_type)
3649{
3650 int fallback;
3651 int k;
3652 int m; /* Number of hits */
3653
3654 m = 0;
3655 /* In the first pass of the loop, we only accept functions matching
3656 context_type. If none are found, we add a second pass of the loop
3657 where every function is accepted. */
3658 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3659 {
3660 for (k = 0; k < nsyms; k += 1)
3661 {
3662 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3663
3664 if (ada_args_match (syms[k].symbol, args, nargs)
3665 && (fallback || return_match (type, context_type)))
3666 {
3667 syms[m] = syms[k];
3668 m += 1;
3669 }
3670 }
3671 }
3672
3673 /* If we got multiple matches, ask the user which one to use. Don't do this
3674 interactive thing during completion, though, as the purpose of the
3675 completion is providing a list of all possible matches. Prompting the
3676 user to filter it down would be completely unexpected in this case. */
3677 if (m == 0)
3678 return -1;
3679 else if (m > 1 && !parse_completion)
3680 {
3681 printf_filtered (_("Multiple matches for %s\n"), name);
3682 user_select_syms (syms, m, 1);
3683 return 0;
3684 }
3685 return 0;
3686}
3687
3688/* Returns true (non-zero) iff decoded name N0 should appear before N1
3689 in a listing of choices during disambiguation (see sort_choices, below).
3690 The idea is that overloadings of a subprogram name from the
3691 same package should sort in their source order. We settle for ordering
3692 such symbols by their trailing number (__N or $N). */
3693
3694static int
3695encoded_ordered_before (const char *N0, const char *N1)
3696{
3697 if (N1 == NULL)
3698 return 0;
3699 else if (N0 == NULL)
3700 return 1;
3701 else
3702 {
3703 int k0, k1;
3704
3705 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3706 ;
3707 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3708 ;
3709 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3710 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3711 {
3712 int n0, n1;
3713
3714 n0 = k0;
3715 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3716 n0 -= 1;
3717 n1 = k1;
3718 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3719 n1 -= 1;
3720 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3721 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3722 }
3723 return (strcmp (N0, N1) < 0);
3724 }
3725}
3726
3727/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3728 encoded names. */
3729
3730static void
3731sort_choices (struct block_symbol syms[], int nsyms)
3732{
3733 int i;
3734
3735 for (i = 1; i < nsyms; i += 1)
3736 {
3737 struct block_symbol sym = syms[i];
3738 int j;
3739
3740 for (j = i - 1; j >= 0; j -= 1)
3741 {
3742 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3743 SYMBOL_LINKAGE_NAME (sym.symbol)))
3744 break;
3745 syms[j + 1] = syms[j];
3746 }
3747 syms[j + 1] = sym;
3748 }
3749}
3750
3751/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3752 by asking the user (if necessary), returning the number selected,
3753 and setting the first elements of SYMS items. Error if no symbols
3754 selected. */
3755
3756/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3757 to be re-integrated one of these days. */
3758
3759int
3760user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3761{
3762 int i;
3763 int *chosen = XALLOCAVEC (int , nsyms);
3764 int n_chosen;
3765 int first_choice = (max_results == 1) ? 1 : 2;
3766 const char *select_mode = multiple_symbols_select_mode ();
3767
3768 if (max_results < 1)
3769 error (_("Request to select 0 symbols!"));
3770 if (nsyms <= 1)
3771 return nsyms;
3772
3773 if (select_mode == multiple_symbols_cancel)
3774 error (_("\
3775canceled because the command is ambiguous\n\
3776See set/show multiple-symbol."));
3777
3778 /* If select_mode is "all", then return all possible symbols.
3779 Only do that if more than one symbol can be selected, of course.
3780 Otherwise, display the menu as usual. */
3781 if (select_mode == multiple_symbols_all && max_results > 1)
3782 return nsyms;
3783
3784 printf_unfiltered (_("[0] cancel\n"));
3785 if (max_results > 1)
3786 printf_unfiltered (_("[1] all\n"));
3787
3788 sort_choices (syms, nsyms);
3789
3790 for (i = 0; i < nsyms; i += 1)
3791 {
3792 if (syms[i].symbol == NULL)
3793 continue;
3794
3795 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3796 {
3797 struct symtab_and_line sal =
3798 find_function_start_sal (syms[i].symbol, 1);
3799
3800 if (sal.symtab == NULL)
3801 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3802 i + first_choice,
3803 SYMBOL_PRINT_NAME (syms[i].symbol),
3804 sal.line);
3805 else
3806 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3807 SYMBOL_PRINT_NAME (syms[i].symbol),
3808 symtab_to_filename_for_display (sal.symtab),
3809 sal.line);
3810 continue;
3811 }
3812 else
3813 {
3814 int is_enumeral =
3815 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3816 && SYMBOL_TYPE (syms[i].symbol) != NULL
3817 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3818 struct symtab *symtab = NULL;
3819
3820 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3821 symtab = symbol_symtab (syms[i].symbol);
3822
3823 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3824 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3825 i + first_choice,
3826 SYMBOL_PRINT_NAME (syms[i].symbol),
3827 symtab_to_filename_for_display (symtab),
3828 SYMBOL_LINE (syms[i].symbol));
3829 else if (is_enumeral
3830 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3831 {
3832 printf_unfiltered (("[%d] "), i + first_choice);
3833 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3834 gdb_stdout, -1, 0, &type_print_raw_options);
3835 printf_unfiltered (_("'(%s) (enumeral)\n"),
3836 SYMBOL_PRINT_NAME (syms[i].symbol));
3837 }
3838 else if (symtab != NULL)
3839 printf_unfiltered (is_enumeral
3840 ? _("[%d] %s in %s (enumeral)\n")
3841 : _("[%d] %s at %s:?\n"),
3842 i + first_choice,
3843 SYMBOL_PRINT_NAME (syms[i].symbol),
3844 symtab_to_filename_for_display (symtab));
3845 else
3846 printf_unfiltered (is_enumeral
3847 ? _("[%d] %s (enumeral)\n")
3848 : _("[%d] %s at ?\n"),
3849 i + first_choice,
3850 SYMBOL_PRINT_NAME (syms[i].symbol));
3851 }
3852 }
3853
3854 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3855 "overload-choice");
3856
3857 for (i = 0; i < n_chosen; i += 1)
3858 syms[i] = syms[chosen[i]];
3859
3860 return n_chosen;
3861}
3862
3863/* Read and validate a set of numeric choices from the user in the
3864 range 0 .. N_CHOICES-1. Place the results in increasing
3865 order in CHOICES[0 .. N-1], and return N.
3866
3867 The user types choices as a sequence of numbers on one line
3868 separated by blanks, encoding them as follows:
3869
3870 + A choice of 0 means to cancel the selection, throwing an error.
3871 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3872 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3873
3874 The user is not allowed to choose more than MAX_RESULTS values.
3875
3876 ANNOTATION_SUFFIX, if present, is used to annotate the input
3877 prompts (for use with the -f switch). */
3878
3879int
3880get_selections (int *choices, int n_choices, int max_results,
3881 int is_all_choice, char *annotation_suffix)
3882{
3883 char *args;
3884 char *prompt;
3885 int n_chosen;
3886 int first_choice = is_all_choice ? 2 : 1;
3887
3888 prompt = getenv ("PS2");
3889 if (prompt == NULL)
3890 prompt = "> ";
3891
3892 args = command_line_input (prompt, 0, annotation_suffix);
3893
3894 if (args == NULL)
3895 error_no_arg (_("one or more choice numbers"));
3896
3897 n_chosen = 0;
3898
3899 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3900 order, as given in args. Choices are validated. */
3901 while (1)
3902 {
3903 char *args2;
3904 int choice, j;
3905
3906 args = skip_spaces (args);
3907 if (*args == '\0' && n_chosen == 0)
3908 error_no_arg (_("one or more choice numbers"));
3909 else if (*args == '\0')
3910 break;
3911
3912 choice = strtol (args, &args2, 10);
3913 if (args == args2 || choice < 0
3914 || choice > n_choices + first_choice - 1)
3915 error (_("Argument must be choice number"));
3916 args = args2;
3917
3918 if (choice == 0)
3919 error (_("cancelled"));
3920
3921 if (choice < first_choice)
3922 {
3923 n_chosen = n_choices;
3924 for (j = 0; j < n_choices; j += 1)
3925 choices[j] = j;
3926 break;
3927 }
3928 choice -= first_choice;
3929
3930 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3931 {
3932 }
3933
3934 if (j < 0 || choice != choices[j])
3935 {
3936 int k;
3937
3938 for (k = n_chosen - 1; k > j; k -= 1)
3939 choices[k + 1] = choices[k];
3940 choices[j + 1] = choice;
3941 n_chosen += 1;
3942 }
3943 }
3944
3945 if (n_chosen > max_results)
3946 error (_("Select no more than %d of the above"), max_results);
3947
3948 return n_chosen;
3949}
3950
3951/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3952 on the function identified by SYM and BLOCK, and taking NARGS
3953 arguments. Update *EXPP as needed to hold more space. */
3954
3955static void
3956replace_operator_with_call (struct expression **expp, int pc, int nargs,
3957 int oplen, struct symbol *sym,
3958 const struct block *block)
3959{
3960 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3961 symbol, -oplen for operator being replaced). */
3962 struct expression *newexp = (struct expression *)
3963 xzalloc (sizeof (struct expression)
3964 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3965 struct expression *exp = *expp;
3966
3967 newexp->nelts = exp->nelts + 7 - oplen;
3968 newexp->language_defn = exp->language_defn;
3969 newexp->gdbarch = exp->gdbarch;
3970 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3971 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3972 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3973
3974 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3975 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3976
3977 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3978 newexp->elts[pc + 4].block = block;
3979 newexp->elts[pc + 5].symbol = sym;
3980
3981 *expp = newexp;
3982 xfree (exp);
3983}
3984
3985/* Type-class predicates */
3986
3987/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3988 or FLOAT). */
3989
3990static int
3991numeric_type_p (struct type *type)
3992{
3993 if (type == NULL)
3994 return 0;
3995 else
3996 {
3997 switch (TYPE_CODE (type))
3998 {
3999 case TYPE_CODE_INT:
4000 case TYPE_CODE_FLT:
4001 return 1;
4002 case TYPE_CODE_RANGE:
4003 return (type == TYPE_TARGET_TYPE (type)
4004 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4005 default:
4006 return 0;
4007 }
4008 }
4009}
4010
4011/* True iff TYPE is integral (an INT or RANGE of INTs). */
4012
4013static int
4014integer_type_p (struct type *type)
4015{
4016 if (type == NULL)
4017 return 0;
4018 else
4019 {
4020 switch (TYPE_CODE (type))
4021 {
4022 case TYPE_CODE_INT:
4023 return 1;
4024 case TYPE_CODE_RANGE:
4025 return (type == TYPE_TARGET_TYPE (type)
4026 || integer_type_p (TYPE_TARGET_TYPE (type)));
4027 default:
4028 return 0;
4029 }
4030 }
4031}
4032
4033/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4034
4035static int
4036scalar_type_p (struct type *type)
4037{
4038 if (type == NULL)
4039 return 0;
4040 else
4041 {
4042 switch (TYPE_CODE (type))
4043 {
4044 case TYPE_CODE_INT:
4045 case TYPE_CODE_RANGE:
4046 case TYPE_CODE_ENUM:
4047 case TYPE_CODE_FLT:
4048 return 1;
4049 default:
4050 return 0;
4051 }
4052 }
4053}
4054
4055/* True iff TYPE is discrete (INT, RANGE, ENUM). */
4056
4057static int
4058discrete_type_p (struct type *type)
4059{
4060 if (type == NULL)
4061 return 0;
4062 else
4063 {
4064 switch (TYPE_CODE (type))
4065 {
4066 case TYPE_CODE_INT:
4067 case TYPE_CODE_RANGE:
4068 case TYPE_CODE_ENUM:
4069 case TYPE_CODE_BOOL:
4070 return 1;
4071 default:
4072 return 0;
4073 }
4074 }
4075}
4076
4077/* Returns non-zero if OP with operands in the vector ARGS could be
4078 a user-defined function. Errs on the side of pre-defined operators
4079 (i.e., result 0). */
4080
4081static int
4082possible_user_operator_p (enum exp_opcode op, struct value *args[])
4083{
4084 struct type *type0 =
4085 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4086 struct type *type1 =
4087 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4088
4089 if (type0 == NULL)
4090 return 0;
4091
4092 switch (op)
4093 {
4094 default:
4095 return 0;
4096
4097 case BINOP_ADD:
4098 case BINOP_SUB:
4099 case BINOP_MUL:
4100 case BINOP_DIV:
4101 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4102
4103 case BINOP_REM:
4104 case BINOP_MOD:
4105 case BINOP_BITWISE_AND:
4106 case BINOP_BITWISE_IOR:
4107 case BINOP_BITWISE_XOR:
4108 return (!(integer_type_p (type0) && integer_type_p (type1)));
4109
4110 case BINOP_EQUAL:
4111 case BINOP_NOTEQUAL:
4112 case BINOP_LESS:
4113 case BINOP_GTR:
4114 case BINOP_LEQ:
4115 case BINOP_GEQ:
4116 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4117
4118 case BINOP_CONCAT:
4119 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4120
4121 case BINOP_EXP:
4122 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4123
4124 case UNOP_NEG:
4125 case UNOP_PLUS:
4126 case UNOP_LOGICAL_NOT:
4127 case UNOP_ABS:
4128 return (!numeric_type_p (type0));
4129
4130 }
4131}
4132\f
4133 /* Renaming */
4134
4135/* NOTES:
4136
4137 1. In the following, we assume that a renaming type's name may
4138 have an ___XD suffix. It would be nice if this went away at some
4139 point.
4140 2. We handle both the (old) purely type-based representation of
4141 renamings and the (new) variable-based encoding. At some point,
4142 it is devoutly to be hoped that the former goes away
4143 (FIXME: hilfinger-2007-07-09).
4144 3. Subprogram renamings are not implemented, although the XRS
4145 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4146
4147/* If SYM encodes a renaming,
4148
4149 <renaming> renames <renamed entity>,
4150
4151 sets *LEN to the length of the renamed entity's name,
4152 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4153 the string describing the subcomponent selected from the renamed
4154 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4155 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4156 are undefined). Otherwise, returns a value indicating the category
4157 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4158 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4159 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4160 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4161 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4162 may be NULL, in which case they are not assigned.
4163
4164 [Currently, however, GCC does not generate subprogram renamings.] */
4165
4166enum ada_renaming_category
4167ada_parse_renaming (struct symbol *sym,
4168 const char **renamed_entity, int *len,
4169 const char **renaming_expr)
4170{
4171 enum ada_renaming_category kind;
4172 const char *info;
4173 const char *suffix;
4174
4175 if (sym == NULL)
4176 return ADA_NOT_RENAMING;
4177 switch (SYMBOL_CLASS (sym))
4178 {
4179 default:
4180 return ADA_NOT_RENAMING;
4181 case LOC_TYPEDEF:
4182 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4183 renamed_entity, len, renaming_expr);
4184 case LOC_LOCAL:
4185 case LOC_STATIC:
4186 case LOC_COMPUTED:
4187 case LOC_OPTIMIZED_OUT:
4188 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4189 if (info == NULL)
4190 return ADA_NOT_RENAMING;
4191 switch (info[5])
4192 {
4193 case '_':
4194 kind = ADA_OBJECT_RENAMING;
4195 info += 6;
4196 break;
4197 case 'E':
4198 kind = ADA_EXCEPTION_RENAMING;
4199 info += 7;
4200 break;
4201 case 'P':
4202 kind = ADA_PACKAGE_RENAMING;
4203 info += 7;
4204 break;
4205 case 'S':
4206 kind = ADA_SUBPROGRAM_RENAMING;
4207 info += 7;
4208 break;
4209 default:
4210 return ADA_NOT_RENAMING;
4211 }
4212 }
4213
4214 if (renamed_entity != NULL)
4215 *renamed_entity = info;
4216 suffix = strstr (info, "___XE");
4217 if (suffix == NULL || suffix == info)
4218 return ADA_NOT_RENAMING;
4219 if (len != NULL)
4220 *len = strlen (info) - strlen (suffix);
4221 suffix += 5;
4222 if (renaming_expr != NULL)
4223 *renaming_expr = suffix;
4224 return kind;
4225}
4226
4227/* Assuming TYPE encodes a renaming according to the old encoding in
4228 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4229 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4230 ADA_NOT_RENAMING otherwise. */
4231static enum ada_renaming_category
4232parse_old_style_renaming (struct type *type,
4233 const char **renamed_entity, int *len,
4234 const char **renaming_expr)
4235{
4236 enum ada_renaming_category kind;
4237 const char *name;
4238 const char *info;
4239 const char *suffix;
4240
4241 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4242 || TYPE_NFIELDS (type) != 1)
4243 return ADA_NOT_RENAMING;
4244
4245 name = type_name_no_tag (type);
4246 if (name == NULL)
4247 return ADA_NOT_RENAMING;
4248
4249 name = strstr (name, "___XR");
4250 if (name == NULL)
4251 return ADA_NOT_RENAMING;
4252 switch (name[5])
4253 {
4254 case '\0':
4255 case '_':
4256 kind = ADA_OBJECT_RENAMING;
4257 break;
4258 case 'E':
4259 kind = ADA_EXCEPTION_RENAMING;
4260 break;
4261 case 'P':
4262 kind = ADA_PACKAGE_RENAMING;
4263 break;
4264 case 'S':
4265 kind = ADA_SUBPROGRAM_RENAMING;
4266 break;
4267 default:
4268 return ADA_NOT_RENAMING;
4269 }
4270
4271 info = TYPE_FIELD_NAME (type, 0);
4272 if (info == NULL)
4273 return ADA_NOT_RENAMING;
4274 if (renamed_entity != NULL)
4275 *renamed_entity = info;
4276 suffix = strstr (info, "___XE");
4277 if (renaming_expr != NULL)
4278 *renaming_expr = suffix + 5;
4279 if (suffix == NULL || suffix == info)
4280 return ADA_NOT_RENAMING;
4281 if (len != NULL)
4282 *len = suffix - info;
4283 return kind;
4284}
4285
4286/* Compute the value of the given RENAMING_SYM, which is expected to
4287 be a symbol encoding a renaming expression. BLOCK is the block
4288 used to evaluate the renaming. */
4289
4290static struct value *
4291ada_read_renaming_var_value (struct symbol *renaming_sym,
4292 const struct block *block)
4293{
4294 const char *sym_name;
4295 struct expression *expr;
4296 struct value *value;
4297 struct cleanup *old_chain = NULL;
4298
4299 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4300 expr = parse_exp_1 (&sym_name, 0, block, 0);
4301 old_chain = make_cleanup (free_current_contents, &expr);
4302 value = evaluate_expression (expr);
4303
4304 do_cleanups (old_chain);
4305 return value;
4306}
4307\f
4308
4309 /* Evaluation: Function Calls */
4310
4311/* Return an lvalue containing the value VAL. This is the identity on
4312 lvalues, and otherwise has the side-effect of allocating memory
4313 in the inferior where a copy of the value contents is copied. */
4314
4315static struct value *
4316ensure_lval (struct value *val)
4317{
4318 if (VALUE_LVAL (val) == not_lval
4319 || VALUE_LVAL (val) == lval_internalvar)
4320 {
4321 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4322 const CORE_ADDR addr =
4323 value_as_long (value_allocate_space_in_inferior (len));
4324
4325 set_value_address (val, addr);
4326 VALUE_LVAL (val) = lval_memory;
4327 write_memory (addr, value_contents (val), len);
4328 }
4329
4330 return val;
4331}
4332
4333/* Return the value ACTUAL, converted to be an appropriate value for a
4334 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4335 allocating any necessary descriptors (fat pointers), or copies of
4336 values not residing in memory, updating it as needed. */
4337
4338struct value *
4339ada_convert_actual (struct value *actual, struct type *formal_type0)
4340{
4341 struct type *actual_type = ada_check_typedef (value_type (actual));
4342 struct type *formal_type = ada_check_typedef (formal_type0);
4343 struct type *formal_target =
4344 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4345 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4346 struct type *actual_target =
4347 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4348 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4349
4350 if (ada_is_array_descriptor_type (formal_target)
4351 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4352 return make_array_descriptor (formal_type, actual);
4353 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4354 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4355 {
4356 struct value *result;
4357
4358 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4359 && ada_is_array_descriptor_type (actual_target))
4360 result = desc_data (actual);
4361 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4362 {
4363 if (VALUE_LVAL (actual) != lval_memory)
4364 {
4365 struct value *val;
4366
4367 actual_type = ada_check_typedef (value_type (actual));
4368 val = allocate_value (actual_type);
4369 memcpy ((char *) value_contents_raw (val),
4370 (char *) value_contents (actual),
4371 TYPE_LENGTH (actual_type));
4372 actual = ensure_lval (val);
4373 }
4374 result = value_addr (actual);
4375 }
4376 else
4377 return actual;
4378 return value_cast_pointers (formal_type, result, 0);
4379 }
4380 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4381 return ada_value_ind (actual);
4382 else if (ada_is_aligner_type (formal_type))
4383 {
4384 /* We need to turn this parameter into an aligner type
4385 as well. */
4386 struct value *aligner = allocate_value (formal_type);
4387 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4388
4389 value_assign_to_component (aligner, component, actual);
4390 return aligner;
4391 }
4392
4393 return actual;
4394}
4395
4396/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4397 type TYPE. This is usually an inefficient no-op except on some targets
4398 (such as AVR) where the representation of a pointer and an address
4399 differs. */
4400
4401static CORE_ADDR
4402value_pointer (struct value *value, struct type *type)
4403{
4404 struct gdbarch *gdbarch = get_type_arch (type);
4405 unsigned len = TYPE_LENGTH (type);
4406 gdb_byte *buf = (gdb_byte *) alloca (len);
4407 CORE_ADDR addr;
4408
4409 addr = value_address (value);
4410 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4411 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4412 return addr;
4413}
4414
4415
4416/* Push a descriptor of type TYPE for array value ARR on the stack at
4417 *SP, updating *SP to reflect the new descriptor. Return either
4418 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4419 to-descriptor type rather than a descriptor type), a struct value *
4420 representing a pointer to this descriptor. */
4421
4422static struct value *
4423make_array_descriptor (struct type *type, struct value *arr)
4424{
4425 struct type *bounds_type = desc_bounds_type (type);
4426 struct type *desc_type = desc_base_type (type);
4427 struct value *descriptor = allocate_value (desc_type);
4428 struct value *bounds = allocate_value (bounds_type);
4429 int i;
4430
4431 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4432 i > 0; i -= 1)
4433 {
4434 modify_field (value_type (bounds), value_contents_writeable (bounds),
4435 ada_array_bound (arr, i, 0),
4436 desc_bound_bitpos (bounds_type, i, 0),
4437 desc_bound_bitsize (bounds_type, i, 0));
4438 modify_field (value_type (bounds), value_contents_writeable (bounds),
4439 ada_array_bound (arr, i, 1),
4440 desc_bound_bitpos (bounds_type, i, 1),
4441 desc_bound_bitsize (bounds_type, i, 1));
4442 }
4443
4444 bounds = ensure_lval (bounds);
4445
4446 modify_field (value_type (descriptor),
4447 value_contents_writeable (descriptor),
4448 value_pointer (ensure_lval (arr),
4449 TYPE_FIELD_TYPE (desc_type, 0)),
4450 fat_pntr_data_bitpos (desc_type),
4451 fat_pntr_data_bitsize (desc_type));
4452
4453 modify_field (value_type (descriptor),
4454 value_contents_writeable (descriptor),
4455 value_pointer (bounds,
4456 TYPE_FIELD_TYPE (desc_type, 1)),
4457 fat_pntr_bounds_bitpos (desc_type),
4458 fat_pntr_bounds_bitsize (desc_type));
4459
4460 descriptor = ensure_lval (descriptor);
4461
4462 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4463 return value_addr (descriptor);
4464 else
4465 return descriptor;
4466}
4467\f
4468 /* Symbol Cache Module */
4469
4470/* Performance measurements made as of 2010-01-15 indicate that
4471 this cache does bring some noticeable improvements. Depending
4472 on the type of entity being printed, the cache can make it as much
4473 as an order of magnitude faster than without it.
4474
4475 The descriptive type DWARF extension has significantly reduced
4476 the need for this cache, at least when DWARF is being used. However,
4477 even in this case, some expensive name-based symbol searches are still
4478 sometimes necessary - to find an XVZ variable, mostly. */
4479
4480/* Initialize the contents of SYM_CACHE. */
4481
4482static void
4483ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4484{
4485 obstack_init (&sym_cache->cache_space);
4486 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4487}
4488
4489/* Free the memory used by SYM_CACHE. */
4490
4491static void
4492ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4493{
4494 obstack_free (&sym_cache->cache_space, NULL);
4495 xfree (sym_cache);
4496}
4497
4498/* Return the symbol cache associated to the given program space PSPACE.
4499 If not allocated for this PSPACE yet, allocate and initialize one. */
4500
4501static struct ada_symbol_cache *
4502ada_get_symbol_cache (struct program_space *pspace)
4503{
4504 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4505
4506 if (pspace_data->sym_cache == NULL)
4507 {
4508 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4509 ada_init_symbol_cache (pspace_data->sym_cache);
4510 }
4511
4512 return pspace_data->sym_cache;
4513}
4514
4515/* Clear all entries from the symbol cache. */
4516
4517static void
4518ada_clear_symbol_cache (void)
4519{
4520 struct ada_symbol_cache *sym_cache
4521 = ada_get_symbol_cache (current_program_space);
4522
4523 obstack_free (&sym_cache->cache_space, NULL);
4524 ada_init_symbol_cache (sym_cache);
4525}
4526
4527/* Search our cache for an entry matching NAME and DOMAIN.
4528 Return it if found, or NULL otherwise. */
4529
4530static struct cache_entry **
4531find_entry (const char *name, domain_enum domain)
4532{
4533 struct ada_symbol_cache *sym_cache
4534 = ada_get_symbol_cache (current_program_space);
4535 int h = msymbol_hash (name) % HASH_SIZE;
4536 struct cache_entry **e;
4537
4538 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4539 {
4540 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4541 return e;
4542 }
4543 return NULL;
4544}
4545
4546/* Search the symbol cache for an entry matching NAME and DOMAIN.
4547 Return 1 if found, 0 otherwise.
4548
4549 If an entry was found and SYM is not NULL, set *SYM to the entry's
4550 SYM. Same principle for BLOCK if not NULL. */
4551
4552static int
4553lookup_cached_symbol (const char *name, domain_enum domain,
4554 struct symbol **sym, const struct block **block)
4555{
4556 struct cache_entry **e = find_entry (name, domain);
4557
4558 if (e == NULL)
4559 return 0;
4560 if (sym != NULL)
4561 *sym = (*e)->sym;
4562 if (block != NULL)
4563 *block = (*e)->block;
4564 return 1;
4565}
4566
4567/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4568 in domain DOMAIN, save this result in our symbol cache. */
4569
4570static void
4571cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4572 const struct block *block)
4573{
4574 struct ada_symbol_cache *sym_cache
4575 = ada_get_symbol_cache (current_program_space);
4576 int h;
4577 char *copy;
4578 struct cache_entry *e;
4579
4580 /* Symbols for builtin types don't have a block.
4581 For now don't cache such symbols. */
4582 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4583 return;
4584
4585 /* If the symbol is a local symbol, then do not cache it, as a search
4586 for that symbol depends on the context. To determine whether
4587 the symbol is local or not, we check the block where we found it
4588 against the global and static blocks of its associated symtab. */
4589 if (sym
4590 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4591 GLOBAL_BLOCK) != block
4592 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4593 STATIC_BLOCK) != block)
4594 return;
4595
4596 h = msymbol_hash (name) % HASH_SIZE;
4597 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4598 sizeof (*e));
4599 e->next = sym_cache->root[h];
4600 sym_cache->root[h] = e;
4601 e->name = copy
4602 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4603 strcpy (copy, name);
4604 e->sym = sym;
4605 e->domain = domain;
4606 e->block = block;
4607}
4608\f
4609 /* Symbol Lookup */
4610
4611/* Return nonzero if wild matching should be used when searching for
4612 all symbols matching LOOKUP_NAME.
4613
4614 LOOKUP_NAME is expected to be a symbol name after transformation
4615 for Ada lookups (see ada_name_for_lookup). */
4616
4617static int
4618should_use_wild_match (const char *lookup_name)
4619{
4620 return (strstr (lookup_name, "__") == NULL);
4621}
4622
4623/* Return the result of a standard (literal, C-like) lookup of NAME in
4624 given DOMAIN, visible from lexical block BLOCK. */
4625
4626static struct symbol *
4627standard_lookup (const char *name, const struct block *block,
4628 domain_enum domain)
4629{
4630 /* Initialize it just to avoid a GCC false warning. */
4631 struct block_symbol sym = {NULL, NULL};
4632
4633 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4634 return sym.symbol;
4635 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4636 cache_symbol (name, domain, sym.symbol, sym.block);
4637 return sym.symbol;
4638}
4639
4640
4641/* Non-zero iff there is at least one non-function/non-enumeral symbol
4642 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4643 since they contend in overloading in the same way. */
4644static int
4645is_nonfunction (struct block_symbol syms[], int n)
4646{
4647 int i;
4648
4649 for (i = 0; i < n; i += 1)
4650 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4651 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4652 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4653 return 1;
4654
4655 return 0;
4656}
4657
4658/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4659 struct types. Otherwise, they may not. */
4660
4661static int
4662equiv_types (struct type *type0, struct type *type1)
4663{
4664 if (type0 == type1)
4665 return 1;
4666 if (type0 == NULL || type1 == NULL
4667 || TYPE_CODE (type0) != TYPE_CODE (type1))
4668 return 0;
4669 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4670 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4671 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4672 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4673 return 1;
4674
4675 return 0;
4676}
4677
4678/* True iff SYM0 represents the same entity as SYM1, or one that is
4679 no more defined than that of SYM1. */
4680
4681static int
4682lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4683{
4684 if (sym0 == sym1)
4685 return 1;
4686 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4687 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4688 return 0;
4689
4690 switch (SYMBOL_CLASS (sym0))
4691 {
4692 case LOC_UNDEF:
4693 return 1;
4694 case LOC_TYPEDEF:
4695 {
4696 struct type *type0 = SYMBOL_TYPE (sym0);
4697 struct type *type1 = SYMBOL_TYPE (sym1);
4698 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4699 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4700 int len0 = strlen (name0);
4701
4702 return
4703 TYPE_CODE (type0) == TYPE_CODE (type1)
4704 && (equiv_types (type0, type1)
4705 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4706 && startswith (name1 + len0, "___XV")));
4707 }
4708 case LOC_CONST:
4709 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4710 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4711 default:
4712 return 0;
4713 }
4714}
4715
4716/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4717 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4718
4719static void
4720add_defn_to_vec (struct obstack *obstackp,
4721 struct symbol *sym,
4722 const struct block *block)
4723{
4724 int i;
4725 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4726
4727 /* Do not try to complete stub types, as the debugger is probably
4728 already scanning all symbols matching a certain name at the
4729 time when this function is called. Trying to replace the stub
4730 type by its associated full type will cause us to restart a scan
4731 which may lead to an infinite recursion. Instead, the client
4732 collecting the matching symbols will end up collecting several
4733 matches, with at least one of them complete. It can then filter
4734 out the stub ones if needed. */
4735
4736 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4737 {
4738 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4739 return;
4740 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4741 {
4742 prevDefns[i].symbol = sym;
4743 prevDefns[i].block = block;
4744 return;
4745 }
4746 }
4747
4748 {
4749 struct block_symbol info;
4750
4751 info.symbol = sym;
4752 info.block = block;
4753 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4754 }
4755}
4756
4757/* Number of block_symbol structures currently collected in current vector in
4758 OBSTACKP. */
4759
4760static int
4761num_defns_collected (struct obstack *obstackp)
4762{
4763 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4764}
4765
4766/* Vector of block_symbol structures currently collected in current vector in
4767 OBSTACKP. If FINISH, close off the vector and return its final address. */
4768
4769static struct block_symbol *
4770defns_collected (struct obstack *obstackp, int finish)
4771{
4772 if (finish)
4773 return (struct block_symbol *) obstack_finish (obstackp);
4774 else
4775 return (struct block_symbol *) obstack_base (obstackp);
4776}
4777
4778/* Return a bound minimal symbol matching NAME according to Ada
4779 decoding rules. Returns an invalid symbol if there is no such
4780 minimal symbol. Names prefixed with "standard__" are handled
4781 specially: "standard__" is first stripped off, and only static and
4782 global symbols are searched. */
4783
4784struct bound_minimal_symbol
4785ada_lookup_simple_minsym (const char *name)
4786{
4787 struct bound_minimal_symbol result;
4788 struct objfile *objfile;
4789 struct minimal_symbol *msymbol;
4790 const int wild_match_p = should_use_wild_match (name);
4791
4792 memset (&result, 0, sizeof (result));
4793
4794 /* Special case: If the user specifies a symbol name inside package
4795 Standard, do a non-wild matching of the symbol name without
4796 the "standard__" prefix. This was primarily introduced in order
4797 to allow the user to specifically access the standard exceptions
4798 using, for instance, Standard.Constraint_Error when Constraint_Error
4799 is ambiguous (due to the user defining its own Constraint_Error
4800 entity inside its program). */
4801 if (startswith (name, "standard__"))
4802 name += sizeof ("standard__") - 1;
4803
4804 ALL_MSYMBOLS (objfile, msymbol)
4805 {
4806 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4807 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4808 {
4809 result.minsym = msymbol;
4810 result.objfile = objfile;
4811 break;
4812 }
4813 }
4814
4815 return result;
4816}
4817
4818/* For all subprograms that statically enclose the subprogram of the
4819 selected frame, add symbols matching identifier NAME in DOMAIN
4820 and their blocks to the list of data in OBSTACKP, as for
4821 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4822 with a wildcard prefix. */
4823
4824static void
4825add_symbols_from_enclosing_procs (struct obstack *obstackp,
4826 const char *name, domain_enum domain,
4827 int wild_match_p)
4828{
4829}
4830
4831/* True if TYPE is definitely an artificial type supplied to a symbol
4832 for which no debugging information was given in the symbol file. */
4833
4834static int
4835is_nondebugging_type (struct type *type)
4836{
4837 const char *name = ada_type_name (type);
4838
4839 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4840}
4841
4842/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4843 that are deemed "identical" for practical purposes.
4844
4845 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4846 types and that their number of enumerals is identical (in other
4847 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4848
4849static int
4850ada_identical_enum_types_p (struct type *type1, struct type *type2)
4851{
4852 int i;
4853
4854 /* The heuristic we use here is fairly conservative. We consider
4855 that 2 enumerate types are identical if they have the same
4856 number of enumerals and that all enumerals have the same
4857 underlying value and name. */
4858
4859 /* All enums in the type should have an identical underlying value. */
4860 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4861 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4862 return 0;
4863
4864 /* All enumerals should also have the same name (modulo any numerical
4865 suffix). */
4866 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4867 {
4868 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4869 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4870 int len_1 = strlen (name_1);
4871 int len_2 = strlen (name_2);
4872
4873 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4874 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4875 if (len_1 != len_2
4876 || strncmp (TYPE_FIELD_NAME (type1, i),
4877 TYPE_FIELD_NAME (type2, i),
4878 len_1) != 0)
4879 return 0;
4880 }
4881
4882 return 1;
4883}
4884
4885/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4886 that are deemed "identical" for practical purposes. Sometimes,
4887 enumerals are not strictly identical, but their types are so similar
4888 that they can be considered identical.
4889
4890 For instance, consider the following code:
4891
4892 type Color is (Black, Red, Green, Blue, White);
4893 type RGB_Color is new Color range Red .. Blue;
4894
4895 Type RGB_Color is a subrange of an implicit type which is a copy
4896 of type Color. If we call that implicit type RGB_ColorB ("B" is
4897 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4898 As a result, when an expression references any of the enumeral
4899 by name (Eg. "print green"), the expression is technically
4900 ambiguous and the user should be asked to disambiguate. But
4901 doing so would only hinder the user, since it wouldn't matter
4902 what choice he makes, the outcome would always be the same.
4903 So, for practical purposes, we consider them as the same. */
4904
4905static int
4906symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
4907{
4908 int i;
4909
4910 /* Before performing a thorough comparison check of each type,
4911 we perform a series of inexpensive checks. We expect that these
4912 checks will quickly fail in the vast majority of cases, and thus
4913 help prevent the unnecessary use of a more expensive comparison.
4914 Said comparison also expects us to make some of these checks
4915 (see ada_identical_enum_types_p). */
4916
4917 /* Quick check: All symbols should have an enum type. */
4918 for (i = 0; i < nsyms; i++)
4919 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4920 return 0;
4921
4922 /* Quick check: They should all have the same value. */
4923 for (i = 1; i < nsyms; i++)
4924 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4925 return 0;
4926
4927 /* Quick check: They should all have the same number of enumerals. */
4928 for (i = 1; i < nsyms; i++)
4929 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4930 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4931 return 0;
4932
4933 /* All the sanity checks passed, so we might have a set of
4934 identical enumeration types. Perform a more complete
4935 comparison of the type of each symbol. */
4936 for (i = 1; i < nsyms; i++)
4937 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4938 SYMBOL_TYPE (syms[0].symbol)))
4939 return 0;
4940
4941 return 1;
4942}
4943
4944/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4945 duplicate other symbols in the list (The only case I know of where
4946 this happens is when object files containing stabs-in-ecoff are
4947 linked with files containing ordinary ecoff debugging symbols (or no
4948 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4949 Returns the number of items in the modified list. */
4950
4951static int
4952remove_extra_symbols (struct block_symbol *syms, int nsyms)
4953{
4954 int i, j;
4955
4956 /* We should never be called with less than 2 symbols, as there
4957 cannot be any extra symbol in that case. But it's easy to
4958 handle, since we have nothing to do in that case. */
4959 if (nsyms < 2)
4960 return nsyms;
4961
4962 i = 0;
4963 while (i < nsyms)
4964 {
4965 int remove_p = 0;
4966
4967 /* If two symbols have the same name and one of them is a stub type,
4968 the get rid of the stub. */
4969
4970 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
4971 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
4972 {
4973 for (j = 0; j < nsyms; j++)
4974 {
4975 if (j != i
4976 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
4977 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4978 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4979 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
4980 remove_p = 1;
4981 }
4982 }
4983
4984 /* Two symbols with the same name, same class and same address
4985 should be identical. */
4986
4987 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
4988 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
4989 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
4990 {
4991 for (j = 0; j < nsyms; j += 1)
4992 {
4993 if (i != j
4994 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4995 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4996 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
4997 && SYMBOL_CLASS (syms[i].symbol)
4998 == SYMBOL_CLASS (syms[j].symbol)
4999 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5000 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5001 remove_p = 1;
5002 }
5003 }
5004
5005 if (remove_p)
5006 {
5007 for (j = i + 1; j < nsyms; j += 1)
5008 syms[j - 1] = syms[j];
5009 nsyms -= 1;
5010 }
5011
5012 i += 1;
5013 }
5014
5015 /* If all the remaining symbols are identical enumerals, then
5016 just keep the first one and discard the rest.
5017
5018 Unlike what we did previously, we do not discard any entry
5019 unless they are ALL identical. This is because the symbol
5020 comparison is not a strict comparison, but rather a practical
5021 comparison. If all symbols are considered identical, then
5022 we can just go ahead and use the first one and discard the rest.
5023 But if we cannot reduce the list to a single element, we have
5024 to ask the user to disambiguate anyways. And if we have to
5025 present a multiple-choice menu, it's less confusing if the list
5026 isn't missing some choices that were identical and yet distinct. */
5027 if (symbols_are_identical_enums (syms, nsyms))
5028 nsyms = 1;
5029
5030 return nsyms;
5031}
5032
5033/* Given a type that corresponds to a renaming entity, use the type name
5034 to extract the scope (package name or function name, fully qualified,
5035 and following the GNAT encoding convention) where this renaming has been
5036 defined. The string returned needs to be deallocated after use. */
5037
5038static char *
5039xget_renaming_scope (struct type *renaming_type)
5040{
5041 /* The renaming types adhere to the following convention:
5042 <scope>__<rename>___<XR extension>.
5043 So, to extract the scope, we search for the "___XR" extension,
5044 and then backtrack until we find the first "__". */
5045
5046 const char *name = type_name_no_tag (renaming_type);
5047 const char *suffix = strstr (name, "___XR");
5048 const char *last;
5049 int scope_len;
5050 char *scope;
5051
5052 /* Now, backtrack a bit until we find the first "__". Start looking
5053 at suffix - 3, as the <rename> part is at least one character long. */
5054
5055 for (last = suffix - 3; last > name; last--)
5056 if (last[0] == '_' && last[1] == '_')
5057 break;
5058
5059 /* Make a copy of scope and return it. */
5060
5061 scope_len = last - name;
5062 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5063
5064 strncpy (scope, name, scope_len);
5065 scope[scope_len] = '\0';
5066
5067 return scope;
5068}
5069
5070/* Return nonzero if NAME corresponds to a package name. */
5071
5072static int
5073is_package_name (const char *name)
5074{
5075 /* Here, We take advantage of the fact that no symbols are generated
5076 for packages, while symbols are generated for each function.
5077 So the condition for NAME represent a package becomes equivalent
5078 to NAME not existing in our list of symbols. There is only one
5079 small complication with library-level functions (see below). */
5080
5081 char *fun_name;
5082
5083 /* If it is a function that has not been defined at library level,
5084 then we should be able to look it up in the symbols. */
5085 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5086 return 0;
5087
5088 /* Library-level function names start with "_ada_". See if function
5089 "_ada_" followed by NAME can be found. */
5090
5091 /* Do a quick check that NAME does not contain "__", since library-level
5092 functions names cannot contain "__" in them. */
5093 if (strstr (name, "__") != NULL)
5094 return 0;
5095
5096 fun_name = xstrprintf ("_ada_%s", name);
5097
5098 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5099}
5100
5101/* Return nonzero if SYM corresponds to a renaming entity that is
5102 not visible from FUNCTION_NAME. */
5103
5104static int
5105old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5106{
5107 char *scope;
5108 struct cleanup *old_chain;
5109
5110 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5111 return 0;
5112
5113 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5114 old_chain = make_cleanup (xfree, scope);
5115
5116 /* If the rename has been defined in a package, then it is visible. */
5117 if (is_package_name (scope))
5118 {
5119 do_cleanups (old_chain);
5120 return 0;
5121 }
5122
5123 /* Check that the rename is in the current function scope by checking
5124 that its name starts with SCOPE. */
5125
5126 /* If the function name starts with "_ada_", it means that it is
5127 a library-level function. Strip this prefix before doing the
5128 comparison, as the encoding for the renaming does not contain
5129 this prefix. */
5130 if (startswith (function_name, "_ada_"))
5131 function_name += 5;
5132
5133 {
5134 int is_invisible = !startswith (function_name, scope);
5135
5136 do_cleanups (old_chain);
5137 return is_invisible;
5138 }
5139}
5140
5141/* Remove entries from SYMS that corresponds to a renaming entity that
5142 is not visible from the function associated with CURRENT_BLOCK or
5143 that is superfluous due to the presence of more specific renaming
5144 information. Places surviving symbols in the initial entries of
5145 SYMS and returns the number of surviving symbols.
5146
5147 Rationale:
5148 First, in cases where an object renaming is implemented as a
5149 reference variable, GNAT may produce both the actual reference
5150 variable and the renaming encoding. In this case, we discard the
5151 latter.
5152
5153 Second, GNAT emits a type following a specified encoding for each renaming
5154 entity. Unfortunately, STABS currently does not support the definition
5155 of types that are local to a given lexical block, so all renamings types
5156 are emitted at library level. As a consequence, if an application
5157 contains two renaming entities using the same name, and a user tries to
5158 print the value of one of these entities, the result of the ada symbol
5159 lookup will also contain the wrong renaming type.
5160
5161 This function partially covers for this limitation by attempting to
5162 remove from the SYMS list renaming symbols that should be visible
5163 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5164 method with the current information available. The implementation
5165 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5166
5167 - When the user tries to print a rename in a function while there
5168 is another rename entity defined in a package: Normally, the
5169 rename in the function has precedence over the rename in the
5170 package, so the latter should be removed from the list. This is
5171 currently not the case.
5172
5173 - This function will incorrectly remove valid renames if
5174 the CURRENT_BLOCK corresponds to a function which symbol name
5175 has been changed by an "Export" pragma. As a consequence,
5176 the user will be unable to print such rename entities. */
5177
5178static int
5179remove_irrelevant_renamings (struct block_symbol *syms,
5180 int nsyms, const struct block *current_block)
5181{
5182 struct symbol *current_function;
5183 const char *current_function_name;
5184 int i;
5185 int is_new_style_renaming;
5186
5187 /* If there is both a renaming foo___XR... encoded as a variable and
5188 a simple variable foo in the same block, discard the latter.
5189 First, zero out such symbols, then compress. */
5190 is_new_style_renaming = 0;
5191 for (i = 0; i < nsyms; i += 1)
5192 {
5193 struct symbol *sym = syms[i].symbol;
5194 const struct block *block = syms[i].block;
5195 const char *name;
5196 const char *suffix;
5197
5198 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5199 continue;
5200 name = SYMBOL_LINKAGE_NAME (sym);
5201 suffix = strstr (name, "___XR");
5202
5203 if (suffix != NULL)
5204 {
5205 int name_len = suffix - name;
5206 int j;
5207
5208 is_new_style_renaming = 1;
5209 for (j = 0; j < nsyms; j += 1)
5210 if (i != j && syms[j].symbol != NULL
5211 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5212 name_len) == 0
5213 && block == syms[j].block)
5214 syms[j].symbol = NULL;
5215 }
5216 }
5217 if (is_new_style_renaming)
5218 {
5219 int j, k;
5220
5221 for (j = k = 0; j < nsyms; j += 1)
5222 if (syms[j].symbol != NULL)
5223 {
5224 syms[k] = syms[j];
5225 k += 1;
5226 }
5227 return k;
5228 }
5229
5230 /* Extract the function name associated to CURRENT_BLOCK.
5231 Abort if unable to do so. */
5232
5233 if (current_block == NULL)
5234 return nsyms;
5235
5236 current_function = block_linkage_function (current_block);
5237 if (current_function == NULL)
5238 return nsyms;
5239
5240 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5241 if (current_function_name == NULL)
5242 return nsyms;
5243
5244 /* Check each of the symbols, and remove it from the list if it is
5245 a type corresponding to a renaming that is out of the scope of
5246 the current block. */
5247
5248 i = 0;
5249 while (i < nsyms)
5250 {
5251 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5252 == ADA_OBJECT_RENAMING
5253 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5254 {
5255 int j;
5256
5257 for (j = i + 1; j < nsyms; j += 1)
5258 syms[j - 1] = syms[j];
5259 nsyms -= 1;
5260 }
5261 else
5262 i += 1;
5263 }
5264
5265 return nsyms;
5266}
5267
5268/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5269 whose name and domain match NAME and DOMAIN respectively.
5270 If no match was found, then extend the search to "enclosing"
5271 routines (in other words, if we're inside a nested function,
5272 search the symbols defined inside the enclosing functions).
5273 If WILD_MATCH_P is nonzero, perform the naming matching in
5274 "wild" mode (see function "wild_match" for more info).
5275
5276 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5277
5278static void
5279ada_add_local_symbols (struct obstack *obstackp, const char *name,
5280 const struct block *block, domain_enum domain,
5281 int wild_match_p)
5282{
5283 int block_depth = 0;
5284
5285 while (block != NULL)
5286 {
5287 block_depth += 1;
5288 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5289 wild_match_p);
5290
5291 /* If we found a non-function match, assume that's the one. */
5292 if (is_nonfunction (defns_collected (obstackp, 0),
5293 num_defns_collected (obstackp)))
5294 return;
5295
5296 block = BLOCK_SUPERBLOCK (block);
5297 }
5298
5299 /* If no luck so far, try to find NAME as a local symbol in some lexically
5300 enclosing subprogram. */
5301 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5302 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5303}
5304
5305/* An object of this type is used as the user_data argument when
5306 calling the map_matching_symbols method. */
5307
5308struct match_data
5309{
5310 struct objfile *objfile;
5311 struct obstack *obstackp;
5312 struct symbol *arg_sym;
5313 int found_sym;
5314};
5315
5316/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5317 to a list of symbols. DATA0 is a pointer to a struct match_data *
5318 containing the obstack that collects the symbol list, the file that SYM
5319 must come from, a flag indicating whether a non-argument symbol has
5320 been found in the current block, and the last argument symbol
5321 passed in SYM within the current block (if any). When SYM is null,
5322 marking the end of a block, the argument symbol is added if no
5323 other has been found. */
5324
5325static int
5326aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5327{
5328 struct match_data *data = (struct match_data *) data0;
5329
5330 if (sym == NULL)
5331 {
5332 if (!data->found_sym && data->arg_sym != NULL)
5333 add_defn_to_vec (data->obstackp,
5334 fixup_symbol_section (data->arg_sym, data->objfile),
5335 block);
5336 data->found_sym = 0;
5337 data->arg_sym = NULL;
5338 }
5339 else
5340 {
5341 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5342 return 0;
5343 else if (SYMBOL_IS_ARGUMENT (sym))
5344 data->arg_sym = sym;
5345 else
5346 {
5347 data->found_sym = 1;
5348 add_defn_to_vec (data->obstackp,
5349 fixup_symbol_section (sym, data->objfile),
5350 block);
5351 }
5352 }
5353 return 0;
5354}
5355
5356/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5357 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5358 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5359 function "wild_match" for more information). Return whether we found such
5360 symbols. */
5361
5362static int
5363ada_add_block_renamings (struct obstack *obstackp,
5364 const struct block *block,
5365 const char *name,
5366 domain_enum domain,
5367 int wild_match_p)
5368{
5369 struct using_direct *renaming;
5370 int defns_mark = num_defns_collected (obstackp);
5371
5372 for (renaming = block_using (block);
5373 renaming != NULL;
5374 renaming = renaming->next)
5375 {
5376 const char *r_name;
5377 int name_match;
5378
5379 /* Avoid infinite recursions: skip this renaming if we are actually
5380 already traversing it.
5381
5382 Currently, symbol lookup in Ada don't use the namespace machinery from
5383 C++/Fortran support: skip namespace imports that use them. */
5384 if (renaming->searched
5385 || (renaming->import_src != NULL
5386 && renaming->import_src[0] != '\0')
5387 || (renaming->import_dest != NULL
5388 && renaming->import_dest[0] != '\0'))
5389 continue;
5390 renaming->searched = 1;
5391
5392 /* TODO: here, we perform another name-based symbol lookup, which can
5393 pull its own multiple overloads. In theory, we should be able to do
5394 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5395 not a simple name. But in order to do this, we would need to enhance
5396 the DWARF reader to associate a symbol to this renaming, instead of a
5397 name. So, for now, we do something simpler: re-use the C++/Fortran
5398 namespace machinery. */
5399 r_name = (renaming->alias != NULL
5400 ? renaming->alias
5401 : renaming->declaration);
5402 name_match
5403 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5404 if (name_match == 0)
5405 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5406 1, NULL);
5407 renaming->searched = 0;
5408 }
5409 return num_defns_collected (obstackp) != defns_mark;
5410}
5411
5412/* Implements compare_names, but only applying the comparision using
5413 the given CASING. */
5414
5415static int
5416compare_names_with_case (const char *string1, const char *string2,
5417 enum case_sensitivity casing)
5418{
5419 while (*string1 != '\0' && *string2 != '\0')
5420 {
5421 char c1, c2;
5422
5423 if (isspace (*string1) || isspace (*string2))
5424 return strcmp_iw_ordered (string1, string2);
5425
5426 if (casing == case_sensitive_off)
5427 {
5428 c1 = tolower (*string1);
5429 c2 = tolower (*string2);
5430 }
5431 else
5432 {
5433 c1 = *string1;
5434 c2 = *string2;
5435 }
5436 if (c1 != c2)
5437 break;
5438
5439 string1 += 1;
5440 string2 += 1;
5441 }
5442
5443 switch (*string1)
5444 {
5445 case '(':
5446 return strcmp_iw_ordered (string1, string2);
5447 case '_':
5448 if (*string2 == '\0')
5449 {
5450 if (is_name_suffix (string1))
5451 return 0;
5452 else
5453 return 1;
5454 }
5455 /* FALLTHROUGH */
5456 default:
5457 if (*string2 == '(')
5458 return strcmp_iw_ordered (string1, string2);
5459 else
5460 {
5461 if (casing == case_sensitive_off)
5462 return tolower (*string1) - tolower (*string2);
5463 else
5464 return *string1 - *string2;
5465 }
5466 }
5467}
5468
5469/* Compare STRING1 to STRING2, with results as for strcmp.
5470 Compatible with strcmp_iw_ordered in that...
5471
5472 strcmp_iw_ordered (STRING1, STRING2) <= 0
5473
5474 ... implies...
5475
5476 compare_names (STRING1, STRING2) <= 0
5477
5478 (they may differ as to what symbols compare equal). */
5479
5480static int
5481compare_names (const char *string1, const char *string2)
5482{
5483 int result;
5484
5485 /* Similar to what strcmp_iw_ordered does, we need to perform
5486 a case-insensitive comparison first, and only resort to
5487 a second, case-sensitive, comparison if the first one was
5488 not sufficient to differentiate the two strings. */
5489
5490 result = compare_names_with_case (string1, string2, case_sensitive_off);
5491 if (result == 0)
5492 result = compare_names_with_case (string1, string2, case_sensitive_on);
5493
5494 return result;
5495}
5496
5497/* Add to OBSTACKP all non-local symbols whose name and domain match
5498 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5499 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5500
5501static void
5502add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5503 domain_enum domain, int global,
5504 int is_wild_match)
5505{
5506 struct objfile *objfile;
5507 struct compunit_symtab *cu;
5508 struct match_data data;
5509
5510 memset (&data, 0, sizeof data);
5511 data.obstackp = obstackp;
5512
5513 ALL_OBJFILES (objfile)
5514 {
5515 data.objfile = objfile;
5516
5517 if (is_wild_match)
5518 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5519 aux_add_nonlocal_symbols, &data,
5520 wild_match, NULL);
5521 else
5522 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5523 aux_add_nonlocal_symbols, &data,
5524 full_match, compare_names);
5525
5526 ALL_OBJFILE_COMPUNITS (objfile, cu)
5527 {
5528 const struct block *global_block
5529 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5530
5531 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5532 is_wild_match))
5533 data.found_sym = 1;
5534 }
5535 }
5536
5537 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5538 {
5539 ALL_OBJFILES (objfile)
5540 {
5541 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5542 strcpy (name1, "_ada_");
5543 strcpy (name1 + sizeof ("_ada_") - 1, name);
5544 data.objfile = objfile;
5545 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5546 global,
5547 aux_add_nonlocal_symbols,
5548 &data,
5549 full_match, compare_names);
5550 }
5551 }
5552}
5553
5554/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5555 non-zero, enclosing scope and in global scopes, returning the number of
5556 matches. Add these to OBSTACKP.
5557
5558 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5559 symbol match within the nest of blocks whose innermost member is BLOCK,
5560 is the one match returned (no other matches in that or
5561 enclosing blocks is returned). If there are any matches in or
5562 surrounding BLOCK, then these alone are returned.
5563
5564 Names prefixed with "standard__" are handled specially: "standard__"
5565 is first stripped off, and only static and global symbols are searched.
5566
5567 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5568 to lookup global symbols. */
5569
5570static void
5571ada_add_all_symbols (struct obstack *obstackp,
5572 const struct block *block,
5573 const char *name,
5574 domain_enum domain,
5575 int full_search,
5576 int *made_global_lookup_p)
5577{
5578 struct symbol *sym;
5579 const int wild_match_p = should_use_wild_match (name);
5580
5581 if (made_global_lookup_p)
5582 *made_global_lookup_p = 0;
5583
5584 /* Special case: If the user specifies a symbol name inside package
5585 Standard, do a non-wild matching of the symbol name without
5586 the "standard__" prefix. This was primarily introduced in order
5587 to allow the user to specifically access the standard exceptions
5588 using, for instance, Standard.Constraint_Error when Constraint_Error
5589 is ambiguous (due to the user defining its own Constraint_Error
5590 entity inside its program). */
5591 if (startswith (name, "standard__"))
5592 {
5593 block = NULL;
5594 name = name + sizeof ("standard__") - 1;
5595 }
5596
5597 /* Check the non-global symbols. If we have ANY match, then we're done. */
5598
5599 if (block != NULL)
5600 {
5601 if (full_search)
5602 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5603 else
5604 {
5605 /* In the !full_search case we're are being called by
5606 ada_iterate_over_symbols, and we don't want to search
5607 superblocks. */
5608 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5609 wild_match_p);
5610 }
5611 if (num_defns_collected (obstackp) > 0 || !full_search)
5612 return;
5613 }
5614
5615 /* No non-global symbols found. Check our cache to see if we have
5616 already performed this search before. If we have, then return
5617 the same result. */
5618
5619 if (lookup_cached_symbol (name, domain, &sym, &block))
5620 {
5621 if (sym != NULL)
5622 add_defn_to_vec (obstackp, sym, block);
5623 return;
5624 }
5625
5626 if (made_global_lookup_p)
5627 *made_global_lookup_p = 1;
5628
5629 /* Search symbols from all global blocks. */
5630
5631 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5632
5633 /* Now add symbols from all per-file blocks if we've gotten no hits
5634 (not strictly correct, but perhaps better than an error). */
5635
5636 if (num_defns_collected (obstackp) == 0)
5637 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5638}
5639
5640/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5641 non-zero, enclosing scope and in global scopes, returning the number of
5642 matches.
5643 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5644 indicating the symbols found and the blocks and symbol tables (if
5645 any) in which they were found. This vector is transient---good only to
5646 the next call of ada_lookup_symbol_list.
5647
5648 When full_search is non-zero, any non-function/non-enumeral
5649 symbol match within the nest of blocks whose innermost member is BLOCK,
5650 is the one match returned (no other matches in that or
5651 enclosing blocks is returned). If there are any matches in or
5652 surrounding BLOCK, then these alone are returned.
5653
5654 Names prefixed with "standard__" are handled specially: "standard__"
5655 is first stripped off, and only static and global symbols are searched. */
5656
5657static int
5658ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5659 domain_enum domain,
5660 struct block_symbol **results,
5661 int full_search)
5662{
5663 const int wild_match_p = should_use_wild_match (name);
5664 int syms_from_global_search;
5665 int ndefns;
5666
5667 obstack_free (&symbol_list_obstack, NULL);
5668 obstack_init (&symbol_list_obstack);
5669 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5670 full_search, &syms_from_global_search);
5671
5672 ndefns = num_defns_collected (&symbol_list_obstack);
5673 *results = defns_collected (&symbol_list_obstack, 1);
5674
5675 ndefns = remove_extra_symbols (*results, ndefns);
5676
5677 if (ndefns == 0 && full_search && syms_from_global_search)
5678 cache_symbol (name, domain, NULL, NULL);
5679
5680 if (ndefns == 1 && full_search && syms_from_global_search)
5681 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5682
5683 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5684 return ndefns;
5685}
5686
5687/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5688 in global scopes, returning the number of matches, and setting *RESULTS
5689 to a vector of (SYM,BLOCK) tuples.
5690 See ada_lookup_symbol_list_worker for further details. */
5691
5692int
5693ada_lookup_symbol_list (const char *name0, const struct block *block0,
5694 domain_enum domain, struct block_symbol **results)
5695{
5696 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5697}
5698
5699/* Implementation of the la_iterate_over_symbols method. */
5700
5701static void
5702ada_iterate_over_symbols (const struct block *block,
5703 const char *name, domain_enum domain,
5704 symbol_found_callback_ftype *callback,
5705 void *data)
5706{
5707 int ndefs, i;
5708 struct block_symbol *results;
5709
5710 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5711 for (i = 0; i < ndefs; ++i)
5712 {
5713 if (! (*callback) (results[i].symbol, data))
5714 break;
5715 }
5716}
5717
5718/* If NAME is the name of an entity, return a string that should
5719 be used to look that entity up in Ada units. This string should
5720 be deallocated after use using xfree.
5721
5722 NAME can have any form that the "break" or "print" commands might
5723 recognize. In other words, it does not have to be the "natural"
5724 name, or the "encoded" name. */
5725
5726char *
5727ada_name_for_lookup (const char *name)
5728{
5729 char *canon;
5730 int nlen = strlen (name);
5731
5732 if (name[0] == '<' && name[nlen - 1] == '>')
5733 {
5734 canon = (char *) xmalloc (nlen - 1);
5735 memcpy (canon, name + 1, nlen - 2);
5736 canon[nlen - 2] = '\0';
5737 }
5738 else
5739 canon = xstrdup (ada_encode (ada_fold_name (name)));
5740 return canon;
5741}
5742
5743/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5744 to 1, but choosing the first symbol found if there are multiple
5745 choices.
5746
5747 The result is stored in *INFO, which must be non-NULL.
5748 If no match is found, INFO->SYM is set to NULL. */
5749
5750void
5751ada_lookup_encoded_symbol (const char *name, const struct block *block,
5752 domain_enum domain,
5753 struct block_symbol *info)
5754{
5755 struct block_symbol *candidates;
5756 int n_candidates;
5757
5758 gdb_assert (info != NULL);
5759 memset (info, 0, sizeof (struct block_symbol));
5760
5761 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5762 if (n_candidates == 0)
5763 return;
5764
5765 *info = candidates[0];
5766 info->symbol = fixup_symbol_section (info->symbol, NULL);
5767}
5768
5769/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5770 scope and in global scopes, or NULL if none. NAME is folded and
5771 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5772 choosing the first symbol if there are multiple choices.
5773 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5774
5775struct block_symbol
5776ada_lookup_symbol (const char *name, const struct block *block0,
5777 domain_enum domain, int *is_a_field_of_this)
5778{
5779 struct block_symbol info;
5780
5781 if (is_a_field_of_this != NULL)
5782 *is_a_field_of_this = 0;
5783
5784 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5785 block0, domain, &info);
5786 return info;
5787}
5788
5789static struct block_symbol
5790ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5791 const char *name,
5792 const struct block *block,
5793 const domain_enum domain)
5794{
5795 struct block_symbol sym;
5796
5797 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5798 if (sym.symbol != NULL)
5799 return sym;
5800
5801 /* If we haven't found a match at this point, try the primitive
5802 types. In other languages, this search is performed before
5803 searching for global symbols in order to short-circuit that
5804 global-symbol search if it happens that the name corresponds
5805 to a primitive type. But we cannot do the same in Ada, because
5806 it is perfectly legitimate for a program to declare a type which
5807 has the same name as a standard type. If looking up a type in
5808 that situation, we have traditionally ignored the primitive type
5809 in favor of user-defined types. This is why, unlike most other
5810 languages, we search the primitive types this late and only after
5811 having searched the global symbols without success. */
5812
5813 if (domain == VAR_DOMAIN)
5814 {
5815 struct gdbarch *gdbarch;
5816
5817 if (block == NULL)
5818 gdbarch = target_gdbarch ();
5819 else
5820 gdbarch = block_gdbarch (block);
5821 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5822 if (sym.symbol != NULL)
5823 return sym;
5824 }
5825
5826 return (struct block_symbol) {NULL, NULL};
5827}
5828
5829
5830/* True iff STR is a possible encoded suffix of a normal Ada name
5831 that is to be ignored for matching purposes. Suffixes of parallel
5832 names (e.g., XVE) are not included here. Currently, the possible suffixes
5833 are given by any of the regular expressions:
5834
5835 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5836 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5837 TKB [subprogram suffix for task bodies]
5838 _E[0-9]+[bs]$ [protected object entry suffixes]
5839 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5840
5841 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5842 match is performed. This sequence is used to differentiate homonyms,
5843 is an optional part of a valid name suffix. */
5844
5845static int
5846is_name_suffix (const char *str)
5847{
5848 int k;
5849 const char *matching;
5850 const int len = strlen (str);
5851
5852 /* Skip optional leading __[0-9]+. */
5853
5854 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5855 {
5856 str += 3;
5857 while (isdigit (str[0]))
5858 str += 1;
5859 }
5860
5861 /* [.$][0-9]+ */
5862
5863 if (str[0] == '.' || str[0] == '$')
5864 {
5865 matching = str + 1;
5866 while (isdigit (matching[0]))
5867 matching += 1;
5868 if (matching[0] == '\0')
5869 return 1;
5870 }
5871
5872 /* ___[0-9]+ */
5873
5874 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5875 {
5876 matching = str + 3;
5877 while (isdigit (matching[0]))
5878 matching += 1;
5879 if (matching[0] == '\0')
5880 return 1;
5881 }
5882
5883 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5884
5885 if (strcmp (str, "TKB") == 0)
5886 return 1;
5887
5888#if 0
5889 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5890 with a N at the end. Unfortunately, the compiler uses the same
5891 convention for other internal types it creates. So treating
5892 all entity names that end with an "N" as a name suffix causes
5893 some regressions. For instance, consider the case of an enumerated
5894 type. To support the 'Image attribute, it creates an array whose
5895 name ends with N.
5896 Having a single character like this as a suffix carrying some
5897 information is a bit risky. Perhaps we should change the encoding
5898 to be something like "_N" instead. In the meantime, do not do
5899 the following check. */
5900 /* Protected Object Subprograms */
5901 if (len == 1 && str [0] == 'N')
5902 return 1;
5903#endif
5904
5905 /* _E[0-9]+[bs]$ */
5906 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5907 {
5908 matching = str + 3;
5909 while (isdigit (matching[0]))
5910 matching += 1;
5911 if ((matching[0] == 'b' || matching[0] == 's')
5912 && matching [1] == '\0')
5913 return 1;
5914 }
5915
5916 /* ??? We should not modify STR directly, as we are doing below. This
5917 is fine in this case, but may become problematic later if we find
5918 that this alternative did not work, and want to try matching
5919 another one from the begining of STR. Since we modified it, we
5920 won't be able to find the begining of the string anymore! */
5921 if (str[0] == 'X')
5922 {
5923 str += 1;
5924 while (str[0] != '_' && str[0] != '\0')
5925 {
5926 if (str[0] != 'n' && str[0] != 'b')
5927 return 0;
5928 str += 1;
5929 }
5930 }
5931
5932 if (str[0] == '\000')
5933 return 1;
5934
5935 if (str[0] == '_')
5936 {
5937 if (str[1] != '_' || str[2] == '\000')
5938 return 0;
5939 if (str[2] == '_')
5940 {
5941 if (strcmp (str + 3, "JM") == 0)
5942 return 1;
5943 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5944 the LJM suffix in favor of the JM one. But we will
5945 still accept LJM as a valid suffix for a reasonable
5946 amount of time, just to allow ourselves to debug programs
5947 compiled using an older version of GNAT. */
5948 if (strcmp (str + 3, "LJM") == 0)
5949 return 1;
5950 if (str[3] != 'X')
5951 return 0;
5952 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5953 || str[4] == 'U' || str[4] == 'P')
5954 return 1;
5955 if (str[4] == 'R' && str[5] != 'T')
5956 return 1;
5957 return 0;
5958 }
5959 if (!isdigit (str[2]))
5960 return 0;
5961 for (k = 3; str[k] != '\0'; k += 1)
5962 if (!isdigit (str[k]) && str[k] != '_')
5963 return 0;
5964 return 1;
5965 }
5966 if (str[0] == '$' && isdigit (str[1]))
5967 {
5968 for (k = 2; str[k] != '\0'; k += 1)
5969 if (!isdigit (str[k]) && str[k] != '_')
5970 return 0;
5971 return 1;
5972 }
5973 return 0;
5974}
5975
5976/* Return non-zero if the string starting at NAME and ending before
5977 NAME_END contains no capital letters. */
5978
5979static int
5980is_valid_name_for_wild_match (const char *name0)
5981{
5982 const char *decoded_name = ada_decode (name0);
5983 int i;
5984
5985 /* If the decoded name starts with an angle bracket, it means that
5986 NAME0 does not follow the GNAT encoding format. It should then
5987 not be allowed as a possible wild match. */
5988 if (decoded_name[0] == '<')
5989 return 0;
5990
5991 for (i=0; decoded_name[i] != '\0'; i++)
5992 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5993 return 0;
5994
5995 return 1;
5996}
5997
5998/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5999 that could start a simple name. Assumes that *NAMEP points into
6000 the string beginning at NAME0. */
6001
6002static int
6003advance_wild_match (const char **namep, const char *name0, int target0)
6004{
6005 const char *name = *namep;
6006
6007 while (1)
6008 {
6009 int t0, t1;
6010
6011 t0 = *name;
6012 if (t0 == '_')
6013 {
6014 t1 = name[1];
6015 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6016 {
6017 name += 1;
6018 if (name == name0 + 5 && startswith (name0, "_ada"))
6019 break;
6020 else
6021 name += 1;
6022 }
6023 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6024 || name[2] == target0))
6025 {
6026 name += 2;
6027 break;
6028 }
6029 else
6030 return 0;
6031 }
6032 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6033 name += 1;
6034 else
6035 return 0;
6036 }
6037
6038 *namep = name;
6039 return 1;
6040}
6041
6042/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6043 informational suffixes of NAME (i.e., for which is_name_suffix is
6044 true). Assumes that PATN is a lower-cased Ada simple name. */
6045
6046static int
6047wild_match (const char *name, const char *patn)
6048{
6049 const char *p;
6050 const char *name0 = name;
6051
6052 while (1)
6053 {
6054 const char *match = name;
6055
6056 if (*name == *patn)
6057 {
6058 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6059 if (*p != *name)
6060 break;
6061 if (*p == '\0' && is_name_suffix (name))
6062 return match != name0 && !is_valid_name_for_wild_match (name0);
6063
6064 if (name[-1] == '_')
6065 name -= 1;
6066 }
6067 if (!advance_wild_match (&name, name0, *patn))
6068 return 1;
6069 }
6070}
6071
6072/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6073 informational suffix. */
6074
6075static int
6076full_match (const char *sym_name, const char *search_name)
6077{
6078 return !match_name (sym_name, search_name, 0);
6079}
6080
6081
6082/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6083 vector *defn_symbols, updating the list of symbols in OBSTACKP
6084 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6085 OBJFILE is the section containing BLOCK. */
6086
6087static void
6088ada_add_block_symbols (struct obstack *obstackp,
6089 const struct block *block, const char *name,
6090 domain_enum domain, struct objfile *objfile,
6091 int wild)
6092{
6093 struct block_iterator iter;
6094 int name_len = strlen (name);
6095 /* A matching argument symbol, if any. */
6096 struct symbol *arg_sym;
6097 /* Set true when we find a matching non-argument symbol. */
6098 int found_sym;
6099 struct symbol *sym;
6100
6101 arg_sym = NULL;
6102 found_sym = 0;
6103 if (wild)
6104 {
6105 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6106 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6107 {
6108 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6109 SYMBOL_DOMAIN (sym), domain)
6110 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6111 {
6112 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6113 continue;
6114 else if (SYMBOL_IS_ARGUMENT (sym))
6115 arg_sym = sym;
6116 else
6117 {
6118 found_sym = 1;
6119 add_defn_to_vec (obstackp,
6120 fixup_symbol_section (sym, objfile),
6121 block);
6122 }
6123 }
6124 }
6125 }
6126 else
6127 {
6128 for (sym = block_iter_match_first (block, name, full_match, &iter);
6129 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6130 {
6131 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6132 SYMBOL_DOMAIN (sym), domain))
6133 {
6134 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6135 {
6136 if (SYMBOL_IS_ARGUMENT (sym))
6137 arg_sym = sym;
6138 else
6139 {
6140 found_sym = 1;
6141 add_defn_to_vec (obstackp,
6142 fixup_symbol_section (sym, objfile),
6143 block);
6144 }
6145 }
6146 }
6147 }
6148 }
6149
6150 /* Handle renamings. */
6151
6152 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6153 found_sym = 1;
6154
6155 if (!found_sym && arg_sym != NULL)
6156 {
6157 add_defn_to_vec (obstackp,
6158 fixup_symbol_section (arg_sym, objfile),
6159 block);
6160 }
6161
6162 if (!wild)
6163 {
6164 arg_sym = NULL;
6165 found_sym = 0;
6166
6167 ALL_BLOCK_SYMBOLS (block, iter, sym)
6168 {
6169 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6170 SYMBOL_DOMAIN (sym), domain))
6171 {
6172 int cmp;
6173
6174 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6175 if (cmp == 0)
6176 {
6177 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6178 if (cmp == 0)
6179 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6180 name_len);
6181 }
6182
6183 if (cmp == 0
6184 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6185 {
6186 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6187 {
6188 if (SYMBOL_IS_ARGUMENT (sym))
6189 arg_sym = sym;
6190 else
6191 {
6192 found_sym = 1;
6193 add_defn_to_vec (obstackp,
6194 fixup_symbol_section (sym, objfile),
6195 block);
6196 }
6197 }
6198 }
6199 }
6200 }
6201
6202 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6203 They aren't parameters, right? */
6204 if (!found_sym && arg_sym != NULL)
6205 {
6206 add_defn_to_vec (obstackp,
6207 fixup_symbol_section (arg_sym, objfile),
6208 block);
6209 }
6210 }
6211}
6212\f
6213
6214 /* Symbol Completion */
6215
6216/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6217 name in a form that's appropriate for the completion. The result
6218 does not need to be deallocated, but is only good until the next call.
6219
6220 TEXT_LEN is equal to the length of TEXT.
6221 Perform a wild match if WILD_MATCH_P is set.
6222 ENCODED_P should be set if TEXT represents the start of a symbol name
6223 in its encoded form. */
6224
6225static const char *
6226symbol_completion_match (const char *sym_name,
6227 const char *text, int text_len,
6228 int wild_match_p, int encoded_p)
6229{
6230 const int verbatim_match = (text[0] == '<');
6231 int match = 0;
6232
6233 if (verbatim_match)
6234 {
6235 /* Strip the leading angle bracket. */
6236 text = text + 1;
6237 text_len--;
6238 }
6239
6240 /* First, test against the fully qualified name of the symbol. */
6241
6242 if (strncmp (sym_name, text, text_len) == 0)
6243 match = 1;
6244
6245 if (match && !encoded_p)
6246 {
6247 /* One needed check before declaring a positive match is to verify
6248 that iff we are doing a verbatim match, the decoded version
6249 of the symbol name starts with '<'. Otherwise, this symbol name
6250 is not a suitable completion. */
6251 const char *sym_name_copy = sym_name;
6252 int has_angle_bracket;
6253
6254 sym_name = ada_decode (sym_name);
6255 has_angle_bracket = (sym_name[0] == '<');
6256 match = (has_angle_bracket == verbatim_match);
6257 sym_name = sym_name_copy;
6258 }
6259
6260 if (match && !verbatim_match)
6261 {
6262 /* When doing non-verbatim match, another check that needs to
6263 be done is to verify that the potentially matching symbol name
6264 does not include capital letters, because the ada-mode would
6265 not be able to understand these symbol names without the
6266 angle bracket notation. */
6267 const char *tmp;
6268
6269 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6270 if (*tmp != '\0')
6271 match = 0;
6272 }
6273
6274 /* Second: Try wild matching... */
6275
6276 if (!match && wild_match_p)
6277 {
6278 /* Since we are doing wild matching, this means that TEXT
6279 may represent an unqualified symbol name. We therefore must
6280 also compare TEXT against the unqualified name of the symbol. */
6281 sym_name = ada_unqualified_name (ada_decode (sym_name));
6282
6283 if (strncmp (sym_name, text, text_len) == 0)
6284 match = 1;
6285 }
6286
6287 /* Finally: If we found a mach, prepare the result to return. */
6288
6289 if (!match)
6290 return NULL;
6291
6292 if (verbatim_match)
6293 sym_name = add_angle_brackets (sym_name);
6294
6295 if (!encoded_p)
6296 sym_name = ada_decode (sym_name);
6297
6298 return sym_name;
6299}
6300
6301/* A companion function to ada_make_symbol_completion_list().
6302 Check if SYM_NAME represents a symbol which name would be suitable
6303 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6304 it is appended at the end of the given string vector SV.
6305
6306 ORIG_TEXT is the string original string from the user command
6307 that needs to be completed. WORD is the entire command on which
6308 completion should be performed. These two parameters are used to
6309 determine which part of the symbol name should be added to the
6310 completion vector.
6311 if WILD_MATCH_P is set, then wild matching is performed.
6312 ENCODED_P should be set if TEXT represents a symbol name in its
6313 encoded formed (in which case the completion should also be
6314 encoded). */
6315
6316static void
6317symbol_completion_add (VEC(char_ptr) **sv,
6318 const char *sym_name,
6319 const char *text, int text_len,
6320 const char *orig_text, const char *word,
6321 int wild_match_p, int encoded_p)
6322{
6323 const char *match = symbol_completion_match (sym_name, text, text_len,
6324 wild_match_p, encoded_p);
6325 char *completion;
6326
6327 if (match == NULL)
6328 return;
6329
6330 /* We found a match, so add the appropriate completion to the given
6331 string vector. */
6332
6333 if (word == orig_text)
6334 {
6335 completion = (char *) xmalloc (strlen (match) + 5);
6336 strcpy (completion, match);
6337 }
6338 else if (word > orig_text)
6339 {
6340 /* Return some portion of sym_name. */
6341 completion = (char *) xmalloc (strlen (match) + 5);
6342 strcpy (completion, match + (word - orig_text));
6343 }
6344 else
6345 {
6346 /* Return some of ORIG_TEXT plus sym_name. */
6347 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6348 strncpy (completion, word, orig_text - word);
6349 completion[orig_text - word] = '\0';
6350 strcat (completion, match);
6351 }
6352
6353 VEC_safe_push (char_ptr, *sv, completion);
6354}
6355
6356/* An object of this type is passed as the user_data argument to the
6357 expand_symtabs_matching method. */
6358struct add_partial_datum
6359{
6360 VEC(char_ptr) **completions;
6361 const char *text;
6362 int text_len;
6363 const char *text0;
6364 const char *word;
6365 int wild_match;
6366 int encoded;
6367};
6368
6369/* A callback for expand_symtabs_matching. */
6370
6371static int
6372ada_complete_symbol_matcher (const char *name, void *user_data)
6373{
6374 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6375
6376 return symbol_completion_match (name, data->text, data->text_len,
6377 data->wild_match, data->encoded) != NULL;
6378}
6379
6380/* Return a list of possible symbol names completing TEXT0. WORD is
6381 the entire command on which completion is made. */
6382
6383static VEC (char_ptr) *
6384ada_make_symbol_completion_list (const char *text0, const char *word,
6385 enum type_code code)
6386{
6387 char *text;
6388 int text_len;
6389 int wild_match_p;
6390 int encoded_p;
6391 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6392 struct symbol *sym;
6393 struct compunit_symtab *s;
6394 struct minimal_symbol *msymbol;
6395 struct objfile *objfile;
6396 const struct block *b, *surrounding_static_block = 0;
6397 int i;
6398 struct block_iterator iter;
6399 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6400
6401 gdb_assert (code == TYPE_CODE_UNDEF);
6402
6403 if (text0[0] == '<')
6404 {
6405 text = xstrdup (text0);
6406 make_cleanup (xfree, text);
6407 text_len = strlen (text);
6408 wild_match_p = 0;
6409 encoded_p = 1;
6410 }
6411 else
6412 {
6413 text = xstrdup (ada_encode (text0));
6414 make_cleanup (xfree, text);
6415 text_len = strlen (text);
6416 for (i = 0; i < text_len; i++)
6417 text[i] = tolower (text[i]);
6418
6419 encoded_p = (strstr (text0, "__") != NULL);
6420 /* If the name contains a ".", then the user is entering a fully
6421 qualified entity name, and the match must not be done in wild
6422 mode. Similarly, if the user wants to complete what looks like
6423 an encoded name, the match must not be done in wild mode. */
6424 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6425 }
6426
6427 /* First, look at the partial symtab symbols. */
6428 {
6429 struct add_partial_datum data;
6430
6431 data.completions = &completions;
6432 data.text = text;
6433 data.text_len = text_len;
6434 data.text0 = text0;
6435 data.word = word;
6436 data.wild_match = wild_match_p;
6437 data.encoded = encoded_p;
6438 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6439 ALL_DOMAIN, &data);
6440 }
6441
6442 /* At this point scan through the misc symbol vectors and add each
6443 symbol you find to the list. Eventually we want to ignore
6444 anything that isn't a text symbol (everything else will be
6445 handled by the psymtab code above). */
6446
6447 ALL_MSYMBOLS (objfile, msymbol)
6448 {
6449 QUIT;
6450 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6451 text, text_len, text0, word, wild_match_p,
6452 encoded_p);
6453 }
6454
6455 /* Search upwards from currently selected frame (so that we can
6456 complete on local vars. */
6457
6458 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6459 {
6460 if (!BLOCK_SUPERBLOCK (b))
6461 surrounding_static_block = b; /* For elmin of dups */
6462
6463 ALL_BLOCK_SYMBOLS (b, iter, sym)
6464 {
6465 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6466 text, text_len, text0, word,
6467 wild_match_p, encoded_p);
6468 }
6469 }
6470
6471 /* Go through the symtabs and check the externs and statics for
6472 symbols which match. */
6473
6474 ALL_COMPUNITS (objfile, s)
6475 {
6476 QUIT;
6477 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6478 ALL_BLOCK_SYMBOLS (b, iter, sym)
6479 {
6480 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6481 text, text_len, text0, word,
6482 wild_match_p, encoded_p);
6483 }
6484 }
6485
6486 ALL_COMPUNITS (objfile, s)
6487 {
6488 QUIT;
6489 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6490 /* Don't do this block twice. */
6491 if (b == surrounding_static_block)
6492 continue;
6493 ALL_BLOCK_SYMBOLS (b, iter, sym)
6494 {
6495 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6496 text, text_len, text0, word,
6497 wild_match_p, encoded_p);
6498 }
6499 }
6500
6501 do_cleanups (old_chain);
6502 return completions;
6503}
6504
6505 /* Field Access */
6506
6507/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6508 for tagged types. */
6509
6510static int
6511ada_is_dispatch_table_ptr_type (struct type *type)
6512{
6513 const char *name;
6514
6515 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6516 return 0;
6517
6518 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6519 if (name == NULL)
6520 return 0;
6521
6522 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6523}
6524
6525/* Return non-zero if TYPE is an interface tag. */
6526
6527static int
6528ada_is_interface_tag (struct type *type)
6529{
6530 const char *name = TYPE_NAME (type);
6531
6532 if (name == NULL)
6533 return 0;
6534
6535 return (strcmp (name, "ada__tags__interface_tag") == 0);
6536}
6537
6538/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6539 to be invisible to users. */
6540
6541int
6542ada_is_ignored_field (struct type *type, int field_num)
6543{
6544 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6545 return 1;
6546
6547 /* Check the name of that field. */
6548 {
6549 const char *name = TYPE_FIELD_NAME (type, field_num);
6550
6551 /* Anonymous field names should not be printed.
6552 brobecker/2007-02-20: I don't think this can actually happen
6553 but we don't want to print the value of annonymous fields anyway. */
6554 if (name == NULL)
6555 return 1;
6556
6557 /* Normally, fields whose name start with an underscore ("_")
6558 are fields that have been internally generated by the compiler,
6559 and thus should not be printed. The "_parent" field is special,
6560 however: This is a field internally generated by the compiler
6561 for tagged types, and it contains the components inherited from
6562 the parent type. This field should not be printed as is, but
6563 should not be ignored either. */
6564 if (name[0] == '_' && !startswith (name, "_parent"))
6565 return 1;
6566 }
6567
6568 /* If this is the dispatch table of a tagged type or an interface tag,
6569 then ignore. */
6570 if (ada_is_tagged_type (type, 1)
6571 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6572 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6573 return 1;
6574
6575 /* Not a special field, so it should not be ignored. */
6576 return 0;
6577}
6578
6579/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6580 pointer or reference type whose ultimate target has a tag field. */
6581
6582int
6583ada_is_tagged_type (struct type *type, int refok)
6584{
6585 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6586}
6587
6588/* True iff TYPE represents the type of X'Tag */
6589
6590int
6591ada_is_tag_type (struct type *type)
6592{
6593 type = ada_check_typedef (type);
6594
6595 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6596 return 0;
6597 else
6598 {
6599 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6600
6601 return (name != NULL
6602 && strcmp (name, "ada__tags__dispatch_table") == 0);
6603 }
6604}
6605
6606/* The type of the tag on VAL. */
6607
6608struct type *
6609ada_tag_type (struct value *val)
6610{
6611 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6612}
6613
6614/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6615 retired at Ada 05). */
6616
6617static int
6618is_ada95_tag (struct value *tag)
6619{
6620 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6621}
6622
6623/* The value of the tag on VAL. */
6624
6625struct value *
6626ada_value_tag (struct value *val)
6627{
6628 return ada_value_struct_elt (val, "_tag", 0);
6629}
6630
6631/* The value of the tag on the object of type TYPE whose contents are
6632 saved at VALADDR, if it is non-null, or is at memory address
6633 ADDRESS. */
6634
6635static struct value *
6636value_tag_from_contents_and_address (struct type *type,
6637 const gdb_byte *valaddr,
6638 CORE_ADDR address)
6639{
6640 int tag_byte_offset;
6641 struct type *tag_type;
6642
6643 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6644 NULL, NULL, NULL))
6645 {
6646 const gdb_byte *valaddr1 = ((valaddr == NULL)
6647 ? NULL
6648 : valaddr + tag_byte_offset);
6649 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6650
6651 return value_from_contents_and_address (tag_type, valaddr1, address1);
6652 }
6653 return NULL;
6654}
6655
6656static struct type *
6657type_from_tag (struct value *tag)
6658{
6659 const char *type_name = ada_tag_name (tag);
6660
6661 if (type_name != NULL)
6662 return ada_find_any_type (ada_encode (type_name));
6663 return NULL;
6664}
6665
6666/* Given a value OBJ of a tagged type, return a value of this
6667 type at the base address of the object. The base address, as
6668 defined in Ada.Tags, it is the address of the primary tag of
6669 the object, and therefore where the field values of its full
6670 view can be fetched. */
6671
6672struct value *
6673ada_tag_value_at_base_address (struct value *obj)
6674{
6675 struct value *val;
6676 LONGEST offset_to_top = 0;
6677 struct type *ptr_type, *obj_type;
6678 struct value *tag;
6679 CORE_ADDR base_address;
6680
6681 obj_type = value_type (obj);
6682
6683 /* It is the responsability of the caller to deref pointers. */
6684
6685 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6686 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6687 return obj;
6688
6689 tag = ada_value_tag (obj);
6690 if (!tag)
6691 return obj;
6692
6693 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6694
6695 if (is_ada95_tag (tag))
6696 return obj;
6697
6698 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6699 ptr_type = lookup_pointer_type (ptr_type);
6700 val = value_cast (ptr_type, tag);
6701 if (!val)
6702 return obj;
6703
6704 /* It is perfectly possible that an exception be raised while
6705 trying to determine the base address, just like for the tag;
6706 see ada_tag_name for more details. We do not print the error
6707 message for the same reason. */
6708
6709 TRY
6710 {
6711 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6712 }
6713
6714 CATCH (e, RETURN_MASK_ERROR)
6715 {
6716 return obj;
6717 }
6718 END_CATCH
6719
6720 /* If offset is null, nothing to do. */
6721
6722 if (offset_to_top == 0)
6723 return obj;
6724
6725 /* -1 is a special case in Ada.Tags; however, what should be done
6726 is not quite clear from the documentation. So do nothing for
6727 now. */
6728
6729 if (offset_to_top == -1)
6730 return obj;
6731
6732 base_address = value_address (obj) - offset_to_top;
6733 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6734
6735 /* Make sure that we have a proper tag at the new address.
6736 Otherwise, offset_to_top is bogus (which can happen when
6737 the object is not initialized yet). */
6738
6739 if (!tag)
6740 return obj;
6741
6742 obj_type = type_from_tag (tag);
6743
6744 if (!obj_type)
6745 return obj;
6746
6747 return value_from_contents_and_address (obj_type, NULL, base_address);
6748}
6749
6750/* Return the "ada__tags__type_specific_data" type. */
6751
6752static struct type *
6753ada_get_tsd_type (struct inferior *inf)
6754{
6755 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6756
6757 if (data->tsd_type == 0)
6758 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6759 return data->tsd_type;
6760}
6761
6762/* Return the TSD (type-specific data) associated to the given TAG.
6763 TAG is assumed to be the tag of a tagged-type entity.
6764
6765 May return NULL if we are unable to get the TSD. */
6766
6767static struct value *
6768ada_get_tsd_from_tag (struct value *tag)
6769{
6770 struct value *val;
6771 struct type *type;
6772
6773 /* First option: The TSD is simply stored as a field of our TAG.
6774 Only older versions of GNAT would use this format, but we have
6775 to test it first, because there are no visible markers for
6776 the current approach except the absence of that field. */
6777
6778 val = ada_value_struct_elt (tag, "tsd", 1);
6779 if (val)
6780 return val;
6781
6782 /* Try the second representation for the dispatch table (in which
6783 there is no explicit 'tsd' field in the referent of the tag pointer,
6784 and instead the tsd pointer is stored just before the dispatch
6785 table. */
6786
6787 type = ada_get_tsd_type (current_inferior());
6788 if (type == NULL)
6789 return NULL;
6790 type = lookup_pointer_type (lookup_pointer_type (type));
6791 val = value_cast (type, tag);
6792 if (val == NULL)
6793 return NULL;
6794 return value_ind (value_ptradd (val, -1));
6795}
6796
6797/* Given the TSD of a tag (type-specific data), return a string
6798 containing the name of the associated type.
6799
6800 The returned value is good until the next call. May return NULL
6801 if we are unable to determine the tag name. */
6802
6803static char *
6804ada_tag_name_from_tsd (struct value *tsd)
6805{
6806 static char name[1024];
6807 char *p;
6808 struct value *val;
6809
6810 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6811 if (val == NULL)
6812 return NULL;
6813 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6814 for (p = name; *p != '\0'; p += 1)
6815 if (isalpha (*p))
6816 *p = tolower (*p);
6817 return name;
6818}
6819
6820/* The type name of the dynamic type denoted by the 'tag value TAG, as
6821 a C string.
6822
6823 Return NULL if the TAG is not an Ada tag, or if we were unable to
6824 determine the name of that tag. The result is good until the next
6825 call. */
6826
6827const char *
6828ada_tag_name (struct value *tag)
6829{
6830 char *name = NULL;
6831
6832 if (!ada_is_tag_type (value_type (tag)))
6833 return NULL;
6834
6835 /* It is perfectly possible that an exception be raised while trying
6836 to determine the TAG's name, even under normal circumstances:
6837 The associated variable may be uninitialized or corrupted, for
6838 instance. We do not let any exception propagate past this point.
6839 instead we return NULL.
6840
6841 We also do not print the error message either (which often is very
6842 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6843 the caller print a more meaningful message if necessary. */
6844 TRY
6845 {
6846 struct value *tsd = ada_get_tsd_from_tag (tag);
6847
6848 if (tsd != NULL)
6849 name = ada_tag_name_from_tsd (tsd);
6850 }
6851 CATCH (e, RETURN_MASK_ERROR)
6852 {
6853 }
6854 END_CATCH
6855
6856 return name;
6857}
6858
6859/* The parent type of TYPE, or NULL if none. */
6860
6861struct type *
6862ada_parent_type (struct type *type)
6863{
6864 int i;
6865
6866 type = ada_check_typedef (type);
6867
6868 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6869 return NULL;
6870
6871 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6872 if (ada_is_parent_field (type, i))
6873 {
6874 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6875
6876 /* If the _parent field is a pointer, then dereference it. */
6877 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6878 parent_type = TYPE_TARGET_TYPE (parent_type);
6879 /* If there is a parallel XVS type, get the actual base type. */
6880 parent_type = ada_get_base_type (parent_type);
6881
6882 return ada_check_typedef (parent_type);
6883 }
6884
6885 return NULL;
6886}
6887
6888/* True iff field number FIELD_NUM of structure type TYPE contains the
6889 parent-type (inherited) fields of a derived type. Assumes TYPE is
6890 a structure type with at least FIELD_NUM+1 fields. */
6891
6892int
6893ada_is_parent_field (struct type *type, int field_num)
6894{
6895 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6896
6897 return (name != NULL
6898 && (startswith (name, "PARENT")
6899 || startswith (name, "_parent")));
6900}
6901
6902/* True iff field number FIELD_NUM of structure type TYPE is a
6903 transparent wrapper field (which should be silently traversed when doing
6904 field selection and flattened when printing). Assumes TYPE is a
6905 structure type with at least FIELD_NUM+1 fields. Such fields are always
6906 structures. */
6907
6908int
6909ada_is_wrapper_field (struct type *type, int field_num)
6910{
6911 const char *name = TYPE_FIELD_NAME (type, field_num);
6912
6913 return (name != NULL
6914 && (startswith (name, "PARENT")
6915 || strcmp (name, "REP") == 0
6916 || startswith (name, "_parent")
6917 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6918}
6919
6920/* True iff field number FIELD_NUM of structure or union type TYPE
6921 is a variant wrapper. Assumes TYPE is a structure type with at least
6922 FIELD_NUM+1 fields. */
6923
6924int
6925ada_is_variant_part (struct type *type, int field_num)
6926{
6927 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6928
6929 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6930 || (is_dynamic_field (type, field_num)
6931 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6932 == TYPE_CODE_UNION)));
6933}
6934
6935/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6936 whose discriminants are contained in the record type OUTER_TYPE,
6937 returns the type of the controlling discriminant for the variant.
6938 May return NULL if the type could not be found. */
6939
6940struct type *
6941ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6942{
6943 char *name = ada_variant_discrim_name (var_type);
6944
6945 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6946}
6947
6948/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6949 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6950 represents a 'when others' clause; otherwise 0. */
6951
6952int
6953ada_is_others_clause (struct type *type, int field_num)
6954{
6955 const char *name = TYPE_FIELD_NAME (type, field_num);
6956
6957 return (name != NULL && name[0] == 'O');
6958}
6959
6960/* Assuming that TYPE0 is the type of the variant part of a record,
6961 returns the name of the discriminant controlling the variant.
6962 The value is valid until the next call to ada_variant_discrim_name. */
6963
6964char *
6965ada_variant_discrim_name (struct type *type0)
6966{
6967 static char *result = NULL;
6968 static size_t result_len = 0;
6969 struct type *type;
6970 const char *name;
6971 const char *discrim_end;
6972 const char *discrim_start;
6973
6974 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6975 type = TYPE_TARGET_TYPE (type0);
6976 else
6977 type = type0;
6978
6979 name = ada_type_name (type);
6980
6981 if (name == NULL || name[0] == '\000')
6982 return "";
6983
6984 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6985 discrim_end -= 1)
6986 {
6987 if (startswith (discrim_end, "___XVN"))
6988 break;
6989 }
6990 if (discrim_end == name)
6991 return "";
6992
6993 for (discrim_start = discrim_end; discrim_start != name + 3;
6994 discrim_start -= 1)
6995 {
6996 if (discrim_start == name + 1)
6997 return "";
6998 if ((discrim_start > name + 3
6999 && startswith (discrim_start - 3, "___"))
7000 || discrim_start[-1] == '.')
7001 break;
7002 }
7003
7004 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7005 strncpy (result, discrim_start, discrim_end - discrim_start);
7006 result[discrim_end - discrim_start] = '\0';
7007 return result;
7008}
7009
7010/* Scan STR for a subtype-encoded number, beginning at position K.
7011 Put the position of the character just past the number scanned in
7012 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7013 Return 1 if there was a valid number at the given position, and 0
7014 otherwise. A "subtype-encoded" number consists of the absolute value
7015 in decimal, followed by the letter 'm' to indicate a negative number.
7016 Assumes 0m does not occur. */
7017
7018int
7019ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7020{
7021 ULONGEST RU;
7022
7023 if (!isdigit (str[k]))
7024 return 0;
7025
7026 /* Do it the hard way so as not to make any assumption about
7027 the relationship of unsigned long (%lu scan format code) and
7028 LONGEST. */
7029 RU = 0;
7030 while (isdigit (str[k]))
7031 {
7032 RU = RU * 10 + (str[k] - '0');
7033 k += 1;
7034 }
7035
7036 if (str[k] == 'm')
7037 {
7038 if (R != NULL)
7039 *R = (-(LONGEST) (RU - 1)) - 1;
7040 k += 1;
7041 }
7042 else if (R != NULL)
7043 *R = (LONGEST) RU;
7044
7045 /* NOTE on the above: Technically, C does not say what the results of
7046 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7047 number representable as a LONGEST (although either would probably work
7048 in most implementations). When RU>0, the locution in the then branch
7049 above is always equivalent to the negative of RU. */
7050
7051 if (new_k != NULL)
7052 *new_k = k;
7053 return 1;
7054}
7055
7056/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7057 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7058 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7059
7060int
7061ada_in_variant (LONGEST val, struct type *type, int field_num)
7062{
7063 const char *name = TYPE_FIELD_NAME (type, field_num);
7064 int p;
7065
7066 p = 0;
7067 while (1)
7068 {
7069 switch (name[p])
7070 {
7071 case '\0':
7072 return 0;
7073 case 'S':
7074 {
7075 LONGEST W;
7076
7077 if (!ada_scan_number (name, p + 1, &W, &p))
7078 return 0;
7079 if (val == W)
7080 return 1;
7081 break;
7082 }
7083 case 'R':
7084 {
7085 LONGEST L, U;
7086
7087 if (!ada_scan_number (name, p + 1, &L, &p)
7088 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7089 return 0;
7090 if (val >= L && val <= U)
7091 return 1;
7092 break;
7093 }
7094 case 'O':
7095 return 1;
7096 default:
7097 return 0;
7098 }
7099 }
7100}
7101
7102/* FIXME: Lots of redundancy below. Try to consolidate. */
7103
7104/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7105 ARG_TYPE, extract and return the value of one of its (non-static)
7106 fields. FIELDNO says which field. Differs from value_primitive_field
7107 only in that it can handle packed values of arbitrary type. */
7108
7109static struct value *
7110ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7111 struct type *arg_type)
7112{
7113 struct type *type;
7114
7115 arg_type = ada_check_typedef (arg_type);
7116 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7117
7118 /* Handle packed fields. */
7119
7120 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7121 {
7122 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7123 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7124
7125 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7126 offset + bit_pos / 8,
7127 bit_pos % 8, bit_size, type);
7128 }
7129 else
7130 return value_primitive_field (arg1, offset, fieldno, arg_type);
7131}
7132
7133/* Find field with name NAME in object of type TYPE. If found,
7134 set the following for each argument that is non-null:
7135 - *FIELD_TYPE_P to the field's type;
7136 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7137 an object of that type;
7138 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7139 - *BIT_SIZE_P to its size in bits if the field is packed, and
7140 0 otherwise;
7141 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7142 fields up to but not including the desired field, or by the total
7143 number of fields if not found. A NULL value of NAME never
7144 matches; the function just counts visible fields in this case.
7145
7146 Returns 1 if found, 0 otherwise. */
7147
7148static int
7149find_struct_field (const char *name, struct type *type, int offset,
7150 struct type **field_type_p,
7151 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7152 int *index_p)
7153{
7154 int i;
7155
7156 type = ada_check_typedef (type);
7157
7158 if (field_type_p != NULL)
7159 *field_type_p = NULL;
7160 if (byte_offset_p != NULL)
7161 *byte_offset_p = 0;
7162 if (bit_offset_p != NULL)
7163 *bit_offset_p = 0;
7164 if (bit_size_p != NULL)
7165 *bit_size_p = 0;
7166
7167 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7168 {
7169 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7170 int fld_offset = offset + bit_pos / 8;
7171 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7172
7173 if (t_field_name == NULL)
7174 continue;
7175
7176 else if (name != NULL && field_name_match (t_field_name, name))
7177 {
7178 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7179
7180 if (field_type_p != NULL)
7181 *field_type_p = TYPE_FIELD_TYPE (type, i);
7182 if (byte_offset_p != NULL)
7183 *byte_offset_p = fld_offset;
7184 if (bit_offset_p != NULL)
7185 *bit_offset_p = bit_pos % 8;
7186 if (bit_size_p != NULL)
7187 *bit_size_p = bit_size;
7188 return 1;
7189 }
7190 else if (ada_is_wrapper_field (type, i))
7191 {
7192 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7193 field_type_p, byte_offset_p, bit_offset_p,
7194 bit_size_p, index_p))
7195 return 1;
7196 }
7197 else if (ada_is_variant_part (type, i))
7198 {
7199 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7200 fixed type?? */
7201 int j;
7202 struct type *field_type
7203 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7204
7205 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7206 {
7207 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7208 fld_offset
7209 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7210 field_type_p, byte_offset_p,
7211 bit_offset_p, bit_size_p, index_p))
7212 return 1;
7213 }
7214 }
7215 else if (index_p != NULL)
7216 *index_p += 1;
7217 }
7218 return 0;
7219}
7220
7221/* Number of user-visible fields in record type TYPE. */
7222
7223static int
7224num_visible_fields (struct type *type)
7225{
7226 int n;
7227
7228 n = 0;
7229 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7230 return n;
7231}
7232
7233/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7234 and search in it assuming it has (class) type TYPE.
7235 If found, return value, else return NULL.
7236
7237 Searches recursively through wrapper fields (e.g., '_parent'). */
7238
7239static struct value *
7240ada_search_struct_field (const char *name, struct value *arg, int offset,
7241 struct type *type)
7242{
7243 int i;
7244
7245 type = ada_check_typedef (type);
7246 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7247 {
7248 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7249
7250 if (t_field_name == NULL)
7251 continue;
7252
7253 else if (field_name_match (t_field_name, name))
7254 return ada_value_primitive_field (arg, offset, i, type);
7255
7256 else if (ada_is_wrapper_field (type, i))
7257 {
7258 struct value *v = /* Do not let indent join lines here. */
7259 ada_search_struct_field (name, arg,
7260 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7261 TYPE_FIELD_TYPE (type, i));
7262
7263 if (v != NULL)
7264 return v;
7265 }
7266
7267 else if (ada_is_variant_part (type, i))
7268 {
7269 /* PNH: Do we ever get here? See find_struct_field. */
7270 int j;
7271 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7272 i));
7273 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7274
7275 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7276 {
7277 struct value *v = ada_search_struct_field /* Force line
7278 break. */
7279 (name, arg,
7280 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7281 TYPE_FIELD_TYPE (field_type, j));
7282
7283 if (v != NULL)
7284 return v;
7285 }
7286 }
7287 }
7288 return NULL;
7289}
7290
7291static struct value *ada_index_struct_field_1 (int *, struct value *,
7292 int, struct type *);
7293
7294
7295/* Return field #INDEX in ARG, where the index is that returned by
7296 * find_struct_field through its INDEX_P argument. Adjust the address
7297 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7298 * If found, return value, else return NULL. */
7299
7300static struct value *
7301ada_index_struct_field (int index, struct value *arg, int offset,
7302 struct type *type)
7303{
7304 return ada_index_struct_field_1 (&index, arg, offset, type);
7305}
7306
7307
7308/* Auxiliary function for ada_index_struct_field. Like
7309 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7310 * *INDEX_P. */
7311
7312static struct value *
7313ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7314 struct type *type)
7315{
7316 int i;
7317 type = ada_check_typedef (type);
7318
7319 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7320 {
7321 if (TYPE_FIELD_NAME (type, i) == NULL)
7322 continue;
7323 else if (ada_is_wrapper_field (type, i))
7324 {
7325 struct value *v = /* Do not let indent join lines here. */
7326 ada_index_struct_field_1 (index_p, arg,
7327 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7328 TYPE_FIELD_TYPE (type, i));
7329
7330 if (v != NULL)
7331 return v;
7332 }
7333
7334 else if (ada_is_variant_part (type, i))
7335 {
7336 /* PNH: Do we ever get here? See ada_search_struct_field,
7337 find_struct_field. */
7338 error (_("Cannot assign this kind of variant record"));
7339 }
7340 else if (*index_p == 0)
7341 return ada_value_primitive_field (arg, offset, i, type);
7342 else
7343 *index_p -= 1;
7344 }
7345 return NULL;
7346}
7347
7348/* Given ARG, a value of type (pointer or reference to a)*
7349 structure/union, extract the component named NAME from the ultimate
7350 target structure/union and return it as a value with its
7351 appropriate type.
7352
7353 The routine searches for NAME among all members of the structure itself
7354 and (recursively) among all members of any wrapper members
7355 (e.g., '_parent').
7356
7357 If NO_ERR, then simply return NULL in case of error, rather than
7358 calling error. */
7359
7360struct value *
7361ada_value_struct_elt (struct value *arg, char *name, int no_err)
7362{
7363 struct type *t, *t1;
7364 struct value *v;
7365
7366 v = NULL;
7367 t1 = t = ada_check_typedef (value_type (arg));
7368 if (TYPE_CODE (t) == TYPE_CODE_REF)
7369 {
7370 t1 = TYPE_TARGET_TYPE (t);
7371 if (t1 == NULL)
7372 goto BadValue;
7373 t1 = ada_check_typedef (t1);
7374 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7375 {
7376 arg = coerce_ref (arg);
7377 t = t1;
7378 }
7379 }
7380
7381 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7382 {
7383 t1 = TYPE_TARGET_TYPE (t);
7384 if (t1 == NULL)
7385 goto BadValue;
7386 t1 = ada_check_typedef (t1);
7387 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7388 {
7389 arg = value_ind (arg);
7390 t = t1;
7391 }
7392 else
7393 break;
7394 }
7395
7396 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7397 goto BadValue;
7398
7399 if (t1 == t)
7400 v = ada_search_struct_field (name, arg, 0, t);
7401 else
7402 {
7403 int bit_offset, bit_size, byte_offset;
7404 struct type *field_type;
7405 CORE_ADDR address;
7406
7407 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7408 address = value_address (ada_value_ind (arg));
7409 else
7410 address = value_address (ada_coerce_ref (arg));
7411
7412 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7413 if (find_struct_field (name, t1, 0,
7414 &field_type, &byte_offset, &bit_offset,
7415 &bit_size, NULL))
7416 {
7417 if (bit_size != 0)
7418 {
7419 if (TYPE_CODE (t) == TYPE_CODE_REF)
7420 arg = ada_coerce_ref (arg);
7421 else
7422 arg = ada_value_ind (arg);
7423 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7424 bit_offset, bit_size,
7425 field_type);
7426 }
7427 else
7428 v = value_at_lazy (field_type, address + byte_offset);
7429 }
7430 }
7431
7432 if (v != NULL || no_err)
7433 return v;
7434 else
7435 error (_("There is no member named %s."), name);
7436
7437 BadValue:
7438 if (no_err)
7439 return NULL;
7440 else
7441 error (_("Attempt to extract a component of "
7442 "a value that is not a record."));
7443}
7444
7445/* Given a type TYPE, look up the type of the component of type named NAME.
7446 If DISPP is non-null, add its byte displacement from the beginning of a
7447 structure (pointed to by a value) of type TYPE to *DISPP (does not
7448 work for packed fields).
7449
7450 Matches any field whose name has NAME as a prefix, possibly
7451 followed by "___".
7452
7453 TYPE can be either a struct or union. If REFOK, TYPE may also
7454 be a (pointer or reference)+ to a struct or union, and the
7455 ultimate target type will be searched.
7456
7457 Looks recursively into variant clauses and parent types.
7458
7459 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7460 TYPE is not a type of the right kind. */
7461
7462static struct type *
7463ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7464 int noerr, int *dispp)
7465{
7466 int i;
7467
7468 if (name == NULL)
7469 goto BadName;
7470
7471 if (refok && type != NULL)
7472 while (1)
7473 {
7474 type = ada_check_typedef (type);
7475 if (TYPE_CODE (type) != TYPE_CODE_PTR
7476 && TYPE_CODE (type) != TYPE_CODE_REF)
7477 break;
7478 type = TYPE_TARGET_TYPE (type);
7479 }
7480
7481 if (type == NULL
7482 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7483 && TYPE_CODE (type) != TYPE_CODE_UNION))
7484 {
7485 if (noerr)
7486 return NULL;
7487 else
7488 {
7489 target_terminal_ours ();
7490 gdb_flush (gdb_stdout);
7491 if (type == NULL)
7492 error (_("Type (null) is not a structure or union type"));
7493 else
7494 {
7495 /* XXX: type_sprint */
7496 fprintf_unfiltered (gdb_stderr, _("Type "));
7497 type_print (type, "", gdb_stderr, -1);
7498 error (_(" is not a structure or union type"));
7499 }
7500 }
7501 }
7502
7503 type = to_static_fixed_type (type);
7504
7505 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7506 {
7507 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7508 struct type *t;
7509 int disp;
7510
7511 if (t_field_name == NULL)
7512 continue;
7513
7514 else if (field_name_match (t_field_name, name))
7515 {
7516 if (dispp != NULL)
7517 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7518 return TYPE_FIELD_TYPE (type, i);
7519 }
7520
7521 else if (ada_is_wrapper_field (type, i))
7522 {
7523 disp = 0;
7524 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7525 0, 1, &disp);
7526 if (t != NULL)
7527 {
7528 if (dispp != NULL)
7529 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7530 return t;
7531 }
7532 }
7533
7534 else if (ada_is_variant_part (type, i))
7535 {
7536 int j;
7537 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7538 i));
7539
7540 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7541 {
7542 /* FIXME pnh 2008/01/26: We check for a field that is
7543 NOT wrapped in a struct, since the compiler sometimes
7544 generates these for unchecked variant types. Revisit
7545 if the compiler changes this practice. */
7546 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7547 disp = 0;
7548 if (v_field_name != NULL
7549 && field_name_match (v_field_name, name))
7550 t = TYPE_FIELD_TYPE (field_type, j);
7551 else
7552 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7553 j),
7554 name, 0, 1, &disp);
7555
7556 if (t != NULL)
7557 {
7558 if (dispp != NULL)
7559 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7560 return t;
7561 }
7562 }
7563 }
7564
7565 }
7566
7567BadName:
7568 if (!noerr)
7569 {
7570 target_terminal_ours ();
7571 gdb_flush (gdb_stdout);
7572 if (name == NULL)
7573 {
7574 /* XXX: type_sprint */
7575 fprintf_unfiltered (gdb_stderr, _("Type "));
7576 type_print (type, "", gdb_stderr, -1);
7577 error (_(" has no component named <null>"));
7578 }
7579 else
7580 {
7581 /* XXX: type_sprint */
7582 fprintf_unfiltered (gdb_stderr, _("Type "));
7583 type_print (type, "", gdb_stderr, -1);
7584 error (_(" has no component named %s"), name);
7585 }
7586 }
7587
7588 return NULL;
7589}
7590
7591/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7592 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7593 represents an unchecked union (that is, the variant part of a
7594 record that is named in an Unchecked_Union pragma). */
7595
7596static int
7597is_unchecked_variant (struct type *var_type, struct type *outer_type)
7598{
7599 char *discrim_name = ada_variant_discrim_name (var_type);
7600
7601 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7602 == NULL);
7603}
7604
7605
7606/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7607 within a value of type OUTER_TYPE that is stored in GDB at
7608 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7609 numbering from 0) is applicable. Returns -1 if none are. */
7610
7611int
7612ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7613 const gdb_byte *outer_valaddr)
7614{
7615 int others_clause;
7616 int i;
7617 char *discrim_name = ada_variant_discrim_name (var_type);
7618 struct value *outer;
7619 struct value *discrim;
7620 LONGEST discrim_val;
7621
7622 /* Using plain value_from_contents_and_address here causes problems
7623 because we will end up trying to resolve a type that is currently
7624 being constructed. */
7625 outer = value_from_contents_and_address_unresolved (outer_type,
7626 outer_valaddr, 0);
7627 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7628 if (discrim == NULL)
7629 return -1;
7630 discrim_val = value_as_long (discrim);
7631
7632 others_clause = -1;
7633 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7634 {
7635 if (ada_is_others_clause (var_type, i))
7636 others_clause = i;
7637 else if (ada_in_variant (discrim_val, var_type, i))
7638 return i;
7639 }
7640
7641 return others_clause;
7642}
7643\f
7644
7645
7646 /* Dynamic-Sized Records */
7647
7648/* Strategy: The type ostensibly attached to a value with dynamic size
7649 (i.e., a size that is not statically recorded in the debugging
7650 data) does not accurately reflect the size or layout of the value.
7651 Our strategy is to convert these values to values with accurate,
7652 conventional types that are constructed on the fly. */
7653
7654/* There is a subtle and tricky problem here. In general, we cannot
7655 determine the size of dynamic records without its data. However,
7656 the 'struct value' data structure, which GDB uses to represent
7657 quantities in the inferior process (the target), requires the size
7658 of the type at the time of its allocation in order to reserve space
7659 for GDB's internal copy of the data. That's why the
7660 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7661 rather than struct value*s.
7662
7663 However, GDB's internal history variables ($1, $2, etc.) are
7664 struct value*s containing internal copies of the data that are not, in
7665 general, the same as the data at their corresponding addresses in
7666 the target. Fortunately, the types we give to these values are all
7667 conventional, fixed-size types (as per the strategy described
7668 above), so that we don't usually have to perform the
7669 'to_fixed_xxx_type' conversions to look at their values.
7670 Unfortunately, there is one exception: if one of the internal
7671 history variables is an array whose elements are unconstrained
7672 records, then we will need to create distinct fixed types for each
7673 element selected. */
7674
7675/* The upshot of all of this is that many routines take a (type, host
7676 address, target address) triple as arguments to represent a value.
7677 The host address, if non-null, is supposed to contain an internal
7678 copy of the relevant data; otherwise, the program is to consult the
7679 target at the target address. */
7680
7681/* Assuming that VAL0 represents a pointer value, the result of
7682 dereferencing it. Differs from value_ind in its treatment of
7683 dynamic-sized types. */
7684
7685struct value *
7686ada_value_ind (struct value *val0)
7687{
7688 struct value *val = value_ind (val0);
7689
7690 if (ada_is_tagged_type (value_type (val), 0))
7691 val = ada_tag_value_at_base_address (val);
7692
7693 return ada_to_fixed_value (val);
7694}
7695
7696/* The value resulting from dereferencing any "reference to"
7697 qualifiers on VAL0. */
7698
7699static struct value *
7700ada_coerce_ref (struct value *val0)
7701{
7702 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7703 {
7704 struct value *val = val0;
7705
7706 val = coerce_ref (val);
7707
7708 if (ada_is_tagged_type (value_type (val), 0))
7709 val = ada_tag_value_at_base_address (val);
7710
7711 return ada_to_fixed_value (val);
7712 }
7713 else
7714 return val0;
7715}
7716
7717/* Return OFF rounded upward if necessary to a multiple of
7718 ALIGNMENT (a power of 2). */
7719
7720static unsigned int
7721align_value (unsigned int off, unsigned int alignment)
7722{
7723 return (off + alignment - 1) & ~(alignment - 1);
7724}
7725
7726/* Return the bit alignment required for field #F of template type TYPE. */
7727
7728static unsigned int
7729field_alignment (struct type *type, int f)
7730{
7731 const char *name = TYPE_FIELD_NAME (type, f);
7732 int len;
7733 int align_offset;
7734
7735 /* The field name should never be null, unless the debugging information
7736 is somehow malformed. In this case, we assume the field does not
7737 require any alignment. */
7738 if (name == NULL)
7739 return 1;
7740
7741 len = strlen (name);
7742
7743 if (!isdigit (name[len - 1]))
7744 return 1;
7745
7746 if (isdigit (name[len - 2]))
7747 align_offset = len - 2;
7748 else
7749 align_offset = len - 1;
7750
7751 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7752 return TARGET_CHAR_BIT;
7753
7754 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7755}
7756
7757/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7758
7759static struct symbol *
7760ada_find_any_type_symbol (const char *name)
7761{
7762 struct symbol *sym;
7763
7764 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7765 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7766 return sym;
7767
7768 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7769 return sym;
7770}
7771
7772/* Find a type named NAME. Ignores ambiguity. This routine will look
7773 solely for types defined by debug info, it will not search the GDB
7774 primitive types. */
7775
7776static struct type *
7777ada_find_any_type (const char *name)
7778{
7779 struct symbol *sym = ada_find_any_type_symbol (name);
7780
7781 if (sym != NULL)
7782 return SYMBOL_TYPE (sym);
7783
7784 return NULL;
7785}
7786
7787/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7788 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7789 symbol, in which case it is returned. Otherwise, this looks for
7790 symbols whose name is that of NAME_SYM suffixed with "___XR".
7791 Return symbol if found, and NULL otherwise. */
7792
7793struct symbol *
7794ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7795{
7796 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7797 struct symbol *sym;
7798
7799 if (strstr (name, "___XR") != NULL)
7800 return name_sym;
7801
7802 sym = find_old_style_renaming_symbol (name, block);
7803
7804 if (sym != NULL)
7805 return sym;
7806
7807 /* Not right yet. FIXME pnh 7/20/2007. */
7808 sym = ada_find_any_type_symbol (name);
7809 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7810 return sym;
7811 else
7812 return NULL;
7813}
7814
7815static struct symbol *
7816find_old_style_renaming_symbol (const char *name, const struct block *block)
7817{
7818 const struct symbol *function_sym = block_linkage_function (block);
7819 char *rename;
7820
7821 if (function_sym != NULL)
7822 {
7823 /* If the symbol is defined inside a function, NAME is not fully
7824 qualified. This means we need to prepend the function name
7825 as well as adding the ``___XR'' suffix to build the name of
7826 the associated renaming symbol. */
7827 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7828 /* Function names sometimes contain suffixes used
7829 for instance to qualify nested subprograms. When building
7830 the XR type name, we need to make sure that this suffix is
7831 not included. So do not include any suffix in the function
7832 name length below. */
7833 int function_name_len = ada_name_prefix_len (function_name);
7834 const int rename_len = function_name_len + 2 /* "__" */
7835 + strlen (name) + 6 /* "___XR\0" */ ;
7836
7837 /* Strip the suffix if necessary. */
7838 ada_remove_trailing_digits (function_name, &function_name_len);
7839 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7840 ada_remove_Xbn_suffix (function_name, &function_name_len);
7841
7842 /* Library-level functions are a special case, as GNAT adds
7843 a ``_ada_'' prefix to the function name to avoid namespace
7844 pollution. However, the renaming symbols themselves do not
7845 have this prefix, so we need to skip this prefix if present. */
7846 if (function_name_len > 5 /* "_ada_" */
7847 && strstr (function_name, "_ada_") == function_name)
7848 {
7849 function_name += 5;
7850 function_name_len -= 5;
7851 }
7852
7853 rename = (char *) alloca (rename_len * sizeof (char));
7854 strncpy (rename, function_name, function_name_len);
7855 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7856 "__%s___XR", name);
7857 }
7858 else
7859 {
7860 const int rename_len = strlen (name) + 6;
7861
7862 rename = (char *) alloca (rename_len * sizeof (char));
7863 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7864 }
7865
7866 return ada_find_any_type_symbol (rename);
7867}
7868
7869/* Because of GNAT encoding conventions, several GDB symbols may match a
7870 given type name. If the type denoted by TYPE0 is to be preferred to
7871 that of TYPE1 for purposes of type printing, return non-zero;
7872 otherwise return 0. */
7873
7874int
7875ada_prefer_type (struct type *type0, struct type *type1)
7876{
7877 if (type1 == NULL)
7878 return 1;
7879 else if (type0 == NULL)
7880 return 0;
7881 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7882 return 1;
7883 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7884 return 0;
7885 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7886 return 1;
7887 else if (ada_is_constrained_packed_array_type (type0))
7888 return 1;
7889 else if (ada_is_array_descriptor_type (type0)
7890 && !ada_is_array_descriptor_type (type1))
7891 return 1;
7892 else
7893 {
7894 const char *type0_name = type_name_no_tag (type0);
7895 const char *type1_name = type_name_no_tag (type1);
7896
7897 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7898 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7899 return 1;
7900 }
7901 return 0;
7902}
7903
7904/* The name of TYPE, which is either its TYPE_NAME, or, if that is
7905 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7906
7907const char *
7908ada_type_name (struct type *type)
7909{
7910 if (type == NULL)
7911 return NULL;
7912 else if (TYPE_NAME (type) != NULL)
7913 return TYPE_NAME (type);
7914 else
7915 return TYPE_TAG_NAME (type);
7916}
7917
7918/* Search the list of "descriptive" types associated to TYPE for a type
7919 whose name is NAME. */
7920
7921static struct type *
7922find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7923{
7924 struct type *result, *tmp;
7925
7926 if (ada_ignore_descriptive_types_p)
7927 return NULL;
7928
7929 /* If there no descriptive-type info, then there is no parallel type
7930 to be found. */
7931 if (!HAVE_GNAT_AUX_INFO (type))
7932 return NULL;
7933
7934 result = TYPE_DESCRIPTIVE_TYPE (type);
7935 while (result != NULL)
7936 {
7937 const char *result_name = ada_type_name (result);
7938
7939 if (result_name == NULL)
7940 {
7941 warning (_("unexpected null name on descriptive type"));
7942 return NULL;
7943 }
7944
7945 /* If the names match, stop. */
7946 if (strcmp (result_name, name) == 0)
7947 break;
7948
7949 /* Otherwise, look at the next item on the list, if any. */
7950 if (HAVE_GNAT_AUX_INFO (result))
7951 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7952 else
7953 tmp = NULL;
7954
7955 /* If not found either, try after having resolved the typedef. */
7956 if (tmp != NULL)
7957 result = tmp;
7958 else
7959 {
7960 result = check_typedef (result);
7961 if (HAVE_GNAT_AUX_INFO (result))
7962 result = TYPE_DESCRIPTIVE_TYPE (result);
7963 else
7964 result = NULL;
7965 }
7966 }
7967
7968 /* If we didn't find a match, see whether this is a packed array. With
7969 older compilers, the descriptive type information is either absent or
7970 irrelevant when it comes to packed arrays so the above lookup fails.
7971 Fall back to using a parallel lookup by name in this case. */
7972 if (result == NULL && ada_is_constrained_packed_array_type (type))
7973 return ada_find_any_type (name);
7974
7975 return result;
7976}
7977
7978/* Find a parallel type to TYPE with the specified NAME, using the
7979 descriptive type taken from the debugging information, if available,
7980 and otherwise using the (slower) name-based method. */
7981
7982static struct type *
7983ada_find_parallel_type_with_name (struct type *type, const char *name)
7984{
7985 struct type *result = NULL;
7986
7987 if (HAVE_GNAT_AUX_INFO (type))
7988 result = find_parallel_type_by_descriptive_type (type, name);
7989 else
7990 result = ada_find_any_type (name);
7991
7992 return result;
7993}
7994
7995/* Same as above, but specify the name of the parallel type by appending
7996 SUFFIX to the name of TYPE. */
7997
7998struct type *
7999ada_find_parallel_type (struct type *type, const char *suffix)
8000{
8001 char *name;
8002 const char *type_name = ada_type_name (type);
8003 int len;
8004
8005 if (type_name == NULL)
8006 return NULL;
8007
8008 len = strlen (type_name);
8009
8010 name = (char *) alloca (len + strlen (suffix) + 1);
8011
8012 strcpy (name, type_name);
8013 strcpy (name + len, suffix);
8014
8015 return ada_find_parallel_type_with_name (type, name);
8016}
8017
8018/* If TYPE is a variable-size record type, return the corresponding template
8019 type describing its fields. Otherwise, return NULL. */
8020
8021static struct type *
8022dynamic_template_type (struct type *type)
8023{
8024 type = ada_check_typedef (type);
8025
8026 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8027 || ada_type_name (type) == NULL)
8028 return NULL;
8029 else
8030 {
8031 int len = strlen (ada_type_name (type));
8032
8033 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8034 return type;
8035 else
8036 return ada_find_parallel_type (type, "___XVE");
8037 }
8038}
8039
8040/* Assuming that TEMPL_TYPE is a union or struct type, returns
8041 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8042
8043static int
8044is_dynamic_field (struct type *templ_type, int field_num)
8045{
8046 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8047
8048 return name != NULL
8049 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8050 && strstr (name, "___XVL") != NULL;
8051}
8052
8053/* The index of the variant field of TYPE, or -1 if TYPE does not
8054 represent a variant record type. */
8055
8056static int
8057variant_field_index (struct type *type)
8058{
8059 int f;
8060
8061 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8062 return -1;
8063
8064 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8065 {
8066 if (ada_is_variant_part (type, f))
8067 return f;
8068 }
8069 return -1;
8070}
8071
8072/* A record type with no fields. */
8073
8074static struct type *
8075empty_record (struct type *templ)
8076{
8077 struct type *type = alloc_type_copy (templ);
8078
8079 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8080 TYPE_NFIELDS (type) = 0;
8081 TYPE_FIELDS (type) = NULL;
8082 INIT_CPLUS_SPECIFIC (type);
8083 TYPE_NAME (type) = "<empty>";
8084 TYPE_TAG_NAME (type) = NULL;
8085 TYPE_LENGTH (type) = 0;
8086 return type;
8087}
8088
8089/* An ordinary record type (with fixed-length fields) that describes
8090 the value of type TYPE at VALADDR or ADDRESS (see comments at
8091 the beginning of this section) VAL according to GNAT conventions.
8092 DVAL0 should describe the (portion of a) record that contains any
8093 necessary discriminants. It should be NULL if value_type (VAL) is
8094 an outer-level type (i.e., as opposed to a branch of a variant.) A
8095 variant field (unless unchecked) is replaced by a particular branch
8096 of the variant.
8097
8098 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8099 length are not statically known are discarded. As a consequence,
8100 VALADDR, ADDRESS and DVAL0 are ignored.
8101
8102 NOTE: Limitations: For now, we assume that dynamic fields and
8103 variants occupy whole numbers of bytes. However, they need not be
8104 byte-aligned. */
8105
8106struct type *
8107ada_template_to_fixed_record_type_1 (struct type *type,
8108 const gdb_byte *valaddr,
8109 CORE_ADDR address, struct value *dval0,
8110 int keep_dynamic_fields)
8111{
8112 struct value *mark = value_mark ();
8113 struct value *dval;
8114 struct type *rtype;
8115 int nfields, bit_len;
8116 int variant_field;
8117 long off;
8118 int fld_bit_len;
8119 int f;
8120
8121 /* Compute the number of fields in this record type that are going
8122 to be processed: unless keep_dynamic_fields, this includes only
8123 fields whose position and length are static will be processed. */
8124 if (keep_dynamic_fields)
8125 nfields = TYPE_NFIELDS (type);
8126 else
8127 {
8128 nfields = 0;
8129 while (nfields < TYPE_NFIELDS (type)
8130 && !ada_is_variant_part (type, nfields)
8131 && !is_dynamic_field (type, nfields))
8132 nfields++;
8133 }
8134
8135 rtype = alloc_type_copy (type);
8136 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8137 INIT_CPLUS_SPECIFIC (rtype);
8138 TYPE_NFIELDS (rtype) = nfields;
8139 TYPE_FIELDS (rtype) = (struct field *)
8140 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8141 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8142 TYPE_NAME (rtype) = ada_type_name (type);
8143 TYPE_TAG_NAME (rtype) = NULL;
8144 TYPE_FIXED_INSTANCE (rtype) = 1;
8145
8146 off = 0;
8147 bit_len = 0;
8148 variant_field = -1;
8149
8150 for (f = 0; f < nfields; f += 1)
8151 {
8152 off = align_value (off, field_alignment (type, f))
8153 + TYPE_FIELD_BITPOS (type, f);
8154 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8155 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8156
8157 if (ada_is_variant_part (type, f))
8158 {
8159 variant_field = f;
8160 fld_bit_len = 0;
8161 }
8162 else if (is_dynamic_field (type, f))
8163 {
8164 const gdb_byte *field_valaddr = valaddr;
8165 CORE_ADDR field_address = address;
8166 struct type *field_type =
8167 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8168
8169 if (dval0 == NULL)
8170 {
8171 /* rtype's length is computed based on the run-time
8172 value of discriminants. If the discriminants are not
8173 initialized, the type size may be completely bogus and
8174 GDB may fail to allocate a value for it. So check the
8175 size first before creating the value. */
8176 ada_ensure_varsize_limit (rtype);
8177 /* Using plain value_from_contents_and_address here
8178 causes problems because we will end up trying to
8179 resolve a type that is currently being
8180 constructed. */
8181 dval = value_from_contents_and_address_unresolved (rtype,
8182 valaddr,
8183 address);
8184 rtype = value_type (dval);
8185 }
8186 else
8187 dval = dval0;
8188
8189 /* If the type referenced by this field is an aligner type, we need
8190 to unwrap that aligner type, because its size might not be set.
8191 Keeping the aligner type would cause us to compute the wrong
8192 size for this field, impacting the offset of the all the fields
8193 that follow this one. */
8194 if (ada_is_aligner_type (field_type))
8195 {
8196 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8197
8198 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8199 field_address = cond_offset_target (field_address, field_offset);
8200 field_type = ada_aligned_type (field_type);
8201 }
8202
8203 field_valaddr = cond_offset_host (field_valaddr,
8204 off / TARGET_CHAR_BIT);
8205 field_address = cond_offset_target (field_address,
8206 off / TARGET_CHAR_BIT);
8207
8208 /* Get the fixed type of the field. Note that, in this case,
8209 we do not want to get the real type out of the tag: if
8210 the current field is the parent part of a tagged record,
8211 we will get the tag of the object. Clearly wrong: the real
8212 type of the parent is not the real type of the child. We
8213 would end up in an infinite loop. */
8214 field_type = ada_get_base_type (field_type);
8215 field_type = ada_to_fixed_type (field_type, field_valaddr,
8216 field_address, dval, 0);
8217 /* If the field size is already larger than the maximum
8218 object size, then the record itself will necessarily
8219 be larger than the maximum object size. We need to make
8220 this check now, because the size might be so ridiculously
8221 large (due to an uninitialized variable in the inferior)
8222 that it would cause an overflow when adding it to the
8223 record size. */
8224 ada_ensure_varsize_limit (field_type);
8225
8226 TYPE_FIELD_TYPE (rtype, f) = field_type;
8227 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8228 /* The multiplication can potentially overflow. But because
8229 the field length has been size-checked just above, and
8230 assuming that the maximum size is a reasonable value,
8231 an overflow should not happen in practice. So rather than
8232 adding overflow recovery code to this already complex code,
8233 we just assume that it's not going to happen. */
8234 fld_bit_len =
8235 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8236 }
8237 else
8238 {
8239 /* Note: If this field's type is a typedef, it is important
8240 to preserve the typedef layer.
8241
8242 Otherwise, we might be transforming a typedef to a fat
8243 pointer (encoding a pointer to an unconstrained array),
8244 into a basic fat pointer (encoding an unconstrained
8245 array). As both types are implemented using the same
8246 structure, the typedef is the only clue which allows us
8247 to distinguish between the two options. Stripping it
8248 would prevent us from printing this field appropriately. */
8249 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8250 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8251 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8252 fld_bit_len =
8253 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8254 else
8255 {
8256 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8257
8258 /* We need to be careful of typedefs when computing
8259 the length of our field. If this is a typedef,
8260 get the length of the target type, not the length
8261 of the typedef. */
8262 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8263 field_type = ada_typedef_target_type (field_type);
8264
8265 fld_bit_len =
8266 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8267 }
8268 }
8269 if (off + fld_bit_len > bit_len)
8270 bit_len = off + fld_bit_len;
8271 off += fld_bit_len;
8272 TYPE_LENGTH (rtype) =
8273 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8274 }
8275
8276 /* We handle the variant part, if any, at the end because of certain
8277 odd cases in which it is re-ordered so as NOT to be the last field of
8278 the record. This can happen in the presence of representation
8279 clauses. */
8280 if (variant_field >= 0)
8281 {
8282 struct type *branch_type;
8283
8284 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8285
8286 if (dval0 == NULL)
8287 {
8288 /* Using plain value_from_contents_and_address here causes
8289 problems because we will end up trying to resolve a type
8290 that is currently being constructed. */
8291 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8292 address);
8293 rtype = value_type (dval);
8294 }
8295 else
8296 dval = dval0;
8297
8298 branch_type =
8299 to_fixed_variant_branch_type
8300 (TYPE_FIELD_TYPE (type, variant_field),
8301 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8302 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8303 if (branch_type == NULL)
8304 {
8305 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8306 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8307 TYPE_NFIELDS (rtype) -= 1;
8308 }
8309 else
8310 {
8311 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8312 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8313 fld_bit_len =
8314 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8315 TARGET_CHAR_BIT;
8316 if (off + fld_bit_len > bit_len)
8317 bit_len = off + fld_bit_len;
8318 TYPE_LENGTH (rtype) =
8319 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8320 }
8321 }
8322
8323 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8324 should contain the alignment of that record, which should be a strictly
8325 positive value. If null or negative, then something is wrong, most
8326 probably in the debug info. In that case, we don't round up the size
8327 of the resulting type. If this record is not part of another structure,
8328 the current RTYPE length might be good enough for our purposes. */
8329 if (TYPE_LENGTH (type) <= 0)
8330 {
8331 if (TYPE_NAME (rtype))
8332 warning (_("Invalid type size for `%s' detected: %d."),
8333 TYPE_NAME (rtype), TYPE_LENGTH (type));
8334 else
8335 warning (_("Invalid type size for <unnamed> detected: %d."),
8336 TYPE_LENGTH (type));
8337 }
8338 else
8339 {
8340 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8341 TYPE_LENGTH (type));
8342 }
8343
8344 value_free_to_mark (mark);
8345 if (TYPE_LENGTH (rtype) > varsize_limit)
8346 error (_("record type with dynamic size is larger than varsize-limit"));
8347 return rtype;
8348}
8349
8350/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8351 of 1. */
8352
8353static struct type *
8354template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8355 CORE_ADDR address, struct value *dval0)
8356{
8357 return ada_template_to_fixed_record_type_1 (type, valaddr,
8358 address, dval0, 1);
8359}
8360
8361/* An ordinary record type in which ___XVL-convention fields and
8362 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8363 static approximations, containing all possible fields. Uses
8364 no runtime values. Useless for use in values, but that's OK,
8365 since the results are used only for type determinations. Works on both
8366 structs and unions. Representation note: to save space, we memorize
8367 the result of this function in the TYPE_TARGET_TYPE of the
8368 template type. */
8369
8370static struct type *
8371template_to_static_fixed_type (struct type *type0)
8372{
8373 struct type *type;
8374 int nfields;
8375 int f;
8376
8377 /* No need no do anything if the input type is already fixed. */
8378 if (TYPE_FIXED_INSTANCE (type0))
8379 return type0;
8380
8381 /* Likewise if we already have computed the static approximation. */
8382 if (TYPE_TARGET_TYPE (type0) != NULL)
8383 return TYPE_TARGET_TYPE (type0);
8384
8385 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8386 type = type0;
8387 nfields = TYPE_NFIELDS (type0);
8388
8389 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8390 recompute all over next time. */
8391 TYPE_TARGET_TYPE (type0) = type;
8392
8393 for (f = 0; f < nfields; f += 1)
8394 {
8395 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8396 struct type *new_type;
8397
8398 if (is_dynamic_field (type0, f))
8399 {
8400 field_type = ada_check_typedef (field_type);
8401 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8402 }
8403 else
8404 new_type = static_unwrap_type (field_type);
8405
8406 if (new_type != field_type)
8407 {
8408 /* Clone TYPE0 only the first time we get a new field type. */
8409 if (type == type0)
8410 {
8411 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8412 TYPE_CODE (type) = TYPE_CODE (type0);
8413 INIT_CPLUS_SPECIFIC (type);
8414 TYPE_NFIELDS (type) = nfields;
8415 TYPE_FIELDS (type) = (struct field *)
8416 TYPE_ALLOC (type, nfields * sizeof (struct field));
8417 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8418 sizeof (struct field) * nfields);
8419 TYPE_NAME (type) = ada_type_name (type0);
8420 TYPE_TAG_NAME (type) = NULL;
8421 TYPE_FIXED_INSTANCE (type) = 1;
8422 TYPE_LENGTH (type) = 0;
8423 }
8424 TYPE_FIELD_TYPE (type, f) = new_type;
8425 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8426 }
8427 }
8428
8429 return type;
8430}
8431
8432/* Given an object of type TYPE whose contents are at VALADDR and
8433 whose address in memory is ADDRESS, returns a revision of TYPE,
8434 which should be a non-dynamic-sized record, in which the variant
8435 part, if any, is replaced with the appropriate branch. Looks
8436 for discriminant values in DVAL0, which can be NULL if the record
8437 contains the necessary discriminant values. */
8438
8439static struct type *
8440to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8441 CORE_ADDR address, struct value *dval0)
8442{
8443 struct value *mark = value_mark ();
8444 struct value *dval;
8445 struct type *rtype;
8446 struct type *branch_type;
8447 int nfields = TYPE_NFIELDS (type);
8448 int variant_field = variant_field_index (type);
8449
8450 if (variant_field == -1)
8451 return type;
8452
8453 if (dval0 == NULL)
8454 {
8455 dval = value_from_contents_and_address (type, valaddr, address);
8456 type = value_type (dval);
8457 }
8458 else
8459 dval = dval0;
8460
8461 rtype = alloc_type_copy (type);
8462 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8463 INIT_CPLUS_SPECIFIC (rtype);
8464 TYPE_NFIELDS (rtype) = nfields;
8465 TYPE_FIELDS (rtype) =
8466 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8467 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8468 sizeof (struct field) * nfields);
8469 TYPE_NAME (rtype) = ada_type_name (type);
8470 TYPE_TAG_NAME (rtype) = NULL;
8471 TYPE_FIXED_INSTANCE (rtype) = 1;
8472 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8473
8474 branch_type = to_fixed_variant_branch_type
8475 (TYPE_FIELD_TYPE (type, variant_field),
8476 cond_offset_host (valaddr,
8477 TYPE_FIELD_BITPOS (type, variant_field)
8478 / TARGET_CHAR_BIT),
8479 cond_offset_target (address,
8480 TYPE_FIELD_BITPOS (type, variant_field)
8481 / TARGET_CHAR_BIT), dval);
8482 if (branch_type == NULL)
8483 {
8484 int f;
8485
8486 for (f = variant_field + 1; f < nfields; f += 1)
8487 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8488 TYPE_NFIELDS (rtype) -= 1;
8489 }
8490 else
8491 {
8492 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8493 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8494 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8495 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8496 }
8497 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8498
8499 value_free_to_mark (mark);
8500 return rtype;
8501}
8502
8503/* An ordinary record type (with fixed-length fields) that describes
8504 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8505 beginning of this section]. Any necessary discriminants' values
8506 should be in DVAL, a record value; it may be NULL if the object
8507 at ADDR itself contains any necessary discriminant values.
8508 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8509 values from the record are needed. Except in the case that DVAL,
8510 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8511 unchecked) is replaced by a particular branch of the variant.
8512
8513 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8514 is questionable and may be removed. It can arise during the
8515 processing of an unconstrained-array-of-record type where all the
8516 variant branches have exactly the same size. This is because in
8517 such cases, the compiler does not bother to use the XVS convention
8518 when encoding the record. I am currently dubious of this
8519 shortcut and suspect the compiler should be altered. FIXME. */
8520
8521static struct type *
8522to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8523 CORE_ADDR address, struct value *dval)
8524{
8525 struct type *templ_type;
8526
8527 if (TYPE_FIXED_INSTANCE (type0))
8528 return type0;
8529
8530 templ_type = dynamic_template_type (type0);
8531
8532 if (templ_type != NULL)
8533 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8534 else if (variant_field_index (type0) >= 0)
8535 {
8536 if (dval == NULL && valaddr == NULL && address == 0)
8537 return type0;
8538 return to_record_with_fixed_variant_part (type0, valaddr, address,
8539 dval);
8540 }
8541 else
8542 {
8543 TYPE_FIXED_INSTANCE (type0) = 1;
8544 return type0;
8545 }
8546
8547}
8548
8549/* An ordinary record type (with fixed-length fields) that describes
8550 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8551 union type. Any necessary discriminants' values should be in DVAL,
8552 a record value. That is, this routine selects the appropriate
8553 branch of the union at ADDR according to the discriminant value
8554 indicated in the union's type name. Returns VAR_TYPE0 itself if
8555 it represents a variant subject to a pragma Unchecked_Union. */
8556
8557static struct type *
8558to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8559 CORE_ADDR address, struct value *dval)
8560{
8561 int which;
8562 struct type *templ_type;
8563 struct type *var_type;
8564
8565 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8566 var_type = TYPE_TARGET_TYPE (var_type0);
8567 else
8568 var_type = var_type0;
8569
8570 templ_type = ada_find_parallel_type (var_type, "___XVU");
8571
8572 if (templ_type != NULL)
8573 var_type = templ_type;
8574
8575 if (is_unchecked_variant (var_type, value_type (dval)))
8576 return var_type0;
8577 which =
8578 ada_which_variant_applies (var_type,
8579 value_type (dval), value_contents (dval));
8580
8581 if (which < 0)
8582 return empty_record (var_type);
8583 else if (is_dynamic_field (var_type, which))
8584 return to_fixed_record_type
8585 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8586 valaddr, address, dval);
8587 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8588 return
8589 to_fixed_record_type
8590 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8591 else
8592 return TYPE_FIELD_TYPE (var_type, which);
8593}
8594
8595/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8596 ENCODING_TYPE, a type following the GNAT conventions for discrete
8597 type encodings, only carries redundant information. */
8598
8599static int
8600ada_is_redundant_range_encoding (struct type *range_type,
8601 struct type *encoding_type)
8602{
8603 struct type *fixed_range_type;
8604 const char *bounds_str;
8605 int n;
8606 LONGEST lo, hi;
8607
8608 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8609
8610 if (TYPE_CODE (get_base_type (range_type))
8611 != TYPE_CODE (get_base_type (encoding_type)))
8612 {
8613 /* The compiler probably used a simple base type to describe
8614 the range type instead of the range's actual base type,
8615 expecting us to get the real base type from the encoding
8616 anyway. In this situation, the encoding cannot be ignored
8617 as redundant. */
8618 return 0;
8619 }
8620
8621 if (is_dynamic_type (range_type))
8622 return 0;
8623
8624 if (TYPE_NAME (encoding_type) == NULL)
8625 return 0;
8626
8627 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8628 if (bounds_str == NULL)
8629 return 0;
8630
8631 n = 8; /* Skip "___XDLU_". */
8632 if (!ada_scan_number (bounds_str, n, &lo, &n))
8633 return 0;
8634 if (TYPE_LOW_BOUND (range_type) != lo)
8635 return 0;
8636
8637 n += 2; /* Skip the "__" separator between the two bounds. */
8638 if (!ada_scan_number (bounds_str, n, &hi, &n))
8639 return 0;
8640 if (TYPE_HIGH_BOUND (range_type) != hi)
8641 return 0;
8642
8643 return 1;
8644}
8645
8646/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8647 a type following the GNAT encoding for describing array type
8648 indices, only carries redundant information. */
8649
8650static int
8651ada_is_redundant_index_type_desc (struct type *array_type,
8652 struct type *desc_type)
8653{
8654 struct type *this_layer = check_typedef (array_type);
8655 int i;
8656
8657 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8658 {
8659 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8660 TYPE_FIELD_TYPE (desc_type, i)))
8661 return 0;
8662 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8663 }
8664
8665 return 1;
8666}
8667
8668/* Assuming that TYPE0 is an array type describing the type of a value
8669 at ADDR, and that DVAL describes a record containing any
8670 discriminants used in TYPE0, returns a type for the value that
8671 contains no dynamic components (that is, no components whose sizes
8672 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8673 true, gives an error message if the resulting type's size is over
8674 varsize_limit. */
8675
8676static struct type *
8677to_fixed_array_type (struct type *type0, struct value *dval,
8678 int ignore_too_big)
8679{
8680 struct type *index_type_desc;
8681 struct type *result;
8682 int constrained_packed_array_p;
8683 static const char *xa_suffix = "___XA";
8684
8685 type0 = ada_check_typedef (type0);
8686 if (TYPE_FIXED_INSTANCE (type0))
8687 return type0;
8688
8689 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8690 if (constrained_packed_array_p)
8691 type0 = decode_constrained_packed_array_type (type0);
8692
8693 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8694
8695 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8696 encoding suffixed with 'P' may still be generated. If so,
8697 it should be used to find the XA type. */
8698
8699 if (index_type_desc == NULL)
8700 {
8701 const char *type_name = ada_type_name (type0);
8702
8703 if (type_name != NULL)
8704 {
8705 const int len = strlen (type_name);
8706 char *name = (char *) alloca (len + strlen (xa_suffix));
8707
8708 if (type_name[len - 1] == 'P')
8709 {
8710 strcpy (name, type_name);
8711 strcpy (name + len - 1, xa_suffix);
8712 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8713 }
8714 }
8715 }
8716
8717 ada_fixup_array_indexes_type (index_type_desc);
8718 if (index_type_desc != NULL
8719 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8720 {
8721 /* Ignore this ___XA parallel type, as it does not bring any
8722 useful information. This allows us to avoid creating fixed
8723 versions of the array's index types, which would be identical
8724 to the original ones. This, in turn, can also help avoid
8725 the creation of fixed versions of the array itself. */
8726 index_type_desc = NULL;
8727 }
8728
8729 if (index_type_desc == NULL)
8730 {
8731 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8732
8733 /* NOTE: elt_type---the fixed version of elt_type0---should never
8734 depend on the contents of the array in properly constructed
8735 debugging data. */
8736 /* Create a fixed version of the array element type.
8737 We're not providing the address of an element here,
8738 and thus the actual object value cannot be inspected to do
8739 the conversion. This should not be a problem, since arrays of
8740 unconstrained objects are not allowed. In particular, all
8741 the elements of an array of a tagged type should all be of
8742 the same type specified in the debugging info. No need to
8743 consult the object tag. */
8744 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8745
8746 /* Make sure we always create a new array type when dealing with
8747 packed array types, since we're going to fix-up the array
8748 type length and element bitsize a little further down. */
8749 if (elt_type0 == elt_type && !constrained_packed_array_p)
8750 result = type0;
8751 else
8752 result = create_array_type (alloc_type_copy (type0),
8753 elt_type, TYPE_INDEX_TYPE (type0));
8754 }
8755 else
8756 {
8757 int i;
8758 struct type *elt_type0;
8759
8760 elt_type0 = type0;
8761 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8762 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8763
8764 /* NOTE: result---the fixed version of elt_type0---should never
8765 depend on the contents of the array in properly constructed
8766 debugging data. */
8767 /* Create a fixed version of the array element type.
8768 We're not providing the address of an element here,
8769 and thus the actual object value cannot be inspected to do
8770 the conversion. This should not be a problem, since arrays of
8771 unconstrained objects are not allowed. In particular, all
8772 the elements of an array of a tagged type should all be of
8773 the same type specified in the debugging info. No need to
8774 consult the object tag. */
8775 result =
8776 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8777
8778 elt_type0 = type0;
8779 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8780 {
8781 struct type *range_type =
8782 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8783
8784 result = create_array_type (alloc_type_copy (elt_type0),
8785 result, range_type);
8786 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8787 }
8788 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8789 error (_("array type with dynamic size is larger than varsize-limit"));
8790 }
8791
8792 /* We want to preserve the type name. This can be useful when
8793 trying to get the type name of a value that has already been
8794 printed (for instance, if the user did "print VAR; whatis $". */
8795 TYPE_NAME (result) = TYPE_NAME (type0);
8796
8797 if (constrained_packed_array_p)
8798 {
8799 /* So far, the resulting type has been created as if the original
8800 type was a regular (non-packed) array type. As a result, the
8801 bitsize of the array elements needs to be set again, and the array
8802 length needs to be recomputed based on that bitsize. */
8803 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8804 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8805
8806 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8807 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8808 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8809 TYPE_LENGTH (result)++;
8810 }
8811
8812 TYPE_FIXED_INSTANCE (result) = 1;
8813 return result;
8814}
8815
8816
8817/* A standard type (containing no dynamically sized components)
8818 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8819 DVAL describes a record containing any discriminants used in TYPE0,
8820 and may be NULL if there are none, or if the object of type TYPE at
8821 ADDRESS or in VALADDR contains these discriminants.
8822
8823 If CHECK_TAG is not null, in the case of tagged types, this function
8824 attempts to locate the object's tag and use it to compute the actual
8825 type. However, when ADDRESS is null, we cannot use it to determine the
8826 location of the tag, and therefore compute the tagged type's actual type.
8827 So we return the tagged type without consulting the tag. */
8828
8829static struct type *
8830ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8831 CORE_ADDR address, struct value *dval, int check_tag)
8832{
8833 type = ada_check_typedef (type);
8834 switch (TYPE_CODE (type))
8835 {
8836 default:
8837 return type;
8838 case TYPE_CODE_STRUCT:
8839 {
8840 struct type *static_type = to_static_fixed_type (type);
8841 struct type *fixed_record_type =
8842 to_fixed_record_type (type, valaddr, address, NULL);
8843
8844 /* If STATIC_TYPE is a tagged type and we know the object's address,
8845 then we can determine its tag, and compute the object's actual
8846 type from there. Note that we have to use the fixed record
8847 type (the parent part of the record may have dynamic fields
8848 and the way the location of _tag is expressed may depend on
8849 them). */
8850
8851 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8852 {
8853 struct value *tag =
8854 value_tag_from_contents_and_address
8855 (fixed_record_type,
8856 valaddr,
8857 address);
8858 struct type *real_type = type_from_tag (tag);
8859 struct value *obj =
8860 value_from_contents_and_address (fixed_record_type,
8861 valaddr,
8862 address);
8863 fixed_record_type = value_type (obj);
8864 if (real_type != NULL)
8865 return to_fixed_record_type
8866 (real_type, NULL,
8867 value_address (ada_tag_value_at_base_address (obj)), NULL);
8868 }
8869
8870 /* Check to see if there is a parallel ___XVZ variable.
8871 If there is, then it provides the actual size of our type. */
8872 else if (ada_type_name (fixed_record_type) != NULL)
8873 {
8874 const char *name = ada_type_name (fixed_record_type);
8875 char *xvz_name
8876 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8877 int xvz_found = 0;
8878 LONGEST size;
8879
8880 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8881 size = get_int_var_value (xvz_name, &xvz_found);
8882 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8883 {
8884 fixed_record_type = copy_type (fixed_record_type);
8885 TYPE_LENGTH (fixed_record_type) = size;
8886
8887 /* The FIXED_RECORD_TYPE may have be a stub. We have
8888 observed this when the debugging info is STABS, and
8889 apparently it is something that is hard to fix.
8890
8891 In practice, we don't need the actual type definition
8892 at all, because the presence of the XVZ variable allows us
8893 to assume that there must be a XVS type as well, which we
8894 should be able to use later, when we need the actual type
8895 definition.
8896
8897 In the meantime, pretend that the "fixed" type we are
8898 returning is NOT a stub, because this can cause trouble
8899 when using this type to create new types targeting it.
8900 Indeed, the associated creation routines often check
8901 whether the target type is a stub and will try to replace
8902 it, thus using a type with the wrong size. This, in turn,
8903 might cause the new type to have the wrong size too.
8904 Consider the case of an array, for instance, where the size
8905 of the array is computed from the number of elements in
8906 our array multiplied by the size of its element. */
8907 TYPE_STUB (fixed_record_type) = 0;
8908 }
8909 }
8910 return fixed_record_type;
8911 }
8912 case TYPE_CODE_ARRAY:
8913 return to_fixed_array_type (type, dval, 1);
8914 case TYPE_CODE_UNION:
8915 if (dval == NULL)
8916 return type;
8917 else
8918 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8919 }
8920}
8921
8922/* The same as ada_to_fixed_type_1, except that it preserves the type
8923 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8924
8925 The typedef layer needs be preserved in order to differentiate between
8926 arrays and array pointers when both types are implemented using the same
8927 fat pointer. In the array pointer case, the pointer is encoded as
8928 a typedef of the pointer type. For instance, considering:
8929
8930 type String_Access is access String;
8931 S1 : String_Access := null;
8932
8933 To the debugger, S1 is defined as a typedef of type String. But
8934 to the user, it is a pointer. So if the user tries to print S1,
8935 we should not dereference the array, but print the array address
8936 instead.
8937
8938 If we didn't preserve the typedef layer, we would lose the fact that
8939 the type is to be presented as a pointer (needs de-reference before
8940 being printed). And we would also use the source-level type name. */
8941
8942struct type *
8943ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8944 CORE_ADDR address, struct value *dval, int check_tag)
8945
8946{
8947 struct type *fixed_type =
8948 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8949
8950 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8951 then preserve the typedef layer.
8952
8953 Implementation note: We can only check the main-type portion of
8954 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8955 from TYPE now returns a type that has the same instance flags
8956 as TYPE. For instance, if TYPE is a "typedef const", and its
8957 target type is a "struct", then the typedef elimination will return
8958 a "const" version of the target type. See check_typedef for more
8959 details about how the typedef layer elimination is done.
8960
8961 brobecker/2010-11-19: It seems to me that the only case where it is
8962 useful to preserve the typedef layer is when dealing with fat pointers.
8963 Perhaps, we could add a check for that and preserve the typedef layer
8964 only in that situation. But this seems unecessary so far, probably
8965 because we call check_typedef/ada_check_typedef pretty much everywhere.
8966 */
8967 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8968 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8969 == TYPE_MAIN_TYPE (fixed_type)))
8970 return type;
8971
8972 return fixed_type;
8973}
8974
8975/* A standard (static-sized) type corresponding as well as possible to
8976 TYPE0, but based on no runtime data. */
8977
8978static struct type *
8979to_static_fixed_type (struct type *type0)
8980{
8981 struct type *type;
8982
8983 if (type0 == NULL)
8984 return NULL;
8985
8986 if (TYPE_FIXED_INSTANCE (type0))
8987 return type0;
8988
8989 type0 = ada_check_typedef (type0);
8990
8991 switch (TYPE_CODE (type0))
8992 {
8993 default:
8994 return type0;
8995 case TYPE_CODE_STRUCT:
8996 type = dynamic_template_type (type0);
8997 if (type != NULL)
8998 return template_to_static_fixed_type (type);
8999 else
9000 return template_to_static_fixed_type (type0);
9001 case TYPE_CODE_UNION:
9002 type = ada_find_parallel_type (type0, "___XVU");
9003 if (type != NULL)
9004 return template_to_static_fixed_type (type);
9005 else
9006 return template_to_static_fixed_type (type0);
9007 }
9008}
9009
9010/* A static approximation of TYPE with all type wrappers removed. */
9011
9012static struct type *
9013static_unwrap_type (struct type *type)
9014{
9015 if (ada_is_aligner_type (type))
9016 {
9017 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9018 if (ada_type_name (type1) == NULL)
9019 TYPE_NAME (type1) = ada_type_name (type);
9020
9021 return static_unwrap_type (type1);
9022 }
9023 else
9024 {
9025 struct type *raw_real_type = ada_get_base_type (type);
9026
9027 if (raw_real_type == type)
9028 return type;
9029 else
9030 return to_static_fixed_type (raw_real_type);
9031 }
9032}
9033
9034/* In some cases, incomplete and private types require
9035 cross-references that are not resolved as records (for example,
9036 type Foo;
9037 type FooP is access Foo;
9038 V: FooP;
9039 type Foo is array ...;
9040 ). In these cases, since there is no mechanism for producing
9041 cross-references to such types, we instead substitute for FooP a
9042 stub enumeration type that is nowhere resolved, and whose tag is
9043 the name of the actual type. Call these types "non-record stubs". */
9044
9045/* A type equivalent to TYPE that is not a non-record stub, if one
9046 exists, otherwise TYPE. */
9047
9048struct type *
9049ada_check_typedef (struct type *type)
9050{
9051 if (type == NULL)
9052 return NULL;
9053
9054 /* If our type is a typedef type of a fat pointer, then we're done.
9055 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9056 what allows us to distinguish between fat pointers that represent
9057 array types, and fat pointers that represent array access types
9058 (in both cases, the compiler implements them as fat pointers). */
9059 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9060 && is_thick_pntr (ada_typedef_target_type (type)))
9061 return type;
9062
9063 type = check_typedef (type);
9064 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9065 || !TYPE_STUB (type)
9066 || TYPE_TAG_NAME (type) == NULL)
9067 return type;
9068 else
9069 {
9070 const char *name = TYPE_TAG_NAME (type);
9071 struct type *type1 = ada_find_any_type (name);
9072
9073 if (type1 == NULL)
9074 return type;
9075
9076 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9077 stubs pointing to arrays, as we don't create symbols for array
9078 types, only for the typedef-to-array types). If that's the case,
9079 strip the typedef layer. */
9080 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9081 type1 = ada_check_typedef (type1);
9082
9083 return type1;
9084 }
9085}
9086
9087/* A value representing the data at VALADDR/ADDRESS as described by
9088 type TYPE0, but with a standard (static-sized) type that correctly
9089 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9090 type, then return VAL0 [this feature is simply to avoid redundant
9091 creation of struct values]. */
9092
9093static struct value *
9094ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9095 struct value *val0)
9096{
9097 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9098
9099 if (type == type0 && val0 != NULL)
9100 return val0;
9101 else
9102 return value_from_contents_and_address (type, 0, address);
9103}
9104
9105/* A value representing VAL, but with a standard (static-sized) type
9106 that correctly describes it. Does not necessarily create a new
9107 value. */
9108
9109struct value *
9110ada_to_fixed_value (struct value *val)
9111{
9112 val = unwrap_value (val);
9113 val = ada_to_fixed_value_create (value_type (val),
9114 value_address (val),
9115 val);
9116 return val;
9117}
9118\f
9119
9120/* Attributes */
9121
9122/* Table mapping attribute numbers to names.
9123 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9124
9125static const char *attribute_names[] = {
9126 "<?>",
9127
9128 "first",
9129 "last",
9130 "length",
9131 "image",
9132 "max",
9133 "min",
9134 "modulus",
9135 "pos",
9136 "size",
9137 "tag",
9138 "val",
9139 0
9140};
9141
9142const char *
9143ada_attribute_name (enum exp_opcode n)
9144{
9145 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9146 return attribute_names[n - OP_ATR_FIRST + 1];
9147 else
9148 return attribute_names[0];
9149}
9150
9151/* Evaluate the 'POS attribute applied to ARG. */
9152
9153static LONGEST
9154pos_atr (struct value *arg)
9155{
9156 struct value *val = coerce_ref (arg);
9157 struct type *type = value_type (val);
9158 LONGEST result;
9159
9160 if (!discrete_type_p (type))
9161 error (_("'POS only defined on discrete types"));
9162
9163 if (!discrete_position (type, value_as_long (val), &result))
9164 error (_("enumeration value is invalid: can't find 'POS"));
9165
9166 return result;
9167}
9168
9169static struct value *
9170value_pos_atr (struct type *type, struct value *arg)
9171{
9172 return value_from_longest (type, pos_atr (arg));
9173}
9174
9175/* Evaluate the TYPE'VAL attribute applied to ARG. */
9176
9177static struct value *
9178value_val_atr (struct type *type, struct value *arg)
9179{
9180 if (!discrete_type_p (type))
9181 error (_("'VAL only defined on discrete types"));
9182 if (!integer_type_p (value_type (arg)))
9183 error (_("'VAL requires integral argument"));
9184
9185 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9186 {
9187 long pos = value_as_long (arg);
9188
9189 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9190 error (_("argument to 'VAL out of range"));
9191 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9192 }
9193 else
9194 return value_from_longest (type, value_as_long (arg));
9195}
9196\f
9197
9198 /* Evaluation */
9199
9200/* True if TYPE appears to be an Ada character type.
9201 [At the moment, this is true only for Character and Wide_Character;
9202 It is a heuristic test that could stand improvement]. */
9203
9204int
9205ada_is_character_type (struct type *type)
9206{
9207 const char *name;
9208
9209 /* If the type code says it's a character, then assume it really is,
9210 and don't check any further. */
9211 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9212 return 1;
9213
9214 /* Otherwise, assume it's a character type iff it is a discrete type
9215 with a known character type name. */
9216 name = ada_type_name (type);
9217 return (name != NULL
9218 && (TYPE_CODE (type) == TYPE_CODE_INT
9219 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9220 && (strcmp (name, "character") == 0
9221 || strcmp (name, "wide_character") == 0
9222 || strcmp (name, "wide_wide_character") == 0
9223 || strcmp (name, "unsigned char") == 0));
9224}
9225
9226/* True if TYPE appears to be an Ada string type. */
9227
9228int
9229ada_is_string_type (struct type *type)
9230{
9231 type = ada_check_typedef (type);
9232 if (type != NULL
9233 && TYPE_CODE (type) != TYPE_CODE_PTR
9234 && (ada_is_simple_array_type (type)
9235 || ada_is_array_descriptor_type (type))
9236 && ada_array_arity (type) == 1)
9237 {
9238 struct type *elttype = ada_array_element_type (type, 1);
9239
9240 return ada_is_character_type (elttype);
9241 }
9242 else
9243 return 0;
9244}
9245
9246/* The compiler sometimes provides a parallel XVS type for a given
9247 PAD type. Normally, it is safe to follow the PAD type directly,
9248 but older versions of the compiler have a bug that causes the offset
9249 of its "F" field to be wrong. Following that field in that case
9250 would lead to incorrect results, but this can be worked around
9251 by ignoring the PAD type and using the associated XVS type instead.
9252
9253 Set to True if the debugger should trust the contents of PAD types.
9254 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9255static int trust_pad_over_xvs = 1;
9256
9257/* True if TYPE is a struct type introduced by the compiler to force the
9258 alignment of a value. Such types have a single field with a
9259 distinctive name. */
9260
9261int
9262ada_is_aligner_type (struct type *type)
9263{
9264 type = ada_check_typedef (type);
9265
9266 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9267 return 0;
9268
9269 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9270 && TYPE_NFIELDS (type) == 1
9271 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9272}
9273
9274/* If there is an ___XVS-convention type parallel to SUBTYPE, return
9275 the parallel type. */
9276
9277struct type *
9278ada_get_base_type (struct type *raw_type)
9279{
9280 struct type *real_type_namer;
9281 struct type *raw_real_type;
9282
9283 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9284 return raw_type;
9285
9286 if (ada_is_aligner_type (raw_type))
9287 /* The encoding specifies that we should always use the aligner type.
9288 So, even if this aligner type has an associated XVS type, we should
9289 simply ignore it.
9290
9291 According to the compiler gurus, an XVS type parallel to an aligner
9292 type may exist because of a stabs limitation. In stabs, aligner
9293 types are empty because the field has a variable-sized type, and
9294 thus cannot actually be used as an aligner type. As a result,
9295 we need the associated parallel XVS type to decode the type.
9296 Since the policy in the compiler is to not change the internal
9297 representation based on the debugging info format, we sometimes
9298 end up having a redundant XVS type parallel to the aligner type. */
9299 return raw_type;
9300
9301 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9302 if (real_type_namer == NULL
9303 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9304 || TYPE_NFIELDS (real_type_namer) != 1)
9305 return raw_type;
9306
9307 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9308 {
9309 /* This is an older encoding form where the base type needs to be
9310 looked up by name. We prefer the newer enconding because it is
9311 more efficient. */
9312 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9313 if (raw_real_type == NULL)
9314 return raw_type;
9315 else
9316 return raw_real_type;
9317 }
9318
9319 /* The field in our XVS type is a reference to the base type. */
9320 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9321}
9322
9323/* The type of value designated by TYPE, with all aligners removed. */
9324
9325struct type *
9326ada_aligned_type (struct type *type)
9327{
9328 if (ada_is_aligner_type (type))
9329 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9330 else
9331 return ada_get_base_type (type);
9332}
9333
9334
9335/* The address of the aligned value in an object at address VALADDR
9336 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9337
9338const gdb_byte *
9339ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9340{
9341 if (ada_is_aligner_type (type))
9342 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9343 valaddr +
9344 TYPE_FIELD_BITPOS (type,
9345 0) / TARGET_CHAR_BIT);
9346 else
9347 return valaddr;
9348}
9349
9350
9351
9352/* The printed representation of an enumeration literal with encoded
9353 name NAME. The value is good to the next call of ada_enum_name. */
9354const char *
9355ada_enum_name (const char *name)
9356{
9357 static char *result;
9358 static size_t result_len = 0;
9359 char *tmp;
9360
9361 /* First, unqualify the enumeration name:
9362 1. Search for the last '.' character. If we find one, then skip
9363 all the preceding characters, the unqualified name starts
9364 right after that dot.
9365 2. Otherwise, we may be debugging on a target where the compiler
9366 translates dots into "__". Search forward for double underscores,
9367 but stop searching when we hit an overloading suffix, which is
9368 of the form "__" followed by digits. */
9369
9370 tmp = strrchr (name, '.');
9371 if (tmp != NULL)
9372 name = tmp + 1;
9373 else
9374 {
9375 while ((tmp = strstr (name, "__")) != NULL)
9376 {
9377 if (isdigit (tmp[2]))
9378 break;
9379 else
9380 name = tmp + 2;
9381 }
9382 }
9383
9384 if (name[0] == 'Q')
9385 {
9386 int v;
9387
9388 if (name[1] == 'U' || name[1] == 'W')
9389 {
9390 if (sscanf (name + 2, "%x", &v) != 1)
9391 return name;
9392 }
9393 else
9394 return name;
9395
9396 GROW_VECT (result, result_len, 16);
9397 if (isascii (v) && isprint (v))
9398 xsnprintf (result, result_len, "'%c'", v);
9399 else if (name[1] == 'U')
9400 xsnprintf (result, result_len, "[\"%02x\"]", v);
9401 else
9402 xsnprintf (result, result_len, "[\"%04x\"]", v);
9403
9404 return result;
9405 }
9406 else
9407 {
9408 tmp = strstr (name, "__");
9409 if (tmp == NULL)
9410 tmp = strstr (name, "$");
9411 if (tmp != NULL)
9412 {
9413 GROW_VECT (result, result_len, tmp - name + 1);
9414 strncpy (result, name, tmp - name);
9415 result[tmp - name] = '\0';
9416 return result;
9417 }
9418
9419 return name;
9420 }
9421}
9422
9423/* Evaluate the subexpression of EXP starting at *POS as for
9424 evaluate_type, updating *POS to point just past the evaluated
9425 expression. */
9426
9427static struct value *
9428evaluate_subexp_type (struct expression *exp, int *pos)
9429{
9430 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9431}
9432
9433/* If VAL is wrapped in an aligner or subtype wrapper, return the
9434 value it wraps. */
9435
9436static struct value *
9437unwrap_value (struct value *val)
9438{
9439 struct type *type = ada_check_typedef (value_type (val));
9440
9441 if (ada_is_aligner_type (type))
9442 {
9443 struct value *v = ada_value_struct_elt (val, "F", 0);
9444 struct type *val_type = ada_check_typedef (value_type (v));
9445
9446 if (ada_type_name (val_type) == NULL)
9447 TYPE_NAME (val_type) = ada_type_name (type);
9448
9449 return unwrap_value (v);
9450 }
9451 else
9452 {
9453 struct type *raw_real_type =
9454 ada_check_typedef (ada_get_base_type (type));
9455
9456 /* If there is no parallel XVS or XVE type, then the value is
9457 already unwrapped. Return it without further modification. */
9458 if ((type == raw_real_type)
9459 && ada_find_parallel_type (type, "___XVE") == NULL)
9460 return val;
9461
9462 return
9463 coerce_unspec_val_to_type
9464 (val, ada_to_fixed_type (raw_real_type, 0,
9465 value_address (val),
9466 NULL, 1));
9467 }
9468}
9469
9470static struct value *
9471cast_to_fixed (struct type *type, struct value *arg)
9472{
9473 LONGEST val;
9474
9475 if (type == value_type (arg))
9476 return arg;
9477 else if (ada_is_fixed_point_type (value_type (arg)))
9478 val = ada_float_to_fixed (type,
9479 ada_fixed_to_float (value_type (arg),
9480 value_as_long (arg)));
9481 else
9482 {
9483 DOUBLEST argd = value_as_double (arg);
9484
9485 val = ada_float_to_fixed (type, argd);
9486 }
9487
9488 return value_from_longest (type, val);
9489}
9490
9491static struct value *
9492cast_from_fixed (struct type *type, struct value *arg)
9493{
9494 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9495 value_as_long (arg));
9496
9497 return value_from_double (type, val);
9498}
9499
9500/* Given two array types T1 and T2, return nonzero iff both arrays
9501 contain the same number of elements. */
9502
9503static int
9504ada_same_array_size_p (struct type *t1, struct type *t2)
9505{
9506 LONGEST lo1, hi1, lo2, hi2;
9507
9508 /* Get the array bounds in order to verify that the size of
9509 the two arrays match. */
9510 if (!get_array_bounds (t1, &lo1, &hi1)
9511 || !get_array_bounds (t2, &lo2, &hi2))
9512 error (_("unable to determine array bounds"));
9513
9514 /* To make things easier for size comparison, normalize a bit
9515 the case of empty arrays by making sure that the difference
9516 between upper bound and lower bound is always -1. */
9517 if (lo1 > hi1)
9518 hi1 = lo1 - 1;
9519 if (lo2 > hi2)
9520 hi2 = lo2 - 1;
9521
9522 return (hi1 - lo1 == hi2 - lo2);
9523}
9524
9525/* Assuming that VAL is an array of integrals, and TYPE represents
9526 an array with the same number of elements, but with wider integral
9527 elements, return an array "casted" to TYPE. In practice, this
9528 means that the returned array is built by casting each element
9529 of the original array into TYPE's (wider) element type. */
9530
9531static struct value *
9532ada_promote_array_of_integrals (struct type *type, struct value *val)
9533{
9534 struct type *elt_type = TYPE_TARGET_TYPE (type);
9535 LONGEST lo, hi;
9536 struct value *res;
9537 LONGEST i;
9538
9539 /* Verify that both val and type are arrays of scalars, and
9540 that the size of val's elements is smaller than the size
9541 of type's element. */
9542 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9543 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9544 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9545 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9546 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9547 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9548
9549 if (!get_array_bounds (type, &lo, &hi))
9550 error (_("unable to determine array bounds"));
9551
9552 res = allocate_value (type);
9553
9554 /* Promote each array element. */
9555 for (i = 0; i < hi - lo + 1; i++)
9556 {
9557 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9558
9559 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9560 value_contents_all (elt), TYPE_LENGTH (elt_type));
9561 }
9562
9563 return res;
9564}
9565
9566/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9567 return the converted value. */
9568
9569static struct value *
9570coerce_for_assign (struct type *type, struct value *val)
9571{
9572 struct type *type2 = value_type (val);
9573
9574 if (type == type2)
9575 return val;
9576
9577 type2 = ada_check_typedef (type2);
9578 type = ada_check_typedef (type);
9579
9580 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9581 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9582 {
9583 val = ada_value_ind (val);
9584 type2 = value_type (val);
9585 }
9586
9587 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9588 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9589 {
9590 if (!ada_same_array_size_p (type, type2))
9591 error (_("cannot assign arrays of different length"));
9592
9593 if (is_integral_type (TYPE_TARGET_TYPE (type))
9594 && is_integral_type (TYPE_TARGET_TYPE (type2))
9595 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9596 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9597 {
9598 /* Allow implicit promotion of the array elements to
9599 a wider type. */
9600 return ada_promote_array_of_integrals (type, val);
9601 }
9602
9603 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9604 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9605 error (_("Incompatible types in assignment"));
9606 deprecated_set_value_type (val, type);
9607 }
9608 return val;
9609}
9610
9611static struct value *
9612ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9613{
9614 struct value *val;
9615 struct type *type1, *type2;
9616 LONGEST v, v1, v2;
9617
9618 arg1 = coerce_ref (arg1);
9619 arg2 = coerce_ref (arg2);
9620 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9621 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9622
9623 if (TYPE_CODE (type1) != TYPE_CODE_INT
9624 || TYPE_CODE (type2) != TYPE_CODE_INT)
9625 return value_binop (arg1, arg2, op);
9626
9627 switch (op)
9628 {
9629 case BINOP_MOD:
9630 case BINOP_DIV:
9631 case BINOP_REM:
9632 break;
9633 default:
9634 return value_binop (arg1, arg2, op);
9635 }
9636
9637 v2 = value_as_long (arg2);
9638 if (v2 == 0)
9639 error (_("second operand of %s must not be zero."), op_string (op));
9640
9641 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9642 return value_binop (arg1, arg2, op);
9643
9644 v1 = value_as_long (arg1);
9645 switch (op)
9646 {
9647 case BINOP_DIV:
9648 v = v1 / v2;
9649 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9650 v += v > 0 ? -1 : 1;
9651 break;
9652 case BINOP_REM:
9653 v = v1 % v2;
9654 if (v * v1 < 0)
9655 v -= v2;
9656 break;
9657 default:
9658 /* Should not reach this point. */
9659 v = 0;
9660 }
9661
9662 val = allocate_value (type1);
9663 store_unsigned_integer (value_contents_raw (val),
9664 TYPE_LENGTH (value_type (val)),
9665 gdbarch_byte_order (get_type_arch (type1)), v);
9666 return val;
9667}
9668
9669static int
9670ada_value_equal (struct value *arg1, struct value *arg2)
9671{
9672 if (ada_is_direct_array_type (value_type (arg1))
9673 || ada_is_direct_array_type (value_type (arg2)))
9674 {
9675 /* Automatically dereference any array reference before
9676 we attempt to perform the comparison. */
9677 arg1 = ada_coerce_ref (arg1);
9678 arg2 = ada_coerce_ref (arg2);
9679
9680 arg1 = ada_coerce_to_simple_array (arg1);
9681 arg2 = ada_coerce_to_simple_array (arg2);
9682 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9683 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9684 error (_("Attempt to compare array with non-array"));
9685 /* FIXME: The following works only for types whose
9686 representations use all bits (no padding or undefined bits)
9687 and do not have user-defined equality. */
9688 return
9689 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9690 && memcmp (value_contents (arg1), value_contents (arg2),
9691 TYPE_LENGTH (value_type (arg1))) == 0;
9692 }
9693 return value_equal (arg1, arg2);
9694}
9695
9696/* Total number of component associations in the aggregate starting at
9697 index PC in EXP. Assumes that index PC is the start of an
9698 OP_AGGREGATE. */
9699
9700static int
9701num_component_specs (struct expression *exp, int pc)
9702{
9703 int n, m, i;
9704
9705 m = exp->elts[pc + 1].longconst;
9706 pc += 3;
9707 n = 0;
9708 for (i = 0; i < m; i += 1)
9709 {
9710 switch (exp->elts[pc].opcode)
9711 {
9712 default:
9713 n += 1;
9714 break;
9715 case OP_CHOICES:
9716 n += exp->elts[pc + 1].longconst;
9717 break;
9718 }
9719 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9720 }
9721 return n;
9722}
9723
9724/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9725 component of LHS (a simple array or a record), updating *POS past
9726 the expression, assuming that LHS is contained in CONTAINER. Does
9727 not modify the inferior's memory, nor does it modify LHS (unless
9728 LHS == CONTAINER). */
9729
9730static void
9731assign_component (struct value *container, struct value *lhs, LONGEST index,
9732 struct expression *exp, int *pos)
9733{
9734 struct value *mark = value_mark ();
9735 struct value *elt;
9736
9737 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9738 {
9739 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9740 struct value *index_val = value_from_longest (index_type, index);
9741
9742 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9743 }
9744 else
9745 {
9746 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9747 elt = ada_to_fixed_value (elt);
9748 }
9749
9750 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9751 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9752 else
9753 value_assign_to_component (container, elt,
9754 ada_evaluate_subexp (NULL, exp, pos,
9755 EVAL_NORMAL));
9756
9757 value_free_to_mark (mark);
9758}
9759
9760/* Assuming that LHS represents an lvalue having a record or array
9761 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9762 of that aggregate's value to LHS, advancing *POS past the
9763 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9764 lvalue containing LHS (possibly LHS itself). Does not modify
9765 the inferior's memory, nor does it modify the contents of
9766 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9767
9768static struct value *
9769assign_aggregate (struct value *container,
9770 struct value *lhs, struct expression *exp,
9771 int *pos, enum noside noside)
9772{
9773 struct type *lhs_type;
9774 int n = exp->elts[*pos+1].longconst;
9775 LONGEST low_index, high_index;
9776 int num_specs;
9777 LONGEST *indices;
9778 int max_indices, num_indices;
9779 int i;
9780
9781 *pos += 3;
9782 if (noside != EVAL_NORMAL)
9783 {
9784 for (i = 0; i < n; i += 1)
9785 ada_evaluate_subexp (NULL, exp, pos, noside);
9786 return container;
9787 }
9788
9789 container = ada_coerce_ref (container);
9790 if (ada_is_direct_array_type (value_type (container)))
9791 container = ada_coerce_to_simple_array (container);
9792 lhs = ada_coerce_ref (lhs);
9793 if (!deprecated_value_modifiable (lhs))
9794 error (_("Left operand of assignment is not a modifiable lvalue."));
9795
9796 lhs_type = value_type (lhs);
9797 if (ada_is_direct_array_type (lhs_type))
9798 {
9799 lhs = ada_coerce_to_simple_array (lhs);
9800 lhs_type = value_type (lhs);
9801 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9802 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9803 }
9804 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9805 {
9806 low_index = 0;
9807 high_index = num_visible_fields (lhs_type) - 1;
9808 }
9809 else
9810 error (_("Left-hand side must be array or record."));
9811
9812 num_specs = num_component_specs (exp, *pos - 3);
9813 max_indices = 4 * num_specs + 4;
9814 indices = XALLOCAVEC (LONGEST, max_indices);
9815 indices[0] = indices[1] = low_index - 1;
9816 indices[2] = indices[3] = high_index + 1;
9817 num_indices = 4;
9818
9819 for (i = 0; i < n; i += 1)
9820 {
9821 switch (exp->elts[*pos].opcode)
9822 {
9823 case OP_CHOICES:
9824 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9825 &num_indices, max_indices,
9826 low_index, high_index);
9827 break;
9828 case OP_POSITIONAL:
9829 aggregate_assign_positional (container, lhs, exp, pos, indices,
9830 &num_indices, max_indices,
9831 low_index, high_index);
9832 break;
9833 case OP_OTHERS:
9834 if (i != n-1)
9835 error (_("Misplaced 'others' clause"));
9836 aggregate_assign_others (container, lhs, exp, pos, indices,
9837 num_indices, low_index, high_index);
9838 break;
9839 default:
9840 error (_("Internal error: bad aggregate clause"));
9841 }
9842 }
9843
9844 return container;
9845}
9846
9847/* Assign into the component of LHS indexed by the OP_POSITIONAL
9848 construct at *POS, updating *POS past the construct, given that
9849 the positions are relative to lower bound LOW, where HIGH is the
9850 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9851 updating *NUM_INDICES as needed. CONTAINER is as for
9852 assign_aggregate. */
9853static void
9854aggregate_assign_positional (struct value *container,
9855 struct value *lhs, struct expression *exp,
9856 int *pos, LONGEST *indices, int *num_indices,
9857 int max_indices, LONGEST low, LONGEST high)
9858{
9859 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9860
9861 if (ind - 1 == high)
9862 warning (_("Extra components in aggregate ignored."));
9863 if (ind <= high)
9864 {
9865 add_component_interval (ind, ind, indices, num_indices, max_indices);
9866 *pos += 3;
9867 assign_component (container, lhs, ind, exp, pos);
9868 }
9869 else
9870 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9871}
9872
9873/* Assign into the components of LHS indexed by the OP_CHOICES
9874 construct at *POS, updating *POS past the construct, given that
9875 the allowable indices are LOW..HIGH. Record the indices assigned
9876 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9877 needed. CONTAINER is as for assign_aggregate. */
9878static void
9879aggregate_assign_from_choices (struct value *container,
9880 struct value *lhs, struct expression *exp,
9881 int *pos, LONGEST *indices, int *num_indices,
9882 int max_indices, LONGEST low, LONGEST high)
9883{
9884 int j;
9885 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9886 int choice_pos, expr_pc;
9887 int is_array = ada_is_direct_array_type (value_type (lhs));
9888
9889 choice_pos = *pos += 3;
9890
9891 for (j = 0; j < n_choices; j += 1)
9892 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9893 expr_pc = *pos;
9894 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9895
9896 for (j = 0; j < n_choices; j += 1)
9897 {
9898 LONGEST lower, upper;
9899 enum exp_opcode op = exp->elts[choice_pos].opcode;
9900
9901 if (op == OP_DISCRETE_RANGE)
9902 {
9903 choice_pos += 1;
9904 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9905 EVAL_NORMAL));
9906 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9907 EVAL_NORMAL));
9908 }
9909 else if (is_array)
9910 {
9911 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9912 EVAL_NORMAL));
9913 upper = lower;
9914 }
9915 else
9916 {
9917 int ind;
9918 const char *name;
9919
9920 switch (op)
9921 {
9922 case OP_NAME:
9923 name = &exp->elts[choice_pos + 2].string;
9924 break;
9925 case OP_VAR_VALUE:
9926 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9927 break;
9928 default:
9929 error (_("Invalid record component association."));
9930 }
9931 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9932 ind = 0;
9933 if (! find_struct_field (name, value_type (lhs), 0,
9934 NULL, NULL, NULL, NULL, &ind))
9935 error (_("Unknown component name: %s."), name);
9936 lower = upper = ind;
9937 }
9938
9939 if (lower <= upper && (lower < low || upper > high))
9940 error (_("Index in component association out of bounds."));
9941
9942 add_component_interval (lower, upper, indices, num_indices,
9943 max_indices);
9944 while (lower <= upper)
9945 {
9946 int pos1;
9947
9948 pos1 = expr_pc;
9949 assign_component (container, lhs, lower, exp, &pos1);
9950 lower += 1;
9951 }
9952 }
9953}
9954
9955/* Assign the value of the expression in the OP_OTHERS construct in
9956 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9957 have not been previously assigned. The index intervals already assigned
9958 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9959 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9960static void
9961aggregate_assign_others (struct value *container,
9962 struct value *lhs, struct expression *exp,
9963 int *pos, LONGEST *indices, int num_indices,
9964 LONGEST low, LONGEST high)
9965{
9966 int i;
9967 int expr_pc = *pos + 1;
9968
9969 for (i = 0; i < num_indices - 2; i += 2)
9970 {
9971 LONGEST ind;
9972
9973 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9974 {
9975 int localpos;
9976
9977 localpos = expr_pc;
9978 assign_component (container, lhs, ind, exp, &localpos);
9979 }
9980 }
9981 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9982}
9983
9984/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9985 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9986 modifying *SIZE as needed. It is an error if *SIZE exceeds
9987 MAX_SIZE. The resulting intervals do not overlap. */
9988static void
9989add_component_interval (LONGEST low, LONGEST high,
9990 LONGEST* indices, int *size, int max_size)
9991{
9992 int i, j;
9993
9994 for (i = 0; i < *size; i += 2) {
9995 if (high >= indices[i] && low <= indices[i + 1])
9996 {
9997 int kh;
9998
9999 for (kh = i + 2; kh < *size; kh += 2)
10000 if (high < indices[kh])
10001 break;
10002 if (low < indices[i])
10003 indices[i] = low;
10004 indices[i + 1] = indices[kh - 1];
10005 if (high > indices[i + 1])
10006 indices[i + 1] = high;
10007 memcpy (indices + i + 2, indices + kh, *size - kh);
10008 *size -= kh - i - 2;
10009 return;
10010 }
10011 else if (high < indices[i])
10012 break;
10013 }
10014
10015 if (*size == max_size)
10016 error (_("Internal error: miscounted aggregate components."));
10017 *size += 2;
10018 for (j = *size-1; j >= i+2; j -= 1)
10019 indices[j] = indices[j - 2];
10020 indices[i] = low;
10021 indices[i + 1] = high;
10022}
10023
10024/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10025 is different. */
10026
10027static struct value *
10028ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10029{
10030 if (type == ada_check_typedef (value_type (arg2)))
10031 return arg2;
10032
10033 if (ada_is_fixed_point_type (type))
10034 return (cast_to_fixed (type, arg2));
10035
10036 if (ada_is_fixed_point_type (value_type (arg2)))
10037 return cast_from_fixed (type, arg2);
10038
10039 return value_cast (type, arg2);
10040}
10041
10042/* Evaluating Ada expressions, and printing their result.
10043 ------------------------------------------------------
10044
10045 1. Introduction:
10046 ----------------
10047
10048 We usually evaluate an Ada expression in order to print its value.
10049 We also evaluate an expression in order to print its type, which
10050 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10051 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10052 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10053 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10054 similar.
10055
10056 Evaluating expressions is a little more complicated for Ada entities
10057 than it is for entities in languages such as C. The main reason for
10058 this is that Ada provides types whose definition might be dynamic.
10059 One example of such types is variant records. Or another example
10060 would be an array whose bounds can only be known at run time.
10061
10062 The following description is a general guide as to what should be
10063 done (and what should NOT be done) in order to evaluate an expression
10064 involving such types, and when. This does not cover how the semantic
10065 information is encoded by GNAT as this is covered separatly. For the
10066 document used as the reference for the GNAT encoding, see exp_dbug.ads
10067 in the GNAT sources.
10068
10069 Ideally, we should embed each part of this description next to its
10070 associated code. Unfortunately, the amount of code is so vast right
10071 now that it's hard to see whether the code handling a particular
10072 situation might be duplicated or not. One day, when the code is
10073 cleaned up, this guide might become redundant with the comments
10074 inserted in the code, and we might want to remove it.
10075
10076 2. ``Fixing'' an Entity, the Simple Case:
10077 -----------------------------------------
10078
10079 When evaluating Ada expressions, the tricky issue is that they may
10080 reference entities whose type contents and size are not statically
10081 known. Consider for instance a variant record:
10082
10083 type Rec (Empty : Boolean := True) is record
10084 case Empty is
10085 when True => null;
10086 when False => Value : Integer;
10087 end case;
10088 end record;
10089 Yes : Rec := (Empty => False, Value => 1);
10090 No : Rec := (empty => True);
10091
10092 The size and contents of that record depends on the value of the
10093 descriminant (Rec.Empty). At this point, neither the debugging
10094 information nor the associated type structure in GDB are able to
10095 express such dynamic types. So what the debugger does is to create
10096 "fixed" versions of the type that applies to the specific object.
10097 We also informally refer to this opperation as "fixing" an object,
10098 which means creating its associated fixed type.
10099
10100 Example: when printing the value of variable "Yes" above, its fixed
10101 type would look like this:
10102
10103 type Rec is record
10104 Empty : Boolean;
10105 Value : Integer;
10106 end record;
10107
10108 On the other hand, if we printed the value of "No", its fixed type
10109 would become:
10110
10111 type Rec is record
10112 Empty : Boolean;
10113 end record;
10114
10115 Things become a little more complicated when trying to fix an entity
10116 with a dynamic type that directly contains another dynamic type,
10117 such as an array of variant records, for instance. There are
10118 two possible cases: Arrays, and records.
10119
10120 3. ``Fixing'' Arrays:
10121 ---------------------
10122
10123 The type structure in GDB describes an array in terms of its bounds,
10124 and the type of its elements. By design, all elements in the array
10125 have the same type and we cannot represent an array of variant elements
10126 using the current type structure in GDB. When fixing an array,
10127 we cannot fix the array element, as we would potentially need one
10128 fixed type per element of the array. As a result, the best we can do
10129 when fixing an array is to produce an array whose bounds and size
10130 are correct (allowing us to read it from memory), but without having
10131 touched its element type. Fixing each element will be done later,
10132 when (if) necessary.
10133
10134 Arrays are a little simpler to handle than records, because the same
10135 amount of memory is allocated for each element of the array, even if
10136 the amount of space actually used by each element differs from element
10137 to element. Consider for instance the following array of type Rec:
10138
10139 type Rec_Array is array (1 .. 2) of Rec;
10140
10141 The actual amount of memory occupied by each element might be different
10142 from element to element, depending on the value of their discriminant.
10143 But the amount of space reserved for each element in the array remains
10144 fixed regardless. So we simply need to compute that size using
10145 the debugging information available, from which we can then determine
10146 the array size (we multiply the number of elements of the array by
10147 the size of each element).
10148
10149 The simplest case is when we have an array of a constrained element
10150 type. For instance, consider the following type declarations:
10151
10152 type Bounded_String (Max_Size : Integer) is
10153 Length : Integer;
10154 Buffer : String (1 .. Max_Size);
10155 end record;
10156 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10157
10158 In this case, the compiler describes the array as an array of
10159 variable-size elements (identified by its XVS suffix) for which
10160 the size can be read in the parallel XVZ variable.
10161
10162 In the case of an array of an unconstrained element type, the compiler
10163 wraps the array element inside a private PAD type. This type should not
10164 be shown to the user, and must be "unwrap"'ed before printing. Note
10165 that we also use the adjective "aligner" in our code to designate
10166 these wrapper types.
10167
10168 In some cases, the size allocated for each element is statically
10169 known. In that case, the PAD type already has the correct size,
10170 and the array element should remain unfixed.
10171
10172 But there are cases when this size is not statically known.
10173 For instance, assuming that "Five" is an integer variable:
10174
10175 type Dynamic is array (1 .. Five) of Integer;
10176 type Wrapper (Has_Length : Boolean := False) is record
10177 Data : Dynamic;
10178 case Has_Length is
10179 when True => Length : Integer;
10180 when False => null;
10181 end case;
10182 end record;
10183 type Wrapper_Array is array (1 .. 2) of Wrapper;
10184
10185 Hello : Wrapper_Array := (others => (Has_Length => True,
10186 Data => (others => 17),
10187 Length => 1));
10188
10189
10190 The debugging info would describe variable Hello as being an
10191 array of a PAD type. The size of that PAD type is not statically
10192 known, but can be determined using a parallel XVZ variable.
10193 In that case, a copy of the PAD type with the correct size should
10194 be used for the fixed array.
10195
10196 3. ``Fixing'' record type objects:
10197 ----------------------------------
10198
10199 Things are slightly different from arrays in the case of dynamic
10200 record types. In this case, in order to compute the associated
10201 fixed type, we need to determine the size and offset of each of
10202 its components. This, in turn, requires us to compute the fixed
10203 type of each of these components.
10204
10205 Consider for instance the example:
10206
10207 type Bounded_String (Max_Size : Natural) is record
10208 Str : String (1 .. Max_Size);
10209 Length : Natural;
10210 end record;
10211 My_String : Bounded_String (Max_Size => 10);
10212
10213 In that case, the position of field "Length" depends on the size
10214 of field Str, which itself depends on the value of the Max_Size
10215 discriminant. In order to fix the type of variable My_String,
10216 we need to fix the type of field Str. Therefore, fixing a variant
10217 record requires us to fix each of its components.
10218
10219 However, if a component does not have a dynamic size, the component
10220 should not be fixed. In particular, fields that use a PAD type
10221 should not fixed. Here is an example where this might happen
10222 (assuming type Rec above):
10223
10224 type Container (Big : Boolean) is record
10225 First : Rec;
10226 After : Integer;
10227 case Big is
10228 when True => Another : Integer;
10229 when False => null;
10230 end case;
10231 end record;
10232 My_Container : Container := (Big => False,
10233 First => (Empty => True),
10234 After => 42);
10235
10236 In that example, the compiler creates a PAD type for component First,
10237 whose size is constant, and then positions the component After just
10238 right after it. The offset of component After is therefore constant
10239 in this case.
10240
10241 The debugger computes the position of each field based on an algorithm
10242 that uses, among other things, the actual position and size of the field
10243 preceding it. Let's now imagine that the user is trying to print
10244 the value of My_Container. If the type fixing was recursive, we would
10245 end up computing the offset of field After based on the size of the
10246 fixed version of field First. And since in our example First has
10247 only one actual field, the size of the fixed type is actually smaller
10248 than the amount of space allocated to that field, and thus we would
10249 compute the wrong offset of field After.
10250
10251 To make things more complicated, we need to watch out for dynamic
10252 components of variant records (identified by the ___XVL suffix in
10253 the component name). Even if the target type is a PAD type, the size
10254 of that type might not be statically known. So the PAD type needs
10255 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10256 we might end up with the wrong size for our component. This can be
10257 observed with the following type declarations:
10258
10259 type Octal is new Integer range 0 .. 7;
10260 type Octal_Array is array (Positive range <>) of Octal;
10261 pragma Pack (Octal_Array);
10262
10263 type Octal_Buffer (Size : Positive) is record
10264 Buffer : Octal_Array (1 .. Size);
10265 Length : Integer;
10266 end record;
10267
10268 In that case, Buffer is a PAD type whose size is unset and needs
10269 to be computed by fixing the unwrapped type.
10270
10271 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10272 ----------------------------------------------------------
10273
10274 Lastly, when should the sub-elements of an entity that remained unfixed
10275 thus far, be actually fixed?
10276
10277 The answer is: Only when referencing that element. For instance
10278 when selecting one component of a record, this specific component
10279 should be fixed at that point in time. Or when printing the value
10280 of a record, each component should be fixed before its value gets
10281 printed. Similarly for arrays, the element of the array should be
10282 fixed when printing each element of the array, or when extracting
10283 one element out of that array. On the other hand, fixing should
10284 not be performed on the elements when taking a slice of an array!
10285
10286 Note that one of the side-effects of miscomputing the offset and
10287 size of each field is that we end up also miscomputing the size
10288 of the containing type. This can have adverse results when computing
10289 the value of an entity. GDB fetches the value of an entity based
10290 on the size of its type, and thus a wrong size causes GDB to fetch
10291 the wrong amount of memory. In the case where the computed size is
10292 too small, GDB fetches too little data to print the value of our
10293 entiry. Results in this case as unpredicatble, as we usually read
10294 past the buffer containing the data =:-o. */
10295
10296/* Implement the evaluate_exp routine in the exp_descriptor structure
10297 for the Ada language. */
10298
10299static struct value *
10300ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10301 int *pos, enum noside noside)
10302{
10303 enum exp_opcode op;
10304 int tem;
10305 int pc;
10306 int preeval_pos;
10307 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10308 struct type *type;
10309 int nargs, oplen;
10310 struct value **argvec;
10311
10312 pc = *pos;
10313 *pos += 1;
10314 op = exp->elts[pc].opcode;
10315
10316 switch (op)
10317 {
10318 default:
10319 *pos -= 1;
10320 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10321
10322 if (noside == EVAL_NORMAL)
10323 arg1 = unwrap_value (arg1);
10324
10325 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10326 then we need to perform the conversion manually, because
10327 evaluate_subexp_standard doesn't do it. This conversion is
10328 necessary in Ada because the different kinds of float/fixed
10329 types in Ada have different representations.
10330
10331 Similarly, we need to perform the conversion from OP_LONG
10332 ourselves. */
10333 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10334 arg1 = ada_value_cast (expect_type, arg1, noside);
10335
10336 return arg1;
10337
10338 case OP_STRING:
10339 {
10340 struct value *result;
10341
10342 *pos -= 1;
10343 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10344 /* The result type will have code OP_STRING, bashed there from
10345 OP_ARRAY. Bash it back. */
10346 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10347 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10348 return result;
10349 }
10350
10351 case UNOP_CAST:
10352 (*pos) += 2;
10353 type = exp->elts[pc + 1].type;
10354 arg1 = evaluate_subexp (type, exp, pos, noside);
10355 if (noside == EVAL_SKIP)
10356 goto nosideret;
10357 arg1 = ada_value_cast (type, arg1, noside);
10358 return arg1;
10359
10360 case UNOP_QUAL:
10361 (*pos) += 2;
10362 type = exp->elts[pc + 1].type;
10363 return ada_evaluate_subexp (type, exp, pos, noside);
10364
10365 case BINOP_ASSIGN:
10366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10367 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10368 {
10369 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10370 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10371 return arg1;
10372 return ada_value_assign (arg1, arg1);
10373 }
10374 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10375 except if the lhs of our assignment is a convenience variable.
10376 In the case of assigning to a convenience variable, the lhs
10377 should be exactly the result of the evaluation of the rhs. */
10378 type = value_type (arg1);
10379 if (VALUE_LVAL (arg1) == lval_internalvar)
10380 type = NULL;
10381 arg2 = evaluate_subexp (type, exp, pos, noside);
10382 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10383 return arg1;
10384 if (ada_is_fixed_point_type (value_type (arg1)))
10385 arg2 = cast_to_fixed (value_type (arg1), arg2);
10386 else if (ada_is_fixed_point_type (value_type (arg2)))
10387 error
10388 (_("Fixed-point values must be assigned to fixed-point variables"));
10389 else
10390 arg2 = coerce_for_assign (value_type (arg1), arg2);
10391 return ada_value_assign (arg1, arg2);
10392
10393 case BINOP_ADD:
10394 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10395 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10396 if (noside == EVAL_SKIP)
10397 goto nosideret;
10398 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10399 return (value_from_longest
10400 (value_type (arg1),
10401 value_as_long (arg1) + value_as_long (arg2)));
10402 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10403 return (value_from_longest
10404 (value_type (arg2),
10405 value_as_long (arg1) + value_as_long (arg2)));
10406 if ((ada_is_fixed_point_type (value_type (arg1))
10407 || ada_is_fixed_point_type (value_type (arg2)))
10408 && value_type (arg1) != value_type (arg2))
10409 error (_("Operands of fixed-point addition must have the same type"));
10410 /* Do the addition, and cast the result to the type of the first
10411 argument. We cannot cast the result to a reference type, so if
10412 ARG1 is a reference type, find its underlying type. */
10413 type = value_type (arg1);
10414 while (TYPE_CODE (type) == TYPE_CODE_REF)
10415 type = TYPE_TARGET_TYPE (type);
10416 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10417 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10418
10419 case BINOP_SUB:
10420 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10421 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10422 if (noside == EVAL_SKIP)
10423 goto nosideret;
10424 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10425 return (value_from_longest
10426 (value_type (arg1),
10427 value_as_long (arg1) - value_as_long (arg2)));
10428 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10429 return (value_from_longest
10430 (value_type (arg2),
10431 value_as_long (arg1) - value_as_long (arg2)));
10432 if ((ada_is_fixed_point_type (value_type (arg1))
10433 || ada_is_fixed_point_type (value_type (arg2)))
10434 && value_type (arg1) != value_type (arg2))
10435 error (_("Operands of fixed-point subtraction "
10436 "must have the same type"));
10437 /* Do the substraction, and cast the result to the type of the first
10438 argument. We cannot cast the result to a reference type, so if
10439 ARG1 is a reference type, find its underlying type. */
10440 type = value_type (arg1);
10441 while (TYPE_CODE (type) == TYPE_CODE_REF)
10442 type = TYPE_TARGET_TYPE (type);
10443 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10444 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10445
10446 case BINOP_MUL:
10447 case BINOP_DIV:
10448 case BINOP_REM:
10449 case BINOP_MOD:
10450 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10451 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10452 if (noside == EVAL_SKIP)
10453 goto nosideret;
10454 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10455 {
10456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10457 return value_zero (value_type (arg1), not_lval);
10458 }
10459 else
10460 {
10461 type = builtin_type (exp->gdbarch)->builtin_double;
10462 if (ada_is_fixed_point_type (value_type (arg1)))
10463 arg1 = cast_from_fixed (type, arg1);
10464 if (ada_is_fixed_point_type (value_type (arg2)))
10465 arg2 = cast_from_fixed (type, arg2);
10466 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10467 return ada_value_binop (arg1, arg2, op);
10468 }
10469
10470 case BINOP_EQUAL:
10471 case BINOP_NOTEQUAL:
10472 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10473 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10474 if (noside == EVAL_SKIP)
10475 goto nosideret;
10476 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10477 tem = 0;
10478 else
10479 {
10480 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10481 tem = ada_value_equal (arg1, arg2);
10482 }
10483 if (op == BINOP_NOTEQUAL)
10484 tem = !tem;
10485 type = language_bool_type (exp->language_defn, exp->gdbarch);
10486 return value_from_longest (type, (LONGEST) tem);
10487
10488 case UNOP_NEG:
10489 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10490 if (noside == EVAL_SKIP)
10491 goto nosideret;
10492 else if (ada_is_fixed_point_type (value_type (arg1)))
10493 return value_cast (value_type (arg1), value_neg (arg1));
10494 else
10495 {
10496 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10497 return value_neg (arg1);
10498 }
10499
10500 case BINOP_LOGICAL_AND:
10501 case BINOP_LOGICAL_OR:
10502 case UNOP_LOGICAL_NOT:
10503 {
10504 struct value *val;
10505
10506 *pos -= 1;
10507 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10508 type = language_bool_type (exp->language_defn, exp->gdbarch);
10509 return value_cast (type, val);
10510 }
10511
10512 case BINOP_BITWISE_AND:
10513 case BINOP_BITWISE_IOR:
10514 case BINOP_BITWISE_XOR:
10515 {
10516 struct value *val;
10517
10518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10519 *pos = pc;
10520 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10521
10522 return value_cast (value_type (arg1), val);
10523 }
10524
10525 case OP_VAR_VALUE:
10526 *pos -= 1;
10527
10528 if (noside == EVAL_SKIP)
10529 {
10530 *pos += 4;
10531 goto nosideret;
10532 }
10533
10534 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10535 /* Only encountered when an unresolved symbol occurs in a
10536 context other than a function call, in which case, it is
10537 invalid. */
10538 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10539 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10540
10541 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10542 {
10543 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10544 /* Check to see if this is a tagged type. We also need to handle
10545 the case where the type is a reference to a tagged type, but
10546 we have to be careful to exclude pointers to tagged types.
10547 The latter should be shown as usual (as a pointer), whereas
10548 a reference should mostly be transparent to the user. */
10549 if (ada_is_tagged_type (type, 0)
10550 || (TYPE_CODE (type) == TYPE_CODE_REF
10551 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10552 {
10553 /* Tagged types are a little special in the fact that the real
10554 type is dynamic and can only be determined by inspecting the
10555 object's tag. This means that we need to get the object's
10556 value first (EVAL_NORMAL) and then extract the actual object
10557 type from its tag.
10558
10559 Note that we cannot skip the final step where we extract
10560 the object type from its tag, because the EVAL_NORMAL phase
10561 results in dynamic components being resolved into fixed ones.
10562 This can cause problems when trying to print the type
10563 description of tagged types whose parent has a dynamic size:
10564 We use the type name of the "_parent" component in order
10565 to print the name of the ancestor type in the type description.
10566 If that component had a dynamic size, the resolution into
10567 a fixed type would result in the loss of that type name,
10568 thus preventing us from printing the name of the ancestor
10569 type in the type description. */
10570 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10571
10572 if (TYPE_CODE (type) != TYPE_CODE_REF)
10573 {
10574 struct type *actual_type;
10575
10576 actual_type = type_from_tag (ada_value_tag (arg1));
10577 if (actual_type == NULL)
10578 /* If, for some reason, we were unable to determine
10579 the actual type from the tag, then use the static
10580 approximation that we just computed as a fallback.
10581 This can happen if the debugging information is
10582 incomplete, for instance. */
10583 actual_type = type;
10584 return value_zero (actual_type, not_lval);
10585 }
10586 else
10587 {
10588 /* In the case of a ref, ada_coerce_ref takes care
10589 of determining the actual type. But the evaluation
10590 should return a ref as it should be valid to ask
10591 for its address; so rebuild a ref after coerce. */
10592 arg1 = ada_coerce_ref (arg1);
10593 return value_ref (arg1);
10594 }
10595 }
10596
10597 /* Records and unions for which GNAT encodings have been
10598 generated need to be statically fixed as well.
10599 Otherwise, non-static fixing produces a type where
10600 all dynamic properties are removed, which prevents "ptype"
10601 from being able to completely describe the type.
10602 For instance, a case statement in a variant record would be
10603 replaced by the relevant components based on the actual
10604 value of the discriminants. */
10605 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10606 && dynamic_template_type (type) != NULL)
10607 || (TYPE_CODE (type) == TYPE_CODE_UNION
10608 && ada_find_parallel_type (type, "___XVU") != NULL))
10609 {
10610 *pos += 4;
10611 return value_zero (to_static_fixed_type (type), not_lval);
10612 }
10613 }
10614
10615 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10616 return ada_to_fixed_value (arg1);
10617
10618 case OP_FUNCALL:
10619 (*pos) += 2;
10620
10621 /* Allocate arg vector, including space for the function to be
10622 called in argvec[0] and a terminating NULL. */
10623 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10624 argvec = XALLOCAVEC (struct value *, nargs + 2);
10625
10626 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10627 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10628 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10629 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10630 else
10631 {
10632 for (tem = 0; tem <= nargs; tem += 1)
10633 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10634 argvec[tem] = 0;
10635
10636 if (noside == EVAL_SKIP)
10637 goto nosideret;
10638 }
10639
10640 if (ada_is_constrained_packed_array_type
10641 (desc_base_type (value_type (argvec[0]))))
10642 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10643 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10644 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10645 /* This is a packed array that has already been fixed, and
10646 therefore already coerced to a simple array. Nothing further
10647 to do. */
10648 ;
10649 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10650 {
10651 /* Make sure we dereference references so that all the code below
10652 feels like it's really handling the referenced value. Wrapping
10653 types (for alignment) may be there, so make sure we strip them as
10654 well. */
10655 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10656 }
10657 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10658 && VALUE_LVAL (argvec[0]) == lval_memory)
10659 argvec[0] = value_addr (argvec[0]);
10660
10661 type = ada_check_typedef (value_type (argvec[0]));
10662
10663 /* Ada allows us to implicitly dereference arrays when subscripting
10664 them. So, if this is an array typedef (encoding use for array
10665 access types encoded as fat pointers), strip it now. */
10666 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10667 type = ada_typedef_target_type (type);
10668
10669 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10670 {
10671 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10672 {
10673 case TYPE_CODE_FUNC:
10674 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10675 break;
10676 case TYPE_CODE_ARRAY:
10677 break;
10678 case TYPE_CODE_STRUCT:
10679 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10680 argvec[0] = ada_value_ind (argvec[0]);
10681 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10682 break;
10683 default:
10684 error (_("cannot subscript or call something of type `%s'"),
10685 ada_type_name (value_type (argvec[0])));
10686 break;
10687 }
10688 }
10689
10690 switch (TYPE_CODE (type))
10691 {
10692 case TYPE_CODE_FUNC:
10693 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10694 {
10695 struct type *rtype = TYPE_TARGET_TYPE (type);
10696
10697 if (TYPE_GNU_IFUNC (type))
10698 return allocate_value (TYPE_TARGET_TYPE (rtype));
10699 return allocate_value (rtype);
10700 }
10701 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10702 case TYPE_CODE_INTERNAL_FUNCTION:
10703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10704 /* We don't know anything about what the internal
10705 function might return, but we have to return
10706 something. */
10707 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10708 not_lval);
10709 else
10710 return call_internal_function (exp->gdbarch, exp->language_defn,
10711 argvec[0], nargs, argvec + 1);
10712
10713 case TYPE_CODE_STRUCT:
10714 {
10715 int arity;
10716
10717 arity = ada_array_arity (type);
10718 type = ada_array_element_type (type, nargs);
10719 if (type == NULL)
10720 error (_("cannot subscript or call a record"));
10721 if (arity != nargs)
10722 error (_("wrong number of subscripts; expecting %d"), arity);
10723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10724 return value_zero (ada_aligned_type (type), lval_memory);
10725 return
10726 unwrap_value (ada_value_subscript
10727 (argvec[0], nargs, argvec + 1));
10728 }
10729 case TYPE_CODE_ARRAY:
10730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10731 {
10732 type = ada_array_element_type (type, nargs);
10733 if (type == NULL)
10734 error (_("element type of array unknown"));
10735 else
10736 return value_zero (ada_aligned_type (type), lval_memory);
10737 }
10738 return
10739 unwrap_value (ada_value_subscript
10740 (ada_coerce_to_simple_array (argvec[0]),
10741 nargs, argvec + 1));
10742 case TYPE_CODE_PTR: /* Pointer to array */
10743 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10744 {
10745 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10746 type = ada_array_element_type (type, nargs);
10747 if (type == NULL)
10748 error (_("element type of array unknown"));
10749 else
10750 return value_zero (ada_aligned_type (type), lval_memory);
10751 }
10752 return
10753 unwrap_value (ada_value_ptr_subscript (argvec[0],
10754 nargs, argvec + 1));
10755
10756 default:
10757 error (_("Attempt to index or call something other than an "
10758 "array or function"));
10759 }
10760
10761 case TERNOP_SLICE:
10762 {
10763 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10764 struct value *low_bound_val =
10765 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10766 struct value *high_bound_val =
10767 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10768 LONGEST low_bound;
10769 LONGEST high_bound;
10770
10771 low_bound_val = coerce_ref (low_bound_val);
10772 high_bound_val = coerce_ref (high_bound_val);
10773 low_bound = value_as_long (low_bound_val);
10774 high_bound = value_as_long (high_bound_val);
10775
10776 if (noside == EVAL_SKIP)
10777 goto nosideret;
10778
10779 /* If this is a reference to an aligner type, then remove all
10780 the aligners. */
10781 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10782 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10783 TYPE_TARGET_TYPE (value_type (array)) =
10784 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10785
10786 if (ada_is_constrained_packed_array_type (value_type (array)))
10787 error (_("cannot slice a packed array"));
10788
10789 /* If this is a reference to an array or an array lvalue,
10790 convert to a pointer. */
10791 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10792 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10793 && VALUE_LVAL (array) == lval_memory))
10794 array = value_addr (array);
10795
10796 if (noside == EVAL_AVOID_SIDE_EFFECTS
10797 && ada_is_array_descriptor_type (ada_check_typedef
10798 (value_type (array))))
10799 return empty_array (ada_type_of_array (array, 0), low_bound);
10800
10801 array = ada_coerce_to_simple_array_ptr (array);
10802
10803 /* If we have more than one level of pointer indirection,
10804 dereference the value until we get only one level. */
10805 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10806 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10807 == TYPE_CODE_PTR))
10808 array = value_ind (array);
10809
10810 /* Make sure we really do have an array type before going further,
10811 to avoid a SEGV when trying to get the index type or the target
10812 type later down the road if the debug info generated by
10813 the compiler is incorrect or incomplete. */
10814 if (!ada_is_simple_array_type (value_type (array)))
10815 error (_("cannot take slice of non-array"));
10816
10817 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10818 == TYPE_CODE_PTR)
10819 {
10820 struct type *type0 = ada_check_typedef (value_type (array));
10821
10822 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10823 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10824 else
10825 {
10826 struct type *arr_type0 =
10827 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10828
10829 return ada_value_slice_from_ptr (array, arr_type0,
10830 longest_to_int (low_bound),
10831 longest_to_int (high_bound));
10832 }
10833 }
10834 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10835 return array;
10836 else if (high_bound < low_bound)
10837 return empty_array (value_type (array), low_bound);
10838 else
10839 return ada_value_slice (array, longest_to_int (low_bound),
10840 longest_to_int (high_bound));
10841 }
10842
10843 case UNOP_IN_RANGE:
10844 (*pos) += 2;
10845 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10846 type = check_typedef (exp->elts[pc + 1].type);
10847
10848 if (noside == EVAL_SKIP)
10849 goto nosideret;
10850
10851 switch (TYPE_CODE (type))
10852 {
10853 default:
10854 lim_warning (_("Membership test incompletely implemented; "
10855 "always returns true"));
10856 type = language_bool_type (exp->language_defn, exp->gdbarch);
10857 return value_from_longest (type, (LONGEST) 1);
10858
10859 case TYPE_CODE_RANGE:
10860 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10861 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10862 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10863 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10864 type = language_bool_type (exp->language_defn, exp->gdbarch);
10865 return
10866 value_from_longest (type,
10867 (value_less (arg1, arg3)
10868 || value_equal (arg1, arg3))
10869 && (value_less (arg2, arg1)
10870 || value_equal (arg2, arg1)));
10871 }
10872
10873 case BINOP_IN_BOUNDS:
10874 (*pos) += 2;
10875 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10876 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877
10878 if (noside == EVAL_SKIP)
10879 goto nosideret;
10880
10881 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10882 {
10883 type = language_bool_type (exp->language_defn, exp->gdbarch);
10884 return value_zero (type, not_lval);
10885 }
10886
10887 tem = longest_to_int (exp->elts[pc + 1].longconst);
10888
10889 type = ada_index_type (value_type (arg2), tem, "range");
10890 if (!type)
10891 type = value_type (arg1);
10892
10893 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10894 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10895
10896 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10897 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10898 type = language_bool_type (exp->language_defn, exp->gdbarch);
10899 return
10900 value_from_longest (type,
10901 (value_less (arg1, arg3)
10902 || value_equal (arg1, arg3))
10903 && (value_less (arg2, arg1)
10904 || value_equal (arg2, arg1)));
10905
10906 case TERNOP_IN_RANGE:
10907 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10908 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10909 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10910
10911 if (noside == EVAL_SKIP)
10912 goto nosideret;
10913
10914 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10915 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10916 type = language_bool_type (exp->language_defn, exp->gdbarch);
10917 return
10918 value_from_longest (type,
10919 (value_less (arg1, arg3)
10920 || value_equal (arg1, arg3))
10921 && (value_less (arg2, arg1)
10922 || value_equal (arg2, arg1)));
10923
10924 case OP_ATR_FIRST:
10925 case OP_ATR_LAST:
10926 case OP_ATR_LENGTH:
10927 {
10928 struct type *type_arg;
10929
10930 if (exp->elts[*pos].opcode == OP_TYPE)
10931 {
10932 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10933 arg1 = NULL;
10934 type_arg = check_typedef (exp->elts[pc + 2].type);
10935 }
10936 else
10937 {
10938 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10939 type_arg = NULL;
10940 }
10941
10942 if (exp->elts[*pos].opcode != OP_LONG)
10943 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10944 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10945 *pos += 4;
10946
10947 if (noside == EVAL_SKIP)
10948 goto nosideret;
10949
10950 if (type_arg == NULL)
10951 {
10952 arg1 = ada_coerce_ref (arg1);
10953
10954 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10955 arg1 = ada_coerce_to_simple_array (arg1);
10956
10957 if (op == OP_ATR_LENGTH)
10958 type = builtin_type (exp->gdbarch)->builtin_int;
10959 else
10960 {
10961 type = ada_index_type (value_type (arg1), tem,
10962 ada_attribute_name (op));
10963 if (type == NULL)
10964 type = builtin_type (exp->gdbarch)->builtin_int;
10965 }
10966
10967 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10968 return allocate_value (type);
10969
10970 switch (op)
10971 {
10972 default: /* Should never happen. */
10973 error (_("unexpected attribute encountered"));
10974 case OP_ATR_FIRST:
10975 return value_from_longest
10976 (type, ada_array_bound (arg1, tem, 0));
10977 case OP_ATR_LAST:
10978 return value_from_longest
10979 (type, ada_array_bound (arg1, tem, 1));
10980 case OP_ATR_LENGTH:
10981 return value_from_longest
10982 (type, ada_array_length (arg1, tem));
10983 }
10984 }
10985 else if (discrete_type_p (type_arg))
10986 {
10987 struct type *range_type;
10988 const char *name = ada_type_name (type_arg);
10989
10990 range_type = NULL;
10991 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10992 range_type = to_fixed_range_type (type_arg, NULL);
10993 if (range_type == NULL)
10994 range_type = type_arg;
10995 switch (op)
10996 {
10997 default:
10998 error (_("unexpected attribute encountered"));
10999 case OP_ATR_FIRST:
11000 return value_from_longest
11001 (range_type, ada_discrete_type_low_bound (range_type));
11002 case OP_ATR_LAST:
11003 return value_from_longest
11004 (range_type, ada_discrete_type_high_bound (range_type));
11005 case OP_ATR_LENGTH:
11006 error (_("the 'length attribute applies only to array types"));
11007 }
11008 }
11009 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11010 error (_("unimplemented type attribute"));
11011 else
11012 {
11013 LONGEST low, high;
11014
11015 if (ada_is_constrained_packed_array_type (type_arg))
11016 type_arg = decode_constrained_packed_array_type (type_arg);
11017
11018 if (op == OP_ATR_LENGTH)
11019 type = builtin_type (exp->gdbarch)->builtin_int;
11020 else
11021 {
11022 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11023 if (type == NULL)
11024 type = builtin_type (exp->gdbarch)->builtin_int;
11025 }
11026
11027 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11028 return allocate_value (type);
11029
11030 switch (op)
11031 {
11032 default:
11033 error (_("unexpected attribute encountered"));
11034 case OP_ATR_FIRST:
11035 low = ada_array_bound_from_type (type_arg, tem, 0);
11036 return value_from_longest (type, low);
11037 case OP_ATR_LAST:
11038 high = ada_array_bound_from_type (type_arg, tem, 1);
11039 return value_from_longest (type, high);
11040 case OP_ATR_LENGTH:
11041 low = ada_array_bound_from_type (type_arg, tem, 0);
11042 high = ada_array_bound_from_type (type_arg, tem, 1);
11043 return value_from_longest (type, high - low + 1);
11044 }
11045 }
11046 }
11047
11048 case OP_ATR_TAG:
11049 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11050 if (noside == EVAL_SKIP)
11051 goto nosideret;
11052
11053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11054 return value_zero (ada_tag_type (arg1), not_lval);
11055
11056 return ada_value_tag (arg1);
11057
11058 case OP_ATR_MIN:
11059 case OP_ATR_MAX:
11060 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11061 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11062 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11063 if (noside == EVAL_SKIP)
11064 goto nosideret;
11065 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11066 return value_zero (value_type (arg1), not_lval);
11067 else
11068 {
11069 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11070 return value_binop (arg1, arg2,
11071 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11072 }
11073
11074 case OP_ATR_MODULUS:
11075 {
11076 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11077
11078 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11079 if (noside == EVAL_SKIP)
11080 goto nosideret;
11081
11082 if (!ada_is_modular_type (type_arg))
11083 error (_("'modulus must be applied to modular type"));
11084
11085 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11086 ada_modulus (type_arg));
11087 }
11088
11089
11090 case OP_ATR_POS:
11091 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11092 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11093 if (noside == EVAL_SKIP)
11094 goto nosideret;
11095 type = builtin_type (exp->gdbarch)->builtin_int;
11096 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11097 return value_zero (type, not_lval);
11098 else
11099 return value_pos_atr (type, arg1);
11100
11101 case OP_ATR_SIZE:
11102 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11103 type = value_type (arg1);
11104
11105 /* If the argument is a reference, then dereference its type, since
11106 the user is really asking for the size of the actual object,
11107 not the size of the pointer. */
11108 if (TYPE_CODE (type) == TYPE_CODE_REF)
11109 type = TYPE_TARGET_TYPE (type);
11110
11111 if (noside == EVAL_SKIP)
11112 goto nosideret;
11113 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11114 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11115 else
11116 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11117 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11118
11119 case OP_ATR_VAL:
11120 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11122 type = exp->elts[pc + 2].type;
11123 if (noside == EVAL_SKIP)
11124 goto nosideret;
11125 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11126 return value_zero (type, not_lval);
11127 else
11128 return value_val_atr (type, arg1);
11129
11130 case BINOP_EXP:
11131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11132 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11133 if (noside == EVAL_SKIP)
11134 goto nosideret;
11135 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11136 return value_zero (value_type (arg1), not_lval);
11137 else
11138 {
11139 /* For integer exponentiation operations,
11140 only promote the first argument. */
11141 if (is_integral_type (value_type (arg2)))
11142 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11143 else
11144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11145
11146 return value_binop (arg1, arg2, op);
11147 }
11148
11149 case UNOP_PLUS:
11150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151 if (noside == EVAL_SKIP)
11152 goto nosideret;
11153 else
11154 return arg1;
11155
11156 case UNOP_ABS:
11157 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 if (noside == EVAL_SKIP)
11159 goto nosideret;
11160 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11161 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11162 return value_neg (arg1);
11163 else
11164 return arg1;
11165
11166 case UNOP_IND:
11167 preeval_pos = *pos;
11168 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11169 if (noside == EVAL_SKIP)
11170 goto nosideret;
11171 type = ada_check_typedef (value_type (arg1));
11172 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11173 {
11174 if (ada_is_array_descriptor_type (type))
11175 /* GDB allows dereferencing GNAT array descriptors. */
11176 {
11177 struct type *arrType = ada_type_of_array (arg1, 0);
11178
11179 if (arrType == NULL)
11180 error (_("Attempt to dereference null array pointer."));
11181 return value_at_lazy (arrType, 0);
11182 }
11183 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11184 || TYPE_CODE (type) == TYPE_CODE_REF
11185 /* In C you can dereference an array to get the 1st elt. */
11186 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11187 {
11188 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11189 only be determined by inspecting the object's tag.
11190 This means that we need to evaluate completely the
11191 expression in order to get its type. */
11192
11193 if ((TYPE_CODE (type) == TYPE_CODE_REF
11194 || TYPE_CODE (type) == TYPE_CODE_PTR)
11195 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11196 {
11197 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11198 EVAL_NORMAL);
11199 type = value_type (ada_value_ind (arg1));
11200 }
11201 else
11202 {
11203 type = to_static_fixed_type
11204 (ada_aligned_type
11205 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11206 }
11207 ada_ensure_varsize_limit (type);
11208 return value_zero (type, lval_memory);
11209 }
11210 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11211 {
11212 /* GDB allows dereferencing an int. */
11213 if (expect_type == NULL)
11214 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11215 lval_memory);
11216 else
11217 {
11218 expect_type =
11219 to_static_fixed_type (ada_aligned_type (expect_type));
11220 return value_zero (expect_type, lval_memory);
11221 }
11222 }
11223 else
11224 error (_("Attempt to take contents of a non-pointer value."));
11225 }
11226 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11227 type = ada_check_typedef (value_type (arg1));
11228
11229 if (TYPE_CODE (type) == TYPE_CODE_INT)
11230 /* GDB allows dereferencing an int. If we were given
11231 the expect_type, then use that as the target type.
11232 Otherwise, assume that the target type is an int. */
11233 {
11234 if (expect_type != NULL)
11235 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11236 arg1));
11237 else
11238 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11239 (CORE_ADDR) value_as_address (arg1));
11240 }
11241
11242 if (ada_is_array_descriptor_type (type))
11243 /* GDB allows dereferencing GNAT array descriptors. */
11244 return ada_coerce_to_simple_array (arg1);
11245 else
11246 return ada_value_ind (arg1);
11247
11248 case STRUCTOP_STRUCT:
11249 tem = longest_to_int (exp->elts[pc + 1].longconst);
11250 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11251 preeval_pos = *pos;
11252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11253 if (noside == EVAL_SKIP)
11254 goto nosideret;
11255 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11256 {
11257 struct type *type1 = value_type (arg1);
11258
11259 if (ada_is_tagged_type (type1, 1))
11260 {
11261 type = ada_lookup_struct_elt_type (type1,
11262 &exp->elts[pc + 2].string,
11263 1, 1, NULL);
11264
11265 /* If the field is not found, check if it exists in the
11266 extension of this object's type. This means that we
11267 need to evaluate completely the expression. */
11268
11269 if (type == NULL)
11270 {
11271 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11272 EVAL_NORMAL);
11273 arg1 = ada_value_struct_elt (arg1,
11274 &exp->elts[pc + 2].string,
11275 0);
11276 arg1 = unwrap_value (arg1);
11277 type = value_type (ada_to_fixed_value (arg1));
11278 }
11279 }
11280 else
11281 type =
11282 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11283 0, NULL);
11284
11285 return value_zero (ada_aligned_type (type), lval_memory);
11286 }
11287 else
11288 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11289 arg1 = unwrap_value (arg1);
11290 return ada_to_fixed_value (arg1);
11291
11292 case OP_TYPE:
11293 /* The value is not supposed to be used. This is here to make it
11294 easier to accommodate expressions that contain types. */
11295 (*pos) += 2;
11296 if (noside == EVAL_SKIP)
11297 goto nosideret;
11298 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11299 return allocate_value (exp->elts[pc + 1].type);
11300 else
11301 error (_("Attempt to use a type name as an expression"));
11302
11303 case OP_AGGREGATE:
11304 case OP_CHOICES:
11305 case OP_OTHERS:
11306 case OP_DISCRETE_RANGE:
11307 case OP_POSITIONAL:
11308 case OP_NAME:
11309 if (noside == EVAL_NORMAL)
11310 switch (op)
11311 {
11312 case OP_NAME:
11313 error (_("Undefined name, ambiguous name, or renaming used in "
11314 "component association: %s."), &exp->elts[pc+2].string);
11315 case OP_AGGREGATE:
11316 error (_("Aggregates only allowed on the right of an assignment"));
11317 default:
11318 internal_error (__FILE__, __LINE__,
11319 _("aggregate apparently mangled"));
11320 }
11321
11322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11323 *pos += oplen - 1;
11324 for (tem = 0; tem < nargs; tem += 1)
11325 ada_evaluate_subexp (NULL, exp, pos, noside);
11326 goto nosideret;
11327 }
11328
11329nosideret:
11330 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11331}
11332\f
11333
11334 /* Fixed point */
11335
11336/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11337 type name that encodes the 'small and 'delta information.
11338 Otherwise, return NULL. */
11339
11340static const char *
11341fixed_type_info (struct type *type)
11342{
11343 const char *name = ada_type_name (type);
11344 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11345
11346 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11347 {
11348 const char *tail = strstr (name, "___XF_");
11349
11350 if (tail == NULL)
11351 return NULL;
11352 else
11353 return tail + 5;
11354 }
11355 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11356 return fixed_type_info (TYPE_TARGET_TYPE (type));
11357 else
11358 return NULL;
11359}
11360
11361/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11362
11363int
11364ada_is_fixed_point_type (struct type *type)
11365{
11366 return fixed_type_info (type) != NULL;
11367}
11368
11369/* Return non-zero iff TYPE represents a System.Address type. */
11370
11371int
11372ada_is_system_address_type (struct type *type)
11373{
11374 return (TYPE_NAME (type)
11375 && strcmp (TYPE_NAME (type), "system__address") == 0);
11376}
11377
11378/* Assuming that TYPE is the representation of an Ada fixed-point
11379 type, return its delta, or -1 if the type is malformed and the
11380 delta cannot be determined. */
11381
11382DOUBLEST
11383ada_delta (struct type *type)
11384{
11385 const char *encoding = fixed_type_info (type);
11386 DOUBLEST num, den;
11387
11388 /* Strictly speaking, num and den are encoded as integer. However,
11389 they may not fit into a long, and they will have to be converted
11390 to DOUBLEST anyway. So scan them as DOUBLEST. */
11391 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11392 &num, &den) < 2)
11393 return -1.0;
11394 else
11395 return num / den;
11396}
11397
11398/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11399 factor ('SMALL value) associated with the type. */
11400
11401static DOUBLEST
11402scaling_factor (struct type *type)
11403{
11404 const char *encoding = fixed_type_info (type);
11405 DOUBLEST num0, den0, num1, den1;
11406 int n;
11407
11408 /* Strictly speaking, num's and den's are encoded as integer. However,
11409 they may not fit into a long, and they will have to be converted
11410 to DOUBLEST anyway. So scan them as DOUBLEST. */
11411 n = sscanf (encoding,
11412 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11413 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11414 &num0, &den0, &num1, &den1);
11415
11416 if (n < 2)
11417 return 1.0;
11418 else if (n == 4)
11419 return num1 / den1;
11420 else
11421 return num0 / den0;
11422}
11423
11424
11425/* Assuming that X is the representation of a value of fixed-point
11426 type TYPE, return its floating-point equivalent. */
11427
11428DOUBLEST
11429ada_fixed_to_float (struct type *type, LONGEST x)
11430{
11431 return (DOUBLEST) x *scaling_factor (type);
11432}
11433
11434/* The representation of a fixed-point value of type TYPE
11435 corresponding to the value X. */
11436
11437LONGEST
11438ada_float_to_fixed (struct type *type, DOUBLEST x)
11439{
11440 return (LONGEST) (x / scaling_factor (type) + 0.5);
11441}
11442
11443\f
11444
11445 /* Range types */
11446
11447/* Scan STR beginning at position K for a discriminant name, and
11448 return the value of that discriminant field of DVAL in *PX. If
11449 PNEW_K is not null, put the position of the character beyond the
11450 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11451 not alter *PX and *PNEW_K if unsuccessful. */
11452
11453static int
11454scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11455 int *pnew_k)
11456{
11457 static char *bound_buffer = NULL;
11458 static size_t bound_buffer_len = 0;
11459 const char *pstart, *pend, *bound;
11460 struct value *bound_val;
11461
11462 if (dval == NULL || str == NULL || str[k] == '\0')
11463 return 0;
11464
11465 pstart = str + k;
11466 pend = strstr (pstart, "__");
11467 if (pend == NULL)
11468 {
11469 bound = pstart;
11470 k += strlen (bound);
11471 }
11472 else
11473 {
11474 int len = pend - pstart;
11475
11476 /* Strip __ and beyond. */
11477 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11478 strncpy (bound_buffer, pstart, len);
11479 bound_buffer[len] = '\0';
11480
11481 bound = bound_buffer;
11482 k = pend - str;
11483 }
11484
11485 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11486 if (bound_val == NULL)
11487 return 0;
11488
11489 *px = value_as_long (bound_val);
11490 if (pnew_k != NULL)
11491 *pnew_k = k;
11492 return 1;
11493}
11494
11495/* Value of variable named NAME in the current environment. If
11496 no such variable found, then if ERR_MSG is null, returns 0, and
11497 otherwise causes an error with message ERR_MSG. */
11498
11499static struct value *
11500get_var_value (char *name, char *err_msg)
11501{
11502 struct block_symbol *syms;
11503 int nsyms;
11504
11505 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11506 &syms);
11507
11508 if (nsyms != 1)
11509 {
11510 if (err_msg == NULL)
11511 return 0;
11512 else
11513 error (("%s"), err_msg);
11514 }
11515
11516 return value_of_variable (syms[0].symbol, syms[0].block);
11517}
11518
11519/* Value of integer variable named NAME in the current environment. If
11520 no such variable found, returns 0, and sets *FLAG to 0. If
11521 successful, sets *FLAG to 1. */
11522
11523LONGEST
11524get_int_var_value (char *name, int *flag)
11525{
11526 struct value *var_val = get_var_value (name, 0);
11527
11528 if (var_val == 0)
11529 {
11530 if (flag != NULL)
11531 *flag = 0;
11532 return 0;
11533 }
11534 else
11535 {
11536 if (flag != NULL)
11537 *flag = 1;
11538 return value_as_long (var_val);
11539 }
11540}
11541
11542
11543/* Return a range type whose base type is that of the range type named
11544 NAME in the current environment, and whose bounds are calculated
11545 from NAME according to the GNAT range encoding conventions.
11546 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11547 corresponding range type from debug information; fall back to using it
11548 if symbol lookup fails. If a new type must be created, allocate it
11549 like ORIG_TYPE was. The bounds information, in general, is encoded
11550 in NAME, the base type given in the named range type. */
11551
11552static struct type *
11553to_fixed_range_type (struct type *raw_type, struct value *dval)
11554{
11555 const char *name;
11556 struct type *base_type;
11557 const char *subtype_info;
11558
11559 gdb_assert (raw_type != NULL);
11560 gdb_assert (TYPE_NAME (raw_type) != NULL);
11561
11562 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11563 base_type = TYPE_TARGET_TYPE (raw_type);
11564 else
11565 base_type = raw_type;
11566
11567 name = TYPE_NAME (raw_type);
11568 subtype_info = strstr (name, "___XD");
11569 if (subtype_info == NULL)
11570 {
11571 LONGEST L = ada_discrete_type_low_bound (raw_type);
11572 LONGEST U = ada_discrete_type_high_bound (raw_type);
11573
11574 if (L < INT_MIN || U > INT_MAX)
11575 return raw_type;
11576 else
11577 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11578 L, U);
11579 }
11580 else
11581 {
11582 static char *name_buf = NULL;
11583 static size_t name_len = 0;
11584 int prefix_len = subtype_info - name;
11585 LONGEST L, U;
11586 struct type *type;
11587 const char *bounds_str;
11588 int n;
11589
11590 GROW_VECT (name_buf, name_len, prefix_len + 5);
11591 strncpy (name_buf, name, prefix_len);
11592 name_buf[prefix_len] = '\0';
11593
11594 subtype_info += 5;
11595 bounds_str = strchr (subtype_info, '_');
11596 n = 1;
11597
11598 if (*subtype_info == 'L')
11599 {
11600 if (!ada_scan_number (bounds_str, n, &L, &n)
11601 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11602 return raw_type;
11603 if (bounds_str[n] == '_')
11604 n += 2;
11605 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11606 n += 1;
11607 subtype_info += 1;
11608 }
11609 else
11610 {
11611 int ok;
11612
11613 strcpy (name_buf + prefix_len, "___L");
11614 L = get_int_var_value (name_buf, &ok);
11615 if (!ok)
11616 {
11617 lim_warning (_("Unknown lower bound, using 1."));
11618 L = 1;
11619 }
11620 }
11621
11622 if (*subtype_info == 'U')
11623 {
11624 if (!ada_scan_number (bounds_str, n, &U, &n)
11625 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11626 return raw_type;
11627 }
11628 else
11629 {
11630 int ok;
11631
11632 strcpy (name_buf + prefix_len, "___U");
11633 U = get_int_var_value (name_buf, &ok);
11634 if (!ok)
11635 {
11636 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11637 U = L;
11638 }
11639 }
11640
11641 type = create_static_range_type (alloc_type_copy (raw_type),
11642 base_type, L, U);
11643 TYPE_NAME (type) = name;
11644 return type;
11645 }
11646}
11647
11648/* True iff NAME is the name of a range type. */
11649
11650int
11651ada_is_range_type_name (const char *name)
11652{
11653 return (name != NULL && strstr (name, "___XD"));
11654}
11655\f
11656
11657 /* Modular types */
11658
11659/* True iff TYPE is an Ada modular type. */
11660
11661int
11662ada_is_modular_type (struct type *type)
11663{
11664 struct type *subranged_type = get_base_type (type);
11665
11666 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11667 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11668 && TYPE_UNSIGNED (subranged_type));
11669}
11670
11671/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11672
11673ULONGEST
11674ada_modulus (struct type *type)
11675{
11676 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11677}
11678\f
11679
11680/* Ada exception catchpoint support:
11681 ---------------------------------
11682
11683 We support 3 kinds of exception catchpoints:
11684 . catchpoints on Ada exceptions
11685 . catchpoints on unhandled Ada exceptions
11686 . catchpoints on failed assertions
11687
11688 Exceptions raised during failed assertions, or unhandled exceptions
11689 could perfectly be caught with the general catchpoint on Ada exceptions.
11690 However, we can easily differentiate these two special cases, and having
11691 the option to distinguish these two cases from the rest can be useful
11692 to zero-in on certain situations.
11693
11694 Exception catchpoints are a specialized form of breakpoint,
11695 since they rely on inserting breakpoints inside known routines
11696 of the GNAT runtime. The implementation therefore uses a standard
11697 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11698 of breakpoint_ops.
11699
11700 Support in the runtime for exception catchpoints have been changed
11701 a few times already, and these changes affect the implementation
11702 of these catchpoints. In order to be able to support several
11703 variants of the runtime, we use a sniffer that will determine
11704 the runtime variant used by the program being debugged. */
11705
11706/* Ada's standard exceptions.
11707
11708 The Ada 83 standard also defined Numeric_Error. But there so many
11709 situations where it was unclear from the Ada 83 Reference Manual
11710 (RM) whether Constraint_Error or Numeric_Error should be raised,
11711 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11712 Interpretation saying that anytime the RM says that Numeric_Error
11713 should be raised, the implementation may raise Constraint_Error.
11714 Ada 95 went one step further and pretty much removed Numeric_Error
11715 from the list of standard exceptions (it made it a renaming of
11716 Constraint_Error, to help preserve compatibility when compiling
11717 an Ada83 compiler). As such, we do not include Numeric_Error from
11718 this list of standard exceptions. */
11719
11720static char *standard_exc[] = {
11721 "constraint_error",
11722 "program_error",
11723 "storage_error",
11724 "tasking_error"
11725};
11726
11727typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11728
11729/* A structure that describes how to support exception catchpoints
11730 for a given executable. */
11731
11732struct exception_support_info
11733{
11734 /* The name of the symbol to break on in order to insert
11735 a catchpoint on exceptions. */
11736 const char *catch_exception_sym;
11737
11738 /* The name of the symbol to break on in order to insert
11739 a catchpoint on unhandled exceptions. */
11740 const char *catch_exception_unhandled_sym;
11741
11742 /* The name of the symbol to break on in order to insert
11743 a catchpoint on failed assertions. */
11744 const char *catch_assert_sym;
11745
11746 /* Assuming that the inferior just triggered an unhandled exception
11747 catchpoint, this function is responsible for returning the address
11748 in inferior memory where the name of that exception is stored.
11749 Return zero if the address could not be computed. */
11750 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11751};
11752
11753static CORE_ADDR ada_unhandled_exception_name_addr (void);
11754static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11755
11756/* The following exception support info structure describes how to
11757 implement exception catchpoints with the latest version of the
11758 Ada runtime (as of 2007-03-06). */
11759
11760static const struct exception_support_info default_exception_support_info =
11761{
11762 "__gnat_debug_raise_exception", /* catch_exception_sym */
11763 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11764 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11765 ada_unhandled_exception_name_addr
11766};
11767
11768/* The following exception support info structure describes how to
11769 implement exception catchpoints with a slightly older version
11770 of the Ada runtime. */
11771
11772static const struct exception_support_info exception_support_info_fallback =
11773{
11774 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11775 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11776 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11777 ada_unhandled_exception_name_addr_from_raise
11778};
11779
11780/* Return nonzero if we can detect the exception support routines
11781 described in EINFO.
11782
11783 This function errors out if an abnormal situation is detected
11784 (for instance, if we find the exception support routines, but
11785 that support is found to be incomplete). */
11786
11787static int
11788ada_has_this_exception_support (const struct exception_support_info *einfo)
11789{
11790 struct symbol *sym;
11791
11792 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11793 that should be compiled with debugging information. As a result, we
11794 expect to find that symbol in the symtabs. */
11795
11796 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11797 if (sym == NULL)
11798 {
11799 /* Perhaps we did not find our symbol because the Ada runtime was
11800 compiled without debugging info, or simply stripped of it.
11801 It happens on some GNU/Linux distributions for instance, where
11802 users have to install a separate debug package in order to get
11803 the runtime's debugging info. In that situation, let the user
11804 know why we cannot insert an Ada exception catchpoint.
11805
11806 Note: Just for the purpose of inserting our Ada exception
11807 catchpoint, we could rely purely on the associated minimal symbol.
11808 But we would be operating in degraded mode anyway, since we are
11809 still lacking the debugging info needed later on to extract
11810 the name of the exception being raised (this name is printed in
11811 the catchpoint message, and is also used when trying to catch
11812 a specific exception). We do not handle this case for now. */
11813 struct bound_minimal_symbol msym
11814 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11815
11816 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11817 error (_("Your Ada runtime appears to be missing some debugging "
11818 "information.\nCannot insert Ada exception catchpoint "
11819 "in this configuration."));
11820
11821 return 0;
11822 }
11823
11824 /* Make sure that the symbol we found corresponds to a function. */
11825
11826 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11827 error (_("Symbol \"%s\" is not a function (class = %d)"),
11828 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11829
11830 return 1;
11831}
11832
11833/* Inspect the Ada runtime and determine which exception info structure
11834 should be used to provide support for exception catchpoints.
11835
11836 This function will always set the per-inferior exception_info,
11837 or raise an error. */
11838
11839static void
11840ada_exception_support_info_sniffer (void)
11841{
11842 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11843
11844 /* If the exception info is already known, then no need to recompute it. */
11845 if (data->exception_info != NULL)
11846 return;
11847
11848 /* Check the latest (default) exception support info. */
11849 if (ada_has_this_exception_support (&default_exception_support_info))
11850 {
11851 data->exception_info = &default_exception_support_info;
11852 return;
11853 }
11854
11855 /* Try our fallback exception suport info. */
11856 if (ada_has_this_exception_support (&exception_support_info_fallback))
11857 {
11858 data->exception_info = &exception_support_info_fallback;
11859 return;
11860 }
11861
11862 /* Sometimes, it is normal for us to not be able to find the routine
11863 we are looking for. This happens when the program is linked with
11864 the shared version of the GNAT runtime, and the program has not been
11865 started yet. Inform the user of these two possible causes if
11866 applicable. */
11867
11868 if (ada_update_initial_language (language_unknown) != language_ada)
11869 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11870
11871 /* If the symbol does not exist, then check that the program is
11872 already started, to make sure that shared libraries have been
11873 loaded. If it is not started, this may mean that the symbol is
11874 in a shared library. */
11875
11876 if (ptid_get_pid (inferior_ptid) == 0)
11877 error (_("Unable to insert catchpoint. Try to start the program first."));
11878
11879 /* At this point, we know that we are debugging an Ada program and
11880 that the inferior has been started, but we still are not able to
11881 find the run-time symbols. That can mean that we are in
11882 configurable run time mode, or that a-except as been optimized
11883 out by the linker... In any case, at this point it is not worth
11884 supporting this feature. */
11885
11886 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11887}
11888
11889/* True iff FRAME is very likely to be that of a function that is
11890 part of the runtime system. This is all very heuristic, but is
11891 intended to be used as advice as to what frames are uninteresting
11892 to most users. */
11893
11894static int
11895is_known_support_routine (struct frame_info *frame)
11896{
11897 struct symtab_and_line sal;
11898 char *func_name;
11899 enum language func_lang;
11900 int i;
11901 const char *fullname;
11902
11903 /* If this code does not have any debugging information (no symtab),
11904 This cannot be any user code. */
11905
11906 find_frame_sal (frame, &sal);
11907 if (sal.symtab == NULL)
11908 return 1;
11909
11910 /* If there is a symtab, but the associated source file cannot be
11911 located, then assume this is not user code: Selecting a frame
11912 for which we cannot display the code would not be very helpful
11913 for the user. This should also take care of case such as VxWorks
11914 where the kernel has some debugging info provided for a few units. */
11915
11916 fullname = symtab_to_fullname (sal.symtab);
11917 if (access (fullname, R_OK) != 0)
11918 return 1;
11919
11920 /* Check the unit filename againt the Ada runtime file naming.
11921 We also check the name of the objfile against the name of some
11922 known system libraries that sometimes come with debugging info
11923 too. */
11924
11925 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11926 {
11927 re_comp (known_runtime_file_name_patterns[i]);
11928 if (re_exec (lbasename (sal.symtab->filename)))
11929 return 1;
11930 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11931 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11932 return 1;
11933 }
11934
11935 /* Check whether the function is a GNAT-generated entity. */
11936
11937 find_frame_funname (frame, &func_name, &func_lang, NULL);
11938 if (func_name == NULL)
11939 return 1;
11940
11941 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11942 {
11943 re_comp (known_auxiliary_function_name_patterns[i]);
11944 if (re_exec (func_name))
11945 {
11946 xfree (func_name);
11947 return 1;
11948 }
11949 }
11950
11951 xfree (func_name);
11952 return 0;
11953}
11954
11955/* Find the first frame that contains debugging information and that is not
11956 part of the Ada run-time, starting from FI and moving upward. */
11957
11958void
11959ada_find_printable_frame (struct frame_info *fi)
11960{
11961 for (; fi != NULL; fi = get_prev_frame (fi))
11962 {
11963 if (!is_known_support_routine (fi))
11964 {
11965 select_frame (fi);
11966 break;
11967 }
11968 }
11969
11970}
11971
11972/* Assuming that the inferior just triggered an unhandled exception
11973 catchpoint, return the address in inferior memory where the name
11974 of the exception is stored.
11975
11976 Return zero if the address could not be computed. */
11977
11978static CORE_ADDR
11979ada_unhandled_exception_name_addr (void)
11980{
11981 return parse_and_eval_address ("e.full_name");
11982}
11983
11984/* Same as ada_unhandled_exception_name_addr, except that this function
11985 should be used when the inferior uses an older version of the runtime,
11986 where the exception name needs to be extracted from a specific frame
11987 several frames up in the callstack. */
11988
11989static CORE_ADDR
11990ada_unhandled_exception_name_addr_from_raise (void)
11991{
11992 int frame_level;
11993 struct frame_info *fi;
11994 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11995 struct cleanup *old_chain;
11996
11997 /* To determine the name of this exception, we need to select
11998 the frame corresponding to RAISE_SYM_NAME. This frame is
11999 at least 3 levels up, so we simply skip the first 3 frames
12000 without checking the name of their associated function. */
12001 fi = get_current_frame ();
12002 for (frame_level = 0; frame_level < 3; frame_level += 1)
12003 if (fi != NULL)
12004 fi = get_prev_frame (fi);
12005
12006 old_chain = make_cleanup (null_cleanup, NULL);
12007 while (fi != NULL)
12008 {
12009 char *func_name;
12010 enum language func_lang;
12011
12012 find_frame_funname (fi, &func_name, &func_lang, NULL);
12013 if (func_name != NULL)
12014 {
12015 make_cleanup (xfree, func_name);
12016
12017 if (strcmp (func_name,
12018 data->exception_info->catch_exception_sym) == 0)
12019 break; /* We found the frame we were looking for... */
12020 fi = get_prev_frame (fi);
12021 }
12022 }
12023 do_cleanups (old_chain);
12024
12025 if (fi == NULL)
12026 return 0;
12027
12028 select_frame (fi);
12029 return parse_and_eval_address ("id.full_name");
12030}
12031
12032/* Assuming the inferior just triggered an Ada exception catchpoint
12033 (of any type), return the address in inferior memory where the name
12034 of the exception is stored, if applicable.
12035
12036 Return zero if the address could not be computed, or if not relevant. */
12037
12038static CORE_ADDR
12039ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12040 struct breakpoint *b)
12041{
12042 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12043
12044 switch (ex)
12045 {
12046 case ada_catch_exception:
12047 return (parse_and_eval_address ("e.full_name"));
12048 break;
12049
12050 case ada_catch_exception_unhandled:
12051 return data->exception_info->unhandled_exception_name_addr ();
12052 break;
12053
12054 case ada_catch_assert:
12055 return 0; /* Exception name is not relevant in this case. */
12056 break;
12057
12058 default:
12059 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12060 break;
12061 }
12062
12063 return 0; /* Should never be reached. */
12064}
12065
12066/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12067 any error that ada_exception_name_addr_1 might cause to be thrown.
12068 When an error is intercepted, a warning with the error message is printed,
12069 and zero is returned. */
12070
12071static CORE_ADDR
12072ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12073 struct breakpoint *b)
12074{
12075 CORE_ADDR result = 0;
12076
12077 TRY
12078 {
12079 result = ada_exception_name_addr_1 (ex, b);
12080 }
12081
12082 CATCH (e, RETURN_MASK_ERROR)
12083 {
12084 warning (_("failed to get exception name: %s"), e.message);
12085 return 0;
12086 }
12087 END_CATCH
12088
12089 return result;
12090}
12091
12092static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12093
12094/* Ada catchpoints.
12095
12096 In the case of catchpoints on Ada exceptions, the catchpoint will
12097 stop the target on every exception the program throws. When a user
12098 specifies the name of a specific exception, we translate this
12099 request into a condition expression (in text form), and then parse
12100 it into an expression stored in each of the catchpoint's locations.
12101 We then use this condition to check whether the exception that was
12102 raised is the one the user is interested in. If not, then the
12103 target is resumed again. We store the name of the requested
12104 exception, in order to be able to re-set the condition expression
12105 when symbols change. */
12106
12107/* An instance of this type is used to represent an Ada catchpoint
12108 breakpoint location. It includes a "struct bp_location" as a kind
12109 of base class; users downcast to "struct bp_location *" when
12110 needed. */
12111
12112struct ada_catchpoint_location
12113{
12114 /* The base class. */
12115 struct bp_location base;
12116
12117 /* The condition that checks whether the exception that was raised
12118 is the specific exception the user specified on catchpoint
12119 creation. */
12120 struct expression *excep_cond_expr;
12121};
12122
12123/* Implement the DTOR method in the bp_location_ops structure for all
12124 Ada exception catchpoint kinds. */
12125
12126static void
12127ada_catchpoint_location_dtor (struct bp_location *bl)
12128{
12129 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12130
12131 xfree (al->excep_cond_expr);
12132}
12133
12134/* The vtable to be used in Ada catchpoint locations. */
12135
12136static const struct bp_location_ops ada_catchpoint_location_ops =
12137{
12138 ada_catchpoint_location_dtor
12139};
12140
12141/* An instance of this type is used to represent an Ada catchpoint.
12142 It includes a "struct breakpoint" as a kind of base class; users
12143 downcast to "struct breakpoint *" when needed. */
12144
12145struct ada_catchpoint
12146{
12147 /* The base class. */
12148 struct breakpoint base;
12149
12150 /* The name of the specific exception the user specified. */
12151 char *excep_string;
12152};
12153
12154/* Parse the exception condition string in the context of each of the
12155 catchpoint's locations, and store them for later evaluation. */
12156
12157static void
12158create_excep_cond_exprs (struct ada_catchpoint *c)
12159{
12160 struct cleanup *old_chain;
12161 struct bp_location *bl;
12162 char *cond_string;
12163
12164 /* Nothing to do if there's no specific exception to catch. */
12165 if (c->excep_string == NULL)
12166 return;
12167
12168 /* Same if there are no locations... */
12169 if (c->base.loc == NULL)
12170 return;
12171
12172 /* Compute the condition expression in text form, from the specific
12173 expection we want to catch. */
12174 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12175 old_chain = make_cleanup (xfree, cond_string);
12176
12177 /* Iterate over all the catchpoint's locations, and parse an
12178 expression for each. */
12179 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12180 {
12181 struct ada_catchpoint_location *ada_loc
12182 = (struct ada_catchpoint_location *) bl;
12183 struct expression *exp = NULL;
12184
12185 if (!bl->shlib_disabled)
12186 {
12187 const char *s;
12188
12189 s = cond_string;
12190 TRY
12191 {
12192 exp = parse_exp_1 (&s, bl->address,
12193 block_for_pc (bl->address), 0);
12194 }
12195 CATCH (e, RETURN_MASK_ERROR)
12196 {
12197 warning (_("failed to reevaluate internal exception condition "
12198 "for catchpoint %d: %s"),
12199 c->base.number, e.message);
12200 /* There is a bug in GCC on sparc-solaris when building with
12201 optimization which causes EXP to change unexpectedly
12202 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12203 The problem should be fixed starting with GCC 4.9.
12204 In the meantime, work around it by forcing EXP back
12205 to NULL. */
12206 exp = NULL;
12207 }
12208 END_CATCH
12209 }
12210
12211 ada_loc->excep_cond_expr = exp;
12212 }
12213
12214 do_cleanups (old_chain);
12215}
12216
12217/* Implement the DTOR method in the breakpoint_ops structure for all
12218 exception catchpoint kinds. */
12219
12220static void
12221dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12222{
12223 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12224
12225 xfree (c->excep_string);
12226
12227 bkpt_breakpoint_ops.dtor (b);
12228}
12229
12230/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12231 structure for all exception catchpoint kinds. */
12232
12233static struct bp_location *
12234allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12235 struct breakpoint *self)
12236{
12237 struct ada_catchpoint_location *loc;
12238
12239 loc = XNEW (struct ada_catchpoint_location);
12240 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12241 loc->excep_cond_expr = NULL;
12242 return &loc->base;
12243}
12244
12245/* Implement the RE_SET method in the breakpoint_ops structure for all
12246 exception catchpoint kinds. */
12247
12248static void
12249re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12250{
12251 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12252
12253 /* Call the base class's method. This updates the catchpoint's
12254 locations. */
12255 bkpt_breakpoint_ops.re_set (b);
12256
12257 /* Reparse the exception conditional expressions. One for each
12258 location. */
12259 create_excep_cond_exprs (c);
12260}
12261
12262/* Returns true if we should stop for this breakpoint hit. If the
12263 user specified a specific exception, we only want to cause a stop
12264 if the program thrown that exception. */
12265
12266static int
12267should_stop_exception (const struct bp_location *bl)
12268{
12269 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12270 const struct ada_catchpoint_location *ada_loc
12271 = (const struct ada_catchpoint_location *) bl;
12272 int stop;
12273
12274 /* With no specific exception, should always stop. */
12275 if (c->excep_string == NULL)
12276 return 1;
12277
12278 if (ada_loc->excep_cond_expr == NULL)
12279 {
12280 /* We will have a NULL expression if back when we were creating
12281 the expressions, this location's had failed to parse. */
12282 return 1;
12283 }
12284
12285 stop = 1;
12286 TRY
12287 {
12288 struct value *mark;
12289
12290 mark = value_mark ();
12291 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12292 value_free_to_mark (mark);
12293 }
12294 CATCH (ex, RETURN_MASK_ALL)
12295 {
12296 exception_fprintf (gdb_stderr, ex,
12297 _("Error in testing exception condition:\n"));
12298 }
12299 END_CATCH
12300
12301 return stop;
12302}
12303
12304/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12305 for all exception catchpoint kinds. */
12306
12307static void
12308check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12309{
12310 bs->stop = should_stop_exception (bs->bp_location_at);
12311}
12312
12313/* Implement the PRINT_IT method in the breakpoint_ops structure
12314 for all exception catchpoint kinds. */
12315
12316static enum print_stop_action
12317print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12318{
12319 struct ui_out *uiout = current_uiout;
12320 struct breakpoint *b = bs->breakpoint_at;
12321
12322 annotate_catchpoint (b->number);
12323
12324 if (ui_out_is_mi_like_p (uiout))
12325 {
12326 ui_out_field_string (uiout, "reason",
12327 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12328 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12329 }
12330
12331 ui_out_text (uiout,
12332 b->disposition == disp_del ? "\nTemporary catchpoint "
12333 : "\nCatchpoint ");
12334 ui_out_field_int (uiout, "bkptno", b->number);
12335 ui_out_text (uiout, ", ");
12336
12337 switch (ex)
12338 {
12339 case ada_catch_exception:
12340 case ada_catch_exception_unhandled:
12341 {
12342 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12343 char exception_name[256];
12344
12345 if (addr != 0)
12346 {
12347 read_memory (addr, (gdb_byte *) exception_name,
12348 sizeof (exception_name) - 1);
12349 exception_name [sizeof (exception_name) - 1] = '\0';
12350 }
12351 else
12352 {
12353 /* For some reason, we were unable to read the exception
12354 name. This could happen if the Runtime was compiled
12355 without debugging info, for instance. In that case,
12356 just replace the exception name by the generic string
12357 "exception" - it will read as "an exception" in the
12358 notification we are about to print. */
12359 memcpy (exception_name, "exception", sizeof ("exception"));
12360 }
12361 /* In the case of unhandled exception breakpoints, we print
12362 the exception name as "unhandled EXCEPTION_NAME", to make
12363 it clearer to the user which kind of catchpoint just got
12364 hit. We used ui_out_text to make sure that this extra
12365 info does not pollute the exception name in the MI case. */
12366 if (ex == ada_catch_exception_unhandled)
12367 ui_out_text (uiout, "unhandled ");
12368 ui_out_field_string (uiout, "exception-name", exception_name);
12369 }
12370 break;
12371 case ada_catch_assert:
12372 /* In this case, the name of the exception is not really
12373 important. Just print "failed assertion" to make it clearer
12374 that his program just hit an assertion-failure catchpoint.
12375 We used ui_out_text because this info does not belong in
12376 the MI output. */
12377 ui_out_text (uiout, "failed assertion");
12378 break;
12379 }
12380 ui_out_text (uiout, " at ");
12381 ada_find_printable_frame (get_current_frame ());
12382
12383 return PRINT_SRC_AND_LOC;
12384}
12385
12386/* Implement the PRINT_ONE method in the breakpoint_ops structure
12387 for all exception catchpoint kinds. */
12388
12389static void
12390print_one_exception (enum ada_exception_catchpoint_kind ex,
12391 struct breakpoint *b, struct bp_location **last_loc)
12392{
12393 struct ui_out *uiout = current_uiout;
12394 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12395 struct value_print_options opts;
12396
12397 get_user_print_options (&opts);
12398 if (opts.addressprint)
12399 {
12400 annotate_field (4);
12401 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12402 }
12403
12404 annotate_field (5);
12405 *last_loc = b->loc;
12406 switch (ex)
12407 {
12408 case ada_catch_exception:
12409 if (c->excep_string != NULL)
12410 {
12411 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12412
12413 ui_out_field_string (uiout, "what", msg);
12414 xfree (msg);
12415 }
12416 else
12417 ui_out_field_string (uiout, "what", "all Ada exceptions");
12418
12419 break;
12420
12421 case ada_catch_exception_unhandled:
12422 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12423 break;
12424
12425 case ada_catch_assert:
12426 ui_out_field_string (uiout, "what", "failed Ada assertions");
12427 break;
12428
12429 default:
12430 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12431 break;
12432 }
12433}
12434
12435/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12436 for all exception catchpoint kinds. */
12437
12438static void
12439print_mention_exception (enum ada_exception_catchpoint_kind ex,
12440 struct breakpoint *b)
12441{
12442 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12443 struct ui_out *uiout = current_uiout;
12444
12445 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12446 : _("Catchpoint "));
12447 ui_out_field_int (uiout, "bkptno", b->number);
12448 ui_out_text (uiout, ": ");
12449
12450 switch (ex)
12451 {
12452 case ada_catch_exception:
12453 if (c->excep_string != NULL)
12454 {
12455 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12456 struct cleanup *old_chain = make_cleanup (xfree, info);
12457
12458 ui_out_text (uiout, info);
12459 do_cleanups (old_chain);
12460 }
12461 else
12462 ui_out_text (uiout, _("all Ada exceptions"));
12463 break;
12464
12465 case ada_catch_exception_unhandled:
12466 ui_out_text (uiout, _("unhandled Ada exceptions"));
12467 break;
12468
12469 case ada_catch_assert:
12470 ui_out_text (uiout, _("failed Ada assertions"));
12471 break;
12472
12473 default:
12474 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12475 break;
12476 }
12477}
12478
12479/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12480 for all exception catchpoint kinds. */
12481
12482static void
12483print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12484 struct breakpoint *b, struct ui_file *fp)
12485{
12486 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12487
12488 switch (ex)
12489 {
12490 case ada_catch_exception:
12491 fprintf_filtered (fp, "catch exception");
12492 if (c->excep_string != NULL)
12493 fprintf_filtered (fp, " %s", c->excep_string);
12494 break;
12495
12496 case ada_catch_exception_unhandled:
12497 fprintf_filtered (fp, "catch exception unhandled");
12498 break;
12499
12500 case ada_catch_assert:
12501 fprintf_filtered (fp, "catch assert");
12502 break;
12503
12504 default:
12505 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12506 }
12507 print_recreate_thread (b, fp);
12508}
12509
12510/* Virtual table for "catch exception" breakpoints. */
12511
12512static void
12513dtor_catch_exception (struct breakpoint *b)
12514{
12515 dtor_exception (ada_catch_exception, b);
12516}
12517
12518static struct bp_location *
12519allocate_location_catch_exception (struct breakpoint *self)
12520{
12521 return allocate_location_exception (ada_catch_exception, self);
12522}
12523
12524static void
12525re_set_catch_exception (struct breakpoint *b)
12526{
12527 re_set_exception (ada_catch_exception, b);
12528}
12529
12530static void
12531check_status_catch_exception (bpstat bs)
12532{
12533 check_status_exception (ada_catch_exception, bs);
12534}
12535
12536static enum print_stop_action
12537print_it_catch_exception (bpstat bs)
12538{
12539 return print_it_exception (ada_catch_exception, bs);
12540}
12541
12542static void
12543print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12544{
12545 print_one_exception (ada_catch_exception, b, last_loc);
12546}
12547
12548static void
12549print_mention_catch_exception (struct breakpoint *b)
12550{
12551 print_mention_exception (ada_catch_exception, b);
12552}
12553
12554static void
12555print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12556{
12557 print_recreate_exception (ada_catch_exception, b, fp);
12558}
12559
12560static struct breakpoint_ops catch_exception_breakpoint_ops;
12561
12562/* Virtual table for "catch exception unhandled" breakpoints. */
12563
12564static void
12565dtor_catch_exception_unhandled (struct breakpoint *b)
12566{
12567 dtor_exception (ada_catch_exception_unhandled, b);
12568}
12569
12570static struct bp_location *
12571allocate_location_catch_exception_unhandled (struct breakpoint *self)
12572{
12573 return allocate_location_exception (ada_catch_exception_unhandled, self);
12574}
12575
12576static void
12577re_set_catch_exception_unhandled (struct breakpoint *b)
12578{
12579 re_set_exception (ada_catch_exception_unhandled, b);
12580}
12581
12582static void
12583check_status_catch_exception_unhandled (bpstat bs)
12584{
12585 check_status_exception (ada_catch_exception_unhandled, bs);
12586}
12587
12588static enum print_stop_action
12589print_it_catch_exception_unhandled (bpstat bs)
12590{
12591 return print_it_exception (ada_catch_exception_unhandled, bs);
12592}
12593
12594static void
12595print_one_catch_exception_unhandled (struct breakpoint *b,
12596 struct bp_location **last_loc)
12597{
12598 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12599}
12600
12601static void
12602print_mention_catch_exception_unhandled (struct breakpoint *b)
12603{
12604 print_mention_exception (ada_catch_exception_unhandled, b);
12605}
12606
12607static void
12608print_recreate_catch_exception_unhandled (struct breakpoint *b,
12609 struct ui_file *fp)
12610{
12611 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12612}
12613
12614static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12615
12616/* Virtual table for "catch assert" breakpoints. */
12617
12618static void
12619dtor_catch_assert (struct breakpoint *b)
12620{
12621 dtor_exception (ada_catch_assert, b);
12622}
12623
12624static struct bp_location *
12625allocate_location_catch_assert (struct breakpoint *self)
12626{
12627 return allocate_location_exception (ada_catch_assert, self);
12628}
12629
12630static void
12631re_set_catch_assert (struct breakpoint *b)
12632{
12633 re_set_exception (ada_catch_assert, b);
12634}
12635
12636static void
12637check_status_catch_assert (bpstat bs)
12638{
12639 check_status_exception (ada_catch_assert, bs);
12640}
12641
12642static enum print_stop_action
12643print_it_catch_assert (bpstat bs)
12644{
12645 return print_it_exception (ada_catch_assert, bs);
12646}
12647
12648static void
12649print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12650{
12651 print_one_exception (ada_catch_assert, b, last_loc);
12652}
12653
12654static void
12655print_mention_catch_assert (struct breakpoint *b)
12656{
12657 print_mention_exception (ada_catch_assert, b);
12658}
12659
12660static void
12661print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12662{
12663 print_recreate_exception (ada_catch_assert, b, fp);
12664}
12665
12666static struct breakpoint_ops catch_assert_breakpoint_ops;
12667
12668/* Return a newly allocated copy of the first space-separated token
12669 in ARGSP, and then adjust ARGSP to point immediately after that
12670 token.
12671
12672 Return NULL if ARGPS does not contain any more tokens. */
12673
12674static char *
12675ada_get_next_arg (char **argsp)
12676{
12677 char *args = *argsp;
12678 char *end;
12679 char *result;
12680
12681 args = skip_spaces (args);
12682 if (args[0] == '\0')
12683 return NULL; /* No more arguments. */
12684
12685 /* Find the end of the current argument. */
12686
12687 end = skip_to_space (args);
12688
12689 /* Adjust ARGSP to point to the start of the next argument. */
12690
12691 *argsp = end;
12692
12693 /* Make a copy of the current argument and return it. */
12694
12695 result = (char *) xmalloc (end - args + 1);
12696 strncpy (result, args, end - args);
12697 result[end - args] = '\0';
12698
12699 return result;
12700}
12701
12702/* Split the arguments specified in a "catch exception" command.
12703 Set EX to the appropriate catchpoint type.
12704 Set EXCEP_STRING to the name of the specific exception if
12705 specified by the user.
12706 If a condition is found at the end of the arguments, the condition
12707 expression is stored in COND_STRING (memory must be deallocated
12708 after use). Otherwise COND_STRING is set to NULL. */
12709
12710static void
12711catch_ada_exception_command_split (char *args,
12712 enum ada_exception_catchpoint_kind *ex,
12713 char **excep_string,
12714 char **cond_string)
12715{
12716 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12717 char *exception_name;
12718 char *cond = NULL;
12719
12720 exception_name = ada_get_next_arg (&args);
12721 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12722 {
12723 /* This is not an exception name; this is the start of a condition
12724 expression for a catchpoint on all exceptions. So, "un-get"
12725 this token, and set exception_name to NULL. */
12726 xfree (exception_name);
12727 exception_name = NULL;
12728 args -= 2;
12729 }
12730 make_cleanup (xfree, exception_name);
12731
12732 /* Check to see if we have a condition. */
12733
12734 args = skip_spaces (args);
12735 if (startswith (args, "if")
12736 && (isspace (args[2]) || args[2] == '\0'))
12737 {
12738 args += 2;
12739 args = skip_spaces (args);
12740
12741 if (args[0] == '\0')
12742 error (_("Condition missing after `if' keyword"));
12743 cond = xstrdup (args);
12744 make_cleanup (xfree, cond);
12745
12746 args += strlen (args);
12747 }
12748
12749 /* Check that we do not have any more arguments. Anything else
12750 is unexpected. */
12751
12752 if (args[0] != '\0')
12753 error (_("Junk at end of expression"));
12754
12755 discard_cleanups (old_chain);
12756
12757 if (exception_name == NULL)
12758 {
12759 /* Catch all exceptions. */
12760 *ex = ada_catch_exception;
12761 *excep_string = NULL;
12762 }
12763 else if (strcmp (exception_name, "unhandled") == 0)
12764 {
12765 /* Catch unhandled exceptions. */
12766 *ex = ada_catch_exception_unhandled;
12767 *excep_string = NULL;
12768 }
12769 else
12770 {
12771 /* Catch a specific exception. */
12772 *ex = ada_catch_exception;
12773 *excep_string = exception_name;
12774 }
12775 *cond_string = cond;
12776}
12777
12778/* Return the name of the symbol on which we should break in order to
12779 implement a catchpoint of the EX kind. */
12780
12781static const char *
12782ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12783{
12784 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12785
12786 gdb_assert (data->exception_info != NULL);
12787
12788 switch (ex)
12789 {
12790 case ada_catch_exception:
12791 return (data->exception_info->catch_exception_sym);
12792 break;
12793 case ada_catch_exception_unhandled:
12794 return (data->exception_info->catch_exception_unhandled_sym);
12795 break;
12796 case ada_catch_assert:
12797 return (data->exception_info->catch_assert_sym);
12798 break;
12799 default:
12800 internal_error (__FILE__, __LINE__,
12801 _("unexpected catchpoint kind (%d)"), ex);
12802 }
12803}
12804
12805/* Return the breakpoint ops "virtual table" used for catchpoints
12806 of the EX kind. */
12807
12808static const struct breakpoint_ops *
12809ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12810{
12811 switch (ex)
12812 {
12813 case ada_catch_exception:
12814 return (&catch_exception_breakpoint_ops);
12815 break;
12816 case ada_catch_exception_unhandled:
12817 return (&catch_exception_unhandled_breakpoint_ops);
12818 break;
12819 case ada_catch_assert:
12820 return (&catch_assert_breakpoint_ops);
12821 break;
12822 default:
12823 internal_error (__FILE__, __LINE__,
12824 _("unexpected catchpoint kind (%d)"), ex);
12825 }
12826}
12827
12828/* Return the condition that will be used to match the current exception
12829 being raised with the exception that the user wants to catch. This
12830 assumes that this condition is used when the inferior just triggered
12831 an exception catchpoint.
12832
12833 The string returned is a newly allocated string that needs to be
12834 deallocated later. */
12835
12836static char *
12837ada_exception_catchpoint_cond_string (const char *excep_string)
12838{
12839 int i;
12840
12841 /* The standard exceptions are a special case. They are defined in
12842 runtime units that have been compiled without debugging info; if
12843 EXCEP_STRING is the not-fully-qualified name of a standard
12844 exception (e.g. "constraint_error") then, during the evaluation
12845 of the condition expression, the symbol lookup on this name would
12846 *not* return this standard exception. The catchpoint condition
12847 may then be set only on user-defined exceptions which have the
12848 same not-fully-qualified name (e.g. my_package.constraint_error).
12849
12850 To avoid this unexcepted behavior, these standard exceptions are
12851 systematically prefixed by "standard". This means that "catch
12852 exception constraint_error" is rewritten into "catch exception
12853 standard.constraint_error".
12854
12855 If an exception named contraint_error is defined in another package of
12856 the inferior program, then the only way to specify this exception as a
12857 breakpoint condition is to use its fully-qualified named:
12858 e.g. my_package.constraint_error. */
12859
12860 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12861 {
12862 if (strcmp (standard_exc [i], excep_string) == 0)
12863 {
12864 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12865 excep_string);
12866 }
12867 }
12868 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12869}
12870
12871/* Return the symtab_and_line that should be used to insert an exception
12872 catchpoint of the TYPE kind.
12873
12874 EXCEP_STRING should contain the name of a specific exception that
12875 the catchpoint should catch, or NULL otherwise.
12876
12877 ADDR_STRING returns the name of the function where the real
12878 breakpoint that implements the catchpoints is set, depending on the
12879 type of catchpoint we need to create. */
12880
12881static struct symtab_and_line
12882ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12883 char **addr_string, const struct breakpoint_ops **ops)
12884{
12885 const char *sym_name;
12886 struct symbol *sym;
12887
12888 /* First, find out which exception support info to use. */
12889 ada_exception_support_info_sniffer ();
12890
12891 /* Then lookup the function on which we will break in order to catch
12892 the Ada exceptions requested by the user. */
12893 sym_name = ada_exception_sym_name (ex);
12894 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12895
12896 /* We can assume that SYM is not NULL at this stage. If the symbol
12897 did not exist, ada_exception_support_info_sniffer would have
12898 raised an exception.
12899
12900 Also, ada_exception_support_info_sniffer should have already
12901 verified that SYM is a function symbol. */
12902 gdb_assert (sym != NULL);
12903 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12904
12905 /* Set ADDR_STRING. */
12906 *addr_string = xstrdup (sym_name);
12907
12908 /* Set OPS. */
12909 *ops = ada_exception_breakpoint_ops (ex);
12910
12911 return find_function_start_sal (sym, 1);
12912}
12913
12914/* Create an Ada exception catchpoint.
12915
12916 EX_KIND is the kind of exception catchpoint to be created.
12917
12918 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12919 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12920 of the exception to which this catchpoint applies. When not NULL,
12921 the string must be allocated on the heap, and its deallocation
12922 is no longer the responsibility of the caller.
12923
12924 COND_STRING, if not NULL, is the catchpoint condition. This string
12925 must be allocated on the heap, and its deallocation is no longer
12926 the responsibility of the caller.
12927
12928 TEMPFLAG, if nonzero, means that the underlying breakpoint
12929 should be temporary.
12930
12931 FROM_TTY is the usual argument passed to all commands implementations. */
12932
12933void
12934create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12935 enum ada_exception_catchpoint_kind ex_kind,
12936 char *excep_string,
12937 char *cond_string,
12938 int tempflag,
12939 int disabled,
12940 int from_tty)
12941{
12942 struct ada_catchpoint *c;
12943 char *addr_string = NULL;
12944 const struct breakpoint_ops *ops = NULL;
12945 struct symtab_and_line sal
12946 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12947
12948 c = XNEW (struct ada_catchpoint);
12949 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12950 ops, tempflag, disabled, from_tty);
12951 c->excep_string = excep_string;
12952 create_excep_cond_exprs (c);
12953 if (cond_string != NULL)
12954 set_breakpoint_condition (&c->base, cond_string, from_tty);
12955 install_breakpoint (0, &c->base, 1);
12956}
12957
12958/* Implement the "catch exception" command. */
12959
12960static void
12961catch_ada_exception_command (char *arg, int from_tty,
12962 struct cmd_list_element *command)
12963{
12964 struct gdbarch *gdbarch = get_current_arch ();
12965 int tempflag;
12966 enum ada_exception_catchpoint_kind ex_kind;
12967 char *excep_string = NULL;
12968 char *cond_string = NULL;
12969
12970 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12971
12972 if (!arg)
12973 arg = "";
12974 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12975 &cond_string);
12976 create_ada_exception_catchpoint (gdbarch, ex_kind,
12977 excep_string, cond_string,
12978 tempflag, 1 /* enabled */,
12979 from_tty);
12980}
12981
12982/* Split the arguments specified in a "catch assert" command.
12983
12984 ARGS contains the command's arguments (or the empty string if
12985 no arguments were passed).
12986
12987 If ARGS contains a condition, set COND_STRING to that condition
12988 (the memory needs to be deallocated after use). */
12989
12990static void
12991catch_ada_assert_command_split (char *args, char **cond_string)
12992{
12993 args = skip_spaces (args);
12994
12995 /* Check whether a condition was provided. */
12996 if (startswith (args, "if")
12997 && (isspace (args[2]) || args[2] == '\0'))
12998 {
12999 args += 2;
13000 args = skip_spaces (args);
13001 if (args[0] == '\0')
13002 error (_("condition missing after `if' keyword"));
13003 *cond_string = xstrdup (args);
13004 }
13005
13006 /* Otherwise, there should be no other argument at the end of
13007 the command. */
13008 else if (args[0] != '\0')
13009 error (_("Junk at end of arguments."));
13010}
13011
13012/* Implement the "catch assert" command. */
13013
13014static void
13015catch_assert_command (char *arg, int from_tty,
13016 struct cmd_list_element *command)
13017{
13018 struct gdbarch *gdbarch = get_current_arch ();
13019 int tempflag;
13020 char *cond_string = NULL;
13021
13022 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13023
13024 if (!arg)
13025 arg = "";
13026 catch_ada_assert_command_split (arg, &cond_string);
13027 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13028 NULL, cond_string,
13029 tempflag, 1 /* enabled */,
13030 from_tty);
13031}
13032
13033/* Return non-zero if the symbol SYM is an Ada exception object. */
13034
13035static int
13036ada_is_exception_sym (struct symbol *sym)
13037{
13038 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13039
13040 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13041 && SYMBOL_CLASS (sym) != LOC_BLOCK
13042 && SYMBOL_CLASS (sym) != LOC_CONST
13043 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13044 && type_name != NULL && strcmp (type_name, "exception") == 0);
13045}
13046
13047/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13048 Ada exception object. This matches all exceptions except the ones
13049 defined by the Ada language. */
13050
13051static int
13052ada_is_non_standard_exception_sym (struct symbol *sym)
13053{
13054 int i;
13055
13056 if (!ada_is_exception_sym (sym))
13057 return 0;
13058
13059 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13060 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13061 return 0; /* A standard exception. */
13062
13063 /* Numeric_Error is also a standard exception, so exclude it.
13064 See the STANDARD_EXC description for more details as to why
13065 this exception is not listed in that array. */
13066 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13067 return 0;
13068
13069 return 1;
13070}
13071
13072/* A helper function for qsort, comparing two struct ada_exc_info
13073 objects.
13074
13075 The comparison is determined first by exception name, and then
13076 by exception address. */
13077
13078static int
13079compare_ada_exception_info (const void *a, const void *b)
13080{
13081 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13082 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13083 int result;
13084
13085 result = strcmp (exc_a->name, exc_b->name);
13086 if (result != 0)
13087 return result;
13088
13089 if (exc_a->addr < exc_b->addr)
13090 return -1;
13091 if (exc_a->addr > exc_b->addr)
13092 return 1;
13093
13094 return 0;
13095}
13096
13097/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13098 routine, but keeping the first SKIP elements untouched.
13099
13100 All duplicates are also removed. */
13101
13102static void
13103sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13104 int skip)
13105{
13106 struct ada_exc_info *to_sort
13107 = VEC_address (ada_exc_info, *exceptions) + skip;
13108 int to_sort_len
13109 = VEC_length (ada_exc_info, *exceptions) - skip;
13110 int i, j;
13111
13112 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13113 compare_ada_exception_info);
13114
13115 for (i = 1, j = 1; i < to_sort_len; i++)
13116 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13117 to_sort[j++] = to_sort[i];
13118 to_sort_len = j;
13119 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13120}
13121
13122/* A function intended as the "name_matcher" callback in the struct
13123 quick_symbol_functions' expand_symtabs_matching method.
13124
13125 SEARCH_NAME is the symbol's search name.
13126
13127 If USER_DATA is not NULL, it is a pointer to a regext_t object
13128 used to match the symbol (by natural name). Otherwise, when USER_DATA
13129 is null, no filtering is performed, and all symbols are a positive
13130 match. */
13131
13132static int
13133ada_exc_search_name_matches (const char *search_name, void *user_data)
13134{
13135 regex_t *preg = (regex_t *) user_data;
13136
13137 if (preg == NULL)
13138 return 1;
13139
13140 /* In Ada, the symbol "search name" is a linkage name, whereas
13141 the regular expression used to do the matching refers to
13142 the natural name. So match against the decoded name. */
13143 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13144}
13145
13146/* Add all exceptions defined by the Ada standard whose name match
13147 a regular expression.
13148
13149 If PREG is not NULL, then this regexp_t object is used to
13150 perform the symbol name matching. Otherwise, no name-based
13151 filtering is performed.
13152
13153 EXCEPTIONS is a vector of exceptions to which matching exceptions
13154 gets pushed. */
13155
13156static void
13157ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13158{
13159 int i;
13160
13161 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13162 {
13163 if (preg == NULL
13164 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13165 {
13166 struct bound_minimal_symbol msymbol
13167 = ada_lookup_simple_minsym (standard_exc[i]);
13168
13169 if (msymbol.minsym != NULL)
13170 {
13171 struct ada_exc_info info
13172 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13173
13174 VEC_safe_push (ada_exc_info, *exceptions, &info);
13175 }
13176 }
13177 }
13178}
13179
13180/* Add all Ada exceptions defined locally and accessible from the given
13181 FRAME.
13182
13183 If PREG is not NULL, then this regexp_t object is used to
13184 perform the symbol name matching. Otherwise, no name-based
13185 filtering is performed.
13186
13187 EXCEPTIONS is a vector of exceptions to which matching exceptions
13188 gets pushed. */
13189
13190static void
13191ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13192 VEC(ada_exc_info) **exceptions)
13193{
13194 const struct block *block = get_frame_block (frame, 0);
13195
13196 while (block != 0)
13197 {
13198 struct block_iterator iter;
13199 struct symbol *sym;
13200
13201 ALL_BLOCK_SYMBOLS (block, iter, sym)
13202 {
13203 switch (SYMBOL_CLASS (sym))
13204 {
13205 case LOC_TYPEDEF:
13206 case LOC_BLOCK:
13207 case LOC_CONST:
13208 break;
13209 default:
13210 if (ada_is_exception_sym (sym))
13211 {
13212 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13213 SYMBOL_VALUE_ADDRESS (sym)};
13214
13215 VEC_safe_push (ada_exc_info, *exceptions, &info);
13216 }
13217 }
13218 }
13219 if (BLOCK_FUNCTION (block) != NULL)
13220 break;
13221 block = BLOCK_SUPERBLOCK (block);
13222 }
13223}
13224
13225/* Add all exceptions defined globally whose name name match
13226 a regular expression, excluding standard exceptions.
13227
13228 The reason we exclude standard exceptions is that they need
13229 to be handled separately: Standard exceptions are defined inside
13230 a runtime unit which is normally not compiled with debugging info,
13231 and thus usually do not show up in our symbol search. However,
13232 if the unit was in fact built with debugging info, we need to
13233 exclude them because they would duplicate the entry we found
13234 during the special loop that specifically searches for those
13235 standard exceptions.
13236
13237 If PREG is not NULL, then this regexp_t object is used to
13238 perform the symbol name matching. Otherwise, no name-based
13239 filtering is performed.
13240
13241 EXCEPTIONS is a vector of exceptions to which matching exceptions
13242 gets pushed. */
13243
13244static void
13245ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13246{
13247 struct objfile *objfile;
13248 struct compunit_symtab *s;
13249
13250 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13251 VARIABLES_DOMAIN, preg);
13252
13253 ALL_COMPUNITS (objfile, s)
13254 {
13255 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13256 int i;
13257
13258 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13259 {
13260 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13261 struct block_iterator iter;
13262 struct symbol *sym;
13263
13264 ALL_BLOCK_SYMBOLS (b, iter, sym)
13265 if (ada_is_non_standard_exception_sym (sym)
13266 && (preg == NULL
13267 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13268 0, NULL, 0) == 0))
13269 {
13270 struct ada_exc_info info
13271 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13272
13273 VEC_safe_push (ada_exc_info, *exceptions, &info);
13274 }
13275 }
13276 }
13277}
13278
13279/* Implements ada_exceptions_list with the regular expression passed
13280 as a regex_t, rather than a string.
13281
13282 If not NULL, PREG is used to filter out exceptions whose names
13283 do not match. Otherwise, all exceptions are listed. */
13284
13285static VEC(ada_exc_info) *
13286ada_exceptions_list_1 (regex_t *preg)
13287{
13288 VEC(ada_exc_info) *result = NULL;
13289 struct cleanup *old_chain
13290 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13291 int prev_len;
13292
13293 /* First, list the known standard exceptions. These exceptions
13294 need to be handled separately, as they are usually defined in
13295 runtime units that have been compiled without debugging info. */
13296
13297 ada_add_standard_exceptions (preg, &result);
13298
13299 /* Next, find all exceptions whose scope is local and accessible
13300 from the currently selected frame. */
13301
13302 if (has_stack_frames ())
13303 {
13304 prev_len = VEC_length (ada_exc_info, result);
13305 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13306 &result);
13307 if (VEC_length (ada_exc_info, result) > prev_len)
13308 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13309 }
13310
13311 /* Add all exceptions whose scope is global. */
13312
13313 prev_len = VEC_length (ada_exc_info, result);
13314 ada_add_global_exceptions (preg, &result);
13315 if (VEC_length (ada_exc_info, result) > prev_len)
13316 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13317
13318 discard_cleanups (old_chain);
13319 return result;
13320}
13321
13322/* Return a vector of ada_exc_info.
13323
13324 If REGEXP is NULL, all exceptions are included in the result.
13325 Otherwise, it should contain a valid regular expression,
13326 and only the exceptions whose names match that regular expression
13327 are included in the result.
13328
13329 The exceptions are sorted in the following order:
13330 - Standard exceptions (defined by the Ada language), in
13331 alphabetical order;
13332 - Exceptions only visible from the current frame, in
13333 alphabetical order;
13334 - Exceptions whose scope is global, in alphabetical order. */
13335
13336VEC(ada_exc_info) *
13337ada_exceptions_list (const char *regexp)
13338{
13339 VEC(ada_exc_info) *result = NULL;
13340 struct cleanup *old_chain = NULL;
13341 regex_t reg;
13342
13343 if (regexp != NULL)
13344 old_chain = compile_rx_or_error (&reg, regexp,
13345 _("invalid regular expression"));
13346
13347 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13348
13349 if (old_chain != NULL)
13350 do_cleanups (old_chain);
13351 return result;
13352}
13353
13354/* Implement the "info exceptions" command. */
13355
13356static void
13357info_exceptions_command (char *regexp, int from_tty)
13358{
13359 VEC(ada_exc_info) *exceptions;
13360 struct cleanup *cleanup;
13361 struct gdbarch *gdbarch = get_current_arch ();
13362 int ix;
13363 struct ada_exc_info *info;
13364
13365 exceptions = ada_exceptions_list (regexp);
13366 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13367
13368 if (regexp != NULL)
13369 printf_filtered
13370 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13371 else
13372 printf_filtered (_("All defined Ada exceptions:\n"));
13373
13374 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13375 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13376
13377 do_cleanups (cleanup);
13378}
13379
13380 /* Operators */
13381/* Information about operators given special treatment in functions
13382 below. */
13383/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13384
13385#define ADA_OPERATORS \
13386 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13387 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13388 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13389 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13390 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13391 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13392 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13393 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13394 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13395 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13396 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13397 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13398 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13399 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13400 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13401 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13402 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13403 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13404 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13405
13406static void
13407ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13408 int *argsp)
13409{
13410 switch (exp->elts[pc - 1].opcode)
13411 {
13412 default:
13413 operator_length_standard (exp, pc, oplenp, argsp);
13414 break;
13415
13416#define OP_DEFN(op, len, args, binop) \
13417 case op: *oplenp = len; *argsp = args; break;
13418 ADA_OPERATORS;
13419#undef OP_DEFN
13420
13421 case OP_AGGREGATE:
13422 *oplenp = 3;
13423 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13424 break;
13425
13426 case OP_CHOICES:
13427 *oplenp = 3;
13428 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13429 break;
13430 }
13431}
13432
13433/* Implementation of the exp_descriptor method operator_check. */
13434
13435static int
13436ada_operator_check (struct expression *exp, int pos,
13437 int (*objfile_func) (struct objfile *objfile, void *data),
13438 void *data)
13439{
13440 const union exp_element *const elts = exp->elts;
13441 struct type *type = NULL;
13442
13443 switch (elts[pos].opcode)
13444 {
13445 case UNOP_IN_RANGE:
13446 case UNOP_QUAL:
13447 type = elts[pos + 1].type;
13448 break;
13449
13450 default:
13451 return operator_check_standard (exp, pos, objfile_func, data);
13452 }
13453
13454 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13455
13456 if (type && TYPE_OBJFILE (type)
13457 && (*objfile_func) (TYPE_OBJFILE (type), data))
13458 return 1;
13459
13460 return 0;
13461}
13462
13463static char *
13464ada_op_name (enum exp_opcode opcode)
13465{
13466 switch (opcode)
13467 {
13468 default:
13469 return op_name_standard (opcode);
13470
13471#define OP_DEFN(op, len, args, binop) case op: return #op;
13472 ADA_OPERATORS;
13473#undef OP_DEFN
13474
13475 case OP_AGGREGATE:
13476 return "OP_AGGREGATE";
13477 case OP_CHOICES:
13478 return "OP_CHOICES";
13479 case OP_NAME:
13480 return "OP_NAME";
13481 }
13482}
13483
13484/* As for operator_length, but assumes PC is pointing at the first
13485 element of the operator, and gives meaningful results only for the
13486 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13487
13488static void
13489ada_forward_operator_length (struct expression *exp, int pc,
13490 int *oplenp, int *argsp)
13491{
13492 switch (exp->elts[pc].opcode)
13493 {
13494 default:
13495 *oplenp = *argsp = 0;
13496 break;
13497
13498#define OP_DEFN(op, len, args, binop) \
13499 case op: *oplenp = len; *argsp = args; break;
13500 ADA_OPERATORS;
13501#undef OP_DEFN
13502
13503 case OP_AGGREGATE:
13504 *oplenp = 3;
13505 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13506 break;
13507
13508 case OP_CHOICES:
13509 *oplenp = 3;
13510 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13511 break;
13512
13513 case OP_STRING:
13514 case OP_NAME:
13515 {
13516 int len = longest_to_int (exp->elts[pc + 1].longconst);
13517
13518 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13519 *argsp = 0;
13520 break;
13521 }
13522 }
13523}
13524
13525static int
13526ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13527{
13528 enum exp_opcode op = exp->elts[elt].opcode;
13529 int oplen, nargs;
13530 int pc = elt;
13531 int i;
13532
13533 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13534
13535 switch (op)
13536 {
13537 /* Ada attributes ('Foo). */
13538 case OP_ATR_FIRST:
13539 case OP_ATR_LAST:
13540 case OP_ATR_LENGTH:
13541 case OP_ATR_IMAGE:
13542 case OP_ATR_MAX:
13543 case OP_ATR_MIN:
13544 case OP_ATR_MODULUS:
13545 case OP_ATR_POS:
13546 case OP_ATR_SIZE:
13547 case OP_ATR_TAG:
13548 case OP_ATR_VAL:
13549 break;
13550
13551 case UNOP_IN_RANGE:
13552 case UNOP_QUAL:
13553 /* XXX: gdb_sprint_host_address, type_sprint */
13554 fprintf_filtered (stream, _("Type @"));
13555 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13556 fprintf_filtered (stream, " (");
13557 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13558 fprintf_filtered (stream, ")");
13559 break;
13560 case BINOP_IN_BOUNDS:
13561 fprintf_filtered (stream, " (%d)",
13562 longest_to_int (exp->elts[pc + 2].longconst));
13563 break;
13564 case TERNOP_IN_RANGE:
13565 break;
13566
13567 case OP_AGGREGATE:
13568 case OP_OTHERS:
13569 case OP_DISCRETE_RANGE:
13570 case OP_POSITIONAL:
13571 case OP_CHOICES:
13572 break;
13573
13574 case OP_NAME:
13575 case OP_STRING:
13576 {
13577 char *name = &exp->elts[elt + 2].string;
13578 int len = longest_to_int (exp->elts[elt + 1].longconst);
13579
13580 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13581 break;
13582 }
13583
13584 default:
13585 return dump_subexp_body_standard (exp, stream, elt);
13586 }
13587
13588 elt += oplen;
13589 for (i = 0; i < nargs; i += 1)
13590 elt = dump_subexp (exp, stream, elt);
13591
13592 return elt;
13593}
13594
13595/* The Ada extension of print_subexp (q.v.). */
13596
13597static void
13598ada_print_subexp (struct expression *exp, int *pos,
13599 struct ui_file *stream, enum precedence prec)
13600{
13601 int oplen, nargs, i;
13602 int pc = *pos;
13603 enum exp_opcode op = exp->elts[pc].opcode;
13604
13605 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13606
13607 *pos += oplen;
13608 switch (op)
13609 {
13610 default:
13611 *pos -= oplen;
13612 print_subexp_standard (exp, pos, stream, prec);
13613 return;
13614
13615 case OP_VAR_VALUE:
13616 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13617 return;
13618
13619 case BINOP_IN_BOUNDS:
13620 /* XXX: sprint_subexp */
13621 print_subexp (exp, pos, stream, PREC_SUFFIX);
13622 fputs_filtered (" in ", stream);
13623 print_subexp (exp, pos, stream, PREC_SUFFIX);
13624 fputs_filtered ("'range", stream);
13625 if (exp->elts[pc + 1].longconst > 1)
13626 fprintf_filtered (stream, "(%ld)",
13627 (long) exp->elts[pc + 1].longconst);
13628 return;
13629
13630 case TERNOP_IN_RANGE:
13631 if (prec >= PREC_EQUAL)
13632 fputs_filtered ("(", stream);
13633 /* XXX: sprint_subexp */
13634 print_subexp (exp, pos, stream, PREC_SUFFIX);
13635 fputs_filtered (" in ", stream);
13636 print_subexp (exp, pos, stream, PREC_EQUAL);
13637 fputs_filtered (" .. ", stream);
13638 print_subexp (exp, pos, stream, PREC_EQUAL);
13639 if (prec >= PREC_EQUAL)
13640 fputs_filtered (")", stream);
13641 return;
13642
13643 case OP_ATR_FIRST:
13644 case OP_ATR_LAST:
13645 case OP_ATR_LENGTH:
13646 case OP_ATR_IMAGE:
13647 case OP_ATR_MAX:
13648 case OP_ATR_MIN:
13649 case OP_ATR_MODULUS:
13650 case OP_ATR_POS:
13651 case OP_ATR_SIZE:
13652 case OP_ATR_TAG:
13653 case OP_ATR_VAL:
13654 if (exp->elts[*pos].opcode == OP_TYPE)
13655 {
13656 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13657 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13658 &type_print_raw_options);
13659 *pos += 3;
13660 }
13661 else
13662 print_subexp (exp, pos, stream, PREC_SUFFIX);
13663 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13664 if (nargs > 1)
13665 {
13666 int tem;
13667
13668 for (tem = 1; tem < nargs; tem += 1)
13669 {
13670 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13671 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13672 }
13673 fputs_filtered (")", stream);
13674 }
13675 return;
13676
13677 case UNOP_QUAL:
13678 type_print (exp->elts[pc + 1].type, "", stream, 0);
13679 fputs_filtered ("'(", stream);
13680 print_subexp (exp, pos, stream, PREC_PREFIX);
13681 fputs_filtered (")", stream);
13682 return;
13683
13684 case UNOP_IN_RANGE:
13685 /* XXX: sprint_subexp */
13686 print_subexp (exp, pos, stream, PREC_SUFFIX);
13687 fputs_filtered (" in ", stream);
13688 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13689 &type_print_raw_options);
13690 return;
13691
13692 case OP_DISCRETE_RANGE:
13693 print_subexp (exp, pos, stream, PREC_SUFFIX);
13694 fputs_filtered ("..", stream);
13695 print_subexp (exp, pos, stream, PREC_SUFFIX);
13696 return;
13697
13698 case OP_OTHERS:
13699 fputs_filtered ("others => ", stream);
13700 print_subexp (exp, pos, stream, PREC_SUFFIX);
13701 return;
13702
13703 case OP_CHOICES:
13704 for (i = 0; i < nargs-1; i += 1)
13705 {
13706 if (i > 0)
13707 fputs_filtered ("|", stream);
13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
13709 }
13710 fputs_filtered (" => ", stream);
13711 print_subexp (exp, pos, stream, PREC_SUFFIX);
13712 return;
13713
13714 case OP_POSITIONAL:
13715 print_subexp (exp, pos, stream, PREC_SUFFIX);
13716 return;
13717
13718 case OP_AGGREGATE:
13719 fputs_filtered ("(", stream);
13720 for (i = 0; i < nargs; i += 1)
13721 {
13722 if (i > 0)
13723 fputs_filtered (", ", stream);
13724 print_subexp (exp, pos, stream, PREC_SUFFIX);
13725 }
13726 fputs_filtered (")", stream);
13727 return;
13728 }
13729}
13730
13731/* Table mapping opcodes into strings for printing operators
13732 and precedences of the operators. */
13733
13734static const struct op_print ada_op_print_tab[] = {
13735 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13736 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13737 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13738 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13739 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13740 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13741 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13742 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13743 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13744 {">=", BINOP_GEQ, PREC_ORDER, 0},
13745 {">", BINOP_GTR, PREC_ORDER, 0},
13746 {"<", BINOP_LESS, PREC_ORDER, 0},
13747 {">>", BINOP_RSH, PREC_SHIFT, 0},
13748 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13749 {"+", BINOP_ADD, PREC_ADD, 0},
13750 {"-", BINOP_SUB, PREC_ADD, 0},
13751 {"&", BINOP_CONCAT, PREC_ADD, 0},
13752 {"*", BINOP_MUL, PREC_MUL, 0},
13753 {"/", BINOP_DIV, PREC_MUL, 0},
13754 {"rem", BINOP_REM, PREC_MUL, 0},
13755 {"mod", BINOP_MOD, PREC_MUL, 0},
13756 {"**", BINOP_EXP, PREC_REPEAT, 0},
13757 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13758 {"-", UNOP_NEG, PREC_PREFIX, 0},
13759 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13760 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13761 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13762 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13763 {".all", UNOP_IND, PREC_SUFFIX, 1},
13764 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13765 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13766 {NULL, OP_NULL, PREC_SUFFIX, 0}
13767};
13768\f
13769enum ada_primitive_types {
13770 ada_primitive_type_int,
13771 ada_primitive_type_long,
13772 ada_primitive_type_short,
13773 ada_primitive_type_char,
13774 ada_primitive_type_float,
13775 ada_primitive_type_double,
13776 ada_primitive_type_void,
13777 ada_primitive_type_long_long,
13778 ada_primitive_type_long_double,
13779 ada_primitive_type_natural,
13780 ada_primitive_type_positive,
13781 ada_primitive_type_system_address,
13782 nr_ada_primitive_types
13783};
13784
13785static void
13786ada_language_arch_info (struct gdbarch *gdbarch,
13787 struct language_arch_info *lai)
13788{
13789 const struct builtin_type *builtin = builtin_type (gdbarch);
13790
13791 lai->primitive_type_vector
13792 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13793 struct type *);
13794
13795 lai->primitive_type_vector [ada_primitive_type_int]
13796 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13797 0, "integer");
13798 lai->primitive_type_vector [ada_primitive_type_long]
13799 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13800 0, "long_integer");
13801 lai->primitive_type_vector [ada_primitive_type_short]
13802 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13803 0, "short_integer");
13804 lai->string_char_type
13805 = lai->primitive_type_vector [ada_primitive_type_char]
13806 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13807 lai->primitive_type_vector [ada_primitive_type_float]
13808 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13809 "float", NULL);
13810 lai->primitive_type_vector [ada_primitive_type_double]
13811 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13812 "long_float", NULL);
13813 lai->primitive_type_vector [ada_primitive_type_long_long]
13814 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13815 0, "long_long_integer");
13816 lai->primitive_type_vector [ada_primitive_type_long_double]
13817 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13818 "long_long_float", NULL);
13819 lai->primitive_type_vector [ada_primitive_type_natural]
13820 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13821 0, "natural");
13822 lai->primitive_type_vector [ada_primitive_type_positive]
13823 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13824 0, "positive");
13825 lai->primitive_type_vector [ada_primitive_type_void]
13826 = builtin->builtin_void;
13827
13828 lai->primitive_type_vector [ada_primitive_type_system_address]
13829 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13830 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13831 = "system__address";
13832
13833 lai->bool_type_symbol = NULL;
13834 lai->bool_type_default = builtin->builtin_bool;
13835}
13836\f
13837 /* Language vector */
13838
13839/* Not really used, but needed in the ada_language_defn. */
13840
13841static void
13842emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13843{
13844 ada_emit_char (c, type, stream, quoter, 1);
13845}
13846
13847static int
13848parse (struct parser_state *ps)
13849{
13850 warnings_issued = 0;
13851 return ada_parse (ps);
13852}
13853
13854static const struct exp_descriptor ada_exp_descriptor = {
13855 ada_print_subexp,
13856 ada_operator_length,
13857 ada_operator_check,
13858 ada_op_name,
13859 ada_dump_subexp_body,
13860 ada_evaluate_subexp
13861};
13862
13863/* Implement the "la_get_symbol_name_cmp" language_defn method
13864 for Ada. */
13865
13866static symbol_name_cmp_ftype
13867ada_get_symbol_name_cmp (const char *lookup_name)
13868{
13869 if (should_use_wild_match (lookup_name))
13870 return wild_match;
13871 else
13872 return compare_names;
13873}
13874
13875/* Implement the "la_read_var_value" language_defn method for Ada. */
13876
13877static struct value *
13878ada_read_var_value (struct symbol *var, const struct block *var_block,
13879 struct frame_info *frame)
13880{
13881 const struct block *frame_block = NULL;
13882 struct symbol *renaming_sym = NULL;
13883
13884 /* The only case where default_read_var_value is not sufficient
13885 is when VAR is a renaming... */
13886 if (frame)
13887 frame_block = get_frame_block (frame, NULL);
13888 if (frame_block)
13889 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13890 if (renaming_sym != NULL)
13891 return ada_read_renaming_var_value (renaming_sym, frame_block);
13892
13893 /* This is a typical case where we expect the default_read_var_value
13894 function to work. */
13895 return default_read_var_value (var, var_block, frame);
13896}
13897
13898const struct language_defn ada_language_defn = {
13899 "ada", /* Language name */
13900 "Ada",
13901 language_ada,
13902 range_check_off,
13903 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13904 that's not quite what this means. */
13905 array_row_major,
13906 macro_expansion_no,
13907 &ada_exp_descriptor,
13908 parse,
13909 ada_error,
13910 resolve,
13911 ada_printchar, /* Print a character constant */
13912 ada_printstr, /* Function to print string constant */
13913 emit_char, /* Function to print single char (not used) */
13914 ada_print_type, /* Print a type using appropriate syntax */
13915 ada_print_typedef, /* Print a typedef using appropriate syntax */
13916 ada_val_print, /* Print a value using appropriate syntax */
13917 ada_value_print, /* Print a top-level value */
13918 ada_read_var_value, /* la_read_var_value */
13919 NULL, /* Language specific skip_trampoline */
13920 NULL, /* name_of_this */
13921 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13922 basic_lookup_transparent_type, /* lookup_transparent_type */
13923 ada_la_decode, /* Language specific symbol demangler */
13924 NULL, /* Language specific
13925 class_name_from_physname */
13926 ada_op_print_tab, /* expression operators for printing */
13927 0, /* c-style arrays */
13928 1, /* String lower bound */
13929 ada_get_gdb_completer_word_break_characters,
13930 ada_make_symbol_completion_list,
13931 ada_language_arch_info,
13932 ada_print_array_index,
13933 default_pass_by_reference,
13934 c_get_string,
13935 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13936 ada_iterate_over_symbols,
13937 &ada_varobj_ops,
13938 NULL,
13939 NULL,
13940 LANG_MAGIC
13941};
13942
13943/* Provide a prototype to silence -Wmissing-prototypes. */
13944extern initialize_file_ftype _initialize_ada_language;
13945
13946/* Command-list for the "set/show ada" prefix command. */
13947static struct cmd_list_element *set_ada_list;
13948static struct cmd_list_element *show_ada_list;
13949
13950/* Implement the "set ada" prefix command. */
13951
13952static void
13953set_ada_command (char *arg, int from_tty)
13954{
13955 printf_unfiltered (_(\
13956"\"set ada\" must be followed by the name of a setting.\n"));
13957 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13958}
13959
13960/* Implement the "show ada" prefix command. */
13961
13962static void
13963show_ada_command (char *args, int from_tty)
13964{
13965 cmd_show_list (show_ada_list, from_tty, "");
13966}
13967
13968static void
13969initialize_ada_catchpoint_ops (void)
13970{
13971 struct breakpoint_ops *ops;
13972
13973 initialize_breakpoint_ops ();
13974
13975 ops = &catch_exception_breakpoint_ops;
13976 *ops = bkpt_breakpoint_ops;
13977 ops->dtor = dtor_catch_exception;
13978 ops->allocate_location = allocate_location_catch_exception;
13979 ops->re_set = re_set_catch_exception;
13980 ops->check_status = check_status_catch_exception;
13981 ops->print_it = print_it_catch_exception;
13982 ops->print_one = print_one_catch_exception;
13983 ops->print_mention = print_mention_catch_exception;
13984 ops->print_recreate = print_recreate_catch_exception;
13985
13986 ops = &catch_exception_unhandled_breakpoint_ops;
13987 *ops = bkpt_breakpoint_ops;
13988 ops->dtor = dtor_catch_exception_unhandled;
13989 ops->allocate_location = allocate_location_catch_exception_unhandled;
13990 ops->re_set = re_set_catch_exception_unhandled;
13991 ops->check_status = check_status_catch_exception_unhandled;
13992 ops->print_it = print_it_catch_exception_unhandled;
13993 ops->print_one = print_one_catch_exception_unhandled;
13994 ops->print_mention = print_mention_catch_exception_unhandled;
13995 ops->print_recreate = print_recreate_catch_exception_unhandled;
13996
13997 ops = &catch_assert_breakpoint_ops;
13998 *ops = bkpt_breakpoint_ops;
13999 ops->dtor = dtor_catch_assert;
14000 ops->allocate_location = allocate_location_catch_assert;
14001 ops->re_set = re_set_catch_assert;
14002 ops->check_status = check_status_catch_assert;
14003 ops->print_it = print_it_catch_assert;
14004 ops->print_one = print_one_catch_assert;
14005 ops->print_mention = print_mention_catch_assert;
14006 ops->print_recreate = print_recreate_catch_assert;
14007}
14008
14009/* This module's 'new_objfile' observer. */
14010
14011static void
14012ada_new_objfile_observer (struct objfile *objfile)
14013{
14014 ada_clear_symbol_cache ();
14015}
14016
14017/* This module's 'free_objfile' observer. */
14018
14019static void
14020ada_free_objfile_observer (struct objfile *objfile)
14021{
14022 ada_clear_symbol_cache ();
14023}
14024
14025void
14026_initialize_ada_language (void)
14027{
14028 add_language (&ada_language_defn);
14029
14030 initialize_ada_catchpoint_ops ();
14031
14032 add_prefix_cmd ("ada", no_class, set_ada_command,
14033 _("Prefix command for changing Ada-specfic settings"),
14034 &set_ada_list, "set ada ", 0, &setlist);
14035
14036 add_prefix_cmd ("ada", no_class, show_ada_command,
14037 _("Generic command for showing Ada-specific settings."),
14038 &show_ada_list, "show ada ", 0, &showlist);
14039
14040 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14041 &trust_pad_over_xvs, _("\
14042Enable or disable an optimization trusting PAD types over XVS types"), _("\
14043Show whether an optimization trusting PAD types over XVS types is activated"),
14044 _("\
14045This is related to the encoding used by the GNAT compiler. The debugger\n\
14046should normally trust the contents of PAD types, but certain older versions\n\
14047of GNAT have a bug that sometimes causes the information in the PAD type\n\
14048to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14049work around this bug. It is always safe to turn this option \"off\", but\n\
14050this incurs a slight performance penalty, so it is recommended to NOT change\n\
14051this option to \"off\" unless necessary."),
14052 NULL, NULL, &set_ada_list, &show_ada_list);
14053
14054 add_catch_command ("exception", _("\
14055Catch Ada exceptions, when raised.\n\
14056With an argument, catch only exceptions with the given name."),
14057 catch_ada_exception_command,
14058 NULL,
14059 CATCH_PERMANENT,
14060 CATCH_TEMPORARY);
14061 add_catch_command ("assert", _("\
14062Catch failed Ada assertions, when raised.\n\
14063With an argument, catch only exceptions with the given name."),
14064 catch_assert_command,
14065 NULL,
14066 CATCH_PERMANENT,
14067 CATCH_TEMPORARY);
14068
14069 varsize_limit = 65536;
14070
14071 add_info ("exceptions", info_exceptions_command,
14072 _("\
14073List all Ada exception names.\n\
14074If a regular expression is passed as an argument, only those matching\n\
14075the regular expression are listed."));
14076
14077 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14078 _("Set Ada maintenance-related variables."),
14079 &maint_set_ada_cmdlist, "maintenance set ada ",
14080 0/*allow-unknown*/, &maintenance_set_cmdlist);
14081
14082 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14083 _("Show Ada maintenance-related variables"),
14084 &maint_show_ada_cmdlist, "maintenance show ada ",
14085 0/*allow-unknown*/, &maintenance_show_cmdlist);
14086
14087 add_setshow_boolean_cmd
14088 ("ignore-descriptive-types", class_maintenance,
14089 &ada_ignore_descriptive_types_p,
14090 _("Set whether descriptive types generated by GNAT should be ignored."),
14091 _("Show whether descriptive types generated by GNAT should be ignored."),
14092 _("\
14093When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14094DWARF attribute."),
14095 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14096
14097 obstack_init (&symbol_list_obstack);
14098
14099 decoded_names_store = htab_create_alloc
14100 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14101 NULL, xcalloc, xfree);
14102
14103 /* The ada-lang observers. */
14104 observer_attach_new_objfile (ada_new_objfile_observer);
14105 observer_attach_free_objfile (ada_free_objfile_observer);
14106 observer_attach_inferior_exit (ada_inferior_exit);
14107
14108 /* Setup various context-specific data. */
14109 ada_inferior_data
14110 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14111 ada_pspace_data_handle
14112 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14113}
This page took 0.073558 seconds and 4 git commands to generate.