* c-valprint.c (c_val_print): Require strings to be of no-signed CHARs.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
... / ...
CommitLineData
1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 51 Franklin Street, Fifth Floor,
21Boston, MA 02110-1301, USA. */
22
23
24#include "defs.h"
25#include <stdio.h>
26#include "gdb_string.h"
27#include <ctype.h>
28#include <stdarg.h>
29#include "demangle.h"
30#include "gdb_regex.h"
31#include "frame.h"
32#include "symtab.h"
33#include "gdbtypes.h"
34#include "gdbcmd.h"
35#include "expression.h"
36#include "parser-defs.h"
37#include "language.h"
38#include "c-lang.h"
39#include "inferior.h"
40#include "symfile.h"
41#include "objfiles.h"
42#include "breakpoint.h"
43#include "gdbcore.h"
44#include "hashtab.h"
45#include "gdb_obstack.h"
46#include "ada-lang.h"
47#include "completer.h"
48#include "gdb_stat.h"
49#ifdef UI_OUT
50#include "ui-out.h"
51#endif
52#include "block.h"
53#include "infcall.h"
54#include "dictionary.h"
55#include "exceptions.h"
56#include "annotate.h"
57#include "valprint.h"
58#include "source.h"
59
60#ifndef ADA_RETAIN_DOTS
61#define ADA_RETAIN_DOTS 0
62#endif
63
64/* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
72
73static void extract_string (CORE_ADDR addr, char *buf);
74
75static struct type *ada_create_fundamental_type (struct objfile *, int);
76
77static void modify_general_field (char *, LONGEST, int, int);
78
79static struct type *desc_base_type (struct type *);
80
81static struct type *desc_bounds_type (struct type *);
82
83static struct value *desc_bounds (struct value *);
84
85static int fat_pntr_bounds_bitpos (struct type *);
86
87static int fat_pntr_bounds_bitsize (struct type *);
88
89static struct type *desc_data_type (struct type *);
90
91static struct value *desc_data (struct value *);
92
93static int fat_pntr_data_bitpos (struct type *);
94
95static int fat_pntr_data_bitsize (struct type *);
96
97static struct value *desc_one_bound (struct value *, int, int);
98
99static int desc_bound_bitpos (struct type *, int, int);
100
101static int desc_bound_bitsize (struct type *, int, int);
102
103static struct type *desc_index_type (struct type *, int);
104
105static int desc_arity (struct type *);
106
107static int ada_type_match (struct type *, struct type *, int);
108
109static int ada_args_match (struct symbol *, struct value **, int);
110
111static struct value *ensure_lval (struct value *, CORE_ADDR *);
112
113static struct value *convert_actual (struct value *, struct type *,
114 CORE_ADDR *);
115
116static struct value *make_array_descriptor (struct type *, struct value *,
117 CORE_ADDR *);
118
119static void ada_add_block_symbols (struct obstack *,
120 struct block *, const char *,
121 domain_enum, struct objfile *,
122 struct symtab *, int);
123
124static int is_nonfunction (struct ada_symbol_info *, int);
125
126static void add_defn_to_vec (struct obstack *, struct symbol *,
127 struct block *, struct symtab *);
128
129static int num_defns_collected (struct obstack *);
130
131static struct ada_symbol_info *defns_collected (struct obstack *, int);
132
133static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
134 *, const char *, int,
135 domain_enum, int);
136
137static struct symtab *symtab_for_sym (struct symbol *);
138
139static struct value *resolve_subexp (struct expression **, int *, int,
140 struct type *);
141
142static void replace_operator_with_call (struct expression **, int, int, int,
143 struct symbol *, struct block *);
144
145static int possible_user_operator_p (enum exp_opcode, struct value **);
146
147static char *ada_op_name (enum exp_opcode);
148
149static const char *ada_decoded_op_name (enum exp_opcode);
150
151static int numeric_type_p (struct type *);
152
153static int integer_type_p (struct type *);
154
155static int scalar_type_p (struct type *);
156
157static int discrete_type_p (struct type *);
158
159static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 int, int, int *);
161
162static struct value *evaluate_subexp (struct type *, struct expression *,
163 int *, enum noside);
164
165static struct value *evaluate_subexp_type (struct expression *, int *);
166
167static int is_dynamic_field (struct type *, int);
168
169static struct type *to_fixed_variant_branch_type (struct type *,
170 const gdb_byte *,
171 CORE_ADDR, struct value *);
172
173static struct type *to_fixed_array_type (struct type *, struct value *, int);
174
175static struct type *to_fixed_range_type (char *, struct value *,
176 struct objfile *);
177
178static struct type *to_static_fixed_type (struct type *);
179
180static struct value *unwrap_value (struct value *);
181
182static struct type *packed_array_type (struct type *, long *);
183
184static struct type *decode_packed_array_type (struct type *);
185
186static struct value *decode_packed_array (struct value *);
187
188static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
192
193static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196static struct value *get_var_value (char *, char *);
197
198static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200static int equiv_types (struct type *, struct type *);
201
202static int is_name_suffix (const char *);
203
204static int wild_match (const char *, int, const char *);
205
206static struct value *ada_coerce_ref (struct value *);
207
208static LONGEST pos_atr (struct value *);
209
210static struct value *value_pos_atr (struct value *);
211
212static struct value *value_val_atr (struct type *, struct value *);
213
214static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229static struct value *ada_to_fixed_value (struct value *);
230
231static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235static struct value *ada_coerce_to_simple_array (struct value *);
236
237static int ada_is_direct_array_type (struct type *);
238
239static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242static void check_size (const struct type *);
243
244static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274\f
275
276
277/* Maximum-sized dynamic type. */
278static unsigned int varsize_limit;
279
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287#endif
288
289/* The name of the symbol to use to get the name of the main subprogram. */
290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293/* The name of the runtime function called when an exception is raised. */
294static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
295
296/* The name of the runtime function called when an unhandled exception
297 is raised. */
298static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
299
300/* The name of the runtime function called when an assert failure is
301 raised. */
302static const char raise_assert_sym_name[] =
303 "system__assertions__raise_assert_failure";
304
305/* A string that reflects the longest exception expression rewrite,
306 aside from the exception name. */
307static const char longest_exception_template[] =
308 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
309
310/* Limit on the number of warnings to raise per expression evaluation. */
311static int warning_limit = 2;
312
313/* Number of warning messages issued; reset to 0 by cleanups after
314 expression evaluation. */
315static int warnings_issued = 0;
316
317static const char *known_runtime_file_name_patterns[] = {
318 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
319};
320
321static const char *known_auxiliary_function_name_patterns[] = {
322 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
323};
324
325/* Space for allocating results of ada_lookup_symbol_list. */
326static struct obstack symbol_list_obstack;
327
328 /* Utilities */
329
330
331static char *
332ada_get_gdb_completer_word_break_characters (void)
333{
334 return ada_completer_word_break_characters;
335}
336
337/* Print an array element index using the Ada syntax. */
338
339static void
340ada_print_array_index (struct value *index_value, struct ui_file *stream,
341 int format, enum val_prettyprint pretty)
342{
343 LA_VALUE_PRINT (index_value, stream, format, pretty);
344 fprintf_filtered (stream, " => ");
345}
346
347/* Read the string located at ADDR from the inferior and store the
348 result into BUF. */
349
350static void
351extract_string (CORE_ADDR addr, char *buf)
352{
353 int char_index = 0;
354
355 /* Loop, reading one byte at a time, until we reach the '\000'
356 end-of-string marker. */
357 do
358 {
359 target_read_memory (addr + char_index * sizeof (char),
360 buf + char_index * sizeof (char), sizeof (char));
361 char_index++;
362 }
363 while (buf[char_index - 1] != '\000');
364}
365
366/* Assuming VECT points to an array of *SIZE objects of size
367 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
368 updating *SIZE as necessary and returning the (new) array. */
369
370void *
371grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
372{
373 if (*size < min_size)
374 {
375 *size *= 2;
376 if (*size < min_size)
377 *size = min_size;
378 vect = xrealloc (vect, *size * element_size);
379 }
380 return vect;
381}
382
383/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
384 suffix of FIELD_NAME beginning "___". */
385
386static int
387field_name_match (const char *field_name, const char *target)
388{
389 int len = strlen (target);
390 return
391 (strncmp (field_name, target, len) == 0
392 && (field_name[len] == '\0'
393 || (strncmp (field_name + len, "___", 3) == 0
394 && strcmp (field_name + strlen (field_name) - 6,
395 "___XVN") != 0)));
396}
397
398
399/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
400 FIELD_NAME, and return its index. This function also handles fields
401 whose name have ___ suffixes because the compiler sometimes alters
402 their name by adding such a suffix to represent fields with certain
403 constraints. If the field could not be found, return a negative
404 number if MAYBE_MISSING is set. Otherwise raise an error. */
405
406int
407ada_get_field_index (const struct type *type, const char *field_name,
408 int maybe_missing)
409{
410 int fieldno;
411 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
412 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
413 return fieldno;
414
415 if (!maybe_missing)
416 error (_("Unable to find field %s in struct %s. Aborting"),
417 field_name, TYPE_NAME (type));
418
419 return -1;
420}
421
422/* The length of the prefix of NAME prior to any "___" suffix. */
423
424int
425ada_name_prefix_len (const char *name)
426{
427 if (name == NULL)
428 return 0;
429 else
430 {
431 const char *p = strstr (name, "___");
432 if (p == NULL)
433 return strlen (name);
434 else
435 return p - name;
436 }
437}
438
439/* Return non-zero if SUFFIX is a suffix of STR.
440 Return zero if STR is null. */
441
442static int
443is_suffix (const char *str, const char *suffix)
444{
445 int len1, len2;
446 if (str == NULL)
447 return 0;
448 len1 = strlen (str);
449 len2 = strlen (suffix);
450 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
451}
452
453/* Create a value of type TYPE whose contents come from VALADDR, if it
454 is non-null, and whose memory address (in the inferior) is
455 ADDRESS. */
456
457struct value *
458value_from_contents_and_address (struct type *type,
459 const gdb_byte *valaddr,
460 CORE_ADDR address)
461{
462 struct value *v = allocate_value (type);
463 if (valaddr == NULL)
464 set_value_lazy (v, 1);
465 else
466 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
467 VALUE_ADDRESS (v) = address;
468 if (address != 0)
469 VALUE_LVAL (v) = lval_memory;
470 return v;
471}
472
473/* The contents of value VAL, treated as a value of type TYPE. The
474 result is an lval in memory if VAL is. */
475
476static struct value *
477coerce_unspec_val_to_type (struct value *val, struct type *type)
478{
479 type = ada_check_typedef (type);
480 if (value_type (val) == type)
481 return val;
482 else
483 {
484 struct value *result;
485
486 /* Make sure that the object size is not unreasonable before
487 trying to allocate some memory for it. */
488 check_size (type);
489
490 result = allocate_value (type);
491 VALUE_LVAL (result) = VALUE_LVAL (val);
492 set_value_bitsize (result, value_bitsize (val));
493 set_value_bitpos (result, value_bitpos (val));
494 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
495 if (value_lazy (val)
496 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
497 set_value_lazy (result, 1);
498 else
499 memcpy (value_contents_raw (result), value_contents (val),
500 TYPE_LENGTH (type));
501 return result;
502 }
503}
504
505static const gdb_byte *
506cond_offset_host (const gdb_byte *valaddr, long offset)
507{
508 if (valaddr == NULL)
509 return NULL;
510 else
511 return valaddr + offset;
512}
513
514static CORE_ADDR
515cond_offset_target (CORE_ADDR address, long offset)
516{
517 if (address == 0)
518 return 0;
519 else
520 return address + offset;
521}
522
523/* Issue a warning (as for the definition of warning in utils.c, but
524 with exactly one argument rather than ...), unless the limit on the
525 number of warnings has passed during the evaluation of the current
526 expression. */
527
528/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
529 provided by "complaint". */
530static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
531
532static void
533lim_warning (const char *format, ...)
534{
535 va_list args;
536 va_start (args, format);
537
538 warnings_issued += 1;
539 if (warnings_issued <= warning_limit)
540 vwarning (format, args);
541
542 va_end (args);
543}
544
545/* Issue an error if the size of an object of type T is unreasonable,
546 i.e. if it would be a bad idea to allocate a value of this type in
547 GDB. */
548
549static void
550check_size (const struct type *type)
551{
552 if (TYPE_LENGTH (type) > varsize_limit)
553 error (_("object size is larger than varsize-limit"));
554}
555
556
557/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
558 gdbtypes.h, but some of the necessary definitions in that file
559 seem to have gone missing. */
560
561/* Maximum value of a SIZE-byte signed integer type. */
562static LONGEST
563max_of_size (int size)
564{
565 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
566 return top_bit | (top_bit - 1);
567}
568
569/* Minimum value of a SIZE-byte signed integer type. */
570static LONGEST
571min_of_size (int size)
572{
573 return -max_of_size (size) - 1;
574}
575
576/* Maximum value of a SIZE-byte unsigned integer type. */
577static ULONGEST
578umax_of_size (int size)
579{
580 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
581 return top_bit | (top_bit - 1);
582}
583
584/* Maximum value of integral type T, as a signed quantity. */
585static LONGEST
586max_of_type (struct type *t)
587{
588 if (TYPE_UNSIGNED (t))
589 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
590 else
591 return max_of_size (TYPE_LENGTH (t));
592}
593
594/* Minimum value of integral type T, as a signed quantity. */
595static LONGEST
596min_of_type (struct type *t)
597{
598 if (TYPE_UNSIGNED (t))
599 return 0;
600 else
601 return min_of_size (TYPE_LENGTH (t));
602}
603
604/* The largest value in the domain of TYPE, a discrete type, as an integer. */
605static struct value *
606discrete_type_high_bound (struct type *type)
607{
608 switch (TYPE_CODE (type))
609 {
610 case TYPE_CODE_RANGE:
611 return value_from_longest (TYPE_TARGET_TYPE (type),
612 TYPE_HIGH_BOUND (type));
613 case TYPE_CODE_ENUM:
614 return
615 value_from_longest (type,
616 TYPE_FIELD_BITPOS (type,
617 TYPE_NFIELDS (type) - 1));
618 case TYPE_CODE_INT:
619 return value_from_longest (type, max_of_type (type));
620 default:
621 error (_("Unexpected type in discrete_type_high_bound."));
622 }
623}
624
625/* The largest value in the domain of TYPE, a discrete type, as an integer. */
626static struct value *
627discrete_type_low_bound (struct type *type)
628{
629 switch (TYPE_CODE (type))
630 {
631 case TYPE_CODE_RANGE:
632 return value_from_longest (TYPE_TARGET_TYPE (type),
633 TYPE_LOW_BOUND (type));
634 case TYPE_CODE_ENUM:
635 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
636 case TYPE_CODE_INT:
637 return value_from_longest (type, min_of_type (type));
638 default:
639 error (_("Unexpected type in discrete_type_low_bound."));
640 }
641}
642
643/* The identity on non-range types. For range types, the underlying
644 non-range scalar type. */
645
646static struct type *
647base_type (struct type *type)
648{
649 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
650 {
651 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
652 return type;
653 type = TYPE_TARGET_TYPE (type);
654 }
655 return type;
656}
657\f
658
659 /* Language Selection */
660
661/* If the main program is in Ada, return language_ada, otherwise return LANG
662 (the main program is in Ada iif the adainit symbol is found).
663
664 MAIN_PST is not used. */
665
666enum language
667ada_update_initial_language (enum language lang,
668 struct partial_symtab *main_pst)
669{
670 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
671 (struct objfile *) NULL) != NULL)
672 return language_ada;
673
674 return lang;
675}
676
677/* If the main procedure is written in Ada, then return its name.
678 The result is good until the next call. Return NULL if the main
679 procedure doesn't appear to be in Ada. */
680
681char *
682ada_main_name (void)
683{
684 struct minimal_symbol *msym;
685 CORE_ADDR main_program_name_addr;
686 static char main_program_name[1024];
687
688 /* For Ada, the name of the main procedure is stored in a specific
689 string constant, generated by the binder. Look for that symbol,
690 extract its address, and then read that string. If we didn't find
691 that string, then most probably the main procedure is not written
692 in Ada. */
693 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
694
695 if (msym != NULL)
696 {
697 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
698 if (main_program_name_addr == 0)
699 error (_("Invalid address for Ada main program name."));
700
701 extract_string (main_program_name_addr, main_program_name);
702 return main_program_name;
703 }
704
705 /* The main procedure doesn't seem to be in Ada. */
706 return NULL;
707}
708\f
709 /* Symbols */
710
711/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
712 of NULLs. */
713
714const struct ada_opname_map ada_opname_table[] = {
715 {"Oadd", "\"+\"", BINOP_ADD},
716 {"Osubtract", "\"-\"", BINOP_SUB},
717 {"Omultiply", "\"*\"", BINOP_MUL},
718 {"Odivide", "\"/\"", BINOP_DIV},
719 {"Omod", "\"mod\"", BINOP_MOD},
720 {"Orem", "\"rem\"", BINOP_REM},
721 {"Oexpon", "\"**\"", BINOP_EXP},
722 {"Olt", "\"<\"", BINOP_LESS},
723 {"Ole", "\"<=\"", BINOP_LEQ},
724 {"Ogt", "\">\"", BINOP_GTR},
725 {"Oge", "\">=\"", BINOP_GEQ},
726 {"Oeq", "\"=\"", BINOP_EQUAL},
727 {"One", "\"/=\"", BINOP_NOTEQUAL},
728 {"Oand", "\"and\"", BINOP_BITWISE_AND},
729 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
730 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
731 {"Oconcat", "\"&\"", BINOP_CONCAT},
732 {"Oabs", "\"abs\"", UNOP_ABS},
733 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
734 {"Oadd", "\"+\"", UNOP_PLUS},
735 {"Osubtract", "\"-\"", UNOP_NEG},
736 {NULL, NULL}
737};
738
739/* Return non-zero if STR should be suppressed in info listings. */
740
741static int
742is_suppressed_name (const char *str)
743{
744 if (strncmp (str, "_ada_", 5) == 0)
745 str += 5;
746 if (str[0] == '_' || str[0] == '\000')
747 return 1;
748 else
749 {
750 const char *p;
751 const char *suffix = strstr (str, "___");
752 if (suffix != NULL && suffix[3] != 'X')
753 return 1;
754 if (suffix == NULL)
755 suffix = str + strlen (str);
756 for (p = suffix - 1; p != str; p -= 1)
757 if (isupper (*p))
758 {
759 int i;
760 if (p[0] == 'X' && p[-1] != '_')
761 goto OK;
762 if (*p != 'O')
763 return 1;
764 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
765 if (strncmp (ada_opname_table[i].encoded, p,
766 strlen (ada_opname_table[i].encoded)) == 0)
767 goto OK;
768 return 1;
769 OK:;
770 }
771 return 0;
772 }
773}
774
775/* The "encoded" form of DECODED, according to GNAT conventions.
776 The result is valid until the next call to ada_encode. */
777
778char *
779ada_encode (const char *decoded)
780{
781 static char *encoding_buffer = NULL;
782 static size_t encoding_buffer_size = 0;
783 const char *p;
784 int k;
785
786 if (decoded == NULL)
787 return NULL;
788
789 GROW_VECT (encoding_buffer, encoding_buffer_size,
790 2 * strlen (decoded) + 10);
791
792 k = 0;
793 for (p = decoded; *p != '\0'; p += 1)
794 {
795 if (!ADA_RETAIN_DOTS && *p == '.')
796 {
797 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
798 k += 2;
799 }
800 else if (*p == '"')
801 {
802 const struct ada_opname_map *mapping;
803
804 for (mapping = ada_opname_table;
805 mapping->encoded != NULL
806 && strncmp (mapping->decoded, p,
807 strlen (mapping->decoded)) != 0; mapping += 1)
808 ;
809 if (mapping->encoded == NULL)
810 error (_("invalid Ada operator name: %s"), p);
811 strcpy (encoding_buffer + k, mapping->encoded);
812 k += strlen (mapping->encoded);
813 break;
814 }
815 else
816 {
817 encoding_buffer[k] = *p;
818 k += 1;
819 }
820 }
821
822 encoding_buffer[k] = '\0';
823 return encoding_buffer;
824}
825
826/* Return NAME folded to lower case, or, if surrounded by single
827 quotes, unfolded, but with the quotes stripped away. Result good
828 to next call. */
829
830char *
831ada_fold_name (const char *name)
832{
833 static char *fold_buffer = NULL;
834 static size_t fold_buffer_size = 0;
835
836 int len = strlen (name);
837 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
838
839 if (name[0] == '\'')
840 {
841 strncpy (fold_buffer, name + 1, len - 2);
842 fold_buffer[len - 2] = '\000';
843 }
844 else
845 {
846 int i;
847 for (i = 0; i <= len; i += 1)
848 fold_buffer[i] = tolower (name[i]);
849 }
850
851 return fold_buffer;
852}
853
854/* Return nonzero if C is either a digit or a lowercase alphabet character. */
855
856static int
857is_lower_alphanum (const char c)
858{
859 return (isdigit (c) || (isalpha (c) && islower (c)));
860}
861
862/* Decode:
863 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
864 These are suffixes introduced by GNAT5 to nested subprogram
865 names, and do not serve any purpose for the debugger.
866 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
867 . Discard final N if it follows a lowercase alphanumeric character
868 (protected object subprogram suffix)
869 . Convert other instances of embedded "__" to `.'.
870 . Discard leading _ada_.
871 . Convert operator names to the appropriate quoted symbols.
872 . Remove everything after first ___ if it is followed by
873 'X'.
874 . Replace TK__ with __, and a trailing B or TKB with nothing.
875 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
876 . Put symbols that should be suppressed in <...> brackets.
877 . Remove trailing X[bn]* suffix (indicating names in package bodies).
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by demangling, the original string pointer
881 is returned. */
882
883const char *
884ada_decode (const char *encoded)
885{
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 if (strncmp (encoded, "_ada_", 5) == 0)
895 encoded += 5;
896
897 if (encoded[0] == '_' || encoded[0] == '<')
898 goto Suppress;
899
900 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
901 len0 = strlen (encoded);
902 if (len0 > 1 && isdigit (encoded[len0 - 1]))
903 {
904 i = len0 - 2;
905 while (i > 0 && isdigit (encoded[i]))
906 i--;
907 if (i >= 0 && encoded[i] == '.')
908 len0 = i;
909 else if (i >= 0 && encoded[i] == '$')
910 len0 = i;
911 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
912 len0 = i - 2;
913 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
914 len0 = i - 1;
915 }
916
917 /* Remove trailing N. */
918
919 /* Protected entry subprograms are broken into two
920 separate subprograms: The first one is unprotected, and has
921 a 'N' suffix; the second is the protected version, and has
922 the 'P' suffix. The second calls the first one after handling
923 the protection. Since the P subprograms are internally generated,
924 we leave these names undecoded, giving the user a clue that this
925 entity is internal. */
926
927 if (len0 > 1
928 && encoded[len0 - 1] == 'N'
929 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
930 len0--;
931
932 /* Remove the ___X.* suffix if present. Do not forget to verify that
933 the suffix is located before the current "end" of ENCODED. We want
934 to avoid re-matching parts of ENCODED that have previously been
935 marked as discarded (by decrementing LEN0). */
936 p = strstr (encoded, "___");
937 if (p != NULL && p - encoded < len0 - 3)
938 {
939 if (p[3] == 'X')
940 len0 = p - encoded;
941 else
942 goto Suppress;
943 }
944
945 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
946 len0 -= 3;
947
948 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
949 len0 -= 1;
950
951 /* Make decoded big enough for possible expansion by operator name. */
952 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
953 decoded = decoding_buffer;
954
955 if (len0 > 1 && isdigit (encoded[len0 - 1]))
956 {
957 i = len0 - 2;
958 while ((i >= 0 && isdigit (encoded[i]))
959 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
960 i -= 1;
961 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
962 len0 = i - 1;
963 else if (encoded[i] == '$')
964 len0 = i;
965 }
966
967 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
968 decoded[j] = encoded[i];
969
970 at_start_name = 1;
971 while (i < len0)
972 {
973 if (at_start_name && encoded[i] == 'O')
974 {
975 int k;
976 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
977 {
978 int op_len = strlen (ada_opname_table[k].encoded);
979 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
980 op_len - 1) == 0)
981 && !isalnum (encoded[i + op_len]))
982 {
983 strcpy (decoded + j, ada_opname_table[k].decoded);
984 at_start_name = 0;
985 i += op_len;
986 j += strlen (ada_opname_table[k].decoded);
987 break;
988 }
989 }
990 if (ada_opname_table[k].encoded != NULL)
991 continue;
992 }
993 at_start_name = 0;
994
995 /* Replace "TK__" with "__", which will eventually be translated
996 into "." (just below). */
997
998 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
999 i += 2;
1000
1001 /* Remove _E{DIGITS}+[sb] */
1002
1003 /* Just as for protected object subprograms, there are 2 categories
1004 of subprograms created by the compiler for each entry. The first
1005 one implements the actual entry code, and has a suffix following
1006 the convention above; the second one implements the barrier and
1007 uses the same convention as above, except that the 'E' is replaced
1008 by a 'B'.
1009
1010 Just as above, we do not decode the name of barrier functions
1011 to give the user a clue that the code he is debugging has been
1012 internally generated. */
1013
1014 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1015 && isdigit (encoded[i+2]))
1016 {
1017 int k = i + 3;
1018
1019 while (k < len0 && isdigit (encoded[k]))
1020 k++;
1021
1022 if (k < len0
1023 && (encoded[k] == 'b' || encoded[k] == 's'))
1024 {
1025 k++;
1026 /* Just as an extra precaution, make sure that if this
1027 suffix is followed by anything else, it is a '_'.
1028 Otherwise, we matched this sequence by accident. */
1029 if (k == len0
1030 || (k < len0 && encoded[k] == '_'))
1031 i = k;
1032 }
1033 }
1034
1035 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1036 the GNAT front-end in protected object subprograms. */
1037
1038 if (i < len0 + 3
1039 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1040 {
1041 /* Backtrack a bit up until we reach either the begining of
1042 the encoded name, or "__". Make sure that we only find
1043 digits or lowercase characters. */
1044 const char *ptr = encoded + i - 1;
1045
1046 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1047 ptr--;
1048 if (ptr < encoded
1049 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1050 i++;
1051 }
1052
1053 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1054 {
1055 do
1056 i += 1;
1057 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1058 if (i < len0)
1059 goto Suppress;
1060 }
1061 else if (!ADA_RETAIN_DOTS
1062 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1063 {
1064 decoded[j] = '.';
1065 at_start_name = 1;
1066 i += 2;
1067 j += 1;
1068 }
1069 else
1070 {
1071 decoded[j] = encoded[i];
1072 i += 1;
1073 j += 1;
1074 }
1075 }
1076 decoded[j] = '\000';
1077
1078 for (i = 0; decoded[i] != '\0'; i += 1)
1079 if (isupper (decoded[i]) || decoded[i] == ' ')
1080 goto Suppress;
1081
1082 if (strcmp (decoded, encoded) == 0)
1083 return encoded;
1084 else
1085 return decoded;
1086
1087Suppress:
1088 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1089 decoded = decoding_buffer;
1090 if (encoded[0] == '<')
1091 strcpy (decoded, encoded);
1092 else
1093 sprintf (decoded, "<%s>", encoded);
1094 return decoded;
1095
1096}
1097
1098/* Table for keeping permanent unique copies of decoded names. Once
1099 allocated, names in this table are never released. While this is a
1100 storage leak, it should not be significant unless there are massive
1101 changes in the set of decoded names in successive versions of a
1102 symbol table loaded during a single session. */
1103static struct htab *decoded_names_store;
1104
1105/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1106 in the language-specific part of GSYMBOL, if it has not been
1107 previously computed. Tries to save the decoded name in the same
1108 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1109 in any case, the decoded symbol has a lifetime at least that of
1110 GSYMBOL).
1111 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1112 const, but nevertheless modified to a semantically equivalent form
1113 when a decoded name is cached in it.
1114*/
1115
1116char *
1117ada_decode_symbol (const struct general_symbol_info *gsymbol)
1118{
1119 char **resultp =
1120 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1121 if (*resultp == NULL)
1122 {
1123 const char *decoded = ada_decode (gsymbol->name);
1124 if (gsymbol->bfd_section != NULL)
1125 {
1126 bfd *obfd = gsymbol->bfd_section->owner;
1127 if (obfd != NULL)
1128 {
1129 struct objfile *objf;
1130 ALL_OBJFILES (objf)
1131 {
1132 if (obfd == objf->obfd)
1133 {
1134 *resultp = obsavestring (decoded, strlen (decoded),
1135 &objf->objfile_obstack);
1136 break;
1137 }
1138 }
1139 }
1140 }
1141 /* Sometimes, we can't find a corresponding objfile, in which
1142 case, we put the result on the heap. Since we only decode
1143 when needed, we hope this usually does not cause a
1144 significant memory leak (FIXME). */
1145 if (*resultp == NULL)
1146 {
1147 char **slot = (char **) htab_find_slot (decoded_names_store,
1148 decoded, INSERT);
1149 if (*slot == NULL)
1150 *slot = xstrdup (decoded);
1151 *resultp = *slot;
1152 }
1153 }
1154
1155 return *resultp;
1156}
1157
1158char *
1159ada_la_decode (const char *encoded, int options)
1160{
1161 return xstrdup (ada_decode (encoded));
1162}
1163
1164/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1165 suffixes that encode debugging information or leading _ada_ on
1166 SYM_NAME (see is_name_suffix commentary for the debugging
1167 information that is ignored). If WILD, then NAME need only match a
1168 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1169 either argument is NULL. */
1170
1171int
1172ada_match_name (const char *sym_name, const char *name, int wild)
1173{
1174 if (sym_name == NULL || name == NULL)
1175 return 0;
1176 else if (wild)
1177 return wild_match (name, strlen (name), sym_name);
1178 else
1179 {
1180 int len_name = strlen (name);
1181 return (strncmp (sym_name, name, len_name) == 0
1182 && is_name_suffix (sym_name + len_name))
1183 || (strncmp (sym_name, "_ada_", 5) == 0
1184 && strncmp (sym_name + 5, name, len_name) == 0
1185 && is_name_suffix (sym_name + len_name + 5));
1186 }
1187}
1188
1189/* True (non-zero) iff, in Ada mode, the symbol SYM should be
1190 suppressed in info listings. */
1191
1192int
1193ada_suppress_symbol_printing (struct symbol *sym)
1194{
1195 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1196 return 1;
1197 else
1198 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1199}
1200\f
1201
1202 /* Arrays */
1203
1204/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1205
1206static char *bound_name[] = {
1207 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1208 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1209};
1210
1211/* Maximum number of array dimensions we are prepared to handle. */
1212
1213#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1214
1215/* Like modify_field, but allows bitpos > wordlength. */
1216
1217static void
1218modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1219{
1220 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1221}
1222
1223
1224/* The desc_* routines return primitive portions of array descriptors
1225 (fat pointers). */
1226
1227/* The descriptor or array type, if any, indicated by TYPE; removes
1228 level of indirection, if needed. */
1229
1230static struct type *
1231desc_base_type (struct type *type)
1232{
1233 if (type == NULL)
1234 return NULL;
1235 type = ada_check_typedef (type);
1236 if (type != NULL
1237 && (TYPE_CODE (type) == TYPE_CODE_PTR
1238 || TYPE_CODE (type) == TYPE_CODE_REF))
1239 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1240 else
1241 return type;
1242}
1243
1244/* True iff TYPE indicates a "thin" array pointer type. */
1245
1246static int
1247is_thin_pntr (struct type *type)
1248{
1249 return
1250 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1251 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1252}
1253
1254/* The descriptor type for thin pointer type TYPE. */
1255
1256static struct type *
1257thin_descriptor_type (struct type *type)
1258{
1259 struct type *base_type = desc_base_type (type);
1260 if (base_type == NULL)
1261 return NULL;
1262 if (is_suffix (ada_type_name (base_type), "___XVE"))
1263 return base_type;
1264 else
1265 {
1266 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1267 if (alt_type == NULL)
1268 return base_type;
1269 else
1270 return alt_type;
1271 }
1272}
1273
1274/* A pointer to the array data for thin-pointer value VAL. */
1275
1276static struct value *
1277thin_data_pntr (struct value *val)
1278{
1279 struct type *type = value_type (val);
1280 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1281 return value_cast (desc_data_type (thin_descriptor_type (type)),
1282 value_copy (val));
1283 else
1284 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1285 VALUE_ADDRESS (val) + value_offset (val));
1286}
1287
1288/* True iff TYPE indicates a "thick" array pointer type. */
1289
1290static int
1291is_thick_pntr (struct type *type)
1292{
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1296}
1297
1298/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
1300
1301static struct type *
1302desc_bounds_type (struct type *type)
1303{
1304 struct type *r;
1305
1306 type = desc_base_type (type);
1307
1308 if (type == NULL)
1309 return NULL;
1310 else if (is_thin_pntr (type))
1311 {
1312 type = thin_descriptor_type (type);
1313 if (type == NULL)
1314 return NULL;
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1316 if (r != NULL)
1317 return ada_check_typedef (r);
1318 }
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1320 {
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1322 if (r != NULL)
1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1324 }
1325 return NULL;
1326}
1327
1328/* If ARR is an array descriptor (fat or thin pointer), or pointer to
1329 one, a pointer to its bounds data. Otherwise NULL. */
1330
1331static struct value *
1332desc_bounds (struct value *arr)
1333{
1334 struct type *type = ada_check_typedef (value_type (arr));
1335 if (is_thin_pntr (type))
1336 {
1337 struct type *bounds_type =
1338 desc_bounds_type (thin_descriptor_type (type));
1339 LONGEST addr;
1340
1341 if (desc_bounds_type == NULL)
1342 error (_("Bad GNAT array descriptor"));
1343
1344 /* NOTE: The following calculation is not really kosher, but
1345 since desc_type is an XVE-encoded type (and shouldn't be),
1346 the correct calculation is a real pain. FIXME (and fix GCC). */
1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1348 addr = value_as_long (arr);
1349 else
1350 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1351
1352 return
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
1355 }
1356
1357 else if (is_thick_pntr (type))
1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1359 _("Bad GNAT array descriptor"));
1360 else
1361 return NULL;
1362}
1363
1364/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1366
1367static int
1368fat_pntr_bounds_bitpos (struct type *type)
1369{
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1371}
1372
1373/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1374 size of the field containing the address of the bounds data. */
1375
1376static int
1377fat_pntr_bounds_bitsize (struct type *type)
1378{
1379 type = desc_base_type (type);
1380
1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1382 return TYPE_FIELD_BITSIZE (type, 1);
1383 else
1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1385}
1386
1387/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1388 pointer to one, the type of its array data (a
1389 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1390 ada_type_of_array to get an array type with bounds data. */
1391
1392static struct type *
1393desc_data_type (struct type *type)
1394{
1395 type = desc_base_type (type);
1396
1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
1398 if (is_thin_pntr (type))
1399 return lookup_pointer_type
1400 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1401 else if (is_thick_pntr (type))
1402 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1403 else
1404 return NULL;
1405}
1406
1407/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1408 its array data. */
1409
1410static struct value *
1411desc_data (struct value *arr)
1412{
1413 struct type *type = value_type (arr);
1414 if (is_thin_pntr (type))
1415 return thin_data_pntr (arr);
1416 else if (is_thick_pntr (type))
1417 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1418 _("Bad GNAT array descriptor"));
1419 else
1420 return NULL;
1421}
1422
1423
1424/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 position of the field containing the address of the data. */
1426
1427static int
1428fat_pntr_data_bitpos (struct type *type)
1429{
1430 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1431}
1432
1433/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1434 size of the field containing the address of the data. */
1435
1436static int
1437fat_pntr_data_bitsize (struct type *type)
1438{
1439 type = desc_base_type (type);
1440
1441 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1442 return TYPE_FIELD_BITSIZE (type, 0);
1443 else
1444 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1445}
1446
1447/* If BOUNDS is an array-bounds structure (or pointer to one), return
1448 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1449 bound, if WHICH is 1. The first bound is I=1. */
1450
1451static struct value *
1452desc_one_bound (struct value *bounds, int i, int which)
1453{
1454 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1455 _("Bad GNAT array descriptor bounds"));
1456}
1457
1458/* If BOUNDS is an array-bounds structure type, return the bit position
1459 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1460 bound, if WHICH is 1. The first bound is I=1. */
1461
1462static int
1463desc_bound_bitpos (struct type *type, int i, int which)
1464{
1465 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1466}
1467
1468/* If BOUNDS is an array-bounds structure type, return the bit field size
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1471
1472static int
1473desc_bound_bitsize (struct type *type, int i, int which)
1474{
1475 type = desc_base_type (type);
1476
1477 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1478 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1479 else
1480 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1481}
1482
1483/* If TYPE is the type of an array-bounds structure, the type of its
1484 Ith bound (numbering from 1). Otherwise, NULL. */
1485
1486static struct type *
1487desc_index_type (struct type *type, int i)
1488{
1489 type = desc_base_type (type);
1490
1491 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1492 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1493 else
1494 return NULL;
1495}
1496
1497/* The number of index positions in the array-bounds type TYPE.
1498 Return 0 if TYPE is NULL. */
1499
1500static int
1501desc_arity (struct type *type)
1502{
1503 type = desc_base_type (type);
1504
1505 if (type != NULL)
1506 return TYPE_NFIELDS (type) / 2;
1507 return 0;
1508}
1509
1510/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1511 an array descriptor type (representing an unconstrained array
1512 type). */
1513
1514static int
1515ada_is_direct_array_type (struct type *type)
1516{
1517 if (type == NULL)
1518 return 0;
1519 type = ada_check_typedef (type);
1520 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1521 || ada_is_array_descriptor_type (type));
1522}
1523
1524/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1525 * to one. */
1526
1527int
1528ada_is_array_type (struct type *type)
1529{
1530 while (type != NULL
1531 && (TYPE_CODE (type) == TYPE_CODE_PTR
1532 || TYPE_CODE (type) == TYPE_CODE_REF))
1533 type = TYPE_TARGET_TYPE (type);
1534 return ada_is_direct_array_type (type);
1535}
1536
1537/* Non-zero iff TYPE is a simple array type or pointer to one. */
1538
1539int
1540ada_is_simple_array_type (struct type *type)
1541{
1542 if (type == NULL)
1543 return 0;
1544 type = ada_check_typedef (type);
1545 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1546 || (TYPE_CODE (type) == TYPE_CODE_PTR
1547 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1548}
1549
1550/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1551
1552int
1553ada_is_array_descriptor_type (struct type *type)
1554{
1555 struct type *data_type = desc_data_type (type);
1556
1557 if (type == NULL)
1558 return 0;
1559 type = ada_check_typedef (type);
1560 return
1561 data_type != NULL
1562 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1563 && TYPE_TARGET_TYPE (data_type) != NULL
1564 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1565 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1566 && desc_arity (desc_bounds_type (type)) > 0;
1567}
1568
1569/* Non-zero iff type is a partially mal-formed GNAT array
1570 descriptor. FIXME: This is to compensate for some problems with
1571 debugging output from GNAT. Re-examine periodically to see if it
1572 is still needed. */
1573
1574int
1575ada_is_bogus_array_descriptor (struct type *type)
1576{
1577 return
1578 type != NULL
1579 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1580 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1581 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1582 && !ada_is_array_descriptor_type (type);
1583}
1584
1585
1586/* If ARR has a record type in the form of a standard GNAT array descriptor,
1587 (fat pointer) returns the type of the array data described---specifically,
1588 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1589 in from the descriptor; otherwise, they are left unspecified. If
1590 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1591 returns NULL. The result is simply the type of ARR if ARR is not
1592 a descriptor. */
1593struct type *
1594ada_type_of_array (struct value *arr, int bounds)
1595{
1596 if (ada_is_packed_array_type (value_type (arr)))
1597 return decode_packed_array_type (value_type (arr));
1598
1599 if (!ada_is_array_descriptor_type (value_type (arr)))
1600 return value_type (arr);
1601
1602 if (!bounds)
1603 return
1604 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1605 else
1606 {
1607 struct type *elt_type;
1608 int arity;
1609 struct value *descriptor;
1610 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1611
1612 elt_type = ada_array_element_type (value_type (arr), -1);
1613 arity = ada_array_arity (value_type (arr));
1614
1615 if (elt_type == NULL || arity == 0)
1616 return ada_check_typedef (value_type (arr));
1617
1618 descriptor = desc_bounds (arr);
1619 if (value_as_long (descriptor) == 0)
1620 return NULL;
1621 while (arity > 0)
1622 {
1623 struct type *range_type = alloc_type (objf);
1624 struct type *array_type = alloc_type (objf);
1625 struct value *low = desc_one_bound (descriptor, arity, 0);
1626 struct value *high = desc_one_bound (descriptor, arity, 1);
1627 arity -= 1;
1628
1629 create_range_type (range_type, value_type (low),
1630 longest_to_int (value_as_long (low)),
1631 longest_to_int (value_as_long (high)));
1632 elt_type = create_array_type (array_type, elt_type, range_type);
1633 }
1634
1635 return lookup_pointer_type (elt_type);
1636 }
1637}
1638
1639/* If ARR does not represent an array, returns ARR unchanged.
1640 Otherwise, returns either a standard GDB array with bounds set
1641 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1642 GDB array. Returns NULL if ARR is a null fat pointer. */
1643
1644struct value *
1645ada_coerce_to_simple_array_ptr (struct value *arr)
1646{
1647 if (ada_is_array_descriptor_type (value_type (arr)))
1648 {
1649 struct type *arrType = ada_type_of_array (arr, 1);
1650 if (arrType == NULL)
1651 return NULL;
1652 return value_cast (arrType, value_copy (desc_data (arr)));
1653 }
1654 else if (ada_is_packed_array_type (value_type (arr)))
1655 return decode_packed_array (arr);
1656 else
1657 return arr;
1658}
1659
1660/* If ARR does not represent an array, returns ARR unchanged.
1661 Otherwise, returns a standard GDB array describing ARR (which may
1662 be ARR itself if it already is in the proper form). */
1663
1664static struct value *
1665ada_coerce_to_simple_array (struct value *arr)
1666{
1667 if (ada_is_array_descriptor_type (value_type (arr)))
1668 {
1669 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1670 if (arrVal == NULL)
1671 error (_("Bounds unavailable for null array pointer."));
1672 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1673 return value_ind (arrVal);
1674 }
1675 else if (ada_is_packed_array_type (value_type (arr)))
1676 return decode_packed_array (arr);
1677 else
1678 return arr;
1679}
1680
1681/* If TYPE represents a GNAT array type, return it translated to an
1682 ordinary GDB array type (possibly with BITSIZE fields indicating
1683 packing). For other types, is the identity. */
1684
1685struct type *
1686ada_coerce_to_simple_array_type (struct type *type)
1687{
1688 struct value *mark = value_mark ();
1689 struct value *dummy = value_from_longest (builtin_type_long, 0);
1690 struct type *result;
1691 deprecated_set_value_type (dummy, type);
1692 result = ada_type_of_array (dummy, 0);
1693 value_free_to_mark (mark);
1694 return result;
1695}
1696
1697/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1698
1699int
1700ada_is_packed_array_type (struct type *type)
1701{
1702 if (type == NULL)
1703 return 0;
1704 type = desc_base_type (type);
1705 type = ada_check_typedef (type);
1706 return
1707 ada_type_name (type) != NULL
1708 && strstr (ada_type_name (type), "___XP") != NULL;
1709}
1710
1711/* Given that TYPE is a standard GDB array type with all bounds filled
1712 in, and that the element size of its ultimate scalar constituents
1713 (that is, either its elements, or, if it is an array of arrays, its
1714 elements' elements, etc.) is *ELT_BITS, return an identical type,
1715 but with the bit sizes of its elements (and those of any
1716 constituent arrays) recorded in the BITSIZE components of its
1717 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1718 in bits. */
1719
1720static struct type *
1721packed_array_type (struct type *type, long *elt_bits)
1722{
1723 struct type *new_elt_type;
1724 struct type *new_type;
1725 LONGEST low_bound, high_bound;
1726
1727 type = ada_check_typedef (type);
1728 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1729 return type;
1730
1731 new_type = alloc_type (TYPE_OBJFILE (type));
1732 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1733 elt_bits);
1734 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1735 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1736 TYPE_NAME (new_type) = ada_type_name (type);
1737
1738 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1739 &low_bound, &high_bound) < 0)
1740 low_bound = high_bound = 0;
1741 if (high_bound < low_bound)
1742 *elt_bits = TYPE_LENGTH (new_type) = 0;
1743 else
1744 {
1745 *elt_bits *= (high_bound - low_bound + 1);
1746 TYPE_LENGTH (new_type) =
1747 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1748 }
1749
1750 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1751 return new_type;
1752}
1753
1754/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1755
1756static struct type *
1757decode_packed_array_type (struct type *type)
1758{
1759 struct symbol *sym;
1760 struct block **blocks;
1761 const char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *name = (char *) alloca (strlen (raw_name) + 1);
1763 char *tail = strstr (raw_name, "___XP");
1764 struct type *shadow_type;
1765 long bits;
1766 int i, n;
1767
1768 type = desc_base_type (type);
1769
1770 memcpy (name, raw_name, tail - raw_name);
1771 name[tail - raw_name] = '\000';
1772
1773 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1774 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1775 {
1776 lim_warning (_("could not find bounds information on packed array"));
1777 return NULL;
1778 }
1779 shadow_type = SYMBOL_TYPE (sym);
1780
1781 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1782 {
1783 lim_warning (_("could not understand bounds information on packed array"));
1784 return NULL;
1785 }
1786
1787 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1788 {
1789 lim_warning
1790 (_("could not understand bit size information on packed array"));
1791 return NULL;
1792 }
1793
1794 return packed_array_type (shadow_type, &bits);
1795}
1796
1797/* Given that ARR is a struct value *indicating a GNAT packed array,
1798 returns a simple array that denotes that array. Its type is a
1799 standard GDB array type except that the BITSIZEs of the array
1800 target types are set to the number of bits in each element, and the
1801 type length is set appropriately. */
1802
1803static struct value *
1804decode_packed_array (struct value *arr)
1805{
1806 struct type *type;
1807
1808 arr = ada_coerce_ref (arr);
1809 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1810 arr = ada_value_ind (arr);
1811
1812 type = decode_packed_array_type (value_type (arr));
1813 if (type == NULL)
1814 {
1815 error (_("can't unpack array"));
1816 return NULL;
1817 }
1818
1819 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1820 {
1821 /* This is a (right-justified) modular type representing a packed
1822 array with no wrapper. In order to interpret the value through
1823 the (left-justified) packed array type we just built, we must
1824 first left-justify it. */
1825 int bit_size, bit_pos;
1826 ULONGEST mod;
1827
1828 mod = ada_modulus (value_type (arr)) - 1;
1829 bit_size = 0;
1830 while (mod > 0)
1831 {
1832 bit_size += 1;
1833 mod >>= 1;
1834 }
1835 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1836 arr = ada_value_primitive_packed_val (arr, NULL,
1837 bit_pos / HOST_CHAR_BIT,
1838 bit_pos % HOST_CHAR_BIT,
1839 bit_size,
1840 type);
1841 }
1842
1843 return coerce_unspec_val_to_type (arr, type);
1844}
1845
1846
1847/* The value of the element of packed array ARR at the ARITY indices
1848 given in IND. ARR must be a simple array. */
1849
1850static struct value *
1851value_subscript_packed (struct value *arr, int arity, struct value **ind)
1852{
1853 int i;
1854 int bits, elt_off, bit_off;
1855 long elt_total_bit_offset;
1856 struct type *elt_type;
1857 struct value *v;
1858
1859 bits = 0;
1860 elt_total_bit_offset = 0;
1861 elt_type = ada_check_typedef (value_type (arr));
1862 for (i = 0; i < arity; i += 1)
1863 {
1864 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1865 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1866 error
1867 (_("attempt to do packed indexing of something other than a packed array"));
1868 else
1869 {
1870 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1871 LONGEST lowerbound, upperbound;
1872 LONGEST idx;
1873
1874 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1875 {
1876 lim_warning (_("don't know bounds of array"));
1877 lowerbound = upperbound = 0;
1878 }
1879
1880 idx = value_as_long (value_pos_atr (ind[i]));
1881 if (idx < lowerbound || idx > upperbound)
1882 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1883 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1884 elt_total_bit_offset += (idx - lowerbound) * bits;
1885 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1886 }
1887 }
1888 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1889 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1890
1891 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1892 bits, elt_type);
1893 return v;
1894}
1895
1896/* Non-zero iff TYPE includes negative integer values. */
1897
1898static int
1899has_negatives (struct type *type)
1900{
1901 switch (TYPE_CODE (type))
1902 {
1903 default:
1904 return 0;
1905 case TYPE_CODE_INT:
1906 return !TYPE_UNSIGNED (type);
1907 case TYPE_CODE_RANGE:
1908 return TYPE_LOW_BOUND (type) < 0;
1909 }
1910}
1911
1912
1913/* Create a new value of type TYPE from the contents of OBJ starting
1914 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1915 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1916 assigning through the result will set the field fetched from.
1917 VALADDR is ignored unless OBJ is NULL, in which case,
1918 VALADDR+OFFSET must address the start of storage containing the
1919 packed value. The value returned in this case is never an lval.
1920 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1921
1922struct value *
1923ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1924 long offset, int bit_offset, int bit_size,
1925 struct type *type)
1926{
1927 struct value *v;
1928 int src, /* Index into the source area */
1929 targ, /* Index into the target area */
1930 srcBitsLeft, /* Number of source bits left to move */
1931 nsrc, ntarg, /* Number of source and target bytes */
1932 unusedLS, /* Number of bits in next significant
1933 byte of source that are unused */
1934 accumSize; /* Number of meaningful bits in accum */
1935 unsigned char *bytes; /* First byte containing data to unpack */
1936 unsigned char *unpacked;
1937 unsigned long accum; /* Staging area for bits being transferred */
1938 unsigned char sign;
1939 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1940 /* Transmit bytes from least to most significant; delta is the direction
1941 the indices move. */
1942 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1943
1944 type = ada_check_typedef (type);
1945
1946 if (obj == NULL)
1947 {
1948 v = allocate_value (type);
1949 bytes = (unsigned char *) (valaddr + offset);
1950 }
1951 else if (value_lazy (obj))
1952 {
1953 v = value_at (type,
1954 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1955 bytes = (unsigned char *) alloca (len);
1956 read_memory (VALUE_ADDRESS (v), bytes, len);
1957 }
1958 else
1959 {
1960 v = allocate_value (type);
1961 bytes = (unsigned char *) value_contents (obj) + offset;
1962 }
1963
1964 if (obj != NULL)
1965 {
1966 VALUE_LVAL (v) = VALUE_LVAL (obj);
1967 if (VALUE_LVAL (obj) == lval_internalvar)
1968 VALUE_LVAL (v) = lval_internalvar_component;
1969 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1970 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1971 set_value_bitsize (v, bit_size);
1972 if (value_bitpos (v) >= HOST_CHAR_BIT)
1973 {
1974 VALUE_ADDRESS (v) += 1;
1975 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1976 }
1977 }
1978 else
1979 set_value_bitsize (v, bit_size);
1980 unpacked = (unsigned char *) value_contents (v);
1981
1982 srcBitsLeft = bit_size;
1983 nsrc = len;
1984 ntarg = TYPE_LENGTH (type);
1985 sign = 0;
1986 if (bit_size == 0)
1987 {
1988 memset (unpacked, 0, TYPE_LENGTH (type));
1989 return v;
1990 }
1991 else if (BITS_BIG_ENDIAN)
1992 {
1993 src = len - 1;
1994 if (has_negatives (type)
1995 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1996 sign = ~0;
1997
1998 unusedLS =
1999 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2000 % HOST_CHAR_BIT;
2001
2002 switch (TYPE_CODE (type))
2003 {
2004 case TYPE_CODE_ARRAY:
2005 case TYPE_CODE_UNION:
2006 case TYPE_CODE_STRUCT:
2007 /* Non-scalar values must be aligned at a byte boundary... */
2008 accumSize =
2009 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2010 /* ... And are placed at the beginning (most-significant) bytes
2011 of the target. */
2012 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2013 break;
2014 default:
2015 accumSize = 0;
2016 targ = TYPE_LENGTH (type) - 1;
2017 break;
2018 }
2019 }
2020 else
2021 {
2022 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2023
2024 src = targ = 0;
2025 unusedLS = bit_offset;
2026 accumSize = 0;
2027
2028 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2029 sign = ~0;
2030 }
2031
2032 accum = 0;
2033 while (nsrc > 0)
2034 {
2035 /* Mask for removing bits of the next source byte that are not
2036 part of the value. */
2037 unsigned int unusedMSMask =
2038 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2039 1;
2040 /* Sign-extend bits for this byte. */
2041 unsigned int signMask = sign & ~unusedMSMask;
2042 accum |=
2043 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2044 accumSize += HOST_CHAR_BIT - unusedLS;
2045 if (accumSize >= HOST_CHAR_BIT)
2046 {
2047 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2048 accumSize -= HOST_CHAR_BIT;
2049 accum >>= HOST_CHAR_BIT;
2050 ntarg -= 1;
2051 targ += delta;
2052 }
2053 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2054 unusedLS = 0;
2055 nsrc -= 1;
2056 src += delta;
2057 }
2058 while (ntarg > 0)
2059 {
2060 accum |= sign << accumSize;
2061 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2062 accumSize -= HOST_CHAR_BIT;
2063 accum >>= HOST_CHAR_BIT;
2064 ntarg -= 1;
2065 targ += delta;
2066 }
2067
2068 return v;
2069}
2070
2071/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2072 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2073 not overlap. */
2074static void
2075move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2076 int src_offset, int n)
2077{
2078 unsigned int accum, mask;
2079 int accum_bits, chunk_size;
2080
2081 target += targ_offset / HOST_CHAR_BIT;
2082 targ_offset %= HOST_CHAR_BIT;
2083 source += src_offset / HOST_CHAR_BIT;
2084 src_offset %= HOST_CHAR_BIT;
2085 if (BITS_BIG_ENDIAN)
2086 {
2087 accum = (unsigned char) *source;
2088 source += 1;
2089 accum_bits = HOST_CHAR_BIT - src_offset;
2090
2091 while (n > 0)
2092 {
2093 int unused_right;
2094 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2095 accum_bits += HOST_CHAR_BIT;
2096 source += 1;
2097 chunk_size = HOST_CHAR_BIT - targ_offset;
2098 if (chunk_size > n)
2099 chunk_size = n;
2100 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2101 mask = ((1 << chunk_size) - 1) << unused_right;
2102 *target =
2103 (*target & ~mask)
2104 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2105 n -= chunk_size;
2106 accum_bits -= chunk_size;
2107 target += 1;
2108 targ_offset = 0;
2109 }
2110 }
2111 else
2112 {
2113 accum = (unsigned char) *source >> src_offset;
2114 source += 1;
2115 accum_bits = HOST_CHAR_BIT - src_offset;
2116
2117 while (n > 0)
2118 {
2119 accum = accum + ((unsigned char) *source << accum_bits);
2120 accum_bits += HOST_CHAR_BIT;
2121 source += 1;
2122 chunk_size = HOST_CHAR_BIT - targ_offset;
2123 if (chunk_size > n)
2124 chunk_size = n;
2125 mask = ((1 << chunk_size) - 1) << targ_offset;
2126 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2127 n -= chunk_size;
2128 accum_bits -= chunk_size;
2129 accum >>= chunk_size;
2130 target += 1;
2131 targ_offset = 0;
2132 }
2133 }
2134}
2135
2136/* Store the contents of FROMVAL into the location of TOVAL.
2137 Return a new value with the location of TOVAL and contents of
2138 FROMVAL. Handles assignment into packed fields that have
2139 floating-point or non-scalar types. */
2140
2141static struct value *
2142ada_value_assign (struct value *toval, struct value *fromval)
2143{
2144 struct type *type = value_type (toval);
2145 int bits = value_bitsize (toval);
2146
2147 toval = ada_coerce_ref (toval);
2148 fromval = ada_coerce_ref (fromval);
2149
2150 if (ada_is_direct_array_type (value_type (toval)))
2151 toval = ada_coerce_to_simple_array (toval);
2152 if (ada_is_direct_array_type (value_type (fromval)))
2153 fromval = ada_coerce_to_simple_array (fromval);
2154
2155 if (!deprecated_value_modifiable (toval))
2156 error (_("Left operand of assignment is not a modifiable lvalue."));
2157
2158 if (VALUE_LVAL (toval) == lval_memory
2159 && bits > 0
2160 && (TYPE_CODE (type) == TYPE_CODE_FLT
2161 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2162 {
2163 int len = (value_bitpos (toval)
2164 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2165 char *buffer = (char *) alloca (len);
2166 struct value *val;
2167 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2168
2169 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2170 fromval = value_cast (type, fromval);
2171
2172 read_memory (to_addr, buffer, len);
2173 if (BITS_BIG_ENDIAN)
2174 move_bits (buffer, value_bitpos (toval),
2175 value_contents (fromval),
2176 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2177 bits, bits);
2178 else
2179 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2180 0, bits);
2181 write_memory (to_addr, buffer, len);
2182 if (deprecated_memory_changed_hook)
2183 deprecated_memory_changed_hook (to_addr, len);
2184
2185 val = value_copy (toval);
2186 memcpy (value_contents_raw (val), value_contents (fromval),
2187 TYPE_LENGTH (type));
2188 deprecated_set_value_type (val, type);
2189
2190 return val;
2191 }
2192
2193 return value_assign (toval, fromval);
2194}
2195
2196
2197/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2198 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2199 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2200 * COMPONENT, and not the inferior's memory. The current contents
2201 * of COMPONENT are ignored. */
2202static void
2203value_assign_to_component (struct value *container, struct value *component,
2204 struct value *val)
2205{
2206 LONGEST offset_in_container =
2207 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2208 - VALUE_ADDRESS (container) - value_offset (container));
2209 int bit_offset_in_container =
2210 value_bitpos (component) - value_bitpos (container);
2211 int bits;
2212
2213 val = value_cast (value_type (component), val);
2214
2215 if (value_bitsize (component) == 0)
2216 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2217 else
2218 bits = value_bitsize (component);
2219
2220 if (BITS_BIG_ENDIAN)
2221 move_bits (value_contents_writeable (container) + offset_in_container,
2222 value_bitpos (container) + bit_offset_in_container,
2223 value_contents (val),
2224 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2225 bits);
2226 else
2227 move_bits (value_contents_writeable (container) + offset_in_container,
2228 value_bitpos (container) + bit_offset_in_container,
2229 value_contents (val), 0, bits);
2230}
2231
2232/* The value of the element of array ARR at the ARITY indices given in IND.
2233 ARR may be either a simple array, GNAT array descriptor, or pointer
2234 thereto. */
2235
2236struct value *
2237ada_value_subscript (struct value *arr, int arity, struct value **ind)
2238{
2239 int k;
2240 struct value *elt;
2241 struct type *elt_type;
2242
2243 elt = ada_coerce_to_simple_array (arr);
2244
2245 elt_type = ada_check_typedef (value_type (elt));
2246 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2247 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2248 return value_subscript_packed (elt, arity, ind);
2249
2250 for (k = 0; k < arity; k += 1)
2251 {
2252 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2253 error (_("too many subscripts (%d expected)"), k);
2254 elt = value_subscript (elt, value_pos_atr (ind[k]));
2255 }
2256 return elt;
2257}
2258
2259/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2260 value of the element of *ARR at the ARITY indices given in
2261 IND. Does not read the entire array into memory. */
2262
2263struct value *
2264ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2265 struct value **ind)
2266{
2267 int k;
2268
2269 for (k = 0; k < arity; k += 1)
2270 {
2271 LONGEST lwb, upb;
2272 struct value *idx;
2273
2274 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2277 value_copy (arr));
2278 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2279 idx = value_pos_atr (ind[k]);
2280 if (lwb != 0)
2281 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2282 arr = value_add (arr, idx);
2283 type = TYPE_TARGET_TYPE (type);
2284 }
2285
2286 return value_ind (arr);
2287}
2288
2289/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2290 actual type of ARRAY_PTR is ignored), returns a reference to
2291 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2292 bound of this array is LOW, as per Ada rules. */
2293static struct value *
2294ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2295 int low, int high)
2296{
2297 CORE_ADDR base = value_as_address (array_ptr)
2298 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2299 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2300 struct type *index_type =
2301 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2302 low, high);
2303 struct type *slice_type =
2304 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2305 return value_from_pointer (lookup_reference_type (slice_type), base);
2306}
2307
2308
2309static struct value *
2310ada_value_slice (struct value *array, int low, int high)
2311{
2312 struct type *type = value_type (array);
2313 struct type *index_type =
2314 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2315 struct type *slice_type =
2316 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2317 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2318}
2319
2320/* If type is a record type in the form of a standard GNAT array
2321 descriptor, returns the number of dimensions for type. If arr is a
2322 simple array, returns the number of "array of"s that prefix its
2323 type designation. Otherwise, returns 0. */
2324
2325int
2326ada_array_arity (struct type *type)
2327{
2328 int arity;
2329
2330 if (type == NULL)
2331 return 0;
2332
2333 type = desc_base_type (type);
2334
2335 arity = 0;
2336 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2337 return desc_arity (desc_bounds_type (type));
2338 else
2339 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2340 {
2341 arity += 1;
2342 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2343 }
2344
2345 return arity;
2346}
2347
2348/* If TYPE is a record type in the form of a standard GNAT array
2349 descriptor or a simple array type, returns the element type for
2350 TYPE after indexing by NINDICES indices, or by all indices if
2351 NINDICES is -1. Otherwise, returns NULL. */
2352
2353struct type *
2354ada_array_element_type (struct type *type, int nindices)
2355{
2356 type = desc_base_type (type);
2357
2358 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2359 {
2360 int k;
2361 struct type *p_array_type;
2362
2363 p_array_type = desc_data_type (type);
2364
2365 k = ada_array_arity (type);
2366 if (k == 0)
2367 return NULL;
2368
2369 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2370 if (nindices >= 0 && k > nindices)
2371 k = nindices;
2372 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2373 while (k > 0 && p_array_type != NULL)
2374 {
2375 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2376 k -= 1;
2377 }
2378 return p_array_type;
2379 }
2380 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2381 {
2382 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2383 {
2384 type = TYPE_TARGET_TYPE (type);
2385 nindices -= 1;
2386 }
2387 return type;
2388 }
2389
2390 return NULL;
2391}
2392
2393/* The type of nth index in arrays of given type (n numbering from 1).
2394 Does not examine memory. */
2395
2396struct type *
2397ada_index_type (struct type *type, int n)
2398{
2399 struct type *result_type;
2400
2401 type = desc_base_type (type);
2402
2403 if (n > ada_array_arity (type))
2404 return NULL;
2405
2406 if (ada_is_simple_array_type (type))
2407 {
2408 int i;
2409
2410 for (i = 1; i < n; i += 1)
2411 type = TYPE_TARGET_TYPE (type);
2412 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2413 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2414 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2415 perhaps stabsread.c would make more sense. */
2416 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2417 result_type = builtin_type_int;
2418
2419 return result_type;
2420 }
2421 else
2422 return desc_index_type (desc_bounds_type (type), n);
2423}
2424
2425/* Given that arr is an array type, returns the lower bound of the
2426 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2427 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2428 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2429 bounds type. It works for other arrays with bounds supplied by
2430 run-time quantities other than discriminants. */
2431
2432LONGEST
2433ada_array_bound_from_type (struct type * arr_type, int n, int which,
2434 struct type ** typep)
2435{
2436 struct type *type;
2437 struct type *index_type_desc;
2438
2439 if (ada_is_packed_array_type (arr_type))
2440 arr_type = decode_packed_array_type (arr_type);
2441
2442 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2443 {
2444 if (typep != NULL)
2445 *typep = builtin_type_int;
2446 return (LONGEST) - which;
2447 }
2448
2449 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2450 type = TYPE_TARGET_TYPE (arr_type);
2451 else
2452 type = arr_type;
2453
2454 index_type_desc = ada_find_parallel_type (type, "___XA");
2455 if (index_type_desc == NULL)
2456 {
2457 struct type *range_type;
2458 struct type *index_type;
2459
2460 while (n > 1)
2461 {
2462 type = TYPE_TARGET_TYPE (type);
2463 n -= 1;
2464 }
2465
2466 range_type = TYPE_INDEX_TYPE (type);
2467 index_type = TYPE_TARGET_TYPE (range_type);
2468 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2469 index_type = builtin_type_long;
2470 if (typep != NULL)
2471 *typep = index_type;
2472 return
2473 (LONGEST) (which == 0
2474 ? TYPE_LOW_BOUND (range_type)
2475 : TYPE_HIGH_BOUND (range_type));
2476 }
2477 else
2478 {
2479 struct type *index_type =
2480 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2481 NULL, TYPE_OBJFILE (arr_type));
2482 if (typep != NULL)
2483 *typep = TYPE_TARGET_TYPE (index_type);
2484 return
2485 (LONGEST) (which == 0
2486 ? TYPE_LOW_BOUND (index_type)
2487 : TYPE_HIGH_BOUND (index_type));
2488 }
2489}
2490
2491/* Given that arr is an array value, returns the lower bound of the
2492 nth index (numbering from 1) if which is 0, and the upper bound if
2493 which is 1. This routine will also work for arrays with bounds
2494 supplied by run-time quantities other than discriminants. */
2495
2496struct value *
2497ada_array_bound (struct value *arr, int n, int which)
2498{
2499 struct type *arr_type = value_type (arr);
2500
2501 if (ada_is_packed_array_type (arr_type))
2502 return ada_array_bound (decode_packed_array (arr), n, which);
2503 else if (ada_is_simple_array_type (arr_type))
2504 {
2505 struct type *type;
2506 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2507 return value_from_longest (type, v);
2508 }
2509 else
2510 return desc_one_bound (desc_bounds (arr), n, which);
2511}
2512
2513/* Given that arr is an array value, returns the length of the
2514 nth index. This routine will also work for arrays with bounds
2515 supplied by run-time quantities other than discriminants.
2516 Does not work for arrays indexed by enumeration types with representation
2517 clauses at the moment. */
2518
2519struct value *
2520ada_array_length (struct value *arr, int n)
2521{
2522 struct type *arr_type = ada_check_typedef (value_type (arr));
2523
2524 if (ada_is_packed_array_type (arr_type))
2525 return ada_array_length (decode_packed_array (arr), n);
2526
2527 if (ada_is_simple_array_type (arr_type))
2528 {
2529 struct type *type;
2530 LONGEST v =
2531 ada_array_bound_from_type (arr_type, n, 1, &type) -
2532 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2533 return value_from_longest (type, v);
2534 }
2535 else
2536 return
2537 value_from_longest (builtin_type_int,
2538 value_as_long (desc_one_bound (desc_bounds (arr),
2539 n, 1))
2540 - value_as_long (desc_one_bound (desc_bounds (arr),
2541 n, 0)) + 1);
2542}
2543
2544/* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2546
2547static struct value *
2548empty_array (struct type *arr_type, int low)
2549{
2550 struct type *index_type =
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2552 low, low - 1);
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
2555}
2556\f
2557
2558 /* Name resolution */
2559
2560/* The "decoded" name for the user-definable Ada operator corresponding
2561 to OP. */
2562
2563static const char *
2564ada_decoded_op_name (enum exp_opcode op)
2565{
2566 int i;
2567
2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2569 {
2570 if (ada_opname_table[i].op == op)
2571 return ada_opname_table[i].decoded;
2572 }
2573 error (_("Could not find operator name for opcode"));
2574}
2575
2576
2577/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2584 return type is preferred. May change (expand) *EXP. */
2585
2586static void
2587resolve (struct expression **expp, int void_context_p)
2588{
2589 int pc;
2590 pc = 0;
2591 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2592}
2593
2594/* Resolve the operator of the subexpression beginning at
2595 position *POS of *EXPP. "Resolving" consists of replacing
2596 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2597 with their resolutions, replacing built-in operators with
2598 function calls to user-defined operators, where appropriate, and,
2599 when DEPROCEDURE_P is non-zero, converting function-valued variables
2600 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2601 are as in ada_resolve, above. */
2602
2603static struct value *
2604resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2605 struct type *context_type)
2606{
2607 int pc = *pos;
2608 int i;
2609 struct expression *exp; /* Convenience: == *expp. */
2610 enum exp_opcode op = (*expp)->elts[pc].opcode;
2611 struct value **argvec; /* Vector of operand types (alloca'ed). */
2612 int nargs; /* Number of operands. */
2613 int oplen;
2614
2615 argvec = NULL;
2616 nargs = 0;
2617 exp = *expp;
2618
2619 /* Pass one: resolve operands, saving their types and updating *pos,
2620 if needed. */
2621 switch (op)
2622 {
2623 case OP_FUNCALL:
2624 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2625 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2626 *pos += 7;
2627 else
2628 {
2629 *pos += 3;
2630 resolve_subexp (expp, pos, 0, NULL);
2631 }
2632 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2633 break;
2634
2635 case UNOP_ADDR:
2636 *pos += 1;
2637 resolve_subexp (expp, pos, 0, NULL);
2638 break;
2639
2640 case UNOP_QUAL:
2641 *pos += 3;
2642 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2643 break;
2644
2645 case OP_ATR_MODULUS:
2646 case OP_ATR_SIZE:
2647 case OP_ATR_TAG:
2648 case OP_ATR_FIRST:
2649 case OP_ATR_LAST:
2650 case OP_ATR_LENGTH:
2651 case OP_ATR_POS:
2652 case OP_ATR_VAL:
2653 case OP_ATR_MIN:
2654 case OP_ATR_MAX:
2655 case TERNOP_IN_RANGE:
2656 case BINOP_IN_BOUNDS:
2657 case UNOP_IN_RANGE:
2658 case OP_AGGREGATE:
2659 case OP_OTHERS:
2660 case OP_CHOICES:
2661 case OP_POSITIONAL:
2662 case OP_DISCRETE_RANGE:
2663 case OP_NAME:
2664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2665 *pos += oplen;
2666 break;
2667
2668 case BINOP_ASSIGN:
2669 {
2670 struct value *arg1;
2671
2672 *pos += 1;
2673 arg1 = resolve_subexp (expp, pos, 0, NULL);
2674 if (arg1 == NULL)
2675 resolve_subexp (expp, pos, 1, NULL);
2676 else
2677 resolve_subexp (expp, pos, 1, value_type (arg1));
2678 break;
2679 }
2680
2681 case UNOP_CAST:
2682 *pos += 3;
2683 nargs = 1;
2684 break;
2685
2686 case BINOP_ADD:
2687 case BINOP_SUB:
2688 case BINOP_MUL:
2689 case BINOP_DIV:
2690 case BINOP_REM:
2691 case BINOP_MOD:
2692 case BINOP_EXP:
2693 case BINOP_CONCAT:
2694 case BINOP_LOGICAL_AND:
2695 case BINOP_LOGICAL_OR:
2696 case BINOP_BITWISE_AND:
2697 case BINOP_BITWISE_IOR:
2698 case BINOP_BITWISE_XOR:
2699
2700 case BINOP_EQUAL:
2701 case BINOP_NOTEQUAL:
2702 case BINOP_LESS:
2703 case BINOP_GTR:
2704 case BINOP_LEQ:
2705 case BINOP_GEQ:
2706
2707 case BINOP_REPEAT:
2708 case BINOP_SUBSCRIPT:
2709 case BINOP_COMMA:
2710
2711 case UNOP_NEG:
2712 case UNOP_PLUS:
2713 case UNOP_LOGICAL_NOT:
2714 case UNOP_ABS:
2715 case UNOP_IND:
2716 *pos += 1;
2717 nargs = 1;
2718 break;
2719
2720 case OP_LONG:
2721 case OP_DOUBLE:
2722 case OP_VAR_VALUE:
2723 *pos += 4;
2724 break;
2725
2726 case OP_TYPE:
2727 case OP_BOOL:
2728 case OP_LAST:
2729 case OP_REGISTER:
2730 case OP_INTERNALVAR:
2731 *pos += 3;
2732 break;
2733
2734 case UNOP_MEMVAL:
2735 *pos += 3;
2736 nargs = 1;
2737 break;
2738
2739 case STRUCTOP_STRUCT:
2740 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2741 nargs = 1;
2742 break;
2743
2744 case TERNOP_SLICE:
2745 *pos += 1;
2746 nargs = 3;
2747 break;
2748
2749 case OP_STRING:
2750 break;
2751
2752 default:
2753 error (_("Unexpected operator during name resolution"));
2754 }
2755
2756 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2757 for (i = 0; i < nargs; i += 1)
2758 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2759 argvec[i] = NULL;
2760 exp = *expp;
2761
2762 /* Pass two: perform any resolution on principal operator. */
2763 switch (op)
2764 {
2765 default:
2766 break;
2767
2768 case OP_VAR_VALUE:
2769 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2770 {
2771 struct ada_symbol_info *candidates;
2772 int n_candidates;
2773
2774 n_candidates =
2775 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2776 (exp->elts[pc + 2].symbol),
2777 exp->elts[pc + 1].block, VAR_DOMAIN,
2778 &candidates);
2779
2780 if (n_candidates > 1)
2781 {
2782 /* Types tend to get re-introduced locally, so if there
2783 are any local symbols that are not types, first filter
2784 out all types. */
2785 int j;
2786 for (j = 0; j < n_candidates; j += 1)
2787 switch (SYMBOL_CLASS (candidates[j].sym))
2788 {
2789 case LOC_REGISTER:
2790 case LOC_ARG:
2791 case LOC_REF_ARG:
2792 case LOC_REGPARM:
2793 case LOC_REGPARM_ADDR:
2794 case LOC_LOCAL:
2795 case LOC_LOCAL_ARG:
2796 case LOC_BASEREG:
2797 case LOC_BASEREG_ARG:
2798 case LOC_COMPUTED:
2799 case LOC_COMPUTED_ARG:
2800 goto FoundNonType;
2801 default:
2802 break;
2803 }
2804 FoundNonType:
2805 if (j < n_candidates)
2806 {
2807 j = 0;
2808 while (j < n_candidates)
2809 {
2810 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2811 {
2812 candidates[j] = candidates[n_candidates - 1];
2813 n_candidates -= 1;
2814 }
2815 else
2816 j += 1;
2817 }
2818 }
2819 }
2820
2821 if (n_candidates == 0)
2822 error (_("No definition found for %s"),
2823 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2824 else if (n_candidates == 1)
2825 i = 0;
2826 else if (deprocedure_p
2827 && !is_nonfunction (candidates, n_candidates))
2828 {
2829 i = ada_resolve_function
2830 (candidates, n_candidates, NULL, 0,
2831 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2832 context_type);
2833 if (i < 0)
2834 error (_("Could not find a match for %s"),
2835 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2836 }
2837 else
2838 {
2839 printf_filtered (_("Multiple matches for %s\n"),
2840 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2841 user_select_syms (candidates, n_candidates, 1);
2842 i = 0;
2843 }
2844
2845 exp->elts[pc + 1].block = candidates[i].block;
2846 exp->elts[pc + 2].symbol = candidates[i].sym;
2847 if (innermost_block == NULL
2848 || contained_in (candidates[i].block, innermost_block))
2849 innermost_block = candidates[i].block;
2850 }
2851
2852 if (deprocedure_p
2853 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2854 == TYPE_CODE_FUNC))
2855 {
2856 replace_operator_with_call (expp, pc, 0, 0,
2857 exp->elts[pc + 2].symbol,
2858 exp->elts[pc + 1].block);
2859 exp = *expp;
2860 }
2861 break;
2862
2863 case OP_FUNCALL:
2864 {
2865 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2866 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2867 {
2868 struct ada_symbol_info *candidates;
2869 int n_candidates;
2870
2871 n_candidates =
2872 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2873 (exp->elts[pc + 5].symbol),
2874 exp->elts[pc + 4].block, VAR_DOMAIN,
2875 &candidates);
2876 if (n_candidates == 1)
2877 i = 0;
2878 else
2879 {
2880 i = ada_resolve_function
2881 (candidates, n_candidates,
2882 argvec, nargs,
2883 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2884 context_type);
2885 if (i < 0)
2886 error (_("Could not find a match for %s"),
2887 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2888 }
2889
2890 exp->elts[pc + 4].block = candidates[i].block;
2891 exp->elts[pc + 5].symbol = candidates[i].sym;
2892 if (innermost_block == NULL
2893 || contained_in (candidates[i].block, innermost_block))
2894 innermost_block = candidates[i].block;
2895 }
2896 }
2897 break;
2898 case BINOP_ADD:
2899 case BINOP_SUB:
2900 case BINOP_MUL:
2901 case BINOP_DIV:
2902 case BINOP_REM:
2903 case BINOP_MOD:
2904 case BINOP_CONCAT:
2905 case BINOP_BITWISE_AND:
2906 case BINOP_BITWISE_IOR:
2907 case BINOP_BITWISE_XOR:
2908 case BINOP_EQUAL:
2909 case BINOP_NOTEQUAL:
2910 case BINOP_LESS:
2911 case BINOP_GTR:
2912 case BINOP_LEQ:
2913 case BINOP_GEQ:
2914 case BINOP_EXP:
2915 case UNOP_NEG:
2916 case UNOP_PLUS:
2917 case UNOP_LOGICAL_NOT:
2918 case UNOP_ABS:
2919 if (possible_user_operator_p (op, argvec))
2920 {
2921 struct ada_symbol_info *candidates;
2922 int n_candidates;
2923
2924 n_candidates =
2925 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2926 (struct block *) NULL, VAR_DOMAIN,
2927 &candidates);
2928 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2929 ada_decoded_op_name (op), NULL);
2930 if (i < 0)
2931 break;
2932
2933 replace_operator_with_call (expp, pc, nargs, 1,
2934 candidates[i].sym, candidates[i].block);
2935 exp = *expp;
2936 }
2937 break;
2938
2939 case OP_TYPE:
2940 return NULL;
2941 }
2942
2943 *pos = pc;
2944 return evaluate_subexp_type (exp, pos);
2945}
2946
2947/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2948 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2949 a non-pointer. A type of 'void' (which is never a valid expression type)
2950 by convention matches anything. */
2951/* The term "match" here is rather loose. The match is heuristic and
2952 liberal. FIXME: TOO liberal, in fact. */
2953
2954static int
2955ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2956{
2957 ftype = ada_check_typedef (ftype);
2958 atype = ada_check_typedef (atype);
2959
2960 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2961 ftype = TYPE_TARGET_TYPE (ftype);
2962 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2963 atype = TYPE_TARGET_TYPE (atype);
2964
2965 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2966 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2967 return 1;
2968
2969 switch (TYPE_CODE (ftype))
2970 {
2971 default:
2972 return 1;
2973 case TYPE_CODE_PTR:
2974 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2975 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2976 TYPE_TARGET_TYPE (atype), 0);
2977 else
2978 return (may_deref
2979 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2980 case TYPE_CODE_INT:
2981 case TYPE_CODE_ENUM:
2982 case TYPE_CODE_RANGE:
2983 switch (TYPE_CODE (atype))
2984 {
2985 case TYPE_CODE_INT:
2986 case TYPE_CODE_ENUM:
2987 case TYPE_CODE_RANGE:
2988 return 1;
2989 default:
2990 return 0;
2991 }
2992
2993 case TYPE_CODE_ARRAY:
2994 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2995 || ada_is_array_descriptor_type (atype));
2996
2997 case TYPE_CODE_STRUCT:
2998 if (ada_is_array_descriptor_type (ftype))
2999 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3000 || ada_is_array_descriptor_type (atype));
3001 else
3002 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3003 && !ada_is_array_descriptor_type (atype));
3004
3005 case TYPE_CODE_UNION:
3006 case TYPE_CODE_FLT:
3007 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3008 }
3009}
3010
3011/* Return non-zero if the formals of FUNC "sufficiently match" the
3012 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3013 may also be an enumeral, in which case it is treated as a 0-
3014 argument function. */
3015
3016static int
3017ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3018{
3019 int i;
3020 struct type *func_type = SYMBOL_TYPE (func);
3021
3022 if (SYMBOL_CLASS (func) == LOC_CONST
3023 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3024 return (n_actuals == 0);
3025 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3026 return 0;
3027
3028 if (TYPE_NFIELDS (func_type) != n_actuals)
3029 return 0;
3030
3031 for (i = 0; i < n_actuals; i += 1)
3032 {
3033 if (actuals[i] == NULL)
3034 return 0;
3035 else
3036 {
3037 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3038 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3039
3040 if (!ada_type_match (ftype, atype, 1))
3041 return 0;
3042 }
3043 }
3044 return 1;
3045}
3046
3047/* False iff function type FUNC_TYPE definitely does not produce a value
3048 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3049 FUNC_TYPE is not a valid function type with a non-null return type
3050 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3051
3052static int
3053return_match (struct type *func_type, struct type *context_type)
3054{
3055 struct type *return_type;
3056
3057 if (func_type == NULL)
3058 return 1;
3059
3060 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3061 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3062 else
3063 return_type = base_type (func_type);
3064 if (return_type == NULL)
3065 return 1;
3066
3067 context_type = base_type (context_type);
3068
3069 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3070 return context_type == NULL || return_type == context_type;
3071 else if (context_type == NULL)
3072 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3073 else
3074 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3075}
3076
3077
3078/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3079 function (if any) that matches the types of the NARGS arguments in
3080 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3081 that returns that type, then eliminate matches that don't. If
3082 CONTEXT_TYPE is void and there is at least one match that does not
3083 return void, eliminate all matches that do.
3084
3085 Asks the user if there is more than one match remaining. Returns -1
3086 if there is no such symbol or none is selected. NAME is used
3087 solely for messages. May re-arrange and modify SYMS in
3088 the process; the index returned is for the modified vector. */
3089
3090static int
3091ada_resolve_function (struct ada_symbol_info syms[],
3092 int nsyms, struct value **args, int nargs,
3093 const char *name, struct type *context_type)
3094{
3095 int k;
3096 int m; /* Number of hits */
3097 struct type *fallback;
3098 struct type *return_type;
3099
3100 return_type = context_type;
3101 if (context_type == NULL)
3102 fallback = builtin_type_void;
3103 else
3104 fallback = NULL;
3105
3106 m = 0;
3107 while (1)
3108 {
3109 for (k = 0; k < nsyms; k += 1)
3110 {
3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3112
3113 if (ada_args_match (syms[k].sym, args, nargs)
3114 && return_match (type, return_type))
3115 {
3116 syms[m] = syms[k];
3117 m += 1;
3118 }
3119 }
3120 if (m > 0 || return_type == fallback)
3121 break;
3122 else
3123 return_type = fallback;
3124 }
3125
3126 if (m == 0)
3127 return -1;
3128 else if (m > 1)
3129 {
3130 printf_filtered (_("Multiple matches for %s\n"), name);
3131 user_select_syms (syms, m, 1);
3132 return 0;
3133 }
3134 return 0;
3135}
3136
3137/* Returns true (non-zero) iff decoded name N0 should appear before N1
3138 in a listing of choices during disambiguation (see sort_choices, below).
3139 The idea is that overloadings of a subprogram name from the
3140 same package should sort in their source order. We settle for ordering
3141 such symbols by their trailing number (__N or $N). */
3142
3143static int
3144encoded_ordered_before (char *N0, char *N1)
3145{
3146 if (N1 == NULL)
3147 return 0;
3148 else if (N0 == NULL)
3149 return 1;
3150 else
3151 {
3152 int k0, k1;
3153 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3154 ;
3155 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3156 ;
3157 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3158 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3159 {
3160 int n0, n1;
3161 n0 = k0;
3162 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3163 n0 -= 1;
3164 n1 = k1;
3165 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3166 n1 -= 1;
3167 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3168 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3169 }
3170 return (strcmp (N0, N1) < 0);
3171 }
3172}
3173
3174/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3175 encoded names. */
3176
3177static void
3178sort_choices (struct ada_symbol_info syms[], int nsyms)
3179{
3180 int i;
3181 for (i = 1; i < nsyms; i += 1)
3182 {
3183 struct ada_symbol_info sym = syms[i];
3184 int j;
3185
3186 for (j = i - 1; j >= 0; j -= 1)
3187 {
3188 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3189 SYMBOL_LINKAGE_NAME (sym.sym)))
3190 break;
3191 syms[j + 1] = syms[j];
3192 }
3193 syms[j + 1] = sym;
3194 }
3195}
3196
3197/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3198 by asking the user (if necessary), returning the number selected,
3199 and setting the first elements of SYMS items. Error if no symbols
3200 selected. */
3201
3202/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3203 to be re-integrated one of these days. */
3204
3205int
3206user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3207{
3208 int i;
3209 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3210 int n_chosen;
3211 int first_choice = (max_results == 1) ? 1 : 2;
3212
3213 if (max_results < 1)
3214 error (_("Request to select 0 symbols!"));
3215 if (nsyms <= 1)
3216 return nsyms;
3217
3218 printf_unfiltered (_("[0] cancel\n"));
3219 if (max_results > 1)
3220 printf_unfiltered (_("[1] all\n"));
3221
3222 sort_choices (syms, nsyms);
3223
3224 for (i = 0; i < nsyms; i += 1)
3225 {
3226 if (syms[i].sym == NULL)
3227 continue;
3228
3229 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3230 {
3231 struct symtab_and_line sal =
3232 find_function_start_sal (syms[i].sym, 1);
3233 if (sal.symtab == NULL)
3234 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3235 i + first_choice,
3236 SYMBOL_PRINT_NAME (syms[i].sym),
3237 sal.line);
3238 else
3239 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3240 SYMBOL_PRINT_NAME (syms[i].sym),
3241 sal.symtab->filename, sal.line);
3242 continue;
3243 }
3244 else
3245 {
3246 int is_enumeral =
3247 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3248 && SYMBOL_TYPE (syms[i].sym) != NULL
3249 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3250 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3251
3252 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3253 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3254 i + first_choice,
3255 SYMBOL_PRINT_NAME (syms[i].sym),
3256 symtab->filename, SYMBOL_LINE (syms[i].sym));
3257 else if (is_enumeral
3258 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3259 {
3260 printf_unfiltered (("[%d] "), i + first_choice);
3261 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3262 gdb_stdout, -1, 0);
3263 printf_unfiltered (_("'(%s) (enumeral)\n"),
3264 SYMBOL_PRINT_NAME (syms[i].sym));
3265 }
3266 else if (symtab != NULL)
3267 printf_unfiltered (is_enumeral
3268 ? _("[%d] %s in %s (enumeral)\n")
3269 : _("[%d] %s at %s:?\n"),
3270 i + first_choice,
3271 SYMBOL_PRINT_NAME (syms[i].sym),
3272 symtab->filename);
3273 else
3274 printf_unfiltered (is_enumeral
3275 ? _("[%d] %s (enumeral)\n")
3276 : _("[%d] %s at ?\n"),
3277 i + first_choice,
3278 SYMBOL_PRINT_NAME (syms[i].sym));
3279 }
3280 }
3281
3282 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3283 "overload-choice");
3284
3285 for (i = 0; i < n_chosen; i += 1)
3286 syms[i] = syms[chosen[i]];
3287
3288 return n_chosen;
3289}
3290
3291/* Read and validate a set of numeric choices from the user in the
3292 range 0 .. N_CHOICES-1. Place the results in increasing
3293 order in CHOICES[0 .. N-1], and return N.
3294
3295 The user types choices as a sequence of numbers on one line
3296 separated by blanks, encoding them as follows:
3297
3298 + A choice of 0 means to cancel the selection, throwing an error.
3299 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3300 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3301
3302 The user is not allowed to choose more than MAX_RESULTS values.
3303
3304 ANNOTATION_SUFFIX, if present, is used to annotate the input
3305 prompts (for use with the -f switch). */
3306
3307int
3308get_selections (int *choices, int n_choices, int max_results,
3309 int is_all_choice, char *annotation_suffix)
3310{
3311 char *args;
3312 const char *prompt;
3313 int n_chosen;
3314 int first_choice = is_all_choice ? 2 : 1;
3315
3316 prompt = getenv ("PS2");
3317 if (prompt == NULL)
3318 prompt = ">";
3319
3320 printf_unfiltered (("%s "), prompt);
3321 gdb_flush (gdb_stdout);
3322
3323 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3324
3325 if (args == NULL)
3326 error_no_arg (_("one or more choice numbers"));
3327
3328 n_chosen = 0;
3329
3330 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3331 order, as given in args. Choices are validated. */
3332 while (1)
3333 {
3334 char *args2;
3335 int choice, j;
3336
3337 while (isspace (*args))
3338 args += 1;
3339 if (*args == '\0' && n_chosen == 0)
3340 error_no_arg (_("one or more choice numbers"));
3341 else if (*args == '\0')
3342 break;
3343
3344 choice = strtol (args, &args2, 10);
3345 if (args == args2 || choice < 0
3346 || choice > n_choices + first_choice - 1)
3347 error (_("Argument must be choice number"));
3348 args = args2;
3349
3350 if (choice == 0)
3351 error (_("cancelled"));
3352
3353 if (choice < first_choice)
3354 {
3355 n_chosen = n_choices;
3356 for (j = 0; j < n_choices; j += 1)
3357 choices[j] = j;
3358 break;
3359 }
3360 choice -= first_choice;
3361
3362 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3363 {
3364 }
3365
3366 if (j < 0 || choice != choices[j])
3367 {
3368 int k;
3369 for (k = n_chosen - 1; k > j; k -= 1)
3370 choices[k + 1] = choices[k];
3371 choices[j + 1] = choice;
3372 n_chosen += 1;
3373 }
3374 }
3375
3376 if (n_chosen > max_results)
3377 error (_("Select no more than %d of the above"), max_results);
3378
3379 return n_chosen;
3380}
3381
3382/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3383 on the function identified by SYM and BLOCK, and taking NARGS
3384 arguments. Update *EXPP as needed to hold more space. */
3385
3386static void
3387replace_operator_with_call (struct expression **expp, int pc, int nargs,
3388 int oplen, struct symbol *sym,
3389 struct block *block)
3390{
3391 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3392 symbol, -oplen for operator being replaced). */
3393 struct expression *newexp = (struct expression *)
3394 xmalloc (sizeof (struct expression)
3395 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3396 struct expression *exp = *expp;
3397
3398 newexp->nelts = exp->nelts + 7 - oplen;
3399 newexp->language_defn = exp->language_defn;
3400 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3401 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3402 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3403
3404 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3405 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3406
3407 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3408 newexp->elts[pc + 4].block = block;
3409 newexp->elts[pc + 5].symbol = sym;
3410
3411 *expp = newexp;
3412 xfree (exp);
3413}
3414
3415/* Type-class predicates */
3416
3417/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3418 or FLOAT). */
3419
3420static int
3421numeric_type_p (struct type *type)
3422{
3423 if (type == NULL)
3424 return 0;
3425 else
3426 {
3427 switch (TYPE_CODE (type))
3428 {
3429 case TYPE_CODE_INT:
3430 case TYPE_CODE_FLT:
3431 return 1;
3432 case TYPE_CODE_RANGE:
3433 return (type == TYPE_TARGET_TYPE (type)
3434 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3435 default:
3436 return 0;
3437 }
3438 }
3439}
3440
3441/* True iff TYPE is integral (an INT or RANGE of INTs). */
3442
3443static int
3444integer_type_p (struct type *type)
3445{
3446 if (type == NULL)
3447 return 0;
3448 else
3449 {
3450 switch (TYPE_CODE (type))
3451 {
3452 case TYPE_CODE_INT:
3453 return 1;
3454 case TYPE_CODE_RANGE:
3455 return (type == TYPE_TARGET_TYPE (type)
3456 || integer_type_p (TYPE_TARGET_TYPE (type)));
3457 default:
3458 return 0;
3459 }
3460 }
3461}
3462
3463/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3464
3465static int
3466scalar_type_p (struct type *type)
3467{
3468 if (type == NULL)
3469 return 0;
3470 else
3471 {
3472 switch (TYPE_CODE (type))
3473 {
3474 case TYPE_CODE_INT:
3475 case TYPE_CODE_RANGE:
3476 case TYPE_CODE_ENUM:
3477 case TYPE_CODE_FLT:
3478 return 1;
3479 default:
3480 return 0;
3481 }
3482 }
3483}
3484
3485/* True iff TYPE is discrete (INT, RANGE, ENUM). */
3486
3487static int
3488discrete_type_p (struct type *type)
3489{
3490 if (type == NULL)
3491 return 0;
3492 else
3493 {
3494 switch (TYPE_CODE (type))
3495 {
3496 case TYPE_CODE_INT:
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_ENUM:
3499 return 1;
3500 default:
3501 return 0;
3502 }
3503 }
3504}
3505
3506/* Returns non-zero if OP with operands in the vector ARGS could be
3507 a user-defined function. Errs on the side of pre-defined operators
3508 (i.e., result 0). */
3509
3510static int
3511possible_user_operator_p (enum exp_opcode op, struct value *args[])
3512{
3513 struct type *type0 =
3514 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3515 struct type *type1 =
3516 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3517
3518 if (type0 == NULL)
3519 return 0;
3520
3521 switch (op)
3522 {
3523 default:
3524 return 0;
3525
3526 case BINOP_ADD:
3527 case BINOP_SUB:
3528 case BINOP_MUL:
3529 case BINOP_DIV:
3530 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3531
3532 case BINOP_REM:
3533 case BINOP_MOD:
3534 case BINOP_BITWISE_AND:
3535 case BINOP_BITWISE_IOR:
3536 case BINOP_BITWISE_XOR:
3537 return (!(integer_type_p (type0) && integer_type_p (type1)));
3538
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3546
3547 case BINOP_CONCAT:
3548 return
3549 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3550 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3551 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3552 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3553 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3554 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3555 != TYPE_CODE_ARRAY))));
3556
3557 case BINOP_EXP:
3558 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3559
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 return (!numeric_type_p (type0));
3565
3566 }
3567}
3568\f
3569 /* Renaming */
3570
3571/* NOTE: In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3573 point. */
3574
3575/* If TYPE encodes a renaming, returns the renaming suffix, which
3576 is XR for an object renaming, XRP for a procedure renaming, XRE for
3577 an exception renaming, and XRS for a subprogram renaming. Returns
3578 NULL if NAME encodes none of these. */
3579
3580const char *
3581ada_renaming_type (struct type *type)
3582{
3583 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3584 {
3585 const char *name = type_name_no_tag (type);
3586 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3587 if (suffix == NULL
3588 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3589 return NULL;
3590 else
3591 return suffix + 3;
3592 }
3593 else
3594 return NULL;
3595}
3596
3597/* Return non-zero iff SYM encodes an object renaming. */
3598
3599int
3600ada_is_object_renaming (struct symbol *sym)
3601{
3602 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3603 return renaming_type != NULL
3604 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3605}
3606
3607/* Assuming that SYM encodes a non-object renaming, returns the original
3608 name of the renamed entity. The name is good until the end of
3609 parsing. */
3610
3611char *
3612ada_simple_renamed_entity (struct symbol *sym)
3613{
3614 struct type *type;
3615 const char *raw_name;
3616 int len;
3617 char *result;
3618
3619 type = SYMBOL_TYPE (sym);
3620 if (type == NULL || TYPE_NFIELDS (type) < 1)
3621 error (_("Improperly encoded renaming."));
3622
3623 raw_name = TYPE_FIELD_NAME (type, 0);
3624 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3625 if (len <= 0)
3626 error (_("Improperly encoded renaming."));
3627
3628 result = xmalloc (len + 1);
3629 strncpy (result, raw_name, len);
3630 result[len] = '\000';
3631 return result;
3632}
3633
3634\f
3635
3636 /* Evaluation: Function Calls */
3637
3638/* Return an lvalue containing the value VAL. This is the identity on
3639 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3640 on the stack, using and updating *SP as the stack pointer, and
3641 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3642
3643static struct value *
3644ensure_lval (struct value *val, CORE_ADDR *sp)
3645{
3646 if (! VALUE_LVAL (val))
3647 {
3648 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3649
3650 /* The following is taken from the structure-return code in
3651 call_function_by_hand. FIXME: Therefore, some refactoring seems
3652 indicated. */
3653 if (INNER_THAN (1, 2))
3654 {
3655 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3656 reserving sufficient space. */
3657 *sp -= len;
3658 if (gdbarch_frame_align_p (current_gdbarch))
3659 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3660 VALUE_ADDRESS (val) = *sp;
3661 }
3662 else
3663 {
3664 /* Stack grows upward. Align the frame, allocate space, and
3665 then again, re-align the frame. */
3666 if (gdbarch_frame_align_p (current_gdbarch))
3667 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3668 VALUE_ADDRESS (val) = *sp;
3669 *sp += len;
3670 if (gdbarch_frame_align_p (current_gdbarch))
3671 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3672 }
3673
3674 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3675 }
3676
3677 return val;
3678}
3679
3680/* Return the value ACTUAL, converted to be an appropriate value for a
3681 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3682 allocating any necessary descriptors (fat pointers), or copies of
3683 values not residing in memory, updating it as needed. */
3684
3685static struct value *
3686convert_actual (struct value *actual, struct type *formal_type0,
3687 CORE_ADDR *sp)
3688{
3689 struct type *actual_type = ada_check_typedef (value_type (actual));
3690 struct type *formal_type = ada_check_typedef (formal_type0);
3691 struct type *formal_target =
3692 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3693 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3694 struct type *actual_target =
3695 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3696 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3697
3698 if (ada_is_array_descriptor_type (formal_target)
3699 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3700 return make_array_descriptor (formal_type, actual, sp);
3701 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3702 {
3703 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3704 && ada_is_array_descriptor_type (actual_target))
3705 return desc_data (actual);
3706 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3707 {
3708 if (VALUE_LVAL (actual) != lval_memory)
3709 {
3710 struct value *val;
3711 actual_type = ada_check_typedef (value_type (actual));
3712 val = allocate_value (actual_type);
3713 memcpy ((char *) value_contents_raw (val),
3714 (char *) value_contents (actual),
3715 TYPE_LENGTH (actual_type));
3716 actual = ensure_lval (val, sp);
3717 }
3718 return value_addr (actual);
3719 }
3720 }
3721 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3722 return ada_value_ind (actual);
3723
3724 return actual;
3725}
3726
3727
3728/* Push a descriptor of type TYPE for array value ARR on the stack at
3729 *SP, updating *SP to reflect the new descriptor. Return either
3730 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3731 to-descriptor type rather than a descriptor type), a struct value *
3732 representing a pointer to this descriptor. */
3733
3734static struct value *
3735make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3736{
3737 struct type *bounds_type = desc_bounds_type (type);
3738 struct type *desc_type = desc_base_type (type);
3739 struct value *descriptor = allocate_value (desc_type);
3740 struct value *bounds = allocate_value (bounds_type);
3741 int i;
3742
3743 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3744 {
3745 modify_general_field (value_contents_writeable (bounds),
3746 value_as_long (ada_array_bound (arr, i, 0)),
3747 desc_bound_bitpos (bounds_type, i, 0),
3748 desc_bound_bitsize (bounds_type, i, 0));
3749 modify_general_field (value_contents_writeable (bounds),
3750 value_as_long (ada_array_bound (arr, i, 1)),
3751 desc_bound_bitpos (bounds_type, i, 1),
3752 desc_bound_bitsize (bounds_type, i, 1));
3753 }
3754
3755 bounds = ensure_lval (bounds, sp);
3756
3757 modify_general_field (value_contents_writeable (descriptor),
3758 VALUE_ADDRESS (ensure_lval (arr, sp)),
3759 fat_pntr_data_bitpos (desc_type),
3760 fat_pntr_data_bitsize (desc_type));
3761
3762 modify_general_field (value_contents_writeable (descriptor),
3763 VALUE_ADDRESS (bounds),
3764 fat_pntr_bounds_bitpos (desc_type),
3765 fat_pntr_bounds_bitsize (desc_type));
3766
3767 descriptor = ensure_lval (descriptor, sp);
3768
3769 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3770 return value_addr (descriptor);
3771 else
3772 return descriptor;
3773}
3774
3775
3776/* Assuming a dummy frame has been established on the target, perform any
3777 conversions needed for calling function FUNC on the NARGS actual
3778 parameters in ARGS, other than standard C conversions. Does
3779 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3780 does not match the number of arguments expected. Use *SP as a
3781 stack pointer for additional data that must be pushed, updating its
3782 value as needed. */
3783
3784void
3785ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3786 CORE_ADDR *sp)
3787{
3788 int i;
3789
3790 if (TYPE_NFIELDS (value_type (func)) == 0
3791 || nargs != TYPE_NFIELDS (value_type (func)))
3792 return;
3793
3794 for (i = 0; i < nargs; i += 1)
3795 args[i] =
3796 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3797}
3798\f
3799/* Dummy definitions for an experimental caching module that is not
3800 * used in the public sources. */
3801
3802static int
3803lookup_cached_symbol (const char *name, domain_enum namespace,
3804 struct symbol **sym, struct block **block,
3805 struct symtab **symtab)
3806{
3807 return 0;
3808}
3809
3810static void
3811cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3812 struct block *block, struct symtab *symtab)
3813{
3814}
3815\f
3816 /* Symbol Lookup */
3817
3818/* Return the result of a standard (literal, C-like) lookup of NAME in
3819 given DOMAIN, visible from lexical block BLOCK. */
3820
3821static struct symbol *
3822standard_lookup (const char *name, const struct block *block,
3823 domain_enum domain)
3824{
3825 struct symbol *sym;
3826 struct symtab *symtab;
3827
3828 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3829 return sym;
3830 sym =
3831 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3832 cache_symbol (name, domain, sym, block_found, symtab);
3833 return sym;
3834}
3835
3836
3837/* Non-zero iff there is at least one non-function/non-enumeral symbol
3838 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3839 since they contend in overloading in the same way. */
3840static int
3841is_nonfunction (struct ada_symbol_info syms[], int n)
3842{
3843 int i;
3844
3845 for (i = 0; i < n; i += 1)
3846 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3847 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3848 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3849 return 1;
3850
3851 return 0;
3852}
3853
3854/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3855 struct types. Otherwise, they may not. */
3856
3857static int
3858equiv_types (struct type *type0, struct type *type1)
3859{
3860 if (type0 == type1)
3861 return 1;
3862 if (type0 == NULL || type1 == NULL
3863 || TYPE_CODE (type0) != TYPE_CODE (type1))
3864 return 0;
3865 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3866 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3867 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3868 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3869 return 1;
3870
3871 return 0;
3872}
3873
3874/* True iff SYM0 represents the same entity as SYM1, or one that is
3875 no more defined than that of SYM1. */
3876
3877static int
3878lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3879{
3880 if (sym0 == sym1)
3881 return 1;
3882 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3883 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3884 return 0;
3885
3886 switch (SYMBOL_CLASS (sym0))
3887 {
3888 case LOC_UNDEF:
3889 return 1;
3890 case LOC_TYPEDEF:
3891 {
3892 struct type *type0 = SYMBOL_TYPE (sym0);
3893 struct type *type1 = SYMBOL_TYPE (sym1);
3894 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3895 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3896 int len0 = strlen (name0);
3897 return
3898 TYPE_CODE (type0) == TYPE_CODE (type1)
3899 && (equiv_types (type0, type1)
3900 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3901 && strncmp (name1 + len0, "___XV", 5) == 0));
3902 }
3903 case LOC_CONST:
3904 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3905 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3906 default:
3907 return 0;
3908 }
3909}
3910
3911/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3912 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3913
3914static void
3915add_defn_to_vec (struct obstack *obstackp,
3916 struct symbol *sym,
3917 struct block *block, struct symtab *symtab)
3918{
3919 int i;
3920 size_t tmp;
3921 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3922
3923 /* Do not try to complete stub types, as the debugger is probably
3924 already scanning all symbols matching a certain name at the
3925 time when this function is called. Trying to replace the stub
3926 type by its associated full type will cause us to restart a scan
3927 which may lead to an infinite recursion. Instead, the client
3928 collecting the matching symbols will end up collecting several
3929 matches, with at least one of them complete. It can then filter
3930 out the stub ones if needed. */
3931
3932 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3933 {
3934 if (lesseq_defined_than (sym, prevDefns[i].sym))
3935 return;
3936 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3937 {
3938 prevDefns[i].sym = sym;
3939 prevDefns[i].block = block;
3940 prevDefns[i].symtab = symtab;
3941 return;
3942 }
3943 }
3944
3945 {
3946 struct ada_symbol_info info;
3947
3948 info.sym = sym;
3949 info.block = block;
3950 info.symtab = symtab;
3951 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3952 }
3953}
3954
3955/* Number of ada_symbol_info structures currently collected in
3956 current vector in *OBSTACKP. */
3957
3958static int
3959num_defns_collected (struct obstack *obstackp)
3960{
3961 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3962}
3963
3964/* Vector of ada_symbol_info structures currently collected in current
3965 vector in *OBSTACKP. If FINISH, close off the vector and return
3966 its final address. */
3967
3968static struct ada_symbol_info *
3969defns_collected (struct obstack *obstackp, int finish)
3970{
3971 if (finish)
3972 return obstack_finish (obstackp);
3973 else
3974 return (struct ada_symbol_info *) obstack_base (obstackp);
3975}
3976
3977/* Look, in partial_symtab PST, for symbol NAME in given namespace.
3978 Check the global symbols if GLOBAL, the static symbols if not.
3979 Do wild-card match if WILD. */
3980
3981static struct partial_symbol *
3982ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3983 int global, domain_enum namespace, int wild)
3984{
3985 struct partial_symbol **start;
3986 int name_len = strlen (name);
3987 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3988 int i;
3989
3990 if (length == 0)
3991 {
3992 return (NULL);
3993 }
3994
3995 start = (global ?
3996 pst->objfile->global_psymbols.list + pst->globals_offset :
3997 pst->objfile->static_psymbols.list + pst->statics_offset);
3998
3999 if (wild)
4000 {
4001 for (i = 0; i < length; i += 1)
4002 {
4003 struct partial_symbol *psym = start[i];
4004
4005 if (SYMBOL_DOMAIN (psym) == namespace
4006 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4007 return psym;
4008 }
4009 return NULL;
4010 }
4011 else
4012 {
4013 if (global)
4014 {
4015 int U;
4016 i = 0;
4017 U = length - 1;
4018 while (U - i > 4)
4019 {
4020 int M = (U + i) >> 1;
4021 struct partial_symbol *psym = start[M];
4022 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4023 i = M + 1;
4024 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4025 U = M - 1;
4026 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4027 i = M + 1;
4028 else
4029 U = M;
4030 }
4031 }
4032 else
4033 i = 0;
4034
4035 while (i < length)
4036 {
4037 struct partial_symbol *psym = start[i];
4038
4039 if (SYMBOL_DOMAIN (psym) == namespace)
4040 {
4041 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4042
4043 if (cmp < 0)
4044 {
4045 if (global)
4046 break;
4047 }
4048 else if (cmp == 0
4049 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4050 + name_len))
4051 return psym;
4052 }
4053 i += 1;
4054 }
4055
4056 if (global)
4057 {
4058 int U;
4059 i = 0;
4060 U = length - 1;
4061 while (U - i > 4)
4062 {
4063 int M = (U + i) >> 1;
4064 struct partial_symbol *psym = start[M];
4065 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4066 i = M + 1;
4067 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4068 U = M - 1;
4069 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4070 i = M + 1;
4071 else
4072 U = M;
4073 }
4074 }
4075 else
4076 i = 0;
4077
4078 while (i < length)
4079 {
4080 struct partial_symbol *psym = start[i];
4081
4082 if (SYMBOL_DOMAIN (psym) == namespace)
4083 {
4084 int cmp;
4085
4086 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4087 if (cmp == 0)
4088 {
4089 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4090 if (cmp == 0)
4091 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4092 name_len);
4093 }
4094
4095 if (cmp < 0)
4096 {
4097 if (global)
4098 break;
4099 }
4100 else if (cmp == 0
4101 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4102 + name_len + 5))
4103 return psym;
4104 }
4105 i += 1;
4106 }
4107 }
4108 return NULL;
4109}
4110
4111/* Find a symbol table containing symbol SYM or NULL if none. */
4112
4113static struct symtab *
4114symtab_for_sym (struct symbol *sym)
4115{
4116 struct symtab *s;
4117 struct objfile *objfile;
4118 struct block *b;
4119 struct symbol *tmp_sym;
4120 struct dict_iterator iter;
4121 int j;
4122
4123 ALL_PRIMARY_SYMTABS (objfile, s)
4124 {
4125 switch (SYMBOL_CLASS (sym))
4126 {
4127 case LOC_CONST:
4128 case LOC_STATIC:
4129 case LOC_TYPEDEF:
4130 case LOC_REGISTER:
4131 case LOC_LABEL:
4132 case LOC_BLOCK:
4133 case LOC_CONST_BYTES:
4134 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4135 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4136 return s;
4137 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4138 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4139 return s;
4140 break;
4141 default:
4142 break;
4143 }
4144 switch (SYMBOL_CLASS (sym))
4145 {
4146 case LOC_REGISTER:
4147 case LOC_ARG:
4148 case LOC_REF_ARG:
4149 case LOC_REGPARM:
4150 case LOC_REGPARM_ADDR:
4151 case LOC_LOCAL:
4152 case LOC_TYPEDEF:
4153 case LOC_LOCAL_ARG:
4154 case LOC_BASEREG:
4155 case LOC_BASEREG_ARG:
4156 case LOC_COMPUTED:
4157 case LOC_COMPUTED_ARG:
4158 for (j = FIRST_LOCAL_BLOCK;
4159 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4160 {
4161 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4162 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4163 return s;
4164 }
4165 break;
4166 default:
4167 break;
4168 }
4169 }
4170 return NULL;
4171}
4172
4173/* Return a minimal symbol matching NAME according to Ada decoding
4174 rules. Returns NULL if there is no such minimal symbol. Names
4175 prefixed with "standard__" are handled specially: "standard__" is
4176 first stripped off, and only static and global symbols are searched. */
4177
4178struct minimal_symbol *
4179ada_lookup_simple_minsym (const char *name)
4180{
4181 struct objfile *objfile;
4182 struct minimal_symbol *msymbol;
4183 int wild_match;
4184
4185 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4186 {
4187 name += sizeof ("standard__") - 1;
4188 wild_match = 0;
4189 }
4190 else
4191 wild_match = (strstr (name, "__") == NULL);
4192
4193 ALL_MSYMBOLS (objfile, msymbol)
4194 {
4195 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4196 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4197 return msymbol;
4198 }
4199
4200 return NULL;
4201}
4202
4203/* For all subprograms that statically enclose the subprogram of the
4204 selected frame, add symbols matching identifier NAME in DOMAIN
4205 and their blocks to the list of data in OBSTACKP, as for
4206 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4207 wildcard prefix. */
4208
4209static void
4210add_symbols_from_enclosing_procs (struct obstack *obstackp,
4211 const char *name, domain_enum namespace,
4212 int wild_match)
4213{
4214}
4215
4216/* FIXME: The next two routines belong in symtab.c */
4217
4218static void
4219restore_language (void *lang)
4220{
4221 set_language ((enum language) lang);
4222}
4223
4224/* As for lookup_symbol, but performed as if the current language
4225 were LANG. */
4226
4227struct symbol *
4228lookup_symbol_in_language (const char *name, const struct block *block,
4229 domain_enum domain, enum language lang,
4230 int *is_a_field_of_this, struct symtab **symtab)
4231{
4232 struct cleanup *old_chain
4233 = make_cleanup (restore_language, (void *) current_language->la_language);
4234 struct symbol *result;
4235 set_language (lang);
4236 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4237 do_cleanups (old_chain);
4238 return result;
4239}
4240
4241/* True if TYPE is definitely an artificial type supplied to a symbol
4242 for which no debugging information was given in the symbol file. */
4243
4244static int
4245is_nondebugging_type (struct type *type)
4246{
4247 char *name = ada_type_name (type);
4248 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4249}
4250
4251/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4252 duplicate other symbols in the list (The only case I know of where
4253 this happens is when object files containing stabs-in-ecoff are
4254 linked with files containing ordinary ecoff debugging symbols (or no
4255 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4256 Returns the number of items in the modified list. */
4257
4258static int
4259remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4260{
4261 int i, j;
4262
4263 i = 0;
4264 while (i < nsyms)
4265 {
4266 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4267 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4268 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4269 {
4270 for (j = 0; j < nsyms; j += 1)
4271 {
4272 if (i != j
4273 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4274 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4275 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4276 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4277 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4278 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4279 {
4280 int k;
4281 for (k = i + 1; k < nsyms; k += 1)
4282 syms[k - 1] = syms[k];
4283 nsyms -= 1;
4284 goto NextSymbol;
4285 }
4286 }
4287 }
4288 i += 1;
4289 NextSymbol:
4290 ;
4291 }
4292 return nsyms;
4293}
4294
4295/* Given a type that corresponds to a renaming entity, use the type name
4296 to extract the scope (package name or function name, fully qualified,
4297 and following the GNAT encoding convention) where this renaming has been
4298 defined. The string returned needs to be deallocated after use. */
4299
4300static char *
4301xget_renaming_scope (struct type *renaming_type)
4302{
4303 /* The renaming types adhere to the following convention:
4304 <scope>__<rename>___<XR extension>.
4305 So, to extract the scope, we search for the "___XR" extension,
4306 and then backtrack until we find the first "__". */
4307
4308 const char *name = type_name_no_tag (renaming_type);
4309 char *suffix = strstr (name, "___XR");
4310 char *last;
4311 int scope_len;
4312 char *scope;
4313
4314 /* Now, backtrack a bit until we find the first "__". Start looking
4315 at suffix - 3, as the <rename> part is at least one character long. */
4316
4317 for (last = suffix - 3; last > name; last--)
4318 if (last[0] == '_' && last[1] == '_')
4319 break;
4320
4321 /* Make a copy of scope and return it. */
4322
4323 scope_len = last - name;
4324 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4325
4326 strncpy (scope, name, scope_len);
4327 scope[scope_len] = '\0';
4328
4329 return scope;
4330}
4331
4332/* Return nonzero if NAME corresponds to a package name. */
4333
4334static int
4335is_package_name (const char *name)
4336{
4337 /* Here, We take advantage of the fact that no symbols are generated
4338 for packages, while symbols are generated for each function.
4339 So the condition for NAME represent a package becomes equivalent
4340 to NAME not existing in our list of symbols. There is only one
4341 small complication with library-level functions (see below). */
4342
4343 char *fun_name;
4344
4345 /* If it is a function that has not been defined at library level,
4346 then we should be able to look it up in the symbols. */
4347 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4348 return 0;
4349
4350 /* Library-level function names start with "_ada_". See if function
4351 "_ada_" followed by NAME can be found. */
4352
4353 /* Do a quick check that NAME does not contain "__", since library-level
4354 functions names cannot contain "__" in them. */
4355 if (strstr (name, "__") != NULL)
4356 return 0;
4357
4358 fun_name = xstrprintf ("_ada_%s", name);
4359
4360 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4361}
4362
4363/* Return nonzero if SYM corresponds to a renaming entity that is
4364 visible from FUNCTION_NAME. */
4365
4366static int
4367renaming_is_visible (const struct symbol *sym, char *function_name)
4368{
4369 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4370
4371 make_cleanup (xfree, scope);
4372
4373 /* If the rename has been defined in a package, then it is visible. */
4374 if (is_package_name (scope))
4375 return 1;
4376
4377 /* Check that the rename is in the current function scope by checking
4378 that its name starts with SCOPE. */
4379
4380 /* If the function name starts with "_ada_", it means that it is
4381 a library-level function. Strip this prefix before doing the
4382 comparison, as the encoding for the renaming does not contain
4383 this prefix. */
4384 if (strncmp (function_name, "_ada_", 5) == 0)
4385 function_name += 5;
4386
4387 return (strncmp (function_name, scope, strlen (scope)) == 0);
4388}
4389
4390/* Iterates over the SYMS list and remove any entry that corresponds to
4391 a renaming entity that is not visible from the function associated
4392 with CURRENT_BLOCK.
4393
4394 Rationale:
4395 GNAT emits a type following a specified encoding for each renaming
4396 entity. Unfortunately, STABS currently does not support the definition
4397 of types that are local to a given lexical block, so all renamings types
4398 are emitted at library level. As a consequence, if an application
4399 contains two renaming entities using the same name, and a user tries to
4400 print the value of one of these entities, the result of the ada symbol
4401 lookup will also contain the wrong renaming type.
4402
4403 This function partially covers for this limitation by attempting to
4404 remove from the SYMS list renaming symbols that should be visible
4405 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4406 method with the current information available. The implementation
4407 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4408
4409 - When the user tries to print a rename in a function while there
4410 is another rename entity defined in a package: Normally, the
4411 rename in the function has precedence over the rename in the
4412 package, so the latter should be removed from the list. This is
4413 currently not the case.
4414
4415 - This function will incorrectly remove valid renames if
4416 the CURRENT_BLOCK corresponds to a function which symbol name
4417 has been changed by an "Export" pragma. As a consequence,
4418 the user will be unable to print such rename entities. */
4419
4420static int
4421remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4422 int nsyms, struct block *current_block)
4423{
4424 struct symbol *current_function;
4425 char *current_function_name;
4426 int i;
4427
4428 /* Extract the function name associated to CURRENT_BLOCK.
4429 Abort if unable to do so. */
4430
4431 if (current_block == NULL)
4432 return nsyms;
4433
4434 current_function = block_function (current_block);
4435 if (current_function == NULL)
4436 return nsyms;
4437
4438 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4439 if (current_function_name == NULL)
4440 return nsyms;
4441
4442 /* Check each of the symbols, and remove it from the list if it is
4443 a type corresponding to a renaming that is out of the scope of
4444 the current block. */
4445
4446 i = 0;
4447 while (i < nsyms)
4448 {
4449 if (ada_is_object_renaming (syms[i].sym)
4450 && !renaming_is_visible (syms[i].sym, current_function_name))
4451 {
4452 int j;
4453 for (j = i + 1; j < nsyms; j++)
4454 syms[j - 1] = syms[j];
4455 nsyms -= 1;
4456 }
4457 else
4458 i += 1;
4459 }
4460
4461 return nsyms;
4462}
4463
4464/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4465 scope and in global scopes, returning the number of matches. Sets
4466 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4467 indicating the symbols found and the blocks and symbol tables (if
4468 any) in which they were found. This vector are transient---good only to
4469 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4470 symbol match within the nest of blocks whose innermost member is BLOCK0,
4471 is the one match returned (no other matches in that or
4472 enclosing blocks is returned). If there are any matches in or
4473 surrounding BLOCK0, then these alone are returned. Otherwise, the
4474 search extends to global and file-scope (static) symbol tables.
4475 Names prefixed with "standard__" are handled specially: "standard__"
4476 is first stripped off, and only static and global symbols are searched. */
4477
4478int
4479ada_lookup_symbol_list (const char *name0, const struct block *block0,
4480 domain_enum namespace,
4481 struct ada_symbol_info **results)
4482{
4483 struct symbol *sym;
4484 struct symtab *s;
4485 struct partial_symtab *ps;
4486 struct blockvector *bv;
4487 struct objfile *objfile;
4488 struct block *block;
4489 const char *name;
4490 struct minimal_symbol *msymbol;
4491 int wild_match;
4492 int cacheIfUnique;
4493 int block_depth;
4494 int ndefns;
4495
4496 obstack_free (&symbol_list_obstack, NULL);
4497 obstack_init (&symbol_list_obstack);
4498
4499 cacheIfUnique = 0;
4500
4501 /* Search specified block and its superiors. */
4502
4503 wild_match = (strstr (name0, "__") == NULL);
4504 name = name0;
4505 block = (struct block *) block0; /* FIXME: No cast ought to be
4506 needed, but adding const will
4507 have a cascade effect. */
4508 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4509 {
4510 wild_match = 0;
4511 block = NULL;
4512 name = name0 + sizeof ("standard__") - 1;
4513 }
4514
4515 block_depth = 0;
4516 while (block != NULL)
4517 {
4518 block_depth += 1;
4519 ada_add_block_symbols (&symbol_list_obstack, block, name,
4520 namespace, NULL, NULL, wild_match);
4521
4522 /* If we found a non-function match, assume that's the one. */
4523 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4524 num_defns_collected (&symbol_list_obstack)))
4525 goto done;
4526
4527 block = BLOCK_SUPERBLOCK (block);
4528 }
4529
4530 /* If no luck so far, try to find NAME as a local symbol in some lexically
4531 enclosing subprogram. */
4532 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4533 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4534 name, namespace, wild_match);
4535
4536 /* If we found ANY matches among non-global symbols, we're done. */
4537
4538 if (num_defns_collected (&symbol_list_obstack) > 0)
4539 goto done;
4540
4541 cacheIfUnique = 1;
4542 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4543 {
4544 if (sym != NULL)
4545 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4546 goto done;
4547 }
4548
4549 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4550 tables, and psymtab's. */
4551
4552 ALL_PRIMARY_SYMTABS (objfile, s)
4553 {
4554 QUIT;
4555 bv = BLOCKVECTOR (s);
4556 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4557 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4558 objfile, s, wild_match);
4559 }
4560
4561 if (namespace == VAR_DOMAIN)
4562 {
4563 ALL_MSYMBOLS (objfile, msymbol)
4564 {
4565 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4566 {
4567 switch (MSYMBOL_TYPE (msymbol))
4568 {
4569 case mst_solib_trampoline:
4570 break;
4571 default:
4572 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4573 if (s != NULL)
4574 {
4575 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4576 QUIT;
4577 bv = BLOCKVECTOR (s);
4578 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4579 ada_add_block_symbols (&symbol_list_obstack, block,
4580 SYMBOL_LINKAGE_NAME (msymbol),
4581 namespace, objfile, s, wild_match);
4582
4583 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4584 {
4585 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4586 ada_add_block_symbols (&symbol_list_obstack, block,
4587 SYMBOL_LINKAGE_NAME (msymbol),
4588 namespace, objfile, s,
4589 wild_match);
4590 }
4591 }
4592 }
4593 }
4594 }
4595 }
4596
4597 ALL_PSYMTABS (objfile, ps)
4598 {
4599 QUIT;
4600 if (!ps->readin
4601 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4602 {
4603 s = PSYMTAB_TO_SYMTAB (ps);
4604 if (!s->primary)
4605 continue;
4606 bv = BLOCKVECTOR (s);
4607 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4608 ada_add_block_symbols (&symbol_list_obstack, block, name,
4609 namespace, objfile, s, wild_match);
4610 }
4611 }
4612
4613 /* Now add symbols from all per-file blocks if we've gotten no hits
4614 (Not strictly correct, but perhaps better than an error).
4615 Do the symtabs first, then check the psymtabs. */
4616
4617 if (num_defns_collected (&symbol_list_obstack) == 0)
4618 {
4619
4620 ALL_PRIMARY_SYMTABS (objfile, s)
4621 {
4622 QUIT;
4623 bv = BLOCKVECTOR (s);
4624 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4625 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4626 objfile, s, wild_match);
4627 }
4628
4629 ALL_PSYMTABS (objfile, ps)
4630 {
4631 QUIT;
4632 if (!ps->readin
4633 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4634 {
4635 s = PSYMTAB_TO_SYMTAB (ps);
4636 bv = BLOCKVECTOR (s);
4637 if (!s->primary)
4638 continue;
4639 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4640 ada_add_block_symbols (&symbol_list_obstack, block, name,
4641 namespace, objfile, s, wild_match);
4642 }
4643 }
4644 }
4645
4646done:
4647 ndefns = num_defns_collected (&symbol_list_obstack);
4648 *results = defns_collected (&symbol_list_obstack, 1);
4649
4650 ndefns = remove_extra_symbols (*results, ndefns);
4651
4652 if (ndefns == 0)
4653 cache_symbol (name0, namespace, NULL, NULL, NULL);
4654
4655 if (ndefns == 1 && cacheIfUnique)
4656 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4657 (*results)[0].symtab);
4658
4659 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4660 (struct block *) block0);
4661
4662 return ndefns;
4663}
4664
4665/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4666 scope and in global scopes, or NULL if none. NAME is folded and
4667 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4668 choosing the first symbol if there are multiple choices.
4669 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4670 table in which the symbol was found (in both cases, these
4671 assignments occur only if the pointers are non-null). */
4672
4673struct symbol *
4674ada_lookup_symbol (const char *name, const struct block *block0,
4675 domain_enum namespace, int *is_a_field_of_this,
4676 struct symtab **symtab)
4677{
4678 struct ada_symbol_info *candidates;
4679 int n_candidates;
4680
4681 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4682 block0, namespace, &candidates);
4683
4684 if (n_candidates == 0)
4685 return NULL;
4686
4687 if (is_a_field_of_this != NULL)
4688 *is_a_field_of_this = 0;
4689
4690 if (symtab != NULL)
4691 {
4692 *symtab = candidates[0].symtab;
4693 if (*symtab == NULL && candidates[0].block != NULL)
4694 {
4695 struct objfile *objfile;
4696 struct symtab *s;
4697 struct block *b;
4698 struct blockvector *bv;
4699
4700 /* Search the list of symtabs for one which contains the
4701 address of the start of this block. */
4702 ALL_PRIMARY_SYMTABS (objfile, s)
4703 {
4704 bv = BLOCKVECTOR (s);
4705 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4706 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4707 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4708 {
4709 *symtab = s;
4710 return fixup_symbol_section (candidates[0].sym, objfile);
4711 }
4712 }
4713 /* FIXME: brobecker/2004-11-12: I think that we should never
4714 reach this point. I don't see a reason why we would not
4715 find a symtab for a given block, so I suggest raising an
4716 internal_error exception here. Otherwise, we end up
4717 returning a symbol but no symtab, which certain parts of
4718 the code that rely (indirectly) on this function do not
4719 expect, eventually causing a SEGV. */
4720 return fixup_symbol_section (candidates[0].sym, NULL);
4721 }
4722 }
4723 return candidates[0].sym;
4724}
4725
4726static struct symbol *
4727ada_lookup_symbol_nonlocal (const char *name,
4728 const char *linkage_name,
4729 const struct block *block,
4730 const domain_enum domain, struct symtab **symtab)
4731{
4732 if (linkage_name == NULL)
4733 linkage_name = name;
4734 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4735 NULL, symtab);
4736}
4737
4738
4739/* True iff STR is a possible encoded suffix of a normal Ada name
4740 that is to be ignored for matching purposes. Suffixes of parallel
4741 names (e.g., XVE) are not included here. Currently, the possible suffixes
4742 are given by either of the regular expression:
4743
4744 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4745 as GNU/Linux]
4746 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4747 _E[0-9]+[bs]$ [protected object entry suffixes]
4748 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4749 */
4750
4751static int
4752is_name_suffix (const char *str)
4753{
4754 int k;
4755 const char *matching;
4756 const int len = strlen (str);
4757
4758 /* (__[0-9]+)?\.[0-9]+ */
4759 matching = str;
4760 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4761 {
4762 matching += 3;
4763 while (isdigit (matching[0]))
4764 matching += 1;
4765 if (matching[0] == '\0')
4766 return 1;
4767 }
4768
4769 if (matching[0] == '.' || matching[0] == '$')
4770 {
4771 matching += 1;
4772 while (isdigit (matching[0]))
4773 matching += 1;
4774 if (matching[0] == '\0')
4775 return 1;
4776 }
4777
4778 /* ___[0-9]+ */
4779 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4780 {
4781 matching = str + 3;
4782 while (isdigit (matching[0]))
4783 matching += 1;
4784 if (matching[0] == '\0')
4785 return 1;
4786 }
4787
4788#if 0
4789 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4790 with a N at the end. Unfortunately, the compiler uses the same
4791 convention for other internal types it creates. So treating
4792 all entity names that end with an "N" as a name suffix causes
4793 some regressions. For instance, consider the case of an enumerated
4794 type. To support the 'Image attribute, it creates an array whose
4795 name ends with N.
4796 Having a single character like this as a suffix carrying some
4797 information is a bit risky. Perhaps we should change the encoding
4798 to be something like "_N" instead. In the meantime, do not do
4799 the following check. */
4800 /* Protected Object Subprograms */
4801 if (len == 1 && str [0] == 'N')
4802 return 1;
4803#endif
4804
4805 /* _E[0-9]+[bs]$ */
4806 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4807 {
4808 matching = str + 3;
4809 while (isdigit (matching[0]))
4810 matching += 1;
4811 if ((matching[0] == 'b' || matching[0] == 's')
4812 && matching [1] == '\0')
4813 return 1;
4814 }
4815
4816 /* ??? We should not modify STR directly, as we are doing below. This
4817 is fine in this case, but may become problematic later if we find
4818 that this alternative did not work, and want to try matching
4819 another one from the begining of STR. Since we modified it, we
4820 won't be able to find the begining of the string anymore! */
4821 if (str[0] == 'X')
4822 {
4823 str += 1;
4824 while (str[0] != '_' && str[0] != '\0')
4825 {
4826 if (str[0] != 'n' && str[0] != 'b')
4827 return 0;
4828 str += 1;
4829 }
4830 }
4831 if (str[0] == '\000')
4832 return 1;
4833 if (str[0] == '_')
4834 {
4835 if (str[1] != '_' || str[2] == '\000')
4836 return 0;
4837 if (str[2] == '_')
4838 {
4839 if (strcmp (str + 3, "JM") == 0)
4840 return 1;
4841 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4842 the LJM suffix in favor of the JM one. But we will
4843 still accept LJM as a valid suffix for a reasonable
4844 amount of time, just to allow ourselves to debug programs
4845 compiled using an older version of GNAT. */
4846 if (strcmp (str + 3, "LJM") == 0)
4847 return 1;
4848 if (str[3] != 'X')
4849 return 0;
4850 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4851 || str[4] == 'U' || str[4] == 'P')
4852 return 1;
4853 if (str[4] == 'R' && str[5] != 'T')
4854 return 1;
4855 return 0;
4856 }
4857 if (!isdigit (str[2]))
4858 return 0;
4859 for (k = 3; str[k] != '\0'; k += 1)
4860 if (!isdigit (str[k]) && str[k] != '_')
4861 return 0;
4862 return 1;
4863 }
4864 if (str[0] == '$' && isdigit (str[1]))
4865 {
4866 for (k = 2; str[k] != '\0'; k += 1)
4867 if (!isdigit (str[k]) && str[k] != '_')
4868 return 0;
4869 return 1;
4870 }
4871 return 0;
4872}
4873
4874/* Return nonzero if the given string starts with a dot ('.')
4875 followed by zero or more digits.
4876
4877 Note: brobecker/2003-11-10: A forward declaration has not been
4878 added at the begining of this file yet, because this function
4879 is only used to work around a problem found during wild matching
4880 when trying to match minimal symbol names against symbol names
4881 obtained from dwarf-2 data. This function is therefore currently
4882 only used in wild_match() and is likely to be deleted when the
4883 problem in dwarf-2 is fixed. */
4884
4885static int
4886is_dot_digits_suffix (const char *str)
4887{
4888 if (str[0] != '.')
4889 return 0;
4890
4891 str++;
4892 while (isdigit (str[0]))
4893 str++;
4894 return (str[0] == '\0');
4895}
4896
4897/* Return non-zero if NAME0 is a valid match when doing wild matching.
4898 Certain symbols appear at first to match, except that they turn out
4899 not to follow the Ada encoding and hence should not be used as a wild
4900 match of a given pattern. */
4901
4902static int
4903is_valid_name_for_wild_match (const char *name0)
4904{
4905 const char *decoded_name = ada_decode (name0);
4906 int i;
4907
4908 for (i=0; decoded_name[i] != '\0'; i++)
4909 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4910 return 0;
4911
4912 return 1;
4913}
4914
4915/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4916 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4917 informational suffixes of NAME (i.e., for which is_name_suffix is
4918 true). */
4919
4920static int
4921wild_match (const char *patn0, int patn_len, const char *name0)
4922{
4923 int name_len;
4924 char *name;
4925 char *patn;
4926
4927 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4928 stored in the symbol table for nested function names is sometimes
4929 different from the name of the associated entity stored in
4930 the dwarf-2 data: This is the case for nested subprograms, where
4931 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4932 while the symbol name from the dwarf-2 data does not.
4933
4934 Although the DWARF-2 standard documents that entity names stored
4935 in the dwarf-2 data should be identical to the name as seen in
4936 the source code, GNAT takes a different approach as we already use
4937 a special encoding mechanism to convey the information so that
4938 a C debugger can still use the information generated to debug
4939 Ada programs. A corollary is that the symbol names in the dwarf-2
4940 data should match the names found in the symbol table. I therefore
4941 consider this issue as a compiler defect.
4942
4943 Until the compiler is properly fixed, we work-around the problem
4944 by ignoring such suffixes during the match. We do so by making
4945 a copy of PATN0 and NAME0, and then by stripping such a suffix
4946 if present. We then perform the match on the resulting strings. */
4947 {
4948 char *dot;
4949 name_len = strlen (name0);
4950
4951 name = (char *) alloca ((name_len + 1) * sizeof (char));
4952 strcpy (name, name0);
4953 dot = strrchr (name, '.');
4954 if (dot != NULL && is_dot_digits_suffix (dot))
4955 *dot = '\0';
4956
4957 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4958 strncpy (patn, patn0, patn_len);
4959 patn[patn_len] = '\0';
4960 dot = strrchr (patn, '.');
4961 if (dot != NULL && is_dot_digits_suffix (dot))
4962 {
4963 *dot = '\0';
4964 patn_len = dot - patn;
4965 }
4966 }
4967
4968 /* Now perform the wild match. */
4969
4970 name_len = strlen (name);
4971 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4972 && strncmp (patn, name + 5, patn_len) == 0
4973 && is_name_suffix (name + patn_len + 5))
4974 return 1;
4975
4976 while (name_len >= patn_len)
4977 {
4978 if (strncmp (patn, name, patn_len) == 0
4979 && is_name_suffix (name + patn_len))
4980 return (is_valid_name_for_wild_match (name0));
4981 do
4982 {
4983 name += 1;
4984 name_len -= 1;
4985 }
4986 while (name_len > 0
4987 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4988 if (name_len <= 0)
4989 return 0;
4990 if (name[0] == '_')
4991 {
4992 if (!islower (name[2]))
4993 return 0;
4994 name += 2;
4995 name_len -= 2;
4996 }
4997 else
4998 {
4999 if (!islower (name[1]))
5000 return 0;
5001 name += 1;
5002 name_len -= 1;
5003 }
5004 }
5005
5006 return 0;
5007}
5008
5009
5010/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5011 vector *defn_symbols, updating the list of symbols in OBSTACKP
5012 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5013 OBJFILE is the section containing BLOCK.
5014 SYMTAB is recorded with each symbol added. */
5015
5016static void
5017ada_add_block_symbols (struct obstack *obstackp,
5018 struct block *block, const char *name,
5019 domain_enum domain, struct objfile *objfile,
5020 struct symtab *symtab, int wild)
5021{
5022 struct dict_iterator iter;
5023 int name_len = strlen (name);
5024 /* A matching argument symbol, if any. */
5025 struct symbol *arg_sym;
5026 /* Set true when we find a matching non-argument symbol. */
5027 int found_sym;
5028 struct symbol *sym;
5029
5030 arg_sym = NULL;
5031 found_sym = 0;
5032 if (wild)
5033 {
5034 struct symbol *sym;
5035 ALL_BLOCK_SYMBOLS (block, iter, sym)
5036 {
5037 if (SYMBOL_DOMAIN (sym) == domain
5038 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5039 {
5040 switch (SYMBOL_CLASS (sym))
5041 {
5042 case LOC_ARG:
5043 case LOC_LOCAL_ARG:
5044 case LOC_REF_ARG:
5045 case LOC_REGPARM:
5046 case LOC_REGPARM_ADDR:
5047 case LOC_BASEREG_ARG:
5048 case LOC_COMPUTED_ARG:
5049 arg_sym = sym;
5050 break;
5051 case LOC_UNRESOLVED:
5052 continue;
5053 default:
5054 found_sym = 1;
5055 add_defn_to_vec (obstackp,
5056 fixup_symbol_section (sym, objfile),
5057 block, symtab);
5058 break;
5059 }
5060 }
5061 }
5062 }
5063 else
5064 {
5065 ALL_BLOCK_SYMBOLS (block, iter, sym)
5066 {
5067 if (SYMBOL_DOMAIN (sym) == domain)
5068 {
5069 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5070 if (cmp == 0
5071 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5072 {
5073 switch (SYMBOL_CLASS (sym))
5074 {
5075 case LOC_ARG:
5076 case LOC_LOCAL_ARG:
5077 case LOC_REF_ARG:
5078 case LOC_REGPARM:
5079 case LOC_REGPARM_ADDR:
5080 case LOC_BASEREG_ARG:
5081 case LOC_COMPUTED_ARG:
5082 arg_sym = sym;
5083 break;
5084 case LOC_UNRESOLVED:
5085 break;
5086 default:
5087 found_sym = 1;
5088 add_defn_to_vec (obstackp,
5089 fixup_symbol_section (sym, objfile),
5090 block, symtab);
5091 break;
5092 }
5093 }
5094 }
5095 }
5096 }
5097
5098 if (!found_sym && arg_sym != NULL)
5099 {
5100 add_defn_to_vec (obstackp,
5101 fixup_symbol_section (arg_sym, objfile),
5102 block, symtab);
5103 }
5104
5105 if (!wild)
5106 {
5107 arg_sym = NULL;
5108 found_sym = 0;
5109
5110 ALL_BLOCK_SYMBOLS (block, iter, sym)
5111 {
5112 if (SYMBOL_DOMAIN (sym) == domain)
5113 {
5114 int cmp;
5115
5116 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5117 if (cmp == 0)
5118 {
5119 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5120 if (cmp == 0)
5121 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5122 name_len);
5123 }
5124
5125 if (cmp == 0
5126 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5127 {
5128 switch (SYMBOL_CLASS (sym))
5129 {
5130 case LOC_ARG:
5131 case LOC_LOCAL_ARG:
5132 case LOC_REF_ARG:
5133 case LOC_REGPARM:
5134 case LOC_REGPARM_ADDR:
5135 case LOC_BASEREG_ARG:
5136 case LOC_COMPUTED_ARG:
5137 arg_sym = sym;
5138 break;
5139 case LOC_UNRESOLVED:
5140 break;
5141 default:
5142 found_sym = 1;
5143 add_defn_to_vec (obstackp,
5144 fixup_symbol_section (sym, objfile),
5145 block, symtab);
5146 break;
5147 }
5148 }
5149 }
5150 }
5151
5152 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5153 They aren't parameters, right? */
5154 if (!found_sym && arg_sym != NULL)
5155 {
5156 add_defn_to_vec (obstackp,
5157 fixup_symbol_section (arg_sym, objfile),
5158 block, symtab);
5159 }
5160 }
5161}
5162\f
5163 /* Field Access */
5164
5165/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5166 to be invisible to users. */
5167
5168int
5169ada_is_ignored_field (struct type *type, int field_num)
5170{
5171 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5172 return 1;
5173 else
5174 {
5175 const char *name = TYPE_FIELD_NAME (type, field_num);
5176 return (name == NULL
5177 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5178 }
5179}
5180
5181/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5182 pointer or reference type whose ultimate target has a tag field. */
5183
5184int
5185ada_is_tagged_type (struct type *type, int refok)
5186{
5187 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5188}
5189
5190/* True iff TYPE represents the type of X'Tag */
5191
5192int
5193ada_is_tag_type (struct type *type)
5194{
5195 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5196 return 0;
5197 else
5198 {
5199 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5200 return (name != NULL
5201 && strcmp (name, "ada__tags__dispatch_table") == 0);
5202 }
5203}
5204
5205/* The type of the tag on VAL. */
5206
5207struct type *
5208ada_tag_type (struct value *val)
5209{
5210 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5211}
5212
5213/* The value of the tag on VAL. */
5214
5215struct value *
5216ada_value_tag (struct value *val)
5217{
5218 return ada_value_struct_elt (val, "_tag", 0);
5219}
5220
5221/* The value of the tag on the object of type TYPE whose contents are
5222 saved at VALADDR, if it is non-null, or is at memory address
5223 ADDRESS. */
5224
5225static struct value *
5226value_tag_from_contents_and_address (struct type *type,
5227 const gdb_byte *valaddr,
5228 CORE_ADDR address)
5229{
5230 int tag_byte_offset, dummy1, dummy2;
5231 struct type *tag_type;
5232 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5233 NULL, NULL, NULL))
5234 {
5235 const gdb_byte *valaddr1 = ((valaddr == NULL)
5236 ? NULL
5237 : valaddr + tag_byte_offset);
5238 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5239
5240 return value_from_contents_and_address (tag_type, valaddr1, address1);
5241 }
5242 return NULL;
5243}
5244
5245static struct type *
5246type_from_tag (struct value *tag)
5247{
5248 const char *type_name = ada_tag_name (tag);
5249 if (type_name != NULL)
5250 return ada_find_any_type (ada_encode (type_name));
5251 return NULL;
5252}
5253
5254struct tag_args
5255{
5256 struct value *tag;
5257 char *name;
5258};
5259
5260
5261static int ada_tag_name_1 (void *);
5262static int ada_tag_name_2 (struct tag_args *);
5263
5264/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5265 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5266 The value stored in ARGS->name is valid until the next call to
5267 ada_tag_name_1. */
5268
5269static int
5270ada_tag_name_1 (void *args0)
5271{
5272 struct tag_args *args = (struct tag_args *) args0;
5273 static char name[1024];
5274 char *p;
5275 struct value *val;
5276 args->name = NULL;
5277 val = ada_value_struct_elt (args->tag, "tsd", 1);
5278 if (val == NULL)
5279 return ada_tag_name_2 (args);
5280 val = ada_value_struct_elt (val, "expanded_name", 1);
5281 if (val == NULL)
5282 return 0;
5283 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5284 for (p = name; *p != '\0'; p += 1)
5285 if (isalpha (*p))
5286 *p = tolower (*p);
5287 args->name = name;
5288 return 0;
5289}
5290
5291/* Utility function for ada_tag_name_1 that tries the second
5292 representation for the dispatch table (in which there is no
5293 explicit 'tsd' field in the referent of the tag pointer, and instead
5294 the tsd pointer is stored just before the dispatch table. */
5295
5296static int
5297ada_tag_name_2 (struct tag_args *args)
5298{
5299 struct type *info_type;
5300 static char name[1024];
5301 char *p;
5302 struct value *val, *valp;
5303
5304 args->name = NULL;
5305 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5306 if (info_type == NULL)
5307 return 0;
5308 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5309 valp = value_cast (info_type, args->tag);
5310 if (valp == NULL)
5311 return 0;
5312 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5313 if (val == NULL)
5314 return 0;
5315 val = ada_value_struct_elt (val, "expanded_name", 1);
5316 if (val == NULL)
5317 return 0;
5318 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5319 for (p = name; *p != '\0'; p += 1)
5320 if (isalpha (*p))
5321 *p = tolower (*p);
5322 args->name = name;
5323 return 0;
5324}
5325
5326/* The type name of the dynamic type denoted by the 'tag value TAG, as
5327 * a C string. */
5328
5329const char *
5330ada_tag_name (struct value *tag)
5331{
5332 struct tag_args args;
5333 if (!ada_is_tag_type (value_type (tag)))
5334 return NULL;
5335 args.tag = tag;
5336 args.name = NULL;
5337 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5338 return args.name;
5339}
5340
5341/* The parent type of TYPE, or NULL if none. */
5342
5343struct type *
5344ada_parent_type (struct type *type)
5345{
5346 int i;
5347
5348 type = ada_check_typedef (type);
5349
5350 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5351 return NULL;
5352
5353 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5354 if (ada_is_parent_field (type, i))
5355 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5356
5357 return NULL;
5358}
5359
5360/* True iff field number FIELD_NUM of structure type TYPE contains the
5361 parent-type (inherited) fields of a derived type. Assumes TYPE is
5362 a structure type with at least FIELD_NUM+1 fields. */
5363
5364int
5365ada_is_parent_field (struct type *type, int field_num)
5366{
5367 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5368 return (name != NULL
5369 && (strncmp (name, "PARENT", 6) == 0
5370 || strncmp (name, "_parent", 7) == 0));
5371}
5372
5373/* True iff field number FIELD_NUM of structure type TYPE is a
5374 transparent wrapper field (which should be silently traversed when doing
5375 field selection and flattened when printing). Assumes TYPE is a
5376 structure type with at least FIELD_NUM+1 fields. Such fields are always
5377 structures. */
5378
5379int
5380ada_is_wrapper_field (struct type *type, int field_num)
5381{
5382 const char *name = TYPE_FIELD_NAME (type, field_num);
5383 return (name != NULL
5384 && (strncmp (name, "PARENT", 6) == 0
5385 || strcmp (name, "REP") == 0
5386 || strncmp (name, "_parent", 7) == 0
5387 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5388}
5389
5390/* True iff field number FIELD_NUM of structure or union type TYPE
5391 is a variant wrapper. Assumes TYPE is a structure type with at least
5392 FIELD_NUM+1 fields. */
5393
5394int
5395ada_is_variant_part (struct type *type, int field_num)
5396{
5397 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5398 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5399 || (is_dynamic_field (type, field_num)
5400 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5401 == TYPE_CODE_UNION)));
5402}
5403
5404/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5405 whose discriminants are contained in the record type OUTER_TYPE,
5406 returns the type of the controlling discriminant for the variant. */
5407
5408struct type *
5409ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5410{
5411 char *name = ada_variant_discrim_name (var_type);
5412 struct type *type =
5413 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5414 if (type == NULL)
5415 return builtin_type_int;
5416 else
5417 return type;
5418}
5419
5420/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5421 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5422 represents a 'when others' clause; otherwise 0. */
5423
5424int
5425ada_is_others_clause (struct type *type, int field_num)
5426{
5427 const char *name = TYPE_FIELD_NAME (type, field_num);
5428 return (name != NULL && name[0] == 'O');
5429}
5430
5431/* Assuming that TYPE0 is the type of the variant part of a record,
5432 returns the name of the discriminant controlling the variant.
5433 The value is valid until the next call to ada_variant_discrim_name. */
5434
5435char *
5436ada_variant_discrim_name (struct type *type0)
5437{
5438 static char *result = NULL;
5439 static size_t result_len = 0;
5440 struct type *type;
5441 const char *name;
5442 const char *discrim_end;
5443 const char *discrim_start;
5444
5445 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5446 type = TYPE_TARGET_TYPE (type0);
5447 else
5448 type = type0;
5449
5450 name = ada_type_name (type);
5451
5452 if (name == NULL || name[0] == '\000')
5453 return "";
5454
5455 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5456 discrim_end -= 1)
5457 {
5458 if (strncmp (discrim_end, "___XVN", 6) == 0)
5459 break;
5460 }
5461 if (discrim_end == name)
5462 return "";
5463
5464 for (discrim_start = discrim_end; discrim_start != name + 3;
5465 discrim_start -= 1)
5466 {
5467 if (discrim_start == name + 1)
5468 return "";
5469 if ((discrim_start > name + 3
5470 && strncmp (discrim_start - 3, "___", 3) == 0)
5471 || discrim_start[-1] == '.')
5472 break;
5473 }
5474
5475 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5476 strncpy (result, discrim_start, discrim_end - discrim_start);
5477 result[discrim_end - discrim_start] = '\0';
5478 return result;
5479}
5480
5481/* Scan STR for a subtype-encoded number, beginning at position K.
5482 Put the position of the character just past the number scanned in
5483 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5484 Return 1 if there was a valid number at the given position, and 0
5485 otherwise. A "subtype-encoded" number consists of the absolute value
5486 in decimal, followed by the letter 'm' to indicate a negative number.
5487 Assumes 0m does not occur. */
5488
5489int
5490ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5491{
5492 ULONGEST RU;
5493
5494 if (!isdigit (str[k]))
5495 return 0;
5496
5497 /* Do it the hard way so as not to make any assumption about
5498 the relationship of unsigned long (%lu scan format code) and
5499 LONGEST. */
5500 RU = 0;
5501 while (isdigit (str[k]))
5502 {
5503 RU = RU * 10 + (str[k] - '0');
5504 k += 1;
5505 }
5506
5507 if (str[k] == 'm')
5508 {
5509 if (R != NULL)
5510 *R = (-(LONGEST) (RU - 1)) - 1;
5511 k += 1;
5512 }
5513 else if (R != NULL)
5514 *R = (LONGEST) RU;
5515
5516 /* NOTE on the above: Technically, C does not say what the results of
5517 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5518 number representable as a LONGEST (although either would probably work
5519 in most implementations). When RU>0, the locution in the then branch
5520 above is always equivalent to the negative of RU. */
5521
5522 if (new_k != NULL)
5523 *new_k = k;
5524 return 1;
5525}
5526
5527/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5528 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5529 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5530
5531int
5532ada_in_variant (LONGEST val, struct type *type, int field_num)
5533{
5534 const char *name = TYPE_FIELD_NAME (type, field_num);
5535 int p;
5536
5537 p = 0;
5538 while (1)
5539 {
5540 switch (name[p])
5541 {
5542 case '\0':
5543 return 0;
5544 case 'S':
5545 {
5546 LONGEST W;
5547 if (!ada_scan_number (name, p + 1, &W, &p))
5548 return 0;
5549 if (val == W)
5550 return 1;
5551 break;
5552 }
5553 case 'R':
5554 {
5555 LONGEST L, U;
5556 if (!ada_scan_number (name, p + 1, &L, &p)
5557 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5558 return 0;
5559 if (val >= L && val <= U)
5560 return 1;
5561 break;
5562 }
5563 case 'O':
5564 return 1;
5565 default:
5566 return 0;
5567 }
5568 }
5569}
5570
5571/* FIXME: Lots of redundancy below. Try to consolidate. */
5572
5573/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5574 ARG_TYPE, extract and return the value of one of its (non-static)
5575 fields. FIELDNO says which field. Differs from value_primitive_field
5576 only in that it can handle packed values of arbitrary type. */
5577
5578static struct value *
5579ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5580 struct type *arg_type)
5581{
5582 struct type *type;
5583
5584 arg_type = ada_check_typedef (arg_type);
5585 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5586
5587 /* Handle packed fields. */
5588
5589 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5590 {
5591 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5592 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5593
5594 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5595 offset + bit_pos / 8,
5596 bit_pos % 8, bit_size, type);
5597 }
5598 else
5599 return value_primitive_field (arg1, offset, fieldno, arg_type);
5600}
5601
5602/* Find field with name NAME in object of type TYPE. If found,
5603 set the following for each argument that is non-null:
5604 - *FIELD_TYPE_P to the field's type;
5605 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5606 an object of that type;
5607 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5608 - *BIT_SIZE_P to its size in bits if the field is packed, and
5609 0 otherwise;
5610 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5611 fields up to but not including the desired field, or by the total
5612 number of fields if not found. A NULL value of NAME never
5613 matches; the function just counts visible fields in this case.
5614
5615 Returns 1 if found, 0 otherwise. */
5616
5617static int
5618find_struct_field (char *name, struct type *type, int offset,
5619 struct type **field_type_p,
5620 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5621 int *index_p)
5622{
5623 int i;
5624
5625 type = ada_check_typedef (type);
5626
5627 if (field_type_p != NULL)
5628 *field_type_p = NULL;
5629 if (byte_offset_p != NULL)
5630 *byte_offset_p = 0;
5631 if (bit_offset_p != NULL)
5632 *bit_offset_p = 0;
5633 if (bit_size_p != NULL)
5634 *bit_size_p = 0;
5635
5636 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5637 {
5638 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5639 int fld_offset = offset + bit_pos / 8;
5640 char *t_field_name = TYPE_FIELD_NAME (type, i);
5641
5642 if (t_field_name == NULL)
5643 continue;
5644
5645 else if (name != NULL && field_name_match (t_field_name, name))
5646 {
5647 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5648 if (field_type_p != NULL)
5649 *field_type_p = TYPE_FIELD_TYPE (type, i);
5650 if (byte_offset_p != NULL)
5651 *byte_offset_p = fld_offset;
5652 if (bit_offset_p != NULL)
5653 *bit_offset_p = bit_pos % 8;
5654 if (bit_size_p != NULL)
5655 *bit_size_p = bit_size;
5656 return 1;
5657 }
5658 else if (ada_is_wrapper_field (type, i))
5659 {
5660 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5661 field_type_p, byte_offset_p, bit_offset_p,
5662 bit_size_p, index_p))
5663 return 1;
5664 }
5665 else if (ada_is_variant_part (type, i))
5666 {
5667 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5668 fixed type?? */
5669 int j;
5670 struct type *field_type
5671 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5672
5673 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5674 {
5675 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5676 fld_offset
5677 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5678 field_type_p, byte_offset_p,
5679 bit_offset_p, bit_size_p, index_p))
5680 return 1;
5681 }
5682 }
5683 else if (index_p != NULL)
5684 *index_p += 1;
5685 }
5686 return 0;
5687}
5688
5689/* Number of user-visible fields in record type TYPE. */
5690
5691static int
5692num_visible_fields (struct type *type)
5693{
5694 int n;
5695 n = 0;
5696 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5697 return n;
5698}
5699
5700/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5701 and search in it assuming it has (class) type TYPE.
5702 If found, return value, else return NULL.
5703
5704 Searches recursively through wrapper fields (e.g., '_parent'). */
5705
5706static struct value *
5707ada_search_struct_field (char *name, struct value *arg, int offset,
5708 struct type *type)
5709{
5710 int i;
5711 type = ada_check_typedef (type);
5712
5713 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5714 {
5715 char *t_field_name = TYPE_FIELD_NAME (type, i);
5716
5717 if (t_field_name == NULL)
5718 continue;
5719
5720 else if (field_name_match (t_field_name, name))
5721 return ada_value_primitive_field (arg, offset, i, type);
5722
5723 else if (ada_is_wrapper_field (type, i))
5724 {
5725 struct value *v = /* Do not let indent join lines here. */
5726 ada_search_struct_field (name, arg,
5727 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5728 TYPE_FIELD_TYPE (type, i));
5729 if (v != NULL)
5730 return v;
5731 }
5732
5733 else if (ada_is_variant_part (type, i))
5734 {
5735 /* PNH: Do we ever get here? See find_struct_field. */
5736 int j;
5737 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5738 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5739
5740 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5741 {
5742 struct value *v = ada_search_struct_field /* Force line break. */
5743 (name, arg,
5744 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5745 TYPE_FIELD_TYPE (field_type, j));
5746 if (v != NULL)
5747 return v;
5748 }
5749 }
5750 }
5751 return NULL;
5752}
5753
5754static struct value *ada_index_struct_field_1 (int *, struct value *,
5755 int, struct type *);
5756
5757
5758/* Return field #INDEX in ARG, where the index is that returned by
5759 * find_struct_field through its INDEX_P argument. Adjust the address
5760 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5761 * If found, return value, else return NULL. */
5762
5763static struct value *
5764ada_index_struct_field (int index, struct value *arg, int offset,
5765 struct type *type)
5766{
5767 return ada_index_struct_field_1 (&index, arg, offset, type);
5768}
5769
5770
5771/* Auxiliary function for ada_index_struct_field. Like
5772 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5773 * *INDEX_P. */
5774
5775static struct value *
5776ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5777 struct type *type)
5778{
5779 int i;
5780 type = ada_check_typedef (type);
5781
5782 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5783 {
5784 if (TYPE_FIELD_NAME (type, i) == NULL)
5785 continue;
5786 else if (ada_is_wrapper_field (type, i))
5787 {
5788 struct value *v = /* Do not let indent join lines here. */
5789 ada_index_struct_field_1 (index_p, arg,
5790 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5791 TYPE_FIELD_TYPE (type, i));
5792 if (v != NULL)
5793 return v;
5794 }
5795
5796 else if (ada_is_variant_part (type, i))
5797 {
5798 /* PNH: Do we ever get here? See ada_search_struct_field,
5799 find_struct_field. */
5800 error (_("Cannot assign this kind of variant record"));
5801 }
5802 else if (*index_p == 0)
5803 return ada_value_primitive_field (arg, offset, i, type);
5804 else
5805 *index_p -= 1;
5806 }
5807 return NULL;
5808}
5809
5810/* Given ARG, a value of type (pointer or reference to a)*
5811 structure/union, extract the component named NAME from the ultimate
5812 target structure/union and return it as a value with its
5813 appropriate type. If ARG is a pointer or reference and the field
5814 is not packed, returns a reference to the field, otherwise the
5815 value of the field (an lvalue if ARG is an lvalue).
5816
5817 The routine searches for NAME among all members of the structure itself
5818 and (recursively) among all members of any wrapper members
5819 (e.g., '_parent').
5820
5821 If NO_ERR, then simply return NULL in case of error, rather than
5822 calling error. */
5823
5824struct value *
5825ada_value_struct_elt (struct value *arg, char *name, int no_err)
5826{
5827 struct type *t, *t1;
5828 struct value *v;
5829
5830 v = NULL;
5831 t1 = t = ada_check_typedef (value_type (arg));
5832 if (TYPE_CODE (t) == TYPE_CODE_REF)
5833 {
5834 t1 = TYPE_TARGET_TYPE (t);
5835 if (t1 == NULL)
5836 goto BadValue;
5837 t1 = ada_check_typedef (t1);
5838 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5839 {
5840 arg = coerce_ref (arg);
5841 t = t1;
5842 }
5843 }
5844
5845 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5846 {
5847 t1 = TYPE_TARGET_TYPE (t);
5848 if (t1 == NULL)
5849 goto BadValue;
5850 t1 = ada_check_typedef (t1);
5851 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5852 {
5853 arg = value_ind (arg);
5854 t = t1;
5855 }
5856 else
5857 break;
5858 }
5859
5860 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5861 goto BadValue;
5862
5863 if (t1 == t)
5864 v = ada_search_struct_field (name, arg, 0, t);
5865 else
5866 {
5867 int bit_offset, bit_size, byte_offset;
5868 struct type *field_type;
5869 CORE_ADDR address;
5870
5871 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5872 address = value_as_address (arg);
5873 else
5874 address = unpack_pointer (t, value_contents (arg));
5875
5876 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5877 if (find_struct_field (name, t1, 0,
5878 &field_type, &byte_offset, &bit_offset,
5879 &bit_size, NULL))
5880 {
5881 if (bit_size != 0)
5882 {
5883 if (TYPE_CODE (t) == TYPE_CODE_REF)
5884 arg = ada_coerce_ref (arg);
5885 else
5886 arg = ada_value_ind (arg);
5887 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5888 bit_offset, bit_size,
5889 field_type);
5890 }
5891 else
5892 v = value_from_pointer (lookup_reference_type (field_type),
5893 address + byte_offset);
5894 }
5895 }
5896
5897 if (v != NULL || no_err)
5898 return v;
5899 else
5900 error (_("There is no member named %s."), name);
5901
5902 BadValue:
5903 if (no_err)
5904 return NULL;
5905 else
5906 error (_("Attempt to extract a component of a value that is not a record."));
5907}
5908
5909/* Given a type TYPE, look up the type of the component of type named NAME.
5910 If DISPP is non-null, add its byte displacement from the beginning of a
5911 structure (pointed to by a value) of type TYPE to *DISPP (does not
5912 work for packed fields).
5913
5914 Matches any field whose name has NAME as a prefix, possibly
5915 followed by "___".
5916
5917 TYPE can be either a struct or union. If REFOK, TYPE may also
5918 be a (pointer or reference)+ to a struct or union, and the
5919 ultimate target type will be searched.
5920
5921 Looks recursively into variant clauses and parent types.
5922
5923 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5924 TYPE is not a type of the right kind. */
5925
5926static struct type *
5927ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5928 int noerr, int *dispp)
5929{
5930 int i;
5931
5932 if (name == NULL)
5933 goto BadName;
5934
5935 if (refok && type != NULL)
5936 while (1)
5937 {
5938 type = ada_check_typedef (type);
5939 if (TYPE_CODE (type) != TYPE_CODE_PTR
5940 && TYPE_CODE (type) != TYPE_CODE_REF)
5941 break;
5942 type = TYPE_TARGET_TYPE (type);
5943 }
5944
5945 if (type == NULL
5946 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5947 && TYPE_CODE (type) != TYPE_CODE_UNION))
5948 {
5949 if (noerr)
5950 return NULL;
5951 else
5952 {
5953 target_terminal_ours ();
5954 gdb_flush (gdb_stdout);
5955 if (type == NULL)
5956 error (_("Type (null) is not a structure or union type"));
5957 else
5958 {
5959 /* XXX: type_sprint */
5960 fprintf_unfiltered (gdb_stderr, _("Type "));
5961 type_print (type, "", gdb_stderr, -1);
5962 error (_(" is not a structure or union type"));
5963 }
5964 }
5965 }
5966
5967 type = to_static_fixed_type (type);
5968
5969 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5970 {
5971 char *t_field_name = TYPE_FIELD_NAME (type, i);
5972 struct type *t;
5973 int disp;
5974
5975 if (t_field_name == NULL)
5976 continue;
5977
5978 else if (field_name_match (t_field_name, name))
5979 {
5980 if (dispp != NULL)
5981 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5982 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5983 }
5984
5985 else if (ada_is_wrapper_field (type, i))
5986 {
5987 disp = 0;
5988 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5989 0, 1, &disp);
5990 if (t != NULL)
5991 {
5992 if (dispp != NULL)
5993 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5994 return t;
5995 }
5996 }
5997
5998 else if (ada_is_variant_part (type, i))
5999 {
6000 int j;
6001 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6002
6003 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6004 {
6005 disp = 0;
6006 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6007 name, 0, 1, &disp);
6008 if (t != NULL)
6009 {
6010 if (dispp != NULL)
6011 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6012 return t;
6013 }
6014 }
6015 }
6016
6017 }
6018
6019BadName:
6020 if (!noerr)
6021 {
6022 target_terminal_ours ();
6023 gdb_flush (gdb_stdout);
6024 if (name == NULL)
6025 {
6026 /* XXX: type_sprint */
6027 fprintf_unfiltered (gdb_stderr, _("Type "));
6028 type_print (type, "", gdb_stderr, -1);
6029 error (_(" has no component named <null>"));
6030 }
6031 else
6032 {
6033 /* XXX: type_sprint */
6034 fprintf_unfiltered (gdb_stderr, _("Type "));
6035 type_print (type, "", gdb_stderr, -1);
6036 error (_(" has no component named %s"), name);
6037 }
6038 }
6039
6040 return NULL;
6041}
6042
6043/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6044 within a value of type OUTER_TYPE that is stored in GDB at
6045 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6046 numbering from 0) is applicable. Returns -1 if none are. */
6047
6048int
6049ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6050 const gdb_byte *outer_valaddr)
6051{
6052 int others_clause;
6053 int i;
6054 int disp;
6055 struct type *discrim_type;
6056 char *discrim_name = ada_variant_discrim_name (var_type);
6057 LONGEST discrim_val;
6058
6059 disp = 0;
6060 discrim_type =
6061 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6062 if (discrim_type == NULL)
6063 return -1;
6064 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6065
6066 others_clause = -1;
6067 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6068 {
6069 if (ada_is_others_clause (var_type, i))
6070 others_clause = i;
6071 else if (ada_in_variant (discrim_val, var_type, i))
6072 return i;
6073 }
6074
6075 return others_clause;
6076}
6077\f
6078
6079
6080 /* Dynamic-Sized Records */
6081
6082/* Strategy: The type ostensibly attached to a value with dynamic size
6083 (i.e., a size that is not statically recorded in the debugging
6084 data) does not accurately reflect the size or layout of the value.
6085 Our strategy is to convert these values to values with accurate,
6086 conventional types that are constructed on the fly. */
6087
6088/* There is a subtle and tricky problem here. In general, we cannot
6089 determine the size of dynamic records without its data. However,
6090 the 'struct value' data structure, which GDB uses to represent
6091 quantities in the inferior process (the target), requires the size
6092 of the type at the time of its allocation in order to reserve space
6093 for GDB's internal copy of the data. That's why the
6094 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6095 rather than struct value*s.
6096
6097 However, GDB's internal history variables ($1, $2, etc.) are
6098 struct value*s containing internal copies of the data that are not, in
6099 general, the same as the data at their corresponding addresses in
6100 the target. Fortunately, the types we give to these values are all
6101 conventional, fixed-size types (as per the strategy described
6102 above), so that we don't usually have to perform the
6103 'to_fixed_xxx_type' conversions to look at their values.
6104 Unfortunately, there is one exception: if one of the internal
6105 history variables is an array whose elements are unconstrained
6106 records, then we will need to create distinct fixed types for each
6107 element selected. */
6108
6109/* The upshot of all of this is that many routines take a (type, host
6110 address, target address) triple as arguments to represent a value.
6111 The host address, if non-null, is supposed to contain an internal
6112 copy of the relevant data; otherwise, the program is to consult the
6113 target at the target address. */
6114
6115/* Assuming that VAL0 represents a pointer value, the result of
6116 dereferencing it. Differs from value_ind in its treatment of
6117 dynamic-sized types. */
6118
6119struct value *
6120ada_value_ind (struct value *val0)
6121{
6122 struct value *val = unwrap_value (value_ind (val0));
6123 return ada_to_fixed_value (val);
6124}
6125
6126/* The value resulting from dereferencing any "reference to"
6127 qualifiers on VAL0. */
6128
6129static struct value *
6130ada_coerce_ref (struct value *val0)
6131{
6132 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6133 {
6134 struct value *val = val0;
6135 val = coerce_ref (val);
6136 val = unwrap_value (val);
6137 return ada_to_fixed_value (val);
6138 }
6139 else
6140 return val0;
6141}
6142
6143/* Return OFF rounded upward if necessary to a multiple of
6144 ALIGNMENT (a power of 2). */
6145
6146static unsigned int
6147align_value (unsigned int off, unsigned int alignment)
6148{
6149 return (off + alignment - 1) & ~(alignment - 1);
6150}
6151
6152/* Return the bit alignment required for field #F of template type TYPE. */
6153
6154static unsigned int
6155field_alignment (struct type *type, int f)
6156{
6157 const char *name = TYPE_FIELD_NAME (type, f);
6158 int len = (name == NULL) ? 0 : strlen (name);
6159 int align_offset;
6160
6161 if (!isdigit (name[len - 1]))
6162 return 1;
6163
6164 if (isdigit (name[len - 2]))
6165 align_offset = len - 2;
6166 else
6167 align_offset = len - 1;
6168
6169 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6170 return TARGET_CHAR_BIT;
6171
6172 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6173}
6174
6175/* Find a symbol named NAME. Ignores ambiguity. */
6176
6177struct symbol *
6178ada_find_any_symbol (const char *name)
6179{
6180 struct symbol *sym;
6181
6182 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6183 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6184 return sym;
6185
6186 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6187 return sym;
6188}
6189
6190/* Find a type named NAME. Ignores ambiguity. */
6191
6192struct type *
6193ada_find_any_type (const char *name)
6194{
6195 struct symbol *sym = ada_find_any_symbol (name);
6196
6197 if (sym != NULL)
6198 return SYMBOL_TYPE (sym);
6199
6200 return NULL;
6201}
6202
6203/* Given a symbol NAME and its associated BLOCK, search all symbols
6204 for its ___XR counterpart, which is the ``renaming'' symbol
6205 associated to NAME. Return this symbol if found, return
6206 NULL otherwise. */
6207
6208struct symbol *
6209ada_find_renaming_symbol (const char *name, struct block *block)
6210{
6211 const struct symbol *function_sym = block_function (block);
6212 char *rename;
6213
6214 if (function_sym != NULL)
6215 {
6216 /* If the symbol is defined inside a function, NAME is not fully
6217 qualified. This means we need to prepend the function name
6218 as well as adding the ``___XR'' suffix to build the name of
6219 the associated renaming symbol. */
6220 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6221 /* Function names sometimes contain suffixes used
6222 for instance to qualify nested subprograms. When building
6223 the XR type name, we need to make sure that this suffix is
6224 not included. So do not include any suffix in the function
6225 name length below. */
6226 const int function_name_len = ada_name_prefix_len (function_name);
6227 const int rename_len = function_name_len + 2 /* "__" */
6228 + strlen (name) + 6 /* "___XR\0" */ ;
6229
6230 /* Strip the suffix if necessary. */
6231 function_name[function_name_len] = '\0';
6232
6233 /* Library-level functions are a special case, as GNAT adds
6234 a ``_ada_'' prefix to the function name to avoid namespace
6235 pollution. However, the renaming symbol themselves do not
6236 have this prefix, so we need to skip this prefix if present. */
6237 if (function_name_len > 5 /* "_ada_" */
6238 && strstr (function_name, "_ada_") == function_name)
6239 function_name = function_name + 5;
6240
6241 rename = (char *) alloca (rename_len * sizeof (char));
6242 sprintf (rename, "%s__%s___XR", function_name, name);
6243 }
6244 else
6245 {
6246 const int rename_len = strlen (name) + 6;
6247 rename = (char *) alloca (rename_len * sizeof (char));
6248 sprintf (rename, "%s___XR", name);
6249 }
6250
6251 return ada_find_any_symbol (rename);
6252}
6253
6254/* Because of GNAT encoding conventions, several GDB symbols may match a
6255 given type name. If the type denoted by TYPE0 is to be preferred to
6256 that of TYPE1 for purposes of type printing, return non-zero;
6257 otherwise return 0. */
6258
6259int
6260ada_prefer_type (struct type *type0, struct type *type1)
6261{
6262 if (type1 == NULL)
6263 return 1;
6264 else if (type0 == NULL)
6265 return 0;
6266 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6267 return 1;
6268 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6269 return 0;
6270 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6271 return 1;
6272 else if (ada_is_packed_array_type (type0))
6273 return 1;
6274 else if (ada_is_array_descriptor_type (type0)
6275 && !ada_is_array_descriptor_type (type1))
6276 return 1;
6277 else if (ada_renaming_type (type0) != NULL
6278 && ada_renaming_type (type1) == NULL)
6279 return 1;
6280 return 0;
6281}
6282
6283/* The name of TYPE, which is either its TYPE_NAME, or, if that is
6284 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6285
6286char *
6287ada_type_name (struct type *type)
6288{
6289 if (type == NULL)
6290 return NULL;
6291 else if (TYPE_NAME (type) != NULL)
6292 return TYPE_NAME (type);
6293 else
6294 return TYPE_TAG_NAME (type);
6295}
6296
6297/* Find a parallel type to TYPE whose name is formed by appending
6298 SUFFIX to the name of TYPE. */
6299
6300struct type *
6301ada_find_parallel_type (struct type *type, const char *suffix)
6302{
6303 static char *name;
6304 static size_t name_len = 0;
6305 int len;
6306 char *typename = ada_type_name (type);
6307
6308 if (typename == NULL)
6309 return NULL;
6310
6311 len = strlen (typename);
6312
6313 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6314
6315 strcpy (name, typename);
6316 strcpy (name + len, suffix);
6317
6318 return ada_find_any_type (name);
6319}
6320
6321
6322/* If TYPE is a variable-size record type, return the corresponding template
6323 type describing its fields. Otherwise, return NULL. */
6324
6325static struct type *
6326dynamic_template_type (struct type *type)
6327{
6328 type = ada_check_typedef (type);
6329
6330 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6331 || ada_type_name (type) == NULL)
6332 return NULL;
6333 else
6334 {
6335 int len = strlen (ada_type_name (type));
6336 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6337 return type;
6338 else
6339 return ada_find_parallel_type (type, "___XVE");
6340 }
6341}
6342
6343/* Assuming that TEMPL_TYPE is a union or struct type, returns
6344 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6345
6346static int
6347is_dynamic_field (struct type *templ_type, int field_num)
6348{
6349 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6350 return name != NULL
6351 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6352 && strstr (name, "___XVL") != NULL;
6353}
6354
6355/* The index of the variant field of TYPE, or -1 if TYPE does not
6356 represent a variant record type. */
6357
6358static int
6359variant_field_index (struct type *type)
6360{
6361 int f;
6362
6363 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6364 return -1;
6365
6366 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6367 {
6368 if (ada_is_variant_part (type, f))
6369 return f;
6370 }
6371 return -1;
6372}
6373
6374/* A record type with no fields. */
6375
6376static struct type *
6377empty_record (struct objfile *objfile)
6378{
6379 struct type *type = alloc_type (objfile);
6380 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6381 TYPE_NFIELDS (type) = 0;
6382 TYPE_FIELDS (type) = NULL;
6383 TYPE_NAME (type) = "<empty>";
6384 TYPE_TAG_NAME (type) = NULL;
6385 TYPE_FLAGS (type) = 0;
6386 TYPE_LENGTH (type) = 0;
6387 return type;
6388}
6389
6390/* An ordinary record type (with fixed-length fields) that describes
6391 the value of type TYPE at VALADDR or ADDRESS (see comments at
6392 the beginning of this section) VAL according to GNAT conventions.
6393 DVAL0 should describe the (portion of a) record that contains any
6394 necessary discriminants. It should be NULL if value_type (VAL) is
6395 an outer-level type (i.e., as opposed to a branch of a variant.) A
6396 variant field (unless unchecked) is replaced by a particular branch
6397 of the variant.
6398
6399 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6400 length are not statically known are discarded. As a consequence,
6401 VALADDR, ADDRESS and DVAL0 are ignored.
6402
6403 NOTE: Limitations: For now, we assume that dynamic fields and
6404 variants occupy whole numbers of bytes. However, they need not be
6405 byte-aligned. */
6406
6407struct type *
6408ada_template_to_fixed_record_type_1 (struct type *type,
6409 const gdb_byte *valaddr,
6410 CORE_ADDR address, struct value *dval0,
6411 int keep_dynamic_fields)
6412{
6413 struct value *mark = value_mark ();
6414 struct value *dval;
6415 struct type *rtype;
6416 int nfields, bit_len;
6417 int variant_field;
6418 long off;
6419 int fld_bit_len, bit_incr;
6420 int f;
6421
6422 /* Compute the number of fields in this record type that are going
6423 to be processed: unless keep_dynamic_fields, this includes only
6424 fields whose position and length are static will be processed. */
6425 if (keep_dynamic_fields)
6426 nfields = TYPE_NFIELDS (type);
6427 else
6428 {
6429 nfields = 0;
6430 while (nfields < TYPE_NFIELDS (type)
6431 && !ada_is_variant_part (type, nfields)
6432 && !is_dynamic_field (type, nfields))
6433 nfields++;
6434 }
6435
6436 rtype = alloc_type (TYPE_OBJFILE (type));
6437 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6438 INIT_CPLUS_SPECIFIC (rtype);
6439 TYPE_NFIELDS (rtype) = nfields;
6440 TYPE_FIELDS (rtype) = (struct field *)
6441 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6442 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6443 TYPE_NAME (rtype) = ada_type_name (type);
6444 TYPE_TAG_NAME (rtype) = NULL;
6445 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6446
6447 off = 0;
6448 bit_len = 0;
6449 variant_field = -1;
6450
6451 for (f = 0; f < nfields; f += 1)
6452 {
6453 off = align_value (off, field_alignment (type, f))
6454 + TYPE_FIELD_BITPOS (type, f);
6455 TYPE_FIELD_BITPOS (rtype, f) = off;
6456 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6457
6458 if (ada_is_variant_part (type, f))
6459 {
6460 variant_field = f;
6461 fld_bit_len = bit_incr = 0;
6462 }
6463 else if (is_dynamic_field (type, f))
6464 {
6465 if (dval0 == NULL)
6466 dval = value_from_contents_and_address (rtype, valaddr, address);
6467 else
6468 dval = dval0;
6469
6470 TYPE_FIELD_TYPE (rtype, f) =
6471 ada_to_fixed_type
6472 (ada_get_base_type
6473 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6474 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6475 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6476 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6477 bit_incr = fld_bit_len =
6478 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6479 }
6480 else
6481 {
6482 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6483 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6484 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6485 bit_incr = fld_bit_len =
6486 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6487 else
6488 bit_incr = fld_bit_len =
6489 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6490 }
6491 if (off + fld_bit_len > bit_len)
6492 bit_len = off + fld_bit_len;
6493 off += bit_incr;
6494 TYPE_LENGTH (rtype) =
6495 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6496 }
6497
6498 /* We handle the variant part, if any, at the end because of certain
6499 odd cases in which it is re-ordered so as NOT the last field of
6500 the record. This can happen in the presence of representation
6501 clauses. */
6502 if (variant_field >= 0)
6503 {
6504 struct type *branch_type;
6505
6506 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6507
6508 if (dval0 == NULL)
6509 dval = value_from_contents_and_address (rtype, valaddr, address);
6510 else
6511 dval = dval0;
6512
6513 branch_type =
6514 to_fixed_variant_branch_type
6515 (TYPE_FIELD_TYPE (type, variant_field),
6516 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6517 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6518 if (branch_type == NULL)
6519 {
6520 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6521 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6522 TYPE_NFIELDS (rtype) -= 1;
6523 }
6524 else
6525 {
6526 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6527 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6528 fld_bit_len =
6529 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6530 TARGET_CHAR_BIT;
6531 if (off + fld_bit_len > bit_len)
6532 bit_len = off + fld_bit_len;
6533 TYPE_LENGTH (rtype) =
6534 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6535 }
6536 }
6537
6538 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6539 should contain the alignment of that record, which should be a strictly
6540 positive value. If null or negative, then something is wrong, most
6541 probably in the debug info. In that case, we don't round up the size
6542 of the resulting type. If this record is not part of another structure,
6543 the current RTYPE length might be good enough for our purposes. */
6544 if (TYPE_LENGTH (type) <= 0)
6545 {
6546 if (TYPE_NAME (rtype))
6547 warning (_("Invalid type size for `%s' detected: %d."),
6548 TYPE_NAME (rtype), TYPE_LENGTH (type));
6549 else
6550 warning (_("Invalid type size for <unnamed> detected: %d."),
6551 TYPE_LENGTH (type));
6552 }
6553 else
6554 {
6555 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6556 TYPE_LENGTH (type));
6557 }
6558
6559 value_free_to_mark (mark);
6560 if (TYPE_LENGTH (rtype) > varsize_limit)
6561 error (_("record type with dynamic size is larger than varsize-limit"));
6562 return rtype;
6563}
6564
6565/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6566 of 1. */
6567
6568static struct type *
6569template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6570 CORE_ADDR address, struct value *dval0)
6571{
6572 return ada_template_to_fixed_record_type_1 (type, valaddr,
6573 address, dval0, 1);
6574}
6575
6576/* An ordinary record type in which ___XVL-convention fields and
6577 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6578 static approximations, containing all possible fields. Uses
6579 no runtime values. Useless for use in values, but that's OK,
6580 since the results are used only for type determinations. Works on both
6581 structs and unions. Representation note: to save space, we memorize
6582 the result of this function in the TYPE_TARGET_TYPE of the
6583 template type. */
6584
6585static struct type *
6586template_to_static_fixed_type (struct type *type0)
6587{
6588 struct type *type;
6589 int nfields;
6590 int f;
6591
6592 if (TYPE_TARGET_TYPE (type0) != NULL)
6593 return TYPE_TARGET_TYPE (type0);
6594
6595 nfields = TYPE_NFIELDS (type0);
6596 type = type0;
6597
6598 for (f = 0; f < nfields; f += 1)
6599 {
6600 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6601 struct type *new_type;
6602
6603 if (is_dynamic_field (type0, f))
6604 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6605 else
6606 new_type = to_static_fixed_type (field_type);
6607 if (type == type0 && new_type != field_type)
6608 {
6609 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6610 TYPE_CODE (type) = TYPE_CODE (type0);
6611 INIT_CPLUS_SPECIFIC (type);
6612 TYPE_NFIELDS (type) = nfields;
6613 TYPE_FIELDS (type) = (struct field *)
6614 TYPE_ALLOC (type, nfields * sizeof (struct field));
6615 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6616 sizeof (struct field) * nfields);
6617 TYPE_NAME (type) = ada_type_name (type0);
6618 TYPE_TAG_NAME (type) = NULL;
6619 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6620 TYPE_LENGTH (type) = 0;
6621 }
6622 TYPE_FIELD_TYPE (type, f) = new_type;
6623 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6624 }
6625 return type;
6626}
6627
6628/* Given an object of type TYPE whose contents are at VALADDR and
6629 whose address in memory is ADDRESS, returns a revision of TYPE --
6630 a non-dynamic-sized record with a variant part -- in which
6631 the variant part is replaced with the appropriate branch. Looks
6632 for discriminant values in DVAL0, which can be NULL if the record
6633 contains the necessary discriminant values. */
6634
6635static struct type *
6636to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6637 CORE_ADDR address, struct value *dval0)
6638{
6639 struct value *mark = value_mark ();
6640 struct value *dval;
6641 struct type *rtype;
6642 struct type *branch_type;
6643 int nfields = TYPE_NFIELDS (type);
6644 int variant_field = variant_field_index (type);
6645
6646 if (variant_field == -1)
6647 return type;
6648
6649 if (dval0 == NULL)
6650 dval = value_from_contents_and_address (type, valaddr, address);
6651 else
6652 dval = dval0;
6653
6654 rtype = alloc_type (TYPE_OBJFILE (type));
6655 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6656 INIT_CPLUS_SPECIFIC (rtype);
6657 TYPE_NFIELDS (rtype) = nfields;
6658 TYPE_FIELDS (rtype) =
6659 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6660 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6661 sizeof (struct field) * nfields);
6662 TYPE_NAME (rtype) = ada_type_name (type);
6663 TYPE_TAG_NAME (rtype) = NULL;
6664 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6665 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6666
6667 branch_type = to_fixed_variant_branch_type
6668 (TYPE_FIELD_TYPE (type, variant_field),
6669 cond_offset_host (valaddr,
6670 TYPE_FIELD_BITPOS (type, variant_field)
6671 / TARGET_CHAR_BIT),
6672 cond_offset_target (address,
6673 TYPE_FIELD_BITPOS (type, variant_field)
6674 / TARGET_CHAR_BIT), dval);
6675 if (branch_type == NULL)
6676 {
6677 int f;
6678 for (f = variant_field + 1; f < nfields; f += 1)
6679 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6680 TYPE_NFIELDS (rtype) -= 1;
6681 }
6682 else
6683 {
6684 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6685 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6686 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6687 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6688 }
6689 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6690
6691 value_free_to_mark (mark);
6692 return rtype;
6693}
6694
6695/* An ordinary record type (with fixed-length fields) that describes
6696 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6697 beginning of this section]. Any necessary discriminants' values
6698 should be in DVAL, a record value; it may be NULL if the object
6699 at ADDR itself contains any necessary discriminant values.
6700 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6701 values from the record are needed. Except in the case that DVAL,
6702 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6703 unchecked) is replaced by a particular branch of the variant.
6704
6705 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6706 is questionable and may be removed. It can arise during the
6707 processing of an unconstrained-array-of-record type where all the
6708 variant branches have exactly the same size. This is because in
6709 such cases, the compiler does not bother to use the XVS convention
6710 when encoding the record. I am currently dubious of this
6711 shortcut and suspect the compiler should be altered. FIXME. */
6712
6713static struct type *
6714to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6715 CORE_ADDR address, struct value *dval)
6716{
6717 struct type *templ_type;
6718
6719 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6720 return type0;
6721
6722 templ_type = dynamic_template_type (type0);
6723
6724 if (templ_type != NULL)
6725 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6726 else if (variant_field_index (type0) >= 0)
6727 {
6728 if (dval == NULL && valaddr == NULL && address == 0)
6729 return type0;
6730 return to_record_with_fixed_variant_part (type0, valaddr, address,
6731 dval);
6732 }
6733 else
6734 {
6735 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6736 return type0;
6737 }
6738
6739}
6740
6741/* An ordinary record type (with fixed-length fields) that describes
6742 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6743 union type. Any necessary discriminants' values should be in DVAL,
6744 a record value. That is, this routine selects the appropriate
6745 branch of the union at ADDR according to the discriminant value
6746 indicated in the union's type name. */
6747
6748static struct type *
6749to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6750 CORE_ADDR address, struct value *dval)
6751{
6752 int which;
6753 struct type *templ_type;
6754 struct type *var_type;
6755
6756 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6757 var_type = TYPE_TARGET_TYPE (var_type0);
6758 else
6759 var_type = var_type0;
6760
6761 templ_type = ada_find_parallel_type (var_type, "___XVU");
6762
6763 if (templ_type != NULL)
6764 var_type = templ_type;
6765
6766 which =
6767 ada_which_variant_applies (var_type,
6768 value_type (dval), value_contents (dval));
6769
6770 if (which < 0)
6771 return empty_record (TYPE_OBJFILE (var_type));
6772 else if (is_dynamic_field (var_type, which))
6773 return to_fixed_record_type
6774 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6775 valaddr, address, dval);
6776 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6777 return
6778 to_fixed_record_type
6779 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6780 else
6781 return TYPE_FIELD_TYPE (var_type, which);
6782}
6783
6784/* Assuming that TYPE0 is an array type describing the type of a value
6785 at ADDR, and that DVAL describes a record containing any
6786 discriminants used in TYPE0, returns a type for the value that
6787 contains no dynamic components (that is, no components whose sizes
6788 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6789 true, gives an error message if the resulting type's size is over
6790 varsize_limit. */
6791
6792static struct type *
6793to_fixed_array_type (struct type *type0, struct value *dval,
6794 int ignore_too_big)
6795{
6796 struct type *index_type_desc;
6797 struct type *result;
6798
6799 if (ada_is_packed_array_type (type0) /* revisit? */
6800 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6801 return type0;
6802
6803 index_type_desc = ada_find_parallel_type (type0, "___XA");
6804 if (index_type_desc == NULL)
6805 {
6806 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6807 /* NOTE: elt_type---the fixed version of elt_type0---should never
6808 depend on the contents of the array in properly constructed
6809 debugging data. */
6810 /* Create a fixed version of the array element type.
6811 We're not providing the address of an element here,
6812 and thus the actual object value cannot be inspected to do
6813 the conversion. This should not be a problem, since arrays of
6814 unconstrained objects are not allowed. In particular, all
6815 the elements of an array of a tagged type should all be of
6816 the same type specified in the debugging info. No need to
6817 consult the object tag. */
6818 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6819
6820 if (elt_type0 == elt_type)
6821 result = type0;
6822 else
6823 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6824 elt_type, TYPE_INDEX_TYPE (type0));
6825 }
6826 else
6827 {
6828 int i;
6829 struct type *elt_type0;
6830
6831 elt_type0 = type0;
6832 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6833 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6834
6835 /* NOTE: result---the fixed version of elt_type0---should never
6836 depend on the contents of the array in properly constructed
6837 debugging data. */
6838 /* Create a fixed version of the array element type.
6839 We're not providing the address of an element here,
6840 and thus the actual object value cannot be inspected to do
6841 the conversion. This should not be a problem, since arrays of
6842 unconstrained objects are not allowed. In particular, all
6843 the elements of an array of a tagged type should all be of
6844 the same type specified in the debugging info. No need to
6845 consult the object tag. */
6846 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6847 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6848 {
6849 struct type *range_type =
6850 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6851 dval, TYPE_OBJFILE (type0));
6852 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6853 result, range_type);
6854 }
6855 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6856 error (_("array type with dynamic size is larger than varsize-limit"));
6857 }
6858
6859 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6860 return result;
6861}
6862
6863
6864/* A standard type (containing no dynamically sized components)
6865 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6866 DVAL describes a record containing any discriminants used in TYPE0,
6867 and may be NULL if there are none, or if the object of type TYPE at
6868 ADDRESS or in VALADDR contains these discriminants.
6869
6870 In the case of tagged types, this function attempts to locate the object's
6871 tag and use it to compute the actual type. However, when ADDRESS is null,
6872 we cannot use it to determine the location of the tag, and therefore
6873 compute the tagged type's actual type. So we return the tagged type
6874 without consulting the tag. */
6875
6876struct type *
6877ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6878 CORE_ADDR address, struct value *dval)
6879{
6880 type = ada_check_typedef (type);
6881 switch (TYPE_CODE (type))
6882 {
6883 default:
6884 return type;
6885 case TYPE_CODE_STRUCT:
6886 {
6887 struct type *static_type = to_static_fixed_type (type);
6888
6889 /* If STATIC_TYPE is a tagged type and we know the object's address,
6890 then we can determine its tag, and compute the object's actual
6891 type from there. */
6892
6893 if (address != 0 && ada_is_tagged_type (static_type, 0))
6894 {
6895 struct type *real_type =
6896 type_from_tag (value_tag_from_contents_and_address (static_type,
6897 valaddr,
6898 address));
6899 if (real_type != NULL)
6900 type = real_type;
6901 }
6902 return to_fixed_record_type (type, valaddr, address, NULL);
6903 }
6904 case TYPE_CODE_ARRAY:
6905 return to_fixed_array_type (type, dval, 1);
6906 case TYPE_CODE_UNION:
6907 if (dval == NULL)
6908 return type;
6909 else
6910 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6911 }
6912}
6913
6914/* A standard (static-sized) type corresponding as well as possible to
6915 TYPE0, but based on no runtime data. */
6916
6917static struct type *
6918to_static_fixed_type (struct type *type0)
6919{
6920 struct type *type;
6921
6922 if (type0 == NULL)
6923 return NULL;
6924
6925 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6926 return type0;
6927
6928 type0 = ada_check_typedef (type0);
6929
6930 switch (TYPE_CODE (type0))
6931 {
6932 default:
6933 return type0;
6934 case TYPE_CODE_STRUCT:
6935 type = dynamic_template_type (type0);
6936 if (type != NULL)
6937 return template_to_static_fixed_type (type);
6938 else
6939 return template_to_static_fixed_type (type0);
6940 case TYPE_CODE_UNION:
6941 type = ada_find_parallel_type (type0, "___XVU");
6942 if (type != NULL)
6943 return template_to_static_fixed_type (type);
6944 else
6945 return template_to_static_fixed_type (type0);
6946 }
6947}
6948
6949/* A static approximation of TYPE with all type wrappers removed. */
6950
6951static struct type *
6952static_unwrap_type (struct type *type)
6953{
6954 if (ada_is_aligner_type (type))
6955 {
6956 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6957 if (ada_type_name (type1) == NULL)
6958 TYPE_NAME (type1) = ada_type_name (type);
6959
6960 return static_unwrap_type (type1);
6961 }
6962 else
6963 {
6964 struct type *raw_real_type = ada_get_base_type (type);
6965 if (raw_real_type == type)
6966 return type;
6967 else
6968 return to_static_fixed_type (raw_real_type);
6969 }
6970}
6971
6972/* In some cases, incomplete and private types require
6973 cross-references that are not resolved as records (for example,
6974 type Foo;
6975 type FooP is access Foo;
6976 V: FooP;
6977 type Foo is array ...;
6978 ). In these cases, since there is no mechanism for producing
6979 cross-references to such types, we instead substitute for FooP a
6980 stub enumeration type that is nowhere resolved, and whose tag is
6981 the name of the actual type. Call these types "non-record stubs". */
6982
6983/* A type equivalent to TYPE that is not a non-record stub, if one
6984 exists, otherwise TYPE. */
6985
6986struct type *
6987ada_check_typedef (struct type *type)
6988{
6989 CHECK_TYPEDEF (type);
6990 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6991 || !TYPE_STUB (type)
6992 || TYPE_TAG_NAME (type) == NULL)
6993 return type;
6994 else
6995 {
6996 char *name = TYPE_TAG_NAME (type);
6997 struct type *type1 = ada_find_any_type (name);
6998 return (type1 == NULL) ? type : type1;
6999 }
7000}
7001
7002/* A value representing the data at VALADDR/ADDRESS as described by
7003 type TYPE0, but with a standard (static-sized) type that correctly
7004 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7005 type, then return VAL0 [this feature is simply to avoid redundant
7006 creation of struct values]. */
7007
7008static struct value *
7009ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7010 struct value *val0)
7011{
7012 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7013 if (type == type0 && val0 != NULL)
7014 return val0;
7015 else
7016 return value_from_contents_and_address (type, 0, address);
7017}
7018
7019/* A value representing VAL, but with a standard (static-sized) type
7020 that correctly describes it. Does not necessarily create a new
7021 value. */
7022
7023static struct value *
7024ada_to_fixed_value (struct value *val)
7025{
7026 return ada_to_fixed_value_create (value_type (val),
7027 VALUE_ADDRESS (val) + value_offset (val),
7028 val);
7029}
7030
7031/* A value representing VAL, but with a standard (static-sized) type
7032 chosen to approximate the real type of VAL as well as possible, but
7033 without consulting any runtime values. For Ada dynamic-sized
7034 types, therefore, the type of the result is likely to be inaccurate. */
7035
7036struct value *
7037ada_to_static_fixed_value (struct value *val)
7038{
7039 struct type *type =
7040 to_static_fixed_type (static_unwrap_type (value_type (val)));
7041 if (type == value_type (val))
7042 return val;
7043 else
7044 return coerce_unspec_val_to_type (val, type);
7045}
7046\f
7047
7048/* Attributes */
7049
7050/* Table mapping attribute numbers to names.
7051 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7052
7053static const char *attribute_names[] = {
7054 "<?>",
7055
7056 "first",
7057 "last",
7058 "length",
7059 "image",
7060 "max",
7061 "min",
7062 "modulus",
7063 "pos",
7064 "size",
7065 "tag",
7066 "val",
7067 0
7068};
7069
7070const char *
7071ada_attribute_name (enum exp_opcode n)
7072{
7073 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7074 return attribute_names[n - OP_ATR_FIRST + 1];
7075 else
7076 return attribute_names[0];
7077}
7078
7079/* Evaluate the 'POS attribute applied to ARG. */
7080
7081static LONGEST
7082pos_atr (struct value *arg)
7083{
7084 struct type *type = value_type (arg);
7085
7086 if (!discrete_type_p (type))
7087 error (_("'POS only defined on discrete types"));
7088
7089 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7090 {
7091 int i;
7092 LONGEST v = value_as_long (arg);
7093
7094 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7095 {
7096 if (v == TYPE_FIELD_BITPOS (type, i))
7097 return i;
7098 }
7099 error (_("enumeration value is invalid: can't find 'POS"));
7100 }
7101 else
7102 return value_as_long (arg);
7103}
7104
7105static struct value *
7106value_pos_atr (struct value *arg)
7107{
7108 return value_from_longest (builtin_type_int, pos_atr (arg));
7109}
7110
7111/* Evaluate the TYPE'VAL attribute applied to ARG. */
7112
7113static struct value *
7114value_val_atr (struct type *type, struct value *arg)
7115{
7116 if (!discrete_type_p (type))
7117 error (_("'VAL only defined on discrete types"));
7118 if (!integer_type_p (value_type (arg)))
7119 error (_("'VAL requires integral argument"));
7120
7121 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7122 {
7123 long pos = value_as_long (arg);
7124 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7125 error (_("argument to 'VAL out of range"));
7126 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7127 }
7128 else
7129 return value_from_longest (type, value_as_long (arg));
7130}
7131\f
7132
7133 /* Evaluation */
7134
7135/* True if TYPE appears to be an Ada character type.
7136 [At the moment, this is true only for Character and Wide_Character;
7137 It is a heuristic test that could stand improvement]. */
7138
7139int
7140ada_is_character_type (struct type *type)
7141{
7142 const char *name = ada_type_name (type);
7143 return
7144 name != NULL
7145 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7146 || TYPE_CODE (type) == TYPE_CODE_INT
7147 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7148 && (strcmp (name, "character") == 0
7149 || strcmp (name, "wide_character") == 0
7150 || strcmp (name, "unsigned char") == 0);
7151}
7152
7153/* True if TYPE appears to be an Ada string type. */
7154
7155int
7156ada_is_string_type (struct type *type)
7157{
7158 type = ada_check_typedef (type);
7159 if (type != NULL
7160 && TYPE_CODE (type) != TYPE_CODE_PTR
7161 && (ada_is_simple_array_type (type)
7162 || ada_is_array_descriptor_type (type))
7163 && ada_array_arity (type) == 1)
7164 {
7165 struct type *elttype = ada_array_element_type (type, 1);
7166
7167 return ada_is_character_type (elttype);
7168 }
7169 else
7170 return 0;
7171}
7172
7173
7174/* True if TYPE is a struct type introduced by the compiler to force the
7175 alignment of a value. Such types have a single field with a
7176 distinctive name. */
7177
7178int
7179ada_is_aligner_type (struct type *type)
7180{
7181 type = ada_check_typedef (type);
7182
7183 /* If we can find a parallel XVS type, then the XVS type should
7184 be used instead of this type. And hence, this is not an aligner
7185 type. */
7186 if (ada_find_parallel_type (type, "___XVS") != NULL)
7187 return 0;
7188
7189 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7190 && TYPE_NFIELDS (type) == 1
7191 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7192}
7193
7194/* If there is an ___XVS-convention type parallel to SUBTYPE, return
7195 the parallel type. */
7196
7197struct type *
7198ada_get_base_type (struct type *raw_type)
7199{
7200 struct type *real_type_namer;
7201 struct type *raw_real_type;
7202
7203 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7204 return raw_type;
7205
7206 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7207 if (real_type_namer == NULL
7208 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7209 || TYPE_NFIELDS (real_type_namer) != 1)
7210 return raw_type;
7211
7212 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7213 if (raw_real_type == NULL)
7214 return raw_type;
7215 else
7216 return raw_real_type;
7217}
7218
7219/* The type of value designated by TYPE, with all aligners removed. */
7220
7221struct type *
7222ada_aligned_type (struct type *type)
7223{
7224 if (ada_is_aligner_type (type))
7225 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7226 else
7227 return ada_get_base_type (type);
7228}
7229
7230
7231/* The address of the aligned value in an object at address VALADDR
7232 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7233
7234const gdb_byte *
7235ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7236{
7237 if (ada_is_aligner_type (type))
7238 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7239 valaddr +
7240 TYPE_FIELD_BITPOS (type,
7241 0) / TARGET_CHAR_BIT);
7242 else
7243 return valaddr;
7244}
7245
7246
7247
7248/* The printed representation of an enumeration literal with encoded
7249 name NAME. The value is good to the next call of ada_enum_name. */
7250const char *
7251ada_enum_name (const char *name)
7252{
7253 static char *result;
7254 static size_t result_len = 0;
7255 char *tmp;
7256
7257 /* First, unqualify the enumeration name:
7258 1. Search for the last '.' character. If we find one, then skip
7259 all the preceeding characters, the unqualified name starts
7260 right after that dot.
7261 2. Otherwise, we may be debugging on a target where the compiler
7262 translates dots into "__". Search forward for double underscores,
7263 but stop searching when we hit an overloading suffix, which is
7264 of the form "__" followed by digits. */
7265
7266 tmp = strrchr (name, '.');
7267 if (tmp != NULL)
7268 name = tmp + 1;
7269 else
7270 {
7271 while ((tmp = strstr (name, "__")) != NULL)
7272 {
7273 if (isdigit (tmp[2]))
7274 break;
7275 else
7276 name = tmp + 2;
7277 }
7278 }
7279
7280 if (name[0] == 'Q')
7281 {
7282 int v;
7283 if (name[1] == 'U' || name[1] == 'W')
7284 {
7285 if (sscanf (name + 2, "%x", &v) != 1)
7286 return name;
7287 }
7288 else
7289 return name;
7290
7291 GROW_VECT (result, result_len, 16);
7292 if (isascii (v) && isprint (v))
7293 sprintf (result, "'%c'", v);
7294 else if (name[1] == 'U')
7295 sprintf (result, "[\"%02x\"]", v);
7296 else
7297 sprintf (result, "[\"%04x\"]", v);
7298
7299 return result;
7300 }
7301 else
7302 {
7303 tmp = strstr (name, "__");
7304 if (tmp == NULL)
7305 tmp = strstr (name, "$");
7306 if (tmp != NULL)
7307 {
7308 GROW_VECT (result, result_len, tmp - name + 1);
7309 strncpy (result, name, tmp - name);
7310 result[tmp - name] = '\0';
7311 return result;
7312 }
7313
7314 return name;
7315 }
7316}
7317
7318static struct value *
7319evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7320 enum noside noside)
7321{
7322 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7323 (expect_type, exp, pos, noside);
7324}
7325
7326/* Evaluate the subexpression of EXP starting at *POS as for
7327 evaluate_type, updating *POS to point just past the evaluated
7328 expression. */
7329
7330static struct value *
7331evaluate_subexp_type (struct expression *exp, int *pos)
7332{
7333 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7334 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7335}
7336
7337/* If VAL is wrapped in an aligner or subtype wrapper, return the
7338 value it wraps. */
7339
7340static struct value *
7341unwrap_value (struct value *val)
7342{
7343 struct type *type = ada_check_typedef (value_type (val));
7344 if (ada_is_aligner_type (type))
7345 {
7346 struct value *v = value_struct_elt (&val, NULL, "F",
7347 NULL, "internal structure");
7348 struct type *val_type = ada_check_typedef (value_type (v));
7349 if (ada_type_name (val_type) == NULL)
7350 TYPE_NAME (val_type) = ada_type_name (type);
7351
7352 return unwrap_value (v);
7353 }
7354 else
7355 {
7356 struct type *raw_real_type =
7357 ada_check_typedef (ada_get_base_type (type));
7358
7359 if (type == raw_real_type)
7360 return val;
7361
7362 return
7363 coerce_unspec_val_to_type
7364 (val, ada_to_fixed_type (raw_real_type, 0,
7365 VALUE_ADDRESS (val) + value_offset (val),
7366 NULL));
7367 }
7368}
7369
7370static struct value *
7371cast_to_fixed (struct type *type, struct value *arg)
7372{
7373 LONGEST val;
7374
7375 if (type == value_type (arg))
7376 return arg;
7377 else if (ada_is_fixed_point_type (value_type (arg)))
7378 val = ada_float_to_fixed (type,
7379 ada_fixed_to_float (value_type (arg),
7380 value_as_long (arg)));
7381 else
7382 {
7383 DOUBLEST argd =
7384 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7385 val = ada_float_to_fixed (type, argd);
7386 }
7387
7388 return value_from_longest (type, val);
7389}
7390
7391static struct value *
7392cast_from_fixed_to_double (struct value *arg)
7393{
7394 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7395 value_as_long (arg));
7396 return value_from_double (builtin_type_double, val);
7397}
7398
7399/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7400 return the converted value. */
7401
7402static struct value *
7403coerce_for_assign (struct type *type, struct value *val)
7404{
7405 struct type *type2 = value_type (val);
7406 if (type == type2)
7407 return val;
7408
7409 type2 = ada_check_typedef (type2);
7410 type = ada_check_typedef (type);
7411
7412 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7413 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7414 {
7415 val = ada_value_ind (val);
7416 type2 = value_type (val);
7417 }
7418
7419 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7420 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7421 {
7422 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7423 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7424 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7425 error (_("Incompatible types in assignment"));
7426 deprecated_set_value_type (val, type);
7427 }
7428 return val;
7429}
7430
7431static struct value *
7432ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7433{
7434 struct value *val;
7435 struct type *type1, *type2;
7436 LONGEST v, v1, v2;
7437
7438 arg1 = coerce_ref (arg1);
7439 arg2 = coerce_ref (arg2);
7440 type1 = base_type (ada_check_typedef (value_type (arg1)));
7441 type2 = base_type (ada_check_typedef (value_type (arg2)));
7442
7443 if (TYPE_CODE (type1) != TYPE_CODE_INT
7444 || TYPE_CODE (type2) != TYPE_CODE_INT)
7445 return value_binop (arg1, arg2, op);
7446
7447 switch (op)
7448 {
7449 case BINOP_MOD:
7450 case BINOP_DIV:
7451 case BINOP_REM:
7452 break;
7453 default:
7454 return value_binop (arg1, arg2, op);
7455 }
7456
7457 v2 = value_as_long (arg2);
7458 if (v2 == 0)
7459 error (_("second operand of %s must not be zero."), op_string (op));
7460
7461 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7462 return value_binop (arg1, arg2, op);
7463
7464 v1 = value_as_long (arg1);
7465 switch (op)
7466 {
7467 case BINOP_DIV:
7468 v = v1 / v2;
7469 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7470 v += v > 0 ? -1 : 1;
7471 break;
7472 case BINOP_REM:
7473 v = v1 % v2;
7474 if (v * v1 < 0)
7475 v -= v2;
7476 break;
7477 default:
7478 /* Should not reach this point. */
7479 v = 0;
7480 }
7481
7482 val = allocate_value (type1);
7483 store_unsigned_integer (value_contents_raw (val),
7484 TYPE_LENGTH (value_type (val)), v);
7485 return val;
7486}
7487
7488static int
7489ada_value_equal (struct value *arg1, struct value *arg2)
7490{
7491 if (ada_is_direct_array_type (value_type (arg1))
7492 || ada_is_direct_array_type (value_type (arg2)))
7493 {
7494 arg1 = ada_coerce_to_simple_array (arg1);
7495 arg2 = ada_coerce_to_simple_array (arg2);
7496 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7497 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7498 error (_("Attempt to compare array with non-array"));
7499 /* FIXME: The following works only for types whose
7500 representations use all bits (no padding or undefined bits)
7501 and do not have user-defined equality. */
7502 return
7503 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7504 && memcmp (value_contents (arg1), value_contents (arg2),
7505 TYPE_LENGTH (value_type (arg1))) == 0;
7506 }
7507 return value_equal (arg1, arg2);
7508}
7509
7510/* Total number of component associations in the aggregate starting at
7511 index PC in EXP. Assumes that index PC is the start of an
7512 OP_AGGREGATE. */
7513
7514static int
7515num_component_specs (struct expression *exp, int pc)
7516{
7517 int n, m, i;
7518 m = exp->elts[pc + 1].longconst;
7519 pc += 3;
7520 n = 0;
7521 for (i = 0; i < m; i += 1)
7522 {
7523 switch (exp->elts[pc].opcode)
7524 {
7525 default:
7526 n += 1;
7527 break;
7528 case OP_CHOICES:
7529 n += exp->elts[pc + 1].longconst;
7530 break;
7531 }
7532 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7533 }
7534 return n;
7535}
7536
7537/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7538 component of LHS (a simple array or a record), updating *POS past
7539 the expression, assuming that LHS is contained in CONTAINER. Does
7540 not modify the inferior's memory, nor does it modify LHS (unless
7541 LHS == CONTAINER). */
7542
7543static void
7544assign_component (struct value *container, struct value *lhs, LONGEST index,
7545 struct expression *exp, int *pos)
7546{
7547 struct value *mark = value_mark ();
7548 struct value *elt;
7549 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7550 {
7551 struct value *index_val = value_from_longest (builtin_type_int, index);
7552 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7553 }
7554 else
7555 {
7556 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7557 elt = ada_to_fixed_value (unwrap_value (elt));
7558 }
7559
7560 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7561 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7562 else
7563 value_assign_to_component (container, elt,
7564 ada_evaluate_subexp (NULL, exp, pos,
7565 EVAL_NORMAL));
7566
7567 value_free_to_mark (mark);
7568}
7569
7570/* Assuming that LHS represents an lvalue having a record or array
7571 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7572 of that aggregate's value to LHS, advancing *POS past the
7573 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7574 lvalue containing LHS (possibly LHS itself). Does not modify
7575 the inferior's memory, nor does it modify the contents of
7576 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7577
7578static struct value *
7579assign_aggregate (struct value *container,
7580 struct value *lhs, struct expression *exp,
7581 int *pos, enum noside noside)
7582{
7583 struct type *lhs_type;
7584 int n = exp->elts[*pos+1].longconst;
7585 LONGEST low_index, high_index;
7586 int num_specs;
7587 LONGEST *indices;
7588 int max_indices, num_indices;
7589 int is_array_aggregate;
7590 int i;
7591 struct value *mark = value_mark ();
7592
7593 *pos += 3;
7594 if (noside != EVAL_NORMAL)
7595 {
7596 int i;
7597 for (i = 0; i < n; i += 1)
7598 ada_evaluate_subexp (NULL, exp, pos, noside);
7599 return container;
7600 }
7601
7602 container = ada_coerce_ref (container);
7603 if (ada_is_direct_array_type (value_type (container)))
7604 container = ada_coerce_to_simple_array (container);
7605 lhs = ada_coerce_ref (lhs);
7606 if (!deprecated_value_modifiable (lhs))
7607 error (_("Left operand of assignment is not a modifiable lvalue."));
7608
7609 lhs_type = value_type (lhs);
7610 if (ada_is_direct_array_type (lhs_type))
7611 {
7612 lhs = ada_coerce_to_simple_array (lhs);
7613 lhs_type = value_type (lhs);
7614 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7615 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7616 is_array_aggregate = 1;
7617 }
7618 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7619 {
7620 low_index = 0;
7621 high_index = num_visible_fields (lhs_type) - 1;
7622 is_array_aggregate = 0;
7623 }
7624 else
7625 error (_("Left-hand side must be array or record."));
7626
7627 num_specs = num_component_specs (exp, *pos - 3);
7628 max_indices = 4 * num_specs + 4;
7629 indices = alloca (max_indices * sizeof (indices[0]));
7630 indices[0] = indices[1] = low_index - 1;
7631 indices[2] = indices[3] = high_index + 1;
7632 num_indices = 4;
7633
7634 for (i = 0; i < n; i += 1)
7635 {
7636 switch (exp->elts[*pos].opcode)
7637 {
7638 case OP_CHOICES:
7639 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7640 &num_indices, max_indices,
7641 low_index, high_index);
7642 break;
7643 case OP_POSITIONAL:
7644 aggregate_assign_positional (container, lhs, exp, pos, indices,
7645 &num_indices, max_indices,
7646 low_index, high_index);
7647 break;
7648 case OP_OTHERS:
7649 if (i != n-1)
7650 error (_("Misplaced 'others' clause"));
7651 aggregate_assign_others (container, lhs, exp, pos, indices,
7652 num_indices, low_index, high_index);
7653 break;
7654 default:
7655 error (_("Internal error: bad aggregate clause"));
7656 }
7657 }
7658
7659 return container;
7660}
7661
7662/* Assign into the component of LHS indexed by the OP_POSITIONAL
7663 construct at *POS, updating *POS past the construct, given that
7664 the positions are relative to lower bound LOW, where HIGH is the
7665 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7666 updating *NUM_INDICES as needed. CONTAINER is as for
7667 assign_aggregate. */
7668static void
7669aggregate_assign_positional (struct value *container,
7670 struct value *lhs, struct expression *exp,
7671 int *pos, LONGEST *indices, int *num_indices,
7672 int max_indices, LONGEST low, LONGEST high)
7673{
7674 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7675
7676 if (ind - 1 == high)
7677 warning (_("Extra components in aggregate ignored."));
7678 if (ind <= high)
7679 {
7680 add_component_interval (ind, ind, indices, num_indices, max_indices);
7681 *pos += 3;
7682 assign_component (container, lhs, ind, exp, pos);
7683 }
7684 else
7685 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7686}
7687
7688/* Assign into the components of LHS indexed by the OP_CHOICES
7689 construct at *POS, updating *POS past the construct, given that
7690 the allowable indices are LOW..HIGH. Record the indices assigned
7691 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7692 needed. CONTAINER is as for assign_aggregate. */
7693static void
7694aggregate_assign_from_choices (struct value *container,
7695 struct value *lhs, struct expression *exp,
7696 int *pos, LONGEST *indices, int *num_indices,
7697 int max_indices, LONGEST low, LONGEST high)
7698{
7699 int j;
7700 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7701 int choice_pos, expr_pc;
7702 int is_array = ada_is_direct_array_type (value_type (lhs));
7703
7704 choice_pos = *pos += 3;
7705
7706 for (j = 0; j < n_choices; j += 1)
7707 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7708 expr_pc = *pos;
7709 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7710
7711 for (j = 0; j < n_choices; j += 1)
7712 {
7713 LONGEST lower, upper;
7714 enum exp_opcode op = exp->elts[choice_pos].opcode;
7715 if (op == OP_DISCRETE_RANGE)
7716 {
7717 choice_pos += 1;
7718 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7719 EVAL_NORMAL));
7720 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7721 EVAL_NORMAL));
7722 }
7723 else if (is_array)
7724 {
7725 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7726 EVAL_NORMAL));
7727 upper = lower;
7728 }
7729 else
7730 {
7731 int ind;
7732 char *name;
7733 switch (op)
7734 {
7735 case OP_NAME:
7736 name = &exp->elts[choice_pos + 2].string;
7737 break;
7738 case OP_VAR_VALUE:
7739 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7740 break;
7741 default:
7742 error (_("Invalid record component association."));
7743 }
7744 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7745 ind = 0;
7746 if (! find_struct_field (name, value_type (lhs), 0,
7747 NULL, NULL, NULL, NULL, &ind))
7748 error (_("Unknown component name: %s."), name);
7749 lower = upper = ind;
7750 }
7751
7752 if (lower <= upper && (lower < low || upper > high))
7753 error (_("Index in component association out of bounds."));
7754
7755 add_component_interval (lower, upper, indices, num_indices,
7756 max_indices);
7757 while (lower <= upper)
7758 {
7759 int pos1;
7760 pos1 = expr_pc;
7761 assign_component (container, lhs, lower, exp, &pos1);
7762 lower += 1;
7763 }
7764 }
7765}
7766
7767/* Assign the value of the expression in the OP_OTHERS construct in
7768 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7769 have not been previously assigned. The index intervals already assigned
7770 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7771 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7772static void
7773aggregate_assign_others (struct value *container,
7774 struct value *lhs, struct expression *exp,
7775 int *pos, LONGEST *indices, int num_indices,
7776 LONGEST low, LONGEST high)
7777{
7778 int i;
7779 int expr_pc = *pos+1;
7780
7781 for (i = 0; i < num_indices - 2; i += 2)
7782 {
7783 LONGEST ind;
7784 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7785 {
7786 int pos;
7787 pos = expr_pc;
7788 assign_component (container, lhs, ind, exp, &pos);
7789 }
7790 }
7791 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7792}
7793
7794/* Add the interval [LOW .. HIGH] to the sorted set of intervals
7795 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7796 modifying *SIZE as needed. It is an error if *SIZE exceeds
7797 MAX_SIZE. The resulting intervals do not overlap. */
7798static void
7799add_component_interval (LONGEST low, LONGEST high,
7800 LONGEST* indices, int *size, int max_size)
7801{
7802 int i, j;
7803 for (i = 0; i < *size; i += 2) {
7804 if (high >= indices[i] && low <= indices[i + 1])
7805 {
7806 int kh;
7807 for (kh = i + 2; kh < *size; kh += 2)
7808 if (high < indices[kh])
7809 break;
7810 if (low < indices[i])
7811 indices[i] = low;
7812 indices[i + 1] = indices[kh - 1];
7813 if (high > indices[i + 1])
7814 indices[i + 1] = high;
7815 memcpy (indices + i + 2, indices + kh, *size - kh);
7816 *size -= kh - i - 2;
7817 return;
7818 }
7819 else if (high < indices[i])
7820 break;
7821 }
7822
7823 if (*size == max_size)
7824 error (_("Internal error: miscounted aggregate components."));
7825 *size += 2;
7826 for (j = *size-1; j >= i+2; j -= 1)
7827 indices[j] = indices[j - 2];
7828 indices[i] = low;
7829 indices[i + 1] = high;
7830}
7831
7832static struct value *
7833ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7834 int *pos, enum noside noside)
7835{
7836 enum exp_opcode op;
7837 int tem, tem2, tem3;
7838 int pc;
7839 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7840 struct type *type;
7841 int nargs, oplen;
7842 struct value **argvec;
7843
7844 pc = *pos;
7845 *pos += 1;
7846 op = exp->elts[pc].opcode;
7847
7848 switch (op)
7849 {
7850 default:
7851 *pos -= 1;
7852 return
7853 unwrap_value (evaluate_subexp_standard
7854 (expect_type, exp, pos, noside));
7855
7856 case OP_STRING:
7857 {
7858 struct value *result;
7859 *pos -= 1;
7860 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7861 /* The result type will have code OP_STRING, bashed there from
7862 OP_ARRAY. Bash it back. */
7863 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7864 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7865 return result;
7866 }
7867
7868 case UNOP_CAST:
7869 (*pos) += 2;
7870 type = exp->elts[pc + 1].type;
7871 arg1 = evaluate_subexp (type, exp, pos, noside);
7872 if (noside == EVAL_SKIP)
7873 goto nosideret;
7874 if (type != ada_check_typedef (value_type (arg1)))
7875 {
7876 if (ada_is_fixed_point_type (type))
7877 arg1 = cast_to_fixed (type, arg1);
7878 else if (ada_is_fixed_point_type (value_type (arg1)))
7879 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7880 else if (VALUE_LVAL (arg1) == lval_memory)
7881 {
7882 /* This is in case of the really obscure (and undocumented,
7883 but apparently expected) case of (Foo) Bar.all, where Bar
7884 is an integer constant and Foo is a dynamic-sized type.
7885 If we don't do this, ARG1 will simply be relabeled with
7886 TYPE. */
7887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7888 return value_zero (to_static_fixed_type (type), not_lval);
7889 arg1 =
7890 ada_to_fixed_value_create
7891 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7892 }
7893 else
7894 arg1 = value_cast (type, arg1);
7895 }
7896 return arg1;
7897
7898 case UNOP_QUAL:
7899 (*pos) += 2;
7900 type = exp->elts[pc + 1].type;
7901 return ada_evaluate_subexp (type, exp, pos, noside);
7902
7903 case BINOP_ASSIGN:
7904 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7905 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7906 {
7907 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7908 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7909 return arg1;
7910 return ada_value_assign (arg1, arg1);
7911 }
7912 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7913 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7914 return arg1;
7915 if (ada_is_fixed_point_type (value_type (arg1)))
7916 arg2 = cast_to_fixed (value_type (arg1), arg2);
7917 else if (ada_is_fixed_point_type (value_type (arg2)))
7918 error
7919 (_("Fixed-point values must be assigned to fixed-point variables"));
7920 else
7921 arg2 = coerce_for_assign (value_type (arg1), arg2);
7922 return ada_value_assign (arg1, arg2);
7923
7924 case BINOP_ADD:
7925 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7926 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7927 if (noside == EVAL_SKIP)
7928 goto nosideret;
7929 if ((ada_is_fixed_point_type (value_type (arg1))
7930 || ada_is_fixed_point_type (value_type (arg2)))
7931 && value_type (arg1) != value_type (arg2))
7932 error (_("Operands of fixed-point addition must have the same type"));
7933 return value_cast (value_type (arg1), value_add (arg1, arg2));
7934
7935 case BINOP_SUB:
7936 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7937 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7938 if (noside == EVAL_SKIP)
7939 goto nosideret;
7940 if ((ada_is_fixed_point_type (value_type (arg1))
7941 || ada_is_fixed_point_type (value_type (arg2)))
7942 && value_type (arg1) != value_type (arg2))
7943 error (_("Operands of fixed-point subtraction must have the same type"));
7944 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7945
7946 case BINOP_MUL:
7947 case BINOP_DIV:
7948 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7949 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7950 if (noside == EVAL_SKIP)
7951 goto nosideret;
7952 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7953 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7954 return value_zero (value_type (arg1), not_lval);
7955 else
7956 {
7957 if (ada_is_fixed_point_type (value_type (arg1)))
7958 arg1 = cast_from_fixed_to_double (arg1);
7959 if (ada_is_fixed_point_type (value_type (arg2)))
7960 arg2 = cast_from_fixed_to_double (arg2);
7961 return ada_value_binop (arg1, arg2, op);
7962 }
7963
7964 case BINOP_REM:
7965 case BINOP_MOD:
7966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7967 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7968 if (noside == EVAL_SKIP)
7969 goto nosideret;
7970 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7971 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7972 return value_zero (value_type (arg1), not_lval);
7973 else
7974 return ada_value_binop (arg1, arg2, op);
7975
7976 case BINOP_EQUAL:
7977 case BINOP_NOTEQUAL:
7978 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7979 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7980 if (noside == EVAL_SKIP)
7981 goto nosideret;
7982 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7983 tem = 0;
7984 else
7985 tem = ada_value_equal (arg1, arg2);
7986 if (op == BINOP_NOTEQUAL)
7987 tem = !tem;
7988 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7989
7990 case UNOP_NEG:
7991 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7992 if (noside == EVAL_SKIP)
7993 goto nosideret;
7994 else if (ada_is_fixed_point_type (value_type (arg1)))
7995 return value_cast (value_type (arg1), value_neg (arg1));
7996 else
7997 return value_neg (arg1);
7998
7999 case OP_VAR_VALUE:
8000 *pos -= 1;
8001 if (noside == EVAL_SKIP)
8002 {
8003 *pos += 4;
8004 goto nosideret;
8005 }
8006 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8007 /* Only encountered when an unresolved symbol occurs in a
8008 context other than a function call, in which case, it is
8009 invalid. */
8010 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8011 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8012 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8013 {
8014 *pos += 4;
8015 return value_zero
8016 (to_static_fixed_type
8017 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8018 not_lval);
8019 }
8020 else
8021 {
8022 arg1 =
8023 unwrap_value (evaluate_subexp_standard
8024 (expect_type, exp, pos, noside));
8025 return ada_to_fixed_value (arg1);
8026 }
8027
8028 case OP_FUNCALL:
8029 (*pos) += 2;
8030
8031 /* Allocate arg vector, including space for the function to be
8032 called in argvec[0] and a terminating NULL. */
8033 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8034 argvec =
8035 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8036
8037 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8038 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8039 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8040 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8041 else
8042 {
8043 for (tem = 0; tem <= nargs; tem += 1)
8044 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8045 argvec[tem] = 0;
8046
8047 if (noside == EVAL_SKIP)
8048 goto nosideret;
8049 }
8050
8051 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8052 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8053 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8054 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8055 && VALUE_LVAL (argvec[0]) == lval_memory))
8056 argvec[0] = value_addr (argvec[0]);
8057
8058 type = ada_check_typedef (value_type (argvec[0]));
8059 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8060 {
8061 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8062 {
8063 case TYPE_CODE_FUNC:
8064 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8065 break;
8066 case TYPE_CODE_ARRAY:
8067 break;
8068 case TYPE_CODE_STRUCT:
8069 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8070 argvec[0] = ada_value_ind (argvec[0]);
8071 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8072 break;
8073 default:
8074 error (_("cannot subscript or call something of type `%s'"),
8075 ada_type_name (value_type (argvec[0])));
8076 break;
8077 }
8078 }
8079
8080 switch (TYPE_CODE (type))
8081 {
8082 case TYPE_CODE_FUNC:
8083 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8084 return allocate_value (TYPE_TARGET_TYPE (type));
8085 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8086 case TYPE_CODE_STRUCT:
8087 {
8088 int arity;
8089
8090 arity = ada_array_arity (type);
8091 type = ada_array_element_type (type, nargs);
8092 if (type == NULL)
8093 error (_("cannot subscript or call a record"));
8094 if (arity != nargs)
8095 error (_("wrong number of subscripts; expecting %d"), arity);
8096 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8097 return allocate_value (ada_aligned_type (type));
8098 return
8099 unwrap_value (ada_value_subscript
8100 (argvec[0], nargs, argvec + 1));
8101 }
8102 case TYPE_CODE_ARRAY:
8103 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8104 {
8105 type = ada_array_element_type (type, nargs);
8106 if (type == NULL)
8107 error (_("element type of array unknown"));
8108 else
8109 return allocate_value (ada_aligned_type (type));
8110 }
8111 return
8112 unwrap_value (ada_value_subscript
8113 (ada_coerce_to_simple_array (argvec[0]),
8114 nargs, argvec + 1));
8115 case TYPE_CODE_PTR: /* Pointer to array */
8116 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8117 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8118 {
8119 type = ada_array_element_type (type, nargs);
8120 if (type == NULL)
8121 error (_("element type of array unknown"));
8122 else
8123 return allocate_value (ada_aligned_type (type));
8124 }
8125 return
8126 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8127 nargs, argvec + 1));
8128
8129 default:
8130 error (_("Attempt to index or call something other than an "
8131 "array or function"));
8132 }
8133
8134 case TERNOP_SLICE:
8135 {
8136 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8137 struct value *low_bound_val =
8138 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8139 struct value *high_bound_val =
8140 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8141 LONGEST low_bound;
8142 LONGEST high_bound;
8143 low_bound_val = coerce_ref (low_bound_val);
8144 high_bound_val = coerce_ref (high_bound_val);
8145 low_bound = pos_atr (low_bound_val);
8146 high_bound = pos_atr (high_bound_val);
8147
8148 if (noside == EVAL_SKIP)
8149 goto nosideret;
8150
8151 /* If this is a reference to an aligner type, then remove all
8152 the aligners. */
8153 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8154 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8155 TYPE_TARGET_TYPE (value_type (array)) =
8156 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8157
8158 if (ada_is_packed_array_type (value_type (array)))
8159 error (_("cannot slice a packed array"));
8160
8161 /* If this is a reference to an array or an array lvalue,
8162 convert to a pointer. */
8163 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8164 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8165 && VALUE_LVAL (array) == lval_memory))
8166 array = value_addr (array);
8167
8168 if (noside == EVAL_AVOID_SIDE_EFFECTS
8169 && ada_is_array_descriptor_type (ada_check_typedef
8170 (value_type (array))))
8171 return empty_array (ada_type_of_array (array, 0), low_bound);
8172
8173 array = ada_coerce_to_simple_array_ptr (array);
8174
8175 /* If we have more than one level of pointer indirection,
8176 dereference the value until we get only one level. */
8177 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8178 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8179 == TYPE_CODE_PTR))
8180 array = value_ind (array);
8181
8182 /* Make sure we really do have an array type before going further,
8183 to avoid a SEGV when trying to get the index type or the target
8184 type later down the road if the debug info generated by
8185 the compiler is incorrect or incomplete. */
8186 if (!ada_is_simple_array_type (value_type (array)))
8187 error (_("cannot take slice of non-array"));
8188
8189 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8190 {
8191 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8192 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8193 low_bound);
8194 else
8195 {
8196 struct type *arr_type0 =
8197 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8198 NULL, 1);
8199 return ada_value_slice_ptr (array, arr_type0,
8200 longest_to_int (low_bound),
8201 longest_to_int (high_bound));
8202 }
8203 }
8204 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8205 return array;
8206 else if (high_bound < low_bound)
8207 return empty_array (value_type (array), low_bound);
8208 else
8209 return ada_value_slice (array, longest_to_int (low_bound),
8210 longest_to_int (high_bound));
8211 }
8212
8213 case UNOP_IN_RANGE:
8214 (*pos) += 2;
8215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8216 type = exp->elts[pc + 1].type;
8217
8218 if (noside == EVAL_SKIP)
8219 goto nosideret;
8220
8221 switch (TYPE_CODE (type))
8222 {
8223 default:
8224 lim_warning (_("Membership test incompletely implemented; "
8225 "always returns true"));
8226 return value_from_longest (builtin_type_int, (LONGEST) 1);
8227
8228 case TYPE_CODE_RANGE:
8229 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8230 arg3 = value_from_longest (builtin_type_int,
8231 TYPE_HIGH_BOUND (type));
8232 return
8233 value_from_longest (builtin_type_int,
8234 (value_less (arg1, arg3)
8235 || value_equal (arg1, arg3))
8236 && (value_less (arg2, arg1)
8237 || value_equal (arg2, arg1)));
8238 }
8239
8240 case BINOP_IN_BOUNDS:
8241 (*pos) += 2;
8242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8243 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8244
8245 if (noside == EVAL_SKIP)
8246 goto nosideret;
8247
8248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8249 return value_zero (builtin_type_int, not_lval);
8250
8251 tem = longest_to_int (exp->elts[pc + 1].longconst);
8252
8253 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8254 error (_("invalid dimension number to 'range"));
8255
8256 arg3 = ada_array_bound (arg2, tem, 1);
8257 arg2 = ada_array_bound (arg2, tem, 0);
8258
8259 return
8260 value_from_longest (builtin_type_int,
8261 (value_less (arg1, arg3)
8262 || value_equal (arg1, arg3))
8263 && (value_less (arg2, arg1)
8264 || value_equal (arg2, arg1)));
8265
8266 case TERNOP_IN_RANGE:
8267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8268 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8269 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8270
8271 if (noside == EVAL_SKIP)
8272 goto nosideret;
8273
8274 return
8275 value_from_longest (builtin_type_int,
8276 (value_less (arg1, arg3)
8277 || value_equal (arg1, arg3))
8278 && (value_less (arg2, arg1)
8279 || value_equal (arg2, arg1)));
8280
8281 case OP_ATR_FIRST:
8282 case OP_ATR_LAST:
8283 case OP_ATR_LENGTH:
8284 {
8285 struct type *type_arg;
8286 if (exp->elts[*pos].opcode == OP_TYPE)
8287 {
8288 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8289 arg1 = NULL;
8290 type_arg = exp->elts[pc + 2].type;
8291 }
8292 else
8293 {
8294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8295 type_arg = NULL;
8296 }
8297
8298 if (exp->elts[*pos].opcode != OP_LONG)
8299 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8300 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8301 *pos += 4;
8302
8303 if (noside == EVAL_SKIP)
8304 goto nosideret;
8305
8306 if (type_arg == NULL)
8307 {
8308 arg1 = ada_coerce_ref (arg1);
8309
8310 if (ada_is_packed_array_type (value_type (arg1)))
8311 arg1 = ada_coerce_to_simple_array (arg1);
8312
8313 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8314 error (_("invalid dimension number to '%s"),
8315 ada_attribute_name (op));
8316
8317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8318 {
8319 type = ada_index_type (value_type (arg1), tem);
8320 if (type == NULL)
8321 error
8322 (_("attempt to take bound of something that is not an array"));
8323 return allocate_value (type);
8324 }
8325
8326 switch (op)
8327 {
8328 default: /* Should never happen. */
8329 error (_("unexpected attribute encountered"));
8330 case OP_ATR_FIRST:
8331 return ada_array_bound (arg1, tem, 0);
8332 case OP_ATR_LAST:
8333 return ada_array_bound (arg1, tem, 1);
8334 case OP_ATR_LENGTH:
8335 return ada_array_length (arg1, tem);
8336 }
8337 }
8338 else if (discrete_type_p (type_arg))
8339 {
8340 struct type *range_type;
8341 char *name = ada_type_name (type_arg);
8342 range_type = NULL;
8343 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8344 range_type =
8345 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8346 if (range_type == NULL)
8347 range_type = type_arg;
8348 switch (op)
8349 {
8350 default:
8351 error (_("unexpected attribute encountered"));
8352 case OP_ATR_FIRST:
8353 return discrete_type_low_bound (range_type);
8354 case OP_ATR_LAST:
8355 return discrete_type_high_bound (range_type);
8356 case OP_ATR_LENGTH:
8357 error (_("the 'length attribute applies only to array types"));
8358 }
8359 }
8360 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8361 error (_("unimplemented type attribute"));
8362 else
8363 {
8364 LONGEST low, high;
8365
8366 if (ada_is_packed_array_type (type_arg))
8367 type_arg = decode_packed_array_type (type_arg);
8368
8369 if (tem < 1 || tem > ada_array_arity (type_arg))
8370 error (_("invalid dimension number to '%s"),
8371 ada_attribute_name (op));
8372
8373 type = ada_index_type (type_arg, tem);
8374 if (type == NULL)
8375 error
8376 (_("attempt to take bound of something that is not an array"));
8377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8378 return allocate_value (type);
8379
8380 switch (op)
8381 {
8382 default:
8383 error (_("unexpected attribute encountered"));
8384 case OP_ATR_FIRST:
8385 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8386 return value_from_longest (type, low);
8387 case OP_ATR_LAST:
8388 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8389 return value_from_longest (type, high);
8390 case OP_ATR_LENGTH:
8391 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8392 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8393 return value_from_longest (type, high - low + 1);
8394 }
8395 }
8396 }
8397
8398 case OP_ATR_TAG:
8399 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8400 if (noside == EVAL_SKIP)
8401 goto nosideret;
8402
8403 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8404 return value_zero (ada_tag_type (arg1), not_lval);
8405
8406 return ada_value_tag (arg1);
8407
8408 case OP_ATR_MIN:
8409 case OP_ATR_MAX:
8410 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8412 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8413 if (noside == EVAL_SKIP)
8414 goto nosideret;
8415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8416 return value_zero (value_type (arg1), not_lval);
8417 else
8418 return value_binop (arg1, arg2,
8419 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8420
8421 case OP_ATR_MODULUS:
8422 {
8423 struct type *type_arg = exp->elts[pc + 2].type;
8424 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8425
8426 if (noside == EVAL_SKIP)
8427 goto nosideret;
8428
8429 if (!ada_is_modular_type (type_arg))
8430 error (_("'modulus must be applied to modular type"));
8431
8432 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8433 ada_modulus (type_arg));
8434 }
8435
8436
8437 case OP_ATR_POS:
8438 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8440 if (noside == EVAL_SKIP)
8441 goto nosideret;
8442 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8443 return value_zero (builtin_type_int, not_lval);
8444 else
8445 return value_pos_atr (arg1);
8446
8447 case OP_ATR_SIZE:
8448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8449 if (noside == EVAL_SKIP)
8450 goto nosideret;
8451 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8452 return value_zero (builtin_type_int, not_lval);
8453 else
8454 return value_from_longest (builtin_type_int,
8455 TARGET_CHAR_BIT
8456 * TYPE_LENGTH (value_type (arg1)));
8457
8458 case OP_ATR_VAL:
8459 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8461 type = exp->elts[pc + 2].type;
8462 if (noside == EVAL_SKIP)
8463 goto nosideret;
8464 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8465 return value_zero (type, not_lval);
8466 else
8467 return value_val_atr (type, arg1);
8468
8469 case BINOP_EXP:
8470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8471 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8472 if (noside == EVAL_SKIP)
8473 goto nosideret;
8474 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8475 return value_zero (value_type (arg1), not_lval);
8476 else
8477 return value_binop (arg1, arg2, op);
8478
8479 case UNOP_PLUS:
8480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8481 if (noside == EVAL_SKIP)
8482 goto nosideret;
8483 else
8484 return arg1;
8485
8486 case UNOP_ABS:
8487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8488 if (noside == EVAL_SKIP)
8489 goto nosideret;
8490 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8491 return value_neg (arg1);
8492 else
8493 return arg1;
8494
8495 case UNOP_IND:
8496 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8497 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8498 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8499 if (noside == EVAL_SKIP)
8500 goto nosideret;
8501 type = ada_check_typedef (value_type (arg1));
8502 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8503 {
8504 if (ada_is_array_descriptor_type (type))
8505 /* GDB allows dereferencing GNAT array descriptors. */
8506 {
8507 struct type *arrType = ada_type_of_array (arg1, 0);
8508 if (arrType == NULL)
8509 error (_("Attempt to dereference null array pointer."));
8510 return value_at_lazy (arrType, 0);
8511 }
8512 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8513 || TYPE_CODE (type) == TYPE_CODE_REF
8514 /* In C you can dereference an array to get the 1st elt. */
8515 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8516 {
8517 type = to_static_fixed_type
8518 (ada_aligned_type
8519 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8520 check_size (type);
8521 return value_zero (type, lval_memory);
8522 }
8523 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8524 /* GDB allows dereferencing an int. */
8525 return value_zero (builtin_type_int, lval_memory);
8526 else
8527 error (_("Attempt to take contents of a non-pointer value."));
8528 }
8529 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8530 type = ada_check_typedef (value_type (arg1));
8531
8532 if (ada_is_array_descriptor_type (type))
8533 /* GDB allows dereferencing GNAT array descriptors. */
8534 return ada_coerce_to_simple_array (arg1);
8535 else
8536 return ada_value_ind (arg1);
8537
8538 case STRUCTOP_STRUCT:
8539 tem = longest_to_int (exp->elts[pc + 1].longconst);
8540 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8542 if (noside == EVAL_SKIP)
8543 goto nosideret;
8544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8545 {
8546 struct type *type1 = value_type (arg1);
8547 if (ada_is_tagged_type (type1, 1))
8548 {
8549 type = ada_lookup_struct_elt_type (type1,
8550 &exp->elts[pc + 2].string,
8551 1, 1, NULL);
8552 if (type == NULL)
8553 /* In this case, we assume that the field COULD exist
8554 in some extension of the type. Return an object of
8555 "type" void, which will match any formal
8556 (see ada_type_match). */
8557 return value_zero (builtin_type_void, lval_memory);
8558 }
8559 else
8560 type =
8561 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8562 0, NULL);
8563
8564 return value_zero (ada_aligned_type (type), lval_memory);
8565 }
8566 else
8567 return
8568 ada_to_fixed_value (unwrap_value
8569 (ada_value_struct_elt
8570 (arg1, &exp->elts[pc + 2].string, 0)));
8571 case OP_TYPE:
8572 /* The value is not supposed to be used. This is here to make it
8573 easier to accommodate expressions that contain types. */
8574 (*pos) += 2;
8575 if (noside == EVAL_SKIP)
8576 goto nosideret;
8577 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8578 return allocate_value (exp->elts[pc + 1].type);
8579 else
8580 error (_("Attempt to use a type name as an expression"));
8581
8582 case OP_AGGREGATE:
8583 case OP_CHOICES:
8584 case OP_OTHERS:
8585 case OP_DISCRETE_RANGE:
8586 case OP_POSITIONAL:
8587 case OP_NAME:
8588 if (noside == EVAL_NORMAL)
8589 switch (op)
8590 {
8591 case OP_NAME:
8592 error (_("Undefined name, ambiguous name, or renaming used in "
8593 "component association: %s."), &exp->elts[pc+2].string);
8594 case OP_AGGREGATE:
8595 error (_("Aggregates only allowed on the right of an assignment"));
8596 default:
8597 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8598 }
8599
8600 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8601 *pos += oplen - 1;
8602 for (tem = 0; tem < nargs; tem += 1)
8603 ada_evaluate_subexp (NULL, exp, pos, noside);
8604 goto nosideret;
8605 }
8606
8607nosideret:
8608 return value_from_longest (builtin_type_long, (LONGEST) 1);
8609}
8610\f
8611
8612 /* Fixed point */
8613
8614/* If TYPE encodes an Ada fixed-point type, return the suffix of the
8615 type name that encodes the 'small and 'delta information.
8616 Otherwise, return NULL. */
8617
8618static const char *
8619fixed_type_info (struct type *type)
8620{
8621 const char *name = ada_type_name (type);
8622 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8623
8624 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8625 {
8626 const char *tail = strstr (name, "___XF_");
8627 if (tail == NULL)
8628 return NULL;
8629 else
8630 return tail + 5;
8631 }
8632 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8633 return fixed_type_info (TYPE_TARGET_TYPE (type));
8634 else
8635 return NULL;
8636}
8637
8638/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8639
8640int
8641ada_is_fixed_point_type (struct type *type)
8642{
8643 return fixed_type_info (type) != NULL;
8644}
8645
8646/* Return non-zero iff TYPE represents a System.Address type. */
8647
8648int
8649ada_is_system_address_type (struct type *type)
8650{
8651 return (TYPE_NAME (type)
8652 && strcmp (TYPE_NAME (type), "system__address") == 0);
8653}
8654
8655/* Assuming that TYPE is the representation of an Ada fixed-point
8656 type, return its delta, or -1 if the type is malformed and the
8657 delta cannot be determined. */
8658
8659DOUBLEST
8660ada_delta (struct type *type)
8661{
8662 const char *encoding = fixed_type_info (type);
8663 long num, den;
8664
8665 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8666 return -1.0;
8667 else
8668 return (DOUBLEST) num / (DOUBLEST) den;
8669}
8670
8671/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8672 factor ('SMALL value) associated with the type. */
8673
8674static DOUBLEST
8675scaling_factor (struct type *type)
8676{
8677 const char *encoding = fixed_type_info (type);
8678 unsigned long num0, den0, num1, den1;
8679 int n;
8680
8681 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8682
8683 if (n < 2)
8684 return 1.0;
8685 else if (n == 4)
8686 return (DOUBLEST) num1 / (DOUBLEST) den1;
8687 else
8688 return (DOUBLEST) num0 / (DOUBLEST) den0;
8689}
8690
8691
8692/* Assuming that X is the representation of a value of fixed-point
8693 type TYPE, return its floating-point equivalent. */
8694
8695DOUBLEST
8696ada_fixed_to_float (struct type *type, LONGEST x)
8697{
8698 return (DOUBLEST) x *scaling_factor (type);
8699}
8700
8701/* The representation of a fixed-point value of type TYPE
8702 corresponding to the value X. */
8703
8704LONGEST
8705ada_float_to_fixed (struct type *type, DOUBLEST x)
8706{
8707 return (LONGEST) (x / scaling_factor (type) + 0.5);
8708}
8709
8710
8711 /* VAX floating formats */
8712
8713/* Non-zero iff TYPE represents one of the special VAX floating-point
8714 types. */
8715
8716int
8717ada_is_vax_floating_type (struct type *type)
8718{
8719 int name_len =
8720 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8721 return
8722 name_len > 6
8723 && (TYPE_CODE (type) == TYPE_CODE_INT
8724 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8725 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8726}
8727
8728/* The type of special VAX floating-point type this is, assuming
8729 ada_is_vax_floating_point. */
8730
8731int
8732ada_vax_float_type_suffix (struct type *type)
8733{
8734 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8735}
8736
8737/* A value representing the special debugging function that outputs
8738 VAX floating-point values of the type represented by TYPE. Assumes
8739 ada_is_vax_floating_type (TYPE). */
8740
8741struct value *
8742ada_vax_float_print_function (struct type *type)
8743{
8744 switch (ada_vax_float_type_suffix (type))
8745 {
8746 case 'F':
8747 return get_var_value ("DEBUG_STRING_F", 0);
8748 case 'D':
8749 return get_var_value ("DEBUG_STRING_D", 0);
8750 case 'G':
8751 return get_var_value ("DEBUG_STRING_G", 0);
8752 default:
8753 error (_("invalid VAX floating-point type"));
8754 }
8755}
8756\f
8757
8758 /* Range types */
8759
8760/* Scan STR beginning at position K for a discriminant name, and
8761 return the value of that discriminant field of DVAL in *PX. If
8762 PNEW_K is not null, put the position of the character beyond the
8763 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8764 not alter *PX and *PNEW_K if unsuccessful. */
8765
8766static int
8767scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8768 int *pnew_k)
8769{
8770 static char *bound_buffer = NULL;
8771 static size_t bound_buffer_len = 0;
8772 char *bound;
8773 char *pend;
8774 struct value *bound_val;
8775
8776 if (dval == NULL || str == NULL || str[k] == '\0')
8777 return 0;
8778
8779 pend = strstr (str + k, "__");
8780 if (pend == NULL)
8781 {
8782 bound = str + k;
8783 k += strlen (bound);
8784 }
8785 else
8786 {
8787 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8788 bound = bound_buffer;
8789 strncpy (bound_buffer, str + k, pend - (str + k));
8790 bound[pend - (str + k)] = '\0';
8791 k = pend - str;
8792 }
8793
8794 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8795 if (bound_val == NULL)
8796 return 0;
8797
8798 *px = value_as_long (bound_val);
8799 if (pnew_k != NULL)
8800 *pnew_k = k;
8801 return 1;
8802}
8803
8804/* Value of variable named NAME in the current environment. If
8805 no such variable found, then if ERR_MSG is null, returns 0, and
8806 otherwise causes an error with message ERR_MSG. */
8807
8808static struct value *
8809get_var_value (char *name, char *err_msg)
8810{
8811 struct ada_symbol_info *syms;
8812 int nsyms;
8813
8814 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8815 &syms);
8816
8817 if (nsyms != 1)
8818 {
8819 if (err_msg == NULL)
8820 return 0;
8821 else
8822 error (("%s"), err_msg);
8823 }
8824
8825 return value_of_variable (syms[0].sym, syms[0].block);
8826}
8827
8828/* Value of integer variable named NAME in the current environment. If
8829 no such variable found, returns 0, and sets *FLAG to 0. If
8830 successful, sets *FLAG to 1. */
8831
8832LONGEST
8833get_int_var_value (char *name, int *flag)
8834{
8835 struct value *var_val = get_var_value (name, 0);
8836
8837 if (var_val == 0)
8838 {
8839 if (flag != NULL)
8840 *flag = 0;
8841 return 0;
8842 }
8843 else
8844 {
8845 if (flag != NULL)
8846 *flag = 1;
8847 return value_as_long (var_val);
8848 }
8849}
8850
8851
8852/* Return a range type whose base type is that of the range type named
8853 NAME in the current environment, and whose bounds are calculated
8854 from NAME according to the GNAT range encoding conventions.
8855 Extract discriminant values, if needed, from DVAL. If a new type
8856 must be created, allocate in OBJFILE's space. The bounds
8857 information, in general, is encoded in NAME, the base type given in
8858 the named range type. */
8859
8860static struct type *
8861to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8862{
8863 struct type *raw_type = ada_find_any_type (name);
8864 struct type *base_type;
8865 char *subtype_info;
8866
8867 if (raw_type == NULL)
8868 base_type = builtin_type_int;
8869 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8870 base_type = TYPE_TARGET_TYPE (raw_type);
8871 else
8872 base_type = raw_type;
8873
8874 subtype_info = strstr (name, "___XD");
8875 if (subtype_info == NULL)
8876 return raw_type;
8877 else
8878 {
8879 static char *name_buf = NULL;
8880 static size_t name_len = 0;
8881 int prefix_len = subtype_info - name;
8882 LONGEST L, U;
8883 struct type *type;
8884 char *bounds_str;
8885 int n;
8886
8887 GROW_VECT (name_buf, name_len, prefix_len + 5);
8888 strncpy (name_buf, name, prefix_len);
8889 name_buf[prefix_len] = '\0';
8890
8891 subtype_info += 5;
8892 bounds_str = strchr (subtype_info, '_');
8893 n = 1;
8894
8895 if (*subtype_info == 'L')
8896 {
8897 if (!ada_scan_number (bounds_str, n, &L, &n)
8898 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8899 return raw_type;
8900 if (bounds_str[n] == '_')
8901 n += 2;
8902 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8903 n += 1;
8904 subtype_info += 1;
8905 }
8906 else
8907 {
8908 int ok;
8909 strcpy (name_buf + prefix_len, "___L");
8910 L = get_int_var_value (name_buf, &ok);
8911 if (!ok)
8912 {
8913 lim_warning (_("Unknown lower bound, using 1."));
8914 L = 1;
8915 }
8916 }
8917
8918 if (*subtype_info == 'U')
8919 {
8920 if (!ada_scan_number (bounds_str, n, &U, &n)
8921 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8922 return raw_type;
8923 }
8924 else
8925 {
8926 int ok;
8927 strcpy (name_buf + prefix_len, "___U");
8928 U = get_int_var_value (name_buf, &ok);
8929 if (!ok)
8930 {
8931 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8932 U = L;
8933 }
8934 }
8935
8936 if (objfile == NULL)
8937 objfile = TYPE_OBJFILE (base_type);
8938 type = create_range_type (alloc_type (objfile), base_type, L, U);
8939 TYPE_NAME (type) = name;
8940 return type;
8941 }
8942}
8943
8944/* True iff NAME is the name of a range type. */
8945
8946int
8947ada_is_range_type_name (const char *name)
8948{
8949 return (name != NULL && strstr (name, "___XD"));
8950}
8951\f
8952
8953 /* Modular types */
8954
8955/* True iff TYPE is an Ada modular type. */
8956
8957int
8958ada_is_modular_type (struct type *type)
8959{
8960 struct type *subranged_type = base_type (type);
8961
8962 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8963 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8964 && TYPE_UNSIGNED (subranged_type));
8965}
8966
8967/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8968
8969ULONGEST
8970ada_modulus (struct type * type)
8971{
8972 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8973}
8974\f
8975
8976/* Ada exception catchpoint support:
8977 ---------------------------------
8978
8979 We support 3 kinds of exception catchpoints:
8980 . catchpoints on Ada exceptions
8981 . catchpoints on unhandled Ada exceptions
8982 . catchpoints on failed assertions
8983
8984 Exceptions raised during failed assertions, or unhandled exceptions
8985 could perfectly be caught with the general catchpoint on Ada exceptions.
8986 However, we can easily differentiate these two special cases, and having
8987 the option to distinguish these two cases from the rest can be useful
8988 to zero-in on certain situations.
8989
8990 Exception catchpoints are a specialized form of breakpoint,
8991 since they rely on inserting breakpoints inside known routines
8992 of the GNAT runtime. The implementation therefore uses a standard
8993 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8994 of breakpoint_ops.
8995
8996 At this time, we do not support the use of conditions on Ada exception
8997 catchpoints. The COND and COND_STRING fields are therefore set
8998 to NULL (most of the time, see below).
8999
9000 Conditions where EXP_STRING, COND, and COND_STRING are used:
9001
9002 When a user specifies the name of a specific exception in the case
9003 of catchpoints on Ada exceptions, we store the name of that exception
9004 in the EXP_STRING. We then translate this request into an actual
9005 condition stored in COND_STRING, and then parse it into an expression
9006 stored in COND. */
9007
9008/* The different types of catchpoints that we introduced for catching
9009 Ada exceptions. */
9010
9011enum exception_catchpoint_kind
9012{
9013 ex_catch_exception,
9014 ex_catch_exception_unhandled,
9015 ex_catch_assert
9016};
9017
9018/* Return the name of the function at PC, NULL if could not find it.
9019 This function only checks the debugging information, not the symbol
9020 table. */
9021
9022static char *
9023function_name_from_pc (CORE_ADDR pc)
9024{
9025 char *func_name;
9026
9027 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9028 return NULL;
9029
9030 return func_name;
9031}
9032
9033/* True iff FRAME is very likely to be that of a function that is
9034 part of the runtime system. This is all very heuristic, but is
9035 intended to be used as advice as to what frames are uninteresting
9036 to most users. */
9037
9038static int
9039is_known_support_routine (struct frame_info *frame)
9040{
9041 struct symtab_and_line sal;
9042 char *func_name;
9043 int i;
9044
9045 /* If this code does not have any debugging information (no symtab),
9046 This cannot be any user code. */
9047
9048 find_frame_sal (frame, &sal);
9049 if (sal.symtab == NULL)
9050 return 1;
9051
9052 /* If there is a symtab, but the associated source file cannot be
9053 located, then assume this is not user code: Selecting a frame
9054 for which we cannot display the code would not be very helpful
9055 for the user. This should also take care of case such as VxWorks
9056 where the kernel has some debugging info provided for a few units. */
9057
9058 if (symtab_to_fullname (sal.symtab) == NULL)
9059 return 1;
9060
9061 /* Check the unit filename againt the Ada runtime file naming.
9062 We also check the name of the objfile against the name of some
9063 known system libraries that sometimes come with debugging info
9064 too. */
9065
9066 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9067 {
9068 re_comp (known_runtime_file_name_patterns[i]);
9069 if (re_exec (sal.symtab->filename))
9070 return 1;
9071 if (sal.symtab->objfile != NULL
9072 && re_exec (sal.symtab->objfile->name))
9073 return 1;
9074 }
9075
9076 /* Check whether the function is a GNAT-generated entity. */
9077
9078 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9079 if (func_name == NULL)
9080 return 1;
9081
9082 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9083 {
9084 re_comp (known_auxiliary_function_name_patterns[i]);
9085 if (re_exec (func_name))
9086 return 1;
9087 }
9088
9089 return 0;
9090}
9091
9092/* Find the first frame that contains debugging information and that is not
9093 part of the Ada run-time, starting from FI and moving upward. */
9094
9095static void
9096ada_find_printable_frame (struct frame_info *fi)
9097{
9098 for (; fi != NULL; fi = get_prev_frame (fi))
9099 {
9100 if (!is_known_support_routine (fi))
9101 {
9102 select_frame (fi);
9103 break;
9104 }
9105 }
9106
9107}
9108
9109/* Assuming that the inferior just triggered an unhandled exception
9110 catchpoint, return the address in inferior memory where the name
9111 of the exception is stored.
9112
9113 Return zero if the address could not be computed. */
9114
9115static CORE_ADDR
9116ada_unhandled_exception_name_addr (void)
9117{
9118 int frame_level;
9119 struct frame_info *fi;
9120
9121 /* To determine the name of this exception, we need to select
9122 the frame corresponding to RAISE_SYM_NAME. This frame is
9123 at least 3 levels up, so we simply skip the first 3 frames
9124 without checking the name of their associated function. */
9125 fi = get_current_frame ();
9126 for (frame_level = 0; frame_level < 3; frame_level += 1)
9127 if (fi != NULL)
9128 fi = get_prev_frame (fi);
9129
9130 while (fi != NULL)
9131 {
9132 const char *func_name =
9133 function_name_from_pc (get_frame_address_in_block (fi));
9134 if (func_name != NULL
9135 && strcmp (func_name, raise_sym_name) == 0)
9136 break; /* We found the frame we were looking for... */
9137 fi = get_prev_frame (fi);
9138 }
9139
9140 if (fi == NULL)
9141 return 0;
9142
9143 select_frame (fi);
9144 return parse_and_eval_address ("id.full_name");
9145}
9146
9147/* Assuming the inferior just triggered an Ada exception catchpoint
9148 (of any type), return the address in inferior memory where the name
9149 of the exception is stored, if applicable.
9150
9151 Return zero if the address could not be computed, or if not relevant. */
9152
9153static CORE_ADDR
9154ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9155 struct breakpoint *b)
9156{
9157 switch (ex)
9158 {
9159 case ex_catch_exception:
9160 return (parse_and_eval_address ("e.full_name"));
9161 break;
9162
9163 case ex_catch_exception_unhandled:
9164 return ada_unhandled_exception_name_addr ();
9165 break;
9166
9167 case ex_catch_assert:
9168 return 0; /* Exception name is not relevant in this case. */
9169 break;
9170
9171 default:
9172 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9173 break;
9174 }
9175
9176 return 0; /* Should never be reached. */
9177}
9178
9179/* Same as ada_exception_name_addr_1, except that it intercepts and contains
9180 any error that ada_exception_name_addr_1 might cause to be thrown.
9181 When an error is intercepted, a warning with the error message is printed,
9182 and zero is returned. */
9183
9184static CORE_ADDR
9185ada_exception_name_addr (enum exception_catchpoint_kind ex,
9186 struct breakpoint *b)
9187{
9188 struct gdb_exception e;
9189 CORE_ADDR result = 0;
9190
9191 TRY_CATCH (e, RETURN_MASK_ERROR)
9192 {
9193 result = ada_exception_name_addr_1 (ex, b);
9194 }
9195
9196 if (e.reason < 0)
9197 {
9198 warning (_("failed to get exception name: %s"), e.message);
9199 return 0;
9200 }
9201
9202 return result;
9203}
9204
9205/* Implement the PRINT_IT method in the breakpoint_ops structure
9206 for all exception catchpoint kinds. */
9207
9208static enum print_stop_action
9209print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9210{
9211 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9212 char exception_name[256];
9213
9214 if (addr != 0)
9215 {
9216 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9217 exception_name [sizeof (exception_name) - 1] = '\0';
9218 }
9219
9220 ada_find_printable_frame (get_current_frame ());
9221
9222 annotate_catchpoint (b->number);
9223 switch (ex)
9224 {
9225 case ex_catch_exception:
9226 if (addr != 0)
9227 printf_filtered (_("\nCatchpoint %d, %s at "),
9228 b->number, exception_name);
9229 else
9230 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9231 break;
9232 case ex_catch_exception_unhandled:
9233 if (addr != 0)
9234 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9235 b->number, exception_name);
9236 else
9237 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9238 b->number);
9239 break;
9240 case ex_catch_assert:
9241 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9242 b->number);
9243 break;
9244 }
9245
9246 return PRINT_SRC_AND_LOC;
9247}
9248
9249/* Implement the PRINT_ONE method in the breakpoint_ops structure
9250 for all exception catchpoint kinds. */
9251
9252static void
9253print_one_exception (enum exception_catchpoint_kind ex,
9254 struct breakpoint *b, CORE_ADDR *last_addr)
9255{
9256 if (addressprint)
9257 {
9258 annotate_field (4);
9259 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9260 }
9261
9262 annotate_field (5);
9263 *last_addr = b->loc->address;
9264 switch (ex)
9265 {
9266 case ex_catch_exception:
9267 if (b->exp_string != NULL)
9268 {
9269 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9270
9271 ui_out_field_string (uiout, "what", msg);
9272 xfree (msg);
9273 }
9274 else
9275 ui_out_field_string (uiout, "what", "all Ada exceptions");
9276
9277 break;
9278
9279 case ex_catch_exception_unhandled:
9280 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9281 break;
9282
9283 case ex_catch_assert:
9284 ui_out_field_string (uiout, "what", "failed Ada assertions");
9285 break;
9286
9287 default:
9288 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9289 break;
9290 }
9291}
9292
9293/* Implement the PRINT_MENTION method in the breakpoint_ops structure
9294 for all exception catchpoint kinds. */
9295
9296static void
9297print_mention_exception (enum exception_catchpoint_kind ex,
9298 struct breakpoint *b)
9299{
9300 switch (ex)
9301 {
9302 case ex_catch_exception:
9303 if (b->exp_string != NULL)
9304 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9305 b->number, b->exp_string);
9306 else
9307 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9308
9309 break;
9310
9311 case ex_catch_exception_unhandled:
9312 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9313 b->number);
9314 break;
9315
9316 case ex_catch_assert:
9317 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9318 break;
9319
9320 default:
9321 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9322 break;
9323 }
9324}
9325
9326/* Virtual table for "catch exception" breakpoints. */
9327
9328static enum print_stop_action
9329print_it_catch_exception (struct breakpoint *b)
9330{
9331 return print_it_exception (ex_catch_exception, b);
9332}
9333
9334static void
9335print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9336{
9337 print_one_exception (ex_catch_exception, b, last_addr);
9338}
9339
9340static void
9341print_mention_catch_exception (struct breakpoint *b)
9342{
9343 print_mention_exception (ex_catch_exception, b);
9344}
9345
9346static struct breakpoint_ops catch_exception_breakpoint_ops =
9347{
9348 print_it_catch_exception,
9349 print_one_catch_exception,
9350 print_mention_catch_exception
9351};
9352
9353/* Virtual table for "catch exception unhandled" breakpoints. */
9354
9355static enum print_stop_action
9356print_it_catch_exception_unhandled (struct breakpoint *b)
9357{
9358 return print_it_exception (ex_catch_exception_unhandled, b);
9359}
9360
9361static void
9362print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9363{
9364 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9365}
9366
9367static void
9368print_mention_catch_exception_unhandled (struct breakpoint *b)
9369{
9370 print_mention_exception (ex_catch_exception_unhandled, b);
9371}
9372
9373static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9374 print_it_catch_exception_unhandled,
9375 print_one_catch_exception_unhandled,
9376 print_mention_catch_exception_unhandled
9377};
9378
9379/* Virtual table for "catch assert" breakpoints. */
9380
9381static enum print_stop_action
9382print_it_catch_assert (struct breakpoint *b)
9383{
9384 return print_it_exception (ex_catch_assert, b);
9385}
9386
9387static void
9388print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9389{
9390 print_one_exception (ex_catch_assert, b, last_addr);
9391}
9392
9393static void
9394print_mention_catch_assert (struct breakpoint *b)
9395{
9396 print_mention_exception (ex_catch_assert, b);
9397}
9398
9399static struct breakpoint_ops catch_assert_breakpoint_ops = {
9400 print_it_catch_assert,
9401 print_one_catch_assert,
9402 print_mention_catch_assert
9403};
9404
9405/* Return non-zero if B is an Ada exception catchpoint. */
9406
9407int
9408ada_exception_catchpoint_p (struct breakpoint *b)
9409{
9410 return (b->ops == &catch_exception_breakpoint_ops
9411 || b->ops == &catch_exception_unhandled_breakpoint_ops
9412 || b->ops == &catch_assert_breakpoint_ops);
9413}
9414
9415/* Cause the appropriate error if no appropriate runtime symbol is
9416 found to set a breakpoint, using ERR_DESC to describe the
9417 breakpoint. */
9418
9419static void
9420error_breakpoint_runtime_sym_not_found (const char *err_desc)
9421{
9422 /* If we are not debugging an Ada program, we cannot put exception
9423 catchpoints! */
9424
9425 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9426 error (_("Unable to break on %s. Is this an Ada main program?"),
9427 err_desc);
9428
9429 /* If the symbol does not exist, then check that the program is
9430 already started, to make sure that shared libraries have been
9431 loaded. If it is not started, this may mean that the symbol is
9432 in a shared library. */
9433
9434 if (ptid_get_pid (inferior_ptid) == 0)
9435 error (_("Unable to break on %s. Try to start the program first."),
9436 err_desc);
9437
9438 /* At this point, we know that we are debugging an Ada program and
9439 that the inferior has been started, but we still are not able to
9440 find the run-time symbols. That can mean that we are in
9441 configurable run time mode, or that a-except as been optimized
9442 out by the linker... In any case, at this point it is not worth
9443 supporting this feature. */
9444
9445 error (_("Cannot break on %s in this configuration."), err_desc);
9446}
9447
9448/* Return a newly allocated copy of the first space-separated token
9449 in ARGSP, and then adjust ARGSP to point immediately after that
9450 token.
9451
9452 Return NULL if ARGPS does not contain any more tokens. */
9453
9454static char *
9455ada_get_next_arg (char **argsp)
9456{
9457 char *args = *argsp;
9458 char *end;
9459 char *result;
9460
9461 /* Skip any leading white space. */
9462
9463 while (isspace (*args))
9464 args++;
9465
9466 if (args[0] == '\0')
9467 return NULL; /* No more arguments. */
9468
9469 /* Find the end of the current argument. */
9470
9471 end = args;
9472 while (*end != '\0' && !isspace (*end))
9473 end++;
9474
9475 /* Adjust ARGSP to point to the start of the next argument. */
9476
9477 *argsp = end;
9478
9479 /* Make a copy of the current argument and return it. */
9480
9481 result = xmalloc (end - args + 1);
9482 strncpy (result, args, end - args);
9483 result[end - args] = '\0';
9484
9485 return result;
9486}
9487
9488/* Split the arguments specified in a "catch exception" command.
9489 Set EX to the appropriate catchpoint type.
9490 Set EXP_STRING to the name of the specific exception if
9491 specified by the user. */
9492
9493static void
9494catch_ada_exception_command_split (char *args,
9495 enum exception_catchpoint_kind *ex,
9496 char **exp_string)
9497{
9498 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9499 char *exception_name;
9500
9501 exception_name = ada_get_next_arg (&args);
9502 make_cleanup (xfree, exception_name);
9503
9504 /* Check that we do not have any more arguments. Anything else
9505 is unexpected. */
9506
9507 while (isspace (*args))
9508 args++;
9509
9510 if (args[0] != '\0')
9511 error (_("Junk at end of expression"));
9512
9513 discard_cleanups (old_chain);
9514
9515 if (exception_name == NULL)
9516 {
9517 /* Catch all exceptions. */
9518 *ex = ex_catch_exception;
9519 *exp_string = NULL;
9520 }
9521 else if (strcmp (exception_name, "unhandled") == 0)
9522 {
9523 /* Catch unhandled exceptions. */
9524 *ex = ex_catch_exception_unhandled;
9525 *exp_string = NULL;
9526 }
9527 else
9528 {
9529 /* Catch a specific exception. */
9530 *ex = ex_catch_exception;
9531 *exp_string = exception_name;
9532 }
9533}
9534
9535/* Return the name of the symbol on which we should break in order to
9536 implement a catchpoint of the EX kind. */
9537
9538static const char *
9539ada_exception_sym_name (enum exception_catchpoint_kind ex)
9540{
9541 switch (ex)
9542 {
9543 case ex_catch_exception:
9544 return (raise_sym_name);
9545 break;
9546 case ex_catch_exception_unhandled:
9547 return (raise_unhandled_sym_name);
9548 break;
9549 case ex_catch_assert:
9550 return (raise_assert_sym_name);
9551 break;
9552 default:
9553 internal_error (__FILE__, __LINE__,
9554 _("unexpected catchpoint kind (%d)"), ex);
9555 }
9556}
9557
9558/* Return the breakpoint ops "virtual table" used for catchpoints
9559 of the EX kind. */
9560
9561static struct breakpoint_ops *
9562ada_exception_breakption_ops (enum exception_catchpoint_kind ex)
9563{
9564 switch (ex)
9565 {
9566 case ex_catch_exception:
9567 return (&catch_exception_breakpoint_ops);
9568 break;
9569 case ex_catch_exception_unhandled:
9570 return (&catch_exception_unhandled_breakpoint_ops);
9571 break;
9572 case ex_catch_assert:
9573 return (&catch_assert_breakpoint_ops);
9574 break;
9575 default:
9576 internal_error (__FILE__, __LINE__,
9577 _("unexpected catchpoint kind (%d)"), ex);
9578 }
9579}
9580
9581/* Return the condition that will be used to match the current exception
9582 being raised with the exception that the user wants to catch. This
9583 assumes that this condition is used when the inferior just triggered
9584 an exception catchpoint.
9585
9586 The string returned is a newly allocated string that needs to be
9587 deallocated later. */
9588
9589static char *
9590ada_exception_catchpoint_cond_string (const char *exp_string)
9591{
9592 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9593}
9594
9595/* Return the expression corresponding to COND_STRING evaluated at SAL. */
9596
9597static struct expression *
9598ada_parse_catchpoint_condition (char *cond_string,
9599 struct symtab_and_line sal)
9600{
9601 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9602}
9603
9604/* Return the symtab_and_line that should be used to insert an exception
9605 catchpoint of the TYPE kind.
9606
9607 EX_STRING should contain the name of a specific exception
9608 that the catchpoint should catch, or NULL otherwise.
9609
9610 The idea behind all the remaining parameters is that their names match
9611 the name of certain fields in the breakpoint structure that are used to
9612 handle exception catchpoints. This function returns the value to which
9613 these fields should be set, depending on the type of catchpoint we need
9614 to create.
9615
9616 If COND and COND_STRING are both non-NULL, any value they might
9617 hold will be free'ed, and then replaced by newly allocated ones.
9618 These parameters are left untouched otherwise. */
9619
9620static struct symtab_and_line
9621ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9622 char **addr_string, char **cond_string,
9623 struct expression **cond, struct breakpoint_ops **ops)
9624{
9625 const char *sym_name;
9626 struct symbol *sym;
9627 struct symtab_and_line sal;
9628
9629 /* First lookup the function on which we will break in order to catch
9630 the Ada exceptions requested by the user. */
9631
9632 sym_name = ada_exception_sym_name (ex);
9633 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9634
9635 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9636 that should be compiled with debugging information. As a result, we
9637 expect to find that symbol in the symtabs. If we don't find it, then
9638 the target most likely does not support Ada exceptions, or we cannot
9639 insert exception breakpoints yet, because the GNAT runtime hasn't been
9640 loaded yet. */
9641
9642 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9643 in such a way that no debugging information is produced for the symbol
9644 we are looking for. In this case, we could search the minimal symbols
9645 as a fall-back mechanism. This would still be operating in degraded
9646 mode, however, as we would still be missing the debugging information
9647 that is needed in order to extract the name of the exception being
9648 raised (this name is printed in the catchpoint message, and is also
9649 used when trying to catch a specific exception). We do not handle
9650 this case for now. */
9651
9652 if (sym == NULL)
9653 error_breakpoint_runtime_sym_not_found (sym_name);
9654
9655 /* Make sure that the symbol we found corresponds to a function. */
9656 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9657 error (_("Symbol \"%s\" is not a function (class = %d)"),
9658 sym_name, SYMBOL_CLASS (sym));
9659
9660 sal = find_function_start_sal (sym, 1);
9661
9662 /* Set ADDR_STRING. */
9663
9664 *addr_string = xstrdup (sym_name);
9665
9666 /* Set the COND and COND_STRING (if not NULL). */
9667
9668 if (cond_string != NULL && cond != NULL)
9669 {
9670 if (*cond_string != NULL)
9671 {
9672 xfree (*cond_string);
9673 *cond_string = NULL;
9674 }
9675 if (*cond != NULL)
9676 {
9677 xfree (*cond);
9678 *cond = NULL;
9679 }
9680 if (exp_string != NULL)
9681 {
9682 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9683 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9684 }
9685 }
9686
9687 /* Set OPS. */
9688 *ops = ada_exception_breakption_ops (ex);
9689
9690 return sal;
9691}
9692
9693/* Parse the arguments (ARGS) of the "catch exception" command.
9694
9695 Set TYPE to the appropriate exception catchpoint type.
9696 If the user asked the catchpoint to catch only a specific
9697 exception, then save the exception name in ADDR_STRING.
9698
9699 See ada_exception_sal for a description of all the remaining
9700 function arguments of this function. */
9701
9702struct symtab_and_line
9703ada_decode_exception_location (char *args, char **addr_string,
9704 char **exp_string, char **cond_string,
9705 struct expression **cond,
9706 struct breakpoint_ops **ops)
9707{
9708 enum exception_catchpoint_kind ex;
9709
9710 catch_ada_exception_command_split (args, &ex, exp_string);
9711 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9712 cond, ops);
9713}
9714
9715struct symtab_and_line
9716ada_decode_assert_location (char *args, char **addr_string,
9717 struct breakpoint_ops **ops)
9718{
9719 /* Check that no argument where provided at the end of the command. */
9720
9721 if (args != NULL)
9722 {
9723 while (isspace (*args))
9724 args++;
9725 if (*args != '\0')
9726 error (_("Junk at end of arguments."));
9727 }
9728
9729 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9730 ops);
9731}
9732
9733 /* Operators */
9734/* Information about operators given special treatment in functions
9735 below. */
9736/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9737
9738#define ADA_OPERATORS \
9739 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9740 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9741 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9742 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9743 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9744 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9745 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9746 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9747 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9748 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9749 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9750 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9751 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9752 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9753 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9754 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9755 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9756 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9757 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9758
9759static void
9760ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9761{
9762 switch (exp->elts[pc - 1].opcode)
9763 {
9764 default:
9765 operator_length_standard (exp, pc, oplenp, argsp);
9766 break;
9767
9768#define OP_DEFN(op, len, args, binop) \
9769 case op: *oplenp = len; *argsp = args; break;
9770 ADA_OPERATORS;
9771#undef OP_DEFN
9772
9773 case OP_AGGREGATE:
9774 *oplenp = 3;
9775 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9776 break;
9777
9778 case OP_CHOICES:
9779 *oplenp = 3;
9780 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9781 break;
9782 }
9783}
9784
9785static char *
9786ada_op_name (enum exp_opcode opcode)
9787{
9788 switch (opcode)
9789 {
9790 default:
9791 return op_name_standard (opcode);
9792
9793#define OP_DEFN(op, len, args, binop) case op: return #op;
9794 ADA_OPERATORS;
9795#undef OP_DEFN
9796
9797 case OP_AGGREGATE:
9798 return "OP_AGGREGATE";
9799 case OP_CHOICES:
9800 return "OP_CHOICES";
9801 case OP_NAME:
9802 return "OP_NAME";
9803 }
9804}
9805
9806/* As for operator_length, but assumes PC is pointing at the first
9807 element of the operator, and gives meaningful results only for the
9808 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9809
9810static void
9811ada_forward_operator_length (struct expression *exp, int pc,
9812 int *oplenp, int *argsp)
9813{
9814 switch (exp->elts[pc].opcode)
9815 {
9816 default:
9817 *oplenp = *argsp = 0;
9818 break;
9819
9820#define OP_DEFN(op, len, args, binop) \
9821 case op: *oplenp = len; *argsp = args; break;
9822 ADA_OPERATORS;
9823#undef OP_DEFN
9824
9825 case OP_AGGREGATE:
9826 *oplenp = 3;
9827 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9828 break;
9829
9830 case OP_CHOICES:
9831 *oplenp = 3;
9832 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9833 break;
9834
9835 case OP_STRING:
9836 case OP_NAME:
9837 {
9838 int len = longest_to_int (exp->elts[pc + 1].longconst);
9839 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9840 *argsp = 0;
9841 break;
9842 }
9843 }
9844}
9845
9846static int
9847ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9848{
9849 enum exp_opcode op = exp->elts[elt].opcode;
9850 int oplen, nargs;
9851 int pc = elt;
9852 int i;
9853
9854 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9855
9856 switch (op)
9857 {
9858 /* Ada attributes ('Foo). */
9859 case OP_ATR_FIRST:
9860 case OP_ATR_LAST:
9861 case OP_ATR_LENGTH:
9862 case OP_ATR_IMAGE:
9863 case OP_ATR_MAX:
9864 case OP_ATR_MIN:
9865 case OP_ATR_MODULUS:
9866 case OP_ATR_POS:
9867 case OP_ATR_SIZE:
9868 case OP_ATR_TAG:
9869 case OP_ATR_VAL:
9870 break;
9871
9872 case UNOP_IN_RANGE:
9873 case UNOP_QUAL:
9874 /* XXX: gdb_sprint_host_address, type_sprint */
9875 fprintf_filtered (stream, _("Type @"));
9876 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9877 fprintf_filtered (stream, " (");
9878 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9879 fprintf_filtered (stream, ")");
9880 break;
9881 case BINOP_IN_BOUNDS:
9882 fprintf_filtered (stream, " (%d)",
9883 longest_to_int (exp->elts[pc + 2].longconst));
9884 break;
9885 case TERNOP_IN_RANGE:
9886 break;
9887
9888 case OP_AGGREGATE:
9889 case OP_OTHERS:
9890 case OP_DISCRETE_RANGE:
9891 case OP_POSITIONAL:
9892 case OP_CHOICES:
9893 break;
9894
9895 case OP_NAME:
9896 case OP_STRING:
9897 {
9898 char *name = &exp->elts[elt + 2].string;
9899 int len = longest_to_int (exp->elts[elt + 1].longconst);
9900 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9901 break;
9902 }
9903
9904 default:
9905 return dump_subexp_body_standard (exp, stream, elt);
9906 }
9907
9908 elt += oplen;
9909 for (i = 0; i < nargs; i += 1)
9910 elt = dump_subexp (exp, stream, elt);
9911
9912 return elt;
9913}
9914
9915/* The Ada extension of print_subexp (q.v.). */
9916
9917static void
9918ada_print_subexp (struct expression *exp, int *pos,
9919 struct ui_file *stream, enum precedence prec)
9920{
9921 int oplen, nargs, i;
9922 int pc = *pos;
9923 enum exp_opcode op = exp->elts[pc].opcode;
9924
9925 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9926
9927 *pos += oplen;
9928 switch (op)
9929 {
9930 default:
9931 *pos -= oplen;
9932 print_subexp_standard (exp, pos, stream, prec);
9933 return;
9934
9935 case OP_VAR_VALUE:
9936 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9937 return;
9938
9939 case BINOP_IN_BOUNDS:
9940 /* XXX: sprint_subexp */
9941 print_subexp (exp, pos, stream, PREC_SUFFIX);
9942 fputs_filtered (" in ", stream);
9943 print_subexp (exp, pos, stream, PREC_SUFFIX);
9944 fputs_filtered ("'range", stream);
9945 if (exp->elts[pc + 1].longconst > 1)
9946 fprintf_filtered (stream, "(%ld)",
9947 (long) exp->elts[pc + 1].longconst);
9948 return;
9949
9950 case TERNOP_IN_RANGE:
9951 if (prec >= PREC_EQUAL)
9952 fputs_filtered ("(", stream);
9953 /* XXX: sprint_subexp */
9954 print_subexp (exp, pos, stream, PREC_SUFFIX);
9955 fputs_filtered (" in ", stream);
9956 print_subexp (exp, pos, stream, PREC_EQUAL);
9957 fputs_filtered (" .. ", stream);
9958 print_subexp (exp, pos, stream, PREC_EQUAL);
9959 if (prec >= PREC_EQUAL)
9960 fputs_filtered (")", stream);
9961 return;
9962
9963 case OP_ATR_FIRST:
9964 case OP_ATR_LAST:
9965 case OP_ATR_LENGTH:
9966 case OP_ATR_IMAGE:
9967 case OP_ATR_MAX:
9968 case OP_ATR_MIN:
9969 case OP_ATR_MODULUS:
9970 case OP_ATR_POS:
9971 case OP_ATR_SIZE:
9972 case OP_ATR_TAG:
9973 case OP_ATR_VAL:
9974 if (exp->elts[*pos].opcode == OP_TYPE)
9975 {
9976 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
9977 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
9978 *pos += 3;
9979 }
9980 else
9981 print_subexp (exp, pos, stream, PREC_SUFFIX);
9982 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
9983 if (nargs > 1)
9984 {
9985 int tem;
9986 for (tem = 1; tem < nargs; tem += 1)
9987 {
9988 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
9989 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
9990 }
9991 fputs_filtered (")", stream);
9992 }
9993 return;
9994
9995 case UNOP_QUAL:
9996 type_print (exp->elts[pc + 1].type, "", stream, 0);
9997 fputs_filtered ("'(", stream);
9998 print_subexp (exp, pos, stream, PREC_PREFIX);
9999 fputs_filtered (")", stream);
10000 return;
10001
10002 case UNOP_IN_RANGE:
10003 /* XXX: sprint_subexp */
10004 print_subexp (exp, pos, stream, PREC_SUFFIX);
10005 fputs_filtered (" in ", stream);
10006 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10007 return;
10008
10009 case OP_DISCRETE_RANGE:
10010 print_subexp (exp, pos, stream, PREC_SUFFIX);
10011 fputs_filtered ("..", stream);
10012 print_subexp (exp, pos, stream, PREC_SUFFIX);
10013 return;
10014
10015 case OP_OTHERS:
10016 fputs_filtered ("others => ", stream);
10017 print_subexp (exp, pos, stream, PREC_SUFFIX);
10018 return;
10019
10020 case OP_CHOICES:
10021 for (i = 0; i < nargs-1; i += 1)
10022 {
10023 if (i > 0)
10024 fputs_filtered ("|", stream);
10025 print_subexp (exp, pos, stream, PREC_SUFFIX);
10026 }
10027 fputs_filtered (" => ", stream);
10028 print_subexp (exp, pos, stream, PREC_SUFFIX);
10029 return;
10030
10031 case OP_POSITIONAL:
10032 print_subexp (exp, pos, stream, PREC_SUFFIX);
10033 return;
10034
10035 case OP_AGGREGATE:
10036 fputs_filtered ("(", stream);
10037 for (i = 0; i < nargs; i += 1)
10038 {
10039 if (i > 0)
10040 fputs_filtered (", ", stream);
10041 print_subexp (exp, pos, stream, PREC_SUFFIX);
10042 }
10043 fputs_filtered (")", stream);
10044 return;
10045 }
10046}
10047
10048/* Table mapping opcodes into strings for printing operators
10049 and precedences of the operators. */
10050
10051static const struct op_print ada_op_print_tab[] = {
10052 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10053 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10054 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10055 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10056 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10057 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10058 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10059 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10060 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10061 {">=", BINOP_GEQ, PREC_ORDER, 0},
10062 {">", BINOP_GTR, PREC_ORDER, 0},
10063 {"<", BINOP_LESS, PREC_ORDER, 0},
10064 {">>", BINOP_RSH, PREC_SHIFT, 0},
10065 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10066 {"+", BINOP_ADD, PREC_ADD, 0},
10067 {"-", BINOP_SUB, PREC_ADD, 0},
10068 {"&", BINOP_CONCAT, PREC_ADD, 0},
10069 {"*", BINOP_MUL, PREC_MUL, 0},
10070 {"/", BINOP_DIV, PREC_MUL, 0},
10071 {"rem", BINOP_REM, PREC_MUL, 0},
10072 {"mod", BINOP_MOD, PREC_MUL, 0},
10073 {"**", BINOP_EXP, PREC_REPEAT, 0},
10074 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10075 {"-", UNOP_NEG, PREC_PREFIX, 0},
10076 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10077 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10078 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10079 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10080 {".all", UNOP_IND, PREC_SUFFIX, 1},
10081 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10082 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10083 {NULL, 0, 0, 0}
10084};
10085\f
10086 /* Fundamental Ada Types */
10087
10088/* Create a fundamental Ada type using default reasonable for the current
10089 target machine.
10090
10091 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10092 define fundamental types such as "int" or "double". Others (stabs or
10093 DWARF version 2, etc) do define fundamental types. For the formats which
10094 don't provide fundamental types, gdb can create such types using this
10095 function.
10096
10097 FIXME: Some compilers distinguish explicitly signed integral types
10098 (signed short, signed int, signed long) from "regular" integral types
10099 (short, int, long) in the debugging information. There is some dis-
10100 agreement as to how useful this feature is. In particular, gcc does
10101 not support this. Also, only some debugging formats allow the
10102 distinction to be passed on to a debugger. For now, we always just
10103 use "short", "int", or "long" as the type name, for both the implicit
10104 and explicitly signed types. This also makes life easier for the
10105 gdb test suite since we don't have to account for the differences
10106 in output depending upon what the compiler and debugging format
10107 support. We will probably have to re-examine the issue when gdb
10108 starts taking it's fundamental type information directly from the
10109 debugging information supplied by the compiler. fnf@cygnus.com */
10110
10111static struct type *
10112ada_create_fundamental_type (struct objfile *objfile, int typeid)
10113{
10114 struct type *type = NULL;
10115
10116 switch (typeid)
10117 {
10118 default:
10119 /* FIXME: For now, if we are asked to produce a type not in this
10120 language, create the equivalent of a C integer type with the
10121 name "<?type?>". When all the dust settles from the type
10122 reconstruction work, this should probably become an error. */
10123 type = init_type (TYPE_CODE_INT,
10124 TARGET_INT_BIT / TARGET_CHAR_BIT,
10125 0, "<?type?>", objfile);
10126 warning (_("internal error: no Ada fundamental type %d"), typeid);
10127 break;
10128 case FT_VOID:
10129 type = init_type (TYPE_CODE_VOID,
10130 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10131 0, "void", objfile);
10132 break;
10133 case FT_CHAR:
10134 type = init_type (TYPE_CODE_INT,
10135 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10136 0, "character", objfile);
10137 break;
10138 case FT_SIGNED_CHAR:
10139 type = init_type (TYPE_CODE_INT,
10140 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10141 0, "signed char", objfile);
10142 break;
10143 case FT_UNSIGNED_CHAR:
10144 type = init_type (TYPE_CODE_INT,
10145 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10146 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10147 break;
10148 case FT_SHORT:
10149 type = init_type (TYPE_CODE_INT,
10150 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10151 0, "short_integer", objfile);
10152 break;
10153 case FT_SIGNED_SHORT:
10154 type = init_type (TYPE_CODE_INT,
10155 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10156 0, "short_integer", objfile);
10157 break;
10158 case FT_UNSIGNED_SHORT:
10159 type = init_type (TYPE_CODE_INT,
10160 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10161 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10162 break;
10163 case FT_INTEGER:
10164 type = init_type (TYPE_CODE_INT,
10165 TARGET_INT_BIT / TARGET_CHAR_BIT,
10166 0, "integer", objfile);
10167 break;
10168 case FT_SIGNED_INTEGER:
10169 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
10170 TARGET_CHAR_BIT,
10171 0, "integer", objfile); /* FIXME -fnf */
10172 break;
10173 case FT_UNSIGNED_INTEGER:
10174 type = init_type (TYPE_CODE_INT,
10175 TARGET_INT_BIT / TARGET_CHAR_BIT,
10176 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10177 break;
10178 case FT_LONG:
10179 type = init_type (TYPE_CODE_INT,
10180 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10181 0, "long_integer", objfile);
10182 break;
10183 case FT_SIGNED_LONG:
10184 type = init_type (TYPE_CODE_INT,
10185 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10186 0, "long_integer", objfile);
10187 break;
10188 case FT_UNSIGNED_LONG:
10189 type = init_type (TYPE_CODE_INT,
10190 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10191 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10192 break;
10193 case FT_LONG_LONG:
10194 type = init_type (TYPE_CODE_INT,
10195 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10196 0, "long_long_integer", objfile);
10197 break;
10198 case FT_SIGNED_LONG_LONG:
10199 type = init_type (TYPE_CODE_INT,
10200 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10201 0, "long_long_integer", objfile);
10202 break;
10203 case FT_UNSIGNED_LONG_LONG:
10204 type = init_type (TYPE_CODE_INT,
10205 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10206 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10207 break;
10208 case FT_FLOAT:
10209 type = init_type (TYPE_CODE_FLT,
10210 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10211 0, "float", objfile);
10212 break;
10213 case FT_DBL_PREC_FLOAT:
10214 type = init_type (TYPE_CODE_FLT,
10215 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10216 0, "long_float", objfile);
10217 break;
10218 case FT_EXT_PREC_FLOAT:
10219 type = init_type (TYPE_CODE_FLT,
10220 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10221 0, "long_long_float", objfile);
10222 break;
10223 }
10224 return (type);
10225}
10226
10227enum ada_primitive_types {
10228 ada_primitive_type_int,
10229 ada_primitive_type_long,
10230 ada_primitive_type_short,
10231 ada_primitive_type_char,
10232 ada_primitive_type_float,
10233 ada_primitive_type_double,
10234 ada_primitive_type_void,
10235 ada_primitive_type_long_long,
10236 ada_primitive_type_long_double,
10237 ada_primitive_type_natural,
10238 ada_primitive_type_positive,
10239 ada_primitive_type_system_address,
10240 nr_ada_primitive_types
10241};
10242
10243static void
10244ada_language_arch_info (struct gdbarch *current_gdbarch,
10245 struct language_arch_info *lai)
10246{
10247 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10248 lai->primitive_type_vector
10249 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10250 struct type *);
10251 lai->primitive_type_vector [ada_primitive_type_int] =
10252 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10253 0, "integer", (struct objfile *) NULL);
10254 lai->primitive_type_vector [ada_primitive_type_long] =
10255 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10256 0, "long_integer", (struct objfile *) NULL);
10257 lai->primitive_type_vector [ada_primitive_type_short] =
10258 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10259 0, "short_integer", (struct objfile *) NULL);
10260 lai->string_char_type =
10261 lai->primitive_type_vector [ada_primitive_type_char] =
10262 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10263 0, "character", (struct objfile *) NULL);
10264 lai->primitive_type_vector [ada_primitive_type_float] =
10265 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10266 0, "float", (struct objfile *) NULL);
10267 lai->primitive_type_vector [ada_primitive_type_double] =
10268 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10269 0, "long_float", (struct objfile *) NULL);
10270 lai->primitive_type_vector [ada_primitive_type_long_long] =
10271 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10272 0, "long_long_integer", (struct objfile *) NULL);
10273 lai->primitive_type_vector [ada_primitive_type_long_double] =
10274 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10275 0, "long_long_float", (struct objfile *) NULL);
10276 lai->primitive_type_vector [ada_primitive_type_natural] =
10277 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10278 0, "natural", (struct objfile *) NULL);
10279 lai->primitive_type_vector [ada_primitive_type_positive] =
10280 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10281 0, "positive", (struct objfile *) NULL);
10282 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10283
10284 lai->primitive_type_vector [ada_primitive_type_system_address] =
10285 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10286 (struct objfile *) NULL));
10287 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10288 = "system__address";
10289}
10290\f
10291 /* Language vector */
10292
10293/* Not really used, but needed in the ada_language_defn. */
10294
10295static void
10296emit_char (int c, struct ui_file *stream, int quoter)
10297{
10298 ada_emit_char (c, stream, quoter, 1);
10299}
10300
10301static int
10302parse (void)
10303{
10304 warnings_issued = 0;
10305 return ada_parse ();
10306}
10307
10308static const struct exp_descriptor ada_exp_descriptor = {
10309 ada_print_subexp,
10310 ada_operator_length,
10311 ada_op_name,
10312 ada_dump_subexp_body,
10313 ada_evaluate_subexp
10314};
10315
10316const struct language_defn ada_language_defn = {
10317 "ada", /* Language name */
10318 language_ada,
10319 NULL,
10320 range_check_off,
10321 type_check_off,
10322 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10323 that's not quite what this means. */
10324 array_row_major,
10325 &ada_exp_descriptor,
10326 parse,
10327 ada_error,
10328 resolve,
10329 ada_printchar, /* Print a character constant */
10330 ada_printstr, /* Function to print string constant */
10331 emit_char, /* Function to print single char (not used) */
10332 ada_create_fundamental_type, /* Create fundamental type in this language */
10333 ada_print_type, /* Print a type using appropriate syntax */
10334 ada_val_print, /* Print a value using appropriate syntax */
10335 ada_value_print, /* Print a top-level value */
10336 NULL, /* Language specific skip_trampoline */
10337 NULL, /* value_of_this */
10338 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10339 basic_lookup_transparent_type, /* lookup_transparent_type */
10340 ada_la_decode, /* Language specific symbol demangler */
10341 NULL, /* Language specific class_name_from_physname */
10342 ada_op_print_tab, /* expression operators for printing */
10343 0, /* c-style arrays */
10344 1, /* String lower bound */
10345 NULL,
10346 ada_get_gdb_completer_word_break_characters,
10347 ada_language_arch_info,
10348 ada_print_array_index,
10349 LANG_MAGIC
10350};
10351
10352void
10353_initialize_ada_language (void)
10354{
10355 add_language (&ada_language_defn);
10356
10357 varsize_limit = 65536;
10358
10359 obstack_init (&symbol_list_obstack);
10360
10361 decoded_names_store = htab_create_alloc
10362 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10363 NULL, xcalloc, xfree);
10364}
This page took 0.058937 seconds and 4 git commands to generate.