* configure.in (hppa*-*-netbsd*, hppa*-*-openbsd): Set COREFILE to
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
... / ...
CommitLineData
1/* Ada language support routines for GDB, the GNU debugger. Copyright
2 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004.
3 Free Software Foundation, Inc.
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21#include "defs.h"
22#include <stdio.h>
23#include "gdb_string.h"
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
27#include "gdb_regex.h"
28#include "frame.h"
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
35#include "c-lang.h"
36#include "inferior.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "breakpoint.h"
40#include "gdbcore.h"
41#include "hashtab.h"
42#include "gdb_obstack.h"
43#include "ada-lang.h"
44#include "completer.h"
45#include "gdb_stat.h"
46#ifdef UI_OUT
47#include "ui-out.h"
48#endif
49#include "block.h"
50#include "infcall.h"
51#include "dictionary.h"
52
53#ifndef ADA_RETAIN_DOTS
54#define ADA_RETAIN_DOTS 0
55#endif
56
57/* Define whether or not the C operator '/' truncates towards zero for
58 differently signed operands (truncation direction is undefined in C).
59 Copied from valarith.c. */
60
61#ifndef TRUNCATION_TOWARDS_ZERO
62#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
63#endif
64
65/* A structure that contains a vector of strings.
66 The main purpose of this type is to group the vector and its
67 associated parameters in one structure. This makes it easier
68 to handle and pass around. */
69
70struct string_vector
71{
72 char **array; /* The vector itself. */
73 int index; /* Index of the next available element in the array. */
74 size_t size; /* The number of entries allocated in the array. */
75};
76
77static struct string_vector xnew_string_vector (int initial_size);
78static void string_vector_append (struct string_vector *sv, char *str);
79
80static const char *ada_unqualified_name (const char *decoded_name);
81static char *add_angle_brackets (const char *str);
82static void extract_string (CORE_ADDR addr, char *buf);
83static char *function_name_from_pc (CORE_ADDR pc);
84
85static struct type *ada_create_fundamental_type (struct objfile *, int);
86
87static void modify_general_field (char *, LONGEST, int, int);
88
89static struct type *desc_base_type (struct type *);
90
91static struct type *desc_bounds_type (struct type *);
92
93static struct value *desc_bounds (struct value *);
94
95static int fat_pntr_bounds_bitpos (struct type *);
96
97static int fat_pntr_bounds_bitsize (struct type *);
98
99static struct type *desc_data_type (struct type *);
100
101static struct value *desc_data (struct value *);
102
103static int fat_pntr_data_bitpos (struct type *);
104
105static int fat_pntr_data_bitsize (struct type *);
106
107static struct value *desc_one_bound (struct value *, int, int);
108
109static int desc_bound_bitpos (struct type *, int, int);
110
111static int desc_bound_bitsize (struct type *, int, int);
112
113static struct type *desc_index_type (struct type *, int);
114
115static int desc_arity (struct type *);
116
117static int ada_type_match (struct type *, struct type *, int);
118
119static int ada_args_match (struct symbol *, struct value **, int);
120
121static struct value *ensure_lval (struct value *, CORE_ADDR *);
122
123static struct value *convert_actual (struct value *, struct type *,
124 CORE_ADDR *);
125
126static struct value *make_array_descriptor (struct type *, struct value *,
127 CORE_ADDR *);
128
129static void ada_add_block_symbols (struct obstack *,
130 struct block *, const char *,
131 domain_enum, struct objfile *,
132 struct symtab *, int);
133
134static int is_nonfunction (struct ada_symbol_info *, int);
135
136static void add_defn_to_vec (struct obstack *, struct symbol *, struct block *,
137 struct symtab *);
138
139static int num_defns_collected (struct obstack *);
140
141static struct ada_symbol_info *defns_collected (struct obstack *, int);
142
143static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
144 *, const char *, int,
145 domain_enum, int);
146
147static struct symtab *symtab_for_sym (struct symbol *);
148
149static struct value *resolve_subexp (struct expression **, int *, int,
150 struct type *);
151
152static void replace_operator_with_call (struct expression **, int, int, int,
153 struct symbol *, struct block *);
154
155static int possible_user_operator_p (enum exp_opcode, struct value **);
156
157static char *ada_op_name (enum exp_opcode);
158
159static const char *ada_decoded_op_name (enum exp_opcode);
160
161static int numeric_type_p (struct type *);
162
163static int integer_type_p (struct type *);
164
165static int scalar_type_p (struct type *);
166
167static int discrete_type_p (struct type *);
168
169static struct type *ada_lookup_struct_elt_type (struct type *, char *,
170 int, int, int *);
171
172static char *extended_canonical_line_spec (struct symtab_and_line,
173 const char *);
174
175static struct value *evaluate_subexp (struct type *, struct expression *,
176 int *, enum noside);
177
178static struct value *evaluate_subexp_type (struct expression *, int *);
179
180static struct type *ada_create_fundamental_type (struct objfile *, int);
181
182static int is_dynamic_field (struct type *, int);
183
184static struct type *to_fixed_variant_branch_type (struct type *, char *,
185 CORE_ADDR, struct value *);
186
187static struct type *to_fixed_array_type (struct type *, struct value *, int);
188
189static struct type *to_fixed_range_type (char *, struct value *,
190 struct objfile *);
191
192static struct type *to_static_fixed_type (struct type *);
193
194static struct value *unwrap_value (struct value *);
195
196static struct type *packed_array_type (struct type *, long *);
197
198static struct type *decode_packed_array_type (struct type *);
199
200static struct value *decode_packed_array (struct value *);
201
202static struct value *value_subscript_packed (struct value *, int,
203 struct value **);
204
205static struct value *coerce_unspec_val_to_type (struct value *,
206 struct type *);
207
208static struct value *get_var_value (char *, char *);
209
210static int lesseq_defined_than (struct symbol *, struct symbol *);
211
212static int equiv_types (struct type *, struct type *);
213
214static int is_name_suffix (const char *);
215
216static int wild_match (const char *, int, const char *);
217
218static struct symtabs_and_lines
219find_sal_from_funcs_and_line (const char *, int,
220 struct ada_symbol_info *, int);
221
222static int find_line_in_linetable (struct linetable *, int,
223 struct ada_symbol_info *,
224 int, int *);
225
226static int find_next_line_in_linetable (struct linetable *, int, int, int);
227
228static void read_all_symtabs (const char *);
229
230static int is_plausible_func_for_line (struct symbol *, int);
231
232static struct value *ada_coerce_ref (struct value *);
233
234static LONGEST pos_atr (struct value *);
235
236static struct value *value_pos_atr (struct value *);
237
238static struct value *value_val_atr (struct type *, struct value *);
239
240static struct symbol *standard_lookup (const char *, const struct block *,
241 domain_enum);
242
243extern void symtab_symbol_info (char *regexp, domain_enum kind,
244 int from_tty);
245
246static struct value *ada_search_struct_field (char *, struct value *, int,
247 struct type *);
248
249static struct value *ada_value_primitive_field (struct value *, int, int,
250 struct type *);
251
252static int find_struct_field (char *, struct type *, int,
253 struct type **, int *, int *, int *);
254
255static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
256 struct value *);
257
258static struct value *ada_to_fixed_value (struct value *);
259
260static void adjust_pc_past_prologue (CORE_ADDR *);
261
262static int ada_resolve_function (struct ada_symbol_info *, int,
263 struct value **, int, const char *,
264 struct type *);
265
266static struct value *ada_coerce_to_simple_array (struct value *);
267
268static int ada_is_direct_array_type (struct type *);
269
270static void error_breakpoint_runtime_sym_not_found (const char *err_desc);
271
272static int is_runtime_sym_defined (const char *name, int allow_tramp);
273
274\f
275
276/* Maximum-sized dynamic type. */
277static unsigned int varsize_limit;
278
279/* FIXME: brobecker/2003-09-17: No longer a const because it is
280 returned by a function that does not return a const char *. */
281static char *ada_completer_word_break_characters =
282#ifdef VMS
283 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
284#else
285 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
286#endif
287
288/* The name of the symbol to use to get the name of the main subprogram. */
289static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
290 = "__gnat_ada_main_program_name";
291
292/* The name of the runtime function called when an exception is raised. */
293static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
294
295/* The name of the runtime function called when an unhandled exception
296 is raised. */
297static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
298
299/* The name of the runtime function called when an assert failure is
300 raised. */
301static const char raise_assert_sym_name[] =
302 "system__assertions__raise_assert_failure";
303
304/* When GDB stops on an unhandled exception, GDB will go up the stack until
305 if finds a frame corresponding to this function, in order to extract the
306 name of the exception that has been raised from one of the parameters. */
307static const char process_raise_exception_name[] =
308 "ada__exceptions__process_raise_exception";
309
310/* A string that reflects the longest exception expression rewrite,
311 aside from the exception name. */
312static const char longest_exception_template[] =
313 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
314
315/* Limit on the number of warnings to raise per expression evaluation. */
316static int warning_limit = 2;
317
318/* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320static int warnings_issued = 0;
321
322static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324};
325
326static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328};
329
330/* Space for allocating results of ada_lookup_symbol_list. */
331static struct obstack symbol_list_obstack;
332
333 /* Utilities */
334
335/* Create a new empty string_vector struct with an initial size of
336 INITIAL_SIZE. */
337
338static struct string_vector
339xnew_string_vector (int initial_size)
340{
341 struct string_vector result;
342
343 result.array = (char **) xmalloc ((initial_size + 1) * sizeof (char *));
344 result.index = 0;
345 result.size = initial_size;
346
347 return result;
348}
349
350/* Add STR at the end of the given string vector SV. If SV is already
351 full, its size is automatically increased (doubled). */
352
353static void
354string_vector_append (struct string_vector *sv, char *str)
355{
356 if (sv->index >= sv->size)
357 GROW_VECT (sv->array, sv->size, sv->size * 2);
358
359 sv->array[sv->index] = str;
360 sv->index++;
361}
362
363/* Given DECODED_NAME a string holding a symbol name in its
364 decoded form (ie using the Ada dotted notation), returns
365 its unqualified name. */
366
367static const char *
368ada_unqualified_name (const char *decoded_name)
369{
370 const char *result = strrchr (decoded_name, '.');
371
372 if (result != NULL)
373 result++; /* Skip the dot... */
374 else
375 result = decoded_name;
376
377 return result;
378}
379
380/* Return a string starting with '<', followed by STR, and '>'.
381 The result is good until the next call. */
382
383static char *
384add_angle_brackets (const char *str)
385{
386 static char *result = NULL;
387
388 xfree (result);
389 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
390
391 sprintf (result, "<%s>", str);
392 return result;
393}
394
395static char *
396ada_get_gdb_completer_word_break_characters (void)
397{
398 return ada_completer_word_break_characters;
399}
400
401/* Read the string located at ADDR from the inferior and store the
402 result into BUF. */
403
404static void
405extract_string (CORE_ADDR addr, char *buf)
406{
407 int char_index = 0;
408
409 /* Loop, reading one byte at a time, until we reach the '\000'
410 end-of-string marker. */
411 do
412 {
413 target_read_memory (addr + char_index * sizeof (char),
414 buf + char_index * sizeof (char), sizeof (char));
415 char_index++;
416 }
417 while (buf[char_index - 1] != '\000');
418}
419
420/* Return the name of the function owning the instruction located at PC.
421 Return NULL if no such function could be found. */
422
423static char *
424function_name_from_pc (CORE_ADDR pc)
425{
426 char *func_name;
427
428 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
429 return NULL;
430
431 return func_name;
432}
433
434/* Assuming *OLD_VECT points to an array of *SIZE objects of size
435 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
436 updating *OLD_VECT and *SIZE as necessary. */
437
438void
439grow_vect (void **old_vect, size_t * size, size_t min_size, int element_size)
440{
441 if (*size < min_size)
442 {
443 *size *= 2;
444 if (*size < min_size)
445 *size = min_size;
446 *old_vect = xrealloc (*old_vect, *size * element_size);
447 }
448}
449
450/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
451 suffix of FIELD_NAME beginning "___". */
452
453static int
454field_name_match (const char *field_name, const char *target)
455{
456 int len = strlen (target);
457 return
458 (strncmp (field_name, target, len) == 0
459 && (field_name[len] == '\0'
460 || (strncmp (field_name + len, "___", 3) == 0
461 && strcmp (field_name + strlen (field_name) - 6, "___XVN") != 0)));
462}
463
464
465/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
466 FIELD_NAME, and return its index. This function also handles fields
467 whose name have ___ suffixes because the compiler sometimes alters
468 their name by adding such a suffix to represent fields with certain
469 constraints. If the field could not be found, return a negative
470 number if MAYBE_MISSING is set. Otherwise raise an error. */
471
472int
473ada_get_field_index (const struct type *type, const char *field_name,
474 int maybe_missing)
475{
476 int fieldno;
477 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
478 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
479 return fieldno;
480
481 if (!maybe_missing)
482 error ("Unable to find field %s in struct %s. Aborting",
483 field_name, TYPE_NAME (type));
484
485 return -1;
486}
487
488/* The length of the prefix of NAME prior to any "___" suffix. */
489
490int
491ada_name_prefix_len (const char *name)
492{
493 if (name == NULL)
494 return 0;
495 else
496 {
497 const char *p = strstr (name, "___");
498 if (p == NULL)
499 return strlen (name);
500 else
501 return p - name;
502 }
503}
504
505/* Return non-zero if SUFFIX is a suffix of STR.
506 Return zero if STR is null. */
507
508static int
509is_suffix (const char *str, const char *suffix)
510{
511 int len1, len2;
512 if (str == NULL)
513 return 0;
514 len1 = strlen (str);
515 len2 = strlen (suffix);
516 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
517}
518
519/* Create a value of type TYPE whose contents come from VALADDR, if it
520 is non-null, and whose memory address (in the inferior) is
521 ADDRESS. */
522
523struct value *
524value_from_contents_and_address (struct type *type, char *valaddr,
525 CORE_ADDR address)
526{
527 struct value *v = allocate_value (type);
528 if (valaddr == NULL)
529 VALUE_LAZY (v) = 1;
530 else
531 memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type));
532 VALUE_ADDRESS (v) = address;
533 if (address != 0)
534 VALUE_LVAL (v) = lval_memory;
535 return v;
536}
537
538/* The contents of value VAL, treated as a value of type TYPE. The
539 result is an lval in memory if VAL is. */
540
541static struct value *
542coerce_unspec_val_to_type (struct value *val, struct type *type)
543{
544 CHECK_TYPEDEF (type);
545 if (VALUE_TYPE (val) == type)
546 return val;
547 else
548 {
549 struct value *result;
550
551 /* Make sure that the object size is not unreasonable before
552 trying to allocate some memory for it. */
553 if (TYPE_LENGTH (type) > varsize_limit)
554 error ("object size is larger than varsize-limit");
555
556 result = allocate_value (type);
557 VALUE_LVAL (result) = VALUE_LVAL (val);
558 VALUE_BITSIZE (result) = VALUE_BITSIZE (val);
559 VALUE_BITPOS (result) = VALUE_BITPOS (val);
560 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
561 if (VALUE_LAZY (val) ||
562 TYPE_LENGTH (type) > TYPE_LENGTH (VALUE_TYPE (val)))
563 VALUE_LAZY (result) = 1;
564 else
565 memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val),
566 TYPE_LENGTH (type));
567 return result;
568 }
569}
570
571static char *
572cond_offset_host (char *valaddr, long offset)
573{
574 if (valaddr == NULL)
575 return NULL;
576 else
577 return valaddr + offset;
578}
579
580static CORE_ADDR
581cond_offset_target (CORE_ADDR address, long offset)
582{
583 if (address == 0)
584 return 0;
585 else
586 return address + offset;
587}
588
589/* Issue a warning (as for the definition of warning in utils.c, but
590 with exactly one argument rather than ...), unless the limit on the
591 number of warnings has passed during the evaluation of the current
592 expression. */
593static void
594lim_warning (const char *format, long arg)
595{
596 warnings_issued += 1;
597 if (warnings_issued <= warning_limit)
598 warning (format, arg);
599}
600
601static const char *
602ada_translate_error_message (const char *string)
603{
604 if (strcmp (string, "Invalid cast.") == 0)
605 return "Invalid type conversion.";
606 else
607 return string;
608}
609
610static LONGEST
611MAX_OF_SIZE (int size)
612{
613 LONGEST top_bit = (LONGEST) 1 << (size*8-2);
614 return top_bit | (top_bit-1);
615}
616
617static LONGEST
618MIN_OF_SIZE (int size)
619{
620 return - MAX_OF_SIZE (size) - 1;
621}
622
623static ULONGEST
624UMAX_OF_SIZE (int size)
625{
626 ULONGEST top_bit = (ULONGEST) 1 << (size*8-1);
627 return top_bit | (top_bit-1);
628}
629
630static ULONGEST
631UMIN_OF_SIZE (int size)
632{
633 return 0;
634}
635
636/* The largest value in the domain of TYPE, a discrete type, as an integer. */
637static struct value *
638discrete_type_high_bound (struct type *type)
639{
640 switch (TYPE_CODE (type))
641 {
642 case TYPE_CODE_RANGE:
643 return value_from_longest (TYPE_TARGET_TYPE (type),
644 TYPE_HIGH_BOUND (type));
645 case TYPE_CODE_ENUM:
646 return
647 value_from_longest (type,
648 TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type)-1));
649 case TYPE_CODE_INT:
650 return value_from_longest (type, MAX_OF_TYPE (type));
651 default:
652 error ("Unexpected type in discrete_type_high_bound.");
653 }
654}
655
656/* The largest value in the domain of TYPE, a discrete type, as an integer. */
657static struct value *
658discrete_type_low_bound (struct type *type)
659{
660 switch (TYPE_CODE (type))
661 {
662 case TYPE_CODE_RANGE:
663 return value_from_longest (TYPE_TARGET_TYPE (type),
664 TYPE_LOW_BOUND (type));
665 case TYPE_CODE_ENUM:
666 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
667 case TYPE_CODE_INT:
668 return value_from_longest (type, MIN_OF_TYPE (type));
669 default:
670 error ("Unexpected type in discrete_type_low_bound.");
671 }
672}
673
674/* The identity on non-range types. For range types, the underlying
675 non-range scalar type. */
676
677static struct type *
678base_type (struct type *type)
679{
680 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
681 {
682 if (type == TYPE_TARGET_TYPE (type)
683 || TYPE_TARGET_TYPE (type) == NULL)
684 return type;
685 type = TYPE_TARGET_TYPE (type);
686 }
687 return type;
688}
689
690\f
691 /* Language Selection */
692
693/* If the main program is in Ada, return language_ada, otherwise return LANG
694 (the main program is in Ada iif the adainit symbol is found).
695
696 MAIN_PST is not used. */
697
698enum language
699ada_update_initial_language (enum language lang,
700 struct partial_symtab *main_pst)
701{
702 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
703 (struct objfile *) NULL) != NULL)
704 return language_ada;
705
706 return lang;
707}
708\f
709 /* Symbols */
710
711/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
712 of NULLs. */
713
714const struct ada_opname_map ada_opname_table[] = {
715 {"Oadd", "\"+\"", BINOP_ADD},
716 {"Osubtract", "\"-\"", BINOP_SUB},
717 {"Omultiply", "\"*\"", BINOP_MUL},
718 {"Odivide", "\"/\"", BINOP_DIV},
719 {"Omod", "\"mod\"", BINOP_MOD},
720 {"Orem", "\"rem\"", BINOP_REM},
721 {"Oexpon", "\"**\"", BINOP_EXP},
722 {"Olt", "\"<\"", BINOP_LESS},
723 {"Ole", "\"<=\"", BINOP_LEQ},
724 {"Ogt", "\">\"", BINOP_GTR},
725 {"Oge", "\">=\"", BINOP_GEQ},
726 {"Oeq", "\"=\"", BINOP_EQUAL},
727 {"One", "\"/=\"", BINOP_NOTEQUAL},
728 {"Oand", "\"and\"", BINOP_BITWISE_AND},
729 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
730 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
731 {"Oconcat", "\"&\"", BINOP_CONCAT},
732 {"Oabs", "\"abs\"", UNOP_ABS},
733 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
734 {"Oadd", "\"+\"", UNOP_PLUS},
735 {"Osubtract", "\"-\"", UNOP_NEG},
736 {NULL, NULL}
737};
738
739/* Return non-zero if STR should be suppressed in info listings. */
740
741static int
742is_suppressed_name (const char *str)
743{
744 if (strncmp (str, "_ada_", 5) == 0)
745 str += 5;
746 if (str[0] == '_' || str[0] == '\000')
747 return 1;
748 else
749 {
750 const char *p;
751 const char *suffix = strstr (str, "___");
752 if (suffix != NULL && suffix[3] != 'X')
753 return 1;
754 if (suffix == NULL)
755 suffix = str + strlen (str);
756 for (p = suffix - 1; p != str; p -= 1)
757 if (isupper (*p))
758 {
759 int i;
760 if (p[0] == 'X' && p[-1] != '_')
761 goto OK;
762 if (*p != 'O')
763 return 1;
764 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
765 if (strncmp (ada_opname_table[i].encoded, p,
766 strlen (ada_opname_table[i].encoded)) == 0)
767 goto OK;
768 return 1;
769 OK:;
770 }
771 return 0;
772 }
773}
774
775/* The "encoded" form of DECODED, according to GNAT conventions.
776 The result is valid until the next call to ada_encode. */
777
778char *
779ada_encode (const char *decoded)
780{
781 static char *encoding_buffer = NULL;
782 static size_t encoding_buffer_size = 0;
783 const char *p;
784 int k;
785
786 if (decoded == NULL)
787 return NULL;
788
789 GROW_VECT (encoding_buffer, encoding_buffer_size,
790 2 * strlen (decoded) + 10);
791
792 k = 0;
793 for (p = decoded; *p != '\0'; p += 1)
794 {
795 if (!ADA_RETAIN_DOTS && *p == '.')
796 {
797 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
798 k += 2;
799 }
800 else if (*p == '"')
801 {
802 const struct ada_opname_map *mapping;
803
804 for (mapping = ada_opname_table;
805 mapping->encoded != NULL &&
806 strncmp (mapping->decoded, p,
807 strlen (mapping->decoded)) != 0;
808 mapping += 1)
809 ;
810 if (mapping->encoded == NULL)
811 error ("invalid Ada operator name: %s", p);
812 strcpy (encoding_buffer + k, mapping->encoded);
813 k += strlen (mapping->encoded);
814 break;
815 }
816 else
817 {
818 encoding_buffer[k] = *p;
819 k += 1;
820 }
821 }
822
823 encoding_buffer[k] = '\0';
824 return encoding_buffer;
825}
826
827/* Return NAME folded to lower case, or, if surrounded by single
828 quotes, unfolded, but with the quotes stripped away. Result good
829 to next call. */
830
831char *
832ada_fold_name (const char *name)
833{
834 static char *fold_buffer = NULL;
835 static size_t fold_buffer_size = 0;
836
837 int len = strlen (name);
838 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
839
840 if (name[0] == '\'')
841 {
842 strncpy (fold_buffer, name + 1, len - 2);
843 fold_buffer[len - 2] = '\000';
844 }
845 else
846 {
847 int i;
848 for (i = 0; i <= len; i += 1)
849 fold_buffer[i] = tolower (name[i]);
850 }
851
852 return fold_buffer;
853}
854
855/* decode:
856 0. Discard trailing .{DIGIT}+ or trailing ___{DIGIT}+
857 These are suffixes introduced by GNAT5 to nested subprogram
858 names, and do not serve any purpose for the debugger.
859 1. Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
860 2. Convert other instances of embedded "__" to `.'.
861 3. Discard leading _ada_.
862 4. Convert operator names to the appropriate quoted symbols.
863 5. Remove everything after first ___ if it is followed by
864 'X'.
865 6. Replace TK__ with __, and a trailing B or TKB with nothing.
866 7. Put symbols that should be suppressed in <...> brackets.
867 8. Remove trailing X[bn]* suffix (indicating names in package bodies).
868
869 The resulting string is valid until the next call of ada_decode.
870 If the string is unchanged by demangling, the original string pointer
871 is returned. */
872
873const char *
874ada_decode (const char *encoded)
875{
876 int i, j;
877 int len0;
878 const char *p;
879 char *decoded;
880 int at_start_name;
881 static char *decoding_buffer = NULL;
882 static size_t decoding_buffer_size = 0;
883
884 if (strncmp (encoded, "_ada_", 5) == 0)
885 encoded += 5;
886
887 if (encoded[0] == '_' || encoded[0] == '<')
888 goto Suppress;
889
890 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+. */
891 len0 = strlen (encoded);
892 if (len0 > 1 && isdigit (encoded[len0 - 1]))
893 {
894 i = len0 - 2;
895 while (i > 0 && isdigit (encoded[i]))
896 i--;
897 if (i >= 0 && encoded[i] == '.')
898 len0 = i;
899 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
900 len0 = i - 2;
901 }
902
903 /* Remove the ___X.* suffix if present. Do not forget to verify that
904 the suffix is located before the current "end" of ENCODED. We want
905 to avoid re-matching parts of ENCODED that have previously been
906 marked as discarded (by decrementing LEN0). */
907 p = strstr (encoded, "___");
908 if (p != NULL && p - encoded < len0 - 3)
909 {
910 if (p[3] == 'X')
911 len0 = p - encoded;
912 else
913 goto Suppress;
914 }
915
916 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
917 len0 -= 3;
918
919 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
920 len0 -= 1;
921
922 /* Make decoded big enough for possible expansion by operator name. */
923 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
924 decoded = decoding_buffer;
925
926 if (len0 > 1 && isdigit (encoded[len0 - 1]))
927 {
928 i = len0 - 2;
929 while ((i >= 0 && isdigit (encoded[i]))
930 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
931 i -= 1;
932 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
933 len0 = i - 1;
934 else if (encoded[i] == '$')
935 len0 = i;
936 }
937
938 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
939 decoded[j] = encoded[i];
940
941 at_start_name = 1;
942 while (i < len0)
943 {
944 if (at_start_name && encoded[i] == 'O')
945 {
946 int k;
947 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
948 {
949 int op_len = strlen (ada_opname_table[k].encoded);
950 if (strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
951 op_len - 1) == 0
952 && !isalnum (encoded[i + op_len]))
953 {
954 strcpy (decoded + j, ada_opname_table[k].decoded);
955 at_start_name = 0;
956 i += op_len;
957 j += strlen (ada_opname_table[k].decoded);
958 break;
959 }
960 }
961 if (ada_opname_table[k].encoded != NULL)
962 continue;
963 }
964 at_start_name = 0;
965
966 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
967 i += 2;
968 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
969 {
970 do
971 i += 1;
972 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
973 if (i < len0)
974 goto Suppress;
975 }
976 else if (!ADA_RETAIN_DOTS
977 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
978 {
979 decoded[j] = '.';
980 at_start_name = 1;
981 i += 2;
982 j += 1;
983 }
984 else
985 {
986 decoded[j] = encoded[i];
987 i += 1;
988 j += 1;
989 }
990 }
991 decoded[j] = '\000';
992
993 for (i = 0; decoded[i] != '\0'; i += 1)
994 if (isupper (decoded[i]) || decoded[i] == ' ')
995 goto Suppress;
996
997 if (strcmp (decoded, encoded) == 0)
998 return encoded;
999 else
1000 return decoded;
1001
1002Suppress:
1003 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1004 decoded = decoding_buffer;
1005 if (encoded[0] == '<')
1006 strcpy (decoded, encoded);
1007 else
1008 sprintf (decoded, "<%s>", encoded);
1009 return decoded;
1010
1011}
1012
1013/* Table for keeping permanent unique copies of decoded names. Once
1014 allocated, names in this table are never released. While this is a
1015 storage leak, it should not be significant unless there are massive
1016 changes in the set of decoded names in successive versions of a
1017 symbol table loaded during a single session. */
1018static struct htab *decoded_names_store;
1019
1020/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1021 in the language-specific part of GSYMBOL, if it has not been
1022 previously computed. Tries to save the decoded name in the same
1023 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1024 in any case, the decoded symbol has a lifetime at least that of
1025 GSYMBOL).
1026 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1027 const, but nevertheless modified to a semantically equivalent form
1028 when a decoded name is cached in it.
1029*/
1030
1031char *ada_decode_symbol (const struct general_symbol_info *gsymbol)
1032{
1033 char **resultp =
1034 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1035 if (*resultp == NULL)
1036 {
1037 const char *decoded = ada_decode (gsymbol->name);
1038 if (gsymbol->bfd_section != NULL)
1039 {
1040 bfd *obfd = gsymbol->bfd_section->owner;
1041 if (obfd != NULL)
1042 {
1043 struct objfile *objf;
1044 ALL_OBJFILES (objf)
1045 {
1046 if (obfd == objf->obfd)
1047 {
1048 *resultp = obsavestring (decoded, strlen (decoded),
1049 &objf->objfile_obstack);
1050 break;
1051 }
1052 }
1053 }
1054 }
1055 /* Sometimes, we can't find a corresponding objfile, in which
1056 case, we put the result on the heap. Since we only decode
1057 when needed, we hope this usually does not cause a
1058 significant memory leak (FIXME). */
1059 if (*resultp == NULL)
1060 {
1061 char **slot =
1062 (char **) htab_find_slot (decoded_names_store,
1063 decoded, INSERT);
1064 if (*slot == NULL)
1065 *slot = xstrdup (decoded);
1066 *resultp = *slot;
1067 }
1068 }
1069
1070 return *resultp;
1071}
1072
1073char *ada_la_decode (const char *encoded, int options)
1074{
1075 return xstrdup (ada_decode (encoded));
1076}
1077
1078/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1079 suffixes that encode debugging information or leading _ada_ on
1080 SYM_NAME (see is_name_suffix commentary for the debugging
1081 information that is ignored). If WILD, then NAME need only match a
1082 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1083 either argument is NULL. */
1084
1085int
1086ada_match_name (const char *sym_name, const char *name, int wild)
1087{
1088 if (sym_name == NULL || name == NULL)
1089 return 0;
1090 else if (wild)
1091 return wild_match (name, strlen (name), sym_name);
1092 else
1093 {
1094 int len_name = strlen (name);
1095 return (strncmp (sym_name, name, len_name) == 0
1096 && is_name_suffix (sym_name + len_name))
1097 || (strncmp (sym_name, "_ada_", 5) == 0
1098 && strncmp (sym_name + 5, name, len_name) == 0
1099 && is_name_suffix (sym_name + len_name + 5));
1100 }
1101}
1102
1103/* True (non-zero) iff, in Ada mode, the symbol SYM should be
1104 suppressed in info listings. */
1105
1106int
1107ada_suppress_symbol_printing (struct symbol *sym)
1108{
1109 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1110 return 1;
1111 else
1112 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1113}
1114\f
1115
1116 /* Arrays */
1117
1118/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1119
1120static char *bound_name[] = {
1121 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1122 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1123};
1124
1125/* Maximum number of array dimensions we are prepared to handle. */
1126
1127#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1128
1129/* Like modify_field, but allows bitpos > wordlength. */
1130
1131static void
1132modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1133{
1134 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1135}
1136
1137
1138/* The desc_* routines return primitive portions of array descriptors
1139 (fat pointers). */
1140
1141/* The descriptor or array type, if any, indicated by TYPE; removes
1142 level of indirection, if needed. */
1143
1144static struct type *
1145desc_base_type (struct type *type)
1146{
1147 if (type == NULL)
1148 return NULL;
1149 CHECK_TYPEDEF (type);
1150 if (type != NULL &&
1151 (TYPE_CODE (type) == TYPE_CODE_PTR
1152 || TYPE_CODE (type) == TYPE_CODE_REF))
1153 return check_typedef (TYPE_TARGET_TYPE (type));
1154 else
1155 return type;
1156}
1157
1158/* True iff TYPE indicates a "thin" array pointer type. */
1159
1160static int
1161is_thin_pntr (struct type *type)
1162{
1163 return
1164 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1165 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1166}
1167
1168/* The descriptor type for thin pointer type TYPE. */
1169
1170static struct type *
1171thin_descriptor_type (struct type *type)
1172{
1173 struct type *base_type = desc_base_type (type);
1174 if (base_type == NULL)
1175 return NULL;
1176 if (is_suffix (ada_type_name (base_type), "___XVE"))
1177 return base_type;
1178 else
1179 {
1180 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1181 if (alt_type == NULL)
1182 return base_type;
1183 else
1184 return alt_type;
1185 }
1186}
1187
1188/* A pointer to the array data for thin-pointer value VAL. */
1189
1190static struct value *
1191thin_data_pntr (struct value *val)
1192{
1193 struct type *type = VALUE_TYPE (val);
1194 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1195 return value_cast (desc_data_type (thin_descriptor_type (type)),
1196 value_copy (val));
1197 else
1198 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1199 VALUE_ADDRESS (val) + VALUE_OFFSET (val));
1200}
1201
1202/* True iff TYPE indicates a "thick" array pointer type. */
1203
1204static int
1205is_thick_pntr (struct type *type)
1206{
1207 type = desc_base_type (type);
1208 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1209 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1210}
1211
1212/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1213 pointer to one, the type of its bounds data; otherwise, NULL. */
1214
1215static struct type *
1216desc_bounds_type (struct type *type)
1217{
1218 struct type *r;
1219
1220 type = desc_base_type (type);
1221
1222 if (type == NULL)
1223 return NULL;
1224 else if (is_thin_pntr (type))
1225 {
1226 type = thin_descriptor_type (type);
1227 if (type == NULL)
1228 return NULL;
1229 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1230 if (r != NULL)
1231 return check_typedef (r);
1232 }
1233 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1234 {
1235 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1236 if (r != NULL)
1237 return check_typedef (TYPE_TARGET_TYPE (check_typedef (r)));
1238 }
1239 return NULL;
1240}
1241
1242/* If ARR is an array descriptor (fat or thin pointer), or pointer to
1243 one, a pointer to its bounds data. Otherwise NULL. */
1244
1245static struct value *
1246desc_bounds (struct value *arr)
1247{
1248 struct type *type = check_typedef (VALUE_TYPE (arr));
1249 if (is_thin_pntr (type))
1250 {
1251 struct type *bounds_type =
1252 desc_bounds_type (thin_descriptor_type (type));
1253 LONGEST addr;
1254
1255 if (desc_bounds_type == NULL)
1256 error ("Bad GNAT array descriptor");
1257
1258 /* NOTE: The following calculation is not really kosher, but
1259 since desc_type is an XVE-encoded type (and shouldn't be),
1260 the correct calculation is a real pain. FIXME (and fix GCC). */
1261 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1262 addr = value_as_long (arr);
1263 else
1264 addr = VALUE_ADDRESS (arr) + VALUE_OFFSET (arr);
1265
1266 return
1267 value_from_longest (lookup_pointer_type (bounds_type),
1268 addr - TYPE_LENGTH (bounds_type));
1269 }
1270
1271 else if (is_thick_pntr (type))
1272 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1273 "Bad GNAT array descriptor");
1274 else
1275 return NULL;
1276}
1277
1278/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1279 position of the field containing the address of the bounds data. */
1280
1281static int
1282fat_pntr_bounds_bitpos (struct type *type)
1283{
1284 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1285}
1286
1287/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1288 size of the field containing the address of the bounds data. */
1289
1290static int
1291fat_pntr_bounds_bitsize (struct type *type)
1292{
1293 type = desc_base_type (type);
1294
1295 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1296 return TYPE_FIELD_BITSIZE (type, 1);
1297 else
1298 return 8 * TYPE_LENGTH (check_typedef (TYPE_FIELD_TYPE (type, 1)));
1299}
1300
1301/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1302 pointer to one, the type of its array data (a
1303 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1304 ada_type_of_array to get an array type with bounds data. */
1305
1306static struct type *
1307desc_data_type (struct type *type)
1308{
1309 type = desc_base_type (type);
1310
1311 /* NOTE: The following is bogus; see comment in desc_bounds. */
1312 if (is_thin_pntr (type))
1313 return lookup_pointer_type
1314 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1315 else if (is_thick_pntr (type))
1316 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1317 else
1318 return NULL;
1319}
1320
1321/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1322 its array data. */
1323
1324static struct value *
1325desc_data (struct value *arr)
1326{
1327 struct type *type = VALUE_TYPE (arr);
1328 if (is_thin_pntr (type))
1329 return thin_data_pntr (arr);
1330 else if (is_thick_pntr (type))
1331 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1332 "Bad GNAT array descriptor");
1333 else
1334 return NULL;
1335}
1336
1337
1338/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1339 position of the field containing the address of the data. */
1340
1341static int
1342fat_pntr_data_bitpos (struct type *type)
1343{
1344 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1345}
1346
1347/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1348 size of the field containing the address of the data. */
1349
1350static int
1351fat_pntr_data_bitsize (struct type *type)
1352{
1353 type = desc_base_type (type);
1354
1355 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1356 return TYPE_FIELD_BITSIZE (type, 0);
1357 else
1358 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1359}
1360
1361/* If BOUNDS is an array-bounds structure (or pointer to one), return
1362 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1363 bound, if WHICH is 1. The first bound is I=1. */
1364
1365static struct value *
1366desc_one_bound (struct value *bounds, int i, int which)
1367{
1368 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1369 "Bad GNAT array descriptor bounds");
1370}
1371
1372/* If BOUNDS is an array-bounds structure type, return the bit position
1373 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1374 bound, if WHICH is 1. The first bound is I=1. */
1375
1376static int
1377desc_bound_bitpos (struct type *type, int i, int which)
1378{
1379 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1380}
1381
1382/* If BOUNDS is an array-bounds structure type, return the bit field size
1383 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1384 bound, if WHICH is 1. The first bound is I=1. */
1385
1386 static int
1387desc_bound_bitsize (struct type *type, int i, int which)
1388{
1389 type = desc_base_type (type);
1390
1391 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1392 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1393 else
1394 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1395}
1396
1397/* If TYPE is the type of an array-bounds structure, the type of its
1398 Ith bound (numbering from 1). Otherwise, NULL. */
1399
1400static struct type *
1401desc_index_type (struct type *type, int i)
1402{
1403 type = desc_base_type (type);
1404
1405 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1406 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1407 else
1408 return NULL;
1409}
1410
1411/* The number of index positions in the array-bounds type TYPE.
1412 Return 0 if TYPE is NULL. */
1413
1414static int
1415desc_arity (struct type *type)
1416{
1417 type = desc_base_type (type);
1418
1419 if (type != NULL)
1420 return TYPE_NFIELDS (type) / 2;
1421 return 0;
1422}
1423
1424/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1425 an array descriptor type (representing an unconstrained array
1426 type). */
1427
1428static int
1429ada_is_direct_array_type (struct type *type)
1430{
1431 if (type == NULL)
1432 return 0;
1433 CHECK_TYPEDEF (type);
1434 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1435 || ada_is_array_descriptor_type (type));
1436}
1437
1438/* Non-zero iff TYPE is a simple array type or pointer to one. */
1439
1440int
1441ada_is_simple_array_type (struct type *type)
1442{
1443 if (type == NULL)
1444 return 0;
1445 CHECK_TYPEDEF (type);
1446 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1447 || (TYPE_CODE (type) == TYPE_CODE_PTR
1448 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1449}
1450
1451/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1452
1453int
1454ada_is_array_descriptor_type (struct type *type)
1455{
1456 struct type *data_type = desc_data_type (type);
1457
1458 if (type == NULL)
1459 return 0;
1460 CHECK_TYPEDEF (type);
1461 return
1462 data_type != NULL
1463 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1464 && TYPE_TARGET_TYPE (data_type) != NULL
1465 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1466 ||
1467 TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1468 && desc_arity (desc_bounds_type (type)) > 0;
1469}
1470
1471/* Non-zero iff type is a partially mal-formed GNAT array
1472 descriptor. FIXME: This is to compensate for some problems with
1473 debugging output from GNAT. Re-examine periodically to see if it
1474 is still needed. */
1475
1476int
1477ada_is_bogus_array_descriptor (struct type *type)
1478{
1479 return
1480 type != NULL
1481 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1482 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1483 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1484 && !ada_is_array_descriptor_type (type);
1485}
1486
1487
1488/* If ARR has a record type in the form of a standard GNAT array descriptor,
1489 (fat pointer) returns the type of the array data described---specifically,
1490 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1491 in from the descriptor; otherwise, they are left unspecified. If
1492 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1493 returns NULL. The result is simply the type of ARR if ARR is not
1494 a descriptor. */
1495struct type *
1496ada_type_of_array (struct value *arr, int bounds)
1497{
1498 if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1499 return decode_packed_array_type (VALUE_TYPE (arr));
1500
1501 if (!ada_is_array_descriptor_type (VALUE_TYPE (arr)))
1502 return VALUE_TYPE (arr);
1503
1504 if (!bounds)
1505 return
1506 check_typedef (TYPE_TARGET_TYPE (desc_data_type (VALUE_TYPE (arr))));
1507 else
1508 {
1509 struct type *elt_type;
1510 int arity;
1511 struct value *descriptor;
1512 struct objfile *objf = TYPE_OBJFILE (VALUE_TYPE (arr));
1513
1514 elt_type = ada_array_element_type (VALUE_TYPE (arr), -1);
1515 arity = ada_array_arity (VALUE_TYPE (arr));
1516
1517 if (elt_type == NULL || arity == 0)
1518 return check_typedef (VALUE_TYPE (arr));
1519
1520 descriptor = desc_bounds (arr);
1521 if (value_as_long (descriptor) == 0)
1522 return NULL;
1523 while (arity > 0)
1524 {
1525 struct type *range_type = alloc_type (objf);
1526 struct type *array_type = alloc_type (objf);
1527 struct value *low = desc_one_bound (descriptor, arity, 0);
1528 struct value *high = desc_one_bound (descriptor, arity, 1);
1529 arity -= 1;
1530
1531 create_range_type (range_type, VALUE_TYPE (low),
1532 (int) value_as_long (low),
1533 (int) value_as_long (high));
1534 elt_type = create_array_type (array_type, elt_type, range_type);
1535 }
1536
1537 return lookup_pointer_type (elt_type);
1538 }
1539}
1540
1541/* If ARR does not represent an array, returns ARR unchanged.
1542 Otherwise, returns either a standard GDB array with bounds set
1543 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1544 GDB array. Returns NULL if ARR is a null fat pointer. */
1545
1546struct value *
1547ada_coerce_to_simple_array_ptr (struct value *arr)
1548{
1549 if (ada_is_array_descriptor_type (VALUE_TYPE (arr)))
1550 {
1551 struct type *arrType = ada_type_of_array (arr, 1);
1552 if (arrType == NULL)
1553 return NULL;
1554 return value_cast (arrType, value_copy (desc_data (arr)));
1555 }
1556 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1557 return decode_packed_array (arr);
1558 else
1559 return arr;
1560}
1561
1562/* If ARR does not represent an array, returns ARR unchanged.
1563 Otherwise, returns a standard GDB array describing ARR (which may
1564 be ARR itself if it already is in the proper form). */
1565
1566static struct value *
1567ada_coerce_to_simple_array (struct value *arr)
1568{
1569 if (ada_is_array_descriptor_type (VALUE_TYPE (arr)))
1570 {
1571 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1572 if (arrVal == NULL)
1573 error ("Bounds unavailable for null array pointer.");
1574 return value_ind (arrVal);
1575 }
1576 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1577 return decode_packed_array (arr);
1578 else
1579 return arr;
1580}
1581
1582/* If TYPE represents a GNAT array type, return it translated to an
1583 ordinary GDB array type (possibly with BITSIZE fields indicating
1584 packing). For other types, is the identity. */
1585
1586struct type *
1587ada_coerce_to_simple_array_type (struct type *type)
1588{
1589 struct value *mark = value_mark ();
1590 struct value *dummy = value_from_longest (builtin_type_long, 0);
1591 struct type *result;
1592 VALUE_TYPE (dummy) = type;
1593 result = ada_type_of_array (dummy, 0);
1594 value_free_to_mark (mark);
1595 return result;
1596}
1597
1598/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1599
1600int
1601ada_is_packed_array_type (struct type *type)
1602{
1603 if (type == NULL)
1604 return 0;
1605 type = desc_base_type (type);
1606 CHECK_TYPEDEF (type);
1607 return
1608 ada_type_name (type) != NULL
1609 && strstr (ada_type_name (type), "___XP") != NULL;
1610}
1611
1612/* Given that TYPE is a standard GDB array type with all bounds filled
1613 in, and that the element size of its ultimate scalar constituents
1614 (that is, either its elements, or, if it is an array of arrays, its
1615 elements' elements, etc.) is *ELT_BITS, return an identical type,
1616 but with the bit sizes of its elements (and those of any
1617 constituent arrays) recorded in the BITSIZE components of its
1618 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1619 in bits. */
1620
1621static struct type *
1622packed_array_type (struct type *type, long *elt_bits)
1623{
1624 struct type *new_elt_type;
1625 struct type *new_type;
1626 LONGEST low_bound, high_bound;
1627
1628 CHECK_TYPEDEF (type);
1629 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1630 return type;
1631
1632 new_type = alloc_type (TYPE_OBJFILE (type));
1633 new_elt_type = packed_array_type (check_typedef (TYPE_TARGET_TYPE (type)),
1634 elt_bits);
1635 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1636 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1637 TYPE_NAME (new_type) = ada_type_name (type);
1638
1639 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1640 &low_bound, &high_bound) < 0)
1641 low_bound = high_bound = 0;
1642 if (high_bound < low_bound)
1643 *elt_bits = TYPE_LENGTH (new_type) = 0;
1644 else
1645 {
1646 *elt_bits *= (high_bound - low_bound + 1);
1647 TYPE_LENGTH (new_type) =
1648 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1649 }
1650
1651 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1652 return new_type;
1653}
1654
1655/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1656
1657static struct type *
1658decode_packed_array_type (struct type *type)
1659{
1660 struct symbol *sym;
1661 struct block **blocks;
1662 const char *raw_name = ada_type_name (check_typedef (type));
1663 char *name = (char *) alloca (strlen (raw_name) + 1);
1664 char *tail = strstr (raw_name, "___XP");
1665 struct type *shadow_type;
1666 long bits;
1667 int i, n;
1668
1669 type = desc_base_type (type);
1670
1671 memcpy (name, raw_name, tail - raw_name);
1672 name[tail - raw_name] = '\000';
1673
1674 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1675 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1676 {
1677 lim_warning ("could not find bounds information on packed array", 0);
1678 return NULL;
1679 }
1680 shadow_type = SYMBOL_TYPE (sym);
1681
1682 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1683 {
1684 lim_warning ("could not understand bounds information on packed array",
1685 0);
1686 return NULL;
1687 }
1688
1689 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1690 {
1691 lim_warning
1692 ("could not understand bit size information on packed array", 0);
1693 return NULL;
1694 }
1695
1696 return packed_array_type (shadow_type, &bits);
1697}
1698
1699/* Given that ARR is a struct value *indicating a GNAT packed array,
1700 returns a simple array that denotes that array. Its type is a
1701 standard GDB array type except that the BITSIZEs of the array
1702 target types are set to the number of bits in each element, and the
1703 type length is set appropriately. */
1704
1705static struct value *
1706decode_packed_array (struct value *arr)
1707{
1708 struct type *type;
1709
1710 arr = ada_coerce_ref (arr);
1711 if (TYPE_CODE (VALUE_TYPE (arr)) == TYPE_CODE_PTR)
1712 arr = ada_value_ind (arr);
1713
1714 type = decode_packed_array_type (VALUE_TYPE (arr));
1715 if (type == NULL)
1716 {
1717 error ("can't unpack array");
1718 return NULL;
1719 }
1720 return coerce_unspec_val_to_type (arr, type);
1721}
1722
1723
1724/* The value of the element of packed array ARR at the ARITY indices
1725 given in IND. ARR must be a simple array. */
1726
1727static struct value *
1728value_subscript_packed (struct value *arr, int arity, struct value **ind)
1729{
1730 int i;
1731 int bits, elt_off, bit_off;
1732 long elt_total_bit_offset;
1733 struct type *elt_type;
1734 struct value *v;
1735
1736 bits = 0;
1737 elt_total_bit_offset = 0;
1738 elt_type = check_typedef (VALUE_TYPE (arr));
1739 for (i = 0; i < arity; i += 1)
1740 {
1741 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1742 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1743 error
1744 ("attempt to do packed indexing of something other than a packed array");
1745 else
1746 {
1747 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1748 LONGEST lowerbound, upperbound;
1749 LONGEST idx;
1750
1751 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1752 {
1753 lim_warning ("don't know bounds of array", 0);
1754 lowerbound = upperbound = 0;
1755 }
1756
1757 idx = value_as_long (value_pos_atr (ind[i]));
1758 if (idx < lowerbound || idx > upperbound)
1759 lim_warning ("packed array index %ld out of bounds", (long) idx);
1760 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1761 elt_total_bit_offset += (idx - lowerbound) * bits;
1762 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
1763 }
1764 }
1765 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1766 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1767
1768 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1769 bits, elt_type);
1770 if (VALUE_LVAL (arr) == lval_internalvar)
1771 VALUE_LVAL (v) = lval_internalvar_component;
1772 else
1773 VALUE_LVAL (v) = VALUE_LVAL (arr);
1774 return v;
1775}
1776
1777/* Non-zero iff TYPE includes negative integer values. */
1778
1779static int
1780has_negatives (struct type *type)
1781{
1782 switch (TYPE_CODE (type))
1783 {
1784 default:
1785 return 0;
1786 case TYPE_CODE_INT:
1787 return !TYPE_UNSIGNED (type);
1788 case TYPE_CODE_RANGE:
1789 return TYPE_LOW_BOUND (type) < 0;
1790 }
1791}
1792
1793
1794/* Create a new value of type TYPE from the contents of OBJ starting
1795 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1796 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1797 assigning through the result will set the field fetched from.
1798 VALADDR is ignored unless OBJ is NULL, in which case,
1799 VALADDR+OFFSET must address the start of storage containing the
1800 packed value. The value returned in this case is never an lval.
1801 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1802
1803struct value *
1804ada_value_primitive_packed_val (struct value *obj, char *valaddr, long offset,
1805 int bit_offset, int bit_size,
1806 struct type *type)
1807{
1808 struct value *v;
1809 int src, /* Index into the source area */
1810 targ, /* Index into the target area */
1811 srcBitsLeft, /* Number of source bits left to move */
1812 nsrc, ntarg, /* Number of source and target bytes */
1813 unusedLS, /* Number of bits in next significant
1814 byte of source that are unused */
1815 accumSize; /* Number of meaningful bits in accum */
1816 unsigned char *bytes; /* First byte containing data to unpack */
1817 unsigned char *unpacked;
1818 unsigned long accum; /* Staging area for bits being transferred */
1819 unsigned char sign;
1820 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1821 /* Transmit bytes from least to most significant; delta is the direction
1822 the indices move. */
1823 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1824
1825 CHECK_TYPEDEF (type);
1826
1827 if (obj == NULL)
1828 {
1829 v = allocate_value (type);
1830 bytes = (unsigned char *) (valaddr + offset);
1831 }
1832 else if (VALUE_LAZY (obj))
1833 {
1834 v = value_at (type,
1835 VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset, NULL);
1836 bytes = (unsigned char *) alloca (len);
1837 read_memory (VALUE_ADDRESS (v), bytes, len);
1838 }
1839 else
1840 {
1841 v = allocate_value (type);
1842 bytes = (unsigned char *) VALUE_CONTENTS (obj) + offset;
1843 }
1844
1845 if (obj != NULL)
1846 {
1847 VALUE_LVAL (v) = VALUE_LVAL (obj);
1848 if (VALUE_LVAL (obj) == lval_internalvar)
1849 VALUE_LVAL (v) = lval_internalvar_component;
1850 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset;
1851 VALUE_BITPOS (v) = bit_offset + VALUE_BITPOS (obj);
1852 VALUE_BITSIZE (v) = bit_size;
1853 if (VALUE_BITPOS (v) >= HOST_CHAR_BIT)
1854 {
1855 VALUE_ADDRESS (v) += 1;
1856 VALUE_BITPOS (v) -= HOST_CHAR_BIT;
1857 }
1858 }
1859 else
1860 VALUE_BITSIZE (v) = bit_size;
1861 unpacked = (unsigned char *) VALUE_CONTENTS (v);
1862
1863 srcBitsLeft = bit_size;
1864 nsrc = len;
1865 ntarg = TYPE_LENGTH (type);
1866 sign = 0;
1867 if (bit_size == 0)
1868 {
1869 memset (unpacked, 0, TYPE_LENGTH (type));
1870 return v;
1871 }
1872 else if (BITS_BIG_ENDIAN)
1873 {
1874 src = len - 1;
1875 if (has_negatives (type) &&
1876 ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1877 sign = ~0;
1878
1879 unusedLS =
1880 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1881 % HOST_CHAR_BIT;
1882
1883 switch (TYPE_CODE (type))
1884 {
1885 case TYPE_CODE_ARRAY:
1886 case TYPE_CODE_UNION:
1887 case TYPE_CODE_STRUCT:
1888 /* Non-scalar values must be aligned at a byte boundary... */
1889 accumSize =
1890 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1891 /* ... And are placed at the beginning (most-significant) bytes
1892 of the target. */
1893 targ = src;
1894 break;
1895 default:
1896 accumSize = 0;
1897 targ = TYPE_LENGTH (type) - 1;
1898 break;
1899 }
1900 }
1901 else
1902 {
1903 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
1904
1905 src = targ = 0;
1906 unusedLS = bit_offset;
1907 accumSize = 0;
1908
1909 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
1910 sign = ~0;
1911 }
1912
1913 accum = 0;
1914 while (nsrc > 0)
1915 {
1916 /* Mask for removing bits of the next source byte that are not
1917 part of the value. */
1918 unsigned int unusedMSMask =
1919 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
1920 1;
1921 /* Sign-extend bits for this byte. */
1922 unsigned int signMask = sign & ~unusedMSMask;
1923 accum |=
1924 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
1925 accumSize += HOST_CHAR_BIT - unusedLS;
1926 if (accumSize >= HOST_CHAR_BIT)
1927 {
1928 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1929 accumSize -= HOST_CHAR_BIT;
1930 accum >>= HOST_CHAR_BIT;
1931 ntarg -= 1;
1932 targ += delta;
1933 }
1934 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
1935 unusedLS = 0;
1936 nsrc -= 1;
1937 src += delta;
1938 }
1939 while (ntarg > 0)
1940 {
1941 accum |= sign << accumSize;
1942 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1943 accumSize -= HOST_CHAR_BIT;
1944 accum >>= HOST_CHAR_BIT;
1945 ntarg -= 1;
1946 targ += delta;
1947 }
1948
1949 return v;
1950}
1951
1952/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
1953 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
1954 not overlap. */
1955static void
1956move_bits (char *target, int targ_offset, char *source, int src_offset, int n)
1957{
1958 unsigned int accum, mask;
1959 int accum_bits, chunk_size;
1960
1961 target += targ_offset / HOST_CHAR_BIT;
1962 targ_offset %= HOST_CHAR_BIT;
1963 source += src_offset / HOST_CHAR_BIT;
1964 src_offset %= HOST_CHAR_BIT;
1965 if (BITS_BIG_ENDIAN)
1966 {
1967 accum = (unsigned char) *source;
1968 source += 1;
1969 accum_bits = HOST_CHAR_BIT - src_offset;
1970
1971 while (n > 0)
1972 {
1973 int unused_right;
1974 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
1975 accum_bits += HOST_CHAR_BIT;
1976 source += 1;
1977 chunk_size = HOST_CHAR_BIT - targ_offset;
1978 if (chunk_size > n)
1979 chunk_size = n;
1980 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
1981 mask = ((1 << chunk_size) - 1) << unused_right;
1982 *target =
1983 (*target & ~mask)
1984 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
1985 n -= chunk_size;
1986 accum_bits -= chunk_size;
1987 target += 1;
1988 targ_offset = 0;
1989 }
1990 }
1991 else
1992 {
1993 accum = (unsigned char) *source >> src_offset;
1994 source += 1;
1995 accum_bits = HOST_CHAR_BIT - src_offset;
1996
1997 while (n > 0)
1998 {
1999 accum = accum + ((unsigned char) *source << accum_bits);
2000 accum_bits += HOST_CHAR_BIT;
2001 source += 1;
2002 chunk_size = HOST_CHAR_BIT - targ_offset;
2003 if (chunk_size > n)
2004 chunk_size = n;
2005 mask = ((1 << chunk_size) - 1) << targ_offset;
2006 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2007 n -= chunk_size;
2008 accum_bits -= chunk_size;
2009 accum >>= chunk_size;
2010 target += 1;
2011 targ_offset = 0;
2012 }
2013 }
2014}
2015
2016
2017/* Store the contents of FROMVAL into the location of TOVAL.
2018 Return a new value with the location of TOVAL and contents of
2019 FROMVAL. Handles assignment into packed fields that have
2020 floating-point or non-scalar types. */
2021
2022static struct value *
2023ada_value_assign (struct value *toval, struct value *fromval)
2024{
2025 struct type *type = VALUE_TYPE (toval);
2026 int bits = VALUE_BITSIZE (toval);
2027
2028 if (!toval->modifiable)
2029 error ("Left operand of assignment is not a modifiable lvalue.");
2030
2031 COERCE_REF (toval);
2032
2033 if (VALUE_LVAL (toval) == lval_memory
2034 && bits > 0
2035 && (TYPE_CODE (type) == TYPE_CODE_FLT
2036 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2037 {
2038 int len =
2039 (VALUE_BITPOS (toval) + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2040 char *buffer = (char *) alloca (len);
2041 struct value *val;
2042
2043 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2044 fromval = value_cast (type, fromval);
2045
2046 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len);
2047 if (BITS_BIG_ENDIAN)
2048 move_bits (buffer, VALUE_BITPOS (toval),
2049 VALUE_CONTENTS (fromval),
2050 TYPE_LENGTH (VALUE_TYPE (fromval)) * TARGET_CHAR_BIT -
2051 bits, bits);
2052 else
2053 move_bits (buffer, VALUE_BITPOS (toval), VALUE_CONTENTS (fromval),
2054 0, bits);
2055 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer,
2056 len);
2057
2058 val = value_copy (toval);
2059 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
2060 TYPE_LENGTH (type));
2061 VALUE_TYPE (val) = type;
2062
2063 return val;
2064 }
2065
2066 return value_assign (toval, fromval);
2067}
2068
2069
2070/* The value of the element of array ARR at the ARITY indices given in IND.
2071 ARR may be either a simple array, GNAT array descriptor, or pointer
2072 thereto. */
2073
2074struct value *
2075ada_value_subscript (struct value *arr, int arity, struct value **ind)
2076{
2077 int k;
2078 struct value *elt;
2079 struct type *elt_type;
2080
2081 elt = ada_coerce_to_simple_array (arr);
2082
2083 elt_type = check_typedef (VALUE_TYPE (elt));
2084 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2085 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2086 return value_subscript_packed (elt, arity, ind);
2087
2088 for (k = 0; k < arity; k += 1)
2089 {
2090 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2091 error ("too many subscripts (%d expected)", k);
2092 elt = value_subscript (elt, value_pos_atr (ind[k]));
2093 }
2094 return elt;
2095}
2096
2097/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2098 value of the element of *ARR at the ARITY indices given in
2099 IND. Does not read the entire array into memory. */
2100
2101struct value *
2102ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2103 struct value **ind)
2104{
2105 int k;
2106
2107 for (k = 0; k < arity; k += 1)
2108 {
2109 LONGEST lwb, upb;
2110 struct value *idx;
2111
2112 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2113 error ("too many subscripts (%d expected)", k);
2114 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2115 value_copy (arr));
2116 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2117 idx = value_pos_atr (ind[k]);
2118 if (lwb != 0)
2119 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2120 arr = value_add (arr, idx);
2121 type = TYPE_TARGET_TYPE (type);
2122 }
2123
2124 return value_ind (arr);
2125}
2126
2127/* If type is a record type in the form of a standard GNAT array
2128 descriptor, returns the number of dimensions for type. If arr is a
2129 simple array, returns the number of "array of"s that prefix its
2130 type designation. Otherwise, returns 0. */
2131
2132int
2133ada_array_arity (struct type *type)
2134{
2135 int arity;
2136
2137 if (type == NULL)
2138 return 0;
2139
2140 type = desc_base_type (type);
2141
2142 arity = 0;
2143 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2144 return desc_arity (desc_bounds_type (type));
2145 else
2146 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2147 {
2148 arity += 1;
2149 type = check_typedef (TYPE_TARGET_TYPE (type));
2150 }
2151
2152 return arity;
2153}
2154
2155/* If TYPE is a record type in the form of a standard GNAT array
2156 descriptor or a simple array type, returns the element type for
2157 TYPE after indexing by NINDICES indices, or by all indices if
2158 NINDICES is -1. Otherwise, returns NULL. */
2159
2160struct type *
2161ada_array_element_type (struct type *type, int nindices)
2162{
2163 type = desc_base_type (type);
2164
2165 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2166 {
2167 int k;
2168 struct type *p_array_type;
2169
2170 p_array_type = desc_data_type (type);
2171
2172 k = ada_array_arity (type);
2173 if (k == 0)
2174 return NULL;
2175
2176 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2177 if (nindices >= 0 && k > nindices)
2178 k = nindices;
2179 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2180 while (k > 0 && p_array_type != NULL)
2181 {
2182 p_array_type = check_typedef (TYPE_TARGET_TYPE (p_array_type));
2183 k -= 1;
2184 }
2185 return p_array_type;
2186 }
2187 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2188 {
2189 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2190 {
2191 type = TYPE_TARGET_TYPE (type);
2192 nindices -= 1;
2193 }
2194 return type;
2195 }
2196
2197 return NULL;
2198}
2199
2200/* The type of nth index in arrays of given type (n numbering from 1).
2201 Does not examine memory. */
2202
2203struct type *
2204ada_index_type (struct type *type, int n)
2205{
2206 struct type *result_type;
2207
2208 type = desc_base_type (type);
2209
2210 if (n > ada_array_arity (type))
2211 return NULL;
2212
2213 if (ada_is_simple_array_type (type))
2214 {
2215 int i;
2216
2217 for (i = 1; i < n; i += 1)
2218 type = TYPE_TARGET_TYPE (type);
2219 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2220 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2221 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2222 perhaps stabsread.c would make more sense. */
2223 if (result_type == NULL
2224 || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2225 result_type = builtin_type_int;
2226
2227 return result_type;
2228 }
2229 else
2230 return desc_index_type (desc_bounds_type (type), n);
2231}
2232
2233/* Given that arr is an array type, returns the lower bound of the
2234 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2235 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2236 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2237 bounds type. It works for other arrays with bounds supplied by
2238 run-time quantities other than discriminants. */
2239
2240LONGEST
2241ada_array_bound_from_type (struct type * arr_type, int n, int which,
2242 struct type ** typep)
2243{
2244 struct type *type;
2245 struct type *index_type_desc;
2246
2247 if (ada_is_packed_array_type (arr_type))
2248 arr_type = decode_packed_array_type (arr_type);
2249
2250 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2251 {
2252 if (typep != NULL)
2253 *typep = builtin_type_int;
2254 return (LONGEST) - which;
2255 }
2256
2257 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2258 type = TYPE_TARGET_TYPE (arr_type);
2259 else
2260 type = arr_type;
2261
2262 index_type_desc = ada_find_parallel_type (type, "___XA");
2263 if (index_type_desc == NULL)
2264 {
2265 struct type *range_type;
2266 struct type *index_type;
2267
2268 while (n > 1)
2269 {
2270 type = TYPE_TARGET_TYPE (type);
2271 n -= 1;
2272 }
2273
2274 range_type = TYPE_INDEX_TYPE (type);
2275 index_type = TYPE_TARGET_TYPE (range_type);
2276 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2277 index_type = builtin_type_long;
2278 if (typep != NULL)
2279 *typep = index_type;
2280 return
2281 (LONGEST) (which == 0
2282 ? TYPE_LOW_BOUND (range_type)
2283 : TYPE_HIGH_BOUND (range_type));
2284 }
2285 else
2286 {
2287 struct type *index_type =
2288 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2289 NULL, TYPE_OBJFILE (arr_type));
2290 if (typep != NULL)
2291 *typep = TYPE_TARGET_TYPE (index_type);
2292 return
2293 (LONGEST) (which == 0
2294 ? TYPE_LOW_BOUND (index_type)
2295 : TYPE_HIGH_BOUND (index_type));
2296 }
2297}
2298
2299/* Given that arr is an array value, returns the lower bound of the
2300 nth index (numbering from 1) if which is 0, and the upper bound if
2301 which is 1. This routine will also work for arrays with bounds
2302 supplied by run-time quantities other than discriminants. */
2303
2304struct value *
2305ada_array_bound (struct value *arr, int n, int which)
2306{
2307 struct type *arr_type = VALUE_TYPE (arr);
2308
2309 if (ada_is_packed_array_type (arr_type))
2310 return ada_array_bound (decode_packed_array (arr), n, which);
2311 else if (ada_is_simple_array_type (arr_type))
2312 {
2313 struct type *type;
2314 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2315 return value_from_longest (type, v);
2316 }
2317 else
2318 return desc_one_bound (desc_bounds (arr), n, which);
2319}
2320
2321/* Given that arr is an array value, returns the length of the
2322 nth index. This routine will also work for arrays with bounds
2323 supplied by run-time quantities other than discriminants.
2324 Does not work for arrays indexed by enumeration types with representation
2325 clauses at the moment. */
2326
2327struct value *
2328ada_array_length (struct value *arr, int n)
2329{
2330 struct type *arr_type = check_typedef (VALUE_TYPE (arr));
2331
2332 if (ada_is_packed_array_type (arr_type))
2333 return ada_array_length (decode_packed_array (arr), n);
2334
2335 if (ada_is_simple_array_type (arr_type))
2336 {
2337 struct type *type;
2338 LONGEST v =
2339 ada_array_bound_from_type (arr_type, n, 1, &type) -
2340 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2341 return value_from_longest (type, v);
2342 }
2343 else
2344 return
2345 value_from_longest (builtin_type_ada_int,
2346 value_as_long (desc_one_bound (desc_bounds (arr),
2347 n, 1))
2348 - value_as_long (desc_one_bound (desc_bounds (arr),
2349 n, 0)) + 1);
2350}
2351
2352/* An empty array whose type is that of ARR_TYPE (an array type),
2353 with bounds LOW to LOW-1. */
2354
2355static struct value *
2356empty_array (struct type *arr_type, int low)
2357{
2358 return allocate_value (create_range_type (NULL, TYPE_INDEX_TYPE (arr_type),
2359 low, low - 1));
2360}
2361\f
2362
2363 /* Name resolution */
2364
2365/* The "decoded" name for the user-definable Ada operator corresponding
2366 to OP. */
2367
2368static const char *
2369ada_decoded_op_name (enum exp_opcode op)
2370{
2371 int i;
2372
2373 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2374 {
2375 if (ada_opname_table[i].op == op)
2376 return ada_opname_table[i].decoded;
2377 }
2378 error ("Could not find operator name for opcode");
2379}
2380
2381
2382/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2383 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2384 undefined namespace) and converts operators that are
2385 user-defined into appropriate function calls. If CONTEXT_TYPE is
2386 non-null, it provides a preferred result type [at the moment, only
2387 type void has any effect---causing procedures to be preferred over
2388 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2389 return type is preferred. May change (expand) *EXP. */
2390
2391static void
2392resolve (struct expression **expp, int void_context_p)
2393{
2394 int pc;
2395 pc = 0;
2396 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2397}
2398
2399/* Resolve the operator of the subexpression beginning at
2400 position *POS of *EXPP. "Resolving" consists of replacing
2401 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2402 with their resolutions, replacing built-in operators with
2403 function calls to user-defined operators, where appropriate, and,
2404 when DEPROCEDURE_P is non-zero, converting function-valued variables
2405 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2406 are as in ada_resolve, above. */
2407
2408static struct value *
2409resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2410 struct type *context_type)
2411{
2412 int pc = *pos;
2413 int i;
2414 struct expression *exp; /* Convenience: == *expp. */
2415 enum exp_opcode op = (*expp)->elts[pc].opcode;
2416 struct value **argvec; /* Vector of operand types (alloca'ed). */
2417 int nargs; /* Number of operands. */
2418
2419 argvec = NULL;
2420 nargs = 0;
2421 exp = *expp;
2422
2423 /* Pass one: resolve operands, saving their types and updating *pos. */
2424 switch (op)
2425 {
2426 case OP_FUNCALL:
2427 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2428 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2429 *pos += 7;
2430 else
2431 {
2432 *pos += 3;
2433 resolve_subexp (expp, pos, 0, NULL);
2434 }
2435 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2436 break;
2437
2438 case UNOP_QUAL:
2439 *pos += 3;
2440 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2441 break;
2442
2443 case UNOP_ADDR:
2444 *pos += 1;
2445 resolve_subexp (expp, pos, 0, NULL);
2446 break;
2447
2448 case OP_ATR_MODULUS:
2449 *pos += 4;
2450 break;
2451
2452 case OP_ATR_SIZE:
2453 case OP_ATR_TAG:
2454 *pos += 1;
2455 nargs = 1;
2456 break;
2457
2458 case OP_ATR_FIRST:
2459 case OP_ATR_LAST:
2460 case OP_ATR_LENGTH:
2461 case OP_ATR_POS:
2462 case OP_ATR_VAL:
2463 *pos += 1;
2464 nargs = 2;
2465 break;
2466
2467 case OP_ATR_MIN:
2468 case OP_ATR_MAX:
2469 *pos += 1;
2470 nargs = 3;
2471 break;
2472
2473 case BINOP_ASSIGN:
2474 {
2475 struct value *arg1;
2476
2477 *pos += 1;
2478 arg1 = resolve_subexp (expp, pos, 0, NULL);
2479 if (arg1 == NULL)
2480 resolve_subexp (expp, pos, 1, NULL);
2481 else
2482 resolve_subexp (expp, pos, 1, VALUE_TYPE (arg1));
2483 break;
2484 }
2485
2486 case UNOP_CAST:
2487 case UNOP_IN_RANGE:
2488 *pos += 3;
2489 nargs = 1;
2490 break;
2491
2492 case BINOP_ADD:
2493 case BINOP_SUB:
2494 case BINOP_MUL:
2495 case BINOP_DIV:
2496 case BINOP_REM:
2497 case BINOP_MOD:
2498 case BINOP_EXP:
2499 case BINOP_CONCAT:
2500 case BINOP_LOGICAL_AND:
2501 case BINOP_LOGICAL_OR:
2502 case BINOP_BITWISE_AND:
2503 case BINOP_BITWISE_IOR:
2504 case BINOP_BITWISE_XOR:
2505
2506 case BINOP_EQUAL:
2507 case BINOP_NOTEQUAL:
2508 case BINOP_LESS:
2509 case BINOP_GTR:
2510 case BINOP_LEQ:
2511 case BINOP_GEQ:
2512
2513 case BINOP_REPEAT:
2514 case BINOP_SUBSCRIPT:
2515 case BINOP_COMMA:
2516 *pos += 1;
2517 nargs = 2;
2518 break;
2519
2520 case UNOP_NEG:
2521 case UNOP_PLUS:
2522 case UNOP_LOGICAL_NOT:
2523 case UNOP_ABS:
2524 case UNOP_IND:
2525 *pos += 1;
2526 nargs = 1;
2527 break;
2528
2529 case OP_LONG:
2530 case OP_DOUBLE:
2531 case OP_VAR_VALUE:
2532 *pos += 4;
2533 break;
2534
2535 case OP_TYPE:
2536 case OP_BOOL:
2537 case OP_LAST:
2538 case OP_REGISTER:
2539 case OP_INTERNALVAR:
2540 *pos += 3;
2541 break;
2542
2543 case UNOP_MEMVAL:
2544 *pos += 3;
2545 nargs = 1;
2546 break;
2547
2548 case STRUCTOP_STRUCT:
2549 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2550 nargs = 1;
2551 break;
2552
2553 case OP_STRING:
2554 (*pos) += 3
2555 + BYTES_TO_EXP_ELEM (longest_to_int (exp->elts[pc + 1].longconst) + 1);
2556 break;
2557
2558 case TERNOP_SLICE:
2559 case TERNOP_IN_RANGE:
2560 *pos += 1;
2561 nargs = 3;
2562 break;
2563
2564 case BINOP_IN_BOUNDS:
2565 *pos += 3;
2566 nargs = 2;
2567 break;
2568
2569 default:
2570 error ("Unexpected operator during name resolution");
2571 }
2572
2573 argvec =
2574 (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2575 for (i = 0; i < nargs; i += 1)
2576 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2577 argvec[i] = NULL;
2578 exp = *expp;
2579
2580 /* Pass two: perform any resolution on principal operator. */
2581 switch (op)
2582 {
2583 default:
2584 break;
2585
2586 case OP_VAR_VALUE:
2587 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2588 {
2589 struct ada_symbol_info *candidates;
2590 int n_candidates;
2591
2592 n_candidates =
2593 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME (exp->elts[pc + 2]
2594 .symbol),
2595 exp->elts[pc + 1].block,
2596 VAR_DOMAIN, &candidates);
2597
2598 if (n_candidates > 1)
2599 {
2600 /* Types tend to get re-introduced locally, so if there
2601 are any local symbols that are not types, first filter
2602 out all types. */
2603 int j;
2604 for (j = 0; j < n_candidates; j += 1)
2605 switch (SYMBOL_CLASS (candidates[j].sym))
2606 {
2607 case LOC_REGISTER:
2608 case LOC_ARG:
2609 case LOC_REF_ARG:
2610 case LOC_REGPARM:
2611 case LOC_REGPARM_ADDR:
2612 case LOC_LOCAL:
2613 case LOC_LOCAL_ARG:
2614 case LOC_BASEREG:
2615 case LOC_BASEREG_ARG:
2616 case LOC_COMPUTED:
2617 case LOC_COMPUTED_ARG:
2618 goto FoundNonType;
2619 default:
2620 break;
2621 }
2622 FoundNonType:
2623 if (j < n_candidates)
2624 {
2625 j = 0;
2626 while (j < n_candidates)
2627 {
2628 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2629 {
2630 candidates[j] = candidates[n_candidates - 1];
2631 n_candidates -= 1;
2632 }
2633 else
2634 j += 1;
2635 }
2636 }
2637 }
2638
2639 if (n_candidates == 0)
2640 error ("No definition found for %s",
2641 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2642 else if (n_candidates == 1)
2643 i = 0;
2644 else if (deprocedure_p
2645 && !is_nonfunction (candidates, n_candidates))
2646 {
2647 i = ada_resolve_function (candidates, n_candidates, NULL, 0,
2648 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2]
2649 .symbol),
2650 context_type);
2651 if (i < 0)
2652 error ("Could not find a match for %s",
2653 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2654 }
2655 else
2656 {
2657 printf_filtered ("Multiple matches for %s\n",
2658 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2659 user_select_syms (candidates, n_candidates, 1);
2660 i = 0;
2661 }
2662
2663 exp->elts[pc + 1].block = candidates[i].block;
2664 exp->elts[pc + 2].symbol = candidates[i].sym;
2665 if (innermost_block == NULL ||
2666 contained_in (candidates[i].block, innermost_block))
2667 innermost_block = candidates[i].block;
2668 }
2669
2670 if (deprocedure_p
2671 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2672 == TYPE_CODE_FUNC))
2673 {
2674 replace_operator_with_call (expp, pc, 0, 0,
2675 exp->elts[pc + 2].symbol,
2676 exp->elts[pc + 1].block);
2677 exp = *expp;
2678 }
2679 break;
2680
2681 case OP_FUNCALL:
2682 {
2683 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2684 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2685 {
2686 struct ada_symbol_info *candidates;
2687 int n_candidates;
2688
2689 n_candidates =
2690 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME (exp->elts[pc + 5]
2691 .symbol),
2692 exp->elts[pc + 4].block,
2693 VAR_DOMAIN, &candidates);
2694 if (n_candidates == 1)
2695 i = 0;
2696 else
2697 {
2698 i = ada_resolve_function (candidates, n_candidates,
2699 argvec, nargs,
2700 SYMBOL_LINKAGE_NAME (exp->elts[pc+5]
2701 .symbol),
2702 context_type);
2703 if (i < 0)
2704 error ("Could not find a match for %s",
2705 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2706 }
2707
2708 exp->elts[pc + 4].block = candidates[i].block;
2709 exp->elts[pc + 5].symbol = candidates[i].sym;
2710 if (innermost_block == NULL ||
2711 contained_in (candidates[i].block, innermost_block))
2712 innermost_block = candidates[i].block;
2713 }
2714 }
2715 break;
2716 case BINOP_ADD:
2717 case BINOP_SUB:
2718 case BINOP_MUL:
2719 case BINOP_DIV:
2720 case BINOP_REM:
2721 case BINOP_MOD:
2722 case BINOP_CONCAT:
2723 case BINOP_BITWISE_AND:
2724 case BINOP_BITWISE_IOR:
2725 case BINOP_BITWISE_XOR:
2726 case BINOP_EQUAL:
2727 case BINOP_NOTEQUAL:
2728 case BINOP_LESS:
2729 case BINOP_GTR:
2730 case BINOP_LEQ:
2731 case BINOP_GEQ:
2732 case BINOP_EXP:
2733 case UNOP_NEG:
2734 case UNOP_PLUS:
2735 case UNOP_LOGICAL_NOT:
2736 case UNOP_ABS:
2737 if (possible_user_operator_p (op, argvec))
2738 {
2739 struct ada_symbol_info *candidates;
2740 int n_candidates;
2741
2742 n_candidates =
2743 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2744 (struct block *) NULL, VAR_DOMAIN,
2745 &candidates);
2746 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2747 ada_decoded_op_name (op), NULL);
2748 if (i < 0)
2749 break;
2750
2751 replace_operator_with_call (expp, pc, nargs, 1,
2752 candidates[i].sym, candidates[i].block);
2753 exp = *expp;
2754 }
2755 break;
2756
2757 case OP_TYPE:
2758 return NULL;
2759 }
2760
2761 *pos = pc;
2762 return evaluate_subexp_type (exp, pos);
2763}
2764
2765/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2766 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2767 a non-pointer. A type of 'void' (which is never a valid expression type)
2768 by convention matches anything. */
2769/* The term "match" here is rather loose. The match is heuristic and
2770 liberal. FIXME: TOO liberal, in fact. */
2771
2772static int
2773ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2774{
2775 CHECK_TYPEDEF (ftype);
2776 CHECK_TYPEDEF (atype);
2777
2778 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2779 ftype = TYPE_TARGET_TYPE (ftype);
2780 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2781 atype = TYPE_TARGET_TYPE (atype);
2782
2783 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2784 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2785 return 1;
2786
2787 switch (TYPE_CODE (ftype))
2788 {
2789 default:
2790 return 1;
2791 case TYPE_CODE_PTR:
2792 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2793 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2794 TYPE_TARGET_TYPE (atype), 0);
2795 else
2796 return (may_deref &&
2797 ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2798 case TYPE_CODE_INT:
2799 case TYPE_CODE_ENUM:
2800 case TYPE_CODE_RANGE:
2801 switch (TYPE_CODE (atype))
2802 {
2803 case TYPE_CODE_INT:
2804 case TYPE_CODE_ENUM:
2805 case TYPE_CODE_RANGE:
2806 return 1;
2807 default:
2808 return 0;
2809 }
2810
2811 case TYPE_CODE_ARRAY:
2812 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2813 || ada_is_array_descriptor_type (atype));
2814
2815 case TYPE_CODE_STRUCT:
2816 if (ada_is_array_descriptor_type (ftype))
2817 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2818 || ada_is_array_descriptor_type (atype));
2819 else
2820 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2821 && !ada_is_array_descriptor_type (atype));
2822
2823 case TYPE_CODE_UNION:
2824 case TYPE_CODE_FLT:
2825 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2826 }
2827}
2828
2829/* Return non-zero if the formals of FUNC "sufficiently match" the
2830 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2831 may also be an enumeral, in which case it is treated as a 0-
2832 argument function. */
2833
2834static int
2835ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
2836{
2837 int i;
2838 struct type *func_type = SYMBOL_TYPE (func);
2839
2840 if (SYMBOL_CLASS (func) == LOC_CONST &&
2841 TYPE_CODE (func_type) == TYPE_CODE_ENUM)
2842 return (n_actuals == 0);
2843 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
2844 return 0;
2845
2846 if (TYPE_NFIELDS (func_type) != n_actuals)
2847 return 0;
2848
2849 for (i = 0; i < n_actuals; i += 1)
2850 {
2851 if (actuals[i] == NULL)
2852 return 0;
2853 else
2854 {
2855 struct type *ftype = check_typedef (TYPE_FIELD_TYPE (func_type, i));
2856 struct type *atype = check_typedef (VALUE_TYPE (actuals[i]));
2857
2858 if (!ada_type_match (ftype, atype, 1))
2859 return 0;
2860 }
2861 }
2862 return 1;
2863}
2864
2865/* False iff function type FUNC_TYPE definitely does not produce a value
2866 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
2867 FUNC_TYPE is not a valid function type with a non-null return type
2868 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
2869
2870static int
2871return_match (struct type *func_type, struct type *context_type)
2872{
2873 struct type *return_type;
2874
2875 if (func_type == NULL)
2876 return 1;
2877
2878 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
2879 return_type = base_type (TYPE_TARGET_TYPE (func_type));
2880 else
2881 return_type = base_type (func_type);
2882 if (return_type == NULL)
2883 return 1;
2884
2885 context_type = base_type (context_type);
2886
2887 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
2888 return context_type == NULL || return_type == context_type;
2889 else if (context_type == NULL)
2890 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
2891 else
2892 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
2893}
2894
2895
2896/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
2897 function (if any) that matches the types of the NARGS arguments in
2898 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
2899 that returns that type, then eliminate matches that don't. If
2900 CONTEXT_TYPE is void and there is at least one match that does not
2901 return void, eliminate all matches that do.
2902
2903 Asks the user if there is more than one match remaining. Returns -1
2904 if there is no such symbol or none is selected. NAME is used
2905 solely for messages. May re-arrange and modify SYMS in
2906 the process; the index returned is for the modified vector. */
2907
2908static int
2909ada_resolve_function (struct ada_symbol_info syms[],
2910 int nsyms, struct value **args, int nargs,
2911 const char *name, struct type *context_type)
2912{
2913 int k;
2914 int m; /* Number of hits */
2915 struct type *fallback;
2916 struct type *return_type;
2917
2918 return_type = context_type;
2919 if (context_type == NULL)
2920 fallback = builtin_type_void;
2921 else
2922 fallback = NULL;
2923
2924 m = 0;
2925 while (1)
2926 {
2927 for (k = 0; k < nsyms; k += 1)
2928 {
2929 struct type *type = check_typedef (SYMBOL_TYPE (syms[k].sym));
2930
2931 if (ada_args_match (syms[k].sym, args, nargs)
2932 && return_match (type, return_type))
2933 {
2934 syms[m] = syms[k];
2935 m += 1;
2936 }
2937 }
2938 if (m > 0 || return_type == fallback)
2939 break;
2940 else
2941 return_type = fallback;
2942 }
2943
2944 if (m == 0)
2945 return -1;
2946 else if (m > 1)
2947 {
2948 printf_filtered ("Multiple matches for %s\n", name);
2949 user_select_syms (syms, m, 1);
2950 return 0;
2951 }
2952 return 0;
2953}
2954
2955/* Returns true (non-zero) iff decoded name N0 should appear before N1
2956 in a listing of choices during disambiguation (see sort_choices, below).
2957 The idea is that overloadings of a subprogram name from the
2958 same package should sort in their source order. We settle for ordering
2959 such symbols by their trailing number (__N or $N). */
2960
2961static int
2962encoded_ordered_before (char *N0, char *N1)
2963{
2964 if (N1 == NULL)
2965 return 0;
2966 else if (N0 == NULL)
2967 return 1;
2968 else
2969 {
2970 int k0, k1;
2971 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
2972 ;
2973 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
2974 ;
2975 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
2976 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
2977 {
2978 int n0, n1;
2979 n0 = k0;
2980 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
2981 n0 -= 1;
2982 n1 = k1;
2983 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
2984 n1 -= 1;
2985 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
2986 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
2987 }
2988 return (strcmp (N0, N1) < 0);
2989 }
2990}
2991
2992/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
2993 encoded names. */
2994
2995static void
2996sort_choices (struct ada_symbol_info syms[], int nsyms)
2997{
2998 int i;
2999 for (i = 1; i < nsyms; i += 1)
3000 {
3001 struct ada_symbol_info sym = syms[i];
3002 int j;
3003
3004 for (j = i - 1; j >= 0; j -= 1)
3005 {
3006 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3007 SYMBOL_LINKAGE_NAME (sym.sym)))
3008 break;
3009 syms[j + 1] = syms[j];
3010 }
3011 syms[j + 1] = sym;
3012 }
3013}
3014
3015/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3016 by asking the user (if necessary), returning the number selected,
3017 and setting the first elements of SYMS items. Error if no symbols
3018 selected. */
3019
3020/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3021 to be re-integrated one of these days. */
3022
3023int
3024user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3025{
3026 int i;
3027 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3028 int n_chosen;
3029 int first_choice = (max_results == 1) ? 1 : 2;
3030
3031 if (max_results < 1)
3032 error ("Request to select 0 symbols!");
3033 if (nsyms <= 1)
3034 return nsyms;
3035
3036 printf_unfiltered ("[0] cancel\n");
3037 if (max_results > 1)
3038 printf_unfiltered ("[1] all\n");
3039
3040 sort_choices (syms, nsyms);
3041
3042 for (i = 0; i < nsyms; i += 1)
3043 {
3044 if (syms[i].sym == NULL)
3045 continue;
3046
3047 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3048 {
3049 struct symtab_and_line sal = find_function_start_sal (syms[i].sym, 1);
3050 printf_unfiltered ("[%d] %s at %s:%d\n",
3051 i + first_choice,
3052 SYMBOL_PRINT_NAME (syms[i].sym),
3053 sal.symtab == NULL
3054 ? "<no source file available>"
3055 : sal.symtab->filename, sal.line);
3056 continue;
3057 }
3058 else
3059 {
3060 int is_enumeral =
3061 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3062 && SYMBOL_TYPE (syms[i].sym) != NULL
3063 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3064 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3065
3066 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3067 printf_unfiltered ("[%d] %s at %s:%d\n",
3068 i + first_choice,
3069 SYMBOL_PRINT_NAME (syms[i].sym),
3070 symtab->filename, SYMBOL_LINE (syms[i].sym));
3071 else if (is_enumeral && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3072 {
3073 printf_unfiltered ("[%d] ", i + first_choice);
3074 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3075 gdb_stdout, -1, 0);
3076 printf_unfiltered ("'(%s) (enumeral)\n",
3077 SYMBOL_PRINT_NAME (syms[i].sym));
3078 }
3079 else if (symtab != NULL)
3080 printf_unfiltered (is_enumeral
3081 ? "[%d] %s in %s (enumeral)\n"
3082 : "[%d] %s at %s:?\n",
3083 i + first_choice,
3084 SYMBOL_PRINT_NAME (syms[i].sym),
3085 symtab->filename);
3086 else
3087 printf_unfiltered (is_enumeral
3088 ? "[%d] %s (enumeral)\n"
3089 : "[%d] %s at ?\n",
3090 i + first_choice,
3091 SYMBOL_PRINT_NAME (syms[i].sym));
3092 }
3093 }
3094
3095 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3096 "overload-choice");
3097
3098 for (i = 0; i < n_chosen; i += 1)
3099 syms[i] = syms[chosen[i]];
3100
3101 return n_chosen;
3102}
3103
3104/* Read and validate a set of numeric choices from the user in the
3105 range 0 .. N_CHOICES-1. Place the results in increasing
3106 order in CHOICES[0 .. N-1], and return N.
3107
3108 The user types choices as a sequence of numbers on one line
3109 separated by blanks, encoding them as follows:
3110
3111 + A choice of 0 means to cancel the selection, throwing an error.
3112 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3113 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3114
3115 The user is not allowed to choose more than MAX_RESULTS values.
3116
3117 ANNOTATION_SUFFIX, if present, is used to annotate the input
3118 prompts (for use with the -f switch). */
3119
3120int
3121get_selections (int *choices, int n_choices, int max_results,
3122 int is_all_choice, char *annotation_suffix)
3123{
3124 char *args;
3125 const char *prompt;
3126 int n_chosen;
3127 int first_choice = is_all_choice ? 2 : 1;
3128
3129 prompt = getenv ("PS2");
3130 if (prompt == NULL)
3131 prompt = ">";
3132
3133 printf_unfiltered ("%s ", prompt);
3134 gdb_flush (gdb_stdout);
3135
3136 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3137
3138 if (args == NULL)
3139 error_no_arg ("one or more choice numbers");
3140
3141 n_chosen = 0;
3142
3143 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3144 order, as given in args. Choices are validated. */
3145 while (1)
3146 {
3147 char *args2;
3148 int choice, j;
3149
3150 while (isspace (*args))
3151 args += 1;
3152 if (*args == '\0' && n_chosen == 0)
3153 error_no_arg ("one or more choice numbers");
3154 else if (*args == '\0')
3155 break;
3156
3157 choice = strtol (args, &args2, 10);
3158 if (args == args2 || choice < 0
3159 || choice > n_choices + first_choice - 1)
3160 error ("Argument must be choice number");
3161 args = args2;
3162
3163 if (choice == 0)
3164 error ("cancelled");
3165
3166 if (choice < first_choice)
3167 {
3168 n_chosen = n_choices;
3169 for (j = 0; j < n_choices; j += 1)
3170 choices[j] = j;
3171 break;
3172 }
3173 choice -= first_choice;
3174
3175 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3176 {
3177 }
3178
3179 if (j < 0 || choice != choices[j])
3180 {
3181 int k;
3182 for (k = n_chosen - 1; k > j; k -= 1)
3183 choices[k + 1] = choices[k];
3184 choices[j + 1] = choice;
3185 n_chosen += 1;
3186 }
3187 }
3188
3189 if (n_chosen > max_results)
3190 error ("Select no more than %d of the above", max_results);
3191
3192 return n_chosen;
3193}
3194
3195/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3196 on the function identified by SYM and BLOCK, and taking NARGS
3197 arguments. Update *EXPP as needed to hold more space. */
3198
3199static void
3200replace_operator_with_call (struct expression **expp, int pc, int nargs,
3201 int oplen, struct symbol *sym,
3202 struct block *block)
3203{
3204 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3205 symbol, -oplen for operator being replaced). */
3206 struct expression *newexp = (struct expression *)
3207 xmalloc (sizeof (struct expression)
3208 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3209 struct expression *exp = *expp;
3210
3211 newexp->nelts = exp->nelts + 7 - oplen;
3212 newexp->language_defn = exp->language_defn;
3213 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3214 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3215 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3216
3217 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3218 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3219
3220 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3221 newexp->elts[pc + 4].block = block;
3222 newexp->elts[pc + 5].symbol = sym;
3223
3224 *expp = newexp;
3225 xfree (exp);
3226}
3227
3228/* Type-class predicates */
3229
3230/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3231 or FLOAT). */
3232
3233static int
3234numeric_type_p (struct type *type)
3235{
3236 if (type == NULL)
3237 return 0;
3238 else
3239 {
3240 switch (TYPE_CODE (type))
3241 {
3242 case TYPE_CODE_INT:
3243 case TYPE_CODE_FLT:
3244 return 1;
3245 case TYPE_CODE_RANGE:
3246 return (type == TYPE_TARGET_TYPE (type)
3247 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3248 default:
3249 return 0;
3250 }
3251 }
3252}
3253
3254/* True iff TYPE is integral (an INT or RANGE of INTs). */
3255
3256static int
3257integer_type_p (struct type *type)
3258{
3259 if (type == NULL)
3260 return 0;
3261 else
3262 {
3263 switch (TYPE_CODE (type))
3264 {
3265 case TYPE_CODE_INT:
3266 return 1;
3267 case TYPE_CODE_RANGE:
3268 return (type == TYPE_TARGET_TYPE (type)
3269 || integer_type_p (TYPE_TARGET_TYPE (type)));
3270 default:
3271 return 0;
3272 }
3273 }
3274}
3275
3276/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3277
3278static int
3279scalar_type_p (struct type *type)
3280{
3281 if (type == NULL)
3282 return 0;
3283 else
3284 {
3285 switch (TYPE_CODE (type))
3286 {
3287 case TYPE_CODE_INT:
3288 case TYPE_CODE_RANGE:
3289 case TYPE_CODE_ENUM:
3290 case TYPE_CODE_FLT:
3291 return 1;
3292 default:
3293 return 0;
3294 }
3295 }
3296}
3297
3298/* True iff TYPE is discrete (INT, RANGE, ENUM). */
3299
3300static int
3301discrete_type_p (struct type *type)
3302{
3303 if (type == NULL)
3304 return 0;
3305 else
3306 {
3307 switch (TYPE_CODE (type))
3308 {
3309 case TYPE_CODE_INT:
3310 case TYPE_CODE_RANGE:
3311 case TYPE_CODE_ENUM:
3312 return 1;
3313 default:
3314 return 0;
3315 }
3316 }
3317}
3318
3319/* Returns non-zero if OP with operands in the vector ARGS could be
3320 a user-defined function. Errs on the side of pre-defined operators
3321 (i.e., result 0). */
3322
3323static int
3324possible_user_operator_p (enum exp_opcode op, struct value *args[])
3325{
3326 struct type *type0 =
3327 (args[0] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[0]));
3328 struct type *type1 =
3329 (args[1] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[1]));
3330
3331 if (type0 == NULL)
3332 return 0;
3333
3334 switch (op)
3335 {
3336 default:
3337 return 0;
3338
3339 case BINOP_ADD:
3340 case BINOP_SUB:
3341 case BINOP_MUL:
3342 case BINOP_DIV:
3343 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3344
3345 case BINOP_REM:
3346 case BINOP_MOD:
3347 case BINOP_BITWISE_AND:
3348 case BINOP_BITWISE_IOR:
3349 case BINOP_BITWISE_XOR:
3350 return (!(integer_type_p (type0) && integer_type_p (type1)));
3351
3352 case BINOP_EQUAL:
3353 case BINOP_NOTEQUAL:
3354 case BINOP_LESS:
3355 case BINOP_GTR:
3356 case BINOP_LEQ:
3357 case BINOP_GEQ:
3358 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3359
3360 case BINOP_CONCAT:
3361 return ((TYPE_CODE (type0) != TYPE_CODE_ARRAY &&
3362 (TYPE_CODE (type0) != TYPE_CODE_PTR ||
3363 TYPE_CODE (TYPE_TARGET_TYPE (type0))
3364 != TYPE_CODE_ARRAY))
3365 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY &&
3366 (TYPE_CODE (type1) != TYPE_CODE_PTR ||
3367 TYPE_CODE (TYPE_TARGET_TYPE (type1)) != TYPE_CODE_ARRAY)));
3368
3369 case BINOP_EXP:
3370 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3371
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 return (!numeric_type_p (type0));
3377
3378 }
3379}
3380\f
3381 /* Renaming */
3382
3383/* NOTE: In the following, we assume that a renaming type's name may
3384 have an ___XD suffix. It would be nice if this went away at some
3385 point. */
3386
3387/* If TYPE encodes a renaming, returns the renaming suffix, which
3388 is XR for an object renaming, XRP for a procedure renaming, XRE for
3389 an exception renaming, and XRS for a subprogram renaming. Returns
3390 NULL if NAME encodes none of these. */
3391
3392const char *
3393ada_renaming_type (struct type *type)
3394{
3395 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3396 {
3397 const char *name = type_name_no_tag (type);
3398 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3399 if (suffix == NULL
3400 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3401 return NULL;
3402 else
3403 return suffix + 3;
3404 }
3405 else
3406 return NULL;
3407}
3408
3409/* Return non-zero iff SYM encodes an object renaming. */
3410
3411int
3412ada_is_object_renaming (struct symbol *sym)
3413{
3414 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3415 return renaming_type != NULL
3416 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3417}
3418
3419/* Assuming that SYM encodes a non-object renaming, returns the original
3420 name of the renamed entity. The name is good until the end of
3421 parsing. */
3422
3423char *
3424ada_simple_renamed_entity (struct symbol *sym)
3425{
3426 struct type *type;
3427 const char *raw_name;
3428 int len;
3429 char *result;
3430
3431 type = SYMBOL_TYPE (sym);
3432 if (type == NULL || TYPE_NFIELDS (type) < 1)
3433 error ("Improperly encoded renaming.");
3434
3435 raw_name = TYPE_FIELD_NAME (type, 0);
3436 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3437 if (len <= 0)
3438 error ("Improperly encoded renaming.");
3439
3440 result = xmalloc (len + 1);
3441 strncpy (result, raw_name, len);
3442 result[len] = '\000';
3443 return result;
3444}
3445\f
3446
3447 /* Evaluation: Function Calls */
3448
3449/* Return an lvalue containing the value VAL. This is the identity on
3450 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3451 on the stack, using and updating *SP as the stack pointer, and
3452 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3453
3454static struct value *
3455ensure_lval (struct value *val, CORE_ADDR *sp)
3456{
3457 CORE_ADDR old_sp = *sp;
3458
3459 if (VALUE_LVAL (val))
3460 return val;
3461
3462 if (DEPRECATED_STACK_ALIGN_P ())
3463 *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
3464 DEPRECATED_STACK_ALIGN
3465 (TYPE_LENGTH (check_typedef (VALUE_TYPE (val)))));
3466 else
3467 *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
3468 TYPE_LENGTH (check_typedef (VALUE_TYPE (val))));
3469
3470 VALUE_LVAL (val) = lval_memory;
3471 if (INNER_THAN (1, 2))
3472 VALUE_ADDRESS (val) = *sp;
3473 else
3474 VALUE_ADDRESS (val) = old_sp;
3475
3476 return val;
3477}
3478
3479/* Return the value ACTUAL, converted to be an appropriate value for a
3480 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3481 allocating any necessary descriptors (fat pointers), or copies of
3482 values not residing in memory, updating it as needed. */
3483
3484static struct value *
3485convert_actual (struct value *actual, struct type *formal_type0,
3486 CORE_ADDR *sp)
3487{
3488 struct type *actual_type = check_typedef (VALUE_TYPE (actual));
3489 struct type *formal_type = check_typedef (formal_type0);
3490 struct type *formal_target =
3491 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3492 ? check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3493 struct type *actual_target =
3494 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3495 ? check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3496
3497 if (ada_is_array_descriptor_type (formal_target)
3498 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3499 return make_array_descriptor (formal_type, actual, sp);
3500 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3501 {
3502 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3503 && ada_is_array_descriptor_type (actual_target))
3504 return desc_data (actual);
3505 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3506 {
3507 if (VALUE_LVAL (actual) != lval_memory)
3508 {
3509 struct value *val;
3510 actual_type = check_typedef (VALUE_TYPE (actual));
3511 val = allocate_value (actual_type);
3512 memcpy ((char *) VALUE_CONTENTS_RAW (val),
3513 (char *) VALUE_CONTENTS (actual),
3514 TYPE_LENGTH (actual_type));
3515 actual = ensure_lval (val, sp);
3516 }
3517 return value_addr (actual);
3518 }
3519 }
3520 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3521 return ada_value_ind (actual);
3522
3523 return actual;
3524}
3525
3526
3527/* Push a descriptor of type TYPE for array value ARR on the stack at
3528 *SP, updating *SP to reflect the new descriptor. Return either
3529 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3530 to-descriptor type rather than a descriptor type), a struct value *
3531 representing a pointer to this descriptor. */
3532
3533static struct value *
3534make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3535{
3536 struct type *bounds_type = desc_bounds_type (type);
3537 struct type *desc_type = desc_base_type (type);
3538 struct value *descriptor = allocate_value (desc_type);
3539 struct value *bounds = allocate_value (bounds_type);
3540 int i;
3541
3542 for (i = ada_array_arity (check_typedef (VALUE_TYPE (arr))); i > 0; i -= 1)
3543 {
3544 modify_general_field (VALUE_CONTENTS (bounds),
3545 value_as_long (ada_array_bound (arr, i, 0)),
3546 desc_bound_bitpos (bounds_type, i, 0),
3547 desc_bound_bitsize (bounds_type, i, 0));
3548 modify_general_field (VALUE_CONTENTS (bounds),
3549 value_as_long (ada_array_bound (arr, i, 1)),
3550 desc_bound_bitpos (bounds_type, i, 1),
3551 desc_bound_bitsize (bounds_type, i, 1));
3552 }
3553
3554 bounds = ensure_lval (bounds, sp);
3555
3556 modify_general_field (VALUE_CONTENTS (descriptor),
3557 VALUE_ADDRESS (ensure_lval (arr, sp)),
3558 fat_pntr_data_bitpos (desc_type),
3559 fat_pntr_data_bitsize (desc_type));
3560
3561 modify_general_field (VALUE_CONTENTS (descriptor),
3562 VALUE_ADDRESS (bounds),
3563 fat_pntr_bounds_bitpos (desc_type),
3564 fat_pntr_bounds_bitsize (desc_type));
3565
3566 descriptor = ensure_lval (descriptor, sp);
3567
3568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3569 return value_addr (descriptor);
3570 else
3571 return descriptor;
3572}
3573
3574
3575/* Assuming a dummy frame has been established on the target, perform any
3576 conversions needed for calling function FUNC on the NARGS actual
3577 parameters in ARGS, other than standard C conversions. Does
3578 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3579 does not match the number of arguments expected. Use *SP as a
3580 stack pointer for additional data that must be pushed, updating its
3581 value as needed. */
3582
3583void
3584ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3585 CORE_ADDR *sp)
3586{
3587 int i;
3588
3589 if (TYPE_NFIELDS (VALUE_TYPE (func)) == 0
3590 || nargs != TYPE_NFIELDS (VALUE_TYPE (func)))
3591 return;
3592
3593 for (i = 0; i < nargs; i += 1)
3594 args[i] =
3595 convert_actual (args[i], TYPE_FIELD_TYPE (VALUE_TYPE (func), i), sp);
3596}
3597\f
3598 /* Experimental Symbol Cache Module */
3599
3600/* This section implements a simple, fixed-sized hash table for those
3601 Ada-mode symbols that get looked up in the course of executing the user's
3602 commands. The size is fixed on the grounds that there are not
3603 likely to be all that many symbols looked up during any given
3604 session, regardless of the size of the symbol table. If we decide
3605 to go to a resizable table, let's just use the stuff from libiberty
3606 instead. */
3607
3608#define HASH_SIZE 1009
3609
3610struct cache_entry {
3611 const char *name;
3612 domain_enum namespace;
3613 struct symbol *sym;
3614 struct symtab *symtab;
3615 struct block *block;
3616 struct cache_entry *next;
3617};
3618
3619static struct obstack cache_space;
3620
3621static struct cache_entry *cache[HASH_SIZE];
3622
3623/* Clear all entries from the symbol cache. */
3624
3625void
3626clear_ada_sym_cache (void)
3627{
3628 obstack_free (&cache_space, NULL);
3629 obstack_init (&cache_space);
3630 memset (cache, '\000', sizeof (cache));
3631}
3632
3633static struct cache_entry **
3634find_entry (const char *name, domain_enum namespace)
3635{
3636 int h = msymbol_hash (name) % HASH_SIZE;
3637 struct cache_entry **e;
3638 for (e = &cache[h]; *e != NULL; e = &(*e)->next)
3639 {
3640 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
3641 return e;
3642 }
3643 return NULL;
3644}
3645
3646/* Return (in SYM) the last cached definition for global or static symbol NAME
3647 in namespace DOMAIN. Returns 1 if entry found, 0 otherwise.
3648 If SYMTAB is non-NULL, store the symbol
3649 table in which the symbol was found there, or NULL if not found.
3650 *BLOCK is set to the block in which NAME is found. */
3651
3652static int
3653lookup_cached_symbol (const char *name, domain_enum namespace,
3654 struct symbol **sym, struct block **block,
3655 struct symtab **symtab)
3656{
3657 struct cache_entry **e = find_entry (name, namespace);
3658 if (e == NULL)
3659 return 0;
3660 if (sym != NULL)
3661 *sym = (*e)->sym;
3662 if (block != NULL)
3663 *block = (*e)->block;
3664 if (symtab != NULL)
3665 *symtab = (*e)->symtab;
3666 return 1;
3667}
3668
3669/* Set the cached definition of NAME in DOMAIN to SYM in block
3670 BLOCK and symbol table SYMTAB. */
3671
3672static void
3673cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3674 struct block *block, struct symtab *symtab)
3675{
3676 int h = msymbol_hash (name) % HASH_SIZE;
3677 char *copy;
3678 struct cache_entry *e =
3679 (struct cache_entry *) obstack_alloc(&cache_space, sizeof (*e));
3680 e->next = cache[h];
3681 cache[h] = e;
3682 e->name = copy = obstack_alloc (&cache_space, strlen (name) + 1);
3683 strcpy (copy, name);
3684 e->sym = sym;
3685 e->namespace = namespace;
3686 e->symtab = symtab;
3687 e->block = block;
3688}
3689\f
3690 /* Symbol Lookup */
3691
3692/* Return the result of a standard (literal, C-like) lookup of NAME in
3693 given DOMAIN, visible from lexical block BLOCK. */
3694
3695static struct symbol *
3696standard_lookup (const char *name, const struct block *block,
3697 domain_enum domain)
3698{
3699 struct symbol *sym;
3700 struct symtab *symtab;
3701
3702 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3703 return sym;
3704 sym = lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3705 cache_symbol (name, domain, sym, block_found, symtab);
3706 return sym;
3707}
3708
3709
3710/* Non-zero iff there is at least one non-function/non-enumeral symbol
3711 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3712 since they contend in overloading in the same way. */
3713static int
3714is_nonfunction (struct ada_symbol_info syms[], int n)
3715{
3716 int i;
3717
3718 for (i = 0; i < n; i += 1)
3719 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3720 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3721 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3722 return 1;
3723
3724 return 0;
3725}
3726
3727/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3728 struct types. Otherwise, they may not. */
3729
3730static int
3731equiv_types (struct type *type0, struct type *type1)
3732{
3733 if (type0 == type1)
3734 return 1;
3735 if (type0 == NULL || type1 == NULL
3736 || TYPE_CODE (type0) != TYPE_CODE (type1))
3737 return 0;
3738 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3739 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3740 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3741 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3742 return 1;
3743
3744 return 0;
3745}
3746
3747/* True iff SYM0 represents the same entity as SYM1, or one that is
3748 no more defined than that of SYM1. */
3749
3750static int
3751lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3752{
3753 if (sym0 == sym1)
3754 return 1;
3755 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3756 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3757 return 0;
3758
3759 switch (SYMBOL_CLASS (sym0))
3760 {
3761 case LOC_UNDEF:
3762 return 1;
3763 case LOC_TYPEDEF:
3764 {
3765 struct type *type0 = SYMBOL_TYPE (sym0);
3766 struct type *type1 = SYMBOL_TYPE (sym1);
3767 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3768 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3769 int len0 = strlen (name0);
3770 return
3771 TYPE_CODE (type0) == TYPE_CODE (type1)
3772 && (equiv_types (type0, type1)
3773 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3774 && strncmp (name1 + len0, "___XV", 5) == 0));
3775 }
3776 case LOC_CONST:
3777 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3778 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3779 default:
3780 return 0;
3781 }
3782}
3783
3784/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3785 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3786
3787static void
3788add_defn_to_vec (struct obstack *obstackp,
3789 struct symbol *sym,
3790 struct block *block,
3791 struct symtab *symtab)
3792{
3793 int i;
3794 size_t tmp;
3795 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3796
3797 if (SYMBOL_TYPE (sym) != NULL)
3798 CHECK_TYPEDEF (SYMBOL_TYPE (sym));
3799 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3800 {
3801 if (lesseq_defined_than (sym, prevDefns[i].sym))
3802 return;
3803 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3804 {
3805 prevDefns[i].sym = sym;
3806 prevDefns[i].block = block;
3807 prevDefns[i].symtab = symtab;
3808 return;
3809 }
3810 }
3811
3812 {
3813 struct ada_symbol_info info;
3814
3815 info.sym = sym;
3816 info.block = block;
3817 info.symtab = symtab;
3818 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3819 }
3820}
3821
3822/* Number of ada_symbol_info structures currently collected in
3823 current vector in *OBSTACKP. */
3824
3825static int
3826num_defns_collected (struct obstack *obstackp)
3827{
3828 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3829}
3830
3831/* Vector of ada_symbol_info structures currently collected in current
3832 vector in *OBSTACKP. If FINISH, close off the vector and return
3833 its final address. */
3834
3835static struct ada_symbol_info *
3836defns_collected (struct obstack *obstackp, int finish)
3837{
3838 if (finish)
3839 return obstack_finish (obstackp);
3840 else
3841 return (struct ada_symbol_info *) obstack_base (obstackp);
3842}
3843
3844/* If SYM_NAME is a completion candidate for TEXT, return this symbol
3845 name in a form that's appropriate for the completion. The result
3846 does not need to be deallocated, but is only good until the next call.
3847
3848 TEXT_LEN is equal to the length of TEXT.
3849 Perform a wild match if WILD_MATCH is set.
3850 ENCODED should be set if TEXT represents the start of a symbol name
3851 in its encoded form. */
3852
3853static const char *
3854symbol_completion_match (const char *sym_name,
3855 const char *text, int text_len,
3856 int wild_match, int encoded)
3857{
3858 char *result;
3859 const int verbatim_match = (text[0] == '<');
3860 int match = 0;
3861
3862 if (verbatim_match)
3863 {
3864 /* Strip the leading angle bracket. */
3865 text = text + 1;
3866 text_len--;
3867 }
3868
3869 /* First, test against the fully qualified name of the symbol. */
3870
3871 if (strncmp (sym_name, text, text_len) == 0)
3872 match = 1;
3873
3874 if (match && !encoded)
3875 {
3876 /* One needed check before declaring a positive match is to verify
3877 that iff we are doing a verbatim match, the decoded version
3878 of the symbol name starts with '<'. Otherwise, this symbol name
3879 is not a suitable completion. */
3880 const char *sym_name_copy = sym_name;
3881 int has_angle_bracket;
3882
3883 sym_name = ada_decode (sym_name);
3884 has_angle_bracket = (sym_name [0] == '<');
3885 match = (has_angle_bracket == verbatim_match);
3886 sym_name = sym_name_copy;
3887 }
3888
3889 if (match && !verbatim_match)
3890 {
3891 /* When doing non-verbatim match, another check that needs to
3892 be done is to verify that the potentially matching symbol name
3893 does not include capital letters, because the ada-mode would
3894 not be able to understand these symbol names without the
3895 angle bracket notation. */
3896 const char *tmp;
3897
3898 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
3899 if (*tmp != '\0')
3900 match = 0;
3901 }
3902
3903 /* Second: Try wild matching... */
3904
3905 if (!match && wild_match)
3906 {
3907 /* Since we are doing wild matching, this means that TEXT
3908 may represent an unqualified symbol name. We therefore must
3909 also compare TEXT against the unqualified name of the symbol. */
3910 sym_name = ada_unqualified_name (ada_decode (sym_name));
3911
3912 if (strncmp (sym_name, text, text_len) == 0)
3913 match = 1;
3914 }
3915
3916 /* Finally: If we found a mach, prepare the result to return. */
3917
3918 if (!match)
3919 return NULL;
3920
3921 if (verbatim_match)
3922 sym_name = add_angle_brackets (sym_name);
3923
3924 if (!encoded)
3925 sym_name = ada_decode (sym_name);
3926
3927 return sym_name;
3928}
3929
3930/* A companion function to ada_make_symbol_completion_list().
3931 Check if SYM_NAME represents a symbol which name would be suitable
3932 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
3933 it is appended at the end of the given string vector SV.
3934
3935 ORIG_TEXT is the string original string from the user command
3936 that needs to be completed. WORD is the entire command on which
3937 completion should be performed. These two parameters are used to
3938 determine which part of the symbol name should be added to the
3939 completion vector.
3940 if WILD_MATCH is set, then wild matching is performed.
3941 ENCODED should be set if TEXT represents a symbol name in its
3942 encoded formed (in which case the completion should also be
3943 encoded). */
3944
3945static void
3946symbol_completion_add (struct string_vector *sv,
3947 const char *sym_name,
3948 const char *text, int text_len,
3949 const char *orig_text, const char *word,
3950 int wild_match, int encoded)
3951{
3952 const char *match = symbol_completion_match (sym_name, text, text_len,
3953 wild_match, encoded);
3954 char *completion;
3955
3956 if (match == NULL)
3957 return;
3958
3959 /* We found a match, so add the appropriate completion to the given
3960 string vector. */
3961
3962 if (word == orig_text)
3963 {
3964 completion = xmalloc (strlen (match) + 5);
3965 strcpy (completion, match);
3966 }
3967 else if (word > orig_text)
3968 {
3969 /* Return some portion of sym_name. */
3970 completion = xmalloc (strlen (match) + 5);
3971 strcpy (completion, match + (word - orig_text));
3972 }
3973 else
3974 {
3975 /* Return some of ORIG_TEXT plus sym_name. */
3976 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
3977 strncpy (completion, word, orig_text - word);
3978 completion[orig_text - word] = '\0';
3979 strcat (completion, match);
3980 }
3981
3982 string_vector_append (sv, completion);
3983}
3984
3985/* Return a list of possible symbol names completing TEXT0. The list
3986 is NULL terminated. WORD is the entire command on which completion
3987 is made. */
3988
3989char **
3990ada_make_symbol_completion_list (const char *text0, const char *word)
3991{
3992 /* Note: This function is almost a copy of make_symbol_completion_list(),
3993 except it has been adapted for Ada. It is somewhat of a shame to
3994 duplicate so much code, but we don't really have the infrastructure
3995 yet to develop a language-aware version of he symbol completer... */
3996 char *text;
3997 int text_len;
3998 int wild_match;
3999 int encoded;
4000 struct string_vector result = xnew_string_vector (128);
4001 struct symbol *sym;
4002 struct symtab *s;
4003 struct partial_symtab *ps;
4004 struct minimal_symbol *msymbol;
4005 struct objfile *objfile;
4006 struct block *b, *surrounding_static_block = 0;
4007 int i;
4008 struct dict_iterator iter;
4009
4010 if (text0[0] == '<')
4011 {
4012 text = xstrdup (text0);
4013 make_cleanup (xfree, text);
4014 text_len = strlen (text);
4015 wild_match = 0;
4016 encoded = 1;
4017 }
4018 else
4019 {
4020 text = xstrdup (ada_encode (text0));
4021 make_cleanup (xfree, text);
4022 text_len = strlen (text);
4023 for (i = 0; i < text_len; i++)
4024 text[i] = tolower (text[i]);
4025
4026 /* FIXME: brobecker/2003-09-17: When we get rid of ADA_RETAIN_DOTS,
4027 we can restrict the wild_match check to searching "__" only. */
4028 wild_match = (strstr (text0, "__") == NULL
4029 && strchr (text0, '.') == NULL);
4030 encoded = (strstr (text0, "__") != NULL);
4031 }
4032
4033 /* First, look at the partial symtab symbols. */
4034 ALL_PSYMTABS (objfile, ps)
4035 {
4036 struct partial_symbol **psym;
4037
4038 /* If the psymtab's been read in we'll get it when we search
4039 through the blockvector. */
4040 if (ps->readin)
4041 continue;
4042
4043 for (psym = objfile->global_psymbols.list + ps->globals_offset;
4044 psym < (objfile->global_psymbols.list + ps->globals_offset
4045 + ps->n_global_syms);
4046 psym++)
4047 {
4048 QUIT;
4049 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (*psym),
4050 text, text_len, text0, word,
4051 wild_match, encoded);
4052 }
4053
4054 for (psym = objfile->static_psymbols.list + ps->statics_offset;
4055 psym < (objfile->static_psymbols.list + ps->statics_offset
4056 + ps->n_static_syms);
4057 psym++)
4058 {
4059 QUIT;
4060 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (*psym),
4061 text, text_len, text0, word,
4062 wild_match, encoded);
4063 }
4064 }
4065
4066 /* At this point scan through the misc symbol vectors and add each
4067 symbol you find to the list. Eventually we want to ignore
4068 anything that isn't a text symbol (everything else will be
4069 handled by the psymtab code above). */
4070
4071 ALL_MSYMBOLS (objfile, msymbol)
4072 {
4073 QUIT;
4074 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (msymbol),
4075 text, text_len, text0, word,
4076 wild_match, encoded);
4077 }
4078
4079 /* Search upwards from currently selected frame (so that we can
4080 complete on local vars. */
4081
4082 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
4083 {
4084 if (!BLOCK_SUPERBLOCK (b))
4085 surrounding_static_block = b; /* For elmin of dups */
4086
4087 ALL_BLOCK_SYMBOLS (b, iter, sym)
4088 {
4089 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (sym),
4090 text, text_len, text0, word,
4091 wild_match, encoded);
4092 }
4093 }
4094
4095 /* Go through the symtabs and check the externs and statics for
4096 symbols which match. */
4097
4098 ALL_SYMTABS (objfile, s)
4099 {
4100 QUIT;
4101 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4102 ALL_BLOCK_SYMBOLS (b, iter, sym)
4103 {
4104 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (sym),
4105 text, text_len, text0, word,
4106 wild_match, encoded);
4107 }
4108 }
4109
4110 ALL_SYMTABS (objfile, s)
4111 {
4112 QUIT;
4113 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4114 /* Don't do this block twice. */
4115 if (b == surrounding_static_block)
4116 continue;
4117 ALL_BLOCK_SYMBOLS (b, iter, sym)
4118 {
4119 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (sym),
4120 text, text_len, text0, word,
4121 wild_match, encoded);
4122 }
4123 }
4124
4125 /* Append the closing NULL entry. */
4126 string_vector_append (&result, NULL);
4127
4128 return (result.array);
4129}
4130
4131/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4132 Check the global symbols if GLOBAL, the static symbols if not.
4133 Do wild-card match if WILD. */
4134
4135static struct partial_symbol *
4136ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4137 int global, domain_enum namespace, int wild)
4138{
4139 struct partial_symbol **start;
4140 int name_len = strlen (name);
4141 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4142 int i;
4143
4144 if (length == 0)
4145 {
4146 return (NULL);
4147 }
4148
4149 start = (global ?
4150 pst->objfile->global_psymbols.list + pst->globals_offset :
4151 pst->objfile->static_psymbols.list + pst->statics_offset);
4152
4153 if (wild)
4154 {
4155 for (i = 0; i < length; i += 1)
4156 {
4157 struct partial_symbol *psym = start[i];
4158
4159 if (SYMBOL_DOMAIN (psym) == namespace &&
4160 wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4161 return psym;
4162 }
4163 return NULL;
4164 }
4165 else
4166 {
4167 if (global)
4168 {
4169 int U;
4170 i = 0;
4171 U = length - 1;
4172 while (U - i > 4)
4173 {
4174 int M = (U + i) >> 1;
4175 struct partial_symbol *psym = start[M];
4176 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4177 i = M + 1;
4178 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4179 U = M - 1;
4180 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4181 i = M + 1;
4182 else
4183 U = M;
4184 }
4185 }
4186 else
4187 i = 0;
4188
4189 while (i < length)
4190 {
4191 struct partial_symbol *psym = start[i];
4192
4193 if (SYMBOL_DOMAIN (psym) == namespace)
4194 {
4195 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4196
4197 if (cmp < 0)
4198 {
4199 if (global)
4200 break;
4201 }
4202 else if (cmp == 0
4203 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4204 + name_len))
4205 return psym;
4206 }
4207 i += 1;
4208 }
4209
4210 if (global)
4211 {
4212 int U;
4213 i = 0;
4214 U = length - 1;
4215 while (U - i > 4)
4216 {
4217 int M = (U + i) >> 1;
4218 struct partial_symbol *psym = start[M];
4219 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4220 i = M + 1;
4221 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4222 U = M - 1;
4223 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4224 i = M + 1;
4225 else
4226 U = M;
4227 }
4228 }
4229 else
4230 i = 0;
4231
4232 while (i < length)
4233 {
4234 struct partial_symbol *psym = start[i];
4235
4236 if (SYMBOL_DOMAIN (psym) == namespace)
4237 {
4238 int cmp;
4239
4240 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4241 if (cmp == 0)
4242 {
4243 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4244 if (cmp == 0)
4245 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4246 name_len);
4247 }
4248
4249 if (cmp < 0)
4250 {
4251 if (global)
4252 break;
4253 }
4254 else if (cmp == 0
4255 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4256 + name_len + 5))
4257 return psym;
4258 }
4259 i += 1;
4260 }
4261 }
4262 return NULL;
4263}
4264
4265/* Find a symbol table containing symbol SYM or NULL if none. */
4266
4267static struct symtab *
4268symtab_for_sym (struct symbol *sym)
4269{
4270 struct symtab *s;
4271 struct objfile *objfile;
4272 struct block *b;
4273 struct symbol *tmp_sym;
4274 struct dict_iterator iter;
4275 int j;
4276
4277 ALL_SYMTABS (objfile, s)
4278 {
4279 switch (SYMBOL_CLASS (sym))
4280 {
4281 case LOC_CONST:
4282 case LOC_STATIC:
4283 case LOC_TYPEDEF:
4284 case LOC_REGISTER:
4285 case LOC_LABEL:
4286 case LOC_BLOCK:
4287 case LOC_CONST_BYTES:
4288 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4289 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4290 return s;
4291 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4292 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4293 return s;
4294 break;
4295 default:
4296 break;
4297 }
4298 switch (SYMBOL_CLASS (sym))
4299 {
4300 case LOC_REGISTER:
4301 case LOC_ARG:
4302 case LOC_REF_ARG:
4303 case LOC_REGPARM:
4304 case LOC_REGPARM_ADDR:
4305 case LOC_LOCAL:
4306 case LOC_TYPEDEF:
4307 case LOC_LOCAL_ARG:
4308 case LOC_BASEREG:
4309 case LOC_BASEREG_ARG:
4310 case LOC_COMPUTED:
4311 case LOC_COMPUTED_ARG:
4312 for (j = FIRST_LOCAL_BLOCK;
4313 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4314 {
4315 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4316 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4317 return s;
4318 }
4319 break;
4320 default:
4321 break;
4322 }
4323 }
4324 return NULL;
4325}
4326
4327/* Return a minimal symbol matching NAME according to Ada decoding
4328 rules. Returns NULL if there is no such minimal symbol. Names
4329 prefixed with "standard__" are handled specially: "standard__" is
4330 first stripped off, and only static and global symbols are searched. */
4331
4332struct minimal_symbol *
4333ada_lookup_simple_minsym (const char *name)
4334{
4335 struct objfile *objfile;
4336 struct minimal_symbol *msymbol;
4337 int wild_match;
4338
4339 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4340 {
4341 name += sizeof ("standard__") - 1;
4342 wild_match = 0;
4343 }
4344 else
4345 wild_match = (strstr (name, "__") == NULL);
4346
4347 ALL_MSYMBOLS (objfile, msymbol)
4348 {
4349 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4350 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4351 return msymbol;
4352 }
4353
4354 return NULL;
4355}
4356
4357/* Return up minimal symbol for NAME, folded and encoded according to
4358 Ada conventions, or NULL if none. The last two arguments are ignored. */
4359
4360static struct minimal_symbol *
4361ada_lookup_minimal_symbol (const char *name, const char *sfile,
4362 struct objfile *objf)
4363{
4364 return ada_lookup_simple_minsym (ada_encode (name));
4365}
4366
4367/* For all subprograms that statically enclose the subprogram of the
4368 selected frame, add symbols matching identifier NAME in DOMAIN
4369 and their blocks to the list of data in OBSTACKP, as for
4370 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4371 wildcard prefix. */
4372
4373static void
4374add_symbols_from_enclosing_procs (struct obstack *obstackp,
4375 const char *name, domain_enum namespace,
4376 int wild_match)
4377{
4378#ifdef HAVE_ADD_SYMBOLS_FROM_ENCLOSING_PROCS
4379 /* Use a heuristic to find the frames of enclosing subprograms: treat the
4380 pointer-sized value at location 0 from the local-variable base of a
4381 frame as a static link, and then search up the call stack for a
4382 frame with that same local-variable base. */
4383 static struct symbol static_link_sym;
4384 static struct symbol *static_link;
4385 struct value *target_link_val;
4386
4387 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4388 struct frame_info *frame;
4389
4390 if (! target_has_stack)
4391 return;
4392
4393 if (static_link == NULL)
4394 {
4395 /* Initialize the local variable symbol that stands for the
4396 static link (when there is one). */
4397 static_link = &static_link_sym;
4398 SYMBOL_LINKAGE_NAME (static_link) = "";
4399 SYMBOL_LANGUAGE (static_link) = language_unknown;
4400 SYMBOL_CLASS (static_link) = LOC_LOCAL;
4401 SYMBOL_DOMAIN (static_link) = VAR_DOMAIN;
4402 SYMBOL_TYPE (static_link) = lookup_pointer_type (builtin_type_void);
4403 SYMBOL_VALUE (static_link) =
4404 -(long) TYPE_LENGTH (SYMBOL_TYPE (static_link));
4405 }
4406
4407 frame = get_selected_frame ();
4408 if (frame == NULL
4409 || inside_main_func (get_frame_address_in_block (frame)))
4410 return;
4411
4412 target_link_val = read_var_value (static_link, frame);
4413 while (target_link_val != NULL
4414 && num_defns_collected (obstackp) == 0
4415 && frame_relative_level (frame) <= MAX_ENCLOSING_FRAME_LEVELS)
4416 {
4417 CORE_ADDR target_link = value_as_address (target_link_val);
4418
4419 frame = get_prev_frame (frame);
4420 if (frame == NULL)
4421 break;
4422
4423 if (get_frame_locals_address (frame) == target_link)
4424 {
4425 struct block *block;
4426
4427 QUIT;
4428
4429 block = get_frame_block (frame, 0);
4430 while (block != NULL && block_function (block) != NULL
4431 && num_defns_collected (obstackp) == 0)
4432 {
4433 QUIT;
4434
4435 ada_add_block_symbols (obstackp, block, name, namespace,
4436 NULL, NULL, wild_match);
4437
4438 block = BLOCK_SUPERBLOCK (block);
4439 }
4440 }
4441 }
4442
4443 do_cleanups (old_chain);
4444#endif
4445}
4446
4447/* True if TYPE is definitely an artificial type supplied to a symbol
4448 for which no debugging information was given in the symbol file. */
4449
4450static int
4451is_nondebugging_type (struct type *type)
4452{
4453 char *name = ada_type_name (type);
4454 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4455}
4456
4457/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4458 duplicate other symbols in the list (The only case I know of where
4459 this happens is when object files containing stabs-in-ecoff are
4460 linked with files containing ordinary ecoff debugging symbols (or no
4461 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4462 Returns the number of items in the modified list. */
4463
4464static int
4465remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4466{
4467 int i, j;
4468
4469 i = 0;
4470 while (i < nsyms)
4471 {
4472 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4473 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4474 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4475 {
4476 for (j = 0; j < nsyms; j += 1)
4477 {
4478 if (i != j
4479 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4480 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4481 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4482 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4483 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4484 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4485 {
4486 int k;
4487 for (k = i + 1; k < nsyms; k += 1)
4488 syms[k - 1] = syms[k];
4489 nsyms -= 1;
4490 goto NextSymbol;
4491 }
4492 }
4493 }
4494 i += 1;
4495 NextSymbol:
4496 ;
4497 }
4498 return nsyms;
4499}
4500
4501/* Given a type that corresponds to a renaming entity, use the type name
4502 to extract the scope (package name or function name, fully qualified,
4503 and following the GNAT encoding convention) where this renaming has been
4504 defined. The string returned needs to be deallocated after use. */
4505
4506static char *
4507xget_renaming_scope (struct type *renaming_type)
4508{
4509 /* The renaming types adhere to the following convention:
4510 <scope>__<rename>___<XR extension>.
4511 So, to extract the scope, we search for the "___XR" extension,
4512 and then backtrack until we find the first "__". */
4513
4514 const char *name = type_name_no_tag (renaming_type);
4515 char *suffix = strstr (name, "___XR");
4516 char *last;
4517 int scope_len;
4518 char *scope;
4519
4520 /* Now, backtrack a bit until we find the first "__". Start looking
4521 at suffix - 3, as the <rename> part is at least one character long. */
4522
4523 for (last = suffix - 3; last > name; last--)
4524 if (last[0] == '_' && last[1] == '_')
4525 break;
4526
4527 /* Make a copy of scope and return it. */
4528
4529 scope_len = last - name;
4530 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4531
4532 strncpy (scope, name, scope_len);
4533 scope[scope_len] = '\0';
4534
4535 return scope;
4536}
4537
4538/* Return nonzero if NAME corresponds to a package name. */
4539
4540static int
4541is_package_name (const char *name)
4542{
4543 /* Here, We take advantage of the fact that no symbols are generated
4544 for packages, while symbols are generated for each function.
4545 So the condition for NAME represent a package becomes equivalent
4546 to NAME not existing in our list of symbols. There is only one
4547 small complication with library-level functions (see below). */
4548
4549 char *fun_name;
4550
4551 /* If it is a function that has not been defined at library level,
4552 then we should be able to look it up in the symbols. */
4553 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4554 return 0;
4555
4556 /* Library-level function names start with "_ada_". See if function
4557 "_ada_" followed by NAME can be found. */
4558
4559 /* Do a quick check that NAME does not contain "__", since library-level
4560 functions names can not contain "__" in them. */
4561 if (strstr (name, "__") != NULL)
4562 return 0;
4563
4564 fun_name = (char *) alloca (strlen (name) + 5 + 1);
4565 xasprintf (&fun_name, "_ada_%s", name);
4566
4567 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4568}
4569
4570/* Return nonzero if SYM corresponds to a renaming entity that is
4571 visible from FUNCTION_NAME. */
4572
4573static int
4574renaming_is_visible (const struct symbol *sym, char *function_name)
4575{
4576 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4577
4578 make_cleanup (xfree, scope);
4579
4580 /* If the rename has been defined in a package, then it is visible. */
4581 if (is_package_name (scope))
4582 return 1;
4583
4584 /* Check that the rename is in the current function scope by checking
4585 that its name starts with SCOPE. */
4586
4587 /* If the function name starts with "_ada_", it means that it is
4588 a library-level function. Strip this prefix before doing the
4589 comparison, as the encoding for the renaming does not contain
4590 this prefix. */
4591 if (strncmp (function_name, "_ada_", 5) == 0)
4592 function_name += 5;
4593
4594 return (strncmp (function_name, scope, strlen (scope)) == 0);
4595}
4596
4597/* Iterates over the SYMS list and remove any entry that corresponds to
4598 a renaming entity that is not visible from the function associated
4599 with CURRENT_BLOCK.
4600
4601 Rationale:
4602 GNAT emits a type following a specified encoding for each renaming
4603 entity. Unfortunately, STABS currently does not support the definition
4604 of types that are local to a given lexical block, so all renamings types
4605 are emitted at library level. As a consequence, if an application
4606 contains two renaming entities using the same name, and a user tries to
4607 print the value of one of these entities, the result of the ada symbol
4608 lookup will also contain the wrong renaming type.
4609
4610 This function partially covers for this limitation by attempting to
4611 remove from the SYMS list renaming symbols that should be visible
4612 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4613 method with the current information available. The implementation
4614 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4615
4616 - When the user tries to print a rename in a function while there
4617 is another rename entity defined in a package: Normally, the
4618 rename in the function has precedence over the rename in the
4619 package, so the latter should be removed from the list. This is
4620 currently not the case.
4621
4622 - This function will incorrectly remove valid renames if
4623 the CURRENT_BLOCK corresponds to a function which symbol name
4624 has been changed by an "Export" pragma. As a consequence,
4625 the user will be unable to print such rename entities. */
4626
4627static int
4628remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4629 int nsyms,
4630 struct block *current_block)
4631{
4632 struct symbol *current_function;
4633 char *current_function_name;
4634 int i;
4635
4636 /* Extract the function name associated to CURRENT_BLOCK.
4637 Abort if unable to do so. */
4638
4639 if (current_block == NULL)
4640 return nsyms;
4641
4642 current_function = block_function (current_block);
4643 if (current_function == NULL)
4644 return nsyms;
4645
4646 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4647 if (current_function_name == NULL)
4648 return nsyms;
4649
4650 /* Check each of the symbols, and remove it from the list if it is
4651 a type corresponding to a renaming that is out of the scope of
4652 the current block. */
4653
4654 i = 0;
4655 while (i < nsyms)
4656 {
4657 if (ada_is_object_renaming (syms[i].sym)
4658 && !renaming_is_visible (syms[i].sym, current_function_name))
4659 {
4660 int j;
4661 for (j = i + 1; j < nsyms; j++)
4662 syms[j - 1] = syms[j];
4663 nsyms -= 1;
4664 }
4665 else
4666 i += 1;
4667 }
4668
4669 return nsyms;
4670}
4671
4672/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4673 scope and in global scopes, returning the number of matches. Sets
4674 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4675 indicating the symbols found and the blocks and symbol tables (if
4676 any) in which they were found. This vector are transient---good only to
4677 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4678 symbol match within the nest of blocks whose innermost member is BLOCK0,
4679 is the one match returned (no other matches in that or
4680 enclosing blocks is returned). If there are any matches in or
4681 surrounding BLOCK0, then these alone are returned. Otherwise, the
4682 search extends to global and file-scope (static) symbol tables.
4683 Names prefixed with "standard__" are handled specially: "standard__"
4684 is first stripped off, and only static and global symbols are searched. */
4685
4686int
4687ada_lookup_symbol_list (const char *name0, const struct block *block0,
4688 domain_enum namespace,
4689 struct ada_symbol_info **results)
4690{
4691 struct symbol *sym;
4692 struct symtab *s;
4693 struct partial_symtab *ps;
4694 struct blockvector *bv;
4695 struct objfile *objfile;
4696 struct block *block;
4697 const char *name;
4698 struct minimal_symbol *msymbol;
4699 int wild_match;
4700 int cacheIfUnique;
4701 int block_depth;
4702 int ndefns;
4703
4704 obstack_free (&symbol_list_obstack, NULL);
4705 obstack_init (&symbol_list_obstack);
4706
4707 cacheIfUnique = 0;
4708
4709 /* Search specified block and its superiors. */
4710
4711 wild_match = (strstr (name0, "__") == NULL);
4712 name = name0;
4713 block = (struct block *) block0; /* FIXME: No cast ought to be
4714 needed, but adding const will
4715 have a cascade effect. */
4716 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4717 {
4718 wild_match = 0;
4719 block = NULL;
4720 name = name0 + sizeof ("standard__") - 1;
4721 }
4722
4723 block_depth = 0;
4724 while (block != NULL)
4725 {
4726 block_depth += 1;
4727 ada_add_block_symbols (&symbol_list_obstack, block, name,
4728 namespace, NULL, NULL, wild_match);
4729
4730 /* If we found a non-function match, assume that's the one. */
4731 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4732 num_defns_collected (&symbol_list_obstack)))
4733 goto done;
4734
4735 block = BLOCK_SUPERBLOCK (block);
4736 }
4737
4738 /* If no luck so far, try to find NAME as a local symbol in some lexically
4739 enclosing subprogram. */
4740 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4741 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4742 name, namespace, wild_match);
4743
4744 /* If we found ANY matches among non-global symbols, we're done. */
4745
4746 if (num_defns_collected (&symbol_list_obstack) > 0)
4747 goto done;
4748
4749 cacheIfUnique = 1;
4750 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4751 {
4752 if (sym != NULL)
4753 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4754 goto done;
4755 }
4756
4757 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4758 tables, and psymtab's. */
4759
4760 ALL_SYMTABS (objfile, s)
4761 {
4762 QUIT;
4763 if (!s->primary)
4764 continue;
4765 bv = BLOCKVECTOR (s);
4766 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4767 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4768 objfile, s, wild_match);
4769 }
4770
4771 if (namespace == VAR_DOMAIN)
4772 {
4773 ALL_MSYMBOLS (objfile, msymbol)
4774 {
4775 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4776 {
4777 switch (MSYMBOL_TYPE (msymbol))
4778 {
4779 case mst_solib_trampoline:
4780 break;
4781 default:
4782 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4783 if (s != NULL)
4784 {
4785 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4786 QUIT;
4787 bv = BLOCKVECTOR (s);
4788 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4789 ada_add_block_symbols (&symbol_list_obstack, block,
4790 SYMBOL_LINKAGE_NAME (msymbol),
4791 namespace, objfile, s, wild_match);
4792
4793 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4794 {
4795 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4796 ada_add_block_symbols (&symbol_list_obstack, block,
4797 SYMBOL_LINKAGE_NAME (msymbol),
4798 namespace, objfile, s,
4799 wild_match);
4800 }
4801 }
4802 }
4803 }
4804 }
4805 }
4806
4807 ALL_PSYMTABS (objfile, ps)
4808 {
4809 QUIT;
4810 if (!ps->readin
4811 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4812 {
4813 s = PSYMTAB_TO_SYMTAB (ps);
4814 if (!s->primary)
4815 continue;
4816 bv = BLOCKVECTOR (s);
4817 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4818 ada_add_block_symbols (&symbol_list_obstack, block, name,
4819 namespace, objfile, s, wild_match);
4820 }
4821 }
4822
4823 /* Now add symbols from all per-file blocks if we've gotten no hits
4824 (Not strictly correct, but perhaps better than an error).
4825 Do the symtabs first, then check the psymtabs. */
4826
4827 if (num_defns_collected (&symbol_list_obstack) == 0)
4828 {
4829
4830 ALL_SYMTABS (objfile, s)
4831 {
4832 QUIT;
4833 if (!s->primary)
4834 continue;
4835 bv = BLOCKVECTOR (s);
4836 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4837 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4838 objfile, s, wild_match);
4839 }
4840
4841 ALL_PSYMTABS (objfile, ps)
4842 {
4843 QUIT;
4844 if (!ps->readin
4845 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4846 {
4847 s = PSYMTAB_TO_SYMTAB (ps);
4848 bv = BLOCKVECTOR (s);
4849 if (!s->primary)
4850 continue;
4851 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4852 ada_add_block_symbols (&symbol_list_obstack, block, name,
4853 namespace, objfile, s, wild_match);
4854 }
4855 }
4856 }
4857
4858done:
4859 ndefns = num_defns_collected (&symbol_list_obstack);
4860 *results = defns_collected (&symbol_list_obstack, 1);
4861
4862 ndefns = remove_extra_symbols (*results, ndefns);
4863
4864 if (ndefns == 0)
4865 cache_symbol (name0, namespace, NULL, NULL, NULL);
4866
4867 if (ndefns == 1 && cacheIfUnique)
4868 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4869 (*results)[0].symtab);
4870
4871 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4872 (struct block *) block0);
4873
4874 return ndefns;
4875}
4876
4877/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4878 scope and in global scopes, or NULL if none. NAME is folded and
4879 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4880 but is disambiguated by user query if needed. *IS_A_FIELD_OF_THIS is
4881 set to 0 and *SYMTAB is set to the symbol table in which the symbol
4882 was found (in both cases, these assignments occur only if the
4883 pointers are non-null). */
4884
4885
4886struct symbol *
4887ada_lookup_symbol (const char *name, const struct block *block0,
4888 domain_enum namespace, int *is_a_field_of_this,
4889 struct symtab **symtab)
4890{
4891 struct ada_symbol_info *candidates;
4892 int n_candidates;
4893
4894 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4895 block0, namespace, &candidates);
4896
4897 if (n_candidates == 0)
4898 return NULL;
4899 else if (n_candidates != 1)
4900 user_select_syms (candidates, n_candidates, 1);
4901
4902 if (is_a_field_of_this != NULL)
4903 *is_a_field_of_this = 0;
4904
4905 if (symtab != NULL)
4906 {
4907 *symtab = candidates[0].symtab;
4908 if (*symtab == NULL && candidates[0].block != NULL)
4909 {
4910 struct objfile *objfile;
4911 struct symtab *s;
4912 struct block *b;
4913 struct blockvector *bv;
4914
4915 /* Search the list of symtabs for one which contains the
4916 address of the start of this block. */
4917 ALL_SYMTABS (objfile, s)
4918 {
4919 bv = BLOCKVECTOR (s);
4920 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4921 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4922 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4923 {
4924 *symtab = s;
4925 return fixup_symbol_section (candidates[0].sym, objfile);
4926 }
4927 return fixup_symbol_section (candidates[0].sym, NULL);
4928 }
4929 }
4930 }
4931 return candidates[0].sym;
4932}
4933
4934static struct symbol *
4935ada_lookup_symbol_nonlocal (const char *name,
4936 const char *linkage_name,
4937 const struct block *block,
4938 const domain_enum domain,
4939 struct symtab **symtab)
4940{
4941 if (linkage_name == NULL)
4942 linkage_name = name;
4943 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4944 NULL, symtab);
4945}
4946
4947
4948/* True iff STR is a possible encoded suffix of a normal Ada name
4949 that is to be ignored for matching purposes. Suffixes of parallel
4950 names (e.g., XVE) are not included here. Currently, the possible suffixes
4951 are given by either of the regular expression:
4952
4953 (__[0-9]+)?\.[0-9]+ [nested subprogram suffix, on platforms such as Linux]
4954 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4955 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(LJM|X([FDBUP].*|R[^T]?)))?$
4956 */
4957
4958static int
4959is_name_suffix (const char *str)
4960{
4961 int k;
4962 const char *matching;
4963 const int len = strlen (str);
4964
4965 /* (__[0-9]+)?\.[0-9]+ */
4966 matching = str;
4967 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4968 {
4969 matching += 3;
4970 while (isdigit (matching[0]))
4971 matching += 1;
4972 if (matching[0] == '\0')
4973 return 1;
4974 }
4975
4976 if (matching[0] == '.')
4977 {
4978 matching += 1;
4979 while (isdigit (matching[0]))
4980 matching += 1;
4981 if (matching[0] == '\0')
4982 return 1;
4983 }
4984
4985 /* ___[0-9]+ */
4986 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4987 {
4988 matching = str + 3;
4989 while (isdigit (matching[0]))
4990 matching += 1;
4991 if (matching[0] == '\0')
4992 return 1;
4993 }
4994
4995 /* ??? We should not modify STR directly, as we are doing below. This
4996 is fine in this case, but may become problematic later if we find
4997 that this alternative did not work, and want to try matching
4998 another one from the begining of STR. Since we modified it, we
4999 won't be able to find the begining of the string anymore! */
5000 if (str[0] == 'X')
5001 {
5002 str += 1;
5003 while (str[0] != '_' && str[0] != '\0')
5004 {
5005 if (str[0] != 'n' && str[0] != 'b')
5006 return 0;
5007 str += 1;
5008 }
5009 }
5010 if (str[0] == '\000')
5011 return 1;
5012 if (str[0] == '_')
5013 {
5014 if (str[1] != '_' || str[2] == '\000')
5015 return 0;
5016 if (str[2] == '_')
5017 {
5018 if (strcmp (str + 3, "LJM") == 0)
5019 return 1;
5020 if (str[3] != 'X')
5021 return 0;
5022 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' ||
5023 str[4] == 'U' || str[4] == 'P')
5024 return 1;
5025 if (str[4] == 'R' && str[5] != 'T')
5026 return 1;
5027 return 0;
5028 }
5029 if (!isdigit (str[2]))
5030 return 0;
5031 for (k = 3; str[k] != '\0'; k += 1)
5032 if (!isdigit (str[k]) && str[k] != '_')
5033 return 0;
5034 return 1;
5035 }
5036 if (str[0] == '$' && isdigit (str[1]))
5037 {
5038 for (k = 2; str[k] != '\0'; k += 1)
5039 if (!isdigit (str[k]) && str[k] != '_')
5040 return 0;
5041 return 1;
5042 }
5043 return 0;
5044}
5045
5046/* Return nonzero if the given string starts with a dot ('.')
5047 followed by zero or more digits.
5048
5049 Note: brobecker/2003-11-10: A forward declaration has not been
5050 added at the begining of this file yet, because this function
5051 is only used to work around a problem found during wild matching
5052 when trying to match minimal symbol names against symbol names
5053 obtained from dwarf-2 data. This function is therefore currently
5054 only used in wild_match() and is likely to be deleted when the
5055 problem in dwarf-2 is fixed. */
5056
5057static int
5058is_dot_digits_suffix (const char *str)
5059{
5060 if (str[0] != '.')
5061 return 0;
5062
5063 str++;
5064 while (isdigit (str[0]))
5065 str++;
5066 return (str[0] == '\0');
5067}
5068
5069/* True if NAME represents a name of the form A1.A2....An, n>=1 and
5070 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5071 informational suffixes of NAME (i.e., for which is_name_suffix is
5072 true). */
5073
5074static int
5075wild_match (const char *patn0, int patn_len, const char *name0)
5076{
5077 int name_len;
5078 char *name;
5079 char *patn;
5080
5081 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5082 stored in the symbol table for nested function names is sometimes
5083 different from the name of the associated entity stored in
5084 the dwarf-2 data: This is the case for nested subprograms, where
5085 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5086 while the symbol name from the dwarf-2 data does not.
5087
5088 Although the DWARF-2 standard documents that entity names stored
5089 in the dwarf-2 data should be identical to the name as seen in
5090 the source code, GNAT takes a different approach as we already use
5091 a special encoding mechanism to convey the information so that
5092 a C debugger can still use the information generated to debug
5093 Ada programs. A corollary is that the symbol names in the dwarf-2
5094 data should match the names found in the symbol table. I therefore
5095 consider this issue as a compiler defect.
5096
5097 Until the compiler is properly fixed, we work-around the problem
5098 by ignoring such suffixes during the match. We do so by making
5099 a copy of PATN0 and NAME0, and then by stripping such a suffix
5100 if present. We then perform the match on the resulting strings. */
5101 {
5102 char *dot;
5103 name_len = strlen (name0);
5104
5105 name = (char *) alloca ((name_len + 1) * sizeof (char));
5106 strcpy (name, name0);
5107 dot = strrchr (name, '.');
5108 if (dot != NULL && is_dot_digits_suffix (dot))
5109 *dot = '\0';
5110
5111 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5112 strncpy (patn, patn0, patn_len);
5113 patn[patn_len] = '\0';
5114 dot = strrchr (patn, '.');
5115 if (dot != NULL && is_dot_digits_suffix (dot))
5116 {
5117 *dot = '\0';
5118 patn_len = dot - patn;
5119 }
5120 }
5121
5122 /* Now perform the wild match. */
5123
5124 name_len = strlen (name);
5125 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5126 && strncmp (patn, name + 5, patn_len) == 0
5127 && is_name_suffix (name + patn_len + 5))
5128 return 1;
5129
5130 while (name_len >= patn_len)
5131 {
5132 if (strncmp (patn, name, patn_len) == 0
5133 && is_name_suffix (name + patn_len))
5134 return 1;
5135 do
5136 {
5137 name += 1;
5138 name_len -= 1;
5139 }
5140 while (name_len > 0
5141 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5142 if (name_len <= 0)
5143 return 0;
5144 if (name[0] == '_')
5145 {
5146 if (!islower (name[2]))
5147 return 0;
5148 name += 2;
5149 name_len -= 2;
5150 }
5151 else
5152 {
5153 if (!islower (name[1]))
5154 return 0;
5155 name += 1;
5156 name_len -= 1;
5157 }
5158 }
5159
5160 return 0;
5161}
5162
5163
5164/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5165 vector *defn_symbols, updating the list of symbols in OBSTACKP
5166 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5167 OBJFILE is the section containing BLOCK.
5168 SYMTAB is recorded with each symbol added. */
5169
5170static void
5171ada_add_block_symbols (struct obstack *obstackp,
5172 struct block *block, const char *name,
5173 domain_enum domain, struct objfile *objfile,
5174 struct symtab *symtab, int wild)
5175{
5176 struct dict_iterator iter;
5177 int name_len = strlen (name);
5178 /* A matching argument symbol, if any. */
5179 struct symbol *arg_sym;
5180 /* Set true when we find a matching non-argument symbol. */
5181 int found_sym;
5182 struct symbol *sym;
5183
5184 arg_sym = NULL;
5185 found_sym = 0;
5186 if (wild)
5187 {
5188 struct symbol *sym;
5189 ALL_BLOCK_SYMBOLS (block, iter, sym)
5190 {
5191 if (SYMBOL_DOMAIN (sym) == domain &&
5192 wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5193 {
5194 switch (SYMBOL_CLASS (sym))
5195 {
5196 case LOC_ARG:
5197 case LOC_LOCAL_ARG:
5198 case LOC_REF_ARG:
5199 case LOC_REGPARM:
5200 case LOC_REGPARM_ADDR:
5201 case LOC_BASEREG_ARG:
5202 case LOC_COMPUTED_ARG:
5203 arg_sym = sym;
5204 break;
5205 case LOC_UNRESOLVED:
5206 continue;
5207 default:
5208 found_sym = 1;
5209 add_defn_to_vec (obstackp,
5210 fixup_symbol_section (sym, objfile),
5211 block, symtab);
5212 break;
5213 }
5214 }
5215 }
5216 }
5217 else
5218 {
5219 ALL_BLOCK_SYMBOLS (block, iter, sym)
5220 {
5221 if (SYMBOL_DOMAIN (sym) == domain)
5222 {
5223 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5224 if (cmp == 0
5225 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5226 {
5227 switch (SYMBOL_CLASS (sym))
5228 {
5229 case LOC_ARG:
5230 case LOC_LOCAL_ARG:
5231 case LOC_REF_ARG:
5232 case LOC_REGPARM:
5233 case LOC_REGPARM_ADDR:
5234 case LOC_BASEREG_ARG:
5235 case LOC_COMPUTED_ARG:
5236 arg_sym = sym;
5237 break;
5238 case LOC_UNRESOLVED:
5239 break;
5240 default:
5241 found_sym = 1;
5242 add_defn_to_vec (obstackp,
5243 fixup_symbol_section (sym, objfile),
5244 block, symtab);
5245 break;
5246 }
5247 }
5248 }
5249 }
5250 }
5251
5252 if (!found_sym && arg_sym != NULL)
5253 {
5254 add_defn_to_vec (obstackp,
5255 fixup_symbol_section (arg_sym, objfile),
5256 block, symtab);
5257 }
5258
5259 if (!wild)
5260 {
5261 arg_sym = NULL;
5262 found_sym = 0;
5263
5264 ALL_BLOCK_SYMBOLS (block, iter, sym)
5265 {
5266 if (SYMBOL_DOMAIN (sym) == domain)
5267 {
5268 int cmp;
5269
5270 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5271 if (cmp == 0)
5272 {
5273 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5274 if (cmp == 0)
5275 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5276 name_len);
5277 }
5278
5279 if (cmp == 0
5280 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5281 {
5282 switch (SYMBOL_CLASS (sym))
5283 {
5284 case LOC_ARG:
5285 case LOC_LOCAL_ARG:
5286 case LOC_REF_ARG:
5287 case LOC_REGPARM:
5288 case LOC_REGPARM_ADDR:
5289 case LOC_BASEREG_ARG:
5290 case LOC_COMPUTED_ARG:
5291 arg_sym = sym;
5292 break;
5293 case LOC_UNRESOLVED:
5294 break;
5295 default:
5296 found_sym = 1;
5297 add_defn_to_vec (obstackp,
5298 fixup_symbol_section (sym, objfile),
5299 block, symtab);
5300 break;
5301 }
5302 }
5303 }
5304 end_loop2: ;
5305 }
5306
5307 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5308 They aren't parameters, right? */
5309 if (!found_sym && arg_sym != NULL)
5310 {
5311 add_defn_to_vec (obstackp,
5312 fixup_symbol_section (arg_sym, objfile),
5313 block, symtab);
5314 }
5315 }
5316}
5317\f
5318 /* Breakpoint-related */
5319
5320/* Import message from symtab.c. */
5321extern char no_symtab_msg[];
5322
5323/* Assuming that LINE is pointing at the beginning of an argument to
5324 'break', return a pointer to the delimiter for the initial segment
5325 of that name. This is the first ':', ' ', or end of LINE. */
5326
5327char *
5328ada_start_decode_line_1 (char *line)
5329{
5330 /* NOTE: strpbrk would be more elegant, but I am reluctant to be
5331 the first to use such a library function in GDB code. */
5332 char *p;
5333 for (p = line; *p != '\000' && *p != ' ' && *p != ':'; p += 1)
5334 ;
5335 return p;
5336}
5337
5338/* *SPEC points to a function and line number spec (as in a break
5339 command), following any initial file name specification.
5340
5341 Return all symbol table/line specfications (sals) consistent with the
5342 information in *SPEC and FILE_TABLE in the following sense:
5343 + FILE_TABLE is null, or the sal refers to a line in the file
5344 named by FILE_TABLE.
5345 + If *SPEC points to an argument with a trailing ':LINENUM',
5346 then the sal refers to that line (or one following it as closely as
5347 possible).
5348 + If *SPEC does not start with '*', the sal is in a function with
5349 that name.
5350
5351 Returns with 0 elements if no matching non-minimal symbols found.
5352
5353 If *SPEC begins with a function name of the form <NAME>, then NAME
5354 is taken as a literal name; otherwise the function name is subject
5355 to the usual encoding.
5356
5357 *SPEC is updated to point after the function/line number specification.
5358
5359 FUNFIRSTLINE is non-zero if we desire the first line of real code
5360 in each function.
5361
5362 If CANONICAL is non-NULL, and if any of the sals require a
5363 'canonical line spec', then *CANONICAL is set to point to an array
5364 of strings, corresponding to and equal in length to the returned
5365 list of sals, such that (*CANONICAL)[i] is non-null and contains a
5366 canonical line spec for the ith returned sal, if needed. If no
5367 canonical line specs are required and CANONICAL is non-null,
5368 *CANONICAL is set to NULL.
5369
5370 A 'canonical line spec' is simply a name (in the format of the
5371 breakpoint command) that uniquely identifies a breakpoint position,
5372 with no further contextual information or user selection. It is
5373 needed whenever the file name, function name, and line number
5374 information supplied is insufficient for this unique
5375 identification. Currently overloaded functions, the name '*',
5376 or static functions without a filename yield a canonical line spec.
5377 The array and the line spec strings are allocated on the heap; it
5378 is the caller's responsibility to free them. */
5379
5380struct symtabs_and_lines
5381ada_finish_decode_line_1 (char **spec, struct symtab *file_table,
5382 int funfirstline, char ***canonical)
5383{
5384 struct ada_symbol_info *symbols;
5385 const struct block *block;
5386 int n_matches, i, line_num;
5387 struct symtabs_and_lines selected;
5388 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5389 char *name;
5390 int is_quoted;
5391
5392 int len;
5393 char *lower_name;
5394 char *unquoted_name;
5395
5396 if (file_table == NULL)
5397 block = block_static_block (get_selected_block (0));
5398 else
5399 block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (file_table), STATIC_BLOCK);
5400
5401 if (canonical != NULL)
5402 *canonical = (char **) NULL;
5403
5404 is_quoted = (**spec && strchr (get_gdb_completer_quote_characters (),
5405 **spec) != NULL);
5406
5407 name = *spec;
5408 if (**spec == '*')
5409 *spec += 1;
5410 else
5411 {
5412 if (is_quoted)
5413 *spec = skip_quoted (*spec);
5414 while (**spec != '\000' &&
5415 !strchr (ada_completer_word_break_characters, **spec))
5416 *spec += 1;
5417 }
5418 len = *spec - name;
5419
5420 line_num = -1;
5421 if (file_table != NULL && (*spec)[0] == ':' && isdigit ((*spec)[1]))
5422 {
5423 line_num = strtol (*spec + 1, spec, 10);
5424 while (**spec == ' ' || **spec == '\t')
5425 *spec += 1;
5426 }
5427
5428 if (name[0] == '*')
5429 {
5430 if (line_num == -1)
5431 error ("Wild-card function with no line number or file name.");
5432
5433 return ada_sals_for_line (file_table->filename, line_num,
5434 funfirstline, canonical, 0);
5435 }
5436
5437 if (name[0] == '\'')
5438 {
5439 name += 1;
5440 len -= 2;
5441 }
5442
5443 if (name[0] == '<')
5444 {
5445 unquoted_name = (char *) alloca (len - 1);
5446 memcpy (unquoted_name, name + 1, len - 2);
5447 unquoted_name[len - 2] = '\000';
5448 lower_name = NULL;
5449 }
5450 else
5451 {
5452 unquoted_name = (char *) alloca (len + 1);
5453 memcpy (unquoted_name, name, len);
5454 unquoted_name[len] = '\000';
5455 lower_name = (char *) alloca (len + 1);
5456 for (i = 0; i < len; i += 1)
5457 lower_name[i] = tolower (name[i]);
5458 lower_name[len] = '\000';
5459 }
5460
5461 n_matches = 0;
5462 if (lower_name != NULL)
5463 n_matches = ada_lookup_symbol_list (ada_encode (lower_name), block,
5464 VAR_DOMAIN, &symbols);
5465 if (n_matches == 0)
5466 n_matches = ada_lookup_symbol_list (unquoted_name, block,
5467 VAR_DOMAIN, &symbols);
5468 if (n_matches == 0 && line_num >= 0)
5469 error ("No line number information found for %s.", unquoted_name);
5470 else if (n_matches == 0)
5471 {
5472#ifdef HPPA_COMPILER_BUG
5473 /* FIXME: See comment in symtab.c::decode_line_1 */
5474#undef volatile
5475 volatile struct symtab_and_line val;
5476#define volatile /*nothing */
5477#else
5478 struct symtab_and_line val;
5479#endif
5480 struct minimal_symbol *msymbol;
5481
5482 init_sal (&val);
5483
5484 msymbol = NULL;
5485 if (lower_name != NULL)
5486 msymbol = ada_lookup_simple_minsym (ada_encode (lower_name));
5487 if (msymbol == NULL)
5488 msymbol = ada_lookup_simple_minsym (unquoted_name);
5489 if (msymbol != NULL)
5490 {
5491 val.pc = SYMBOL_VALUE_ADDRESS (msymbol);
5492 val.section = SYMBOL_BFD_SECTION (msymbol);
5493 if (funfirstline)
5494 {
5495 val.pc += FUNCTION_START_OFFSET;
5496 SKIP_PROLOGUE (val.pc);
5497 }
5498 selected.sals = (struct symtab_and_line *)
5499 xmalloc (sizeof (struct symtab_and_line));
5500 selected.sals[0] = val;
5501 selected.nelts = 1;
5502 return selected;
5503 }
5504
5505 if (!have_full_symbols () &&
5506 !have_partial_symbols () && !have_minimal_symbols ())
5507 error ("No symbol table is loaded. Use the \"file\" command.");
5508
5509 error ("Function \"%s\" not defined.", unquoted_name);
5510 return selected; /* for lint */
5511 }
5512
5513 if (line_num >= 0)
5514 {
5515 struct symtabs_and_lines best_sal =
5516 find_sal_from_funcs_and_line (file_table->filename, line_num,
5517 symbols, n_matches);
5518 if (funfirstline)
5519 adjust_pc_past_prologue (&best_sal.sals[0].pc);
5520 return best_sal;
5521 }
5522 else
5523 {
5524 selected.nelts =
5525 user_select_syms (symbols, n_matches, n_matches);
5526 }
5527
5528 selected.sals = (struct symtab_and_line *)
5529 xmalloc (sizeof (struct symtab_and_line) * selected.nelts);
5530 memset (selected.sals, 0, selected.nelts * sizeof (selected.sals[i]));
5531 make_cleanup (xfree, selected.sals);
5532
5533 i = 0;
5534 while (i < selected.nelts)
5535 {
5536 if (SYMBOL_CLASS (symbols[i].sym) == LOC_BLOCK)
5537 selected.sals[i]
5538 = find_function_start_sal (symbols[i].sym, funfirstline);
5539 else if (SYMBOL_LINE (symbols[i].sym) != 0)
5540 {
5541 selected.sals[i].symtab =
5542 symbols[i].symtab
5543 ? symbols[i].symtab : symtab_for_sym (symbols[i].sym);
5544 selected.sals[i].line = SYMBOL_LINE (symbols[i].sym);
5545 }
5546 else if (line_num >= 0)
5547 {
5548 /* Ignore this choice */
5549 symbols[i] = symbols[selected.nelts - 1];
5550 selected.nelts -= 1;
5551 continue;
5552 }
5553 else
5554 error ("Line number not known for symbol \"%s\"", unquoted_name);
5555 i += 1;
5556 }
5557
5558 if (canonical != NULL && (line_num >= 0 || n_matches > 1))
5559 {
5560 *canonical = (char **) xmalloc (sizeof (char *) * selected.nelts);
5561 for (i = 0; i < selected.nelts; i += 1)
5562 (*canonical)[i] =
5563 extended_canonical_line_spec (selected.sals[i],
5564 SYMBOL_PRINT_NAME (symbols[i].sym));
5565 }
5566
5567 discard_cleanups (old_chain);
5568 return selected;
5569}
5570
5571/* The (single) sal corresponding to line LINE_NUM in a symbol table
5572 with file name FILENAME that occurs in one of the functions listed
5573 in the symbol fields of SYMBOLS[0 .. NSYMS-1]. */
5574
5575static struct symtabs_and_lines
5576find_sal_from_funcs_and_line (const char *filename, int line_num,
5577 struct ada_symbol_info *symbols, int nsyms)
5578{
5579 struct symtabs_and_lines sals;
5580 int best_index, best;
5581 struct linetable *best_linetable;
5582 struct objfile *objfile;
5583 struct symtab *s;
5584 struct symtab *best_symtab;
5585
5586 read_all_symtabs (filename);
5587
5588 best_index = 0;
5589 best_linetable = NULL;
5590 best_symtab = NULL;
5591 best = 0;
5592 ALL_SYMTABS (objfile, s)
5593 {
5594 struct linetable *l;
5595 int ind, exact;
5596
5597 QUIT;
5598
5599 if (strcmp (filename, s->filename) != 0)
5600 continue;
5601 l = LINETABLE (s);
5602 ind = find_line_in_linetable (l, line_num, symbols, nsyms, &exact);
5603 if (ind >= 0)
5604 {
5605 if (exact)
5606 {
5607 best_index = ind;
5608 best_linetable = l;
5609 best_symtab = s;
5610 goto done;
5611 }
5612 if (best == 0 || l->item[ind].line < best)
5613 {
5614 best = l->item[ind].line;
5615 best_index = ind;
5616 best_linetable = l;
5617 best_symtab = s;
5618 }
5619 }
5620 }
5621
5622 if (best == 0)
5623 error ("Line number not found in designated function.");
5624
5625done:
5626
5627 sals.nelts = 1;
5628 sals.sals = (struct symtab_and_line *) xmalloc (sizeof (sals.sals[0]));
5629
5630 init_sal (&sals.sals[0]);
5631
5632 sals.sals[0].line = best_linetable->item[best_index].line;
5633 sals.sals[0].pc = best_linetable->item[best_index].pc;
5634 sals.sals[0].symtab = best_symtab;
5635
5636 return sals;
5637}
5638
5639/* Return the index in LINETABLE of the best match for LINE_NUM whose
5640 pc falls within one of the functions denoted by the symbol fields
5641 of SYMBOLS[0..NSYMS-1]. Set *EXACTP to 1 if the match is exact,
5642 and 0 otherwise. */
5643
5644static int
5645find_line_in_linetable (struct linetable *linetable, int line_num,
5646 struct ada_symbol_info *symbols, int nsyms, int *exactp)
5647{
5648 int i, len, best_index, best;
5649
5650 if (line_num <= 0 || linetable == NULL)
5651 return -1;
5652
5653 len = linetable->nitems;
5654 for (i = 0, best_index = -1, best = 0; i < len; i += 1)
5655 {
5656 int k;
5657 struct linetable_entry *item = &(linetable->item[i]);
5658
5659 for (k = 0; k < nsyms; k += 1)
5660 {
5661 if (symbols[k].sym != NULL
5662 && SYMBOL_CLASS (symbols[k].sym) == LOC_BLOCK
5663 && item->pc >= BLOCK_START (SYMBOL_BLOCK_VALUE (symbols[k].sym))
5664 && item->pc < BLOCK_END (SYMBOL_BLOCK_VALUE (symbols[k].sym)))
5665 goto candidate;
5666 }
5667 continue;
5668
5669 candidate:
5670
5671 if (item->line == line_num)
5672 {
5673 *exactp = 1;
5674 return i;
5675 }
5676
5677 if (item->line > line_num && (best == 0 || item->line < best))
5678 {
5679 best = item->line;
5680 best_index = i;
5681 }
5682 }
5683
5684 *exactp = 0;
5685 return best_index;
5686}
5687
5688/* Find the smallest k >= LINE_NUM such that k is a line number in
5689 LINETABLE, and k falls strictly within a named function that begins at
5690 or before LINE_NUM. Return -1 if there is no such k. */
5691
5692static int
5693nearest_line_number_in_linetable (struct linetable *linetable, int line_num)
5694{
5695 int i, len, best;
5696
5697 if (line_num <= 0 || linetable == NULL || linetable->nitems == 0)
5698 return -1;
5699 len = linetable->nitems;
5700
5701 i = 0;
5702 best = INT_MAX;
5703 while (i < len)
5704 {
5705 struct linetable_entry *item = &(linetable->item[i]);
5706
5707 if (item->line >= line_num && item->line < best)
5708 {
5709 char *func_name;
5710 CORE_ADDR start, end;
5711
5712 func_name = NULL;
5713 find_pc_partial_function (item->pc, &func_name, &start, &end);
5714
5715 if (func_name != NULL && item->pc < end)
5716 {
5717 if (item->line == line_num)
5718 return line_num;
5719 else
5720 {
5721 struct symbol *sym =
5722 standard_lookup (func_name, NULL, VAR_DOMAIN);
5723 if (is_plausible_func_for_line (sym, line_num))
5724 best = item->line;
5725 else
5726 {
5727 do
5728 i += 1;
5729 while (i < len && linetable->item[i].pc < end);
5730 continue;
5731 }
5732 }
5733 }
5734 }
5735
5736 i += 1;
5737 }
5738
5739 return (best == INT_MAX) ? -1 : best;
5740}
5741
5742
5743/* Return the next higher index, k, into LINETABLE such that k > IND,
5744 entry k in LINETABLE has a line number equal to LINE_NUM, k
5745 corresponds to a PC that is in a function different from that
5746 corresponding to IND, and falls strictly within a named function
5747 that begins at a line at or preceding STARTING_LINE.
5748 Return -1 if there is no such k.
5749 IND == -1 corresponds to no function. */
5750
5751static int
5752find_next_line_in_linetable (struct linetable *linetable, int line_num,
5753 int starting_line, int ind)
5754{
5755 int i, len;
5756
5757 if (line_num <= 0 || linetable == NULL || ind >= linetable->nitems)
5758 return -1;
5759 len = linetable->nitems;
5760
5761 if (ind >= 0)
5762 {
5763 CORE_ADDR start, end;
5764
5765 if (find_pc_partial_function (linetable->item[ind].pc,
5766 (char **) NULL, &start, &end))
5767 {
5768 while (ind < len && linetable->item[ind].pc < end)
5769 ind += 1;
5770 }
5771 else
5772 ind += 1;
5773 }
5774 else
5775 ind = 0;
5776
5777 i = ind;
5778 while (i < len)
5779 {
5780 struct linetable_entry *item = &(linetable->item[i]);
5781
5782 if (item->line >= line_num)
5783 {
5784 char *func_name;
5785 CORE_ADDR start, end;
5786
5787 func_name = NULL;
5788 find_pc_partial_function (item->pc, &func_name, &start, &end);
5789
5790 if (func_name != NULL && item->pc < end)
5791 {
5792 if (item->line == line_num)
5793 {
5794 struct symbol *sym =
5795 standard_lookup (func_name, NULL, VAR_DOMAIN);
5796 if (is_plausible_func_for_line (sym, starting_line))
5797 return i;
5798 else
5799 {
5800 while ((i + 1) < len && linetable->item[i + 1].pc < end)
5801 i += 1;
5802 }
5803 }
5804 }
5805 }
5806 i += 1;
5807 }
5808
5809 return -1;
5810}
5811
5812/* True iff function symbol SYM starts somewhere at or before line #
5813 LINE_NUM. */
5814
5815static int
5816is_plausible_func_for_line (struct symbol *sym, int line_num)
5817{
5818 struct symtab_and_line start_sal;
5819
5820 if (sym == NULL)
5821 return 0;
5822
5823 start_sal = find_function_start_sal (sym, 0);
5824
5825 return (start_sal.line != 0 && line_num >= start_sal.line);
5826}
5827
5828/* Read in all symbol tables corresponding to partial symbol tables
5829 with file name FILENAME. */
5830
5831static void
5832read_all_symtabs (const char *filename)
5833{
5834 struct partial_symtab *ps;
5835 struct objfile *objfile;
5836
5837 ALL_PSYMTABS (objfile, ps)
5838 {
5839 QUIT;
5840
5841 if (strcmp (filename, ps->filename) == 0)
5842 PSYMTAB_TO_SYMTAB (ps);
5843 }
5844}
5845
5846/* All sals corresponding to line LINE_NUM in a symbol table from file
5847 FILENAME, as filtered by the user. Filter out any lines that
5848 reside in functions with "suppressed" names (not corresponding to
5849 explicit Ada functions), if there is at least one in a function
5850 with a non-suppressed name. If CANONICAL is not null, set
5851 it to a corresponding array of canonical line specs.
5852 If ONE_LOCATION_ONLY is set and several matches are found for
5853 the given location, then automatically select the first match found
5854 instead of asking the user which instance should be returned. */
5855
5856struct symtabs_and_lines
5857ada_sals_for_line (const char *filename, int line_num,
5858 int funfirstline, char ***canonical,
5859 int one_location_only)
5860{
5861 struct symtabs_and_lines result;
5862 struct objfile *objfile;
5863 struct symtab *s;
5864 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5865 size_t len;
5866
5867 read_all_symtabs (filename);
5868
5869 result.sals =
5870 (struct symtab_and_line *) xmalloc (4 * sizeof (result.sals[0]));
5871 result.nelts = 0;
5872 len = 4;
5873 make_cleanup (free_current_contents, &result.sals);
5874
5875 ALL_SYMTABS (objfile, s)
5876 {
5877 int ind, target_line_num;
5878
5879 QUIT;
5880
5881 if (strcmp (s->filename, filename) != 0)
5882 continue;
5883
5884 target_line_num =
5885 nearest_line_number_in_linetable (LINETABLE (s), line_num);
5886 if (target_line_num == -1)
5887 continue;
5888
5889 ind = -1;
5890 while (1)
5891 {
5892 ind =
5893 find_next_line_in_linetable (LINETABLE (s),
5894 target_line_num, line_num, ind);
5895
5896 if (ind < 0)
5897 break;
5898
5899 GROW_VECT (result.sals, len, result.nelts + 1);
5900 init_sal (&result.sals[result.nelts]);
5901 result.sals[result.nelts].line = line_num;
5902 result.sals[result.nelts].pc = LINETABLE (s)->item[ind].pc;
5903 result.sals[result.nelts].symtab = s;
5904
5905 if (funfirstline)
5906 adjust_pc_past_prologue (&result.sals[result.nelts].pc);
5907
5908 result.nelts += 1;
5909 }
5910 }
5911
5912 if (canonical != NULL || result.nelts > 1)
5913 {
5914 int k, j, n;
5915 char **func_names = (char **) alloca (result.nelts * sizeof (char *));
5916 int first_choice = (result.nelts > 1) ? 2 : 1;
5917 int *choices = (int *) alloca (result.nelts * sizeof (int));
5918
5919 for (k = 0; k < result.nelts; k += 1)
5920 {
5921 find_pc_partial_function (result.sals[k].pc, &func_names[k],
5922 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
5923 if (func_names[k] == NULL)
5924 error ("Could not find function for one or more breakpoints.");
5925 }
5926
5927 /* Remove suppressed names, unless all are suppressed. */
5928 for (j = 0; j < result.nelts; j += 1)
5929 if (!is_suppressed_name (func_names[j]))
5930 {
5931 /* At least one name is unsuppressed, so remove all
5932 suppressed names. */
5933 for (k = n = 0; k < result.nelts; k += 1)
5934 if (!is_suppressed_name (func_names[k]))
5935 {
5936 func_names[n] = func_names[k];
5937 result.sals[n] = result.sals[k];
5938 n += 1;
5939 }
5940 result.nelts = n;
5941 break;
5942 }
5943
5944 if (result.nelts > 1)
5945 {
5946 if (one_location_only)
5947 {
5948 /* Automatically select the first of all possible choices. */
5949 n = 1;
5950 choices[0] = 0;
5951 }
5952 else
5953 {
5954 printf_unfiltered ("[0] cancel\n");
5955 if (result.nelts > 1)
5956 printf_unfiltered ("[1] all\n");
5957 for (k = 0; k < result.nelts; k += 1)
5958 printf_unfiltered ("[%d] %s\n", k + first_choice,
5959 ada_decode (func_names[k]));
5960
5961 n = get_selections (choices, result.nelts, result.nelts,
5962 result.nelts > 1, "instance-choice");
5963 }
5964
5965 for (k = 0; k < n; k += 1)
5966 {
5967 result.sals[k] = result.sals[choices[k]];
5968 func_names[k] = func_names[choices[k]];
5969 }
5970 result.nelts = n;
5971 }
5972
5973 if (canonical != NULL && result.nelts == 0)
5974 *canonical = NULL;
5975 else if (canonical != NULL)
5976 {
5977 *canonical = (char **) xmalloc (result.nelts * sizeof (char **));
5978 make_cleanup (xfree, *canonical);
5979 for (k = 0; k < result.nelts; k += 1)
5980 {
5981 (*canonical)[k] =
5982 extended_canonical_line_spec (result.sals[k], func_names[k]);
5983 if ((*canonical)[k] == NULL)
5984 error ("Could not locate one or more breakpoints.");
5985 make_cleanup (xfree, (*canonical)[k]);
5986 }
5987 }
5988 }
5989
5990 if (result.nelts == 0)
5991 {
5992 do_cleanups (old_chain);
5993 result.sals = NULL;
5994 }
5995 else
5996 discard_cleanups (old_chain);
5997 return result;
5998}
5999
6000
6001/* A canonical line specification of the form FILE:NAME:LINENUM for
6002 symbol table and line data SAL. NULL if insufficient
6003 information. The caller is responsible for releasing any space
6004 allocated. */
6005
6006static char *
6007extended_canonical_line_spec (struct symtab_and_line sal, const char *name)
6008{
6009 char *r;
6010
6011 if (sal.symtab == NULL || sal.symtab->filename == NULL || sal.line <= 0)
6012 return NULL;
6013
6014 r = (char *) xmalloc (strlen (name) + strlen (sal.symtab->filename)
6015 + sizeof (sal.line) * 3 + 3);
6016 sprintf (r, "%s:'%s':%d", sal.symtab->filename, name, sal.line);
6017 return r;
6018}
6019
6020/* If the main procedure is written in Ada, then return its name.
6021 The result is good until the next call. Return NULL if the main
6022 procedure doesn't appear to be in Ada. */
6023
6024char *
6025ada_main_name (void)
6026{
6027 struct minimal_symbol *msym;
6028 CORE_ADDR main_program_name_addr;
6029 static char main_program_name[1024];
6030 /* For Ada, the name of the main procedure is stored in a specific
6031 string constant, generated by the binder. Look for that symbol,
6032 extract its address, and then read that string. If we didn't find
6033 that string, then most probably the main procedure is not written
6034 in Ada. */
6035 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
6036
6037 if (msym != NULL)
6038 {
6039 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
6040 if (main_program_name_addr == 0)
6041 error ("Invalid address for Ada main program name.");
6042
6043 extract_string (main_program_name_addr, main_program_name);
6044 return main_program_name;
6045 }
6046
6047 /* The main procedure doesn't seem to be in Ada. */
6048 return NULL;
6049}
6050
6051/* Return type of Ada breakpoint associated with bp_stat:
6052 0 if not an Ada-specific breakpoint, 1 for break on specific exception,
6053 2 for break on unhandled exception, 3 for assert. */
6054
6055static int
6056ada_exception_breakpoint_type (bpstat bs)
6057{
6058#ifdef GNAT_GDB
6059 return ((! bs || ! bs->breakpoint_at) ? 0
6060 : bs->breakpoint_at->break_on_exception);
6061#else
6062 return 0;
6063#endif
6064}
6065
6066/* True iff FRAME is very likely to be that of a function that is
6067 part of the runtime system. This is all very heuristic, but is
6068 intended to be used as advice as to what frames are uninteresting
6069 to most users. */
6070
6071static int
6072is_known_support_routine (struct frame_info *frame)
6073{
6074 struct frame_info *next_frame = get_next_frame (frame);
6075 /* If frame is not innermost, that normally means that frame->pc
6076 points to *after* the call instruction, and we want to get the line
6077 containing the call, never the next line. But if the next frame is
6078 a signal_handler_caller or a dummy frame, then the next frame was
6079 not entered as the result of a call, and we want to get the line
6080 containing frame->pc. */
6081 const int pc_is_after_call =
6082 next_frame != NULL
6083 && get_frame_type (next_frame) != SIGTRAMP_FRAME
6084 && get_frame_type (next_frame) != DUMMY_FRAME;
6085 struct symtab_and_line sal
6086 = find_pc_line (get_frame_pc (frame), pc_is_after_call);
6087 char *func_name;
6088 int i;
6089 struct stat st;
6090
6091 /* The heuristic:
6092 1. The symtab is null (indicating no debugging symbols)
6093 2. The symtab's filename does not exist.
6094 3. The object file's name is one of the standard libraries.
6095 4. The symtab's file name has the form of an Ada library source file.
6096 5. The function at frame's PC has a GNAT-compiler-generated name. */
6097
6098 if (sal.symtab == NULL)
6099 return 1;
6100
6101 /* On some systems (e.g. VxWorks), the kernel contains debugging
6102 symbols; in this case, the filename referenced by these symbols
6103 does not exists. */
6104
6105 if (stat (sal.symtab->filename, &st))
6106 return 1;
6107
6108 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
6109 {
6110 re_comp (known_runtime_file_name_patterns[i]);
6111 if (re_exec (sal.symtab->filename))
6112 return 1;
6113 }
6114 if (sal.symtab->objfile != NULL)
6115 {
6116 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
6117 {
6118 re_comp (known_runtime_file_name_patterns[i]);
6119 if (re_exec (sal.symtab->objfile->name))
6120 return 1;
6121 }
6122 }
6123
6124 /* If the frame PC points after the call instruction, then we need to
6125 decrement it in order to search for the function associated to this
6126 PC. Otherwise, if the associated call was the last instruction of
6127 the function, we might either find the wrong function or even fail
6128 during the function name lookup. */
6129 if (pc_is_after_call)
6130 func_name = function_name_from_pc (get_frame_pc (frame) - 1);
6131 else
6132 func_name = function_name_from_pc (get_frame_pc (frame));
6133
6134 if (func_name == NULL)
6135 return 1;
6136
6137 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
6138 {
6139 re_comp (known_auxiliary_function_name_patterns[i]);
6140 if (re_exec (func_name))
6141 return 1;
6142 }
6143
6144 return 0;
6145}
6146
6147/* Find the first frame that contains debugging information and that is not
6148 part of the Ada run-time, starting from FI and moving upward. */
6149
6150void
6151ada_find_printable_frame (struct frame_info *fi)
6152{
6153 for (; fi != NULL; fi = get_prev_frame (fi))
6154 {
6155 if (!is_known_support_routine (fi))
6156 {
6157 select_frame (fi);
6158 break;
6159 }
6160 }
6161
6162}
6163
6164/* Name found for exception associated with last bpstat sent to
6165 ada_adjust_exception_stop. Set to the null string if that bpstat
6166 did not correspond to an Ada exception or no name could be found. */
6167
6168static char last_exception_name[256];
6169
6170/* If BS indicates a stop in an Ada exception, try to go up to a frame
6171 that will be meaningful to the user, and save the name of the last
6172 exception (truncated, if necessary) in last_exception_name. */
6173
6174void
6175ada_adjust_exception_stop (bpstat bs)
6176{
6177 CORE_ADDR addr;
6178 struct frame_info *fi;
6179 int frame_level;
6180 char *selected_frame_func;
6181
6182 addr = 0;
6183 last_exception_name[0] = '\0';
6184 fi = get_selected_frame ();
6185 selected_frame_func = function_name_from_pc (get_frame_pc (fi));
6186
6187 switch (ada_exception_breakpoint_type (bs))
6188 {
6189 default:
6190 return;
6191 case 1:
6192 break;
6193 case 2:
6194 /* Unhandled exceptions. Select the frame corresponding to
6195 ada.exceptions.process_raise_exception. This frame is at
6196 least 2 levels up, so we simply skip the first 2 frames
6197 without checking the name of their associated function. */
6198 for (frame_level = 0; frame_level < 2; frame_level += 1)
6199 if (fi != NULL)
6200 fi = get_prev_frame (fi);
6201 while (fi != NULL)
6202 {
6203 const char *func_name = function_name_from_pc (get_frame_pc (fi));
6204 if (func_name != NULL
6205 && strcmp (func_name, process_raise_exception_name) == 0)
6206 break; /* We found the frame we were looking for... */
6207 fi = get_prev_frame (fi);
6208 }
6209 if (fi == NULL)
6210 break;
6211 select_frame (fi);
6212 break;
6213 }
6214
6215 addr = parse_and_eval_address ("e.full_name");
6216
6217 if (addr != 0)
6218 read_memory (addr, last_exception_name,
6219 sizeof (last_exception_name) - 1);
6220 last_exception_name[sizeof (last_exception_name) - 1] = '\0';
6221 ada_find_printable_frame (get_selected_frame ());
6222}
6223
6224/* Output Ada exception name (if any) associated with last call to
6225 ada_adjust_exception_stop. */
6226
6227void
6228ada_print_exception_stop (bpstat bs)
6229{
6230 if (last_exception_name[0] != '\000')
6231 {
6232 ui_out_text (uiout, last_exception_name);
6233 ui_out_text (uiout, " at ");
6234 }
6235}
6236
6237/* Parses the CONDITION string associated with a breakpoint exception
6238 to get the name of the exception on which the breakpoint has been
6239 set. The returned string needs to be deallocated after use. */
6240
6241static char *
6242exception_name_from_cond (const char *condition)
6243{
6244 char *start, *end, *exception_name;
6245 int exception_name_len;
6246
6247 start = strrchr (condition, '&') + 1;
6248 end = strchr (start, ')') - 1;
6249 exception_name_len = end - start + 1;
6250
6251 exception_name =
6252 (char *) xmalloc ((exception_name_len + 1) * sizeof (char));
6253 sprintf (exception_name, "%.*s", exception_name_len, start);
6254
6255 return exception_name;
6256}
6257
6258/* Print Ada-specific exception information about B, other than task
6259 clause. Return non-zero iff B was an Ada exception breakpoint. */
6260
6261int
6262ada_print_exception_breakpoint_nontask (struct breakpoint *b)
6263{
6264#ifdef GNAT_GDB
6265 if (b->break_on_exception == 1)
6266 {
6267 if (b->cond_string) /* the breakpoint is on a specific exception. */
6268 {
6269 char *exception_name = exception_name_from_cond (b->cond_string);
6270
6271 make_cleanup (xfree, exception_name);
6272
6273 ui_out_text (uiout, "on ");
6274 if (ui_out_is_mi_like_p (uiout))
6275 ui_out_field_string (uiout, "exception", exception_name);
6276 else
6277 {
6278 ui_out_text (uiout, "exception ");
6279 ui_out_text (uiout, exception_name);
6280 ui_out_text (uiout, " ");
6281 }
6282 }
6283 else
6284 ui_out_text (uiout, "on all exceptions");
6285 }
6286 else if (b->break_on_exception == 2)
6287 ui_out_text (uiout, "on unhandled exception");
6288 else if (b->break_on_exception == 3)
6289 ui_out_text (uiout, "on assert failure");
6290 else
6291 return 0;
6292 return 1;
6293#else
6294 return 0;
6295#endif
6296}
6297
6298/* Print task identifier for breakpoint B, if it is an Ada-specific
6299 breakpoint with non-zero tasking information. */
6300
6301void
6302ada_print_exception_breakpoint_task (struct breakpoint *b)
6303{
6304#ifdef GNAT_GDB
6305 if (b->task != 0)
6306 {
6307 ui_out_text (uiout, " task ");
6308 ui_out_field_int (uiout, "task", b->task);
6309 }
6310#endif
6311}
6312
6313int
6314ada_is_exception_sym (struct symbol *sym)
6315{
6316 char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
6317
6318 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
6319 && SYMBOL_CLASS (sym) != LOC_BLOCK
6320 && SYMBOL_CLASS (sym) != LOC_CONST
6321 && type_name != NULL && strcmp (type_name, "exception") == 0);
6322}
6323
6324int
6325ada_maybe_exception_partial_symbol (struct partial_symbol *sym)
6326{
6327 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
6328 && SYMBOL_CLASS (sym) != LOC_BLOCK
6329 && SYMBOL_CLASS (sym) != LOC_CONST);
6330}
6331
6332/* Cause the appropriate error if no appropriate runtime symbol is
6333 found to set a breakpoint, using ERR_DESC to describe the
6334 breakpoint. */
6335
6336static void
6337error_breakpoint_runtime_sym_not_found (const char *err_desc)
6338{
6339 /* If we are not debugging an Ada program, we can not put exception
6340 breakpoints! */
6341
6342 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
6343 error ("Unable to break on %s. Is this an Ada main program?", err_desc);
6344
6345 /* If the symbol does not exist, then check that the program is
6346 already started, to make sure that shared libraries have been
6347 loaded. If it is not started, this may mean that the symbol is
6348 in a shared library. */
6349
6350 if (ptid_get_pid (inferior_ptid) == 0)
6351 error ("Unable to break on %s. Try to start the program first.", err_desc);
6352
6353 /* At this point, we know that we are debugging an Ada program and
6354 that the inferior has been started, but we still are not able to
6355 find the run-time symbols. That can mean that we are in
6356 configurable run time mode, or that a-except as been optimized
6357 out by the linker... In any case, at this point it is not worth
6358 supporting this feature. */
6359
6360 error ("Cannot break on %s in this configuration.", err_desc);
6361}
6362
6363/* Test if NAME is currently defined, and that either ALLOW_TRAMP or
6364 the symbol is not a shared-library trampoline. Return the result of
6365 the test. */
6366
6367static int
6368is_runtime_sym_defined (const char *name, int allow_tramp)
6369{
6370 struct minimal_symbol *msym;
6371
6372 msym = lookup_minimal_symbol (name, NULL, NULL);
6373 return (msym != NULL && msym->type != mst_unknown
6374 && (allow_tramp || msym->type != mst_solib_trampoline));
6375}
6376
6377/* If ARG points to an Ada exception or assert breakpoint, rewrite
6378 into equivalent form. Return resulting argument string. Set
6379 *BREAK_ON_EXCEPTIONP to 1 for ordinary break on exception, 2 for
6380 break on unhandled, 3 for assert, 0 otherwise. */
6381
6382char *
6383ada_breakpoint_rewrite (char *arg, int *break_on_exceptionp)
6384{
6385 if (arg == NULL)
6386 return arg;
6387 *break_on_exceptionp = 0;
6388 if (current_language->la_language == language_ada
6389 && strncmp (arg, "exception", 9) == 0
6390 && (arg[9] == ' ' || arg[9] == '\t' || arg[9] == '\0'))
6391 {
6392 char *tok, *end_tok;
6393 int toklen;
6394 int has_exception_propagation =
6395 is_runtime_sym_defined (raise_sym_name, 1);
6396
6397 *break_on_exceptionp = 1;
6398
6399 tok = arg + 9;
6400 while (*tok == ' ' || *tok == '\t')
6401 tok += 1;
6402
6403 end_tok = tok;
6404
6405 while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000')
6406 end_tok += 1;
6407
6408 toklen = end_tok - tok;
6409
6410 arg = (char *) xmalloc (sizeof (longest_exception_template) + toklen);
6411 make_cleanup (xfree, arg);
6412 if (toklen == 0)
6413 {
6414 if (has_exception_propagation)
6415 sprintf (arg, "'%s'", raise_sym_name);
6416 else
6417 error_breakpoint_runtime_sym_not_found ("exception");
6418 }
6419 else if (strncmp (tok, "unhandled", toklen) == 0)
6420 {
6421 if (is_runtime_sym_defined (raise_unhandled_sym_name, 1))
6422 sprintf (arg, "'%s'", raise_unhandled_sym_name);
6423 else
6424 error_breakpoint_runtime_sym_not_found ("exception");
6425
6426 *break_on_exceptionp = 2;
6427 }
6428 else
6429 {
6430 if (is_runtime_sym_defined (raise_sym_name, 0))
6431 sprintf (arg, "'%s' if long_integer(e) = long_integer(&%.*s)",
6432 raise_sym_name, toklen, tok);
6433 else
6434 error_breakpoint_runtime_sym_not_found ("specific exception");
6435 }
6436 }
6437 else if (current_language->la_language == language_ada
6438 && strncmp (arg, "assert", 6) == 0
6439 && (arg[6] == ' ' || arg[6] == '\t' || arg[6] == '\0'))
6440 {
6441 char *tok = arg + 6;
6442
6443 if (!is_runtime_sym_defined (raise_assert_sym_name, 1))
6444 error_breakpoint_runtime_sym_not_found ("failed assertion");
6445
6446 *break_on_exceptionp = 3;
6447
6448 arg =
6449 (char *) xmalloc (sizeof (raise_assert_sym_name) + strlen (tok) + 2);
6450 make_cleanup (xfree, arg);
6451 sprintf (arg, "'%s'%s", raise_assert_sym_name, tok);
6452 }
6453 return arg;
6454}
6455\f
6456
6457 /* Field Access */
6458
6459/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6460 to be invisible to users. */
6461
6462int
6463ada_is_ignored_field (struct type *type, int field_num)
6464{
6465 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6466 return 1;
6467 else
6468 {
6469 const char *name = TYPE_FIELD_NAME (type, field_num);
6470 return (name == NULL
6471 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
6472 }
6473}
6474
6475/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6476 pointer or reference type whose ultimate target has a tag field. */
6477
6478int
6479ada_is_tagged_type (struct type *type, int refok)
6480{
6481 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6482}
6483
6484/* True iff TYPE represents the type of X'Tag */
6485
6486int
6487ada_is_tag_type (struct type *type)
6488{
6489 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6490 return 0;
6491 else {
6492 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6493 return (name != NULL
6494 && strcmp (name, "ada__tags__dispatch_table") == 0);
6495 }
6496}
6497
6498/* The type of the tag on VAL. */
6499
6500struct type *
6501ada_tag_type (struct value *val)
6502{
6503 return ada_lookup_struct_elt_type (VALUE_TYPE (val), "_tag", 1, 0, NULL);
6504}
6505
6506/* The value of the tag on VAL. */
6507
6508struct value *
6509ada_value_tag (struct value *val)
6510{
6511 return ada_value_struct_elt (val, "_tag", "record");
6512}
6513
6514/* The value of the tag on the object of type TYPE whose contents are
6515 saved at VALADDR, if it is non-null, or is at memory address
6516 ADDRESS. */
6517
6518static struct value *
6519value_tag_from_contents_and_address (struct type *type, char *valaddr,
6520 CORE_ADDR address)
6521{
6522 int tag_byte_offset, dummy1, dummy2;
6523 struct type *tag_type;
6524 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6525 &dummy1, &dummy2))
6526 {
6527 char *valaddr1 = (valaddr == NULL) ? NULL : valaddr + tag_byte_offset;
6528 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6529
6530 return value_from_contents_and_address (tag_type, valaddr1, address1);
6531 }
6532 return NULL;
6533}
6534
6535static struct type *
6536type_from_tag (struct value *tag)
6537{
6538 const char *type_name = ada_tag_name (tag);
6539 if (type_name != NULL)
6540 return ada_find_any_type (ada_encode (type_name));
6541 return NULL;
6542}
6543
6544struct tag_args {
6545 struct value *tag;
6546 char *name;
6547};
6548
6549/* Wrapper function used by ada_tag_name. Given a struct tag_args*
6550 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
6551 The value stored in ARGS->name is valid until the next call to
6552 ada_tag_name_1. */
6553
6554static int
6555ada_tag_name_1 (void *args0)
6556{
6557 struct tag_args *args = (struct tag_args *) args0;
6558 static char name[1024];
6559 char* p;
6560 struct value *val;
6561 args->name = NULL;
6562 val = ada_value_struct_elt (args->tag, "tsd", NULL);
6563 if (val == NULL)
6564 return 0;
6565 val = ada_value_struct_elt (val, "expanded_name", NULL);
6566 if (val == NULL)
6567 return 0;
6568 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6569 for (p = name; *p != '\0'; p += 1)
6570 if (isalpha (*p))
6571 *p = tolower (*p);
6572 args->name = name;
6573 return 0;
6574}
6575
6576/* The type name of the dynamic type denoted by the 'tag value TAG, as
6577 * a C string. */
6578
6579const char *
6580ada_tag_name (struct value *tag)
6581{
6582 struct tag_args args;
6583 if (! ada_is_tag_type (VALUE_TYPE (tag)))
6584 return NULL;
6585 args.tag = tag;
6586 args.name = NULL;
6587 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6588 return args.name;
6589}
6590
6591/* The parent type of TYPE, or NULL if none. */
6592
6593struct type *
6594ada_parent_type (struct type *type)
6595{
6596 int i;
6597
6598 CHECK_TYPEDEF (type);
6599
6600 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6601 return NULL;
6602
6603 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6604 if (ada_is_parent_field (type, i))
6605 return check_typedef (TYPE_FIELD_TYPE (type, i));
6606
6607 return NULL;
6608}
6609
6610/* True iff field number FIELD_NUM of structure type TYPE contains the
6611 parent-type (inherited) fields of a derived type. Assumes TYPE is
6612 a structure type with at least FIELD_NUM+1 fields. */
6613
6614int
6615ada_is_parent_field (struct type *type, int field_num)
6616{
6617 const char *name = TYPE_FIELD_NAME (check_typedef (type), field_num);
6618 return (name != NULL
6619 && (strncmp (name, "PARENT", 6) == 0
6620 || strncmp (name, "_parent", 7) == 0));
6621}
6622
6623/* True iff field number FIELD_NUM of structure type TYPE is a
6624 transparent wrapper field (which should be silently traversed when doing
6625 field selection and flattened when printing). Assumes TYPE is a
6626 structure type with at least FIELD_NUM+1 fields. Such fields are always
6627 structures. */
6628
6629int
6630ada_is_wrapper_field (struct type *type, int field_num)
6631{
6632 const char *name = TYPE_FIELD_NAME (type, field_num);
6633 return (name != NULL
6634 && (strncmp (name, "PARENT", 6) == 0
6635 || strcmp (name, "REP") == 0
6636 || strncmp (name, "_parent", 7) == 0
6637 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6638}
6639
6640/* True iff field number FIELD_NUM of structure or union type TYPE
6641 is a variant wrapper. Assumes TYPE is a structure type with at least
6642 FIELD_NUM+1 fields. */
6643
6644int
6645ada_is_variant_part (struct type *type, int field_num)
6646{
6647 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6648 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6649 || (is_dynamic_field (type, field_num)
6650 && TYPE_CODE (TYPE_TARGET_TYPE (field_type)) ==
6651 TYPE_CODE_UNION));
6652}
6653
6654/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6655 whose discriminants are contained in the record type OUTER_TYPE,
6656 returns the type of the controlling discriminant for the variant. */
6657
6658struct type *
6659ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6660{
6661 char *name = ada_variant_discrim_name (var_type);
6662 struct type *type =
6663 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6664 if (type == NULL)
6665 return builtin_type_int;
6666 else
6667 return type;
6668}
6669
6670/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6671 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6672 represents a 'when others' clause; otherwise 0. */
6673
6674int
6675ada_is_others_clause (struct type *type, int field_num)
6676{
6677 const char *name = TYPE_FIELD_NAME (type, field_num);
6678 return (name != NULL && name[0] == 'O');
6679}
6680
6681/* Assuming that TYPE0 is the type of the variant part of a record,
6682 returns the name of the discriminant controlling the variant.
6683 The value is valid until the next call to ada_variant_discrim_name. */
6684
6685char *
6686ada_variant_discrim_name (struct type *type0)
6687{
6688 static char *result = NULL;
6689 static size_t result_len = 0;
6690 struct type *type;
6691 const char *name;
6692 const char *discrim_end;
6693 const char *discrim_start;
6694
6695 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6696 type = TYPE_TARGET_TYPE (type0);
6697 else
6698 type = type0;
6699
6700 name = ada_type_name (type);
6701
6702 if (name == NULL || name[0] == '\000')
6703 return "";
6704
6705 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6706 discrim_end -= 1)
6707 {
6708 if (strncmp (discrim_end, "___XVN", 6) == 0)
6709 break;
6710 }
6711 if (discrim_end == name)
6712 return "";
6713
6714 for (discrim_start = discrim_end; discrim_start != name + 3;
6715 discrim_start -= 1)
6716 {
6717 if (discrim_start == name + 1)
6718 return "";
6719 if ((discrim_start > name + 3
6720 && strncmp (discrim_start - 3, "___", 3) == 0)
6721 || discrim_start[-1] == '.')
6722 break;
6723 }
6724
6725 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6726 strncpy (result, discrim_start, discrim_end - discrim_start);
6727 result[discrim_end - discrim_start] = '\0';
6728 return result;
6729}
6730
6731/* Scan STR for a subtype-encoded number, beginning at position K.
6732 Put the position of the character just past the number scanned in
6733 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6734 Return 1 if there was a valid number at the given position, and 0
6735 otherwise. A "subtype-encoded" number consists of the absolute value
6736 in decimal, followed by the letter 'm' to indicate a negative number.
6737 Assumes 0m does not occur. */
6738
6739int
6740ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6741{
6742 ULONGEST RU;
6743
6744 if (!isdigit (str[k]))
6745 return 0;
6746
6747 /* Do it the hard way so as not to make any assumption about
6748 the relationship of unsigned long (%lu scan format code) and
6749 LONGEST. */
6750 RU = 0;
6751 while (isdigit (str[k]))
6752 {
6753 RU = RU * 10 + (str[k] - '0');
6754 k += 1;
6755 }
6756
6757 if (str[k] == 'm')
6758 {
6759 if (R != NULL)
6760 *R = (-(LONGEST) (RU - 1)) - 1;
6761 k += 1;
6762 }
6763 else if (R != NULL)
6764 *R = (LONGEST) RU;
6765
6766 /* NOTE on the above: Technically, C does not say what the results of
6767 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6768 number representable as a LONGEST (although either would probably work
6769 in most implementations). When RU>0, the locution in the then branch
6770 above is always equivalent to the negative of RU. */
6771
6772 if (new_k != NULL)
6773 *new_k = k;
6774 return 1;
6775}
6776
6777/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6778 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6779 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6780
6781int
6782ada_in_variant (LONGEST val, struct type *type, int field_num)
6783{
6784 const char *name = TYPE_FIELD_NAME (type, field_num);
6785 int p;
6786
6787 p = 0;
6788 while (1)
6789 {
6790 switch (name[p])
6791 {
6792 case '\0':
6793 return 0;
6794 case 'S':
6795 {
6796 LONGEST W;
6797 if (!ada_scan_number (name, p + 1, &W, &p))
6798 return 0;
6799 if (val == W)
6800 return 1;
6801 break;
6802 }
6803 case 'R':
6804 {
6805 LONGEST L, U;
6806 if (!ada_scan_number (name, p + 1, &L, &p)
6807 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6808 return 0;
6809 if (val >= L && val <= U)
6810 return 1;
6811 break;
6812 }
6813 case 'O':
6814 return 1;
6815 default:
6816 return 0;
6817 }
6818 }
6819}
6820
6821/* FIXME: Lots of redundancy below. Try to consolidate. */
6822
6823/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6824 ARG_TYPE, extract and return the value of one of its (non-static)
6825 fields. FIELDNO says which field. Differs from value_primitive_field
6826 only in that it can handle packed values of arbitrary type. */
6827
6828static struct value *
6829ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6830 struct type *arg_type)
6831{
6832 struct type *type;
6833
6834 CHECK_TYPEDEF (arg_type);
6835 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6836
6837 /* Handle packed fields. */
6838
6839 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6840 {
6841 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6842 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6843
6844 return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1),
6845 offset + bit_pos / 8,
6846 bit_pos % 8, bit_size, type);
6847 }
6848 else
6849 return value_primitive_field (arg1, offset, fieldno, arg_type);
6850}
6851
6852/* Find field with name NAME in object of type TYPE. If found, return 1
6853 after setting *FIELD_TYPE_P to the field's type, *BYTE_OFFSET_P to
6854 OFFSET + the byte offset of the field within an object of that type,
6855 *BIT_OFFSET_P to the bit offset modulo byte size of the field, and
6856 *BIT_SIZE_P to its size in bits if the field is packed, and 0 otherwise.
6857 Looks inside wrappers for the field. Returns 0 if field not
6858 found. */
6859static int
6860find_struct_field (char *name, struct type *type, int offset,
6861 struct type **field_type_p,
6862 int *byte_offset_p, int *bit_offset_p, int *bit_size_p)
6863{
6864 int i;
6865
6866 CHECK_TYPEDEF (type);
6867 *field_type_p = NULL;
6868 *byte_offset_p = *bit_offset_p = *bit_size_p = 0;
6869
6870 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
6871 {
6872 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6873 int fld_offset = offset + bit_pos / 8;
6874 char *t_field_name = TYPE_FIELD_NAME (type, i);
6875
6876 if (t_field_name == NULL)
6877 continue;
6878
6879 else if (field_name_match (t_field_name, name))
6880 {
6881 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6882 *field_type_p = TYPE_FIELD_TYPE (type, i);
6883 *byte_offset_p = fld_offset;
6884 *bit_offset_p = bit_pos % 8;
6885 *bit_size_p = bit_size;
6886 return 1;
6887 }
6888 else if (ada_is_wrapper_field (type, i))
6889 {
6890 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6891 field_type_p, byte_offset_p, bit_offset_p,
6892 bit_size_p))
6893 return 1;
6894 }
6895 else if (ada_is_variant_part (type, i))
6896 {
6897 int j;
6898 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
6899
6900 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6901 {
6902 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6903 fld_offset
6904 + TYPE_FIELD_BITPOS (field_type, j)/8,
6905 field_type_p, byte_offset_p, bit_offset_p,
6906 bit_size_p))
6907 return 1;
6908 }
6909 }
6910 }
6911 return 0;
6912}
6913
6914
6915
6916/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6917 and search in it assuming it has (class) type TYPE.
6918 If found, return value, else return NULL.
6919
6920 Searches recursively through wrapper fields (e.g., '_parent'). */
6921
6922static struct value *
6923ada_search_struct_field (char *name, struct value *arg, int offset,
6924 struct type *type)
6925{
6926 int i;
6927 CHECK_TYPEDEF (type);
6928
6929 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
6930 {
6931 char *t_field_name = TYPE_FIELD_NAME (type, i);
6932
6933 if (t_field_name == NULL)
6934 continue;
6935
6936 else if (field_name_match (t_field_name, name))
6937 return ada_value_primitive_field (arg, offset, i, type);
6938
6939 else if (ada_is_wrapper_field (type, i))
6940 {
6941 struct value *v =
6942 ada_search_struct_field (name, arg,
6943 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6944 TYPE_FIELD_TYPE (type, i));
6945 if (v != NULL)
6946 return v;
6947 }
6948
6949 else if (ada_is_variant_part (type, i))
6950 {
6951 int j;
6952 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
6953 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6954
6955 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6956 {
6957 struct value *v =
6958 ada_search_struct_field (name, arg,
6959 var_offset
6960 + TYPE_FIELD_BITPOS (field_type, j)/8,
6961 TYPE_FIELD_TYPE (field_type, j));
6962 if (v != NULL)
6963 return v;
6964 }
6965 }
6966 }
6967 return NULL;
6968}
6969
6970/* Given ARG, a value of type (pointer or reference to a)*
6971 structure/union, extract the component named NAME from the ultimate
6972 target structure/union and return it as a value with its
6973 appropriate type. If ARG is a pointer or reference and the field
6974 is not packed, returns a reference to the field, otherwise the
6975 value of the field (an lvalue if ARG is an lvalue).
6976
6977 The routine searches for NAME among all members of the structure itself
6978 and (recursively) among all members of any wrapper members
6979 (e.g., '_parent').
6980
6981 ERR is a name (for use in error messages) that identifies the class
6982 of entity that ARG is supposed to be. ERR may be null, indicating
6983 that on error, the function simply returns NULL, and does not
6984 throw an error. (FIXME: True only if ARG is a pointer or reference
6985 at the moment). */
6986
6987struct value *
6988ada_value_struct_elt (struct value *arg, char *name, char *err)
6989{
6990 struct type *t, *t1;
6991 struct value *v;
6992
6993 v = NULL;
6994 t1 = t = check_typedef (VALUE_TYPE (arg));
6995 if (TYPE_CODE (t) == TYPE_CODE_REF)
6996 {
6997 t1 = TYPE_TARGET_TYPE (t);
6998 if (t1 == NULL)
6999 {
7000 if (err == NULL)
7001 return NULL;
7002 else
7003 error ("Bad value type in a %s.", err);
7004 }
7005 CHECK_TYPEDEF (t1);
7006 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7007 {
7008 COERCE_REF (arg);
7009 t = t1;
7010 }
7011 }
7012
7013 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7014 {
7015 t1 = TYPE_TARGET_TYPE (t);
7016 if (t1 == NULL)
7017 {
7018 if (err == NULL)
7019 return NULL;
7020 else
7021 error ("Bad value type in a %s.", err);
7022 }
7023 CHECK_TYPEDEF (t1);
7024 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7025 {
7026 arg = value_ind (arg);
7027 t = t1;
7028 }
7029 else
7030 break;
7031 }
7032
7033 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7034 {
7035 if (err == NULL)
7036 return NULL;
7037 else
7038 error ("Attempt to extract a component of a value that is not a %s.",
7039 err);
7040 }
7041
7042 if (t1 == t)
7043 v = ada_search_struct_field (name, arg, 0, t);
7044 else
7045 {
7046 int bit_offset, bit_size, byte_offset;
7047 struct type *field_type;
7048 CORE_ADDR address;
7049
7050 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7051 address = value_as_address (arg);
7052 else
7053 address = unpack_pointer (t, VALUE_CONTENTS (arg));
7054
7055 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
7056 if (find_struct_field (name, t1, 0,
7057 &field_type, &byte_offset, &bit_offset, &bit_size))
7058 {
7059 if (bit_size != 0)
7060 {
7061 arg = ada_value_ind (arg);
7062 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7063 bit_offset, bit_size,
7064 field_type);
7065 }
7066 else
7067 v = value_from_pointer (lookup_reference_type (field_type),
7068 address + byte_offset);
7069 }
7070 }
7071
7072 if (v == NULL && err != NULL)
7073 error ("There is no member named %s.", name);
7074
7075 return v;
7076}
7077
7078/* Given a type TYPE, look up the type of the component of type named NAME.
7079 If DISPP is non-null, add its byte displacement from the beginning of a
7080 structure (pointed to by a value) of type TYPE to *DISPP (does not
7081 work for packed fields).
7082
7083 Matches any field whose name has NAME as a prefix, possibly
7084 followed by "___".
7085
7086 TYPE can be either a struct or union. If REFOK, TYPE may also
7087 be a (pointer or reference)+ to a struct or union, and the
7088 ultimate target type will be searched.
7089
7090 Looks recursively into variant clauses and parent types.
7091
7092 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7093 TYPE is not a type of the right kind. */
7094
7095static struct type *
7096ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7097 int noerr, int *dispp)
7098{
7099 int i;
7100
7101 if (name == NULL)
7102 goto BadName;
7103
7104 if (refok && type != NULL)
7105 while (1)
7106 {
7107 CHECK_TYPEDEF (type);
7108 if (TYPE_CODE (type) != TYPE_CODE_PTR
7109 && TYPE_CODE (type) != TYPE_CODE_REF)
7110 break;
7111 type = TYPE_TARGET_TYPE (type);
7112 }
7113
7114 if (type == NULL
7115 || (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
7116 TYPE_CODE (type) != TYPE_CODE_UNION))
7117 {
7118 if (noerr)
7119 return NULL;
7120 else
7121 {
7122 target_terminal_ours ();
7123 gdb_flush (gdb_stdout);
7124 fprintf_unfiltered (gdb_stderr, "Type ");
7125 if (type == NULL)
7126 fprintf_unfiltered (gdb_stderr, "(null)");
7127 else
7128 type_print (type, "", gdb_stderr, -1);
7129 error (" is not a structure or union type");
7130 }
7131 }
7132
7133 type = to_static_fixed_type (type);
7134
7135 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7136 {
7137 char *t_field_name = TYPE_FIELD_NAME (type, i);
7138 struct type *t;
7139 int disp;
7140
7141 if (t_field_name == NULL)
7142 continue;
7143
7144 else if (field_name_match (t_field_name, name))
7145 {
7146 if (dispp != NULL)
7147 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7148 return check_typedef (TYPE_FIELD_TYPE (type, i));
7149 }
7150
7151 else if (ada_is_wrapper_field (type, i))
7152 {
7153 disp = 0;
7154 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7155 0, 1, &disp);
7156 if (t != NULL)
7157 {
7158 if (dispp != NULL)
7159 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7160 return t;
7161 }
7162 }
7163
7164 else if (ada_is_variant_part (type, i))
7165 {
7166 int j;
7167 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
7168
7169 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7170 {
7171 disp = 0;
7172 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
7173 name, 0, 1, &disp);
7174 if (t != NULL)
7175 {
7176 if (dispp != NULL)
7177 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7178 return t;
7179 }
7180 }
7181 }
7182
7183 }
7184
7185BadName:
7186 if (!noerr)
7187 {
7188 target_terminal_ours ();
7189 gdb_flush (gdb_stdout);
7190 fprintf_unfiltered (gdb_stderr, "Type ");
7191 type_print (type, "", gdb_stderr, -1);
7192 fprintf_unfiltered (gdb_stderr, " has no component named ");
7193 error ("%s", name == NULL ? "<null>" : name);
7194 }
7195
7196 return NULL;
7197}
7198
7199/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7200 within a value of type OUTER_TYPE that is stored in GDB at
7201 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7202 numbering from 0) is applicable. Returns -1 if none are. */
7203
7204int
7205ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7206 char *outer_valaddr)
7207{
7208 int others_clause;
7209 int i;
7210 int disp;
7211 struct type *discrim_type;
7212 char *discrim_name = ada_variant_discrim_name (var_type);
7213 LONGEST discrim_val;
7214
7215 disp = 0;
7216 discrim_type =
7217 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
7218 if (discrim_type == NULL)
7219 return -1;
7220 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
7221
7222 others_clause = -1;
7223 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7224 {
7225 if (ada_is_others_clause (var_type, i))
7226 others_clause = i;
7227 else if (ada_in_variant (discrim_val, var_type, i))
7228 return i;
7229 }
7230
7231 return others_clause;
7232}
7233\f
7234
7235
7236 /* Dynamic-Sized Records */
7237
7238/* Strategy: The type ostensibly attached to a value with dynamic size
7239 (i.e., a size that is not statically recorded in the debugging
7240 data) does not accurately reflect the size or layout of the value.
7241 Our strategy is to convert these values to values with accurate,
7242 conventional types that are constructed on the fly. */
7243
7244/* There is a subtle and tricky problem here. In general, we cannot
7245 determine the size of dynamic records without its data. However,
7246 the 'struct value' data structure, which GDB uses to represent
7247 quantities in the inferior process (the target), requires the size
7248 of the type at the time of its allocation in order to reserve space
7249 for GDB's internal copy of the data. That's why the
7250 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7251 rather than struct value*s.
7252
7253 However, GDB's internal history variables ($1, $2, etc.) are
7254 struct value*s containing internal copies of the data that are not, in
7255 general, the same as the data at their corresponding addresses in
7256 the target. Fortunately, the types we give to these values are all
7257 conventional, fixed-size types (as per the strategy described
7258 above), so that we don't usually have to perform the
7259 'to_fixed_xxx_type' conversions to look at their values.
7260 Unfortunately, there is one exception: if one of the internal
7261 history variables is an array whose elements are unconstrained
7262 records, then we will need to create distinct fixed types for each
7263 element selected. */
7264
7265/* The upshot of all of this is that many routines take a (type, host
7266 address, target address) triple as arguments to represent a value.
7267 The host address, if non-null, is supposed to contain an internal
7268 copy of the relevant data; otherwise, the program is to consult the
7269 target at the target address. */
7270
7271/* Assuming that VAL0 represents a pointer value, the result of
7272 dereferencing it. Differs from value_ind in its treatment of
7273 dynamic-sized types. */
7274
7275struct value *
7276ada_value_ind (struct value *val0)
7277{
7278 struct value *val = unwrap_value (value_ind (val0));
7279 return ada_to_fixed_value (val);
7280}
7281
7282/* The value resulting from dereferencing any "reference to"
7283 qualifiers on VAL0. */
7284
7285static struct value *
7286ada_coerce_ref (struct value *val0)
7287{
7288 if (TYPE_CODE (VALUE_TYPE (val0)) == TYPE_CODE_REF)
7289 {
7290 struct value *val = val0;
7291 COERCE_REF (val);
7292 val = unwrap_value (val);
7293 return ada_to_fixed_value (val);
7294 }
7295 else
7296 return val0;
7297}
7298
7299/* Return OFF rounded upward if necessary to a multiple of
7300 ALIGNMENT (a power of 2). */
7301
7302static unsigned int
7303align_value (unsigned int off, unsigned int alignment)
7304{
7305 return (off + alignment - 1) & ~(alignment - 1);
7306}
7307
7308/* Return the bit alignment required for field #F of template type TYPE. */
7309
7310static unsigned int
7311field_alignment (struct type *type, int f)
7312{
7313 const char *name = TYPE_FIELD_NAME (type, f);
7314 int len = (name == NULL) ? 0 : strlen (name);
7315 int align_offset;
7316
7317 if (!isdigit (name[len - 1]))
7318 return 1;
7319
7320 if (isdigit (name[len - 2]))
7321 align_offset = len - 2;
7322 else
7323 align_offset = len - 1;
7324
7325 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7326 return TARGET_CHAR_BIT;
7327
7328 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7329}
7330
7331/* Find a symbol named NAME. Ignores ambiguity. */
7332
7333struct symbol *
7334ada_find_any_symbol (const char *name)
7335{
7336 struct symbol *sym;
7337
7338 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7339 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7340 return sym;
7341
7342 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7343 return sym;
7344}
7345
7346/* Find a type named NAME. Ignores ambiguity. */
7347
7348struct type *
7349ada_find_any_type (const char *name)
7350{
7351 struct symbol *sym = ada_find_any_symbol (name);
7352
7353 if (sym != NULL)
7354 return SYMBOL_TYPE (sym);
7355
7356 return NULL;
7357}
7358
7359/* Given a symbol NAME and its associated BLOCK, search all symbols
7360 for its ___XR counterpart, which is the ``renaming'' symbol
7361 associated to NAME. Return this symbol if found, return
7362 NULL otherwise. */
7363
7364struct symbol *
7365ada_find_renaming_symbol (const char *name, struct block *block)
7366{
7367 const struct symbol *function_sym = block_function (block);
7368 char *rename;
7369
7370 if (function_sym != NULL)
7371 {
7372 /* If the symbol is defined inside a function, NAME is not fully
7373 qualified. This means we need to prepend the function name
7374 as well as adding the ``___XR'' suffix to build the name of
7375 the associated renaming symbol. */
7376 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7377 const int function_name_len = strlen (function_name);
7378 const int rename_len = function_name_len
7379 + 2 /* "__" */
7380 + strlen (name)
7381 + 6 /* "___XR\0" */;
7382
7383 /* Library-level functions are a special case, as GNAT adds
7384 a ``_ada_'' prefix to the function name to avoid namespace
7385 pollution. However, the renaming symbol themselves do not
7386 have this prefix, so we need to skip this prefix if present. */
7387 if (function_name_len > 5 /* "_ada_" */
7388 && strstr (function_name, "_ada_") == function_name)
7389 function_name = function_name + 5;
7390
7391 rename = (char *) alloca (rename_len * sizeof (char));
7392 sprintf (rename, "%s__%s___XR", function_name, name);
7393 }
7394 else
7395 {
7396 const int rename_len = strlen (name) + 6;
7397 rename = (char *) alloca (rename_len * sizeof (char));
7398 sprintf (rename, "%s___XR", name);
7399 }
7400
7401 return ada_find_any_symbol (rename);
7402}
7403
7404/* Because of GNAT encoding conventions, several GDB symbols may match a
7405 given type name. If the type denoted by TYPE0 is to be preferred to
7406 that of TYPE1 for purposes of type printing, return non-zero;
7407 otherwise return 0. */
7408
7409int
7410ada_prefer_type (struct type *type0, struct type *type1)
7411{
7412 if (type1 == NULL)
7413 return 1;
7414 else if (type0 == NULL)
7415 return 0;
7416 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7417 return 1;
7418 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7419 return 0;
7420 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7421 return 1;
7422 else if (ada_is_packed_array_type (type0))
7423 return 1;
7424 else if (ada_is_array_descriptor_type (type0)
7425 && !ada_is_array_descriptor_type (type1))
7426 return 1;
7427 else if (ada_renaming_type (type0) != NULL
7428 && ada_renaming_type (type1) == NULL)
7429 return 1;
7430 return 0;
7431}
7432
7433/* The name of TYPE, which is either its TYPE_NAME, or, if that is
7434 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7435
7436char *
7437ada_type_name (struct type *type)
7438{
7439 if (type == NULL)
7440 return NULL;
7441 else if (TYPE_NAME (type) != NULL)
7442 return TYPE_NAME (type);
7443 else
7444 return TYPE_TAG_NAME (type);
7445}
7446
7447/* Find a parallel type to TYPE whose name is formed by appending
7448 SUFFIX to the name of TYPE. */
7449
7450struct type *
7451ada_find_parallel_type (struct type *type, const char *suffix)
7452{
7453 static char *name;
7454 static size_t name_len = 0;
7455 int len;
7456 char *typename = ada_type_name (type);
7457
7458 if (typename == NULL)
7459 return NULL;
7460
7461 len = strlen (typename);
7462
7463 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
7464
7465 strcpy (name, typename);
7466 strcpy (name + len, suffix);
7467
7468 return ada_find_any_type (name);
7469}
7470
7471
7472/* If TYPE is a variable-size record type, return the corresponding template
7473 type describing its fields. Otherwise, return NULL. */
7474
7475static struct type *
7476dynamic_template_type (struct type *type)
7477{
7478 CHECK_TYPEDEF (type);
7479
7480 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7481 || ada_type_name (type) == NULL)
7482 return NULL;
7483 else
7484 {
7485 int len = strlen (ada_type_name (type));
7486 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7487 return type;
7488 else
7489 return ada_find_parallel_type (type, "___XVE");
7490 }
7491}
7492
7493/* Assuming that TEMPL_TYPE is a union or struct type, returns
7494 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7495
7496static int
7497is_dynamic_field (struct type *templ_type, int field_num)
7498{
7499 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7500 return name != NULL
7501 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7502 && strstr (name, "___XVL") != NULL;
7503}
7504
7505/* The index of the variant field of TYPE, or -1 if TYPE does not
7506 represent a variant record type. */
7507
7508static int
7509variant_field_index (struct type *type)
7510{
7511 int f;
7512
7513 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7514 return -1;
7515
7516 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7517 {
7518 if (ada_is_variant_part (type, f))
7519 return f;
7520 }
7521 return -1;
7522}
7523
7524/* A record type with no fields. */
7525
7526static struct type *
7527empty_record (struct objfile *objfile)
7528{
7529 struct type *type = alloc_type (objfile);
7530 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7531 TYPE_NFIELDS (type) = 0;
7532 TYPE_FIELDS (type) = NULL;
7533 TYPE_NAME (type) = "<empty>";
7534 TYPE_TAG_NAME (type) = NULL;
7535 TYPE_FLAGS (type) = 0;
7536 TYPE_LENGTH (type) = 0;
7537 return type;
7538}
7539
7540/* An ordinary record type (with fixed-length fields) that describes
7541 the value of type TYPE at VALADDR or ADDRESS (see comments at
7542 the beginning of this section) VAL according to GNAT conventions.
7543 DVAL0 should describe the (portion of a) record that contains any
7544 necessary discriminants. It should be NULL if VALUE_TYPE (VAL) is
7545 an outer-level type (i.e., as opposed to a branch of a variant.) A
7546 variant field (unless unchecked) is replaced by a particular branch
7547 of the variant.
7548
7549 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7550 length are not statically known are discarded. As a consequence,
7551 VALADDR, ADDRESS and DVAL0 are ignored.
7552
7553 NOTE: Limitations: For now, we assume that dynamic fields and
7554 variants occupy whole numbers of bytes. However, they need not be
7555 byte-aligned. */
7556
7557struct type *
7558ada_template_to_fixed_record_type_1 (struct type *type, char *valaddr,
7559 CORE_ADDR address, struct value *dval0,
7560 int keep_dynamic_fields)
7561{
7562 struct value *mark = value_mark ();
7563 struct value *dval;
7564 struct type *rtype;
7565 int nfields, bit_len;
7566 int variant_field;
7567 long off;
7568 int fld_bit_len, bit_incr;
7569 int f;
7570
7571 /* Compute the number of fields in this record type that are going
7572 to be processed: unless keep_dynamic_fields, this includes only
7573 fields whose position and length are static will be processed. */
7574 if (keep_dynamic_fields)
7575 nfields = TYPE_NFIELDS (type);
7576 else
7577 {
7578 nfields = 0;
7579 while (nfields < TYPE_NFIELDS (type)
7580 && !ada_is_variant_part (type, nfields)
7581 && !is_dynamic_field (type, nfields))
7582 nfields++;
7583 }
7584
7585 rtype = alloc_type (TYPE_OBJFILE (type));
7586 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7587 INIT_CPLUS_SPECIFIC (rtype);
7588 TYPE_NFIELDS (rtype) = nfields;
7589 TYPE_FIELDS (rtype) = (struct field *)
7590 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7591 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7592 TYPE_NAME (rtype) = ada_type_name (type);
7593 TYPE_TAG_NAME (rtype) = NULL;
7594 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7595
7596 off = 0;
7597 bit_len = 0;
7598 variant_field = -1;
7599
7600 for (f = 0; f < nfields; f += 1)
7601 {
7602 off =
7603 align_value (off,
7604 field_alignment (type, f)) + TYPE_FIELD_BITPOS (type, f);
7605 TYPE_FIELD_BITPOS (rtype, f) = off;
7606 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7607
7608 if (ada_is_variant_part (type, f))
7609 {
7610 variant_field = f;
7611 fld_bit_len = bit_incr = 0;
7612 }
7613 else if (is_dynamic_field (type, f))
7614 {
7615 if (dval0 == NULL)
7616 dval = value_from_contents_and_address (rtype, valaddr, address);
7617 else
7618 dval = dval0;
7619
7620 TYPE_FIELD_TYPE (rtype, f) =
7621 ada_to_fixed_type
7622 (ada_get_base_type
7623 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7624 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7625 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7626 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7627 bit_incr = fld_bit_len =
7628 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7629 }
7630 else
7631 {
7632 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7633 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7634 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7635 bit_incr = fld_bit_len =
7636 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7637 else
7638 bit_incr = fld_bit_len =
7639 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7640 }
7641 if (off + fld_bit_len > bit_len)
7642 bit_len = off + fld_bit_len;
7643 off += bit_incr;
7644 TYPE_LENGTH (rtype) =
7645 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7646 }
7647
7648 /* We handle the variant part, if any, at the end because of certain
7649 odd cases in which it is re-ordered so as NOT the last field of
7650 the record. This can happen in the presence of representation
7651 clauses. */
7652 if (variant_field >= 0)
7653 {
7654 struct type *branch_type;
7655
7656 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7657
7658 if (dval0 == NULL)
7659 dval = value_from_contents_and_address (rtype, valaddr, address);
7660 else
7661 dval = dval0;
7662
7663 branch_type =
7664 to_fixed_variant_branch_type
7665 (TYPE_FIELD_TYPE (type, variant_field),
7666 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7667 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7668 if (branch_type == NULL)
7669 {
7670 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7671 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7672 TYPE_NFIELDS (rtype) -= 1;
7673 }
7674 else
7675 {
7676 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7677 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7678 fld_bit_len =
7679 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7680 TARGET_CHAR_BIT;
7681 if (off + fld_bit_len > bit_len)
7682 bit_len = off + fld_bit_len;
7683 TYPE_LENGTH (rtype) =
7684 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7685 }
7686 }
7687
7688 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), TYPE_LENGTH (type));
7689
7690 value_free_to_mark (mark);
7691 if (TYPE_LENGTH (rtype) > varsize_limit)
7692 error ("record type with dynamic size is larger than varsize-limit");
7693 return rtype;
7694}
7695
7696/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7697 of 1. */
7698
7699static struct type *
7700template_to_fixed_record_type (struct type *type, char *valaddr,
7701 CORE_ADDR address, struct value *dval0)
7702{
7703 return ada_template_to_fixed_record_type_1 (type, valaddr,
7704 address, dval0, 1);
7705}
7706
7707/* An ordinary record type in which ___XVL-convention fields and
7708 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7709 static approximations, containing all possible fields. Uses
7710 no runtime values. Useless for use in values, but that's OK,
7711 since the results are used only for type determinations. Works on both
7712 structs and unions. Representation note: to save space, we memorize
7713 the result of this function in the TYPE_TARGET_TYPE of the
7714 template type. */
7715
7716static struct type *
7717template_to_static_fixed_type (struct type *type0)
7718{
7719 struct type *type;
7720 int nfields;
7721 int f;
7722
7723 if (TYPE_TARGET_TYPE (type0) != NULL)
7724 return TYPE_TARGET_TYPE (type0);
7725
7726 nfields = TYPE_NFIELDS (type0);
7727 type = type0;
7728
7729 for (f = 0; f < nfields; f += 1)
7730 {
7731 struct type *field_type = CHECK_TYPEDEF (TYPE_FIELD_TYPE (type0, f));
7732 struct type *new_type;
7733
7734 if (is_dynamic_field (type0, f))
7735 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7736 else
7737 new_type = to_static_fixed_type (field_type);
7738 if (type == type0 && new_type != field_type)
7739 {
7740 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7741 TYPE_CODE (type) = TYPE_CODE (type0);
7742 INIT_CPLUS_SPECIFIC (type);
7743 TYPE_NFIELDS (type) = nfields;
7744 TYPE_FIELDS (type) = (struct field *)
7745 TYPE_ALLOC (type, nfields * sizeof (struct field));
7746 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7747 sizeof (struct field) * nfields);
7748 TYPE_NAME (type) = ada_type_name (type0);
7749 TYPE_TAG_NAME (type) = NULL;
7750 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7751 TYPE_LENGTH (type) = 0;
7752 }
7753 TYPE_FIELD_TYPE (type, f) = new_type;
7754 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7755 }
7756 return type;
7757}
7758
7759/* Given an object of type TYPE whose contents are at VALADDR and
7760 whose address in memory is ADDRESS, returns a revision of TYPE --
7761 a non-dynamic-sized record with a variant part -- in which
7762 the variant part is replaced with the appropriate branch. Looks
7763 for discriminant values in DVAL0, which can be NULL if the record
7764 contains the necessary discriminant values. */
7765
7766static struct type *
7767to_record_with_fixed_variant_part (struct type *type, char *valaddr,
7768 CORE_ADDR address, struct value *dval0)
7769{
7770 struct value *mark = value_mark ();
7771 struct value *dval;
7772 struct type *rtype;
7773 struct type *branch_type;
7774 int nfields = TYPE_NFIELDS (type);
7775 int variant_field = variant_field_index (type);
7776
7777 if (variant_field == -1)
7778 return type;
7779
7780 if (dval0 == NULL)
7781 dval = value_from_contents_and_address (type, valaddr, address);
7782 else
7783 dval = dval0;
7784
7785 rtype = alloc_type (TYPE_OBJFILE (type));
7786 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7787 INIT_CPLUS_SPECIFIC (rtype);
7788 TYPE_NFIELDS (rtype) = nfields;
7789 TYPE_FIELDS (rtype) =
7790 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7791 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7792 sizeof (struct field) * nfields);
7793 TYPE_NAME (rtype) = ada_type_name (type);
7794 TYPE_TAG_NAME (rtype) = NULL;
7795 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7796 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7797
7798 branch_type = to_fixed_variant_branch_type
7799 (TYPE_FIELD_TYPE (type, variant_field),
7800 cond_offset_host (valaddr,
7801 TYPE_FIELD_BITPOS (type, variant_field)
7802 / TARGET_CHAR_BIT),
7803 cond_offset_target (address,
7804 TYPE_FIELD_BITPOS (type, variant_field)
7805 / TARGET_CHAR_BIT), dval);
7806 if (branch_type == NULL)
7807 {
7808 int f;
7809 for (f = variant_field + 1; f < nfields; f += 1)
7810 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7811 TYPE_NFIELDS (rtype) -= 1;
7812 }
7813 else
7814 {
7815 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7816 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7817 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7818 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7819 }
7820 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7821
7822 value_free_to_mark (mark);
7823 return rtype;
7824}
7825
7826/* An ordinary record type (with fixed-length fields) that describes
7827 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7828 beginning of this section]. Any necessary discriminants' values
7829 should be in DVAL, a record value; it may be NULL if the object
7830 at ADDR itself contains any necessary discriminant values.
7831 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7832 values from the record are needed. Except in the case that DVAL,
7833 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7834 unchecked) is replaced by a particular branch of the variant.
7835
7836 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7837 is questionable and may be removed. It can arise during the
7838 processing of an unconstrained-array-of-record type where all the
7839 variant branches have exactly the same size. This is because in
7840 such cases, the compiler does not bother to use the XVS convention
7841 when encoding the record. I am currently dubious of this
7842 shortcut and suspect the compiler should be altered. FIXME. */
7843
7844static struct type *
7845to_fixed_record_type (struct type *type0, char *valaddr,
7846 CORE_ADDR address, struct value *dval)
7847{
7848 struct type *templ_type;
7849
7850 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7851 return type0;
7852
7853 templ_type = dynamic_template_type (type0);
7854
7855 if (templ_type != NULL)
7856 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7857 else if (variant_field_index (type0) >= 0)
7858 {
7859 if (dval == NULL && valaddr == NULL && address == 0)
7860 return type0;
7861 return to_record_with_fixed_variant_part (type0, valaddr, address,
7862 dval);
7863 }
7864 else
7865 {
7866 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7867 return type0;
7868 }
7869
7870}
7871
7872/* An ordinary record type (with fixed-length fields) that describes
7873 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7874 union type. Any necessary discriminants' values should be in DVAL,
7875 a record value. That is, this routine selects the appropriate
7876 branch of the union at ADDR according to the discriminant value
7877 indicated in the union's type name. */
7878
7879static struct type *
7880to_fixed_variant_branch_type (struct type *var_type0, char *valaddr,
7881 CORE_ADDR address, struct value *dval)
7882{
7883 int which;
7884 struct type *templ_type;
7885 struct type *var_type;
7886
7887 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7888 var_type = TYPE_TARGET_TYPE (var_type0);
7889 else
7890 var_type = var_type0;
7891
7892 templ_type = ada_find_parallel_type (var_type, "___XVU");
7893
7894 if (templ_type != NULL)
7895 var_type = templ_type;
7896
7897 which =
7898 ada_which_variant_applies (var_type,
7899 VALUE_TYPE (dval), VALUE_CONTENTS (dval));
7900
7901 if (which < 0)
7902 return empty_record (TYPE_OBJFILE (var_type));
7903 else if (is_dynamic_field (var_type, which))
7904 return to_fixed_record_type
7905 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7906 valaddr, address, dval);
7907 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7908 return
7909 to_fixed_record_type
7910 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7911 else
7912 return TYPE_FIELD_TYPE (var_type, which);
7913}
7914
7915/* Assuming that TYPE0 is an array type describing the type of a value
7916 at ADDR, and that DVAL describes a record containing any
7917 discriminants used in TYPE0, returns a type for the value that
7918 contains no dynamic components (that is, no components whose sizes
7919 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7920 true, gives an error message if the resulting type's size is over
7921 varsize_limit. */
7922
7923static struct type *
7924to_fixed_array_type (struct type *type0, struct value *dval,
7925 int ignore_too_big)
7926{
7927 struct type *index_type_desc;
7928 struct type *result;
7929
7930 if (ada_is_packed_array_type (type0) /* revisit? */
7931 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7932 return type0;
7933
7934 index_type_desc = ada_find_parallel_type (type0, "___XA");
7935 if (index_type_desc == NULL)
7936 {
7937 struct type *elt_type0 = check_typedef (TYPE_TARGET_TYPE (type0));
7938 /* NOTE: elt_type---the fixed version of elt_type0---should never
7939 depend on the contents of the array in properly constructed
7940 debugging data. */
7941 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
7942
7943 if (elt_type0 == elt_type)
7944 result = type0;
7945 else
7946 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7947 elt_type, TYPE_INDEX_TYPE (type0));
7948 }
7949 else
7950 {
7951 int i;
7952 struct type *elt_type0;
7953
7954 elt_type0 = type0;
7955 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7956 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7957
7958 /* NOTE: result---the fixed version of elt_type0---should never
7959 depend on the contents of the array in properly constructed
7960 debugging data. */
7961 result = ada_to_fixed_type (check_typedef (elt_type0), 0, 0, dval);
7962 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7963 {
7964 struct type *range_type =
7965 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7966 dval, TYPE_OBJFILE (type0));
7967 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7968 result, range_type);
7969 }
7970 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7971 error ("array type with dynamic size is larger than varsize-limit");
7972 }
7973
7974 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7975 return result;
7976}
7977
7978
7979/* A standard type (containing no dynamically sized components)
7980 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7981 DVAL describes a record containing any discriminants used in TYPE0,
7982 and may be NULL if there are none, or if the object of type TYPE at
7983 ADDRESS or in VALADDR contains these discriminants. */
7984
7985struct type *
7986ada_to_fixed_type (struct type *type, char *valaddr,
7987 CORE_ADDR address, struct value *dval)
7988{
7989 CHECK_TYPEDEF (type);
7990 switch (TYPE_CODE (type))
7991 {
7992 default:
7993 return type;
7994 case TYPE_CODE_STRUCT:
7995 {
7996 struct type *static_type = to_static_fixed_type (type);
7997 if (ada_is_tagged_type (static_type, 0))
7998 {
7999 struct type *real_type =
8000 type_from_tag (value_tag_from_contents_and_address (static_type,
8001 valaddr,
8002 address));
8003 if (real_type != NULL)
8004 type = real_type;
8005 }
8006 return to_fixed_record_type (type, valaddr, address, NULL);
8007 }
8008 case TYPE_CODE_ARRAY:
8009 return to_fixed_array_type (type, dval, 1);
8010 case TYPE_CODE_UNION:
8011 if (dval == NULL)
8012 return type;
8013 else
8014 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8015 }
8016}
8017
8018/* A standard (static-sized) type corresponding as well as possible to
8019 TYPE0, but based on no runtime data. */
8020
8021static struct type *
8022to_static_fixed_type (struct type *type0)
8023{
8024 struct type *type;
8025
8026 if (type0 == NULL)
8027 return NULL;
8028
8029 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
8030 return type0;
8031
8032 CHECK_TYPEDEF (type0);
8033
8034 switch (TYPE_CODE (type0))
8035 {
8036 default:
8037 return type0;
8038 case TYPE_CODE_STRUCT:
8039 type = dynamic_template_type (type0);
8040 if (type != NULL)
8041 return template_to_static_fixed_type (type);
8042 else
8043 return template_to_static_fixed_type (type0);
8044 case TYPE_CODE_UNION:
8045 type = ada_find_parallel_type (type0, "___XVU");
8046 if (type != NULL)
8047 return template_to_static_fixed_type (type);
8048 else
8049 return template_to_static_fixed_type (type0);
8050 }
8051}
8052
8053/* A static approximation of TYPE with all type wrappers removed. */
8054
8055static struct type *
8056static_unwrap_type (struct type *type)
8057{
8058 if (ada_is_aligner_type (type))
8059 {
8060 struct type *type1 = TYPE_FIELD_TYPE (check_typedef (type), 0);
8061 if (ada_type_name (type1) == NULL)
8062 TYPE_NAME (type1) = ada_type_name (type);
8063
8064 return static_unwrap_type (type1);
8065 }
8066 else
8067 {
8068 struct type *raw_real_type = ada_get_base_type (type);
8069 if (raw_real_type == type)
8070 return type;
8071 else
8072 return to_static_fixed_type (raw_real_type);
8073 }
8074}
8075
8076/* In some cases, incomplete and private types require
8077 cross-references that are not resolved as records (for example,
8078 type Foo;
8079 type FooP is access Foo;
8080 V: FooP;
8081 type Foo is array ...;
8082 ). In these cases, since there is no mechanism for producing
8083 cross-references to such types, we instead substitute for FooP a
8084 stub enumeration type that is nowhere resolved, and whose tag is
8085 the name of the actual type. Call these types "non-record stubs". */
8086
8087/* A type equivalent to TYPE that is not a non-record stub, if one
8088 exists, otherwise TYPE. */
8089
8090struct type *
8091ada_completed_type (struct type *type)
8092{
8093 CHECK_TYPEDEF (type);
8094 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8095 || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
8096 || TYPE_TAG_NAME (type) == NULL)
8097 return type;
8098 else
8099 {
8100 char *name = TYPE_TAG_NAME (type);
8101 struct type *type1 = ada_find_any_type (name);
8102 return (type1 == NULL) ? type : type1;
8103 }
8104}
8105
8106/* A value representing the data at VALADDR/ADDRESS as described by
8107 type TYPE0, but with a standard (static-sized) type that correctly
8108 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8109 type, then return VAL0 [this feature is simply to avoid redundant
8110 creation of struct values]. */
8111
8112static struct value *
8113ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8114 struct value *val0)
8115{
8116 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
8117 if (type == type0 && val0 != NULL)
8118 return val0;
8119 else
8120 return value_from_contents_and_address (type, 0, address);
8121}
8122
8123/* A value representing VAL, but with a standard (static-sized) type
8124 that correctly describes it. Does not necessarily create a new
8125 value. */
8126
8127static struct value *
8128ada_to_fixed_value (struct value *val)
8129{
8130 return ada_to_fixed_value_create (VALUE_TYPE (val),
8131 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
8132 val);
8133}
8134
8135/* If the PC is pointing inside a function prologue, then re-adjust it
8136 past this prologue. */
8137
8138static void
8139adjust_pc_past_prologue (CORE_ADDR *pc)
8140{
8141 struct symbol *func_sym = find_pc_function (*pc);
8142
8143 if (func_sym)
8144 {
8145 const struct symtab_and_line sal = find_function_start_sal (func_sym, 1);
8146
8147 if (*pc <= sal.pc)
8148 *pc = sal.pc;
8149 }
8150}
8151
8152/* A value representing VAL, but with a standard (static-sized) type
8153 chosen to approximate the real type of VAL as well as possible, but
8154 without consulting any runtime values. For Ada dynamic-sized
8155 types, therefore, the type of the result is likely to be inaccurate. */
8156
8157struct value *
8158ada_to_static_fixed_value (struct value *val)
8159{
8160 struct type *type =
8161 to_static_fixed_type (static_unwrap_type (VALUE_TYPE (val)));
8162 if (type == VALUE_TYPE (val))
8163 return val;
8164 else
8165 return coerce_unspec_val_to_type (val, type);
8166}
8167\f
8168
8169/* Attributes */
8170
8171/* Table mapping attribute numbers to names.
8172 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8173
8174static const char *attribute_names[] = {
8175 "<?>",
8176
8177 "first",
8178 "last",
8179 "length",
8180 "image",
8181 "max",
8182 "min",
8183 "modulus",
8184 "pos",
8185 "size",
8186 "tag",
8187 "val",
8188 0
8189};
8190
8191const char *
8192ada_attribute_name (enum exp_opcode n)
8193{
8194 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8195 return attribute_names[n - OP_ATR_FIRST + 1];
8196 else
8197 return attribute_names[0];
8198}
8199
8200/* Evaluate the 'POS attribute applied to ARG. */
8201
8202static LONGEST
8203pos_atr (struct value *arg)
8204{
8205 struct type *type = VALUE_TYPE (arg);
8206
8207 if (!discrete_type_p (type))
8208 error ("'POS only defined on discrete types");
8209
8210 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8211 {
8212 int i;
8213 LONGEST v = value_as_long (arg);
8214
8215 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8216 {
8217 if (v == TYPE_FIELD_BITPOS (type, i))
8218 return i;
8219 }
8220 error ("enumeration value is invalid: can't find 'POS");
8221 }
8222 else
8223 return value_as_long (arg);
8224}
8225
8226static struct value *
8227value_pos_atr (struct value *arg)
8228{
8229 return value_from_longest (builtin_type_ada_int, pos_atr (arg));
8230}
8231
8232/* Evaluate the TYPE'VAL attribute applied to ARG. */
8233
8234static struct value *
8235value_val_atr (struct type *type, struct value *arg)
8236{
8237 if (!discrete_type_p (type))
8238 error ("'VAL only defined on discrete types");
8239 if (!integer_type_p (VALUE_TYPE (arg)))
8240 error ("'VAL requires integral argument");
8241
8242 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8243 {
8244 long pos = value_as_long (arg);
8245 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8246 error ("argument to 'VAL out of range");
8247 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8248 }
8249 else
8250 return value_from_longest (type, value_as_long (arg));
8251}
8252\f
8253
8254 /* Evaluation */
8255
8256/* True if TYPE appears to be an Ada character type.
8257 [At the moment, this is true only for Character and Wide_Character;
8258 It is a heuristic test that could stand improvement]. */
8259
8260int
8261ada_is_character_type (struct type *type)
8262{
8263 const char *name = ada_type_name (type);
8264 return
8265 name != NULL
8266 && (TYPE_CODE (type) == TYPE_CODE_CHAR
8267 || TYPE_CODE (type) == TYPE_CODE_INT
8268 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8269 && (strcmp (name, "character") == 0
8270 || strcmp (name, "wide_character") == 0
8271 || strcmp (name, "unsigned char") == 0);
8272}
8273
8274/* True if TYPE appears to be an Ada string type. */
8275
8276int
8277ada_is_string_type (struct type *type)
8278{
8279 CHECK_TYPEDEF (type);
8280 if (type != NULL
8281 && TYPE_CODE (type) != TYPE_CODE_PTR
8282 && (ada_is_simple_array_type (type) || ada_is_array_descriptor_type (type))
8283 && ada_array_arity (type) == 1)
8284 {
8285 struct type *elttype = ada_array_element_type (type, 1);
8286
8287 return ada_is_character_type (elttype);
8288 }
8289 else
8290 return 0;
8291}
8292
8293
8294/* True if TYPE is a struct type introduced by the compiler to force the
8295 alignment of a value. Such types have a single field with a
8296 distinctive name. */
8297
8298int
8299ada_is_aligner_type (struct type *type)
8300{
8301 CHECK_TYPEDEF (type);
8302 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8303 && TYPE_NFIELDS (type) == 1
8304 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8305}
8306
8307/* If there is an ___XVS-convention type parallel to SUBTYPE, return
8308 the parallel type. */
8309
8310struct type *
8311ada_get_base_type (struct type *raw_type)
8312{
8313 struct type *real_type_namer;
8314 struct type *raw_real_type;
8315
8316 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8317 return raw_type;
8318
8319 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8320 if (real_type_namer == NULL
8321 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8322 || TYPE_NFIELDS (real_type_namer) != 1)
8323 return raw_type;
8324
8325 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8326 if (raw_real_type == NULL)
8327 return raw_type;
8328 else
8329 return raw_real_type;
8330}
8331
8332/* The type of value designated by TYPE, with all aligners removed. */
8333
8334struct type *
8335ada_aligned_type (struct type *type)
8336{
8337 if (ada_is_aligner_type (type))
8338 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8339 else
8340 return ada_get_base_type (type);
8341}
8342
8343
8344/* The address of the aligned value in an object at address VALADDR
8345 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8346
8347char *
8348ada_aligned_value_addr (struct type *type, char *valaddr)
8349{
8350 if (ada_is_aligner_type (type))
8351 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8352 valaddr +
8353 TYPE_FIELD_BITPOS (type,
8354 0) / TARGET_CHAR_BIT);
8355 else
8356 return valaddr;
8357}
8358
8359
8360
8361/* The printed representation of an enumeration literal with encoded
8362 name NAME. The value is good to the next call of ada_enum_name. */
8363const char *
8364ada_enum_name (const char *name)
8365{
8366 static char *result;
8367 static size_t result_len = 0;
8368 char *tmp;
8369
8370 /* First, unqualify the enumeration name:
8371 1. Search for the last '.' character. If we find one, then skip
8372 all the preceeding characters, the unqualified name starts
8373 right after that dot.
8374 2. Otherwise, we may be debugging on a target where the compiler
8375 translates dots into "__". Search forward for double underscores,
8376 but stop searching when we hit an overloading suffix, which is
8377 of the form "__" followed by digits. */
8378
8379 if ((tmp = strrchr (name, '.')) != NULL)
8380 name = tmp + 1;
8381 else
8382 {
8383 while ((tmp = strstr (name, "__")) != NULL)
8384 {
8385 if (isdigit (tmp[2]))
8386 break;
8387 else
8388 name = tmp + 2;
8389 }
8390 }
8391
8392 if (name[0] == 'Q')
8393 {
8394 int v;
8395 if (name[1] == 'U' || name[1] == 'W')
8396 {
8397 if (sscanf (name + 2, "%x", &v) != 1)
8398 return name;
8399 }
8400 else
8401 return name;
8402
8403 GROW_VECT (result, result_len, 16);
8404 if (isascii (v) && isprint (v))
8405 sprintf (result, "'%c'", v);
8406 else if (name[1] == 'U')
8407 sprintf (result, "[\"%02x\"]", v);
8408 else
8409 sprintf (result, "[\"%04x\"]", v);
8410
8411 return result;
8412 }
8413 else
8414 {
8415 if ((tmp = strstr (name, "__")) != NULL
8416 || (tmp = strstr (name, "$")) != NULL)
8417 {
8418 GROW_VECT (result, result_len, tmp - name + 1);
8419 strncpy (result, name, tmp - name);
8420 result[tmp - name] = '\0';
8421 return result;
8422 }
8423
8424 return name;
8425 }
8426}
8427
8428static struct value *
8429evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
8430 enum noside noside)
8431{
8432 return (*exp->language_defn->la_exp_desc->evaluate_exp)
8433 (expect_type, exp, pos, noside);
8434}
8435
8436/* Evaluate the subexpression of EXP starting at *POS as for
8437 evaluate_type, updating *POS to point just past the evaluated
8438 expression. */
8439
8440static struct value *
8441evaluate_subexp_type (struct expression *exp, int *pos)
8442{
8443 return (*exp->language_defn->la_exp_desc->evaluate_exp)
8444 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8445}
8446
8447/* If VAL is wrapped in an aligner or subtype wrapper, return the
8448 value it wraps. */
8449
8450static struct value *
8451unwrap_value (struct value *val)
8452{
8453 struct type *type = check_typedef (VALUE_TYPE (val));
8454 if (ada_is_aligner_type (type))
8455 {
8456 struct value *v = value_struct_elt (&val, NULL, "F",
8457 NULL, "internal structure");
8458 struct type *val_type = check_typedef (VALUE_TYPE (v));
8459 if (ada_type_name (val_type) == NULL)
8460 TYPE_NAME (val_type) = ada_type_name (type);
8461
8462 return unwrap_value (v);
8463 }
8464 else
8465 {
8466 struct type *raw_real_type =
8467 ada_completed_type (ada_get_base_type (type));
8468
8469 if (type == raw_real_type)
8470 return val;
8471
8472 return
8473 coerce_unspec_val_to_type
8474 (val, ada_to_fixed_type (raw_real_type, 0,
8475 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
8476 NULL));
8477 }
8478}
8479
8480static struct value *
8481cast_to_fixed (struct type *type, struct value *arg)
8482{
8483 LONGEST val;
8484
8485 if (type == VALUE_TYPE (arg))
8486 return arg;
8487 else if (ada_is_fixed_point_type (VALUE_TYPE (arg)))
8488 val = ada_float_to_fixed (type,
8489 ada_fixed_to_float (VALUE_TYPE (arg),
8490 value_as_long (arg)));
8491 else
8492 {
8493 DOUBLEST argd =
8494 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
8495 val = ada_float_to_fixed (type, argd);
8496 }
8497
8498 return value_from_longest (type, val);
8499}
8500
8501static struct value *
8502cast_from_fixed_to_double (struct value *arg)
8503{
8504 DOUBLEST val = ada_fixed_to_float (VALUE_TYPE (arg),
8505 value_as_long (arg));
8506 return value_from_double (builtin_type_double, val);
8507}
8508
8509/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8510 return the converted value. */
8511
8512static struct value *
8513coerce_for_assign (struct type *type, struct value *val)
8514{
8515 struct type *type2 = VALUE_TYPE (val);
8516 if (type == type2)
8517 return val;
8518
8519 CHECK_TYPEDEF (type2);
8520 CHECK_TYPEDEF (type);
8521
8522 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8523 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8524 {
8525 val = ada_value_ind (val);
8526 type2 = VALUE_TYPE (val);
8527 }
8528
8529 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8530 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8531 {
8532 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8533 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8534 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8535 error ("Incompatible types in assignment");
8536 VALUE_TYPE (val) = type;
8537 }
8538 return val;
8539}
8540
8541static struct value *
8542ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8543{
8544 struct value *val;
8545 struct type *type1, *type2;
8546 LONGEST v, v1, v2;
8547
8548 COERCE_REF (arg1);
8549 COERCE_REF (arg2);
8550 type1 = base_type (check_typedef (VALUE_TYPE (arg1)));
8551 type2 = base_type (check_typedef (VALUE_TYPE (arg2)));
8552
8553 if (TYPE_CODE (type1) != TYPE_CODE_INT || TYPE_CODE (type2) != TYPE_CODE_INT)
8554 return value_binop (arg1, arg2, op);
8555
8556 switch (op)
8557 {
8558 case BINOP_MOD:
8559 case BINOP_DIV:
8560 case BINOP_REM:
8561 break;
8562 default:
8563 return value_binop (arg1, arg2, op);
8564 }
8565
8566 v2 = value_as_long (arg2);
8567 if (v2 == 0)
8568 error ("second operand of %s must not be zero.", op_string (op));
8569
8570 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8571 return value_binop (arg1, arg2, op);
8572
8573 v1 = value_as_long (arg1);
8574 switch (op)
8575 {
8576 case BINOP_DIV:
8577 v = v1 / v2;
8578 if (! TRUNCATION_TOWARDS_ZERO && v1 * (v1%v2) < 0)
8579 v += v > 0 ? -1 : 1;
8580 break;
8581 case BINOP_REM:
8582 v = v1 % v2;
8583 if (v*v1 < 0)
8584 v -= v2;
8585 break;
8586 default:
8587 /* Should not reach this point. */
8588 v = 0;
8589 }
8590
8591 val = allocate_value (type1);
8592 store_unsigned_integer (VALUE_CONTENTS_RAW (val),
8593 TYPE_LENGTH (VALUE_TYPE (val)),
8594 v);
8595 return val;
8596}
8597
8598static int
8599ada_value_equal (struct value *arg1, struct value *arg2)
8600{
8601 if (ada_is_direct_array_type (VALUE_TYPE (arg1))
8602 || ada_is_direct_array_type (VALUE_TYPE (arg2)))
8603 {
8604 arg1 = ada_coerce_to_simple_array (arg1);
8605 arg2 = ada_coerce_to_simple_array (arg2);
8606 if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_ARRAY
8607 || TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ARRAY)
8608 error ("Attempt to compare array with non-array");
8609 /* FIXME: The following works only for types whose
8610 representations use all bits (no padding or undefined bits)
8611 and do not have user-defined equality. */
8612 return
8613 TYPE_LENGTH (VALUE_TYPE (arg1)) == TYPE_LENGTH (VALUE_TYPE (arg2))
8614 && memcmp (VALUE_CONTENTS (arg1), VALUE_CONTENTS (arg2),
8615 TYPE_LENGTH (VALUE_TYPE (arg1))) == 0;
8616 }
8617 return value_equal (arg1, arg2);
8618}
8619
8620struct value *
8621ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8622 int *pos, enum noside noside)
8623{
8624 enum exp_opcode op;
8625 int tem, tem2, tem3;
8626 int pc;
8627 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8628 struct type *type;
8629 int nargs;
8630 struct value **argvec;
8631
8632 pc = *pos;
8633 *pos += 1;
8634 op = exp->elts[pc].opcode;
8635
8636 switch (op)
8637 {
8638 default:
8639 *pos -= 1;
8640 return
8641 unwrap_value (evaluate_subexp_standard
8642 (expect_type, exp, pos, noside));
8643
8644 case OP_STRING:
8645 {
8646 struct value *result;
8647 *pos -= 1;
8648 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8649 /* The result type will have code OP_STRING, bashed there from
8650 OP_ARRAY. Bash it back. */
8651 if (TYPE_CODE (VALUE_TYPE (result)) == TYPE_CODE_STRING)
8652 TYPE_CODE (VALUE_TYPE (result)) = TYPE_CODE_ARRAY;
8653 return result;
8654 }
8655
8656 case UNOP_CAST:
8657 (*pos) += 2;
8658 type = exp->elts[pc + 1].type;
8659 arg1 = evaluate_subexp (type, exp, pos, noside);
8660 if (noside == EVAL_SKIP)
8661 goto nosideret;
8662 if (type != check_typedef (VALUE_TYPE (arg1)))
8663 {
8664 if (ada_is_fixed_point_type (type))
8665 arg1 = cast_to_fixed (type, arg1);
8666 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
8667 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
8668 else if (VALUE_LVAL (arg1) == lval_memory)
8669 {
8670 /* This is in case of the really obscure (and undocumented,
8671 but apparently expected) case of (Foo) Bar.all, where Bar
8672 is an integer constant and Foo is a dynamic-sized type.
8673 If we don't do this, ARG1 will simply be relabeled with
8674 TYPE. */
8675 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8676 return value_zero (to_static_fixed_type (type), not_lval);
8677 arg1 =
8678 ada_to_fixed_value_create
8679 (type, VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), 0);
8680 }
8681 else
8682 arg1 = value_cast (type, arg1);
8683 }
8684 return arg1;
8685
8686 case UNOP_QUAL:
8687 (*pos) += 2;
8688 type = exp->elts[pc + 1].type;
8689 return ada_evaluate_subexp (type, exp, pos, noside);
8690
8691 case BINOP_ASSIGN:
8692 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8693 arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
8694 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8695 return arg1;
8696 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
8697 arg2 = cast_to_fixed (VALUE_TYPE (arg1), arg2);
8698 else if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
8699 error
8700 ("Fixed-point values must be assigned to fixed-point variables");
8701 else
8702 arg2 = coerce_for_assign (VALUE_TYPE (arg1), arg2);
8703 return ada_value_assign (arg1, arg2);
8704
8705 case BINOP_ADD:
8706 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8707 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8708 if (noside == EVAL_SKIP)
8709 goto nosideret;
8710 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
8711 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
8712 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
8713 error
8714 ("Operands of fixed-point addition must have the same type");
8715 return value_cast (VALUE_TYPE (arg1), value_add (arg1, arg2));
8716
8717 case BINOP_SUB:
8718 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8719 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8720 if (noside == EVAL_SKIP)
8721 goto nosideret;
8722 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
8723 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
8724 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
8725 error
8726 ("Operands of fixed-point subtraction must have the same type");
8727 return value_cast (VALUE_TYPE (arg1), value_sub (arg1, arg2));
8728
8729 case BINOP_MUL:
8730 case BINOP_DIV:
8731 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8732 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8733 if (noside == EVAL_SKIP)
8734 goto nosideret;
8735 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8736 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8737 return value_zero (VALUE_TYPE (arg1), not_lval);
8738 else
8739 {
8740 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
8741 arg1 = cast_from_fixed_to_double (arg1);
8742 if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
8743 arg2 = cast_from_fixed_to_double (arg2);
8744 return ada_value_binop (arg1, arg2, op);
8745 }
8746
8747 case BINOP_REM:
8748 case BINOP_MOD:
8749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8750 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8751 if (noside == EVAL_SKIP)
8752 goto nosideret;
8753 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8754 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8755 return value_zero (VALUE_TYPE (arg1), not_lval);
8756 else
8757 return ada_value_binop (arg1, arg2, op);
8758
8759 case BINOP_EQUAL:
8760 case BINOP_NOTEQUAL:
8761 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8762 arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
8763 if (noside == EVAL_SKIP)
8764 goto nosideret;
8765 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8766 tem = 0;
8767 else
8768 tem = ada_value_equal (arg1, arg2);
8769 if (op == BINOP_NOTEQUAL)
8770 tem = ! tem;
8771 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8772
8773 case UNOP_NEG:
8774 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8775 if (noside == EVAL_SKIP)
8776 goto nosideret;
8777 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
8778 return value_cast (VALUE_TYPE (arg1), value_neg (arg1));
8779 else
8780 return value_neg (arg1);
8781
8782 case OP_VAR_VALUE:
8783 *pos -= 1;
8784 if (noside == EVAL_SKIP)
8785 {
8786 *pos += 4;
8787 goto nosideret;
8788 }
8789 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8790 /* Only encountered when an unresolved symbol occurs in a
8791 context other than a function call, in which case, it is
8792 illegal. */
8793 error ("Unexpected unresolved symbol, %s, during evaluation",
8794 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8795 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8796 {
8797 *pos += 4;
8798 return value_zero
8799 (to_static_fixed_type
8800 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8801 not_lval);
8802 }
8803 else
8804 {
8805 arg1 =
8806 unwrap_value (evaluate_subexp_standard
8807 (expect_type, exp, pos, noside));
8808 return ada_to_fixed_value (arg1);
8809 }
8810
8811 case OP_FUNCALL:
8812 (*pos) += 2;
8813
8814 /* Allocate arg vector, including space for the function to be
8815 called in argvec[0] and a terminating NULL. */
8816 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8817 argvec =
8818 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8819
8820 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8821 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8822 error ("Unexpected unresolved symbol, %s, during evaluation",
8823 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8824 else
8825 {
8826 for (tem = 0; tem <= nargs; tem += 1)
8827 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8828 argvec[tem] = 0;
8829
8830 if (noside == EVAL_SKIP)
8831 goto nosideret;
8832 }
8833
8834 if (ada_is_packed_array_type (desc_base_type (VALUE_TYPE (argvec[0]))))
8835 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8836 else if (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_REF
8837 || (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_ARRAY
8838 && VALUE_LVAL (argvec[0]) == lval_memory))
8839 argvec[0] = value_addr (argvec[0]);
8840
8841 type = check_typedef (VALUE_TYPE (argvec[0]));
8842 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8843 {
8844 switch (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (type))))
8845 {
8846 case TYPE_CODE_FUNC:
8847 type = check_typedef (TYPE_TARGET_TYPE (type));
8848 break;
8849 case TYPE_CODE_ARRAY:
8850 break;
8851 case TYPE_CODE_STRUCT:
8852 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8853 argvec[0] = ada_value_ind (argvec[0]);
8854 type = check_typedef (TYPE_TARGET_TYPE (type));
8855 break;
8856 default:
8857 error ("cannot subscript or call something of type `%s'",
8858 ada_type_name (VALUE_TYPE (argvec[0])));
8859 break;
8860 }
8861 }
8862
8863 switch (TYPE_CODE (type))
8864 {
8865 case TYPE_CODE_FUNC:
8866 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8867 return allocate_value (TYPE_TARGET_TYPE (type));
8868 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8869 case TYPE_CODE_STRUCT:
8870 {
8871 int arity;
8872
8873 /* Make sure to use the parallel ___XVS type if any.
8874 Otherwise, we won't be able to find the array arity
8875 and element type. */
8876 type = ada_get_base_type (type);
8877
8878 arity = ada_array_arity (type);
8879 type = ada_array_element_type (type, nargs);
8880 if (type == NULL)
8881 error ("cannot subscript or call a record");
8882 if (arity != nargs)
8883 error ("wrong number of subscripts; expecting %d", arity);
8884 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8885 return allocate_value (ada_aligned_type (type));
8886 return
8887 unwrap_value (ada_value_subscript
8888 (argvec[0], nargs, argvec + 1));
8889 }
8890 case TYPE_CODE_ARRAY:
8891 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8892 {
8893 type = ada_array_element_type (type, nargs);
8894 if (type == NULL)
8895 error ("element type of array unknown");
8896 else
8897 return allocate_value (ada_aligned_type (type));
8898 }
8899 return
8900 unwrap_value (ada_value_subscript
8901 (ada_coerce_to_simple_array (argvec[0]),
8902 nargs, argvec + 1));
8903 case TYPE_CODE_PTR: /* Pointer to array */
8904 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8905 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8906 {
8907 type = ada_array_element_type (type, nargs);
8908 if (type == NULL)
8909 error ("element type of array unknown");
8910 else
8911 return allocate_value (ada_aligned_type (type));
8912 }
8913 return
8914 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8915 nargs, argvec + 1));
8916
8917 default:
8918 error ("Internal error in evaluate_subexp");
8919 }
8920
8921 case TERNOP_SLICE:
8922 {
8923 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8924 struct value *low_bound_val =
8925 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8926 LONGEST low_bound = pos_atr (low_bound_val);
8927 LONGEST high_bound
8928 = pos_atr (evaluate_subexp (NULL_TYPE, exp, pos, noside));
8929 if (noside == EVAL_SKIP)
8930 goto nosideret;
8931
8932 /* If this is a reference type or a pointer type, and
8933 the target type has an XVS parallel type, then get
8934 the real target type. */
8935 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
8936 || TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR)
8937 TYPE_TARGET_TYPE (VALUE_TYPE (array)) =
8938 ada_get_base_type (TYPE_TARGET_TYPE (VALUE_TYPE (array)));
8939
8940 /* If this is a reference to an aligner type, then remove all
8941 the aligners. */
8942 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
8943 && ada_is_aligner_type (TYPE_TARGET_TYPE (VALUE_TYPE (array))))
8944 TYPE_TARGET_TYPE (VALUE_TYPE (array)) =
8945 ada_aligned_type (TYPE_TARGET_TYPE (VALUE_TYPE (array)));
8946
8947 if (ada_is_packed_array_type (VALUE_TYPE (array)))
8948 error ("cannot slice a packed array");
8949
8950 /* If this is a reference to an array or an array lvalue,
8951 convert to a pointer. */
8952 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
8953 || (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_ARRAY
8954 && VALUE_LVAL (array) == lval_memory))
8955 array = value_addr (array);
8956
8957 if (noside == EVAL_AVOID_SIDE_EFFECTS &&
8958 ada_is_array_descriptor_type (check_typedef (VALUE_TYPE (array))))
8959 {
8960 /* Try dereferencing the array, in case it is an access
8961 to array. */
8962 struct type *arrType = ada_type_of_array (array, 0);
8963 if (arrType != NULL)
8964 array = value_at_lazy (arrType, 0, NULL);
8965 }
8966
8967 array = ada_coerce_to_simple_array_ptr (array);
8968
8969 /* When EVAL_AVOID_SIDE_EFFECTS, we may get the bounds wrong,
8970 but only in contexts where the value is not being requested
8971 (FIXME?). */
8972 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR)
8973 {
8974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8975 return ada_value_ind (array);
8976 else if (high_bound < low_bound)
8977 return empty_array (TYPE_TARGET_TYPE (VALUE_TYPE (array)),
8978 low_bound);
8979 else
8980 {
8981 struct type *arr_type0 =
8982 to_fixed_array_type (TYPE_TARGET_TYPE (VALUE_TYPE (array)),
8983 NULL, 1);
8984 struct value *item0 =
8985 ada_value_ptr_subscript (array, arr_type0, 1,
8986 &low_bound_val);
8987 struct value *slice =
8988 value_repeat (item0, high_bound - low_bound + 1);
8989 struct type *arr_type1 = VALUE_TYPE (slice);
8990 TYPE_LOW_BOUND (TYPE_INDEX_TYPE (arr_type1)) = low_bound;
8991 TYPE_HIGH_BOUND (TYPE_INDEX_TYPE (arr_type1)) += low_bound;
8992 return slice;
8993 }
8994 }
8995 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8996 return array;
8997 else if (high_bound < low_bound)
8998 return empty_array (VALUE_TYPE (array), low_bound);
8999 else
9000 return value_slice (array, low_bound, high_bound - low_bound + 1);
9001 }
9002
9003 case UNOP_IN_RANGE:
9004 (*pos) += 2;
9005 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9006 type = exp->elts[pc + 1].type;
9007
9008 if (noside == EVAL_SKIP)
9009 goto nosideret;
9010
9011 switch (TYPE_CODE (type))
9012 {
9013 default:
9014 lim_warning ("Membership test incompletely implemented; "
9015 "always returns true", 0);
9016 return value_from_longest (builtin_type_int, (LONGEST) 1);
9017
9018 case TYPE_CODE_RANGE:
9019 arg2 = value_from_longest (builtin_type_int,
9020 TYPE_LOW_BOUND (type));
9021 arg3 = value_from_longest (builtin_type_int,
9022 TYPE_HIGH_BOUND (type));
9023 return
9024 value_from_longest (builtin_type_int,
9025 (value_less (arg1, arg3)
9026 || value_equal (arg1, arg3))
9027 && (value_less (arg2, arg1)
9028 || value_equal (arg2, arg1)));
9029 }
9030
9031 case BINOP_IN_BOUNDS:
9032 (*pos) += 2;
9033 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9034 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9035
9036 if (noside == EVAL_SKIP)
9037 goto nosideret;
9038
9039 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9040 return value_zero (builtin_type_int, not_lval);
9041
9042 tem = longest_to_int (exp->elts[pc + 1].longconst);
9043
9044 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg2)))
9045 error ("invalid dimension number to '%s", "range");
9046
9047 arg3 = ada_array_bound (arg2, tem, 1);
9048 arg2 = ada_array_bound (arg2, tem, 0);
9049
9050 return
9051 value_from_longest (builtin_type_int,
9052 (value_less (arg1, arg3)
9053 || value_equal (arg1, arg3))
9054 && (value_less (arg2, arg1)
9055 || value_equal (arg2, arg1)));
9056
9057 case TERNOP_IN_RANGE:
9058 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9059 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9060 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9061
9062 if (noside == EVAL_SKIP)
9063 goto nosideret;
9064
9065 return
9066 value_from_longest (builtin_type_int,
9067 (value_less (arg1, arg3)
9068 || value_equal (arg1, arg3))
9069 && (value_less (arg2, arg1)
9070 || value_equal (arg2, arg1)));
9071
9072 case OP_ATR_FIRST:
9073 case OP_ATR_LAST:
9074 case OP_ATR_LENGTH:
9075 {
9076 struct type *type_arg;
9077 if (exp->elts[*pos].opcode == OP_TYPE)
9078 {
9079 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9080 arg1 = NULL;
9081 type_arg = exp->elts[pc + 2].type;
9082 }
9083 else
9084 {
9085 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9086 type_arg = NULL;
9087 }
9088
9089 if (exp->elts[*pos].opcode != OP_LONG)
9090 error ("illegal operand to '%s", ada_attribute_name (op));
9091 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9092 *pos += 4;
9093
9094 if (noside == EVAL_SKIP)
9095 goto nosideret;
9096
9097 if (type_arg == NULL)
9098 {
9099 arg1 = ada_coerce_ref (arg1);
9100
9101 if (ada_is_packed_array_type (VALUE_TYPE (arg1)))
9102 arg1 = ada_coerce_to_simple_array (arg1);
9103
9104 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg1)))
9105 error ("invalid dimension number to '%s",
9106 ada_attribute_name (op));
9107
9108 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9109 {
9110 type = ada_index_type (VALUE_TYPE (arg1), tem);
9111 if (type == NULL)
9112 error
9113 ("attempt to take bound of something that is not an array");
9114 return allocate_value (type);
9115 }
9116
9117 switch (op)
9118 {
9119 default: /* Should never happen. */
9120 error ("unexpected attribute encountered");
9121 case OP_ATR_FIRST:
9122 return ada_array_bound (arg1, tem, 0);
9123 case OP_ATR_LAST:
9124 return ada_array_bound (arg1, tem, 1);
9125 case OP_ATR_LENGTH:
9126 return ada_array_length (arg1, tem);
9127 }
9128 }
9129 else if (discrete_type_p (type_arg))
9130 {
9131 struct type *range_type;
9132 char *name = ada_type_name (type_arg);
9133 range_type = NULL;
9134 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9135 range_type =
9136 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9137 if (range_type == NULL)
9138 range_type = type_arg;
9139 switch (op)
9140 {
9141 default:
9142 error ("unexpected attribute encountered");
9143 case OP_ATR_FIRST:
9144 return discrete_type_low_bound (range_type);
9145 case OP_ATR_LAST:
9146 return discrete_type_high_bound (range_type);
9147 case OP_ATR_LENGTH:
9148 error ("the 'length attribute applies only to array types");
9149 }
9150 }
9151 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9152 error ("unimplemented type attribute");
9153 else
9154 {
9155 LONGEST low, high;
9156
9157 if (ada_is_packed_array_type (type_arg))
9158 type_arg = decode_packed_array_type (type_arg);
9159
9160 if (tem < 1 || tem > ada_array_arity (type_arg))
9161 error ("invalid dimension number to '%s",
9162 ada_attribute_name (op));
9163
9164 type = ada_index_type (type_arg, tem);
9165 if (type == NULL)
9166 error ("attempt to take bound of something that is not an array");
9167 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9168 return allocate_value (type);
9169
9170 switch (op)
9171 {
9172 default:
9173 error ("unexpected attribute encountered");
9174 case OP_ATR_FIRST:
9175 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9176 return value_from_longest (type, low);
9177 case OP_ATR_LAST:
9178 high =
9179 ada_array_bound_from_type (type_arg, tem, 1, &type);
9180 return value_from_longest (type, high);
9181 case OP_ATR_LENGTH:
9182 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9183 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9184 return value_from_longest (type, high - low + 1);
9185 }
9186 }
9187 }
9188
9189 case OP_ATR_TAG:
9190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9191 if (noside == EVAL_SKIP)
9192 goto nosideret;
9193
9194 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9195 return value_zero (ada_tag_type (arg1), not_lval);
9196
9197 return ada_value_tag (arg1);
9198
9199 case OP_ATR_MIN:
9200 case OP_ATR_MAX:
9201 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9202 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9203 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9204 if (noside == EVAL_SKIP)
9205 goto nosideret;
9206 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9207 return value_zero (VALUE_TYPE (arg1), not_lval);
9208 else
9209 return value_binop (arg1, arg2,
9210 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9211
9212 case OP_ATR_MODULUS:
9213 {
9214 struct type *type_arg = exp->elts[pc + 2].type;
9215 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9216
9217 if (noside == EVAL_SKIP)
9218 goto nosideret;
9219
9220 if (!ada_is_modular_type (type_arg))
9221 error ("'modulus must be applied to modular type");
9222
9223 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9224 ada_modulus (type_arg));
9225 }
9226
9227
9228 case OP_ATR_POS:
9229 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9231 if (noside == EVAL_SKIP)
9232 goto nosideret;
9233 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9234 return value_zero (builtin_type_ada_int, not_lval);
9235 else
9236 return value_pos_atr (arg1);
9237
9238 case OP_ATR_SIZE:
9239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9240 if (noside == EVAL_SKIP)
9241 goto nosideret;
9242 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9243 return value_zero (builtin_type_ada_int, not_lval);
9244 else
9245 return value_from_longest (builtin_type_ada_int,
9246 TARGET_CHAR_BIT
9247 * TYPE_LENGTH (VALUE_TYPE (arg1)));
9248
9249 case OP_ATR_VAL:
9250 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9251 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9252 type = exp->elts[pc + 2].type;
9253 if (noside == EVAL_SKIP)
9254 goto nosideret;
9255 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9256 return value_zero (type, not_lval);
9257 else
9258 return value_val_atr (type, arg1);
9259
9260 case BINOP_EXP:
9261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9262 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9263 if (noside == EVAL_SKIP)
9264 goto nosideret;
9265 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9266 return value_zero (VALUE_TYPE (arg1), not_lval);
9267 else
9268 return value_binop (arg1, arg2, op);
9269
9270 case UNOP_PLUS:
9271 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9272 if (noside == EVAL_SKIP)
9273 goto nosideret;
9274 else
9275 return arg1;
9276
9277 case UNOP_ABS:
9278 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9279 if (noside == EVAL_SKIP)
9280 goto nosideret;
9281 if (value_less (arg1, value_zero (VALUE_TYPE (arg1), not_lval)))
9282 return value_neg (arg1);
9283 else
9284 return arg1;
9285
9286 case UNOP_IND:
9287 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9288 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
9289 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9290 if (noside == EVAL_SKIP)
9291 goto nosideret;
9292 type = check_typedef (VALUE_TYPE (arg1));
9293 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9294 {
9295 if (ada_is_array_descriptor_type (type))
9296 /* GDB allows dereferencing GNAT array descriptors. */
9297 {
9298 struct type *arrType = ada_type_of_array (arg1, 0);
9299 if (arrType == NULL)
9300 error ("Attempt to dereference null array pointer.");
9301 return value_at_lazy (arrType, 0, NULL);
9302 }
9303 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9304 || TYPE_CODE (type) == TYPE_CODE_REF
9305 /* In C you can dereference an array to get the 1st elt. */
9306 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9307 return
9308 value_zero
9309 (to_static_fixed_type
9310 (ada_aligned_type (check_typedef (TYPE_TARGET_TYPE (type)))),
9311 lval_memory);
9312 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9313 /* GDB allows dereferencing an int. */
9314 return value_zero (builtin_type_int, lval_memory);
9315 else
9316 error ("Attempt to take contents of a non-pointer value.");
9317 }
9318 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9319 type = check_typedef (VALUE_TYPE (arg1));
9320
9321 if (ada_is_array_descriptor_type (type))
9322 /* GDB allows dereferencing GNAT array descriptors. */
9323 return ada_coerce_to_simple_array (arg1);
9324 else
9325 return ada_value_ind (arg1);
9326
9327 case STRUCTOP_STRUCT:
9328 tem = longest_to_int (exp->elts[pc + 1].longconst);
9329 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9331 if (noside == EVAL_SKIP)
9332 goto nosideret;
9333 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9334 {
9335 struct type *type1 = VALUE_TYPE (arg1);
9336 if (ada_is_tagged_type (type1, 1))
9337 {
9338 type = ada_lookup_struct_elt_type (type1,
9339 &exp->elts[pc + 2].string,
9340 1, 1, NULL);
9341 if (type == NULL)
9342 /* In this case, we assume that the field COULD exist
9343 in some extension of the type. Return an object of
9344 "type" void, which will match any formal
9345 (see ada_type_match). */
9346 return value_zero (builtin_type_void, lval_memory);
9347 }
9348 else
9349 type = ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string,
9350 1, 0, NULL);
9351
9352 return value_zero (ada_aligned_type (type), lval_memory);
9353 }
9354 else
9355 return
9356 ada_to_fixed_value (unwrap_value
9357 (ada_value_struct_elt
9358 (arg1, &exp->elts[pc + 2].string, "record")));
9359 case OP_TYPE:
9360 /* The value is not supposed to be used. This is here to make it
9361 easier to accommodate expressions that contain types. */
9362 (*pos) += 2;
9363 if (noside == EVAL_SKIP)
9364 goto nosideret;
9365 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9366 return allocate_value (builtin_type_void);
9367 else
9368 error ("Attempt to use a type name as an expression");
9369 }
9370
9371nosideret:
9372 return value_from_longest (builtin_type_long, (LONGEST) 1);
9373}
9374\f
9375
9376 /* Fixed point */
9377
9378/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9379 type name that encodes the 'small and 'delta information.
9380 Otherwise, return NULL. */
9381
9382static const char *
9383fixed_type_info (struct type *type)
9384{
9385 const char *name = ada_type_name (type);
9386 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9387
9388 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9389 {
9390 const char *tail = strstr (name, "___XF_");
9391 if (tail == NULL)
9392 return NULL;
9393 else
9394 return tail + 5;
9395 }
9396 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9397 return fixed_type_info (TYPE_TARGET_TYPE (type));
9398 else
9399 return NULL;
9400}
9401
9402/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9403
9404int
9405ada_is_fixed_point_type (struct type *type)
9406{
9407 return fixed_type_info (type) != NULL;
9408}
9409
9410/* Return non-zero iff TYPE represents a System.Address type. */
9411
9412int
9413ada_is_system_address_type (struct type *type)
9414{
9415 return (TYPE_NAME (type)
9416 && strcmp (TYPE_NAME (type), "system__address") == 0);
9417}
9418
9419/* Assuming that TYPE is the representation of an Ada fixed-point
9420 type, return its delta, or -1 if the type is malformed and the
9421 delta cannot be determined. */
9422
9423DOUBLEST
9424ada_delta (struct type *type)
9425{
9426 const char *encoding = fixed_type_info (type);
9427 long num, den;
9428
9429 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9430 return -1.0;
9431 else
9432 return (DOUBLEST) num / (DOUBLEST) den;
9433}
9434
9435/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9436 factor ('SMALL value) associated with the type. */
9437
9438static DOUBLEST
9439scaling_factor (struct type *type)
9440{
9441 const char *encoding = fixed_type_info (type);
9442 unsigned long num0, den0, num1, den1;
9443 int n;
9444
9445 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9446
9447 if (n < 2)
9448 return 1.0;
9449 else if (n == 4)
9450 return (DOUBLEST) num1 / (DOUBLEST) den1;
9451 else
9452 return (DOUBLEST) num0 / (DOUBLEST) den0;
9453}
9454
9455
9456/* Assuming that X is the representation of a value of fixed-point
9457 type TYPE, return its floating-point equivalent. */
9458
9459DOUBLEST
9460ada_fixed_to_float (struct type *type, LONGEST x)
9461{
9462 return (DOUBLEST) x *scaling_factor (type);
9463}
9464
9465/* The representation of a fixed-point value of type TYPE
9466 corresponding to the value X. */
9467
9468LONGEST
9469ada_float_to_fixed (struct type *type, DOUBLEST x)
9470{
9471 return (LONGEST) (x / scaling_factor (type) + 0.5);
9472}
9473
9474
9475 /* VAX floating formats */
9476
9477/* Non-zero iff TYPE represents one of the special VAX floating-point
9478 types. */
9479
9480int
9481ada_is_vax_floating_type (struct type *type)
9482{
9483 int name_len =
9484 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9485 return
9486 name_len > 6
9487 && (TYPE_CODE (type) == TYPE_CODE_INT
9488 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9489 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9490}
9491
9492/* The type of special VAX floating-point type this is, assuming
9493 ada_is_vax_floating_point. */
9494
9495int
9496ada_vax_float_type_suffix (struct type *type)
9497{
9498 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9499}
9500
9501/* A value representing the special debugging function that outputs
9502 VAX floating-point values of the type represented by TYPE. Assumes
9503 ada_is_vax_floating_type (TYPE). */
9504
9505struct value *
9506ada_vax_float_print_function (struct type *type)
9507{
9508 switch (ada_vax_float_type_suffix (type))
9509 {
9510 case 'F':
9511 return get_var_value ("DEBUG_STRING_F", 0);
9512 case 'D':
9513 return get_var_value ("DEBUG_STRING_D", 0);
9514 case 'G':
9515 return get_var_value ("DEBUG_STRING_G", 0);
9516 default:
9517 error ("invalid VAX floating-point type");
9518 }
9519}
9520\f
9521
9522 /* Range types */
9523
9524/* Scan STR beginning at position K for a discriminant name, and
9525 return the value of that discriminant field of DVAL in *PX. If
9526 PNEW_K is not null, put the position of the character beyond the
9527 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9528 not alter *PX and *PNEW_K if unsuccessful. */
9529
9530static int
9531scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9532 int *pnew_k)
9533{
9534 static char *bound_buffer = NULL;
9535 static size_t bound_buffer_len = 0;
9536 char *bound;
9537 char *pend;
9538 struct value *bound_val;
9539
9540 if (dval == NULL || str == NULL || str[k] == '\0')
9541 return 0;
9542
9543 pend = strstr (str + k, "__");
9544 if (pend == NULL)
9545 {
9546 bound = str + k;
9547 k += strlen (bound);
9548 }
9549 else
9550 {
9551 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9552 bound = bound_buffer;
9553 strncpy (bound_buffer, str + k, pend - (str + k));
9554 bound[pend - (str + k)] = '\0';
9555 k = pend - str;
9556 }
9557
9558 bound_val = ada_search_struct_field (bound, dval, 0, VALUE_TYPE (dval));
9559 if (bound_val == NULL)
9560 return 0;
9561
9562 *px = value_as_long (bound_val);
9563 if (pnew_k != NULL)
9564 *pnew_k = k;
9565 return 1;
9566}
9567
9568/* Value of variable named NAME in the current environment. If
9569 no such variable found, then if ERR_MSG is null, returns 0, and
9570 otherwise causes an error with message ERR_MSG. */
9571
9572static struct value *
9573get_var_value (char *name, char *err_msg)
9574{
9575 struct ada_symbol_info *syms;
9576 int nsyms;
9577
9578 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9579 &syms);
9580
9581 if (nsyms != 1)
9582 {
9583 if (err_msg == NULL)
9584 return 0;
9585 else
9586 error ("%s", err_msg);
9587 }
9588
9589 return value_of_variable (syms[0].sym, syms[0].block);
9590}
9591
9592/* Value of integer variable named NAME in the current environment. If
9593 no such variable found, returns 0, and sets *FLAG to 0. If
9594 successful, sets *FLAG to 1. */
9595
9596LONGEST
9597get_int_var_value (char *name, int *flag)
9598{
9599 struct value *var_val = get_var_value (name, 0);
9600
9601 if (var_val == 0)
9602 {
9603 if (flag != NULL)
9604 *flag = 0;
9605 return 0;
9606 }
9607 else
9608 {
9609 if (flag != NULL)
9610 *flag = 1;
9611 return value_as_long (var_val);
9612 }
9613}
9614
9615
9616/* Return a range type whose base type is that of the range type named
9617 NAME in the current environment, and whose bounds are calculated
9618 from NAME according to the GNAT range encoding conventions.
9619 Extract discriminant values, if needed, from DVAL. If a new type
9620 must be created, allocate in OBJFILE's space. The bounds
9621 information, in general, is encoded in NAME, the base type given in
9622 the named range type. */
9623
9624static struct type *
9625to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9626{
9627 struct type *raw_type = ada_find_any_type (name);
9628 struct type *base_type;
9629 char *subtype_info;
9630
9631 if (raw_type == NULL)
9632 base_type = builtin_type_int;
9633 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9634 base_type = TYPE_TARGET_TYPE (raw_type);
9635 else
9636 base_type = raw_type;
9637
9638 subtype_info = strstr (name, "___XD");
9639 if (subtype_info == NULL)
9640 return raw_type;
9641 else
9642 {
9643 static char *name_buf = NULL;
9644 static size_t name_len = 0;
9645 int prefix_len = subtype_info - name;
9646 LONGEST L, U;
9647 struct type *type;
9648 char *bounds_str;
9649 int n;
9650
9651 GROW_VECT (name_buf, name_len, prefix_len + 5);
9652 strncpy (name_buf, name, prefix_len);
9653 name_buf[prefix_len] = '\0';
9654
9655 subtype_info += 5;
9656 bounds_str = strchr (subtype_info, '_');
9657 n = 1;
9658
9659 if (*subtype_info == 'L')
9660 {
9661 if (!ada_scan_number (bounds_str, n, &L, &n)
9662 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9663 return raw_type;
9664 if (bounds_str[n] == '_')
9665 n += 2;
9666 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9667 n += 1;
9668 subtype_info += 1;
9669 }
9670 else
9671 {
9672 int ok;
9673 strcpy (name_buf + prefix_len, "___L");
9674 L = get_int_var_value (name_buf, &ok);
9675 if (!ok)
9676 {
9677 lim_warning ("Unknown lower bound, using 1.", 1);
9678 L = 1;
9679 }
9680 }
9681
9682 if (*subtype_info == 'U')
9683 {
9684 if (!ada_scan_number (bounds_str, n, &U, &n)
9685 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9686 return raw_type;
9687 }
9688 else
9689 {
9690 int ok;
9691 strcpy (name_buf + prefix_len, "___U");
9692 U = get_int_var_value (name_buf, &ok);
9693 if (!ok)
9694 {
9695 lim_warning ("Unknown upper bound, using %ld.", (long) L);
9696 U = L;
9697 }
9698 }
9699
9700 if (objfile == NULL)
9701 objfile = TYPE_OBJFILE (base_type);
9702 type = create_range_type (alloc_type (objfile), base_type, L, U);
9703 TYPE_NAME (type) = name;
9704 return type;
9705 }
9706}
9707
9708/* True iff NAME is the name of a range type. */
9709
9710int
9711ada_is_range_type_name (const char *name)
9712{
9713 return (name != NULL && strstr (name, "___XD"));
9714}
9715\f
9716
9717 /* Modular types */
9718
9719/* True iff TYPE is an Ada modular type. */
9720
9721int
9722ada_is_modular_type (struct type *type)
9723{
9724 struct type *subranged_type = base_type (type);
9725
9726 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9727 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9728 && TYPE_UNSIGNED (subranged_type));
9729}
9730
9731/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9732
9733LONGEST
9734ada_modulus (struct type * type)
9735{
9736 return TYPE_HIGH_BOUND (type) + 1;
9737}
9738\f
9739 /* Operators */
9740/* Information about operators given special treatment in functions
9741 below. */
9742/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9743
9744#define ADA_OPERATORS \
9745 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9746 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9747 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9748 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9749 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9750 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9751 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9752 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9753 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9754 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9755 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9756 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9757 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9758 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9759 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9760 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0)
9761
9762static void
9763ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9764{
9765 switch (exp->elts[pc - 1].opcode)
9766 {
9767 default:
9768 operator_length_standard (exp, pc, oplenp, argsp);
9769 break;
9770
9771#define OP_DEFN(op, len, args, binop) \
9772 case op: *oplenp = len; *argsp = args; break;
9773 ADA_OPERATORS;
9774#undef OP_DEFN
9775 }
9776}
9777
9778static char *
9779ada_op_name (enum exp_opcode opcode)
9780{
9781 switch (opcode)
9782 {
9783 default:
9784 return op_name_standard (opcode);
9785#define OP_DEFN(op, len, args, binop) case op: return #op;
9786 ADA_OPERATORS;
9787#undef OP_DEFN
9788 }
9789}
9790
9791/* As for operator_length, but assumes PC is pointing at the first
9792 element of the operator, and gives meaningful results only for the
9793 Ada-specific operators. */
9794
9795static void
9796ada_forward_operator_length (struct expression *exp, int pc,
9797 int *oplenp, int *argsp)
9798{
9799 switch (exp->elts[pc].opcode)
9800 {
9801 default:
9802 *oplenp = *argsp = 0;
9803 break;
9804#define OP_DEFN(op, len, args, binop) \
9805 case op: *oplenp = len; *argsp = args; break;
9806 ADA_OPERATORS;
9807#undef OP_DEFN
9808 }
9809}
9810
9811static int
9812ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9813{
9814 enum exp_opcode op = exp->elts[elt].opcode;
9815 int oplen, nargs;
9816 int pc = elt;
9817 int i;
9818
9819 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9820
9821 switch (op)
9822 {
9823 /* Ada attributes ('Foo). */
9824 case OP_ATR_FIRST:
9825 case OP_ATR_LAST:
9826 case OP_ATR_LENGTH:
9827 case OP_ATR_IMAGE:
9828 case OP_ATR_MAX:
9829 case OP_ATR_MIN:
9830 case OP_ATR_MODULUS:
9831 case OP_ATR_POS:
9832 case OP_ATR_SIZE:
9833 case OP_ATR_TAG:
9834 case OP_ATR_VAL:
9835 break;
9836
9837 case UNOP_IN_RANGE:
9838 case UNOP_QUAL:
9839 fprintf_filtered (stream, "Type @");
9840 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9841 fprintf_filtered (stream, " (");
9842 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9843 fprintf_filtered (stream, ")");
9844 break;
9845 case BINOP_IN_BOUNDS:
9846 fprintf_filtered (stream, " (%d)", (int) exp->elts[pc + 2].longconst);
9847 break;
9848 case TERNOP_IN_RANGE:
9849 break;
9850
9851 default:
9852 return dump_subexp_body_standard (exp, stream, elt);
9853 }
9854
9855 elt += oplen;
9856 for (i = 0; i < nargs; i += 1)
9857 elt = dump_subexp (exp, stream, elt);
9858
9859 return elt;
9860}
9861
9862/* The Ada extension of print_subexp (q.v.). */
9863
9864static void
9865ada_print_subexp (struct expression *exp, int *pos,
9866 struct ui_file *stream, enum precedence prec)
9867{
9868 int oplen, nargs;
9869 int pc = *pos;
9870 enum exp_opcode op = exp->elts[pc].opcode;
9871
9872 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9873
9874 switch (op)
9875 {
9876 default:
9877 print_subexp_standard (exp, pos, stream, prec);
9878 return;
9879
9880 case OP_VAR_VALUE:
9881 *pos += oplen;
9882 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9883 return;
9884
9885 case BINOP_IN_BOUNDS:
9886 *pos += oplen;
9887 print_subexp (exp, pos, stream, PREC_SUFFIX);
9888 fputs_filtered (" in ", stream);
9889 print_subexp (exp, pos, stream, PREC_SUFFIX);
9890 fputs_filtered ("'range", stream);
9891 if (exp->elts[pc + 1].longconst > 1)
9892 fprintf_filtered (stream, "(%ld)", (long) exp->elts[pc + 1].longconst);
9893 return;
9894
9895 case TERNOP_IN_RANGE:
9896 *pos += oplen;
9897 if (prec >= PREC_EQUAL)
9898 fputs_filtered ("(", stream);
9899 print_subexp (exp, pos, stream, PREC_SUFFIX);
9900 fputs_filtered (" in ", stream);
9901 print_subexp (exp, pos, stream, PREC_EQUAL);
9902 fputs_filtered (" .. ", stream);
9903 print_subexp (exp, pos, stream, PREC_EQUAL);
9904 if (prec >= PREC_EQUAL)
9905 fputs_filtered (")", stream);
9906 return;
9907
9908 case OP_ATR_FIRST:
9909 case OP_ATR_LAST:
9910 case OP_ATR_LENGTH:
9911 case OP_ATR_IMAGE:
9912 case OP_ATR_MAX:
9913 case OP_ATR_MIN:
9914 case OP_ATR_MODULUS:
9915 case OP_ATR_POS:
9916 case OP_ATR_SIZE:
9917 case OP_ATR_TAG:
9918 case OP_ATR_VAL:
9919 *pos += oplen;
9920 if (exp->elts[*pos].opcode == OP_TYPE)
9921 {
9922 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
9923 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
9924 *pos += 3;
9925 }
9926 else
9927 print_subexp (exp, pos, stream, PREC_SUFFIX);
9928 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
9929 if (nargs > 1)
9930 {
9931 int tem;
9932 for (tem = 1; tem < nargs; tem += 1)
9933 {
9934 fputs_filtered ( (tem == 1) ? " (" : ", ", stream);
9935 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
9936 }
9937 fputs_filtered (")", stream);
9938 }
9939 return;
9940
9941 case UNOP_QUAL:
9942 *pos += oplen;
9943 type_print (exp->elts[pc + 1].type, "", stream, 0);
9944 fputs_filtered ("'(", stream);
9945 print_subexp (exp, pos, stream, PREC_PREFIX);
9946 fputs_filtered (")", stream);
9947 return;
9948
9949 case UNOP_IN_RANGE:
9950 *pos += oplen;
9951 print_subexp (exp, pos, stream, PREC_SUFFIX);
9952 fputs_filtered (" in ", stream);
9953 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
9954 return;
9955 }
9956}
9957
9958/* Table mapping opcodes into strings for printing operators
9959 and precedences of the operators. */
9960
9961static const struct op_print ada_op_print_tab[] = {
9962 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
9963 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
9964 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
9965 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
9966 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
9967 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
9968 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
9969 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
9970 {"<=", BINOP_LEQ, PREC_ORDER, 0},
9971 {">=", BINOP_GEQ, PREC_ORDER, 0},
9972 {">", BINOP_GTR, PREC_ORDER, 0},
9973 {"<", BINOP_LESS, PREC_ORDER, 0},
9974 {">>", BINOP_RSH, PREC_SHIFT, 0},
9975 {"<<", BINOP_LSH, PREC_SHIFT, 0},
9976 {"+", BINOP_ADD, PREC_ADD, 0},
9977 {"-", BINOP_SUB, PREC_ADD, 0},
9978 {"&", BINOP_CONCAT, PREC_ADD, 0},
9979 {"*", BINOP_MUL, PREC_MUL, 0},
9980 {"/", BINOP_DIV, PREC_MUL, 0},
9981 {"rem", BINOP_REM, PREC_MUL, 0},
9982 {"mod", BINOP_MOD, PREC_MUL, 0},
9983 {"**", BINOP_EXP, PREC_REPEAT, 0},
9984 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
9985 {"-", UNOP_NEG, PREC_PREFIX, 0},
9986 {"+", UNOP_PLUS, PREC_PREFIX, 0},
9987 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
9988 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
9989 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
9990 {".all", UNOP_IND, PREC_SUFFIX, 1},
9991 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
9992 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
9993 {NULL, 0, 0, 0}
9994};
9995\f
9996 /* Assorted Types and Interfaces */
9997
9998struct type *builtin_type_ada_int;
9999struct type *builtin_type_ada_short;
10000struct type *builtin_type_ada_long;
10001struct type *builtin_type_ada_long_long;
10002struct type *builtin_type_ada_char;
10003struct type *builtin_type_ada_float;
10004struct type *builtin_type_ada_double;
10005struct type *builtin_type_ada_long_double;
10006struct type *builtin_type_ada_natural;
10007struct type *builtin_type_ada_positive;
10008struct type *builtin_type_ada_system_address;
10009
10010struct type **const (ada_builtin_types[]) =
10011{
10012 &builtin_type_ada_int,
10013 &builtin_type_ada_long,
10014 &builtin_type_ada_short,
10015 &builtin_type_ada_char,
10016 &builtin_type_ada_float,
10017 &builtin_type_ada_double,
10018 &builtin_type_ada_long_long,
10019 &builtin_type_ada_long_double,
10020 &builtin_type_ada_natural, &builtin_type_ada_positive,
10021 /* The following types are carried over from C for convenience. */
10022 &builtin_type_int,
10023 &builtin_type_long,
10024 &builtin_type_short,
10025 &builtin_type_char,
10026 &builtin_type_float,
10027 &builtin_type_double,
10028 &builtin_type_long_long,
10029 &builtin_type_void,
10030 &builtin_type_signed_char,
10031 &builtin_type_unsigned_char,
10032 &builtin_type_unsigned_short,
10033 &builtin_type_unsigned_int,
10034 &builtin_type_unsigned_long,
10035 &builtin_type_unsigned_long_long,
10036 &builtin_type_long_double,
10037 &builtin_type_complex,
10038 &builtin_type_double_complex,
10039 0
10040};
10041
10042/* Not really used, but needed in the ada_language_defn. */
10043
10044static void
10045emit_char (int c, struct ui_file *stream, int quoter)
10046{
10047 ada_emit_char (c, stream, quoter, 1);
10048}
10049
10050static int
10051parse ()
10052{
10053 warnings_issued = 0;
10054 return ada_parse ();
10055}
10056
10057static const struct exp_descriptor ada_exp_descriptor =
10058{
10059 ada_print_subexp,
10060 ada_operator_length,
10061 ada_op_name,
10062 ada_dump_subexp_body,
10063 ada_evaluate_subexp
10064};
10065
10066const struct language_defn ada_language_defn = {
10067 "ada", /* Language name */
10068 language_ada,
10069 ada_builtin_types,
10070 range_check_off,
10071 type_check_off,
10072 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10073 that's not quite what this means. */
10074#ifdef GNAT_GDB
10075 ada_lookup_symbol,
10076 ada_lookup_minimal_symbol,
10077#endif
10078 &ada_exp_descriptor,
10079 parse,
10080 ada_error,
10081 resolve,
10082 ada_printchar, /* Print a character constant */
10083 ada_printstr, /* Function to print string constant */
10084 emit_char, /* Function to print single char (not used) */
10085 ada_create_fundamental_type, /* Create fundamental type in this language */
10086 ada_print_type, /* Print a type using appropriate syntax */
10087 ada_val_print, /* Print a value using appropriate syntax */
10088 ada_value_print, /* Print a top-level value */
10089 NULL, /* Language specific skip_trampoline */
10090 NULL, /* value_of_this */
10091 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10092 basic_lookup_transparent_type,/* lookup_transparent_type */
10093 ada_la_decode, /* Language specific symbol demangler */
10094 {"", "", "", ""}, /* Binary format info */
10095#if 0
10096 {"8#%lo#", "8#", "o", "#"}, /* Octal format info */
10097 {"%ld", "", "d", ""}, /* Decimal format info */
10098 {"16#%lx#", "16#", "x", "#"}, /* Hex format info */
10099#else
10100 /* Copied from c-lang.c. */
10101 {"0%lo", "0", "o", ""}, /* Octal format info */
10102 {"%ld", "", "d", ""}, /* Decimal format info */
10103 {"0x%lx", "0x", "x", ""}, /* Hex format info */
10104#endif
10105 ada_op_print_tab, /* expression operators for printing */
10106 0, /* c-style arrays */
10107 1, /* String lower bound */
10108 &builtin_type_ada_char,
10109 ada_get_gdb_completer_word_break_characters,
10110#ifdef GNAT_GDB
10111 ada_translate_error_message, /* Substitute Ada-specific terminology
10112 in errors and warnings. */
10113#endif
10114 LANG_MAGIC
10115};
10116
10117static void
10118build_ada_types (void) {
10119 builtin_type_ada_int =
10120 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10121 0, "integer", (struct objfile *) NULL);
10122 builtin_type_ada_long =
10123 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10124 0, "long_integer", (struct objfile *) NULL);
10125 builtin_type_ada_short =
10126 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10127 0, "short_integer", (struct objfile *) NULL);
10128 builtin_type_ada_char =
10129 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10130 0, "character", (struct objfile *) NULL);
10131 builtin_type_ada_float =
10132 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10133 0, "float", (struct objfile *) NULL);
10134 builtin_type_ada_double =
10135 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10136 0, "long_float", (struct objfile *) NULL);
10137 builtin_type_ada_long_long =
10138 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10139 0, "long_long_integer", (struct objfile *) NULL);
10140 builtin_type_ada_long_double =
10141 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10142 0, "long_long_float", (struct objfile *) NULL);
10143 builtin_type_ada_natural =
10144 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10145 0, "natural", (struct objfile *) NULL);
10146 builtin_type_ada_positive =
10147 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10148 0, "positive", (struct objfile *) NULL);
10149
10150
10151 builtin_type_ada_system_address =
10152 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10153 (struct objfile *) NULL));
10154 TYPE_NAME (builtin_type_ada_system_address) = "system__address";
10155}
10156
10157void
10158_initialize_ada_language (void)
10159{
10160
10161 build_ada_types ();
10162 deprecated_register_gdbarch_swap (NULL, 0, build_ada_types);
10163 add_language (&ada_language_defn);
10164
10165#ifdef GNAT_GDB
10166 add_show_from_set
10167 (add_set_cmd ("varsize-limit", class_support, var_uinteger,
10168 (char *) &varsize_limit,
10169 "Set maximum bytes in dynamic-sized object.",
10170 &setlist), &showlist);
10171#endif
10172 varsize_limit = 65536;
10173
10174 obstack_init (&symbol_list_obstack);
10175 obstack_init (&cache_space);
10176
10177 decoded_names_store = htab_create_alloc_ex
10178 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
10179 NULL, NULL, xmcalloc, xmfree);
10180}
10181
10182/* Create a fundamental Ada type using default reasonable for the current
10183 target machine.
10184
10185 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10186 define fundamental types such as "int" or "double". Others (stabs or
10187 DWARF version 2, etc) do define fundamental types. For the formats which
10188 don't provide fundamental types, gdb can create such types using this
10189 function.
10190
10191 FIXME: Some compilers distinguish explicitly signed integral types
10192 (signed short, signed int, signed long) from "regular" integral types
10193 (short, int, long) in the debugging information. There is some dis-
10194 agreement as to how useful this feature is. In particular, gcc does
10195 not support this. Also, only some debugging formats allow the
10196 distinction to be passed on to a debugger. For now, we always just
10197 use "short", "int", or "long" as the type name, for both the implicit
10198 and explicitly signed types. This also makes life easier for the
10199 gdb test suite since we don't have to account for the differences
10200 in output depending upon what the compiler and debugging format
10201 support. We will probably have to re-examine the issue when gdb
10202 starts taking it's fundamental type information directly from the
10203 debugging information supplied by the compiler. fnf@cygnus.com */
10204
10205static struct type *
10206ada_create_fundamental_type (struct objfile *objfile, int typeid)
10207{
10208 struct type *type = NULL;
10209
10210 switch (typeid)
10211 {
10212 default:
10213 /* FIXME: For now, if we are asked to produce a type not in this
10214 language, create the equivalent of a C integer type with the
10215 name "<?type?>". When all the dust settles from the type
10216 reconstruction work, this should probably become an error. */
10217 type = init_type (TYPE_CODE_INT,
10218 TARGET_INT_BIT / TARGET_CHAR_BIT,
10219 0, "<?type?>", objfile);
10220 warning ("internal error: no Ada fundamental type %d", typeid);
10221 break;
10222 case FT_VOID:
10223 type = init_type (TYPE_CODE_VOID,
10224 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10225 0, "void", objfile);
10226 break;
10227 case FT_CHAR:
10228 type = init_type (TYPE_CODE_INT,
10229 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10230 0, "character", objfile);
10231 break;
10232 case FT_SIGNED_CHAR:
10233 type = init_type (TYPE_CODE_INT,
10234 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10235 0, "signed char", objfile);
10236 break;
10237 case FT_UNSIGNED_CHAR:
10238 type = init_type (TYPE_CODE_INT,
10239 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10240 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10241 break;
10242 case FT_SHORT:
10243 type = init_type (TYPE_CODE_INT,
10244 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10245 0, "short_integer", objfile);
10246 break;
10247 case FT_SIGNED_SHORT:
10248 type = init_type (TYPE_CODE_INT,
10249 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10250 0, "short_integer", objfile);
10251 break;
10252 case FT_UNSIGNED_SHORT:
10253 type = init_type (TYPE_CODE_INT,
10254 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10255 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10256 break;
10257 case FT_INTEGER:
10258 type = init_type (TYPE_CODE_INT,
10259 TARGET_INT_BIT / TARGET_CHAR_BIT,
10260 0, "integer", objfile);
10261 break;
10262 case FT_SIGNED_INTEGER:
10263 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "integer", objfile); /* FIXME -fnf */
10264 break;
10265 case FT_UNSIGNED_INTEGER:
10266 type = init_type (TYPE_CODE_INT,
10267 TARGET_INT_BIT / TARGET_CHAR_BIT,
10268 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10269 break;
10270 case FT_LONG:
10271 type = init_type (TYPE_CODE_INT,
10272 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10273 0, "long_integer", objfile);
10274 break;
10275 case FT_SIGNED_LONG:
10276 type = init_type (TYPE_CODE_INT,
10277 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10278 0, "long_integer", objfile);
10279 break;
10280 case FT_UNSIGNED_LONG:
10281 type = init_type (TYPE_CODE_INT,
10282 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10283 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10284 break;
10285 case FT_LONG_LONG:
10286 type = init_type (TYPE_CODE_INT,
10287 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10288 0, "long_long_integer", objfile);
10289 break;
10290 case FT_SIGNED_LONG_LONG:
10291 type = init_type (TYPE_CODE_INT,
10292 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10293 0, "long_long_integer", objfile);
10294 break;
10295 case FT_UNSIGNED_LONG_LONG:
10296 type = init_type (TYPE_CODE_INT,
10297 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10298 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10299 break;
10300 case FT_FLOAT:
10301 type = init_type (TYPE_CODE_FLT,
10302 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10303 0, "float", objfile);
10304 break;
10305 case FT_DBL_PREC_FLOAT:
10306 type = init_type (TYPE_CODE_FLT,
10307 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10308 0, "long_float", objfile);
10309 break;
10310 case FT_EXT_PREC_FLOAT:
10311 type = init_type (TYPE_CODE_FLT,
10312 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10313 0, "long_long_float", objfile);
10314 break;
10315 }
10316 return (type);
10317}
10318
10319void
10320ada_dump_symtab (struct symtab *s)
10321{
10322 int i;
10323 fprintf (stderr, "New symtab: [\n");
10324 fprintf (stderr, " Name: %s/%s;\n",
10325 s->dirname ? s->dirname : "?", s->filename ? s->filename : "?");
10326 fprintf (stderr, " Format: %s;\n", s->debugformat);
10327 if (s->linetable != NULL)
10328 {
10329 fprintf (stderr, " Line table (section %d):\n", s->block_line_section);
10330 for (i = 0; i < s->linetable->nitems; i += 1)
10331 {
10332 struct linetable_entry *e = s->linetable->item + i;
10333 fprintf (stderr, " %4ld: %8lx\n", (long) e->line, (long) e->pc);
10334 }
10335 }
10336 fprintf (stderr, "]\n");
10337}
This page took 0.052102 seconds and 4 git commands to generate.