New class allocate_on_obstack
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
... / ...
CommitLineData
1/* Copyright (C) 1992-2018 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18#include "defs.h"
19#include "observer.h"
20#include "gdbcmd.h"
21#include "target.h"
22#include "ada-lang.h"
23#include "gdbcore.h"
24#include "inferior.h"
25#include "gdbthread.h"
26#include "progspace.h"
27#include "objfiles.h"
28
29/* The name of the array in the GNAT runtime where the Ada Task Control
30 Block of each task is stored. */
31#define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
32
33/* The maximum number of tasks known to the Ada runtime. */
34static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
35
36/* The name of the variable in the GNAT runtime where the head of a task
37 chain is saved. This is an alternate mechanism to find the list of known
38 tasks. */
39#define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
40
41enum task_states
42{
43 Unactivated,
44 Runnable,
45 Terminated,
46 Activator_Sleep,
47 Acceptor_Sleep,
48 Entry_Caller_Sleep,
49 Async_Select_Sleep,
50 Delay_Sleep,
51 Master_Completion_Sleep,
52 Master_Phase_2_Sleep,
53 Interrupt_Server_Idle_Sleep,
54 Interrupt_Server_Blocked_Interrupt_Sleep,
55 Timer_Server_Sleep,
56 AST_Server_Sleep,
57 Asynchronous_Hold,
58 Interrupt_Server_Blocked_On_Event_Flag,
59 Activating,
60 Acceptor_Delay_Sleep
61};
62
63/* A short description corresponding to each possible task state. */
64static const char *task_states[] = {
65 N_("Unactivated"),
66 N_("Runnable"),
67 N_("Terminated"),
68 N_("Child Activation Wait"),
69 N_("Accept or Select Term"),
70 N_("Waiting on entry call"),
71 N_("Async Select Wait"),
72 N_("Delay Sleep"),
73 N_("Child Termination Wait"),
74 N_("Wait Child in Term Alt"),
75 "",
76 "",
77 "",
78 "",
79 N_("Asynchronous Hold"),
80 "",
81 N_("Activating"),
82 N_("Selective Wait")
83};
84
85/* A longer description corresponding to each possible task state. */
86static const char *long_task_states[] = {
87 N_("Unactivated"),
88 N_("Runnable"),
89 N_("Terminated"),
90 N_("Waiting for child activation"),
91 N_("Blocked in accept or select with terminate"),
92 N_("Waiting on entry call"),
93 N_("Asynchronous Selective Wait"),
94 N_("Delay Sleep"),
95 N_("Waiting for children termination"),
96 N_("Waiting for children in terminate alternative"),
97 "",
98 "",
99 "",
100 "",
101 N_("Asynchronous Hold"),
102 "",
103 N_("Activating"),
104 N_("Blocked in selective wait statement")
105};
106
107/* The index of certain important fields in the Ada Task Control Block
108 record and sub-records. */
109
110struct atcb_fieldnos
111{
112 /* Fields in record Ada_Task_Control_Block. */
113 int common;
114 int entry_calls;
115 int atc_nesting_level;
116
117 /* Fields in record Common_ATCB. */
118 int state;
119 int parent;
120 int priority;
121 int image;
122 int image_len; /* This field may be missing. */
123 int activation_link;
124 int call;
125 int ll;
126 int base_cpu;
127
128 /* Fields in Task_Primitives.Private_Data. */
129 int ll_thread;
130 int ll_lwp; /* This field may be missing. */
131
132 /* Fields in Common_ATCB.Call.all. */
133 int call_self;
134};
135
136/* This module's per-program-space data. */
137
138struct ada_tasks_pspace_data
139{
140 /* Nonzero if the data has been initialized. If set to zero,
141 it means that the data has either not been initialized, or
142 has potentially become stale. */
143 int initialized_p;
144
145 /* The ATCB record type. */
146 struct type *atcb_type;
147
148 /* The ATCB "Common" component type. */
149 struct type *atcb_common_type;
150
151 /* The type of the "ll" field, from the atcb_common_type. */
152 struct type *atcb_ll_type;
153
154 /* The type of the "call" field, from the atcb_common_type. */
155 struct type *atcb_call_type;
156
157 /* The index of various fields in the ATCB record and sub-records. */
158 struct atcb_fieldnos atcb_fieldno;
159};
160
161/* Key to our per-program-space data. */
162static const struct program_space_data *ada_tasks_pspace_data_handle;
163
164typedef struct ada_task_info ada_task_info_s;
165DEF_VEC_O(ada_task_info_s);
166
167/* The kind of data structure used by the runtime to store the list
168 of Ada tasks. */
169
170enum ada_known_tasks_kind
171{
172 /* Use this value when we haven't determined which kind of structure
173 is being used, or when we need to recompute it.
174
175 We set the value of this enumerate to zero on purpose: This allows
176 us to use this enumerate in a structure where setting all fields
177 to zero will result in this kind being set to unknown. */
178 ADA_TASKS_UNKNOWN = 0,
179
180 /* This value means that we did not find any task list. Unless
181 there is a bug somewhere, this means that the inferior does not
182 use tasking. */
183 ADA_TASKS_NOT_FOUND,
184
185 /* This value means that the task list is stored as an array.
186 This is the usual method, as it causes very little overhead.
187 But this method is not always used, as it does use a certain
188 amount of memory, which might be scarse in certain environments. */
189 ADA_TASKS_ARRAY,
190
191 /* This value means that the task list is stored as a linked list.
192 This has more runtime overhead than the array approach, but
193 also require less memory when the number of tasks is small. */
194 ADA_TASKS_LIST,
195};
196
197/* This module's per-inferior data. */
198
199struct ada_tasks_inferior_data
200{
201 /* The type of data structure used by the runtime to store
202 the list of Ada tasks. The value of this field influences
203 the interpretation of the known_tasks_addr field below:
204 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
205 been determined yet;
206 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
207 and the known_tasks_addr is irrelevant;
208 - ADA_TASKS_ARRAY: The known_tasks is an array;
209 - ADA_TASKS_LIST: The known_tasks is a list. */
210 enum ada_known_tasks_kind known_tasks_kind;
211
212 /* The address of the known_tasks structure. This is where
213 the runtime stores the information for all Ada tasks.
214 The interpretation of this field depends on KNOWN_TASKS_KIND
215 above. */
216 CORE_ADDR known_tasks_addr;
217
218 /* Type of elements of the known task. Usually a pointer. */
219 struct type *known_tasks_element;
220
221 /* Number of elements in the known tasks array. */
222 unsigned int known_tasks_length;
223
224 /* When nonzero, this flag indicates that the task_list field
225 below is up to date. When set to zero, the list has either
226 not been initialized, or has potentially become stale. */
227 int task_list_valid_p;
228
229 /* The list of Ada tasks.
230
231 Note: To each task we associate a number that the user can use to
232 reference it - this number is printed beside each task in the tasks
233 info listing displayed by "info tasks". This number is equal to
234 its index in the vector + 1. Reciprocally, to compute the index
235 of a task in the vector, we need to substract 1 from its number. */
236 VEC(ada_task_info_s) *task_list;
237};
238
239/* Key to our per-inferior data. */
240static const struct inferior_data *ada_tasks_inferior_data_handle;
241
242/* Return the ada-tasks module's data for the given program space (PSPACE).
243 If none is found, add a zero'ed one now.
244
245 This function always returns a valid object. */
246
247static struct ada_tasks_pspace_data *
248get_ada_tasks_pspace_data (struct program_space *pspace)
249{
250 struct ada_tasks_pspace_data *data;
251
252 data = ((struct ada_tasks_pspace_data *)
253 program_space_data (pspace, ada_tasks_pspace_data_handle));
254 if (data == NULL)
255 {
256 data = XCNEW (struct ada_tasks_pspace_data);
257 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
258 }
259
260 return data;
261}
262
263/* Return the ada-tasks module's data for the given inferior (INF).
264 If none is found, add a zero'ed one now.
265
266 This function always returns a valid object.
267
268 Note that we could use an observer of the inferior-created event
269 to make sure that the ada-tasks per-inferior data always exists.
270 But we prefered this approach, as it avoids this entirely as long
271 as the user does not use any of the tasking features. This is
272 quite possible, particularly in the case where the inferior does
273 not use tasking. */
274
275static struct ada_tasks_inferior_data *
276get_ada_tasks_inferior_data (struct inferior *inf)
277{
278 struct ada_tasks_inferior_data *data;
279
280 data = ((struct ada_tasks_inferior_data *)
281 inferior_data (inf, ada_tasks_inferior_data_handle));
282 if (data == NULL)
283 {
284 data = XCNEW (struct ada_tasks_inferior_data);
285 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
286 }
287
288 return data;
289}
290
291/* Return the task number of the task whose ptid is PTID, or zero
292 if the task could not be found. */
293
294int
295ada_get_task_number (ptid_t ptid)
296{
297 int i;
298 struct inferior *inf = find_inferior_ptid (ptid);
299 struct ada_tasks_inferior_data *data;
300
301 gdb_assert (inf != NULL);
302 data = get_ada_tasks_inferior_data (inf);
303
304 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
305 if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid,
306 ptid))
307 return i + 1;
308
309 return 0; /* No matching task found. */
310}
311
312/* Return the task number of the task running in inferior INF which
313 matches TASK_ID , or zero if the task could not be found. */
314
315static int
316get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
317{
318 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
319 int i;
320
321 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
322 {
323 struct ada_task_info *task_info =
324 VEC_index (ada_task_info_s, data->task_list, i);
325
326 if (task_info->task_id == task_id)
327 return i + 1;
328 }
329
330 /* Task not found. Return 0. */
331 return 0;
332}
333
334/* Return non-zero if TASK_NUM is a valid task number. */
335
336int
337valid_task_id (int task_num)
338{
339 struct ada_tasks_inferior_data *data;
340
341 ada_build_task_list ();
342 data = get_ada_tasks_inferior_data (current_inferior ());
343 return (task_num > 0
344 && task_num <= VEC_length (ada_task_info_s, data->task_list));
345}
346
347/* Return non-zero iff the task STATE corresponds to a non-terminated
348 task state. */
349
350static int
351ada_task_is_alive (struct ada_task_info *task_info)
352{
353 return (task_info->state != Terminated);
354}
355
356/* Search through the list of known tasks for the one whose ptid is
357 PTID, and return it. Return NULL if the task was not found. */
358
359struct ada_task_info *
360ada_get_task_info_from_ptid (ptid_t ptid)
361{
362 int i, nb_tasks;
363 struct ada_task_info *task;
364 struct ada_tasks_inferior_data *data;
365
366 ada_build_task_list ();
367 data = get_ada_tasks_inferior_data (current_inferior ());
368 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
369
370 for (i = 0; i < nb_tasks; i++)
371 {
372 task = VEC_index (ada_task_info_s, data->task_list, i);
373 if (ptid_equal (task->ptid, ptid))
374 return task;
375 }
376
377 return NULL;
378}
379
380/* Call the ITERATOR function once for each Ada task that hasn't been
381 terminated yet. */
382
383void
384iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
385{
386 int i, nb_tasks;
387 struct ada_task_info *task;
388 struct ada_tasks_inferior_data *data;
389
390 ada_build_task_list ();
391 data = get_ada_tasks_inferior_data (current_inferior ());
392 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
393
394 for (i = 0; i < nb_tasks; i++)
395 {
396 task = VEC_index (ada_task_info_s, data->task_list, i);
397 if (!ada_task_is_alive (task))
398 continue;
399 iterator (task);
400 }
401}
402
403/* Extract the contents of the value as a string whose length is LENGTH,
404 and store the result in DEST. */
405
406static void
407value_as_string (char *dest, struct value *val, int length)
408{
409 memcpy (dest, value_contents (val), length);
410 dest[length] = '\0';
411}
412
413/* Extract the string image from the fat string corresponding to VAL,
414 and store it in DEST. If the string length is greater than MAX_LEN,
415 then truncate the result to the first MAX_LEN characters of the fat
416 string. */
417
418static void
419read_fat_string_value (char *dest, struct value *val, int max_len)
420{
421 struct value *array_val;
422 struct value *bounds_val;
423 int len;
424
425 /* The following variables are made static to avoid recomputing them
426 each time this function is called. */
427 static int initialize_fieldnos = 1;
428 static int array_fieldno;
429 static int bounds_fieldno;
430 static int upper_bound_fieldno;
431
432 /* Get the index of the fields that we will need to read in order
433 to extract the string from the fat string. */
434 if (initialize_fieldnos)
435 {
436 struct type *type = value_type (val);
437 struct type *bounds_type;
438
439 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
440 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
441
442 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
443 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
444 bounds_type = TYPE_TARGET_TYPE (bounds_type);
445 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
446 error (_("Unknown task name format. Aborting"));
447 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
448
449 initialize_fieldnos = 0;
450 }
451
452 /* Get the size of the task image by checking the value of the bounds.
453 The lower bound is always 1, so we only need to read the upper bound. */
454 bounds_val = value_ind (value_field (val, bounds_fieldno));
455 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
456
457 /* Make sure that we do not read more than max_len characters... */
458 if (len > max_len)
459 len = max_len;
460
461 /* Extract LEN characters from the fat string. */
462 array_val = value_ind (value_field (val, array_fieldno));
463 read_memory (value_address (array_val), (gdb_byte *) dest, len);
464
465 /* Add the NUL character to close the string. */
466 dest[len] = '\0';
467}
468
469/* Get, from the debugging information, the type description of all types
470 related to the Ada Task Control Block that are needed in order to
471 read the list of known tasks in the Ada runtime. If all of the info
472 needed to do so is found, then save that info in the module's per-
473 program-space data, and return NULL. Otherwise, if any information
474 cannot be found, leave the per-program-space data untouched, and
475 return an error message explaining what was missing (that error
476 message does NOT need to be deallocated). */
477
478const char *
479ada_get_tcb_types_info (void)
480{
481 struct type *type;
482 struct type *common_type;
483 struct type *ll_type;
484 struct type *call_type;
485 struct atcb_fieldnos fieldnos;
486 struct ada_tasks_pspace_data *pspace_data;
487
488 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
489 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
490 const char *common_atcb_name = "system__tasking__common_atcb";
491 const char *private_data_name = "system__task_primitives__private_data";
492 const char *entry_call_record_name = "system__tasking__entry_call_record";
493
494 /* ATCB symbols may be found in several compilation units. As we
495 are only interested in one instance, use standard (literal,
496 C-like) lookups to get the first match. */
497
498 struct symbol *atcb_sym =
499 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
500 language_c, NULL).symbol;
501 const struct symbol *common_atcb_sym =
502 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
503 language_c, NULL).symbol;
504 const struct symbol *private_data_sym =
505 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
506 language_c, NULL).symbol;
507 const struct symbol *entry_call_record_sym =
508 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
509 language_c, NULL).symbol;
510
511 if (atcb_sym == NULL || atcb_sym->type == NULL)
512 {
513 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
514 size, so the symbol name differs. */
515 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
516 STRUCT_DOMAIN, language_c,
517 NULL).symbol;
518
519 if (atcb_sym == NULL || atcb_sym->type == NULL)
520 return _("Cannot find Ada_Task_Control_Block type");
521
522 type = atcb_sym->type;
523 }
524 else
525 {
526 /* Get a static representation of the type record
527 Ada_Task_Control_Block. */
528 type = atcb_sym->type;
529 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
530 }
531
532 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
533 return _("Cannot find Common_ATCB type");
534 if (private_data_sym == NULL || private_data_sym->type == NULL)
535 return _("Cannot find Private_Data type");
536 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
537 return _("Cannot find Entry_Call_Record type");
538
539 /* Get the type for Ada_Task_Control_Block.Common. */
540 common_type = common_atcb_sym->type;
541
542 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
543 ll_type = private_data_sym->type;
544
545 /* Get the type for Common_ATCB.Call.all. */
546 call_type = entry_call_record_sym->type;
547
548 /* Get the field indices. */
549 fieldnos.common = ada_get_field_index (type, "common", 0);
550 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
551 fieldnos.atc_nesting_level =
552 ada_get_field_index (type, "atc_nesting_level", 1);
553 fieldnos.state = ada_get_field_index (common_type, "state", 0);
554 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
555 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
556 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
557 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
558 fieldnos.activation_link = ada_get_field_index (common_type,
559 "activation_link", 1);
560 fieldnos.call = ada_get_field_index (common_type, "call", 1);
561 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
562 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
563 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
564 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
565 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
566
567 /* On certain platforms such as x86-windows, the "lwp" field has been
568 named "thread_id". This field will likely be renamed in the future,
569 but we need to support both possibilities to avoid an unnecessary
570 dependency on a recent compiler. We therefore try locating the
571 "thread_id" field in place of the "lwp" field if we did not find
572 the latter. */
573 if (fieldnos.ll_lwp < 0)
574 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
575
576 /* Set all the out parameters all at once, now that we are certain
577 that there are no potential error() anymore. */
578 pspace_data = get_ada_tasks_pspace_data (current_program_space);
579 pspace_data->initialized_p = 1;
580 pspace_data->atcb_type = type;
581 pspace_data->atcb_common_type = common_type;
582 pspace_data->atcb_ll_type = ll_type;
583 pspace_data->atcb_call_type = call_type;
584 pspace_data->atcb_fieldno = fieldnos;
585 return NULL;
586}
587
588/* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
589 component of its ATCB record. This PTID needs to match the PTID used
590 by the thread layer. */
591
592static ptid_t
593ptid_from_atcb_common (struct value *common_value)
594{
595 long thread = 0;
596 CORE_ADDR lwp = 0;
597 struct value *ll_value;
598 ptid_t ptid;
599 const struct ada_tasks_pspace_data *pspace_data
600 = get_ada_tasks_pspace_data (current_program_space);
601
602 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
603
604 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
605 lwp = value_as_address (value_field (ll_value,
606 pspace_data->atcb_fieldno.ll_lwp));
607 thread = value_as_long (value_field (ll_value,
608 pspace_data->atcb_fieldno.ll_thread));
609
610 ptid = target_get_ada_task_ptid (lwp, thread);
611
612 return ptid;
613}
614
615/* Read the ATCB data of a given task given its TASK_ID (which is in practice
616 the address of its assocated ATCB record), and store the result inside
617 TASK_INFO. */
618
619static void
620read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
621{
622 struct value *tcb_value;
623 struct value *common_value;
624 struct value *atc_nesting_level_value;
625 struct value *entry_calls_value;
626 struct value *entry_calls_value_element;
627 int called_task_fieldno = -1;
628 static const char ravenscar_task_name[] = "Ravenscar task";
629 const struct ada_tasks_pspace_data *pspace_data
630 = get_ada_tasks_pspace_data (current_program_space);
631
632 if (!pspace_data->initialized_p)
633 {
634 const char *err_msg = ada_get_tcb_types_info ();
635
636 if (err_msg != NULL)
637 error (_("%s. Aborting"), err_msg);
638 }
639
640 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
641 NULL, task_id);
642 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
643
644 /* Fill in the task_id. */
645
646 task_info->task_id = task_id;
647
648 /* Compute the name of the task.
649
650 Depending on the GNAT version used, the task image is either a fat
651 string, or a thin array of characters. Older versions of GNAT used
652 to use fat strings, and therefore did not need an extra field in
653 the ATCB to store the string length. For efficiency reasons, newer
654 versions of GNAT replaced the fat string by a static buffer, but this
655 also required the addition of a new field named "Image_Len" containing
656 the length of the task name. The method used to extract the task name
657 is selected depending on the existence of this field.
658
659 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
660 we may want to get it from the first user frame of the stack. For now,
661 we just give a dummy name. */
662
663 if (pspace_data->atcb_fieldno.image_len == -1)
664 {
665 if (pspace_data->atcb_fieldno.image >= 0)
666 read_fat_string_value (task_info->name,
667 value_field (common_value,
668 pspace_data->atcb_fieldno.image),
669 sizeof (task_info->name) - 1);
670 else
671 {
672 struct bound_minimal_symbol msym;
673
674 msym = lookup_minimal_symbol_by_pc (task_id);
675 if (msym.minsym)
676 {
677 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
678 const char *task_name = full_name;
679 const char *p;
680
681 /* Strip the prefix. */
682 for (p = full_name; *p; p++)
683 if (p[0] == '_' && p[1] == '_')
684 task_name = p + 2;
685
686 /* Copy the task name. */
687 strncpy (task_info->name, task_name, sizeof (task_info->name));
688 task_info->name[sizeof (task_info->name) - 1] = 0;
689 }
690 else
691 {
692 /* No symbol found. Use a default name. */
693 strcpy (task_info->name, ravenscar_task_name);
694 }
695 }
696 }
697 else
698 {
699 int len = value_as_long
700 (value_field (common_value,
701 pspace_data->atcb_fieldno.image_len));
702
703 value_as_string (task_info->name,
704 value_field (common_value,
705 pspace_data->atcb_fieldno.image),
706 len);
707 }
708
709 /* Compute the task state and priority. */
710
711 task_info->state =
712 value_as_long (value_field (common_value,
713 pspace_data->atcb_fieldno.state));
714 task_info->priority =
715 value_as_long (value_field (common_value,
716 pspace_data->atcb_fieldno.priority));
717
718 /* If the ATCB contains some information about the parent task,
719 then compute it as well. Otherwise, zero. */
720
721 if (pspace_data->atcb_fieldno.parent >= 0)
722 task_info->parent =
723 value_as_address (value_field (common_value,
724 pspace_data->atcb_fieldno.parent));
725 else
726 task_info->parent = 0;
727
728
729 /* If the ATCB contains some information about entry calls, then
730 compute the "called_task" as well. Otherwise, zero. */
731
732 if (pspace_data->atcb_fieldno.atc_nesting_level > 0
733 && pspace_data->atcb_fieldno.entry_calls > 0)
734 {
735 /* Let My_ATCB be the Ada task control block of a task calling the
736 entry of another task; then the Task_Id of the called task is
737 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
738 atc_nesting_level_value =
739 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
740 entry_calls_value =
741 ada_coerce_to_simple_array_ptr
742 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
743 entry_calls_value_element =
744 value_subscript (entry_calls_value,
745 value_as_long (atc_nesting_level_value));
746 called_task_fieldno =
747 ada_get_field_index (value_type (entry_calls_value_element),
748 "called_task", 0);
749 task_info->called_task =
750 value_as_address (value_field (entry_calls_value_element,
751 called_task_fieldno));
752 }
753 else
754 {
755 task_info->called_task = 0;
756 }
757
758 /* If the ATCB cotnains some information about RV callers,
759 then compute the "caller_task". Otherwise, zero. */
760
761 task_info->caller_task = 0;
762 if (pspace_data->atcb_fieldno.call >= 0)
763 {
764 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
765 If Common_ATCB.Call is null, then there is no caller. */
766 const CORE_ADDR call =
767 value_as_address (value_field (common_value,
768 pspace_data->atcb_fieldno.call));
769 struct value *call_val;
770
771 if (call != 0)
772 {
773 call_val =
774 value_from_contents_and_address (pspace_data->atcb_call_type,
775 NULL, call);
776 task_info->caller_task =
777 value_as_address
778 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
779 }
780 }
781
782 task_info->base_cpu
783 = value_as_long (value_field (common_value,
784 pspace_data->atcb_fieldno.base_cpu));
785
786 /* And finally, compute the task ptid. Note that there is not point
787 in computing it if the task is no longer alive, in which case
788 it is good enough to set its ptid to the null_ptid. */
789 if (ada_task_is_alive (task_info))
790 task_info->ptid = ptid_from_atcb_common (common_value);
791 else
792 task_info->ptid = null_ptid;
793}
794
795/* Read the ATCB info of the given task (identified by TASK_ID), and
796 add the result to the given inferior's TASK_LIST. */
797
798static void
799add_ada_task (CORE_ADDR task_id, struct inferior *inf)
800{
801 struct ada_task_info task_info;
802 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
803
804 read_atcb (task_id, &task_info);
805 VEC_safe_push (ada_task_info_s, data->task_list, &task_info);
806}
807
808/* Read the Known_Tasks array from the inferior memory, and store
809 it in the current inferior's TASK_LIST. Return non-zero upon success. */
810
811static int
812read_known_tasks_array (struct ada_tasks_inferior_data *data)
813{
814 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
815 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
816 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
817 int i;
818
819 /* Build a new list by reading the ATCBs from the Known_Tasks array
820 in the Ada runtime. */
821 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
822 for (i = 0; i < data->known_tasks_length; i++)
823 {
824 CORE_ADDR task_id =
825 extract_typed_address (known_tasks + i * target_ptr_byte,
826 data->known_tasks_element);
827
828 if (task_id != 0)
829 add_ada_task (task_id, current_inferior ());
830 }
831
832 return 1;
833}
834
835/* Read the known tasks from the inferior memory, and store it in
836 the current inferior's TASK_LIST. Return non-zero upon success. */
837
838static int
839read_known_tasks_list (struct ada_tasks_inferior_data *data)
840{
841 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
842 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
843 CORE_ADDR task_id;
844 const struct ada_tasks_pspace_data *pspace_data
845 = get_ada_tasks_pspace_data (current_program_space);
846
847 /* Sanity check. */
848 if (pspace_data->atcb_fieldno.activation_link < 0)
849 return 0;
850
851 /* Build a new list by reading the ATCBs. Read head of the list. */
852 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
853 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
854 while (task_id != 0)
855 {
856 struct value *tcb_value;
857 struct value *common_value;
858
859 add_ada_task (task_id, current_inferior ());
860
861 /* Read the chain. */
862 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
863 NULL, task_id);
864 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
865 task_id = value_as_address
866 (value_field (common_value,
867 pspace_data->atcb_fieldno.activation_link));
868 }
869
870 return 1;
871}
872
873/* Set all fields of the current inferior ada-tasks data pointed by DATA.
874 Do nothing if those fields are already set and still up to date. */
875
876static void
877ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
878{
879 struct bound_minimal_symbol msym;
880 struct symbol *sym;
881
882 /* Return now if already set. */
883 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
884 return;
885
886 /* Try array. */
887
888 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
889 if (msym.minsym != NULL)
890 {
891 data->known_tasks_kind = ADA_TASKS_ARRAY;
892 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
893
894 /* Try to get pointer type and array length from the symtab. */
895 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
896 language_c, NULL).symbol;
897 if (sym != NULL)
898 {
899 /* Validate. */
900 struct type *type = check_typedef (SYMBOL_TYPE (sym));
901 struct type *eltype = NULL;
902 struct type *idxtype = NULL;
903
904 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
905 eltype = check_typedef (TYPE_TARGET_TYPE (type));
906 if (eltype != NULL
907 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
908 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
909 if (idxtype != NULL
910 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
911 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
912 {
913 data->known_tasks_element = eltype;
914 data->known_tasks_length =
915 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
916 return;
917 }
918 }
919
920 /* Fallback to default values. The runtime may have been stripped (as
921 in some distributions), but it is likely that the executable still
922 contains debug information on the task type (due to implicit with of
923 Ada.Tasking). */
924 data->known_tasks_element =
925 builtin_type (target_gdbarch ())->builtin_data_ptr;
926 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
927 return;
928 }
929
930
931 /* Try list. */
932
933 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
934 if (msym.minsym != NULL)
935 {
936 data->known_tasks_kind = ADA_TASKS_LIST;
937 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
938 data->known_tasks_length = 1;
939
940 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
941 language_c, NULL).symbol;
942 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
943 {
944 /* Validate. */
945 struct type *type = check_typedef (SYMBOL_TYPE (sym));
946
947 if (TYPE_CODE (type) == TYPE_CODE_PTR)
948 {
949 data->known_tasks_element = type;
950 return;
951 }
952 }
953
954 /* Fallback to default values. */
955 data->known_tasks_element =
956 builtin_type (target_gdbarch ())->builtin_data_ptr;
957 data->known_tasks_length = 1;
958 return;
959 }
960
961 /* Can't find tasks. */
962
963 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
964 data->known_tasks_addr = 0;
965}
966
967/* Read the known tasks from the current inferior's memory, and store it
968 in the current inferior's data TASK_LIST.
969 Return non-zero upon success. */
970
971static int
972read_known_tasks (void)
973{
974 struct ada_tasks_inferior_data *data =
975 get_ada_tasks_inferior_data (current_inferior ());
976
977 /* Step 1: Clear the current list, if necessary. */
978 VEC_truncate (ada_task_info_s, data->task_list, 0);
979
980 /* Step 2: do the real work.
981 If the application does not use task, then no more needs to be done.
982 It is important to have the task list cleared (see above) before we
983 return, as we don't want a stale task list to be used... This can
984 happen for instance when debugging a non-multitasking program after
985 having debugged a multitasking one. */
986 ada_tasks_inferior_data_sniffer (data);
987 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
988
989 switch (data->known_tasks_kind)
990 {
991 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
992 return 0;
993 case ADA_TASKS_ARRAY:
994 return read_known_tasks_array (data);
995 case ADA_TASKS_LIST:
996 return read_known_tasks_list (data);
997 }
998
999 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
1000 array unless needed. Then report a success. */
1001 data->task_list_valid_p = 1;
1002
1003 return 1;
1004}
1005
1006/* Build the task_list by reading the Known_Tasks array from
1007 the inferior, and return the number of tasks in that list
1008 (zero means that the program is not using tasking at all). */
1009
1010int
1011ada_build_task_list (void)
1012{
1013 struct ada_tasks_inferior_data *data;
1014
1015 if (!target_has_stack)
1016 error (_("Cannot inspect Ada tasks when program is not running"));
1017
1018 data = get_ada_tasks_inferior_data (current_inferior ());
1019 if (!data->task_list_valid_p)
1020 read_known_tasks ();
1021
1022 return VEC_length (ada_task_info_s, data->task_list);
1023}
1024
1025/* Print a table providing a short description of all Ada tasks
1026 running inside inferior INF. If ARG_STR is set, it will be
1027 interpreted as a task number, and the table will be limited to
1028 that task only. */
1029
1030void
1031print_ada_task_info (struct ui_out *uiout,
1032 char *arg_str,
1033 struct inferior *inf)
1034{
1035 struct ada_tasks_inferior_data *data;
1036 int taskno, nb_tasks;
1037 int taskno_arg = 0;
1038 int nb_columns;
1039
1040 if (ada_build_task_list () == 0)
1041 {
1042 uiout->message (_("Your application does not use any Ada tasks.\n"));
1043 return;
1044 }
1045
1046 if (arg_str != NULL && arg_str[0] != '\0')
1047 taskno_arg = value_as_long (parse_and_eval (arg_str));
1048
1049 if (uiout->is_mi_like_p ())
1050 /* In GDB/MI mode, we want to provide the thread ID corresponding
1051 to each task. This allows clients to quickly find the thread
1052 associated to any task, which is helpful for commands that
1053 take a --thread argument. However, in order to be able to
1054 provide that thread ID, the thread list must be up to date
1055 first. */
1056 target_update_thread_list ();
1057
1058 data = get_ada_tasks_inferior_data (inf);
1059
1060 /* Compute the number of tasks that are going to be displayed
1061 in the output. If an argument was given, there will be
1062 at most 1 entry. Otherwise, there will be as many entries
1063 as we have tasks. */
1064 if (taskno_arg)
1065 {
1066 if (taskno_arg > 0
1067 && taskno_arg <= VEC_length (ada_task_info_s, data->task_list))
1068 nb_tasks = 1;
1069 else
1070 nb_tasks = 0;
1071 }
1072 else
1073 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
1074
1075 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1076 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1077 uiout->table_header (1, ui_left, "current", "");
1078 uiout->table_header (3, ui_right, "id", "ID");
1079 uiout->table_header (9, ui_right, "task-id", "TID");
1080 /* The following column is provided in GDB/MI mode only because
1081 it is only really useful in that mode, and also because it
1082 allows us to keep the CLI output shorter and more compact. */
1083 if (uiout->is_mi_like_p ())
1084 uiout->table_header (4, ui_right, "thread-id", "");
1085 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1086 uiout->table_header (3, ui_right, "priority", "Pri");
1087 uiout->table_header (22, ui_left, "state", "State");
1088 /* Use ui_noalign for the last column, to prevent the CLI uiout
1089 from printing an extra space at the end of each row. This
1090 is a bit of a hack, but does get the job done. */
1091 uiout->table_header (1, ui_noalign, "name", "Name");
1092 uiout->table_body ();
1093
1094 for (taskno = 1;
1095 taskno <= VEC_length (ada_task_info_s, data->task_list);
1096 taskno++)
1097 {
1098 const struct ada_task_info *const task_info =
1099 VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1100 int parent_id;
1101
1102 gdb_assert (task_info != NULL);
1103
1104 /* If the user asked for the output to be restricted
1105 to one task only, and this is not the task, skip
1106 to the next one. */
1107 if (taskno_arg && taskno != taskno_arg)
1108 continue;
1109
1110 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1111
1112 /* Print a star if this task is the current task (or the task
1113 currently selected). */
1114 if (ptid_equal (task_info->ptid, inferior_ptid))
1115 uiout->field_string ("current", "*");
1116 else
1117 uiout->field_skip ("current");
1118
1119 /* Print the task number. */
1120 uiout->field_int ("id", taskno);
1121
1122 /* Print the Task ID. */
1123 uiout->field_fmt ("task-id", "%9lx", (long) task_info->task_id);
1124
1125 /* Print the associated Thread ID. */
1126 if (uiout->is_mi_like_p ())
1127 {
1128 const int thread_id = ptid_to_global_thread_id (task_info->ptid);
1129
1130 if (thread_id != 0)
1131 uiout->field_int ("thread-id", thread_id);
1132 else
1133 /* This should never happen unless there is a bug somewhere,
1134 but be resilient when that happens. */
1135 uiout->field_skip ("thread-id");
1136 }
1137
1138 /* Print the ID of the parent task. */
1139 parent_id = get_task_number_from_id (task_info->parent, inf);
1140 if (parent_id)
1141 uiout->field_int ("parent-id", parent_id);
1142 else
1143 uiout->field_skip ("parent-id");
1144
1145 /* Print the base priority of the task. */
1146 uiout->field_int ("priority", task_info->priority);
1147
1148 /* Print the task current state. */
1149 if (task_info->caller_task)
1150 uiout->field_fmt ("state",
1151 _("Accepting RV with %-4d"),
1152 get_task_number_from_id (task_info->caller_task,
1153 inf));
1154 else if (task_info->state == Entry_Caller_Sleep
1155 && task_info->called_task)
1156 uiout->field_fmt ("state",
1157 _("Waiting on RV with %-3d"),
1158 get_task_number_from_id (task_info->called_task,
1159 inf));
1160 else
1161 uiout->field_string ("state", task_states[task_info->state]);
1162
1163 /* Finally, print the task name. */
1164 uiout->field_fmt ("name",
1165 "%s",
1166 task_info->name[0] != '\0' ? task_info->name
1167 : _("<no name>"));
1168
1169 uiout->text ("\n");
1170 }
1171}
1172
1173/* Print a detailed description of the Ada task whose ID is TASKNO_STR
1174 for the given inferior (INF). */
1175
1176static void
1177info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1178{
1179 const int taskno = value_as_long (parse_and_eval (taskno_str));
1180 struct ada_task_info *task_info;
1181 int parent_taskno = 0;
1182 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1183
1184 if (ada_build_task_list () == 0)
1185 {
1186 uiout->message (_("Your application does not use any Ada tasks.\n"));
1187 return;
1188 }
1189
1190 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1191 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1192 "see the IDs of currently known tasks"), taskno);
1193 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1194
1195 /* Print the Ada task ID. */
1196 printf_filtered (_("Ada Task: %s\n"),
1197 paddress (target_gdbarch (), task_info->task_id));
1198
1199 /* Print the name of the task. */
1200 if (task_info->name[0] != '\0')
1201 printf_filtered (_("Name: %s\n"), task_info->name);
1202 else
1203 printf_filtered (_("<no name>\n"));
1204
1205 /* Print the TID and LWP. */
1206 printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid));
1207 printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid));
1208
1209 /* If set, print the base CPU. */
1210 if (task_info->base_cpu != 0)
1211 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1212
1213 /* Print who is the parent (if any). */
1214 if (task_info->parent != 0)
1215 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1216 if (parent_taskno)
1217 {
1218 struct ada_task_info *parent =
1219 VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1);
1220
1221 printf_filtered (_("Parent: %d"), parent_taskno);
1222 if (parent->name[0] != '\0')
1223 printf_filtered (" (%s)", parent->name);
1224 printf_filtered ("\n");
1225 }
1226 else
1227 printf_filtered (_("No parent\n"));
1228
1229 /* Print the base priority. */
1230 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1231
1232 /* print the task current state. */
1233 {
1234 int target_taskno = 0;
1235
1236 if (task_info->caller_task)
1237 {
1238 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1239 printf_filtered (_("State: Accepting rendezvous with %d"),
1240 target_taskno);
1241 }
1242 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task)
1243 {
1244 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1245 printf_filtered (_("State: Waiting on task %d's entry"),
1246 target_taskno);
1247 }
1248 else
1249 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1250
1251 if (target_taskno)
1252 {
1253 struct ada_task_info *target_task_info =
1254 VEC_index (ada_task_info_s, data->task_list, target_taskno - 1);
1255
1256 if (target_task_info->name[0] != '\0')
1257 printf_filtered (" (%s)", target_task_info->name);
1258 }
1259
1260 printf_filtered ("\n");
1261 }
1262}
1263
1264/* If ARG is empty or null, then print a list of all Ada tasks.
1265 Otherwise, print detailed information about the task whose ID
1266 is ARG.
1267
1268 Does nothing if the program doesn't use Ada tasking. */
1269
1270static void
1271info_tasks_command (const char *arg, int from_tty)
1272{
1273 struct ui_out *uiout = current_uiout;
1274
1275 if (arg == NULL || *arg == '\0')
1276 print_ada_task_info (uiout, NULL, current_inferior ());
1277 else
1278 info_task (uiout, arg, current_inferior ());
1279}
1280
1281/* Print a message telling the user id of the current task.
1282 This function assumes that tasking is in use in the inferior. */
1283
1284static void
1285display_current_task_id (void)
1286{
1287 const int current_task = ada_get_task_number (inferior_ptid);
1288
1289 if (current_task == 0)
1290 printf_filtered (_("[Current task is unknown]\n"));
1291 else
1292 printf_filtered (_("[Current task is %d]\n"), current_task);
1293}
1294
1295/* Parse and evaluate TIDSTR into a task id, and try to switch to
1296 that task. Print an error message if the task switch failed. */
1297
1298static void
1299task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1300{
1301 const int taskno = value_as_long (parse_and_eval (taskno_str));
1302 struct ada_task_info *task_info;
1303 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1304
1305 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1306 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1307 "see the IDs of currently known tasks"), taskno);
1308 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1309
1310 if (!ada_task_is_alive (task_info))
1311 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1312
1313 /* On some platforms, the thread list is not updated until the user
1314 performs a thread-related operation (by using the "info threads"
1315 command, for instance). So this thread list may not be up to date
1316 when the user attempts this task switch. Since we cannot switch
1317 to the thread associated to our task if GDB does not know about
1318 that thread, we need to make sure that any new threads gets added
1319 to the thread list. */
1320 target_update_thread_list ();
1321
1322 /* Verify that the ptid of the task we want to switch to is valid
1323 (in other words, a ptid that GDB knows about). Otherwise, we will
1324 cause an assertion failure later on, when we try to determine
1325 the ptid associated thread_info data. We should normally never
1326 encounter such an error, but the wrong ptid can actually easily be
1327 computed if target_get_ada_task_ptid has not been implemented for
1328 our target (yet). Rather than cause an assertion error in that case,
1329 it's nicer for the user to just refuse to perform the task switch. */
1330 if (!find_thread_ptid (task_info->ptid))
1331 error (_("Unable to compute thread ID for task %d.\n"
1332 "Cannot switch to this task."),
1333 taskno);
1334
1335 switch_to_thread (task_info->ptid);
1336 ada_find_printable_frame (get_selected_frame (NULL));
1337 printf_filtered (_("[Switching to task %d]\n"), taskno);
1338 print_stack_frame (get_selected_frame (NULL),
1339 frame_relative_level (get_selected_frame (NULL)),
1340 SRC_AND_LOC, 1);
1341}
1342
1343
1344/* Print the ID of the current task if TASKNO_STR is empty or NULL.
1345 Otherwise, switch to the task indicated by TASKNO_STR. */
1346
1347static void
1348task_command (const char *taskno_str, int from_tty)
1349{
1350 struct ui_out *uiout = current_uiout;
1351
1352 if (ada_build_task_list () == 0)
1353 {
1354 uiout->message (_("Your application does not use any Ada tasks.\n"));
1355 return;
1356 }
1357
1358 if (taskno_str == NULL || taskno_str[0] == '\0')
1359 display_current_task_id ();
1360 else
1361 task_command_1 (taskno_str, from_tty, current_inferior ());
1362}
1363
1364/* Indicate that the given inferior's task list may have changed,
1365 so invalidate the cache. */
1366
1367static void
1368ada_task_list_changed (struct inferior *inf)
1369{
1370 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1371
1372 data->task_list_valid_p = 0;
1373}
1374
1375/* Invalidate the per-program-space data. */
1376
1377static void
1378ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1379{
1380 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1381}
1382
1383/* Invalidate the per-inferior data. */
1384
1385static void
1386ada_tasks_invalidate_inferior_data (struct inferior *inf)
1387{
1388 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1389
1390 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1391 data->task_list_valid_p = 0;
1392}
1393
1394/* The 'normal_stop' observer notification callback. */
1395
1396static void
1397ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1398{
1399 /* The inferior has been resumed, and just stopped. This means that
1400 our task_list needs to be recomputed before it can be used again. */
1401 ada_task_list_changed (current_inferior ());
1402}
1403
1404/* A routine to be called when the objfiles have changed. */
1405
1406static void
1407ada_tasks_new_objfile_observer (struct objfile *objfile)
1408{
1409 struct inferior *inf;
1410
1411 /* Invalidate the relevant data in our program-space data. */
1412
1413 if (objfile == NULL)
1414 {
1415 /* All objfiles are being cleared, so we should clear all
1416 our caches for all program spaces. */
1417 struct program_space *pspace;
1418
1419 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1420 ada_tasks_invalidate_pspace_data (pspace);
1421 }
1422 else
1423 {
1424 /* The associated program-space data might have changed after
1425 this objfile was added. Invalidate all cached data. */
1426 ada_tasks_invalidate_pspace_data (objfile->pspace);
1427 }
1428
1429 /* Invalidate the per-inferior cache for all inferiors using
1430 this objfile (or, in other words, for all inferiors who have
1431 the same program-space as the objfile's program space).
1432 If all objfiles are being cleared (OBJFILE is NULL), then
1433 clear the caches for all inferiors. */
1434
1435 for (inf = inferior_list; inf != NULL; inf = inf->next)
1436 if (objfile == NULL || inf->pspace == objfile->pspace)
1437 ada_tasks_invalidate_inferior_data (inf);
1438}
1439
1440void
1441_initialize_tasks (void)
1442{
1443 ada_tasks_pspace_data_handle = register_program_space_data ();
1444 ada_tasks_inferior_data_handle = register_inferior_data ();
1445
1446 /* Attach various observers. */
1447 observer_attach_normal_stop (ada_tasks_normal_stop_observer);
1448 observer_attach_new_objfile (ada_tasks_new_objfile_observer);
1449
1450 /* Some new commands provided by this module. */
1451 add_info ("tasks", info_tasks_command,
1452 _("Provide information about all known Ada tasks"));
1453 add_cmd ("task", class_run, task_command,
1454 _("Use this command to switch between Ada tasks.\n\
1455Without argument, this command simply prints the current task ID"),
1456 &cmdlist);
1457}
This page took 0.027077 seconds and 4 git commands to generate.