| 1 | /* Copyright (C) 1992-2018 Free Software Foundation, Inc. |
| 2 | |
| 3 | This file is part of GDB. |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify |
| 6 | it under the terms of the GNU General Public License as published by |
| 7 | the Free Software Foundation; either version 3 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License |
| 16 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 17 | |
| 18 | #include "defs.h" |
| 19 | #include "observer.h" |
| 20 | #include "gdbcmd.h" |
| 21 | #include "target.h" |
| 22 | #include "ada-lang.h" |
| 23 | #include "gdbcore.h" |
| 24 | #include "inferior.h" |
| 25 | #include "gdbthread.h" |
| 26 | #include "progspace.h" |
| 27 | #include "objfiles.h" |
| 28 | |
| 29 | /* The name of the array in the GNAT runtime where the Ada Task Control |
| 30 | Block of each task is stored. */ |
| 31 | #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks" |
| 32 | |
| 33 | /* The maximum number of tasks known to the Ada runtime. */ |
| 34 | static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000; |
| 35 | |
| 36 | /* The name of the variable in the GNAT runtime where the head of a task |
| 37 | chain is saved. This is an alternate mechanism to find the list of known |
| 38 | tasks. */ |
| 39 | #define KNOWN_TASKS_LIST "system__tasking__debug__first_task" |
| 40 | |
| 41 | enum task_states |
| 42 | { |
| 43 | Unactivated, |
| 44 | Runnable, |
| 45 | Terminated, |
| 46 | Activator_Sleep, |
| 47 | Acceptor_Sleep, |
| 48 | Entry_Caller_Sleep, |
| 49 | Async_Select_Sleep, |
| 50 | Delay_Sleep, |
| 51 | Master_Completion_Sleep, |
| 52 | Master_Phase_2_Sleep, |
| 53 | Interrupt_Server_Idle_Sleep, |
| 54 | Interrupt_Server_Blocked_Interrupt_Sleep, |
| 55 | Timer_Server_Sleep, |
| 56 | AST_Server_Sleep, |
| 57 | Asynchronous_Hold, |
| 58 | Interrupt_Server_Blocked_On_Event_Flag, |
| 59 | Activating, |
| 60 | Acceptor_Delay_Sleep |
| 61 | }; |
| 62 | |
| 63 | /* A short description corresponding to each possible task state. */ |
| 64 | static const char *task_states[] = { |
| 65 | N_("Unactivated"), |
| 66 | N_("Runnable"), |
| 67 | N_("Terminated"), |
| 68 | N_("Child Activation Wait"), |
| 69 | N_("Accept or Select Term"), |
| 70 | N_("Waiting on entry call"), |
| 71 | N_("Async Select Wait"), |
| 72 | N_("Delay Sleep"), |
| 73 | N_("Child Termination Wait"), |
| 74 | N_("Wait Child in Term Alt"), |
| 75 | "", |
| 76 | "", |
| 77 | "", |
| 78 | "", |
| 79 | N_("Asynchronous Hold"), |
| 80 | "", |
| 81 | N_("Activating"), |
| 82 | N_("Selective Wait") |
| 83 | }; |
| 84 | |
| 85 | /* A longer description corresponding to each possible task state. */ |
| 86 | static const char *long_task_states[] = { |
| 87 | N_("Unactivated"), |
| 88 | N_("Runnable"), |
| 89 | N_("Terminated"), |
| 90 | N_("Waiting for child activation"), |
| 91 | N_("Blocked in accept or select with terminate"), |
| 92 | N_("Waiting on entry call"), |
| 93 | N_("Asynchronous Selective Wait"), |
| 94 | N_("Delay Sleep"), |
| 95 | N_("Waiting for children termination"), |
| 96 | N_("Waiting for children in terminate alternative"), |
| 97 | "", |
| 98 | "", |
| 99 | "", |
| 100 | "", |
| 101 | N_("Asynchronous Hold"), |
| 102 | "", |
| 103 | N_("Activating"), |
| 104 | N_("Blocked in selective wait statement") |
| 105 | }; |
| 106 | |
| 107 | /* The index of certain important fields in the Ada Task Control Block |
| 108 | record and sub-records. */ |
| 109 | |
| 110 | struct atcb_fieldnos |
| 111 | { |
| 112 | /* Fields in record Ada_Task_Control_Block. */ |
| 113 | int common; |
| 114 | int entry_calls; |
| 115 | int atc_nesting_level; |
| 116 | |
| 117 | /* Fields in record Common_ATCB. */ |
| 118 | int state; |
| 119 | int parent; |
| 120 | int priority; |
| 121 | int image; |
| 122 | int image_len; /* This field may be missing. */ |
| 123 | int activation_link; |
| 124 | int call; |
| 125 | int ll; |
| 126 | int base_cpu; |
| 127 | |
| 128 | /* Fields in Task_Primitives.Private_Data. */ |
| 129 | int ll_thread; |
| 130 | int ll_lwp; /* This field may be missing. */ |
| 131 | |
| 132 | /* Fields in Common_ATCB.Call.all. */ |
| 133 | int call_self; |
| 134 | }; |
| 135 | |
| 136 | /* This module's per-program-space data. */ |
| 137 | |
| 138 | struct ada_tasks_pspace_data |
| 139 | { |
| 140 | /* Nonzero if the data has been initialized. If set to zero, |
| 141 | it means that the data has either not been initialized, or |
| 142 | has potentially become stale. */ |
| 143 | int initialized_p; |
| 144 | |
| 145 | /* The ATCB record type. */ |
| 146 | struct type *atcb_type; |
| 147 | |
| 148 | /* The ATCB "Common" component type. */ |
| 149 | struct type *atcb_common_type; |
| 150 | |
| 151 | /* The type of the "ll" field, from the atcb_common_type. */ |
| 152 | struct type *atcb_ll_type; |
| 153 | |
| 154 | /* The type of the "call" field, from the atcb_common_type. */ |
| 155 | struct type *atcb_call_type; |
| 156 | |
| 157 | /* The index of various fields in the ATCB record and sub-records. */ |
| 158 | struct atcb_fieldnos atcb_fieldno; |
| 159 | }; |
| 160 | |
| 161 | /* Key to our per-program-space data. */ |
| 162 | static const struct program_space_data *ada_tasks_pspace_data_handle; |
| 163 | |
| 164 | typedef struct ada_task_info ada_task_info_s; |
| 165 | DEF_VEC_O(ada_task_info_s); |
| 166 | |
| 167 | /* The kind of data structure used by the runtime to store the list |
| 168 | of Ada tasks. */ |
| 169 | |
| 170 | enum ada_known_tasks_kind |
| 171 | { |
| 172 | /* Use this value when we haven't determined which kind of structure |
| 173 | is being used, or when we need to recompute it. |
| 174 | |
| 175 | We set the value of this enumerate to zero on purpose: This allows |
| 176 | us to use this enumerate in a structure where setting all fields |
| 177 | to zero will result in this kind being set to unknown. */ |
| 178 | ADA_TASKS_UNKNOWN = 0, |
| 179 | |
| 180 | /* This value means that we did not find any task list. Unless |
| 181 | there is a bug somewhere, this means that the inferior does not |
| 182 | use tasking. */ |
| 183 | ADA_TASKS_NOT_FOUND, |
| 184 | |
| 185 | /* This value means that the task list is stored as an array. |
| 186 | This is the usual method, as it causes very little overhead. |
| 187 | But this method is not always used, as it does use a certain |
| 188 | amount of memory, which might be scarse in certain environments. */ |
| 189 | ADA_TASKS_ARRAY, |
| 190 | |
| 191 | /* This value means that the task list is stored as a linked list. |
| 192 | This has more runtime overhead than the array approach, but |
| 193 | also require less memory when the number of tasks is small. */ |
| 194 | ADA_TASKS_LIST, |
| 195 | }; |
| 196 | |
| 197 | /* This module's per-inferior data. */ |
| 198 | |
| 199 | struct ada_tasks_inferior_data |
| 200 | { |
| 201 | /* The type of data structure used by the runtime to store |
| 202 | the list of Ada tasks. The value of this field influences |
| 203 | the interpretation of the known_tasks_addr field below: |
| 204 | - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't |
| 205 | been determined yet; |
| 206 | - ADA_TASKS_NOT_FOUND: The program probably does not use tasking |
| 207 | and the known_tasks_addr is irrelevant; |
| 208 | - ADA_TASKS_ARRAY: The known_tasks is an array; |
| 209 | - ADA_TASKS_LIST: The known_tasks is a list. */ |
| 210 | enum ada_known_tasks_kind known_tasks_kind; |
| 211 | |
| 212 | /* The address of the known_tasks structure. This is where |
| 213 | the runtime stores the information for all Ada tasks. |
| 214 | The interpretation of this field depends on KNOWN_TASKS_KIND |
| 215 | above. */ |
| 216 | CORE_ADDR known_tasks_addr; |
| 217 | |
| 218 | /* Type of elements of the known task. Usually a pointer. */ |
| 219 | struct type *known_tasks_element; |
| 220 | |
| 221 | /* Number of elements in the known tasks array. */ |
| 222 | unsigned int known_tasks_length; |
| 223 | |
| 224 | /* When nonzero, this flag indicates that the task_list field |
| 225 | below is up to date. When set to zero, the list has either |
| 226 | not been initialized, or has potentially become stale. */ |
| 227 | int task_list_valid_p; |
| 228 | |
| 229 | /* The list of Ada tasks. |
| 230 | |
| 231 | Note: To each task we associate a number that the user can use to |
| 232 | reference it - this number is printed beside each task in the tasks |
| 233 | info listing displayed by "info tasks". This number is equal to |
| 234 | its index in the vector + 1. Reciprocally, to compute the index |
| 235 | of a task in the vector, we need to substract 1 from its number. */ |
| 236 | VEC(ada_task_info_s) *task_list; |
| 237 | }; |
| 238 | |
| 239 | /* Key to our per-inferior data. */ |
| 240 | static const struct inferior_data *ada_tasks_inferior_data_handle; |
| 241 | |
| 242 | /* Return the ada-tasks module's data for the given program space (PSPACE). |
| 243 | If none is found, add a zero'ed one now. |
| 244 | |
| 245 | This function always returns a valid object. */ |
| 246 | |
| 247 | static struct ada_tasks_pspace_data * |
| 248 | get_ada_tasks_pspace_data (struct program_space *pspace) |
| 249 | { |
| 250 | struct ada_tasks_pspace_data *data; |
| 251 | |
| 252 | data = ((struct ada_tasks_pspace_data *) |
| 253 | program_space_data (pspace, ada_tasks_pspace_data_handle)); |
| 254 | if (data == NULL) |
| 255 | { |
| 256 | data = XCNEW (struct ada_tasks_pspace_data); |
| 257 | set_program_space_data (pspace, ada_tasks_pspace_data_handle, data); |
| 258 | } |
| 259 | |
| 260 | return data; |
| 261 | } |
| 262 | |
| 263 | /* Return the ada-tasks module's data for the given inferior (INF). |
| 264 | If none is found, add a zero'ed one now. |
| 265 | |
| 266 | This function always returns a valid object. |
| 267 | |
| 268 | Note that we could use an observer of the inferior-created event |
| 269 | to make sure that the ada-tasks per-inferior data always exists. |
| 270 | But we prefered this approach, as it avoids this entirely as long |
| 271 | as the user does not use any of the tasking features. This is |
| 272 | quite possible, particularly in the case where the inferior does |
| 273 | not use tasking. */ |
| 274 | |
| 275 | static struct ada_tasks_inferior_data * |
| 276 | get_ada_tasks_inferior_data (struct inferior *inf) |
| 277 | { |
| 278 | struct ada_tasks_inferior_data *data; |
| 279 | |
| 280 | data = ((struct ada_tasks_inferior_data *) |
| 281 | inferior_data (inf, ada_tasks_inferior_data_handle)); |
| 282 | if (data == NULL) |
| 283 | { |
| 284 | data = XCNEW (struct ada_tasks_inferior_data); |
| 285 | set_inferior_data (inf, ada_tasks_inferior_data_handle, data); |
| 286 | } |
| 287 | |
| 288 | return data; |
| 289 | } |
| 290 | |
| 291 | /* Return the task number of the task whose ptid is PTID, or zero |
| 292 | if the task could not be found. */ |
| 293 | |
| 294 | int |
| 295 | ada_get_task_number (ptid_t ptid) |
| 296 | { |
| 297 | int i; |
| 298 | struct inferior *inf = find_inferior_ptid (ptid); |
| 299 | struct ada_tasks_inferior_data *data; |
| 300 | |
| 301 | gdb_assert (inf != NULL); |
| 302 | data = get_ada_tasks_inferior_data (inf); |
| 303 | |
| 304 | for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++) |
| 305 | if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid, |
| 306 | ptid)) |
| 307 | return i + 1; |
| 308 | |
| 309 | return 0; /* No matching task found. */ |
| 310 | } |
| 311 | |
| 312 | /* Return the task number of the task running in inferior INF which |
| 313 | matches TASK_ID , or zero if the task could not be found. */ |
| 314 | |
| 315 | static int |
| 316 | get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf) |
| 317 | { |
| 318 | struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); |
| 319 | int i; |
| 320 | |
| 321 | for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++) |
| 322 | { |
| 323 | struct ada_task_info *task_info = |
| 324 | VEC_index (ada_task_info_s, data->task_list, i); |
| 325 | |
| 326 | if (task_info->task_id == task_id) |
| 327 | return i + 1; |
| 328 | } |
| 329 | |
| 330 | /* Task not found. Return 0. */ |
| 331 | return 0; |
| 332 | } |
| 333 | |
| 334 | /* Return non-zero if TASK_NUM is a valid task number. */ |
| 335 | |
| 336 | int |
| 337 | valid_task_id (int task_num) |
| 338 | { |
| 339 | struct ada_tasks_inferior_data *data; |
| 340 | |
| 341 | ada_build_task_list (); |
| 342 | data = get_ada_tasks_inferior_data (current_inferior ()); |
| 343 | return (task_num > 0 |
| 344 | && task_num <= VEC_length (ada_task_info_s, data->task_list)); |
| 345 | } |
| 346 | |
| 347 | /* Return non-zero iff the task STATE corresponds to a non-terminated |
| 348 | task state. */ |
| 349 | |
| 350 | static int |
| 351 | ada_task_is_alive (struct ada_task_info *task_info) |
| 352 | { |
| 353 | return (task_info->state != Terminated); |
| 354 | } |
| 355 | |
| 356 | /* Search through the list of known tasks for the one whose ptid is |
| 357 | PTID, and return it. Return NULL if the task was not found. */ |
| 358 | |
| 359 | struct ada_task_info * |
| 360 | ada_get_task_info_from_ptid (ptid_t ptid) |
| 361 | { |
| 362 | int i, nb_tasks; |
| 363 | struct ada_task_info *task; |
| 364 | struct ada_tasks_inferior_data *data; |
| 365 | |
| 366 | ada_build_task_list (); |
| 367 | data = get_ada_tasks_inferior_data (current_inferior ()); |
| 368 | nb_tasks = VEC_length (ada_task_info_s, data->task_list); |
| 369 | |
| 370 | for (i = 0; i < nb_tasks; i++) |
| 371 | { |
| 372 | task = VEC_index (ada_task_info_s, data->task_list, i); |
| 373 | if (ptid_equal (task->ptid, ptid)) |
| 374 | return task; |
| 375 | } |
| 376 | |
| 377 | return NULL; |
| 378 | } |
| 379 | |
| 380 | /* Call the ITERATOR function once for each Ada task that hasn't been |
| 381 | terminated yet. */ |
| 382 | |
| 383 | void |
| 384 | iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator) |
| 385 | { |
| 386 | int i, nb_tasks; |
| 387 | struct ada_task_info *task; |
| 388 | struct ada_tasks_inferior_data *data; |
| 389 | |
| 390 | ada_build_task_list (); |
| 391 | data = get_ada_tasks_inferior_data (current_inferior ()); |
| 392 | nb_tasks = VEC_length (ada_task_info_s, data->task_list); |
| 393 | |
| 394 | for (i = 0; i < nb_tasks; i++) |
| 395 | { |
| 396 | task = VEC_index (ada_task_info_s, data->task_list, i); |
| 397 | if (!ada_task_is_alive (task)) |
| 398 | continue; |
| 399 | iterator (task); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | /* Extract the contents of the value as a string whose length is LENGTH, |
| 404 | and store the result in DEST. */ |
| 405 | |
| 406 | static void |
| 407 | value_as_string (char *dest, struct value *val, int length) |
| 408 | { |
| 409 | memcpy (dest, value_contents (val), length); |
| 410 | dest[length] = '\0'; |
| 411 | } |
| 412 | |
| 413 | /* Extract the string image from the fat string corresponding to VAL, |
| 414 | and store it in DEST. If the string length is greater than MAX_LEN, |
| 415 | then truncate the result to the first MAX_LEN characters of the fat |
| 416 | string. */ |
| 417 | |
| 418 | static void |
| 419 | read_fat_string_value (char *dest, struct value *val, int max_len) |
| 420 | { |
| 421 | struct value *array_val; |
| 422 | struct value *bounds_val; |
| 423 | int len; |
| 424 | |
| 425 | /* The following variables are made static to avoid recomputing them |
| 426 | each time this function is called. */ |
| 427 | static int initialize_fieldnos = 1; |
| 428 | static int array_fieldno; |
| 429 | static int bounds_fieldno; |
| 430 | static int upper_bound_fieldno; |
| 431 | |
| 432 | /* Get the index of the fields that we will need to read in order |
| 433 | to extract the string from the fat string. */ |
| 434 | if (initialize_fieldnos) |
| 435 | { |
| 436 | struct type *type = value_type (val); |
| 437 | struct type *bounds_type; |
| 438 | |
| 439 | array_fieldno = ada_get_field_index (type, "P_ARRAY", 0); |
| 440 | bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0); |
| 441 | |
| 442 | bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno); |
| 443 | if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR) |
| 444 | bounds_type = TYPE_TARGET_TYPE (bounds_type); |
| 445 | if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT) |
| 446 | error (_("Unknown task name format. Aborting")); |
| 447 | upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0); |
| 448 | |
| 449 | initialize_fieldnos = 0; |
| 450 | } |
| 451 | |
| 452 | /* Get the size of the task image by checking the value of the bounds. |
| 453 | The lower bound is always 1, so we only need to read the upper bound. */ |
| 454 | bounds_val = value_ind (value_field (val, bounds_fieldno)); |
| 455 | len = value_as_long (value_field (bounds_val, upper_bound_fieldno)); |
| 456 | |
| 457 | /* Make sure that we do not read more than max_len characters... */ |
| 458 | if (len > max_len) |
| 459 | len = max_len; |
| 460 | |
| 461 | /* Extract LEN characters from the fat string. */ |
| 462 | array_val = value_ind (value_field (val, array_fieldno)); |
| 463 | read_memory (value_address (array_val), (gdb_byte *) dest, len); |
| 464 | |
| 465 | /* Add the NUL character to close the string. */ |
| 466 | dest[len] = '\0'; |
| 467 | } |
| 468 | |
| 469 | /* Get, from the debugging information, the type description of all types |
| 470 | related to the Ada Task Control Block that are needed in order to |
| 471 | read the list of known tasks in the Ada runtime. If all of the info |
| 472 | needed to do so is found, then save that info in the module's per- |
| 473 | program-space data, and return NULL. Otherwise, if any information |
| 474 | cannot be found, leave the per-program-space data untouched, and |
| 475 | return an error message explaining what was missing (that error |
| 476 | message does NOT need to be deallocated). */ |
| 477 | |
| 478 | const char * |
| 479 | ada_get_tcb_types_info (void) |
| 480 | { |
| 481 | struct type *type; |
| 482 | struct type *common_type; |
| 483 | struct type *ll_type; |
| 484 | struct type *call_type; |
| 485 | struct atcb_fieldnos fieldnos; |
| 486 | struct ada_tasks_pspace_data *pspace_data; |
| 487 | |
| 488 | const char *atcb_name = "system__tasking__ada_task_control_block___XVE"; |
| 489 | const char *atcb_name_fixed = "system__tasking__ada_task_control_block"; |
| 490 | const char *common_atcb_name = "system__tasking__common_atcb"; |
| 491 | const char *private_data_name = "system__task_primitives__private_data"; |
| 492 | const char *entry_call_record_name = "system__tasking__entry_call_record"; |
| 493 | |
| 494 | /* ATCB symbols may be found in several compilation units. As we |
| 495 | are only interested in one instance, use standard (literal, |
| 496 | C-like) lookups to get the first match. */ |
| 497 | |
| 498 | struct symbol *atcb_sym = |
| 499 | lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN, |
| 500 | language_c, NULL).symbol; |
| 501 | const struct symbol *common_atcb_sym = |
| 502 | lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN, |
| 503 | language_c, NULL).symbol; |
| 504 | const struct symbol *private_data_sym = |
| 505 | lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN, |
| 506 | language_c, NULL).symbol; |
| 507 | const struct symbol *entry_call_record_sym = |
| 508 | lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN, |
| 509 | language_c, NULL).symbol; |
| 510 | |
| 511 | if (atcb_sym == NULL || atcb_sym->type == NULL) |
| 512 | { |
| 513 | /* In Ravenscar run-time libs, the ATCB does not have a dynamic |
| 514 | size, so the symbol name differs. */ |
| 515 | atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL, |
| 516 | STRUCT_DOMAIN, language_c, |
| 517 | NULL).symbol; |
| 518 | |
| 519 | if (atcb_sym == NULL || atcb_sym->type == NULL) |
| 520 | return _("Cannot find Ada_Task_Control_Block type"); |
| 521 | |
| 522 | type = atcb_sym->type; |
| 523 | } |
| 524 | else |
| 525 | { |
| 526 | /* Get a static representation of the type record |
| 527 | Ada_Task_Control_Block. */ |
| 528 | type = atcb_sym->type; |
| 529 | type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0); |
| 530 | } |
| 531 | |
| 532 | if (common_atcb_sym == NULL || common_atcb_sym->type == NULL) |
| 533 | return _("Cannot find Common_ATCB type"); |
| 534 | if (private_data_sym == NULL || private_data_sym->type == NULL) |
| 535 | return _("Cannot find Private_Data type"); |
| 536 | if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL) |
| 537 | return _("Cannot find Entry_Call_Record type"); |
| 538 | |
| 539 | /* Get the type for Ada_Task_Control_Block.Common. */ |
| 540 | common_type = common_atcb_sym->type; |
| 541 | |
| 542 | /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */ |
| 543 | ll_type = private_data_sym->type; |
| 544 | |
| 545 | /* Get the type for Common_ATCB.Call.all. */ |
| 546 | call_type = entry_call_record_sym->type; |
| 547 | |
| 548 | /* Get the field indices. */ |
| 549 | fieldnos.common = ada_get_field_index (type, "common", 0); |
| 550 | fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1); |
| 551 | fieldnos.atc_nesting_level = |
| 552 | ada_get_field_index (type, "atc_nesting_level", 1); |
| 553 | fieldnos.state = ada_get_field_index (common_type, "state", 0); |
| 554 | fieldnos.parent = ada_get_field_index (common_type, "parent", 1); |
| 555 | fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0); |
| 556 | fieldnos.image = ada_get_field_index (common_type, "task_image", 1); |
| 557 | fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1); |
| 558 | fieldnos.activation_link = ada_get_field_index (common_type, |
| 559 | "activation_link", 1); |
| 560 | fieldnos.call = ada_get_field_index (common_type, "call", 1); |
| 561 | fieldnos.ll = ada_get_field_index (common_type, "ll", 0); |
| 562 | fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0); |
| 563 | fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0); |
| 564 | fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1); |
| 565 | fieldnos.call_self = ada_get_field_index (call_type, "self", 0); |
| 566 | |
| 567 | /* On certain platforms such as x86-windows, the "lwp" field has been |
| 568 | named "thread_id". This field will likely be renamed in the future, |
| 569 | but we need to support both possibilities to avoid an unnecessary |
| 570 | dependency on a recent compiler. We therefore try locating the |
| 571 | "thread_id" field in place of the "lwp" field if we did not find |
| 572 | the latter. */ |
| 573 | if (fieldnos.ll_lwp < 0) |
| 574 | fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1); |
| 575 | |
| 576 | /* Set all the out parameters all at once, now that we are certain |
| 577 | that there are no potential error() anymore. */ |
| 578 | pspace_data = get_ada_tasks_pspace_data (current_program_space); |
| 579 | pspace_data->initialized_p = 1; |
| 580 | pspace_data->atcb_type = type; |
| 581 | pspace_data->atcb_common_type = common_type; |
| 582 | pspace_data->atcb_ll_type = ll_type; |
| 583 | pspace_data->atcb_call_type = call_type; |
| 584 | pspace_data->atcb_fieldno = fieldnos; |
| 585 | return NULL; |
| 586 | } |
| 587 | |
| 588 | /* Build the PTID of the task from its COMMON_VALUE, which is the "Common" |
| 589 | component of its ATCB record. This PTID needs to match the PTID used |
| 590 | by the thread layer. */ |
| 591 | |
| 592 | static ptid_t |
| 593 | ptid_from_atcb_common (struct value *common_value) |
| 594 | { |
| 595 | long thread = 0; |
| 596 | CORE_ADDR lwp = 0; |
| 597 | struct value *ll_value; |
| 598 | ptid_t ptid; |
| 599 | const struct ada_tasks_pspace_data *pspace_data |
| 600 | = get_ada_tasks_pspace_data (current_program_space); |
| 601 | |
| 602 | ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll); |
| 603 | |
| 604 | if (pspace_data->atcb_fieldno.ll_lwp >= 0) |
| 605 | lwp = value_as_address (value_field (ll_value, |
| 606 | pspace_data->atcb_fieldno.ll_lwp)); |
| 607 | thread = value_as_long (value_field (ll_value, |
| 608 | pspace_data->atcb_fieldno.ll_thread)); |
| 609 | |
| 610 | ptid = target_get_ada_task_ptid (lwp, thread); |
| 611 | |
| 612 | return ptid; |
| 613 | } |
| 614 | |
| 615 | /* Read the ATCB data of a given task given its TASK_ID (which is in practice |
| 616 | the address of its assocated ATCB record), and store the result inside |
| 617 | TASK_INFO. */ |
| 618 | |
| 619 | static void |
| 620 | read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info) |
| 621 | { |
| 622 | struct value *tcb_value; |
| 623 | struct value *common_value; |
| 624 | struct value *atc_nesting_level_value; |
| 625 | struct value *entry_calls_value; |
| 626 | struct value *entry_calls_value_element; |
| 627 | int called_task_fieldno = -1; |
| 628 | static const char ravenscar_task_name[] = "Ravenscar task"; |
| 629 | const struct ada_tasks_pspace_data *pspace_data |
| 630 | = get_ada_tasks_pspace_data (current_program_space); |
| 631 | |
| 632 | if (!pspace_data->initialized_p) |
| 633 | { |
| 634 | const char *err_msg = ada_get_tcb_types_info (); |
| 635 | |
| 636 | if (err_msg != NULL) |
| 637 | error (_("%s. Aborting"), err_msg); |
| 638 | } |
| 639 | |
| 640 | tcb_value = value_from_contents_and_address (pspace_data->atcb_type, |
| 641 | NULL, task_id); |
| 642 | common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common); |
| 643 | |
| 644 | /* Fill in the task_id. */ |
| 645 | |
| 646 | task_info->task_id = task_id; |
| 647 | |
| 648 | /* Compute the name of the task. |
| 649 | |
| 650 | Depending on the GNAT version used, the task image is either a fat |
| 651 | string, or a thin array of characters. Older versions of GNAT used |
| 652 | to use fat strings, and therefore did not need an extra field in |
| 653 | the ATCB to store the string length. For efficiency reasons, newer |
| 654 | versions of GNAT replaced the fat string by a static buffer, but this |
| 655 | also required the addition of a new field named "Image_Len" containing |
| 656 | the length of the task name. The method used to extract the task name |
| 657 | is selected depending on the existence of this field. |
| 658 | |
| 659 | In some run-time libs (e.g. Ravenscar), the name is not in the ATCB; |
| 660 | we may want to get it from the first user frame of the stack. For now, |
| 661 | we just give a dummy name. */ |
| 662 | |
| 663 | if (pspace_data->atcb_fieldno.image_len == -1) |
| 664 | { |
| 665 | if (pspace_data->atcb_fieldno.image >= 0) |
| 666 | read_fat_string_value (task_info->name, |
| 667 | value_field (common_value, |
| 668 | pspace_data->atcb_fieldno.image), |
| 669 | sizeof (task_info->name) - 1); |
| 670 | else |
| 671 | { |
| 672 | struct bound_minimal_symbol msym; |
| 673 | |
| 674 | msym = lookup_minimal_symbol_by_pc (task_id); |
| 675 | if (msym.minsym) |
| 676 | { |
| 677 | const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym); |
| 678 | const char *task_name = full_name; |
| 679 | const char *p; |
| 680 | |
| 681 | /* Strip the prefix. */ |
| 682 | for (p = full_name; *p; p++) |
| 683 | if (p[0] == '_' && p[1] == '_') |
| 684 | task_name = p + 2; |
| 685 | |
| 686 | /* Copy the task name. */ |
| 687 | strncpy (task_info->name, task_name, sizeof (task_info->name)); |
| 688 | task_info->name[sizeof (task_info->name) - 1] = 0; |
| 689 | } |
| 690 | else |
| 691 | { |
| 692 | /* No symbol found. Use a default name. */ |
| 693 | strcpy (task_info->name, ravenscar_task_name); |
| 694 | } |
| 695 | } |
| 696 | } |
| 697 | else |
| 698 | { |
| 699 | int len = value_as_long |
| 700 | (value_field (common_value, |
| 701 | pspace_data->atcb_fieldno.image_len)); |
| 702 | |
| 703 | value_as_string (task_info->name, |
| 704 | value_field (common_value, |
| 705 | pspace_data->atcb_fieldno.image), |
| 706 | len); |
| 707 | } |
| 708 | |
| 709 | /* Compute the task state and priority. */ |
| 710 | |
| 711 | task_info->state = |
| 712 | value_as_long (value_field (common_value, |
| 713 | pspace_data->atcb_fieldno.state)); |
| 714 | task_info->priority = |
| 715 | value_as_long (value_field (common_value, |
| 716 | pspace_data->atcb_fieldno.priority)); |
| 717 | |
| 718 | /* If the ATCB contains some information about the parent task, |
| 719 | then compute it as well. Otherwise, zero. */ |
| 720 | |
| 721 | if (pspace_data->atcb_fieldno.parent >= 0) |
| 722 | task_info->parent = |
| 723 | value_as_address (value_field (common_value, |
| 724 | pspace_data->atcb_fieldno.parent)); |
| 725 | else |
| 726 | task_info->parent = 0; |
| 727 | |
| 728 | |
| 729 | /* If the ATCB contains some information about entry calls, then |
| 730 | compute the "called_task" as well. Otherwise, zero. */ |
| 731 | |
| 732 | if (pspace_data->atcb_fieldno.atc_nesting_level > 0 |
| 733 | && pspace_data->atcb_fieldno.entry_calls > 0) |
| 734 | { |
| 735 | /* Let My_ATCB be the Ada task control block of a task calling the |
| 736 | entry of another task; then the Task_Id of the called task is |
| 737 | in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */ |
| 738 | atc_nesting_level_value = |
| 739 | value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level); |
| 740 | entry_calls_value = |
| 741 | ada_coerce_to_simple_array_ptr |
| 742 | (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls)); |
| 743 | entry_calls_value_element = |
| 744 | value_subscript (entry_calls_value, |
| 745 | value_as_long (atc_nesting_level_value)); |
| 746 | called_task_fieldno = |
| 747 | ada_get_field_index (value_type (entry_calls_value_element), |
| 748 | "called_task", 0); |
| 749 | task_info->called_task = |
| 750 | value_as_address (value_field (entry_calls_value_element, |
| 751 | called_task_fieldno)); |
| 752 | } |
| 753 | else |
| 754 | { |
| 755 | task_info->called_task = 0; |
| 756 | } |
| 757 | |
| 758 | /* If the ATCB cotnains some information about RV callers, |
| 759 | then compute the "caller_task". Otherwise, zero. */ |
| 760 | |
| 761 | task_info->caller_task = 0; |
| 762 | if (pspace_data->atcb_fieldno.call >= 0) |
| 763 | { |
| 764 | /* Get the ID of the caller task from Common_ATCB.Call.all.Self. |
| 765 | If Common_ATCB.Call is null, then there is no caller. */ |
| 766 | const CORE_ADDR call = |
| 767 | value_as_address (value_field (common_value, |
| 768 | pspace_data->atcb_fieldno.call)); |
| 769 | struct value *call_val; |
| 770 | |
| 771 | if (call != 0) |
| 772 | { |
| 773 | call_val = |
| 774 | value_from_contents_and_address (pspace_data->atcb_call_type, |
| 775 | NULL, call); |
| 776 | task_info->caller_task = |
| 777 | value_as_address |
| 778 | (value_field (call_val, pspace_data->atcb_fieldno.call_self)); |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | task_info->base_cpu |
| 783 | = value_as_long (value_field (common_value, |
| 784 | pspace_data->atcb_fieldno.base_cpu)); |
| 785 | |
| 786 | /* And finally, compute the task ptid. Note that there is not point |
| 787 | in computing it if the task is no longer alive, in which case |
| 788 | it is good enough to set its ptid to the null_ptid. */ |
| 789 | if (ada_task_is_alive (task_info)) |
| 790 | task_info->ptid = ptid_from_atcb_common (common_value); |
| 791 | else |
| 792 | task_info->ptid = null_ptid; |
| 793 | } |
| 794 | |
| 795 | /* Read the ATCB info of the given task (identified by TASK_ID), and |
| 796 | add the result to the given inferior's TASK_LIST. */ |
| 797 | |
| 798 | static void |
| 799 | add_ada_task (CORE_ADDR task_id, struct inferior *inf) |
| 800 | { |
| 801 | struct ada_task_info task_info; |
| 802 | struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); |
| 803 | |
| 804 | read_atcb (task_id, &task_info); |
| 805 | VEC_safe_push (ada_task_info_s, data->task_list, &task_info); |
| 806 | } |
| 807 | |
| 808 | /* Read the Known_Tasks array from the inferior memory, and store |
| 809 | it in the current inferior's TASK_LIST. Return non-zero upon success. */ |
| 810 | |
| 811 | static int |
| 812 | read_known_tasks_array (struct ada_tasks_inferior_data *data) |
| 813 | { |
| 814 | const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element); |
| 815 | const int known_tasks_size = target_ptr_byte * data->known_tasks_length; |
| 816 | gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size); |
| 817 | int i; |
| 818 | |
| 819 | /* Build a new list by reading the ATCBs from the Known_Tasks array |
| 820 | in the Ada runtime. */ |
| 821 | read_memory (data->known_tasks_addr, known_tasks, known_tasks_size); |
| 822 | for (i = 0; i < data->known_tasks_length; i++) |
| 823 | { |
| 824 | CORE_ADDR task_id = |
| 825 | extract_typed_address (known_tasks + i * target_ptr_byte, |
| 826 | data->known_tasks_element); |
| 827 | |
| 828 | if (task_id != 0) |
| 829 | add_ada_task (task_id, current_inferior ()); |
| 830 | } |
| 831 | |
| 832 | return 1; |
| 833 | } |
| 834 | |
| 835 | /* Read the known tasks from the inferior memory, and store it in |
| 836 | the current inferior's TASK_LIST. Return non-zero upon success. */ |
| 837 | |
| 838 | static int |
| 839 | read_known_tasks_list (struct ada_tasks_inferior_data *data) |
| 840 | { |
| 841 | const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element); |
| 842 | gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte); |
| 843 | CORE_ADDR task_id; |
| 844 | const struct ada_tasks_pspace_data *pspace_data |
| 845 | = get_ada_tasks_pspace_data (current_program_space); |
| 846 | |
| 847 | /* Sanity check. */ |
| 848 | if (pspace_data->atcb_fieldno.activation_link < 0) |
| 849 | return 0; |
| 850 | |
| 851 | /* Build a new list by reading the ATCBs. Read head of the list. */ |
| 852 | read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte); |
| 853 | task_id = extract_typed_address (known_tasks, data->known_tasks_element); |
| 854 | while (task_id != 0) |
| 855 | { |
| 856 | struct value *tcb_value; |
| 857 | struct value *common_value; |
| 858 | |
| 859 | add_ada_task (task_id, current_inferior ()); |
| 860 | |
| 861 | /* Read the chain. */ |
| 862 | tcb_value = value_from_contents_and_address (pspace_data->atcb_type, |
| 863 | NULL, task_id); |
| 864 | common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common); |
| 865 | task_id = value_as_address |
| 866 | (value_field (common_value, |
| 867 | pspace_data->atcb_fieldno.activation_link)); |
| 868 | } |
| 869 | |
| 870 | return 1; |
| 871 | } |
| 872 | |
| 873 | /* Set all fields of the current inferior ada-tasks data pointed by DATA. |
| 874 | Do nothing if those fields are already set and still up to date. */ |
| 875 | |
| 876 | static void |
| 877 | ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data) |
| 878 | { |
| 879 | struct bound_minimal_symbol msym; |
| 880 | struct symbol *sym; |
| 881 | |
| 882 | /* Return now if already set. */ |
| 883 | if (data->known_tasks_kind != ADA_TASKS_UNKNOWN) |
| 884 | return; |
| 885 | |
| 886 | /* Try array. */ |
| 887 | |
| 888 | msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL); |
| 889 | if (msym.minsym != NULL) |
| 890 | { |
| 891 | data->known_tasks_kind = ADA_TASKS_ARRAY; |
| 892 | data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
| 893 | |
| 894 | /* Try to get pointer type and array length from the symtab. */ |
| 895 | sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN, |
| 896 | language_c, NULL).symbol; |
| 897 | if (sym != NULL) |
| 898 | { |
| 899 | /* Validate. */ |
| 900 | struct type *type = check_typedef (SYMBOL_TYPE (sym)); |
| 901 | struct type *eltype = NULL; |
| 902 | struct type *idxtype = NULL; |
| 903 | |
| 904 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) |
| 905 | eltype = check_typedef (TYPE_TARGET_TYPE (type)); |
| 906 | if (eltype != NULL |
| 907 | && TYPE_CODE (eltype) == TYPE_CODE_PTR) |
| 908 | idxtype = check_typedef (TYPE_INDEX_TYPE (type)); |
| 909 | if (idxtype != NULL |
| 910 | && !TYPE_LOW_BOUND_UNDEFINED (idxtype) |
| 911 | && !TYPE_HIGH_BOUND_UNDEFINED (idxtype)) |
| 912 | { |
| 913 | data->known_tasks_element = eltype; |
| 914 | data->known_tasks_length = |
| 915 | TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1; |
| 916 | return; |
| 917 | } |
| 918 | } |
| 919 | |
| 920 | /* Fallback to default values. The runtime may have been stripped (as |
| 921 | in some distributions), but it is likely that the executable still |
| 922 | contains debug information on the task type (due to implicit with of |
| 923 | Ada.Tasking). */ |
| 924 | data->known_tasks_element = |
| 925 | builtin_type (target_gdbarch ())->builtin_data_ptr; |
| 926 | data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS; |
| 927 | return; |
| 928 | } |
| 929 | |
| 930 | |
| 931 | /* Try list. */ |
| 932 | |
| 933 | msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL); |
| 934 | if (msym.minsym != NULL) |
| 935 | { |
| 936 | data->known_tasks_kind = ADA_TASKS_LIST; |
| 937 | data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
| 938 | data->known_tasks_length = 1; |
| 939 | |
| 940 | sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN, |
| 941 | language_c, NULL).symbol; |
| 942 | if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0) |
| 943 | { |
| 944 | /* Validate. */ |
| 945 | struct type *type = check_typedef (SYMBOL_TYPE (sym)); |
| 946 | |
| 947 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
| 948 | { |
| 949 | data->known_tasks_element = type; |
| 950 | return; |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | /* Fallback to default values. */ |
| 955 | data->known_tasks_element = |
| 956 | builtin_type (target_gdbarch ())->builtin_data_ptr; |
| 957 | data->known_tasks_length = 1; |
| 958 | return; |
| 959 | } |
| 960 | |
| 961 | /* Can't find tasks. */ |
| 962 | |
| 963 | data->known_tasks_kind = ADA_TASKS_NOT_FOUND; |
| 964 | data->known_tasks_addr = 0; |
| 965 | } |
| 966 | |
| 967 | /* Read the known tasks from the current inferior's memory, and store it |
| 968 | in the current inferior's data TASK_LIST. |
| 969 | Return non-zero upon success. */ |
| 970 | |
| 971 | static int |
| 972 | read_known_tasks (void) |
| 973 | { |
| 974 | struct ada_tasks_inferior_data *data = |
| 975 | get_ada_tasks_inferior_data (current_inferior ()); |
| 976 | |
| 977 | /* Step 1: Clear the current list, if necessary. */ |
| 978 | VEC_truncate (ada_task_info_s, data->task_list, 0); |
| 979 | |
| 980 | /* Step 2: do the real work. |
| 981 | If the application does not use task, then no more needs to be done. |
| 982 | It is important to have the task list cleared (see above) before we |
| 983 | return, as we don't want a stale task list to be used... This can |
| 984 | happen for instance when debugging a non-multitasking program after |
| 985 | having debugged a multitasking one. */ |
| 986 | ada_tasks_inferior_data_sniffer (data); |
| 987 | gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN); |
| 988 | |
| 989 | switch (data->known_tasks_kind) |
| 990 | { |
| 991 | case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */ |
| 992 | return 0; |
| 993 | case ADA_TASKS_ARRAY: |
| 994 | return read_known_tasks_array (data); |
| 995 | case ADA_TASKS_LIST: |
| 996 | return read_known_tasks_list (data); |
| 997 | } |
| 998 | |
| 999 | /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks |
| 1000 | array unless needed. Then report a success. */ |
| 1001 | data->task_list_valid_p = 1; |
| 1002 | |
| 1003 | return 1; |
| 1004 | } |
| 1005 | |
| 1006 | /* Build the task_list by reading the Known_Tasks array from |
| 1007 | the inferior, and return the number of tasks in that list |
| 1008 | (zero means that the program is not using tasking at all). */ |
| 1009 | |
| 1010 | int |
| 1011 | ada_build_task_list (void) |
| 1012 | { |
| 1013 | struct ada_tasks_inferior_data *data; |
| 1014 | |
| 1015 | if (!target_has_stack) |
| 1016 | error (_("Cannot inspect Ada tasks when program is not running")); |
| 1017 | |
| 1018 | data = get_ada_tasks_inferior_data (current_inferior ()); |
| 1019 | if (!data->task_list_valid_p) |
| 1020 | read_known_tasks (); |
| 1021 | |
| 1022 | return VEC_length (ada_task_info_s, data->task_list); |
| 1023 | } |
| 1024 | |
| 1025 | /* Print a table providing a short description of all Ada tasks |
| 1026 | running inside inferior INF. If ARG_STR is set, it will be |
| 1027 | interpreted as a task number, and the table will be limited to |
| 1028 | that task only. */ |
| 1029 | |
| 1030 | void |
| 1031 | print_ada_task_info (struct ui_out *uiout, |
| 1032 | char *arg_str, |
| 1033 | struct inferior *inf) |
| 1034 | { |
| 1035 | struct ada_tasks_inferior_data *data; |
| 1036 | int taskno, nb_tasks; |
| 1037 | int taskno_arg = 0; |
| 1038 | int nb_columns; |
| 1039 | |
| 1040 | if (ada_build_task_list () == 0) |
| 1041 | { |
| 1042 | uiout->message (_("Your application does not use any Ada tasks.\n")); |
| 1043 | return; |
| 1044 | } |
| 1045 | |
| 1046 | if (arg_str != NULL && arg_str[0] != '\0') |
| 1047 | taskno_arg = value_as_long (parse_and_eval (arg_str)); |
| 1048 | |
| 1049 | if (uiout->is_mi_like_p ()) |
| 1050 | /* In GDB/MI mode, we want to provide the thread ID corresponding |
| 1051 | to each task. This allows clients to quickly find the thread |
| 1052 | associated to any task, which is helpful for commands that |
| 1053 | take a --thread argument. However, in order to be able to |
| 1054 | provide that thread ID, the thread list must be up to date |
| 1055 | first. */ |
| 1056 | target_update_thread_list (); |
| 1057 | |
| 1058 | data = get_ada_tasks_inferior_data (inf); |
| 1059 | |
| 1060 | /* Compute the number of tasks that are going to be displayed |
| 1061 | in the output. If an argument was given, there will be |
| 1062 | at most 1 entry. Otherwise, there will be as many entries |
| 1063 | as we have tasks. */ |
| 1064 | if (taskno_arg) |
| 1065 | { |
| 1066 | if (taskno_arg > 0 |
| 1067 | && taskno_arg <= VEC_length (ada_task_info_s, data->task_list)) |
| 1068 | nb_tasks = 1; |
| 1069 | else |
| 1070 | nb_tasks = 0; |
| 1071 | } |
| 1072 | else |
| 1073 | nb_tasks = VEC_length (ada_task_info_s, data->task_list); |
| 1074 | |
| 1075 | nb_columns = uiout->is_mi_like_p () ? 8 : 7; |
| 1076 | ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks"); |
| 1077 | uiout->table_header (1, ui_left, "current", ""); |
| 1078 | uiout->table_header (3, ui_right, "id", "ID"); |
| 1079 | uiout->table_header (9, ui_right, "task-id", "TID"); |
| 1080 | /* The following column is provided in GDB/MI mode only because |
| 1081 | it is only really useful in that mode, and also because it |
| 1082 | allows us to keep the CLI output shorter and more compact. */ |
| 1083 | if (uiout->is_mi_like_p ()) |
| 1084 | uiout->table_header (4, ui_right, "thread-id", ""); |
| 1085 | uiout->table_header (4, ui_right, "parent-id", "P-ID"); |
| 1086 | uiout->table_header (3, ui_right, "priority", "Pri"); |
| 1087 | uiout->table_header (22, ui_left, "state", "State"); |
| 1088 | /* Use ui_noalign for the last column, to prevent the CLI uiout |
| 1089 | from printing an extra space at the end of each row. This |
| 1090 | is a bit of a hack, but does get the job done. */ |
| 1091 | uiout->table_header (1, ui_noalign, "name", "Name"); |
| 1092 | uiout->table_body (); |
| 1093 | |
| 1094 | for (taskno = 1; |
| 1095 | taskno <= VEC_length (ada_task_info_s, data->task_list); |
| 1096 | taskno++) |
| 1097 | { |
| 1098 | const struct ada_task_info *const task_info = |
| 1099 | VEC_index (ada_task_info_s, data->task_list, taskno - 1); |
| 1100 | int parent_id; |
| 1101 | |
| 1102 | gdb_assert (task_info != NULL); |
| 1103 | |
| 1104 | /* If the user asked for the output to be restricted |
| 1105 | to one task only, and this is not the task, skip |
| 1106 | to the next one. */ |
| 1107 | if (taskno_arg && taskno != taskno_arg) |
| 1108 | continue; |
| 1109 | |
| 1110 | ui_out_emit_tuple tuple_emitter (uiout, NULL); |
| 1111 | |
| 1112 | /* Print a star if this task is the current task (or the task |
| 1113 | currently selected). */ |
| 1114 | if (ptid_equal (task_info->ptid, inferior_ptid)) |
| 1115 | uiout->field_string ("current", "*"); |
| 1116 | else |
| 1117 | uiout->field_skip ("current"); |
| 1118 | |
| 1119 | /* Print the task number. */ |
| 1120 | uiout->field_int ("id", taskno); |
| 1121 | |
| 1122 | /* Print the Task ID. */ |
| 1123 | uiout->field_fmt ("task-id", "%9lx", (long) task_info->task_id); |
| 1124 | |
| 1125 | /* Print the associated Thread ID. */ |
| 1126 | if (uiout->is_mi_like_p ()) |
| 1127 | { |
| 1128 | const int thread_id = ptid_to_global_thread_id (task_info->ptid); |
| 1129 | |
| 1130 | if (thread_id != 0) |
| 1131 | uiout->field_int ("thread-id", thread_id); |
| 1132 | else |
| 1133 | /* This should never happen unless there is a bug somewhere, |
| 1134 | but be resilient when that happens. */ |
| 1135 | uiout->field_skip ("thread-id"); |
| 1136 | } |
| 1137 | |
| 1138 | /* Print the ID of the parent task. */ |
| 1139 | parent_id = get_task_number_from_id (task_info->parent, inf); |
| 1140 | if (parent_id) |
| 1141 | uiout->field_int ("parent-id", parent_id); |
| 1142 | else |
| 1143 | uiout->field_skip ("parent-id"); |
| 1144 | |
| 1145 | /* Print the base priority of the task. */ |
| 1146 | uiout->field_int ("priority", task_info->priority); |
| 1147 | |
| 1148 | /* Print the task current state. */ |
| 1149 | if (task_info->caller_task) |
| 1150 | uiout->field_fmt ("state", |
| 1151 | _("Accepting RV with %-4d"), |
| 1152 | get_task_number_from_id (task_info->caller_task, |
| 1153 | inf)); |
| 1154 | else if (task_info->state == Entry_Caller_Sleep |
| 1155 | && task_info->called_task) |
| 1156 | uiout->field_fmt ("state", |
| 1157 | _("Waiting on RV with %-3d"), |
| 1158 | get_task_number_from_id (task_info->called_task, |
| 1159 | inf)); |
| 1160 | else |
| 1161 | uiout->field_string ("state", task_states[task_info->state]); |
| 1162 | |
| 1163 | /* Finally, print the task name. */ |
| 1164 | uiout->field_fmt ("name", |
| 1165 | "%s", |
| 1166 | task_info->name[0] != '\0' ? task_info->name |
| 1167 | : _("<no name>")); |
| 1168 | |
| 1169 | uiout->text ("\n"); |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | /* Print a detailed description of the Ada task whose ID is TASKNO_STR |
| 1174 | for the given inferior (INF). */ |
| 1175 | |
| 1176 | static void |
| 1177 | info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf) |
| 1178 | { |
| 1179 | const int taskno = value_as_long (parse_and_eval (taskno_str)); |
| 1180 | struct ada_task_info *task_info; |
| 1181 | int parent_taskno = 0; |
| 1182 | struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); |
| 1183 | |
| 1184 | if (ada_build_task_list () == 0) |
| 1185 | { |
| 1186 | uiout->message (_("Your application does not use any Ada tasks.\n")); |
| 1187 | return; |
| 1188 | } |
| 1189 | |
| 1190 | if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list)) |
| 1191 | error (_("Task ID %d not known. Use the \"info tasks\" command to\n" |
| 1192 | "see the IDs of currently known tasks"), taskno); |
| 1193 | task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1); |
| 1194 | |
| 1195 | /* Print the Ada task ID. */ |
| 1196 | printf_filtered (_("Ada Task: %s\n"), |
| 1197 | paddress (target_gdbarch (), task_info->task_id)); |
| 1198 | |
| 1199 | /* Print the name of the task. */ |
| 1200 | if (task_info->name[0] != '\0') |
| 1201 | printf_filtered (_("Name: %s\n"), task_info->name); |
| 1202 | else |
| 1203 | printf_filtered (_("<no name>\n")); |
| 1204 | |
| 1205 | /* Print the TID and LWP. */ |
| 1206 | printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid)); |
| 1207 | printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid)); |
| 1208 | |
| 1209 | /* If set, print the base CPU. */ |
| 1210 | if (task_info->base_cpu != 0) |
| 1211 | printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu); |
| 1212 | |
| 1213 | /* Print who is the parent (if any). */ |
| 1214 | if (task_info->parent != 0) |
| 1215 | parent_taskno = get_task_number_from_id (task_info->parent, inf); |
| 1216 | if (parent_taskno) |
| 1217 | { |
| 1218 | struct ada_task_info *parent = |
| 1219 | VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1); |
| 1220 | |
| 1221 | printf_filtered (_("Parent: %d"), parent_taskno); |
| 1222 | if (parent->name[0] != '\0') |
| 1223 | printf_filtered (" (%s)", parent->name); |
| 1224 | printf_filtered ("\n"); |
| 1225 | } |
| 1226 | else |
| 1227 | printf_filtered (_("No parent\n")); |
| 1228 | |
| 1229 | /* Print the base priority. */ |
| 1230 | printf_filtered (_("Base Priority: %d\n"), task_info->priority); |
| 1231 | |
| 1232 | /* print the task current state. */ |
| 1233 | { |
| 1234 | int target_taskno = 0; |
| 1235 | |
| 1236 | if (task_info->caller_task) |
| 1237 | { |
| 1238 | target_taskno = get_task_number_from_id (task_info->caller_task, inf); |
| 1239 | printf_filtered (_("State: Accepting rendezvous with %d"), |
| 1240 | target_taskno); |
| 1241 | } |
| 1242 | else if (task_info->state == Entry_Caller_Sleep && task_info->called_task) |
| 1243 | { |
| 1244 | target_taskno = get_task_number_from_id (task_info->called_task, inf); |
| 1245 | printf_filtered (_("State: Waiting on task %d's entry"), |
| 1246 | target_taskno); |
| 1247 | } |
| 1248 | else |
| 1249 | printf_filtered (_("State: %s"), _(long_task_states[task_info->state])); |
| 1250 | |
| 1251 | if (target_taskno) |
| 1252 | { |
| 1253 | struct ada_task_info *target_task_info = |
| 1254 | VEC_index (ada_task_info_s, data->task_list, target_taskno - 1); |
| 1255 | |
| 1256 | if (target_task_info->name[0] != '\0') |
| 1257 | printf_filtered (" (%s)", target_task_info->name); |
| 1258 | } |
| 1259 | |
| 1260 | printf_filtered ("\n"); |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | /* If ARG is empty or null, then print a list of all Ada tasks. |
| 1265 | Otherwise, print detailed information about the task whose ID |
| 1266 | is ARG. |
| 1267 | |
| 1268 | Does nothing if the program doesn't use Ada tasking. */ |
| 1269 | |
| 1270 | static void |
| 1271 | info_tasks_command (const char *arg, int from_tty) |
| 1272 | { |
| 1273 | struct ui_out *uiout = current_uiout; |
| 1274 | |
| 1275 | if (arg == NULL || *arg == '\0') |
| 1276 | print_ada_task_info (uiout, NULL, current_inferior ()); |
| 1277 | else |
| 1278 | info_task (uiout, arg, current_inferior ()); |
| 1279 | } |
| 1280 | |
| 1281 | /* Print a message telling the user id of the current task. |
| 1282 | This function assumes that tasking is in use in the inferior. */ |
| 1283 | |
| 1284 | static void |
| 1285 | display_current_task_id (void) |
| 1286 | { |
| 1287 | const int current_task = ada_get_task_number (inferior_ptid); |
| 1288 | |
| 1289 | if (current_task == 0) |
| 1290 | printf_filtered (_("[Current task is unknown]\n")); |
| 1291 | else |
| 1292 | printf_filtered (_("[Current task is %d]\n"), current_task); |
| 1293 | } |
| 1294 | |
| 1295 | /* Parse and evaluate TIDSTR into a task id, and try to switch to |
| 1296 | that task. Print an error message if the task switch failed. */ |
| 1297 | |
| 1298 | static void |
| 1299 | task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf) |
| 1300 | { |
| 1301 | const int taskno = value_as_long (parse_and_eval (taskno_str)); |
| 1302 | struct ada_task_info *task_info; |
| 1303 | struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); |
| 1304 | |
| 1305 | if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list)) |
| 1306 | error (_("Task ID %d not known. Use the \"info tasks\" command to\n" |
| 1307 | "see the IDs of currently known tasks"), taskno); |
| 1308 | task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1); |
| 1309 | |
| 1310 | if (!ada_task_is_alive (task_info)) |
| 1311 | error (_("Cannot switch to task %d: Task is no longer running"), taskno); |
| 1312 | |
| 1313 | /* On some platforms, the thread list is not updated until the user |
| 1314 | performs a thread-related operation (by using the "info threads" |
| 1315 | command, for instance). So this thread list may not be up to date |
| 1316 | when the user attempts this task switch. Since we cannot switch |
| 1317 | to the thread associated to our task if GDB does not know about |
| 1318 | that thread, we need to make sure that any new threads gets added |
| 1319 | to the thread list. */ |
| 1320 | target_update_thread_list (); |
| 1321 | |
| 1322 | /* Verify that the ptid of the task we want to switch to is valid |
| 1323 | (in other words, a ptid that GDB knows about). Otherwise, we will |
| 1324 | cause an assertion failure later on, when we try to determine |
| 1325 | the ptid associated thread_info data. We should normally never |
| 1326 | encounter such an error, but the wrong ptid can actually easily be |
| 1327 | computed if target_get_ada_task_ptid has not been implemented for |
| 1328 | our target (yet). Rather than cause an assertion error in that case, |
| 1329 | it's nicer for the user to just refuse to perform the task switch. */ |
| 1330 | if (!find_thread_ptid (task_info->ptid)) |
| 1331 | error (_("Unable to compute thread ID for task %d.\n" |
| 1332 | "Cannot switch to this task."), |
| 1333 | taskno); |
| 1334 | |
| 1335 | switch_to_thread (task_info->ptid); |
| 1336 | ada_find_printable_frame (get_selected_frame (NULL)); |
| 1337 | printf_filtered (_("[Switching to task %d]\n"), taskno); |
| 1338 | print_stack_frame (get_selected_frame (NULL), |
| 1339 | frame_relative_level (get_selected_frame (NULL)), |
| 1340 | SRC_AND_LOC, 1); |
| 1341 | } |
| 1342 | |
| 1343 | |
| 1344 | /* Print the ID of the current task if TASKNO_STR is empty or NULL. |
| 1345 | Otherwise, switch to the task indicated by TASKNO_STR. */ |
| 1346 | |
| 1347 | static void |
| 1348 | task_command (const char *taskno_str, int from_tty) |
| 1349 | { |
| 1350 | struct ui_out *uiout = current_uiout; |
| 1351 | |
| 1352 | if (ada_build_task_list () == 0) |
| 1353 | { |
| 1354 | uiout->message (_("Your application does not use any Ada tasks.\n")); |
| 1355 | return; |
| 1356 | } |
| 1357 | |
| 1358 | if (taskno_str == NULL || taskno_str[0] == '\0') |
| 1359 | display_current_task_id (); |
| 1360 | else |
| 1361 | task_command_1 (taskno_str, from_tty, current_inferior ()); |
| 1362 | } |
| 1363 | |
| 1364 | /* Indicate that the given inferior's task list may have changed, |
| 1365 | so invalidate the cache. */ |
| 1366 | |
| 1367 | static void |
| 1368 | ada_task_list_changed (struct inferior *inf) |
| 1369 | { |
| 1370 | struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); |
| 1371 | |
| 1372 | data->task_list_valid_p = 0; |
| 1373 | } |
| 1374 | |
| 1375 | /* Invalidate the per-program-space data. */ |
| 1376 | |
| 1377 | static void |
| 1378 | ada_tasks_invalidate_pspace_data (struct program_space *pspace) |
| 1379 | { |
| 1380 | get_ada_tasks_pspace_data (pspace)->initialized_p = 0; |
| 1381 | } |
| 1382 | |
| 1383 | /* Invalidate the per-inferior data. */ |
| 1384 | |
| 1385 | static void |
| 1386 | ada_tasks_invalidate_inferior_data (struct inferior *inf) |
| 1387 | { |
| 1388 | struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); |
| 1389 | |
| 1390 | data->known_tasks_kind = ADA_TASKS_UNKNOWN; |
| 1391 | data->task_list_valid_p = 0; |
| 1392 | } |
| 1393 | |
| 1394 | /* The 'normal_stop' observer notification callback. */ |
| 1395 | |
| 1396 | static void |
| 1397 | ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2) |
| 1398 | { |
| 1399 | /* The inferior has been resumed, and just stopped. This means that |
| 1400 | our task_list needs to be recomputed before it can be used again. */ |
| 1401 | ada_task_list_changed (current_inferior ()); |
| 1402 | } |
| 1403 | |
| 1404 | /* A routine to be called when the objfiles have changed. */ |
| 1405 | |
| 1406 | static void |
| 1407 | ada_tasks_new_objfile_observer (struct objfile *objfile) |
| 1408 | { |
| 1409 | struct inferior *inf; |
| 1410 | |
| 1411 | /* Invalidate the relevant data in our program-space data. */ |
| 1412 | |
| 1413 | if (objfile == NULL) |
| 1414 | { |
| 1415 | /* All objfiles are being cleared, so we should clear all |
| 1416 | our caches for all program spaces. */ |
| 1417 | struct program_space *pspace; |
| 1418 | |
| 1419 | for (pspace = program_spaces; pspace != NULL; pspace = pspace->next) |
| 1420 | ada_tasks_invalidate_pspace_data (pspace); |
| 1421 | } |
| 1422 | else |
| 1423 | { |
| 1424 | /* The associated program-space data might have changed after |
| 1425 | this objfile was added. Invalidate all cached data. */ |
| 1426 | ada_tasks_invalidate_pspace_data (objfile->pspace); |
| 1427 | } |
| 1428 | |
| 1429 | /* Invalidate the per-inferior cache for all inferiors using |
| 1430 | this objfile (or, in other words, for all inferiors who have |
| 1431 | the same program-space as the objfile's program space). |
| 1432 | If all objfiles are being cleared (OBJFILE is NULL), then |
| 1433 | clear the caches for all inferiors. */ |
| 1434 | |
| 1435 | for (inf = inferior_list; inf != NULL; inf = inf->next) |
| 1436 | if (objfile == NULL || inf->pspace == objfile->pspace) |
| 1437 | ada_tasks_invalidate_inferior_data (inf); |
| 1438 | } |
| 1439 | |
| 1440 | void |
| 1441 | _initialize_tasks (void) |
| 1442 | { |
| 1443 | ada_tasks_pspace_data_handle = register_program_space_data (); |
| 1444 | ada_tasks_inferior_data_handle = register_inferior_data (); |
| 1445 | |
| 1446 | /* Attach various observers. */ |
| 1447 | observer_attach_normal_stop (ada_tasks_normal_stop_observer); |
| 1448 | observer_attach_new_objfile (ada_tasks_new_objfile_observer); |
| 1449 | |
| 1450 | /* Some new commands provided by this module. */ |
| 1451 | add_info ("tasks", info_tasks_command, |
| 1452 | _("Provide information about all known Ada tasks")); |
| 1453 | add_cmd ("task", class_run, task_command, |
| 1454 | _("Use this command to switch between Ada tasks.\n\ |
| 1455 | Without argument, this command simply prints the current task ID"), |
| 1456 | &cmdlist); |
| 1457 | } |