Introduce compiled_regex, eliminate make_regfree_cleanup
[deliverable/binutils-gdb.git] / gdb / arm-linux-nat.c
... / ...
CommitLineData
1/* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19#include "defs.h"
20#include "inferior.h"
21#include "gdbcore.h"
22#include "regcache.h"
23#include "target.h"
24#include "linux-nat.h"
25#include "target-descriptions.h"
26#include "auxv.h"
27#include "observer.h"
28#include "gdbthread.h"
29
30#include "arm-tdep.h"
31#include "arm-linux-tdep.h"
32#include "aarch32-linux-nat.h"
33
34#include <elf/common.h>
35#include <sys/user.h>
36#include "nat/gdb_ptrace.h"
37#include <sys/utsname.h>
38#include <sys/procfs.h>
39
40#include "nat/linux-ptrace.h"
41
42/* Prototypes for supply_gregset etc. */
43#include "gregset.h"
44
45/* Defines ps_err_e, struct ps_prochandle. */
46#include "gdb_proc_service.h"
47
48#ifndef PTRACE_GET_THREAD_AREA
49#define PTRACE_GET_THREAD_AREA 22
50#endif
51
52#ifndef PTRACE_GETWMMXREGS
53#define PTRACE_GETWMMXREGS 18
54#define PTRACE_SETWMMXREGS 19
55#endif
56
57#ifndef PTRACE_GETVFPREGS
58#define PTRACE_GETVFPREGS 27
59#define PTRACE_SETVFPREGS 28
60#endif
61
62#ifndef PTRACE_GETHBPREGS
63#define PTRACE_GETHBPREGS 29
64#define PTRACE_SETHBPREGS 30
65#endif
66
67extern int arm_apcs_32;
68
69/* Get the whole floating point state of the process and store it
70 into regcache. */
71
72static void
73fetch_fpregs (struct regcache *regcache)
74{
75 int ret, regno, tid;
76 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
77
78 /* Get the thread id for the ptrace call. */
79 tid = ptid_get_lwp (regcache_get_ptid (regcache));
80
81 /* Read the floating point state. */
82 if (have_ptrace_getregset == TRIBOOL_TRUE)
83 {
84 struct iovec iov;
85
86 iov.iov_base = &fp;
87 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
88
89 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
90 }
91 else
92 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
93
94 if (ret < 0)
95 perror_with_name (_("Unable to fetch the floating point registers."));
96
97 /* Fetch fpsr. */
98 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
99 fp + NWFPE_FPSR_OFFSET);
100
101 /* Fetch the floating point registers. */
102 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
103 supply_nwfpe_register (regcache, regno, fp);
104}
105
106/* Save the whole floating point state of the process using
107 the contents from regcache. */
108
109static void
110store_fpregs (const struct regcache *regcache)
111{
112 int ret, regno, tid;
113 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
114
115 /* Get the thread id for the ptrace call. */
116 tid = ptid_get_lwp (regcache_get_ptid (regcache));
117
118 /* Read the floating point state. */
119 if (have_ptrace_getregset == TRIBOOL_TRUE)
120 {
121 elf_fpregset_t fpregs;
122 struct iovec iov;
123
124 iov.iov_base = &fpregs;
125 iov.iov_len = sizeof (fpregs);
126
127 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
128 }
129 else
130 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
131
132 if (ret < 0)
133 perror_with_name (_("Unable to fetch the floating point registers."));
134
135 /* Store fpsr. */
136 if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
137 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
138
139 /* Store the floating point registers. */
140 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
141 if (REG_VALID == regcache_register_status (regcache, regno))
142 collect_nwfpe_register (regcache, regno, fp);
143
144 if (have_ptrace_getregset == TRIBOOL_TRUE)
145 {
146 struct iovec iov;
147
148 iov.iov_base = &fp;
149 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
150
151 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
152 }
153 else
154 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
155
156 if (ret < 0)
157 perror_with_name (_("Unable to store floating point registers."));
158}
159
160/* Fetch all general registers of the process and store into
161 regcache. */
162
163static void
164fetch_regs (struct regcache *regcache)
165{
166 int ret, regno, tid;
167 elf_gregset_t regs;
168
169 /* Get the thread id for the ptrace call. */
170 tid = ptid_get_lwp (regcache_get_ptid (regcache));
171
172 if (have_ptrace_getregset == TRIBOOL_TRUE)
173 {
174 struct iovec iov;
175
176 iov.iov_base = &regs;
177 iov.iov_len = sizeof (regs);
178
179 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
180 }
181 else
182 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
183
184 if (ret < 0)
185 perror_with_name (_("Unable to fetch general registers."));
186
187 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
188}
189
190static void
191store_regs (const struct regcache *regcache)
192{
193 int ret, regno, tid;
194 elf_gregset_t regs;
195
196 /* Get the thread id for the ptrace call. */
197 tid = ptid_get_lwp (regcache_get_ptid (regcache));
198
199 /* Fetch the general registers. */
200 if (have_ptrace_getregset == TRIBOOL_TRUE)
201 {
202 struct iovec iov;
203
204 iov.iov_base = &regs;
205 iov.iov_len = sizeof (regs);
206
207 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
208 }
209 else
210 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
211
212 if (ret < 0)
213 perror_with_name (_("Unable to fetch general registers."));
214
215 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
216
217 if (have_ptrace_getregset == TRIBOOL_TRUE)
218 {
219 struct iovec iov;
220
221 iov.iov_base = &regs;
222 iov.iov_len = sizeof (regs);
223
224 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
225 }
226 else
227 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
228
229 if (ret < 0)
230 perror_with_name (_("Unable to store general registers."));
231}
232
233/* Fetch all WMMX registers of the process and store into
234 regcache. */
235
236#define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
237
238static void
239fetch_wmmx_regs (struct regcache *regcache)
240{
241 char regbuf[IWMMXT_REGS_SIZE];
242 int ret, regno, tid;
243
244 /* Get the thread id for the ptrace call. */
245 tid = ptid_get_lwp (regcache_get_ptid (regcache));
246
247 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
248 if (ret < 0)
249 perror_with_name (_("Unable to fetch WMMX registers."));
250
251 for (regno = 0; regno < 16; regno++)
252 regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM,
253 &regbuf[regno * 8]);
254
255 for (regno = 0; regno < 2; regno++)
256 regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM,
257 &regbuf[16 * 8 + regno * 4]);
258
259 for (regno = 0; regno < 4; regno++)
260 regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM,
261 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
262}
263
264static void
265store_wmmx_regs (const struct regcache *regcache)
266{
267 char regbuf[IWMMXT_REGS_SIZE];
268 int ret, regno, tid;
269
270 /* Get the thread id for the ptrace call. */
271 tid = ptid_get_lwp (regcache_get_ptid (regcache));
272
273 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
274 if (ret < 0)
275 perror_with_name (_("Unable to fetch WMMX registers."));
276
277 for (regno = 0; regno < 16; regno++)
278 if (REG_VALID == regcache_register_status (regcache,
279 regno + ARM_WR0_REGNUM))
280 regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM,
281 &regbuf[regno * 8]);
282
283 for (regno = 0; regno < 2; regno++)
284 if (REG_VALID == regcache_register_status (regcache,
285 regno + ARM_WCSSF_REGNUM))
286 regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM,
287 &regbuf[16 * 8 + regno * 4]);
288
289 for (regno = 0; regno < 4; regno++)
290 if (REG_VALID == regcache_register_status (regcache,
291 regno + ARM_WCGR0_REGNUM))
292 regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM,
293 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
294
295 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
296
297 if (ret < 0)
298 perror_with_name (_("Unable to store WMMX registers."));
299}
300
301static void
302fetch_vfp_regs (struct regcache *regcache)
303{
304 gdb_byte regbuf[VFP_REGS_SIZE];
305 int ret, regno, tid;
306 struct gdbarch *gdbarch = get_regcache_arch (regcache);
307 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
308
309 /* Get the thread id for the ptrace call. */
310 tid = ptid_get_lwp (regcache_get_ptid (regcache));
311
312 if (have_ptrace_getregset == TRIBOOL_TRUE)
313 {
314 struct iovec iov;
315
316 iov.iov_base = regbuf;
317 iov.iov_len = VFP_REGS_SIZE;
318 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
319 }
320 else
321 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
322
323 if (ret < 0)
324 perror_with_name (_("Unable to fetch VFP registers."));
325
326 aarch32_vfp_regcache_supply (regcache, regbuf,
327 tdep->vfp_register_count);
328}
329
330static void
331store_vfp_regs (const struct regcache *regcache)
332{
333 gdb_byte regbuf[VFP_REGS_SIZE];
334 int ret, regno, tid;
335 struct gdbarch *gdbarch = get_regcache_arch (regcache);
336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
337
338 /* Get the thread id for the ptrace call. */
339 tid = ptid_get_lwp (regcache_get_ptid (regcache));
340
341 if (have_ptrace_getregset == TRIBOOL_TRUE)
342 {
343 struct iovec iov;
344
345 iov.iov_base = regbuf;
346 iov.iov_len = VFP_REGS_SIZE;
347 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
348 }
349 else
350 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
351
352 if (ret < 0)
353 perror_with_name (_("Unable to fetch VFP registers (for update)."));
354
355 aarch32_vfp_regcache_collect (regcache, regbuf,
356 tdep->vfp_register_count);
357
358 if (have_ptrace_getregset == TRIBOOL_TRUE)
359 {
360 struct iovec iov;
361
362 iov.iov_base = regbuf;
363 iov.iov_len = VFP_REGS_SIZE;
364 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
365 }
366 else
367 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
368
369 if (ret < 0)
370 perror_with_name (_("Unable to store VFP registers."));
371}
372
373/* Fetch registers from the child process. Fetch all registers if
374 regno == -1, otherwise fetch all general registers or all floating
375 point registers depending upon the value of regno. */
376
377static void
378arm_linux_fetch_inferior_registers (struct target_ops *ops,
379 struct regcache *regcache, int regno)
380{
381 struct gdbarch *gdbarch = get_regcache_arch (regcache);
382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
383
384 if (-1 == regno)
385 {
386 fetch_regs (regcache);
387 if (tdep->have_wmmx_registers)
388 fetch_wmmx_regs (regcache);
389 if (tdep->vfp_register_count > 0)
390 fetch_vfp_regs (regcache);
391 if (tdep->have_fpa_registers)
392 fetch_fpregs (regcache);
393 }
394 else
395 {
396 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
397 fetch_regs (regcache);
398 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
399 fetch_fpregs (regcache);
400 else if (tdep->have_wmmx_registers
401 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
402 fetch_wmmx_regs (regcache);
403 else if (tdep->vfp_register_count > 0
404 && regno >= ARM_D0_REGNUM
405 && regno <= ARM_D0_REGNUM + tdep->vfp_register_count)
406 fetch_vfp_regs (regcache);
407 }
408}
409
410/* Store registers back into the inferior. Store all registers if
411 regno == -1, otherwise store all general registers or all floating
412 point registers depending upon the value of regno. */
413
414static void
415arm_linux_store_inferior_registers (struct target_ops *ops,
416 struct regcache *regcache, int regno)
417{
418 struct gdbarch *gdbarch = get_regcache_arch (regcache);
419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
420
421 if (-1 == regno)
422 {
423 store_regs (regcache);
424 if (tdep->have_wmmx_registers)
425 store_wmmx_regs (regcache);
426 if (tdep->vfp_register_count > 0)
427 store_vfp_regs (regcache);
428 if (tdep->have_fpa_registers)
429 store_fpregs (regcache);
430 }
431 else
432 {
433 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
434 store_regs (regcache);
435 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
436 store_fpregs (regcache);
437 else if (tdep->have_wmmx_registers
438 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
439 store_wmmx_regs (regcache);
440 else if (tdep->vfp_register_count > 0
441 && regno >= ARM_D0_REGNUM
442 && regno <= ARM_D0_REGNUM + tdep->vfp_register_count)
443 store_vfp_regs (regcache);
444 }
445}
446
447/* Wrapper functions for the standard regset handling, used by
448 thread debugging. */
449
450void
451fill_gregset (const struct regcache *regcache,
452 gdb_gregset_t *gregsetp, int regno)
453{
454 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
455}
456
457void
458supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
459{
460 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
461}
462
463void
464fill_fpregset (const struct regcache *regcache,
465 gdb_fpregset_t *fpregsetp, int regno)
466{
467 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
468}
469
470/* Fill GDB's register array with the floating-point register values
471 in *fpregsetp. */
472
473void
474supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
475{
476 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
477}
478
479/* Fetch the thread-local storage pointer for libthread_db. */
480
481ps_err_e
482ps_get_thread_area (struct ps_prochandle *ph,
483 lwpid_t lwpid, int idx, void **base)
484{
485 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
486 return PS_ERR;
487
488 /* IDX is the bias from the thread pointer to the beginning of the
489 thread descriptor. It has to be subtracted due to implementation
490 quirks in libthread_db. */
491 *base = (void *) ((char *)*base - idx);
492
493 return PS_OK;
494}
495
496static const struct target_desc *
497arm_linux_read_description (struct target_ops *ops)
498{
499 CORE_ADDR arm_hwcap = 0;
500
501 if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
502 {
503 elf_gregset_t gpregs;
504 struct iovec iov;
505 int tid = ptid_get_lwp (inferior_ptid);
506
507 iov.iov_base = &gpregs;
508 iov.iov_len = sizeof (gpregs);
509
510 /* Check if PTRACE_GETREGSET works. */
511 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
512 have_ptrace_getregset = TRIBOOL_FALSE;
513 else
514 have_ptrace_getregset = TRIBOOL_TRUE;
515 }
516
517 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
518 {
519 return ops->beneath->to_read_description (ops->beneath);
520 }
521
522 if (arm_hwcap & HWCAP_IWMMXT)
523 return tdesc_arm_with_iwmmxt;
524
525 if (arm_hwcap & HWCAP_VFP)
526 {
527 int pid;
528 char *buf;
529 const struct target_desc * result = NULL;
530
531 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
532 Neon with VFPv3-D32. */
533 if (arm_hwcap & HWCAP_NEON)
534 result = tdesc_arm_with_neon;
535 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
536 result = tdesc_arm_with_vfpv3;
537 else
538 result = tdesc_arm_with_vfpv2;
539
540 /* Now make sure that the kernel supports reading these
541 registers. Support was added in 2.6.30. */
542 pid = ptid_get_lwp (inferior_ptid);
543 errno = 0;
544 buf = (char *) alloca (VFP_REGS_SIZE);
545 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
546 && errno == EIO)
547 result = NULL;
548
549 return result;
550 }
551
552 return ops->beneath->to_read_description (ops->beneath);
553}
554
555/* Information describing the hardware breakpoint capabilities. */
556struct arm_linux_hwbp_cap
557{
558 gdb_byte arch;
559 gdb_byte max_wp_length;
560 gdb_byte wp_count;
561 gdb_byte bp_count;
562};
563
564/* Since we cannot dynamically allocate subfields of arm_linux_process_info,
565 assume a maximum number of supported break-/watchpoints. */
566#define MAX_BPTS 16
567#define MAX_WPTS 16
568
569/* Get hold of the Hardware Breakpoint information for the target we are
570 attached to. Returns NULL if the kernel doesn't support Hardware
571 breakpoints at all, or a pointer to the information structure. */
572static const struct arm_linux_hwbp_cap *
573arm_linux_get_hwbp_cap (void)
574{
575 /* The info structure we return. */
576 static struct arm_linux_hwbp_cap info;
577
578 /* Is INFO in a good state? -1 means that no attempt has been made to
579 initialize INFO; 0 means an attempt has been made, but it failed; 1
580 means INFO is in an initialized state. */
581 static int available = -1;
582
583 if (available == -1)
584 {
585 int tid;
586 unsigned int val;
587
588 tid = ptid_get_lwp (inferior_ptid);
589 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
590 available = 0;
591 else
592 {
593 info.arch = (gdb_byte)((val >> 24) & 0xff);
594 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
595 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
596 info.bp_count = (gdb_byte)(val & 0xff);
597
598 if (info.wp_count > MAX_WPTS)
599 {
600 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
601 supports %d"), MAX_WPTS, info.wp_count);
602 info.wp_count = MAX_WPTS;
603 }
604
605 if (info.bp_count > MAX_BPTS)
606 {
607 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
608 supports %d"), MAX_BPTS, info.bp_count);
609 info.bp_count = MAX_BPTS;
610 }
611 available = (info.arch != 0);
612 }
613 }
614
615 return available == 1 ? &info : NULL;
616}
617
618/* How many hardware breakpoints are available? */
619static int
620arm_linux_get_hw_breakpoint_count (void)
621{
622 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
623 return cap != NULL ? cap->bp_count : 0;
624}
625
626/* How many hardware watchpoints are available? */
627static int
628arm_linux_get_hw_watchpoint_count (void)
629{
630 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
631 return cap != NULL ? cap->wp_count : 0;
632}
633
634/* Have we got a free break-/watch-point available for use? Returns -1 if
635 there is not an appropriate resource available, otherwise returns 1. */
636static int
637arm_linux_can_use_hw_breakpoint (struct target_ops *self,
638 enum bptype type,
639 int cnt, int ot)
640{
641 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
642 || type == bp_access_watchpoint || type == bp_watchpoint)
643 {
644 int count = arm_linux_get_hw_watchpoint_count ();
645
646 if (count == 0)
647 return 0;
648 else if (cnt + ot > count)
649 return -1;
650 }
651 else if (type == bp_hardware_breakpoint)
652 {
653 int count = arm_linux_get_hw_breakpoint_count ();
654
655 if (count == 0)
656 return 0;
657 else if (cnt > count)
658 return -1;
659 }
660 else
661 gdb_assert (FALSE);
662
663 return 1;
664}
665
666/* Enum describing the different types of ARM hardware break-/watch-points. */
667typedef enum
668{
669 arm_hwbp_break = 0,
670 arm_hwbp_load = 1,
671 arm_hwbp_store = 2,
672 arm_hwbp_access = 3
673} arm_hwbp_type;
674
675/* Type describing an ARM Hardware Breakpoint Control register value. */
676typedef unsigned int arm_hwbp_control_t;
677
678/* Structure used to keep track of hardware break-/watch-points. */
679struct arm_linux_hw_breakpoint
680{
681 /* Address to break on, or being watched. */
682 unsigned int address;
683 /* Control register for break-/watch- point. */
684 arm_hwbp_control_t control;
685};
686
687/* Structure containing arrays of per process hardware break-/watchpoints
688 for caching address and control information.
689
690 The Linux ptrace interface to hardware break-/watch-points presents the
691 values in a vector centred around 0 (which is used fo generic information).
692 Positive indicies refer to breakpoint addresses/control registers, negative
693 indices to watchpoint addresses/control registers.
694
695 The Linux vector is indexed as follows:
696 -((i << 1) + 2): Control register for watchpoint i.
697 -((i << 1) + 1): Address register for watchpoint i.
698 0: Information register.
699 ((i << 1) + 1): Address register for breakpoint i.
700 ((i << 1) + 2): Control register for breakpoint i.
701
702 This structure is used as a per-thread cache of the state stored by the
703 kernel, so that we don't need to keep calling into the kernel to find a
704 free breakpoint.
705
706 We treat break-/watch-points with their enable bit clear as being deleted.
707 */
708struct arm_linux_debug_reg_state
709{
710 /* Hardware breakpoints for this process. */
711 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
712 /* Hardware watchpoints for this process. */
713 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
714};
715
716/* Per-process arch-specific data we want to keep. */
717struct arm_linux_process_info
718{
719 /* Linked list. */
720 struct arm_linux_process_info *next;
721 /* The process identifier. */
722 pid_t pid;
723 /* Hardware break-/watchpoints state information. */
724 struct arm_linux_debug_reg_state state;
725
726};
727
728/* Per-thread arch-specific data we want to keep. */
729struct arch_lwp_info
730{
731 /* Non-zero if our copy differs from what's recorded in the thread. */
732 char bpts_changed[MAX_BPTS];
733 char wpts_changed[MAX_WPTS];
734};
735
736static struct arm_linux_process_info *arm_linux_process_list = NULL;
737
738/* Find process data for process PID. */
739
740static struct arm_linux_process_info *
741arm_linux_find_process_pid (pid_t pid)
742{
743 struct arm_linux_process_info *proc;
744
745 for (proc = arm_linux_process_list; proc; proc = proc->next)
746 if (proc->pid == pid)
747 return proc;
748
749 return NULL;
750}
751
752/* Add process data for process PID. Returns newly allocated info
753 object. */
754
755static struct arm_linux_process_info *
756arm_linux_add_process (pid_t pid)
757{
758 struct arm_linux_process_info *proc;
759
760 proc = XCNEW (struct arm_linux_process_info);
761 proc->pid = pid;
762
763 proc->next = arm_linux_process_list;
764 arm_linux_process_list = proc;
765
766 return proc;
767}
768
769/* Get data specific info for process PID, creating it if necessary.
770 Never returns NULL. */
771
772static struct arm_linux_process_info *
773arm_linux_process_info_get (pid_t pid)
774{
775 struct arm_linux_process_info *proc;
776
777 proc = arm_linux_find_process_pid (pid);
778 if (proc == NULL)
779 proc = arm_linux_add_process (pid);
780
781 return proc;
782}
783
784/* Called whenever GDB is no longer debugging process PID. It deletes
785 data structures that keep track of debug register state. */
786
787static void
788arm_linux_forget_process (pid_t pid)
789{
790 struct arm_linux_process_info *proc, **proc_link;
791
792 proc = arm_linux_process_list;
793 proc_link = &arm_linux_process_list;
794
795 while (proc != NULL)
796 {
797 if (proc->pid == pid)
798 {
799 *proc_link = proc->next;
800
801 xfree (proc);
802 return;
803 }
804
805 proc_link = &proc->next;
806 proc = *proc_link;
807 }
808}
809
810/* Get hardware break-/watchpoint state for process PID. */
811
812static struct arm_linux_debug_reg_state *
813arm_linux_get_debug_reg_state (pid_t pid)
814{
815 return &arm_linux_process_info_get (pid)->state;
816}
817
818/* Initialize an ARM hardware break-/watch-point control register value.
819 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
820 type of break-/watch-point; ENABLE indicates whether the point is enabled.
821 */
822static arm_hwbp_control_t
823arm_hwbp_control_initialize (unsigned byte_address_select,
824 arm_hwbp_type hwbp_type,
825 int enable)
826{
827 gdb_assert ((byte_address_select & ~0xffU) == 0);
828 gdb_assert (hwbp_type != arm_hwbp_break
829 || ((byte_address_select & 0xfU) != 0));
830
831 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
832}
833
834/* Does the breakpoint control value CONTROL have the enable bit set? */
835static int
836arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
837{
838 return control & 0x1;
839}
840
841/* Change a breakpoint control word so that it is in the disabled state. */
842static arm_hwbp_control_t
843arm_hwbp_control_disable (arm_hwbp_control_t control)
844{
845 return control & ~0x1;
846}
847
848/* Initialise the hardware breakpoint structure P. The breakpoint will be
849 enabled, and will point to the placed address of BP_TGT. */
850static void
851arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
852 struct bp_target_info *bp_tgt,
853 struct arm_linux_hw_breakpoint *p)
854{
855 unsigned mask;
856 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
857
858 /* We have to create a mask for the control register which says which bits
859 of the word pointed to by address to break on. */
860 if (arm_pc_is_thumb (gdbarch, address))
861 {
862 mask = 0x3;
863 address &= ~1;
864 }
865 else
866 {
867 mask = 0xf;
868 address &= ~3;
869 }
870
871 p->address = (unsigned int) address;
872 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
873}
874
875/* Get the ARM hardware breakpoint type from the TYPE value we're
876 given when asked to set a watchpoint. */
877static arm_hwbp_type
878arm_linux_get_hwbp_type (enum target_hw_bp_type type)
879{
880 if (type == hw_read)
881 return arm_hwbp_load;
882 else if (type == hw_write)
883 return arm_hwbp_store;
884 else
885 return arm_hwbp_access;
886}
887
888/* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
889 to LEN. The type of watchpoint is given in RW. */
890static void
891arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
892 enum target_hw_bp_type type,
893 struct arm_linux_hw_breakpoint *p)
894{
895 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
896 unsigned mask;
897
898 gdb_assert (cap != NULL);
899 gdb_assert (cap->max_wp_length != 0);
900
901 mask = (1 << len) - 1;
902
903 p->address = (unsigned int) addr;
904 p->control = arm_hwbp_control_initialize (mask,
905 arm_linux_get_hwbp_type (type), 1);
906}
907
908/* Are two break-/watch-points equal? */
909static int
910arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
911 const struct arm_linux_hw_breakpoint *p2)
912{
913 return p1->address == p2->address && p1->control == p2->control;
914}
915
916/* Callback to mark a watch-/breakpoint to be updated in all threads of
917 the current process. */
918
919struct update_registers_data
920{
921 int watch;
922 int index;
923};
924
925static int
926update_registers_callback (struct lwp_info *lwp, void *arg)
927{
928 struct update_registers_data *data = (struct update_registers_data *) arg;
929
930 if (lwp->arch_private == NULL)
931 lwp->arch_private = XCNEW (struct arch_lwp_info);
932
933 /* The actual update is done later just before resuming the lwp,
934 we just mark that the registers need updating. */
935 if (data->watch)
936 lwp->arch_private->wpts_changed[data->index] = 1;
937 else
938 lwp->arch_private->bpts_changed[data->index] = 1;
939
940 /* If the lwp isn't stopped, force it to momentarily pause, so
941 we can update its breakpoint registers. */
942 if (!lwp->stopped)
943 linux_stop_lwp (lwp);
944
945 return 0;
946}
947
948/* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
949 =1) BPT for thread TID. */
950static void
951arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
952 int watchpoint)
953{
954 int pid;
955 ptid_t pid_ptid;
956 gdb_byte count, i;
957 struct arm_linux_hw_breakpoint* bpts;
958 struct update_registers_data data;
959
960 pid = ptid_get_pid (inferior_ptid);
961 pid_ptid = pid_to_ptid (pid);
962
963 if (watchpoint)
964 {
965 count = arm_linux_get_hw_watchpoint_count ();
966 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
967 }
968 else
969 {
970 count = arm_linux_get_hw_breakpoint_count ();
971 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
972 }
973
974 for (i = 0; i < count; ++i)
975 if (!arm_hwbp_control_is_enabled (bpts[i].control))
976 {
977 data.watch = watchpoint;
978 data.index = i;
979 bpts[i] = *bpt;
980 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
981 break;
982 }
983
984 gdb_assert (i != count);
985}
986
987/* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
988 (WATCHPOINT = 1) BPT for thread TID. */
989static void
990arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
991 int watchpoint)
992{
993 int pid;
994 gdb_byte count, i;
995 ptid_t pid_ptid;
996 struct arm_linux_hw_breakpoint* bpts;
997 struct update_registers_data data;
998
999 pid = ptid_get_pid (inferior_ptid);
1000 pid_ptid = pid_to_ptid (pid);
1001
1002 if (watchpoint)
1003 {
1004 count = arm_linux_get_hw_watchpoint_count ();
1005 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1006 }
1007 else
1008 {
1009 count = arm_linux_get_hw_breakpoint_count ();
1010 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1011 }
1012
1013 for (i = 0; i < count; ++i)
1014 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1015 {
1016 data.watch = watchpoint;
1017 data.index = i;
1018 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1019 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1020 break;
1021 }
1022
1023 gdb_assert (i != count);
1024}
1025
1026/* Insert a Hardware breakpoint. */
1027static int
1028arm_linux_insert_hw_breakpoint (struct target_ops *self,
1029 struct gdbarch *gdbarch,
1030 struct bp_target_info *bp_tgt)
1031{
1032 struct lwp_info *lp;
1033 struct arm_linux_hw_breakpoint p;
1034
1035 if (arm_linux_get_hw_breakpoint_count () == 0)
1036 return -1;
1037
1038 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1039
1040 arm_linux_insert_hw_breakpoint1 (&p, 0);
1041
1042 return 0;
1043}
1044
1045/* Remove a hardware breakpoint. */
1046static int
1047arm_linux_remove_hw_breakpoint (struct target_ops *self,
1048 struct gdbarch *gdbarch,
1049 struct bp_target_info *bp_tgt)
1050{
1051 struct lwp_info *lp;
1052 struct arm_linux_hw_breakpoint p;
1053
1054 if (arm_linux_get_hw_breakpoint_count () == 0)
1055 return -1;
1056
1057 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1058
1059 arm_linux_remove_hw_breakpoint1 (&p, 0);
1060
1061 return 0;
1062}
1063
1064/* Are we able to use a hardware watchpoint for the LEN bytes starting at
1065 ADDR? */
1066static int
1067arm_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1068 CORE_ADDR addr, int len)
1069{
1070 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1071 CORE_ADDR max_wp_length, aligned_addr;
1072
1073 /* Can not set watchpoints for zero or negative lengths. */
1074 if (len <= 0)
1075 return 0;
1076
1077 /* Need to be able to use the ptrace interface. */
1078 if (cap == NULL || cap->wp_count == 0)
1079 return 0;
1080
1081 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1082 range covered by a watchpoint. */
1083 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1084 aligned_addr = addr & ~(max_wp_length - 1);
1085
1086 if (aligned_addr + max_wp_length < addr + len)
1087 return 0;
1088
1089 /* The current ptrace interface can only handle watchpoints that are a
1090 power of 2. */
1091 if ((len & (len - 1)) != 0)
1092 return 0;
1093
1094 /* All tests passed so we must be able to set a watchpoint. */
1095 return 1;
1096}
1097
1098/* Insert a Hardware breakpoint. */
1099static int
1100arm_linux_insert_watchpoint (struct target_ops *self,
1101 CORE_ADDR addr, int len,
1102 enum target_hw_bp_type rw,
1103 struct expression *cond)
1104{
1105 struct lwp_info *lp;
1106 struct arm_linux_hw_breakpoint p;
1107
1108 if (arm_linux_get_hw_watchpoint_count () == 0)
1109 return -1;
1110
1111 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1112
1113 arm_linux_insert_hw_breakpoint1 (&p, 1);
1114
1115 return 0;
1116}
1117
1118/* Remove a hardware breakpoint. */
1119static int
1120arm_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr,
1121 int len, enum target_hw_bp_type rw,
1122 struct expression *cond)
1123{
1124 struct lwp_info *lp;
1125 struct arm_linux_hw_breakpoint p;
1126
1127 if (arm_linux_get_hw_watchpoint_count () == 0)
1128 return -1;
1129
1130 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1131
1132 arm_linux_remove_hw_breakpoint1 (&p, 1);
1133
1134 return 0;
1135}
1136
1137/* What was the data address the target was stopped on accessing. */
1138static int
1139arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
1140{
1141 siginfo_t siginfo;
1142 int slot;
1143
1144 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1145 return 0;
1146
1147 /* This must be a hardware breakpoint. */
1148 if (siginfo.si_signo != SIGTRAP
1149 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1150 return 0;
1151
1152 /* We must be able to set hardware watchpoints. */
1153 if (arm_linux_get_hw_watchpoint_count () == 0)
1154 return 0;
1155
1156 slot = siginfo.si_errno;
1157
1158 /* If we are in a positive slot then we're looking at a breakpoint and not
1159 a watchpoint. */
1160 if (slot >= 0)
1161 return 0;
1162
1163 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1164 return 1;
1165}
1166
1167/* Has the target been stopped by hitting a watchpoint? */
1168static int
1169arm_linux_stopped_by_watchpoint (struct target_ops *ops)
1170{
1171 CORE_ADDR addr;
1172 return arm_linux_stopped_data_address (ops, &addr);
1173}
1174
1175static int
1176arm_linux_watchpoint_addr_within_range (struct target_ops *target,
1177 CORE_ADDR addr,
1178 CORE_ADDR start, int length)
1179{
1180 return start <= addr && start + length - 1 >= addr;
1181}
1182
1183/* Handle thread creation. We need to copy the breakpoints and watchpoints
1184 in the parent thread to the child thread. */
1185static void
1186arm_linux_new_thread (struct lwp_info *lp)
1187{
1188 int i;
1189 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1190
1191 /* Mark that all the hardware breakpoint/watchpoint register pairs
1192 for this thread need to be initialized. */
1193
1194 for (i = 0; i < MAX_BPTS; i++)
1195 {
1196 info->bpts_changed[i] = 1;
1197 info->wpts_changed[i] = 1;
1198 }
1199
1200 lp->arch_private = info;
1201}
1202
1203/* Called when resuming a thread.
1204 The hardware debug registers are updated when there is any change. */
1205
1206static void
1207arm_linux_prepare_to_resume (struct lwp_info *lwp)
1208{
1209 int pid, i;
1210 struct arm_linux_hw_breakpoint *bpts, *wpts;
1211 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1212
1213 pid = ptid_get_lwp (lwp->ptid);
1214 bpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->bpts;
1215 wpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->wpts;
1216
1217 /* NULL means this is the main thread still going through the shell,
1218 or, no watchpoint has been set yet. In that case, there's
1219 nothing to do. */
1220 if (arm_lwp_info == NULL)
1221 return;
1222
1223 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1224 if (arm_lwp_info->bpts_changed[i])
1225 {
1226 errno = 0;
1227 if (arm_hwbp_control_is_enabled (bpts[i].control))
1228 if (ptrace (PTRACE_SETHBPREGS, pid,
1229 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1230 perror_with_name (_("Unexpected error setting breakpoint"));
1231
1232 if (bpts[i].control != 0)
1233 if (ptrace (PTRACE_SETHBPREGS, pid,
1234 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1235 perror_with_name (_("Unexpected error setting breakpoint"));
1236
1237 arm_lwp_info->bpts_changed[i] = 0;
1238 }
1239
1240 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1241 if (arm_lwp_info->wpts_changed[i])
1242 {
1243 errno = 0;
1244 if (arm_hwbp_control_is_enabled (wpts[i].control))
1245 if (ptrace (PTRACE_SETHBPREGS, pid,
1246 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1247 perror_with_name (_("Unexpected error setting watchpoint"));
1248
1249 if (wpts[i].control != 0)
1250 if (ptrace (PTRACE_SETHBPREGS, pid,
1251 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1252 perror_with_name (_("Unexpected error setting watchpoint"));
1253
1254 arm_lwp_info->wpts_changed[i] = 0;
1255 }
1256}
1257
1258/* linux_nat_new_fork hook. */
1259
1260static void
1261arm_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
1262{
1263 pid_t parent_pid;
1264 struct arm_linux_debug_reg_state *parent_state;
1265 struct arm_linux_debug_reg_state *child_state;
1266
1267 /* NULL means no watchpoint has ever been set in the parent. In
1268 that case, there's nothing to do. */
1269 if (parent->arch_private == NULL)
1270 return;
1271
1272 /* GDB core assumes the child inherits the watchpoints/hw
1273 breakpoints of the parent, and will remove them all from the
1274 forked off process. Copy the debug registers mirrors into the
1275 new process so that all breakpoints and watchpoints can be
1276 removed together. */
1277
1278 parent_pid = ptid_get_pid (parent->ptid);
1279 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1280 child_state = arm_linux_get_debug_reg_state (child_pid);
1281 *child_state = *parent_state;
1282}
1283
1284void _initialize_arm_linux_nat (void);
1285
1286void
1287_initialize_arm_linux_nat (void)
1288{
1289 struct target_ops *t;
1290
1291 /* Fill in the generic GNU/Linux methods. */
1292 t = linux_target ();
1293
1294 /* Add our register access methods. */
1295 t->to_fetch_registers = arm_linux_fetch_inferior_registers;
1296 t->to_store_registers = arm_linux_store_inferior_registers;
1297
1298 /* Add our hardware breakpoint and watchpoint implementation. */
1299 t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint;
1300 t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint;
1301 t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint;
1302 t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint;
1303 t->to_insert_watchpoint = arm_linux_insert_watchpoint;
1304 t->to_remove_watchpoint = arm_linux_remove_watchpoint;
1305 t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint;
1306 t->to_stopped_data_address = arm_linux_stopped_data_address;
1307 t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range;
1308
1309 t->to_read_description = arm_linux_read_description;
1310
1311 /* Register the target. */
1312 linux_nat_add_target (t);
1313
1314 /* Handle thread creation and exit. */
1315 linux_nat_set_new_thread (t, arm_linux_new_thread);
1316 linux_nat_set_prepare_to_resume (t, arm_linux_prepare_to_resume);
1317
1318 /* Handle process creation and exit. */
1319 linux_nat_set_new_fork (t, arm_linux_new_fork);
1320 linux_nat_set_forget_process (t, arm_linux_forget_process);
1321}
This page took 0.132207 seconds and 4 git commands to generate.