Fix native follow-exec-mode "new"
[deliverable/binutils-gdb.git] / gdb / block.c
... / ...
CommitLineData
1/* Block-related functions for the GNU debugger, GDB.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "block.h"
22#include "symtab.h"
23#include "symfile.h"
24#include "gdb_obstack.h"
25#include "cp-support.h"
26#include "addrmap.h"
27#include "gdbtypes.h"
28#include "objfiles.h"
29
30/* This is used by struct block to store namespace-related info for
31 C++ files, namely using declarations and the current namespace in
32 scope. */
33
34struct block_namespace_info
35{
36 const char *scope;
37 struct using_direct *using_decl;
38};
39
40static void block_initialize_namespace (struct block *block,
41 struct obstack *obstack);
42
43/* See block.h. */
44
45struct objfile *
46block_objfile (const struct block *block)
47{
48 const struct global_block *global_block;
49
50 if (BLOCK_FUNCTION (block) != NULL)
51 return symbol_objfile (BLOCK_FUNCTION (block));
52
53 global_block = (struct global_block *) block_global_block (block);
54 return COMPUNIT_OBJFILE (global_block->compunit_symtab);
55}
56
57/* See block. */
58
59struct gdbarch *
60block_gdbarch (const struct block *block)
61{
62 if (BLOCK_FUNCTION (block) != NULL)
63 return symbol_arch (BLOCK_FUNCTION (block));
64
65 return get_objfile_arch (block_objfile (block));
66}
67
68/* Return Nonzero if block a is lexically nested within block b,
69 or if a and b have the same pc range.
70 Return zero otherwise. */
71
72int
73contained_in (const struct block *a, const struct block *b)
74{
75 if (!a || !b)
76 return 0;
77
78 do
79 {
80 if (a == b)
81 return 1;
82 /* If A is a function block, then A cannot be contained in B,
83 except if A was inlined. */
84 if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
85 return 0;
86 a = BLOCK_SUPERBLOCK (a);
87 }
88 while (a != NULL);
89
90 return 0;
91}
92
93
94/* Return the symbol for the function which contains a specified
95 lexical block, described by a struct block BL. The return value
96 will not be an inlined function; the containing function will be
97 returned instead. */
98
99struct symbol *
100block_linkage_function (const struct block *bl)
101{
102 while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
103 && BLOCK_SUPERBLOCK (bl) != NULL)
104 bl = BLOCK_SUPERBLOCK (bl);
105
106 return BLOCK_FUNCTION (bl);
107}
108
109/* Return the symbol for the function which contains a specified
110 block, described by a struct block BL. The return value will be
111 the closest enclosing function, which might be an inline
112 function. */
113
114struct symbol *
115block_containing_function (const struct block *bl)
116{
117 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
118 bl = BLOCK_SUPERBLOCK (bl);
119
120 return BLOCK_FUNCTION (bl);
121}
122
123/* Return one if BL represents an inlined function. */
124
125int
126block_inlined_p (const struct block *bl)
127{
128 return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
129}
130
131/* A helper function that checks whether PC is in the blockvector BL.
132 It returns the containing block if there is one, or else NULL. */
133
134static struct block *
135find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
136{
137 struct block *b;
138 int bot, top, half;
139
140 /* If we have an addrmap mapping code addresses to blocks, then use
141 that. */
142 if (BLOCKVECTOR_MAP (bl))
143 return addrmap_find (BLOCKVECTOR_MAP (bl), pc);
144
145 /* Otherwise, use binary search to find the last block that starts
146 before PC.
147 Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
148 They both have the same START,END values.
149 Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
150 fact that this choice was made was subtle, now we make it explicit. */
151 gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
152 bot = STATIC_BLOCK;
153 top = BLOCKVECTOR_NBLOCKS (bl);
154
155 while (top - bot > 1)
156 {
157 half = (top - bot + 1) >> 1;
158 b = BLOCKVECTOR_BLOCK (bl, bot + half);
159 if (BLOCK_START (b) <= pc)
160 bot += half;
161 else
162 top = bot + half;
163 }
164
165 /* Now search backward for a block that ends after PC. */
166
167 while (bot >= STATIC_BLOCK)
168 {
169 b = BLOCKVECTOR_BLOCK (bl, bot);
170 if (BLOCK_END (b) > pc)
171 return b;
172 bot--;
173 }
174
175 return NULL;
176}
177
178/* Return the blockvector immediately containing the innermost lexical
179 block containing the specified pc value and section, or 0 if there
180 is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
181 don't pass this information back to the caller. */
182
183const struct blockvector *
184blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
185 const struct block **pblock,
186 struct compunit_symtab *cust)
187{
188 const struct blockvector *bl;
189 struct block *b;
190
191 if (cust == NULL)
192 {
193 /* First search all symtabs for one whose file contains our pc */
194 cust = find_pc_sect_compunit_symtab (pc, section);
195 if (cust == NULL)
196 return 0;
197 }
198
199 bl = COMPUNIT_BLOCKVECTOR (cust);
200
201 /* Then search that symtab for the smallest block that wins. */
202 b = find_block_in_blockvector (bl, pc);
203 if (b == NULL)
204 return NULL;
205
206 if (pblock)
207 *pblock = b;
208 return bl;
209}
210
211/* Return true if the blockvector BV contains PC, false otherwise. */
212
213int
214blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
215{
216 return find_block_in_blockvector (bv, pc) != NULL;
217}
218
219/* Return call_site for specified PC in GDBARCH. PC must match exactly, it
220 must be the next instruction after call (or after tail call jump). Throw
221 NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
222
223struct call_site *
224call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
225{
226 struct compunit_symtab *cust;
227 void **slot = NULL;
228
229 /* -1 as tail call PC can be already after the compilation unit range. */
230 cust = find_pc_compunit_symtab (pc - 1);
231
232 if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
233 slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
234
235 if (slot == NULL)
236 {
237 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
238
239 /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
240 the call target. */
241 throw_error (NO_ENTRY_VALUE_ERROR,
242 _("DW_OP_GNU_entry_value resolving cannot find "
243 "DW_TAG_GNU_call_site %s in %s"),
244 paddress (gdbarch, pc),
245 (msym.minsym == NULL ? "???"
246 : MSYMBOL_PRINT_NAME (msym.minsym)));
247 }
248
249 return *slot;
250}
251
252/* Return the blockvector immediately containing the innermost lexical block
253 containing the specified pc value, or 0 if there is none.
254 Backward compatibility, no section. */
255
256const struct blockvector *
257blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
258{
259 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
260 pblock, NULL);
261}
262
263/* Return the innermost lexical block containing the specified pc value
264 in the specified section, or 0 if there is none. */
265
266const struct block *
267block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
268{
269 const struct blockvector *bl;
270 const struct block *b;
271
272 bl = blockvector_for_pc_sect (pc, section, &b, NULL);
273 if (bl)
274 return b;
275 return 0;
276}
277
278/* Return the innermost lexical block containing the specified pc value,
279 or 0 if there is none. Backward compatibility, no section. */
280
281const struct block *
282block_for_pc (CORE_ADDR pc)
283{
284 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
285}
286
287/* Now come some functions designed to deal with C++ namespace issues.
288 The accessors are safe to use even in the non-C++ case. */
289
290/* This returns the namespace that BLOCK is enclosed in, or "" if it
291 isn't enclosed in a namespace at all. This travels the chain of
292 superblocks looking for a scope, if necessary. */
293
294const char *
295block_scope (const struct block *block)
296{
297 for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
298 {
299 if (BLOCK_NAMESPACE (block) != NULL
300 && BLOCK_NAMESPACE (block)->scope != NULL)
301 return BLOCK_NAMESPACE (block)->scope;
302 }
303
304 return "";
305}
306
307/* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
308 OBSTACK. (It won't make a copy of SCOPE, however, so that already
309 has to be allocated correctly.) */
310
311void
312block_set_scope (struct block *block, const char *scope,
313 struct obstack *obstack)
314{
315 block_initialize_namespace (block, obstack);
316
317 BLOCK_NAMESPACE (block)->scope = scope;
318}
319
320/* This returns the using directives list associated with BLOCK, if
321 any. */
322
323struct using_direct *
324block_using (const struct block *block)
325{
326 if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
327 return NULL;
328 else
329 return BLOCK_NAMESPACE (block)->using_decl;
330}
331
332/* Set BLOCK's using member to USING; if needed, allocate memory via
333 OBSTACK. (It won't make a copy of USING, however, so that already
334 has to be allocated correctly.) */
335
336void
337block_set_using (struct block *block,
338 struct using_direct *using_decl,
339 struct obstack *obstack)
340{
341 block_initialize_namespace (block, obstack);
342
343 BLOCK_NAMESPACE (block)->using_decl = using_decl;
344}
345
346/* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
347 ititialize its members to zero. */
348
349static void
350block_initialize_namespace (struct block *block, struct obstack *obstack)
351{
352 if (BLOCK_NAMESPACE (block) == NULL)
353 {
354 BLOCK_NAMESPACE (block)
355 = obstack_alloc (obstack, sizeof (struct block_namespace_info));
356 BLOCK_NAMESPACE (block)->scope = NULL;
357 BLOCK_NAMESPACE (block)->using_decl = NULL;
358 }
359}
360
361/* Return the static block associated to BLOCK. Return NULL if block
362 is NULL or if block is a global block. */
363
364const struct block *
365block_static_block (const struct block *block)
366{
367 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
368 return NULL;
369
370 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
371 block = BLOCK_SUPERBLOCK (block);
372
373 return block;
374}
375
376/* Return the static block associated to BLOCK. Return NULL if block
377 is NULL. */
378
379const struct block *
380block_global_block (const struct block *block)
381{
382 if (block == NULL)
383 return NULL;
384
385 while (BLOCK_SUPERBLOCK (block) != NULL)
386 block = BLOCK_SUPERBLOCK (block);
387
388 return block;
389}
390
391/* Allocate a block on OBSTACK, and initialize its elements to
392 zero/NULL. This is useful for creating "dummy" blocks that don't
393 correspond to actual source files.
394
395 Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
396 valid value. If you really don't want the block to have a
397 dictionary, then you should subsequently set its BLOCK_DICT to
398 dict_create_linear (obstack, NULL). */
399
400struct block *
401allocate_block (struct obstack *obstack)
402{
403 struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
404
405 return bl;
406}
407
408/* Allocate a global block. */
409
410struct block *
411allocate_global_block (struct obstack *obstack)
412{
413 struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
414
415 return &bl->block;
416}
417
418/* Set the compunit of the global block. */
419
420void
421set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
422{
423 struct global_block *gb;
424
425 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
426 gb = (struct global_block *) block;
427 gdb_assert (gb->compunit_symtab == NULL);
428 gb->compunit_symtab = cu;
429}
430
431/* See block.h. */
432
433struct dynamic_prop *
434block_static_link (const struct block *block)
435{
436 struct objfile *objfile = block_objfile (block);
437
438 /* Only objfile-owned blocks that materialize top function scopes can have
439 static links. */
440 if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
441 return NULL;
442
443 return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
444}
445
446/* Return the compunit of the global block. */
447
448static struct compunit_symtab *
449get_block_compunit_symtab (const struct block *block)
450{
451 struct global_block *gb;
452
453 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
454 gb = (struct global_block *) block;
455 gdb_assert (gb->compunit_symtab != NULL);
456 return gb->compunit_symtab;
457}
458
459\f
460
461/* Initialize a block iterator, either to iterate over a single block,
462 or, for static and global blocks, all the included symtabs as
463 well. */
464
465static void
466initialize_block_iterator (const struct block *block,
467 struct block_iterator *iter)
468{
469 enum block_enum which;
470 struct compunit_symtab *cu;
471
472 iter->idx = -1;
473
474 if (BLOCK_SUPERBLOCK (block) == NULL)
475 {
476 which = GLOBAL_BLOCK;
477 cu = get_block_compunit_symtab (block);
478 }
479 else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
480 {
481 which = STATIC_BLOCK;
482 cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
483 }
484 else
485 {
486 iter->d.block = block;
487 /* A signal value meaning that we're iterating over a single
488 block. */
489 iter->which = FIRST_LOCAL_BLOCK;
490 return;
491 }
492
493 /* If this is an included symtab, find the canonical includer and
494 use it instead. */
495 while (cu->user != NULL)
496 cu = cu->user;
497
498 /* Putting this check here simplifies the logic of the iterator
499 functions. If there are no included symtabs, we only need to
500 search a single block, so we might as well just do that
501 directly. */
502 if (cu->includes == NULL)
503 {
504 iter->d.block = block;
505 /* A signal value meaning that we're iterating over a single
506 block. */
507 iter->which = FIRST_LOCAL_BLOCK;
508 }
509 else
510 {
511 iter->d.compunit_symtab = cu;
512 iter->which = which;
513 }
514}
515
516/* A helper function that finds the current compunit over whose static
517 or global block we should iterate. */
518
519static struct compunit_symtab *
520find_iterator_compunit_symtab (struct block_iterator *iterator)
521{
522 if (iterator->idx == -1)
523 return iterator->d.compunit_symtab;
524 return iterator->d.compunit_symtab->includes[iterator->idx];
525}
526
527/* Perform a single step for a plain block iterator, iterating across
528 symbol tables as needed. Returns the next symbol, or NULL when
529 iteration is complete. */
530
531static struct symbol *
532block_iterator_step (struct block_iterator *iterator, int first)
533{
534 struct symbol *sym;
535
536 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
537
538 while (1)
539 {
540 if (first)
541 {
542 struct compunit_symtab *cust
543 = find_iterator_compunit_symtab (iterator);
544 const struct block *block;
545
546 /* Iteration is complete. */
547 if (cust == NULL)
548 return NULL;
549
550 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
551 iterator->which);
552 sym = dict_iterator_first (BLOCK_DICT (block), &iterator->dict_iter);
553 }
554 else
555 sym = dict_iterator_next (&iterator->dict_iter);
556
557 if (sym != NULL)
558 return sym;
559
560 /* We have finished iterating the appropriate block of one
561 symtab. Now advance to the next symtab and begin iteration
562 there. */
563 ++iterator->idx;
564 first = 1;
565 }
566}
567
568/* See block.h. */
569
570struct symbol *
571block_iterator_first (const struct block *block,
572 struct block_iterator *iterator)
573{
574 initialize_block_iterator (block, iterator);
575
576 if (iterator->which == FIRST_LOCAL_BLOCK)
577 return dict_iterator_first (block->dict, &iterator->dict_iter);
578
579 return block_iterator_step (iterator, 1);
580}
581
582/* See block.h. */
583
584struct symbol *
585block_iterator_next (struct block_iterator *iterator)
586{
587 if (iterator->which == FIRST_LOCAL_BLOCK)
588 return dict_iterator_next (&iterator->dict_iter);
589
590 return block_iterator_step (iterator, 0);
591}
592
593/* Perform a single step for a "name" block iterator, iterating across
594 symbol tables as needed. Returns the next symbol, or NULL when
595 iteration is complete. */
596
597static struct symbol *
598block_iter_name_step (struct block_iterator *iterator, const char *name,
599 int first)
600{
601 struct symbol *sym;
602
603 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
604
605 while (1)
606 {
607 if (first)
608 {
609 struct compunit_symtab *cust
610 = find_iterator_compunit_symtab (iterator);
611 const struct block *block;
612
613 /* Iteration is complete. */
614 if (cust == NULL)
615 return NULL;
616
617 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
618 iterator->which);
619 sym = dict_iter_name_first (BLOCK_DICT (block), name,
620 &iterator->dict_iter);
621 }
622 else
623 sym = dict_iter_name_next (name, &iterator->dict_iter);
624
625 if (sym != NULL)
626 return sym;
627
628 /* We have finished iterating the appropriate block of one
629 symtab. Now advance to the next symtab and begin iteration
630 there. */
631 ++iterator->idx;
632 first = 1;
633 }
634}
635
636/* See block.h. */
637
638struct symbol *
639block_iter_name_first (const struct block *block,
640 const char *name,
641 struct block_iterator *iterator)
642{
643 initialize_block_iterator (block, iterator);
644
645 if (iterator->which == FIRST_LOCAL_BLOCK)
646 return dict_iter_name_first (block->dict, name, &iterator->dict_iter);
647
648 return block_iter_name_step (iterator, name, 1);
649}
650
651/* See block.h. */
652
653struct symbol *
654block_iter_name_next (const char *name, struct block_iterator *iterator)
655{
656 if (iterator->which == FIRST_LOCAL_BLOCK)
657 return dict_iter_name_next (name, &iterator->dict_iter);
658
659 return block_iter_name_step (iterator, name, 0);
660}
661
662/* Perform a single step for a "match" block iterator, iterating
663 across symbol tables as needed. Returns the next symbol, or NULL
664 when iteration is complete. */
665
666static struct symbol *
667block_iter_match_step (struct block_iterator *iterator,
668 const char *name,
669 symbol_compare_ftype *compare,
670 int first)
671{
672 struct symbol *sym;
673
674 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
675
676 while (1)
677 {
678 if (first)
679 {
680 struct compunit_symtab *cust
681 = find_iterator_compunit_symtab (iterator);
682 const struct block *block;
683
684 /* Iteration is complete. */
685 if (cust == NULL)
686 return NULL;
687
688 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
689 iterator->which);
690 sym = dict_iter_match_first (BLOCK_DICT (block), name,
691 compare, &iterator->dict_iter);
692 }
693 else
694 sym = dict_iter_match_next (name, compare, &iterator->dict_iter);
695
696 if (sym != NULL)
697 return sym;
698
699 /* We have finished iterating the appropriate block of one
700 symtab. Now advance to the next symtab and begin iteration
701 there. */
702 ++iterator->idx;
703 first = 1;
704 }
705}
706
707/* See block.h. */
708
709struct symbol *
710block_iter_match_first (const struct block *block,
711 const char *name,
712 symbol_compare_ftype *compare,
713 struct block_iterator *iterator)
714{
715 initialize_block_iterator (block, iterator);
716
717 if (iterator->which == FIRST_LOCAL_BLOCK)
718 return dict_iter_match_first (block->dict, name, compare,
719 &iterator->dict_iter);
720
721 return block_iter_match_step (iterator, name, compare, 1);
722}
723
724/* See block.h. */
725
726struct symbol *
727block_iter_match_next (const char *name,
728 symbol_compare_ftype *compare,
729 struct block_iterator *iterator)
730{
731 if (iterator->which == FIRST_LOCAL_BLOCK)
732 return dict_iter_match_next (name, compare, &iterator->dict_iter);
733
734 return block_iter_match_step (iterator, name, compare, 0);
735}
736
737/* See block.h.
738
739 Note that if NAME is the demangled form of a C++ symbol, we will fail
740 to find a match during the binary search of the non-encoded names, but
741 for now we don't worry about the slight inefficiency of looking for
742 a match we'll never find, since it will go pretty quick. Once the
743 binary search terminates, we drop through and do a straight linear
744 search on the symbols. Each symbol which is marked as being a ObjC/C++
745 symbol (language_cplus or language_objc set) has both the encoded and
746 non-encoded names tested for a match. */
747
748struct symbol *
749block_lookup_symbol (const struct block *block, const char *name,
750 const domain_enum domain)
751{
752 struct block_iterator iter;
753 struct symbol *sym;
754
755 if (!BLOCK_FUNCTION (block))
756 {
757 struct symbol *other = NULL;
758
759 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
760 {
761 if (SYMBOL_DOMAIN (sym) == domain)
762 return sym;
763 /* This is a bit of a hack, but symbol_matches_domain might ignore
764 STRUCT vs VAR domain symbols. So if a matching symbol is found,
765 make sure there is no "better" matching symbol, i.e., one with
766 exactly the same domain. PR 16253. */
767 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
768 SYMBOL_DOMAIN (sym), domain))
769 other = sym;
770 }
771 return other;
772 }
773 else
774 {
775 /* Note that parameter symbols do not always show up last in the
776 list; this loop makes sure to take anything else other than
777 parameter symbols first; it only uses parameter symbols as a
778 last resort. Note that this only takes up extra computation
779 time on a match.
780 It's hard to define types in the parameter list (at least in
781 C/C++) so we don't do the same PR 16253 hack here that is done
782 for the !BLOCK_FUNCTION case. */
783
784 struct symbol *sym_found = NULL;
785
786 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
787 {
788 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
789 SYMBOL_DOMAIN (sym), domain))
790 {
791 sym_found = sym;
792 if (!SYMBOL_IS_ARGUMENT (sym))
793 {
794 break;
795 }
796 }
797 }
798 return (sym_found); /* Will be NULL if not found. */
799 }
800}
801
802/* See block.h. */
803
804struct symbol *
805block_lookup_symbol_primary (const struct block *block, const char *name,
806 const domain_enum domain)
807{
808 struct symbol *sym, *other;
809 struct dict_iterator dict_iter;
810
811 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
812 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
813 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
814
815 other = NULL;
816 for (sym = dict_iter_name_first (block->dict, name, &dict_iter);
817 sym != NULL;
818 sym = dict_iter_name_next (name, &dict_iter))
819 {
820 if (SYMBOL_DOMAIN (sym) == domain)
821 return sym;
822
823 /* This is a bit of a hack, but symbol_matches_domain might ignore
824 STRUCT vs VAR domain symbols. So if a matching symbol is found,
825 make sure there is no "better" matching symbol, i.e., one with
826 exactly the same domain. PR 16253. */
827 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
828 SYMBOL_DOMAIN (sym), domain))
829 other = sym;
830 }
831
832 return other;
833}
834
835/* See block.h. */
836
837struct symbol *
838block_find_symbol (const struct block *block, const char *name,
839 const domain_enum domain,
840 block_symbol_matcher_ftype *matcher, void *data)
841{
842 struct block_iterator iter;
843 struct symbol *sym;
844
845 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
846 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
847 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
848
849 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
850 {
851 /* MATCHER is deliberately called second here so that it never sees
852 a non-domain-matching symbol. */
853 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
854 SYMBOL_DOMAIN (sym), domain)
855 && matcher (sym, data))
856 return sym;
857 }
858 return NULL;
859}
860
861/* See block.h. */
862
863int
864block_find_non_opaque_type (struct symbol *sym, void *data)
865{
866 return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
867}
868
869/* See block.h. */
870
871int
872block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
873{
874 struct symbol **best = data;
875
876 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
877 return 1;
878 *best = sym;
879 return 0;
880}
This page took 0.037988 seconds and 4 git commands to generate.