Rename functions and make nonstatic as necessary
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
... / ...
CommitLineData
1/* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "arch-utils.h"
22#include <ctype.h>
23#include "hashtab.h"
24#include "symtab.h"
25#include "frame.h"
26#include "breakpoint.h"
27#include "tracepoint.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "gdbcore.h"
31#include "gdbcmd.h"
32#include "value.h"
33#include "command.h"
34#include "inferior.h"
35#include "infrun.h"
36#include "gdbthread.h"
37#include "target.h"
38#include "language.h"
39#include <string.h>
40#include "gdb-demangle.h"
41#include "filenames.h"
42#include "annotate.h"
43#include "symfile.h"
44#include "objfiles.h"
45#include "source.h"
46#include "linespec.h"
47#include "completer.h"
48#include "gdb.h"
49#include "ui-out.h"
50#include "cli/cli-script.h"
51#include "gdb_assert.h"
52#include "block.h"
53#include "solib.h"
54#include "solist.h"
55#include "observer.h"
56#include "exceptions.h"
57#include "memattr.h"
58#include "ada-lang.h"
59#include "top.h"
60#include "valprint.h"
61#include "jit.h"
62#include "xml-syscall.h"
63#include "parser-defs.h"
64#include "gdb_regex.h"
65#include "probe.h"
66#include "cli/cli-utils.h"
67#include "continuations.h"
68#include "stack.h"
69#include "skip.h"
70#include "ax-gdb.h"
71#include "dummy-frame.h"
72
73#include "format.h"
74
75/* readline include files */
76#include "readline/readline.h"
77#include "readline/history.h"
78
79/* readline defines this. */
80#undef savestring
81
82#include "mi/mi-common.h"
83#include "extension.h"
84
85/* Enums for exception-handling support. */
86enum exception_event_kind
87{
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91};
92
93/* Prototypes for local functions. */
94
95static void enable_delete_command (char *, int);
96
97static void enable_once_command (char *, int);
98
99static void enable_count_command (char *, int);
100
101static void disable_command (char *, int);
102
103static void enable_command (char *, int);
104
105static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109static void ignore_command (char *, int);
110
111static int breakpoint_re_set_one (void *);
112
113static void breakpoint_re_set_default (struct breakpoint *);
114
115static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131static void clear_command (char *, int);
132
133static void catch_command (char *, int);
134
135static int can_use_hardware_watchpoint (struct value *);
136
137static void break_command_1 (char *, int, int);
138
139static void mention (struct breakpoint *);
140
141static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147/* This function is used in gdbtk sources and thus can not be made
148 static. */
149struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169static int watchpoint_locations_match (struct bp_location *loc1,
170 struct bp_location *loc2);
171
172static int breakpoint_location_address_match (struct bp_location *bl,
173 struct address_space *aspace,
174 CORE_ADDR addr);
175
176static void breakpoints_info (char *, int);
177
178static void watchpoints_info (char *, int);
179
180static int breakpoint_1 (char *, int,
181 int (*) (const struct breakpoint *));
182
183static int breakpoint_cond_eval (void *);
184
185static void cleanup_executing_breakpoints (void *);
186
187static void commands_command (char *, int);
188
189static void condition_command (char *, int);
190
191typedef enum
192 {
193 mark_inserted,
194 mark_uninserted
195 }
196insertion_state_t;
197
198static int remove_breakpoint (struct bp_location *, insertion_state_t);
199static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
200
201static enum print_stop_action print_bp_stop_message (bpstat bs);
202
203static int watchpoint_check (void *);
204
205static void maintenance_info_breakpoints (char *, int);
206
207static int hw_breakpoint_used_count (void);
208
209static int hw_watchpoint_use_count (struct breakpoint *);
210
211static int hw_watchpoint_used_count_others (struct breakpoint *except,
212 enum bptype type,
213 int *other_type_used);
214
215static void hbreak_command (char *, int);
216
217static void thbreak_command (char *, int);
218
219static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
220 int count);
221
222static void stop_command (char *arg, int from_tty);
223
224static void stopin_command (char *arg, int from_tty);
225
226static void stopat_command (char *arg, int from_tty);
227
228static void tcatch_command (char *arg, int from_tty);
229
230static void detach_single_step_breakpoints (void);
231
232static int find_single_step_breakpoint (struct address_space *aspace,
233 CORE_ADDR pc);
234
235static void free_bp_location (struct bp_location *loc);
236static void incref_bp_location (struct bp_location *loc);
237static void decref_bp_location (struct bp_location **loc);
238
239static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
240
241static void update_global_location_list (int);
242
243static void update_global_location_list_nothrow (int);
244
245static int is_hardware_watchpoint (const struct breakpoint *bpt);
246
247static void insert_breakpoint_locations (void);
248
249static int syscall_catchpoint_p (struct breakpoint *b);
250
251static void tracepoints_info (char *, int);
252
253static void delete_trace_command (char *, int);
254
255static void enable_trace_command (char *, int);
256
257static void disable_trace_command (char *, int);
258
259static void trace_pass_command (char *, int);
260
261static void set_tracepoint_count (int num);
262
263static int is_masked_watchpoint (const struct breakpoint *b);
264
265static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
266
267/* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
268 otherwise. */
269
270static int strace_marker_p (struct breakpoint *b);
271
272/* The abstract base class all breakpoint_ops structures inherit
273 from. */
274struct breakpoint_ops base_breakpoint_ops;
275
276/* The breakpoint_ops structure to be inherited by all breakpoint_ops
277 that are implemented on top of software or hardware breakpoints
278 (user breakpoints, internal and momentary breakpoints, etc.). */
279static struct breakpoint_ops bkpt_base_breakpoint_ops;
280
281/* Internal breakpoints class type. */
282static struct breakpoint_ops internal_breakpoint_ops;
283
284/* Momentary breakpoints class type. */
285static struct breakpoint_ops momentary_breakpoint_ops;
286
287/* Momentary breakpoints for bp_longjmp and bp_exception class type. */
288static struct breakpoint_ops longjmp_breakpoint_ops;
289
290/* The breakpoint_ops structure to be used in regular user created
291 breakpoints. */
292struct breakpoint_ops bkpt_breakpoint_ops;
293
294/* Breakpoints set on probes. */
295static struct breakpoint_ops bkpt_probe_breakpoint_ops;
296
297/* Dynamic printf class type. */
298struct breakpoint_ops dprintf_breakpoint_ops;
299
300/* One (or perhaps two) breakpoints used for software single
301 stepping. */
302
303static void *single_step_breakpoints[2];
304static struct gdbarch *single_step_gdbarch[2];
305
306/* The style in which to perform a dynamic printf. This is a user
307 option because different output options have different tradeoffs;
308 if GDB does the printing, there is better error handling if there
309 is a problem with any of the arguments, but using an inferior
310 function lets you have special-purpose printers and sending of
311 output to the same place as compiled-in print functions. */
312
313static const char dprintf_style_gdb[] = "gdb";
314static const char dprintf_style_call[] = "call";
315static const char dprintf_style_agent[] = "agent";
316static const char *const dprintf_style_enums[] = {
317 dprintf_style_gdb,
318 dprintf_style_call,
319 dprintf_style_agent,
320 NULL
321};
322static const char *dprintf_style = dprintf_style_gdb;
323
324/* The function to use for dynamic printf if the preferred style is to
325 call into the inferior. The value is simply a string that is
326 copied into the command, so it can be anything that GDB can
327 evaluate to a callable address, not necessarily a function name. */
328
329static char *dprintf_function = "";
330
331/* The channel to use for dynamic printf if the preferred style is to
332 call into the inferior; if a nonempty string, it will be passed to
333 the call as the first argument, with the format string as the
334 second. As with the dprintf function, this can be anything that
335 GDB knows how to evaluate, so in addition to common choices like
336 "stderr", this could be an app-specific expression like
337 "mystreams[curlogger]". */
338
339static char *dprintf_channel = "";
340
341/* True if dprintf commands should continue to operate even if GDB
342 has disconnected. */
343static int disconnected_dprintf = 1;
344
345/* A reference-counted struct command_line. This lets multiple
346 breakpoints share a single command list. */
347struct counted_command_line
348{
349 /* The reference count. */
350 int refc;
351
352 /* The command list. */
353 struct command_line *commands;
354};
355
356struct command_line *
357breakpoint_commands (struct breakpoint *b)
358{
359 return b->commands ? b->commands->commands : NULL;
360}
361
362/* Flag indicating that a command has proceeded the inferior past the
363 current breakpoint. */
364
365static int breakpoint_proceeded;
366
367const char *
368bpdisp_text (enum bpdisp disp)
369{
370 /* NOTE: the following values are a part of MI protocol and
371 represent values of 'disp' field returned when inferior stops at
372 a breakpoint. */
373 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
374
375 return bpdisps[(int) disp];
376}
377
378/* Prototypes for exported functions. */
379/* If FALSE, gdb will not use hardware support for watchpoints, even
380 if such is available. */
381static int can_use_hw_watchpoints;
382
383static void
384show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c,
386 const char *value)
387{
388 fprintf_filtered (file,
389 _("Debugger's willingness to use "
390 "watchpoint hardware is %s.\n"),
391 value);
392}
393
394/* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
395 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
396 for unrecognized breakpoint locations.
397 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
398static enum auto_boolean pending_break_support;
399static void
400show_pending_break_support (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c,
402 const char *value)
403{
404 fprintf_filtered (file,
405 _("Debugger's behavior regarding "
406 "pending breakpoints is %s.\n"),
407 value);
408}
409
410/* If 1, gdb will automatically use hardware breakpoints for breakpoints
411 set with "break" but falling in read-only memory.
412 If 0, gdb will warn about such breakpoints, but won't automatically
413 use hardware breakpoints. */
414static int automatic_hardware_breakpoints;
415static void
416show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c,
418 const char *value)
419{
420 fprintf_filtered (file,
421 _("Automatic usage of hardware breakpoints is %s.\n"),
422 value);
423}
424
425/* If on, gdb will keep breakpoints inserted even as inferior is
426 stopped, and immediately insert any new breakpoints. If off, gdb
427 will insert breakpoints into inferior only when resuming it, and
428 will remove breakpoints upon stop. If auto, GDB will behave as ON
429 if in non-stop mode, and as OFF if all-stop mode.*/
430
431static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
432
433static void
434show_always_inserted_mode (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c, const char *value)
436{
437 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
438 fprintf_filtered (file,
439 _("Always inserted breakpoint "
440 "mode is %s (currently %s).\n"),
441 value,
442 breakpoints_always_inserted_mode () ? "on" : "off");
443 else
444 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
445 value);
446}
447
448int
449breakpoints_always_inserted_mode (void)
450{
451 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
452 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
453}
454
455static const char condition_evaluation_both[] = "host or target";
456
457/* Modes for breakpoint condition evaluation. */
458static const char condition_evaluation_auto[] = "auto";
459static const char condition_evaluation_host[] = "host";
460static const char condition_evaluation_target[] = "target";
461static const char *const condition_evaluation_enums[] = {
462 condition_evaluation_auto,
463 condition_evaluation_host,
464 condition_evaluation_target,
465 NULL
466};
467
468/* Global that holds the current mode for breakpoint condition evaluation. */
469static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
470
471/* Global that we use to display information to the user (gets its value from
472 condition_evaluation_mode_1. */
473static const char *condition_evaluation_mode = condition_evaluation_auto;
474
475/* Translate a condition evaluation mode MODE into either "host"
476 or "target". This is used mostly to translate from "auto" to the
477 real setting that is being used. It returns the translated
478 evaluation mode. */
479
480static const char *
481translate_condition_evaluation_mode (const char *mode)
482{
483 if (mode == condition_evaluation_auto)
484 {
485 if (target_supports_evaluation_of_breakpoint_conditions ())
486 return condition_evaluation_target;
487 else
488 return condition_evaluation_host;
489 }
490 else
491 return mode;
492}
493
494/* Discovers what condition_evaluation_auto translates to. */
495
496static const char *
497breakpoint_condition_evaluation_mode (void)
498{
499 return translate_condition_evaluation_mode (condition_evaluation_mode);
500}
501
502/* Return true if GDB should evaluate breakpoint conditions or false
503 otherwise. */
504
505static int
506gdb_evaluates_breakpoint_condition_p (void)
507{
508 const char *mode = breakpoint_condition_evaluation_mode ();
509
510 return (mode == condition_evaluation_host);
511}
512
513void _initialize_breakpoint (void);
514
515/* Are we executing breakpoint commands? */
516static int executing_breakpoint_commands;
517
518/* Are overlay event breakpoints enabled? */
519static int overlay_events_enabled;
520
521/* See description in breakpoint.h. */
522int target_exact_watchpoints = 0;
523
524/* Walk the following statement or block through all breakpoints.
525 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
526 current breakpoint. */
527
528#define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
529
530#define ALL_BREAKPOINTS_SAFE(B,TMP) \
531 for (B = breakpoint_chain; \
532 B ? (TMP=B->next, 1): 0; \
533 B = TMP)
534
535/* Similar iterator for the low-level breakpoints. SAFE variant is
536 not provided so update_global_location_list must not be called
537 while executing the block of ALL_BP_LOCATIONS. */
538
539#define ALL_BP_LOCATIONS(B,BP_TMP) \
540 for (BP_TMP = bp_location; \
541 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
542 BP_TMP++)
543
544/* Iterates through locations with address ADDRESS for the currently selected
545 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
546 to where the loop should start from.
547 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
548 appropriate location to start with. */
549
550#define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
551 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
552 BP_LOCP_TMP = BP_LOCP_START; \
553 BP_LOCP_START \
554 && (BP_LOCP_TMP < bp_location + bp_location_count \
555 && (*BP_LOCP_TMP)->address == ADDRESS); \
556 BP_LOCP_TMP++)
557
558/* Iterator for tracepoints only. */
559
560#define ALL_TRACEPOINTS(B) \
561 for (B = breakpoint_chain; B; B = B->next) \
562 if (is_tracepoint (B))
563
564/* Chains of all breakpoints defined. */
565
566struct breakpoint *breakpoint_chain;
567
568/* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
569
570static struct bp_location **bp_location;
571
572/* Number of elements of BP_LOCATION. */
573
574static unsigned bp_location_count;
575
576/* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
577 ADDRESS for the current elements of BP_LOCATION which get a valid
578 result from bp_location_has_shadow. You can use it for roughly
579 limiting the subrange of BP_LOCATION to scan for shadow bytes for
580 an address you need to read. */
581
582static CORE_ADDR bp_location_placed_address_before_address_max;
583
584/* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
585 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
586 BP_LOCATION which get a valid result from bp_location_has_shadow.
587 You can use it for roughly limiting the subrange of BP_LOCATION to
588 scan for shadow bytes for an address you need to read. */
589
590static CORE_ADDR bp_location_shadow_len_after_address_max;
591
592/* The locations that no longer correspond to any breakpoint, unlinked
593 from bp_location array, but for which a hit may still be reported
594 by a target. */
595VEC(bp_location_p) *moribund_locations = NULL;
596
597/* Number of last breakpoint made. */
598
599static int breakpoint_count;
600
601/* The value of `breakpoint_count' before the last command that
602 created breakpoints. If the last (break-like) command created more
603 than one breakpoint, then the difference between BREAKPOINT_COUNT
604 and PREV_BREAKPOINT_COUNT is more than one. */
605static int prev_breakpoint_count;
606
607/* Number of last tracepoint made. */
608
609static int tracepoint_count;
610
611static struct cmd_list_element *breakpoint_set_cmdlist;
612static struct cmd_list_element *breakpoint_show_cmdlist;
613struct cmd_list_element *save_cmdlist;
614
615/* Return whether a breakpoint is an active enabled breakpoint. */
616static int
617breakpoint_enabled (struct breakpoint *b)
618{
619 return (b->enable_state == bp_enabled);
620}
621
622/* Set breakpoint count to NUM. */
623
624static void
625set_breakpoint_count (int num)
626{
627 prev_breakpoint_count = breakpoint_count;
628 breakpoint_count = num;
629 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
630}
631
632/* Used by `start_rbreak_breakpoints' below, to record the current
633 breakpoint count before "rbreak" creates any breakpoint. */
634static int rbreak_start_breakpoint_count;
635
636/* Called at the start an "rbreak" command to record the first
637 breakpoint made. */
638
639void
640start_rbreak_breakpoints (void)
641{
642 rbreak_start_breakpoint_count = breakpoint_count;
643}
644
645/* Called at the end of an "rbreak" command to record the last
646 breakpoint made. */
647
648void
649end_rbreak_breakpoints (void)
650{
651 prev_breakpoint_count = rbreak_start_breakpoint_count;
652}
653
654/* Used in run_command to zero the hit count when a new run starts. */
655
656void
657clear_breakpoint_hit_counts (void)
658{
659 struct breakpoint *b;
660
661 ALL_BREAKPOINTS (b)
662 b->hit_count = 0;
663}
664
665/* Allocate a new counted_command_line with reference count of 1.
666 The new structure owns COMMANDS. */
667
668static struct counted_command_line *
669alloc_counted_command_line (struct command_line *commands)
670{
671 struct counted_command_line *result
672 = xmalloc (sizeof (struct counted_command_line));
673
674 result->refc = 1;
675 result->commands = commands;
676 return result;
677}
678
679/* Increment reference count. This does nothing if CMD is NULL. */
680
681static void
682incref_counted_command_line (struct counted_command_line *cmd)
683{
684 if (cmd)
685 ++cmd->refc;
686}
687
688/* Decrement reference count. If the reference count reaches 0,
689 destroy the counted_command_line. Sets *CMDP to NULL. This does
690 nothing if *CMDP is NULL. */
691
692static void
693decref_counted_command_line (struct counted_command_line **cmdp)
694{
695 if (*cmdp)
696 {
697 if (--(*cmdp)->refc == 0)
698 {
699 free_command_lines (&(*cmdp)->commands);
700 xfree (*cmdp);
701 }
702 *cmdp = NULL;
703 }
704}
705
706/* A cleanup function that calls decref_counted_command_line. */
707
708static void
709do_cleanup_counted_command_line (void *arg)
710{
711 decref_counted_command_line (arg);
712}
713
714/* Create a cleanup that calls decref_counted_command_line on the
715 argument. */
716
717static struct cleanup *
718make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
719{
720 return make_cleanup (do_cleanup_counted_command_line, cmdp);
721}
722
723\f
724/* Return the breakpoint with the specified number, or NULL
725 if the number does not refer to an existing breakpoint. */
726
727struct breakpoint *
728get_breakpoint (int num)
729{
730 struct breakpoint *b;
731
732 ALL_BREAKPOINTS (b)
733 if (b->number == num)
734 return b;
735
736 return NULL;
737}
738
739\f
740
741/* Mark locations as "conditions have changed" in case the target supports
742 evaluating conditions on its side. */
743
744static void
745mark_breakpoint_modified (struct breakpoint *b)
746{
747 struct bp_location *loc;
748
749 /* This is only meaningful if the target is
750 evaluating conditions and if the user has
751 opted for condition evaluation on the target's
752 side. */
753 if (gdb_evaluates_breakpoint_condition_p ()
754 || !target_supports_evaluation_of_breakpoint_conditions ())
755 return;
756
757 if (!is_breakpoint (b))
758 return;
759
760 for (loc = b->loc; loc; loc = loc->next)
761 loc->condition_changed = condition_modified;
762}
763
764/* Mark location as "conditions have changed" in case the target supports
765 evaluating conditions on its side. */
766
767static void
768mark_breakpoint_location_modified (struct bp_location *loc)
769{
770 /* This is only meaningful if the target is
771 evaluating conditions and if the user has
772 opted for condition evaluation on the target's
773 side. */
774 if (gdb_evaluates_breakpoint_condition_p ()
775 || !target_supports_evaluation_of_breakpoint_conditions ())
776
777 return;
778
779 if (!is_breakpoint (loc->owner))
780 return;
781
782 loc->condition_changed = condition_modified;
783}
784
785/* Sets the condition-evaluation mode using the static global
786 condition_evaluation_mode. */
787
788static void
789set_condition_evaluation_mode (char *args, int from_tty,
790 struct cmd_list_element *c)
791{
792 const char *old_mode, *new_mode;
793
794 if ((condition_evaluation_mode_1 == condition_evaluation_target)
795 && !target_supports_evaluation_of_breakpoint_conditions ())
796 {
797 condition_evaluation_mode_1 = condition_evaluation_mode;
798 warning (_("Target does not support breakpoint condition evaluation.\n"
799 "Using host evaluation mode instead."));
800 return;
801 }
802
803 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
804 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
805
806 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
807 settings was "auto". */
808 condition_evaluation_mode = condition_evaluation_mode_1;
809
810 /* Only update the mode if the user picked a different one. */
811 if (new_mode != old_mode)
812 {
813 struct bp_location *loc, **loc_tmp;
814 /* If the user switched to a different evaluation mode, we
815 need to synch the changes with the target as follows:
816
817 "host" -> "target": Send all (valid) conditions to the target.
818 "target" -> "host": Remove all the conditions from the target.
819 */
820
821 if (new_mode == condition_evaluation_target)
822 {
823 /* Mark everything modified and synch conditions with the
824 target. */
825 ALL_BP_LOCATIONS (loc, loc_tmp)
826 mark_breakpoint_location_modified (loc);
827 }
828 else
829 {
830 /* Manually mark non-duplicate locations to synch conditions
831 with the target. We do this to remove all the conditions the
832 target knows about. */
833 ALL_BP_LOCATIONS (loc, loc_tmp)
834 if (is_breakpoint (loc->owner) && loc->inserted)
835 loc->needs_update = 1;
836 }
837
838 /* Do the update. */
839 update_global_location_list (1);
840 }
841
842 return;
843}
844
845/* Shows the current mode of breakpoint condition evaluation. Explicitly shows
846 what "auto" is translating to. */
847
848static void
849show_condition_evaluation_mode (struct ui_file *file, int from_tty,
850 struct cmd_list_element *c, const char *value)
851{
852 if (condition_evaluation_mode == condition_evaluation_auto)
853 fprintf_filtered (file,
854 _("Breakpoint condition evaluation "
855 "mode is %s (currently %s).\n"),
856 value,
857 breakpoint_condition_evaluation_mode ());
858 else
859 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
860 value);
861}
862
863/* A comparison function for bp_location AP and BP that is used by
864 bsearch. This comparison function only cares about addresses, unlike
865 the more general bp_location_compare function. */
866
867static int
868bp_location_compare_addrs (const void *ap, const void *bp)
869{
870 struct bp_location *a = *(void **) ap;
871 struct bp_location *b = *(void **) bp;
872
873 if (a->address == b->address)
874 return 0;
875 else
876 return ((a->address > b->address) - (a->address < b->address));
877}
878
879/* Helper function to skip all bp_locations with addresses
880 less than ADDRESS. It returns the first bp_location that
881 is greater than or equal to ADDRESS. If none is found, just
882 return NULL. */
883
884static struct bp_location **
885get_first_locp_gte_addr (CORE_ADDR address)
886{
887 struct bp_location dummy_loc;
888 struct bp_location *dummy_locp = &dummy_loc;
889 struct bp_location **locp_found = NULL;
890
891 /* Initialize the dummy location's address field. */
892 memset (&dummy_loc, 0, sizeof (struct bp_location));
893 dummy_loc.address = address;
894
895 /* Find a close match to the first location at ADDRESS. */
896 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
897 sizeof (struct bp_location **),
898 bp_location_compare_addrs);
899
900 /* Nothing was found, nothing left to do. */
901 if (locp_found == NULL)
902 return NULL;
903
904 /* We may have found a location that is at ADDRESS but is not the first in the
905 location's list. Go backwards (if possible) and locate the first one. */
906 while ((locp_found - 1) >= bp_location
907 && (*(locp_found - 1))->address == address)
908 locp_found--;
909
910 return locp_found;
911}
912
913void
914set_breakpoint_condition (struct breakpoint *b, char *exp,
915 int from_tty)
916{
917 xfree (b->cond_string);
918 b->cond_string = NULL;
919
920 if (is_watchpoint (b))
921 {
922 struct watchpoint *w = (struct watchpoint *) b;
923
924 xfree (w->cond_exp);
925 w->cond_exp = NULL;
926 }
927 else
928 {
929 struct bp_location *loc;
930
931 for (loc = b->loc; loc; loc = loc->next)
932 {
933 xfree (loc->cond);
934 loc->cond = NULL;
935
936 /* No need to free the condition agent expression
937 bytecode (if we have one). We will handle this
938 when we go through update_global_location_list. */
939 }
940 }
941
942 if (*exp == 0)
943 {
944 if (from_tty)
945 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
946 }
947 else
948 {
949 const char *arg = exp;
950
951 /* I don't know if it matters whether this is the string the user
952 typed in or the decompiled expression. */
953 b->cond_string = xstrdup (arg);
954 b->condition_not_parsed = 0;
955
956 if (is_watchpoint (b))
957 {
958 struct watchpoint *w = (struct watchpoint *) b;
959
960 innermost_block = NULL;
961 arg = exp;
962 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
963 if (*arg)
964 error (_("Junk at end of expression"));
965 w->cond_exp_valid_block = innermost_block;
966 }
967 else
968 {
969 struct bp_location *loc;
970
971 for (loc = b->loc; loc; loc = loc->next)
972 {
973 arg = exp;
974 loc->cond =
975 parse_exp_1 (&arg, loc->address,
976 block_for_pc (loc->address), 0);
977 if (*arg)
978 error (_("Junk at end of expression"));
979 }
980 }
981 }
982 mark_breakpoint_modified (b);
983
984 observer_notify_breakpoint_modified (b);
985}
986
987/* Completion for the "condition" command. */
988
989static VEC (char_ptr) *
990condition_completer (struct cmd_list_element *cmd,
991 const char *text, const char *word)
992{
993 const char *space;
994
995 text = skip_spaces_const (text);
996 space = skip_to_space_const (text);
997 if (*space == '\0')
998 {
999 int len;
1000 struct breakpoint *b;
1001 VEC (char_ptr) *result = NULL;
1002
1003 if (text[0] == '$')
1004 {
1005 /* We don't support completion of history indices. */
1006 if (isdigit (text[1]))
1007 return NULL;
1008 return complete_internalvar (&text[1]);
1009 }
1010
1011 /* We're completing the breakpoint number. */
1012 len = strlen (text);
1013
1014 ALL_BREAKPOINTS (b)
1015 {
1016 char number[50];
1017
1018 xsnprintf (number, sizeof (number), "%d", b->number);
1019
1020 if (strncmp (number, text, len) == 0)
1021 VEC_safe_push (char_ptr, result, xstrdup (number));
1022 }
1023
1024 return result;
1025 }
1026
1027 /* We're completing the expression part. */
1028 text = skip_spaces_const (space);
1029 return expression_completer (cmd, text, word);
1030}
1031
1032/* condition N EXP -- set break condition of breakpoint N to EXP. */
1033
1034static void
1035condition_command (char *arg, int from_tty)
1036{
1037 struct breakpoint *b;
1038 char *p;
1039 int bnum;
1040
1041 if (arg == 0)
1042 error_no_arg (_("breakpoint number"));
1043
1044 p = arg;
1045 bnum = get_number (&p);
1046 if (bnum == 0)
1047 error (_("Bad breakpoint argument: '%s'"), arg);
1048
1049 ALL_BREAKPOINTS (b)
1050 if (b->number == bnum)
1051 {
1052 /* Check if this breakpoint has a "stop" method implemented in an
1053 extension language. This method and conditions entered into GDB
1054 from the CLI are mutually exclusive. */
1055 const struct extension_language_defn *extlang
1056 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1057
1058 if (extlang != NULL)
1059 {
1060 error (_("Only one stop condition allowed. There is currently"
1061 " a %s stop condition defined for this breakpoint."),
1062 ext_lang_capitalized_name (extlang));
1063 }
1064 set_breakpoint_condition (b, p, from_tty);
1065
1066 if (is_breakpoint (b))
1067 update_global_location_list (1);
1068
1069 return;
1070 }
1071
1072 error (_("No breakpoint number %d."), bnum);
1073}
1074
1075/* Check that COMMAND do not contain commands that are suitable
1076 only for tracepoints and not suitable for ordinary breakpoints.
1077 Throw if any such commands is found. */
1078
1079static void
1080check_no_tracepoint_commands (struct command_line *commands)
1081{
1082 struct command_line *c;
1083
1084 for (c = commands; c; c = c->next)
1085 {
1086 int i;
1087
1088 if (c->control_type == while_stepping_control)
1089 error (_("The 'while-stepping' command can "
1090 "only be used for tracepoints"));
1091
1092 for (i = 0; i < c->body_count; ++i)
1093 check_no_tracepoint_commands ((c->body_list)[i]);
1094
1095 /* Not that command parsing removes leading whitespace and comment
1096 lines and also empty lines. So, we only need to check for
1097 command directly. */
1098 if (strstr (c->line, "collect ") == c->line)
1099 error (_("The 'collect' command can only be used for tracepoints"));
1100
1101 if (strstr (c->line, "teval ") == c->line)
1102 error (_("The 'teval' command can only be used for tracepoints"));
1103 }
1104}
1105
1106/* Encapsulate tests for different types of tracepoints. */
1107
1108static int
1109is_tracepoint_type (enum bptype type)
1110{
1111 return (type == bp_tracepoint
1112 || type == bp_fast_tracepoint
1113 || type == bp_static_tracepoint);
1114}
1115
1116int
1117is_tracepoint (const struct breakpoint *b)
1118{
1119 return is_tracepoint_type (b->type);
1120}
1121
1122/* A helper function that validates that COMMANDS are valid for a
1123 breakpoint. This function will throw an exception if a problem is
1124 found. */
1125
1126static void
1127validate_commands_for_breakpoint (struct breakpoint *b,
1128 struct command_line *commands)
1129{
1130 if (is_tracepoint (b))
1131 {
1132 struct tracepoint *t = (struct tracepoint *) b;
1133 struct command_line *c;
1134 struct command_line *while_stepping = 0;
1135
1136 /* Reset the while-stepping step count. The previous commands
1137 might have included a while-stepping action, while the new
1138 ones might not. */
1139 t->step_count = 0;
1140
1141 /* We need to verify that each top-level element of commands is
1142 valid for tracepoints, that there's at most one
1143 while-stepping element, and that the while-stepping's body
1144 has valid tracing commands excluding nested while-stepping.
1145 We also need to validate the tracepoint action line in the
1146 context of the tracepoint --- validate_actionline actually
1147 has side effects, like setting the tracepoint's
1148 while-stepping STEP_COUNT, in addition to checking if the
1149 collect/teval actions parse and make sense in the
1150 tracepoint's context. */
1151 for (c = commands; c; c = c->next)
1152 {
1153 if (c->control_type == while_stepping_control)
1154 {
1155 if (b->type == bp_fast_tracepoint)
1156 error (_("The 'while-stepping' command "
1157 "cannot be used for fast tracepoint"));
1158 else if (b->type == bp_static_tracepoint)
1159 error (_("The 'while-stepping' command "
1160 "cannot be used for static tracepoint"));
1161
1162 if (while_stepping)
1163 error (_("The 'while-stepping' command "
1164 "can be used only once"));
1165 else
1166 while_stepping = c;
1167 }
1168
1169 validate_actionline (c->line, b);
1170 }
1171 if (while_stepping)
1172 {
1173 struct command_line *c2;
1174
1175 gdb_assert (while_stepping->body_count == 1);
1176 c2 = while_stepping->body_list[0];
1177 for (; c2; c2 = c2->next)
1178 {
1179 if (c2->control_type == while_stepping_control)
1180 error (_("The 'while-stepping' command cannot be nested"));
1181 }
1182 }
1183 }
1184 else
1185 {
1186 check_no_tracepoint_commands (commands);
1187 }
1188}
1189
1190/* Return a vector of all the static tracepoints set at ADDR. The
1191 caller is responsible for releasing the vector. */
1192
1193VEC(breakpoint_p) *
1194static_tracepoints_here (CORE_ADDR addr)
1195{
1196 struct breakpoint *b;
1197 VEC(breakpoint_p) *found = 0;
1198 struct bp_location *loc;
1199
1200 ALL_BREAKPOINTS (b)
1201 if (b->type == bp_static_tracepoint)
1202 {
1203 for (loc = b->loc; loc; loc = loc->next)
1204 if (loc->address == addr)
1205 VEC_safe_push(breakpoint_p, found, b);
1206 }
1207
1208 return found;
1209}
1210
1211/* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1212 validate that only allowed commands are included. */
1213
1214void
1215breakpoint_set_commands (struct breakpoint *b,
1216 struct command_line *commands)
1217{
1218 validate_commands_for_breakpoint (b, commands);
1219
1220 decref_counted_command_line (&b->commands);
1221 b->commands = alloc_counted_command_line (commands);
1222 observer_notify_breakpoint_modified (b);
1223}
1224
1225/* Set the internal `silent' flag on the breakpoint. Note that this
1226 is not the same as the "silent" that may appear in the breakpoint's
1227 commands. */
1228
1229void
1230breakpoint_set_silent (struct breakpoint *b, int silent)
1231{
1232 int old_silent = b->silent;
1233
1234 b->silent = silent;
1235 if (old_silent != silent)
1236 observer_notify_breakpoint_modified (b);
1237}
1238
1239/* Set the thread for this breakpoint. If THREAD is -1, make the
1240 breakpoint work for any thread. */
1241
1242void
1243breakpoint_set_thread (struct breakpoint *b, int thread)
1244{
1245 int old_thread = b->thread;
1246
1247 b->thread = thread;
1248 if (old_thread != thread)
1249 observer_notify_breakpoint_modified (b);
1250}
1251
1252/* Set the task for this breakpoint. If TASK is 0, make the
1253 breakpoint work for any task. */
1254
1255void
1256breakpoint_set_task (struct breakpoint *b, int task)
1257{
1258 int old_task = b->task;
1259
1260 b->task = task;
1261 if (old_task != task)
1262 observer_notify_breakpoint_modified (b);
1263}
1264
1265void
1266check_tracepoint_command (char *line, void *closure)
1267{
1268 struct breakpoint *b = closure;
1269
1270 validate_actionline (line, b);
1271}
1272
1273/* A structure used to pass information through
1274 map_breakpoint_numbers. */
1275
1276struct commands_info
1277{
1278 /* True if the command was typed at a tty. */
1279 int from_tty;
1280
1281 /* The breakpoint range spec. */
1282 char *arg;
1283
1284 /* Non-NULL if the body of the commands are being read from this
1285 already-parsed command. */
1286 struct command_line *control;
1287
1288 /* The command lines read from the user, or NULL if they have not
1289 yet been read. */
1290 struct counted_command_line *cmd;
1291};
1292
1293/* A callback for map_breakpoint_numbers that sets the commands for
1294 commands_command. */
1295
1296static void
1297do_map_commands_command (struct breakpoint *b, void *data)
1298{
1299 struct commands_info *info = data;
1300
1301 if (info->cmd == NULL)
1302 {
1303 struct command_line *l;
1304
1305 if (info->control != NULL)
1306 l = copy_command_lines (info->control->body_list[0]);
1307 else
1308 {
1309 struct cleanup *old_chain;
1310 char *str;
1311
1312 str = xstrprintf (_("Type commands for breakpoint(s) "
1313 "%s, one per line."),
1314 info->arg);
1315
1316 old_chain = make_cleanup (xfree, str);
1317
1318 l = read_command_lines (str,
1319 info->from_tty, 1,
1320 (is_tracepoint (b)
1321 ? check_tracepoint_command : 0),
1322 b);
1323
1324 do_cleanups (old_chain);
1325 }
1326
1327 info->cmd = alloc_counted_command_line (l);
1328 }
1329
1330 /* If a breakpoint was on the list more than once, we don't need to
1331 do anything. */
1332 if (b->commands != info->cmd)
1333 {
1334 validate_commands_for_breakpoint (b, info->cmd->commands);
1335 incref_counted_command_line (info->cmd);
1336 decref_counted_command_line (&b->commands);
1337 b->commands = info->cmd;
1338 observer_notify_breakpoint_modified (b);
1339 }
1340}
1341
1342static void
1343commands_command_1 (char *arg, int from_tty,
1344 struct command_line *control)
1345{
1346 struct cleanup *cleanups;
1347 struct commands_info info;
1348
1349 info.from_tty = from_tty;
1350 info.control = control;
1351 info.cmd = NULL;
1352 /* If we read command lines from the user, then `info' will hold an
1353 extra reference to the commands that we must clean up. */
1354 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1355
1356 if (arg == NULL || !*arg)
1357 {
1358 if (breakpoint_count - prev_breakpoint_count > 1)
1359 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1360 breakpoint_count);
1361 else if (breakpoint_count > 0)
1362 arg = xstrprintf ("%d", breakpoint_count);
1363 else
1364 {
1365 /* So that we don't try to free the incoming non-NULL
1366 argument in the cleanup below. Mapping breakpoint
1367 numbers will fail in this case. */
1368 arg = NULL;
1369 }
1370 }
1371 else
1372 /* The command loop has some static state, so we need to preserve
1373 our argument. */
1374 arg = xstrdup (arg);
1375
1376 if (arg != NULL)
1377 make_cleanup (xfree, arg);
1378
1379 info.arg = arg;
1380
1381 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1382
1383 if (info.cmd == NULL)
1384 error (_("No breakpoints specified."));
1385
1386 do_cleanups (cleanups);
1387}
1388
1389static void
1390commands_command (char *arg, int from_tty)
1391{
1392 commands_command_1 (arg, from_tty, NULL);
1393}
1394
1395/* Like commands_command, but instead of reading the commands from
1396 input stream, takes them from an already parsed command structure.
1397
1398 This is used by cli-script.c to DTRT with breakpoint commands
1399 that are part of if and while bodies. */
1400enum command_control_type
1401commands_from_control_command (char *arg, struct command_line *cmd)
1402{
1403 commands_command_1 (arg, 0, cmd);
1404 return simple_control;
1405}
1406
1407/* Return non-zero if BL->TARGET_INFO contains valid information. */
1408
1409static int
1410bp_location_has_shadow (struct bp_location *bl)
1411{
1412 if (bl->loc_type != bp_loc_software_breakpoint)
1413 return 0;
1414 if (!bl->inserted)
1415 return 0;
1416 if (bl->target_info.shadow_len == 0)
1417 /* BL isn't valid, or doesn't shadow memory. */
1418 return 0;
1419 return 1;
1420}
1421
1422/* Update BUF, which is LEN bytes read from the target address
1423 MEMADDR, by replacing a memory breakpoint with its shadowed
1424 contents.
1425
1426 If READBUF is not NULL, this buffer must not overlap with the of
1427 the breakpoint location's shadow_contents buffer. Otherwise, a
1428 failed assertion internal error will be raised. */
1429
1430static void
1431one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1432 const gdb_byte *writebuf_org,
1433 ULONGEST memaddr, LONGEST len,
1434 struct bp_target_info *target_info,
1435 struct gdbarch *gdbarch)
1436{
1437 /* Now do full processing of the found relevant range of elements. */
1438 CORE_ADDR bp_addr = 0;
1439 int bp_size = 0;
1440 int bptoffset = 0;
1441
1442 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1443 current_program_space->aspace, 0))
1444 {
1445 /* The breakpoint is inserted in a different address space. */
1446 return;
1447 }
1448
1449 /* Addresses and length of the part of the breakpoint that
1450 we need to copy. */
1451 bp_addr = target_info->placed_address;
1452 bp_size = target_info->shadow_len;
1453
1454 if (bp_addr + bp_size <= memaddr)
1455 {
1456 /* The breakpoint is entirely before the chunk of memory we are
1457 reading. */
1458 return;
1459 }
1460
1461 if (bp_addr >= memaddr + len)
1462 {
1463 /* The breakpoint is entirely after the chunk of memory we are
1464 reading. */
1465 return;
1466 }
1467
1468 /* Offset within shadow_contents. */
1469 if (bp_addr < memaddr)
1470 {
1471 /* Only copy the second part of the breakpoint. */
1472 bp_size -= memaddr - bp_addr;
1473 bptoffset = memaddr - bp_addr;
1474 bp_addr = memaddr;
1475 }
1476
1477 if (bp_addr + bp_size > memaddr + len)
1478 {
1479 /* Only copy the first part of the breakpoint. */
1480 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1481 }
1482
1483 if (readbuf != NULL)
1484 {
1485 /* Verify that the readbuf buffer does not overlap with the
1486 shadow_contents buffer. */
1487 gdb_assert (target_info->shadow_contents >= readbuf + len
1488 || readbuf >= (target_info->shadow_contents
1489 + target_info->shadow_len));
1490
1491 /* Update the read buffer with this inserted breakpoint's
1492 shadow. */
1493 memcpy (readbuf + bp_addr - memaddr,
1494 target_info->shadow_contents + bptoffset, bp_size);
1495 }
1496 else
1497 {
1498 const unsigned char *bp;
1499 CORE_ADDR placed_address = target_info->placed_address;
1500 int placed_size = target_info->placed_size;
1501
1502 /* Update the shadow with what we want to write to memory. */
1503 memcpy (target_info->shadow_contents + bptoffset,
1504 writebuf_org + bp_addr - memaddr, bp_size);
1505
1506 /* Determine appropriate breakpoint contents and size for this
1507 address. */
1508 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1509
1510 /* Update the final write buffer with this inserted
1511 breakpoint's INSN. */
1512 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1513 }
1514}
1515
1516/* Update BUF, which is LEN bytes read from the target address MEMADDR,
1517 by replacing any memory breakpoints with their shadowed contents.
1518
1519 If READBUF is not NULL, this buffer must not overlap with any of
1520 the breakpoint location's shadow_contents buffers. Otherwise,
1521 a failed assertion internal error will be raised.
1522
1523 The range of shadowed area by each bp_location is:
1524 bl->address - bp_location_placed_address_before_address_max
1525 up to bl->address + bp_location_shadow_len_after_address_max
1526 The range we were requested to resolve shadows for is:
1527 memaddr ... memaddr + len
1528 Thus the safe cutoff boundaries for performance optimization are
1529 memaddr + len <= (bl->address
1530 - bp_location_placed_address_before_address_max)
1531 and:
1532 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1533
1534void
1535breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1536 const gdb_byte *writebuf_org,
1537 ULONGEST memaddr, LONGEST len)
1538{
1539 /* Left boundary, right boundary and median element of our binary
1540 search. */
1541 unsigned bc_l, bc_r, bc;
1542 size_t i;
1543
1544 /* Find BC_L which is a leftmost element which may affect BUF
1545 content. It is safe to report lower value but a failure to
1546 report higher one. */
1547
1548 bc_l = 0;
1549 bc_r = bp_location_count;
1550 while (bc_l + 1 < bc_r)
1551 {
1552 struct bp_location *bl;
1553
1554 bc = (bc_l + bc_r) / 2;
1555 bl = bp_location[bc];
1556
1557 /* Check first BL->ADDRESS will not overflow due to the added
1558 constant. Then advance the left boundary only if we are sure
1559 the BC element can in no way affect the BUF content (MEMADDR
1560 to MEMADDR + LEN range).
1561
1562 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1563 offset so that we cannot miss a breakpoint with its shadow
1564 range tail still reaching MEMADDR. */
1565
1566 if ((bl->address + bp_location_shadow_len_after_address_max
1567 >= bl->address)
1568 && (bl->address + bp_location_shadow_len_after_address_max
1569 <= memaddr))
1570 bc_l = bc;
1571 else
1572 bc_r = bc;
1573 }
1574
1575 /* Due to the binary search above, we need to make sure we pick the
1576 first location that's at BC_L's address. E.g., if there are
1577 multiple locations at the same address, BC_L may end up pointing
1578 at a duplicate location, and miss the "master"/"inserted"
1579 location. Say, given locations L1, L2 and L3 at addresses A and
1580 B:
1581
1582 L1@A, L2@A, L3@B, ...
1583
1584 BC_L could end up pointing at location L2, while the "master"
1585 location could be L1. Since the `loc->inserted' flag is only set
1586 on "master" locations, we'd forget to restore the shadow of L1
1587 and L2. */
1588 while (bc_l > 0
1589 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1590 bc_l--;
1591
1592 /* Now do full processing of the found relevant range of elements. */
1593
1594 for (bc = bc_l; bc < bp_location_count; bc++)
1595 {
1596 struct bp_location *bl = bp_location[bc];
1597 CORE_ADDR bp_addr = 0;
1598 int bp_size = 0;
1599 int bptoffset = 0;
1600
1601 /* bp_location array has BL->OWNER always non-NULL. */
1602 if (bl->owner->type == bp_none)
1603 warning (_("reading through apparently deleted breakpoint #%d?"),
1604 bl->owner->number);
1605
1606 /* Performance optimization: any further element can no longer affect BUF
1607 content. */
1608
1609 if (bl->address >= bp_location_placed_address_before_address_max
1610 && memaddr + len <= (bl->address
1611 - bp_location_placed_address_before_address_max))
1612 break;
1613
1614 if (!bp_location_has_shadow (bl))
1615 continue;
1616
1617 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1618 memaddr, len, &bl->target_info, bl->gdbarch);
1619 }
1620
1621 /* Now process single-step breakpoints. These are not found in the
1622 bp_location array. */
1623 for (i = 0; i < 2; i++)
1624 {
1625 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
1626
1627 if (bp_tgt != NULL)
1628 {
1629 struct gdbarch *gdbarch = single_step_gdbarch[i];
1630
1631 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1632 memaddr, len, bp_tgt, gdbarch);
1633 }
1634 }
1635}
1636
1637\f
1638
1639/* Return true if BPT is either a software breakpoint or a hardware
1640 breakpoint. */
1641
1642int
1643is_breakpoint (const struct breakpoint *bpt)
1644{
1645 return (bpt->type == bp_breakpoint
1646 || bpt->type == bp_hardware_breakpoint
1647 || bpt->type == bp_dprintf);
1648}
1649
1650/* Return true if BPT is of any hardware watchpoint kind. */
1651
1652static int
1653is_hardware_watchpoint (const struct breakpoint *bpt)
1654{
1655 return (bpt->type == bp_hardware_watchpoint
1656 || bpt->type == bp_read_watchpoint
1657 || bpt->type == bp_access_watchpoint);
1658}
1659
1660/* Return true if BPT is of any watchpoint kind, hardware or
1661 software. */
1662
1663int
1664is_watchpoint (const struct breakpoint *bpt)
1665{
1666 return (is_hardware_watchpoint (bpt)
1667 || bpt->type == bp_watchpoint);
1668}
1669
1670/* Returns true if the current thread and its running state are safe
1671 to evaluate or update watchpoint B. Watchpoints on local
1672 expressions need to be evaluated in the context of the thread that
1673 was current when the watchpoint was created, and, that thread needs
1674 to be stopped to be able to select the correct frame context.
1675 Watchpoints on global expressions can be evaluated on any thread,
1676 and in any state. It is presently left to the target allowing
1677 memory accesses when threads are running. */
1678
1679static int
1680watchpoint_in_thread_scope (struct watchpoint *b)
1681{
1682 return (b->base.pspace == current_program_space
1683 && (ptid_equal (b->watchpoint_thread, null_ptid)
1684 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1685 && !is_executing (inferior_ptid))));
1686}
1687
1688/* Set watchpoint B to disp_del_at_next_stop, even including its possible
1689 associated bp_watchpoint_scope breakpoint. */
1690
1691static void
1692watchpoint_del_at_next_stop (struct watchpoint *w)
1693{
1694 struct breakpoint *b = &w->base;
1695
1696 if (b->related_breakpoint != b)
1697 {
1698 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1699 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1700 b->related_breakpoint->disposition = disp_del_at_next_stop;
1701 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1702 b->related_breakpoint = b;
1703 }
1704 b->disposition = disp_del_at_next_stop;
1705}
1706
1707/* Assuming that B is a watchpoint:
1708 - Reparse watchpoint expression, if REPARSE is non-zero
1709 - Evaluate expression and store the result in B->val
1710 - Evaluate the condition if there is one, and store the result
1711 in b->loc->cond.
1712 - Update the list of values that must be watched in B->loc.
1713
1714 If the watchpoint disposition is disp_del_at_next_stop, then do
1715 nothing. If this is local watchpoint that is out of scope, delete
1716 it.
1717
1718 Even with `set breakpoint always-inserted on' the watchpoints are
1719 removed + inserted on each stop here. Normal breakpoints must
1720 never be removed because they might be missed by a running thread
1721 when debugging in non-stop mode. On the other hand, hardware
1722 watchpoints (is_hardware_watchpoint; processed here) are specific
1723 to each LWP since they are stored in each LWP's hardware debug
1724 registers. Therefore, such LWP must be stopped first in order to
1725 be able to modify its hardware watchpoints.
1726
1727 Hardware watchpoints must be reset exactly once after being
1728 presented to the user. It cannot be done sooner, because it would
1729 reset the data used to present the watchpoint hit to the user. And
1730 it must not be done later because it could display the same single
1731 watchpoint hit during multiple GDB stops. Note that the latter is
1732 relevant only to the hardware watchpoint types bp_read_watchpoint
1733 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1734 not user-visible - its hit is suppressed if the memory content has
1735 not changed.
1736
1737 The following constraints influence the location where we can reset
1738 hardware watchpoints:
1739
1740 * target_stopped_by_watchpoint and target_stopped_data_address are
1741 called several times when GDB stops.
1742
1743 [linux]
1744 * Multiple hardware watchpoints can be hit at the same time,
1745 causing GDB to stop. GDB only presents one hardware watchpoint
1746 hit at a time as the reason for stopping, and all the other hits
1747 are presented later, one after the other, each time the user
1748 requests the execution to be resumed. Execution is not resumed
1749 for the threads still having pending hit event stored in
1750 LWP_INFO->STATUS. While the watchpoint is already removed from
1751 the inferior on the first stop the thread hit event is kept being
1752 reported from its cached value by linux_nat_stopped_data_address
1753 until the real thread resume happens after the watchpoint gets
1754 presented and thus its LWP_INFO->STATUS gets reset.
1755
1756 Therefore the hardware watchpoint hit can get safely reset on the
1757 watchpoint removal from inferior. */
1758
1759static void
1760update_watchpoint (struct watchpoint *b, int reparse)
1761{
1762 int within_current_scope;
1763 struct frame_id saved_frame_id;
1764 int frame_saved;
1765
1766 /* If this is a local watchpoint, we only want to check if the
1767 watchpoint frame is in scope if the current thread is the thread
1768 that was used to create the watchpoint. */
1769 if (!watchpoint_in_thread_scope (b))
1770 return;
1771
1772 if (b->base.disposition == disp_del_at_next_stop)
1773 return;
1774
1775 frame_saved = 0;
1776
1777 /* Determine if the watchpoint is within scope. */
1778 if (b->exp_valid_block == NULL)
1779 within_current_scope = 1;
1780 else
1781 {
1782 struct frame_info *fi = get_current_frame ();
1783 struct gdbarch *frame_arch = get_frame_arch (fi);
1784 CORE_ADDR frame_pc = get_frame_pc (fi);
1785
1786 /* If we're in a function epilogue, unwinding may not work
1787 properly, so do not attempt to recreate locations at this
1788 point. See similar comments in watchpoint_check. */
1789 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1790 return;
1791
1792 /* Save the current frame's ID so we can restore it after
1793 evaluating the watchpoint expression on its own frame. */
1794 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1795 took a frame parameter, so that we didn't have to change the
1796 selected frame. */
1797 frame_saved = 1;
1798 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1799
1800 fi = frame_find_by_id (b->watchpoint_frame);
1801 within_current_scope = (fi != NULL);
1802 if (within_current_scope)
1803 select_frame (fi);
1804 }
1805
1806 /* We don't free locations. They are stored in the bp_location array
1807 and update_global_location_list will eventually delete them and
1808 remove breakpoints if needed. */
1809 b->base.loc = NULL;
1810
1811 if (within_current_scope && reparse)
1812 {
1813 const char *s;
1814
1815 if (b->exp)
1816 {
1817 xfree (b->exp);
1818 b->exp = NULL;
1819 }
1820 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1821 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1822 /* If the meaning of expression itself changed, the old value is
1823 no longer relevant. We don't want to report a watchpoint hit
1824 to the user when the old value and the new value may actually
1825 be completely different objects. */
1826 value_free (b->val);
1827 b->val = NULL;
1828 b->val_valid = 0;
1829
1830 /* Note that unlike with breakpoints, the watchpoint's condition
1831 expression is stored in the breakpoint object, not in the
1832 locations (re)created below. */
1833 if (b->base.cond_string != NULL)
1834 {
1835 if (b->cond_exp != NULL)
1836 {
1837 xfree (b->cond_exp);
1838 b->cond_exp = NULL;
1839 }
1840
1841 s = b->base.cond_string;
1842 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1843 }
1844 }
1845
1846 /* If we failed to parse the expression, for example because
1847 it refers to a global variable in a not-yet-loaded shared library,
1848 don't try to insert watchpoint. We don't automatically delete
1849 such watchpoint, though, since failure to parse expression
1850 is different from out-of-scope watchpoint. */
1851 if (!target_has_execution)
1852 {
1853 /* Without execution, memory can't change. No use to try and
1854 set watchpoint locations. The watchpoint will be reset when
1855 the target gains execution, through breakpoint_re_set. */
1856 if (!can_use_hw_watchpoints)
1857 {
1858 if (b->base.ops->works_in_software_mode (&b->base))
1859 b->base.type = bp_watchpoint;
1860 else
1861 error (_("Can't set read/access watchpoint when "
1862 "hardware watchpoints are disabled."));
1863 }
1864 }
1865 else if (within_current_scope && b->exp)
1866 {
1867 int pc = 0;
1868 struct value *val_chain, *v, *result, *next;
1869 struct program_space *frame_pspace;
1870
1871 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1872
1873 /* Avoid setting b->val if it's already set. The meaning of
1874 b->val is 'the last value' user saw, and we should update
1875 it only if we reported that last value to user. As it
1876 happens, the code that reports it updates b->val directly.
1877 We don't keep track of the memory value for masked
1878 watchpoints. */
1879 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1880 {
1881 b->val = v;
1882 b->val_valid = 1;
1883 }
1884
1885 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1886
1887 /* Look at each value on the value chain. */
1888 for (v = val_chain; v; v = value_next (v))
1889 {
1890 /* If it's a memory location, and GDB actually needed
1891 its contents to evaluate the expression, then we
1892 must watch it. If the first value returned is
1893 still lazy, that means an error occurred reading it;
1894 watch it anyway in case it becomes readable. */
1895 if (VALUE_LVAL (v) == lval_memory
1896 && (v == val_chain || ! value_lazy (v)))
1897 {
1898 struct type *vtype = check_typedef (value_type (v));
1899
1900 /* We only watch structs and arrays if user asked
1901 for it explicitly, never if they just happen to
1902 appear in the middle of some value chain. */
1903 if (v == result
1904 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1905 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1906 {
1907 CORE_ADDR addr;
1908 int type;
1909 struct bp_location *loc, **tmp;
1910
1911 addr = value_address (v);
1912 type = hw_write;
1913 if (b->base.type == bp_read_watchpoint)
1914 type = hw_read;
1915 else if (b->base.type == bp_access_watchpoint)
1916 type = hw_access;
1917
1918 loc = allocate_bp_location (&b->base);
1919 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1920 ;
1921 *tmp = loc;
1922 loc->gdbarch = get_type_arch (value_type (v));
1923
1924 loc->pspace = frame_pspace;
1925 loc->address = addr;
1926 loc->length = TYPE_LENGTH (value_type (v));
1927 loc->watchpoint_type = type;
1928 }
1929 }
1930 }
1931
1932 /* Change the type of breakpoint between hardware assisted or
1933 an ordinary watchpoint depending on the hardware support
1934 and free hardware slots. REPARSE is set when the inferior
1935 is started. */
1936 if (reparse)
1937 {
1938 int reg_cnt;
1939 enum bp_loc_type loc_type;
1940 struct bp_location *bl;
1941
1942 reg_cnt = can_use_hardware_watchpoint (val_chain);
1943
1944 if (reg_cnt)
1945 {
1946 int i, target_resources_ok, other_type_used;
1947 enum bptype type;
1948
1949 /* Use an exact watchpoint when there's only one memory region to be
1950 watched, and only one debug register is needed to watch it. */
1951 b->exact = target_exact_watchpoints && reg_cnt == 1;
1952
1953 /* We need to determine how many resources are already
1954 used for all other hardware watchpoints plus this one
1955 to see if we still have enough resources to also fit
1956 this watchpoint in as well. */
1957
1958 /* If this is a software watchpoint, we try to turn it
1959 to a hardware one -- count resources as if B was of
1960 hardware watchpoint type. */
1961 type = b->base.type;
1962 if (type == bp_watchpoint)
1963 type = bp_hardware_watchpoint;
1964
1965 /* This watchpoint may or may not have been placed on
1966 the list yet at this point (it won't be in the list
1967 if we're trying to create it for the first time,
1968 through watch_command), so always account for it
1969 manually. */
1970
1971 /* Count resources used by all watchpoints except B. */
1972 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1973
1974 /* Add in the resources needed for B. */
1975 i += hw_watchpoint_use_count (&b->base);
1976
1977 target_resources_ok
1978 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1979 if (target_resources_ok <= 0)
1980 {
1981 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1982
1983 if (target_resources_ok == 0 && !sw_mode)
1984 error (_("Target does not support this type of "
1985 "hardware watchpoint."));
1986 else if (target_resources_ok < 0 && !sw_mode)
1987 error (_("There are not enough available hardware "
1988 "resources for this watchpoint."));
1989
1990 /* Downgrade to software watchpoint. */
1991 b->base.type = bp_watchpoint;
1992 }
1993 else
1994 {
1995 /* If this was a software watchpoint, we've just
1996 found we have enough resources to turn it to a
1997 hardware watchpoint. Otherwise, this is a
1998 nop. */
1999 b->base.type = type;
2000 }
2001 }
2002 else if (!b->base.ops->works_in_software_mode (&b->base))
2003 {
2004 if (!can_use_hw_watchpoints)
2005 error (_("Can't set read/access watchpoint when "
2006 "hardware watchpoints are disabled."));
2007 else
2008 error (_("Expression cannot be implemented with "
2009 "read/access watchpoint."));
2010 }
2011 else
2012 b->base.type = bp_watchpoint;
2013
2014 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2015 : bp_loc_hardware_watchpoint);
2016 for (bl = b->base.loc; bl; bl = bl->next)
2017 bl->loc_type = loc_type;
2018 }
2019
2020 for (v = val_chain; v; v = next)
2021 {
2022 next = value_next (v);
2023 if (v != b->val)
2024 value_free (v);
2025 }
2026
2027 /* If a software watchpoint is not watching any memory, then the
2028 above left it without any location set up. But,
2029 bpstat_stop_status requires a location to be able to report
2030 stops, so make sure there's at least a dummy one. */
2031 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2032 {
2033 struct breakpoint *base = &b->base;
2034 base->loc = allocate_bp_location (base);
2035 base->loc->pspace = frame_pspace;
2036 base->loc->address = -1;
2037 base->loc->length = -1;
2038 base->loc->watchpoint_type = -1;
2039 }
2040 }
2041 else if (!within_current_scope)
2042 {
2043 printf_filtered (_("\
2044Watchpoint %d deleted because the program has left the block\n\
2045in which its expression is valid.\n"),
2046 b->base.number);
2047 watchpoint_del_at_next_stop (b);
2048 }
2049
2050 /* Restore the selected frame. */
2051 if (frame_saved)
2052 select_frame (frame_find_by_id (saved_frame_id));
2053}
2054
2055
2056/* Returns 1 iff breakpoint location should be
2057 inserted in the inferior. We don't differentiate the type of BL's owner
2058 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2059 breakpoint_ops is not defined, because in insert_bp_location,
2060 tracepoint's insert_location will not be called. */
2061static int
2062should_be_inserted (struct bp_location *bl)
2063{
2064 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2065 return 0;
2066
2067 if (bl->owner->disposition == disp_del_at_next_stop)
2068 return 0;
2069
2070 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2071 return 0;
2072
2073 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2074 return 0;
2075
2076 /* This is set for example, when we're attached to the parent of a
2077 vfork, and have detached from the child. The child is running
2078 free, and we expect it to do an exec or exit, at which point the
2079 OS makes the parent schedulable again (and the target reports
2080 that the vfork is done). Until the child is done with the shared
2081 memory region, do not insert breakpoints in the parent, otherwise
2082 the child could still trip on the parent's breakpoints. Since
2083 the parent is blocked anyway, it won't miss any breakpoint. */
2084 if (bl->pspace->breakpoints_not_allowed)
2085 return 0;
2086
2087 /* Don't insert a breakpoint if we're trying to step past its
2088 location. */
2089 if ((bl->loc_type == bp_loc_software_breakpoint
2090 || bl->loc_type == bp_loc_hardware_breakpoint)
2091 && stepping_past_instruction_at (bl->pspace->aspace,
2092 bl->address))
2093 return 0;
2094
2095 return 1;
2096}
2097
2098/* Same as should_be_inserted but does the check assuming
2099 that the location is not duplicated. */
2100
2101static int
2102unduplicated_should_be_inserted (struct bp_location *bl)
2103{
2104 int result;
2105 const int save_duplicate = bl->duplicate;
2106
2107 bl->duplicate = 0;
2108 result = should_be_inserted (bl);
2109 bl->duplicate = save_duplicate;
2110 return result;
2111}
2112
2113/* Parses a conditional described by an expression COND into an
2114 agent expression bytecode suitable for evaluation
2115 by the bytecode interpreter. Return NULL if there was
2116 any error during parsing. */
2117
2118static struct agent_expr *
2119parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2120{
2121 struct agent_expr *aexpr = NULL;
2122 volatile struct gdb_exception ex;
2123
2124 if (!cond)
2125 return NULL;
2126
2127 /* We don't want to stop processing, so catch any errors
2128 that may show up. */
2129 TRY_CATCH (ex, RETURN_MASK_ERROR)
2130 {
2131 aexpr = gen_eval_for_expr (scope, cond);
2132 }
2133
2134 if (ex.reason < 0)
2135 {
2136 /* If we got here, it means the condition could not be parsed to a valid
2137 bytecode expression and thus can't be evaluated on the target's side.
2138 It's no use iterating through the conditions. */
2139 return NULL;
2140 }
2141
2142 /* We have a valid agent expression. */
2143 return aexpr;
2144}
2145
2146/* Based on location BL, create a list of breakpoint conditions to be
2147 passed on to the target. If we have duplicated locations with different
2148 conditions, we will add such conditions to the list. The idea is that the
2149 target will evaluate the list of conditions and will only notify GDB when
2150 one of them is true. */
2151
2152static void
2153build_target_condition_list (struct bp_location *bl)
2154{
2155 struct bp_location **locp = NULL, **loc2p;
2156 int null_condition_or_parse_error = 0;
2157 int modified = bl->needs_update;
2158 struct bp_location *loc;
2159
2160 /* Release conditions left over from a previous insert. */
2161 VEC_free (agent_expr_p, bl->target_info.conditions);
2162
2163 /* This is only meaningful if the target is
2164 evaluating conditions and if the user has
2165 opted for condition evaluation on the target's
2166 side. */
2167 if (gdb_evaluates_breakpoint_condition_p ()
2168 || !target_supports_evaluation_of_breakpoint_conditions ())
2169 return;
2170
2171 /* Do a first pass to check for locations with no assigned
2172 conditions or conditions that fail to parse to a valid agent expression
2173 bytecode. If any of these happen, then it's no use to send conditions
2174 to the target since this location will always trigger and generate a
2175 response back to GDB. */
2176 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2177 {
2178 loc = (*loc2p);
2179 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2180 {
2181 if (modified)
2182 {
2183 struct agent_expr *aexpr;
2184
2185 /* Re-parse the conditions since something changed. In that
2186 case we already freed the condition bytecodes (see
2187 force_breakpoint_reinsertion). We just
2188 need to parse the condition to bytecodes again. */
2189 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2190 loc->cond_bytecode = aexpr;
2191
2192 /* Check if we managed to parse the conditional expression
2193 correctly. If not, we will not send this condition
2194 to the target. */
2195 if (aexpr)
2196 continue;
2197 }
2198
2199 /* If we have a NULL bytecode expression, it means something
2200 went wrong or we have a null condition expression. */
2201 if (!loc->cond_bytecode)
2202 {
2203 null_condition_or_parse_error = 1;
2204 break;
2205 }
2206 }
2207 }
2208
2209 /* If any of these happened, it means we will have to evaluate the conditions
2210 for the location's address on gdb's side. It is no use keeping bytecodes
2211 for all the other duplicate locations, thus we free all of them here.
2212
2213 This is so we have a finer control over which locations' conditions are
2214 being evaluated by GDB or the remote stub. */
2215 if (null_condition_or_parse_error)
2216 {
2217 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2218 {
2219 loc = (*loc2p);
2220 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2221 {
2222 /* Only go as far as the first NULL bytecode is
2223 located. */
2224 if (!loc->cond_bytecode)
2225 return;
2226
2227 free_agent_expr (loc->cond_bytecode);
2228 loc->cond_bytecode = NULL;
2229 }
2230 }
2231 }
2232
2233 /* No NULL conditions or failed bytecode generation. Build a condition list
2234 for this location's address. */
2235 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2236 {
2237 loc = (*loc2p);
2238 if (loc->cond
2239 && is_breakpoint (loc->owner)
2240 && loc->pspace->num == bl->pspace->num
2241 && loc->owner->enable_state == bp_enabled
2242 && loc->enabled)
2243 /* Add the condition to the vector. This will be used later to send the
2244 conditions to the target. */
2245 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2246 loc->cond_bytecode);
2247 }
2248
2249 return;
2250}
2251
2252/* Parses a command described by string CMD into an agent expression
2253 bytecode suitable for evaluation by the bytecode interpreter.
2254 Return NULL if there was any error during parsing. */
2255
2256static struct agent_expr *
2257parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2258{
2259 struct cleanup *old_cleanups = 0;
2260 struct expression *expr, **argvec;
2261 struct agent_expr *aexpr = NULL;
2262 volatile struct gdb_exception ex;
2263 const char *cmdrest;
2264 const char *format_start, *format_end;
2265 struct format_piece *fpieces;
2266 int nargs;
2267 struct gdbarch *gdbarch = get_current_arch ();
2268
2269 if (!cmd)
2270 return NULL;
2271
2272 cmdrest = cmd;
2273
2274 if (*cmdrest == ',')
2275 ++cmdrest;
2276 cmdrest = skip_spaces_const (cmdrest);
2277
2278 if (*cmdrest++ != '"')
2279 error (_("No format string following the location"));
2280
2281 format_start = cmdrest;
2282
2283 fpieces = parse_format_string (&cmdrest);
2284
2285 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2286
2287 format_end = cmdrest;
2288
2289 if (*cmdrest++ != '"')
2290 error (_("Bad format string, non-terminated '\"'."));
2291
2292 cmdrest = skip_spaces_const (cmdrest);
2293
2294 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2295 error (_("Invalid argument syntax"));
2296
2297 if (*cmdrest == ',')
2298 cmdrest++;
2299 cmdrest = skip_spaces_const (cmdrest);
2300
2301 /* For each argument, make an expression. */
2302
2303 argvec = (struct expression **) alloca (strlen (cmd)
2304 * sizeof (struct expression *));
2305
2306 nargs = 0;
2307 while (*cmdrest != '\0')
2308 {
2309 const char *cmd1;
2310
2311 cmd1 = cmdrest;
2312 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2313 argvec[nargs++] = expr;
2314 cmdrest = cmd1;
2315 if (*cmdrest == ',')
2316 ++cmdrest;
2317 }
2318
2319 /* We don't want to stop processing, so catch any errors
2320 that may show up. */
2321 TRY_CATCH (ex, RETURN_MASK_ERROR)
2322 {
2323 aexpr = gen_printf (scope, gdbarch, 0, 0,
2324 format_start, format_end - format_start,
2325 fpieces, nargs, argvec);
2326 }
2327
2328 do_cleanups (old_cleanups);
2329
2330 if (ex.reason < 0)
2331 {
2332 /* If we got here, it means the command could not be parsed to a valid
2333 bytecode expression and thus can't be evaluated on the target's side.
2334 It's no use iterating through the other commands. */
2335 return NULL;
2336 }
2337
2338 /* We have a valid agent expression, return it. */
2339 return aexpr;
2340}
2341
2342/* Based on location BL, create a list of breakpoint commands to be
2343 passed on to the target. If we have duplicated locations with
2344 different commands, we will add any such to the list. */
2345
2346static void
2347build_target_command_list (struct bp_location *bl)
2348{
2349 struct bp_location **locp = NULL, **loc2p;
2350 int null_command_or_parse_error = 0;
2351 int modified = bl->needs_update;
2352 struct bp_location *loc;
2353
2354 /* Release commands left over from a previous insert. */
2355 VEC_free (agent_expr_p, bl->target_info.tcommands);
2356
2357 if (!target_can_run_breakpoint_commands ())
2358 return;
2359
2360 /* For now, limit to agent-style dprintf breakpoints. */
2361 if (dprintf_style != dprintf_style_agent)
2362 return;
2363
2364 /* For now, if we have any duplicate location that isn't a dprintf,
2365 don't install the target-side commands, as that would make the
2366 breakpoint not be reported to the core, and we'd lose
2367 control. */
2368 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2369 {
2370 loc = (*loc2p);
2371 if (is_breakpoint (loc->owner)
2372 && loc->pspace->num == bl->pspace->num
2373 && loc->owner->type != bp_dprintf)
2374 return;
2375 }
2376
2377 /* Do a first pass to check for locations with no assigned
2378 conditions or conditions that fail to parse to a valid agent expression
2379 bytecode. If any of these happen, then it's no use to send conditions
2380 to the target since this location will always trigger and generate a
2381 response back to GDB. */
2382 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2383 {
2384 loc = (*loc2p);
2385 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2386 {
2387 if (modified)
2388 {
2389 struct agent_expr *aexpr;
2390
2391 /* Re-parse the commands since something changed. In that
2392 case we already freed the command bytecodes (see
2393 force_breakpoint_reinsertion). We just
2394 need to parse the command to bytecodes again. */
2395 aexpr = parse_cmd_to_aexpr (bl->address,
2396 loc->owner->extra_string);
2397 loc->cmd_bytecode = aexpr;
2398
2399 if (!aexpr)
2400 continue;
2401 }
2402
2403 /* If we have a NULL bytecode expression, it means something
2404 went wrong or we have a null command expression. */
2405 if (!loc->cmd_bytecode)
2406 {
2407 null_command_or_parse_error = 1;
2408 break;
2409 }
2410 }
2411 }
2412
2413 /* If anything failed, then we're not doing target-side commands,
2414 and so clean up. */
2415 if (null_command_or_parse_error)
2416 {
2417 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2418 {
2419 loc = (*loc2p);
2420 if (is_breakpoint (loc->owner)
2421 && loc->pspace->num == bl->pspace->num)
2422 {
2423 /* Only go as far as the first NULL bytecode is
2424 located. */
2425 if (loc->cmd_bytecode == NULL)
2426 return;
2427
2428 free_agent_expr (loc->cmd_bytecode);
2429 loc->cmd_bytecode = NULL;
2430 }
2431 }
2432 }
2433
2434 /* No NULL commands or failed bytecode generation. Build a command list
2435 for this location's address. */
2436 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2437 {
2438 loc = (*loc2p);
2439 if (loc->owner->extra_string
2440 && is_breakpoint (loc->owner)
2441 && loc->pspace->num == bl->pspace->num
2442 && loc->owner->enable_state == bp_enabled
2443 && loc->enabled)
2444 /* Add the command to the vector. This will be used later
2445 to send the commands to the target. */
2446 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2447 loc->cmd_bytecode);
2448 }
2449
2450 bl->target_info.persist = 0;
2451 /* Maybe flag this location as persistent. */
2452 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2453 bl->target_info.persist = 1;
2454}
2455
2456/* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2457 location. Any error messages are printed to TMP_ERROR_STREAM; and
2458 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2459 Returns 0 for success, 1 if the bp_location type is not supported or
2460 -1 for failure.
2461
2462 NOTE drow/2003-09-09: This routine could be broken down to an
2463 object-style method for each breakpoint or catchpoint type. */
2464static int
2465insert_bp_location (struct bp_location *bl,
2466 struct ui_file *tmp_error_stream,
2467 int *disabled_breaks,
2468 int *hw_breakpoint_error,
2469 int *hw_bp_error_explained_already)
2470{
2471 enum errors bp_err = GDB_NO_ERROR;
2472 const char *bp_err_message = NULL;
2473 volatile struct gdb_exception e;
2474
2475 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2476 return 0;
2477
2478 /* Note we don't initialize bl->target_info, as that wipes out
2479 the breakpoint location's shadow_contents if the breakpoint
2480 is still inserted at that location. This in turn breaks
2481 target_read_memory which depends on these buffers when
2482 a memory read is requested at the breakpoint location:
2483 Once the target_info has been wiped, we fail to see that
2484 we have a breakpoint inserted at that address and thus
2485 read the breakpoint instead of returning the data saved in
2486 the breakpoint location's shadow contents. */
2487 bl->target_info.placed_address = bl->address;
2488 bl->target_info.placed_address_space = bl->pspace->aspace;
2489 bl->target_info.length = bl->length;
2490
2491 /* When working with target-side conditions, we must pass all the conditions
2492 for the same breakpoint address down to the target since GDB will not
2493 insert those locations. With a list of breakpoint conditions, the target
2494 can decide when to stop and notify GDB. */
2495
2496 if (is_breakpoint (bl->owner))
2497 {
2498 build_target_condition_list (bl);
2499 build_target_command_list (bl);
2500 /* Reset the modification marker. */
2501 bl->needs_update = 0;
2502 }
2503
2504 if (bl->loc_type == bp_loc_software_breakpoint
2505 || bl->loc_type == bp_loc_hardware_breakpoint)
2506 {
2507 if (bl->owner->type != bp_hardware_breakpoint)
2508 {
2509 /* If the explicitly specified breakpoint type
2510 is not hardware breakpoint, check the memory map to see
2511 if the breakpoint address is in read only memory or not.
2512
2513 Two important cases are:
2514 - location type is not hardware breakpoint, memory
2515 is readonly. We change the type of the location to
2516 hardware breakpoint.
2517 - location type is hardware breakpoint, memory is
2518 read-write. This means we've previously made the
2519 location hardware one, but then the memory map changed,
2520 so we undo.
2521
2522 When breakpoints are removed, remove_breakpoints will use
2523 location types we've just set here, the only possible
2524 problem is that memory map has changed during running
2525 program, but it's not going to work anyway with current
2526 gdb. */
2527 struct mem_region *mr
2528 = lookup_mem_region (bl->target_info.placed_address);
2529
2530 if (mr)
2531 {
2532 if (automatic_hardware_breakpoints)
2533 {
2534 enum bp_loc_type new_type;
2535
2536 if (mr->attrib.mode != MEM_RW)
2537 new_type = bp_loc_hardware_breakpoint;
2538 else
2539 new_type = bp_loc_software_breakpoint;
2540
2541 if (new_type != bl->loc_type)
2542 {
2543 static int said = 0;
2544
2545 bl->loc_type = new_type;
2546 if (!said)
2547 {
2548 fprintf_filtered (gdb_stdout,
2549 _("Note: automatically using "
2550 "hardware breakpoints for "
2551 "read-only addresses.\n"));
2552 said = 1;
2553 }
2554 }
2555 }
2556 else if (bl->loc_type == bp_loc_software_breakpoint
2557 && mr->attrib.mode != MEM_RW)
2558 warning (_("cannot set software breakpoint "
2559 "at readonly address %s"),
2560 paddress (bl->gdbarch, bl->address));
2561 }
2562 }
2563
2564 /* First check to see if we have to handle an overlay. */
2565 if (overlay_debugging == ovly_off
2566 || bl->section == NULL
2567 || !(section_is_overlay (bl->section)))
2568 {
2569 /* No overlay handling: just set the breakpoint. */
2570 TRY_CATCH (e, RETURN_MASK_ALL)
2571 {
2572 int val;
2573
2574 val = bl->owner->ops->insert_location (bl);
2575 if (val)
2576 bp_err = GENERIC_ERROR;
2577 }
2578 if (e.reason < 0)
2579 {
2580 bp_err = e.error;
2581 bp_err_message = e.message;
2582 }
2583 }
2584 else
2585 {
2586 /* This breakpoint is in an overlay section.
2587 Shall we set a breakpoint at the LMA? */
2588 if (!overlay_events_enabled)
2589 {
2590 /* Yes -- overlay event support is not active,
2591 so we must try to set a breakpoint at the LMA.
2592 This will not work for a hardware breakpoint. */
2593 if (bl->loc_type == bp_loc_hardware_breakpoint)
2594 warning (_("hardware breakpoint %d not supported in overlay!"),
2595 bl->owner->number);
2596 else
2597 {
2598 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2599 bl->section);
2600 /* Set a software (trap) breakpoint at the LMA. */
2601 bl->overlay_target_info = bl->target_info;
2602 bl->overlay_target_info.placed_address = addr;
2603
2604 /* No overlay handling: just set the breakpoint. */
2605 TRY_CATCH (e, RETURN_MASK_ALL)
2606 {
2607 int val;
2608
2609 val = target_insert_breakpoint (bl->gdbarch,
2610 &bl->overlay_target_info);
2611 if (val)
2612 bp_err = GENERIC_ERROR;
2613 }
2614 if (e.reason < 0)
2615 {
2616 bp_err = e.error;
2617 bp_err_message = e.message;
2618 }
2619
2620 if (bp_err != GDB_NO_ERROR)
2621 fprintf_unfiltered (tmp_error_stream,
2622 "Overlay breakpoint %d "
2623 "failed: in ROM?\n",
2624 bl->owner->number);
2625 }
2626 }
2627 /* Shall we set a breakpoint at the VMA? */
2628 if (section_is_mapped (bl->section))
2629 {
2630 /* Yes. This overlay section is mapped into memory. */
2631 TRY_CATCH (e, RETURN_MASK_ALL)
2632 {
2633 int val;
2634
2635 val = bl->owner->ops->insert_location (bl);
2636 if (val)
2637 bp_err = GENERIC_ERROR;
2638 }
2639 if (e.reason < 0)
2640 {
2641 bp_err = e.error;
2642 bp_err_message = e.message;
2643 }
2644 }
2645 else
2646 {
2647 /* No. This breakpoint will not be inserted.
2648 No error, but do not mark the bp as 'inserted'. */
2649 return 0;
2650 }
2651 }
2652
2653 if (bp_err != GDB_NO_ERROR)
2654 {
2655 /* Can't set the breakpoint. */
2656
2657 /* In some cases, we might not be able to insert a
2658 breakpoint in a shared library that has already been
2659 removed, but we have not yet processed the shlib unload
2660 event. Unfortunately, some targets that implement
2661 breakpoint insertion themselves can't tell why the
2662 breakpoint insertion failed (e.g., the remote target
2663 doesn't define error codes), so we must treat generic
2664 errors as memory errors. */
2665 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2666 && bl->loc_type == bp_loc_software_breakpoint
2667 && (solib_name_from_address (bl->pspace, bl->address)
2668 || shared_objfile_contains_address_p (bl->pspace,
2669 bl->address)))
2670 {
2671 /* See also: disable_breakpoints_in_shlibs. */
2672 bl->shlib_disabled = 1;
2673 observer_notify_breakpoint_modified (bl->owner);
2674 if (!*disabled_breaks)
2675 {
2676 fprintf_unfiltered (tmp_error_stream,
2677 "Cannot insert breakpoint %d.\n",
2678 bl->owner->number);
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Temporarily disabling shared "
2681 "library breakpoints:\n");
2682 }
2683 *disabled_breaks = 1;
2684 fprintf_unfiltered (tmp_error_stream,
2685 "breakpoint #%d\n", bl->owner->number);
2686 return 0;
2687 }
2688 else
2689 {
2690 if (bl->loc_type == bp_loc_hardware_breakpoint)
2691 {
2692 *hw_breakpoint_error = 1;
2693 *hw_bp_error_explained_already = bp_err_message != NULL;
2694 fprintf_unfiltered (tmp_error_stream,
2695 "Cannot insert hardware breakpoint %d%s",
2696 bl->owner->number, bp_err_message ? ":" : ".\n");
2697 if (bp_err_message != NULL)
2698 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2699 }
2700 else
2701 {
2702 if (bp_err_message == NULL)
2703 {
2704 char *message
2705 = memory_error_message (TARGET_XFER_E_IO,
2706 bl->gdbarch, bl->address);
2707 struct cleanup *old_chain = make_cleanup (xfree, message);
2708
2709 fprintf_unfiltered (tmp_error_stream,
2710 "Cannot insert breakpoint %d.\n"
2711 "%s\n",
2712 bl->owner->number, message);
2713 do_cleanups (old_chain);
2714 }
2715 else
2716 {
2717 fprintf_unfiltered (tmp_error_stream,
2718 "Cannot insert breakpoint %d: %s\n",
2719 bl->owner->number,
2720 bp_err_message);
2721 }
2722 }
2723 return 1;
2724
2725 }
2726 }
2727 else
2728 bl->inserted = 1;
2729
2730 return 0;
2731 }
2732
2733 else if (bl->loc_type == bp_loc_hardware_watchpoint
2734 /* NOTE drow/2003-09-08: This state only exists for removing
2735 watchpoints. It's not clear that it's necessary... */
2736 && bl->owner->disposition != disp_del_at_next_stop)
2737 {
2738 int val;
2739
2740 gdb_assert (bl->owner->ops != NULL
2741 && bl->owner->ops->insert_location != NULL);
2742
2743 val = bl->owner->ops->insert_location (bl);
2744
2745 /* If trying to set a read-watchpoint, and it turns out it's not
2746 supported, try emulating one with an access watchpoint. */
2747 if (val == 1 && bl->watchpoint_type == hw_read)
2748 {
2749 struct bp_location *loc, **loc_temp;
2750
2751 /* But don't try to insert it, if there's already another
2752 hw_access location that would be considered a duplicate
2753 of this one. */
2754 ALL_BP_LOCATIONS (loc, loc_temp)
2755 if (loc != bl
2756 && loc->watchpoint_type == hw_access
2757 && watchpoint_locations_match (bl, loc))
2758 {
2759 bl->duplicate = 1;
2760 bl->inserted = 1;
2761 bl->target_info = loc->target_info;
2762 bl->watchpoint_type = hw_access;
2763 val = 0;
2764 break;
2765 }
2766
2767 if (val == 1)
2768 {
2769 bl->watchpoint_type = hw_access;
2770 val = bl->owner->ops->insert_location (bl);
2771
2772 if (val)
2773 /* Back to the original value. */
2774 bl->watchpoint_type = hw_read;
2775 }
2776 }
2777
2778 bl->inserted = (val == 0);
2779 }
2780
2781 else if (bl->owner->type == bp_catchpoint)
2782 {
2783 int val;
2784
2785 gdb_assert (bl->owner->ops != NULL
2786 && bl->owner->ops->insert_location != NULL);
2787
2788 val = bl->owner->ops->insert_location (bl);
2789 if (val)
2790 {
2791 bl->owner->enable_state = bp_disabled;
2792
2793 if (val == 1)
2794 warning (_("\
2795Error inserting catchpoint %d: Your system does not support this type\n\
2796of catchpoint."), bl->owner->number);
2797 else
2798 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2799 }
2800
2801 bl->inserted = (val == 0);
2802
2803 /* We've already printed an error message if there was a problem
2804 inserting this catchpoint, and we've disabled the catchpoint,
2805 so just return success. */
2806 return 0;
2807 }
2808
2809 return 0;
2810}
2811
2812/* This function is called when program space PSPACE is about to be
2813 deleted. It takes care of updating breakpoints to not reference
2814 PSPACE anymore. */
2815
2816void
2817breakpoint_program_space_exit (struct program_space *pspace)
2818{
2819 struct breakpoint *b, *b_temp;
2820 struct bp_location *loc, **loc_temp;
2821
2822 /* Remove any breakpoint that was set through this program space. */
2823 ALL_BREAKPOINTS_SAFE (b, b_temp)
2824 {
2825 if (b->pspace == pspace)
2826 delete_breakpoint (b);
2827 }
2828
2829 /* Breakpoints set through other program spaces could have locations
2830 bound to PSPACE as well. Remove those. */
2831 ALL_BP_LOCATIONS (loc, loc_temp)
2832 {
2833 struct bp_location *tmp;
2834
2835 if (loc->pspace == pspace)
2836 {
2837 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2838 if (loc->owner->loc == loc)
2839 loc->owner->loc = loc->next;
2840 else
2841 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2842 if (tmp->next == loc)
2843 {
2844 tmp->next = loc->next;
2845 break;
2846 }
2847 }
2848 }
2849
2850 /* Now update the global location list to permanently delete the
2851 removed locations above. */
2852 update_global_location_list (0);
2853}
2854
2855/* Make sure all breakpoints are inserted in inferior.
2856 Throws exception on any error.
2857 A breakpoint that is already inserted won't be inserted
2858 again, so calling this function twice is safe. */
2859void
2860insert_breakpoints (void)
2861{
2862 struct breakpoint *bpt;
2863
2864 ALL_BREAKPOINTS (bpt)
2865 if (is_hardware_watchpoint (bpt))
2866 {
2867 struct watchpoint *w = (struct watchpoint *) bpt;
2868
2869 update_watchpoint (w, 0 /* don't reparse. */);
2870 }
2871
2872 update_global_location_list (1);
2873
2874 /* update_global_location_list does not insert breakpoints when
2875 always_inserted_mode is not enabled. Explicitly insert them
2876 now. */
2877 if (!breakpoints_always_inserted_mode ())
2878 insert_breakpoint_locations ();
2879}
2880
2881/* Invoke CALLBACK for each of bp_location. */
2882
2883void
2884iterate_over_bp_locations (walk_bp_location_callback callback)
2885{
2886 struct bp_location *loc, **loc_tmp;
2887
2888 ALL_BP_LOCATIONS (loc, loc_tmp)
2889 {
2890 callback (loc, NULL);
2891 }
2892}
2893
2894/* This is used when we need to synch breakpoint conditions between GDB and the
2895 target. It is the case with deleting and disabling of breakpoints when using
2896 always-inserted mode. */
2897
2898static void
2899update_inserted_breakpoint_locations (void)
2900{
2901 struct bp_location *bl, **blp_tmp;
2902 int error_flag = 0;
2903 int val = 0;
2904 int disabled_breaks = 0;
2905 int hw_breakpoint_error = 0;
2906 int hw_bp_details_reported = 0;
2907
2908 struct ui_file *tmp_error_stream = mem_fileopen ();
2909 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2910
2911 /* Explicitly mark the warning -- this will only be printed if
2912 there was an error. */
2913 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2914
2915 save_current_space_and_thread ();
2916
2917 ALL_BP_LOCATIONS (bl, blp_tmp)
2918 {
2919 /* We only want to update software breakpoints and hardware
2920 breakpoints. */
2921 if (!is_breakpoint (bl->owner))
2922 continue;
2923
2924 /* We only want to update locations that are already inserted
2925 and need updating. This is to avoid unwanted insertion during
2926 deletion of breakpoints. */
2927 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2928 continue;
2929
2930 switch_to_program_space_and_thread (bl->pspace);
2931
2932 /* For targets that support global breakpoints, there's no need
2933 to select an inferior to insert breakpoint to. In fact, even
2934 if we aren't attached to any process yet, we should still
2935 insert breakpoints. */
2936 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2937 && ptid_equal (inferior_ptid, null_ptid))
2938 continue;
2939
2940 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2941 &hw_breakpoint_error, &hw_bp_details_reported);
2942 if (val)
2943 error_flag = val;
2944 }
2945
2946 if (error_flag)
2947 {
2948 target_terminal_ours_for_output ();
2949 error_stream (tmp_error_stream);
2950 }
2951
2952 do_cleanups (cleanups);
2953}
2954
2955/* Used when starting or continuing the program. */
2956
2957static void
2958insert_breakpoint_locations (void)
2959{
2960 struct breakpoint *bpt;
2961 struct bp_location *bl, **blp_tmp;
2962 int error_flag = 0;
2963 int val = 0;
2964 int disabled_breaks = 0;
2965 int hw_breakpoint_error = 0;
2966 int hw_bp_error_explained_already = 0;
2967
2968 struct ui_file *tmp_error_stream = mem_fileopen ();
2969 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2970
2971 /* Explicitly mark the warning -- this will only be printed if
2972 there was an error. */
2973 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2974
2975 save_current_space_and_thread ();
2976
2977 ALL_BP_LOCATIONS (bl, blp_tmp)
2978 {
2979 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2980 continue;
2981
2982 /* There is no point inserting thread-specific breakpoints if
2983 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2984 has BL->OWNER always non-NULL. */
2985 if (bl->owner->thread != -1
2986 && !valid_thread_id (bl->owner->thread))
2987 continue;
2988
2989 switch_to_program_space_and_thread (bl->pspace);
2990
2991 /* For targets that support global breakpoints, there's no need
2992 to select an inferior to insert breakpoint to. In fact, even
2993 if we aren't attached to any process yet, we should still
2994 insert breakpoints. */
2995 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2996 && ptid_equal (inferior_ptid, null_ptid))
2997 continue;
2998
2999 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3000 &hw_breakpoint_error, &hw_bp_error_explained_already);
3001 if (val)
3002 error_flag = val;
3003 }
3004
3005 /* If we failed to insert all locations of a watchpoint, remove
3006 them, as half-inserted watchpoint is of limited use. */
3007 ALL_BREAKPOINTS (bpt)
3008 {
3009 int some_failed = 0;
3010 struct bp_location *loc;
3011
3012 if (!is_hardware_watchpoint (bpt))
3013 continue;
3014
3015 if (!breakpoint_enabled (bpt))
3016 continue;
3017
3018 if (bpt->disposition == disp_del_at_next_stop)
3019 continue;
3020
3021 for (loc = bpt->loc; loc; loc = loc->next)
3022 if (!loc->inserted && should_be_inserted (loc))
3023 {
3024 some_failed = 1;
3025 break;
3026 }
3027 if (some_failed)
3028 {
3029 for (loc = bpt->loc; loc; loc = loc->next)
3030 if (loc->inserted)
3031 remove_breakpoint (loc, mark_uninserted);
3032
3033 hw_breakpoint_error = 1;
3034 fprintf_unfiltered (tmp_error_stream,
3035 "Could not insert hardware watchpoint %d.\n",
3036 bpt->number);
3037 error_flag = -1;
3038 }
3039 }
3040
3041 if (error_flag)
3042 {
3043 /* If a hardware breakpoint or watchpoint was inserted, add a
3044 message about possibly exhausted resources. */
3045 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3046 {
3047 fprintf_unfiltered (tmp_error_stream,
3048 "Could not insert hardware breakpoints:\n\
3049You may have requested too many hardware breakpoints/watchpoints.\n");
3050 }
3051 target_terminal_ours_for_output ();
3052 error_stream (tmp_error_stream);
3053 }
3054
3055 do_cleanups (cleanups);
3056}
3057
3058/* Used when the program stops.
3059 Returns zero if successful, or non-zero if there was a problem
3060 removing a breakpoint location. */
3061
3062int
3063remove_breakpoints (void)
3064{
3065 struct bp_location *bl, **blp_tmp;
3066 int val = 0;
3067
3068 ALL_BP_LOCATIONS (bl, blp_tmp)
3069 {
3070 if (bl->inserted && !is_tracepoint (bl->owner))
3071 val |= remove_breakpoint (bl, mark_uninserted);
3072 }
3073 return val;
3074}
3075
3076/* When a thread exits, remove breakpoints that are related to
3077 that thread. */
3078
3079static void
3080remove_threaded_breakpoints (struct thread_info *tp, int silent)
3081{
3082 struct breakpoint *b, *b_tmp;
3083
3084 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3085 {
3086 if (b->thread == tp->num && user_breakpoint_p (b))
3087 {
3088 b->disposition = disp_del_at_next_stop;
3089
3090 printf_filtered (_("\
3091Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3092 b->number, tp->num);
3093
3094 /* Hide it from the user. */
3095 b->number = 0;
3096 }
3097 }
3098}
3099
3100/* Remove breakpoints of process PID. */
3101
3102int
3103remove_breakpoints_pid (int pid)
3104{
3105 struct bp_location *bl, **blp_tmp;
3106 int val;
3107 struct inferior *inf = find_inferior_pid (pid);
3108
3109 ALL_BP_LOCATIONS (bl, blp_tmp)
3110 {
3111 if (bl->pspace != inf->pspace)
3112 continue;
3113
3114 if (bl->owner->type == bp_dprintf)
3115 continue;
3116
3117 if (bl->inserted)
3118 {
3119 val = remove_breakpoint (bl, mark_uninserted);
3120 if (val != 0)
3121 return val;
3122 }
3123 }
3124 return 0;
3125}
3126
3127int
3128reattach_breakpoints (int pid)
3129{
3130 struct cleanup *old_chain;
3131 struct bp_location *bl, **blp_tmp;
3132 int val;
3133 struct ui_file *tmp_error_stream;
3134 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3135 struct inferior *inf;
3136 struct thread_info *tp;
3137
3138 tp = any_live_thread_of_process (pid);
3139 if (tp == NULL)
3140 return 1;
3141
3142 inf = find_inferior_pid (pid);
3143 old_chain = save_inferior_ptid ();
3144
3145 inferior_ptid = tp->ptid;
3146
3147 tmp_error_stream = mem_fileopen ();
3148 make_cleanup_ui_file_delete (tmp_error_stream);
3149
3150 ALL_BP_LOCATIONS (bl, blp_tmp)
3151 {
3152 if (bl->pspace != inf->pspace)
3153 continue;
3154
3155 if (bl->inserted)
3156 {
3157 bl->inserted = 0;
3158 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3159 if (val != 0)
3160 {
3161 do_cleanups (old_chain);
3162 return val;
3163 }
3164 }
3165 }
3166 do_cleanups (old_chain);
3167 return 0;
3168}
3169
3170static int internal_breakpoint_number = -1;
3171
3172/* Set the breakpoint number of B, depending on the value of INTERNAL.
3173 If INTERNAL is non-zero, the breakpoint number will be populated
3174 from internal_breakpoint_number and that variable decremented.
3175 Otherwise the breakpoint number will be populated from
3176 breakpoint_count and that value incremented. Internal breakpoints
3177 do not set the internal var bpnum. */
3178static void
3179set_breakpoint_number (int internal, struct breakpoint *b)
3180{
3181 if (internal)
3182 b->number = internal_breakpoint_number--;
3183 else
3184 {
3185 set_breakpoint_count (breakpoint_count + 1);
3186 b->number = breakpoint_count;
3187 }
3188}
3189
3190static struct breakpoint *
3191create_internal_breakpoint (struct gdbarch *gdbarch,
3192 CORE_ADDR address, enum bptype type,
3193 const struct breakpoint_ops *ops)
3194{
3195 struct symtab_and_line sal;
3196 struct breakpoint *b;
3197
3198 init_sal (&sal); /* Initialize to zeroes. */
3199
3200 sal.pc = address;
3201 sal.section = find_pc_overlay (sal.pc);
3202 sal.pspace = current_program_space;
3203
3204 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3205 b->number = internal_breakpoint_number--;
3206 b->disposition = disp_donttouch;
3207
3208 return b;
3209}
3210
3211static const char *const longjmp_names[] =
3212 {
3213 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3214 };
3215#define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3216
3217/* Per-objfile data private to breakpoint.c. */
3218struct breakpoint_objfile_data
3219{
3220 /* Minimal symbol for "_ovly_debug_event" (if any). */
3221 struct bound_minimal_symbol overlay_msym;
3222
3223 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3224 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3225
3226 /* True if we have looked for longjmp probes. */
3227 int longjmp_searched;
3228
3229 /* SystemTap probe points for longjmp (if any). */
3230 VEC (probe_p) *longjmp_probes;
3231
3232 /* Minimal symbol for "std::terminate()" (if any). */
3233 struct bound_minimal_symbol terminate_msym;
3234
3235 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3236 struct bound_minimal_symbol exception_msym;
3237
3238 /* True if we have looked for exception probes. */
3239 int exception_searched;
3240
3241 /* SystemTap probe points for unwinding (if any). */
3242 VEC (probe_p) *exception_probes;
3243};
3244
3245static const struct objfile_data *breakpoint_objfile_key;
3246
3247/* Minimal symbol not found sentinel. */
3248static struct minimal_symbol msym_not_found;
3249
3250/* Returns TRUE if MSYM point to the "not found" sentinel. */
3251
3252static int
3253msym_not_found_p (const struct minimal_symbol *msym)
3254{
3255 return msym == &msym_not_found;
3256}
3257
3258/* Return per-objfile data needed by breakpoint.c.
3259 Allocate the data if necessary. */
3260
3261static struct breakpoint_objfile_data *
3262get_breakpoint_objfile_data (struct objfile *objfile)
3263{
3264 struct breakpoint_objfile_data *bp_objfile_data;
3265
3266 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3267 if (bp_objfile_data == NULL)
3268 {
3269 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3270 sizeof (*bp_objfile_data));
3271
3272 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3273 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3274 }
3275 return bp_objfile_data;
3276}
3277
3278static void
3279free_breakpoint_probes (struct objfile *obj, void *data)
3280{
3281 struct breakpoint_objfile_data *bp_objfile_data = data;
3282
3283 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3284 VEC_free (probe_p, bp_objfile_data->exception_probes);
3285}
3286
3287static void
3288create_overlay_event_breakpoint (void)
3289{
3290 struct objfile *objfile;
3291 const char *const func_name = "_ovly_debug_event";
3292
3293 ALL_OBJFILES (objfile)
3294 {
3295 struct breakpoint *b;
3296 struct breakpoint_objfile_data *bp_objfile_data;
3297 CORE_ADDR addr;
3298
3299 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3300
3301 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3302 continue;
3303
3304 if (bp_objfile_data->overlay_msym.minsym == NULL)
3305 {
3306 struct bound_minimal_symbol m;
3307
3308 m = lookup_minimal_symbol_text (func_name, objfile);
3309 if (m.minsym == NULL)
3310 {
3311 /* Avoid future lookups in this objfile. */
3312 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3313 continue;
3314 }
3315 bp_objfile_data->overlay_msym = m;
3316 }
3317
3318 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3319 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3320 bp_overlay_event,
3321 &internal_breakpoint_ops);
3322 b->addr_string = xstrdup (func_name);
3323
3324 if (overlay_debugging == ovly_auto)
3325 {
3326 b->enable_state = bp_enabled;
3327 overlay_events_enabled = 1;
3328 }
3329 else
3330 {
3331 b->enable_state = bp_disabled;
3332 overlay_events_enabled = 0;
3333 }
3334 }
3335 update_global_location_list (1);
3336}
3337
3338static void
3339create_longjmp_master_breakpoint (void)
3340{
3341 struct program_space *pspace;
3342 struct cleanup *old_chain;
3343
3344 old_chain = save_current_program_space ();
3345
3346 ALL_PSPACES (pspace)
3347 {
3348 struct objfile *objfile;
3349
3350 set_current_program_space (pspace);
3351
3352 ALL_OBJFILES (objfile)
3353 {
3354 int i;
3355 struct gdbarch *gdbarch;
3356 struct breakpoint_objfile_data *bp_objfile_data;
3357
3358 gdbarch = get_objfile_arch (objfile);
3359
3360 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3361
3362 if (!bp_objfile_data->longjmp_searched)
3363 {
3364 VEC (probe_p) *ret;
3365
3366 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3367 if (ret != NULL)
3368 {
3369 /* We are only interested in checking one element. */
3370 struct probe *p = VEC_index (probe_p, ret, 0);
3371
3372 if (!can_evaluate_probe_arguments (p))
3373 {
3374 /* We cannot use the probe interface here, because it does
3375 not know how to evaluate arguments. */
3376 VEC_free (probe_p, ret);
3377 ret = NULL;
3378 }
3379 }
3380 bp_objfile_data->longjmp_probes = ret;
3381 bp_objfile_data->longjmp_searched = 1;
3382 }
3383
3384 if (bp_objfile_data->longjmp_probes != NULL)
3385 {
3386 int i;
3387 struct probe *probe;
3388 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3389
3390 for (i = 0;
3391 VEC_iterate (probe_p,
3392 bp_objfile_data->longjmp_probes,
3393 i, probe);
3394 ++i)
3395 {
3396 struct breakpoint *b;
3397
3398 b = create_internal_breakpoint (gdbarch,
3399 get_probe_address (probe,
3400 objfile),
3401 bp_longjmp_master,
3402 &internal_breakpoint_ops);
3403 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3404 b->enable_state = bp_disabled;
3405 }
3406
3407 continue;
3408 }
3409
3410 if (!gdbarch_get_longjmp_target_p (gdbarch))
3411 continue;
3412
3413 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3414 {
3415 struct breakpoint *b;
3416 const char *func_name;
3417 CORE_ADDR addr;
3418
3419 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3420 continue;
3421
3422 func_name = longjmp_names[i];
3423 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3424 {
3425 struct bound_minimal_symbol m;
3426
3427 m = lookup_minimal_symbol_text (func_name, objfile);
3428 if (m.minsym == NULL)
3429 {
3430 /* Prevent future lookups in this objfile. */
3431 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3432 continue;
3433 }
3434 bp_objfile_data->longjmp_msym[i] = m;
3435 }
3436
3437 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3438 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3439 &internal_breakpoint_ops);
3440 b->addr_string = xstrdup (func_name);
3441 b->enable_state = bp_disabled;
3442 }
3443 }
3444 }
3445 update_global_location_list (1);
3446
3447 do_cleanups (old_chain);
3448}
3449
3450/* Create a master std::terminate breakpoint. */
3451static void
3452create_std_terminate_master_breakpoint (void)
3453{
3454 struct program_space *pspace;
3455 struct cleanup *old_chain;
3456 const char *const func_name = "std::terminate()";
3457
3458 old_chain = save_current_program_space ();
3459
3460 ALL_PSPACES (pspace)
3461 {
3462 struct objfile *objfile;
3463 CORE_ADDR addr;
3464
3465 set_current_program_space (pspace);
3466
3467 ALL_OBJFILES (objfile)
3468 {
3469 struct breakpoint *b;
3470 struct breakpoint_objfile_data *bp_objfile_data;
3471
3472 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3473
3474 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3475 continue;
3476
3477 if (bp_objfile_data->terminate_msym.minsym == NULL)
3478 {
3479 struct bound_minimal_symbol m;
3480
3481 m = lookup_minimal_symbol (func_name, NULL, objfile);
3482 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3483 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3484 {
3485 /* Prevent future lookups in this objfile. */
3486 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3487 continue;
3488 }
3489 bp_objfile_data->terminate_msym = m;
3490 }
3491
3492 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3493 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3494 bp_std_terminate_master,
3495 &internal_breakpoint_ops);
3496 b->addr_string = xstrdup (func_name);
3497 b->enable_state = bp_disabled;
3498 }
3499 }
3500
3501 update_global_location_list (1);
3502
3503 do_cleanups (old_chain);
3504}
3505
3506/* Install a master breakpoint on the unwinder's debug hook. */
3507
3508static void
3509create_exception_master_breakpoint (void)
3510{
3511 struct objfile *objfile;
3512 const char *const func_name = "_Unwind_DebugHook";
3513
3514 ALL_OBJFILES (objfile)
3515 {
3516 struct breakpoint *b;
3517 struct gdbarch *gdbarch;
3518 struct breakpoint_objfile_data *bp_objfile_data;
3519 CORE_ADDR addr;
3520
3521 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3522
3523 /* We prefer the SystemTap probe point if it exists. */
3524 if (!bp_objfile_data->exception_searched)
3525 {
3526 VEC (probe_p) *ret;
3527
3528 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3529
3530 if (ret != NULL)
3531 {
3532 /* We are only interested in checking one element. */
3533 struct probe *p = VEC_index (probe_p, ret, 0);
3534
3535 if (!can_evaluate_probe_arguments (p))
3536 {
3537 /* We cannot use the probe interface here, because it does
3538 not know how to evaluate arguments. */
3539 VEC_free (probe_p, ret);
3540 ret = NULL;
3541 }
3542 }
3543 bp_objfile_data->exception_probes = ret;
3544 bp_objfile_data->exception_searched = 1;
3545 }
3546
3547 if (bp_objfile_data->exception_probes != NULL)
3548 {
3549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3550 int i;
3551 struct probe *probe;
3552
3553 for (i = 0;
3554 VEC_iterate (probe_p,
3555 bp_objfile_data->exception_probes,
3556 i, probe);
3557 ++i)
3558 {
3559 struct breakpoint *b;
3560
3561 b = create_internal_breakpoint (gdbarch,
3562 get_probe_address (probe,
3563 objfile),
3564 bp_exception_master,
3565 &internal_breakpoint_ops);
3566 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3567 b->enable_state = bp_disabled;
3568 }
3569
3570 continue;
3571 }
3572
3573 /* Otherwise, try the hook function. */
3574
3575 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3576 continue;
3577
3578 gdbarch = get_objfile_arch (objfile);
3579
3580 if (bp_objfile_data->exception_msym.minsym == NULL)
3581 {
3582 struct bound_minimal_symbol debug_hook;
3583
3584 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3585 if (debug_hook.minsym == NULL)
3586 {
3587 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3588 continue;
3589 }
3590
3591 bp_objfile_data->exception_msym = debug_hook;
3592 }
3593
3594 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3595 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3596 &current_target);
3597 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3598 &internal_breakpoint_ops);
3599 b->addr_string = xstrdup (func_name);
3600 b->enable_state = bp_disabled;
3601 }
3602
3603 update_global_location_list (1);
3604}
3605
3606void
3607update_breakpoints_after_exec (void)
3608{
3609 struct breakpoint *b, *b_tmp;
3610 struct bp_location *bploc, **bplocp_tmp;
3611
3612 /* We're about to delete breakpoints from GDB's lists. If the
3613 INSERTED flag is true, GDB will try to lift the breakpoints by
3614 writing the breakpoints' "shadow contents" back into memory. The
3615 "shadow contents" are NOT valid after an exec, so GDB should not
3616 do that. Instead, the target is responsible from marking
3617 breakpoints out as soon as it detects an exec. We don't do that
3618 here instead, because there may be other attempts to delete
3619 breakpoints after detecting an exec and before reaching here. */
3620 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3621 if (bploc->pspace == current_program_space)
3622 gdb_assert (!bploc->inserted);
3623
3624 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3625 {
3626 if (b->pspace != current_program_space)
3627 continue;
3628
3629 /* Solib breakpoints must be explicitly reset after an exec(). */
3630 if (b->type == bp_shlib_event)
3631 {
3632 delete_breakpoint (b);
3633 continue;
3634 }
3635
3636 /* JIT breakpoints must be explicitly reset after an exec(). */
3637 if (b->type == bp_jit_event)
3638 {
3639 delete_breakpoint (b);
3640 continue;
3641 }
3642
3643 /* Thread event breakpoints must be set anew after an exec(),
3644 as must overlay event and longjmp master breakpoints. */
3645 if (b->type == bp_thread_event || b->type == bp_overlay_event
3646 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3647 || b->type == bp_exception_master)
3648 {
3649 delete_breakpoint (b);
3650 continue;
3651 }
3652
3653 /* Step-resume breakpoints are meaningless after an exec(). */
3654 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3655 {
3656 delete_breakpoint (b);
3657 continue;
3658 }
3659
3660 /* Longjmp and longjmp-resume breakpoints are also meaningless
3661 after an exec. */
3662 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3663 || b->type == bp_longjmp_call_dummy
3664 || b->type == bp_exception || b->type == bp_exception_resume)
3665 {
3666 delete_breakpoint (b);
3667 continue;
3668 }
3669
3670 if (b->type == bp_catchpoint)
3671 {
3672 /* For now, none of the bp_catchpoint breakpoints need to
3673 do anything at this point. In the future, if some of
3674 the catchpoints need to something, we will need to add
3675 a new method, and call this method from here. */
3676 continue;
3677 }
3678
3679 /* bp_finish is a special case. The only way we ought to be able
3680 to see one of these when an exec() has happened, is if the user
3681 caught a vfork, and then said "finish". Ordinarily a finish just
3682 carries them to the call-site of the current callee, by setting
3683 a temporary bp there and resuming. But in this case, the finish
3684 will carry them entirely through the vfork & exec.
3685
3686 We don't want to allow a bp_finish to remain inserted now. But
3687 we can't safely delete it, 'cause finish_command has a handle to
3688 the bp on a bpstat, and will later want to delete it. There's a
3689 chance (and I've seen it happen) that if we delete the bp_finish
3690 here, that its storage will get reused by the time finish_command
3691 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3692 We really must allow finish_command to delete a bp_finish.
3693
3694 In the absence of a general solution for the "how do we know
3695 it's safe to delete something others may have handles to?"
3696 problem, what we'll do here is just uninsert the bp_finish, and
3697 let finish_command delete it.
3698
3699 (We know the bp_finish is "doomed" in the sense that it's
3700 momentary, and will be deleted as soon as finish_command sees
3701 the inferior stopped. So it doesn't matter that the bp's
3702 address is probably bogus in the new a.out, unlike e.g., the
3703 solib breakpoints.) */
3704
3705 if (b->type == bp_finish)
3706 {
3707 continue;
3708 }
3709
3710 /* Without a symbolic address, we have little hope of the
3711 pre-exec() address meaning the same thing in the post-exec()
3712 a.out. */
3713 if (b->addr_string == NULL)
3714 {
3715 delete_breakpoint (b);
3716 continue;
3717 }
3718 }
3719 /* FIXME what about longjmp breakpoints? Re-create them here? */
3720 create_overlay_event_breakpoint ();
3721 create_longjmp_master_breakpoint ();
3722 create_std_terminate_master_breakpoint ();
3723 create_exception_master_breakpoint ();
3724}
3725
3726int
3727detach_breakpoints (ptid_t ptid)
3728{
3729 struct bp_location *bl, **blp_tmp;
3730 int val = 0;
3731 struct cleanup *old_chain = save_inferior_ptid ();
3732 struct inferior *inf = current_inferior ();
3733
3734 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3735 error (_("Cannot detach breakpoints of inferior_ptid"));
3736
3737 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3738 inferior_ptid = ptid;
3739 ALL_BP_LOCATIONS (bl, blp_tmp)
3740 {
3741 if (bl->pspace != inf->pspace)
3742 continue;
3743
3744 /* This function must physically remove breakpoints locations
3745 from the specified ptid, without modifying the breakpoint
3746 package's state. Locations of type bp_loc_other are only
3747 maintained at GDB side. So, there is no need to remove
3748 these bp_loc_other locations. Moreover, removing these
3749 would modify the breakpoint package's state. */
3750 if (bl->loc_type == bp_loc_other)
3751 continue;
3752
3753 if (bl->inserted)
3754 val |= remove_breakpoint_1 (bl, mark_inserted);
3755 }
3756
3757 /* Detach single-step breakpoints as well. */
3758 detach_single_step_breakpoints ();
3759
3760 do_cleanups (old_chain);
3761 return val;
3762}
3763
3764/* Remove the breakpoint location BL from the current address space.
3765 Note that this is used to detach breakpoints from a child fork.
3766 When we get here, the child isn't in the inferior list, and neither
3767 do we have objects to represent its address space --- we should
3768 *not* look at bl->pspace->aspace here. */
3769
3770static int
3771remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3772{
3773 int val;
3774
3775 /* BL is never in moribund_locations by our callers. */
3776 gdb_assert (bl->owner != NULL);
3777
3778 if (bl->owner->enable_state == bp_permanent)
3779 /* Permanent breakpoints cannot be inserted or removed. */
3780 return 0;
3781
3782 /* The type of none suggests that owner is actually deleted.
3783 This should not ever happen. */
3784 gdb_assert (bl->owner->type != bp_none);
3785
3786 if (bl->loc_type == bp_loc_software_breakpoint
3787 || bl->loc_type == bp_loc_hardware_breakpoint)
3788 {
3789 /* "Normal" instruction breakpoint: either the standard
3790 trap-instruction bp (bp_breakpoint), or a
3791 bp_hardware_breakpoint. */
3792
3793 /* First check to see if we have to handle an overlay. */
3794 if (overlay_debugging == ovly_off
3795 || bl->section == NULL
3796 || !(section_is_overlay (bl->section)))
3797 {
3798 /* No overlay handling: just remove the breakpoint. */
3799
3800 /* If we're trying to uninsert a memory breakpoint that we
3801 know is set in a dynamic object that is marked
3802 shlib_disabled, then either the dynamic object was
3803 removed with "remove-symbol-file" or with
3804 "nosharedlibrary". In the former case, we don't know
3805 whether another dynamic object might have loaded over the
3806 breakpoint's address -- the user might well let us know
3807 about it next with add-symbol-file (the whole point of
3808 add-symbol-file is letting the user manually maintain a
3809 list of dynamically loaded objects). If we have the
3810 breakpoint's shadow memory, that is, this is a software
3811 breakpoint managed by GDB, check whether the breakpoint
3812 is still inserted in memory, to avoid overwriting wrong
3813 code with stale saved shadow contents. Note that HW
3814 breakpoints don't have shadow memory, as they're
3815 implemented using a mechanism that is not dependent on
3816 being able to modify the target's memory, and as such
3817 they should always be removed. */
3818 if (bl->shlib_disabled
3819 && bl->target_info.shadow_len != 0
3820 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3821 val = 0;
3822 else
3823 val = bl->owner->ops->remove_location (bl);
3824 }
3825 else
3826 {
3827 /* This breakpoint is in an overlay section.
3828 Did we set a breakpoint at the LMA? */
3829 if (!overlay_events_enabled)
3830 {
3831 /* Yes -- overlay event support is not active, so we
3832 should have set a breakpoint at the LMA. Remove it.
3833 */
3834 /* Ignore any failures: if the LMA is in ROM, we will
3835 have already warned when we failed to insert it. */
3836 if (bl->loc_type == bp_loc_hardware_breakpoint)
3837 target_remove_hw_breakpoint (bl->gdbarch,
3838 &bl->overlay_target_info);
3839 else
3840 target_remove_breakpoint (bl->gdbarch,
3841 &bl->overlay_target_info);
3842 }
3843 /* Did we set a breakpoint at the VMA?
3844 If so, we will have marked the breakpoint 'inserted'. */
3845 if (bl->inserted)
3846 {
3847 /* Yes -- remove it. Previously we did not bother to
3848 remove the breakpoint if the section had been
3849 unmapped, but let's not rely on that being safe. We
3850 don't know what the overlay manager might do. */
3851
3852 /* However, we should remove *software* breakpoints only
3853 if the section is still mapped, or else we overwrite
3854 wrong code with the saved shadow contents. */
3855 if (bl->loc_type == bp_loc_hardware_breakpoint
3856 || section_is_mapped (bl->section))
3857 val = bl->owner->ops->remove_location (bl);
3858 else
3859 val = 0;
3860 }
3861 else
3862 {
3863 /* No -- not inserted, so no need to remove. No error. */
3864 val = 0;
3865 }
3866 }
3867
3868 /* In some cases, we might not be able to remove a breakpoint in
3869 a shared library that has already been removed, but we have
3870 not yet processed the shlib unload event. Similarly for an
3871 unloaded add-symbol-file object - the user might not yet have
3872 had the chance to remove-symbol-file it. shlib_disabled will
3873 be set if the library/object has already been removed, but
3874 the breakpoint hasn't been uninserted yet, e.g., after
3875 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3876 always-inserted mode. */
3877 if (val
3878 && (bl->loc_type == bp_loc_software_breakpoint
3879 && (bl->shlib_disabled
3880 || solib_name_from_address (bl->pspace, bl->address)
3881 || shared_objfile_contains_address_p (bl->pspace,
3882 bl->address))))
3883 val = 0;
3884
3885 if (val)
3886 return val;
3887 bl->inserted = (is == mark_inserted);
3888 }
3889 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3890 {
3891 gdb_assert (bl->owner->ops != NULL
3892 && bl->owner->ops->remove_location != NULL);
3893
3894 bl->inserted = (is == mark_inserted);
3895 bl->owner->ops->remove_location (bl);
3896
3897 /* Failure to remove any of the hardware watchpoints comes here. */
3898 if ((is == mark_uninserted) && (bl->inserted))
3899 warning (_("Could not remove hardware watchpoint %d."),
3900 bl->owner->number);
3901 }
3902 else if (bl->owner->type == bp_catchpoint
3903 && breakpoint_enabled (bl->owner)
3904 && !bl->duplicate)
3905 {
3906 gdb_assert (bl->owner->ops != NULL
3907 && bl->owner->ops->remove_location != NULL);
3908
3909 val = bl->owner->ops->remove_location (bl);
3910 if (val)
3911 return val;
3912
3913 bl->inserted = (is == mark_inserted);
3914 }
3915
3916 return 0;
3917}
3918
3919static int
3920remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3921{
3922 int ret;
3923 struct cleanup *old_chain;
3924
3925 /* BL is never in moribund_locations by our callers. */
3926 gdb_assert (bl->owner != NULL);
3927
3928 if (bl->owner->enable_state == bp_permanent)
3929 /* Permanent breakpoints cannot be inserted or removed. */
3930 return 0;
3931
3932 /* The type of none suggests that owner is actually deleted.
3933 This should not ever happen. */
3934 gdb_assert (bl->owner->type != bp_none);
3935
3936 old_chain = save_current_space_and_thread ();
3937
3938 switch_to_program_space_and_thread (bl->pspace);
3939
3940 ret = remove_breakpoint_1 (bl, is);
3941
3942 do_cleanups (old_chain);
3943 return ret;
3944}
3945
3946/* Clear the "inserted" flag in all breakpoints. */
3947
3948void
3949mark_breakpoints_out (void)
3950{
3951 struct bp_location *bl, **blp_tmp;
3952
3953 ALL_BP_LOCATIONS (bl, blp_tmp)
3954 if (bl->pspace == current_program_space)
3955 bl->inserted = 0;
3956}
3957
3958/* Clear the "inserted" flag in all breakpoints and delete any
3959 breakpoints which should go away between runs of the program.
3960
3961 Plus other such housekeeping that has to be done for breakpoints
3962 between runs.
3963
3964 Note: this function gets called at the end of a run (by
3965 generic_mourn_inferior) and when a run begins (by
3966 init_wait_for_inferior). */
3967
3968
3969
3970void
3971breakpoint_init_inferior (enum inf_context context)
3972{
3973 struct breakpoint *b, *b_tmp;
3974 struct bp_location *bl, **blp_tmp;
3975 int ix;
3976 struct program_space *pspace = current_program_space;
3977
3978 /* If breakpoint locations are shared across processes, then there's
3979 nothing to do. */
3980 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3981 return;
3982
3983 ALL_BP_LOCATIONS (bl, blp_tmp)
3984 {
3985 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3986 if (bl->pspace == pspace
3987 && bl->owner->enable_state != bp_permanent)
3988 bl->inserted = 0;
3989 }
3990
3991 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3992 {
3993 if (b->loc && b->loc->pspace != pspace)
3994 continue;
3995
3996 switch (b->type)
3997 {
3998 case bp_call_dummy:
3999 case bp_longjmp_call_dummy:
4000
4001 /* If the call dummy breakpoint is at the entry point it will
4002 cause problems when the inferior is rerun, so we better get
4003 rid of it. */
4004
4005 case bp_watchpoint_scope:
4006
4007 /* Also get rid of scope breakpoints. */
4008
4009 case bp_shlib_event:
4010
4011 /* Also remove solib event breakpoints. Their addresses may
4012 have changed since the last time we ran the program.
4013 Actually we may now be debugging against different target;
4014 and so the solib backend that installed this breakpoint may
4015 not be used in by the target. E.g.,
4016
4017 (gdb) file prog-linux
4018 (gdb) run # native linux target
4019 ...
4020 (gdb) kill
4021 (gdb) file prog-win.exe
4022 (gdb) tar rem :9999 # remote Windows gdbserver.
4023 */
4024
4025 case bp_step_resume:
4026
4027 /* Also remove step-resume breakpoints. */
4028
4029 delete_breakpoint (b);
4030 break;
4031
4032 case bp_watchpoint:
4033 case bp_hardware_watchpoint:
4034 case bp_read_watchpoint:
4035 case bp_access_watchpoint:
4036 {
4037 struct watchpoint *w = (struct watchpoint *) b;
4038
4039 /* Likewise for watchpoints on local expressions. */
4040 if (w->exp_valid_block != NULL)
4041 delete_breakpoint (b);
4042 else if (context == inf_starting)
4043 {
4044 /* Reset val field to force reread of starting value in
4045 insert_breakpoints. */
4046 if (w->val)
4047 value_free (w->val);
4048 w->val = NULL;
4049 w->val_valid = 0;
4050 }
4051 }
4052 break;
4053 default:
4054 break;
4055 }
4056 }
4057
4058 /* Get rid of the moribund locations. */
4059 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4060 decref_bp_location (&bl);
4061 VEC_free (bp_location_p, moribund_locations);
4062}
4063
4064/* These functions concern about actual breakpoints inserted in the
4065 target --- to e.g. check if we need to do decr_pc adjustment or if
4066 we need to hop over the bkpt --- so we check for address space
4067 match, not program space. */
4068
4069/* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4070 exists at PC. It returns ordinary_breakpoint_here if it's an
4071 ordinary breakpoint, or permanent_breakpoint_here if it's a
4072 permanent breakpoint.
4073 - When continuing from a location with an ordinary breakpoint, we
4074 actually single step once before calling insert_breakpoints.
4075 - When continuing from a location with a permanent breakpoint, we
4076 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4077 the target, to advance the PC past the breakpoint. */
4078
4079enum breakpoint_here
4080breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4081{
4082 struct bp_location *bl, **blp_tmp;
4083 int any_breakpoint_here = 0;
4084
4085 ALL_BP_LOCATIONS (bl, blp_tmp)
4086 {
4087 if (bl->loc_type != bp_loc_software_breakpoint
4088 && bl->loc_type != bp_loc_hardware_breakpoint)
4089 continue;
4090
4091 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4092 if ((breakpoint_enabled (bl->owner)
4093 || bl->owner->enable_state == bp_permanent)
4094 && breakpoint_location_address_match (bl, aspace, pc))
4095 {
4096 if (overlay_debugging
4097 && section_is_overlay (bl->section)
4098 && !section_is_mapped (bl->section))
4099 continue; /* unmapped overlay -- can't be a match */
4100 else if (bl->owner->enable_state == bp_permanent)
4101 return permanent_breakpoint_here;
4102 else
4103 any_breakpoint_here = 1;
4104 }
4105 }
4106
4107 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4108}
4109
4110/* Return true if there's a moribund breakpoint at PC. */
4111
4112int
4113moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4114{
4115 struct bp_location *loc;
4116 int ix;
4117
4118 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4119 if (breakpoint_location_address_match (loc, aspace, pc))
4120 return 1;
4121
4122 return 0;
4123}
4124
4125/* Returns non-zero if there's a breakpoint inserted at PC, which is
4126 inserted using regular breakpoint_chain / bp_location array
4127 mechanism. This does not check for single-step breakpoints, which
4128 are inserted and removed using direct target manipulation. */
4129
4130int
4131regular_breakpoint_inserted_here_p (struct address_space *aspace,
4132 CORE_ADDR pc)
4133{
4134 struct bp_location *bl, **blp_tmp;
4135
4136 ALL_BP_LOCATIONS (bl, blp_tmp)
4137 {
4138 if (bl->loc_type != bp_loc_software_breakpoint
4139 && bl->loc_type != bp_loc_hardware_breakpoint)
4140 continue;
4141
4142 if (bl->inserted
4143 && breakpoint_location_address_match (bl, aspace, pc))
4144 {
4145 if (overlay_debugging
4146 && section_is_overlay (bl->section)
4147 && !section_is_mapped (bl->section))
4148 continue; /* unmapped overlay -- can't be a match */
4149 else
4150 return 1;
4151 }
4152 }
4153 return 0;
4154}
4155
4156/* Returns non-zero iff there's either regular breakpoint
4157 or a single step breakpoint inserted at PC. */
4158
4159int
4160breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4161{
4162 if (regular_breakpoint_inserted_here_p (aspace, pc))
4163 return 1;
4164
4165 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4166 return 1;
4167
4168 return 0;
4169}
4170
4171/* Ignoring deprecated raw breakpoints, return non-zero iff there is a
4172 software breakpoint inserted at PC. */
4173
4174static struct bp_location *
4175find_non_raw_software_breakpoint_inserted_here (struct address_space *aspace,
4176 CORE_ADDR pc)
4177{
4178 struct bp_location *bl, **blp_tmp;
4179
4180 ALL_BP_LOCATIONS (bl, blp_tmp)
4181 {
4182 if (bl->loc_type != bp_loc_software_breakpoint)
4183 continue;
4184
4185 if (bl->inserted
4186 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4187 aspace, pc))
4188 {
4189 if (overlay_debugging
4190 && section_is_overlay (bl->section)
4191 && !section_is_mapped (bl->section))
4192 continue; /* unmapped overlay -- can't be a match */
4193 else
4194 return bl;
4195 }
4196 }
4197
4198 return NULL;
4199}
4200
4201/* This function returns non-zero iff there is a software breakpoint
4202 inserted at PC. */
4203
4204int
4205software_breakpoint_inserted_here_p (struct address_space *aspace,
4206 CORE_ADDR pc)
4207{
4208 if (find_non_raw_software_breakpoint_inserted_here (aspace, pc) != NULL)
4209 return 1;
4210
4211 /* Also check for software single-step breakpoints. */
4212 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4213 return 1;
4214
4215 return 0;
4216}
4217
4218int
4219hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4220 CORE_ADDR addr, ULONGEST len)
4221{
4222 struct breakpoint *bpt;
4223
4224 ALL_BREAKPOINTS (bpt)
4225 {
4226 struct bp_location *loc;
4227
4228 if (bpt->type != bp_hardware_watchpoint
4229 && bpt->type != bp_access_watchpoint)
4230 continue;
4231
4232 if (!breakpoint_enabled (bpt))
4233 continue;
4234
4235 for (loc = bpt->loc; loc; loc = loc->next)
4236 if (loc->pspace->aspace == aspace && loc->inserted)
4237 {
4238 CORE_ADDR l, h;
4239
4240 /* Check for intersection. */
4241 l = max (loc->address, addr);
4242 h = min (loc->address + loc->length, addr + len);
4243 if (l < h)
4244 return 1;
4245 }
4246 }
4247 return 0;
4248}
4249
4250/* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4251 PC is valid for process/thread PTID. */
4252
4253int
4254breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4255 ptid_t ptid)
4256{
4257 struct bp_location *bl, **blp_tmp;
4258 /* The thread and task IDs associated to PTID, computed lazily. */
4259 int thread = -1;
4260 int task = 0;
4261
4262 ALL_BP_LOCATIONS (bl, blp_tmp)
4263 {
4264 if (bl->loc_type != bp_loc_software_breakpoint
4265 && bl->loc_type != bp_loc_hardware_breakpoint)
4266 continue;
4267
4268 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4269 if (!breakpoint_enabled (bl->owner)
4270 && bl->owner->enable_state != bp_permanent)
4271 continue;
4272
4273 if (!breakpoint_location_address_match (bl, aspace, pc))
4274 continue;
4275
4276 if (bl->owner->thread != -1)
4277 {
4278 /* This is a thread-specific breakpoint. Check that ptid
4279 matches that thread. If thread hasn't been computed yet,
4280 it is now time to do so. */
4281 if (thread == -1)
4282 thread = pid_to_thread_id (ptid);
4283 if (bl->owner->thread != thread)
4284 continue;
4285 }
4286
4287 if (bl->owner->task != 0)
4288 {
4289 /* This is a task-specific breakpoint. Check that ptid
4290 matches that task. If task hasn't been computed yet,
4291 it is now time to do so. */
4292 if (task == 0)
4293 task = ada_get_task_number (ptid);
4294 if (bl->owner->task != task)
4295 continue;
4296 }
4297
4298 if (overlay_debugging
4299 && section_is_overlay (bl->section)
4300 && !section_is_mapped (bl->section))
4301 continue; /* unmapped overlay -- can't be a match */
4302
4303 return 1;
4304 }
4305
4306 return 0;
4307}
4308\f
4309
4310/* bpstat stuff. External routines' interfaces are documented
4311 in breakpoint.h. */
4312
4313int
4314is_catchpoint (struct breakpoint *ep)
4315{
4316 return (ep->type == bp_catchpoint);
4317}
4318
4319/* Frees any storage that is part of a bpstat. Does not walk the
4320 'next' chain. */
4321
4322static void
4323bpstat_free (bpstat bs)
4324{
4325 if (bs->old_val != NULL)
4326 value_free (bs->old_val);
4327 decref_counted_command_line (&bs->commands);
4328 decref_bp_location (&bs->bp_location_at);
4329 xfree (bs);
4330}
4331
4332/* Clear a bpstat so that it says we are not at any breakpoint.
4333 Also free any storage that is part of a bpstat. */
4334
4335void
4336bpstat_clear (bpstat *bsp)
4337{
4338 bpstat p;
4339 bpstat q;
4340
4341 if (bsp == 0)
4342 return;
4343 p = *bsp;
4344 while (p != NULL)
4345 {
4346 q = p->next;
4347 bpstat_free (p);
4348 p = q;
4349 }
4350 *bsp = NULL;
4351}
4352
4353/* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4354 is part of the bpstat is copied as well. */
4355
4356bpstat
4357bpstat_copy (bpstat bs)
4358{
4359 bpstat p = NULL;
4360 bpstat tmp;
4361 bpstat retval = NULL;
4362
4363 if (bs == NULL)
4364 return bs;
4365
4366 for (; bs != NULL; bs = bs->next)
4367 {
4368 tmp = (bpstat) xmalloc (sizeof (*tmp));
4369 memcpy (tmp, bs, sizeof (*tmp));
4370 incref_counted_command_line (tmp->commands);
4371 incref_bp_location (tmp->bp_location_at);
4372 if (bs->old_val != NULL)
4373 {
4374 tmp->old_val = value_copy (bs->old_val);
4375 release_value (tmp->old_val);
4376 }
4377
4378 if (p == NULL)
4379 /* This is the first thing in the chain. */
4380 retval = tmp;
4381 else
4382 p->next = tmp;
4383 p = tmp;
4384 }
4385 p->next = NULL;
4386 return retval;
4387}
4388
4389/* Find the bpstat associated with this breakpoint. */
4390
4391bpstat
4392bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4393{
4394 if (bsp == NULL)
4395 return NULL;
4396
4397 for (; bsp != NULL; bsp = bsp->next)
4398 {
4399 if (bsp->breakpoint_at == breakpoint)
4400 return bsp;
4401 }
4402 return NULL;
4403}
4404
4405/* See breakpoint.h. */
4406
4407int
4408bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4409{
4410 for (; bsp != NULL; bsp = bsp->next)
4411 {
4412 if (bsp->breakpoint_at == NULL)
4413 {
4414 /* A moribund location can never explain a signal other than
4415 GDB_SIGNAL_TRAP. */
4416 if (sig == GDB_SIGNAL_TRAP)
4417 return 1;
4418 }
4419 else
4420 {
4421 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4422 sig))
4423 return 1;
4424 }
4425 }
4426
4427 return 0;
4428}
4429
4430/* Put in *NUM the breakpoint number of the first breakpoint we are
4431 stopped at. *BSP upon return is a bpstat which points to the
4432 remaining breakpoints stopped at (but which is not guaranteed to be
4433 good for anything but further calls to bpstat_num).
4434
4435 Return 0 if passed a bpstat which does not indicate any breakpoints.
4436 Return -1 if stopped at a breakpoint that has been deleted since
4437 we set it.
4438 Return 1 otherwise. */
4439
4440int
4441bpstat_num (bpstat *bsp, int *num)
4442{
4443 struct breakpoint *b;
4444
4445 if ((*bsp) == NULL)
4446 return 0; /* No more breakpoint values */
4447
4448 /* We assume we'll never have several bpstats that correspond to a
4449 single breakpoint -- otherwise, this function might return the
4450 same number more than once and this will look ugly. */
4451 b = (*bsp)->breakpoint_at;
4452 *bsp = (*bsp)->next;
4453 if (b == NULL)
4454 return -1; /* breakpoint that's been deleted since */
4455
4456 *num = b->number; /* We have its number */
4457 return 1;
4458}
4459
4460/* See breakpoint.h. */
4461
4462void
4463bpstat_clear_actions (void)
4464{
4465 struct thread_info *tp;
4466 bpstat bs;
4467
4468 if (ptid_equal (inferior_ptid, null_ptid))
4469 return;
4470
4471 tp = find_thread_ptid (inferior_ptid);
4472 if (tp == NULL)
4473 return;
4474
4475 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4476 {
4477 decref_counted_command_line (&bs->commands);
4478
4479 if (bs->old_val != NULL)
4480 {
4481 value_free (bs->old_val);
4482 bs->old_val = NULL;
4483 }
4484 }
4485}
4486
4487/* Called when a command is about to proceed the inferior. */
4488
4489static void
4490breakpoint_about_to_proceed (void)
4491{
4492 if (!ptid_equal (inferior_ptid, null_ptid))
4493 {
4494 struct thread_info *tp = inferior_thread ();
4495
4496 /* Allow inferior function calls in breakpoint commands to not
4497 interrupt the command list. When the call finishes
4498 successfully, the inferior will be standing at the same
4499 breakpoint as if nothing happened. */
4500 if (tp->control.in_infcall)
4501 return;
4502 }
4503
4504 breakpoint_proceeded = 1;
4505}
4506
4507/* Stub for cleaning up our state if we error-out of a breakpoint
4508 command. */
4509static void
4510cleanup_executing_breakpoints (void *ignore)
4511{
4512 executing_breakpoint_commands = 0;
4513}
4514
4515/* Return non-zero iff CMD as the first line of a command sequence is `silent'
4516 or its equivalent. */
4517
4518static int
4519command_line_is_silent (struct command_line *cmd)
4520{
4521 return cmd && (strcmp ("silent", cmd->line) == 0
4522 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4523}
4524
4525/* Execute all the commands associated with all the breakpoints at
4526 this location. Any of these commands could cause the process to
4527 proceed beyond this point, etc. We look out for such changes by
4528 checking the global "breakpoint_proceeded" after each command.
4529
4530 Returns true if a breakpoint command resumed the inferior. In that
4531 case, it is the caller's responsibility to recall it again with the
4532 bpstat of the current thread. */
4533
4534static int
4535bpstat_do_actions_1 (bpstat *bsp)
4536{
4537 bpstat bs;
4538 struct cleanup *old_chain;
4539 int again = 0;
4540
4541 /* Avoid endless recursion if a `source' command is contained
4542 in bs->commands. */
4543 if (executing_breakpoint_commands)
4544 return 0;
4545
4546 executing_breakpoint_commands = 1;
4547 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4548
4549 prevent_dont_repeat ();
4550
4551 /* This pointer will iterate over the list of bpstat's. */
4552 bs = *bsp;
4553
4554 breakpoint_proceeded = 0;
4555 for (; bs != NULL; bs = bs->next)
4556 {
4557 struct counted_command_line *ccmd;
4558 struct command_line *cmd;
4559 struct cleanup *this_cmd_tree_chain;
4560
4561 /* Take ownership of the BSP's command tree, if it has one.
4562
4563 The command tree could legitimately contain commands like
4564 'step' and 'next', which call clear_proceed_status, which
4565 frees stop_bpstat's command tree. To make sure this doesn't
4566 free the tree we're executing out from under us, we need to
4567 take ownership of the tree ourselves. Since a given bpstat's
4568 commands are only executed once, we don't need to copy it; we
4569 can clear the pointer in the bpstat, and make sure we free
4570 the tree when we're done. */
4571 ccmd = bs->commands;
4572 bs->commands = NULL;
4573 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4574 cmd = ccmd ? ccmd->commands : NULL;
4575 if (command_line_is_silent (cmd))
4576 {
4577 /* The action has been already done by bpstat_stop_status. */
4578 cmd = cmd->next;
4579 }
4580
4581 while (cmd != NULL)
4582 {
4583 execute_control_command (cmd);
4584
4585 if (breakpoint_proceeded)
4586 break;
4587 else
4588 cmd = cmd->next;
4589 }
4590
4591 /* We can free this command tree now. */
4592 do_cleanups (this_cmd_tree_chain);
4593
4594 if (breakpoint_proceeded)
4595 {
4596 if (target_can_async_p ())
4597 /* If we are in async mode, then the target might be still
4598 running, not stopped at any breakpoint, so nothing for
4599 us to do here -- just return to the event loop. */
4600 ;
4601 else
4602 /* In sync mode, when execute_control_command returns
4603 we're already standing on the next breakpoint.
4604 Breakpoint commands for that stop were not run, since
4605 execute_command does not run breakpoint commands --
4606 only command_line_handler does, but that one is not
4607 involved in execution of breakpoint commands. So, we
4608 can now execute breakpoint commands. It should be
4609 noted that making execute_command do bpstat actions is
4610 not an option -- in this case we'll have recursive
4611 invocation of bpstat for each breakpoint with a
4612 command, and can easily blow up GDB stack. Instead, we
4613 return true, which will trigger the caller to recall us
4614 with the new stop_bpstat. */
4615 again = 1;
4616 break;
4617 }
4618 }
4619 do_cleanups (old_chain);
4620 return again;
4621}
4622
4623void
4624bpstat_do_actions (void)
4625{
4626 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4627
4628 /* Do any commands attached to breakpoint we are stopped at. */
4629 while (!ptid_equal (inferior_ptid, null_ptid)
4630 && target_has_execution
4631 && !is_exited (inferior_ptid)
4632 && !is_executing (inferior_ptid))
4633 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4634 and only return when it is stopped at the next breakpoint, we
4635 keep doing breakpoint actions until it returns false to
4636 indicate the inferior was not resumed. */
4637 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4638 break;
4639
4640 discard_cleanups (cleanup_if_error);
4641}
4642
4643/* Print out the (old or new) value associated with a watchpoint. */
4644
4645static void
4646watchpoint_value_print (struct value *val, struct ui_file *stream)
4647{
4648 if (val == NULL)
4649 fprintf_unfiltered (stream, _("<unreadable>"));
4650 else
4651 {
4652 struct value_print_options opts;
4653 get_user_print_options (&opts);
4654 value_print (val, stream, &opts);
4655 }
4656}
4657
4658/* Generic routine for printing messages indicating why we
4659 stopped. The behavior of this function depends on the value
4660 'print_it' in the bpstat structure. Under some circumstances we
4661 may decide not to print anything here and delegate the task to
4662 normal_stop(). */
4663
4664static enum print_stop_action
4665print_bp_stop_message (bpstat bs)
4666{
4667 switch (bs->print_it)
4668 {
4669 case print_it_noop:
4670 /* Nothing should be printed for this bpstat entry. */
4671 return PRINT_UNKNOWN;
4672 break;
4673
4674 case print_it_done:
4675 /* We still want to print the frame, but we already printed the
4676 relevant messages. */
4677 return PRINT_SRC_AND_LOC;
4678 break;
4679
4680 case print_it_normal:
4681 {
4682 struct breakpoint *b = bs->breakpoint_at;
4683
4684 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4685 which has since been deleted. */
4686 if (b == NULL)
4687 return PRINT_UNKNOWN;
4688
4689 /* Normal case. Call the breakpoint's print_it method. */
4690 return b->ops->print_it (bs);
4691 }
4692 break;
4693
4694 default:
4695 internal_error (__FILE__, __LINE__,
4696 _("print_bp_stop_message: unrecognized enum value"));
4697 break;
4698 }
4699}
4700
4701/* A helper function that prints a shared library stopped event. */
4702
4703static void
4704print_solib_event (int is_catchpoint)
4705{
4706 int any_deleted
4707 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4708 int any_added
4709 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4710
4711 if (!is_catchpoint)
4712 {
4713 if (any_added || any_deleted)
4714 ui_out_text (current_uiout,
4715 _("Stopped due to shared library event:\n"));
4716 else
4717 ui_out_text (current_uiout,
4718 _("Stopped due to shared library event (no "
4719 "libraries added or removed)\n"));
4720 }
4721
4722 if (ui_out_is_mi_like_p (current_uiout))
4723 ui_out_field_string (current_uiout, "reason",
4724 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4725
4726 if (any_deleted)
4727 {
4728 struct cleanup *cleanup;
4729 char *name;
4730 int ix;
4731
4732 ui_out_text (current_uiout, _(" Inferior unloaded "));
4733 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4734 "removed");
4735 for (ix = 0;
4736 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4737 ix, name);
4738 ++ix)
4739 {
4740 if (ix > 0)
4741 ui_out_text (current_uiout, " ");
4742 ui_out_field_string (current_uiout, "library", name);
4743 ui_out_text (current_uiout, "\n");
4744 }
4745
4746 do_cleanups (cleanup);
4747 }
4748
4749 if (any_added)
4750 {
4751 struct so_list *iter;
4752 int ix;
4753 struct cleanup *cleanup;
4754
4755 ui_out_text (current_uiout, _(" Inferior loaded "));
4756 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4757 "added");
4758 for (ix = 0;
4759 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4760 ix, iter);
4761 ++ix)
4762 {
4763 if (ix > 0)
4764 ui_out_text (current_uiout, " ");
4765 ui_out_field_string (current_uiout, "library", iter->so_name);
4766 ui_out_text (current_uiout, "\n");
4767 }
4768
4769 do_cleanups (cleanup);
4770 }
4771}
4772
4773/* Print a message indicating what happened. This is called from
4774 normal_stop(). The input to this routine is the head of the bpstat
4775 list - a list of the eventpoints that caused this stop. KIND is
4776 the target_waitkind for the stopping event. This
4777 routine calls the generic print routine for printing a message
4778 about reasons for stopping. This will print (for example) the
4779 "Breakpoint n," part of the output. The return value of this
4780 routine is one of:
4781
4782 PRINT_UNKNOWN: Means we printed nothing.
4783 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4784 code to print the location. An example is
4785 "Breakpoint 1, " which should be followed by
4786 the location.
4787 PRINT_SRC_ONLY: Means we printed something, but there is no need
4788 to also print the location part of the message.
4789 An example is the catch/throw messages, which
4790 don't require a location appended to the end.
4791 PRINT_NOTHING: We have done some printing and we don't need any
4792 further info to be printed. */
4793
4794enum print_stop_action
4795bpstat_print (bpstat bs, int kind)
4796{
4797 int val;
4798
4799 /* Maybe another breakpoint in the chain caused us to stop.
4800 (Currently all watchpoints go on the bpstat whether hit or not.
4801 That probably could (should) be changed, provided care is taken
4802 with respect to bpstat_explains_signal). */
4803 for (; bs; bs = bs->next)
4804 {
4805 val = print_bp_stop_message (bs);
4806 if (val == PRINT_SRC_ONLY
4807 || val == PRINT_SRC_AND_LOC
4808 || val == PRINT_NOTHING)
4809 return val;
4810 }
4811
4812 /* If we had hit a shared library event breakpoint,
4813 print_bp_stop_message would print out this message. If we hit an
4814 OS-level shared library event, do the same thing. */
4815 if (kind == TARGET_WAITKIND_LOADED)
4816 {
4817 print_solib_event (0);
4818 return PRINT_NOTHING;
4819 }
4820
4821 /* We reached the end of the chain, or we got a null BS to start
4822 with and nothing was printed. */
4823 return PRINT_UNKNOWN;
4824}
4825
4826/* Evaluate the expression EXP and return 1 if value is zero.
4827 This returns the inverse of the condition because it is called
4828 from catch_errors which returns 0 if an exception happened, and if an
4829 exception happens we want execution to stop.
4830 The argument is a "struct expression *" that has been cast to a
4831 "void *" to make it pass through catch_errors. */
4832
4833static int
4834breakpoint_cond_eval (void *exp)
4835{
4836 struct value *mark = value_mark ();
4837 int i = !value_true (evaluate_expression ((struct expression *) exp));
4838
4839 value_free_to_mark (mark);
4840 return i;
4841}
4842
4843/* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4844
4845static bpstat
4846bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4847{
4848 bpstat bs;
4849
4850 bs = (bpstat) xmalloc (sizeof (*bs));
4851 bs->next = NULL;
4852 **bs_link_pointer = bs;
4853 *bs_link_pointer = &bs->next;
4854 bs->breakpoint_at = bl->owner;
4855 bs->bp_location_at = bl;
4856 incref_bp_location (bl);
4857 /* If the condition is false, etc., don't do the commands. */
4858 bs->commands = NULL;
4859 bs->old_val = NULL;
4860 bs->print_it = print_it_normal;
4861 return bs;
4862}
4863\f
4864/* The target has stopped with waitstatus WS. Check if any hardware
4865 watchpoints have triggered, according to the target. */
4866
4867int
4868watchpoints_triggered (struct target_waitstatus *ws)
4869{
4870 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4871 CORE_ADDR addr;
4872 struct breakpoint *b;
4873
4874 if (!stopped_by_watchpoint)
4875 {
4876 /* We were not stopped by a watchpoint. Mark all watchpoints
4877 as not triggered. */
4878 ALL_BREAKPOINTS (b)
4879 if (is_hardware_watchpoint (b))
4880 {
4881 struct watchpoint *w = (struct watchpoint *) b;
4882
4883 w->watchpoint_triggered = watch_triggered_no;
4884 }
4885
4886 return 0;
4887 }
4888
4889 if (!target_stopped_data_address (&current_target, &addr))
4890 {
4891 /* We were stopped by a watchpoint, but we don't know where.
4892 Mark all watchpoints as unknown. */
4893 ALL_BREAKPOINTS (b)
4894 if (is_hardware_watchpoint (b))
4895 {
4896 struct watchpoint *w = (struct watchpoint *) b;
4897
4898 w->watchpoint_triggered = watch_triggered_unknown;
4899 }
4900
4901 return 1;
4902 }
4903
4904 /* The target could report the data address. Mark watchpoints
4905 affected by this data address as triggered, and all others as not
4906 triggered. */
4907
4908 ALL_BREAKPOINTS (b)
4909 if (is_hardware_watchpoint (b))
4910 {
4911 struct watchpoint *w = (struct watchpoint *) b;
4912 struct bp_location *loc;
4913
4914 w->watchpoint_triggered = watch_triggered_no;
4915 for (loc = b->loc; loc; loc = loc->next)
4916 {
4917 if (is_masked_watchpoint (b))
4918 {
4919 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4920 CORE_ADDR start = loc->address & w->hw_wp_mask;
4921
4922 if (newaddr == start)
4923 {
4924 w->watchpoint_triggered = watch_triggered_yes;
4925 break;
4926 }
4927 }
4928 /* Exact match not required. Within range is sufficient. */
4929 else if (target_watchpoint_addr_within_range (&current_target,
4930 addr, loc->address,
4931 loc->length))
4932 {
4933 w->watchpoint_triggered = watch_triggered_yes;
4934 break;
4935 }
4936 }
4937 }
4938
4939 return 1;
4940}
4941
4942/* Possible return values for watchpoint_check (this can't be an enum
4943 because of check_errors). */
4944/* The watchpoint has been deleted. */
4945#define WP_DELETED 1
4946/* The value has changed. */
4947#define WP_VALUE_CHANGED 2
4948/* The value has not changed. */
4949#define WP_VALUE_NOT_CHANGED 3
4950/* Ignore this watchpoint, no matter if the value changed or not. */
4951#define WP_IGNORE 4
4952
4953#define BP_TEMPFLAG 1
4954#define BP_HARDWAREFLAG 2
4955
4956/* Evaluate watchpoint condition expression and check if its value
4957 changed.
4958
4959 P should be a pointer to struct bpstat, but is defined as a void *
4960 in order for this function to be usable with catch_errors. */
4961
4962static int
4963watchpoint_check (void *p)
4964{
4965 bpstat bs = (bpstat) p;
4966 struct watchpoint *b;
4967 struct frame_info *fr;
4968 int within_current_scope;
4969
4970 /* BS is built from an existing struct breakpoint. */
4971 gdb_assert (bs->breakpoint_at != NULL);
4972 b = (struct watchpoint *) bs->breakpoint_at;
4973
4974 /* If this is a local watchpoint, we only want to check if the
4975 watchpoint frame is in scope if the current thread is the thread
4976 that was used to create the watchpoint. */
4977 if (!watchpoint_in_thread_scope (b))
4978 return WP_IGNORE;
4979
4980 if (b->exp_valid_block == NULL)
4981 within_current_scope = 1;
4982 else
4983 {
4984 struct frame_info *frame = get_current_frame ();
4985 struct gdbarch *frame_arch = get_frame_arch (frame);
4986 CORE_ADDR frame_pc = get_frame_pc (frame);
4987
4988 /* in_function_epilogue_p() returns a non-zero value if we're
4989 still in the function but the stack frame has already been
4990 invalidated. Since we can't rely on the values of local
4991 variables after the stack has been destroyed, we are treating
4992 the watchpoint in that state as `not changed' without further
4993 checking. Don't mark watchpoints as changed if the current
4994 frame is in an epilogue - even if they are in some other
4995 frame, our view of the stack is likely to be wrong and
4996 frame_find_by_id could error out. */
4997 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4998 return WP_IGNORE;
4999
5000 fr = frame_find_by_id (b->watchpoint_frame);
5001 within_current_scope = (fr != NULL);
5002
5003 /* If we've gotten confused in the unwinder, we might have
5004 returned a frame that can't describe this variable. */
5005 if (within_current_scope)
5006 {
5007 struct symbol *function;
5008
5009 function = get_frame_function (fr);
5010 if (function == NULL
5011 || !contained_in (b->exp_valid_block,
5012 SYMBOL_BLOCK_VALUE (function)))
5013 within_current_scope = 0;
5014 }
5015
5016 if (within_current_scope)
5017 /* If we end up stopping, the current frame will get selected
5018 in normal_stop. So this call to select_frame won't affect
5019 the user. */
5020 select_frame (fr);
5021 }
5022
5023 if (within_current_scope)
5024 {
5025 /* We use value_{,free_to_}mark because it could be a *long*
5026 time before we return to the command level and call
5027 free_all_values. We can't call free_all_values because we
5028 might be in the middle of evaluating a function call. */
5029
5030 int pc = 0;
5031 struct value *mark;
5032 struct value *new_val;
5033
5034 if (is_masked_watchpoint (&b->base))
5035 /* Since we don't know the exact trigger address (from
5036 stopped_data_address), just tell the user we've triggered
5037 a mask watchpoint. */
5038 return WP_VALUE_CHANGED;
5039
5040 mark = value_mark ();
5041 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5042
5043 /* We use value_equal_contents instead of value_equal because
5044 the latter coerces an array to a pointer, thus comparing just
5045 the address of the array instead of its contents. This is
5046 not what we want. */
5047 if ((b->val != NULL) != (new_val != NULL)
5048 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5049 {
5050 if (new_val != NULL)
5051 {
5052 release_value (new_val);
5053 value_free_to_mark (mark);
5054 }
5055 bs->old_val = b->val;
5056 b->val = new_val;
5057 b->val_valid = 1;
5058 return WP_VALUE_CHANGED;
5059 }
5060 else
5061 {
5062 /* Nothing changed. */
5063 value_free_to_mark (mark);
5064 return WP_VALUE_NOT_CHANGED;
5065 }
5066 }
5067 else
5068 {
5069 struct ui_out *uiout = current_uiout;
5070
5071 /* This seems like the only logical thing to do because
5072 if we temporarily ignored the watchpoint, then when
5073 we reenter the block in which it is valid it contains
5074 garbage (in the case of a function, it may have two
5075 garbage values, one before and one after the prologue).
5076 So we can't even detect the first assignment to it and
5077 watch after that (since the garbage may or may not equal
5078 the first value assigned). */
5079 /* We print all the stop information in
5080 breakpoint_ops->print_it, but in this case, by the time we
5081 call breakpoint_ops->print_it this bp will be deleted
5082 already. So we have no choice but print the information
5083 here. */
5084 if (ui_out_is_mi_like_p (uiout))
5085 ui_out_field_string
5086 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5087 ui_out_text (uiout, "\nWatchpoint ");
5088 ui_out_field_int (uiout, "wpnum", b->base.number);
5089 ui_out_text (uiout,
5090 " deleted because the program has left the block in\n\
5091which its expression is valid.\n");
5092
5093 /* Make sure the watchpoint's commands aren't executed. */
5094 decref_counted_command_line (&b->base.commands);
5095 watchpoint_del_at_next_stop (b);
5096
5097 return WP_DELETED;
5098 }
5099}
5100
5101/* Return true if it looks like target has stopped due to hitting
5102 breakpoint location BL. This function does not check if we should
5103 stop, only if BL explains the stop. */
5104
5105static int
5106bpstat_check_location (const struct bp_location *bl,
5107 struct address_space *aspace, CORE_ADDR bp_addr,
5108 const struct target_waitstatus *ws)
5109{
5110 struct breakpoint *b = bl->owner;
5111
5112 /* BL is from an existing breakpoint. */
5113 gdb_assert (b != NULL);
5114
5115 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5116}
5117
5118/* Determine if the watched values have actually changed, and we
5119 should stop. If not, set BS->stop to 0. */
5120
5121static void
5122bpstat_check_watchpoint (bpstat bs)
5123{
5124 const struct bp_location *bl;
5125 struct watchpoint *b;
5126
5127 /* BS is built for existing struct breakpoint. */
5128 bl = bs->bp_location_at;
5129 gdb_assert (bl != NULL);
5130 b = (struct watchpoint *) bs->breakpoint_at;
5131 gdb_assert (b != NULL);
5132
5133 {
5134 int must_check_value = 0;
5135
5136 if (b->base.type == bp_watchpoint)
5137 /* For a software watchpoint, we must always check the
5138 watched value. */
5139 must_check_value = 1;
5140 else if (b->watchpoint_triggered == watch_triggered_yes)
5141 /* We have a hardware watchpoint (read, write, or access)
5142 and the target earlier reported an address watched by
5143 this watchpoint. */
5144 must_check_value = 1;
5145 else if (b->watchpoint_triggered == watch_triggered_unknown
5146 && b->base.type == bp_hardware_watchpoint)
5147 /* We were stopped by a hardware watchpoint, but the target could
5148 not report the data address. We must check the watchpoint's
5149 value. Access and read watchpoints are out of luck; without
5150 a data address, we can't figure it out. */
5151 must_check_value = 1;
5152
5153 if (must_check_value)
5154 {
5155 char *message
5156 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5157 b->base.number);
5158 struct cleanup *cleanups = make_cleanup (xfree, message);
5159 int e = catch_errors (watchpoint_check, bs, message,
5160 RETURN_MASK_ALL);
5161 do_cleanups (cleanups);
5162 switch (e)
5163 {
5164 case WP_DELETED:
5165 /* We've already printed what needs to be printed. */
5166 bs->print_it = print_it_done;
5167 /* Stop. */
5168 break;
5169 case WP_IGNORE:
5170 bs->print_it = print_it_noop;
5171 bs->stop = 0;
5172 break;
5173 case WP_VALUE_CHANGED:
5174 if (b->base.type == bp_read_watchpoint)
5175 {
5176 /* There are two cases to consider here:
5177
5178 1. We're watching the triggered memory for reads.
5179 In that case, trust the target, and always report
5180 the watchpoint hit to the user. Even though
5181 reads don't cause value changes, the value may
5182 have changed since the last time it was read, and
5183 since we're not trapping writes, we will not see
5184 those, and as such we should ignore our notion of
5185 old value.
5186
5187 2. We're watching the triggered memory for both
5188 reads and writes. There are two ways this may
5189 happen:
5190
5191 2.1. This is a target that can't break on data
5192 reads only, but can break on accesses (reads or
5193 writes), such as e.g., x86. We detect this case
5194 at the time we try to insert read watchpoints.
5195
5196 2.2. Otherwise, the target supports read
5197 watchpoints, but, the user set an access or write
5198 watchpoint watching the same memory as this read
5199 watchpoint.
5200
5201 If we're watching memory writes as well as reads,
5202 ignore watchpoint hits when we find that the
5203 value hasn't changed, as reads don't cause
5204 changes. This still gives false positives when
5205 the program writes the same value to memory as
5206 what there was already in memory (we will confuse
5207 it for a read), but it's much better than
5208 nothing. */
5209
5210 int other_write_watchpoint = 0;
5211
5212 if (bl->watchpoint_type == hw_read)
5213 {
5214 struct breakpoint *other_b;
5215
5216 ALL_BREAKPOINTS (other_b)
5217 if (other_b->type == bp_hardware_watchpoint
5218 || other_b->type == bp_access_watchpoint)
5219 {
5220 struct watchpoint *other_w =
5221 (struct watchpoint *) other_b;
5222
5223 if (other_w->watchpoint_triggered
5224 == watch_triggered_yes)
5225 {
5226 other_write_watchpoint = 1;
5227 break;
5228 }
5229 }
5230 }
5231
5232 if (other_write_watchpoint
5233 || bl->watchpoint_type == hw_access)
5234 {
5235 /* We're watching the same memory for writes,
5236 and the value changed since the last time we
5237 updated it, so this trap must be for a write.
5238 Ignore it. */
5239 bs->print_it = print_it_noop;
5240 bs->stop = 0;
5241 }
5242 }
5243 break;
5244 case WP_VALUE_NOT_CHANGED:
5245 if (b->base.type == bp_hardware_watchpoint
5246 || b->base.type == bp_watchpoint)
5247 {
5248 /* Don't stop: write watchpoints shouldn't fire if
5249 the value hasn't changed. */
5250 bs->print_it = print_it_noop;
5251 bs->stop = 0;
5252 }
5253 /* Stop. */
5254 break;
5255 default:
5256 /* Can't happen. */
5257 case 0:
5258 /* Error from catch_errors. */
5259 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5260 watchpoint_del_at_next_stop (b);
5261 /* We've already printed what needs to be printed. */
5262 bs->print_it = print_it_done;
5263 break;
5264 }
5265 }
5266 else /* must_check_value == 0 */
5267 {
5268 /* This is a case where some watchpoint(s) triggered, but
5269 not at the address of this watchpoint, or else no
5270 watchpoint triggered after all. So don't print
5271 anything for this watchpoint. */
5272 bs->print_it = print_it_noop;
5273 bs->stop = 0;
5274 }
5275 }
5276}
5277
5278/* For breakpoints that are currently marked as telling gdb to stop,
5279 check conditions (condition proper, frame, thread and ignore count)
5280 of breakpoint referred to by BS. If we should not stop for this
5281 breakpoint, set BS->stop to 0. */
5282
5283static void
5284bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5285{
5286 const struct bp_location *bl;
5287 struct breakpoint *b;
5288 int value_is_zero = 0;
5289 struct expression *cond;
5290
5291 gdb_assert (bs->stop);
5292
5293 /* BS is built for existing struct breakpoint. */
5294 bl = bs->bp_location_at;
5295 gdb_assert (bl != NULL);
5296 b = bs->breakpoint_at;
5297 gdb_assert (b != NULL);
5298
5299 /* Even if the target evaluated the condition on its end and notified GDB, we
5300 need to do so again since GDB does not know if we stopped due to a
5301 breakpoint or a single step breakpoint. */
5302
5303 if (frame_id_p (b->frame_id)
5304 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5305 {
5306 bs->stop = 0;
5307 return;
5308 }
5309
5310 /* If this is a thread/task-specific breakpoint, don't waste cpu
5311 evaluating the condition if this isn't the specified
5312 thread/task. */
5313 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5314 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5315
5316 {
5317 bs->stop = 0;
5318 return;
5319 }
5320
5321 /* Evaluate extension language breakpoints that have a "stop" method
5322 implemented. */
5323 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5324
5325 if (is_watchpoint (b))
5326 {
5327 struct watchpoint *w = (struct watchpoint *) b;
5328
5329 cond = w->cond_exp;
5330 }
5331 else
5332 cond = bl->cond;
5333
5334 if (cond && b->disposition != disp_del_at_next_stop)
5335 {
5336 int within_current_scope = 1;
5337 struct watchpoint * w;
5338
5339 /* We use value_mark and value_free_to_mark because it could
5340 be a long time before we return to the command level and
5341 call free_all_values. We can't call free_all_values
5342 because we might be in the middle of evaluating a
5343 function call. */
5344 struct value *mark = value_mark ();
5345
5346 if (is_watchpoint (b))
5347 w = (struct watchpoint *) b;
5348 else
5349 w = NULL;
5350
5351 /* Need to select the frame, with all that implies so that
5352 the conditions will have the right context. Because we
5353 use the frame, we will not see an inlined function's
5354 variables when we arrive at a breakpoint at the start
5355 of the inlined function; the current frame will be the
5356 call site. */
5357 if (w == NULL || w->cond_exp_valid_block == NULL)
5358 select_frame (get_current_frame ());
5359 else
5360 {
5361 struct frame_info *frame;
5362
5363 /* For local watchpoint expressions, which particular
5364 instance of a local is being watched matters, so we
5365 keep track of the frame to evaluate the expression
5366 in. To evaluate the condition however, it doesn't
5367 really matter which instantiation of the function
5368 where the condition makes sense triggers the
5369 watchpoint. This allows an expression like "watch
5370 global if q > 10" set in `func', catch writes to
5371 global on all threads that call `func', or catch
5372 writes on all recursive calls of `func' by a single
5373 thread. We simply always evaluate the condition in
5374 the innermost frame that's executing where it makes
5375 sense to evaluate the condition. It seems
5376 intuitive. */
5377 frame = block_innermost_frame (w->cond_exp_valid_block);
5378 if (frame != NULL)
5379 select_frame (frame);
5380 else
5381 within_current_scope = 0;
5382 }
5383 if (within_current_scope)
5384 value_is_zero
5385 = catch_errors (breakpoint_cond_eval, cond,
5386 "Error in testing breakpoint condition:\n",
5387 RETURN_MASK_ALL);
5388 else
5389 {
5390 warning (_("Watchpoint condition cannot be tested "
5391 "in the current scope"));
5392 /* If we failed to set the right context for this
5393 watchpoint, unconditionally report it. */
5394 value_is_zero = 0;
5395 }
5396 /* FIXME-someday, should give breakpoint #. */
5397 value_free_to_mark (mark);
5398 }
5399
5400 if (cond && value_is_zero)
5401 {
5402 bs->stop = 0;
5403 }
5404 else if (b->ignore_count > 0)
5405 {
5406 b->ignore_count--;
5407 bs->stop = 0;
5408 /* Increase the hit count even though we don't stop. */
5409 ++(b->hit_count);
5410 observer_notify_breakpoint_modified (b);
5411 }
5412}
5413
5414
5415/* Get a bpstat associated with having just stopped at address
5416 BP_ADDR in thread PTID.
5417
5418 Determine whether we stopped at a breakpoint, etc, or whether we
5419 don't understand this stop. Result is a chain of bpstat's such
5420 that:
5421
5422 if we don't understand the stop, the result is a null pointer.
5423
5424 if we understand why we stopped, the result is not null.
5425
5426 Each element of the chain refers to a particular breakpoint or
5427 watchpoint at which we have stopped. (We may have stopped for
5428 several reasons concurrently.)
5429
5430 Each element of the chain has valid next, breakpoint_at,
5431 commands, FIXME??? fields. */
5432
5433bpstat
5434bpstat_stop_status (struct address_space *aspace,
5435 CORE_ADDR bp_addr, ptid_t ptid,
5436 const struct target_waitstatus *ws)
5437{
5438 struct breakpoint *b = NULL;
5439 struct bp_location *bl;
5440 struct bp_location *loc;
5441 /* First item of allocated bpstat's. */
5442 bpstat bs_head = NULL, *bs_link = &bs_head;
5443 /* Pointer to the last thing in the chain currently. */
5444 bpstat bs;
5445 int ix;
5446 int need_remove_insert;
5447 int removed_any;
5448
5449 /* First, build the bpstat chain with locations that explain a
5450 target stop, while being careful to not set the target running,
5451 as that may invalidate locations (in particular watchpoint
5452 locations are recreated). Resuming will happen here with
5453 breakpoint conditions or watchpoint expressions that include
5454 inferior function calls. */
5455
5456 ALL_BREAKPOINTS (b)
5457 {
5458 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5459 continue;
5460
5461 for (bl = b->loc; bl != NULL; bl = bl->next)
5462 {
5463 /* For hardware watchpoints, we look only at the first
5464 location. The watchpoint_check function will work on the
5465 entire expression, not the individual locations. For
5466 read watchpoints, the watchpoints_triggered function has
5467 checked all locations already. */
5468 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5469 break;
5470
5471 if (!bl->enabled || bl->shlib_disabled)
5472 continue;
5473
5474 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5475 continue;
5476
5477 /* Come here if it's a watchpoint, or if the break address
5478 matches. */
5479
5480 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5481 explain stop. */
5482
5483 /* Assume we stop. Should we find a watchpoint that is not
5484 actually triggered, or if the condition of the breakpoint
5485 evaluates as false, we'll reset 'stop' to 0. */
5486 bs->stop = 1;
5487 bs->print = 1;
5488
5489 /* If this is a scope breakpoint, mark the associated
5490 watchpoint as triggered so that we will handle the
5491 out-of-scope event. We'll get to the watchpoint next
5492 iteration. */
5493 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5494 {
5495 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5496
5497 w->watchpoint_triggered = watch_triggered_yes;
5498 }
5499 }
5500 }
5501
5502 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5503 {
5504 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5505 {
5506 bs = bpstat_alloc (loc, &bs_link);
5507 /* For hits of moribund locations, we should just proceed. */
5508 bs->stop = 0;
5509 bs->print = 0;
5510 bs->print_it = print_it_noop;
5511 }
5512 }
5513
5514 /* A bit of special processing for shlib breakpoints. We need to
5515 process solib loading here, so that the lists of loaded and
5516 unloaded libraries are correct before we handle "catch load" and
5517 "catch unload". */
5518 for (bs = bs_head; bs != NULL; bs = bs->next)
5519 {
5520 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5521 {
5522 handle_solib_event ();
5523 break;
5524 }
5525 }
5526
5527 /* Now go through the locations that caused the target to stop, and
5528 check whether we're interested in reporting this stop to higher
5529 layers, or whether we should resume the target transparently. */
5530
5531 removed_any = 0;
5532
5533 for (bs = bs_head; bs != NULL; bs = bs->next)
5534 {
5535 if (!bs->stop)
5536 continue;
5537
5538 b = bs->breakpoint_at;
5539 b->ops->check_status (bs);
5540 if (bs->stop)
5541 {
5542 bpstat_check_breakpoint_conditions (bs, ptid);
5543
5544 if (bs->stop)
5545 {
5546 ++(b->hit_count);
5547 observer_notify_breakpoint_modified (b);
5548
5549 /* We will stop here. */
5550 if (b->disposition == disp_disable)
5551 {
5552 --(b->enable_count);
5553 if (b->enable_count <= 0
5554 && b->enable_state != bp_permanent)
5555 b->enable_state = bp_disabled;
5556 removed_any = 1;
5557 }
5558 if (b->silent)
5559 bs->print = 0;
5560 bs->commands = b->commands;
5561 incref_counted_command_line (bs->commands);
5562 if (command_line_is_silent (bs->commands
5563 ? bs->commands->commands : NULL))
5564 bs->print = 0;
5565
5566 b->ops->after_condition_true (bs);
5567 }
5568
5569 }
5570
5571 /* Print nothing for this entry if we don't stop or don't
5572 print. */
5573 if (!bs->stop || !bs->print)
5574 bs->print_it = print_it_noop;
5575 }
5576
5577 /* If we aren't stopping, the value of some hardware watchpoint may
5578 not have changed, but the intermediate memory locations we are
5579 watching may have. Don't bother if we're stopping; this will get
5580 done later. */
5581 need_remove_insert = 0;
5582 if (! bpstat_causes_stop (bs_head))
5583 for (bs = bs_head; bs != NULL; bs = bs->next)
5584 if (!bs->stop
5585 && bs->breakpoint_at
5586 && is_hardware_watchpoint (bs->breakpoint_at))
5587 {
5588 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5589
5590 update_watchpoint (w, 0 /* don't reparse. */);
5591 need_remove_insert = 1;
5592 }
5593
5594 if (need_remove_insert)
5595 update_global_location_list (1);
5596 else if (removed_any)
5597 update_global_location_list (0);
5598
5599 return bs_head;
5600}
5601
5602static void
5603handle_jit_event (void)
5604{
5605 struct frame_info *frame;
5606 struct gdbarch *gdbarch;
5607
5608 /* Switch terminal for any messages produced by
5609 breakpoint_re_set. */
5610 target_terminal_ours_for_output ();
5611
5612 frame = get_current_frame ();
5613 gdbarch = get_frame_arch (frame);
5614
5615 jit_event_handler (gdbarch);
5616
5617 target_terminal_inferior ();
5618}
5619
5620/* Prepare WHAT final decision for infrun. */
5621
5622/* Decide what infrun needs to do with this bpstat. */
5623
5624struct bpstat_what
5625bpstat_what (bpstat bs_head)
5626{
5627 struct bpstat_what retval;
5628 int jit_event = 0;
5629 bpstat bs;
5630
5631 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5632 retval.call_dummy = STOP_NONE;
5633 retval.is_longjmp = 0;
5634
5635 for (bs = bs_head; bs != NULL; bs = bs->next)
5636 {
5637 /* Extract this BS's action. After processing each BS, we check
5638 if its action overrides all we've seem so far. */
5639 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5640 enum bptype bptype;
5641
5642 if (bs->breakpoint_at == NULL)
5643 {
5644 /* I suspect this can happen if it was a momentary
5645 breakpoint which has since been deleted. */
5646 bptype = bp_none;
5647 }
5648 else
5649 bptype = bs->breakpoint_at->type;
5650
5651 switch (bptype)
5652 {
5653 case bp_none:
5654 break;
5655 case bp_breakpoint:
5656 case bp_hardware_breakpoint:
5657 case bp_until:
5658 case bp_finish:
5659 case bp_shlib_event:
5660 if (bs->stop)
5661 {
5662 if (bs->print)
5663 this_action = BPSTAT_WHAT_STOP_NOISY;
5664 else
5665 this_action = BPSTAT_WHAT_STOP_SILENT;
5666 }
5667 else
5668 this_action = BPSTAT_WHAT_SINGLE;
5669 break;
5670 case bp_watchpoint:
5671 case bp_hardware_watchpoint:
5672 case bp_read_watchpoint:
5673 case bp_access_watchpoint:
5674 if (bs->stop)
5675 {
5676 if (bs->print)
5677 this_action = BPSTAT_WHAT_STOP_NOISY;
5678 else
5679 this_action = BPSTAT_WHAT_STOP_SILENT;
5680 }
5681 else
5682 {
5683 /* There was a watchpoint, but we're not stopping.
5684 This requires no further action. */
5685 }
5686 break;
5687 case bp_longjmp:
5688 case bp_longjmp_call_dummy:
5689 case bp_exception:
5690 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5691 retval.is_longjmp = bptype != bp_exception;
5692 break;
5693 case bp_longjmp_resume:
5694 case bp_exception_resume:
5695 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5696 retval.is_longjmp = bptype == bp_longjmp_resume;
5697 break;
5698 case bp_step_resume:
5699 if (bs->stop)
5700 this_action = BPSTAT_WHAT_STEP_RESUME;
5701 else
5702 {
5703 /* It is for the wrong frame. */
5704 this_action = BPSTAT_WHAT_SINGLE;
5705 }
5706 break;
5707 case bp_hp_step_resume:
5708 if (bs->stop)
5709 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5710 else
5711 {
5712 /* It is for the wrong frame. */
5713 this_action = BPSTAT_WHAT_SINGLE;
5714 }
5715 break;
5716 case bp_watchpoint_scope:
5717 case bp_thread_event:
5718 case bp_overlay_event:
5719 case bp_longjmp_master:
5720 case bp_std_terminate_master:
5721 case bp_exception_master:
5722 this_action = BPSTAT_WHAT_SINGLE;
5723 break;
5724 case bp_catchpoint:
5725 if (bs->stop)
5726 {
5727 if (bs->print)
5728 this_action = BPSTAT_WHAT_STOP_NOISY;
5729 else
5730 this_action = BPSTAT_WHAT_STOP_SILENT;
5731 }
5732 else
5733 {
5734 /* There was a catchpoint, but we're not stopping.
5735 This requires no further action. */
5736 }
5737 break;
5738 case bp_jit_event:
5739 jit_event = 1;
5740 this_action = BPSTAT_WHAT_SINGLE;
5741 break;
5742 case bp_call_dummy:
5743 /* Make sure the action is stop (silent or noisy),
5744 so infrun.c pops the dummy frame. */
5745 retval.call_dummy = STOP_STACK_DUMMY;
5746 this_action = BPSTAT_WHAT_STOP_SILENT;
5747 break;
5748 case bp_std_terminate:
5749 /* Make sure the action is stop (silent or noisy),
5750 so infrun.c pops the dummy frame. */
5751 retval.call_dummy = STOP_STD_TERMINATE;
5752 this_action = BPSTAT_WHAT_STOP_SILENT;
5753 break;
5754 case bp_tracepoint:
5755 case bp_fast_tracepoint:
5756 case bp_static_tracepoint:
5757 /* Tracepoint hits should not be reported back to GDB, and
5758 if one got through somehow, it should have been filtered
5759 out already. */
5760 internal_error (__FILE__, __LINE__,
5761 _("bpstat_what: tracepoint encountered"));
5762 break;
5763 case bp_gnu_ifunc_resolver:
5764 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5765 this_action = BPSTAT_WHAT_SINGLE;
5766 break;
5767 case bp_gnu_ifunc_resolver_return:
5768 /* The breakpoint will be removed, execution will restart from the
5769 PC of the former breakpoint. */
5770 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5771 break;
5772
5773 case bp_dprintf:
5774 if (bs->stop)
5775 this_action = BPSTAT_WHAT_STOP_SILENT;
5776 else
5777 this_action = BPSTAT_WHAT_SINGLE;
5778 break;
5779
5780 default:
5781 internal_error (__FILE__, __LINE__,
5782 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5783 }
5784
5785 retval.main_action = max (retval.main_action, this_action);
5786 }
5787
5788 /* These operations may affect the bs->breakpoint_at state so they are
5789 delayed after MAIN_ACTION is decided above. */
5790
5791 if (jit_event)
5792 {
5793 if (debug_infrun)
5794 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5795
5796 handle_jit_event ();
5797 }
5798
5799 for (bs = bs_head; bs != NULL; bs = bs->next)
5800 {
5801 struct breakpoint *b = bs->breakpoint_at;
5802
5803 if (b == NULL)
5804 continue;
5805 switch (b->type)
5806 {
5807 case bp_gnu_ifunc_resolver:
5808 gnu_ifunc_resolver_stop (b);
5809 break;
5810 case bp_gnu_ifunc_resolver_return:
5811 gnu_ifunc_resolver_return_stop (b);
5812 break;
5813 }
5814 }
5815
5816 return retval;
5817}
5818
5819/* Nonzero if we should step constantly (e.g. watchpoints on machines
5820 without hardware support). This isn't related to a specific bpstat,
5821 just to things like whether watchpoints are set. */
5822
5823int
5824bpstat_should_step (void)
5825{
5826 struct breakpoint *b;
5827
5828 ALL_BREAKPOINTS (b)
5829 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5830 return 1;
5831 return 0;
5832}
5833
5834int
5835bpstat_causes_stop (bpstat bs)
5836{
5837 for (; bs != NULL; bs = bs->next)
5838 if (bs->stop)
5839 return 1;
5840
5841 return 0;
5842}
5843
5844\f
5845
5846/* Compute a string of spaces suitable to indent the next line
5847 so it starts at the position corresponding to the table column
5848 named COL_NAME in the currently active table of UIOUT. */
5849
5850static char *
5851wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5852{
5853 static char wrap_indent[80];
5854 int i, total_width, width, align;
5855 char *text;
5856
5857 total_width = 0;
5858 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5859 {
5860 if (strcmp (text, col_name) == 0)
5861 {
5862 gdb_assert (total_width < sizeof wrap_indent);
5863 memset (wrap_indent, ' ', total_width);
5864 wrap_indent[total_width] = 0;
5865
5866 return wrap_indent;
5867 }
5868
5869 total_width += width + 1;
5870 }
5871
5872 return NULL;
5873}
5874
5875/* Determine if the locations of this breakpoint will have their conditions
5876 evaluated by the target, host or a mix of both. Returns the following:
5877
5878 "host": Host evals condition.
5879 "host or target": Host or Target evals condition.
5880 "target": Target evals condition.
5881*/
5882
5883static const char *
5884bp_condition_evaluator (struct breakpoint *b)
5885{
5886 struct bp_location *bl;
5887 char host_evals = 0;
5888 char target_evals = 0;
5889
5890 if (!b)
5891 return NULL;
5892
5893 if (!is_breakpoint (b))
5894 return NULL;
5895
5896 if (gdb_evaluates_breakpoint_condition_p ()
5897 || !target_supports_evaluation_of_breakpoint_conditions ())
5898 return condition_evaluation_host;
5899
5900 for (bl = b->loc; bl; bl = bl->next)
5901 {
5902 if (bl->cond_bytecode)
5903 target_evals++;
5904 else
5905 host_evals++;
5906 }
5907
5908 if (host_evals && target_evals)
5909 return condition_evaluation_both;
5910 else if (target_evals)
5911 return condition_evaluation_target;
5912 else
5913 return condition_evaluation_host;
5914}
5915
5916/* Determine the breakpoint location's condition evaluator. This is
5917 similar to bp_condition_evaluator, but for locations. */
5918
5919static const char *
5920bp_location_condition_evaluator (struct bp_location *bl)
5921{
5922 if (bl && !is_breakpoint (bl->owner))
5923 return NULL;
5924
5925 if (gdb_evaluates_breakpoint_condition_p ()
5926 || !target_supports_evaluation_of_breakpoint_conditions ())
5927 return condition_evaluation_host;
5928
5929 if (bl && bl->cond_bytecode)
5930 return condition_evaluation_target;
5931 else
5932 return condition_evaluation_host;
5933}
5934
5935/* Print the LOC location out of the list of B->LOC locations. */
5936
5937static void
5938print_breakpoint_location (struct breakpoint *b,
5939 struct bp_location *loc)
5940{
5941 struct ui_out *uiout = current_uiout;
5942 struct cleanup *old_chain = save_current_program_space ();
5943
5944 if (loc != NULL && loc->shlib_disabled)
5945 loc = NULL;
5946
5947 if (loc != NULL)
5948 set_current_program_space (loc->pspace);
5949
5950 if (b->display_canonical)
5951 ui_out_field_string (uiout, "what", b->addr_string);
5952 else if (loc && loc->symtab)
5953 {
5954 struct symbol *sym
5955 = find_pc_sect_function (loc->address, loc->section);
5956 if (sym)
5957 {
5958 ui_out_text (uiout, "in ");
5959 ui_out_field_string (uiout, "func",
5960 SYMBOL_PRINT_NAME (sym));
5961 ui_out_text (uiout, " ");
5962 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5963 ui_out_text (uiout, "at ");
5964 }
5965 ui_out_field_string (uiout, "file",
5966 symtab_to_filename_for_display (loc->symtab));
5967 ui_out_text (uiout, ":");
5968
5969 if (ui_out_is_mi_like_p (uiout))
5970 ui_out_field_string (uiout, "fullname",
5971 symtab_to_fullname (loc->symtab));
5972
5973 ui_out_field_int (uiout, "line", loc->line_number);
5974 }
5975 else if (loc)
5976 {
5977 struct ui_file *stb = mem_fileopen ();
5978 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5979
5980 print_address_symbolic (loc->gdbarch, loc->address, stb,
5981 demangle, "");
5982 ui_out_field_stream (uiout, "at", stb);
5983
5984 do_cleanups (stb_chain);
5985 }
5986 else
5987 ui_out_field_string (uiout, "pending", b->addr_string);
5988
5989 if (loc && is_breakpoint (b)
5990 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5991 && bp_condition_evaluator (b) == condition_evaluation_both)
5992 {
5993 ui_out_text (uiout, " (");
5994 ui_out_field_string (uiout, "evaluated-by",
5995 bp_location_condition_evaluator (loc));
5996 ui_out_text (uiout, ")");
5997 }
5998
5999 do_cleanups (old_chain);
6000}
6001
6002static const char *
6003bptype_string (enum bptype type)
6004{
6005 struct ep_type_description
6006 {
6007 enum bptype type;
6008 char *description;
6009 };
6010 static struct ep_type_description bptypes[] =
6011 {
6012 {bp_none, "?deleted?"},
6013 {bp_breakpoint, "breakpoint"},
6014 {bp_hardware_breakpoint, "hw breakpoint"},
6015 {bp_until, "until"},
6016 {bp_finish, "finish"},
6017 {bp_watchpoint, "watchpoint"},
6018 {bp_hardware_watchpoint, "hw watchpoint"},
6019 {bp_read_watchpoint, "read watchpoint"},
6020 {bp_access_watchpoint, "acc watchpoint"},
6021 {bp_longjmp, "longjmp"},
6022 {bp_longjmp_resume, "longjmp resume"},
6023 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6024 {bp_exception, "exception"},
6025 {bp_exception_resume, "exception resume"},
6026 {bp_step_resume, "step resume"},
6027 {bp_hp_step_resume, "high-priority step resume"},
6028 {bp_watchpoint_scope, "watchpoint scope"},
6029 {bp_call_dummy, "call dummy"},
6030 {bp_std_terminate, "std::terminate"},
6031 {bp_shlib_event, "shlib events"},
6032 {bp_thread_event, "thread events"},
6033 {bp_overlay_event, "overlay events"},
6034 {bp_longjmp_master, "longjmp master"},
6035 {bp_std_terminate_master, "std::terminate master"},
6036 {bp_exception_master, "exception master"},
6037 {bp_catchpoint, "catchpoint"},
6038 {bp_tracepoint, "tracepoint"},
6039 {bp_fast_tracepoint, "fast tracepoint"},
6040 {bp_static_tracepoint, "static tracepoint"},
6041 {bp_dprintf, "dprintf"},
6042 {bp_jit_event, "jit events"},
6043 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6044 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6045 };
6046
6047 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6048 || ((int) type != bptypes[(int) type].type))
6049 internal_error (__FILE__, __LINE__,
6050 _("bptypes table does not describe type #%d."),
6051 (int) type);
6052
6053 return bptypes[(int) type].description;
6054}
6055
6056/* For MI, output a field named 'thread-groups' with a list as the value.
6057 For CLI, prefix the list with the string 'inf'. */
6058
6059static void
6060output_thread_groups (struct ui_out *uiout,
6061 const char *field_name,
6062 VEC(int) *inf_num,
6063 int mi_only)
6064{
6065 struct cleanup *back_to;
6066 int is_mi = ui_out_is_mi_like_p (uiout);
6067 int inf;
6068 int i;
6069
6070 /* For backward compatibility, don't display inferiors in CLI unless
6071 there are several. Always display them for MI. */
6072 if (!is_mi && mi_only)
6073 return;
6074
6075 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6076
6077 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6078 {
6079 if (is_mi)
6080 {
6081 char mi_group[10];
6082
6083 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6084 ui_out_field_string (uiout, NULL, mi_group);
6085 }
6086 else
6087 {
6088 if (i == 0)
6089 ui_out_text (uiout, " inf ");
6090 else
6091 ui_out_text (uiout, ", ");
6092
6093 ui_out_text (uiout, plongest (inf));
6094 }
6095 }
6096
6097 do_cleanups (back_to);
6098}
6099
6100/* Print B to gdb_stdout. */
6101
6102static void
6103print_one_breakpoint_location (struct breakpoint *b,
6104 struct bp_location *loc,
6105 int loc_number,
6106 struct bp_location **last_loc,
6107 int allflag)
6108{
6109 struct command_line *l;
6110 static char bpenables[] = "nynny";
6111
6112 struct ui_out *uiout = current_uiout;
6113 int header_of_multiple = 0;
6114 int part_of_multiple = (loc != NULL);
6115 struct value_print_options opts;
6116
6117 get_user_print_options (&opts);
6118
6119 gdb_assert (!loc || loc_number != 0);
6120 /* See comment in print_one_breakpoint concerning treatment of
6121 breakpoints with single disabled location. */
6122 if (loc == NULL
6123 && (b->loc != NULL
6124 && (b->loc->next != NULL || !b->loc->enabled)))
6125 header_of_multiple = 1;
6126 if (loc == NULL)
6127 loc = b->loc;
6128
6129 annotate_record ();
6130
6131 /* 1 */
6132 annotate_field (0);
6133 if (part_of_multiple)
6134 {
6135 char *formatted;
6136 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6137 ui_out_field_string (uiout, "number", formatted);
6138 xfree (formatted);
6139 }
6140 else
6141 {
6142 ui_out_field_int (uiout, "number", b->number);
6143 }
6144
6145 /* 2 */
6146 annotate_field (1);
6147 if (part_of_multiple)
6148 ui_out_field_skip (uiout, "type");
6149 else
6150 ui_out_field_string (uiout, "type", bptype_string (b->type));
6151
6152 /* 3 */
6153 annotate_field (2);
6154 if (part_of_multiple)
6155 ui_out_field_skip (uiout, "disp");
6156 else
6157 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6158
6159
6160 /* 4 */
6161 annotate_field (3);
6162 if (part_of_multiple)
6163 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6164 else
6165 ui_out_field_fmt (uiout, "enabled", "%c",
6166 bpenables[(int) b->enable_state]);
6167 ui_out_spaces (uiout, 2);
6168
6169
6170 /* 5 and 6 */
6171 if (b->ops != NULL && b->ops->print_one != NULL)
6172 {
6173 /* Although the print_one can possibly print all locations,
6174 calling it here is not likely to get any nice result. So,
6175 make sure there's just one location. */
6176 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6177 b->ops->print_one (b, last_loc);
6178 }
6179 else
6180 switch (b->type)
6181 {
6182 case bp_none:
6183 internal_error (__FILE__, __LINE__,
6184 _("print_one_breakpoint: bp_none encountered\n"));
6185 break;
6186
6187 case bp_watchpoint:
6188 case bp_hardware_watchpoint:
6189 case bp_read_watchpoint:
6190 case bp_access_watchpoint:
6191 {
6192 struct watchpoint *w = (struct watchpoint *) b;
6193
6194 /* Field 4, the address, is omitted (which makes the columns
6195 not line up too nicely with the headers, but the effect
6196 is relatively readable). */
6197 if (opts.addressprint)
6198 ui_out_field_skip (uiout, "addr");
6199 annotate_field (5);
6200 ui_out_field_string (uiout, "what", w->exp_string);
6201 }
6202 break;
6203
6204 case bp_breakpoint:
6205 case bp_hardware_breakpoint:
6206 case bp_until:
6207 case bp_finish:
6208 case bp_longjmp:
6209 case bp_longjmp_resume:
6210 case bp_longjmp_call_dummy:
6211 case bp_exception:
6212 case bp_exception_resume:
6213 case bp_step_resume:
6214 case bp_hp_step_resume:
6215 case bp_watchpoint_scope:
6216 case bp_call_dummy:
6217 case bp_std_terminate:
6218 case bp_shlib_event:
6219 case bp_thread_event:
6220 case bp_overlay_event:
6221 case bp_longjmp_master:
6222 case bp_std_terminate_master:
6223 case bp_exception_master:
6224 case bp_tracepoint:
6225 case bp_fast_tracepoint:
6226 case bp_static_tracepoint:
6227 case bp_dprintf:
6228 case bp_jit_event:
6229 case bp_gnu_ifunc_resolver:
6230 case bp_gnu_ifunc_resolver_return:
6231 if (opts.addressprint)
6232 {
6233 annotate_field (4);
6234 if (header_of_multiple)
6235 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6236 else if (b->loc == NULL || loc->shlib_disabled)
6237 ui_out_field_string (uiout, "addr", "<PENDING>");
6238 else
6239 ui_out_field_core_addr (uiout, "addr",
6240 loc->gdbarch, loc->address);
6241 }
6242 annotate_field (5);
6243 if (!header_of_multiple)
6244 print_breakpoint_location (b, loc);
6245 if (b->loc)
6246 *last_loc = b->loc;
6247 break;
6248 }
6249
6250
6251 if (loc != NULL && !header_of_multiple)
6252 {
6253 struct inferior *inf;
6254 VEC(int) *inf_num = NULL;
6255 int mi_only = 1;
6256
6257 ALL_INFERIORS (inf)
6258 {
6259 if (inf->pspace == loc->pspace)
6260 VEC_safe_push (int, inf_num, inf->num);
6261 }
6262
6263 /* For backward compatibility, don't display inferiors in CLI unless
6264 there are several. Always display for MI. */
6265 if (allflag
6266 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6267 && (number_of_program_spaces () > 1
6268 || number_of_inferiors () > 1)
6269 /* LOC is for existing B, it cannot be in
6270 moribund_locations and thus having NULL OWNER. */
6271 && loc->owner->type != bp_catchpoint))
6272 mi_only = 0;
6273 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6274 VEC_free (int, inf_num);
6275 }
6276
6277 if (!part_of_multiple)
6278 {
6279 if (b->thread != -1)
6280 {
6281 /* FIXME: This seems to be redundant and lost here; see the
6282 "stop only in" line a little further down. */
6283 ui_out_text (uiout, " thread ");
6284 ui_out_field_int (uiout, "thread", b->thread);
6285 }
6286 else if (b->task != 0)
6287 {
6288 ui_out_text (uiout, " task ");
6289 ui_out_field_int (uiout, "task", b->task);
6290 }
6291 }
6292
6293 ui_out_text (uiout, "\n");
6294
6295 if (!part_of_multiple)
6296 b->ops->print_one_detail (b, uiout);
6297
6298 if (part_of_multiple && frame_id_p (b->frame_id))
6299 {
6300 annotate_field (6);
6301 ui_out_text (uiout, "\tstop only in stack frame at ");
6302 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6303 the frame ID. */
6304 ui_out_field_core_addr (uiout, "frame",
6305 b->gdbarch, b->frame_id.stack_addr);
6306 ui_out_text (uiout, "\n");
6307 }
6308
6309 if (!part_of_multiple && b->cond_string)
6310 {
6311 annotate_field (7);
6312 if (is_tracepoint (b))
6313 ui_out_text (uiout, "\ttrace only if ");
6314 else
6315 ui_out_text (uiout, "\tstop only if ");
6316 ui_out_field_string (uiout, "cond", b->cond_string);
6317
6318 /* Print whether the target is doing the breakpoint's condition
6319 evaluation. If GDB is doing the evaluation, don't print anything. */
6320 if (is_breakpoint (b)
6321 && breakpoint_condition_evaluation_mode ()
6322 == condition_evaluation_target)
6323 {
6324 ui_out_text (uiout, " (");
6325 ui_out_field_string (uiout, "evaluated-by",
6326 bp_condition_evaluator (b));
6327 ui_out_text (uiout, " evals)");
6328 }
6329 ui_out_text (uiout, "\n");
6330 }
6331
6332 if (!part_of_multiple && b->thread != -1)
6333 {
6334 /* FIXME should make an annotation for this. */
6335 ui_out_text (uiout, "\tstop only in thread ");
6336 ui_out_field_int (uiout, "thread", b->thread);
6337 ui_out_text (uiout, "\n");
6338 }
6339
6340 if (!part_of_multiple)
6341 {
6342 if (b->hit_count)
6343 {
6344 /* FIXME should make an annotation for this. */
6345 if (is_catchpoint (b))
6346 ui_out_text (uiout, "\tcatchpoint");
6347 else if (is_tracepoint (b))
6348 ui_out_text (uiout, "\ttracepoint");
6349 else
6350 ui_out_text (uiout, "\tbreakpoint");
6351 ui_out_text (uiout, " already hit ");
6352 ui_out_field_int (uiout, "times", b->hit_count);
6353 if (b->hit_count == 1)
6354 ui_out_text (uiout, " time\n");
6355 else
6356 ui_out_text (uiout, " times\n");
6357 }
6358 else
6359 {
6360 /* Output the count also if it is zero, but only if this is mi. */
6361 if (ui_out_is_mi_like_p (uiout))
6362 ui_out_field_int (uiout, "times", b->hit_count);
6363 }
6364 }
6365
6366 if (!part_of_multiple && b->ignore_count)
6367 {
6368 annotate_field (8);
6369 ui_out_text (uiout, "\tignore next ");
6370 ui_out_field_int (uiout, "ignore", b->ignore_count);
6371 ui_out_text (uiout, " hits\n");
6372 }
6373
6374 /* Note that an enable count of 1 corresponds to "enable once"
6375 behavior, which is reported by the combination of enablement and
6376 disposition, so we don't need to mention it here. */
6377 if (!part_of_multiple && b->enable_count > 1)
6378 {
6379 annotate_field (8);
6380 ui_out_text (uiout, "\tdisable after ");
6381 /* Tweak the wording to clarify that ignore and enable counts
6382 are distinct, and have additive effect. */
6383 if (b->ignore_count)
6384 ui_out_text (uiout, "additional ");
6385 else
6386 ui_out_text (uiout, "next ");
6387 ui_out_field_int (uiout, "enable", b->enable_count);
6388 ui_out_text (uiout, " hits\n");
6389 }
6390
6391 if (!part_of_multiple && is_tracepoint (b))
6392 {
6393 struct tracepoint *tp = (struct tracepoint *) b;
6394
6395 if (tp->traceframe_usage)
6396 {
6397 ui_out_text (uiout, "\ttrace buffer usage ");
6398 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6399 ui_out_text (uiout, " bytes\n");
6400 }
6401 }
6402
6403 l = b->commands ? b->commands->commands : NULL;
6404 if (!part_of_multiple && l)
6405 {
6406 struct cleanup *script_chain;
6407
6408 annotate_field (9);
6409 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6410 print_command_lines (uiout, l, 4);
6411 do_cleanups (script_chain);
6412 }
6413
6414 if (is_tracepoint (b))
6415 {
6416 struct tracepoint *t = (struct tracepoint *) b;
6417
6418 if (!part_of_multiple && t->pass_count)
6419 {
6420 annotate_field (10);
6421 ui_out_text (uiout, "\tpass count ");
6422 ui_out_field_int (uiout, "pass", t->pass_count);
6423 ui_out_text (uiout, " \n");
6424 }
6425
6426 /* Don't display it when tracepoint or tracepoint location is
6427 pending. */
6428 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6429 {
6430 annotate_field (11);
6431
6432 if (ui_out_is_mi_like_p (uiout))
6433 ui_out_field_string (uiout, "installed",
6434 loc->inserted ? "y" : "n");
6435 else
6436 {
6437 if (loc->inserted)
6438 ui_out_text (uiout, "\t");
6439 else
6440 ui_out_text (uiout, "\tnot ");
6441 ui_out_text (uiout, "installed on target\n");
6442 }
6443 }
6444 }
6445
6446 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6447 {
6448 if (is_watchpoint (b))
6449 {
6450 struct watchpoint *w = (struct watchpoint *) b;
6451
6452 ui_out_field_string (uiout, "original-location", w->exp_string);
6453 }
6454 else if (b->addr_string)
6455 ui_out_field_string (uiout, "original-location", b->addr_string);
6456 }
6457}
6458
6459static void
6460print_one_breakpoint (struct breakpoint *b,
6461 struct bp_location **last_loc,
6462 int allflag)
6463{
6464 struct cleanup *bkpt_chain;
6465 struct ui_out *uiout = current_uiout;
6466
6467 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6468
6469 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6470 do_cleanups (bkpt_chain);
6471
6472 /* If this breakpoint has custom print function,
6473 it's already printed. Otherwise, print individual
6474 locations, if any. */
6475 if (b->ops == NULL || b->ops->print_one == NULL)
6476 {
6477 /* If breakpoint has a single location that is disabled, we
6478 print it as if it had several locations, since otherwise it's
6479 hard to represent "breakpoint enabled, location disabled"
6480 situation.
6481
6482 Note that while hardware watchpoints have several locations
6483 internally, that's not a property exposed to user. */
6484 if (b->loc
6485 && !is_hardware_watchpoint (b)
6486 && (b->loc->next || !b->loc->enabled))
6487 {
6488 struct bp_location *loc;
6489 int n = 1;
6490
6491 for (loc = b->loc; loc; loc = loc->next, ++n)
6492 {
6493 struct cleanup *inner2 =
6494 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6495 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6496 do_cleanups (inner2);
6497 }
6498 }
6499 }
6500}
6501
6502static int
6503breakpoint_address_bits (struct breakpoint *b)
6504{
6505 int print_address_bits = 0;
6506 struct bp_location *loc;
6507
6508 for (loc = b->loc; loc; loc = loc->next)
6509 {
6510 int addr_bit;
6511
6512 /* Software watchpoints that aren't watching memory don't have
6513 an address to print. */
6514 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6515 continue;
6516
6517 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6518 if (addr_bit > print_address_bits)
6519 print_address_bits = addr_bit;
6520 }
6521
6522 return print_address_bits;
6523}
6524
6525struct captured_breakpoint_query_args
6526 {
6527 int bnum;
6528 };
6529
6530static int
6531do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6532{
6533 struct captured_breakpoint_query_args *args = data;
6534 struct breakpoint *b;
6535 struct bp_location *dummy_loc = NULL;
6536
6537 ALL_BREAKPOINTS (b)
6538 {
6539 if (args->bnum == b->number)
6540 {
6541 print_one_breakpoint (b, &dummy_loc, 0);
6542 return GDB_RC_OK;
6543 }
6544 }
6545 return GDB_RC_NONE;
6546}
6547
6548enum gdb_rc
6549gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6550 char **error_message)
6551{
6552 struct captured_breakpoint_query_args args;
6553
6554 args.bnum = bnum;
6555 /* For the moment we don't trust print_one_breakpoint() to not throw
6556 an error. */
6557 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6558 error_message, RETURN_MASK_ALL) < 0)
6559 return GDB_RC_FAIL;
6560 else
6561 return GDB_RC_OK;
6562}
6563
6564/* Return true if this breakpoint was set by the user, false if it is
6565 internal or momentary. */
6566
6567int
6568user_breakpoint_p (struct breakpoint *b)
6569{
6570 return b->number > 0;
6571}
6572
6573/* Print information on user settable breakpoint (watchpoint, etc)
6574 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6575 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6576 FILTER is non-NULL, call it on each breakpoint and only include the
6577 ones for which it returns non-zero. Return the total number of
6578 breakpoints listed. */
6579
6580static int
6581breakpoint_1 (char *args, int allflag,
6582 int (*filter) (const struct breakpoint *))
6583{
6584 struct breakpoint *b;
6585 struct bp_location *last_loc = NULL;
6586 int nr_printable_breakpoints;
6587 struct cleanup *bkpttbl_chain;
6588 struct value_print_options opts;
6589 int print_address_bits = 0;
6590 int print_type_col_width = 14;
6591 struct ui_out *uiout = current_uiout;
6592
6593 get_user_print_options (&opts);
6594
6595 /* Compute the number of rows in the table, as well as the size
6596 required for address fields. */
6597 nr_printable_breakpoints = 0;
6598 ALL_BREAKPOINTS (b)
6599 {
6600 /* If we have a filter, only list the breakpoints it accepts. */
6601 if (filter && !filter (b))
6602 continue;
6603
6604 /* If we have an "args" string, it is a list of breakpoints to
6605 accept. Skip the others. */
6606 if (args != NULL && *args != '\0')
6607 {
6608 if (allflag && parse_and_eval_long (args) != b->number)
6609 continue;
6610 if (!allflag && !number_is_in_list (args, b->number))
6611 continue;
6612 }
6613
6614 if (allflag || user_breakpoint_p (b))
6615 {
6616 int addr_bit, type_len;
6617
6618 addr_bit = breakpoint_address_bits (b);
6619 if (addr_bit > print_address_bits)
6620 print_address_bits = addr_bit;
6621
6622 type_len = strlen (bptype_string (b->type));
6623 if (type_len > print_type_col_width)
6624 print_type_col_width = type_len;
6625
6626 nr_printable_breakpoints++;
6627 }
6628 }
6629
6630 if (opts.addressprint)
6631 bkpttbl_chain
6632 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6633 nr_printable_breakpoints,
6634 "BreakpointTable");
6635 else
6636 bkpttbl_chain
6637 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6638 nr_printable_breakpoints,
6639 "BreakpointTable");
6640
6641 if (nr_printable_breakpoints > 0)
6642 annotate_breakpoints_headers ();
6643 if (nr_printable_breakpoints > 0)
6644 annotate_field (0);
6645 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6646 if (nr_printable_breakpoints > 0)
6647 annotate_field (1);
6648 ui_out_table_header (uiout, print_type_col_width, ui_left,
6649 "type", "Type"); /* 2 */
6650 if (nr_printable_breakpoints > 0)
6651 annotate_field (2);
6652 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6653 if (nr_printable_breakpoints > 0)
6654 annotate_field (3);
6655 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6656 if (opts.addressprint)
6657 {
6658 if (nr_printable_breakpoints > 0)
6659 annotate_field (4);
6660 if (print_address_bits <= 32)
6661 ui_out_table_header (uiout, 10, ui_left,
6662 "addr", "Address"); /* 5 */
6663 else
6664 ui_out_table_header (uiout, 18, ui_left,
6665 "addr", "Address"); /* 5 */
6666 }
6667 if (nr_printable_breakpoints > 0)
6668 annotate_field (5);
6669 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6670 ui_out_table_body (uiout);
6671 if (nr_printable_breakpoints > 0)
6672 annotate_breakpoints_table ();
6673
6674 ALL_BREAKPOINTS (b)
6675 {
6676 QUIT;
6677 /* If we have a filter, only list the breakpoints it accepts. */
6678 if (filter && !filter (b))
6679 continue;
6680
6681 /* If we have an "args" string, it is a list of breakpoints to
6682 accept. Skip the others. */
6683
6684 if (args != NULL && *args != '\0')
6685 {
6686 if (allflag) /* maintenance info breakpoint */
6687 {
6688 if (parse_and_eval_long (args) != b->number)
6689 continue;
6690 }
6691 else /* all others */
6692 {
6693 if (!number_is_in_list (args, b->number))
6694 continue;
6695 }
6696 }
6697 /* We only print out user settable breakpoints unless the
6698 allflag is set. */
6699 if (allflag || user_breakpoint_p (b))
6700 print_one_breakpoint (b, &last_loc, allflag);
6701 }
6702
6703 do_cleanups (bkpttbl_chain);
6704
6705 if (nr_printable_breakpoints == 0)
6706 {
6707 /* If there's a filter, let the caller decide how to report
6708 empty list. */
6709 if (!filter)
6710 {
6711 if (args == NULL || *args == '\0')
6712 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6713 else
6714 ui_out_message (uiout, 0,
6715 "No breakpoint or watchpoint matching '%s'.\n",
6716 args);
6717 }
6718 }
6719 else
6720 {
6721 if (last_loc && !server_command)
6722 set_next_address (last_loc->gdbarch, last_loc->address);
6723 }
6724
6725 /* FIXME? Should this be moved up so that it is only called when
6726 there have been breakpoints? */
6727 annotate_breakpoints_table_end ();
6728
6729 return nr_printable_breakpoints;
6730}
6731
6732/* Display the value of default-collect in a way that is generally
6733 compatible with the breakpoint list. */
6734
6735static void
6736default_collect_info (void)
6737{
6738 struct ui_out *uiout = current_uiout;
6739
6740 /* If it has no value (which is frequently the case), say nothing; a
6741 message like "No default-collect." gets in user's face when it's
6742 not wanted. */
6743 if (!*default_collect)
6744 return;
6745
6746 /* The following phrase lines up nicely with per-tracepoint collect
6747 actions. */
6748 ui_out_text (uiout, "default collect ");
6749 ui_out_field_string (uiout, "default-collect", default_collect);
6750 ui_out_text (uiout, " \n");
6751}
6752
6753static void
6754breakpoints_info (char *args, int from_tty)
6755{
6756 breakpoint_1 (args, 0, NULL);
6757
6758 default_collect_info ();
6759}
6760
6761static void
6762watchpoints_info (char *args, int from_tty)
6763{
6764 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6765 struct ui_out *uiout = current_uiout;
6766
6767 if (num_printed == 0)
6768 {
6769 if (args == NULL || *args == '\0')
6770 ui_out_message (uiout, 0, "No watchpoints.\n");
6771 else
6772 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6773 }
6774}
6775
6776static void
6777maintenance_info_breakpoints (char *args, int from_tty)
6778{
6779 breakpoint_1 (args, 1, NULL);
6780
6781 default_collect_info ();
6782}
6783
6784static int
6785breakpoint_has_pc (struct breakpoint *b,
6786 struct program_space *pspace,
6787 CORE_ADDR pc, struct obj_section *section)
6788{
6789 struct bp_location *bl = b->loc;
6790
6791 for (; bl; bl = bl->next)
6792 {
6793 if (bl->pspace == pspace
6794 && bl->address == pc
6795 && (!overlay_debugging || bl->section == section))
6796 return 1;
6797 }
6798 return 0;
6799}
6800
6801/* Print a message describing any user-breakpoints set at PC. This
6802 concerns with logical breakpoints, so we match program spaces, not
6803 address spaces. */
6804
6805static void
6806describe_other_breakpoints (struct gdbarch *gdbarch,
6807 struct program_space *pspace, CORE_ADDR pc,
6808 struct obj_section *section, int thread)
6809{
6810 int others = 0;
6811 struct breakpoint *b;
6812
6813 ALL_BREAKPOINTS (b)
6814 others += (user_breakpoint_p (b)
6815 && breakpoint_has_pc (b, pspace, pc, section));
6816 if (others > 0)
6817 {
6818 if (others == 1)
6819 printf_filtered (_("Note: breakpoint "));
6820 else /* if (others == ???) */
6821 printf_filtered (_("Note: breakpoints "));
6822 ALL_BREAKPOINTS (b)
6823 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6824 {
6825 others--;
6826 printf_filtered ("%d", b->number);
6827 if (b->thread == -1 && thread != -1)
6828 printf_filtered (" (all threads)");
6829 else if (b->thread != -1)
6830 printf_filtered (" (thread %d)", b->thread);
6831 printf_filtered ("%s%s ",
6832 ((b->enable_state == bp_disabled
6833 || b->enable_state == bp_call_disabled)
6834 ? " (disabled)"
6835 : b->enable_state == bp_permanent
6836 ? " (permanent)"
6837 : ""),
6838 (others > 1) ? ","
6839 : ((others == 1) ? " and" : ""));
6840 }
6841 printf_filtered (_("also set at pc "));
6842 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6843 printf_filtered (".\n");
6844 }
6845}
6846\f
6847
6848/* Return true iff it is meaningful to use the address member of
6849 BPT. For some breakpoint types, the address member is irrelevant
6850 and it makes no sense to attempt to compare it to other addresses
6851 (or use it for any other purpose either).
6852
6853 More specifically, each of the following breakpoint types will
6854 always have a zero valued address and we don't want to mark
6855 breakpoints of any of these types to be a duplicate of an actual
6856 breakpoint at address zero:
6857
6858 bp_watchpoint
6859 bp_catchpoint
6860
6861*/
6862
6863static int
6864breakpoint_address_is_meaningful (struct breakpoint *bpt)
6865{
6866 enum bptype type = bpt->type;
6867
6868 return (type != bp_watchpoint && type != bp_catchpoint);
6869}
6870
6871/* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6872 true if LOC1 and LOC2 represent the same watchpoint location. */
6873
6874static int
6875watchpoint_locations_match (struct bp_location *loc1,
6876 struct bp_location *loc2)
6877{
6878 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6879 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6880
6881 /* Both of them must exist. */
6882 gdb_assert (w1 != NULL);
6883 gdb_assert (w2 != NULL);
6884
6885 /* If the target can evaluate the condition expression in hardware,
6886 then we we need to insert both watchpoints even if they are at
6887 the same place. Otherwise the watchpoint will only trigger when
6888 the condition of whichever watchpoint was inserted evaluates to
6889 true, not giving a chance for GDB to check the condition of the
6890 other watchpoint. */
6891 if ((w1->cond_exp
6892 && target_can_accel_watchpoint_condition (loc1->address,
6893 loc1->length,
6894 loc1->watchpoint_type,
6895 w1->cond_exp))
6896 || (w2->cond_exp
6897 && target_can_accel_watchpoint_condition (loc2->address,
6898 loc2->length,
6899 loc2->watchpoint_type,
6900 w2->cond_exp)))
6901 return 0;
6902
6903 /* Note that this checks the owner's type, not the location's. In
6904 case the target does not support read watchpoints, but does
6905 support access watchpoints, we'll have bp_read_watchpoint
6906 watchpoints with hw_access locations. Those should be considered
6907 duplicates of hw_read locations. The hw_read locations will
6908 become hw_access locations later. */
6909 return (loc1->owner->type == loc2->owner->type
6910 && loc1->pspace->aspace == loc2->pspace->aspace
6911 && loc1->address == loc2->address
6912 && loc1->length == loc2->length);
6913}
6914
6915/* See breakpoint.h. */
6916
6917int
6918breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6919 struct address_space *aspace2, CORE_ADDR addr2)
6920{
6921 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6922 || aspace1 == aspace2)
6923 && addr1 == addr2);
6924}
6925
6926/* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6927 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6928 matches ASPACE2. On targets that have global breakpoints, the address
6929 space doesn't really matter. */
6930
6931static int
6932breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6933 int len1, struct address_space *aspace2,
6934 CORE_ADDR addr2)
6935{
6936 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6937 || aspace1 == aspace2)
6938 && addr2 >= addr1 && addr2 < addr1 + len1);
6939}
6940
6941/* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6942 a ranged breakpoint. In most targets, a match happens only if ASPACE
6943 matches the breakpoint's address space. On targets that have global
6944 breakpoints, the address space doesn't really matter. */
6945
6946static int
6947breakpoint_location_address_match (struct bp_location *bl,
6948 struct address_space *aspace,
6949 CORE_ADDR addr)
6950{
6951 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6952 aspace, addr)
6953 || (bl->length
6954 && breakpoint_address_match_range (bl->pspace->aspace,
6955 bl->address, bl->length,
6956 aspace, addr)));
6957}
6958
6959/* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6960 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6961 true, otherwise returns false. */
6962
6963static int
6964tracepoint_locations_match (struct bp_location *loc1,
6965 struct bp_location *loc2)
6966{
6967 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6968 /* Since tracepoint locations are never duplicated with others', tracepoint
6969 locations at the same address of different tracepoints are regarded as
6970 different locations. */
6971 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6972 else
6973 return 0;
6974}
6975
6976/* Assuming LOC1 and LOC2's types' have meaningful target addresses
6977 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6978 represent the same location. */
6979
6980static int
6981breakpoint_locations_match (struct bp_location *loc1,
6982 struct bp_location *loc2)
6983{
6984 int hw_point1, hw_point2;
6985
6986 /* Both of them must not be in moribund_locations. */
6987 gdb_assert (loc1->owner != NULL);
6988 gdb_assert (loc2->owner != NULL);
6989
6990 hw_point1 = is_hardware_watchpoint (loc1->owner);
6991 hw_point2 = is_hardware_watchpoint (loc2->owner);
6992
6993 if (hw_point1 != hw_point2)
6994 return 0;
6995 else if (hw_point1)
6996 return watchpoint_locations_match (loc1, loc2);
6997 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6998 return tracepoint_locations_match (loc1, loc2);
6999 else
7000 /* We compare bp_location.length in order to cover ranged breakpoints. */
7001 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7002 loc2->pspace->aspace, loc2->address)
7003 && loc1->length == loc2->length);
7004}
7005
7006static void
7007breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7008 int bnum, int have_bnum)
7009{
7010 /* The longest string possibly returned by hex_string_custom
7011 is 50 chars. These must be at least that big for safety. */
7012 char astr1[64];
7013 char astr2[64];
7014
7015 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7016 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7017 if (have_bnum)
7018 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7019 bnum, astr1, astr2);
7020 else
7021 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7022}
7023
7024/* Adjust a breakpoint's address to account for architectural
7025 constraints on breakpoint placement. Return the adjusted address.
7026 Note: Very few targets require this kind of adjustment. For most
7027 targets, this function is simply the identity function. */
7028
7029static CORE_ADDR
7030adjust_breakpoint_address (struct gdbarch *gdbarch,
7031 CORE_ADDR bpaddr, enum bptype bptype)
7032{
7033 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7034 {
7035 /* Very few targets need any kind of breakpoint adjustment. */
7036 return bpaddr;
7037 }
7038 else if (bptype == bp_watchpoint
7039 || bptype == bp_hardware_watchpoint
7040 || bptype == bp_read_watchpoint
7041 || bptype == bp_access_watchpoint
7042 || bptype == bp_catchpoint)
7043 {
7044 /* Watchpoints and the various bp_catch_* eventpoints should not
7045 have their addresses modified. */
7046 return bpaddr;
7047 }
7048 else
7049 {
7050 CORE_ADDR adjusted_bpaddr;
7051
7052 /* Some targets have architectural constraints on the placement
7053 of breakpoint instructions. Obtain the adjusted address. */
7054 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7055
7056 /* An adjusted breakpoint address can significantly alter
7057 a user's expectations. Print a warning if an adjustment
7058 is required. */
7059 if (adjusted_bpaddr != bpaddr)
7060 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7061
7062 return adjusted_bpaddr;
7063 }
7064}
7065
7066void
7067init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7068 struct breakpoint *owner)
7069{
7070 memset (loc, 0, sizeof (*loc));
7071
7072 gdb_assert (ops != NULL);
7073
7074 loc->ops = ops;
7075 loc->owner = owner;
7076 loc->cond = NULL;
7077 loc->cond_bytecode = NULL;
7078 loc->shlib_disabled = 0;
7079 loc->enabled = 1;
7080
7081 switch (owner->type)
7082 {
7083 case bp_breakpoint:
7084 case bp_until:
7085 case bp_finish:
7086 case bp_longjmp:
7087 case bp_longjmp_resume:
7088 case bp_longjmp_call_dummy:
7089 case bp_exception:
7090 case bp_exception_resume:
7091 case bp_step_resume:
7092 case bp_hp_step_resume:
7093 case bp_watchpoint_scope:
7094 case bp_call_dummy:
7095 case bp_std_terminate:
7096 case bp_shlib_event:
7097 case bp_thread_event:
7098 case bp_overlay_event:
7099 case bp_jit_event:
7100 case bp_longjmp_master:
7101 case bp_std_terminate_master:
7102 case bp_exception_master:
7103 case bp_gnu_ifunc_resolver:
7104 case bp_gnu_ifunc_resolver_return:
7105 case bp_dprintf:
7106 loc->loc_type = bp_loc_software_breakpoint;
7107 mark_breakpoint_location_modified (loc);
7108 break;
7109 case bp_hardware_breakpoint:
7110 loc->loc_type = bp_loc_hardware_breakpoint;
7111 mark_breakpoint_location_modified (loc);
7112 break;
7113 case bp_hardware_watchpoint:
7114 case bp_read_watchpoint:
7115 case bp_access_watchpoint:
7116 loc->loc_type = bp_loc_hardware_watchpoint;
7117 break;
7118 case bp_watchpoint:
7119 case bp_catchpoint:
7120 case bp_tracepoint:
7121 case bp_fast_tracepoint:
7122 case bp_static_tracepoint:
7123 loc->loc_type = bp_loc_other;
7124 break;
7125 default:
7126 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7127 }
7128
7129 loc->refc = 1;
7130}
7131
7132/* Allocate a struct bp_location. */
7133
7134static struct bp_location *
7135allocate_bp_location (struct breakpoint *bpt)
7136{
7137 return bpt->ops->allocate_location (bpt);
7138}
7139
7140static void
7141free_bp_location (struct bp_location *loc)
7142{
7143 loc->ops->dtor (loc);
7144 xfree (loc);
7145}
7146
7147/* Increment reference count. */
7148
7149static void
7150incref_bp_location (struct bp_location *bl)
7151{
7152 ++bl->refc;
7153}
7154
7155/* Decrement reference count. If the reference count reaches 0,
7156 destroy the bp_location. Sets *BLP to NULL. */
7157
7158static void
7159decref_bp_location (struct bp_location **blp)
7160{
7161 gdb_assert ((*blp)->refc > 0);
7162
7163 if (--(*blp)->refc == 0)
7164 free_bp_location (*blp);
7165 *blp = NULL;
7166}
7167
7168/* Add breakpoint B at the end of the global breakpoint chain. */
7169
7170static void
7171add_to_breakpoint_chain (struct breakpoint *b)
7172{
7173 struct breakpoint *b1;
7174
7175 /* Add this breakpoint to the end of the chain so that a list of
7176 breakpoints will come out in order of increasing numbers. */
7177
7178 b1 = breakpoint_chain;
7179 if (b1 == 0)
7180 breakpoint_chain = b;
7181 else
7182 {
7183 while (b1->next)
7184 b1 = b1->next;
7185 b1->next = b;
7186 }
7187}
7188
7189/* Initializes breakpoint B with type BPTYPE and no locations yet. */
7190
7191static void
7192init_raw_breakpoint_without_location (struct breakpoint *b,
7193 struct gdbarch *gdbarch,
7194 enum bptype bptype,
7195 const struct breakpoint_ops *ops)
7196{
7197 memset (b, 0, sizeof (*b));
7198
7199 gdb_assert (ops != NULL);
7200
7201 b->ops = ops;
7202 b->type = bptype;
7203 b->gdbarch = gdbarch;
7204 b->language = current_language->la_language;
7205 b->input_radix = input_radix;
7206 b->thread = -1;
7207 b->enable_state = bp_enabled;
7208 b->next = 0;
7209 b->silent = 0;
7210 b->ignore_count = 0;
7211 b->commands = NULL;
7212 b->frame_id = null_frame_id;
7213 b->condition_not_parsed = 0;
7214 b->py_bp_object = NULL;
7215 b->related_breakpoint = b;
7216}
7217
7218/* Helper to set_raw_breakpoint below. Creates a breakpoint
7219 that has type BPTYPE and has no locations as yet. */
7220
7221static struct breakpoint *
7222set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7223 enum bptype bptype,
7224 const struct breakpoint_ops *ops)
7225{
7226 struct breakpoint *b = XNEW (struct breakpoint);
7227
7228 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7229 add_to_breakpoint_chain (b);
7230 return b;
7231}
7232
7233/* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7234 resolutions should be made as the user specified the location explicitly
7235 enough. */
7236
7237static void
7238set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7239{
7240 gdb_assert (loc->owner != NULL);
7241
7242 if (loc->owner->type == bp_breakpoint
7243 || loc->owner->type == bp_hardware_breakpoint
7244 || is_tracepoint (loc->owner))
7245 {
7246 int is_gnu_ifunc;
7247 const char *function_name;
7248 CORE_ADDR func_addr;
7249
7250 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7251 &func_addr, NULL, &is_gnu_ifunc);
7252
7253 if (is_gnu_ifunc && !explicit_loc)
7254 {
7255 struct breakpoint *b = loc->owner;
7256
7257 gdb_assert (loc->pspace == current_program_space);
7258 if (gnu_ifunc_resolve_name (function_name,
7259 &loc->requested_address))
7260 {
7261 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7262 loc->address = adjust_breakpoint_address (loc->gdbarch,
7263 loc->requested_address,
7264 b->type);
7265 }
7266 else if (b->type == bp_breakpoint && b->loc == loc
7267 && loc->next == NULL && b->related_breakpoint == b)
7268 {
7269 /* Create only the whole new breakpoint of this type but do not
7270 mess more complicated breakpoints with multiple locations. */
7271 b->type = bp_gnu_ifunc_resolver;
7272 /* Remember the resolver's address for use by the return
7273 breakpoint. */
7274 loc->related_address = func_addr;
7275 }
7276 }
7277
7278 if (function_name)
7279 loc->function_name = xstrdup (function_name);
7280 }
7281}
7282
7283/* Attempt to determine architecture of location identified by SAL. */
7284struct gdbarch *
7285get_sal_arch (struct symtab_and_line sal)
7286{
7287 if (sal.section)
7288 return get_objfile_arch (sal.section->objfile);
7289 if (sal.symtab)
7290 return get_objfile_arch (sal.symtab->objfile);
7291
7292 return NULL;
7293}
7294
7295/* Low level routine for partially initializing a breakpoint of type
7296 BPTYPE. The newly created breakpoint's address, section, source
7297 file name, and line number are provided by SAL.
7298
7299 It is expected that the caller will complete the initialization of
7300 the newly created breakpoint struct as well as output any status
7301 information regarding the creation of a new breakpoint. */
7302
7303static void
7304init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7305 struct symtab_and_line sal, enum bptype bptype,
7306 const struct breakpoint_ops *ops)
7307{
7308 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7309
7310 add_location_to_breakpoint (b, &sal);
7311
7312 if (bptype != bp_catchpoint)
7313 gdb_assert (sal.pspace != NULL);
7314
7315 /* Store the program space that was used to set the breakpoint,
7316 except for ordinary breakpoints, which are independent of the
7317 program space. */
7318 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7319 b->pspace = sal.pspace;
7320}
7321
7322/* set_raw_breakpoint is a low level routine for allocating and
7323 partially initializing a breakpoint of type BPTYPE. The newly
7324 created breakpoint's address, section, source file name, and line
7325 number are provided by SAL. The newly created and partially
7326 initialized breakpoint is added to the breakpoint chain and
7327 is also returned as the value of this function.
7328
7329 It is expected that the caller will complete the initialization of
7330 the newly created breakpoint struct as well as output any status
7331 information regarding the creation of a new breakpoint. In
7332 particular, set_raw_breakpoint does NOT set the breakpoint
7333 number! Care should be taken to not allow an error to occur
7334 prior to completing the initialization of the breakpoint. If this
7335 should happen, a bogus breakpoint will be left on the chain. */
7336
7337struct breakpoint *
7338set_raw_breakpoint (struct gdbarch *gdbarch,
7339 struct symtab_and_line sal, enum bptype bptype,
7340 const struct breakpoint_ops *ops)
7341{
7342 struct breakpoint *b = XNEW (struct breakpoint);
7343
7344 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7345 add_to_breakpoint_chain (b);
7346 return b;
7347}
7348
7349
7350/* Note that the breakpoint object B describes a permanent breakpoint
7351 instruction, hard-wired into the inferior's code. */
7352void
7353make_breakpoint_permanent (struct breakpoint *b)
7354{
7355 struct bp_location *bl;
7356
7357 b->enable_state = bp_permanent;
7358
7359 /* By definition, permanent breakpoints are already present in the
7360 code. Mark all locations as inserted. For now,
7361 make_breakpoint_permanent is called in just one place, so it's
7362 hard to say if it's reasonable to have permanent breakpoint with
7363 multiple locations or not, but it's easy to implement. */
7364 for (bl = b->loc; bl; bl = bl->next)
7365 bl->inserted = 1;
7366}
7367
7368/* Call this routine when stepping and nexting to enable a breakpoint
7369 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7370 initiated the operation. */
7371
7372void
7373set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7374{
7375 struct breakpoint *b, *b_tmp;
7376 int thread = tp->num;
7377
7378 /* To avoid having to rescan all objfile symbols at every step,
7379 we maintain a list of continually-inserted but always disabled
7380 longjmp "master" breakpoints. Here, we simply create momentary
7381 clones of those and enable them for the requested thread. */
7382 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7383 if (b->pspace == current_program_space
7384 && (b->type == bp_longjmp_master
7385 || b->type == bp_exception_master))
7386 {
7387 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7388 struct breakpoint *clone;
7389
7390 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7391 after their removal. */
7392 clone = momentary_breakpoint_from_master (b, type,
7393 &longjmp_breakpoint_ops);
7394 clone->thread = thread;
7395 }
7396
7397 tp->initiating_frame = frame;
7398}
7399
7400/* Delete all longjmp breakpoints from THREAD. */
7401void
7402delete_longjmp_breakpoint (int thread)
7403{
7404 struct breakpoint *b, *b_tmp;
7405
7406 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7407 if (b->type == bp_longjmp || b->type == bp_exception)
7408 {
7409 if (b->thread == thread)
7410 delete_breakpoint (b);
7411 }
7412}
7413
7414void
7415delete_longjmp_breakpoint_at_next_stop (int thread)
7416{
7417 struct breakpoint *b, *b_tmp;
7418
7419 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7420 if (b->type == bp_longjmp || b->type == bp_exception)
7421 {
7422 if (b->thread == thread)
7423 b->disposition = disp_del_at_next_stop;
7424 }
7425}
7426
7427/* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7428 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7429 pointer to any of them. Return NULL if this system cannot place longjmp
7430 breakpoints. */
7431
7432struct breakpoint *
7433set_longjmp_breakpoint_for_call_dummy (void)
7434{
7435 struct breakpoint *b, *retval = NULL;
7436
7437 ALL_BREAKPOINTS (b)
7438 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7439 {
7440 struct breakpoint *new_b;
7441
7442 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7443 &momentary_breakpoint_ops);
7444 new_b->thread = pid_to_thread_id (inferior_ptid);
7445
7446 /* Link NEW_B into the chain of RETVAL breakpoints. */
7447
7448 gdb_assert (new_b->related_breakpoint == new_b);
7449 if (retval == NULL)
7450 retval = new_b;
7451 new_b->related_breakpoint = retval;
7452 while (retval->related_breakpoint != new_b->related_breakpoint)
7453 retval = retval->related_breakpoint;
7454 retval->related_breakpoint = new_b;
7455 }
7456
7457 return retval;
7458}
7459
7460/* Verify all existing dummy frames and their associated breakpoints for
7461 THREAD. Remove those which can no longer be found in the current frame
7462 stack.
7463
7464 You should call this function only at places where it is safe to currently
7465 unwind the whole stack. Failed stack unwind would discard live dummy
7466 frames. */
7467
7468void
7469check_longjmp_breakpoint_for_call_dummy (int thread)
7470{
7471 struct breakpoint *b, *b_tmp;
7472
7473 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7474 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7475 {
7476 struct breakpoint *dummy_b = b->related_breakpoint;
7477
7478 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7479 dummy_b = dummy_b->related_breakpoint;
7480 if (dummy_b->type != bp_call_dummy
7481 || frame_find_by_id (dummy_b->frame_id) != NULL)
7482 continue;
7483
7484 dummy_frame_discard (dummy_b->frame_id);
7485
7486 while (b->related_breakpoint != b)
7487 {
7488 if (b_tmp == b->related_breakpoint)
7489 b_tmp = b->related_breakpoint->next;
7490 delete_breakpoint (b->related_breakpoint);
7491 }
7492 delete_breakpoint (b);
7493 }
7494}
7495
7496void
7497enable_overlay_breakpoints (void)
7498{
7499 struct breakpoint *b;
7500
7501 ALL_BREAKPOINTS (b)
7502 if (b->type == bp_overlay_event)
7503 {
7504 b->enable_state = bp_enabled;
7505 update_global_location_list (1);
7506 overlay_events_enabled = 1;
7507 }
7508}
7509
7510void
7511disable_overlay_breakpoints (void)
7512{
7513 struct breakpoint *b;
7514
7515 ALL_BREAKPOINTS (b)
7516 if (b->type == bp_overlay_event)
7517 {
7518 b->enable_state = bp_disabled;
7519 update_global_location_list (0);
7520 overlay_events_enabled = 0;
7521 }
7522}
7523
7524/* Set an active std::terminate breakpoint for each std::terminate
7525 master breakpoint. */
7526void
7527set_std_terminate_breakpoint (void)
7528{
7529 struct breakpoint *b, *b_tmp;
7530
7531 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7532 if (b->pspace == current_program_space
7533 && b->type == bp_std_terminate_master)
7534 {
7535 momentary_breakpoint_from_master (b, bp_std_terminate,
7536 &momentary_breakpoint_ops);
7537 }
7538}
7539
7540/* Delete all the std::terminate breakpoints. */
7541void
7542delete_std_terminate_breakpoint (void)
7543{
7544 struct breakpoint *b, *b_tmp;
7545
7546 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7547 if (b->type == bp_std_terminate)
7548 delete_breakpoint (b);
7549}
7550
7551struct breakpoint *
7552create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7553{
7554 struct breakpoint *b;
7555
7556 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7557 &internal_breakpoint_ops);
7558
7559 b->enable_state = bp_enabled;
7560 /* addr_string has to be used or breakpoint_re_set will delete me. */
7561 b->addr_string
7562 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7563
7564 update_global_location_list_nothrow (1);
7565
7566 return b;
7567}
7568
7569void
7570remove_thread_event_breakpoints (void)
7571{
7572 struct breakpoint *b, *b_tmp;
7573
7574 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7575 if (b->type == bp_thread_event
7576 && b->loc->pspace == current_program_space)
7577 delete_breakpoint (b);
7578}
7579
7580struct lang_and_radix
7581 {
7582 enum language lang;
7583 int radix;
7584 };
7585
7586/* Create a breakpoint for JIT code registration and unregistration. */
7587
7588struct breakpoint *
7589create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7590{
7591 struct breakpoint *b;
7592
7593 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7594 &internal_breakpoint_ops);
7595 update_global_location_list_nothrow (1);
7596 return b;
7597}
7598
7599/* Remove JIT code registration and unregistration breakpoint(s). */
7600
7601void
7602remove_jit_event_breakpoints (void)
7603{
7604 struct breakpoint *b, *b_tmp;
7605
7606 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7607 if (b->type == bp_jit_event
7608 && b->loc->pspace == current_program_space)
7609 delete_breakpoint (b);
7610}
7611
7612void
7613remove_solib_event_breakpoints (void)
7614{
7615 struct breakpoint *b, *b_tmp;
7616
7617 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7618 if (b->type == bp_shlib_event
7619 && b->loc->pspace == current_program_space)
7620 delete_breakpoint (b);
7621}
7622
7623struct breakpoint *
7624create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7625{
7626 struct breakpoint *b;
7627
7628 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7629 &internal_breakpoint_ops);
7630 update_global_location_list_nothrow (1);
7631 return b;
7632}
7633
7634/* Disable any breakpoints that are on code in shared libraries. Only
7635 apply to enabled breakpoints, disabled ones can just stay disabled. */
7636
7637void
7638disable_breakpoints_in_shlibs (void)
7639{
7640 struct bp_location *loc, **locp_tmp;
7641
7642 ALL_BP_LOCATIONS (loc, locp_tmp)
7643 {
7644 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7645 struct breakpoint *b = loc->owner;
7646
7647 /* We apply the check to all breakpoints, including disabled for
7648 those with loc->duplicate set. This is so that when breakpoint
7649 becomes enabled, or the duplicate is removed, gdb will try to
7650 insert all breakpoints. If we don't set shlib_disabled here,
7651 we'll try to insert those breakpoints and fail. */
7652 if (((b->type == bp_breakpoint)
7653 || (b->type == bp_jit_event)
7654 || (b->type == bp_hardware_breakpoint)
7655 || (is_tracepoint (b)))
7656 && loc->pspace == current_program_space
7657 && !loc->shlib_disabled
7658 && solib_name_from_address (loc->pspace, loc->address)
7659 )
7660 {
7661 loc->shlib_disabled = 1;
7662 }
7663 }
7664}
7665
7666/* Disable any breakpoints and tracepoints that are in SOLIB upon
7667 notification of unloaded_shlib. Only apply to enabled breakpoints,
7668 disabled ones can just stay disabled. */
7669
7670static void
7671disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7672{
7673 struct bp_location *loc, **locp_tmp;
7674 int disabled_shlib_breaks = 0;
7675
7676 /* SunOS a.out shared libraries are always mapped, so do not
7677 disable breakpoints; they will only be reported as unloaded
7678 through clear_solib when GDB discards its shared library
7679 list. See clear_solib for more information. */
7680 if (exec_bfd != NULL
7681 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7682 return;
7683
7684 ALL_BP_LOCATIONS (loc, locp_tmp)
7685 {
7686 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7687 struct breakpoint *b = loc->owner;
7688
7689 if (solib->pspace == loc->pspace
7690 && !loc->shlib_disabled
7691 && (((b->type == bp_breakpoint
7692 || b->type == bp_jit_event
7693 || b->type == bp_hardware_breakpoint)
7694 && (loc->loc_type == bp_loc_hardware_breakpoint
7695 || loc->loc_type == bp_loc_software_breakpoint))
7696 || is_tracepoint (b))
7697 && solib_contains_address_p (solib, loc->address))
7698 {
7699 loc->shlib_disabled = 1;
7700 /* At this point, we cannot rely on remove_breakpoint
7701 succeeding so we must mark the breakpoint as not inserted
7702 to prevent future errors occurring in remove_breakpoints. */
7703 loc->inserted = 0;
7704
7705 /* This may cause duplicate notifications for the same breakpoint. */
7706 observer_notify_breakpoint_modified (b);
7707
7708 if (!disabled_shlib_breaks)
7709 {
7710 target_terminal_ours_for_output ();
7711 warning (_("Temporarily disabling breakpoints "
7712 "for unloaded shared library \"%s\""),
7713 solib->so_name);
7714 }
7715 disabled_shlib_breaks = 1;
7716 }
7717 }
7718}
7719
7720/* Disable any breakpoints and tracepoints in OBJFILE upon
7721 notification of free_objfile. Only apply to enabled breakpoints,
7722 disabled ones can just stay disabled. */
7723
7724static void
7725disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7726{
7727 struct breakpoint *b;
7728
7729 if (objfile == NULL)
7730 return;
7731
7732 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7733 managed by the user with add-symbol-file/remove-symbol-file.
7734 Similarly to how breakpoints in shared libraries are handled in
7735 response to "nosharedlibrary", mark breakpoints in such modules
7736 shlib_disabled so they end up uninserted on the next global
7737 location list update. Shared libraries not loaded by the user
7738 aren't handled here -- they're already handled in
7739 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7740 solib_unloaded observer. We skip objfiles that are not
7741 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7742 main objfile). */
7743 if ((objfile->flags & OBJF_SHARED) == 0
7744 || (objfile->flags & OBJF_USERLOADED) == 0)
7745 return;
7746
7747 ALL_BREAKPOINTS (b)
7748 {
7749 struct bp_location *loc;
7750 int bp_modified = 0;
7751
7752 if (!is_breakpoint (b) && !is_tracepoint (b))
7753 continue;
7754
7755 for (loc = b->loc; loc != NULL; loc = loc->next)
7756 {
7757 CORE_ADDR loc_addr = loc->address;
7758
7759 if (loc->loc_type != bp_loc_hardware_breakpoint
7760 && loc->loc_type != bp_loc_software_breakpoint)
7761 continue;
7762
7763 if (loc->shlib_disabled != 0)
7764 continue;
7765
7766 if (objfile->pspace != loc->pspace)
7767 continue;
7768
7769 if (loc->loc_type != bp_loc_hardware_breakpoint
7770 && loc->loc_type != bp_loc_software_breakpoint)
7771 continue;
7772
7773 if (is_addr_in_objfile (loc_addr, objfile))
7774 {
7775 loc->shlib_disabled = 1;
7776 /* At this point, we don't know whether the object was
7777 unmapped from the inferior or not, so leave the
7778 inserted flag alone. We'll handle failure to
7779 uninsert quietly, in case the object was indeed
7780 unmapped. */
7781
7782 mark_breakpoint_location_modified (loc);
7783
7784 bp_modified = 1;
7785 }
7786 }
7787
7788 if (bp_modified)
7789 observer_notify_breakpoint_modified (b);
7790 }
7791}
7792
7793/* FORK & VFORK catchpoints. */
7794
7795/* An instance of this type is used to represent a fork or vfork
7796 catchpoint. It includes a "struct breakpoint" as a kind of base
7797 class; users downcast to "struct breakpoint *" when needed. A
7798 breakpoint is really of this type iff its ops pointer points to
7799 CATCH_FORK_BREAKPOINT_OPS. */
7800
7801struct fork_catchpoint
7802{
7803 /* The base class. */
7804 struct breakpoint base;
7805
7806 /* Process id of a child process whose forking triggered this
7807 catchpoint. This field is only valid immediately after this
7808 catchpoint has triggered. */
7809 ptid_t forked_inferior_pid;
7810};
7811
7812/* Implement the "insert" breakpoint_ops method for fork
7813 catchpoints. */
7814
7815static int
7816insert_catch_fork (struct bp_location *bl)
7817{
7818 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7819}
7820
7821/* Implement the "remove" breakpoint_ops method for fork
7822 catchpoints. */
7823
7824static int
7825remove_catch_fork (struct bp_location *bl)
7826{
7827 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7828}
7829
7830/* Implement the "breakpoint_hit" breakpoint_ops method for fork
7831 catchpoints. */
7832
7833static int
7834breakpoint_hit_catch_fork (const struct bp_location *bl,
7835 struct address_space *aspace, CORE_ADDR bp_addr,
7836 const struct target_waitstatus *ws)
7837{
7838 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7839
7840 if (ws->kind != TARGET_WAITKIND_FORKED)
7841 return 0;
7842
7843 c->forked_inferior_pid = ws->value.related_pid;
7844 return 1;
7845}
7846
7847/* Implement the "print_it" breakpoint_ops method for fork
7848 catchpoints. */
7849
7850static enum print_stop_action
7851print_it_catch_fork (bpstat bs)
7852{
7853 struct ui_out *uiout = current_uiout;
7854 struct breakpoint *b = bs->breakpoint_at;
7855 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7856
7857 annotate_catchpoint (b->number);
7858 if (b->disposition == disp_del)
7859 ui_out_text (uiout, "\nTemporary catchpoint ");
7860 else
7861 ui_out_text (uiout, "\nCatchpoint ");
7862 if (ui_out_is_mi_like_p (uiout))
7863 {
7864 ui_out_field_string (uiout, "reason",
7865 async_reason_lookup (EXEC_ASYNC_FORK));
7866 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7867 }
7868 ui_out_field_int (uiout, "bkptno", b->number);
7869 ui_out_text (uiout, " (forked process ");
7870 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7871 ui_out_text (uiout, "), ");
7872 return PRINT_SRC_AND_LOC;
7873}
7874
7875/* Implement the "print_one" breakpoint_ops method for fork
7876 catchpoints. */
7877
7878static void
7879print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7880{
7881 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7882 struct value_print_options opts;
7883 struct ui_out *uiout = current_uiout;
7884
7885 get_user_print_options (&opts);
7886
7887 /* Field 4, the address, is omitted (which makes the columns not
7888 line up too nicely with the headers, but the effect is relatively
7889 readable). */
7890 if (opts.addressprint)
7891 ui_out_field_skip (uiout, "addr");
7892 annotate_field (5);
7893 ui_out_text (uiout, "fork");
7894 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7895 {
7896 ui_out_text (uiout, ", process ");
7897 ui_out_field_int (uiout, "what",
7898 ptid_get_pid (c->forked_inferior_pid));
7899 ui_out_spaces (uiout, 1);
7900 }
7901
7902 if (ui_out_is_mi_like_p (uiout))
7903 ui_out_field_string (uiout, "catch-type", "fork");
7904}
7905
7906/* Implement the "print_mention" breakpoint_ops method for fork
7907 catchpoints. */
7908
7909static void
7910print_mention_catch_fork (struct breakpoint *b)
7911{
7912 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7913}
7914
7915/* Implement the "print_recreate" breakpoint_ops method for fork
7916 catchpoints. */
7917
7918static void
7919print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7920{
7921 fprintf_unfiltered (fp, "catch fork");
7922 print_recreate_thread (b, fp);
7923}
7924
7925/* The breakpoint_ops structure to be used in fork catchpoints. */
7926
7927static struct breakpoint_ops catch_fork_breakpoint_ops;
7928
7929/* Implement the "insert" breakpoint_ops method for vfork
7930 catchpoints. */
7931
7932static int
7933insert_catch_vfork (struct bp_location *bl)
7934{
7935 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7936}
7937
7938/* Implement the "remove" breakpoint_ops method for vfork
7939 catchpoints. */
7940
7941static int
7942remove_catch_vfork (struct bp_location *bl)
7943{
7944 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7945}
7946
7947/* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7948 catchpoints. */
7949
7950static int
7951breakpoint_hit_catch_vfork (const struct bp_location *bl,
7952 struct address_space *aspace, CORE_ADDR bp_addr,
7953 const struct target_waitstatus *ws)
7954{
7955 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7956
7957 if (ws->kind != TARGET_WAITKIND_VFORKED)
7958 return 0;
7959
7960 c->forked_inferior_pid = ws->value.related_pid;
7961 return 1;
7962}
7963
7964/* Implement the "print_it" breakpoint_ops method for vfork
7965 catchpoints. */
7966
7967static enum print_stop_action
7968print_it_catch_vfork (bpstat bs)
7969{
7970 struct ui_out *uiout = current_uiout;
7971 struct breakpoint *b = bs->breakpoint_at;
7972 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7973
7974 annotate_catchpoint (b->number);
7975 if (b->disposition == disp_del)
7976 ui_out_text (uiout, "\nTemporary catchpoint ");
7977 else
7978 ui_out_text (uiout, "\nCatchpoint ");
7979 if (ui_out_is_mi_like_p (uiout))
7980 {
7981 ui_out_field_string (uiout, "reason",
7982 async_reason_lookup (EXEC_ASYNC_VFORK));
7983 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7984 }
7985 ui_out_field_int (uiout, "bkptno", b->number);
7986 ui_out_text (uiout, " (vforked process ");
7987 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7988 ui_out_text (uiout, "), ");
7989 return PRINT_SRC_AND_LOC;
7990}
7991
7992/* Implement the "print_one" breakpoint_ops method for vfork
7993 catchpoints. */
7994
7995static void
7996print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7997{
7998 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7999 struct value_print_options opts;
8000 struct ui_out *uiout = current_uiout;
8001
8002 get_user_print_options (&opts);
8003 /* Field 4, the address, is omitted (which makes the columns not
8004 line up too nicely with the headers, but the effect is relatively
8005 readable). */
8006 if (opts.addressprint)
8007 ui_out_field_skip (uiout, "addr");
8008 annotate_field (5);
8009 ui_out_text (uiout, "vfork");
8010 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8011 {
8012 ui_out_text (uiout, ", process ");
8013 ui_out_field_int (uiout, "what",
8014 ptid_get_pid (c->forked_inferior_pid));
8015 ui_out_spaces (uiout, 1);
8016 }
8017
8018 if (ui_out_is_mi_like_p (uiout))
8019 ui_out_field_string (uiout, "catch-type", "vfork");
8020}
8021
8022/* Implement the "print_mention" breakpoint_ops method for vfork
8023 catchpoints. */
8024
8025static void
8026print_mention_catch_vfork (struct breakpoint *b)
8027{
8028 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8029}
8030
8031/* Implement the "print_recreate" breakpoint_ops method for vfork
8032 catchpoints. */
8033
8034static void
8035print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8036{
8037 fprintf_unfiltered (fp, "catch vfork");
8038 print_recreate_thread (b, fp);
8039}
8040
8041/* The breakpoint_ops structure to be used in vfork catchpoints. */
8042
8043static struct breakpoint_ops catch_vfork_breakpoint_ops;
8044
8045/* An instance of this type is used to represent an solib catchpoint.
8046 It includes a "struct breakpoint" as a kind of base class; users
8047 downcast to "struct breakpoint *" when needed. A breakpoint is
8048 really of this type iff its ops pointer points to
8049 CATCH_SOLIB_BREAKPOINT_OPS. */
8050
8051struct solib_catchpoint
8052{
8053 /* The base class. */
8054 struct breakpoint base;
8055
8056 /* True for "catch load", false for "catch unload". */
8057 unsigned char is_load;
8058
8059 /* Regular expression to match, if any. COMPILED is only valid when
8060 REGEX is non-NULL. */
8061 char *regex;
8062 regex_t compiled;
8063};
8064
8065static void
8066dtor_catch_solib (struct breakpoint *b)
8067{
8068 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8069
8070 if (self->regex)
8071 regfree (&self->compiled);
8072 xfree (self->regex);
8073
8074 base_breakpoint_ops.dtor (b);
8075}
8076
8077static int
8078insert_catch_solib (struct bp_location *ignore)
8079{
8080 return 0;
8081}
8082
8083static int
8084remove_catch_solib (struct bp_location *ignore)
8085{
8086 return 0;
8087}
8088
8089static int
8090breakpoint_hit_catch_solib (const struct bp_location *bl,
8091 struct address_space *aspace,
8092 CORE_ADDR bp_addr,
8093 const struct target_waitstatus *ws)
8094{
8095 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8096 struct breakpoint *other;
8097
8098 if (ws->kind == TARGET_WAITKIND_LOADED)
8099 return 1;
8100
8101 ALL_BREAKPOINTS (other)
8102 {
8103 struct bp_location *other_bl;
8104
8105 if (other == bl->owner)
8106 continue;
8107
8108 if (other->type != bp_shlib_event)
8109 continue;
8110
8111 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8112 continue;
8113
8114 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8115 {
8116 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8117 return 1;
8118 }
8119 }
8120
8121 return 0;
8122}
8123
8124static void
8125check_status_catch_solib (struct bpstats *bs)
8126{
8127 struct solib_catchpoint *self
8128 = (struct solib_catchpoint *) bs->breakpoint_at;
8129 int ix;
8130
8131 if (self->is_load)
8132 {
8133 struct so_list *iter;
8134
8135 for (ix = 0;
8136 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8137 ix, iter);
8138 ++ix)
8139 {
8140 if (!self->regex
8141 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8142 return;
8143 }
8144 }
8145 else
8146 {
8147 char *iter;
8148
8149 for (ix = 0;
8150 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8151 ix, iter);
8152 ++ix)
8153 {
8154 if (!self->regex
8155 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8156 return;
8157 }
8158 }
8159
8160 bs->stop = 0;
8161 bs->print_it = print_it_noop;
8162}
8163
8164static enum print_stop_action
8165print_it_catch_solib (bpstat bs)
8166{
8167 struct breakpoint *b = bs->breakpoint_at;
8168 struct ui_out *uiout = current_uiout;
8169
8170 annotate_catchpoint (b->number);
8171 if (b->disposition == disp_del)
8172 ui_out_text (uiout, "\nTemporary catchpoint ");
8173 else
8174 ui_out_text (uiout, "\nCatchpoint ");
8175 ui_out_field_int (uiout, "bkptno", b->number);
8176 ui_out_text (uiout, "\n");
8177 if (ui_out_is_mi_like_p (uiout))
8178 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8179 print_solib_event (1);
8180 return PRINT_SRC_AND_LOC;
8181}
8182
8183static void
8184print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8185{
8186 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8187 struct value_print_options opts;
8188 struct ui_out *uiout = current_uiout;
8189 char *msg;
8190
8191 get_user_print_options (&opts);
8192 /* Field 4, the address, is omitted (which makes the columns not
8193 line up too nicely with the headers, but the effect is relatively
8194 readable). */
8195 if (opts.addressprint)
8196 {
8197 annotate_field (4);
8198 ui_out_field_skip (uiout, "addr");
8199 }
8200
8201 annotate_field (5);
8202 if (self->is_load)
8203 {
8204 if (self->regex)
8205 msg = xstrprintf (_("load of library matching %s"), self->regex);
8206 else
8207 msg = xstrdup (_("load of library"));
8208 }
8209 else
8210 {
8211 if (self->regex)
8212 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8213 else
8214 msg = xstrdup (_("unload of library"));
8215 }
8216 ui_out_field_string (uiout, "what", msg);
8217 xfree (msg);
8218
8219 if (ui_out_is_mi_like_p (uiout))
8220 ui_out_field_string (uiout, "catch-type",
8221 self->is_load ? "load" : "unload");
8222}
8223
8224static void
8225print_mention_catch_solib (struct breakpoint *b)
8226{
8227 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8228
8229 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8230 self->is_load ? "load" : "unload");
8231}
8232
8233static void
8234print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8235{
8236 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8237
8238 fprintf_unfiltered (fp, "%s %s",
8239 b->disposition == disp_del ? "tcatch" : "catch",
8240 self->is_load ? "load" : "unload");
8241 if (self->regex)
8242 fprintf_unfiltered (fp, " %s", self->regex);
8243 fprintf_unfiltered (fp, "\n");
8244}
8245
8246static struct breakpoint_ops catch_solib_breakpoint_ops;
8247
8248/* Shared helper function (MI and CLI) for creating and installing
8249 a shared object event catchpoint. If IS_LOAD is non-zero then
8250 the events to be caught are load events, otherwise they are
8251 unload events. If IS_TEMP is non-zero the catchpoint is a
8252 temporary one. If ENABLED is non-zero the catchpoint is
8253 created in an enabled state. */
8254
8255void
8256add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8257{
8258 struct solib_catchpoint *c;
8259 struct gdbarch *gdbarch = get_current_arch ();
8260 struct cleanup *cleanup;
8261
8262 if (!arg)
8263 arg = "";
8264 arg = skip_spaces (arg);
8265
8266 c = XCNEW (struct solib_catchpoint);
8267 cleanup = make_cleanup (xfree, c);
8268
8269 if (*arg != '\0')
8270 {
8271 int errcode;
8272
8273 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8274 if (errcode != 0)
8275 {
8276 char *err = get_regcomp_error (errcode, &c->compiled);
8277
8278 make_cleanup (xfree, err);
8279 error (_("Invalid regexp (%s): %s"), err, arg);
8280 }
8281 c->regex = xstrdup (arg);
8282 }
8283
8284 c->is_load = is_load;
8285 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8286 &catch_solib_breakpoint_ops);
8287
8288 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8289
8290 discard_cleanups (cleanup);
8291 install_breakpoint (0, &c->base, 1);
8292}
8293
8294/* A helper function that does all the work for "catch load" and
8295 "catch unload". */
8296
8297static void
8298catch_load_or_unload (char *arg, int from_tty, int is_load,
8299 struct cmd_list_element *command)
8300{
8301 int tempflag;
8302 const int enabled = 1;
8303
8304 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8305
8306 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8307}
8308
8309static void
8310catch_load_command_1 (char *arg, int from_tty,
8311 struct cmd_list_element *command)
8312{
8313 catch_load_or_unload (arg, from_tty, 1, command);
8314}
8315
8316static void
8317catch_unload_command_1 (char *arg, int from_tty,
8318 struct cmd_list_element *command)
8319{
8320 catch_load_or_unload (arg, from_tty, 0, command);
8321}
8322
8323/* An instance of this type is used to represent a syscall catchpoint.
8324 It includes a "struct breakpoint" as a kind of base class; users
8325 downcast to "struct breakpoint *" when needed. A breakpoint is
8326 really of this type iff its ops pointer points to
8327 CATCH_SYSCALL_BREAKPOINT_OPS. */
8328
8329struct syscall_catchpoint
8330{
8331 /* The base class. */
8332 struct breakpoint base;
8333
8334 /* Syscall numbers used for the 'catch syscall' feature. If no
8335 syscall has been specified for filtering, its value is NULL.
8336 Otherwise, it holds a list of all syscalls to be caught. The
8337 list elements are allocated with xmalloc. */
8338 VEC(int) *syscalls_to_be_caught;
8339};
8340
8341/* Implement the "dtor" breakpoint_ops method for syscall
8342 catchpoints. */
8343
8344static void
8345dtor_catch_syscall (struct breakpoint *b)
8346{
8347 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8348
8349 VEC_free (int, c->syscalls_to_be_caught);
8350
8351 base_breakpoint_ops.dtor (b);
8352}
8353
8354static const struct inferior_data *catch_syscall_inferior_data = NULL;
8355
8356struct catch_syscall_inferior_data
8357{
8358 /* We keep a count of the number of times the user has requested a
8359 particular syscall to be tracked, and pass this information to the
8360 target. This lets capable targets implement filtering directly. */
8361
8362 /* Number of times that "any" syscall is requested. */
8363 int any_syscall_count;
8364
8365 /* Count of each system call. */
8366 VEC(int) *syscalls_counts;
8367
8368 /* This counts all syscall catch requests, so we can readily determine
8369 if any catching is necessary. */
8370 int total_syscalls_count;
8371};
8372
8373static struct catch_syscall_inferior_data*
8374get_catch_syscall_inferior_data (struct inferior *inf)
8375{
8376 struct catch_syscall_inferior_data *inf_data;
8377
8378 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8379 if (inf_data == NULL)
8380 {
8381 inf_data = XCNEW (struct catch_syscall_inferior_data);
8382 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8383 }
8384
8385 return inf_data;
8386}
8387
8388static void
8389catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8390{
8391 xfree (arg);
8392}
8393
8394
8395/* Implement the "insert" breakpoint_ops method for syscall
8396 catchpoints. */
8397
8398static int
8399insert_catch_syscall (struct bp_location *bl)
8400{
8401 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8402 struct inferior *inf = current_inferior ();
8403 struct catch_syscall_inferior_data *inf_data
8404 = get_catch_syscall_inferior_data (inf);
8405
8406 ++inf_data->total_syscalls_count;
8407 if (!c->syscalls_to_be_caught)
8408 ++inf_data->any_syscall_count;
8409 else
8410 {
8411 int i, iter;
8412
8413 for (i = 0;
8414 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8415 i++)
8416 {
8417 int elem;
8418
8419 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8420 {
8421 int old_size = VEC_length (int, inf_data->syscalls_counts);
8422 uintptr_t vec_addr_offset
8423 = old_size * ((uintptr_t) sizeof (int));
8424 uintptr_t vec_addr;
8425 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8426 vec_addr = ((uintptr_t) VEC_address (int,
8427 inf_data->syscalls_counts)
8428 + vec_addr_offset);
8429 memset ((void *) vec_addr, 0,
8430 (iter + 1 - old_size) * sizeof (int));
8431 }
8432 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8433 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8434 }
8435 }
8436
8437 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8438 inf_data->total_syscalls_count != 0,
8439 inf_data->any_syscall_count,
8440 VEC_length (int,
8441 inf_data->syscalls_counts),
8442 VEC_address (int,
8443 inf_data->syscalls_counts));
8444}
8445
8446/* Implement the "remove" breakpoint_ops method for syscall
8447 catchpoints. */
8448
8449static int
8450remove_catch_syscall (struct bp_location *bl)
8451{
8452 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8453 struct inferior *inf = current_inferior ();
8454 struct catch_syscall_inferior_data *inf_data
8455 = get_catch_syscall_inferior_data (inf);
8456
8457 --inf_data->total_syscalls_count;
8458 if (!c->syscalls_to_be_caught)
8459 --inf_data->any_syscall_count;
8460 else
8461 {
8462 int i, iter;
8463
8464 for (i = 0;
8465 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8466 i++)
8467 {
8468 int elem;
8469 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8470 /* Shouldn't happen. */
8471 continue;
8472 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8473 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8474 }
8475 }
8476
8477 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8478 inf_data->total_syscalls_count != 0,
8479 inf_data->any_syscall_count,
8480 VEC_length (int,
8481 inf_data->syscalls_counts),
8482 VEC_address (int,
8483 inf_data->syscalls_counts));
8484}
8485
8486/* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8487 catchpoints. */
8488
8489static int
8490breakpoint_hit_catch_syscall (const struct bp_location *bl,
8491 struct address_space *aspace, CORE_ADDR bp_addr,
8492 const struct target_waitstatus *ws)
8493{
8494 /* We must check if we are catching specific syscalls in this
8495 breakpoint. If we are, then we must guarantee that the called
8496 syscall is the same syscall we are catching. */
8497 int syscall_number = 0;
8498 const struct syscall_catchpoint *c
8499 = (const struct syscall_catchpoint *) bl->owner;
8500
8501 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8502 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8503 return 0;
8504
8505 syscall_number = ws->value.syscall_number;
8506
8507 /* Now, checking if the syscall is the same. */
8508 if (c->syscalls_to_be_caught)
8509 {
8510 int i, iter;
8511
8512 for (i = 0;
8513 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8514 i++)
8515 if (syscall_number == iter)
8516 return 1;
8517
8518 return 0;
8519 }
8520
8521 return 1;
8522}
8523
8524/* Implement the "print_it" breakpoint_ops method for syscall
8525 catchpoints. */
8526
8527static enum print_stop_action
8528print_it_catch_syscall (bpstat bs)
8529{
8530 struct ui_out *uiout = current_uiout;
8531 struct breakpoint *b = bs->breakpoint_at;
8532 /* These are needed because we want to know in which state a
8533 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8534 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8535 must print "called syscall" or "returned from syscall". */
8536 ptid_t ptid;
8537 struct target_waitstatus last;
8538 struct syscall s;
8539
8540 get_last_target_status (&ptid, &last);
8541
8542 get_syscall_by_number (last.value.syscall_number, &s);
8543
8544 annotate_catchpoint (b->number);
8545
8546 if (b->disposition == disp_del)
8547 ui_out_text (uiout, "\nTemporary catchpoint ");
8548 else
8549 ui_out_text (uiout, "\nCatchpoint ");
8550 if (ui_out_is_mi_like_p (uiout))
8551 {
8552 ui_out_field_string (uiout, "reason",
8553 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8554 ? EXEC_ASYNC_SYSCALL_ENTRY
8555 : EXEC_ASYNC_SYSCALL_RETURN));
8556 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8557 }
8558 ui_out_field_int (uiout, "bkptno", b->number);
8559
8560 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8561 ui_out_text (uiout, " (call to syscall ");
8562 else
8563 ui_out_text (uiout, " (returned from syscall ");
8564
8565 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8566 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8567 if (s.name != NULL)
8568 ui_out_field_string (uiout, "syscall-name", s.name);
8569
8570 ui_out_text (uiout, "), ");
8571
8572 return PRINT_SRC_AND_LOC;
8573}
8574
8575/* Implement the "print_one" breakpoint_ops method for syscall
8576 catchpoints. */
8577
8578static void
8579print_one_catch_syscall (struct breakpoint *b,
8580 struct bp_location **last_loc)
8581{
8582 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8583 struct value_print_options opts;
8584 struct ui_out *uiout = current_uiout;
8585
8586 get_user_print_options (&opts);
8587 /* Field 4, the address, is omitted (which makes the columns not
8588 line up too nicely with the headers, but the effect is relatively
8589 readable). */
8590 if (opts.addressprint)
8591 ui_out_field_skip (uiout, "addr");
8592 annotate_field (5);
8593
8594 if (c->syscalls_to_be_caught
8595 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8596 ui_out_text (uiout, "syscalls \"");
8597 else
8598 ui_out_text (uiout, "syscall \"");
8599
8600 if (c->syscalls_to_be_caught)
8601 {
8602 int i, iter;
8603 char *text = xstrprintf ("%s", "");
8604
8605 for (i = 0;
8606 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8607 i++)
8608 {
8609 char *x = text;
8610 struct syscall s;
8611 get_syscall_by_number (iter, &s);
8612
8613 if (s.name != NULL)
8614 text = xstrprintf ("%s%s, ", text, s.name);
8615 else
8616 text = xstrprintf ("%s%d, ", text, iter);
8617
8618 /* We have to xfree the last 'text' (now stored at 'x')
8619 because xstrprintf dynamically allocates new space for it
8620 on every call. */
8621 xfree (x);
8622 }
8623 /* Remove the last comma. */
8624 text[strlen (text) - 2] = '\0';
8625 ui_out_field_string (uiout, "what", text);
8626 }
8627 else
8628 ui_out_field_string (uiout, "what", "<any syscall>");
8629 ui_out_text (uiout, "\" ");
8630
8631 if (ui_out_is_mi_like_p (uiout))
8632 ui_out_field_string (uiout, "catch-type", "syscall");
8633}
8634
8635/* Implement the "print_mention" breakpoint_ops method for syscall
8636 catchpoints. */
8637
8638static void
8639print_mention_catch_syscall (struct breakpoint *b)
8640{
8641 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8642
8643 if (c->syscalls_to_be_caught)
8644 {
8645 int i, iter;
8646
8647 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8648 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8649 else
8650 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8651
8652 for (i = 0;
8653 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8654 i++)
8655 {
8656 struct syscall s;
8657 get_syscall_by_number (iter, &s);
8658
8659 if (s.name)
8660 printf_filtered (" '%s' [%d]", s.name, s.number);
8661 else
8662 printf_filtered (" %d", s.number);
8663 }
8664 printf_filtered (")");
8665 }
8666 else
8667 printf_filtered (_("Catchpoint %d (any syscall)"),
8668 b->number);
8669}
8670
8671/* Implement the "print_recreate" breakpoint_ops method for syscall
8672 catchpoints. */
8673
8674static void
8675print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8676{
8677 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8678
8679 fprintf_unfiltered (fp, "catch syscall");
8680
8681 if (c->syscalls_to_be_caught)
8682 {
8683 int i, iter;
8684
8685 for (i = 0;
8686 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8687 i++)
8688 {
8689 struct syscall s;
8690
8691 get_syscall_by_number (iter, &s);
8692 if (s.name)
8693 fprintf_unfiltered (fp, " %s", s.name);
8694 else
8695 fprintf_unfiltered (fp, " %d", s.number);
8696 }
8697 }
8698 print_recreate_thread (b, fp);
8699}
8700
8701/* The breakpoint_ops structure to be used in syscall catchpoints. */
8702
8703static struct breakpoint_ops catch_syscall_breakpoint_ops;
8704
8705/* Returns non-zero if 'b' is a syscall catchpoint. */
8706
8707static int
8708syscall_catchpoint_p (struct breakpoint *b)
8709{
8710 return (b->ops == &catch_syscall_breakpoint_ops);
8711}
8712
8713/* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8714 is non-zero, then make the breakpoint temporary. If COND_STRING is
8715 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8716 the breakpoint_ops structure associated to the catchpoint. */
8717
8718void
8719init_catchpoint (struct breakpoint *b,
8720 struct gdbarch *gdbarch, int tempflag,
8721 char *cond_string,
8722 const struct breakpoint_ops *ops)
8723{
8724 struct symtab_and_line sal;
8725
8726 init_sal (&sal);
8727 sal.pspace = current_program_space;
8728
8729 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8730
8731 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8732 b->disposition = tempflag ? disp_del : disp_donttouch;
8733}
8734
8735void
8736install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8737{
8738 add_to_breakpoint_chain (b);
8739 set_breakpoint_number (internal, b);
8740 if (is_tracepoint (b))
8741 set_tracepoint_count (breakpoint_count);
8742 if (!internal)
8743 mention (b);
8744 observer_notify_breakpoint_created (b);
8745
8746 if (update_gll)
8747 update_global_location_list (1);
8748}
8749
8750static void
8751create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8752 int tempflag, char *cond_string,
8753 const struct breakpoint_ops *ops)
8754{
8755 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8756
8757 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8758
8759 c->forked_inferior_pid = null_ptid;
8760
8761 install_breakpoint (0, &c->base, 1);
8762}
8763
8764/* Exec catchpoints. */
8765
8766/* An instance of this type is used to represent an exec catchpoint.
8767 It includes a "struct breakpoint" as a kind of base class; users
8768 downcast to "struct breakpoint *" when needed. A breakpoint is
8769 really of this type iff its ops pointer points to
8770 CATCH_EXEC_BREAKPOINT_OPS. */
8771
8772struct exec_catchpoint
8773{
8774 /* The base class. */
8775 struct breakpoint base;
8776
8777 /* Filename of a program whose exec triggered this catchpoint.
8778 This field is only valid immediately after this catchpoint has
8779 triggered. */
8780 char *exec_pathname;
8781};
8782
8783/* Implement the "dtor" breakpoint_ops method for exec
8784 catchpoints. */
8785
8786static void
8787dtor_catch_exec (struct breakpoint *b)
8788{
8789 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8790
8791 xfree (c->exec_pathname);
8792
8793 base_breakpoint_ops.dtor (b);
8794}
8795
8796static int
8797insert_catch_exec (struct bp_location *bl)
8798{
8799 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8800}
8801
8802static int
8803remove_catch_exec (struct bp_location *bl)
8804{
8805 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8806}
8807
8808static int
8809breakpoint_hit_catch_exec (const struct bp_location *bl,
8810 struct address_space *aspace, CORE_ADDR bp_addr,
8811 const struct target_waitstatus *ws)
8812{
8813 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8814
8815 if (ws->kind != TARGET_WAITKIND_EXECD)
8816 return 0;
8817
8818 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8819 return 1;
8820}
8821
8822static enum print_stop_action
8823print_it_catch_exec (bpstat bs)
8824{
8825 struct ui_out *uiout = current_uiout;
8826 struct breakpoint *b = bs->breakpoint_at;
8827 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8828
8829 annotate_catchpoint (b->number);
8830 if (b->disposition == disp_del)
8831 ui_out_text (uiout, "\nTemporary catchpoint ");
8832 else
8833 ui_out_text (uiout, "\nCatchpoint ");
8834 if (ui_out_is_mi_like_p (uiout))
8835 {
8836 ui_out_field_string (uiout, "reason",
8837 async_reason_lookup (EXEC_ASYNC_EXEC));
8838 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8839 }
8840 ui_out_field_int (uiout, "bkptno", b->number);
8841 ui_out_text (uiout, " (exec'd ");
8842 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8843 ui_out_text (uiout, "), ");
8844
8845 return PRINT_SRC_AND_LOC;
8846}
8847
8848static void
8849print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8850{
8851 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8852 struct value_print_options opts;
8853 struct ui_out *uiout = current_uiout;
8854
8855 get_user_print_options (&opts);
8856
8857 /* Field 4, the address, is omitted (which makes the columns
8858 not line up too nicely with the headers, but the effect
8859 is relatively readable). */
8860 if (opts.addressprint)
8861 ui_out_field_skip (uiout, "addr");
8862 annotate_field (5);
8863 ui_out_text (uiout, "exec");
8864 if (c->exec_pathname != NULL)
8865 {
8866 ui_out_text (uiout, ", program \"");
8867 ui_out_field_string (uiout, "what", c->exec_pathname);
8868 ui_out_text (uiout, "\" ");
8869 }
8870
8871 if (ui_out_is_mi_like_p (uiout))
8872 ui_out_field_string (uiout, "catch-type", "exec");
8873}
8874
8875static void
8876print_mention_catch_exec (struct breakpoint *b)
8877{
8878 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8879}
8880
8881/* Implement the "print_recreate" breakpoint_ops method for exec
8882 catchpoints. */
8883
8884static void
8885print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8886{
8887 fprintf_unfiltered (fp, "catch exec");
8888 print_recreate_thread (b, fp);
8889}
8890
8891static struct breakpoint_ops catch_exec_breakpoint_ops;
8892
8893static void
8894create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8895 const struct breakpoint_ops *ops)
8896{
8897 struct syscall_catchpoint *c;
8898 struct gdbarch *gdbarch = get_current_arch ();
8899
8900 c = XNEW (struct syscall_catchpoint);
8901 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8902 c->syscalls_to_be_caught = filter;
8903
8904 install_breakpoint (0, &c->base, 1);
8905}
8906
8907static int
8908hw_breakpoint_used_count (void)
8909{
8910 int i = 0;
8911 struct breakpoint *b;
8912 struct bp_location *bl;
8913
8914 ALL_BREAKPOINTS (b)
8915 {
8916 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8917 for (bl = b->loc; bl; bl = bl->next)
8918 {
8919 /* Special types of hardware breakpoints may use more than
8920 one register. */
8921 i += b->ops->resources_needed (bl);
8922 }
8923 }
8924
8925 return i;
8926}
8927
8928/* Returns the resources B would use if it were a hardware
8929 watchpoint. */
8930
8931static int
8932hw_watchpoint_use_count (struct breakpoint *b)
8933{
8934 int i = 0;
8935 struct bp_location *bl;
8936
8937 if (!breakpoint_enabled (b))
8938 return 0;
8939
8940 for (bl = b->loc; bl; bl = bl->next)
8941 {
8942 /* Special types of hardware watchpoints may use more than
8943 one register. */
8944 i += b->ops->resources_needed (bl);
8945 }
8946
8947 return i;
8948}
8949
8950/* Returns the sum the used resources of all hardware watchpoints of
8951 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8952 the sum of the used resources of all hardware watchpoints of other
8953 types _not_ TYPE. */
8954
8955static int
8956hw_watchpoint_used_count_others (struct breakpoint *except,
8957 enum bptype type, int *other_type_used)
8958{
8959 int i = 0;
8960 struct breakpoint *b;
8961
8962 *other_type_used = 0;
8963 ALL_BREAKPOINTS (b)
8964 {
8965 if (b == except)
8966 continue;
8967 if (!breakpoint_enabled (b))
8968 continue;
8969
8970 if (b->type == type)
8971 i += hw_watchpoint_use_count (b);
8972 else if (is_hardware_watchpoint (b))
8973 *other_type_used = 1;
8974 }
8975
8976 return i;
8977}
8978
8979void
8980disable_watchpoints_before_interactive_call_start (void)
8981{
8982 struct breakpoint *b;
8983
8984 ALL_BREAKPOINTS (b)
8985 {
8986 if (is_watchpoint (b) && breakpoint_enabled (b))
8987 {
8988 b->enable_state = bp_call_disabled;
8989 update_global_location_list (0);
8990 }
8991 }
8992}
8993
8994void
8995enable_watchpoints_after_interactive_call_stop (void)
8996{
8997 struct breakpoint *b;
8998
8999 ALL_BREAKPOINTS (b)
9000 {
9001 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
9002 {
9003 b->enable_state = bp_enabled;
9004 update_global_location_list (1);
9005 }
9006 }
9007}
9008
9009void
9010disable_breakpoints_before_startup (void)
9011{
9012 current_program_space->executing_startup = 1;
9013 update_global_location_list (0);
9014}
9015
9016void
9017enable_breakpoints_after_startup (void)
9018{
9019 current_program_space->executing_startup = 0;
9020 breakpoint_re_set ();
9021}
9022
9023
9024/* Set a breakpoint that will evaporate an end of command
9025 at address specified by SAL.
9026 Restrict it to frame FRAME if FRAME is nonzero. */
9027
9028struct breakpoint *
9029set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
9030 struct frame_id frame_id, enum bptype type)
9031{
9032 struct breakpoint *b;
9033
9034 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
9035 tail-called one. */
9036 gdb_assert (!frame_id_artificial_p (frame_id));
9037
9038 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
9039 b->enable_state = bp_enabled;
9040 b->disposition = disp_donttouch;
9041 b->frame_id = frame_id;
9042
9043 /* If we're debugging a multi-threaded program, then we want
9044 momentary breakpoints to be active in only a single thread of
9045 control. */
9046 if (in_thread_list (inferior_ptid))
9047 b->thread = pid_to_thread_id (inferior_ptid);
9048
9049 update_global_location_list_nothrow (1);
9050
9051 return b;
9052}
9053
9054/* Make a momentary breakpoint based on the master breakpoint ORIG.
9055 The new breakpoint will have type TYPE, and use OPS as it
9056 breakpoint_ops. */
9057
9058static struct breakpoint *
9059momentary_breakpoint_from_master (struct breakpoint *orig,
9060 enum bptype type,
9061 const struct breakpoint_ops *ops)
9062{
9063 struct breakpoint *copy;
9064
9065 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
9066 copy->loc = allocate_bp_location (copy);
9067 set_breakpoint_location_function (copy->loc, 1);
9068
9069 copy->loc->gdbarch = orig->loc->gdbarch;
9070 copy->loc->requested_address = orig->loc->requested_address;
9071 copy->loc->address = orig->loc->address;
9072 copy->loc->section = orig->loc->section;
9073 copy->loc->pspace = orig->loc->pspace;
9074 copy->loc->probe = orig->loc->probe;
9075 copy->loc->line_number = orig->loc->line_number;
9076 copy->loc->symtab = orig->loc->symtab;
9077 copy->frame_id = orig->frame_id;
9078 copy->thread = orig->thread;
9079 copy->pspace = orig->pspace;
9080
9081 copy->enable_state = bp_enabled;
9082 copy->disposition = disp_donttouch;
9083 copy->number = internal_breakpoint_number--;
9084
9085 update_global_location_list_nothrow (0);
9086 return copy;
9087}
9088
9089/* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9090 ORIG is NULL. */
9091
9092struct breakpoint *
9093clone_momentary_breakpoint (struct breakpoint *orig)
9094{
9095 /* If there's nothing to clone, then return nothing. */
9096 if (orig == NULL)
9097 return NULL;
9098
9099 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
9100}
9101
9102struct breakpoint *
9103set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9104 enum bptype type)
9105{
9106 struct symtab_and_line sal;
9107
9108 sal = find_pc_line (pc, 0);
9109 sal.pc = pc;
9110 sal.section = find_pc_overlay (pc);
9111 sal.explicit_pc = 1;
9112
9113 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9114}
9115\f
9116
9117/* Tell the user we have just set a breakpoint B. */
9118
9119static void
9120mention (struct breakpoint *b)
9121{
9122 b->ops->print_mention (b);
9123 if (ui_out_is_mi_like_p (current_uiout))
9124 return;
9125 printf_filtered ("\n");
9126}
9127\f
9128
9129static struct bp_location *
9130add_location_to_breakpoint (struct breakpoint *b,
9131 const struct symtab_and_line *sal)
9132{
9133 struct bp_location *loc, **tmp;
9134 CORE_ADDR adjusted_address;
9135 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9136
9137 if (loc_gdbarch == NULL)
9138 loc_gdbarch = b->gdbarch;
9139
9140 /* Adjust the breakpoint's address prior to allocating a location.
9141 Once we call allocate_bp_location(), that mostly uninitialized
9142 location will be placed on the location chain. Adjustment of the
9143 breakpoint may cause target_read_memory() to be called and we do
9144 not want its scan of the location chain to find a breakpoint and
9145 location that's only been partially initialized. */
9146 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9147 sal->pc, b->type);
9148
9149 /* Sort the locations by their ADDRESS. */
9150 loc = allocate_bp_location (b);
9151 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9152 tmp = &((*tmp)->next))
9153 ;
9154 loc->next = *tmp;
9155 *tmp = loc;
9156
9157 loc->requested_address = sal->pc;
9158 loc->address = adjusted_address;
9159 loc->pspace = sal->pspace;
9160 loc->probe.probe = sal->probe;
9161 loc->probe.objfile = sal->objfile;
9162 gdb_assert (loc->pspace != NULL);
9163 loc->section = sal->section;
9164 loc->gdbarch = loc_gdbarch;
9165 loc->line_number = sal->line;
9166 loc->symtab = sal->symtab;
9167
9168 set_breakpoint_location_function (loc,
9169 sal->explicit_pc || sal->explicit_line);
9170 return loc;
9171}
9172\f
9173
9174/* Return 1 if LOC is pointing to a permanent breakpoint,
9175 return 0 otherwise. */
9176
9177static int
9178bp_loc_is_permanent (struct bp_location *loc)
9179{
9180 int len;
9181 CORE_ADDR addr;
9182 const gdb_byte *bpoint;
9183 gdb_byte *target_mem;
9184 struct cleanup *cleanup;
9185 int retval = 0;
9186
9187 gdb_assert (loc != NULL);
9188
9189 addr = loc->address;
9190 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9191
9192 /* Software breakpoints unsupported? */
9193 if (bpoint == NULL)
9194 return 0;
9195
9196 target_mem = alloca (len);
9197
9198 /* Enable the automatic memory restoration from breakpoints while
9199 we read the memory. Otherwise we could say about our temporary
9200 breakpoints they are permanent. */
9201 cleanup = save_current_space_and_thread ();
9202
9203 switch_to_program_space_and_thread (loc->pspace);
9204 make_show_memory_breakpoints_cleanup (0);
9205
9206 if (target_read_memory (loc->address, target_mem, len) == 0
9207 && memcmp (target_mem, bpoint, len) == 0)
9208 retval = 1;
9209
9210 do_cleanups (cleanup);
9211
9212 return retval;
9213}
9214
9215/* Build a command list for the dprintf corresponding to the current
9216 settings of the dprintf style options. */
9217
9218static void
9219update_dprintf_command_list (struct breakpoint *b)
9220{
9221 char *dprintf_args = b->extra_string;
9222 char *printf_line = NULL;
9223
9224 if (!dprintf_args)
9225 return;
9226
9227 dprintf_args = skip_spaces (dprintf_args);
9228
9229 /* Allow a comma, as it may have terminated a location, but don't
9230 insist on it. */
9231 if (*dprintf_args == ',')
9232 ++dprintf_args;
9233 dprintf_args = skip_spaces (dprintf_args);
9234
9235 if (*dprintf_args != '"')
9236 error (_("Bad format string, missing '\"'."));
9237
9238 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9239 printf_line = xstrprintf ("printf %s", dprintf_args);
9240 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9241 {
9242 if (!dprintf_function)
9243 error (_("No function supplied for dprintf call"));
9244
9245 if (dprintf_channel && strlen (dprintf_channel) > 0)
9246 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9247 dprintf_function,
9248 dprintf_channel,
9249 dprintf_args);
9250 else
9251 printf_line = xstrprintf ("call (void) %s (%s)",
9252 dprintf_function,
9253 dprintf_args);
9254 }
9255 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9256 {
9257 if (target_can_run_breakpoint_commands ())
9258 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9259 else
9260 {
9261 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9262 printf_line = xstrprintf ("printf %s", dprintf_args);
9263 }
9264 }
9265 else
9266 internal_error (__FILE__, __LINE__,
9267 _("Invalid dprintf style."));
9268
9269 gdb_assert (printf_line != NULL);
9270 /* Manufacture a printf sequence. */
9271 {
9272 struct command_line *printf_cmd_line
9273 = xmalloc (sizeof (struct command_line));
9274
9275 printf_cmd_line = xmalloc (sizeof (struct command_line));
9276 printf_cmd_line->control_type = simple_control;
9277 printf_cmd_line->body_count = 0;
9278 printf_cmd_line->body_list = NULL;
9279 printf_cmd_line->next = NULL;
9280 printf_cmd_line->line = printf_line;
9281
9282 breakpoint_set_commands (b, printf_cmd_line);
9283 }
9284}
9285
9286/* Update all dprintf commands, making their command lists reflect
9287 current style settings. */
9288
9289static void
9290update_dprintf_commands (char *args, int from_tty,
9291 struct cmd_list_element *c)
9292{
9293 struct breakpoint *b;
9294
9295 ALL_BREAKPOINTS (b)
9296 {
9297 if (b->type == bp_dprintf)
9298 update_dprintf_command_list (b);
9299 }
9300}
9301
9302/* Create a breakpoint with SAL as location. Use ADDR_STRING
9303 as textual description of the location, and COND_STRING
9304 as condition expression. */
9305
9306static void
9307init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9308 struct symtabs_and_lines sals, char *addr_string,
9309 char *filter, char *cond_string,
9310 char *extra_string,
9311 enum bptype type, enum bpdisp disposition,
9312 int thread, int task, int ignore_count,
9313 const struct breakpoint_ops *ops, int from_tty,
9314 int enabled, int internal, unsigned flags,
9315 int display_canonical)
9316{
9317 int i;
9318
9319 if (type == bp_hardware_breakpoint)
9320 {
9321 int target_resources_ok;
9322
9323 i = hw_breakpoint_used_count ();
9324 target_resources_ok =
9325 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9326 i + 1, 0);
9327 if (target_resources_ok == 0)
9328 error (_("No hardware breakpoint support in the target."));
9329 else if (target_resources_ok < 0)
9330 error (_("Hardware breakpoints used exceeds limit."));
9331 }
9332
9333 gdb_assert (sals.nelts > 0);
9334
9335 for (i = 0; i < sals.nelts; ++i)
9336 {
9337 struct symtab_and_line sal = sals.sals[i];
9338 struct bp_location *loc;
9339
9340 if (from_tty)
9341 {
9342 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9343 if (!loc_gdbarch)
9344 loc_gdbarch = gdbarch;
9345
9346 describe_other_breakpoints (loc_gdbarch,
9347 sal.pspace, sal.pc, sal.section, thread);
9348 }
9349
9350 if (i == 0)
9351 {
9352 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9353 b->thread = thread;
9354 b->task = task;
9355
9356 b->cond_string = cond_string;
9357 b->extra_string = extra_string;
9358 b->ignore_count = ignore_count;
9359 b->enable_state = enabled ? bp_enabled : bp_disabled;
9360 b->disposition = disposition;
9361
9362 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9363 b->loc->inserted = 1;
9364
9365 if (type == bp_static_tracepoint)
9366 {
9367 struct tracepoint *t = (struct tracepoint *) b;
9368 struct static_tracepoint_marker marker;
9369
9370 if (strace_marker_p (b))
9371 {
9372 /* We already know the marker exists, otherwise, we
9373 wouldn't see a sal for it. */
9374 char *p = &addr_string[3];
9375 char *endp;
9376 char *marker_str;
9377
9378 p = skip_spaces (p);
9379
9380 endp = skip_to_space (p);
9381
9382 marker_str = savestring (p, endp - p);
9383 t->static_trace_marker_id = marker_str;
9384
9385 printf_filtered (_("Probed static tracepoint "
9386 "marker \"%s\"\n"),
9387 t->static_trace_marker_id);
9388 }
9389 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9390 {
9391 t->static_trace_marker_id = xstrdup (marker.str_id);
9392 release_static_tracepoint_marker (&marker);
9393
9394 printf_filtered (_("Probed static tracepoint "
9395 "marker \"%s\"\n"),
9396 t->static_trace_marker_id);
9397 }
9398 else
9399 warning (_("Couldn't determine the static "
9400 "tracepoint marker to probe"));
9401 }
9402
9403 loc = b->loc;
9404 }
9405 else
9406 {
9407 loc = add_location_to_breakpoint (b, &sal);
9408 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9409 loc->inserted = 1;
9410 }
9411
9412 if (bp_loc_is_permanent (loc))
9413 make_breakpoint_permanent (b);
9414
9415 if (b->cond_string)
9416 {
9417 const char *arg = b->cond_string;
9418
9419 loc->cond = parse_exp_1 (&arg, loc->address,
9420 block_for_pc (loc->address), 0);
9421 if (*arg)
9422 error (_("Garbage '%s' follows condition"), arg);
9423 }
9424
9425 /* Dynamic printf requires and uses additional arguments on the
9426 command line, otherwise it's an error. */
9427 if (type == bp_dprintf)
9428 {
9429 if (b->extra_string)
9430 update_dprintf_command_list (b);
9431 else
9432 error (_("Format string required"));
9433 }
9434 else if (b->extra_string)
9435 error (_("Garbage '%s' at end of command"), b->extra_string);
9436 }
9437
9438 b->display_canonical = display_canonical;
9439 if (addr_string)
9440 b->addr_string = addr_string;
9441 else
9442 /* addr_string has to be used or breakpoint_re_set will delete
9443 me. */
9444 b->addr_string
9445 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9446 b->filter = filter;
9447}
9448
9449static void
9450create_breakpoint_sal (struct gdbarch *gdbarch,
9451 struct symtabs_and_lines sals, char *addr_string,
9452 char *filter, char *cond_string,
9453 char *extra_string,
9454 enum bptype type, enum bpdisp disposition,
9455 int thread, int task, int ignore_count,
9456 const struct breakpoint_ops *ops, int from_tty,
9457 int enabled, int internal, unsigned flags,
9458 int display_canonical)
9459{
9460 struct breakpoint *b;
9461 struct cleanup *old_chain;
9462
9463 if (is_tracepoint_type (type))
9464 {
9465 struct tracepoint *t;
9466
9467 t = XCNEW (struct tracepoint);
9468 b = &t->base;
9469 }
9470 else
9471 b = XNEW (struct breakpoint);
9472
9473 old_chain = make_cleanup (xfree, b);
9474
9475 init_breakpoint_sal (b, gdbarch,
9476 sals, addr_string,
9477 filter, cond_string, extra_string,
9478 type, disposition,
9479 thread, task, ignore_count,
9480 ops, from_tty,
9481 enabled, internal, flags,
9482 display_canonical);
9483 discard_cleanups (old_chain);
9484
9485 install_breakpoint (internal, b, 0);
9486}
9487
9488/* Add SALS.nelts breakpoints to the breakpoint table. For each
9489 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9490 value. COND_STRING, if not NULL, specified the condition to be
9491 used for all breakpoints. Essentially the only case where
9492 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9493 function. In that case, it's still not possible to specify
9494 separate conditions for different overloaded functions, so
9495 we take just a single condition string.
9496
9497 NOTE: If the function succeeds, the caller is expected to cleanup
9498 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9499 array contents). If the function fails (error() is called), the
9500 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9501 COND and SALS arrays and each of those arrays contents. */
9502
9503static void
9504create_breakpoints_sal (struct gdbarch *gdbarch,
9505 struct linespec_result *canonical,
9506 char *cond_string, char *extra_string,
9507 enum bptype type, enum bpdisp disposition,
9508 int thread, int task, int ignore_count,
9509 const struct breakpoint_ops *ops, int from_tty,
9510 int enabled, int internal, unsigned flags)
9511{
9512 int i;
9513 struct linespec_sals *lsal;
9514
9515 if (canonical->pre_expanded)
9516 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9517
9518 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9519 {
9520 /* Note that 'addr_string' can be NULL in the case of a plain
9521 'break', without arguments. */
9522 char *addr_string = (canonical->addr_string
9523 ? xstrdup (canonical->addr_string)
9524 : NULL);
9525 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9526 struct cleanup *inner = make_cleanup (xfree, addr_string);
9527
9528 make_cleanup (xfree, filter_string);
9529 create_breakpoint_sal (gdbarch, lsal->sals,
9530 addr_string,
9531 filter_string,
9532 cond_string, extra_string,
9533 type, disposition,
9534 thread, task, ignore_count, ops,
9535 from_tty, enabled, internal, flags,
9536 canonical->special_display);
9537 discard_cleanups (inner);
9538 }
9539}
9540
9541/* Parse ADDRESS which is assumed to be a SAL specification possibly
9542 followed by conditionals. On return, SALS contains an array of SAL
9543 addresses found. ADDR_STRING contains a vector of (canonical)
9544 address strings. ADDRESS points to the end of the SAL.
9545
9546 The array and the line spec strings are allocated on the heap, it is
9547 the caller's responsibility to free them. */
9548
9549static void
9550parse_breakpoint_sals (char **address,
9551 struct linespec_result *canonical)
9552{
9553 /* If no arg given, or if first arg is 'if ', use the default
9554 breakpoint. */
9555 if ((*address) == NULL
9556 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9557 {
9558 /* The last displayed codepoint, if it's valid, is our default breakpoint
9559 address. */
9560 if (last_displayed_sal_is_valid ())
9561 {
9562 struct linespec_sals lsal;
9563 struct symtab_and_line sal;
9564 CORE_ADDR pc;
9565
9566 init_sal (&sal); /* Initialize to zeroes. */
9567 lsal.sals.sals = (struct symtab_and_line *)
9568 xmalloc (sizeof (struct symtab_and_line));
9569
9570 /* Set sal's pspace, pc, symtab, and line to the values
9571 corresponding to the last call to print_frame_info.
9572 Be sure to reinitialize LINE with NOTCURRENT == 0
9573 as the breakpoint line number is inappropriate otherwise.
9574 find_pc_line would adjust PC, re-set it back. */
9575 get_last_displayed_sal (&sal);
9576 pc = sal.pc;
9577 sal = find_pc_line (pc, 0);
9578
9579 /* "break" without arguments is equivalent to "break *PC"
9580 where PC is the last displayed codepoint's address. So
9581 make sure to set sal.explicit_pc to prevent GDB from
9582 trying to expand the list of sals to include all other
9583 instances with the same symtab and line. */
9584 sal.pc = pc;
9585 sal.explicit_pc = 1;
9586
9587 lsal.sals.sals[0] = sal;
9588 lsal.sals.nelts = 1;
9589 lsal.canonical = NULL;
9590
9591 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9592 }
9593 else
9594 error (_("No default breakpoint address now."));
9595 }
9596 else
9597 {
9598 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9599
9600 /* Force almost all breakpoints to be in terms of the
9601 current_source_symtab (which is decode_line_1's default).
9602 This should produce the results we want almost all of the
9603 time while leaving default_breakpoint_* alone.
9604
9605 ObjC: However, don't match an Objective-C method name which
9606 may have a '+' or '-' succeeded by a '['. */
9607 if (last_displayed_sal_is_valid ()
9608 && (!cursal.symtab
9609 || ((strchr ("+-", (*address)[0]) != NULL)
9610 && ((*address)[1] != '['))))
9611 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9612 get_last_displayed_symtab (),
9613 get_last_displayed_line (),
9614 canonical, NULL, NULL);
9615 else
9616 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9617 cursal.symtab, cursal.line, canonical, NULL, NULL);
9618 }
9619}
9620
9621
9622/* Convert each SAL into a real PC. Verify that the PC can be
9623 inserted as a breakpoint. If it can't throw an error. */
9624
9625static void
9626breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9627{
9628 int i;
9629
9630 for (i = 0; i < sals->nelts; i++)
9631 resolve_sal_pc (&sals->sals[i]);
9632}
9633
9634/* Fast tracepoints may have restrictions on valid locations. For
9635 instance, a fast tracepoint using a jump instead of a trap will
9636 likely have to overwrite more bytes than a trap would, and so can
9637 only be placed where the instruction is longer than the jump, or a
9638 multi-instruction sequence does not have a jump into the middle of
9639 it, etc. */
9640
9641static void
9642check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9643 struct symtabs_and_lines *sals)
9644{
9645 int i, rslt;
9646 struct symtab_and_line *sal;
9647 char *msg;
9648 struct cleanup *old_chain;
9649
9650 for (i = 0; i < sals->nelts; i++)
9651 {
9652 struct gdbarch *sarch;
9653
9654 sal = &sals->sals[i];
9655
9656 sarch = get_sal_arch (*sal);
9657 /* We fall back to GDBARCH if there is no architecture
9658 associated with SAL. */
9659 if (sarch == NULL)
9660 sarch = gdbarch;
9661 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9662 NULL, &msg);
9663 old_chain = make_cleanup (xfree, msg);
9664
9665 if (!rslt)
9666 error (_("May not have a fast tracepoint at 0x%s%s"),
9667 paddress (sarch, sal->pc), (msg ? msg : ""));
9668
9669 do_cleanups (old_chain);
9670 }
9671}
9672
9673/* Issue an invalid thread ID error. */
9674
9675static void ATTRIBUTE_NORETURN
9676invalid_thread_id_error (int id)
9677{
9678 error (_("Unknown thread %d."), id);
9679}
9680
9681/* Given TOK, a string specification of condition and thread, as
9682 accepted by the 'break' command, extract the condition
9683 string and thread number and set *COND_STRING and *THREAD.
9684 PC identifies the context at which the condition should be parsed.
9685 If no condition is found, *COND_STRING is set to NULL.
9686 If no thread is found, *THREAD is set to -1. */
9687
9688static void
9689find_condition_and_thread (const char *tok, CORE_ADDR pc,
9690 char **cond_string, int *thread, int *task,
9691 char **rest)
9692{
9693 *cond_string = NULL;
9694 *thread = -1;
9695 *task = 0;
9696 *rest = NULL;
9697
9698 while (tok && *tok)
9699 {
9700 const char *end_tok;
9701 int toklen;
9702 const char *cond_start = NULL;
9703 const char *cond_end = NULL;
9704
9705 tok = skip_spaces_const (tok);
9706
9707 if ((*tok == '"' || *tok == ',') && rest)
9708 {
9709 *rest = savestring (tok, strlen (tok));
9710 return;
9711 }
9712
9713 end_tok = skip_to_space_const (tok);
9714
9715 toklen = end_tok - tok;
9716
9717 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9718 {
9719 struct expression *expr;
9720
9721 tok = cond_start = end_tok + 1;
9722 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9723 xfree (expr);
9724 cond_end = tok;
9725 *cond_string = savestring (cond_start, cond_end - cond_start);
9726 }
9727 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9728 {
9729 char *tmptok;
9730
9731 tok = end_tok + 1;
9732 *thread = strtol (tok, &tmptok, 0);
9733 if (tok == tmptok)
9734 error (_("Junk after thread keyword."));
9735 if (!valid_thread_id (*thread))
9736 invalid_thread_id_error (*thread);
9737 tok = tmptok;
9738 }
9739 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9740 {
9741 char *tmptok;
9742
9743 tok = end_tok + 1;
9744 *task = strtol (tok, &tmptok, 0);
9745 if (tok == tmptok)
9746 error (_("Junk after task keyword."));
9747 if (!valid_task_id (*task))
9748 error (_("Unknown task %d."), *task);
9749 tok = tmptok;
9750 }
9751 else if (rest)
9752 {
9753 *rest = savestring (tok, strlen (tok));
9754 return;
9755 }
9756 else
9757 error (_("Junk at end of arguments."));
9758 }
9759}
9760
9761/* Decode a static tracepoint marker spec. */
9762
9763static struct symtabs_and_lines
9764decode_static_tracepoint_spec (char **arg_p)
9765{
9766 VEC(static_tracepoint_marker_p) *markers = NULL;
9767 struct symtabs_and_lines sals;
9768 struct cleanup *old_chain;
9769 char *p = &(*arg_p)[3];
9770 char *endp;
9771 char *marker_str;
9772 int i;
9773
9774 p = skip_spaces (p);
9775
9776 endp = skip_to_space (p);
9777
9778 marker_str = savestring (p, endp - p);
9779 old_chain = make_cleanup (xfree, marker_str);
9780
9781 markers = target_static_tracepoint_markers_by_strid (marker_str);
9782 if (VEC_empty(static_tracepoint_marker_p, markers))
9783 error (_("No known static tracepoint marker named %s"), marker_str);
9784
9785 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9786 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9787
9788 for (i = 0; i < sals.nelts; i++)
9789 {
9790 struct static_tracepoint_marker *marker;
9791
9792 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9793
9794 init_sal (&sals.sals[i]);
9795
9796 sals.sals[i] = find_pc_line (marker->address, 0);
9797 sals.sals[i].pc = marker->address;
9798
9799 release_static_tracepoint_marker (marker);
9800 }
9801
9802 do_cleanups (old_chain);
9803
9804 *arg_p = endp;
9805 return sals;
9806}
9807
9808/* Set a breakpoint. This function is shared between CLI and MI
9809 functions for setting a breakpoint. This function has two major
9810 modes of operations, selected by the PARSE_ARG parameter. If
9811 non-zero, the function will parse ARG, extracting location,
9812 condition, thread and extra string. Otherwise, ARG is just the
9813 breakpoint's location, with condition, thread, and extra string
9814 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9815 If INTERNAL is non-zero, the breakpoint number will be allocated
9816 from the internal breakpoint count. Returns true if any breakpoint
9817 was created; false otherwise. */
9818
9819int
9820create_breakpoint (struct gdbarch *gdbarch,
9821 char *arg, char *cond_string,
9822 int thread, char *extra_string,
9823 int parse_arg,
9824 int tempflag, enum bptype type_wanted,
9825 int ignore_count,
9826 enum auto_boolean pending_break_support,
9827 const struct breakpoint_ops *ops,
9828 int from_tty, int enabled, int internal,
9829 unsigned flags)
9830{
9831 volatile struct gdb_exception e;
9832 char *copy_arg = NULL;
9833 char *addr_start = arg;
9834 struct linespec_result canonical;
9835 struct cleanup *old_chain;
9836 struct cleanup *bkpt_chain = NULL;
9837 int pending = 0;
9838 int task = 0;
9839 int prev_bkpt_count = breakpoint_count;
9840
9841 gdb_assert (ops != NULL);
9842
9843 init_linespec_result (&canonical);
9844
9845 TRY_CATCH (e, RETURN_MASK_ALL)
9846 {
9847 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9848 addr_start, &copy_arg);
9849 }
9850
9851 /* If caller is interested in rc value from parse, set value. */
9852 switch (e.reason)
9853 {
9854 case GDB_NO_ERROR:
9855 if (VEC_empty (linespec_sals, canonical.sals))
9856 return 0;
9857 break;
9858 case RETURN_ERROR:
9859 switch (e.error)
9860 {
9861 case NOT_FOUND_ERROR:
9862
9863 /* If pending breakpoint support is turned off, throw
9864 error. */
9865
9866 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9867 throw_exception (e);
9868
9869 exception_print (gdb_stderr, e);
9870
9871 /* If pending breakpoint support is auto query and the user
9872 selects no, then simply return the error code. */
9873 if (pending_break_support == AUTO_BOOLEAN_AUTO
9874 && !nquery (_("Make %s pending on future shared library load? "),
9875 bptype_string (type_wanted)))
9876 return 0;
9877
9878 /* At this point, either the user was queried about setting
9879 a pending breakpoint and selected yes, or pending
9880 breakpoint behavior is on and thus a pending breakpoint
9881 is defaulted on behalf of the user. */
9882 {
9883 struct linespec_sals lsal;
9884
9885 copy_arg = xstrdup (addr_start);
9886 lsal.canonical = xstrdup (copy_arg);
9887 lsal.sals.nelts = 1;
9888 lsal.sals.sals = XNEW (struct symtab_and_line);
9889 init_sal (&lsal.sals.sals[0]);
9890 pending = 1;
9891 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9892 }
9893 break;
9894 default:
9895 throw_exception (e);
9896 }
9897 break;
9898 default:
9899 throw_exception (e);
9900 }
9901
9902 /* Create a chain of things that always need to be cleaned up. */
9903 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9904
9905 /* ----------------------------- SNIP -----------------------------
9906 Anything added to the cleanup chain beyond this point is assumed
9907 to be part of a breakpoint. If the breakpoint create succeeds
9908 then the memory is not reclaimed. */
9909 bkpt_chain = make_cleanup (null_cleanup, 0);
9910
9911 /* Resolve all line numbers to PC's and verify that the addresses
9912 are ok for the target. */
9913 if (!pending)
9914 {
9915 int ix;
9916 struct linespec_sals *iter;
9917
9918 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9919 breakpoint_sals_to_pc (&iter->sals);
9920 }
9921
9922 /* Fast tracepoints may have additional restrictions on location. */
9923 if (!pending && type_wanted == bp_fast_tracepoint)
9924 {
9925 int ix;
9926 struct linespec_sals *iter;
9927
9928 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9929 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9930 }
9931
9932 /* Verify that condition can be parsed, before setting any
9933 breakpoints. Allocate a separate condition expression for each
9934 breakpoint. */
9935 if (!pending)
9936 {
9937 if (parse_arg)
9938 {
9939 char *rest;
9940 struct linespec_sals *lsal;
9941
9942 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9943
9944 /* Here we only parse 'arg' to separate condition
9945 from thread number, so parsing in context of first
9946 sal is OK. When setting the breakpoint we'll
9947 re-parse it in context of each sal. */
9948
9949 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9950 &thread, &task, &rest);
9951 if (cond_string)
9952 make_cleanup (xfree, cond_string);
9953 if (rest)
9954 make_cleanup (xfree, rest);
9955 if (rest)
9956 extra_string = rest;
9957 }
9958 else
9959 {
9960 if (*arg != '\0')
9961 error (_("Garbage '%s' at end of location"), arg);
9962
9963 /* Create a private copy of condition string. */
9964 if (cond_string)
9965 {
9966 cond_string = xstrdup (cond_string);
9967 make_cleanup (xfree, cond_string);
9968 }
9969 /* Create a private copy of any extra string. */
9970 if (extra_string)
9971 {
9972 extra_string = xstrdup (extra_string);
9973 make_cleanup (xfree, extra_string);
9974 }
9975 }
9976
9977 ops->create_breakpoints_sal (gdbarch, &canonical,
9978 cond_string, extra_string, type_wanted,
9979 tempflag ? disp_del : disp_donttouch,
9980 thread, task, ignore_count, ops,
9981 from_tty, enabled, internal, flags);
9982 }
9983 else
9984 {
9985 struct breakpoint *b;
9986
9987 make_cleanup (xfree, copy_arg);
9988
9989 if (is_tracepoint_type (type_wanted))
9990 {
9991 struct tracepoint *t;
9992
9993 t = XCNEW (struct tracepoint);
9994 b = &t->base;
9995 }
9996 else
9997 b = XNEW (struct breakpoint);
9998
9999 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
10000
10001 b->addr_string = copy_arg;
10002 if (parse_arg)
10003 b->cond_string = NULL;
10004 else
10005 {
10006 /* Create a private copy of condition string. */
10007 if (cond_string)
10008 {
10009 cond_string = xstrdup (cond_string);
10010 make_cleanup (xfree, cond_string);
10011 }
10012 b->cond_string = cond_string;
10013 }
10014 b->extra_string = NULL;
10015 b->ignore_count = ignore_count;
10016 b->disposition = tempflag ? disp_del : disp_donttouch;
10017 b->condition_not_parsed = 1;
10018 b->enable_state = enabled ? bp_enabled : bp_disabled;
10019 if ((type_wanted != bp_breakpoint
10020 && type_wanted != bp_hardware_breakpoint) || thread != -1)
10021 b->pspace = current_program_space;
10022
10023 install_breakpoint (internal, b, 0);
10024 }
10025
10026 if (VEC_length (linespec_sals, canonical.sals) > 1)
10027 {
10028 warning (_("Multiple breakpoints were set.\nUse the "
10029 "\"delete\" command to delete unwanted breakpoints."));
10030 prev_breakpoint_count = prev_bkpt_count;
10031 }
10032
10033 /* That's it. Discard the cleanups for data inserted into the
10034 breakpoint. */
10035 discard_cleanups (bkpt_chain);
10036 /* But cleanup everything else. */
10037 do_cleanups (old_chain);
10038
10039 /* error call may happen here - have BKPT_CHAIN already discarded. */
10040 update_global_location_list (1);
10041
10042 return 1;
10043}
10044
10045/* Set a breakpoint.
10046 ARG is a string describing breakpoint address,
10047 condition, and thread.
10048 FLAG specifies if a breakpoint is hardware on,
10049 and if breakpoint is temporary, using BP_HARDWARE_FLAG
10050 and BP_TEMPFLAG. */
10051
10052static void
10053break_command_1 (char *arg, int flag, int from_tty)
10054{
10055 int tempflag = flag & BP_TEMPFLAG;
10056 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
10057 ? bp_hardware_breakpoint
10058 : bp_breakpoint);
10059 struct breakpoint_ops *ops;
10060 const char *arg_cp = arg;
10061
10062 /* Matching breakpoints on probes. */
10063 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
10064 ops = &bkpt_probe_breakpoint_ops;
10065 else
10066 ops = &bkpt_breakpoint_ops;
10067
10068 create_breakpoint (get_current_arch (),
10069 arg,
10070 NULL, 0, NULL, 1 /* parse arg */,
10071 tempflag, type_wanted,
10072 0 /* Ignore count */,
10073 pending_break_support,
10074 ops,
10075 from_tty,
10076 1 /* enabled */,
10077 0 /* internal */,
10078 0);
10079}
10080
10081/* Helper function for break_command_1 and disassemble_command. */
10082
10083void
10084resolve_sal_pc (struct symtab_and_line *sal)
10085{
10086 CORE_ADDR pc;
10087
10088 if (sal->pc == 0 && sal->symtab != NULL)
10089 {
10090 if (!find_line_pc (sal->symtab, sal->line, &pc))
10091 error (_("No line %d in file \"%s\"."),
10092 sal->line, symtab_to_filename_for_display (sal->symtab));
10093 sal->pc = pc;
10094
10095 /* If this SAL corresponds to a breakpoint inserted using a line
10096 number, then skip the function prologue if necessary. */
10097 if (sal->explicit_line)
10098 skip_prologue_sal (sal);
10099 }
10100
10101 if (sal->section == 0 && sal->symtab != NULL)
10102 {
10103 struct blockvector *bv;
10104 struct block *b;
10105 struct symbol *sym;
10106
10107 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
10108 if (bv != NULL)
10109 {
10110 sym = block_linkage_function (b);
10111 if (sym != NULL)
10112 {
10113 fixup_symbol_section (sym, sal->symtab->objfile);
10114 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
10115 }
10116 else
10117 {
10118 /* It really is worthwhile to have the section, so we'll
10119 just have to look harder. This case can be executed
10120 if we have line numbers but no functions (as can
10121 happen in assembly source). */
10122
10123 struct bound_minimal_symbol msym;
10124 struct cleanup *old_chain = save_current_space_and_thread ();
10125
10126 switch_to_program_space_and_thread (sal->pspace);
10127
10128 msym = lookup_minimal_symbol_by_pc (sal->pc);
10129 if (msym.minsym)
10130 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10131
10132 do_cleanups (old_chain);
10133 }
10134 }
10135 }
10136}
10137
10138void
10139break_command (char *arg, int from_tty)
10140{
10141 break_command_1 (arg, 0, from_tty);
10142}
10143
10144void
10145tbreak_command (char *arg, int from_tty)
10146{
10147 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10148}
10149
10150static void
10151hbreak_command (char *arg, int from_tty)
10152{
10153 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10154}
10155
10156static void
10157thbreak_command (char *arg, int from_tty)
10158{
10159 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10160}
10161
10162static void
10163stop_command (char *arg, int from_tty)
10164{
10165 printf_filtered (_("Specify the type of breakpoint to set.\n\
10166Usage: stop in <function | address>\n\
10167 stop at <line>\n"));
10168}
10169
10170static void
10171stopin_command (char *arg, int from_tty)
10172{
10173 int badInput = 0;
10174
10175 if (arg == (char *) NULL)
10176 badInput = 1;
10177 else if (*arg != '*')
10178 {
10179 char *argptr = arg;
10180 int hasColon = 0;
10181
10182 /* Look for a ':'. If this is a line number specification, then
10183 say it is bad, otherwise, it should be an address or
10184 function/method name. */
10185 while (*argptr && !hasColon)
10186 {
10187 hasColon = (*argptr == ':');
10188 argptr++;
10189 }
10190
10191 if (hasColon)
10192 badInput = (*argptr != ':'); /* Not a class::method */
10193 else
10194 badInput = isdigit (*arg); /* a simple line number */
10195 }
10196
10197 if (badInput)
10198 printf_filtered (_("Usage: stop in <function | address>\n"));
10199 else
10200 break_command_1 (arg, 0, from_tty);
10201}
10202
10203static void
10204stopat_command (char *arg, int from_tty)
10205{
10206 int badInput = 0;
10207
10208 if (arg == (char *) NULL || *arg == '*') /* no line number */
10209 badInput = 1;
10210 else
10211 {
10212 char *argptr = arg;
10213 int hasColon = 0;
10214
10215 /* Look for a ':'. If there is a '::' then get out, otherwise
10216 it is probably a line number. */
10217 while (*argptr && !hasColon)
10218 {
10219 hasColon = (*argptr == ':');
10220 argptr++;
10221 }
10222
10223 if (hasColon)
10224 badInput = (*argptr == ':'); /* we have class::method */
10225 else
10226 badInput = !isdigit (*arg); /* not a line number */
10227 }
10228
10229 if (badInput)
10230 printf_filtered (_("Usage: stop at <line>\n"));
10231 else
10232 break_command_1 (arg, 0, from_tty);
10233}
10234
10235/* The dynamic printf command is mostly like a regular breakpoint, but
10236 with a prewired command list consisting of a single output command,
10237 built from extra arguments supplied on the dprintf command
10238 line. */
10239
10240static void
10241dprintf_command (char *arg, int from_tty)
10242{
10243 create_breakpoint (get_current_arch (),
10244 arg,
10245 NULL, 0, NULL, 1 /* parse arg */,
10246 0, bp_dprintf,
10247 0 /* Ignore count */,
10248 pending_break_support,
10249 &dprintf_breakpoint_ops,
10250 from_tty,
10251 1 /* enabled */,
10252 0 /* internal */,
10253 0);
10254}
10255
10256static void
10257agent_printf_command (char *arg, int from_tty)
10258{
10259 error (_("May only run agent-printf on the target"));
10260}
10261
10262/* Implement the "breakpoint_hit" breakpoint_ops method for
10263 ranged breakpoints. */
10264
10265static int
10266breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10267 struct address_space *aspace,
10268 CORE_ADDR bp_addr,
10269 const struct target_waitstatus *ws)
10270{
10271 if (ws->kind != TARGET_WAITKIND_STOPPED
10272 || ws->value.sig != GDB_SIGNAL_TRAP)
10273 return 0;
10274
10275 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10276 bl->length, aspace, bp_addr);
10277}
10278
10279/* Implement the "resources_needed" breakpoint_ops method for
10280 ranged breakpoints. */
10281
10282static int
10283resources_needed_ranged_breakpoint (const struct bp_location *bl)
10284{
10285 return target_ranged_break_num_registers ();
10286}
10287
10288/* Implement the "print_it" breakpoint_ops method for
10289 ranged breakpoints. */
10290
10291static enum print_stop_action
10292print_it_ranged_breakpoint (bpstat bs)
10293{
10294 struct breakpoint *b = bs->breakpoint_at;
10295 struct bp_location *bl = b->loc;
10296 struct ui_out *uiout = current_uiout;
10297
10298 gdb_assert (b->type == bp_hardware_breakpoint);
10299
10300 /* Ranged breakpoints have only one location. */
10301 gdb_assert (bl && bl->next == NULL);
10302
10303 annotate_breakpoint (b->number);
10304 if (b->disposition == disp_del)
10305 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10306 else
10307 ui_out_text (uiout, "\nRanged breakpoint ");
10308 if (ui_out_is_mi_like_p (uiout))
10309 {
10310 ui_out_field_string (uiout, "reason",
10311 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10312 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10313 }
10314 ui_out_field_int (uiout, "bkptno", b->number);
10315 ui_out_text (uiout, ", ");
10316
10317 return PRINT_SRC_AND_LOC;
10318}
10319
10320/* Implement the "print_one" breakpoint_ops method for
10321 ranged breakpoints. */
10322
10323static void
10324print_one_ranged_breakpoint (struct breakpoint *b,
10325 struct bp_location **last_loc)
10326{
10327 struct bp_location *bl = b->loc;
10328 struct value_print_options opts;
10329 struct ui_out *uiout = current_uiout;
10330
10331 /* Ranged breakpoints have only one location. */
10332 gdb_assert (bl && bl->next == NULL);
10333
10334 get_user_print_options (&opts);
10335
10336 if (opts.addressprint)
10337 /* We don't print the address range here, it will be printed later
10338 by print_one_detail_ranged_breakpoint. */
10339 ui_out_field_skip (uiout, "addr");
10340 annotate_field (5);
10341 print_breakpoint_location (b, bl);
10342 *last_loc = bl;
10343}
10344
10345/* Implement the "print_one_detail" breakpoint_ops method for
10346 ranged breakpoints. */
10347
10348static void
10349print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10350 struct ui_out *uiout)
10351{
10352 CORE_ADDR address_start, address_end;
10353 struct bp_location *bl = b->loc;
10354 struct ui_file *stb = mem_fileopen ();
10355 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10356
10357 gdb_assert (bl);
10358
10359 address_start = bl->address;
10360 address_end = address_start + bl->length - 1;
10361
10362 ui_out_text (uiout, "\taddress range: ");
10363 fprintf_unfiltered (stb, "[%s, %s]",
10364 print_core_address (bl->gdbarch, address_start),
10365 print_core_address (bl->gdbarch, address_end));
10366 ui_out_field_stream (uiout, "addr", stb);
10367 ui_out_text (uiout, "\n");
10368
10369 do_cleanups (cleanup);
10370}
10371
10372/* Implement the "print_mention" breakpoint_ops method for
10373 ranged breakpoints. */
10374
10375static void
10376print_mention_ranged_breakpoint (struct breakpoint *b)
10377{
10378 struct bp_location *bl = b->loc;
10379 struct ui_out *uiout = current_uiout;
10380
10381 gdb_assert (bl);
10382 gdb_assert (b->type == bp_hardware_breakpoint);
10383
10384 if (ui_out_is_mi_like_p (uiout))
10385 return;
10386
10387 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10388 b->number, paddress (bl->gdbarch, bl->address),
10389 paddress (bl->gdbarch, bl->address + bl->length - 1));
10390}
10391
10392/* Implement the "print_recreate" breakpoint_ops method for
10393 ranged breakpoints. */
10394
10395static void
10396print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10397{
10398 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10399 b->addr_string_range_end);
10400 print_recreate_thread (b, fp);
10401}
10402
10403/* The breakpoint_ops structure to be used in ranged breakpoints. */
10404
10405static struct breakpoint_ops ranged_breakpoint_ops;
10406
10407/* Find the address where the end of the breakpoint range should be
10408 placed, given the SAL of the end of the range. This is so that if
10409 the user provides a line number, the end of the range is set to the
10410 last instruction of the given line. */
10411
10412static CORE_ADDR
10413find_breakpoint_range_end (struct symtab_and_line sal)
10414{
10415 CORE_ADDR end;
10416
10417 /* If the user provided a PC value, use it. Otherwise,
10418 find the address of the end of the given location. */
10419 if (sal.explicit_pc)
10420 end = sal.pc;
10421 else
10422 {
10423 int ret;
10424 CORE_ADDR start;
10425
10426 ret = find_line_pc_range (sal, &start, &end);
10427 if (!ret)
10428 error (_("Could not find location of the end of the range."));
10429
10430 /* find_line_pc_range returns the start of the next line. */
10431 end--;
10432 }
10433
10434 return end;
10435}
10436
10437/* Implement the "break-range" CLI command. */
10438
10439static void
10440break_range_command (char *arg, int from_tty)
10441{
10442 char *arg_start, *addr_string_start, *addr_string_end;
10443 struct linespec_result canonical_start, canonical_end;
10444 int bp_count, can_use_bp, length;
10445 CORE_ADDR end;
10446 struct breakpoint *b;
10447 struct symtab_and_line sal_start, sal_end;
10448 struct cleanup *cleanup_bkpt;
10449 struct linespec_sals *lsal_start, *lsal_end;
10450
10451 /* We don't support software ranged breakpoints. */
10452 if (target_ranged_break_num_registers () < 0)
10453 error (_("This target does not support hardware ranged breakpoints."));
10454
10455 bp_count = hw_breakpoint_used_count ();
10456 bp_count += target_ranged_break_num_registers ();
10457 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10458 bp_count, 0);
10459 if (can_use_bp < 0)
10460 error (_("Hardware breakpoints used exceeds limit."));
10461
10462 arg = skip_spaces (arg);
10463 if (arg == NULL || arg[0] == '\0')
10464 error(_("No address range specified."));
10465
10466 init_linespec_result (&canonical_start);
10467
10468 arg_start = arg;
10469 parse_breakpoint_sals (&arg, &canonical_start);
10470
10471 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10472
10473 if (arg[0] != ',')
10474 error (_("Too few arguments."));
10475 else if (VEC_empty (linespec_sals, canonical_start.sals))
10476 error (_("Could not find location of the beginning of the range."));
10477
10478 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10479
10480 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10481 || lsal_start->sals.nelts != 1)
10482 error (_("Cannot create a ranged breakpoint with multiple locations."));
10483
10484 sal_start = lsal_start->sals.sals[0];
10485 addr_string_start = savestring (arg_start, arg - arg_start);
10486 make_cleanup (xfree, addr_string_start);
10487
10488 arg++; /* Skip the comma. */
10489 arg = skip_spaces (arg);
10490
10491 /* Parse the end location. */
10492
10493 init_linespec_result (&canonical_end);
10494 arg_start = arg;
10495
10496 /* We call decode_line_full directly here instead of using
10497 parse_breakpoint_sals because we need to specify the start location's
10498 symtab and line as the default symtab and line for the end of the
10499 range. This makes it possible to have ranges like "foo.c:27, +14",
10500 where +14 means 14 lines from the start location. */
10501 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10502 sal_start.symtab, sal_start.line,
10503 &canonical_end, NULL, NULL);
10504
10505 make_cleanup_destroy_linespec_result (&canonical_end);
10506
10507 if (VEC_empty (linespec_sals, canonical_end.sals))
10508 error (_("Could not find location of the end of the range."));
10509
10510 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10511 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10512 || lsal_end->sals.nelts != 1)
10513 error (_("Cannot create a ranged breakpoint with multiple locations."));
10514
10515 sal_end = lsal_end->sals.sals[0];
10516 addr_string_end = savestring (arg_start, arg - arg_start);
10517 make_cleanup (xfree, addr_string_end);
10518
10519 end = find_breakpoint_range_end (sal_end);
10520 if (sal_start.pc > end)
10521 error (_("Invalid address range, end precedes start."));
10522
10523 length = end - sal_start.pc + 1;
10524 if (length < 0)
10525 /* Length overflowed. */
10526 error (_("Address range too large."));
10527 else if (length == 1)
10528 {
10529 /* This range is simple enough to be handled by
10530 the `hbreak' command. */
10531 hbreak_command (addr_string_start, 1);
10532
10533 do_cleanups (cleanup_bkpt);
10534
10535 return;
10536 }
10537
10538 /* Now set up the breakpoint. */
10539 b = set_raw_breakpoint (get_current_arch (), sal_start,
10540 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10541 set_breakpoint_count (breakpoint_count + 1);
10542 b->number = breakpoint_count;
10543 b->disposition = disp_donttouch;
10544 b->addr_string = xstrdup (addr_string_start);
10545 b->addr_string_range_end = xstrdup (addr_string_end);
10546 b->loc->length = length;
10547
10548 do_cleanups (cleanup_bkpt);
10549
10550 mention (b);
10551 observer_notify_breakpoint_created (b);
10552 update_global_location_list (1);
10553}
10554
10555/* Return non-zero if EXP is verified as constant. Returned zero
10556 means EXP is variable. Also the constant detection may fail for
10557 some constant expressions and in such case still falsely return
10558 zero. */
10559
10560static int
10561watchpoint_exp_is_const (const struct expression *exp)
10562{
10563 int i = exp->nelts;
10564
10565 while (i > 0)
10566 {
10567 int oplenp, argsp;
10568
10569 /* We are only interested in the descriptor of each element. */
10570 operator_length (exp, i, &oplenp, &argsp);
10571 i -= oplenp;
10572
10573 switch (exp->elts[i].opcode)
10574 {
10575 case BINOP_ADD:
10576 case BINOP_SUB:
10577 case BINOP_MUL:
10578 case BINOP_DIV:
10579 case BINOP_REM:
10580 case BINOP_MOD:
10581 case BINOP_LSH:
10582 case BINOP_RSH:
10583 case BINOP_LOGICAL_AND:
10584 case BINOP_LOGICAL_OR:
10585 case BINOP_BITWISE_AND:
10586 case BINOP_BITWISE_IOR:
10587 case BINOP_BITWISE_XOR:
10588 case BINOP_EQUAL:
10589 case BINOP_NOTEQUAL:
10590 case BINOP_LESS:
10591 case BINOP_GTR:
10592 case BINOP_LEQ:
10593 case BINOP_GEQ:
10594 case BINOP_REPEAT:
10595 case BINOP_COMMA:
10596 case BINOP_EXP:
10597 case BINOP_MIN:
10598 case BINOP_MAX:
10599 case BINOP_INTDIV:
10600 case BINOP_CONCAT:
10601 case BINOP_IN:
10602 case BINOP_RANGE:
10603 case TERNOP_COND:
10604 case TERNOP_SLICE:
10605
10606 case OP_LONG:
10607 case OP_DOUBLE:
10608 case OP_DECFLOAT:
10609 case OP_LAST:
10610 case OP_COMPLEX:
10611 case OP_STRING:
10612 case OP_ARRAY:
10613 case OP_TYPE:
10614 case OP_TYPEOF:
10615 case OP_DECLTYPE:
10616 case OP_TYPEID:
10617 case OP_NAME:
10618 case OP_OBJC_NSSTRING:
10619
10620 case UNOP_NEG:
10621 case UNOP_LOGICAL_NOT:
10622 case UNOP_COMPLEMENT:
10623 case UNOP_ADDR:
10624 case UNOP_HIGH:
10625 case UNOP_CAST:
10626
10627 case UNOP_CAST_TYPE:
10628 case UNOP_REINTERPRET_CAST:
10629 case UNOP_DYNAMIC_CAST:
10630 /* Unary, binary and ternary operators: We have to check
10631 their operands. If they are constant, then so is the
10632 result of that operation. For instance, if A and B are
10633 determined to be constants, then so is "A + B".
10634
10635 UNOP_IND is one exception to the rule above, because the
10636 value of *ADDR is not necessarily a constant, even when
10637 ADDR is. */
10638 break;
10639
10640 case OP_VAR_VALUE:
10641 /* Check whether the associated symbol is a constant.
10642
10643 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10644 possible that a buggy compiler could mark a variable as
10645 constant even when it is not, and TYPE_CONST would return
10646 true in this case, while SYMBOL_CLASS wouldn't.
10647
10648 We also have to check for function symbols because they
10649 are always constant. */
10650 {
10651 struct symbol *s = exp->elts[i + 2].symbol;
10652
10653 if (SYMBOL_CLASS (s) != LOC_BLOCK
10654 && SYMBOL_CLASS (s) != LOC_CONST
10655 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10656 return 0;
10657 break;
10658 }
10659
10660 /* The default action is to return 0 because we are using
10661 the optimistic approach here: If we don't know something,
10662 then it is not a constant. */
10663 default:
10664 return 0;
10665 }
10666 }
10667
10668 return 1;
10669}
10670
10671/* Implement the "dtor" breakpoint_ops method for watchpoints. */
10672
10673static void
10674dtor_watchpoint (struct breakpoint *self)
10675{
10676 struct watchpoint *w = (struct watchpoint *) self;
10677
10678 xfree (w->cond_exp);
10679 xfree (w->exp);
10680 xfree (w->exp_string);
10681 xfree (w->exp_string_reparse);
10682 value_free (w->val);
10683
10684 base_breakpoint_ops.dtor (self);
10685}
10686
10687/* Implement the "re_set" breakpoint_ops method for watchpoints. */
10688
10689static void
10690re_set_watchpoint (struct breakpoint *b)
10691{
10692 struct watchpoint *w = (struct watchpoint *) b;
10693
10694 /* Watchpoint can be either on expression using entirely global
10695 variables, or it can be on local variables.
10696
10697 Watchpoints of the first kind are never auto-deleted, and even
10698 persist across program restarts. Since they can use variables
10699 from shared libraries, we need to reparse expression as libraries
10700 are loaded and unloaded.
10701
10702 Watchpoints on local variables can also change meaning as result
10703 of solib event. For example, if a watchpoint uses both a local
10704 and a global variables in expression, it's a local watchpoint,
10705 but unloading of a shared library will make the expression
10706 invalid. This is not a very common use case, but we still
10707 re-evaluate expression, to avoid surprises to the user.
10708
10709 Note that for local watchpoints, we re-evaluate it only if
10710 watchpoints frame id is still valid. If it's not, it means the
10711 watchpoint is out of scope and will be deleted soon. In fact,
10712 I'm not sure we'll ever be called in this case.
10713
10714 If a local watchpoint's frame id is still valid, then
10715 w->exp_valid_block is likewise valid, and we can safely use it.
10716
10717 Don't do anything about disabled watchpoints, since they will be
10718 reevaluated again when enabled. */
10719 update_watchpoint (w, 1 /* reparse */);
10720}
10721
10722/* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10723
10724static int
10725insert_watchpoint (struct bp_location *bl)
10726{
10727 struct watchpoint *w = (struct watchpoint *) bl->owner;
10728 int length = w->exact ? 1 : bl->length;
10729
10730 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10731 w->cond_exp);
10732}
10733
10734/* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10735
10736static int
10737remove_watchpoint (struct bp_location *bl)
10738{
10739 struct watchpoint *w = (struct watchpoint *) bl->owner;
10740 int length = w->exact ? 1 : bl->length;
10741
10742 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10743 w->cond_exp);
10744}
10745
10746static int
10747breakpoint_hit_watchpoint (const struct bp_location *bl,
10748 struct address_space *aspace, CORE_ADDR bp_addr,
10749 const struct target_waitstatus *ws)
10750{
10751 struct breakpoint *b = bl->owner;
10752 struct watchpoint *w = (struct watchpoint *) b;
10753
10754 /* Continuable hardware watchpoints are treated as non-existent if the
10755 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10756 some data address). Otherwise gdb won't stop on a break instruction
10757 in the code (not from a breakpoint) when a hardware watchpoint has
10758 been defined. Also skip watchpoints which we know did not trigger
10759 (did not match the data address). */
10760 if (is_hardware_watchpoint (b)
10761 && w->watchpoint_triggered == watch_triggered_no)
10762 return 0;
10763
10764 return 1;
10765}
10766
10767static void
10768check_status_watchpoint (bpstat bs)
10769{
10770 gdb_assert (is_watchpoint (bs->breakpoint_at));
10771
10772 bpstat_check_watchpoint (bs);
10773}
10774
10775/* Implement the "resources_needed" breakpoint_ops method for
10776 hardware watchpoints. */
10777
10778static int
10779resources_needed_watchpoint (const struct bp_location *bl)
10780{
10781 struct watchpoint *w = (struct watchpoint *) bl->owner;
10782 int length = w->exact? 1 : bl->length;
10783
10784 return target_region_ok_for_hw_watchpoint (bl->address, length);
10785}
10786
10787/* Implement the "works_in_software_mode" breakpoint_ops method for
10788 hardware watchpoints. */
10789
10790static int
10791works_in_software_mode_watchpoint (const struct breakpoint *b)
10792{
10793 /* Read and access watchpoints only work with hardware support. */
10794 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10795}
10796
10797static enum print_stop_action
10798print_it_watchpoint (bpstat bs)
10799{
10800 struct cleanup *old_chain;
10801 struct breakpoint *b;
10802 struct ui_file *stb;
10803 enum print_stop_action result;
10804 struct watchpoint *w;
10805 struct ui_out *uiout = current_uiout;
10806
10807 gdb_assert (bs->bp_location_at != NULL);
10808
10809 b = bs->breakpoint_at;
10810 w = (struct watchpoint *) b;
10811
10812 stb = mem_fileopen ();
10813 old_chain = make_cleanup_ui_file_delete (stb);
10814
10815 switch (b->type)
10816 {
10817 case bp_watchpoint:
10818 case bp_hardware_watchpoint:
10819 annotate_watchpoint (b->number);
10820 if (ui_out_is_mi_like_p (uiout))
10821 ui_out_field_string
10822 (uiout, "reason",
10823 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10824 mention (b);
10825 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10826 ui_out_text (uiout, "\nOld value = ");
10827 watchpoint_value_print (bs->old_val, stb);
10828 ui_out_field_stream (uiout, "old", stb);
10829 ui_out_text (uiout, "\nNew value = ");
10830 watchpoint_value_print (w->val, stb);
10831 ui_out_field_stream (uiout, "new", stb);
10832 ui_out_text (uiout, "\n");
10833 /* More than one watchpoint may have been triggered. */
10834 result = PRINT_UNKNOWN;
10835 break;
10836
10837 case bp_read_watchpoint:
10838 if (ui_out_is_mi_like_p (uiout))
10839 ui_out_field_string
10840 (uiout, "reason",
10841 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10842 mention (b);
10843 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10844 ui_out_text (uiout, "\nValue = ");
10845 watchpoint_value_print (w->val, stb);
10846 ui_out_field_stream (uiout, "value", stb);
10847 ui_out_text (uiout, "\n");
10848 result = PRINT_UNKNOWN;
10849 break;
10850
10851 case bp_access_watchpoint:
10852 if (bs->old_val != NULL)
10853 {
10854 annotate_watchpoint (b->number);
10855 if (ui_out_is_mi_like_p (uiout))
10856 ui_out_field_string
10857 (uiout, "reason",
10858 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10859 mention (b);
10860 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10861 ui_out_text (uiout, "\nOld value = ");
10862 watchpoint_value_print (bs->old_val, stb);
10863 ui_out_field_stream (uiout, "old", stb);
10864 ui_out_text (uiout, "\nNew value = ");
10865 }
10866 else
10867 {
10868 mention (b);
10869 if (ui_out_is_mi_like_p (uiout))
10870 ui_out_field_string
10871 (uiout, "reason",
10872 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10873 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10874 ui_out_text (uiout, "\nValue = ");
10875 }
10876 watchpoint_value_print (w->val, stb);
10877 ui_out_field_stream (uiout, "new", stb);
10878 ui_out_text (uiout, "\n");
10879 result = PRINT_UNKNOWN;
10880 break;
10881 default:
10882 result = PRINT_UNKNOWN;
10883 }
10884
10885 do_cleanups (old_chain);
10886 return result;
10887}
10888
10889/* Implement the "print_mention" breakpoint_ops method for hardware
10890 watchpoints. */
10891
10892static void
10893print_mention_watchpoint (struct breakpoint *b)
10894{
10895 struct cleanup *ui_out_chain;
10896 struct watchpoint *w = (struct watchpoint *) b;
10897 struct ui_out *uiout = current_uiout;
10898
10899 switch (b->type)
10900 {
10901 case bp_watchpoint:
10902 ui_out_text (uiout, "Watchpoint ");
10903 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10904 break;
10905 case bp_hardware_watchpoint:
10906 ui_out_text (uiout, "Hardware watchpoint ");
10907 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10908 break;
10909 case bp_read_watchpoint:
10910 ui_out_text (uiout, "Hardware read watchpoint ");
10911 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10912 break;
10913 case bp_access_watchpoint:
10914 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10915 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10916 break;
10917 default:
10918 internal_error (__FILE__, __LINE__,
10919 _("Invalid hardware watchpoint type."));
10920 }
10921
10922 ui_out_field_int (uiout, "number", b->number);
10923 ui_out_text (uiout, ": ");
10924 ui_out_field_string (uiout, "exp", w->exp_string);
10925 do_cleanups (ui_out_chain);
10926}
10927
10928/* Implement the "print_recreate" breakpoint_ops method for
10929 watchpoints. */
10930
10931static void
10932print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10933{
10934 struct watchpoint *w = (struct watchpoint *) b;
10935
10936 switch (b->type)
10937 {
10938 case bp_watchpoint:
10939 case bp_hardware_watchpoint:
10940 fprintf_unfiltered (fp, "watch");
10941 break;
10942 case bp_read_watchpoint:
10943 fprintf_unfiltered (fp, "rwatch");
10944 break;
10945 case bp_access_watchpoint:
10946 fprintf_unfiltered (fp, "awatch");
10947 break;
10948 default:
10949 internal_error (__FILE__, __LINE__,
10950 _("Invalid watchpoint type."));
10951 }
10952
10953 fprintf_unfiltered (fp, " %s", w->exp_string);
10954 print_recreate_thread (b, fp);
10955}
10956
10957/* Implement the "explains_signal" breakpoint_ops method for
10958 watchpoints. */
10959
10960static int
10961explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10962{
10963 /* A software watchpoint cannot cause a signal other than
10964 GDB_SIGNAL_TRAP. */
10965 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10966 return 0;
10967
10968 return 1;
10969}
10970
10971/* The breakpoint_ops structure to be used in hardware watchpoints. */
10972
10973static struct breakpoint_ops watchpoint_breakpoint_ops;
10974
10975/* Implement the "insert" breakpoint_ops method for
10976 masked hardware watchpoints. */
10977
10978static int
10979insert_masked_watchpoint (struct bp_location *bl)
10980{
10981 struct watchpoint *w = (struct watchpoint *) bl->owner;
10982
10983 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10984 bl->watchpoint_type);
10985}
10986
10987/* Implement the "remove" breakpoint_ops method for
10988 masked hardware watchpoints. */
10989
10990static int
10991remove_masked_watchpoint (struct bp_location *bl)
10992{
10993 struct watchpoint *w = (struct watchpoint *) bl->owner;
10994
10995 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10996 bl->watchpoint_type);
10997}
10998
10999/* Implement the "resources_needed" breakpoint_ops method for
11000 masked hardware watchpoints. */
11001
11002static int
11003resources_needed_masked_watchpoint (const struct bp_location *bl)
11004{
11005 struct watchpoint *w = (struct watchpoint *) bl->owner;
11006
11007 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
11008}
11009
11010/* Implement the "works_in_software_mode" breakpoint_ops method for
11011 masked hardware watchpoints. */
11012
11013static int
11014works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
11015{
11016 return 0;
11017}
11018
11019/* Implement the "print_it" breakpoint_ops method for
11020 masked hardware watchpoints. */
11021
11022static enum print_stop_action
11023print_it_masked_watchpoint (bpstat bs)
11024{
11025 struct breakpoint *b = bs->breakpoint_at;
11026 struct ui_out *uiout = current_uiout;
11027
11028 /* Masked watchpoints have only one location. */
11029 gdb_assert (b->loc && b->loc->next == NULL);
11030
11031 switch (b->type)
11032 {
11033 case bp_hardware_watchpoint:
11034 annotate_watchpoint (b->number);
11035 if (ui_out_is_mi_like_p (uiout))
11036 ui_out_field_string
11037 (uiout, "reason",
11038 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
11039 break;
11040
11041 case bp_read_watchpoint:
11042 if (ui_out_is_mi_like_p (uiout))
11043 ui_out_field_string
11044 (uiout, "reason",
11045 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11046 break;
11047
11048 case bp_access_watchpoint:
11049 if (ui_out_is_mi_like_p (uiout))
11050 ui_out_field_string
11051 (uiout, "reason",
11052 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11053 break;
11054 default:
11055 internal_error (__FILE__, __LINE__,
11056 _("Invalid hardware watchpoint type."));
11057 }
11058
11059 mention (b);
11060 ui_out_text (uiout, _("\n\
11061Check the underlying instruction at PC for the memory\n\
11062address and value which triggered this watchpoint.\n"));
11063 ui_out_text (uiout, "\n");
11064
11065 /* More than one watchpoint may have been triggered. */
11066 return PRINT_UNKNOWN;
11067}
11068
11069/* Implement the "print_one_detail" breakpoint_ops method for
11070 masked hardware watchpoints. */
11071
11072static void
11073print_one_detail_masked_watchpoint (const struct breakpoint *b,
11074 struct ui_out *uiout)
11075{
11076 struct watchpoint *w = (struct watchpoint *) b;
11077
11078 /* Masked watchpoints have only one location. */
11079 gdb_assert (b->loc && b->loc->next == NULL);
11080
11081 ui_out_text (uiout, "\tmask ");
11082 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11083 ui_out_text (uiout, "\n");
11084}
11085
11086/* Implement the "print_mention" breakpoint_ops method for
11087 masked hardware watchpoints. */
11088
11089static void
11090print_mention_masked_watchpoint (struct breakpoint *b)
11091{
11092 struct watchpoint *w = (struct watchpoint *) b;
11093 struct ui_out *uiout = current_uiout;
11094 struct cleanup *ui_out_chain;
11095
11096 switch (b->type)
11097 {
11098 case bp_hardware_watchpoint:
11099 ui_out_text (uiout, "Masked hardware watchpoint ");
11100 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11101 break;
11102 case bp_read_watchpoint:
11103 ui_out_text (uiout, "Masked hardware read watchpoint ");
11104 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11105 break;
11106 case bp_access_watchpoint:
11107 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11108 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11109 break;
11110 default:
11111 internal_error (__FILE__, __LINE__,
11112 _("Invalid hardware watchpoint type."));
11113 }
11114
11115 ui_out_field_int (uiout, "number", b->number);
11116 ui_out_text (uiout, ": ");
11117 ui_out_field_string (uiout, "exp", w->exp_string);
11118 do_cleanups (ui_out_chain);
11119}
11120
11121/* Implement the "print_recreate" breakpoint_ops method for
11122 masked hardware watchpoints. */
11123
11124static void
11125print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11126{
11127 struct watchpoint *w = (struct watchpoint *) b;
11128 char tmp[40];
11129
11130 switch (b->type)
11131 {
11132 case bp_hardware_watchpoint:
11133 fprintf_unfiltered (fp, "watch");
11134 break;
11135 case bp_read_watchpoint:
11136 fprintf_unfiltered (fp, "rwatch");
11137 break;
11138 case bp_access_watchpoint:
11139 fprintf_unfiltered (fp, "awatch");
11140 break;
11141 default:
11142 internal_error (__FILE__, __LINE__,
11143 _("Invalid hardware watchpoint type."));
11144 }
11145
11146 sprintf_vma (tmp, w->hw_wp_mask);
11147 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11148 print_recreate_thread (b, fp);
11149}
11150
11151/* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11152
11153static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11154
11155/* Tell whether the given watchpoint is a masked hardware watchpoint. */
11156
11157static int
11158is_masked_watchpoint (const struct breakpoint *b)
11159{
11160 return b->ops == &masked_watchpoint_breakpoint_ops;
11161}
11162
11163/* accessflag: hw_write: watch write,
11164 hw_read: watch read,
11165 hw_access: watch access (read or write) */
11166static void
11167watch_command_1 (const char *arg, int accessflag, int from_tty,
11168 int just_location, int internal)
11169{
11170 volatile struct gdb_exception e;
11171 struct breakpoint *b, *scope_breakpoint = NULL;
11172 struct expression *exp;
11173 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11174 struct value *val, *mark, *result;
11175 struct frame_info *frame;
11176 const char *exp_start = NULL;
11177 const char *exp_end = NULL;
11178 const char *tok, *end_tok;
11179 int toklen = -1;
11180 const char *cond_start = NULL;
11181 const char *cond_end = NULL;
11182 enum bptype bp_type;
11183 int thread = -1;
11184 int pc = 0;
11185 /* Flag to indicate whether we are going to use masks for
11186 the hardware watchpoint. */
11187 int use_mask = 0;
11188 CORE_ADDR mask = 0;
11189 struct watchpoint *w;
11190 char *expression;
11191 struct cleanup *back_to;
11192
11193 /* Make sure that we actually have parameters to parse. */
11194 if (arg != NULL && arg[0] != '\0')
11195 {
11196 const char *value_start;
11197
11198 exp_end = arg + strlen (arg);
11199
11200 /* Look for "parameter value" pairs at the end
11201 of the arguments string. */
11202 for (tok = exp_end - 1; tok > arg; tok--)
11203 {
11204 /* Skip whitespace at the end of the argument list. */
11205 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11206 tok--;
11207
11208 /* Find the beginning of the last token.
11209 This is the value of the parameter. */
11210 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11211 tok--;
11212 value_start = tok + 1;
11213
11214 /* Skip whitespace. */
11215 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11216 tok--;
11217
11218 end_tok = tok;
11219
11220 /* Find the beginning of the second to last token.
11221 This is the parameter itself. */
11222 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11223 tok--;
11224 tok++;
11225 toklen = end_tok - tok + 1;
11226
11227 if (toklen == 6 && !strncmp (tok, "thread", 6))
11228 {
11229 /* At this point we've found a "thread" token, which means
11230 the user is trying to set a watchpoint that triggers
11231 only in a specific thread. */
11232 char *endp;
11233
11234 if (thread != -1)
11235 error(_("You can specify only one thread."));
11236
11237 /* Extract the thread ID from the next token. */
11238 thread = strtol (value_start, &endp, 0);
11239
11240 /* Check if the user provided a valid numeric value for the
11241 thread ID. */
11242 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11243 error (_("Invalid thread ID specification %s."), value_start);
11244
11245 /* Check if the thread actually exists. */
11246 if (!valid_thread_id (thread))
11247 invalid_thread_id_error (thread);
11248 }
11249 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11250 {
11251 /* We've found a "mask" token, which means the user wants to
11252 create a hardware watchpoint that is going to have the mask
11253 facility. */
11254 struct value *mask_value, *mark;
11255
11256 if (use_mask)
11257 error(_("You can specify only one mask."));
11258
11259 use_mask = just_location = 1;
11260
11261 mark = value_mark ();
11262 mask_value = parse_to_comma_and_eval (&value_start);
11263 mask = value_as_address (mask_value);
11264 value_free_to_mark (mark);
11265 }
11266 else
11267 /* We didn't recognize what we found. We should stop here. */
11268 break;
11269
11270 /* Truncate the string and get rid of the "parameter value" pair before
11271 the arguments string is parsed by the parse_exp_1 function. */
11272 exp_end = tok;
11273 }
11274 }
11275 else
11276 exp_end = arg;
11277
11278 /* Parse the rest of the arguments. From here on out, everything
11279 is in terms of a newly allocated string instead of the original
11280 ARG. */
11281 innermost_block = NULL;
11282 expression = savestring (arg, exp_end - arg);
11283 back_to = make_cleanup (xfree, expression);
11284 exp_start = arg = expression;
11285 exp = parse_exp_1 (&arg, 0, 0, 0);
11286 exp_end = arg;
11287 /* Remove trailing whitespace from the expression before saving it.
11288 This makes the eventual display of the expression string a bit
11289 prettier. */
11290 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11291 --exp_end;
11292
11293 /* Checking if the expression is not constant. */
11294 if (watchpoint_exp_is_const (exp))
11295 {
11296 int len;
11297
11298 len = exp_end - exp_start;
11299 while (len > 0 && isspace (exp_start[len - 1]))
11300 len--;
11301 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11302 }
11303
11304 exp_valid_block = innermost_block;
11305 mark = value_mark ();
11306 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11307
11308 if (just_location)
11309 {
11310 int ret;
11311
11312 exp_valid_block = NULL;
11313 val = value_addr (result);
11314 release_value (val);
11315 value_free_to_mark (mark);
11316
11317 if (use_mask)
11318 {
11319 ret = target_masked_watch_num_registers (value_as_address (val),
11320 mask);
11321 if (ret == -1)
11322 error (_("This target does not support masked watchpoints."));
11323 else if (ret == -2)
11324 error (_("Invalid mask or memory region."));
11325 }
11326 }
11327 else if (val != NULL)
11328 release_value (val);
11329
11330 tok = skip_spaces_const (arg);
11331 end_tok = skip_to_space_const (tok);
11332
11333 toklen = end_tok - tok;
11334 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11335 {
11336 struct expression *cond;
11337
11338 innermost_block = NULL;
11339 tok = cond_start = end_tok + 1;
11340 cond = parse_exp_1 (&tok, 0, 0, 0);
11341
11342 /* The watchpoint expression may not be local, but the condition
11343 may still be. E.g.: `watch global if local > 0'. */
11344 cond_exp_valid_block = innermost_block;
11345
11346 xfree (cond);
11347 cond_end = tok;
11348 }
11349 if (*tok)
11350 error (_("Junk at end of command."));
11351
11352 frame = block_innermost_frame (exp_valid_block);
11353
11354 /* If the expression is "local", then set up a "watchpoint scope"
11355 breakpoint at the point where we've left the scope of the watchpoint
11356 expression. Create the scope breakpoint before the watchpoint, so
11357 that we will encounter it first in bpstat_stop_status. */
11358 if (exp_valid_block && frame)
11359 {
11360 if (frame_id_p (frame_unwind_caller_id (frame)))
11361 {
11362 scope_breakpoint
11363 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11364 frame_unwind_caller_pc (frame),
11365 bp_watchpoint_scope,
11366 &momentary_breakpoint_ops);
11367
11368 scope_breakpoint->enable_state = bp_enabled;
11369
11370 /* Automatically delete the breakpoint when it hits. */
11371 scope_breakpoint->disposition = disp_del;
11372
11373 /* Only break in the proper frame (help with recursion). */
11374 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11375
11376 /* Set the address at which we will stop. */
11377 scope_breakpoint->loc->gdbarch
11378 = frame_unwind_caller_arch (frame);
11379 scope_breakpoint->loc->requested_address
11380 = frame_unwind_caller_pc (frame);
11381 scope_breakpoint->loc->address
11382 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11383 scope_breakpoint->loc->requested_address,
11384 scope_breakpoint->type);
11385 }
11386 }
11387
11388 /* Now set up the breakpoint. We create all watchpoints as hardware
11389 watchpoints here even if hardware watchpoints are turned off, a call
11390 to update_watchpoint later in this function will cause the type to
11391 drop back to bp_watchpoint (software watchpoint) if required. */
11392
11393 if (accessflag == hw_read)
11394 bp_type = bp_read_watchpoint;
11395 else if (accessflag == hw_access)
11396 bp_type = bp_access_watchpoint;
11397 else
11398 bp_type = bp_hardware_watchpoint;
11399
11400 w = XCNEW (struct watchpoint);
11401 b = &w->base;
11402 if (use_mask)
11403 init_raw_breakpoint_without_location (b, NULL, bp_type,
11404 &masked_watchpoint_breakpoint_ops);
11405 else
11406 init_raw_breakpoint_without_location (b, NULL, bp_type,
11407 &watchpoint_breakpoint_ops);
11408 b->thread = thread;
11409 b->disposition = disp_donttouch;
11410 b->pspace = current_program_space;
11411 w->exp = exp;
11412 w->exp_valid_block = exp_valid_block;
11413 w->cond_exp_valid_block = cond_exp_valid_block;
11414 if (just_location)
11415 {
11416 struct type *t = value_type (val);
11417 CORE_ADDR addr = value_as_address (val);
11418 char *name;
11419
11420 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11421 name = type_to_string (t);
11422
11423 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11424 core_addr_to_string (addr));
11425 xfree (name);
11426
11427 w->exp_string = xstrprintf ("-location %.*s",
11428 (int) (exp_end - exp_start), exp_start);
11429
11430 /* The above expression is in C. */
11431 b->language = language_c;
11432 }
11433 else
11434 w->exp_string = savestring (exp_start, exp_end - exp_start);
11435
11436 if (use_mask)
11437 {
11438 w->hw_wp_mask = mask;
11439 }
11440 else
11441 {
11442 w->val = val;
11443 w->val_valid = 1;
11444 }
11445
11446 if (cond_start)
11447 b->cond_string = savestring (cond_start, cond_end - cond_start);
11448 else
11449 b->cond_string = 0;
11450
11451 if (frame)
11452 {
11453 w->watchpoint_frame = get_frame_id (frame);
11454 w->watchpoint_thread = inferior_ptid;
11455 }
11456 else
11457 {
11458 w->watchpoint_frame = null_frame_id;
11459 w->watchpoint_thread = null_ptid;
11460 }
11461
11462 if (scope_breakpoint != NULL)
11463 {
11464 /* The scope breakpoint is related to the watchpoint. We will
11465 need to act on them together. */
11466 b->related_breakpoint = scope_breakpoint;
11467 scope_breakpoint->related_breakpoint = b;
11468 }
11469
11470 if (!just_location)
11471 value_free_to_mark (mark);
11472
11473 TRY_CATCH (e, RETURN_MASK_ALL)
11474 {
11475 /* Finally update the new watchpoint. This creates the locations
11476 that should be inserted. */
11477 update_watchpoint (w, 1);
11478 }
11479 if (e.reason < 0)
11480 {
11481 delete_breakpoint (b);
11482 throw_exception (e);
11483 }
11484
11485 install_breakpoint (internal, b, 1);
11486 do_cleanups (back_to);
11487}
11488
11489/* Return count of debug registers needed to watch the given expression.
11490 If the watchpoint cannot be handled in hardware return zero. */
11491
11492static int
11493can_use_hardware_watchpoint (struct value *v)
11494{
11495 int found_memory_cnt = 0;
11496 struct value *head = v;
11497
11498 /* Did the user specifically forbid us to use hardware watchpoints? */
11499 if (!can_use_hw_watchpoints)
11500 return 0;
11501
11502 /* Make sure that the value of the expression depends only upon
11503 memory contents, and values computed from them within GDB. If we
11504 find any register references or function calls, we can't use a
11505 hardware watchpoint.
11506
11507 The idea here is that evaluating an expression generates a series
11508 of values, one holding the value of every subexpression. (The
11509 expression a*b+c has five subexpressions: a, b, a*b, c, and
11510 a*b+c.) GDB's values hold almost enough information to establish
11511 the criteria given above --- they identify memory lvalues,
11512 register lvalues, computed values, etcetera. So we can evaluate
11513 the expression, and then scan the chain of values that leaves
11514 behind to decide whether we can detect any possible change to the
11515 expression's final value using only hardware watchpoints.
11516
11517 However, I don't think that the values returned by inferior
11518 function calls are special in any way. So this function may not
11519 notice that an expression involving an inferior function call
11520 can't be watched with hardware watchpoints. FIXME. */
11521 for (; v; v = value_next (v))
11522 {
11523 if (VALUE_LVAL (v) == lval_memory)
11524 {
11525 if (v != head && value_lazy (v))
11526 /* A lazy memory lvalue in the chain is one that GDB never
11527 needed to fetch; we either just used its address (e.g.,
11528 `a' in `a.b') or we never needed it at all (e.g., `a'
11529 in `a,b'). This doesn't apply to HEAD; if that is
11530 lazy then it was not readable, but watch it anyway. */
11531 ;
11532 else
11533 {
11534 /* Ahh, memory we actually used! Check if we can cover
11535 it with hardware watchpoints. */
11536 struct type *vtype = check_typedef (value_type (v));
11537
11538 /* We only watch structs and arrays if user asked for it
11539 explicitly, never if they just happen to appear in a
11540 middle of some value chain. */
11541 if (v == head
11542 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11543 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11544 {
11545 CORE_ADDR vaddr = value_address (v);
11546 int len;
11547 int num_regs;
11548
11549 len = (target_exact_watchpoints
11550 && is_scalar_type_recursive (vtype))?
11551 1 : TYPE_LENGTH (value_type (v));
11552
11553 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11554 if (!num_regs)
11555 return 0;
11556 else
11557 found_memory_cnt += num_regs;
11558 }
11559 }
11560 }
11561 else if (VALUE_LVAL (v) != not_lval
11562 && deprecated_value_modifiable (v) == 0)
11563 return 0; /* These are values from the history (e.g., $1). */
11564 else if (VALUE_LVAL (v) == lval_register)
11565 return 0; /* Cannot watch a register with a HW watchpoint. */
11566 }
11567
11568 /* The expression itself looks suitable for using a hardware
11569 watchpoint, but give the target machine a chance to reject it. */
11570 return found_memory_cnt;
11571}
11572
11573void
11574watch_command_wrapper (char *arg, int from_tty, int internal)
11575{
11576 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11577}
11578
11579/* A helper function that looks for the "-location" argument and then
11580 calls watch_command_1. */
11581
11582static void
11583watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11584{
11585 int just_location = 0;
11586
11587 if (arg
11588 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11589 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11590 {
11591 arg = skip_spaces (arg);
11592 just_location = 1;
11593 }
11594
11595 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11596}
11597
11598static void
11599watch_command (char *arg, int from_tty)
11600{
11601 watch_maybe_just_location (arg, hw_write, from_tty);
11602}
11603
11604void
11605rwatch_command_wrapper (char *arg, int from_tty, int internal)
11606{
11607 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11608}
11609
11610static void
11611rwatch_command (char *arg, int from_tty)
11612{
11613 watch_maybe_just_location (arg, hw_read, from_tty);
11614}
11615
11616void
11617awatch_command_wrapper (char *arg, int from_tty, int internal)
11618{
11619 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11620}
11621
11622static void
11623awatch_command (char *arg, int from_tty)
11624{
11625 watch_maybe_just_location (arg, hw_access, from_tty);
11626}
11627\f
11628
11629/* Helper routines for the until_command routine in infcmd.c. Here
11630 because it uses the mechanisms of breakpoints. */
11631
11632struct until_break_command_continuation_args
11633{
11634 struct breakpoint *breakpoint;
11635 struct breakpoint *breakpoint2;
11636 int thread_num;
11637};
11638
11639/* This function is called by fetch_inferior_event via the
11640 cmd_continuation pointer, to complete the until command. It takes
11641 care of cleaning up the temporary breakpoints set up by the until
11642 command. */
11643static void
11644until_break_command_continuation (void *arg, int err)
11645{
11646 struct until_break_command_continuation_args *a = arg;
11647
11648 delete_breakpoint (a->breakpoint);
11649 if (a->breakpoint2)
11650 delete_breakpoint (a->breakpoint2);
11651 delete_longjmp_breakpoint (a->thread_num);
11652}
11653
11654void
11655until_break_command (char *arg, int from_tty, int anywhere)
11656{
11657 struct symtabs_and_lines sals;
11658 struct symtab_and_line sal;
11659 struct frame_info *frame;
11660 struct gdbarch *frame_gdbarch;
11661 struct frame_id stack_frame_id;
11662 struct frame_id caller_frame_id;
11663 struct breakpoint *breakpoint;
11664 struct breakpoint *breakpoint2 = NULL;
11665 struct cleanup *old_chain;
11666 int thread;
11667 struct thread_info *tp;
11668
11669 clear_proceed_status ();
11670
11671 /* Set a breakpoint where the user wants it and at return from
11672 this function. */
11673
11674 if (last_displayed_sal_is_valid ())
11675 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11676 get_last_displayed_symtab (),
11677 get_last_displayed_line ());
11678 else
11679 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11680 (struct symtab *) NULL, 0);
11681
11682 if (sals.nelts != 1)
11683 error (_("Couldn't get information on specified line."));
11684
11685 sal = sals.sals[0];
11686 xfree (sals.sals); /* malloc'd, so freed. */
11687
11688 if (*arg)
11689 error (_("Junk at end of arguments."));
11690
11691 resolve_sal_pc (&sal);
11692
11693 tp = inferior_thread ();
11694 thread = tp->num;
11695
11696 old_chain = make_cleanup (null_cleanup, NULL);
11697
11698 /* Note linespec handling above invalidates the frame chain.
11699 Installing a breakpoint also invalidates the frame chain (as it
11700 may need to switch threads), so do any frame handling before
11701 that. */
11702
11703 frame = get_selected_frame (NULL);
11704 frame_gdbarch = get_frame_arch (frame);
11705 stack_frame_id = get_stack_frame_id (frame);
11706 caller_frame_id = frame_unwind_caller_id (frame);
11707
11708 /* Keep within the current frame, or in frames called by the current
11709 one. */
11710
11711 if (frame_id_p (caller_frame_id))
11712 {
11713 struct symtab_and_line sal2;
11714
11715 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11716 sal2.pc = frame_unwind_caller_pc (frame);
11717 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11718 sal2,
11719 caller_frame_id,
11720 bp_until);
11721 make_cleanup_delete_breakpoint (breakpoint2);
11722
11723 set_longjmp_breakpoint (tp, caller_frame_id);
11724 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11725 }
11726
11727 /* set_momentary_breakpoint could invalidate FRAME. */
11728 frame = NULL;
11729
11730 if (anywhere)
11731 /* If the user told us to continue until a specified location,
11732 we don't specify a frame at which we need to stop. */
11733 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11734 null_frame_id, bp_until);
11735 else
11736 /* Otherwise, specify the selected frame, because we want to stop
11737 only at the very same frame. */
11738 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11739 stack_frame_id, bp_until);
11740 make_cleanup_delete_breakpoint (breakpoint);
11741
11742 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11743
11744 /* If we are running asynchronously, and proceed call above has
11745 actually managed to start the target, arrange for breakpoints to
11746 be deleted when the target stops. Otherwise, we're already
11747 stopped and delete breakpoints via cleanup chain. */
11748
11749 if (target_can_async_p () && is_running (inferior_ptid))
11750 {
11751 struct until_break_command_continuation_args *args;
11752 args = xmalloc (sizeof (*args));
11753
11754 args->breakpoint = breakpoint;
11755 args->breakpoint2 = breakpoint2;
11756 args->thread_num = thread;
11757
11758 discard_cleanups (old_chain);
11759 add_continuation (inferior_thread (),
11760 until_break_command_continuation, args,
11761 xfree);
11762 }
11763 else
11764 do_cleanups (old_chain);
11765}
11766
11767/* This function attempts to parse an optional "if <cond>" clause
11768 from the arg string. If one is not found, it returns NULL.
11769
11770 Else, it returns a pointer to the condition string. (It does not
11771 attempt to evaluate the string against a particular block.) And,
11772 it updates arg to point to the first character following the parsed
11773 if clause in the arg string. */
11774
11775char *
11776ep_parse_optional_if_clause (char **arg)
11777{
11778 char *cond_string;
11779
11780 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11781 return NULL;
11782
11783 /* Skip the "if" keyword. */
11784 (*arg) += 2;
11785
11786 /* Skip any extra leading whitespace, and record the start of the
11787 condition string. */
11788 *arg = skip_spaces (*arg);
11789 cond_string = *arg;
11790
11791 /* Assume that the condition occupies the remainder of the arg
11792 string. */
11793 (*arg) += strlen (cond_string);
11794
11795 return cond_string;
11796}
11797
11798/* Commands to deal with catching events, such as signals, exceptions,
11799 process start/exit, etc. */
11800
11801typedef enum
11802{
11803 catch_fork_temporary, catch_vfork_temporary,
11804 catch_fork_permanent, catch_vfork_permanent
11805}
11806catch_fork_kind;
11807
11808static void
11809catch_fork_command_1 (char *arg, int from_tty,
11810 struct cmd_list_element *command)
11811{
11812 struct gdbarch *gdbarch = get_current_arch ();
11813 char *cond_string = NULL;
11814 catch_fork_kind fork_kind;
11815 int tempflag;
11816
11817 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11818 tempflag = (fork_kind == catch_fork_temporary
11819 || fork_kind == catch_vfork_temporary);
11820
11821 if (!arg)
11822 arg = "";
11823 arg = skip_spaces (arg);
11824
11825 /* The allowed syntax is:
11826 catch [v]fork
11827 catch [v]fork if <cond>
11828
11829 First, check if there's an if clause. */
11830 cond_string = ep_parse_optional_if_clause (&arg);
11831
11832 if ((*arg != '\0') && !isspace (*arg))
11833 error (_("Junk at end of arguments."));
11834
11835 /* If this target supports it, create a fork or vfork catchpoint
11836 and enable reporting of such events. */
11837 switch (fork_kind)
11838 {
11839 case catch_fork_temporary:
11840 case catch_fork_permanent:
11841 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11842 &catch_fork_breakpoint_ops);
11843 break;
11844 case catch_vfork_temporary:
11845 case catch_vfork_permanent:
11846 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11847 &catch_vfork_breakpoint_ops);
11848 break;
11849 default:
11850 error (_("unsupported or unknown fork kind; cannot catch it"));
11851 break;
11852 }
11853}
11854
11855static void
11856catch_exec_command_1 (char *arg, int from_tty,
11857 struct cmd_list_element *command)
11858{
11859 struct exec_catchpoint *c;
11860 struct gdbarch *gdbarch = get_current_arch ();
11861 int tempflag;
11862 char *cond_string = NULL;
11863
11864 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11865
11866 if (!arg)
11867 arg = "";
11868 arg = skip_spaces (arg);
11869
11870 /* The allowed syntax is:
11871 catch exec
11872 catch exec if <cond>
11873
11874 First, check if there's an if clause. */
11875 cond_string = ep_parse_optional_if_clause (&arg);
11876
11877 if ((*arg != '\0') && !isspace (*arg))
11878 error (_("Junk at end of arguments."));
11879
11880 c = XNEW (struct exec_catchpoint);
11881 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11882 &catch_exec_breakpoint_ops);
11883 c->exec_pathname = NULL;
11884
11885 install_breakpoint (0, &c->base, 1);
11886}
11887
11888void
11889init_ada_exception_breakpoint (struct breakpoint *b,
11890 struct gdbarch *gdbarch,
11891 struct symtab_and_line sal,
11892 char *addr_string,
11893 const struct breakpoint_ops *ops,
11894 int tempflag,
11895 int enabled,
11896 int from_tty)
11897{
11898 if (from_tty)
11899 {
11900 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11901 if (!loc_gdbarch)
11902 loc_gdbarch = gdbarch;
11903
11904 describe_other_breakpoints (loc_gdbarch,
11905 sal.pspace, sal.pc, sal.section, -1);
11906 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11907 version for exception catchpoints, because two catchpoints
11908 used for different exception names will use the same address.
11909 In this case, a "breakpoint ... also set at..." warning is
11910 unproductive. Besides, the warning phrasing is also a bit
11911 inappropriate, we should use the word catchpoint, and tell
11912 the user what type of catchpoint it is. The above is good
11913 enough for now, though. */
11914 }
11915
11916 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11917
11918 b->enable_state = enabled ? bp_enabled : bp_disabled;
11919 b->disposition = tempflag ? disp_del : disp_donttouch;
11920 b->addr_string = addr_string;
11921 b->language = language_ada;
11922}
11923
11924/* Splits the argument using space as delimiter. Returns an xmalloc'd
11925 filter list, or NULL if no filtering is required. */
11926static VEC(int) *
11927catch_syscall_split_args (char *arg)
11928{
11929 VEC(int) *result = NULL;
11930 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11931
11932 while (*arg != '\0')
11933 {
11934 int i, syscall_number;
11935 char *endptr;
11936 char cur_name[128];
11937 struct syscall s;
11938
11939 /* Skip whitespace. */
11940 arg = skip_spaces (arg);
11941
11942 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11943 cur_name[i] = arg[i];
11944 cur_name[i] = '\0';
11945 arg += i;
11946
11947 /* Check if the user provided a syscall name or a number. */
11948 syscall_number = (int) strtol (cur_name, &endptr, 0);
11949 if (*endptr == '\0')
11950 get_syscall_by_number (syscall_number, &s);
11951 else
11952 {
11953 /* We have a name. Let's check if it's valid and convert it
11954 to a number. */
11955 get_syscall_by_name (cur_name, &s);
11956
11957 if (s.number == UNKNOWN_SYSCALL)
11958 /* Here we have to issue an error instead of a warning,
11959 because GDB cannot do anything useful if there's no
11960 syscall number to be caught. */
11961 error (_("Unknown syscall name '%s'."), cur_name);
11962 }
11963
11964 /* Ok, it's valid. */
11965 VEC_safe_push (int, result, s.number);
11966 }
11967
11968 discard_cleanups (cleanup);
11969 return result;
11970}
11971
11972/* Implement the "catch syscall" command. */
11973
11974static void
11975catch_syscall_command_1 (char *arg, int from_tty,
11976 struct cmd_list_element *command)
11977{
11978 int tempflag;
11979 VEC(int) *filter;
11980 struct syscall s;
11981 struct gdbarch *gdbarch = get_current_arch ();
11982
11983 /* Checking if the feature if supported. */
11984 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11985 error (_("The feature 'catch syscall' is not supported on \
11986this architecture yet."));
11987
11988 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11989
11990 arg = skip_spaces (arg);
11991
11992 /* We need to do this first "dummy" translation in order
11993 to get the syscall XML file loaded or, most important,
11994 to display a warning to the user if there's no XML file
11995 for his/her architecture. */
11996 get_syscall_by_number (0, &s);
11997
11998 /* The allowed syntax is:
11999 catch syscall
12000 catch syscall <name | number> [<name | number> ... <name | number>]
12001
12002 Let's check if there's a syscall name. */
12003
12004 if (arg != NULL)
12005 filter = catch_syscall_split_args (arg);
12006 else
12007 filter = NULL;
12008
12009 create_syscall_event_catchpoint (tempflag, filter,
12010 &catch_syscall_breakpoint_ops);
12011}
12012
12013static void
12014catch_command (char *arg, int from_tty)
12015{
12016 error (_("Catch requires an event name."));
12017}
12018\f
12019
12020static void
12021tcatch_command (char *arg, int from_tty)
12022{
12023 error (_("Catch requires an event name."));
12024}
12025
12026/* A qsort comparison function that sorts breakpoints in order. */
12027
12028static int
12029compare_breakpoints (const void *a, const void *b)
12030{
12031 const breakpoint_p *ba = a;
12032 uintptr_t ua = (uintptr_t) *ba;
12033 const breakpoint_p *bb = b;
12034 uintptr_t ub = (uintptr_t) *bb;
12035
12036 if ((*ba)->number < (*bb)->number)
12037 return -1;
12038 else if ((*ba)->number > (*bb)->number)
12039 return 1;
12040
12041 /* Now sort by address, in case we see, e..g, two breakpoints with
12042 the number 0. */
12043 if (ua < ub)
12044 return -1;
12045 return ua > ub ? 1 : 0;
12046}
12047
12048/* Delete breakpoints by address or line. */
12049
12050static void
12051clear_command (char *arg, int from_tty)
12052{
12053 struct breakpoint *b, *prev;
12054 VEC(breakpoint_p) *found = 0;
12055 int ix;
12056 int default_match;
12057 struct symtabs_and_lines sals;
12058 struct symtab_and_line sal;
12059 int i;
12060 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
12061
12062 if (arg)
12063 {
12064 sals = decode_line_with_current_source (arg,
12065 (DECODE_LINE_FUNFIRSTLINE
12066 | DECODE_LINE_LIST_MODE));
12067 make_cleanup (xfree, sals.sals);
12068 default_match = 0;
12069 }
12070 else
12071 {
12072 sals.sals = (struct symtab_and_line *)
12073 xmalloc (sizeof (struct symtab_and_line));
12074 make_cleanup (xfree, sals.sals);
12075 init_sal (&sal); /* Initialize to zeroes. */
12076
12077 /* Set sal's line, symtab, pc, and pspace to the values
12078 corresponding to the last call to print_frame_info. If the
12079 codepoint is not valid, this will set all the fields to 0. */
12080 get_last_displayed_sal (&sal);
12081 if (sal.symtab == 0)
12082 error (_("No source file specified."));
12083
12084 sals.sals[0] = sal;
12085 sals.nelts = 1;
12086
12087 default_match = 1;
12088 }
12089
12090 /* We don't call resolve_sal_pc here. That's not as bad as it
12091 seems, because all existing breakpoints typically have both
12092 file/line and pc set. So, if clear is given file/line, we can
12093 match this to existing breakpoint without obtaining pc at all.
12094
12095 We only support clearing given the address explicitly
12096 present in breakpoint table. Say, we've set breakpoint
12097 at file:line. There were several PC values for that file:line,
12098 due to optimization, all in one block.
12099
12100 We've picked one PC value. If "clear" is issued with another
12101 PC corresponding to the same file:line, the breakpoint won't
12102 be cleared. We probably can still clear the breakpoint, but
12103 since the other PC value is never presented to user, user
12104 can only find it by guessing, and it does not seem important
12105 to support that. */
12106
12107 /* For each line spec given, delete bps which correspond to it. Do
12108 it in two passes, solely to preserve the current behavior that
12109 from_tty is forced true if we delete more than one
12110 breakpoint. */
12111
12112 found = NULL;
12113 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12114 for (i = 0; i < sals.nelts; i++)
12115 {
12116 const char *sal_fullname;
12117
12118 /* If exact pc given, clear bpts at that pc.
12119 If line given (pc == 0), clear all bpts on specified line.
12120 If defaulting, clear all bpts on default line
12121 or at default pc.
12122
12123 defaulting sal.pc != 0 tests to do
12124
12125 0 1 pc
12126 1 1 pc _and_ line
12127 0 0 line
12128 1 0 <can't happen> */
12129
12130 sal = sals.sals[i];
12131 sal_fullname = (sal.symtab == NULL
12132 ? NULL : symtab_to_fullname (sal.symtab));
12133
12134 /* Find all matching breakpoints and add them to 'found'. */
12135 ALL_BREAKPOINTS (b)
12136 {
12137 int match = 0;
12138 /* Are we going to delete b? */
12139 if (b->type != bp_none && !is_watchpoint (b))
12140 {
12141 struct bp_location *loc = b->loc;
12142 for (; loc; loc = loc->next)
12143 {
12144 /* If the user specified file:line, don't allow a PC
12145 match. This matches historical gdb behavior. */
12146 int pc_match = (!sal.explicit_line
12147 && sal.pc
12148 && (loc->pspace == sal.pspace)
12149 && (loc->address == sal.pc)
12150 && (!section_is_overlay (loc->section)
12151 || loc->section == sal.section));
12152 int line_match = 0;
12153
12154 if ((default_match || sal.explicit_line)
12155 && loc->symtab != NULL
12156 && sal_fullname != NULL
12157 && sal.pspace == loc->pspace
12158 && loc->line_number == sal.line
12159 && filename_cmp (symtab_to_fullname (loc->symtab),
12160 sal_fullname) == 0)
12161 line_match = 1;
12162
12163 if (pc_match || line_match)
12164 {
12165 match = 1;
12166 break;
12167 }
12168 }
12169 }
12170
12171 if (match)
12172 VEC_safe_push(breakpoint_p, found, b);
12173 }
12174 }
12175
12176 /* Now go thru the 'found' chain and delete them. */
12177 if (VEC_empty(breakpoint_p, found))
12178 {
12179 if (arg)
12180 error (_("No breakpoint at %s."), arg);
12181 else
12182 error (_("No breakpoint at this line."));
12183 }
12184
12185 /* Remove duplicates from the vec. */
12186 qsort (VEC_address (breakpoint_p, found),
12187 VEC_length (breakpoint_p, found),
12188 sizeof (breakpoint_p),
12189 compare_breakpoints);
12190 prev = VEC_index (breakpoint_p, found, 0);
12191 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12192 {
12193 if (b == prev)
12194 {
12195 VEC_ordered_remove (breakpoint_p, found, ix);
12196 --ix;
12197 }
12198 }
12199
12200 if (VEC_length(breakpoint_p, found) > 1)
12201 from_tty = 1; /* Always report if deleted more than one. */
12202 if (from_tty)
12203 {
12204 if (VEC_length(breakpoint_p, found) == 1)
12205 printf_unfiltered (_("Deleted breakpoint "));
12206 else
12207 printf_unfiltered (_("Deleted breakpoints "));
12208 }
12209
12210 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12211 {
12212 if (from_tty)
12213 printf_unfiltered ("%d ", b->number);
12214 delete_breakpoint (b);
12215 }
12216 if (from_tty)
12217 putchar_unfiltered ('\n');
12218
12219 do_cleanups (cleanups);
12220}
12221\f
12222/* Delete breakpoint in BS if they are `delete' breakpoints and
12223 all breakpoints that are marked for deletion, whether hit or not.
12224 This is called after any breakpoint is hit, or after errors. */
12225
12226void
12227breakpoint_auto_delete (bpstat bs)
12228{
12229 struct breakpoint *b, *b_tmp;
12230
12231 for (; bs; bs = bs->next)
12232 if (bs->breakpoint_at
12233 && bs->breakpoint_at->disposition == disp_del
12234 && bs->stop)
12235 delete_breakpoint (bs->breakpoint_at);
12236
12237 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12238 {
12239 if (b->disposition == disp_del_at_next_stop)
12240 delete_breakpoint (b);
12241 }
12242}
12243
12244/* A comparison function for bp_location AP and BP being interfaced to
12245 qsort. Sort elements primarily by their ADDRESS (no matter what
12246 does breakpoint_address_is_meaningful say for its OWNER),
12247 secondarily by ordering first bp_permanent OWNERed elements and
12248 terciarily just ensuring the array is sorted stable way despite
12249 qsort being an unstable algorithm. */
12250
12251static int
12252bp_location_compare (const void *ap, const void *bp)
12253{
12254 struct bp_location *a = *(void **) ap;
12255 struct bp_location *b = *(void **) bp;
12256 /* A and B come from existing breakpoints having non-NULL OWNER. */
12257 int a_perm = a->owner->enable_state == bp_permanent;
12258 int b_perm = b->owner->enable_state == bp_permanent;
12259
12260 if (a->address != b->address)
12261 return (a->address > b->address) - (a->address < b->address);
12262
12263 /* Sort locations at the same address by their pspace number, keeping
12264 locations of the same inferior (in a multi-inferior environment)
12265 grouped. */
12266
12267 if (a->pspace->num != b->pspace->num)
12268 return ((a->pspace->num > b->pspace->num)
12269 - (a->pspace->num < b->pspace->num));
12270
12271 /* Sort permanent breakpoints first. */
12272 if (a_perm != b_perm)
12273 return (a_perm < b_perm) - (a_perm > b_perm);
12274
12275 /* Make the internal GDB representation stable across GDB runs
12276 where A and B memory inside GDB can differ. Breakpoint locations of
12277 the same type at the same address can be sorted in arbitrary order. */
12278
12279 if (a->owner->number != b->owner->number)
12280 return ((a->owner->number > b->owner->number)
12281 - (a->owner->number < b->owner->number));
12282
12283 return (a > b) - (a < b);
12284}
12285
12286/* Set bp_location_placed_address_before_address_max and
12287 bp_location_shadow_len_after_address_max according to the current
12288 content of the bp_location array. */
12289
12290static void
12291bp_location_target_extensions_update (void)
12292{
12293 struct bp_location *bl, **blp_tmp;
12294
12295 bp_location_placed_address_before_address_max = 0;
12296 bp_location_shadow_len_after_address_max = 0;
12297
12298 ALL_BP_LOCATIONS (bl, blp_tmp)
12299 {
12300 CORE_ADDR start, end, addr;
12301
12302 if (!bp_location_has_shadow (bl))
12303 continue;
12304
12305 start = bl->target_info.placed_address;
12306 end = start + bl->target_info.shadow_len;
12307
12308 gdb_assert (bl->address >= start);
12309 addr = bl->address - start;
12310 if (addr > bp_location_placed_address_before_address_max)
12311 bp_location_placed_address_before_address_max = addr;
12312
12313 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12314
12315 gdb_assert (bl->address < end);
12316 addr = end - bl->address;
12317 if (addr > bp_location_shadow_len_after_address_max)
12318 bp_location_shadow_len_after_address_max = addr;
12319 }
12320}
12321
12322/* Download tracepoint locations if they haven't been. */
12323
12324static void
12325download_tracepoint_locations (void)
12326{
12327 struct breakpoint *b;
12328 struct cleanup *old_chain;
12329
12330 if (!target_can_download_tracepoint ())
12331 return;
12332
12333 old_chain = save_current_space_and_thread ();
12334
12335 ALL_TRACEPOINTS (b)
12336 {
12337 struct bp_location *bl;
12338 struct tracepoint *t;
12339 int bp_location_downloaded = 0;
12340
12341 if ((b->type == bp_fast_tracepoint
12342 ? !may_insert_fast_tracepoints
12343 : !may_insert_tracepoints))
12344 continue;
12345
12346 for (bl = b->loc; bl; bl = bl->next)
12347 {
12348 /* In tracepoint, locations are _never_ duplicated, so
12349 should_be_inserted is equivalent to
12350 unduplicated_should_be_inserted. */
12351 if (!should_be_inserted (bl) || bl->inserted)
12352 continue;
12353
12354 switch_to_program_space_and_thread (bl->pspace);
12355
12356 target_download_tracepoint (bl);
12357
12358 bl->inserted = 1;
12359 bp_location_downloaded = 1;
12360 }
12361 t = (struct tracepoint *) b;
12362 t->number_on_target = b->number;
12363 if (bp_location_downloaded)
12364 observer_notify_breakpoint_modified (b);
12365 }
12366
12367 do_cleanups (old_chain);
12368}
12369
12370/* Swap the insertion/duplication state between two locations. */
12371
12372static void
12373swap_insertion (struct bp_location *left, struct bp_location *right)
12374{
12375 const int left_inserted = left->inserted;
12376 const int left_duplicate = left->duplicate;
12377 const int left_needs_update = left->needs_update;
12378 const struct bp_target_info left_target_info = left->target_info;
12379
12380 /* Locations of tracepoints can never be duplicated. */
12381 if (is_tracepoint (left->owner))
12382 gdb_assert (!left->duplicate);
12383 if (is_tracepoint (right->owner))
12384 gdb_assert (!right->duplicate);
12385
12386 left->inserted = right->inserted;
12387 left->duplicate = right->duplicate;
12388 left->needs_update = right->needs_update;
12389 left->target_info = right->target_info;
12390 right->inserted = left_inserted;
12391 right->duplicate = left_duplicate;
12392 right->needs_update = left_needs_update;
12393 right->target_info = left_target_info;
12394}
12395
12396/* Force the re-insertion of the locations at ADDRESS. This is called
12397 once a new/deleted/modified duplicate location is found and we are evaluating
12398 conditions on the target's side. Such conditions need to be updated on
12399 the target. */
12400
12401static void
12402force_breakpoint_reinsertion (struct bp_location *bl)
12403{
12404 struct bp_location **locp = NULL, **loc2p;
12405 struct bp_location *loc;
12406 CORE_ADDR address = 0;
12407 int pspace_num;
12408
12409 address = bl->address;
12410 pspace_num = bl->pspace->num;
12411
12412 /* This is only meaningful if the target is
12413 evaluating conditions and if the user has
12414 opted for condition evaluation on the target's
12415 side. */
12416 if (gdb_evaluates_breakpoint_condition_p ()
12417 || !target_supports_evaluation_of_breakpoint_conditions ())
12418 return;
12419
12420 /* Flag all breakpoint locations with this address and
12421 the same program space as the location
12422 as "its condition has changed". We need to
12423 update the conditions on the target's side. */
12424 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12425 {
12426 loc = *loc2p;
12427
12428 if (!is_breakpoint (loc->owner)
12429 || pspace_num != loc->pspace->num)
12430 continue;
12431
12432 /* Flag the location appropriately. We use a different state to
12433 let everyone know that we already updated the set of locations
12434 with addr bl->address and program space bl->pspace. This is so
12435 we don't have to keep calling these functions just to mark locations
12436 that have already been marked. */
12437 loc->condition_changed = condition_updated;
12438
12439 /* Free the agent expression bytecode as well. We will compute
12440 it later on. */
12441 if (loc->cond_bytecode)
12442 {
12443 free_agent_expr (loc->cond_bytecode);
12444 loc->cond_bytecode = NULL;
12445 }
12446 }
12447}
12448
12449/* If SHOULD_INSERT is false, do not insert any breakpoint locations
12450 into the inferior, only remove already-inserted locations that no
12451 longer should be inserted. Functions that delete a breakpoint or
12452 breakpoints should pass false, so that deleting a breakpoint
12453 doesn't have the side effect of inserting the locations of other
12454 breakpoints that are marked not-inserted, but should_be_inserted
12455 returns true on them.
12456
12457 This behaviour is useful is situations close to tear-down -- e.g.,
12458 after an exec, while the target still has execution, but breakpoint
12459 shadows of the previous executable image should *NOT* be restored
12460 to the new image; or before detaching, where the target still has
12461 execution and wants to delete breakpoints from GDB's lists, and all
12462 breakpoints had already been removed from the inferior. */
12463
12464static void
12465update_global_location_list (int should_insert)
12466{
12467 struct breakpoint *b;
12468 struct bp_location **locp, *loc;
12469 struct cleanup *cleanups;
12470 /* Last breakpoint location address that was marked for update. */
12471 CORE_ADDR last_addr = 0;
12472 /* Last breakpoint location program space that was marked for update. */
12473 int last_pspace_num = -1;
12474
12475 /* Used in the duplicates detection below. When iterating over all
12476 bp_locations, points to the first bp_location of a given address.
12477 Breakpoints and watchpoints of different types are never
12478 duplicates of each other. Keep one pointer for each type of
12479 breakpoint/watchpoint, so we only need to loop over all locations
12480 once. */
12481 struct bp_location *bp_loc_first; /* breakpoint */
12482 struct bp_location *wp_loc_first; /* hardware watchpoint */
12483 struct bp_location *awp_loc_first; /* access watchpoint */
12484 struct bp_location *rwp_loc_first; /* read watchpoint */
12485
12486 /* Saved former bp_location array which we compare against the newly
12487 built bp_location from the current state of ALL_BREAKPOINTS. */
12488 struct bp_location **old_location, **old_locp;
12489 unsigned old_location_count;
12490
12491 old_location = bp_location;
12492 old_location_count = bp_location_count;
12493 bp_location = NULL;
12494 bp_location_count = 0;
12495 cleanups = make_cleanup (xfree, old_location);
12496
12497 ALL_BREAKPOINTS (b)
12498 for (loc = b->loc; loc; loc = loc->next)
12499 bp_location_count++;
12500
12501 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12502 locp = bp_location;
12503 ALL_BREAKPOINTS (b)
12504 for (loc = b->loc; loc; loc = loc->next)
12505 *locp++ = loc;
12506 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12507 bp_location_compare);
12508
12509 bp_location_target_extensions_update ();
12510
12511 /* Identify bp_location instances that are no longer present in the
12512 new list, and therefore should be freed. Note that it's not
12513 necessary that those locations should be removed from inferior --
12514 if there's another location at the same address (previously
12515 marked as duplicate), we don't need to remove/insert the
12516 location.
12517
12518 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12519 and former bp_location array state respectively. */
12520
12521 locp = bp_location;
12522 for (old_locp = old_location; old_locp < old_location + old_location_count;
12523 old_locp++)
12524 {
12525 struct bp_location *old_loc = *old_locp;
12526 struct bp_location **loc2p;
12527
12528 /* Tells if 'old_loc' is found among the new locations. If
12529 not, we have to free it. */
12530 int found_object = 0;
12531 /* Tells if the location should remain inserted in the target. */
12532 int keep_in_target = 0;
12533 int removed = 0;
12534
12535 /* Skip LOCP entries which will definitely never be needed.
12536 Stop either at or being the one matching OLD_LOC. */
12537 while (locp < bp_location + bp_location_count
12538 && (*locp)->address < old_loc->address)
12539 locp++;
12540
12541 for (loc2p = locp;
12542 (loc2p < bp_location + bp_location_count
12543 && (*loc2p)->address == old_loc->address);
12544 loc2p++)
12545 {
12546 /* Check if this is a new/duplicated location or a duplicated
12547 location that had its condition modified. If so, we want to send
12548 its condition to the target if evaluation of conditions is taking
12549 place there. */
12550 if ((*loc2p)->condition_changed == condition_modified
12551 && (last_addr != old_loc->address
12552 || last_pspace_num != old_loc->pspace->num))
12553 {
12554 force_breakpoint_reinsertion (*loc2p);
12555 last_pspace_num = old_loc->pspace->num;
12556 }
12557
12558 if (*loc2p == old_loc)
12559 found_object = 1;
12560 }
12561
12562 /* We have already handled this address, update it so that we don't
12563 have to go through updates again. */
12564 last_addr = old_loc->address;
12565
12566 /* Target-side condition evaluation: Handle deleted locations. */
12567 if (!found_object)
12568 force_breakpoint_reinsertion (old_loc);
12569
12570 /* If this location is no longer present, and inserted, look if
12571 there's maybe a new location at the same address. If so,
12572 mark that one inserted, and don't remove this one. This is
12573 needed so that we don't have a time window where a breakpoint
12574 at certain location is not inserted. */
12575
12576 if (old_loc->inserted)
12577 {
12578 /* If the location is inserted now, we might have to remove
12579 it. */
12580
12581 if (found_object && should_be_inserted (old_loc))
12582 {
12583 /* The location is still present in the location list,
12584 and still should be inserted. Don't do anything. */
12585 keep_in_target = 1;
12586 }
12587 else
12588 {
12589 /* This location still exists, but it won't be kept in the
12590 target since it may have been disabled. We proceed to
12591 remove its target-side condition. */
12592
12593 /* The location is either no longer present, or got
12594 disabled. See if there's another location at the
12595 same address, in which case we don't need to remove
12596 this one from the target. */
12597
12598 /* OLD_LOC comes from existing struct breakpoint. */
12599 if (breakpoint_address_is_meaningful (old_loc->owner))
12600 {
12601 for (loc2p = locp;
12602 (loc2p < bp_location + bp_location_count
12603 && (*loc2p)->address == old_loc->address);
12604 loc2p++)
12605 {
12606 struct bp_location *loc2 = *loc2p;
12607
12608 if (breakpoint_locations_match (loc2, old_loc))
12609 {
12610 /* Read watchpoint locations are switched to
12611 access watchpoints, if the former are not
12612 supported, but the latter are. */
12613 if (is_hardware_watchpoint (old_loc->owner))
12614 {
12615 gdb_assert (is_hardware_watchpoint (loc2->owner));
12616 loc2->watchpoint_type = old_loc->watchpoint_type;
12617 }
12618
12619 /* loc2 is a duplicated location. We need to check
12620 if it should be inserted in case it will be
12621 unduplicated. */
12622 if (loc2 != old_loc
12623 && unduplicated_should_be_inserted (loc2))
12624 {
12625 swap_insertion (old_loc, loc2);
12626 keep_in_target = 1;
12627 break;
12628 }
12629 }
12630 }
12631 }
12632 }
12633
12634 if (!keep_in_target)
12635 {
12636 if (remove_breakpoint (old_loc, mark_uninserted))
12637 {
12638 /* This is just about all we can do. We could keep
12639 this location on the global list, and try to
12640 remove it next time, but there's no particular
12641 reason why we will succeed next time.
12642
12643 Note that at this point, old_loc->owner is still
12644 valid, as delete_breakpoint frees the breakpoint
12645 only after calling us. */
12646 printf_filtered (_("warning: Error removing "
12647 "breakpoint %d\n"),
12648 old_loc->owner->number);
12649 }
12650 removed = 1;
12651 }
12652 }
12653
12654 if (!found_object)
12655 {
12656 if (removed && non_stop
12657 && breakpoint_address_is_meaningful (old_loc->owner)
12658 && !is_hardware_watchpoint (old_loc->owner))
12659 {
12660 /* This location was removed from the target. In
12661 non-stop mode, a race condition is possible where
12662 we've removed a breakpoint, but stop events for that
12663 breakpoint are already queued and will arrive later.
12664 We apply an heuristic to be able to distinguish such
12665 SIGTRAPs from other random SIGTRAPs: we keep this
12666 breakpoint location for a bit, and will retire it
12667 after we see some number of events. The theory here
12668 is that reporting of events should, "on the average",
12669 be fair, so after a while we'll see events from all
12670 threads that have anything of interest, and no longer
12671 need to keep this breakpoint location around. We
12672 don't hold locations forever so to reduce chances of
12673 mistaking a non-breakpoint SIGTRAP for a breakpoint
12674 SIGTRAP.
12675
12676 The heuristic failing can be disastrous on
12677 decr_pc_after_break targets.
12678
12679 On decr_pc_after_break targets, like e.g., x86-linux,
12680 if we fail to recognize a late breakpoint SIGTRAP,
12681 because events_till_retirement has reached 0 too
12682 soon, we'll fail to do the PC adjustment, and report
12683 a random SIGTRAP to the user. When the user resumes
12684 the inferior, it will most likely immediately crash
12685 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12686 corrupted, because of being resumed e.g., in the
12687 middle of a multi-byte instruction, or skipped a
12688 one-byte instruction. This was actually seen happen
12689 on native x86-linux, and should be less rare on
12690 targets that do not support new thread events, like
12691 remote, due to the heuristic depending on
12692 thread_count.
12693
12694 Mistaking a random SIGTRAP for a breakpoint trap
12695 causes similar symptoms (PC adjustment applied when
12696 it shouldn't), but then again, playing with SIGTRAPs
12697 behind the debugger's back is asking for trouble.
12698
12699 Since hardware watchpoint traps are always
12700 distinguishable from other traps, so we don't need to
12701 apply keep hardware watchpoint moribund locations
12702 around. We simply always ignore hardware watchpoint
12703 traps we can no longer explain. */
12704
12705 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12706 old_loc->owner = NULL;
12707
12708 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12709 }
12710 else
12711 {
12712 old_loc->owner = NULL;
12713 decref_bp_location (&old_loc);
12714 }
12715 }
12716 }
12717
12718 /* Rescan breakpoints at the same address and section, marking the
12719 first one as "first" and any others as "duplicates". This is so
12720 that the bpt instruction is only inserted once. If we have a
12721 permanent breakpoint at the same place as BPT, make that one the
12722 official one, and the rest as duplicates. Permanent breakpoints
12723 are sorted first for the same address.
12724
12725 Do the same for hardware watchpoints, but also considering the
12726 watchpoint's type (regular/access/read) and length. */
12727
12728 bp_loc_first = NULL;
12729 wp_loc_first = NULL;
12730 awp_loc_first = NULL;
12731 rwp_loc_first = NULL;
12732 ALL_BP_LOCATIONS (loc, locp)
12733 {
12734 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12735 non-NULL. */
12736 struct bp_location **loc_first_p;
12737 b = loc->owner;
12738
12739 if (!unduplicated_should_be_inserted (loc)
12740 || !breakpoint_address_is_meaningful (b)
12741 /* Don't detect duplicate for tracepoint locations because they are
12742 never duplicated. See the comments in field `duplicate' of
12743 `struct bp_location'. */
12744 || is_tracepoint (b))
12745 {
12746 /* Clear the condition modification flag. */
12747 loc->condition_changed = condition_unchanged;
12748 continue;
12749 }
12750
12751 /* Permanent breakpoint should always be inserted. */
12752 if (b->enable_state == bp_permanent && ! loc->inserted)
12753 internal_error (__FILE__, __LINE__,
12754 _("allegedly permanent breakpoint is not "
12755 "actually inserted"));
12756
12757 if (b->type == bp_hardware_watchpoint)
12758 loc_first_p = &wp_loc_first;
12759 else if (b->type == bp_read_watchpoint)
12760 loc_first_p = &rwp_loc_first;
12761 else if (b->type == bp_access_watchpoint)
12762 loc_first_p = &awp_loc_first;
12763 else
12764 loc_first_p = &bp_loc_first;
12765
12766 if (*loc_first_p == NULL
12767 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12768 || !breakpoint_locations_match (loc, *loc_first_p))
12769 {
12770 *loc_first_p = loc;
12771 loc->duplicate = 0;
12772
12773 if (is_breakpoint (loc->owner) && loc->condition_changed)
12774 {
12775 loc->needs_update = 1;
12776 /* Clear the condition modification flag. */
12777 loc->condition_changed = condition_unchanged;
12778 }
12779 continue;
12780 }
12781
12782
12783 /* This and the above ensure the invariant that the first location
12784 is not duplicated, and is the inserted one.
12785 All following are marked as duplicated, and are not inserted. */
12786 if (loc->inserted)
12787 swap_insertion (loc, *loc_first_p);
12788 loc->duplicate = 1;
12789
12790 /* Clear the condition modification flag. */
12791 loc->condition_changed = condition_unchanged;
12792
12793 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12794 && b->enable_state != bp_permanent)
12795 internal_error (__FILE__, __LINE__,
12796 _("another breakpoint was inserted on top of "
12797 "a permanent breakpoint"));
12798 }
12799
12800 if (breakpoints_always_inserted_mode ()
12801 && (have_live_inferiors ()
12802 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12803 {
12804 if (should_insert)
12805 insert_breakpoint_locations ();
12806 else
12807 {
12808 /* Though should_insert is false, we may need to update conditions
12809 on the target's side if it is evaluating such conditions. We
12810 only update conditions for locations that are marked
12811 "needs_update". */
12812 update_inserted_breakpoint_locations ();
12813 }
12814 }
12815
12816 if (should_insert)
12817 download_tracepoint_locations ();
12818
12819 do_cleanups (cleanups);
12820}
12821
12822void
12823breakpoint_retire_moribund (void)
12824{
12825 struct bp_location *loc;
12826 int ix;
12827
12828 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12829 if (--(loc->events_till_retirement) == 0)
12830 {
12831 decref_bp_location (&loc);
12832 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12833 --ix;
12834 }
12835}
12836
12837static void
12838update_global_location_list_nothrow (int inserting)
12839{
12840 volatile struct gdb_exception e;
12841
12842 TRY_CATCH (e, RETURN_MASK_ERROR)
12843 update_global_location_list (inserting);
12844}
12845
12846/* Clear BKP from a BPS. */
12847
12848static void
12849bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12850{
12851 bpstat bs;
12852
12853 for (bs = bps; bs; bs = bs->next)
12854 if (bs->breakpoint_at == bpt)
12855 {
12856 bs->breakpoint_at = NULL;
12857 bs->old_val = NULL;
12858 /* bs->commands will be freed later. */
12859 }
12860}
12861
12862/* Callback for iterate_over_threads. */
12863static int
12864bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12865{
12866 struct breakpoint *bpt = data;
12867
12868 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12869 return 0;
12870}
12871
12872/* Helper for breakpoint and tracepoint breakpoint_ops->mention
12873 callbacks. */
12874
12875static void
12876say_where (struct breakpoint *b)
12877{
12878 struct value_print_options opts;
12879
12880 get_user_print_options (&opts);
12881
12882 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12883 single string. */
12884 if (b->loc == NULL)
12885 {
12886 printf_filtered (_(" (%s) pending."), b->addr_string);
12887 }
12888 else
12889 {
12890 if (opts.addressprint || b->loc->symtab == NULL)
12891 {
12892 printf_filtered (" at ");
12893 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12894 gdb_stdout);
12895 }
12896 if (b->loc->symtab != NULL)
12897 {
12898 /* If there is a single location, we can print the location
12899 more nicely. */
12900 if (b->loc->next == NULL)
12901 printf_filtered (": file %s, line %d.",
12902 symtab_to_filename_for_display (b->loc->symtab),
12903 b->loc->line_number);
12904 else
12905 /* This is not ideal, but each location may have a
12906 different file name, and this at least reflects the
12907 real situation somewhat. */
12908 printf_filtered (": %s.", b->addr_string);
12909 }
12910
12911 if (b->loc->next)
12912 {
12913 struct bp_location *loc = b->loc;
12914 int n = 0;
12915 for (; loc; loc = loc->next)
12916 ++n;
12917 printf_filtered (" (%d locations)", n);
12918 }
12919 }
12920}
12921
12922/* Default bp_location_ops methods. */
12923
12924static void
12925bp_location_dtor (struct bp_location *self)
12926{
12927 xfree (self->cond);
12928 if (self->cond_bytecode)
12929 free_agent_expr (self->cond_bytecode);
12930 xfree (self->function_name);
12931
12932 VEC_free (agent_expr_p, self->target_info.conditions);
12933 VEC_free (agent_expr_p, self->target_info.tcommands);
12934}
12935
12936static const struct bp_location_ops bp_location_ops =
12937{
12938 bp_location_dtor
12939};
12940
12941/* Default breakpoint_ops methods all breakpoint_ops ultimately
12942 inherit from. */
12943
12944static void
12945base_breakpoint_dtor (struct breakpoint *self)
12946{
12947 decref_counted_command_line (&self->commands);
12948 xfree (self->cond_string);
12949 xfree (self->extra_string);
12950 xfree (self->addr_string);
12951 xfree (self->filter);
12952 xfree (self->addr_string_range_end);
12953}
12954
12955static struct bp_location *
12956base_breakpoint_allocate_location (struct breakpoint *self)
12957{
12958 struct bp_location *loc;
12959
12960 loc = XNEW (struct bp_location);
12961 init_bp_location (loc, &bp_location_ops, self);
12962 return loc;
12963}
12964
12965static void
12966base_breakpoint_re_set (struct breakpoint *b)
12967{
12968 /* Nothing to re-set. */
12969}
12970
12971#define internal_error_pure_virtual_called() \
12972 gdb_assert_not_reached ("pure virtual function called")
12973
12974static int
12975base_breakpoint_insert_location (struct bp_location *bl)
12976{
12977 internal_error_pure_virtual_called ();
12978}
12979
12980static int
12981base_breakpoint_remove_location (struct bp_location *bl)
12982{
12983 internal_error_pure_virtual_called ();
12984}
12985
12986static int
12987base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12988 struct address_space *aspace,
12989 CORE_ADDR bp_addr,
12990 const struct target_waitstatus *ws)
12991{
12992 internal_error_pure_virtual_called ();
12993}
12994
12995static void
12996base_breakpoint_check_status (bpstat bs)
12997{
12998 /* Always stop. */
12999}
13000
13001/* A "works_in_software_mode" breakpoint_ops method that just internal
13002 errors. */
13003
13004static int
13005base_breakpoint_works_in_software_mode (const struct breakpoint *b)
13006{
13007 internal_error_pure_virtual_called ();
13008}
13009
13010/* A "resources_needed" breakpoint_ops method that just internal
13011 errors. */
13012
13013static int
13014base_breakpoint_resources_needed (const struct bp_location *bl)
13015{
13016 internal_error_pure_virtual_called ();
13017}
13018
13019static enum print_stop_action
13020base_breakpoint_print_it (bpstat bs)
13021{
13022 internal_error_pure_virtual_called ();
13023}
13024
13025static void
13026base_breakpoint_print_one_detail (const struct breakpoint *self,
13027 struct ui_out *uiout)
13028{
13029 /* nothing */
13030}
13031
13032static void
13033base_breakpoint_print_mention (struct breakpoint *b)
13034{
13035 internal_error_pure_virtual_called ();
13036}
13037
13038static void
13039base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
13040{
13041 internal_error_pure_virtual_called ();
13042}
13043
13044static void
13045base_breakpoint_create_sals_from_address (char **arg,
13046 struct linespec_result *canonical,
13047 enum bptype type_wanted,
13048 char *addr_start,
13049 char **copy_arg)
13050{
13051 internal_error_pure_virtual_called ();
13052}
13053
13054static void
13055base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13056 struct linespec_result *c,
13057 char *cond_string,
13058 char *extra_string,
13059 enum bptype type_wanted,
13060 enum bpdisp disposition,
13061 int thread,
13062 int task, int ignore_count,
13063 const struct breakpoint_ops *o,
13064 int from_tty, int enabled,
13065 int internal, unsigned flags)
13066{
13067 internal_error_pure_virtual_called ();
13068}
13069
13070static void
13071base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
13072 struct symtabs_and_lines *sals)
13073{
13074 internal_error_pure_virtual_called ();
13075}
13076
13077/* The default 'explains_signal' method. */
13078
13079static int
13080base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13081{
13082 return 1;
13083}
13084
13085/* The default "after_condition_true" method. */
13086
13087static void
13088base_breakpoint_after_condition_true (struct bpstats *bs)
13089{
13090 /* Nothing to do. */
13091}
13092
13093struct breakpoint_ops base_breakpoint_ops =
13094{
13095 base_breakpoint_dtor,
13096 base_breakpoint_allocate_location,
13097 base_breakpoint_re_set,
13098 base_breakpoint_insert_location,
13099 base_breakpoint_remove_location,
13100 base_breakpoint_breakpoint_hit,
13101 base_breakpoint_check_status,
13102 base_breakpoint_resources_needed,
13103 base_breakpoint_works_in_software_mode,
13104 base_breakpoint_print_it,
13105 NULL,
13106 base_breakpoint_print_one_detail,
13107 base_breakpoint_print_mention,
13108 base_breakpoint_print_recreate,
13109 base_breakpoint_create_sals_from_address,
13110 base_breakpoint_create_breakpoints_sal,
13111 base_breakpoint_decode_linespec,
13112 base_breakpoint_explains_signal,
13113 base_breakpoint_after_condition_true,
13114};
13115
13116/* Default breakpoint_ops methods. */
13117
13118static void
13119bkpt_re_set (struct breakpoint *b)
13120{
13121 /* FIXME: is this still reachable? */
13122 if (b->addr_string == NULL)
13123 {
13124 /* Anything without a string can't be re-set. */
13125 delete_breakpoint (b);
13126 return;
13127 }
13128
13129 breakpoint_re_set_default (b);
13130}
13131
13132/* Copy SRC's shadow buffer and whatever else we'd set if we actually
13133 inserted DEST, so we can remove it later, in case SRC is removed
13134 first. */
13135
13136static void
13137bp_target_info_copy_insertion_state (struct bp_target_info *dest,
13138 const struct bp_target_info *src)
13139{
13140 dest->shadow_len = src->shadow_len;
13141 memcpy (dest->shadow_contents, src->shadow_contents, src->shadow_len);
13142 dest->placed_size = src->placed_size;
13143}
13144
13145static int
13146bkpt_insert_location (struct bp_location *bl)
13147{
13148 if (bl->loc_type == bp_loc_hardware_breakpoint)
13149 return target_insert_hw_breakpoint (bl->gdbarch,
13150 &bl->target_info);
13151 else
13152 {
13153 struct bp_target_info *bp_tgt = &bl->target_info;
13154 int ret;
13155 int sss_slot;
13156
13157 /* There is no need to insert a breakpoint if an unconditional
13158 raw/sss breakpoint is already inserted at that location. */
13159 sss_slot = find_single_step_breakpoint (bp_tgt->placed_address_space,
13160 bp_tgt->placed_address);
13161 if (sss_slot >= 0)
13162 {
13163 struct bp_target_info *sss_bp_tgt = single_step_breakpoints[sss_slot];
13164
13165 bp_target_info_copy_insertion_state (bp_tgt, sss_bp_tgt);
13166 return 0;
13167 }
13168
13169 return target_insert_breakpoint (bl->gdbarch, bp_tgt);
13170 }
13171}
13172
13173static int
13174bkpt_remove_location (struct bp_location *bl)
13175{
13176 if (bl->loc_type == bp_loc_hardware_breakpoint)
13177 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13178 else
13179 {
13180 struct bp_target_info *bp_tgt = &bl->target_info;
13181 struct address_space *aspace = bp_tgt->placed_address_space;
13182 CORE_ADDR address = bp_tgt->placed_address;
13183
13184 /* Only remove the breakpoint if there is no raw/sss breakpoint
13185 still inserted at this location. Otherwise, we would be
13186 effectively disabling the raw/sss breakpoint. */
13187 if (single_step_breakpoint_inserted_here_p (aspace, address))
13188 return 0;
13189
13190 return target_remove_breakpoint (bl->gdbarch, bp_tgt);
13191 }
13192}
13193
13194static int
13195bkpt_breakpoint_hit (const struct bp_location *bl,
13196 struct address_space *aspace, CORE_ADDR bp_addr,
13197 const struct target_waitstatus *ws)
13198{
13199 if (ws->kind != TARGET_WAITKIND_STOPPED
13200 || ws->value.sig != GDB_SIGNAL_TRAP)
13201 return 0;
13202
13203 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13204 aspace, bp_addr))
13205 return 0;
13206
13207 if (overlay_debugging /* unmapped overlay section */
13208 && section_is_overlay (bl->section)
13209 && !section_is_mapped (bl->section))
13210 return 0;
13211
13212 return 1;
13213}
13214
13215static int
13216dprintf_breakpoint_hit (const struct bp_location *bl,
13217 struct address_space *aspace, CORE_ADDR bp_addr,
13218 const struct target_waitstatus *ws)
13219{
13220 if (dprintf_style == dprintf_style_agent
13221 && target_can_run_breakpoint_commands ())
13222 {
13223 /* An agent-style dprintf never causes a stop. If we see a trap
13224 for this address it must be for a breakpoint that happens to
13225 be set at the same address. */
13226 return 0;
13227 }
13228
13229 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13230}
13231
13232static int
13233bkpt_resources_needed (const struct bp_location *bl)
13234{
13235 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13236
13237 return 1;
13238}
13239
13240static enum print_stop_action
13241bkpt_print_it (bpstat bs)
13242{
13243 struct breakpoint *b;
13244 const struct bp_location *bl;
13245 int bp_temp;
13246 struct ui_out *uiout = current_uiout;
13247
13248 gdb_assert (bs->bp_location_at != NULL);
13249
13250 bl = bs->bp_location_at;
13251 b = bs->breakpoint_at;
13252
13253 bp_temp = b->disposition == disp_del;
13254 if (bl->address != bl->requested_address)
13255 breakpoint_adjustment_warning (bl->requested_address,
13256 bl->address,
13257 b->number, 1);
13258 annotate_breakpoint (b->number);
13259 if (bp_temp)
13260 ui_out_text (uiout, "\nTemporary breakpoint ");
13261 else
13262 ui_out_text (uiout, "\nBreakpoint ");
13263 if (ui_out_is_mi_like_p (uiout))
13264 {
13265 ui_out_field_string (uiout, "reason",
13266 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13267 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13268 }
13269 ui_out_field_int (uiout, "bkptno", b->number);
13270 ui_out_text (uiout, ", ");
13271
13272 return PRINT_SRC_AND_LOC;
13273}
13274
13275static void
13276bkpt_print_mention (struct breakpoint *b)
13277{
13278 if (ui_out_is_mi_like_p (current_uiout))
13279 return;
13280
13281 switch (b->type)
13282 {
13283 case bp_breakpoint:
13284 case bp_gnu_ifunc_resolver:
13285 if (b->disposition == disp_del)
13286 printf_filtered (_("Temporary breakpoint"));
13287 else
13288 printf_filtered (_("Breakpoint"));
13289 printf_filtered (_(" %d"), b->number);
13290 if (b->type == bp_gnu_ifunc_resolver)
13291 printf_filtered (_(" at gnu-indirect-function resolver"));
13292 break;
13293 case bp_hardware_breakpoint:
13294 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13295 break;
13296 case bp_dprintf:
13297 printf_filtered (_("Dprintf %d"), b->number);
13298 break;
13299 }
13300
13301 say_where (b);
13302}
13303
13304static void
13305bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13306{
13307 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13308 fprintf_unfiltered (fp, "tbreak");
13309 else if (tp->type == bp_breakpoint)
13310 fprintf_unfiltered (fp, "break");
13311 else if (tp->type == bp_hardware_breakpoint
13312 && tp->disposition == disp_del)
13313 fprintf_unfiltered (fp, "thbreak");
13314 else if (tp->type == bp_hardware_breakpoint)
13315 fprintf_unfiltered (fp, "hbreak");
13316 else
13317 internal_error (__FILE__, __LINE__,
13318 _("unhandled breakpoint type %d"), (int) tp->type);
13319
13320 fprintf_unfiltered (fp, " %s", tp->addr_string);
13321 print_recreate_thread (tp, fp);
13322}
13323
13324static void
13325bkpt_create_sals_from_address (char **arg,
13326 struct linespec_result *canonical,
13327 enum bptype type_wanted,
13328 char *addr_start, char **copy_arg)
13329{
13330 create_sals_from_address_default (arg, canonical, type_wanted,
13331 addr_start, copy_arg);
13332}
13333
13334static void
13335bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13336 struct linespec_result *canonical,
13337 char *cond_string,
13338 char *extra_string,
13339 enum bptype type_wanted,
13340 enum bpdisp disposition,
13341 int thread,
13342 int task, int ignore_count,
13343 const struct breakpoint_ops *ops,
13344 int from_tty, int enabled,
13345 int internal, unsigned flags)
13346{
13347 create_breakpoints_sal_default (gdbarch, canonical,
13348 cond_string, extra_string,
13349 type_wanted,
13350 disposition, thread, task,
13351 ignore_count, ops, from_tty,
13352 enabled, internal, flags);
13353}
13354
13355static void
13356bkpt_decode_linespec (struct breakpoint *b, char **s,
13357 struct symtabs_and_lines *sals)
13358{
13359 decode_linespec_default (b, s, sals);
13360}
13361
13362/* Virtual table for internal breakpoints. */
13363
13364static void
13365internal_bkpt_re_set (struct breakpoint *b)
13366{
13367 switch (b->type)
13368 {
13369 /* Delete overlay event and longjmp master breakpoints; they
13370 will be reset later by breakpoint_re_set. */
13371 case bp_overlay_event:
13372 case bp_longjmp_master:
13373 case bp_std_terminate_master:
13374 case bp_exception_master:
13375 delete_breakpoint (b);
13376 break;
13377
13378 /* This breakpoint is special, it's set up when the inferior
13379 starts and we really don't want to touch it. */
13380 case bp_shlib_event:
13381
13382 /* Like bp_shlib_event, this breakpoint type is special. Once
13383 it is set up, we do not want to touch it. */
13384 case bp_thread_event:
13385 break;
13386 }
13387}
13388
13389static void
13390internal_bkpt_check_status (bpstat bs)
13391{
13392 if (bs->breakpoint_at->type == bp_shlib_event)
13393 {
13394 /* If requested, stop when the dynamic linker notifies GDB of
13395 events. This allows the user to get control and place
13396 breakpoints in initializer routines for dynamically loaded
13397 objects (among other things). */
13398 bs->stop = stop_on_solib_events;
13399 bs->print = stop_on_solib_events;
13400 }
13401 else
13402 bs->stop = 0;
13403}
13404
13405static enum print_stop_action
13406internal_bkpt_print_it (bpstat bs)
13407{
13408 struct breakpoint *b;
13409
13410 b = bs->breakpoint_at;
13411
13412 switch (b->type)
13413 {
13414 case bp_shlib_event:
13415 /* Did we stop because the user set the stop_on_solib_events
13416 variable? (If so, we report this as a generic, "Stopped due
13417 to shlib event" message.) */
13418 print_solib_event (0);
13419 break;
13420
13421 case bp_thread_event:
13422 /* Not sure how we will get here.
13423 GDB should not stop for these breakpoints. */
13424 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13425 break;
13426
13427 case bp_overlay_event:
13428 /* By analogy with the thread event, GDB should not stop for these. */
13429 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13430 break;
13431
13432 case bp_longjmp_master:
13433 /* These should never be enabled. */
13434 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13435 break;
13436
13437 case bp_std_terminate_master:
13438 /* These should never be enabled. */
13439 printf_filtered (_("std::terminate Master Breakpoint: "
13440 "gdb should not stop!\n"));
13441 break;
13442
13443 case bp_exception_master:
13444 /* These should never be enabled. */
13445 printf_filtered (_("Exception Master Breakpoint: "
13446 "gdb should not stop!\n"));
13447 break;
13448 }
13449
13450 return PRINT_NOTHING;
13451}
13452
13453static void
13454internal_bkpt_print_mention (struct breakpoint *b)
13455{
13456 /* Nothing to mention. These breakpoints are internal. */
13457}
13458
13459/* Virtual table for momentary breakpoints */
13460
13461static void
13462momentary_bkpt_re_set (struct breakpoint *b)
13463{
13464 /* Keep temporary breakpoints, which can be encountered when we step
13465 over a dlopen call and solib_add is resetting the breakpoints.
13466 Otherwise these should have been blown away via the cleanup chain
13467 or by breakpoint_init_inferior when we rerun the executable. */
13468}
13469
13470static void
13471momentary_bkpt_check_status (bpstat bs)
13472{
13473 /* Nothing. The point of these breakpoints is causing a stop. */
13474}
13475
13476static enum print_stop_action
13477momentary_bkpt_print_it (bpstat bs)
13478{
13479 struct ui_out *uiout = current_uiout;
13480
13481 if (ui_out_is_mi_like_p (uiout))
13482 {
13483 struct breakpoint *b = bs->breakpoint_at;
13484
13485 switch (b->type)
13486 {
13487 case bp_finish:
13488 ui_out_field_string
13489 (uiout, "reason",
13490 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13491 break;
13492
13493 case bp_until:
13494 ui_out_field_string
13495 (uiout, "reason",
13496 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13497 break;
13498 }
13499 }
13500
13501 return PRINT_UNKNOWN;
13502}
13503
13504static void
13505momentary_bkpt_print_mention (struct breakpoint *b)
13506{
13507 /* Nothing to mention. These breakpoints are internal. */
13508}
13509
13510/* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13511
13512 It gets cleared already on the removal of the first one of such placed
13513 breakpoints. This is OK as they get all removed altogether. */
13514
13515static void
13516longjmp_bkpt_dtor (struct breakpoint *self)
13517{
13518 struct thread_info *tp = find_thread_id (self->thread);
13519
13520 if (tp)
13521 tp->initiating_frame = null_frame_id;
13522
13523 momentary_breakpoint_ops.dtor (self);
13524}
13525
13526/* Specific methods for probe breakpoints. */
13527
13528static int
13529bkpt_probe_insert_location (struct bp_location *bl)
13530{
13531 int v = bkpt_insert_location (bl);
13532
13533 if (v == 0)
13534 {
13535 /* The insertion was successful, now let's set the probe's semaphore
13536 if needed. */
13537 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13538 bl->probe.objfile,
13539 bl->gdbarch);
13540 }
13541
13542 return v;
13543}
13544
13545static int
13546bkpt_probe_remove_location (struct bp_location *bl)
13547{
13548 /* Let's clear the semaphore before removing the location. */
13549 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13550 bl->probe.objfile,
13551 bl->gdbarch);
13552
13553 return bkpt_remove_location (bl);
13554}
13555
13556static void
13557bkpt_probe_create_sals_from_address (char **arg,
13558 struct linespec_result *canonical,
13559 enum bptype type_wanted,
13560 char *addr_start, char **copy_arg)
13561{
13562 struct linespec_sals lsal;
13563
13564 lsal.sals = parse_probes (arg, canonical);
13565
13566 *copy_arg = xstrdup (canonical->addr_string);
13567 lsal.canonical = xstrdup (*copy_arg);
13568
13569 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13570}
13571
13572static void
13573bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13574 struct symtabs_and_lines *sals)
13575{
13576 *sals = parse_probes (s, NULL);
13577 if (!sals->sals)
13578 error (_("probe not found"));
13579}
13580
13581/* The breakpoint_ops structure to be used in tracepoints. */
13582
13583static void
13584tracepoint_re_set (struct breakpoint *b)
13585{
13586 breakpoint_re_set_default (b);
13587}
13588
13589static int
13590tracepoint_breakpoint_hit (const struct bp_location *bl,
13591 struct address_space *aspace, CORE_ADDR bp_addr,
13592 const struct target_waitstatus *ws)
13593{
13594 /* By definition, the inferior does not report stops at
13595 tracepoints. */
13596 return 0;
13597}
13598
13599static void
13600tracepoint_print_one_detail (const struct breakpoint *self,
13601 struct ui_out *uiout)
13602{
13603 struct tracepoint *tp = (struct tracepoint *) self;
13604 if (tp->static_trace_marker_id)
13605 {
13606 gdb_assert (self->type == bp_static_tracepoint);
13607
13608 ui_out_text (uiout, "\tmarker id is ");
13609 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13610 tp->static_trace_marker_id);
13611 ui_out_text (uiout, "\n");
13612 }
13613}
13614
13615static void
13616tracepoint_print_mention (struct breakpoint *b)
13617{
13618 if (ui_out_is_mi_like_p (current_uiout))
13619 return;
13620
13621 switch (b->type)
13622 {
13623 case bp_tracepoint:
13624 printf_filtered (_("Tracepoint"));
13625 printf_filtered (_(" %d"), b->number);
13626 break;
13627 case bp_fast_tracepoint:
13628 printf_filtered (_("Fast tracepoint"));
13629 printf_filtered (_(" %d"), b->number);
13630 break;
13631 case bp_static_tracepoint:
13632 printf_filtered (_("Static tracepoint"));
13633 printf_filtered (_(" %d"), b->number);
13634 break;
13635 default:
13636 internal_error (__FILE__, __LINE__,
13637 _("unhandled tracepoint type %d"), (int) b->type);
13638 }
13639
13640 say_where (b);
13641}
13642
13643static void
13644tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13645{
13646 struct tracepoint *tp = (struct tracepoint *) self;
13647
13648 if (self->type == bp_fast_tracepoint)
13649 fprintf_unfiltered (fp, "ftrace");
13650 if (self->type == bp_static_tracepoint)
13651 fprintf_unfiltered (fp, "strace");
13652 else if (self->type == bp_tracepoint)
13653 fprintf_unfiltered (fp, "trace");
13654 else
13655 internal_error (__FILE__, __LINE__,
13656 _("unhandled tracepoint type %d"), (int) self->type);
13657
13658 fprintf_unfiltered (fp, " %s", self->addr_string);
13659 print_recreate_thread (self, fp);
13660
13661 if (tp->pass_count)
13662 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13663}
13664
13665static void
13666tracepoint_create_sals_from_address (char **arg,
13667 struct linespec_result *canonical,
13668 enum bptype type_wanted,
13669 char *addr_start, char **copy_arg)
13670{
13671 create_sals_from_address_default (arg, canonical, type_wanted,
13672 addr_start, copy_arg);
13673}
13674
13675static void
13676tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13677 struct linespec_result *canonical,
13678 char *cond_string,
13679 char *extra_string,
13680 enum bptype type_wanted,
13681 enum bpdisp disposition,
13682 int thread,
13683 int task, int ignore_count,
13684 const struct breakpoint_ops *ops,
13685 int from_tty, int enabled,
13686 int internal, unsigned flags)
13687{
13688 create_breakpoints_sal_default (gdbarch, canonical,
13689 cond_string, extra_string,
13690 type_wanted,
13691 disposition, thread, task,
13692 ignore_count, ops, from_tty,
13693 enabled, internal, flags);
13694}
13695
13696static void
13697tracepoint_decode_linespec (struct breakpoint *b, char **s,
13698 struct symtabs_and_lines *sals)
13699{
13700 decode_linespec_default (b, s, sals);
13701}
13702
13703struct breakpoint_ops tracepoint_breakpoint_ops;
13704
13705/* The breakpoint_ops structure to be use on tracepoints placed in a
13706 static probe. */
13707
13708static void
13709tracepoint_probe_create_sals_from_address (char **arg,
13710 struct linespec_result *canonical,
13711 enum bptype type_wanted,
13712 char *addr_start, char **copy_arg)
13713{
13714 /* We use the same method for breakpoint on probes. */
13715 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13716 addr_start, copy_arg);
13717}
13718
13719static void
13720tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13721 struct symtabs_and_lines *sals)
13722{
13723 /* We use the same method for breakpoint on probes. */
13724 bkpt_probe_decode_linespec (b, s, sals);
13725}
13726
13727static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13728
13729/* Dprintf breakpoint_ops methods. */
13730
13731static void
13732dprintf_re_set (struct breakpoint *b)
13733{
13734 breakpoint_re_set_default (b);
13735
13736 /* This breakpoint could have been pending, and be resolved now, and
13737 if so, we should now have the extra string. If we don't, the
13738 dprintf was malformed when created, but we couldn't tell because
13739 we can't extract the extra string until the location is
13740 resolved. */
13741 if (b->loc != NULL && b->extra_string == NULL)
13742 error (_("Format string required"));
13743
13744 /* 1 - connect to target 1, that can run breakpoint commands.
13745 2 - create a dprintf, which resolves fine.
13746 3 - disconnect from target 1
13747 4 - connect to target 2, that can NOT run breakpoint commands.
13748
13749 After steps #3/#4, you'll want the dprintf command list to
13750 be updated, because target 1 and 2 may well return different
13751 answers for target_can_run_breakpoint_commands().
13752 Given absence of finer grained resetting, we get to do
13753 it all the time. */
13754 if (b->extra_string != NULL)
13755 update_dprintf_command_list (b);
13756}
13757
13758/* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13759
13760static void
13761dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13762{
13763 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13764 tp->extra_string);
13765 print_recreate_thread (tp, fp);
13766}
13767
13768/* Implement the "after_condition_true" breakpoint_ops method for
13769 dprintf.
13770
13771 dprintf's are implemented with regular commands in their command
13772 list, but we run the commands here instead of before presenting the
13773 stop to the user, as dprintf's don't actually cause a stop. This
13774 also makes it so that the commands of multiple dprintfs at the same
13775 address are all handled. */
13776
13777static void
13778dprintf_after_condition_true (struct bpstats *bs)
13779{
13780 struct cleanup *old_chain;
13781 struct bpstats tmp_bs = { NULL };
13782 struct bpstats *tmp_bs_p = &tmp_bs;
13783
13784 /* dprintf's never cause a stop. This wasn't set in the
13785 check_status hook instead because that would make the dprintf's
13786 condition not be evaluated. */
13787 bs->stop = 0;
13788
13789 /* Run the command list here. Take ownership of it instead of
13790 copying. We never want these commands to run later in
13791 bpstat_do_actions, if a breakpoint that causes a stop happens to
13792 be set at same address as this dprintf, or even if running the
13793 commands here throws. */
13794 tmp_bs.commands = bs->commands;
13795 bs->commands = NULL;
13796 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13797
13798 bpstat_do_actions_1 (&tmp_bs_p);
13799
13800 /* 'tmp_bs.commands' will usually be NULL by now, but
13801 bpstat_do_actions_1 may return early without processing the whole
13802 list. */
13803 do_cleanups (old_chain);
13804}
13805
13806/* The breakpoint_ops structure to be used on static tracepoints with
13807 markers (`-m'). */
13808
13809static void
13810strace_marker_create_sals_from_address (char **arg,
13811 struct linespec_result *canonical,
13812 enum bptype type_wanted,
13813 char *addr_start, char **copy_arg)
13814{
13815 struct linespec_sals lsal;
13816
13817 lsal.sals = decode_static_tracepoint_spec (arg);
13818
13819 *copy_arg = savestring (addr_start, *arg - addr_start);
13820
13821 canonical->addr_string = xstrdup (*copy_arg);
13822 lsal.canonical = xstrdup (*copy_arg);
13823 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13824}
13825
13826static void
13827strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13828 struct linespec_result *canonical,
13829 char *cond_string,
13830 char *extra_string,
13831 enum bptype type_wanted,
13832 enum bpdisp disposition,
13833 int thread,
13834 int task, int ignore_count,
13835 const struct breakpoint_ops *ops,
13836 int from_tty, int enabled,
13837 int internal, unsigned flags)
13838{
13839 int i;
13840 struct linespec_sals *lsal = VEC_index (linespec_sals,
13841 canonical->sals, 0);
13842
13843 /* If the user is creating a static tracepoint by marker id
13844 (strace -m MARKER_ID), then store the sals index, so that
13845 breakpoint_re_set can try to match up which of the newly
13846 found markers corresponds to this one, and, don't try to
13847 expand multiple locations for each sal, given than SALS
13848 already should contain all sals for MARKER_ID. */
13849
13850 for (i = 0; i < lsal->sals.nelts; ++i)
13851 {
13852 struct symtabs_and_lines expanded;
13853 struct tracepoint *tp;
13854 struct cleanup *old_chain;
13855 char *addr_string;
13856
13857 expanded.nelts = 1;
13858 expanded.sals = &lsal->sals.sals[i];
13859
13860 addr_string = xstrdup (canonical->addr_string);
13861 old_chain = make_cleanup (xfree, addr_string);
13862
13863 tp = XCNEW (struct tracepoint);
13864 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13865 addr_string, NULL,
13866 cond_string, extra_string,
13867 type_wanted, disposition,
13868 thread, task, ignore_count, ops,
13869 from_tty, enabled, internal, flags,
13870 canonical->special_display);
13871 /* Given that its possible to have multiple markers with
13872 the same string id, if the user is creating a static
13873 tracepoint by marker id ("strace -m MARKER_ID"), then
13874 store the sals index, so that breakpoint_re_set can
13875 try to match up which of the newly found markers
13876 corresponds to this one */
13877 tp->static_trace_marker_id_idx = i;
13878
13879 install_breakpoint (internal, &tp->base, 0);
13880
13881 discard_cleanups (old_chain);
13882 }
13883}
13884
13885static void
13886strace_marker_decode_linespec (struct breakpoint *b, char **s,
13887 struct symtabs_and_lines *sals)
13888{
13889 struct tracepoint *tp = (struct tracepoint *) b;
13890
13891 *sals = decode_static_tracepoint_spec (s);
13892 if (sals->nelts > tp->static_trace_marker_id_idx)
13893 {
13894 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13895 sals->nelts = 1;
13896 }
13897 else
13898 error (_("marker %s not found"), tp->static_trace_marker_id);
13899}
13900
13901static struct breakpoint_ops strace_marker_breakpoint_ops;
13902
13903static int
13904strace_marker_p (struct breakpoint *b)
13905{
13906 return b->ops == &strace_marker_breakpoint_ops;
13907}
13908
13909/* Delete a breakpoint and clean up all traces of it in the data
13910 structures. */
13911
13912void
13913delete_breakpoint (struct breakpoint *bpt)
13914{
13915 struct breakpoint *b;
13916
13917 gdb_assert (bpt != NULL);
13918
13919 /* Has this bp already been deleted? This can happen because
13920 multiple lists can hold pointers to bp's. bpstat lists are
13921 especial culprits.
13922
13923 One example of this happening is a watchpoint's scope bp. When
13924 the scope bp triggers, we notice that the watchpoint is out of
13925 scope, and delete it. We also delete its scope bp. But the
13926 scope bp is marked "auto-deleting", and is already on a bpstat.
13927 That bpstat is then checked for auto-deleting bp's, which are
13928 deleted.
13929
13930 A real solution to this problem might involve reference counts in
13931 bp's, and/or giving them pointers back to their referencing
13932 bpstat's, and teaching delete_breakpoint to only free a bp's
13933 storage when no more references were extent. A cheaper bandaid
13934 was chosen. */
13935 if (bpt->type == bp_none)
13936 return;
13937
13938 /* At least avoid this stale reference until the reference counting
13939 of breakpoints gets resolved. */
13940 if (bpt->related_breakpoint != bpt)
13941 {
13942 struct breakpoint *related;
13943 struct watchpoint *w;
13944
13945 if (bpt->type == bp_watchpoint_scope)
13946 w = (struct watchpoint *) bpt->related_breakpoint;
13947 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13948 w = (struct watchpoint *) bpt;
13949 else
13950 w = NULL;
13951 if (w != NULL)
13952 watchpoint_del_at_next_stop (w);
13953
13954 /* Unlink bpt from the bpt->related_breakpoint ring. */
13955 for (related = bpt; related->related_breakpoint != bpt;
13956 related = related->related_breakpoint);
13957 related->related_breakpoint = bpt->related_breakpoint;
13958 bpt->related_breakpoint = bpt;
13959 }
13960
13961 /* watch_command_1 creates a watchpoint but only sets its number if
13962 update_watchpoint succeeds in creating its bp_locations. If there's
13963 a problem in that process, we'll be asked to delete the half-created
13964 watchpoint. In that case, don't announce the deletion. */
13965 if (bpt->number)
13966 observer_notify_breakpoint_deleted (bpt);
13967
13968 if (breakpoint_chain == bpt)
13969 breakpoint_chain = bpt->next;
13970
13971 ALL_BREAKPOINTS (b)
13972 if (b->next == bpt)
13973 {
13974 b->next = bpt->next;
13975 break;
13976 }
13977
13978 /* Be sure no bpstat's are pointing at the breakpoint after it's
13979 been freed. */
13980 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13981 in all threads for now. Note that we cannot just remove bpstats
13982 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13983 commands are associated with the bpstat; if we remove it here,
13984 then the later call to bpstat_do_actions (&stop_bpstat); in
13985 event-top.c won't do anything, and temporary breakpoints with
13986 commands won't work. */
13987
13988 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13989
13990 /* Now that breakpoint is removed from breakpoint list, update the
13991 global location list. This will remove locations that used to
13992 belong to this breakpoint. Do this before freeing the breakpoint
13993 itself, since remove_breakpoint looks at location's owner. It
13994 might be better design to have location completely
13995 self-contained, but it's not the case now. */
13996 update_global_location_list (0);
13997
13998 bpt->ops->dtor (bpt);
13999 /* On the chance that someone will soon try again to delete this
14000 same bp, we mark it as deleted before freeing its storage. */
14001 bpt->type = bp_none;
14002 xfree (bpt);
14003}
14004
14005static void
14006do_delete_breakpoint_cleanup (void *b)
14007{
14008 delete_breakpoint (b);
14009}
14010
14011struct cleanup *
14012make_cleanup_delete_breakpoint (struct breakpoint *b)
14013{
14014 return make_cleanup (do_delete_breakpoint_cleanup, b);
14015}
14016
14017/* Iterator function to call a user-provided callback function once
14018 for each of B and its related breakpoints. */
14019
14020static void
14021iterate_over_related_breakpoints (struct breakpoint *b,
14022 void (*function) (struct breakpoint *,
14023 void *),
14024 void *data)
14025{
14026 struct breakpoint *related;
14027
14028 related = b;
14029 do
14030 {
14031 struct breakpoint *next;
14032
14033 /* FUNCTION may delete RELATED. */
14034 next = related->related_breakpoint;
14035
14036 if (next == related)
14037 {
14038 /* RELATED is the last ring entry. */
14039 function (related, data);
14040
14041 /* FUNCTION may have deleted it, so we'd never reach back to
14042 B. There's nothing left to do anyway, so just break
14043 out. */
14044 break;
14045 }
14046 else
14047 function (related, data);
14048
14049 related = next;
14050 }
14051 while (related != b);
14052}
14053
14054static void
14055do_delete_breakpoint (struct breakpoint *b, void *ignore)
14056{
14057 delete_breakpoint (b);
14058}
14059
14060/* A callback for map_breakpoint_numbers that calls
14061 delete_breakpoint. */
14062
14063static void
14064do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
14065{
14066 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
14067}
14068
14069void
14070delete_command (char *arg, int from_tty)
14071{
14072 struct breakpoint *b, *b_tmp;
14073
14074 dont_repeat ();
14075
14076 if (arg == 0)
14077 {
14078 int breaks_to_delete = 0;
14079
14080 /* Delete all breakpoints if no argument. Do not delete
14081 internal breakpoints, these have to be deleted with an
14082 explicit breakpoint number argument. */
14083 ALL_BREAKPOINTS (b)
14084 if (user_breakpoint_p (b))
14085 {
14086 breaks_to_delete = 1;
14087 break;
14088 }
14089
14090 /* Ask user only if there are some breakpoints to delete. */
14091 if (!from_tty
14092 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
14093 {
14094 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14095 if (user_breakpoint_p (b))
14096 delete_breakpoint (b);
14097 }
14098 }
14099 else
14100 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
14101}
14102
14103static int
14104all_locations_are_pending (struct bp_location *loc)
14105{
14106 for (; loc; loc = loc->next)
14107 if (!loc->shlib_disabled
14108 && !loc->pspace->executing_startup)
14109 return 0;
14110 return 1;
14111}
14112
14113/* Subroutine of update_breakpoint_locations to simplify it.
14114 Return non-zero if multiple fns in list LOC have the same name.
14115 Null names are ignored. */
14116
14117static int
14118ambiguous_names_p (struct bp_location *loc)
14119{
14120 struct bp_location *l;
14121 htab_t htab = htab_create_alloc (13, htab_hash_string,
14122 (int (*) (const void *,
14123 const void *)) streq,
14124 NULL, xcalloc, xfree);
14125
14126 for (l = loc; l != NULL; l = l->next)
14127 {
14128 const char **slot;
14129 const char *name = l->function_name;
14130
14131 /* Allow for some names to be NULL, ignore them. */
14132 if (name == NULL)
14133 continue;
14134
14135 slot = (const char **) htab_find_slot (htab, (const void *) name,
14136 INSERT);
14137 /* NOTE: We can assume slot != NULL here because xcalloc never
14138 returns NULL. */
14139 if (*slot != NULL)
14140 {
14141 htab_delete (htab);
14142 return 1;
14143 }
14144 *slot = name;
14145 }
14146
14147 htab_delete (htab);
14148 return 0;
14149}
14150
14151/* When symbols change, it probably means the sources changed as well,
14152 and it might mean the static tracepoint markers are no longer at
14153 the same address or line numbers they used to be at last we
14154 checked. Losing your static tracepoints whenever you rebuild is
14155 undesirable. This function tries to resync/rematch gdb static
14156 tracepoints with the markers on the target, for static tracepoints
14157 that have not been set by marker id. Static tracepoint that have
14158 been set by marker id are reset by marker id in breakpoint_re_set.
14159 The heuristic is:
14160
14161 1) For a tracepoint set at a specific address, look for a marker at
14162 the old PC. If one is found there, assume to be the same marker.
14163 If the name / string id of the marker found is different from the
14164 previous known name, assume that means the user renamed the marker
14165 in the sources, and output a warning.
14166
14167 2) For a tracepoint set at a given line number, look for a marker
14168 at the new address of the old line number. If one is found there,
14169 assume to be the same marker. If the name / string id of the
14170 marker found is different from the previous known name, assume that
14171 means the user renamed the marker in the sources, and output a
14172 warning.
14173
14174 3) If a marker is no longer found at the same address or line, it
14175 may mean the marker no longer exists. But it may also just mean
14176 the code changed a bit. Maybe the user added a few lines of code
14177 that made the marker move up or down (in line number terms). Ask
14178 the target for info about the marker with the string id as we knew
14179 it. If found, update line number and address in the matching
14180 static tracepoint. This will get confused if there's more than one
14181 marker with the same ID (possible in UST, although unadvised
14182 precisely because it confuses tools). */
14183
14184static struct symtab_and_line
14185update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14186{
14187 struct tracepoint *tp = (struct tracepoint *) b;
14188 struct static_tracepoint_marker marker;
14189 CORE_ADDR pc;
14190
14191 pc = sal.pc;
14192 if (sal.line)
14193 find_line_pc (sal.symtab, sal.line, &pc);
14194
14195 if (target_static_tracepoint_marker_at (pc, &marker))
14196 {
14197 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14198 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14199 b->number,
14200 tp->static_trace_marker_id, marker.str_id);
14201
14202 xfree (tp->static_trace_marker_id);
14203 tp->static_trace_marker_id = xstrdup (marker.str_id);
14204 release_static_tracepoint_marker (&marker);
14205
14206 return sal;
14207 }
14208
14209 /* Old marker wasn't found on target at lineno. Try looking it up
14210 by string ID. */
14211 if (!sal.explicit_pc
14212 && sal.line != 0
14213 && sal.symtab != NULL
14214 && tp->static_trace_marker_id != NULL)
14215 {
14216 VEC(static_tracepoint_marker_p) *markers;
14217
14218 markers
14219 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14220
14221 if (!VEC_empty(static_tracepoint_marker_p, markers))
14222 {
14223 struct symtab_and_line sal2;
14224 struct symbol *sym;
14225 struct static_tracepoint_marker *tpmarker;
14226 struct ui_out *uiout = current_uiout;
14227
14228 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14229
14230 xfree (tp->static_trace_marker_id);
14231 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14232
14233 warning (_("marker for static tracepoint %d (%s) not "
14234 "found at previous line number"),
14235 b->number, tp->static_trace_marker_id);
14236
14237 init_sal (&sal2);
14238
14239 sal2.pc = tpmarker->address;
14240
14241 sal2 = find_pc_line (tpmarker->address, 0);
14242 sym = find_pc_sect_function (tpmarker->address, NULL);
14243 ui_out_text (uiout, "Now in ");
14244 if (sym)
14245 {
14246 ui_out_field_string (uiout, "func",
14247 SYMBOL_PRINT_NAME (sym));
14248 ui_out_text (uiout, " at ");
14249 }
14250 ui_out_field_string (uiout, "file",
14251 symtab_to_filename_for_display (sal2.symtab));
14252 ui_out_text (uiout, ":");
14253
14254 if (ui_out_is_mi_like_p (uiout))
14255 {
14256 const char *fullname = symtab_to_fullname (sal2.symtab);
14257
14258 ui_out_field_string (uiout, "fullname", fullname);
14259 }
14260
14261 ui_out_field_int (uiout, "line", sal2.line);
14262 ui_out_text (uiout, "\n");
14263
14264 b->loc->line_number = sal2.line;
14265 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14266
14267 xfree (b->addr_string);
14268 b->addr_string = xstrprintf ("%s:%d",
14269 symtab_to_filename_for_display (sal2.symtab),
14270 b->loc->line_number);
14271
14272 /* Might be nice to check if function changed, and warn if
14273 so. */
14274
14275 release_static_tracepoint_marker (tpmarker);
14276 }
14277 }
14278 return sal;
14279}
14280
14281/* Returns 1 iff locations A and B are sufficiently same that
14282 we don't need to report breakpoint as changed. */
14283
14284static int
14285locations_are_equal (struct bp_location *a, struct bp_location *b)
14286{
14287 while (a && b)
14288 {
14289 if (a->address != b->address)
14290 return 0;
14291
14292 if (a->shlib_disabled != b->shlib_disabled)
14293 return 0;
14294
14295 if (a->enabled != b->enabled)
14296 return 0;
14297
14298 a = a->next;
14299 b = b->next;
14300 }
14301
14302 if ((a == NULL) != (b == NULL))
14303 return 0;
14304
14305 return 1;
14306}
14307
14308/* Create new breakpoint locations for B (a hardware or software breakpoint)
14309 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14310 a ranged breakpoint. */
14311
14312void
14313update_breakpoint_locations (struct breakpoint *b,
14314 struct symtabs_and_lines sals,
14315 struct symtabs_and_lines sals_end)
14316{
14317 int i;
14318 struct bp_location *existing_locations = b->loc;
14319
14320 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14321 {
14322 /* Ranged breakpoints have only one start location and one end
14323 location. */
14324 b->enable_state = bp_disabled;
14325 update_global_location_list (1);
14326 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14327 "multiple locations found\n"),
14328 b->number);
14329 return;
14330 }
14331
14332 /* If there's no new locations, and all existing locations are
14333 pending, don't do anything. This optimizes the common case where
14334 all locations are in the same shared library, that was unloaded.
14335 We'd like to retain the location, so that when the library is
14336 loaded again, we don't loose the enabled/disabled status of the
14337 individual locations. */
14338 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14339 return;
14340
14341 b->loc = NULL;
14342
14343 for (i = 0; i < sals.nelts; ++i)
14344 {
14345 struct bp_location *new_loc;
14346
14347 switch_to_program_space_and_thread (sals.sals[i].pspace);
14348
14349 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14350
14351 /* Reparse conditions, they might contain references to the
14352 old symtab. */
14353 if (b->cond_string != NULL)
14354 {
14355 const char *s;
14356 volatile struct gdb_exception e;
14357
14358 s = b->cond_string;
14359 TRY_CATCH (e, RETURN_MASK_ERROR)
14360 {
14361 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14362 block_for_pc (sals.sals[i].pc),
14363 0);
14364 }
14365 if (e.reason < 0)
14366 {
14367 warning (_("failed to reevaluate condition "
14368 "for breakpoint %d: %s"),
14369 b->number, e.message);
14370 new_loc->enabled = 0;
14371 }
14372 }
14373
14374 if (sals_end.nelts)
14375 {
14376 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14377
14378 new_loc->length = end - sals.sals[0].pc + 1;
14379 }
14380 }
14381
14382 /* Update locations of permanent breakpoints. */
14383 if (b->enable_state == bp_permanent)
14384 make_breakpoint_permanent (b);
14385
14386 /* If possible, carry over 'disable' status from existing
14387 breakpoints. */
14388 {
14389 struct bp_location *e = existing_locations;
14390 /* If there are multiple breakpoints with the same function name,
14391 e.g. for inline functions, comparing function names won't work.
14392 Instead compare pc addresses; this is just a heuristic as things
14393 may have moved, but in practice it gives the correct answer
14394 often enough until a better solution is found. */
14395 int have_ambiguous_names = ambiguous_names_p (b->loc);
14396
14397 for (; e; e = e->next)
14398 {
14399 if (!e->enabled && e->function_name)
14400 {
14401 struct bp_location *l = b->loc;
14402 if (have_ambiguous_names)
14403 {
14404 for (; l; l = l->next)
14405 if (breakpoint_locations_match (e, l))
14406 {
14407 l->enabled = 0;
14408 break;
14409 }
14410 }
14411 else
14412 {
14413 for (; l; l = l->next)
14414 if (l->function_name
14415 && strcmp (e->function_name, l->function_name) == 0)
14416 {
14417 l->enabled = 0;
14418 break;
14419 }
14420 }
14421 }
14422 }
14423 }
14424
14425 if (!locations_are_equal (existing_locations, b->loc))
14426 observer_notify_breakpoint_modified (b);
14427
14428 update_global_location_list (1);
14429}
14430
14431/* Find the SaL locations corresponding to the given ADDR_STRING.
14432 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14433
14434static struct symtabs_and_lines
14435addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14436{
14437 char *s;
14438 struct symtabs_and_lines sals = {0};
14439 volatile struct gdb_exception e;
14440
14441 gdb_assert (b->ops != NULL);
14442 s = addr_string;
14443
14444 TRY_CATCH (e, RETURN_MASK_ERROR)
14445 {
14446 b->ops->decode_linespec (b, &s, &sals);
14447 }
14448 if (e.reason < 0)
14449 {
14450 int not_found_and_ok = 0;
14451 /* For pending breakpoints, it's expected that parsing will
14452 fail until the right shared library is loaded. User has
14453 already told to create pending breakpoints and don't need
14454 extra messages. If breakpoint is in bp_shlib_disabled
14455 state, then user already saw the message about that
14456 breakpoint being disabled, and don't want to see more
14457 errors. */
14458 if (e.error == NOT_FOUND_ERROR
14459 && (b->condition_not_parsed
14460 || (b->loc && b->loc->shlib_disabled)
14461 || (b->loc && b->loc->pspace->executing_startup)
14462 || b->enable_state == bp_disabled))
14463 not_found_and_ok = 1;
14464
14465 if (!not_found_and_ok)
14466 {
14467 /* We surely don't want to warn about the same breakpoint
14468 10 times. One solution, implemented here, is disable
14469 the breakpoint on error. Another solution would be to
14470 have separate 'warning emitted' flag. Since this
14471 happens only when a binary has changed, I don't know
14472 which approach is better. */
14473 b->enable_state = bp_disabled;
14474 throw_exception (e);
14475 }
14476 }
14477
14478 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14479 {
14480 int i;
14481
14482 for (i = 0; i < sals.nelts; ++i)
14483 resolve_sal_pc (&sals.sals[i]);
14484 if (b->condition_not_parsed && s && s[0])
14485 {
14486 char *cond_string, *extra_string;
14487 int thread, task;
14488
14489 find_condition_and_thread (s, sals.sals[0].pc,
14490 &cond_string, &thread, &task,
14491 &extra_string);
14492 if (cond_string)
14493 b->cond_string = cond_string;
14494 b->thread = thread;
14495 b->task = task;
14496 if (extra_string)
14497 b->extra_string = extra_string;
14498 b->condition_not_parsed = 0;
14499 }
14500
14501 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14502 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14503
14504 *found = 1;
14505 }
14506 else
14507 *found = 0;
14508
14509 return sals;
14510}
14511
14512/* The default re_set method, for typical hardware or software
14513 breakpoints. Reevaluate the breakpoint and recreate its
14514 locations. */
14515
14516static void
14517breakpoint_re_set_default (struct breakpoint *b)
14518{
14519 int found;
14520 struct symtabs_and_lines sals, sals_end;
14521 struct symtabs_and_lines expanded = {0};
14522 struct symtabs_and_lines expanded_end = {0};
14523
14524 sals = addr_string_to_sals (b, b->addr_string, &found);
14525 if (found)
14526 {
14527 make_cleanup (xfree, sals.sals);
14528 expanded = sals;
14529 }
14530
14531 if (b->addr_string_range_end)
14532 {
14533 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14534 if (found)
14535 {
14536 make_cleanup (xfree, sals_end.sals);
14537 expanded_end = sals_end;
14538 }
14539 }
14540
14541 update_breakpoint_locations (b, expanded, expanded_end);
14542}
14543
14544/* Default method for creating SALs from an address string. It basically
14545 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14546
14547static void
14548create_sals_from_address_default (char **arg,
14549 struct linespec_result *canonical,
14550 enum bptype type_wanted,
14551 char *addr_start, char **copy_arg)
14552{
14553 parse_breakpoint_sals (arg, canonical);
14554}
14555
14556/* Call create_breakpoints_sal for the given arguments. This is the default
14557 function for the `create_breakpoints_sal' method of
14558 breakpoint_ops. */
14559
14560static void
14561create_breakpoints_sal_default (struct gdbarch *gdbarch,
14562 struct linespec_result *canonical,
14563 char *cond_string,
14564 char *extra_string,
14565 enum bptype type_wanted,
14566 enum bpdisp disposition,
14567 int thread,
14568 int task, int ignore_count,
14569 const struct breakpoint_ops *ops,
14570 int from_tty, int enabled,
14571 int internal, unsigned flags)
14572{
14573 create_breakpoints_sal (gdbarch, canonical, cond_string,
14574 extra_string,
14575 type_wanted, disposition,
14576 thread, task, ignore_count, ops, from_tty,
14577 enabled, internal, flags);
14578}
14579
14580/* Decode the line represented by S by calling decode_line_full. This is the
14581 default function for the `decode_linespec' method of breakpoint_ops. */
14582
14583static void
14584decode_linespec_default (struct breakpoint *b, char **s,
14585 struct symtabs_and_lines *sals)
14586{
14587 struct linespec_result canonical;
14588
14589 init_linespec_result (&canonical);
14590 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14591 (struct symtab *) NULL, 0,
14592 &canonical, multiple_symbols_all,
14593 b->filter);
14594
14595 /* We should get 0 or 1 resulting SALs. */
14596 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14597
14598 if (VEC_length (linespec_sals, canonical.sals) > 0)
14599 {
14600 struct linespec_sals *lsal;
14601
14602 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14603 *sals = lsal->sals;
14604 /* Arrange it so the destructor does not free the
14605 contents. */
14606 lsal->sals.sals = NULL;
14607 }
14608
14609 destroy_linespec_result (&canonical);
14610}
14611
14612/* Prepare the global context for a re-set of breakpoint B. */
14613
14614static struct cleanup *
14615prepare_re_set_context (struct breakpoint *b)
14616{
14617 struct cleanup *cleanups;
14618
14619 input_radix = b->input_radix;
14620 cleanups = save_current_space_and_thread ();
14621 if (b->pspace != NULL)
14622 switch_to_program_space_and_thread (b->pspace);
14623 set_language (b->language);
14624
14625 return cleanups;
14626}
14627
14628/* Reset a breakpoint given it's struct breakpoint * BINT.
14629 The value we return ends up being the return value from catch_errors.
14630 Unused in this case. */
14631
14632static int
14633breakpoint_re_set_one (void *bint)
14634{
14635 /* Get past catch_errs. */
14636 struct breakpoint *b = (struct breakpoint *) bint;
14637 struct cleanup *cleanups;
14638
14639 cleanups = prepare_re_set_context (b);
14640 b->ops->re_set (b);
14641 do_cleanups (cleanups);
14642 return 0;
14643}
14644
14645/* Re-set all breakpoints after symbols have been re-loaded. */
14646void
14647breakpoint_re_set (void)
14648{
14649 struct breakpoint *b, *b_tmp;
14650 enum language save_language;
14651 int save_input_radix;
14652 struct cleanup *old_chain;
14653
14654 save_language = current_language->la_language;
14655 save_input_radix = input_radix;
14656 old_chain = save_current_program_space ();
14657
14658 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14659 {
14660 /* Format possible error msg. */
14661 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14662 b->number);
14663 struct cleanup *cleanups = make_cleanup (xfree, message);
14664 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14665 do_cleanups (cleanups);
14666 }
14667 set_language (save_language);
14668 input_radix = save_input_radix;
14669
14670 jit_breakpoint_re_set ();
14671
14672 do_cleanups (old_chain);
14673
14674 create_overlay_event_breakpoint ();
14675 create_longjmp_master_breakpoint ();
14676 create_std_terminate_master_breakpoint ();
14677 create_exception_master_breakpoint ();
14678}
14679\f
14680/* Reset the thread number of this breakpoint:
14681
14682 - If the breakpoint is for all threads, leave it as-is.
14683 - Else, reset it to the current thread for inferior_ptid. */
14684void
14685breakpoint_re_set_thread (struct breakpoint *b)
14686{
14687 if (b->thread != -1)
14688 {
14689 if (in_thread_list (inferior_ptid))
14690 b->thread = pid_to_thread_id (inferior_ptid);
14691
14692 /* We're being called after following a fork. The new fork is
14693 selected as current, and unless this was a vfork will have a
14694 different program space from the original thread. Reset that
14695 as well. */
14696 b->loc->pspace = current_program_space;
14697 }
14698}
14699
14700/* Set ignore-count of breakpoint number BPTNUM to COUNT.
14701 If from_tty is nonzero, it prints a message to that effect,
14702 which ends with a period (no newline). */
14703
14704void
14705set_ignore_count (int bptnum, int count, int from_tty)
14706{
14707 struct breakpoint *b;
14708
14709 if (count < 0)
14710 count = 0;
14711
14712 ALL_BREAKPOINTS (b)
14713 if (b->number == bptnum)
14714 {
14715 if (is_tracepoint (b))
14716 {
14717 if (from_tty && count != 0)
14718 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14719 bptnum);
14720 return;
14721 }
14722
14723 b->ignore_count = count;
14724 if (from_tty)
14725 {
14726 if (count == 0)
14727 printf_filtered (_("Will stop next time "
14728 "breakpoint %d is reached."),
14729 bptnum);
14730 else if (count == 1)
14731 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14732 bptnum);
14733 else
14734 printf_filtered (_("Will ignore next %d "
14735 "crossings of breakpoint %d."),
14736 count, bptnum);
14737 }
14738 observer_notify_breakpoint_modified (b);
14739 return;
14740 }
14741
14742 error (_("No breakpoint number %d."), bptnum);
14743}
14744
14745/* Command to set ignore-count of breakpoint N to COUNT. */
14746
14747static void
14748ignore_command (char *args, int from_tty)
14749{
14750 char *p = args;
14751 int num;
14752
14753 if (p == 0)
14754 error_no_arg (_("a breakpoint number"));
14755
14756 num = get_number (&p);
14757 if (num == 0)
14758 error (_("bad breakpoint number: '%s'"), args);
14759 if (*p == 0)
14760 error (_("Second argument (specified ignore-count) is missing."));
14761
14762 set_ignore_count (num,
14763 longest_to_int (value_as_long (parse_and_eval (p))),
14764 from_tty);
14765 if (from_tty)
14766 printf_filtered ("\n");
14767}
14768\f
14769/* Call FUNCTION on each of the breakpoints
14770 whose numbers are given in ARGS. */
14771
14772static void
14773map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14774 void *),
14775 void *data)
14776{
14777 int num;
14778 struct breakpoint *b, *tmp;
14779 int match;
14780 struct get_number_or_range_state state;
14781
14782 if (args == 0)
14783 error_no_arg (_("one or more breakpoint numbers"));
14784
14785 init_number_or_range (&state, args);
14786
14787 while (!state.finished)
14788 {
14789 char *p = state.string;
14790
14791 match = 0;
14792
14793 num = get_number_or_range (&state);
14794 if (num == 0)
14795 {
14796 warning (_("bad breakpoint number at or near '%s'"), p);
14797 }
14798 else
14799 {
14800 ALL_BREAKPOINTS_SAFE (b, tmp)
14801 if (b->number == num)
14802 {
14803 match = 1;
14804 function (b, data);
14805 break;
14806 }
14807 if (match == 0)
14808 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14809 }
14810 }
14811}
14812
14813static struct bp_location *
14814find_location_by_number (char *number)
14815{
14816 char *dot = strchr (number, '.');
14817 char *p1;
14818 int bp_num;
14819 int loc_num;
14820 struct breakpoint *b;
14821 struct bp_location *loc;
14822
14823 *dot = '\0';
14824
14825 p1 = number;
14826 bp_num = get_number (&p1);
14827 if (bp_num == 0)
14828 error (_("Bad breakpoint number '%s'"), number);
14829
14830 ALL_BREAKPOINTS (b)
14831 if (b->number == bp_num)
14832 {
14833 break;
14834 }
14835
14836 if (!b || b->number != bp_num)
14837 error (_("Bad breakpoint number '%s'"), number);
14838
14839 p1 = dot+1;
14840 loc_num = get_number (&p1);
14841 if (loc_num == 0)
14842 error (_("Bad breakpoint location number '%s'"), number);
14843
14844 --loc_num;
14845 loc = b->loc;
14846 for (;loc_num && loc; --loc_num, loc = loc->next)
14847 ;
14848 if (!loc)
14849 error (_("Bad breakpoint location number '%s'"), dot+1);
14850
14851 return loc;
14852}
14853
14854
14855/* Set ignore-count of breakpoint number BPTNUM to COUNT.
14856 If from_tty is nonzero, it prints a message to that effect,
14857 which ends with a period (no newline). */
14858
14859void
14860disable_breakpoint (struct breakpoint *bpt)
14861{
14862 /* Never disable a watchpoint scope breakpoint; we want to
14863 hit them when we leave scope so we can delete both the
14864 watchpoint and its scope breakpoint at that time. */
14865 if (bpt->type == bp_watchpoint_scope)
14866 return;
14867
14868 /* You can't disable permanent breakpoints. */
14869 if (bpt->enable_state == bp_permanent)
14870 return;
14871
14872 bpt->enable_state = bp_disabled;
14873
14874 /* Mark breakpoint locations modified. */
14875 mark_breakpoint_modified (bpt);
14876
14877 if (target_supports_enable_disable_tracepoint ()
14878 && current_trace_status ()->running && is_tracepoint (bpt))
14879 {
14880 struct bp_location *location;
14881
14882 for (location = bpt->loc; location; location = location->next)
14883 target_disable_tracepoint (location);
14884 }
14885
14886 update_global_location_list (0);
14887
14888 observer_notify_breakpoint_modified (bpt);
14889}
14890
14891/* A callback for iterate_over_related_breakpoints. */
14892
14893static void
14894do_disable_breakpoint (struct breakpoint *b, void *ignore)
14895{
14896 disable_breakpoint (b);
14897}
14898
14899/* A callback for map_breakpoint_numbers that calls
14900 disable_breakpoint. */
14901
14902static void
14903do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14904{
14905 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14906}
14907
14908static void
14909disable_command (char *args, int from_tty)
14910{
14911 if (args == 0)
14912 {
14913 struct breakpoint *bpt;
14914
14915 ALL_BREAKPOINTS (bpt)
14916 if (user_breakpoint_p (bpt))
14917 disable_breakpoint (bpt);
14918 }
14919 else
14920 {
14921 char *num = extract_arg (&args);
14922
14923 while (num)
14924 {
14925 if (strchr (num, '.'))
14926 {
14927 struct bp_location *loc = find_location_by_number (num);
14928
14929 if (loc)
14930 {
14931 if (loc->enabled)
14932 {
14933 loc->enabled = 0;
14934 mark_breakpoint_location_modified (loc);
14935 }
14936 if (target_supports_enable_disable_tracepoint ()
14937 && current_trace_status ()->running && loc->owner
14938 && is_tracepoint (loc->owner))
14939 target_disable_tracepoint (loc);
14940 }
14941 update_global_location_list (0);
14942 }
14943 else
14944 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14945 num = extract_arg (&args);
14946 }
14947 }
14948}
14949
14950static void
14951enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14952 int count)
14953{
14954 int target_resources_ok;
14955
14956 if (bpt->type == bp_hardware_breakpoint)
14957 {
14958 int i;
14959 i = hw_breakpoint_used_count ();
14960 target_resources_ok =
14961 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14962 i + 1, 0);
14963 if (target_resources_ok == 0)
14964 error (_("No hardware breakpoint support in the target."));
14965 else if (target_resources_ok < 0)
14966 error (_("Hardware breakpoints used exceeds limit."));
14967 }
14968
14969 if (is_watchpoint (bpt))
14970 {
14971 /* Initialize it just to avoid a GCC false warning. */
14972 enum enable_state orig_enable_state = 0;
14973 volatile struct gdb_exception e;
14974
14975 TRY_CATCH (e, RETURN_MASK_ALL)
14976 {
14977 struct watchpoint *w = (struct watchpoint *) bpt;
14978
14979 orig_enable_state = bpt->enable_state;
14980 bpt->enable_state = bp_enabled;
14981 update_watchpoint (w, 1 /* reparse */);
14982 }
14983 if (e.reason < 0)
14984 {
14985 bpt->enable_state = orig_enable_state;
14986 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14987 bpt->number);
14988 return;
14989 }
14990 }
14991
14992 if (bpt->enable_state != bp_permanent)
14993 bpt->enable_state = bp_enabled;
14994
14995 bpt->enable_state = bp_enabled;
14996
14997 /* Mark breakpoint locations modified. */
14998 mark_breakpoint_modified (bpt);
14999
15000 if (target_supports_enable_disable_tracepoint ()
15001 && current_trace_status ()->running && is_tracepoint (bpt))
15002 {
15003 struct bp_location *location;
15004
15005 for (location = bpt->loc; location; location = location->next)
15006 target_enable_tracepoint (location);
15007 }
15008
15009 bpt->disposition = disposition;
15010 bpt->enable_count = count;
15011 update_global_location_list (1);
15012
15013 observer_notify_breakpoint_modified (bpt);
15014}
15015
15016
15017void
15018enable_breakpoint (struct breakpoint *bpt)
15019{
15020 enable_breakpoint_disp (bpt, bpt->disposition, 0);
15021}
15022
15023static void
15024do_enable_breakpoint (struct breakpoint *bpt, void *arg)
15025{
15026 enable_breakpoint (bpt);
15027}
15028
15029/* A callback for map_breakpoint_numbers that calls
15030 enable_breakpoint. */
15031
15032static void
15033do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
15034{
15035 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
15036}
15037
15038/* The enable command enables the specified breakpoints (or all defined
15039 breakpoints) so they once again become (or continue to be) effective
15040 in stopping the inferior. */
15041
15042static void
15043enable_command (char *args, int from_tty)
15044{
15045 if (args == 0)
15046 {
15047 struct breakpoint *bpt;
15048
15049 ALL_BREAKPOINTS (bpt)
15050 if (user_breakpoint_p (bpt))
15051 enable_breakpoint (bpt);
15052 }
15053 else
15054 {
15055 char *num = extract_arg (&args);
15056
15057 while (num)
15058 {
15059 if (strchr (num, '.'))
15060 {
15061 struct bp_location *loc = find_location_by_number (num);
15062
15063 if (loc)
15064 {
15065 if (!loc->enabled)
15066 {
15067 loc->enabled = 1;
15068 mark_breakpoint_location_modified (loc);
15069 }
15070 if (target_supports_enable_disable_tracepoint ()
15071 && current_trace_status ()->running && loc->owner
15072 && is_tracepoint (loc->owner))
15073 target_enable_tracepoint (loc);
15074 }
15075 update_global_location_list (1);
15076 }
15077 else
15078 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15079 num = extract_arg (&args);
15080 }
15081 }
15082}
15083
15084/* This struct packages up disposition data for application to multiple
15085 breakpoints. */
15086
15087struct disp_data
15088{
15089 enum bpdisp disp;
15090 int count;
15091};
15092
15093static void
15094do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15095{
15096 struct disp_data disp_data = *(struct disp_data *) arg;
15097
15098 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15099}
15100
15101static void
15102do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15103{
15104 struct disp_data disp = { disp_disable, 1 };
15105
15106 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15107}
15108
15109static void
15110enable_once_command (char *args, int from_tty)
15111{
15112 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15113}
15114
15115static void
15116do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15117{
15118 struct disp_data disp = { disp_disable, *(int *) countptr };
15119
15120 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15121}
15122
15123static void
15124enable_count_command (char *args, int from_tty)
15125{
15126 int count = get_number (&args);
15127
15128 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15129}
15130
15131static void
15132do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15133{
15134 struct disp_data disp = { disp_del, 1 };
15135
15136 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15137}
15138
15139static void
15140enable_delete_command (char *args, int from_tty)
15141{
15142 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15143}
15144\f
15145static void
15146set_breakpoint_cmd (char *args, int from_tty)
15147{
15148}
15149
15150static void
15151show_breakpoint_cmd (char *args, int from_tty)
15152{
15153}
15154
15155/* Invalidate last known value of any hardware watchpoint if
15156 the memory which that value represents has been written to by
15157 GDB itself. */
15158
15159static void
15160invalidate_bp_value_on_memory_change (struct inferior *inferior,
15161 CORE_ADDR addr, ssize_t len,
15162 const bfd_byte *data)
15163{
15164 struct breakpoint *bp;
15165
15166 ALL_BREAKPOINTS (bp)
15167 if (bp->enable_state == bp_enabled
15168 && bp->type == bp_hardware_watchpoint)
15169 {
15170 struct watchpoint *wp = (struct watchpoint *) bp;
15171
15172 if (wp->val_valid && wp->val)
15173 {
15174 struct bp_location *loc;
15175
15176 for (loc = bp->loc; loc != NULL; loc = loc->next)
15177 if (loc->loc_type == bp_loc_hardware_watchpoint
15178 && loc->address + loc->length > addr
15179 && addr + len > loc->address)
15180 {
15181 value_free (wp->val);
15182 wp->val = NULL;
15183 wp->val_valid = 0;
15184 }
15185 }
15186 }
15187}
15188
15189/* Create and insert a raw software breakpoint at PC. Return an
15190 identifier, which should be used to remove the breakpoint later.
15191 In general, places which call this should be using something on the
15192 breakpoint chain instead; this function should be eliminated
15193 someday. */
15194
15195void *
15196deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15197 struct address_space *aspace, CORE_ADDR pc)
15198{
15199 struct bp_target_info *bp_tgt;
15200 struct bp_location *bl;
15201
15202 bp_tgt = XCNEW (struct bp_target_info);
15203
15204 bp_tgt->placed_address_space = aspace;
15205 bp_tgt->placed_address = pc;
15206
15207 /* If an unconditional non-raw breakpoint is already inserted at
15208 that location, there's no need to insert another. However, with
15209 target-side evaluation of breakpoint conditions, if the
15210 breakpoint that is currently inserted on the target is
15211 conditional, we need to make it unconditional. Note that a
15212 breakpoint with target-side commands is not reported even if
15213 unconditional, so we need to remove the commands from the target
15214 as well. */
15215 bl = find_non_raw_software_breakpoint_inserted_here (aspace, pc);
15216 if (bl != NULL
15217 && VEC_empty (agent_expr_p, bl->target_info.conditions)
15218 && VEC_empty (agent_expr_p, bl->target_info.tcommands))
15219 {
15220 bp_target_info_copy_insertion_state (bp_tgt, &bl->target_info);
15221 return bp_tgt;
15222 }
15223
15224 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15225 {
15226 /* Could not insert the breakpoint. */
15227 xfree (bp_tgt);
15228 return NULL;
15229 }
15230
15231 return bp_tgt;
15232}
15233
15234/* Remove a breakpoint BP inserted by
15235 deprecated_insert_raw_breakpoint. */
15236
15237int
15238deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15239{
15240 struct bp_target_info *bp_tgt = bp;
15241 struct address_space *aspace = bp_tgt->placed_address_space;
15242 CORE_ADDR address = bp_tgt->placed_address;
15243 struct bp_location *bl;
15244 int ret;
15245
15246 bl = find_non_raw_software_breakpoint_inserted_here (aspace, address);
15247
15248 /* Only remove the raw breakpoint if there are no other non-raw
15249 breakpoints still inserted at this location. Otherwise, we would
15250 be effectively disabling those breakpoints. */
15251 if (bl == NULL)
15252 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15253 else if (!VEC_empty (agent_expr_p, bl->target_info.conditions)
15254 || !VEC_empty (agent_expr_p, bl->target_info.tcommands))
15255 {
15256 /* The target is evaluating conditions, and when we inserted the
15257 software single-step breakpoint, we had made the breakpoint
15258 unconditional and command-less on the target side. Reinsert
15259 to restore the conditions/commands. */
15260 ret = target_insert_breakpoint (bl->gdbarch, &bl->target_info);
15261 }
15262 else
15263 ret = 0;
15264
15265 xfree (bp_tgt);
15266
15267 return ret;
15268}
15269
15270/* Create and insert a breakpoint for software single step. */
15271
15272void
15273insert_single_step_breakpoint (struct gdbarch *gdbarch,
15274 struct address_space *aspace,
15275 CORE_ADDR next_pc)
15276{
15277 void **bpt_p;
15278
15279 if (single_step_breakpoints[0] == NULL)
15280 {
15281 bpt_p = &single_step_breakpoints[0];
15282 single_step_gdbarch[0] = gdbarch;
15283 }
15284 else
15285 {
15286 gdb_assert (single_step_breakpoints[1] == NULL);
15287 bpt_p = &single_step_breakpoints[1];
15288 single_step_gdbarch[1] = gdbarch;
15289 }
15290
15291 /* NOTE drow/2006-04-11: A future improvement to this function would
15292 be to only create the breakpoints once, and actually put them on
15293 the breakpoint chain. That would let us use set_raw_breakpoint.
15294 We could adjust the addresses each time they were needed. Doing
15295 this requires corresponding changes elsewhere where single step
15296 breakpoints are handled, however. So, for now, we use this. */
15297
15298 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15299 if (*bpt_p == NULL)
15300 error (_("Could not insert single-step breakpoint at %s"),
15301 paddress (gdbarch, next_pc));
15302}
15303
15304/* Check if the breakpoints used for software single stepping
15305 were inserted or not. */
15306
15307int
15308single_step_breakpoints_inserted (void)
15309{
15310 return (single_step_breakpoints[0] != NULL
15311 || single_step_breakpoints[1] != NULL);
15312}
15313
15314/* Remove and delete any breakpoints used for software single step. */
15315
15316void
15317remove_single_step_breakpoints (void)
15318{
15319 gdb_assert (single_step_breakpoints[0] != NULL);
15320
15321 /* See insert_single_step_breakpoint for more about this deprecated
15322 call. */
15323 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15324 single_step_breakpoints[0]);
15325 single_step_gdbarch[0] = NULL;
15326 single_step_breakpoints[0] = NULL;
15327
15328 if (single_step_breakpoints[1] != NULL)
15329 {
15330 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15331 single_step_breakpoints[1]);
15332 single_step_gdbarch[1] = NULL;
15333 single_step_breakpoints[1] = NULL;
15334 }
15335}
15336
15337/* Delete software single step breakpoints without removing them from
15338 the inferior. This is intended to be used if the inferior's address
15339 space where they were inserted is already gone, e.g. after exit or
15340 exec. */
15341
15342void
15343cancel_single_step_breakpoints (void)
15344{
15345 int i;
15346
15347 for (i = 0; i < 2; i++)
15348 if (single_step_breakpoints[i])
15349 {
15350 xfree (single_step_breakpoints[i]);
15351 single_step_breakpoints[i] = NULL;
15352 single_step_gdbarch[i] = NULL;
15353 }
15354}
15355
15356/* Detach software single-step breakpoints from INFERIOR_PTID without
15357 removing them. */
15358
15359static void
15360detach_single_step_breakpoints (void)
15361{
15362 int i;
15363
15364 for (i = 0; i < 2; i++)
15365 if (single_step_breakpoints[i])
15366 target_remove_breakpoint (single_step_gdbarch[i],
15367 single_step_breakpoints[i]);
15368}
15369
15370/* Find the software single-step breakpoint that inserted at PC.
15371 Returns its slot if found, and -1 if not found. */
15372
15373static int
15374find_single_step_breakpoint (struct address_space *aspace,
15375 CORE_ADDR pc)
15376{
15377 int i;
15378
15379 for (i = 0; i < 2; i++)
15380 {
15381 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15382 if (bp_tgt
15383 && breakpoint_address_match (bp_tgt->placed_address_space,
15384 bp_tgt->placed_address,
15385 aspace, pc))
15386 return i;
15387 }
15388
15389 return -1;
15390}
15391
15392/* Check whether a software single-step breakpoint is inserted at
15393 PC. */
15394
15395int
15396single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15397 CORE_ADDR pc)
15398{
15399 return find_single_step_breakpoint (aspace, pc) >= 0;
15400}
15401
15402/* Returns 0 if 'bp' is NOT a syscall catchpoint,
15403 non-zero otherwise. */
15404static int
15405is_syscall_catchpoint_enabled (struct breakpoint *bp)
15406{
15407 if (syscall_catchpoint_p (bp)
15408 && bp->enable_state != bp_disabled
15409 && bp->enable_state != bp_call_disabled)
15410 return 1;
15411 else
15412 return 0;
15413}
15414
15415int
15416catch_syscall_enabled (void)
15417{
15418 struct catch_syscall_inferior_data *inf_data
15419 = get_catch_syscall_inferior_data (current_inferior ());
15420
15421 return inf_data->total_syscalls_count != 0;
15422}
15423
15424int
15425catching_syscall_number (int syscall_number)
15426{
15427 struct breakpoint *bp;
15428
15429 ALL_BREAKPOINTS (bp)
15430 if (is_syscall_catchpoint_enabled (bp))
15431 {
15432 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15433
15434 if (c->syscalls_to_be_caught)
15435 {
15436 int i, iter;
15437 for (i = 0;
15438 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15439 i++)
15440 if (syscall_number == iter)
15441 return 1;
15442 }
15443 else
15444 return 1;
15445 }
15446
15447 return 0;
15448}
15449
15450/* Complete syscall names. Used by "catch syscall". */
15451static VEC (char_ptr) *
15452catch_syscall_completer (struct cmd_list_element *cmd,
15453 const char *text, const char *word)
15454{
15455 const char **list = get_syscall_names ();
15456 VEC (char_ptr) *retlist
15457 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15458
15459 xfree (list);
15460 return retlist;
15461}
15462
15463/* Tracepoint-specific operations. */
15464
15465/* Set tracepoint count to NUM. */
15466static void
15467set_tracepoint_count (int num)
15468{
15469 tracepoint_count = num;
15470 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15471}
15472
15473static void
15474trace_command (char *arg, int from_tty)
15475{
15476 struct breakpoint_ops *ops;
15477 const char *arg_cp = arg;
15478
15479 if (arg && probe_linespec_to_ops (&arg_cp))
15480 ops = &tracepoint_probe_breakpoint_ops;
15481 else
15482 ops = &tracepoint_breakpoint_ops;
15483
15484 create_breakpoint (get_current_arch (),
15485 arg,
15486 NULL, 0, NULL, 1 /* parse arg */,
15487 0 /* tempflag */,
15488 bp_tracepoint /* type_wanted */,
15489 0 /* Ignore count */,
15490 pending_break_support,
15491 ops,
15492 from_tty,
15493 1 /* enabled */,
15494 0 /* internal */, 0);
15495}
15496
15497static void
15498ftrace_command (char *arg, int from_tty)
15499{
15500 create_breakpoint (get_current_arch (),
15501 arg,
15502 NULL, 0, NULL, 1 /* parse arg */,
15503 0 /* tempflag */,
15504 bp_fast_tracepoint /* type_wanted */,
15505 0 /* Ignore count */,
15506 pending_break_support,
15507 &tracepoint_breakpoint_ops,
15508 from_tty,
15509 1 /* enabled */,
15510 0 /* internal */, 0);
15511}
15512
15513/* strace command implementation. Creates a static tracepoint. */
15514
15515static void
15516strace_command (char *arg, int from_tty)
15517{
15518 struct breakpoint_ops *ops;
15519
15520 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15521 or with a normal static tracepoint. */
15522 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15523 ops = &strace_marker_breakpoint_ops;
15524 else
15525 ops = &tracepoint_breakpoint_ops;
15526
15527 create_breakpoint (get_current_arch (),
15528 arg,
15529 NULL, 0, NULL, 1 /* parse arg */,
15530 0 /* tempflag */,
15531 bp_static_tracepoint /* type_wanted */,
15532 0 /* Ignore count */,
15533 pending_break_support,
15534 ops,
15535 from_tty,
15536 1 /* enabled */,
15537 0 /* internal */, 0);
15538}
15539
15540/* Set up a fake reader function that gets command lines from a linked
15541 list that was acquired during tracepoint uploading. */
15542
15543static struct uploaded_tp *this_utp;
15544static int next_cmd;
15545
15546static char *
15547read_uploaded_action (void)
15548{
15549 char *rslt;
15550
15551 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15552
15553 next_cmd++;
15554
15555 return rslt;
15556}
15557
15558/* Given information about a tracepoint as recorded on a target (which
15559 can be either a live system or a trace file), attempt to create an
15560 equivalent GDB tracepoint. This is not a reliable process, since
15561 the target does not necessarily have all the information used when
15562 the tracepoint was originally defined. */
15563
15564struct tracepoint *
15565create_tracepoint_from_upload (struct uploaded_tp *utp)
15566{
15567 char *addr_str, small_buf[100];
15568 struct tracepoint *tp;
15569
15570 if (utp->at_string)
15571 addr_str = utp->at_string;
15572 else
15573 {
15574 /* In the absence of a source location, fall back to raw
15575 address. Since there is no way to confirm that the address
15576 means the same thing as when the trace was started, warn the
15577 user. */
15578 warning (_("Uploaded tracepoint %d has no "
15579 "source location, using raw address"),
15580 utp->number);
15581 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15582 addr_str = small_buf;
15583 }
15584
15585 /* There's not much we can do with a sequence of bytecodes. */
15586 if (utp->cond && !utp->cond_string)
15587 warning (_("Uploaded tracepoint %d condition "
15588 "has no source form, ignoring it"),
15589 utp->number);
15590
15591 if (!create_breakpoint (get_current_arch (),
15592 addr_str,
15593 utp->cond_string, -1, NULL,
15594 0 /* parse cond/thread */,
15595 0 /* tempflag */,
15596 utp->type /* type_wanted */,
15597 0 /* Ignore count */,
15598 pending_break_support,
15599 &tracepoint_breakpoint_ops,
15600 0 /* from_tty */,
15601 utp->enabled /* enabled */,
15602 0 /* internal */,
15603 CREATE_BREAKPOINT_FLAGS_INSERTED))
15604 return NULL;
15605
15606 /* Get the tracepoint we just created. */
15607 tp = get_tracepoint (tracepoint_count);
15608 gdb_assert (tp != NULL);
15609
15610 if (utp->pass > 0)
15611 {
15612 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15613 tp->base.number);
15614
15615 trace_pass_command (small_buf, 0);
15616 }
15617
15618 /* If we have uploaded versions of the original commands, set up a
15619 special-purpose "reader" function and call the usual command line
15620 reader, then pass the result to the breakpoint command-setting
15621 function. */
15622 if (!VEC_empty (char_ptr, utp->cmd_strings))
15623 {
15624 struct command_line *cmd_list;
15625
15626 this_utp = utp;
15627 next_cmd = 0;
15628
15629 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15630
15631 breakpoint_set_commands (&tp->base, cmd_list);
15632 }
15633 else if (!VEC_empty (char_ptr, utp->actions)
15634 || !VEC_empty (char_ptr, utp->step_actions))
15635 warning (_("Uploaded tracepoint %d actions "
15636 "have no source form, ignoring them"),
15637 utp->number);
15638
15639 /* Copy any status information that might be available. */
15640 tp->base.hit_count = utp->hit_count;
15641 tp->traceframe_usage = utp->traceframe_usage;
15642
15643 return tp;
15644}
15645
15646/* Print information on tracepoint number TPNUM_EXP, or all if
15647 omitted. */
15648
15649static void
15650tracepoints_info (char *args, int from_tty)
15651{
15652 struct ui_out *uiout = current_uiout;
15653 int num_printed;
15654
15655 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15656
15657 if (num_printed == 0)
15658 {
15659 if (args == NULL || *args == '\0')
15660 ui_out_message (uiout, 0, "No tracepoints.\n");
15661 else
15662 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15663 }
15664
15665 default_collect_info ();
15666}
15667
15668/* The 'enable trace' command enables tracepoints.
15669 Not supported by all targets. */
15670static void
15671enable_trace_command (char *args, int from_tty)
15672{
15673 enable_command (args, from_tty);
15674}
15675
15676/* The 'disable trace' command disables tracepoints.
15677 Not supported by all targets. */
15678static void
15679disable_trace_command (char *args, int from_tty)
15680{
15681 disable_command (args, from_tty);
15682}
15683
15684/* Remove a tracepoint (or all if no argument). */
15685static void
15686delete_trace_command (char *arg, int from_tty)
15687{
15688 struct breakpoint *b, *b_tmp;
15689
15690 dont_repeat ();
15691
15692 if (arg == 0)
15693 {
15694 int breaks_to_delete = 0;
15695
15696 /* Delete all breakpoints if no argument.
15697 Do not delete internal or call-dummy breakpoints, these
15698 have to be deleted with an explicit breakpoint number
15699 argument. */
15700 ALL_TRACEPOINTS (b)
15701 if (is_tracepoint (b) && user_breakpoint_p (b))
15702 {
15703 breaks_to_delete = 1;
15704 break;
15705 }
15706
15707 /* Ask user only if there are some breakpoints to delete. */
15708 if (!from_tty
15709 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15710 {
15711 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15712 if (is_tracepoint (b) && user_breakpoint_p (b))
15713 delete_breakpoint (b);
15714 }
15715 }
15716 else
15717 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15718}
15719
15720/* Helper function for trace_pass_command. */
15721
15722static void
15723trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15724{
15725 tp->pass_count = count;
15726 observer_notify_breakpoint_modified (&tp->base);
15727 if (from_tty)
15728 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15729 tp->base.number, count);
15730}
15731
15732/* Set passcount for tracepoint.
15733
15734 First command argument is passcount, second is tracepoint number.
15735 If tracepoint number omitted, apply to most recently defined.
15736 Also accepts special argument "all". */
15737
15738static void
15739trace_pass_command (char *args, int from_tty)
15740{
15741 struct tracepoint *t1;
15742 unsigned int count;
15743
15744 if (args == 0 || *args == 0)
15745 error (_("passcount command requires an "
15746 "argument (count + optional TP num)"));
15747
15748 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15749
15750 args = skip_spaces (args);
15751 if (*args && strncasecmp (args, "all", 3) == 0)
15752 {
15753 struct breakpoint *b;
15754
15755 args += 3; /* Skip special argument "all". */
15756 if (*args)
15757 error (_("Junk at end of arguments."));
15758
15759 ALL_TRACEPOINTS (b)
15760 {
15761 t1 = (struct tracepoint *) b;
15762 trace_pass_set_count (t1, count, from_tty);
15763 }
15764 }
15765 else if (*args == '\0')
15766 {
15767 t1 = get_tracepoint_by_number (&args, NULL);
15768 if (t1)
15769 trace_pass_set_count (t1, count, from_tty);
15770 }
15771 else
15772 {
15773 struct get_number_or_range_state state;
15774
15775 init_number_or_range (&state, args);
15776 while (!state.finished)
15777 {
15778 t1 = get_tracepoint_by_number (&args, &state);
15779 if (t1)
15780 trace_pass_set_count (t1, count, from_tty);
15781 }
15782 }
15783}
15784
15785struct tracepoint *
15786get_tracepoint (int num)
15787{
15788 struct breakpoint *t;
15789
15790 ALL_TRACEPOINTS (t)
15791 if (t->number == num)
15792 return (struct tracepoint *) t;
15793
15794 return NULL;
15795}
15796
15797/* Find the tracepoint with the given target-side number (which may be
15798 different from the tracepoint number after disconnecting and
15799 reconnecting). */
15800
15801struct tracepoint *
15802get_tracepoint_by_number_on_target (int num)
15803{
15804 struct breakpoint *b;
15805
15806 ALL_TRACEPOINTS (b)
15807 {
15808 struct tracepoint *t = (struct tracepoint *) b;
15809
15810 if (t->number_on_target == num)
15811 return t;
15812 }
15813
15814 return NULL;
15815}
15816
15817/* Utility: parse a tracepoint number and look it up in the list.
15818 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15819 If the argument is missing, the most recent tracepoint
15820 (tracepoint_count) is returned. */
15821
15822struct tracepoint *
15823get_tracepoint_by_number (char **arg,
15824 struct get_number_or_range_state *state)
15825{
15826 struct breakpoint *t;
15827 int tpnum;
15828 char *instring = arg == NULL ? NULL : *arg;
15829
15830 if (state)
15831 {
15832 gdb_assert (!state->finished);
15833 tpnum = get_number_or_range (state);
15834 }
15835 else if (arg == NULL || *arg == NULL || ! **arg)
15836 tpnum = tracepoint_count;
15837 else
15838 tpnum = get_number (arg);
15839
15840 if (tpnum <= 0)
15841 {
15842 if (instring && *instring)
15843 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15844 instring);
15845 else
15846 printf_filtered (_("No previous tracepoint\n"));
15847 return NULL;
15848 }
15849
15850 ALL_TRACEPOINTS (t)
15851 if (t->number == tpnum)
15852 {
15853 return (struct tracepoint *) t;
15854 }
15855
15856 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15857 return NULL;
15858}
15859
15860void
15861print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15862{
15863 if (b->thread != -1)
15864 fprintf_unfiltered (fp, " thread %d", b->thread);
15865
15866 if (b->task != 0)
15867 fprintf_unfiltered (fp, " task %d", b->task);
15868
15869 fprintf_unfiltered (fp, "\n");
15870}
15871
15872/* Save information on user settable breakpoints (watchpoints, etc) to
15873 a new script file named FILENAME. If FILTER is non-NULL, call it
15874 on each breakpoint and only include the ones for which it returns
15875 non-zero. */
15876
15877static void
15878save_breakpoints (char *filename, int from_tty,
15879 int (*filter) (const struct breakpoint *))
15880{
15881 struct breakpoint *tp;
15882 int any = 0;
15883 struct cleanup *cleanup;
15884 struct ui_file *fp;
15885 int extra_trace_bits = 0;
15886
15887 if (filename == 0 || *filename == 0)
15888 error (_("Argument required (file name in which to save)"));
15889
15890 /* See if we have anything to save. */
15891 ALL_BREAKPOINTS (tp)
15892 {
15893 /* Skip internal and momentary breakpoints. */
15894 if (!user_breakpoint_p (tp))
15895 continue;
15896
15897 /* If we have a filter, only save the breakpoints it accepts. */
15898 if (filter && !filter (tp))
15899 continue;
15900
15901 any = 1;
15902
15903 if (is_tracepoint (tp))
15904 {
15905 extra_trace_bits = 1;
15906
15907 /* We can stop searching. */
15908 break;
15909 }
15910 }
15911
15912 if (!any)
15913 {
15914 warning (_("Nothing to save."));
15915 return;
15916 }
15917
15918 filename = tilde_expand (filename);
15919 cleanup = make_cleanup (xfree, filename);
15920 fp = gdb_fopen (filename, "w");
15921 if (!fp)
15922 error (_("Unable to open file '%s' for saving (%s)"),
15923 filename, safe_strerror (errno));
15924 make_cleanup_ui_file_delete (fp);
15925
15926 if (extra_trace_bits)
15927 save_trace_state_variables (fp);
15928
15929 ALL_BREAKPOINTS (tp)
15930 {
15931 /* Skip internal and momentary breakpoints. */
15932 if (!user_breakpoint_p (tp))
15933 continue;
15934
15935 /* If we have a filter, only save the breakpoints it accepts. */
15936 if (filter && !filter (tp))
15937 continue;
15938
15939 tp->ops->print_recreate (tp, fp);
15940
15941 /* Note, we can't rely on tp->number for anything, as we can't
15942 assume the recreated breakpoint numbers will match. Use $bpnum
15943 instead. */
15944
15945 if (tp->cond_string)
15946 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15947
15948 if (tp->ignore_count)
15949 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15950
15951 if (tp->type != bp_dprintf && tp->commands)
15952 {
15953 volatile struct gdb_exception ex;
15954
15955 fprintf_unfiltered (fp, " commands\n");
15956
15957 ui_out_redirect (current_uiout, fp);
15958 TRY_CATCH (ex, RETURN_MASK_ALL)
15959 {
15960 print_command_lines (current_uiout, tp->commands->commands, 2);
15961 }
15962 ui_out_redirect (current_uiout, NULL);
15963
15964 if (ex.reason < 0)
15965 throw_exception (ex);
15966
15967 fprintf_unfiltered (fp, " end\n");
15968 }
15969
15970 if (tp->enable_state == bp_disabled)
15971 fprintf_unfiltered (fp, "disable\n");
15972
15973 /* If this is a multi-location breakpoint, check if the locations
15974 should be individually disabled. Watchpoint locations are
15975 special, and not user visible. */
15976 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15977 {
15978 struct bp_location *loc;
15979 int n = 1;
15980
15981 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15982 if (!loc->enabled)
15983 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15984 }
15985 }
15986
15987 if (extra_trace_bits && *default_collect)
15988 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15989
15990 if (from_tty)
15991 printf_filtered (_("Saved to file '%s'.\n"), filename);
15992 do_cleanups (cleanup);
15993}
15994
15995/* The `save breakpoints' command. */
15996
15997static void
15998save_breakpoints_command (char *args, int from_tty)
15999{
16000 save_breakpoints (args, from_tty, NULL);
16001}
16002
16003/* The `save tracepoints' command. */
16004
16005static void
16006save_tracepoints_command (char *args, int from_tty)
16007{
16008 save_breakpoints (args, from_tty, is_tracepoint);
16009}
16010
16011/* Create a vector of all tracepoints. */
16012
16013VEC(breakpoint_p) *
16014all_tracepoints (void)
16015{
16016 VEC(breakpoint_p) *tp_vec = 0;
16017 struct breakpoint *tp;
16018
16019 ALL_TRACEPOINTS (tp)
16020 {
16021 VEC_safe_push (breakpoint_p, tp_vec, tp);
16022 }
16023
16024 return tp_vec;
16025}
16026
16027\f
16028/* This help string is used for the break, hbreak, tbreak and thbreak
16029 commands. It is defined as a macro to prevent duplication.
16030 COMMAND should be a string constant containing the name of the
16031 command. */
16032#define BREAK_ARGS_HELP(command) \
16033command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
16034PROBE_MODIFIER shall be present if the command is to be placed in a\n\
16035probe point. Accepted values are `-probe' (for a generic, automatically\n\
16036guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
16037LOCATION may be a line number, function name, or \"*\" and an address.\n\
16038If a line number is specified, break at start of code for that line.\n\
16039If a function is specified, break at start of code for that function.\n\
16040If an address is specified, break at that exact address.\n\
16041With no LOCATION, uses current execution address of the selected\n\
16042stack frame. This is useful for breaking on return to a stack frame.\n\
16043\n\
16044THREADNUM is the number from \"info threads\".\n\
16045CONDITION is a boolean expression.\n\
16046\n\
16047Multiple breakpoints at one place are permitted, and useful if their\n\
16048conditions are different.\n\
16049\n\
16050Do \"help breakpoints\" for info on other commands dealing with breakpoints."
16051
16052/* List of subcommands for "catch". */
16053static struct cmd_list_element *catch_cmdlist;
16054
16055/* List of subcommands for "tcatch". */
16056static struct cmd_list_element *tcatch_cmdlist;
16057
16058void
16059add_catch_command (char *name, char *docstring,
16060 void (*sfunc) (char *args, int from_tty,
16061 struct cmd_list_element *command),
16062 completer_ftype *completer,
16063 void *user_data_catch,
16064 void *user_data_tcatch)
16065{
16066 struct cmd_list_element *command;
16067
16068 command = add_cmd (name, class_breakpoint, NULL, docstring,
16069 &catch_cmdlist);
16070 set_cmd_sfunc (command, sfunc);
16071 set_cmd_context (command, user_data_catch);
16072 set_cmd_completer (command, completer);
16073
16074 command = add_cmd (name, class_breakpoint, NULL, docstring,
16075 &tcatch_cmdlist);
16076 set_cmd_sfunc (command, sfunc);
16077 set_cmd_context (command, user_data_tcatch);
16078 set_cmd_completer (command, completer);
16079}
16080
16081static void
16082clear_syscall_counts (struct inferior *inf)
16083{
16084 struct catch_syscall_inferior_data *inf_data
16085 = get_catch_syscall_inferior_data (inf);
16086
16087 inf_data->total_syscalls_count = 0;
16088 inf_data->any_syscall_count = 0;
16089 VEC_free (int, inf_data->syscalls_counts);
16090}
16091
16092static void
16093save_command (char *arg, int from_tty)
16094{
16095 printf_unfiltered (_("\"save\" must be followed by "
16096 "the name of a save subcommand.\n"));
16097 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
16098}
16099
16100struct breakpoint *
16101iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
16102 void *data)
16103{
16104 struct breakpoint *b, *b_tmp;
16105
16106 ALL_BREAKPOINTS_SAFE (b, b_tmp)
16107 {
16108 if ((*callback) (b, data))
16109 return b;
16110 }
16111
16112 return NULL;
16113}
16114
16115/* Zero if any of the breakpoint's locations could be a location where
16116 functions have been inlined, nonzero otherwise. */
16117
16118static int
16119is_non_inline_function (struct breakpoint *b)
16120{
16121 /* The shared library event breakpoint is set on the address of a
16122 non-inline function. */
16123 if (b->type == bp_shlib_event)
16124 return 1;
16125
16126 return 0;
16127}
16128
16129/* Nonzero if the specified PC cannot be a location where functions
16130 have been inlined. */
16131
16132int
16133pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
16134 const struct target_waitstatus *ws)
16135{
16136 struct breakpoint *b;
16137 struct bp_location *bl;
16138
16139 ALL_BREAKPOINTS (b)
16140 {
16141 if (!is_non_inline_function (b))
16142 continue;
16143
16144 for (bl = b->loc; bl != NULL; bl = bl->next)
16145 {
16146 if (!bl->shlib_disabled
16147 && bpstat_check_location (bl, aspace, pc, ws))
16148 return 1;
16149 }
16150 }
16151
16152 return 0;
16153}
16154
16155/* Remove any references to OBJFILE which is going to be freed. */
16156
16157void
16158breakpoint_free_objfile (struct objfile *objfile)
16159{
16160 struct bp_location **locp, *loc;
16161
16162 ALL_BP_LOCATIONS (loc, locp)
16163 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
16164 loc->symtab = NULL;
16165}
16166
16167void
16168initialize_breakpoint_ops (void)
16169{
16170 static int initialized = 0;
16171
16172 struct breakpoint_ops *ops;
16173
16174 if (initialized)
16175 return;
16176 initialized = 1;
16177
16178 /* The breakpoint_ops structure to be inherit by all kinds of
16179 breakpoints (real breakpoints, i.e., user "break" breakpoints,
16180 internal and momentary breakpoints, etc.). */
16181 ops = &bkpt_base_breakpoint_ops;
16182 *ops = base_breakpoint_ops;
16183 ops->re_set = bkpt_re_set;
16184 ops->insert_location = bkpt_insert_location;
16185 ops->remove_location = bkpt_remove_location;
16186 ops->breakpoint_hit = bkpt_breakpoint_hit;
16187 ops->create_sals_from_address = bkpt_create_sals_from_address;
16188 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16189 ops->decode_linespec = bkpt_decode_linespec;
16190
16191 /* The breakpoint_ops structure to be used in regular breakpoints. */
16192 ops = &bkpt_breakpoint_ops;
16193 *ops = bkpt_base_breakpoint_ops;
16194 ops->re_set = bkpt_re_set;
16195 ops->resources_needed = bkpt_resources_needed;
16196 ops->print_it = bkpt_print_it;
16197 ops->print_mention = bkpt_print_mention;
16198 ops->print_recreate = bkpt_print_recreate;
16199
16200 /* Ranged breakpoints. */
16201 ops = &ranged_breakpoint_ops;
16202 *ops = bkpt_breakpoint_ops;
16203 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16204 ops->resources_needed = resources_needed_ranged_breakpoint;
16205 ops->print_it = print_it_ranged_breakpoint;
16206 ops->print_one = print_one_ranged_breakpoint;
16207 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16208 ops->print_mention = print_mention_ranged_breakpoint;
16209 ops->print_recreate = print_recreate_ranged_breakpoint;
16210
16211 /* Internal breakpoints. */
16212 ops = &internal_breakpoint_ops;
16213 *ops = bkpt_base_breakpoint_ops;
16214 ops->re_set = internal_bkpt_re_set;
16215 ops->check_status = internal_bkpt_check_status;
16216 ops->print_it = internal_bkpt_print_it;
16217 ops->print_mention = internal_bkpt_print_mention;
16218
16219 /* Momentary breakpoints. */
16220 ops = &momentary_breakpoint_ops;
16221 *ops = bkpt_base_breakpoint_ops;
16222 ops->re_set = momentary_bkpt_re_set;
16223 ops->check_status = momentary_bkpt_check_status;
16224 ops->print_it = momentary_bkpt_print_it;
16225 ops->print_mention = momentary_bkpt_print_mention;
16226
16227 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16228 ops = &longjmp_breakpoint_ops;
16229 *ops = momentary_breakpoint_ops;
16230 ops->dtor = longjmp_bkpt_dtor;
16231
16232 /* Probe breakpoints. */
16233 ops = &bkpt_probe_breakpoint_ops;
16234 *ops = bkpt_breakpoint_ops;
16235 ops->insert_location = bkpt_probe_insert_location;
16236 ops->remove_location = bkpt_probe_remove_location;
16237 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16238 ops->decode_linespec = bkpt_probe_decode_linespec;
16239
16240 /* Watchpoints. */
16241 ops = &watchpoint_breakpoint_ops;
16242 *ops = base_breakpoint_ops;
16243 ops->dtor = dtor_watchpoint;
16244 ops->re_set = re_set_watchpoint;
16245 ops->insert_location = insert_watchpoint;
16246 ops->remove_location = remove_watchpoint;
16247 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16248 ops->check_status = check_status_watchpoint;
16249 ops->resources_needed = resources_needed_watchpoint;
16250 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16251 ops->print_it = print_it_watchpoint;
16252 ops->print_mention = print_mention_watchpoint;
16253 ops->print_recreate = print_recreate_watchpoint;
16254 ops->explains_signal = explains_signal_watchpoint;
16255
16256 /* Masked watchpoints. */
16257 ops = &masked_watchpoint_breakpoint_ops;
16258 *ops = watchpoint_breakpoint_ops;
16259 ops->insert_location = insert_masked_watchpoint;
16260 ops->remove_location = remove_masked_watchpoint;
16261 ops->resources_needed = resources_needed_masked_watchpoint;
16262 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16263 ops->print_it = print_it_masked_watchpoint;
16264 ops->print_one_detail = print_one_detail_masked_watchpoint;
16265 ops->print_mention = print_mention_masked_watchpoint;
16266 ops->print_recreate = print_recreate_masked_watchpoint;
16267
16268 /* Tracepoints. */
16269 ops = &tracepoint_breakpoint_ops;
16270 *ops = base_breakpoint_ops;
16271 ops->re_set = tracepoint_re_set;
16272 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16273 ops->print_one_detail = tracepoint_print_one_detail;
16274 ops->print_mention = tracepoint_print_mention;
16275 ops->print_recreate = tracepoint_print_recreate;
16276 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16277 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16278 ops->decode_linespec = tracepoint_decode_linespec;
16279
16280 /* Probe tracepoints. */
16281 ops = &tracepoint_probe_breakpoint_ops;
16282 *ops = tracepoint_breakpoint_ops;
16283 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16284 ops->decode_linespec = tracepoint_probe_decode_linespec;
16285
16286 /* Static tracepoints with marker (`-m'). */
16287 ops = &strace_marker_breakpoint_ops;
16288 *ops = tracepoint_breakpoint_ops;
16289 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16290 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16291 ops->decode_linespec = strace_marker_decode_linespec;
16292
16293 /* Fork catchpoints. */
16294 ops = &catch_fork_breakpoint_ops;
16295 *ops = base_breakpoint_ops;
16296 ops->insert_location = insert_catch_fork;
16297 ops->remove_location = remove_catch_fork;
16298 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16299 ops->print_it = print_it_catch_fork;
16300 ops->print_one = print_one_catch_fork;
16301 ops->print_mention = print_mention_catch_fork;
16302 ops->print_recreate = print_recreate_catch_fork;
16303
16304 /* Vfork catchpoints. */
16305 ops = &catch_vfork_breakpoint_ops;
16306 *ops = base_breakpoint_ops;
16307 ops->insert_location = insert_catch_vfork;
16308 ops->remove_location = remove_catch_vfork;
16309 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16310 ops->print_it = print_it_catch_vfork;
16311 ops->print_one = print_one_catch_vfork;
16312 ops->print_mention = print_mention_catch_vfork;
16313 ops->print_recreate = print_recreate_catch_vfork;
16314
16315 /* Exec catchpoints. */
16316 ops = &catch_exec_breakpoint_ops;
16317 *ops = base_breakpoint_ops;
16318 ops->dtor = dtor_catch_exec;
16319 ops->insert_location = insert_catch_exec;
16320 ops->remove_location = remove_catch_exec;
16321 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16322 ops->print_it = print_it_catch_exec;
16323 ops->print_one = print_one_catch_exec;
16324 ops->print_mention = print_mention_catch_exec;
16325 ops->print_recreate = print_recreate_catch_exec;
16326
16327 /* Syscall catchpoints. */
16328 ops = &catch_syscall_breakpoint_ops;
16329 *ops = base_breakpoint_ops;
16330 ops->dtor = dtor_catch_syscall;
16331 ops->insert_location = insert_catch_syscall;
16332 ops->remove_location = remove_catch_syscall;
16333 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16334 ops->print_it = print_it_catch_syscall;
16335 ops->print_one = print_one_catch_syscall;
16336 ops->print_mention = print_mention_catch_syscall;
16337 ops->print_recreate = print_recreate_catch_syscall;
16338
16339 /* Solib-related catchpoints. */
16340 ops = &catch_solib_breakpoint_ops;
16341 *ops = base_breakpoint_ops;
16342 ops->dtor = dtor_catch_solib;
16343 ops->insert_location = insert_catch_solib;
16344 ops->remove_location = remove_catch_solib;
16345 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16346 ops->check_status = check_status_catch_solib;
16347 ops->print_it = print_it_catch_solib;
16348 ops->print_one = print_one_catch_solib;
16349 ops->print_mention = print_mention_catch_solib;
16350 ops->print_recreate = print_recreate_catch_solib;
16351
16352 ops = &dprintf_breakpoint_ops;
16353 *ops = bkpt_base_breakpoint_ops;
16354 ops->re_set = dprintf_re_set;
16355 ops->resources_needed = bkpt_resources_needed;
16356 ops->print_it = bkpt_print_it;
16357 ops->print_mention = bkpt_print_mention;
16358 ops->print_recreate = dprintf_print_recreate;
16359 ops->after_condition_true = dprintf_after_condition_true;
16360 ops->breakpoint_hit = dprintf_breakpoint_hit;
16361}
16362
16363/* Chain containing all defined "enable breakpoint" subcommands. */
16364
16365static struct cmd_list_element *enablebreaklist = NULL;
16366
16367void
16368_initialize_breakpoint (void)
16369{
16370 struct cmd_list_element *c;
16371
16372 initialize_breakpoint_ops ();
16373
16374 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16375 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16376 observer_attach_inferior_exit (clear_syscall_counts);
16377 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16378
16379 breakpoint_objfile_key
16380 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16381
16382 catch_syscall_inferior_data
16383 = register_inferior_data_with_cleanup (NULL,
16384 catch_syscall_inferior_data_cleanup);
16385
16386 breakpoint_chain = 0;
16387 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16388 before a breakpoint is set. */
16389 breakpoint_count = 0;
16390
16391 tracepoint_count = 0;
16392
16393 add_com ("ignore", class_breakpoint, ignore_command, _("\
16394Set ignore-count of breakpoint number N to COUNT.\n\
16395Usage is `ignore N COUNT'."));
16396 if (xdb_commands)
16397 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16398
16399 add_com ("commands", class_breakpoint, commands_command, _("\
16400Set commands to be executed when a breakpoint is hit.\n\
16401Give breakpoint number as argument after \"commands\".\n\
16402With no argument, the targeted breakpoint is the last one set.\n\
16403The commands themselves follow starting on the next line.\n\
16404Type a line containing \"end\" to indicate the end of them.\n\
16405Give \"silent\" as the first line to make the breakpoint silent;\n\
16406then no output is printed when it is hit, except what the commands print."));
16407
16408 c = add_com ("condition", class_breakpoint, condition_command, _("\
16409Specify breakpoint number N to break only if COND is true.\n\
16410Usage is `condition N COND', where N is an integer and COND is an\n\
16411expression to be evaluated whenever breakpoint N is reached."));
16412 set_cmd_completer (c, condition_completer);
16413
16414 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16415Set a temporary breakpoint.\n\
16416Like \"break\" except the breakpoint is only temporary,\n\
16417so it will be deleted when hit. Equivalent to \"break\" followed\n\
16418by using \"enable delete\" on the breakpoint number.\n\
16419\n"
16420BREAK_ARGS_HELP ("tbreak")));
16421 set_cmd_completer (c, location_completer);
16422
16423 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16424Set a hardware assisted breakpoint.\n\
16425Like \"break\" except the breakpoint requires hardware support,\n\
16426some target hardware may not have this support.\n\
16427\n"
16428BREAK_ARGS_HELP ("hbreak")));
16429 set_cmd_completer (c, location_completer);
16430
16431 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16432Set a temporary hardware assisted breakpoint.\n\
16433Like \"hbreak\" except the breakpoint is only temporary,\n\
16434so it will be deleted when hit.\n\
16435\n"
16436BREAK_ARGS_HELP ("thbreak")));
16437 set_cmd_completer (c, location_completer);
16438
16439 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16440Enable some breakpoints.\n\
16441Give breakpoint numbers (separated by spaces) as arguments.\n\
16442With no subcommand, breakpoints are enabled until you command otherwise.\n\
16443This is used to cancel the effect of the \"disable\" command.\n\
16444With a subcommand you can enable temporarily."),
16445 &enablelist, "enable ", 1, &cmdlist);
16446 if (xdb_commands)
16447 add_com ("ab", class_breakpoint, enable_command, _("\
16448Enable some breakpoints.\n\
16449Give breakpoint numbers (separated by spaces) as arguments.\n\
16450With no subcommand, breakpoints are enabled until you command otherwise.\n\
16451This is used to cancel the effect of the \"disable\" command.\n\
16452With a subcommand you can enable temporarily."));
16453
16454 add_com_alias ("en", "enable", class_breakpoint, 1);
16455
16456 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16457Enable some breakpoints.\n\
16458Give breakpoint numbers (separated by spaces) as arguments.\n\
16459This is used to cancel the effect of the \"disable\" command.\n\
16460May be abbreviated to simply \"enable\".\n"),
16461 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16462
16463 add_cmd ("once", no_class, enable_once_command, _("\
16464Enable breakpoints for one hit. Give breakpoint numbers.\n\
16465If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16466 &enablebreaklist);
16467
16468 add_cmd ("delete", no_class, enable_delete_command, _("\
16469Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16470If a breakpoint is hit while enabled in this fashion, it is deleted."),
16471 &enablebreaklist);
16472
16473 add_cmd ("count", no_class, enable_count_command, _("\
16474Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16475If a breakpoint is hit while enabled in this fashion,\n\
16476the count is decremented; when it reaches zero, the breakpoint is disabled."),
16477 &enablebreaklist);
16478
16479 add_cmd ("delete", no_class, enable_delete_command, _("\
16480Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16481If a breakpoint is hit while enabled in this fashion, it is deleted."),
16482 &enablelist);
16483
16484 add_cmd ("once", no_class, enable_once_command, _("\
16485Enable breakpoints for one hit. Give breakpoint numbers.\n\
16486If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16487 &enablelist);
16488
16489 add_cmd ("count", no_class, enable_count_command, _("\
16490Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16491If a breakpoint is hit while enabled in this fashion,\n\
16492the count is decremented; when it reaches zero, the breakpoint is disabled."),
16493 &enablelist);
16494
16495 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16496Disable some breakpoints.\n\
16497Arguments are breakpoint numbers with spaces in between.\n\
16498To disable all breakpoints, give no argument.\n\
16499A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16500 &disablelist, "disable ", 1, &cmdlist);
16501 add_com_alias ("dis", "disable", class_breakpoint, 1);
16502 add_com_alias ("disa", "disable", class_breakpoint, 1);
16503 if (xdb_commands)
16504 add_com ("sb", class_breakpoint, disable_command, _("\
16505Disable some breakpoints.\n\
16506Arguments are breakpoint numbers with spaces in between.\n\
16507To disable all breakpoints, give no argument.\n\
16508A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16509
16510 add_cmd ("breakpoints", class_alias, disable_command, _("\
16511Disable some breakpoints.\n\
16512Arguments are breakpoint numbers with spaces in between.\n\
16513To disable all breakpoints, give no argument.\n\
16514A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16515This command may be abbreviated \"disable\"."),
16516 &disablelist);
16517
16518 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16519Delete some breakpoints or auto-display expressions.\n\
16520Arguments are breakpoint numbers with spaces in between.\n\
16521To delete all breakpoints, give no argument.\n\
16522\n\
16523Also a prefix command for deletion of other GDB objects.\n\
16524The \"unset\" command is also an alias for \"delete\"."),
16525 &deletelist, "delete ", 1, &cmdlist);
16526 add_com_alias ("d", "delete", class_breakpoint, 1);
16527 add_com_alias ("del", "delete", class_breakpoint, 1);
16528 if (xdb_commands)
16529 add_com ("db", class_breakpoint, delete_command, _("\
16530Delete some breakpoints.\n\
16531Arguments are breakpoint numbers with spaces in between.\n\
16532To delete all breakpoints, give no argument.\n"));
16533
16534 add_cmd ("breakpoints", class_alias, delete_command, _("\
16535Delete some breakpoints or auto-display expressions.\n\
16536Arguments are breakpoint numbers with spaces in between.\n\
16537To delete all breakpoints, give no argument.\n\
16538This command may be abbreviated \"delete\"."),
16539 &deletelist);
16540
16541 add_com ("clear", class_breakpoint, clear_command, _("\
16542Clear breakpoint at specified line or function.\n\
16543Argument may be line number, function name, or \"*\" and an address.\n\
16544If line number is specified, all breakpoints in that line are cleared.\n\
16545If function is specified, breakpoints at beginning of function are cleared.\n\
16546If an address is specified, breakpoints at that address are cleared.\n\
16547\n\
16548With no argument, clears all breakpoints in the line that the selected frame\n\
16549is executing in.\n\
16550\n\
16551See also the \"delete\" command which clears breakpoints by number."));
16552 add_com_alias ("cl", "clear", class_breakpoint, 1);
16553
16554 c = add_com ("break", class_breakpoint, break_command, _("\
16555Set breakpoint at specified line or function.\n"
16556BREAK_ARGS_HELP ("break")));
16557 set_cmd_completer (c, location_completer);
16558
16559 add_com_alias ("b", "break", class_run, 1);
16560 add_com_alias ("br", "break", class_run, 1);
16561 add_com_alias ("bre", "break", class_run, 1);
16562 add_com_alias ("brea", "break", class_run, 1);
16563
16564 if (xdb_commands)
16565 add_com_alias ("ba", "break", class_breakpoint, 1);
16566
16567 if (dbx_commands)
16568 {
16569 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16570Break in function/address or break at a line in the current file."),
16571 &stoplist, "stop ", 1, &cmdlist);
16572 add_cmd ("in", class_breakpoint, stopin_command,
16573 _("Break in function or address."), &stoplist);
16574 add_cmd ("at", class_breakpoint, stopat_command,
16575 _("Break at a line in the current file."), &stoplist);
16576 add_com ("status", class_info, breakpoints_info, _("\
16577Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16578The \"Type\" column indicates one of:\n\
16579\tbreakpoint - normal breakpoint\n\
16580\twatchpoint - watchpoint\n\
16581The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16582the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16583breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16584address and file/line number respectively.\n\
16585\n\
16586Convenience variable \"$_\" and default examine address for \"x\"\n\
16587are set to the address of the last breakpoint listed unless the command\n\
16588is prefixed with \"server \".\n\n\
16589Convenience variable \"$bpnum\" contains the number of the last\n\
16590breakpoint set."));
16591 }
16592
16593 add_info ("breakpoints", breakpoints_info, _("\
16594Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16595The \"Type\" column indicates one of:\n\
16596\tbreakpoint - normal breakpoint\n\
16597\twatchpoint - watchpoint\n\
16598The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16599the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16600breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16601address and file/line number respectively.\n\
16602\n\
16603Convenience variable \"$_\" and default examine address for \"x\"\n\
16604are set to the address of the last breakpoint listed unless the command\n\
16605is prefixed with \"server \".\n\n\
16606Convenience variable \"$bpnum\" contains the number of the last\n\
16607breakpoint set."));
16608
16609 add_info_alias ("b", "breakpoints", 1);
16610
16611 if (xdb_commands)
16612 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16613Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16614The \"Type\" column indicates one of:\n\
16615\tbreakpoint - normal breakpoint\n\
16616\twatchpoint - watchpoint\n\
16617The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16618the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16619breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16620address and file/line number respectively.\n\
16621\n\
16622Convenience variable \"$_\" and default examine address for \"x\"\n\
16623are set to the address of the last breakpoint listed unless the command\n\
16624is prefixed with \"server \".\n\n\
16625Convenience variable \"$bpnum\" contains the number of the last\n\
16626breakpoint set."));
16627
16628 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16629Status of all breakpoints, or breakpoint number NUMBER.\n\
16630The \"Type\" column indicates one of:\n\
16631\tbreakpoint - normal breakpoint\n\
16632\twatchpoint - watchpoint\n\
16633\tlongjmp - internal breakpoint used to step through longjmp()\n\
16634\tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16635\tuntil - internal breakpoint used by the \"until\" command\n\
16636\tfinish - internal breakpoint used by the \"finish\" command\n\
16637The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16638the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16639breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16640address and file/line number respectively.\n\
16641\n\
16642Convenience variable \"$_\" and default examine address for \"x\"\n\
16643are set to the address of the last breakpoint listed unless the command\n\
16644is prefixed with \"server \".\n\n\
16645Convenience variable \"$bpnum\" contains the number of the last\n\
16646breakpoint set."),
16647 &maintenanceinfolist);
16648
16649 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16650Set catchpoints to catch events."),
16651 &catch_cmdlist, "catch ",
16652 0/*allow-unknown*/, &cmdlist);
16653
16654 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16655Set temporary catchpoints to catch events."),
16656 &tcatch_cmdlist, "tcatch ",
16657 0/*allow-unknown*/, &cmdlist);
16658
16659 add_catch_command ("fork", _("Catch calls to fork."),
16660 catch_fork_command_1,
16661 NULL,
16662 (void *) (uintptr_t) catch_fork_permanent,
16663 (void *) (uintptr_t) catch_fork_temporary);
16664 add_catch_command ("vfork", _("Catch calls to vfork."),
16665 catch_fork_command_1,
16666 NULL,
16667 (void *) (uintptr_t) catch_vfork_permanent,
16668 (void *) (uintptr_t) catch_vfork_temporary);
16669 add_catch_command ("exec", _("Catch calls to exec."),
16670 catch_exec_command_1,
16671 NULL,
16672 CATCH_PERMANENT,
16673 CATCH_TEMPORARY);
16674 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16675Usage: catch load [REGEX]\n\
16676If REGEX is given, only stop for libraries matching the regular expression."),
16677 catch_load_command_1,
16678 NULL,
16679 CATCH_PERMANENT,
16680 CATCH_TEMPORARY);
16681 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16682Usage: catch unload [REGEX]\n\
16683If REGEX is given, only stop for libraries matching the regular expression."),
16684 catch_unload_command_1,
16685 NULL,
16686 CATCH_PERMANENT,
16687 CATCH_TEMPORARY);
16688 add_catch_command ("syscall", _("\
16689Catch system calls by their names and/or numbers.\n\
16690Arguments say which system calls to catch. If no arguments\n\
16691are given, every system call will be caught.\n\
16692Arguments, if given, should be one or more system call names\n\
16693(if your system supports that), or system call numbers."),
16694 catch_syscall_command_1,
16695 catch_syscall_completer,
16696 CATCH_PERMANENT,
16697 CATCH_TEMPORARY);
16698
16699 c = add_com ("watch", class_breakpoint, watch_command, _("\
16700Set a watchpoint for an expression.\n\
16701Usage: watch [-l|-location] EXPRESSION\n\
16702A watchpoint stops execution of your program whenever the value of\n\
16703an expression changes.\n\
16704If -l or -location is given, this evaluates EXPRESSION and watches\n\
16705the memory to which it refers."));
16706 set_cmd_completer (c, expression_completer);
16707
16708 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16709Set a read watchpoint for an expression.\n\
16710Usage: rwatch [-l|-location] EXPRESSION\n\
16711A watchpoint stops execution of your program whenever the value of\n\
16712an expression is read.\n\
16713If -l or -location is given, this evaluates EXPRESSION and watches\n\
16714the memory to which it refers."));
16715 set_cmd_completer (c, expression_completer);
16716
16717 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16718Set a watchpoint for an expression.\n\
16719Usage: awatch [-l|-location] EXPRESSION\n\
16720A watchpoint stops execution of your program whenever the value of\n\
16721an expression is either read or written.\n\
16722If -l or -location is given, this evaluates EXPRESSION and watches\n\
16723the memory to which it refers."));
16724 set_cmd_completer (c, expression_completer);
16725
16726 add_info ("watchpoints", watchpoints_info, _("\
16727Status of specified watchpoints (all watchpoints if no argument)."));
16728
16729 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16730 respond to changes - contrary to the description. */
16731 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16732 &can_use_hw_watchpoints, _("\
16733Set debugger's willingness to use watchpoint hardware."), _("\
16734Show debugger's willingness to use watchpoint hardware."), _("\
16735If zero, gdb will not use hardware for new watchpoints, even if\n\
16736such is available. (However, any hardware watchpoints that were\n\
16737created before setting this to nonzero, will continue to use watchpoint\n\
16738hardware.)"),
16739 NULL,
16740 show_can_use_hw_watchpoints,
16741 &setlist, &showlist);
16742
16743 can_use_hw_watchpoints = 1;
16744
16745 /* Tracepoint manipulation commands. */
16746
16747 c = add_com ("trace", class_breakpoint, trace_command, _("\
16748Set a tracepoint at specified line or function.\n\
16749\n"
16750BREAK_ARGS_HELP ("trace") "\n\
16751Do \"help tracepoints\" for info on other tracepoint commands."));
16752 set_cmd_completer (c, location_completer);
16753
16754 add_com_alias ("tp", "trace", class_alias, 0);
16755 add_com_alias ("tr", "trace", class_alias, 1);
16756 add_com_alias ("tra", "trace", class_alias, 1);
16757 add_com_alias ("trac", "trace", class_alias, 1);
16758
16759 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16760Set a fast tracepoint at specified line or function.\n\
16761\n"
16762BREAK_ARGS_HELP ("ftrace") "\n\
16763Do \"help tracepoints\" for info on other tracepoint commands."));
16764 set_cmd_completer (c, location_completer);
16765
16766 c = add_com ("strace", class_breakpoint, strace_command, _("\
16767Set a static tracepoint at specified line, function or marker.\n\
16768\n\
16769strace [LOCATION] [if CONDITION]\n\
16770LOCATION may be a line number, function name, \"*\" and an address,\n\
16771or -m MARKER_ID.\n\
16772If a line number is specified, probe the marker at start of code\n\
16773for that line. If a function is specified, probe the marker at start\n\
16774of code for that function. If an address is specified, probe the marker\n\
16775at that exact address. If a marker id is specified, probe the marker\n\
16776with that name. With no LOCATION, uses current execution address of\n\
16777the selected stack frame.\n\
16778Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16779This collects arbitrary user data passed in the probe point call to the\n\
16780tracing library. You can inspect it when analyzing the trace buffer,\n\
16781by printing the $_sdata variable like any other convenience variable.\n\
16782\n\
16783CONDITION is a boolean expression.\n\
16784\n\
16785Multiple tracepoints at one place are permitted, and useful if their\n\
16786conditions are different.\n\
16787\n\
16788Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16789Do \"help tracepoints\" for info on other tracepoint commands."));
16790 set_cmd_completer (c, location_completer);
16791
16792 add_info ("tracepoints", tracepoints_info, _("\
16793Status of specified tracepoints (all tracepoints if no argument).\n\
16794Convenience variable \"$tpnum\" contains the number of the\n\
16795last tracepoint set."));
16796
16797 add_info_alias ("tp", "tracepoints", 1);
16798
16799 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16800Delete specified tracepoints.\n\
16801Arguments are tracepoint numbers, separated by spaces.\n\
16802No argument means delete all tracepoints."),
16803 &deletelist);
16804 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16805
16806 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16807Disable specified tracepoints.\n\
16808Arguments are tracepoint numbers, separated by spaces.\n\
16809No argument means disable all tracepoints."),
16810 &disablelist);
16811 deprecate_cmd (c, "disable");
16812
16813 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16814Enable specified tracepoints.\n\
16815Arguments are tracepoint numbers, separated by spaces.\n\
16816No argument means enable all tracepoints."),
16817 &enablelist);
16818 deprecate_cmd (c, "enable");
16819
16820 add_com ("passcount", class_trace, trace_pass_command, _("\
16821Set the passcount for a tracepoint.\n\
16822The trace will end when the tracepoint has been passed 'count' times.\n\
16823Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16824if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16825
16826 add_prefix_cmd ("save", class_breakpoint, save_command,
16827 _("Save breakpoint definitions as a script."),
16828 &save_cmdlist, "save ",
16829 0/*allow-unknown*/, &cmdlist);
16830
16831 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16832Save current breakpoint definitions as a script.\n\
16833This includes all types of breakpoints (breakpoints, watchpoints,\n\
16834catchpoints, tracepoints). Use the 'source' command in another debug\n\
16835session to restore them."),
16836 &save_cmdlist);
16837 set_cmd_completer (c, filename_completer);
16838
16839 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16840Save current tracepoint definitions as a script.\n\
16841Use the 'source' command in another debug session to restore them."),
16842 &save_cmdlist);
16843 set_cmd_completer (c, filename_completer);
16844
16845 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16846 deprecate_cmd (c, "save tracepoints");
16847
16848 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16849Breakpoint specific settings\n\
16850Configure various breakpoint-specific variables such as\n\
16851pending breakpoint behavior"),
16852 &breakpoint_set_cmdlist, "set breakpoint ",
16853 0/*allow-unknown*/, &setlist);
16854 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16855Breakpoint specific settings\n\
16856Configure various breakpoint-specific variables such as\n\
16857pending breakpoint behavior"),
16858 &breakpoint_show_cmdlist, "show breakpoint ",
16859 0/*allow-unknown*/, &showlist);
16860
16861 add_setshow_auto_boolean_cmd ("pending", no_class,
16862 &pending_break_support, _("\
16863Set debugger's behavior regarding pending breakpoints."), _("\
16864Show debugger's behavior regarding pending breakpoints."), _("\
16865If on, an unrecognized breakpoint location will cause gdb to create a\n\
16866pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16867an error. If auto, an unrecognized breakpoint location results in a\n\
16868user-query to see if a pending breakpoint should be created."),
16869 NULL,
16870 show_pending_break_support,
16871 &breakpoint_set_cmdlist,
16872 &breakpoint_show_cmdlist);
16873
16874 pending_break_support = AUTO_BOOLEAN_AUTO;
16875
16876 add_setshow_boolean_cmd ("auto-hw", no_class,
16877 &automatic_hardware_breakpoints, _("\
16878Set automatic usage of hardware breakpoints."), _("\
16879Show automatic usage of hardware breakpoints."), _("\
16880If set, the debugger will automatically use hardware breakpoints for\n\
16881breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16882a warning will be emitted for such breakpoints."),
16883 NULL,
16884 show_automatic_hardware_breakpoints,
16885 &breakpoint_set_cmdlist,
16886 &breakpoint_show_cmdlist);
16887
16888 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16889 &always_inserted_mode, _("\
16890Set mode for inserting breakpoints."), _("\
16891Show mode for inserting breakpoints."), _("\
16892When this mode is off, breakpoints are inserted in inferior when it is\n\
16893resumed, and removed when execution stops. When this mode is on,\n\
16894breakpoints are inserted immediately and removed only when the user\n\
16895deletes the breakpoint. When this mode is auto (which is the default),\n\
16896the behaviour depends on the non-stop setting (see help set non-stop).\n\
16897In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16898behaves as if always-inserted mode is on; if gdb is controlling the\n\
16899inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16900 NULL,
16901 &show_always_inserted_mode,
16902 &breakpoint_set_cmdlist,
16903 &breakpoint_show_cmdlist);
16904
16905 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16906 condition_evaluation_enums,
16907 &condition_evaluation_mode_1, _("\
16908Set mode of breakpoint condition evaluation."), _("\
16909Show mode of breakpoint condition evaluation."), _("\
16910When this is set to \"host\", breakpoint conditions will be\n\
16911evaluated on the host's side by GDB. When it is set to \"target\",\n\
16912breakpoint conditions will be downloaded to the target (if the target\n\
16913supports such feature) and conditions will be evaluated on the target's side.\n\
16914If this is set to \"auto\" (default), this will be automatically set to\n\
16915\"target\" if it supports condition evaluation, otherwise it will\n\
16916be set to \"gdb\""),
16917 &set_condition_evaluation_mode,
16918 &show_condition_evaluation_mode,
16919 &breakpoint_set_cmdlist,
16920 &breakpoint_show_cmdlist);
16921
16922 add_com ("break-range", class_breakpoint, break_range_command, _("\
16923Set a breakpoint for an address range.\n\
16924break-range START-LOCATION, END-LOCATION\n\
16925where START-LOCATION and END-LOCATION can be one of the following:\n\
16926 LINENUM, for that line in the current file,\n\
16927 FILE:LINENUM, for that line in that file,\n\
16928 +OFFSET, for that number of lines after the current line\n\
16929 or the start of the range\n\
16930 FUNCTION, for the first line in that function,\n\
16931 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16932 *ADDRESS, for the instruction at that address.\n\
16933\n\
16934The breakpoint will stop execution of the inferior whenever it executes\n\
16935an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16936range (including START-LOCATION and END-LOCATION)."));
16937
16938 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16939Set a dynamic printf at specified line or function.\n\
16940dprintf location,format string,arg1,arg2,...\n\
16941location may be a line number, function name, or \"*\" and an address.\n\
16942If a line number is specified, break at start of code for that line.\n\
16943If a function is specified, break at start of code for that function."));
16944 set_cmd_completer (c, location_completer);
16945
16946 add_setshow_enum_cmd ("dprintf-style", class_support,
16947 dprintf_style_enums, &dprintf_style, _("\
16948Set the style of usage for dynamic printf."), _("\
16949Show the style of usage for dynamic printf."), _("\
16950This setting chooses how GDB will do a dynamic printf.\n\
16951If the value is \"gdb\", then the printing is done by GDB to its own\n\
16952console, as with the \"printf\" command.\n\
16953If the value is \"call\", the print is done by calling a function in your\n\
16954program; by default printf(), but you can choose a different function or\n\
16955output stream by setting dprintf-function and dprintf-channel."),
16956 update_dprintf_commands, NULL,
16957 &setlist, &showlist);
16958
16959 dprintf_function = xstrdup ("printf");
16960 add_setshow_string_cmd ("dprintf-function", class_support,
16961 &dprintf_function, _("\
16962Set the function to use for dynamic printf"), _("\
16963Show the function to use for dynamic printf"), NULL,
16964 update_dprintf_commands, NULL,
16965 &setlist, &showlist);
16966
16967 dprintf_channel = xstrdup ("");
16968 add_setshow_string_cmd ("dprintf-channel", class_support,
16969 &dprintf_channel, _("\
16970Set the channel to use for dynamic printf"), _("\
16971Show the channel to use for dynamic printf"), NULL,
16972 update_dprintf_commands, NULL,
16973 &setlist, &showlist);
16974
16975 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16976 &disconnected_dprintf, _("\
16977Set whether dprintf continues after GDB disconnects."), _("\
16978Show whether dprintf continues after GDB disconnects."), _("\
16979Use this to let dprintf commands continue to hit and produce output\n\
16980even if GDB disconnects or detaches from the target."),
16981 NULL,
16982 NULL,
16983 &setlist, &showlist);
16984
16985 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16986agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16987(target agent only) This is useful for formatted output in user-defined commands."));
16988
16989 automatic_hardware_breakpoints = 1;
16990
16991 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16992 observer_attach_thread_exit (remove_threaded_breakpoints);
16993}
This page took 0.075654 seconds and 4 git commands to generate.