daily update
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
... / ...
CommitLineData
1/* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "arch-utils.h"
22#include <ctype.h>
23#include "hashtab.h"
24#include "symtab.h"
25#include "frame.h"
26#include "breakpoint.h"
27#include "tracepoint.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "gdbcore.h"
31#include "gdbcmd.h"
32#include "value.h"
33#include "command.h"
34#include "inferior.h"
35#include "gdbthread.h"
36#include "target.h"
37#include "language.h"
38#include "gdb_string.h"
39#include "gdb-demangle.h"
40#include "filenames.h"
41#include "annotate.h"
42#include "symfile.h"
43#include "objfiles.h"
44#include "source.h"
45#include "linespec.h"
46#include "completer.h"
47#include "gdb.h"
48#include "ui-out.h"
49#include "cli/cli-script.h"
50#include "gdb_assert.h"
51#include "block.h"
52#include "solib.h"
53#include "solist.h"
54#include "observer.h"
55#include "exceptions.h"
56#include "memattr.h"
57#include "ada-lang.h"
58#include "top.h"
59#include "valprint.h"
60#include "jit.h"
61#include "xml-syscall.h"
62#include "parser-defs.h"
63#include "gdb_regex.h"
64#include "probe.h"
65#include "cli/cli-utils.h"
66#include "continuations.h"
67#include "stack.h"
68#include "skip.h"
69#include "gdb_regex.h"
70#include "ax-gdb.h"
71#include "dummy-frame.h"
72
73#include "format.h"
74
75/* readline include files */
76#include "readline/readline.h"
77#include "readline/history.h"
78
79/* readline defines this. */
80#undef savestring
81
82#include "mi/mi-common.h"
83#include "python/python.h"
84
85/* Enums for exception-handling support. */
86enum exception_event_kind
87{
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91};
92
93/* Prototypes for local functions. */
94
95static void enable_delete_command (char *, int);
96
97static void enable_once_command (char *, int);
98
99static void enable_count_command (char *, int);
100
101static void disable_command (char *, int);
102
103static void enable_command (char *, int);
104
105static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109static void ignore_command (char *, int);
110
111static int breakpoint_re_set_one (void *);
112
113static void breakpoint_re_set_default (struct breakpoint *);
114
115static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131static void clear_command (char *, int);
132
133static void catch_command (char *, int);
134
135static int can_use_hardware_watchpoint (struct value *);
136
137static void break_command_1 (char *, int, int);
138
139static void mention (struct breakpoint *);
140
141static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147/* This function is used in gdbtk sources and thus can not be made
148 static. */
149struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181static void breakpoints_info (char *, int);
182
183static void watchpoints_info (char *, int);
184
185static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188static int breakpoint_cond_eval (void *);
189
190static void cleanup_executing_breakpoints (void *);
191
192static void commands_command (char *, int);
193
194static void condition_command (char *, int);
195
196typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201insertion_state_t;
202
203static int remove_breakpoint (struct bp_location *, insertion_state_t);
204static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208static int watchpoint_check (void *);
209
210static void maintenance_info_breakpoints (char *, int);
211
212static int hw_breakpoint_used_count (void);
213
214static int hw_watchpoint_use_count (struct breakpoint *);
215
216static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220static void hbreak_command (char *, int);
221
222static void thbreak_command (char *, int);
223
224static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227static void stop_command (char *arg, int from_tty);
228
229static void stopin_command (char *arg, int from_tty);
230
231static void stopat_command (char *arg, int from_tty);
232
233static void tcatch_command (char *arg, int from_tty);
234
235static void detach_single_step_breakpoints (void);
236
237static int single_step_breakpoint_inserted_here_p (struct address_space *,
238 CORE_ADDR pc);
239
240static void free_bp_location (struct bp_location *loc);
241static void incref_bp_location (struct bp_location *loc);
242static void decref_bp_location (struct bp_location **loc);
243
244static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
245
246static void update_global_location_list (int);
247
248static void update_global_location_list_nothrow (int);
249
250static int is_hardware_watchpoint (const struct breakpoint *bpt);
251
252static void insert_breakpoint_locations (void);
253
254static int syscall_catchpoint_p (struct breakpoint *b);
255
256static void tracepoints_info (char *, int);
257
258static void delete_trace_command (char *, int);
259
260static void enable_trace_command (char *, int);
261
262static void disable_trace_command (char *, int);
263
264static void trace_pass_command (char *, int);
265
266static void set_tracepoint_count (int num);
267
268static int is_masked_watchpoint (const struct breakpoint *b);
269
270static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
271
272/* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
273 otherwise. */
274
275static int strace_marker_p (struct breakpoint *b);
276
277/* The abstract base class all breakpoint_ops structures inherit
278 from. */
279struct breakpoint_ops base_breakpoint_ops;
280
281/* The breakpoint_ops structure to be inherited by all breakpoint_ops
282 that are implemented on top of software or hardware breakpoints
283 (user breakpoints, internal and momentary breakpoints, etc.). */
284static struct breakpoint_ops bkpt_base_breakpoint_ops;
285
286/* Internal breakpoints class type. */
287static struct breakpoint_ops internal_breakpoint_ops;
288
289/* Momentary breakpoints class type. */
290static struct breakpoint_ops momentary_breakpoint_ops;
291
292/* Momentary breakpoints for bp_longjmp and bp_exception class type. */
293static struct breakpoint_ops longjmp_breakpoint_ops;
294
295/* The breakpoint_ops structure to be used in regular user created
296 breakpoints. */
297struct breakpoint_ops bkpt_breakpoint_ops;
298
299/* Breakpoints set on probes. */
300static struct breakpoint_ops bkpt_probe_breakpoint_ops;
301
302/* Dynamic printf class type. */
303struct breakpoint_ops dprintf_breakpoint_ops;
304
305/* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312static const char dprintf_style_gdb[] = "gdb";
313static const char dprintf_style_call[] = "call";
314static const char dprintf_style_agent[] = "agent";
315static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320};
321static const char *dprintf_style = dprintf_style_gdb;
322
323/* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328static char *dprintf_function = "";
329
330/* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338static char *dprintf_channel = "";
339
340/* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342static int disconnected_dprintf = 1;
343
344/* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346struct counted_command_line
347{
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353};
354
355struct command_line *
356breakpoint_commands (struct breakpoint *b)
357{
358 return b->commands ? b->commands->commands : NULL;
359}
360
361/* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364static int breakpoint_proceeded;
365
366const char *
367bpdisp_text (enum bpdisp disp)
368{
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375}
376
377/* Prototypes for exported functions. */
378/* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380static int can_use_hw_watchpoints;
381
382static void
383show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386{
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391}
392
393/* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397static enum auto_boolean pending_break_support;
398static void
399show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402{
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407}
408
409/* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413static int automatic_hardware_breakpoints;
414static void
415show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418{
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422}
423
424/* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432static void
433show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435{
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445}
446
447int
448breakpoints_always_inserted_mode (void)
449{
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452}
453
454static const char condition_evaluation_both[] = "host or target";
455
456/* Modes for breakpoint condition evaluation. */
457static const char condition_evaluation_auto[] = "auto";
458static const char condition_evaluation_host[] = "host";
459static const char condition_evaluation_target[] = "target";
460static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465};
466
467/* Global that holds the current mode for breakpoint condition evaluation. */
468static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470/* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474/* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479static const char *
480translate_condition_evaluation_mode (const char *mode)
481{
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491}
492
493/* Discovers what condition_evaluation_auto translates to. */
494
495static const char *
496breakpoint_condition_evaluation_mode (void)
497{
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499}
500
501/* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504static int
505gdb_evaluates_breakpoint_condition_p (void)
506{
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510}
511
512void _initialize_breakpoint (void);
513
514/* Are we executing breakpoint commands? */
515static int executing_breakpoint_commands;
516
517/* Are overlay event breakpoints enabled? */
518static int overlay_events_enabled;
519
520/* See description in breakpoint.h. */
521int target_exact_watchpoints = 0;
522
523/* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527#define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529#define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534/* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538#define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543/* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549#define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557/* Iterator for tracepoints only. */
558
559#define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563/* Chains of all breakpoints defined. */
564
565struct breakpoint *breakpoint_chain;
566
567/* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569static struct bp_location **bp_location;
570
571/* Number of elements of BP_LOCATION. */
572
573static unsigned bp_location_count;
574
575/* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581static CORE_ADDR bp_location_placed_address_before_address_max;
582
583/* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591/* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594VEC(bp_location_p) *moribund_locations = NULL;
595
596/* Number of last breakpoint made. */
597
598static int breakpoint_count;
599
600/* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604static int prev_breakpoint_count;
605
606/* Number of last tracepoint made. */
607
608static int tracepoint_count;
609
610static struct cmd_list_element *breakpoint_set_cmdlist;
611static struct cmd_list_element *breakpoint_show_cmdlist;
612struct cmd_list_element *save_cmdlist;
613
614/* Return whether a breakpoint is an active enabled breakpoint. */
615static int
616breakpoint_enabled (struct breakpoint *b)
617{
618 return (b->enable_state == bp_enabled);
619}
620
621/* Set breakpoint count to NUM. */
622
623static void
624set_breakpoint_count (int num)
625{
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629}
630
631/* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633static int rbreak_start_breakpoint_count;
634
635/* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638void
639start_rbreak_breakpoints (void)
640{
641 rbreak_start_breakpoint_count = breakpoint_count;
642}
643
644/* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647void
648end_rbreak_breakpoints (void)
649{
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651}
652
653/* Used in run_command to zero the hit count when a new run starts. */
654
655void
656clear_breakpoint_hit_counts (void)
657{
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662}
663
664/* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667static struct counted_command_line *
668alloc_counted_command_line (struct command_line *commands)
669{
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676}
677
678/* Increment reference count. This does nothing if CMD is NULL. */
679
680static void
681incref_counted_command_line (struct counted_command_line *cmd)
682{
683 if (cmd)
684 ++cmd->refc;
685}
686
687/* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691static void
692decref_counted_command_line (struct counted_command_line **cmdp)
693{
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703}
704
705/* A cleanup function that calls decref_counted_command_line. */
706
707static void
708do_cleanup_counted_command_line (void *arg)
709{
710 decref_counted_command_line (arg);
711}
712
713/* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716static struct cleanup *
717make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718{
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720}
721
722\f
723/* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726struct breakpoint *
727get_breakpoint (int num)
728{
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736}
737
738\f
739
740/* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743static void
744mark_breakpoint_modified (struct breakpoint *b)
745{
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761}
762
763/* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766static void
767mark_breakpoint_location_modified (struct bp_location *loc)
768{
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782}
783
784/* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787static void
788set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790{
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842}
843
844/* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847static void
848show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850{
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860}
861
862/* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866static int
867bp_location_compare_addrs (const void *ap, const void *bp)
868{
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876}
877
878/* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883static struct bp_location **
884get_first_locp_gte_addr (CORE_ADDR address)
885{
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910}
911
912void
913set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915{
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984}
985
986/* Completion for the "condition" command. */
987
988static VEC (char_ptr) *
989condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991{
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029}
1030
1031/* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033static void
1034condition_command (char *arg, int from_tty)
1035{
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a Python object assigned to
1052 it, and if it has a definition of the "stop"
1053 method. This method and conditions entered into GDB from
1054 the CLI are mutually exclusive. */
1055 if (b->py_bp_object
1056 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1057 error (_("Cannot set a condition where a Python 'stop' "
1058 "method has been defined in the breakpoint."));
1059 set_breakpoint_condition (b, p, from_tty);
1060
1061 if (is_breakpoint (b))
1062 update_global_location_list (1);
1063
1064 return;
1065 }
1066
1067 error (_("No breakpoint number %d."), bnum);
1068}
1069
1070/* Check that COMMAND do not contain commands that are suitable
1071 only for tracepoints and not suitable for ordinary breakpoints.
1072 Throw if any such commands is found. */
1073
1074static void
1075check_no_tracepoint_commands (struct command_line *commands)
1076{
1077 struct command_line *c;
1078
1079 for (c = commands; c; c = c->next)
1080 {
1081 int i;
1082
1083 if (c->control_type == while_stepping_control)
1084 error (_("The 'while-stepping' command can "
1085 "only be used for tracepoints"));
1086
1087 for (i = 0; i < c->body_count; ++i)
1088 check_no_tracepoint_commands ((c->body_list)[i]);
1089
1090 /* Not that command parsing removes leading whitespace and comment
1091 lines and also empty lines. So, we only need to check for
1092 command directly. */
1093 if (strstr (c->line, "collect ") == c->line)
1094 error (_("The 'collect' command can only be used for tracepoints"));
1095
1096 if (strstr (c->line, "teval ") == c->line)
1097 error (_("The 'teval' command can only be used for tracepoints"));
1098 }
1099}
1100
1101/* Encapsulate tests for different types of tracepoints. */
1102
1103static int
1104is_tracepoint_type (enum bptype type)
1105{
1106 return (type == bp_tracepoint
1107 || type == bp_fast_tracepoint
1108 || type == bp_static_tracepoint);
1109}
1110
1111int
1112is_tracepoint (const struct breakpoint *b)
1113{
1114 return is_tracepoint_type (b->type);
1115}
1116
1117/* A helper function that validates that COMMANDS are valid for a
1118 breakpoint. This function will throw an exception if a problem is
1119 found. */
1120
1121static void
1122validate_commands_for_breakpoint (struct breakpoint *b,
1123 struct command_line *commands)
1124{
1125 if (is_tracepoint (b))
1126 {
1127 struct tracepoint *t = (struct tracepoint *) b;
1128 struct command_line *c;
1129 struct command_line *while_stepping = 0;
1130
1131 /* Reset the while-stepping step count. The previous commands
1132 might have included a while-stepping action, while the new
1133 ones might not. */
1134 t->step_count = 0;
1135
1136 /* We need to verify that each top-level element of commands is
1137 valid for tracepoints, that there's at most one
1138 while-stepping element, and that the while-stepping's body
1139 has valid tracing commands excluding nested while-stepping.
1140 We also need to validate the tracepoint action line in the
1141 context of the tracepoint --- validate_actionline actually
1142 has side effects, like setting the tracepoint's
1143 while-stepping STEP_COUNT, in addition to checking if the
1144 collect/teval actions parse and make sense in the
1145 tracepoint's context. */
1146 for (c = commands; c; c = c->next)
1147 {
1148 if (c->control_type == while_stepping_control)
1149 {
1150 if (b->type == bp_fast_tracepoint)
1151 error (_("The 'while-stepping' command "
1152 "cannot be used for fast tracepoint"));
1153 else if (b->type == bp_static_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for static tracepoint"));
1156
1157 if (while_stepping)
1158 error (_("The 'while-stepping' command "
1159 "can be used only once"));
1160 else
1161 while_stepping = c;
1162 }
1163
1164 validate_actionline (c->line, b);
1165 }
1166 if (while_stepping)
1167 {
1168 struct command_line *c2;
1169
1170 gdb_assert (while_stepping->body_count == 1);
1171 c2 = while_stepping->body_list[0];
1172 for (; c2; c2 = c2->next)
1173 {
1174 if (c2->control_type == while_stepping_control)
1175 error (_("The 'while-stepping' command cannot be nested"));
1176 }
1177 }
1178 }
1179 else
1180 {
1181 check_no_tracepoint_commands (commands);
1182 }
1183}
1184
1185/* Return a vector of all the static tracepoints set at ADDR. The
1186 caller is responsible for releasing the vector. */
1187
1188VEC(breakpoint_p) *
1189static_tracepoints_here (CORE_ADDR addr)
1190{
1191 struct breakpoint *b;
1192 VEC(breakpoint_p) *found = 0;
1193 struct bp_location *loc;
1194
1195 ALL_BREAKPOINTS (b)
1196 if (b->type == bp_static_tracepoint)
1197 {
1198 for (loc = b->loc; loc; loc = loc->next)
1199 if (loc->address == addr)
1200 VEC_safe_push(breakpoint_p, found, b);
1201 }
1202
1203 return found;
1204}
1205
1206/* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1207 validate that only allowed commands are included. */
1208
1209void
1210breakpoint_set_commands (struct breakpoint *b,
1211 struct command_line *commands)
1212{
1213 validate_commands_for_breakpoint (b, commands);
1214
1215 decref_counted_command_line (&b->commands);
1216 b->commands = alloc_counted_command_line (commands);
1217 observer_notify_breakpoint_modified (b);
1218}
1219
1220/* Set the internal `silent' flag on the breakpoint. Note that this
1221 is not the same as the "silent" that may appear in the breakpoint's
1222 commands. */
1223
1224void
1225breakpoint_set_silent (struct breakpoint *b, int silent)
1226{
1227 int old_silent = b->silent;
1228
1229 b->silent = silent;
1230 if (old_silent != silent)
1231 observer_notify_breakpoint_modified (b);
1232}
1233
1234/* Set the thread for this breakpoint. If THREAD is -1, make the
1235 breakpoint work for any thread. */
1236
1237void
1238breakpoint_set_thread (struct breakpoint *b, int thread)
1239{
1240 int old_thread = b->thread;
1241
1242 b->thread = thread;
1243 if (old_thread != thread)
1244 observer_notify_breakpoint_modified (b);
1245}
1246
1247/* Set the task for this breakpoint. If TASK is 0, make the
1248 breakpoint work for any task. */
1249
1250void
1251breakpoint_set_task (struct breakpoint *b, int task)
1252{
1253 int old_task = b->task;
1254
1255 b->task = task;
1256 if (old_task != task)
1257 observer_notify_breakpoint_modified (b);
1258}
1259
1260void
1261check_tracepoint_command (char *line, void *closure)
1262{
1263 struct breakpoint *b = closure;
1264
1265 validate_actionline (line, b);
1266}
1267
1268/* A structure used to pass information through
1269 map_breakpoint_numbers. */
1270
1271struct commands_info
1272{
1273 /* True if the command was typed at a tty. */
1274 int from_tty;
1275
1276 /* The breakpoint range spec. */
1277 char *arg;
1278
1279 /* Non-NULL if the body of the commands are being read from this
1280 already-parsed command. */
1281 struct command_line *control;
1282
1283 /* The command lines read from the user, or NULL if they have not
1284 yet been read. */
1285 struct counted_command_line *cmd;
1286};
1287
1288/* A callback for map_breakpoint_numbers that sets the commands for
1289 commands_command. */
1290
1291static void
1292do_map_commands_command (struct breakpoint *b, void *data)
1293{
1294 struct commands_info *info = data;
1295
1296 if (info->cmd == NULL)
1297 {
1298 struct command_line *l;
1299
1300 if (info->control != NULL)
1301 l = copy_command_lines (info->control->body_list[0]);
1302 else
1303 {
1304 struct cleanup *old_chain;
1305 char *str;
1306
1307 str = xstrprintf (_("Type commands for breakpoint(s) "
1308 "%s, one per line."),
1309 info->arg);
1310
1311 old_chain = make_cleanup (xfree, str);
1312
1313 l = read_command_lines (str,
1314 info->from_tty, 1,
1315 (is_tracepoint (b)
1316 ? check_tracepoint_command : 0),
1317 b);
1318
1319 do_cleanups (old_chain);
1320 }
1321
1322 info->cmd = alloc_counted_command_line (l);
1323 }
1324
1325 /* If a breakpoint was on the list more than once, we don't need to
1326 do anything. */
1327 if (b->commands != info->cmd)
1328 {
1329 validate_commands_for_breakpoint (b, info->cmd->commands);
1330 incref_counted_command_line (info->cmd);
1331 decref_counted_command_line (&b->commands);
1332 b->commands = info->cmd;
1333 observer_notify_breakpoint_modified (b);
1334 }
1335}
1336
1337static void
1338commands_command_1 (char *arg, int from_tty,
1339 struct command_line *control)
1340{
1341 struct cleanup *cleanups;
1342 struct commands_info info;
1343
1344 info.from_tty = from_tty;
1345 info.control = control;
1346 info.cmd = NULL;
1347 /* If we read command lines from the user, then `info' will hold an
1348 extra reference to the commands that we must clean up. */
1349 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1350
1351 if (arg == NULL || !*arg)
1352 {
1353 if (breakpoint_count - prev_breakpoint_count > 1)
1354 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1355 breakpoint_count);
1356 else if (breakpoint_count > 0)
1357 arg = xstrprintf ("%d", breakpoint_count);
1358 else
1359 {
1360 /* So that we don't try to free the incoming non-NULL
1361 argument in the cleanup below. Mapping breakpoint
1362 numbers will fail in this case. */
1363 arg = NULL;
1364 }
1365 }
1366 else
1367 /* The command loop has some static state, so we need to preserve
1368 our argument. */
1369 arg = xstrdup (arg);
1370
1371 if (arg != NULL)
1372 make_cleanup (xfree, arg);
1373
1374 info.arg = arg;
1375
1376 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1377
1378 if (info.cmd == NULL)
1379 error (_("No breakpoints specified."));
1380
1381 do_cleanups (cleanups);
1382}
1383
1384static void
1385commands_command (char *arg, int from_tty)
1386{
1387 commands_command_1 (arg, from_tty, NULL);
1388}
1389
1390/* Like commands_command, but instead of reading the commands from
1391 input stream, takes them from an already parsed command structure.
1392
1393 This is used by cli-script.c to DTRT with breakpoint commands
1394 that are part of if and while bodies. */
1395enum command_control_type
1396commands_from_control_command (char *arg, struct command_line *cmd)
1397{
1398 commands_command_1 (arg, 0, cmd);
1399 return simple_control;
1400}
1401
1402/* Return non-zero if BL->TARGET_INFO contains valid information. */
1403
1404static int
1405bp_location_has_shadow (struct bp_location *bl)
1406{
1407 if (bl->loc_type != bp_loc_software_breakpoint)
1408 return 0;
1409 if (!bl->inserted)
1410 return 0;
1411 if (bl->target_info.shadow_len == 0)
1412 /* BL isn't valid, or doesn't shadow memory. */
1413 return 0;
1414 return 1;
1415}
1416
1417/* Update BUF, which is LEN bytes read from the target address MEMADDR,
1418 by replacing any memory breakpoints with their shadowed contents.
1419
1420 If READBUF is not NULL, this buffer must not overlap with any of
1421 the breakpoint location's shadow_contents buffers. Otherwise,
1422 a failed assertion internal error will be raised.
1423
1424 The range of shadowed area by each bp_location is:
1425 bl->address - bp_location_placed_address_before_address_max
1426 up to bl->address + bp_location_shadow_len_after_address_max
1427 The range we were requested to resolve shadows for is:
1428 memaddr ... memaddr + len
1429 Thus the safe cutoff boundaries for performance optimization are
1430 memaddr + len <= (bl->address
1431 - bp_location_placed_address_before_address_max)
1432 and:
1433 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1434
1435void
1436breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1437 const gdb_byte *writebuf_org,
1438 ULONGEST memaddr, LONGEST len)
1439{
1440 /* Left boundary, right boundary and median element of our binary
1441 search. */
1442 unsigned bc_l, bc_r, bc;
1443
1444 /* Find BC_L which is a leftmost element which may affect BUF
1445 content. It is safe to report lower value but a failure to
1446 report higher one. */
1447
1448 bc_l = 0;
1449 bc_r = bp_location_count;
1450 while (bc_l + 1 < bc_r)
1451 {
1452 struct bp_location *bl;
1453
1454 bc = (bc_l + bc_r) / 2;
1455 bl = bp_location[bc];
1456
1457 /* Check first BL->ADDRESS will not overflow due to the added
1458 constant. Then advance the left boundary only if we are sure
1459 the BC element can in no way affect the BUF content (MEMADDR
1460 to MEMADDR + LEN range).
1461
1462 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1463 offset so that we cannot miss a breakpoint with its shadow
1464 range tail still reaching MEMADDR. */
1465
1466 if ((bl->address + bp_location_shadow_len_after_address_max
1467 >= bl->address)
1468 && (bl->address + bp_location_shadow_len_after_address_max
1469 <= memaddr))
1470 bc_l = bc;
1471 else
1472 bc_r = bc;
1473 }
1474
1475 /* Due to the binary search above, we need to make sure we pick the
1476 first location that's at BC_L's address. E.g., if there are
1477 multiple locations at the same address, BC_L may end up pointing
1478 at a duplicate location, and miss the "master"/"inserted"
1479 location. Say, given locations L1, L2 and L3 at addresses A and
1480 B:
1481
1482 L1@A, L2@A, L3@B, ...
1483
1484 BC_L could end up pointing at location L2, while the "master"
1485 location could be L1. Since the `loc->inserted' flag is only set
1486 on "master" locations, we'd forget to restore the shadow of L1
1487 and L2. */
1488 while (bc_l > 0
1489 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1490 bc_l--;
1491
1492 /* Now do full processing of the found relevant range of elements. */
1493
1494 for (bc = bc_l; bc < bp_location_count; bc++)
1495 {
1496 struct bp_location *bl = bp_location[bc];
1497 CORE_ADDR bp_addr = 0;
1498 int bp_size = 0;
1499 int bptoffset = 0;
1500
1501 /* bp_location array has BL->OWNER always non-NULL. */
1502 if (bl->owner->type == bp_none)
1503 warning (_("reading through apparently deleted breakpoint #%d?"),
1504 bl->owner->number);
1505
1506 /* Performance optimization: any further element can no longer affect BUF
1507 content. */
1508
1509 if (bl->address >= bp_location_placed_address_before_address_max
1510 && memaddr + len <= (bl->address
1511 - bp_location_placed_address_before_address_max))
1512 break;
1513
1514 if (!bp_location_has_shadow (bl))
1515 continue;
1516 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1517 current_program_space->aspace, 0))
1518 continue;
1519
1520 /* Addresses and length of the part of the breakpoint that
1521 we need to copy. */
1522 bp_addr = bl->target_info.placed_address;
1523 bp_size = bl->target_info.shadow_len;
1524
1525 if (bp_addr + bp_size <= memaddr)
1526 /* The breakpoint is entirely before the chunk of memory we
1527 are reading. */
1528 continue;
1529
1530 if (bp_addr >= memaddr + len)
1531 /* The breakpoint is entirely after the chunk of memory we are
1532 reading. */
1533 continue;
1534
1535 /* Offset within shadow_contents. */
1536 if (bp_addr < memaddr)
1537 {
1538 /* Only copy the second part of the breakpoint. */
1539 bp_size -= memaddr - bp_addr;
1540 bptoffset = memaddr - bp_addr;
1541 bp_addr = memaddr;
1542 }
1543
1544 if (bp_addr + bp_size > memaddr + len)
1545 {
1546 /* Only copy the first part of the breakpoint. */
1547 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1548 }
1549
1550 if (readbuf != NULL)
1551 {
1552 /* Verify that the readbuf buffer does not overlap with
1553 the shadow_contents buffer. */
1554 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1555 || readbuf >= (bl->target_info.shadow_contents
1556 + bl->target_info.shadow_len));
1557
1558 /* Update the read buffer with this inserted breakpoint's
1559 shadow. */
1560 memcpy (readbuf + bp_addr - memaddr,
1561 bl->target_info.shadow_contents + bptoffset, bp_size);
1562 }
1563 else
1564 {
1565 struct gdbarch *gdbarch = bl->gdbarch;
1566 const unsigned char *bp;
1567 CORE_ADDR placed_address = bl->target_info.placed_address;
1568 int placed_size = bl->target_info.placed_size;
1569
1570 /* Update the shadow with what we want to write to memory. */
1571 memcpy (bl->target_info.shadow_contents + bptoffset,
1572 writebuf_org + bp_addr - memaddr, bp_size);
1573
1574 /* Determine appropriate breakpoint contents and size for this
1575 address. */
1576 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1577
1578 /* Update the final write buffer with this inserted
1579 breakpoint's INSN. */
1580 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1581 }
1582 }
1583}
1584\f
1585
1586/* Return true if BPT is either a software breakpoint or a hardware
1587 breakpoint. */
1588
1589int
1590is_breakpoint (const struct breakpoint *bpt)
1591{
1592 return (bpt->type == bp_breakpoint
1593 || bpt->type == bp_hardware_breakpoint
1594 || bpt->type == bp_dprintf);
1595}
1596
1597/* Return true if BPT is of any hardware watchpoint kind. */
1598
1599static int
1600is_hardware_watchpoint (const struct breakpoint *bpt)
1601{
1602 return (bpt->type == bp_hardware_watchpoint
1603 || bpt->type == bp_read_watchpoint
1604 || bpt->type == bp_access_watchpoint);
1605}
1606
1607/* Return true if BPT is of any watchpoint kind, hardware or
1608 software. */
1609
1610int
1611is_watchpoint (const struct breakpoint *bpt)
1612{
1613 return (is_hardware_watchpoint (bpt)
1614 || bpt->type == bp_watchpoint);
1615}
1616
1617/* Returns true if the current thread and its running state are safe
1618 to evaluate or update watchpoint B. Watchpoints on local
1619 expressions need to be evaluated in the context of the thread that
1620 was current when the watchpoint was created, and, that thread needs
1621 to be stopped to be able to select the correct frame context.
1622 Watchpoints on global expressions can be evaluated on any thread,
1623 and in any state. It is presently left to the target allowing
1624 memory accesses when threads are running. */
1625
1626static int
1627watchpoint_in_thread_scope (struct watchpoint *b)
1628{
1629 return (b->base.pspace == current_program_space
1630 && (ptid_equal (b->watchpoint_thread, null_ptid)
1631 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1632 && !is_executing (inferior_ptid))));
1633}
1634
1635/* Set watchpoint B to disp_del_at_next_stop, even including its possible
1636 associated bp_watchpoint_scope breakpoint. */
1637
1638static void
1639watchpoint_del_at_next_stop (struct watchpoint *w)
1640{
1641 struct breakpoint *b = &w->base;
1642
1643 if (b->related_breakpoint != b)
1644 {
1645 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1646 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1647 b->related_breakpoint->disposition = disp_del_at_next_stop;
1648 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1649 b->related_breakpoint = b;
1650 }
1651 b->disposition = disp_del_at_next_stop;
1652}
1653
1654/* Assuming that B is a watchpoint:
1655 - Reparse watchpoint expression, if REPARSE is non-zero
1656 - Evaluate expression and store the result in B->val
1657 - Evaluate the condition if there is one, and store the result
1658 in b->loc->cond.
1659 - Update the list of values that must be watched in B->loc.
1660
1661 If the watchpoint disposition is disp_del_at_next_stop, then do
1662 nothing. If this is local watchpoint that is out of scope, delete
1663 it.
1664
1665 Even with `set breakpoint always-inserted on' the watchpoints are
1666 removed + inserted on each stop here. Normal breakpoints must
1667 never be removed because they might be missed by a running thread
1668 when debugging in non-stop mode. On the other hand, hardware
1669 watchpoints (is_hardware_watchpoint; processed here) are specific
1670 to each LWP since they are stored in each LWP's hardware debug
1671 registers. Therefore, such LWP must be stopped first in order to
1672 be able to modify its hardware watchpoints.
1673
1674 Hardware watchpoints must be reset exactly once after being
1675 presented to the user. It cannot be done sooner, because it would
1676 reset the data used to present the watchpoint hit to the user. And
1677 it must not be done later because it could display the same single
1678 watchpoint hit during multiple GDB stops. Note that the latter is
1679 relevant only to the hardware watchpoint types bp_read_watchpoint
1680 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1681 not user-visible - its hit is suppressed if the memory content has
1682 not changed.
1683
1684 The following constraints influence the location where we can reset
1685 hardware watchpoints:
1686
1687 * target_stopped_by_watchpoint and target_stopped_data_address are
1688 called several times when GDB stops.
1689
1690 [linux]
1691 * Multiple hardware watchpoints can be hit at the same time,
1692 causing GDB to stop. GDB only presents one hardware watchpoint
1693 hit at a time as the reason for stopping, and all the other hits
1694 are presented later, one after the other, each time the user
1695 requests the execution to be resumed. Execution is not resumed
1696 for the threads still having pending hit event stored in
1697 LWP_INFO->STATUS. While the watchpoint is already removed from
1698 the inferior on the first stop the thread hit event is kept being
1699 reported from its cached value by linux_nat_stopped_data_address
1700 until the real thread resume happens after the watchpoint gets
1701 presented and thus its LWP_INFO->STATUS gets reset.
1702
1703 Therefore the hardware watchpoint hit can get safely reset on the
1704 watchpoint removal from inferior. */
1705
1706static void
1707update_watchpoint (struct watchpoint *b, int reparse)
1708{
1709 int within_current_scope;
1710 struct frame_id saved_frame_id;
1711 int frame_saved;
1712
1713 /* If this is a local watchpoint, we only want to check if the
1714 watchpoint frame is in scope if the current thread is the thread
1715 that was used to create the watchpoint. */
1716 if (!watchpoint_in_thread_scope (b))
1717 return;
1718
1719 if (b->base.disposition == disp_del_at_next_stop)
1720 return;
1721
1722 frame_saved = 0;
1723
1724 /* Determine if the watchpoint is within scope. */
1725 if (b->exp_valid_block == NULL)
1726 within_current_scope = 1;
1727 else
1728 {
1729 struct frame_info *fi = get_current_frame ();
1730 struct gdbarch *frame_arch = get_frame_arch (fi);
1731 CORE_ADDR frame_pc = get_frame_pc (fi);
1732
1733 /* If we're in a function epilogue, unwinding may not work
1734 properly, so do not attempt to recreate locations at this
1735 point. See similar comments in watchpoint_check. */
1736 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1737 return;
1738
1739 /* Save the current frame's ID so we can restore it after
1740 evaluating the watchpoint expression on its own frame. */
1741 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1742 took a frame parameter, so that we didn't have to change the
1743 selected frame. */
1744 frame_saved = 1;
1745 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1746
1747 fi = frame_find_by_id (b->watchpoint_frame);
1748 within_current_scope = (fi != NULL);
1749 if (within_current_scope)
1750 select_frame (fi);
1751 }
1752
1753 /* We don't free locations. They are stored in the bp_location array
1754 and update_global_location_list will eventually delete them and
1755 remove breakpoints if needed. */
1756 b->base.loc = NULL;
1757
1758 if (within_current_scope && reparse)
1759 {
1760 const char *s;
1761
1762 if (b->exp)
1763 {
1764 xfree (b->exp);
1765 b->exp = NULL;
1766 }
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->base.cond_string != NULL)
1781 {
1782 if (b->cond_exp != NULL)
1783 {
1784 xfree (b->cond_exp);
1785 b->cond_exp = NULL;
1786 }
1787
1788 s = b->base.cond_string;
1789 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1790 }
1791 }
1792
1793 /* If we failed to parse the expression, for example because
1794 it refers to a global variable in a not-yet-loaded shared library,
1795 don't try to insert watchpoint. We don't automatically delete
1796 such watchpoint, though, since failure to parse expression
1797 is different from out-of-scope watchpoint. */
1798 if (!target_has_execution)
1799 {
1800 /* Without execution, memory can't change. No use to try and
1801 set watchpoint locations. The watchpoint will be reset when
1802 the target gains execution, through breakpoint_re_set. */
1803 if (!can_use_hw_watchpoints)
1804 {
1805 if (b->base.ops->works_in_software_mode (&b->base))
1806 b->base.type = bp_watchpoint;
1807 else
1808 error (_("Can't set read/access watchpoint when "
1809 "hardware watchpoints are disabled."));
1810 }
1811 }
1812 else if (within_current_scope && b->exp)
1813 {
1814 int pc = 0;
1815 struct value *val_chain, *v, *result, *next;
1816 struct program_space *frame_pspace;
1817
1818 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1819
1820 /* Avoid setting b->val if it's already set. The meaning of
1821 b->val is 'the last value' user saw, and we should update
1822 it only if we reported that last value to user. As it
1823 happens, the code that reports it updates b->val directly.
1824 We don't keep track of the memory value for masked
1825 watchpoints. */
1826 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1827 {
1828 b->val = v;
1829 b->val_valid = 1;
1830 }
1831
1832 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1833
1834 /* Look at each value on the value chain. */
1835 for (v = val_chain; v; v = value_next (v))
1836 {
1837 /* If it's a memory location, and GDB actually needed
1838 its contents to evaluate the expression, then we
1839 must watch it. If the first value returned is
1840 still lazy, that means an error occurred reading it;
1841 watch it anyway in case it becomes readable. */
1842 if (VALUE_LVAL (v) == lval_memory
1843 && (v == val_chain || ! value_lazy (v)))
1844 {
1845 struct type *vtype = check_typedef (value_type (v));
1846
1847 /* We only watch structs and arrays if user asked
1848 for it explicitly, never if they just happen to
1849 appear in the middle of some value chain. */
1850 if (v == result
1851 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1852 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1853 {
1854 CORE_ADDR addr;
1855 int type;
1856 struct bp_location *loc, **tmp;
1857
1858 addr = value_address (v);
1859 type = hw_write;
1860 if (b->base.type == bp_read_watchpoint)
1861 type = hw_read;
1862 else if (b->base.type == bp_access_watchpoint)
1863 type = hw_access;
1864
1865 loc = allocate_bp_location (&b->base);
1866 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1867 ;
1868 *tmp = loc;
1869 loc->gdbarch = get_type_arch (value_type (v));
1870
1871 loc->pspace = frame_pspace;
1872 loc->address = addr;
1873 loc->length = TYPE_LENGTH (value_type (v));
1874 loc->watchpoint_type = type;
1875 }
1876 }
1877 }
1878
1879 /* Change the type of breakpoint between hardware assisted or
1880 an ordinary watchpoint depending on the hardware support
1881 and free hardware slots. REPARSE is set when the inferior
1882 is started. */
1883 if (reparse)
1884 {
1885 int reg_cnt;
1886 enum bp_loc_type loc_type;
1887 struct bp_location *bl;
1888
1889 reg_cnt = can_use_hardware_watchpoint (val_chain);
1890
1891 if (reg_cnt)
1892 {
1893 int i, target_resources_ok, other_type_used;
1894 enum bptype type;
1895
1896 /* Use an exact watchpoint when there's only one memory region to be
1897 watched, and only one debug register is needed to watch it. */
1898 b->exact = target_exact_watchpoints && reg_cnt == 1;
1899
1900 /* We need to determine how many resources are already
1901 used for all other hardware watchpoints plus this one
1902 to see if we still have enough resources to also fit
1903 this watchpoint in as well. */
1904
1905 /* If this is a software watchpoint, we try to turn it
1906 to a hardware one -- count resources as if B was of
1907 hardware watchpoint type. */
1908 type = b->base.type;
1909 if (type == bp_watchpoint)
1910 type = bp_hardware_watchpoint;
1911
1912 /* This watchpoint may or may not have been placed on
1913 the list yet at this point (it won't be in the list
1914 if we're trying to create it for the first time,
1915 through watch_command), so always account for it
1916 manually. */
1917
1918 /* Count resources used by all watchpoints except B. */
1919 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1920
1921 /* Add in the resources needed for B. */
1922 i += hw_watchpoint_use_count (&b->base);
1923
1924 target_resources_ok
1925 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1926 if (target_resources_ok <= 0)
1927 {
1928 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1929
1930 if (target_resources_ok == 0 && !sw_mode)
1931 error (_("Target does not support this type of "
1932 "hardware watchpoint."));
1933 else if (target_resources_ok < 0 && !sw_mode)
1934 error (_("There are not enough available hardware "
1935 "resources for this watchpoint."));
1936
1937 /* Downgrade to software watchpoint. */
1938 b->base.type = bp_watchpoint;
1939 }
1940 else
1941 {
1942 /* If this was a software watchpoint, we've just
1943 found we have enough resources to turn it to a
1944 hardware watchpoint. Otherwise, this is a
1945 nop. */
1946 b->base.type = type;
1947 }
1948 }
1949 else if (!b->base.ops->works_in_software_mode (&b->base))
1950 {
1951 if (!can_use_hw_watchpoints)
1952 error (_("Can't set read/access watchpoint when "
1953 "hardware watchpoints are disabled."));
1954 else
1955 error (_("Expression cannot be implemented with "
1956 "read/access watchpoint."));
1957 }
1958 else
1959 b->base.type = bp_watchpoint;
1960
1961 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1962 : bp_loc_hardware_watchpoint);
1963 for (bl = b->base.loc; bl; bl = bl->next)
1964 bl->loc_type = loc_type;
1965 }
1966
1967 for (v = val_chain; v; v = next)
1968 {
1969 next = value_next (v);
1970 if (v != b->val)
1971 value_free (v);
1972 }
1973
1974 /* If a software watchpoint is not watching any memory, then the
1975 above left it without any location set up. But,
1976 bpstat_stop_status requires a location to be able to report
1977 stops, so make sure there's at least a dummy one. */
1978 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1979 {
1980 struct breakpoint *base = &b->base;
1981 base->loc = allocate_bp_location (base);
1982 base->loc->pspace = frame_pspace;
1983 base->loc->address = -1;
1984 base->loc->length = -1;
1985 base->loc->watchpoint_type = -1;
1986 }
1987 }
1988 else if (!within_current_scope)
1989 {
1990 printf_filtered (_("\
1991Watchpoint %d deleted because the program has left the block\n\
1992in which its expression is valid.\n"),
1993 b->base.number);
1994 watchpoint_del_at_next_stop (b);
1995 }
1996
1997 /* Restore the selected frame. */
1998 if (frame_saved)
1999 select_frame (frame_find_by_id (saved_frame_id));
2000}
2001
2002
2003/* Returns 1 iff breakpoint location should be
2004 inserted in the inferior. We don't differentiate the type of BL's owner
2005 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2006 breakpoint_ops is not defined, because in insert_bp_location,
2007 tracepoint's insert_location will not be called. */
2008static int
2009should_be_inserted (struct bp_location *bl)
2010{
2011 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2012 return 0;
2013
2014 if (bl->owner->disposition == disp_del_at_next_stop)
2015 return 0;
2016
2017 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2018 return 0;
2019
2020 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2021 return 0;
2022
2023 /* This is set for example, when we're attached to the parent of a
2024 vfork, and have detached from the child. The child is running
2025 free, and we expect it to do an exec or exit, at which point the
2026 OS makes the parent schedulable again (and the target reports
2027 that the vfork is done). Until the child is done with the shared
2028 memory region, do not insert breakpoints in the parent, otherwise
2029 the child could still trip on the parent's breakpoints. Since
2030 the parent is blocked anyway, it won't miss any breakpoint. */
2031 if (bl->pspace->breakpoints_not_allowed)
2032 return 0;
2033
2034 return 1;
2035}
2036
2037/* Same as should_be_inserted but does the check assuming
2038 that the location is not duplicated. */
2039
2040static int
2041unduplicated_should_be_inserted (struct bp_location *bl)
2042{
2043 int result;
2044 const int save_duplicate = bl->duplicate;
2045
2046 bl->duplicate = 0;
2047 result = should_be_inserted (bl);
2048 bl->duplicate = save_duplicate;
2049 return result;
2050}
2051
2052/* Parses a conditional described by an expression COND into an
2053 agent expression bytecode suitable for evaluation
2054 by the bytecode interpreter. Return NULL if there was
2055 any error during parsing. */
2056
2057static struct agent_expr *
2058parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2059{
2060 struct agent_expr *aexpr = NULL;
2061 volatile struct gdb_exception ex;
2062
2063 if (!cond)
2064 return NULL;
2065
2066 /* We don't want to stop processing, so catch any errors
2067 that may show up. */
2068 TRY_CATCH (ex, RETURN_MASK_ERROR)
2069 {
2070 aexpr = gen_eval_for_expr (scope, cond);
2071 }
2072
2073 if (ex.reason < 0)
2074 {
2075 /* If we got here, it means the condition could not be parsed to a valid
2076 bytecode expression and thus can't be evaluated on the target's side.
2077 It's no use iterating through the conditions. */
2078 return NULL;
2079 }
2080
2081 /* We have a valid agent expression. */
2082 return aexpr;
2083}
2084
2085/* Based on location BL, create a list of breakpoint conditions to be
2086 passed on to the target. If we have duplicated locations with different
2087 conditions, we will add such conditions to the list. The idea is that the
2088 target will evaluate the list of conditions and will only notify GDB when
2089 one of them is true. */
2090
2091static void
2092build_target_condition_list (struct bp_location *bl)
2093{
2094 struct bp_location **locp = NULL, **loc2p;
2095 int null_condition_or_parse_error = 0;
2096 int modified = bl->needs_update;
2097 struct bp_location *loc;
2098
2099 /* This is only meaningful if the target is
2100 evaluating conditions and if the user has
2101 opted for condition evaluation on the target's
2102 side. */
2103 if (gdb_evaluates_breakpoint_condition_p ()
2104 || !target_supports_evaluation_of_breakpoint_conditions ())
2105 return;
2106
2107 /* Do a first pass to check for locations with no assigned
2108 conditions or conditions that fail to parse to a valid agent expression
2109 bytecode. If any of these happen, then it's no use to send conditions
2110 to the target since this location will always trigger and generate a
2111 response back to GDB. */
2112 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2113 {
2114 loc = (*loc2p);
2115 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2116 {
2117 if (modified)
2118 {
2119 struct agent_expr *aexpr;
2120
2121 /* Re-parse the conditions since something changed. In that
2122 case we already freed the condition bytecodes (see
2123 force_breakpoint_reinsertion). We just
2124 need to parse the condition to bytecodes again. */
2125 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2126 loc->cond_bytecode = aexpr;
2127
2128 /* Check if we managed to parse the conditional expression
2129 correctly. If not, we will not send this condition
2130 to the target. */
2131 if (aexpr)
2132 continue;
2133 }
2134
2135 /* If we have a NULL bytecode expression, it means something
2136 went wrong or we have a null condition expression. */
2137 if (!loc->cond_bytecode)
2138 {
2139 null_condition_or_parse_error = 1;
2140 break;
2141 }
2142 }
2143 }
2144
2145 /* If any of these happened, it means we will have to evaluate the conditions
2146 for the location's address on gdb's side. It is no use keeping bytecodes
2147 for all the other duplicate locations, thus we free all of them here.
2148
2149 This is so we have a finer control over which locations' conditions are
2150 being evaluated by GDB or the remote stub. */
2151 if (null_condition_or_parse_error)
2152 {
2153 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2154 {
2155 loc = (*loc2p);
2156 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2157 {
2158 /* Only go as far as the first NULL bytecode is
2159 located. */
2160 if (!loc->cond_bytecode)
2161 return;
2162
2163 free_agent_expr (loc->cond_bytecode);
2164 loc->cond_bytecode = NULL;
2165 }
2166 }
2167 }
2168
2169 /* No NULL conditions or failed bytecode generation. Build a condition list
2170 for this location's address. */
2171 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2172 {
2173 loc = (*loc2p);
2174 if (loc->cond
2175 && is_breakpoint (loc->owner)
2176 && loc->pspace->num == bl->pspace->num
2177 && loc->owner->enable_state == bp_enabled
2178 && loc->enabled)
2179 /* Add the condition to the vector. This will be used later to send the
2180 conditions to the target. */
2181 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2182 loc->cond_bytecode);
2183 }
2184
2185 return;
2186}
2187
2188/* Parses a command described by string CMD into an agent expression
2189 bytecode suitable for evaluation by the bytecode interpreter.
2190 Return NULL if there was any error during parsing. */
2191
2192static struct agent_expr *
2193parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2194{
2195 struct cleanup *old_cleanups = 0;
2196 struct expression *expr, **argvec;
2197 struct agent_expr *aexpr = NULL;
2198 volatile struct gdb_exception ex;
2199 const char *cmdrest;
2200 const char *format_start, *format_end;
2201 struct format_piece *fpieces;
2202 int nargs;
2203 struct gdbarch *gdbarch = get_current_arch ();
2204
2205 if (!cmd)
2206 return NULL;
2207
2208 cmdrest = cmd;
2209
2210 if (*cmdrest == ',')
2211 ++cmdrest;
2212 cmdrest = skip_spaces_const (cmdrest);
2213
2214 if (*cmdrest++ != '"')
2215 error (_("No format string following the location"));
2216
2217 format_start = cmdrest;
2218
2219 fpieces = parse_format_string (&cmdrest);
2220
2221 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2222
2223 format_end = cmdrest;
2224
2225 if (*cmdrest++ != '"')
2226 error (_("Bad format string, non-terminated '\"'."));
2227
2228 cmdrest = skip_spaces_const (cmdrest);
2229
2230 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2231 error (_("Invalid argument syntax"));
2232
2233 if (*cmdrest == ',')
2234 cmdrest++;
2235 cmdrest = skip_spaces_const (cmdrest);
2236
2237 /* For each argument, make an expression. */
2238
2239 argvec = (struct expression **) alloca (strlen (cmd)
2240 * sizeof (struct expression *));
2241
2242 nargs = 0;
2243 while (*cmdrest != '\0')
2244 {
2245 const char *cmd1;
2246
2247 cmd1 = cmdrest;
2248 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2249 argvec[nargs++] = expr;
2250 cmdrest = cmd1;
2251 if (*cmdrest == ',')
2252 ++cmdrest;
2253 }
2254
2255 /* We don't want to stop processing, so catch any errors
2256 that may show up. */
2257 TRY_CATCH (ex, RETURN_MASK_ERROR)
2258 {
2259 aexpr = gen_printf (scope, gdbarch, 0, 0,
2260 format_start, format_end - format_start,
2261 fpieces, nargs, argvec);
2262 }
2263
2264 do_cleanups (old_cleanups);
2265
2266 if (ex.reason < 0)
2267 {
2268 /* If we got here, it means the command could not be parsed to a valid
2269 bytecode expression and thus can't be evaluated on the target's side.
2270 It's no use iterating through the other commands. */
2271 return NULL;
2272 }
2273
2274 /* We have a valid agent expression, return it. */
2275 return aexpr;
2276}
2277
2278/* Based on location BL, create a list of breakpoint commands to be
2279 passed on to the target. If we have duplicated locations with
2280 different commands, we will add any such to the list. */
2281
2282static void
2283build_target_command_list (struct bp_location *bl)
2284{
2285 struct bp_location **locp = NULL, **loc2p;
2286 int null_command_or_parse_error = 0;
2287 int modified = bl->needs_update;
2288 struct bp_location *loc;
2289
2290 /* For now, limit to agent-style dprintf breakpoints. */
2291 if (bl->owner->type != bp_dprintf
2292 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2293 return;
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* Do a first pass to check for locations with no assigned
2299 conditions or conditions that fail to parse to a valid agent expression
2300 bytecode. If any of these happen, then it's no use to send conditions
2301 to the target since this location will always trigger and generate a
2302 response back to GDB. */
2303 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2304 {
2305 loc = (*loc2p);
2306 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2307 {
2308 if (modified)
2309 {
2310 struct agent_expr *aexpr;
2311
2312 /* Re-parse the commands since something changed. In that
2313 case we already freed the command bytecodes (see
2314 force_breakpoint_reinsertion). We just
2315 need to parse the command to bytecodes again. */
2316 aexpr = parse_cmd_to_aexpr (bl->address,
2317 loc->owner->extra_string);
2318 loc->cmd_bytecode = aexpr;
2319
2320 if (!aexpr)
2321 continue;
2322 }
2323
2324 /* If we have a NULL bytecode expression, it means something
2325 went wrong or we have a null command expression. */
2326 if (!loc->cmd_bytecode)
2327 {
2328 null_command_or_parse_error = 1;
2329 break;
2330 }
2331 }
2332 }
2333
2334 /* If anything failed, then we're not doing target-side commands,
2335 and so clean up. */
2336 if (null_command_or_parse_error)
2337 {
2338 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2339 {
2340 loc = (*loc2p);
2341 if (is_breakpoint (loc->owner)
2342 && loc->pspace->num == bl->pspace->num)
2343 {
2344 /* Only go as far as the first NULL bytecode is
2345 located. */
2346 if (loc->cmd_bytecode == NULL)
2347 return;
2348
2349 free_agent_expr (loc->cmd_bytecode);
2350 loc->cmd_bytecode = NULL;
2351 }
2352 }
2353 }
2354
2355 /* No NULL commands or failed bytecode generation. Build a command list
2356 for this location's address. */
2357 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2358 {
2359 loc = (*loc2p);
2360 if (loc->owner->extra_string
2361 && is_breakpoint (loc->owner)
2362 && loc->pspace->num == bl->pspace->num
2363 && loc->owner->enable_state == bp_enabled
2364 && loc->enabled)
2365 /* Add the command to the vector. This will be used later
2366 to send the commands to the target. */
2367 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2368 loc->cmd_bytecode);
2369 }
2370
2371 bl->target_info.persist = 0;
2372 /* Maybe flag this location as persistent. */
2373 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2374 bl->target_info.persist = 1;
2375}
2376
2377/* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2378 location. Any error messages are printed to TMP_ERROR_STREAM; and
2379 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2380 Returns 0 for success, 1 if the bp_location type is not supported or
2381 -1 for failure.
2382
2383 NOTE drow/2003-09-09: This routine could be broken down to an
2384 object-style method for each breakpoint or catchpoint type. */
2385static int
2386insert_bp_location (struct bp_location *bl,
2387 struct ui_file *tmp_error_stream,
2388 int *disabled_breaks,
2389 int *hw_breakpoint_error,
2390 int *hw_bp_error_explained_already)
2391{
2392 int val = 0;
2393 char *hw_bp_err_string = NULL;
2394 struct gdb_exception e;
2395
2396 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2397 return 0;
2398
2399 /* Note we don't initialize bl->target_info, as that wipes out
2400 the breakpoint location's shadow_contents if the breakpoint
2401 is still inserted at that location. This in turn breaks
2402 target_read_memory which depends on these buffers when
2403 a memory read is requested at the breakpoint location:
2404 Once the target_info has been wiped, we fail to see that
2405 we have a breakpoint inserted at that address and thus
2406 read the breakpoint instead of returning the data saved in
2407 the breakpoint location's shadow contents. */
2408 bl->target_info.placed_address = bl->address;
2409 bl->target_info.placed_address_space = bl->pspace->aspace;
2410 bl->target_info.length = bl->length;
2411
2412 /* When working with target-side conditions, we must pass all the conditions
2413 for the same breakpoint address down to the target since GDB will not
2414 insert those locations. With a list of breakpoint conditions, the target
2415 can decide when to stop and notify GDB. */
2416
2417 if (is_breakpoint (bl->owner))
2418 {
2419 build_target_condition_list (bl);
2420 build_target_command_list (bl);
2421 /* Reset the modification marker. */
2422 bl->needs_update = 0;
2423 }
2424
2425 if (bl->loc_type == bp_loc_software_breakpoint
2426 || bl->loc_type == bp_loc_hardware_breakpoint)
2427 {
2428 if (bl->owner->type != bp_hardware_breakpoint)
2429 {
2430 /* If the explicitly specified breakpoint type
2431 is not hardware breakpoint, check the memory map to see
2432 if the breakpoint address is in read only memory or not.
2433
2434 Two important cases are:
2435 - location type is not hardware breakpoint, memory
2436 is readonly. We change the type of the location to
2437 hardware breakpoint.
2438 - location type is hardware breakpoint, memory is
2439 read-write. This means we've previously made the
2440 location hardware one, but then the memory map changed,
2441 so we undo.
2442
2443 When breakpoints are removed, remove_breakpoints will use
2444 location types we've just set here, the only possible
2445 problem is that memory map has changed during running
2446 program, but it's not going to work anyway with current
2447 gdb. */
2448 struct mem_region *mr
2449 = lookup_mem_region (bl->target_info.placed_address);
2450
2451 if (mr)
2452 {
2453 if (automatic_hardware_breakpoints)
2454 {
2455 enum bp_loc_type new_type;
2456
2457 if (mr->attrib.mode != MEM_RW)
2458 new_type = bp_loc_hardware_breakpoint;
2459 else
2460 new_type = bp_loc_software_breakpoint;
2461
2462 if (new_type != bl->loc_type)
2463 {
2464 static int said = 0;
2465
2466 bl->loc_type = new_type;
2467 if (!said)
2468 {
2469 fprintf_filtered (gdb_stdout,
2470 _("Note: automatically using "
2471 "hardware breakpoints for "
2472 "read-only addresses.\n"));
2473 said = 1;
2474 }
2475 }
2476 }
2477 else if (bl->loc_type == bp_loc_software_breakpoint
2478 && mr->attrib.mode != MEM_RW)
2479 warning (_("cannot set software breakpoint "
2480 "at readonly address %s"),
2481 paddress (bl->gdbarch, bl->address));
2482 }
2483 }
2484
2485 /* First check to see if we have to handle an overlay. */
2486 if (overlay_debugging == ovly_off
2487 || bl->section == NULL
2488 || !(section_is_overlay (bl->section)))
2489 {
2490 /* No overlay handling: just set the breakpoint. */
2491 TRY_CATCH (e, RETURN_MASK_ALL)
2492 {
2493 val = bl->owner->ops->insert_location (bl);
2494 }
2495 if (e.reason < 0)
2496 {
2497 val = 1;
2498 hw_bp_err_string = (char *) e.message;
2499 }
2500 }
2501 else
2502 {
2503 /* This breakpoint is in an overlay section.
2504 Shall we set a breakpoint at the LMA? */
2505 if (!overlay_events_enabled)
2506 {
2507 /* Yes -- overlay event support is not active,
2508 so we must try to set a breakpoint at the LMA.
2509 This will not work for a hardware breakpoint. */
2510 if (bl->loc_type == bp_loc_hardware_breakpoint)
2511 warning (_("hardware breakpoint %d not supported in overlay!"),
2512 bl->owner->number);
2513 else
2514 {
2515 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2516 bl->section);
2517 /* Set a software (trap) breakpoint at the LMA. */
2518 bl->overlay_target_info = bl->target_info;
2519 bl->overlay_target_info.placed_address = addr;
2520 val = target_insert_breakpoint (bl->gdbarch,
2521 &bl->overlay_target_info);
2522 if (val != 0)
2523 fprintf_unfiltered (tmp_error_stream,
2524 "Overlay breakpoint %d "
2525 "failed: in ROM?\n",
2526 bl->owner->number);
2527 }
2528 }
2529 /* Shall we set a breakpoint at the VMA? */
2530 if (section_is_mapped (bl->section))
2531 {
2532 /* Yes. This overlay section is mapped into memory. */
2533 TRY_CATCH (e, RETURN_MASK_ALL)
2534 {
2535 val = bl->owner->ops->insert_location (bl);
2536 }
2537 if (e.reason < 0)
2538 {
2539 val = 1;
2540 hw_bp_err_string = (char *) e.message;
2541 }
2542 }
2543 else
2544 {
2545 /* No. This breakpoint will not be inserted.
2546 No error, but do not mark the bp as 'inserted'. */
2547 return 0;
2548 }
2549 }
2550
2551 if (val)
2552 {
2553 /* Can't set the breakpoint. */
2554 if (solib_name_from_address (bl->pspace, bl->address))
2555 {
2556 /* See also: disable_breakpoints_in_shlibs. */
2557 val = 0;
2558 bl->shlib_disabled = 1;
2559 observer_notify_breakpoint_modified (bl->owner);
2560 if (!*disabled_breaks)
2561 {
2562 fprintf_unfiltered (tmp_error_stream,
2563 "Cannot insert breakpoint %d.\n",
2564 bl->owner->number);
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Temporarily disabling shared "
2567 "library breakpoints:\n");
2568 }
2569 *disabled_breaks = 1;
2570 fprintf_unfiltered (tmp_error_stream,
2571 "breakpoint #%d\n", bl->owner->number);
2572 }
2573 else
2574 {
2575 if (bl->loc_type == bp_loc_hardware_breakpoint)
2576 {
2577 *hw_breakpoint_error = 1;
2578 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2579 fprintf_unfiltered (tmp_error_stream,
2580 "Cannot insert hardware breakpoint %d%s",
2581 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2582 if (hw_bp_err_string)
2583 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2584 }
2585 else
2586 {
2587 char *message = memory_error_message (TARGET_XFER_E_IO,
2588 bl->gdbarch, bl->address);
2589 struct cleanup *old_chain = make_cleanup (xfree, message);
2590
2591 fprintf_unfiltered (tmp_error_stream,
2592 "Cannot insert breakpoint %d.\n"
2593 "%s\n",
2594 bl->owner->number, message);
2595
2596 do_cleanups (old_chain);
2597 }
2598
2599 }
2600 }
2601 else
2602 bl->inserted = 1;
2603
2604 return val;
2605 }
2606
2607 else if (bl->loc_type == bp_loc_hardware_watchpoint
2608 /* NOTE drow/2003-09-08: This state only exists for removing
2609 watchpoints. It's not clear that it's necessary... */
2610 && bl->owner->disposition != disp_del_at_next_stop)
2611 {
2612 gdb_assert (bl->owner->ops != NULL
2613 && bl->owner->ops->insert_location != NULL);
2614
2615 val = bl->owner->ops->insert_location (bl);
2616
2617 /* If trying to set a read-watchpoint, and it turns out it's not
2618 supported, try emulating one with an access watchpoint. */
2619 if (val == 1 && bl->watchpoint_type == hw_read)
2620 {
2621 struct bp_location *loc, **loc_temp;
2622
2623 /* But don't try to insert it, if there's already another
2624 hw_access location that would be considered a duplicate
2625 of this one. */
2626 ALL_BP_LOCATIONS (loc, loc_temp)
2627 if (loc != bl
2628 && loc->watchpoint_type == hw_access
2629 && watchpoint_locations_match (bl, loc))
2630 {
2631 bl->duplicate = 1;
2632 bl->inserted = 1;
2633 bl->target_info = loc->target_info;
2634 bl->watchpoint_type = hw_access;
2635 val = 0;
2636 break;
2637 }
2638
2639 if (val == 1)
2640 {
2641 bl->watchpoint_type = hw_access;
2642 val = bl->owner->ops->insert_location (bl);
2643
2644 if (val)
2645 /* Back to the original value. */
2646 bl->watchpoint_type = hw_read;
2647 }
2648 }
2649
2650 bl->inserted = (val == 0);
2651 }
2652
2653 else if (bl->owner->type == bp_catchpoint)
2654 {
2655 gdb_assert (bl->owner->ops != NULL
2656 && bl->owner->ops->insert_location != NULL);
2657
2658 val = bl->owner->ops->insert_location (bl);
2659 if (val)
2660 {
2661 bl->owner->enable_state = bp_disabled;
2662
2663 if (val == 1)
2664 warning (_("\
2665Error inserting catchpoint %d: Your system does not support this type\n\
2666of catchpoint."), bl->owner->number);
2667 else
2668 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2669 }
2670
2671 bl->inserted = (val == 0);
2672
2673 /* We've already printed an error message if there was a problem
2674 inserting this catchpoint, and we've disabled the catchpoint,
2675 so just return success. */
2676 return 0;
2677 }
2678
2679 return 0;
2680}
2681
2682/* This function is called when program space PSPACE is about to be
2683 deleted. It takes care of updating breakpoints to not reference
2684 PSPACE anymore. */
2685
2686void
2687breakpoint_program_space_exit (struct program_space *pspace)
2688{
2689 struct breakpoint *b, *b_temp;
2690 struct bp_location *loc, **loc_temp;
2691
2692 /* Remove any breakpoint that was set through this program space. */
2693 ALL_BREAKPOINTS_SAFE (b, b_temp)
2694 {
2695 if (b->pspace == pspace)
2696 delete_breakpoint (b);
2697 }
2698
2699 /* Breakpoints set through other program spaces could have locations
2700 bound to PSPACE as well. Remove those. */
2701 ALL_BP_LOCATIONS (loc, loc_temp)
2702 {
2703 struct bp_location *tmp;
2704
2705 if (loc->pspace == pspace)
2706 {
2707 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2708 if (loc->owner->loc == loc)
2709 loc->owner->loc = loc->next;
2710 else
2711 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2712 if (tmp->next == loc)
2713 {
2714 tmp->next = loc->next;
2715 break;
2716 }
2717 }
2718 }
2719
2720 /* Now update the global location list to permanently delete the
2721 removed locations above. */
2722 update_global_location_list (0);
2723}
2724
2725/* Make sure all breakpoints are inserted in inferior.
2726 Throws exception on any error.
2727 A breakpoint that is already inserted won't be inserted
2728 again, so calling this function twice is safe. */
2729void
2730insert_breakpoints (void)
2731{
2732 struct breakpoint *bpt;
2733
2734 ALL_BREAKPOINTS (bpt)
2735 if (is_hardware_watchpoint (bpt))
2736 {
2737 struct watchpoint *w = (struct watchpoint *) bpt;
2738
2739 update_watchpoint (w, 0 /* don't reparse. */);
2740 }
2741
2742 update_global_location_list (1);
2743
2744 /* update_global_location_list does not insert breakpoints when
2745 always_inserted_mode is not enabled. Explicitly insert them
2746 now. */
2747 if (!breakpoints_always_inserted_mode ())
2748 insert_breakpoint_locations ();
2749}
2750
2751/* Invoke CALLBACK for each of bp_location. */
2752
2753void
2754iterate_over_bp_locations (walk_bp_location_callback callback)
2755{
2756 struct bp_location *loc, **loc_tmp;
2757
2758 ALL_BP_LOCATIONS (loc, loc_tmp)
2759 {
2760 callback (loc, NULL);
2761 }
2762}
2763
2764/* This is used when we need to synch breakpoint conditions between GDB and the
2765 target. It is the case with deleting and disabling of breakpoints when using
2766 always-inserted mode. */
2767
2768static void
2769update_inserted_breakpoint_locations (void)
2770{
2771 struct bp_location *bl, **blp_tmp;
2772 int error_flag = 0;
2773 int val = 0;
2774 int disabled_breaks = 0;
2775 int hw_breakpoint_error = 0;
2776 int hw_bp_details_reported = 0;
2777
2778 struct ui_file *tmp_error_stream = mem_fileopen ();
2779 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2780
2781 /* Explicitly mark the warning -- this will only be printed if
2782 there was an error. */
2783 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2784
2785 save_current_space_and_thread ();
2786
2787 ALL_BP_LOCATIONS (bl, blp_tmp)
2788 {
2789 /* We only want to update software breakpoints and hardware
2790 breakpoints. */
2791 if (!is_breakpoint (bl->owner))
2792 continue;
2793
2794 /* We only want to update locations that are already inserted
2795 and need updating. This is to avoid unwanted insertion during
2796 deletion of breakpoints. */
2797 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2798 continue;
2799
2800 switch_to_program_space_and_thread (bl->pspace);
2801
2802 /* For targets that support global breakpoints, there's no need
2803 to select an inferior to insert breakpoint to. In fact, even
2804 if we aren't attached to any process yet, we should still
2805 insert breakpoints. */
2806 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2807 && ptid_equal (inferior_ptid, null_ptid))
2808 continue;
2809
2810 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2811 &hw_breakpoint_error, &hw_bp_details_reported);
2812 if (val)
2813 error_flag = val;
2814 }
2815
2816 if (error_flag)
2817 {
2818 target_terminal_ours_for_output ();
2819 error_stream (tmp_error_stream);
2820 }
2821
2822 do_cleanups (cleanups);
2823}
2824
2825/* Used when starting or continuing the program. */
2826
2827static void
2828insert_breakpoint_locations (void)
2829{
2830 struct breakpoint *bpt;
2831 struct bp_location *bl, **blp_tmp;
2832 int error_flag = 0;
2833 int val = 0;
2834 int disabled_breaks = 0;
2835 int hw_breakpoint_error = 0;
2836 int hw_bp_error_explained_already = 0;
2837
2838 struct ui_file *tmp_error_stream = mem_fileopen ();
2839 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2840
2841 /* Explicitly mark the warning -- this will only be printed if
2842 there was an error. */
2843 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2844
2845 save_current_space_and_thread ();
2846
2847 ALL_BP_LOCATIONS (bl, blp_tmp)
2848 {
2849 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2850 continue;
2851
2852 /* There is no point inserting thread-specific breakpoints if
2853 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2854 has BL->OWNER always non-NULL. */
2855 if (bl->owner->thread != -1
2856 && !valid_thread_id (bl->owner->thread))
2857 continue;
2858
2859 switch_to_program_space_and_thread (bl->pspace);
2860
2861 /* For targets that support global breakpoints, there's no need
2862 to select an inferior to insert breakpoint to. In fact, even
2863 if we aren't attached to any process yet, we should still
2864 insert breakpoints. */
2865 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2866 && ptid_equal (inferior_ptid, null_ptid))
2867 continue;
2868
2869 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2870 &hw_breakpoint_error, &hw_bp_error_explained_already);
2871 if (val)
2872 error_flag = val;
2873 }
2874
2875 /* If we failed to insert all locations of a watchpoint, remove
2876 them, as half-inserted watchpoint is of limited use. */
2877 ALL_BREAKPOINTS (bpt)
2878 {
2879 int some_failed = 0;
2880 struct bp_location *loc;
2881
2882 if (!is_hardware_watchpoint (bpt))
2883 continue;
2884
2885 if (!breakpoint_enabled (bpt))
2886 continue;
2887
2888 if (bpt->disposition == disp_del_at_next_stop)
2889 continue;
2890
2891 for (loc = bpt->loc; loc; loc = loc->next)
2892 if (!loc->inserted && should_be_inserted (loc))
2893 {
2894 some_failed = 1;
2895 break;
2896 }
2897 if (some_failed)
2898 {
2899 for (loc = bpt->loc; loc; loc = loc->next)
2900 if (loc->inserted)
2901 remove_breakpoint (loc, mark_uninserted);
2902
2903 hw_breakpoint_error = 1;
2904 fprintf_unfiltered (tmp_error_stream,
2905 "Could not insert hardware watchpoint %d.\n",
2906 bpt->number);
2907 error_flag = -1;
2908 }
2909 }
2910
2911 if (error_flag)
2912 {
2913 /* If a hardware breakpoint or watchpoint was inserted, add a
2914 message about possibly exhausted resources. */
2915 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2916 {
2917 fprintf_unfiltered (tmp_error_stream,
2918 "Could not insert hardware breakpoints:\n\
2919You may have requested too many hardware breakpoints/watchpoints.\n");
2920 }
2921 target_terminal_ours_for_output ();
2922 error_stream (tmp_error_stream);
2923 }
2924
2925 do_cleanups (cleanups);
2926}
2927
2928/* Used when the program stops.
2929 Returns zero if successful, or non-zero if there was a problem
2930 removing a breakpoint location. */
2931
2932int
2933remove_breakpoints (void)
2934{
2935 struct bp_location *bl, **blp_tmp;
2936 int val = 0;
2937
2938 ALL_BP_LOCATIONS (bl, blp_tmp)
2939 {
2940 if (bl->inserted && !is_tracepoint (bl->owner))
2941 val |= remove_breakpoint (bl, mark_uninserted);
2942 }
2943 return val;
2944}
2945
2946/* When a thread exits, remove breakpoints that are related to
2947 that thread. */
2948
2949static void
2950remove_threaded_breakpoints (struct thread_info *tp, int silent)
2951{
2952 struct breakpoint *b, *b_tmp;
2953
2954 ALL_BREAKPOINTS_SAFE (b, b_tmp)
2955 {
2956 if (b->thread == tp->num && user_breakpoint_p (b))
2957 {
2958 b->disposition = disp_del_at_next_stop;
2959
2960 printf_filtered (_("\
2961Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
2962 b->number, tp->num);
2963
2964 /* Hide it from the user. */
2965 b->number = 0;
2966 }
2967 }
2968}
2969
2970/* Remove breakpoints of process PID. */
2971
2972int
2973remove_breakpoints_pid (int pid)
2974{
2975 struct bp_location *bl, **blp_tmp;
2976 int val;
2977 struct inferior *inf = find_inferior_pid (pid);
2978
2979 ALL_BP_LOCATIONS (bl, blp_tmp)
2980 {
2981 if (bl->pspace != inf->pspace)
2982 continue;
2983
2984 if (bl->owner->type == bp_dprintf)
2985 continue;
2986
2987 if (bl->inserted)
2988 {
2989 val = remove_breakpoint (bl, mark_uninserted);
2990 if (val != 0)
2991 return val;
2992 }
2993 }
2994 return 0;
2995}
2996
2997int
2998reattach_breakpoints (int pid)
2999{
3000 struct cleanup *old_chain;
3001 struct bp_location *bl, **blp_tmp;
3002 int val;
3003 struct ui_file *tmp_error_stream;
3004 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3005 struct inferior *inf;
3006 struct thread_info *tp;
3007
3008 tp = any_live_thread_of_process (pid);
3009 if (tp == NULL)
3010 return 1;
3011
3012 inf = find_inferior_pid (pid);
3013 old_chain = save_inferior_ptid ();
3014
3015 inferior_ptid = tp->ptid;
3016
3017 tmp_error_stream = mem_fileopen ();
3018 make_cleanup_ui_file_delete (tmp_error_stream);
3019
3020 ALL_BP_LOCATIONS (bl, blp_tmp)
3021 {
3022 if (bl->pspace != inf->pspace)
3023 continue;
3024
3025 if (bl->inserted)
3026 {
3027 bl->inserted = 0;
3028 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3029 if (val != 0)
3030 {
3031 do_cleanups (old_chain);
3032 return val;
3033 }
3034 }
3035 }
3036 do_cleanups (old_chain);
3037 return 0;
3038}
3039
3040static int internal_breakpoint_number = -1;
3041
3042/* Set the breakpoint number of B, depending on the value of INTERNAL.
3043 If INTERNAL is non-zero, the breakpoint number will be populated
3044 from internal_breakpoint_number and that variable decremented.
3045 Otherwise the breakpoint number will be populated from
3046 breakpoint_count and that value incremented. Internal breakpoints
3047 do not set the internal var bpnum. */
3048static void
3049set_breakpoint_number (int internal, struct breakpoint *b)
3050{
3051 if (internal)
3052 b->number = internal_breakpoint_number--;
3053 else
3054 {
3055 set_breakpoint_count (breakpoint_count + 1);
3056 b->number = breakpoint_count;
3057 }
3058}
3059
3060static struct breakpoint *
3061create_internal_breakpoint (struct gdbarch *gdbarch,
3062 CORE_ADDR address, enum bptype type,
3063 const struct breakpoint_ops *ops)
3064{
3065 struct symtab_and_line sal;
3066 struct breakpoint *b;
3067
3068 init_sal (&sal); /* Initialize to zeroes. */
3069
3070 sal.pc = address;
3071 sal.section = find_pc_overlay (sal.pc);
3072 sal.pspace = current_program_space;
3073
3074 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3075 b->number = internal_breakpoint_number--;
3076 b->disposition = disp_donttouch;
3077
3078 return b;
3079}
3080
3081static const char *const longjmp_names[] =
3082 {
3083 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3084 };
3085#define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3086
3087/* Per-objfile data private to breakpoint.c. */
3088struct breakpoint_objfile_data
3089{
3090 /* Minimal symbol for "_ovly_debug_event" (if any). */
3091 struct minimal_symbol *overlay_msym;
3092
3093 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3094 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3095
3096 /* True if we have looked for longjmp probes. */
3097 int longjmp_searched;
3098
3099 /* SystemTap probe points for longjmp (if any). */
3100 VEC (probe_p) *longjmp_probes;
3101
3102 /* Minimal symbol for "std::terminate()" (if any). */
3103 struct minimal_symbol *terminate_msym;
3104
3105 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3106 struct minimal_symbol *exception_msym;
3107
3108 /* True if we have looked for exception probes. */
3109 int exception_searched;
3110
3111 /* SystemTap probe points for unwinding (if any). */
3112 VEC (probe_p) *exception_probes;
3113};
3114
3115static const struct objfile_data *breakpoint_objfile_key;
3116
3117/* Minimal symbol not found sentinel. */
3118static struct minimal_symbol msym_not_found;
3119
3120/* Returns TRUE if MSYM point to the "not found" sentinel. */
3121
3122static int
3123msym_not_found_p (const struct minimal_symbol *msym)
3124{
3125 return msym == &msym_not_found;
3126}
3127
3128/* Return per-objfile data needed by breakpoint.c.
3129 Allocate the data if necessary. */
3130
3131static struct breakpoint_objfile_data *
3132get_breakpoint_objfile_data (struct objfile *objfile)
3133{
3134 struct breakpoint_objfile_data *bp_objfile_data;
3135
3136 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3137 if (bp_objfile_data == NULL)
3138 {
3139 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3140 sizeof (*bp_objfile_data));
3141
3142 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3143 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3144 }
3145 return bp_objfile_data;
3146}
3147
3148static void
3149free_breakpoint_probes (struct objfile *obj, void *data)
3150{
3151 struct breakpoint_objfile_data *bp_objfile_data = data;
3152
3153 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3154 VEC_free (probe_p, bp_objfile_data->exception_probes);
3155}
3156
3157static void
3158create_overlay_event_breakpoint (void)
3159{
3160 struct objfile *objfile;
3161 const char *const func_name = "_ovly_debug_event";
3162
3163 ALL_OBJFILES (objfile)
3164 {
3165 struct breakpoint *b;
3166 struct breakpoint_objfile_data *bp_objfile_data;
3167 CORE_ADDR addr;
3168
3169 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3170
3171 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3172 continue;
3173
3174 if (bp_objfile_data->overlay_msym == NULL)
3175 {
3176 struct minimal_symbol *m;
3177
3178 m = lookup_minimal_symbol_text (func_name, objfile);
3179 if (m == NULL)
3180 {
3181 /* Avoid future lookups in this objfile. */
3182 bp_objfile_data->overlay_msym = &msym_not_found;
3183 continue;
3184 }
3185 bp_objfile_data->overlay_msym = m;
3186 }
3187
3188 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3189 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3190 bp_overlay_event,
3191 &internal_breakpoint_ops);
3192 b->addr_string = xstrdup (func_name);
3193
3194 if (overlay_debugging == ovly_auto)
3195 {
3196 b->enable_state = bp_enabled;
3197 overlay_events_enabled = 1;
3198 }
3199 else
3200 {
3201 b->enable_state = bp_disabled;
3202 overlay_events_enabled = 0;
3203 }
3204 }
3205 update_global_location_list (1);
3206}
3207
3208static void
3209create_longjmp_master_breakpoint (void)
3210{
3211 struct program_space *pspace;
3212 struct cleanup *old_chain;
3213
3214 old_chain = save_current_program_space ();
3215
3216 ALL_PSPACES (pspace)
3217 {
3218 struct objfile *objfile;
3219
3220 set_current_program_space (pspace);
3221
3222 ALL_OBJFILES (objfile)
3223 {
3224 int i;
3225 struct gdbarch *gdbarch;
3226 struct breakpoint_objfile_data *bp_objfile_data;
3227
3228 gdbarch = get_objfile_arch (objfile);
3229
3230 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3231
3232 if (!bp_objfile_data->longjmp_searched)
3233 {
3234 VEC (probe_p) *ret;
3235
3236 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3237 if (ret != NULL)
3238 {
3239 /* We are only interested in checking one element. */
3240 struct probe *p = VEC_index (probe_p, ret, 0);
3241
3242 if (!can_evaluate_probe_arguments (p))
3243 {
3244 /* We cannot use the probe interface here, because it does
3245 not know how to evaluate arguments. */
3246 VEC_free (probe_p, ret);
3247 ret = NULL;
3248 }
3249 }
3250 bp_objfile_data->longjmp_probes = ret;
3251 bp_objfile_data->longjmp_searched = 1;
3252 }
3253
3254 if (bp_objfile_data->longjmp_probes != NULL)
3255 {
3256 int i;
3257 struct probe *probe;
3258 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3259
3260 for (i = 0;
3261 VEC_iterate (probe_p,
3262 bp_objfile_data->longjmp_probes,
3263 i, probe);
3264 ++i)
3265 {
3266 struct breakpoint *b;
3267
3268 b = create_internal_breakpoint (gdbarch, probe->address,
3269 bp_longjmp_master,
3270 &internal_breakpoint_ops);
3271 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3272 b->enable_state = bp_disabled;
3273 }
3274
3275 continue;
3276 }
3277
3278 if (!gdbarch_get_longjmp_target_p (gdbarch))
3279 continue;
3280
3281 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3282 {
3283 struct breakpoint *b;
3284 const char *func_name;
3285 CORE_ADDR addr;
3286
3287 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3288 continue;
3289
3290 func_name = longjmp_names[i];
3291 if (bp_objfile_data->longjmp_msym[i] == NULL)
3292 {
3293 struct minimal_symbol *m;
3294
3295 m = lookup_minimal_symbol_text (func_name, objfile);
3296 if (m == NULL)
3297 {
3298 /* Prevent future lookups in this objfile. */
3299 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3300 continue;
3301 }
3302 bp_objfile_data->longjmp_msym[i] = m;
3303 }
3304
3305 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3306 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3307 &internal_breakpoint_ops);
3308 b->addr_string = xstrdup (func_name);
3309 b->enable_state = bp_disabled;
3310 }
3311 }
3312 }
3313 update_global_location_list (1);
3314
3315 do_cleanups (old_chain);
3316}
3317
3318/* Create a master std::terminate breakpoint. */
3319static void
3320create_std_terminate_master_breakpoint (void)
3321{
3322 struct program_space *pspace;
3323 struct cleanup *old_chain;
3324 const char *const func_name = "std::terminate()";
3325
3326 old_chain = save_current_program_space ();
3327
3328 ALL_PSPACES (pspace)
3329 {
3330 struct objfile *objfile;
3331 CORE_ADDR addr;
3332
3333 set_current_program_space (pspace);
3334
3335 ALL_OBJFILES (objfile)
3336 {
3337 struct breakpoint *b;
3338 struct breakpoint_objfile_data *bp_objfile_data;
3339
3340 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3341
3342 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3343 continue;
3344
3345 if (bp_objfile_data->terminate_msym == NULL)
3346 {
3347 struct minimal_symbol *m;
3348
3349 m = lookup_minimal_symbol (func_name, NULL, objfile);
3350 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3351 && MSYMBOL_TYPE (m) != mst_file_text))
3352 {
3353 /* Prevent future lookups in this objfile. */
3354 bp_objfile_data->terminate_msym = &msym_not_found;
3355 continue;
3356 }
3357 bp_objfile_data->terminate_msym = m;
3358 }
3359
3360 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3361 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3362 bp_std_terminate_master,
3363 &internal_breakpoint_ops);
3364 b->addr_string = xstrdup (func_name);
3365 b->enable_state = bp_disabled;
3366 }
3367 }
3368
3369 update_global_location_list (1);
3370
3371 do_cleanups (old_chain);
3372}
3373
3374/* Install a master breakpoint on the unwinder's debug hook. */
3375
3376static void
3377create_exception_master_breakpoint (void)
3378{
3379 struct objfile *objfile;
3380 const char *const func_name = "_Unwind_DebugHook";
3381
3382 ALL_OBJFILES (objfile)
3383 {
3384 struct breakpoint *b;
3385 struct gdbarch *gdbarch;
3386 struct breakpoint_objfile_data *bp_objfile_data;
3387 CORE_ADDR addr;
3388
3389 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3390
3391 /* We prefer the SystemTap probe point if it exists. */
3392 if (!bp_objfile_data->exception_searched)
3393 {
3394 VEC (probe_p) *ret;
3395
3396 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3397
3398 if (ret != NULL)
3399 {
3400 /* We are only interested in checking one element. */
3401 struct probe *p = VEC_index (probe_p, ret, 0);
3402
3403 if (!can_evaluate_probe_arguments (p))
3404 {
3405 /* We cannot use the probe interface here, because it does
3406 not know how to evaluate arguments. */
3407 VEC_free (probe_p, ret);
3408 ret = NULL;
3409 }
3410 }
3411 bp_objfile_data->exception_probes = ret;
3412 bp_objfile_data->exception_searched = 1;
3413 }
3414
3415 if (bp_objfile_data->exception_probes != NULL)
3416 {
3417 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3418 int i;
3419 struct probe *probe;
3420
3421 for (i = 0;
3422 VEC_iterate (probe_p,
3423 bp_objfile_data->exception_probes,
3424 i, probe);
3425 ++i)
3426 {
3427 struct breakpoint *b;
3428
3429 b = create_internal_breakpoint (gdbarch, probe->address,
3430 bp_exception_master,
3431 &internal_breakpoint_ops);
3432 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3433 b->enable_state = bp_disabled;
3434 }
3435
3436 continue;
3437 }
3438
3439 /* Otherwise, try the hook function. */
3440
3441 if (msym_not_found_p (bp_objfile_data->exception_msym))
3442 continue;
3443
3444 gdbarch = get_objfile_arch (objfile);
3445
3446 if (bp_objfile_data->exception_msym == NULL)
3447 {
3448 struct minimal_symbol *debug_hook;
3449
3450 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3451 if (debug_hook == NULL)
3452 {
3453 bp_objfile_data->exception_msym = &msym_not_found;
3454 continue;
3455 }
3456
3457 bp_objfile_data->exception_msym = debug_hook;
3458 }
3459
3460 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3461 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3462 &current_target);
3463 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3464 &internal_breakpoint_ops);
3465 b->addr_string = xstrdup (func_name);
3466 b->enable_state = bp_disabled;
3467 }
3468
3469 update_global_location_list (1);
3470}
3471
3472void
3473update_breakpoints_after_exec (void)
3474{
3475 struct breakpoint *b, *b_tmp;
3476 struct bp_location *bploc, **bplocp_tmp;
3477
3478 /* We're about to delete breakpoints from GDB's lists. If the
3479 INSERTED flag is true, GDB will try to lift the breakpoints by
3480 writing the breakpoints' "shadow contents" back into memory. The
3481 "shadow contents" are NOT valid after an exec, so GDB should not
3482 do that. Instead, the target is responsible from marking
3483 breakpoints out as soon as it detects an exec. We don't do that
3484 here instead, because there may be other attempts to delete
3485 breakpoints after detecting an exec and before reaching here. */
3486 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3487 if (bploc->pspace == current_program_space)
3488 gdb_assert (!bploc->inserted);
3489
3490 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3491 {
3492 if (b->pspace != current_program_space)
3493 continue;
3494
3495 /* Solib breakpoints must be explicitly reset after an exec(). */
3496 if (b->type == bp_shlib_event)
3497 {
3498 delete_breakpoint (b);
3499 continue;
3500 }
3501
3502 /* JIT breakpoints must be explicitly reset after an exec(). */
3503 if (b->type == bp_jit_event)
3504 {
3505 delete_breakpoint (b);
3506 continue;
3507 }
3508
3509 /* Thread event breakpoints must be set anew after an exec(),
3510 as must overlay event and longjmp master breakpoints. */
3511 if (b->type == bp_thread_event || b->type == bp_overlay_event
3512 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3513 || b->type == bp_exception_master)
3514 {
3515 delete_breakpoint (b);
3516 continue;
3517 }
3518
3519 /* Step-resume breakpoints are meaningless after an exec(). */
3520 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3521 {
3522 delete_breakpoint (b);
3523 continue;
3524 }
3525
3526 /* Longjmp and longjmp-resume breakpoints are also meaningless
3527 after an exec. */
3528 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3529 || b->type == bp_longjmp_call_dummy
3530 || b->type == bp_exception || b->type == bp_exception_resume)
3531 {
3532 delete_breakpoint (b);
3533 continue;
3534 }
3535
3536 if (b->type == bp_catchpoint)
3537 {
3538 /* For now, none of the bp_catchpoint breakpoints need to
3539 do anything at this point. In the future, if some of
3540 the catchpoints need to something, we will need to add
3541 a new method, and call this method from here. */
3542 continue;
3543 }
3544
3545 /* bp_finish is a special case. The only way we ought to be able
3546 to see one of these when an exec() has happened, is if the user
3547 caught a vfork, and then said "finish". Ordinarily a finish just
3548 carries them to the call-site of the current callee, by setting
3549 a temporary bp there and resuming. But in this case, the finish
3550 will carry them entirely through the vfork & exec.
3551
3552 We don't want to allow a bp_finish to remain inserted now. But
3553 we can't safely delete it, 'cause finish_command has a handle to
3554 the bp on a bpstat, and will later want to delete it. There's a
3555 chance (and I've seen it happen) that if we delete the bp_finish
3556 here, that its storage will get reused by the time finish_command
3557 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3558 We really must allow finish_command to delete a bp_finish.
3559
3560 In the absence of a general solution for the "how do we know
3561 it's safe to delete something others may have handles to?"
3562 problem, what we'll do here is just uninsert the bp_finish, and
3563 let finish_command delete it.
3564
3565 (We know the bp_finish is "doomed" in the sense that it's
3566 momentary, and will be deleted as soon as finish_command sees
3567 the inferior stopped. So it doesn't matter that the bp's
3568 address is probably bogus in the new a.out, unlike e.g., the
3569 solib breakpoints.) */
3570
3571 if (b->type == bp_finish)
3572 {
3573 continue;
3574 }
3575
3576 /* Without a symbolic address, we have little hope of the
3577 pre-exec() address meaning the same thing in the post-exec()
3578 a.out. */
3579 if (b->addr_string == NULL)
3580 {
3581 delete_breakpoint (b);
3582 continue;
3583 }
3584 }
3585 /* FIXME what about longjmp breakpoints? Re-create them here? */
3586 create_overlay_event_breakpoint ();
3587 create_longjmp_master_breakpoint ();
3588 create_std_terminate_master_breakpoint ();
3589 create_exception_master_breakpoint ();
3590}
3591
3592int
3593detach_breakpoints (ptid_t ptid)
3594{
3595 struct bp_location *bl, **blp_tmp;
3596 int val = 0;
3597 struct cleanup *old_chain = save_inferior_ptid ();
3598 struct inferior *inf = current_inferior ();
3599
3600 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3601 error (_("Cannot detach breakpoints of inferior_ptid"));
3602
3603 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3604 inferior_ptid = ptid;
3605 ALL_BP_LOCATIONS (bl, blp_tmp)
3606 {
3607 if (bl->pspace != inf->pspace)
3608 continue;
3609
3610 /* This function must physically remove breakpoints locations
3611 from the specified ptid, without modifying the breakpoint
3612 package's state. Locations of type bp_loc_other are only
3613 maintained at GDB side. So, there is no need to remove
3614 these bp_loc_other locations. Moreover, removing these
3615 would modify the breakpoint package's state. */
3616 if (bl->loc_type == bp_loc_other)
3617 continue;
3618
3619 if (bl->inserted)
3620 val |= remove_breakpoint_1 (bl, mark_inserted);
3621 }
3622
3623 /* Detach single-step breakpoints as well. */
3624 detach_single_step_breakpoints ();
3625
3626 do_cleanups (old_chain);
3627 return val;
3628}
3629
3630/* Remove the breakpoint location BL from the current address space.
3631 Note that this is used to detach breakpoints from a child fork.
3632 When we get here, the child isn't in the inferior list, and neither
3633 do we have objects to represent its address space --- we should
3634 *not* look at bl->pspace->aspace here. */
3635
3636static int
3637remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3638{
3639 int val;
3640
3641 /* BL is never in moribund_locations by our callers. */
3642 gdb_assert (bl->owner != NULL);
3643
3644 if (bl->owner->enable_state == bp_permanent)
3645 /* Permanent breakpoints cannot be inserted or removed. */
3646 return 0;
3647
3648 /* The type of none suggests that owner is actually deleted.
3649 This should not ever happen. */
3650 gdb_assert (bl->owner->type != bp_none);
3651
3652 if (bl->loc_type == bp_loc_software_breakpoint
3653 || bl->loc_type == bp_loc_hardware_breakpoint)
3654 {
3655 /* "Normal" instruction breakpoint: either the standard
3656 trap-instruction bp (bp_breakpoint), or a
3657 bp_hardware_breakpoint. */
3658
3659 /* First check to see if we have to handle an overlay. */
3660 if (overlay_debugging == ovly_off
3661 || bl->section == NULL
3662 || !(section_is_overlay (bl->section)))
3663 {
3664 /* No overlay handling: just remove the breakpoint. */
3665 val = bl->owner->ops->remove_location (bl);
3666 }
3667 else
3668 {
3669 /* This breakpoint is in an overlay section.
3670 Did we set a breakpoint at the LMA? */
3671 if (!overlay_events_enabled)
3672 {
3673 /* Yes -- overlay event support is not active, so we
3674 should have set a breakpoint at the LMA. Remove it.
3675 */
3676 /* Ignore any failures: if the LMA is in ROM, we will
3677 have already warned when we failed to insert it. */
3678 if (bl->loc_type == bp_loc_hardware_breakpoint)
3679 target_remove_hw_breakpoint (bl->gdbarch,
3680 &bl->overlay_target_info);
3681 else
3682 target_remove_breakpoint (bl->gdbarch,
3683 &bl->overlay_target_info);
3684 }
3685 /* Did we set a breakpoint at the VMA?
3686 If so, we will have marked the breakpoint 'inserted'. */
3687 if (bl->inserted)
3688 {
3689 /* Yes -- remove it. Previously we did not bother to
3690 remove the breakpoint if the section had been
3691 unmapped, but let's not rely on that being safe. We
3692 don't know what the overlay manager might do. */
3693
3694 /* However, we should remove *software* breakpoints only
3695 if the section is still mapped, or else we overwrite
3696 wrong code with the saved shadow contents. */
3697 if (bl->loc_type == bp_loc_hardware_breakpoint
3698 || section_is_mapped (bl->section))
3699 val = bl->owner->ops->remove_location (bl);
3700 else
3701 val = 0;
3702 }
3703 else
3704 {
3705 /* No -- not inserted, so no need to remove. No error. */
3706 val = 0;
3707 }
3708 }
3709
3710 /* In some cases, we might not be able to remove a breakpoint
3711 in a shared library that has already been removed, but we
3712 have not yet processed the shlib unload event. */
3713 if (val && solib_name_from_address (bl->pspace, bl->address))
3714 val = 0;
3715
3716 if (val)
3717 return val;
3718 bl->inserted = (is == mark_inserted);
3719 }
3720 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3721 {
3722 gdb_assert (bl->owner->ops != NULL
3723 && bl->owner->ops->remove_location != NULL);
3724
3725 bl->inserted = (is == mark_inserted);
3726 bl->owner->ops->remove_location (bl);
3727
3728 /* Failure to remove any of the hardware watchpoints comes here. */
3729 if ((is == mark_uninserted) && (bl->inserted))
3730 warning (_("Could not remove hardware watchpoint %d."),
3731 bl->owner->number);
3732 }
3733 else if (bl->owner->type == bp_catchpoint
3734 && breakpoint_enabled (bl->owner)
3735 && !bl->duplicate)
3736 {
3737 gdb_assert (bl->owner->ops != NULL
3738 && bl->owner->ops->remove_location != NULL);
3739
3740 val = bl->owner->ops->remove_location (bl);
3741 if (val)
3742 return val;
3743
3744 bl->inserted = (is == mark_inserted);
3745 }
3746
3747 return 0;
3748}
3749
3750static int
3751remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3752{
3753 int ret;
3754 struct cleanup *old_chain;
3755
3756 /* BL is never in moribund_locations by our callers. */
3757 gdb_assert (bl->owner != NULL);
3758
3759 if (bl->owner->enable_state == bp_permanent)
3760 /* Permanent breakpoints cannot be inserted or removed. */
3761 return 0;
3762
3763 /* The type of none suggests that owner is actually deleted.
3764 This should not ever happen. */
3765 gdb_assert (bl->owner->type != bp_none);
3766
3767 old_chain = save_current_space_and_thread ();
3768
3769 switch_to_program_space_and_thread (bl->pspace);
3770
3771 ret = remove_breakpoint_1 (bl, is);
3772
3773 do_cleanups (old_chain);
3774 return ret;
3775}
3776
3777/* Clear the "inserted" flag in all breakpoints. */
3778
3779void
3780mark_breakpoints_out (void)
3781{
3782 struct bp_location *bl, **blp_tmp;
3783
3784 ALL_BP_LOCATIONS (bl, blp_tmp)
3785 if (bl->pspace == current_program_space)
3786 bl->inserted = 0;
3787}
3788
3789/* Clear the "inserted" flag in all breakpoints and delete any
3790 breakpoints which should go away between runs of the program.
3791
3792 Plus other such housekeeping that has to be done for breakpoints
3793 between runs.
3794
3795 Note: this function gets called at the end of a run (by
3796 generic_mourn_inferior) and when a run begins (by
3797 init_wait_for_inferior). */
3798
3799
3800
3801void
3802breakpoint_init_inferior (enum inf_context context)
3803{
3804 struct breakpoint *b, *b_tmp;
3805 struct bp_location *bl, **blp_tmp;
3806 int ix;
3807 struct program_space *pspace = current_program_space;
3808
3809 /* If breakpoint locations are shared across processes, then there's
3810 nothing to do. */
3811 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3812 return;
3813
3814 ALL_BP_LOCATIONS (bl, blp_tmp)
3815 {
3816 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3817 if (bl->pspace == pspace
3818 && bl->owner->enable_state != bp_permanent)
3819 bl->inserted = 0;
3820 }
3821
3822 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3823 {
3824 if (b->loc && b->loc->pspace != pspace)
3825 continue;
3826
3827 switch (b->type)
3828 {
3829 case bp_call_dummy:
3830 case bp_longjmp_call_dummy:
3831
3832 /* If the call dummy breakpoint is at the entry point it will
3833 cause problems when the inferior is rerun, so we better get
3834 rid of it. */
3835
3836 case bp_watchpoint_scope:
3837
3838 /* Also get rid of scope breakpoints. */
3839
3840 case bp_shlib_event:
3841
3842 /* Also remove solib event breakpoints. Their addresses may
3843 have changed since the last time we ran the program.
3844 Actually we may now be debugging against different target;
3845 and so the solib backend that installed this breakpoint may
3846 not be used in by the target. E.g.,
3847
3848 (gdb) file prog-linux
3849 (gdb) run # native linux target
3850 ...
3851 (gdb) kill
3852 (gdb) file prog-win.exe
3853 (gdb) tar rem :9999 # remote Windows gdbserver.
3854 */
3855
3856 case bp_step_resume:
3857
3858 /* Also remove step-resume breakpoints. */
3859
3860 delete_breakpoint (b);
3861 break;
3862
3863 case bp_watchpoint:
3864 case bp_hardware_watchpoint:
3865 case bp_read_watchpoint:
3866 case bp_access_watchpoint:
3867 {
3868 struct watchpoint *w = (struct watchpoint *) b;
3869
3870 /* Likewise for watchpoints on local expressions. */
3871 if (w->exp_valid_block != NULL)
3872 delete_breakpoint (b);
3873 else if (context == inf_starting)
3874 {
3875 /* Reset val field to force reread of starting value in
3876 insert_breakpoints. */
3877 if (w->val)
3878 value_free (w->val);
3879 w->val = NULL;
3880 w->val_valid = 0;
3881 }
3882 }
3883 break;
3884 default:
3885 break;
3886 }
3887 }
3888
3889 /* Get rid of the moribund locations. */
3890 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3891 decref_bp_location (&bl);
3892 VEC_free (bp_location_p, moribund_locations);
3893}
3894
3895/* These functions concern about actual breakpoints inserted in the
3896 target --- to e.g. check if we need to do decr_pc adjustment or if
3897 we need to hop over the bkpt --- so we check for address space
3898 match, not program space. */
3899
3900/* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3901 exists at PC. It returns ordinary_breakpoint_here if it's an
3902 ordinary breakpoint, or permanent_breakpoint_here if it's a
3903 permanent breakpoint.
3904 - When continuing from a location with an ordinary breakpoint, we
3905 actually single step once before calling insert_breakpoints.
3906 - When continuing from a location with a permanent breakpoint, we
3907 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3908 the target, to advance the PC past the breakpoint. */
3909
3910enum breakpoint_here
3911breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3912{
3913 struct bp_location *bl, **blp_tmp;
3914 int any_breakpoint_here = 0;
3915
3916 ALL_BP_LOCATIONS (bl, blp_tmp)
3917 {
3918 if (bl->loc_type != bp_loc_software_breakpoint
3919 && bl->loc_type != bp_loc_hardware_breakpoint)
3920 continue;
3921
3922 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3923 if ((breakpoint_enabled (bl->owner)
3924 || bl->owner->enable_state == bp_permanent)
3925 && breakpoint_location_address_match (bl, aspace, pc))
3926 {
3927 if (overlay_debugging
3928 && section_is_overlay (bl->section)
3929 && !section_is_mapped (bl->section))
3930 continue; /* unmapped overlay -- can't be a match */
3931 else if (bl->owner->enable_state == bp_permanent)
3932 return permanent_breakpoint_here;
3933 else
3934 any_breakpoint_here = 1;
3935 }
3936 }
3937
3938 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3939}
3940
3941/* Return true if there's a moribund breakpoint at PC. */
3942
3943int
3944moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3945{
3946 struct bp_location *loc;
3947 int ix;
3948
3949 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3950 if (breakpoint_location_address_match (loc, aspace, pc))
3951 return 1;
3952
3953 return 0;
3954}
3955
3956/* Returns non-zero if there's a breakpoint inserted at PC, which is
3957 inserted using regular breakpoint_chain / bp_location array
3958 mechanism. This does not check for single-step breakpoints, which
3959 are inserted and removed using direct target manipulation. */
3960
3961int
3962regular_breakpoint_inserted_here_p (struct address_space *aspace,
3963 CORE_ADDR pc)
3964{
3965 struct bp_location *bl, **blp_tmp;
3966
3967 ALL_BP_LOCATIONS (bl, blp_tmp)
3968 {
3969 if (bl->loc_type != bp_loc_software_breakpoint
3970 && bl->loc_type != bp_loc_hardware_breakpoint)
3971 continue;
3972
3973 if (bl->inserted
3974 && breakpoint_location_address_match (bl, aspace, pc))
3975 {
3976 if (overlay_debugging
3977 && section_is_overlay (bl->section)
3978 && !section_is_mapped (bl->section))
3979 continue; /* unmapped overlay -- can't be a match */
3980 else
3981 return 1;
3982 }
3983 }
3984 return 0;
3985}
3986
3987/* Returns non-zero iff there's either regular breakpoint
3988 or a single step breakpoint inserted at PC. */
3989
3990int
3991breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3992{
3993 if (regular_breakpoint_inserted_here_p (aspace, pc))
3994 return 1;
3995
3996 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3997 return 1;
3998
3999 return 0;
4000}
4001
4002/* This function returns non-zero iff there is a software breakpoint
4003 inserted at PC. */
4004
4005int
4006software_breakpoint_inserted_here_p (struct address_space *aspace,
4007 CORE_ADDR pc)
4008{
4009 struct bp_location *bl, **blp_tmp;
4010
4011 ALL_BP_LOCATIONS (bl, blp_tmp)
4012 {
4013 if (bl->loc_type != bp_loc_software_breakpoint)
4014 continue;
4015
4016 if (bl->inserted
4017 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4018 aspace, pc))
4019 {
4020 if (overlay_debugging
4021 && section_is_overlay (bl->section)
4022 && !section_is_mapped (bl->section))
4023 continue; /* unmapped overlay -- can't be a match */
4024 else
4025 return 1;
4026 }
4027 }
4028
4029 /* Also check for software single-step breakpoints. */
4030 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4031 return 1;
4032
4033 return 0;
4034}
4035
4036int
4037hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4038 CORE_ADDR addr, ULONGEST len)
4039{
4040 struct breakpoint *bpt;
4041
4042 ALL_BREAKPOINTS (bpt)
4043 {
4044 struct bp_location *loc;
4045
4046 if (bpt->type != bp_hardware_watchpoint
4047 && bpt->type != bp_access_watchpoint)
4048 continue;
4049
4050 if (!breakpoint_enabled (bpt))
4051 continue;
4052
4053 for (loc = bpt->loc; loc; loc = loc->next)
4054 if (loc->pspace->aspace == aspace && loc->inserted)
4055 {
4056 CORE_ADDR l, h;
4057
4058 /* Check for intersection. */
4059 l = max (loc->address, addr);
4060 h = min (loc->address + loc->length, addr + len);
4061 if (l < h)
4062 return 1;
4063 }
4064 }
4065 return 0;
4066}
4067
4068/* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4069 PC is valid for process/thread PTID. */
4070
4071int
4072breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4073 ptid_t ptid)
4074{
4075 struct bp_location *bl, **blp_tmp;
4076 /* The thread and task IDs associated to PTID, computed lazily. */
4077 int thread = -1;
4078 int task = 0;
4079
4080 ALL_BP_LOCATIONS (bl, blp_tmp)
4081 {
4082 if (bl->loc_type != bp_loc_software_breakpoint
4083 && bl->loc_type != bp_loc_hardware_breakpoint)
4084 continue;
4085
4086 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4087 if (!breakpoint_enabled (bl->owner)
4088 && bl->owner->enable_state != bp_permanent)
4089 continue;
4090
4091 if (!breakpoint_location_address_match (bl, aspace, pc))
4092 continue;
4093
4094 if (bl->owner->thread != -1)
4095 {
4096 /* This is a thread-specific breakpoint. Check that ptid
4097 matches that thread. If thread hasn't been computed yet,
4098 it is now time to do so. */
4099 if (thread == -1)
4100 thread = pid_to_thread_id (ptid);
4101 if (bl->owner->thread != thread)
4102 continue;
4103 }
4104
4105 if (bl->owner->task != 0)
4106 {
4107 /* This is a task-specific breakpoint. Check that ptid
4108 matches that task. If task hasn't been computed yet,
4109 it is now time to do so. */
4110 if (task == 0)
4111 task = ada_get_task_number (ptid);
4112 if (bl->owner->task != task)
4113 continue;
4114 }
4115
4116 if (overlay_debugging
4117 && section_is_overlay (bl->section)
4118 && !section_is_mapped (bl->section))
4119 continue; /* unmapped overlay -- can't be a match */
4120
4121 return 1;
4122 }
4123
4124 return 0;
4125}
4126\f
4127
4128/* bpstat stuff. External routines' interfaces are documented
4129 in breakpoint.h. */
4130
4131int
4132is_catchpoint (struct breakpoint *ep)
4133{
4134 return (ep->type == bp_catchpoint);
4135}
4136
4137/* Frees any storage that is part of a bpstat. Does not walk the
4138 'next' chain. */
4139
4140static void
4141bpstat_free (bpstat bs)
4142{
4143 if (bs->old_val != NULL)
4144 value_free (bs->old_val);
4145 decref_counted_command_line (&bs->commands);
4146 decref_bp_location (&bs->bp_location_at);
4147 xfree (bs);
4148}
4149
4150/* Clear a bpstat so that it says we are not at any breakpoint.
4151 Also free any storage that is part of a bpstat. */
4152
4153void
4154bpstat_clear (bpstat *bsp)
4155{
4156 bpstat p;
4157 bpstat q;
4158
4159 if (bsp == 0)
4160 return;
4161 p = *bsp;
4162 while (p != NULL)
4163 {
4164 q = p->next;
4165 bpstat_free (p);
4166 p = q;
4167 }
4168 *bsp = NULL;
4169}
4170
4171/* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4172 is part of the bpstat is copied as well. */
4173
4174bpstat
4175bpstat_copy (bpstat bs)
4176{
4177 bpstat p = NULL;
4178 bpstat tmp;
4179 bpstat retval = NULL;
4180
4181 if (bs == NULL)
4182 return bs;
4183
4184 for (; bs != NULL; bs = bs->next)
4185 {
4186 tmp = (bpstat) xmalloc (sizeof (*tmp));
4187 memcpy (tmp, bs, sizeof (*tmp));
4188 incref_counted_command_line (tmp->commands);
4189 incref_bp_location (tmp->bp_location_at);
4190 if (bs->old_val != NULL)
4191 {
4192 tmp->old_val = value_copy (bs->old_val);
4193 release_value (tmp->old_val);
4194 }
4195
4196 if (p == NULL)
4197 /* This is the first thing in the chain. */
4198 retval = tmp;
4199 else
4200 p->next = tmp;
4201 p = tmp;
4202 }
4203 p->next = NULL;
4204 return retval;
4205}
4206
4207/* Find the bpstat associated with this breakpoint. */
4208
4209bpstat
4210bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4211{
4212 if (bsp == NULL)
4213 return NULL;
4214
4215 for (; bsp != NULL; bsp = bsp->next)
4216 {
4217 if (bsp->breakpoint_at == breakpoint)
4218 return bsp;
4219 }
4220 return NULL;
4221}
4222
4223/* See breakpoint.h. */
4224
4225enum bpstat_signal_value
4226bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4227{
4228 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4229
4230 for (; bsp != NULL; bsp = bsp->next)
4231 {
4232 /* Ensure that, if we ever entered this loop, then we at least
4233 return BPSTAT_SIGNAL_HIDE. */
4234 enum bpstat_signal_value newval;
4235
4236 if (bsp->breakpoint_at == NULL)
4237 {
4238 /* A moribund location can never explain a signal other than
4239 GDB_SIGNAL_TRAP. */
4240 if (sig == GDB_SIGNAL_TRAP)
4241 newval = BPSTAT_SIGNAL_HIDE;
4242 else
4243 newval = BPSTAT_SIGNAL_NO;
4244 }
4245 else
4246 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4247 sig);
4248
4249 if (newval > result)
4250 result = newval;
4251 }
4252
4253 return result;
4254}
4255
4256/* Put in *NUM the breakpoint number of the first breakpoint we are
4257 stopped at. *BSP upon return is a bpstat which points to the
4258 remaining breakpoints stopped at (but which is not guaranteed to be
4259 good for anything but further calls to bpstat_num).
4260
4261 Return 0 if passed a bpstat which does not indicate any breakpoints.
4262 Return -1 if stopped at a breakpoint that has been deleted since
4263 we set it.
4264 Return 1 otherwise. */
4265
4266int
4267bpstat_num (bpstat *bsp, int *num)
4268{
4269 struct breakpoint *b;
4270
4271 if ((*bsp) == NULL)
4272 return 0; /* No more breakpoint values */
4273
4274 /* We assume we'll never have several bpstats that correspond to a
4275 single breakpoint -- otherwise, this function might return the
4276 same number more than once and this will look ugly. */
4277 b = (*bsp)->breakpoint_at;
4278 *bsp = (*bsp)->next;
4279 if (b == NULL)
4280 return -1; /* breakpoint that's been deleted since */
4281
4282 *num = b->number; /* We have its number */
4283 return 1;
4284}
4285
4286/* See breakpoint.h. */
4287
4288void
4289bpstat_clear_actions (void)
4290{
4291 struct thread_info *tp;
4292 bpstat bs;
4293
4294 if (ptid_equal (inferior_ptid, null_ptid))
4295 return;
4296
4297 tp = find_thread_ptid (inferior_ptid);
4298 if (tp == NULL)
4299 return;
4300
4301 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4302 {
4303 decref_counted_command_line (&bs->commands);
4304
4305 if (bs->old_val != NULL)
4306 {
4307 value_free (bs->old_val);
4308 bs->old_val = NULL;
4309 }
4310 }
4311}
4312
4313/* Called when a command is about to proceed the inferior. */
4314
4315static void
4316breakpoint_about_to_proceed (void)
4317{
4318 if (!ptid_equal (inferior_ptid, null_ptid))
4319 {
4320 struct thread_info *tp = inferior_thread ();
4321
4322 /* Allow inferior function calls in breakpoint commands to not
4323 interrupt the command list. When the call finishes
4324 successfully, the inferior will be standing at the same
4325 breakpoint as if nothing happened. */
4326 if (tp->control.in_infcall)
4327 return;
4328 }
4329
4330 breakpoint_proceeded = 1;
4331}
4332
4333/* Stub for cleaning up our state if we error-out of a breakpoint
4334 command. */
4335static void
4336cleanup_executing_breakpoints (void *ignore)
4337{
4338 executing_breakpoint_commands = 0;
4339}
4340
4341/* Return non-zero iff CMD as the first line of a command sequence is `silent'
4342 or its equivalent. */
4343
4344static int
4345command_line_is_silent (struct command_line *cmd)
4346{
4347 return cmd && (strcmp ("silent", cmd->line) == 0
4348 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4349}
4350
4351/* Execute all the commands associated with all the breakpoints at
4352 this location. Any of these commands could cause the process to
4353 proceed beyond this point, etc. We look out for such changes by
4354 checking the global "breakpoint_proceeded" after each command.
4355
4356 Returns true if a breakpoint command resumed the inferior. In that
4357 case, it is the caller's responsibility to recall it again with the
4358 bpstat of the current thread. */
4359
4360static int
4361bpstat_do_actions_1 (bpstat *bsp)
4362{
4363 bpstat bs;
4364 struct cleanup *old_chain;
4365 int again = 0;
4366
4367 /* Avoid endless recursion if a `source' command is contained
4368 in bs->commands. */
4369 if (executing_breakpoint_commands)
4370 return 0;
4371
4372 executing_breakpoint_commands = 1;
4373 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4374
4375 prevent_dont_repeat ();
4376
4377 /* This pointer will iterate over the list of bpstat's. */
4378 bs = *bsp;
4379
4380 breakpoint_proceeded = 0;
4381 for (; bs != NULL; bs = bs->next)
4382 {
4383 struct counted_command_line *ccmd;
4384 struct command_line *cmd;
4385 struct cleanup *this_cmd_tree_chain;
4386
4387 /* Take ownership of the BSP's command tree, if it has one.
4388
4389 The command tree could legitimately contain commands like
4390 'step' and 'next', which call clear_proceed_status, which
4391 frees stop_bpstat's command tree. To make sure this doesn't
4392 free the tree we're executing out from under us, we need to
4393 take ownership of the tree ourselves. Since a given bpstat's
4394 commands are only executed once, we don't need to copy it; we
4395 can clear the pointer in the bpstat, and make sure we free
4396 the tree when we're done. */
4397 ccmd = bs->commands;
4398 bs->commands = NULL;
4399 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4400 cmd = ccmd ? ccmd->commands : NULL;
4401 if (command_line_is_silent (cmd))
4402 {
4403 /* The action has been already done by bpstat_stop_status. */
4404 cmd = cmd->next;
4405 }
4406
4407 while (cmd != NULL)
4408 {
4409 execute_control_command (cmd);
4410
4411 if (breakpoint_proceeded)
4412 break;
4413 else
4414 cmd = cmd->next;
4415 }
4416
4417 /* We can free this command tree now. */
4418 do_cleanups (this_cmd_tree_chain);
4419
4420 if (breakpoint_proceeded)
4421 {
4422 if (target_can_async_p ())
4423 /* If we are in async mode, then the target might be still
4424 running, not stopped at any breakpoint, so nothing for
4425 us to do here -- just return to the event loop. */
4426 ;
4427 else
4428 /* In sync mode, when execute_control_command returns
4429 we're already standing on the next breakpoint.
4430 Breakpoint commands for that stop were not run, since
4431 execute_command does not run breakpoint commands --
4432 only command_line_handler does, but that one is not
4433 involved in execution of breakpoint commands. So, we
4434 can now execute breakpoint commands. It should be
4435 noted that making execute_command do bpstat actions is
4436 not an option -- in this case we'll have recursive
4437 invocation of bpstat for each breakpoint with a
4438 command, and can easily blow up GDB stack. Instead, we
4439 return true, which will trigger the caller to recall us
4440 with the new stop_bpstat. */
4441 again = 1;
4442 break;
4443 }
4444 }
4445 do_cleanups (old_chain);
4446 return again;
4447}
4448
4449void
4450bpstat_do_actions (void)
4451{
4452 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4453
4454 /* Do any commands attached to breakpoint we are stopped at. */
4455 while (!ptid_equal (inferior_ptid, null_ptid)
4456 && target_has_execution
4457 && !is_exited (inferior_ptid)
4458 && !is_executing (inferior_ptid))
4459 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4460 and only return when it is stopped at the next breakpoint, we
4461 keep doing breakpoint actions until it returns false to
4462 indicate the inferior was not resumed. */
4463 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4464 break;
4465
4466 discard_cleanups (cleanup_if_error);
4467}
4468
4469/* Print out the (old or new) value associated with a watchpoint. */
4470
4471static void
4472watchpoint_value_print (struct value *val, struct ui_file *stream)
4473{
4474 if (val == NULL)
4475 fprintf_unfiltered (stream, _("<unreadable>"));
4476 else
4477 {
4478 struct value_print_options opts;
4479 get_user_print_options (&opts);
4480 value_print (val, stream, &opts);
4481 }
4482}
4483
4484/* Generic routine for printing messages indicating why we
4485 stopped. The behavior of this function depends on the value
4486 'print_it' in the bpstat structure. Under some circumstances we
4487 may decide not to print anything here and delegate the task to
4488 normal_stop(). */
4489
4490static enum print_stop_action
4491print_bp_stop_message (bpstat bs)
4492{
4493 switch (bs->print_it)
4494 {
4495 case print_it_noop:
4496 /* Nothing should be printed for this bpstat entry. */
4497 return PRINT_UNKNOWN;
4498 break;
4499
4500 case print_it_done:
4501 /* We still want to print the frame, but we already printed the
4502 relevant messages. */
4503 return PRINT_SRC_AND_LOC;
4504 break;
4505
4506 case print_it_normal:
4507 {
4508 struct breakpoint *b = bs->breakpoint_at;
4509
4510 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4511 which has since been deleted. */
4512 if (b == NULL)
4513 return PRINT_UNKNOWN;
4514
4515 /* Normal case. Call the breakpoint's print_it method. */
4516 return b->ops->print_it (bs);
4517 }
4518 break;
4519
4520 default:
4521 internal_error (__FILE__, __LINE__,
4522 _("print_bp_stop_message: unrecognized enum value"));
4523 break;
4524 }
4525}
4526
4527/* A helper function that prints a shared library stopped event. */
4528
4529static void
4530print_solib_event (int is_catchpoint)
4531{
4532 int any_deleted
4533 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4534 int any_added
4535 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4536
4537 if (!is_catchpoint)
4538 {
4539 if (any_added || any_deleted)
4540 ui_out_text (current_uiout,
4541 _("Stopped due to shared library event:\n"));
4542 else
4543 ui_out_text (current_uiout,
4544 _("Stopped due to shared library event (no "
4545 "libraries added or removed)\n"));
4546 }
4547
4548 if (ui_out_is_mi_like_p (current_uiout))
4549 ui_out_field_string (current_uiout, "reason",
4550 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4551
4552 if (any_deleted)
4553 {
4554 struct cleanup *cleanup;
4555 char *name;
4556 int ix;
4557
4558 ui_out_text (current_uiout, _(" Inferior unloaded "));
4559 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4560 "removed");
4561 for (ix = 0;
4562 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4563 ix, name);
4564 ++ix)
4565 {
4566 if (ix > 0)
4567 ui_out_text (current_uiout, " ");
4568 ui_out_field_string (current_uiout, "library", name);
4569 ui_out_text (current_uiout, "\n");
4570 }
4571
4572 do_cleanups (cleanup);
4573 }
4574
4575 if (any_added)
4576 {
4577 struct so_list *iter;
4578 int ix;
4579 struct cleanup *cleanup;
4580
4581 ui_out_text (current_uiout, _(" Inferior loaded "));
4582 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4583 "added");
4584 for (ix = 0;
4585 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4586 ix, iter);
4587 ++ix)
4588 {
4589 if (ix > 0)
4590 ui_out_text (current_uiout, " ");
4591 ui_out_field_string (current_uiout, "library", iter->so_name);
4592 ui_out_text (current_uiout, "\n");
4593 }
4594
4595 do_cleanups (cleanup);
4596 }
4597}
4598
4599/* Print a message indicating what happened. This is called from
4600 normal_stop(). The input to this routine is the head of the bpstat
4601 list - a list of the eventpoints that caused this stop. KIND is
4602 the target_waitkind for the stopping event. This
4603 routine calls the generic print routine for printing a message
4604 about reasons for stopping. This will print (for example) the
4605 "Breakpoint n," part of the output. The return value of this
4606 routine is one of:
4607
4608 PRINT_UNKNOWN: Means we printed nothing.
4609 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4610 code to print the location. An example is
4611 "Breakpoint 1, " which should be followed by
4612 the location.
4613 PRINT_SRC_ONLY: Means we printed something, but there is no need
4614 to also print the location part of the message.
4615 An example is the catch/throw messages, which
4616 don't require a location appended to the end.
4617 PRINT_NOTHING: We have done some printing and we don't need any
4618 further info to be printed. */
4619
4620enum print_stop_action
4621bpstat_print (bpstat bs, int kind)
4622{
4623 int val;
4624
4625 /* Maybe another breakpoint in the chain caused us to stop.
4626 (Currently all watchpoints go on the bpstat whether hit or not.
4627 That probably could (should) be changed, provided care is taken
4628 with respect to bpstat_explains_signal). */
4629 for (; bs; bs = bs->next)
4630 {
4631 val = print_bp_stop_message (bs);
4632 if (val == PRINT_SRC_ONLY
4633 || val == PRINT_SRC_AND_LOC
4634 || val == PRINT_NOTHING)
4635 return val;
4636 }
4637
4638 /* If we had hit a shared library event breakpoint,
4639 print_bp_stop_message would print out this message. If we hit an
4640 OS-level shared library event, do the same thing. */
4641 if (kind == TARGET_WAITKIND_LOADED)
4642 {
4643 print_solib_event (0);
4644 return PRINT_NOTHING;
4645 }
4646
4647 /* We reached the end of the chain, or we got a null BS to start
4648 with and nothing was printed. */
4649 return PRINT_UNKNOWN;
4650}
4651
4652/* Evaluate the expression EXP and return 1 if value is zero. This is
4653 used inside a catch_errors to evaluate the breakpoint condition.
4654 The argument is a "struct expression *" that has been cast to a
4655 "char *" to make it pass through catch_errors. */
4656
4657static int
4658breakpoint_cond_eval (void *exp)
4659{
4660 struct value *mark = value_mark ();
4661 int i = !value_true (evaluate_expression ((struct expression *) exp));
4662
4663 value_free_to_mark (mark);
4664 return i;
4665}
4666
4667/* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4668
4669static bpstat
4670bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4671{
4672 bpstat bs;
4673
4674 bs = (bpstat) xmalloc (sizeof (*bs));
4675 bs->next = NULL;
4676 **bs_link_pointer = bs;
4677 *bs_link_pointer = &bs->next;
4678 bs->breakpoint_at = bl->owner;
4679 bs->bp_location_at = bl;
4680 incref_bp_location (bl);
4681 /* If the condition is false, etc., don't do the commands. */
4682 bs->commands = NULL;
4683 bs->old_val = NULL;
4684 bs->print_it = print_it_normal;
4685 return bs;
4686}
4687\f
4688/* The target has stopped with waitstatus WS. Check if any hardware
4689 watchpoints have triggered, according to the target. */
4690
4691int
4692watchpoints_triggered (struct target_waitstatus *ws)
4693{
4694 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4695 CORE_ADDR addr;
4696 struct breakpoint *b;
4697
4698 if (!stopped_by_watchpoint)
4699 {
4700 /* We were not stopped by a watchpoint. Mark all watchpoints
4701 as not triggered. */
4702 ALL_BREAKPOINTS (b)
4703 if (is_hardware_watchpoint (b))
4704 {
4705 struct watchpoint *w = (struct watchpoint *) b;
4706
4707 w->watchpoint_triggered = watch_triggered_no;
4708 }
4709
4710 return 0;
4711 }
4712
4713 if (!target_stopped_data_address (&current_target, &addr))
4714 {
4715 /* We were stopped by a watchpoint, but we don't know where.
4716 Mark all watchpoints as unknown. */
4717 ALL_BREAKPOINTS (b)
4718 if (is_hardware_watchpoint (b))
4719 {
4720 struct watchpoint *w = (struct watchpoint *) b;
4721
4722 w->watchpoint_triggered = watch_triggered_unknown;
4723 }
4724
4725 return 1;
4726 }
4727
4728 /* The target could report the data address. Mark watchpoints
4729 affected by this data address as triggered, and all others as not
4730 triggered. */
4731
4732 ALL_BREAKPOINTS (b)
4733 if (is_hardware_watchpoint (b))
4734 {
4735 struct watchpoint *w = (struct watchpoint *) b;
4736 struct bp_location *loc;
4737
4738 w->watchpoint_triggered = watch_triggered_no;
4739 for (loc = b->loc; loc; loc = loc->next)
4740 {
4741 if (is_masked_watchpoint (b))
4742 {
4743 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4744 CORE_ADDR start = loc->address & w->hw_wp_mask;
4745
4746 if (newaddr == start)
4747 {
4748 w->watchpoint_triggered = watch_triggered_yes;
4749 break;
4750 }
4751 }
4752 /* Exact match not required. Within range is sufficient. */
4753 else if (target_watchpoint_addr_within_range (&current_target,
4754 addr, loc->address,
4755 loc->length))
4756 {
4757 w->watchpoint_triggered = watch_triggered_yes;
4758 break;
4759 }
4760 }
4761 }
4762
4763 return 1;
4764}
4765
4766/* Possible return values for watchpoint_check (this can't be an enum
4767 because of check_errors). */
4768/* The watchpoint has been deleted. */
4769#define WP_DELETED 1
4770/* The value has changed. */
4771#define WP_VALUE_CHANGED 2
4772/* The value has not changed. */
4773#define WP_VALUE_NOT_CHANGED 3
4774/* Ignore this watchpoint, no matter if the value changed or not. */
4775#define WP_IGNORE 4
4776
4777#define BP_TEMPFLAG 1
4778#define BP_HARDWAREFLAG 2
4779
4780/* Evaluate watchpoint condition expression and check if its value
4781 changed.
4782
4783 P should be a pointer to struct bpstat, but is defined as a void *
4784 in order for this function to be usable with catch_errors. */
4785
4786static int
4787watchpoint_check (void *p)
4788{
4789 bpstat bs = (bpstat) p;
4790 struct watchpoint *b;
4791 struct frame_info *fr;
4792 int within_current_scope;
4793
4794 /* BS is built from an existing struct breakpoint. */
4795 gdb_assert (bs->breakpoint_at != NULL);
4796 b = (struct watchpoint *) bs->breakpoint_at;
4797
4798 /* If this is a local watchpoint, we only want to check if the
4799 watchpoint frame is in scope if the current thread is the thread
4800 that was used to create the watchpoint. */
4801 if (!watchpoint_in_thread_scope (b))
4802 return WP_IGNORE;
4803
4804 if (b->exp_valid_block == NULL)
4805 within_current_scope = 1;
4806 else
4807 {
4808 struct frame_info *frame = get_current_frame ();
4809 struct gdbarch *frame_arch = get_frame_arch (frame);
4810 CORE_ADDR frame_pc = get_frame_pc (frame);
4811
4812 /* in_function_epilogue_p() returns a non-zero value if we're
4813 still in the function but the stack frame has already been
4814 invalidated. Since we can't rely on the values of local
4815 variables after the stack has been destroyed, we are treating
4816 the watchpoint in that state as `not changed' without further
4817 checking. Don't mark watchpoints as changed if the current
4818 frame is in an epilogue - even if they are in some other
4819 frame, our view of the stack is likely to be wrong and
4820 frame_find_by_id could error out. */
4821 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4822 return WP_IGNORE;
4823
4824 fr = frame_find_by_id (b->watchpoint_frame);
4825 within_current_scope = (fr != NULL);
4826
4827 /* If we've gotten confused in the unwinder, we might have
4828 returned a frame that can't describe this variable. */
4829 if (within_current_scope)
4830 {
4831 struct symbol *function;
4832
4833 function = get_frame_function (fr);
4834 if (function == NULL
4835 || !contained_in (b->exp_valid_block,
4836 SYMBOL_BLOCK_VALUE (function)))
4837 within_current_scope = 0;
4838 }
4839
4840 if (within_current_scope)
4841 /* If we end up stopping, the current frame will get selected
4842 in normal_stop. So this call to select_frame won't affect
4843 the user. */
4844 select_frame (fr);
4845 }
4846
4847 if (within_current_scope)
4848 {
4849 /* We use value_{,free_to_}mark because it could be a *long*
4850 time before we return to the command level and call
4851 free_all_values. We can't call free_all_values because we
4852 might be in the middle of evaluating a function call. */
4853
4854 int pc = 0;
4855 struct value *mark;
4856 struct value *new_val;
4857
4858 if (is_masked_watchpoint (&b->base))
4859 /* Since we don't know the exact trigger address (from
4860 stopped_data_address), just tell the user we've triggered
4861 a mask watchpoint. */
4862 return WP_VALUE_CHANGED;
4863
4864 mark = value_mark ();
4865 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4866
4867 /* We use value_equal_contents instead of value_equal because
4868 the latter coerces an array to a pointer, thus comparing just
4869 the address of the array instead of its contents. This is
4870 not what we want. */
4871 if ((b->val != NULL) != (new_val != NULL)
4872 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4873 {
4874 if (new_val != NULL)
4875 {
4876 release_value (new_val);
4877 value_free_to_mark (mark);
4878 }
4879 bs->old_val = b->val;
4880 b->val = new_val;
4881 b->val_valid = 1;
4882 return WP_VALUE_CHANGED;
4883 }
4884 else
4885 {
4886 /* Nothing changed. */
4887 value_free_to_mark (mark);
4888 return WP_VALUE_NOT_CHANGED;
4889 }
4890 }
4891 else
4892 {
4893 struct ui_out *uiout = current_uiout;
4894
4895 /* This seems like the only logical thing to do because
4896 if we temporarily ignored the watchpoint, then when
4897 we reenter the block in which it is valid it contains
4898 garbage (in the case of a function, it may have two
4899 garbage values, one before and one after the prologue).
4900 So we can't even detect the first assignment to it and
4901 watch after that (since the garbage may or may not equal
4902 the first value assigned). */
4903 /* We print all the stop information in
4904 breakpoint_ops->print_it, but in this case, by the time we
4905 call breakpoint_ops->print_it this bp will be deleted
4906 already. So we have no choice but print the information
4907 here. */
4908 if (ui_out_is_mi_like_p (uiout))
4909 ui_out_field_string
4910 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4911 ui_out_text (uiout, "\nWatchpoint ");
4912 ui_out_field_int (uiout, "wpnum", b->base.number);
4913 ui_out_text (uiout,
4914 " deleted because the program has left the block in\n\
4915which its expression is valid.\n");
4916
4917 /* Make sure the watchpoint's commands aren't executed. */
4918 decref_counted_command_line (&b->base.commands);
4919 watchpoint_del_at_next_stop (b);
4920
4921 return WP_DELETED;
4922 }
4923}
4924
4925/* Return true if it looks like target has stopped due to hitting
4926 breakpoint location BL. This function does not check if we should
4927 stop, only if BL explains the stop. */
4928
4929static int
4930bpstat_check_location (const struct bp_location *bl,
4931 struct address_space *aspace, CORE_ADDR bp_addr,
4932 const struct target_waitstatus *ws)
4933{
4934 struct breakpoint *b = bl->owner;
4935
4936 /* BL is from an existing breakpoint. */
4937 gdb_assert (b != NULL);
4938
4939 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4940}
4941
4942/* Determine if the watched values have actually changed, and we
4943 should stop. If not, set BS->stop to 0. */
4944
4945static void
4946bpstat_check_watchpoint (bpstat bs)
4947{
4948 const struct bp_location *bl;
4949 struct watchpoint *b;
4950
4951 /* BS is built for existing struct breakpoint. */
4952 bl = bs->bp_location_at;
4953 gdb_assert (bl != NULL);
4954 b = (struct watchpoint *) bs->breakpoint_at;
4955 gdb_assert (b != NULL);
4956
4957 {
4958 int must_check_value = 0;
4959
4960 if (b->base.type == bp_watchpoint)
4961 /* For a software watchpoint, we must always check the
4962 watched value. */
4963 must_check_value = 1;
4964 else if (b->watchpoint_triggered == watch_triggered_yes)
4965 /* We have a hardware watchpoint (read, write, or access)
4966 and the target earlier reported an address watched by
4967 this watchpoint. */
4968 must_check_value = 1;
4969 else if (b->watchpoint_triggered == watch_triggered_unknown
4970 && b->base.type == bp_hardware_watchpoint)
4971 /* We were stopped by a hardware watchpoint, but the target could
4972 not report the data address. We must check the watchpoint's
4973 value. Access and read watchpoints are out of luck; without
4974 a data address, we can't figure it out. */
4975 must_check_value = 1;
4976
4977 if (must_check_value)
4978 {
4979 char *message
4980 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4981 b->base.number);
4982 struct cleanup *cleanups = make_cleanup (xfree, message);
4983 int e = catch_errors (watchpoint_check, bs, message,
4984 RETURN_MASK_ALL);
4985 do_cleanups (cleanups);
4986 switch (e)
4987 {
4988 case WP_DELETED:
4989 /* We've already printed what needs to be printed. */
4990 bs->print_it = print_it_done;
4991 /* Stop. */
4992 break;
4993 case WP_IGNORE:
4994 bs->print_it = print_it_noop;
4995 bs->stop = 0;
4996 break;
4997 case WP_VALUE_CHANGED:
4998 if (b->base.type == bp_read_watchpoint)
4999 {
5000 /* There are two cases to consider here:
5001
5002 1. We're watching the triggered memory for reads.
5003 In that case, trust the target, and always report
5004 the watchpoint hit to the user. Even though
5005 reads don't cause value changes, the value may
5006 have changed since the last time it was read, and
5007 since we're not trapping writes, we will not see
5008 those, and as such we should ignore our notion of
5009 old value.
5010
5011 2. We're watching the triggered memory for both
5012 reads and writes. There are two ways this may
5013 happen:
5014
5015 2.1. This is a target that can't break on data
5016 reads only, but can break on accesses (reads or
5017 writes), such as e.g., x86. We detect this case
5018 at the time we try to insert read watchpoints.
5019
5020 2.2. Otherwise, the target supports read
5021 watchpoints, but, the user set an access or write
5022 watchpoint watching the same memory as this read
5023 watchpoint.
5024
5025 If we're watching memory writes as well as reads,
5026 ignore watchpoint hits when we find that the
5027 value hasn't changed, as reads don't cause
5028 changes. This still gives false positives when
5029 the program writes the same value to memory as
5030 what there was already in memory (we will confuse
5031 it for a read), but it's much better than
5032 nothing. */
5033
5034 int other_write_watchpoint = 0;
5035
5036 if (bl->watchpoint_type == hw_read)
5037 {
5038 struct breakpoint *other_b;
5039
5040 ALL_BREAKPOINTS (other_b)
5041 if (other_b->type == bp_hardware_watchpoint
5042 || other_b->type == bp_access_watchpoint)
5043 {
5044 struct watchpoint *other_w =
5045 (struct watchpoint *) other_b;
5046
5047 if (other_w->watchpoint_triggered
5048 == watch_triggered_yes)
5049 {
5050 other_write_watchpoint = 1;
5051 break;
5052 }
5053 }
5054 }
5055
5056 if (other_write_watchpoint
5057 || bl->watchpoint_type == hw_access)
5058 {
5059 /* We're watching the same memory for writes,
5060 and the value changed since the last time we
5061 updated it, so this trap must be for a write.
5062 Ignore it. */
5063 bs->print_it = print_it_noop;
5064 bs->stop = 0;
5065 }
5066 }
5067 break;
5068 case WP_VALUE_NOT_CHANGED:
5069 if (b->base.type == bp_hardware_watchpoint
5070 || b->base.type == bp_watchpoint)
5071 {
5072 /* Don't stop: write watchpoints shouldn't fire if
5073 the value hasn't changed. */
5074 bs->print_it = print_it_noop;
5075 bs->stop = 0;
5076 }
5077 /* Stop. */
5078 break;
5079 default:
5080 /* Can't happen. */
5081 case 0:
5082 /* Error from catch_errors. */
5083 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5084 watchpoint_del_at_next_stop (b);
5085 /* We've already printed what needs to be printed. */
5086 bs->print_it = print_it_done;
5087 break;
5088 }
5089 }
5090 else /* must_check_value == 0 */
5091 {
5092 /* This is a case where some watchpoint(s) triggered, but
5093 not at the address of this watchpoint, or else no
5094 watchpoint triggered after all. So don't print
5095 anything for this watchpoint. */
5096 bs->print_it = print_it_noop;
5097 bs->stop = 0;
5098 }
5099 }
5100}
5101
5102
5103/* Check conditions (condition proper, frame, thread and ignore count)
5104 of breakpoint referred to by BS. If we should not stop for this
5105 breakpoint, set BS->stop to 0. */
5106
5107static void
5108bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5109{
5110 int thread_id = pid_to_thread_id (ptid);
5111 const struct bp_location *bl;
5112 struct breakpoint *b;
5113
5114 /* BS is built for existing struct breakpoint. */
5115 bl = bs->bp_location_at;
5116 gdb_assert (bl != NULL);
5117 b = bs->breakpoint_at;
5118 gdb_assert (b != NULL);
5119
5120 /* Even if the target evaluated the condition on its end and notified GDB, we
5121 need to do so again since GDB does not know if we stopped due to a
5122 breakpoint or a single step breakpoint. */
5123
5124 if (frame_id_p (b->frame_id)
5125 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5126 bs->stop = 0;
5127 else if (bs->stop)
5128 {
5129 int value_is_zero = 0;
5130 struct expression *cond;
5131
5132 /* Evaluate Python breakpoints that have a "stop"
5133 method implemented. */
5134 if (b->py_bp_object)
5135 bs->stop = gdbpy_should_stop (b->py_bp_object);
5136
5137 if (is_watchpoint (b))
5138 {
5139 struct watchpoint *w = (struct watchpoint *) b;
5140
5141 cond = w->cond_exp;
5142 }
5143 else
5144 cond = bl->cond;
5145
5146 if (cond && b->disposition != disp_del_at_next_stop)
5147 {
5148 int within_current_scope = 1;
5149 struct watchpoint * w;
5150
5151 /* We use value_mark and value_free_to_mark because it could
5152 be a long time before we return to the command level and
5153 call free_all_values. We can't call free_all_values
5154 because we might be in the middle of evaluating a
5155 function call. */
5156 struct value *mark = value_mark ();
5157
5158 if (is_watchpoint (b))
5159 w = (struct watchpoint *) b;
5160 else
5161 w = NULL;
5162
5163 /* Need to select the frame, with all that implies so that
5164 the conditions will have the right context. Because we
5165 use the frame, we will not see an inlined function's
5166 variables when we arrive at a breakpoint at the start
5167 of the inlined function; the current frame will be the
5168 call site. */
5169 if (w == NULL || w->cond_exp_valid_block == NULL)
5170 select_frame (get_current_frame ());
5171 else
5172 {
5173 struct frame_info *frame;
5174
5175 /* For local watchpoint expressions, which particular
5176 instance of a local is being watched matters, so we
5177 keep track of the frame to evaluate the expression
5178 in. To evaluate the condition however, it doesn't
5179 really matter which instantiation of the function
5180 where the condition makes sense triggers the
5181 watchpoint. This allows an expression like "watch
5182 global if q > 10" set in `func', catch writes to
5183 global on all threads that call `func', or catch
5184 writes on all recursive calls of `func' by a single
5185 thread. We simply always evaluate the condition in
5186 the innermost frame that's executing where it makes
5187 sense to evaluate the condition. It seems
5188 intuitive. */
5189 frame = block_innermost_frame (w->cond_exp_valid_block);
5190 if (frame != NULL)
5191 select_frame (frame);
5192 else
5193 within_current_scope = 0;
5194 }
5195 if (within_current_scope)
5196 value_is_zero
5197 = catch_errors (breakpoint_cond_eval, cond,
5198 "Error in testing breakpoint condition:\n",
5199 RETURN_MASK_ALL);
5200 else
5201 {
5202 warning (_("Watchpoint condition cannot be tested "
5203 "in the current scope"));
5204 /* If we failed to set the right context for this
5205 watchpoint, unconditionally report it. */
5206 value_is_zero = 0;
5207 }
5208 /* FIXME-someday, should give breakpoint #. */
5209 value_free_to_mark (mark);
5210 }
5211
5212 if (cond && value_is_zero)
5213 {
5214 bs->stop = 0;
5215 }
5216 else if (b->thread != -1 && b->thread != thread_id)
5217 {
5218 bs->stop = 0;
5219 }
5220 else if (b->ignore_count > 0)
5221 {
5222 b->ignore_count--;
5223 bs->stop = 0;
5224 /* Increase the hit count even though we don't stop. */
5225 ++(b->hit_count);
5226 observer_notify_breakpoint_modified (b);
5227 }
5228 }
5229}
5230
5231
5232/* Get a bpstat associated with having just stopped at address
5233 BP_ADDR in thread PTID.
5234
5235 Determine whether we stopped at a breakpoint, etc, or whether we
5236 don't understand this stop. Result is a chain of bpstat's such
5237 that:
5238
5239 if we don't understand the stop, the result is a null pointer.
5240
5241 if we understand why we stopped, the result is not null.
5242
5243 Each element of the chain refers to a particular breakpoint or
5244 watchpoint at which we have stopped. (We may have stopped for
5245 several reasons concurrently.)
5246
5247 Each element of the chain has valid next, breakpoint_at,
5248 commands, FIXME??? fields. */
5249
5250bpstat
5251bpstat_stop_status (struct address_space *aspace,
5252 CORE_ADDR bp_addr, ptid_t ptid,
5253 const struct target_waitstatus *ws)
5254{
5255 struct breakpoint *b = NULL;
5256 struct bp_location *bl;
5257 struct bp_location *loc;
5258 /* First item of allocated bpstat's. */
5259 bpstat bs_head = NULL, *bs_link = &bs_head;
5260 /* Pointer to the last thing in the chain currently. */
5261 bpstat bs;
5262 int ix;
5263 int need_remove_insert;
5264 int removed_any;
5265
5266 /* First, build the bpstat chain with locations that explain a
5267 target stop, while being careful to not set the target running,
5268 as that may invalidate locations (in particular watchpoint
5269 locations are recreated). Resuming will happen here with
5270 breakpoint conditions or watchpoint expressions that include
5271 inferior function calls. */
5272
5273 ALL_BREAKPOINTS (b)
5274 {
5275 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5276 continue;
5277
5278 for (bl = b->loc; bl != NULL; bl = bl->next)
5279 {
5280 /* For hardware watchpoints, we look only at the first
5281 location. The watchpoint_check function will work on the
5282 entire expression, not the individual locations. For
5283 read watchpoints, the watchpoints_triggered function has
5284 checked all locations already. */
5285 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5286 break;
5287
5288 if (!bl->enabled || bl->shlib_disabled)
5289 continue;
5290
5291 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5292 continue;
5293
5294 /* Come here if it's a watchpoint, or if the break address
5295 matches. */
5296
5297 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5298 explain stop. */
5299
5300 /* Assume we stop. Should we find a watchpoint that is not
5301 actually triggered, or if the condition of the breakpoint
5302 evaluates as false, we'll reset 'stop' to 0. */
5303 bs->stop = 1;
5304 bs->print = 1;
5305
5306 /* If this is a scope breakpoint, mark the associated
5307 watchpoint as triggered so that we will handle the
5308 out-of-scope event. We'll get to the watchpoint next
5309 iteration. */
5310 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5311 {
5312 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5313
5314 w->watchpoint_triggered = watch_triggered_yes;
5315 }
5316 }
5317 }
5318
5319 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5320 {
5321 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5322 {
5323 bs = bpstat_alloc (loc, &bs_link);
5324 /* For hits of moribund locations, we should just proceed. */
5325 bs->stop = 0;
5326 bs->print = 0;
5327 bs->print_it = print_it_noop;
5328 }
5329 }
5330
5331 /* A bit of special processing for shlib breakpoints. We need to
5332 process solib loading here, so that the lists of loaded and
5333 unloaded libraries are correct before we handle "catch load" and
5334 "catch unload". */
5335 for (bs = bs_head; bs != NULL; bs = bs->next)
5336 {
5337 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5338 {
5339 handle_solib_event ();
5340 break;
5341 }
5342 }
5343
5344 /* Now go through the locations that caused the target to stop, and
5345 check whether we're interested in reporting this stop to higher
5346 layers, or whether we should resume the target transparently. */
5347
5348 removed_any = 0;
5349
5350 for (bs = bs_head; bs != NULL; bs = bs->next)
5351 {
5352 if (!bs->stop)
5353 continue;
5354
5355 b = bs->breakpoint_at;
5356 b->ops->check_status (bs);
5357 if (bs->stop)
5358 {
5359 bpstat_check_breakpoint_conditions (bs, ptid);
5360
5361 if (bs->stop)
5362 {
5363 ++(b->hit_count);
5364 observer_notify_breakpoint_modified (b);
5365
5366 /* We will stop here. */
5367 if (b->disposition == disp_disable)
5368 {
5369 --(b->enable_count);
5370 if (b->enable_count <= 0
5371 && b->enable_state != bp_permanent)
5372 b->enable_state = bp_disabled;
5373 removed_any = 1;
5374 }
5375 if (b->silent)
5376 bs->print = 0;
5377 bs->commands = b->commands;
5378 incref_counted_command_line (bs->commands);
5379 if (command_line_is_silent (bs->commands
5380 ? bs->commands->commands : NULL))
5381 bs->print = 0;
5382
5383 b->ops->after_condition_true (bs);
5384 }
5385
5386 }
5387
5388 /* Print nothing for this entry if we don't stop or don't
5389 print. */
5390 if (!bs->stop || !bs->print)
5391 bs->print_it = print_it_noop;
5392 }
5393
5394 /* If we aren't stopping, the value of some hardware watchpoint may
5395 not have changed, but the intermediate memory locations we are
5396 watching may have. Don't bother if we're stopping; this will get
5397 done later. */
5398 need_remove_insert = 0;
5399 if (! bpstat_causes_stop (bs_head))
5400 for (bs = bs_head; bs != NULL; bs = bs->next)
5401 if (!bs->stop
5402 && bs->breakpoint_at
5403 && is_hardware_watchpoint (bs->breakpoint_at))
5404 {
5405 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5406
5407 update_watchpoint (w, 0 /* don't reparse. */);
5408 need_remove_insert = 1;
5409 }
5410
5411 if (need_remove_insert)
5412 update_global_location_list (1);
5413 else if (removed_any)
5414 update_global_location_list (0);
5415
5416 return bs_head;
5417}
5418
5419static void
5420handle_jit_event (void)
5421{
5422 struct frame_info *frame;
5423 struct gdbarch *gdbarch;
5424
5425 /* Switch terminal for any messages produced by
5426 breakpoint_re_set. */
5427 target_terminal_ours_for_output ();
5428
5429 frame = get_current_frame ();
5430 gdbarch = get_frame_arch (frame);
5431
5432 jit_event_handler (gdbarch);
5433
5434 target_terminal_inferior ();
5435}
5436
5437/* Prepare WHAT final decision for infrun. */
5438
5439/* Decide what infrun needs to do with this bpstat. */
5440
5441struct bpstat_what
5442bpstat_what (bpstat bs_head)
5443{
5444 struct bpstat_what retval;
5445 int jit_event = 0;
5446 bpstat bs;
5447
5448 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5449 retval.call_dummy = STOP_NONE;
5450 retval.is_longjmp = 0;
5451
5452 for (bs = bs_head; bs != NULL; bs = bs->next)
5453 {
5454 /* Extract this BS's action. After processing each BS, we check
5455 if its action overrides all we've seem so far. */
5456 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5457 enum bptype bptype;
5458
5459 if (bs->breakpoint_at == NULL)
5460 {
5461 /* I suspect this can happen if it was a momentary
5462 breakpoint which has since been deleted. */
5463 bptype = bp_none;
5464 }
5465 else
5466 bptype = bs->breakpoint_at->type;
5467
5468 switch (bptype)
5469 {
5470 case bp_none:
5471 break;
5472 case bp_breakpoint:
5473 case bp_hardware_breakpoint:
5474 case bp_until:
5475 case bp_finish:
5476 case bp_shlib_event:
5477 if (bs->stop)
5478 {
5479 if (bs->print)
5480 this_action = BPSTAT_WHAT_STOP_NOISY;
5481 else
5482 this_action = BPSTAT_WHAT_STOP_SILENT;
5483 }
5484 else
5485 this_action = BPSTAT_WHAT_SINGLE;
5486 break;
5487 case bp_watchpoint:
5488 case bp_hardware_watchpoint:
5489 case bp_read_watchpoint:
5490 case bp_access_watchpoint:
5491 if (bs->stop)
5492 {
5493 if (bs->print)
5494 this_action = BPSTAT_WHAT_STOP_NOISY;
5495 else
5496 this_action = BPSTAT_WHAT_STOP_SILENT;
5497 }
5498 else
5499 {
5500 /* There was a watchpoint, but we're not stopping.
5501 This requires no further action. */
5502 }
5503 break;
5504 case bp_longjmp:
5505 case bp_longjmp_call_dummy:
5506 case bp_exception:
5507 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5508 retval.is_longjmp = bptype != bp_exception;
5509 break;
5510 case bp_longjmp_resume:
5511 case bp_exception_resume:
5512 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5513 retval.is_longjmp = bptype == bp_longjmp_resume;
5514 break;
5515 case bp_step_resume:
5516 if (bs->stop)
5517 this_action = BPSTAT_WHAT_STEP_RESUME;
5518 else
5519 {
5520 /* It is for the wrong frame. */
5521 this_action = BPSTAT_WHAT_SINGLE;
5522 }
5523 break;
5524 case bp_hp_step_resume:
5525 if (bs->stop)
5526 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5527 else
5528 {
5529 /* It is for the wrong frame. */
5530 this_action = BPSTAT_WHAT_SINGLE;
5531 }
5532 break;
5533 case bp_watchpoint_scope:
5534 case bp_thread_event:
5535 case bp_overlay_event:
5536 case bp_longjmp_master:
5537 case bp_std_terminate_master:
5538 case bp_exception_master:
5539 this_action = BPSTAT_WHAT_SINGLE;
5540 break;
5541 case bp_catchpoint:
5542 if (bs->stop)
5543 {
5544 if (bs->print)
5545 this_action = BPSTAT_WHAT_STOP_NOISY;
5546 else
5547 this_action = BPSTAT_WHAT_STOP_SILENT;
5548 }
5549 else
5550 {
5551 /* There was a catchpoint, but we're not stopping.
5552 This requires no further action. */
5553 }
5554 break;
5555 case bp_jit_event:
5556 jit_event = 1;
5557 this_action = BPSTAT_WHAT_SINGLE;
5558 break;
5559 case bp_call_dummy:
5560 /* Make sure the action is stop (silent or noisy),
5561 so infrun.c pops the dummy frame. */
5562 retval.call_dummy = STOP_STACK_DUMMY;
5563 this_action = BPSTAT_WHAT_STOP_SILENT;
5564 break;
5565 case bp_std_terminate:
5566 /* Make sure the action is stop (silent or noisy),
5567 so infrun.c pops the dummy frame. */
5568 retval.call_dummy = STOP_STD_TERMINATE;
5569 this_action = BPSTAT_WHAT_STOP_SILENT;
5570 break;
5571 case bp_tracepoint:
5572 case bp_fast_tracepoint:
5573 case bp_static_tracepoint:
5574 /* Tracepoint hits should not be reported back to GDB, and
5575 if one got through somehow, it should have been filtered
5576 out already. */
5577 internal_error (__FILE__, __LINE__,
5578 _("bpstat_what: tracepoint encountered"));
5579 break;
5580 case bp_gnu_ifunc_resolver:
5581 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5582 this_action = BPSTAT_WHAT_SINGLE;
5583 break;
5584 case bp_gnu_ifunc_resolver_return:
5585 /* The breakpoint will be removed, execution will restart from the
5586 PC of the former breakpoint. */
5587 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5588 break;
5589
5590 case bp_dprintf:
5591 if (bs->stop)
5592 this_action = BPSTAT_WHAT_STOP_SILENT;
5593 else
5594 this_action = BPSTAT_WHAT_SINGLE;
5595 break;
5596
5597 default:
5598 internal_error (__FILE__, __LINE__,
5599 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5600 }
5601
5602 retval.main_action = max (retval.main_action, this_action);
5603 }
5604
5605 /* These operations may affect the bs->breakpoint_at state so they are
5606 delayed after MAIN_ACTION is decided above. */
5607
5608 if (jit_event)
5609 {
5610 if (debug_infrun)
5611 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5612
5613 handle_jit_event ();
5614 }
5615
5616 for (bs = bs_head; bs != NULL; bs = bs->next)
5617 {
5618 struct breakpoint *b = bs->breakpoint_at;
5619
5620 if (b == NULL)
5621 continue;
5622 switch (b->type)
5623 {
5624 case bp_gnu_ifunc_resolver:
5625 gnu_ifunc_resolver_stop (b);
5626 break;
5627 case bp_gnu_ifunc_resolver_return:
5628 gnu_ifunc_resolver_return_stop (b);
5629 break;
5630 }
5631 }
5632
5633 return retval;
5634}
5635
5636/* Nonzero if we should step constantly (e.g. watchpoints on machines
5637 without hardware support). This isn't related to a specific bpstat,
5638 just to things like whether watchpoints are set. */
5639
5640int
5641bpstat_should_step (void)
5642{
5643 struct breakpoint *b;
5644
5645 ALL_BREAKPOINTS (b)
5646 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5647 return 1;
5648 return 0;
5649}
5650
5651int
5652bpstat_causes_stop (bpstat bs)
5653{
5654 for (; bs != NULL; bs = bs->next)
5655 if (bs->stop)
5656 return 1;
5657
5658 return 0;
5659}
5660
5661\f
5662
5663/* Compute a string of spaces suitable to indent the next line
5664 so it starts at the position corresponding to the table column
5665 named COL_NAME in the currently active table of UIOUT. */
5666
5667static char *
5668wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5669{
5670 static char wrap_indent[80];
5671 int i, total_width, width, align;
5672 char *text;
5673
5674 total_width = 0;
5675 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5676 {
5677 if (strcmp (text, col_name) == 0)
5678 {
5679 gdb_assert (total_width < sizeof wrap_indent);
5680 memset (wrap_indent, ' ', total_width);
5681 wrap_indent[total_width] = 0;
5682
5683 return wrap_indent;
5684 }
5685
5686 total_width += width + 1;
5687 }
5688
5689 return NULL;
5690}
5691
5692/* Determine if the locations of this breakpoint will have their conditions
5693 evaluated by the target, host or a mix of both. Returns the following:
5694
5695 "host": Host evals condition.
5696 "host or target": Host or Target evals condition.
5697 "target": Target evals condition.
5698*/
5699
5700static const char *
5701bp_condition_evaluator (struct breakpoint *b)
5702{
5703 struct bp_location *bl;
5704 char host_evals = 0;
5705 char target_evals = 0;
5706
5707 if (!b)
5708 return NULL;
5709
5710 if (!is_breakpoint (b))
5711 return NULL;
5712
5713 if (gdb_evaluates_breakpoint_condition_p ()
5714 || !target_supports_evaluation_of_breakpoint_conditions ())
5715 return condition_evaluation_host;
5716
5717 for (bl = b->loc; bl; bl = bl->next)
5718 {
5719 if (bl->cond_bytecode)
5720 target_evals++;
5721 else
5722 host_evals++;
5723 }
5724
5725 if (host_evals && target_evals)
5726 return condition_evaluation_both;
5727 else if (target_evals)
5728 return condition_evaluation_target;
5729 else
5730 return condition_evaluation_host;
5731}
5732
5733/* Determine the breakpoint location's condition evaluator. This is
5734 similar to bp_condition_evaluator, but for locations. */
5735
5736static const char *
5737bp_location_condition_evaluator (struct bp_location *bl)
5738{
5739 if (bl && !is_breakpoint (bl->owner))
5740 return NULL;
5741
5742 if (gdb_evaluates_breakpoint_condition_p ()
5743 || !target_supports_evaluation_of_breakpoint_conditions ())
5744 return condition_evaluation_host;
5745
5746 if (bl && bl->cond_bytecode)
5747 return condition_evaluation_target;
5748 else
5749 return condition_evaluation_host;
5750}
5751
5752/* Print the LOC location out of the list of B->LOC locations. */
5753
5754static void
5755print_breakpoint_location (struct breakpoint *b,
5756 struct bp_location *loc)
5757{
5758 struct ui_out *uiout = current_uiout;
5759 struct cleanup *old_chain = save_current_program_space ();
5760
5761 if (loc != NULL && loc->shlib_disabled)
5762 loc = NULL;
5763
5764 if (loc != NULL)
5765 set_current_program_space (loc->pspace);
5766
5767 if (b->display_canonical)
5768 ui_out_field_string (uiout, "what", b->addr_string);
5769 else if (loc && loc->symtab)
5770 {
5771 struct symbol *sym
5772 = find_pc_sect_function (loc->address, loc->section);
5773 if (sym)
5774 {
5775 ui_out_text (uiout, "in ");
5776 ui_out_field_string (uiout, "func",
5777 SYMBOL_PRINT_NAME (sym));
5778 ui_out_text (uiout, " ");
5779 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5780 ui_out_text (uiout, "at ");
5781 }
5782 ui_out_field_string (uiout, "file",
5783 symtab_to_filename_for_display (loc->symtab));
5784 ui_out_text (uiout, ":");
5785
5786 if (ui_out_is_mi_like_p (uiout))
5787 ui_out_field_string (uiout, "fullname",
5788 symtab_to_fullname (loc->symtab));
5789
5790 ui_out_field_int (uiout, "line", loc->line_number);
5791 }
5792 else if (loc)
5793 {
5794 struct ui_file *stb = mem_fileopen ();
5795 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5796
5797 print_address_symbolic (loc->gdbarch, loc->address, stb,
5798 demangle, "");
5799 ui_out_field_stream (uiout, "at", stb);
5800
5801 do_cleanups (stb_chain);
5802 }
5803 else
5804 ui_out_field_string (uiout, "pending", b->addr_string);
5805
5806 if (loc && is_breakpoint (b)
5807 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5808 && bp_condition_evaluator (b) == condition_evaluation_both)
5809 {
5810 ui_out_text (uiout, " (");
5811 ui_out_field_string (uiout, "evaluated-by",
5812 bp_location_condition_evaluator (loc));
5813 ui_out_text (uiout, ")");
5814 }
5815
5816 do_cleanups (old_chain);
5817}
5818
5819static const char *
5820bptype_string (enum bptype type)
5821{
5822 struct ep_type_description
5823 {
5824 enum bptype type;
5825 char *description;
5826 };
5827 static struct ep_type_description bptypes[] =
5828 {
5829 {bp_none, "?deleted?"},
5830 {bp_breakpoint, "breakpoint"},
5831 {bp_hardware_breakpoint, "hw breakpoint"},
5832 {bp_until, "until"},
5833 {bp_finish, "finish"},
5834 {bp_watchpoint, "watchpoint"},
5835 {bp_hardware_watchpoint, "hw watchpoint"},
5836 {bp_read_watchpoint, "read watchpoint"},
5837 {bp_access_watchpoint, "acc watchpoint"},
5838 {bp_longjmp, "longjmp"},
5839 {bp_longjmp_resume, "longjmp resume"},
5840 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5841 {bp_exception, "exception"},
5842 {bp_exception_resume, "exception resume"},
5843 {bp_step_resume, "step resume"},
5844 {bp_hp_step_resume, "high-priority step resume"},
5845 {bp_watchpoint_scope, "watchpoint scope"},
5846 {bp_call_dummy, "call dummy"},
5847 {bp_std_terminate, "std::terminate"},
5848 {bp_shlib_event, "shlib events"},
5849 {bp_thread_event, "thread events"},
5850 {bp_overlay_event, "overlay events"},
5851 {bp_longjmp_master, "longjmp master"},
5852 {bp_std_terminate_master, "std::terminate master"},
5853 {bp_exception_master, "exception master"},
5854 {bp_catchpoint, "catchpoint"},
5855 {bp_tracepoint, "tracepoint"},
5856 {bp_fast_tracepoint, "fast tracepoint"},
5857 {bp_static_tracepoint, "static tracepoint"},
5858 {bp_dprintf, "dprintf"},
5859 {bp_jit_event, "jit events"},
5860 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5861 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5862 };
5863
5864 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5865 || ((int) type != bptypes[(int) type].type))
5866 internal_error (__FILE__, __LINE__,
5867 _("bptypes table does not describe type #%d."),
5868 (int) type);
5869
5870 return bptypes[(int) type].description;
5871}
5872
5873/* For MI, output a field named 'thread-groups' with a list as the value.
5874 For CLI, prefix the list with the string 'inf'. */
5875
5876static void
5877output_thread_groups (struct ui_out *uiout,
5878 const char *field_name,
5879 VEC(int) *inf_num,
5880 int mi_only)
5881{
5882 struct cleanup *back_to;
5883 int is_mi = ui_out_is_mi_like_p (uiout);
5884 int inf;
5885 int i;
5886
5887 /* For backward compatibility, don't display inferiors in CLI unless
5888 there are several. Always display them for MI. */
5889 if (!is_mi && mi_only)
5890 return;
5891
5892 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5893
5894 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5895 {
5896 if (is_mi)
5897 {
5898 char mi_group[10];
5899
5900 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5901 ui_out_field_string (uiout, NULL, mi_group);
5902 }
5903 else
5904 {
5905 if (i == 0)
5906 ui_out_text (uiout, " inf ");
5907 else
5908 ui_out_text (uiout, ", ");
5909
5910 ui_out_text (uiout, plongest (inf));
5911 }
5912 }
5913
5914 do_cleanups (back_to);
5915}
5916
5917/* Print B to gdb_stdout. */
5918
5919static void
5920print_one_breakpoint_location (struct breakpoint *b,
5921 struct bp_location *loc,
5922 int loc_number,
5923 struct bp_location **last_loc,
5924 int allflag)
5925{
5926 struct command_line *l;
5927 static char bpenables[] = "nynny";
5928
5929 struct ui_out *uiout = current_uiout;
5930 int header_of_multiple = 0;
5931 int part_of_multiple = (loc != NULL);
5932 struct value_print_options opts;
5933
5934 get_user_print_options (&opts);
5935
5936 gdb_assert (!loc || loc_number != 0);
5937 /* See comment in print_one_breakpoint concerning treatment of
5938 breakpoints with single disabled location. */
5939 if (loc == NULL
5940 && (b->loc != NULL
5941 && (b->loc->next != NULL || !b->loc->enabled)))
5942 header_of_multiple = 1;
5943 if (loc == NULL)
5944 loc = b->loc;
5945
5946 annotate_record ();
5947
5948 /* 1 */
5949 annotate_field (0);
5950 if (part_of_multiple)
5951 {
5952 char *formatted;
5953 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5954 ui_out_field_string (uiout, "number", formatted);
5955 xfree (formatted);
5956 }
5957 else
5958 {
5959 ui_out_field_int (uiout, "number", b->number);
5960 }
5961
5962 /* 2 */
5963 annotate_field (1);
5964 if (part_of_multiple)
5965 ui_out_field_skip (uiout, "type");
5966 else
5967 ui_out_field_string (uiout, "type", bptype_string (b->type));
5968
5969 /* 3 */
5970 annotate_field (2);
5971 if (part_of_multiple)
5972 ui_out_field_skip (uiout, "disp");
5973 else
5974 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5975
5976
5977 /* 4 */
5978 annotate_field (3);
5979 if (part_of_multiple)
5980 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5981 else
5982 ui_out_field_fmt (uiout, "enabled", "%c",
5983 bpenables[(int) b->enable_state]);
5984 ui_out_spaces (uiout, 2);
5985
5986
5987 /* 5 and 6 */
5988 if (b->ops != NULL && b->ops->print_one != NULL)
5989 {
5990 /* Although the print_one can possibly print all locations,
5991 calling it here is not likely to get any nice result. So,
5992 make sure there's just one location. */
5993 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5994 b->ops->print_one (b, last_loc);
5995 }
5996 else
5997 switch (b->type)
5998 {
5999 case bp_none:
6000 internal_error (__FILE__, __LINE__,
6001 _("print_one_breakpoint: bp_none encountered\n"));
6002 break;
6003
6004 case bp_watchpoint:
6005 case bp_hardware_watchpoint:
6006 case bp_read_watchpoint:
6007 case bp_access_watchpoint:
6008 {
6009 struct watchpoint *w = (struct watchpoint *) b;
6010
6011 /* Field 4, the address, is omitted (which makes the columns
6012 not line up too nicely with the headers, but the effect
6013 is relatively readable). */
6014 if (opts.addressprint)
6015 ui_out_field_skip (uiout, "addr");
6016 annotate_field (5);
6017 ui_out_field_string (uiout, "what", w->exp_string);
6018 }
6019 break;
6020
6021 case bp_breakpoint:
6022 case bp_hardware_breakpoint:
6023 case bp_until:
6024 case bp_finish:
6025 case bp_longjmp:
6026 case bp_longjmp_resume:
6027 case bp_longjmp_call_dummy:
6028 case bp_exception:
6029 case bp_exception_resume:
6030 case bp_step_resume:
6031 case bp_hp_step_resume:
6032 case bp_watchpoint_scope:
6033 case bp_call_dummy:
6034 case bp_std_terminate:
6035 case bp_shlib_event:
6036 case bp_thread_event:
6037 case bp_overlay_event:
6038 case bp_longjmp_master:
6039 case bp_std_terminate_master:
6040 case bp_exception_master:
6041 case bp_tracepoint:
6042 case bp_fast_tracepoint:
6043 case bp_static_tracepoint:
6044 case bp_dprintf:
6045 case bp_jit_event:
6046 case bp_gnu_ifunc_resolver:
6047 case bp_gnu_ifunc_resolver_return:
6048 if (opts.addressprint)
6049 {
6050 annotate_field (4);
6051 if (header_of_multiple)
6052 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6053 else if (b->loc == NULL || loc->shlib_disabled)
6054 ui_out_field_string (uiout, "addr", "<PENDING>");
6055 else
6056 ui_out_field_core_addr (uiout, "addr",
6057 loc->gdbarch, loc->address);
6058 }
6059 annotate_field (5);
6060 if (!header_of_multiple)
6061 print_breakpoint_location (b, loc);
6062 if (b->loc)
6063 *last_loc = b->loc;
6064 break;
6065 }
6066
6067
6068 if (loc != NULL && !header_of_multiple)
6069 {
6070 struct inferior *inf;
6071 VEC(int) *inf_num = NULL;
6072 int mi_only = 1;
6073
6074 ALL_INFERIORS (inf)
6075 {
6076 if (inf->pspace == loc->pspace)
6077 VEC_safe_push (int, inf_num, inf->num);
6078 }
6079
6080 /* For backward compatibility, don't display inferiors in CLI unless
6081 there are several. Always display for MI. */
6082 if (allflag
6083 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6084 && (number_of_program_spaces () > 1
6085 || number_of_inferiors () > 1)
6086 /* LOC is for existing B, it cannot be in
6087 moribund_locations and thus having NULL OWNER. */
6088 && loc->owner->type != bp_catchpoint))
6089 mi_only = 0;
6090 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6091 VEC_free (int, inf_num);
6092 }
6093
6094 if (!part_of_multiple)
6095 {
6096 if (b->thread != -1)
6097 {
6098 /* FIXME: This seems to be redundant and lost here; see the
6099 "stop only in" line a little further down. */
6100 ui_out_text (uiout, " thread ");
6101 ui_out_field_int (uiout, "thread", b->thread);
6102 }
6103 else if (b->task != 0)
6104 {
6105 ui_out_text (uiout, " task ");
6106 ui_out_field_int (uiout, "task", b->task);
6107 }
6108 }
6109
6110 ui_out_text (uiout, "\n");
6111
6112 if (!part_of_multiple)
6113 b->ops->print_one_detail (b, uiout);
6114
6115 if (part_of_multiple && frame_id_p (b->frame_id))
6116 {
6117 annotate_field (6);
6118 ui_out_text (uiout, "\tstop only in stack frame at ");
6119 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6120 the frame ID. */
6121 ui_out_field_core_addr (uiout, "frame",
6122 b->gdbarch, b->frame_id.stack_addr);
6123 ui_out_text (uiout, "\n");
6124 }
6125
6126 if (!part_of_multiple && b->cond_string)
6127 {
6128 annotate_field (7);
6129 if (is_tracepoint (b))
6130 ui_out_text (uiout, "\ttrace only if ");
6131 else
6132 ui_out_text (uiout, "\tstop only if ");
6133 ui_out_field_string (uiout, "cond", b->cond_string);
6134
6135 /* Print whether the target is doing the breakpoint's condition
6136 evaluation. If GDB is doing the evaluation, don't print anything. */
6137 if (is_breakpoint (b)
6138 && breakpoint_condition_evaluation_mode ()
6139 == condition_evaluation_target)
6140 {
6141 ui_out_text (uiout, " (");
6142 ui_out_field_string (uiout, "evaluated-by",
6143 bp_condition_evaluator (b));
6144 ui_out_text (uiout, " evals)");
6145 }
6146 ui_out_text (uiout, "\n");
6147 }
6148
6149 if (!part_of_multiple && b->thread != -1)
6150 {
6151 /* FIXME should make an annotation for this. */
6152 ui_out_text (uiout, "\tstop only in thread ");
6153 ui_out_field_int (uiout, "thread", b->thread);
6154 ui_out_text (uiout, "\n");
6155 }
6156
6157 if (!part_of_multiple)
6158 {
6159 if (b->hit_count)
6160 {
6161 /* FIXME should make an annotation for this. */
6162 if (is_catchpoint (b))
6163 ui_out_text (uiout, "\tcatchpoint");
6164 else if (is_tracepoint (b))
6165 ui_out_text (uiout, "\ttracepoint");
6166 else
6167 ui_out_text (uiout, "\tbreakpoint");
6168 ui_out_text (uiout, " already hit ");
6169 ui_out_field_int (uiout, "times", b->hit_count);
6170 if (b->hit_count == 1)
6171 ui_out_text (uiout, " time\n");
6172 else
6173 ui_out_text (uiout, " times\n");
6174 }
6175 else
6176 {
6177 /* Output the count also if it is zero, but only if this is mi. */
6178 if (ui_out_is_mi_like_p (uiout))
6179 ui_out_field_int (uiout, "times", b->hit_count);
6180 }
6181 }
6182
6183 if (!part_of_multiple && b->ignore_count)
6184 {
6185 annotate_field (8);
6186 ui_out_text (uiout, "\tignore next ");
6187 ui_out_field_int (uiout, "ignore", b->ignore_count);
6188 ui_out_text (uiout, " hits\n");
6189 }
6190
6191 /* Note that an enable count of 1 corresponds to "enable once"
6192 behavior, which is reported by the combination of enablement and
6193 disposition, so we don't need to mention it here. */
6194 if (!part_of_multiple && b->enable_count > 1)
6195 {
6196 annotate_field (8);
6197 ui_out_text (uiout, "\tdisable after ");
6198 /* Tweak the wording to clarify that ignore and enable counts
6199 are distinct, and have additive effect. */
6200 if (b->ignore_count)
6201 ui_out_text (uiout, "additional ");
6202 else
6203 ui_out_text (uiout, "next ");
6204 ui_out_field_int (uiout, "enable", b->enable_count);
6205 ui_out_text (uiout, " hits\n");
6206 }
6207
6208 if (!part_of_multiple && is_tracepoint (b))
6209 {
6210 struct tracepoint *tp = (struct tracepoint *) b;
6211
6212 if (tp->traceframe_usage)
6213 {
6214 ui_out_text (uiout, "\ttrace buffer usage ");
6215 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6216 ui_out_text (uiout, " bytes\n");
6217 }
6218 }
6219
6220 l = b->commands ? b->commands->commands : NULL;
6221 if (!part_of_multiple && l)
6222 {
6223 struct cleanup *script_chain;
6224
6225 annotate_field (9);
6226 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6227 print_command_lines (uiout, l, 4);
6228 do_cleanups (script_chain);
6229 }
6230
6231 if (is_tracepoint (b))
6232 {
6233 struct tracepoint *t = (struct tracepoint *) b;
6234
6235 if (!part_of_multiple && t->pass_count)
6236 {
6237 annotate_field (10);
6238 ui_out_text (uiout, "\tpass count ");
6239 ui_out_field_int (uiout, "pass", t->pass_count);
6240 ui_out_text (uiout, " \n");
6241 }
6242
6243 /* Don't display it when tracepoint or tracepoint location is
6244 pending. */
6245 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6246 {
6247 annotate_field (11);
6248
6249 if (ui_out_is_mi_like_p (uiout))
6250 ui_out_field_string (uiout, "installed",
6251 loc->inserted ? "y" : "n");
6252 else
6253 {
6254 if (loc->inserted)
6255 ui_out_text (uiout, "\t");
6256 else
6257 ui_out_text (uiout, "\tnot ");
6258 ui_out_text (uiout, "installed on target\n");
6259 }
6260 }
6261 }
6262
6263 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6264 {
6265 if (is_watchpoint (b))
6266 {
6267 struct watchpoint *w = (struct watchpoint *) b;
6268
6269 ui_out_field_string (uiout, "original-location", w->exp_string);
6270 }
6271 else if (b->addr_string)
6272 ui_out_field_string (uiout, "original-location", b->addr_string);
6273 }
6274}
6275
6276static void
6277print_one_breakpoint (struct breakpoint *b,
6278 struct bp_location **last_loc,
6279 int allflag)
6280{
6281 struct cleanup *bkpt_chain;
6282 struct ui_out *uiout = current_uiout;
6283
6284 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6285
6286 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6287 do_cleanups (bkpt_chain);
6288
6289 /* If this breakpoint has custom print function,
6290 it's already printed. Otherwise, print individual
6291 locations, if any. */
6292 if (b->ops == NULL || b->ops->print_one == NULL)
6293 {
6294 /* If breakpoint has a single location that is disabled, we
6295 print it as if it had several locations, since otherwise it's
6296 hard to represent "breakpoint enabled, location disabled"
6297 situation.
6298
6299 Note that while hardware watchpoints have several locations
6300 internally, that's not a property exposed to user. */
6301 if (b->loc
6302 && !is_hardware_watchpoint (b)
6303 && (b->loc->next || !b->loc->enabled))
6304 {
6305 struct bp_location *loc;
6306 int n = 1;
6307
6308 for (loc = b->loc; loc; loc = loc->next, ++n)
6309 {
6310 struct cleanup *inner2 =
6311 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6312 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6313 do_cleanups (inner2);
6314 }
6315 }
6316 }
6317}
6318
6319static int
6320breakpoint_address_bits (struct breakpoint *b)
6321{
6322 int print_address_bits = 0;
6323 struct bp_location *loc;
6324
6325 for (loc = b->loc; loc; loc = loc->next)
6326 {
6327 int addr_bit;
6328
6329 /* Software watchpoints that aren't watching memory don't have
6330 an address to print. */
6331 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6332 continue;
6333
6334 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6335 if (addr_bit > print_address_bits)
6336 print_address_bits = addr_bit;
6337 }
6338
6339 return print_address_bits;
6340}
6341
6342struct captured_breakpoint_query_args
6343 {
6344 int bnum;
6345 };
6346
6347static int
6348do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6349{
6350 struct captured_breakpoint_query_args *args = data;
6351 struct breakpoint *b;
6352 struct bp_location *dummy_loc = NULL;
6353
6354 ALL_BREAKPOINTS (b)
6355 {
6356 if (args->bnum == b->number)
6357 {
6358 print_one_breakpoint (b, &dummy_loc, 0);
6359 return GDB_RC_OK;
6360 }
6361 }
6362 return GDB_RC_NONE;
6363}
6364
6365enum gdb_rc
6366gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6367 char **error_message)
6368{
6369 struct captured_breakpoint_query_args args;
6370
6371 args.bnum = bnum;
6372 /* For the moment we don't trust print_one_breakpoint() to not throw
6373 an error. */
6374 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6375 error_message, RETURN_MASK_ALL) < 0)
6376 return GDB_RC_FAIL;
6377 else
6378 return GDB_RC_OK;
6379}
6380
6381/* Return true if this breakpoint was set by the user, false if it is
6382 internal or momentary. */
6383
6384int
6385user_breakpoint_p (struct breakpoint *b)
6386{
6387 return b->number > 0;
6388}
6389
6390/* Print information on user settable breakpoint (watchpoint, etc)
6391 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6392 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6393 FILTER is non-NULL, call it on each breakpoint and only include the
6394 ones for which it returns non-zero. Return the total number of
6395 breakpoints listed. */
6396
6397static int
6398breakpoint_1 (char *args, int allflag,
6399 int (*filter) (const struct breakpoint *))
6400{
6401 struct breakpoint *b;
6402 struct bp_location *last_loc = NULL;
6403 int nr_printable_breakpoints;
6404 struct cleanup *bkpttbl_chain;
6405 struct value_print_options opts;
6406 int print_address_bits = 0;
6407 int print_type_col_width = 14;
6408 struct ui_out *uiout = current_uiout;
6409
6410 get_user_print_options (&opts);
6411
6412 /* Compute the number of rows in the table, as well as the size
6413 required for address fields. */
6414 nr_printable_breakpoints = 0;
6415 ALL_BREAKPOINTS (b)
6416 {
6417 /* If we have a filter, only list the breakpoints it accepts. */
6418 if (filter && !filter (b))
6419 continue;
6420
6421 /* If we have an "args" string, it is a list of breakpoints to
6422 accept. Skip the others. */
6423 if (args != NULL && *args != '\0')
6424 {
6425 if (allflag && parse_and_eval_long (args) != b->number)
6426 continue;
6427 if (!allflag && !number_is_in_list (args, b->number))
6428 continue;
6429 }
6430
6431 if (allflag || user_breakpoint_p (b))
6432 {
6433 int addr_bit, type_len;
6434
6435 addr_bit = breakpoint_address_bits (b);
6436 if (addr_bit > print_address_bits)
6437 print_address_bits = addr_bit;
6438
6439 type_len = strlen (bptype_string (b->type));
6440 if (type_len > print_type_col_width)
6441 print_type_col_width = type_len;
6442
6443 nr_printable_breakpoints++;
6444 }
6445 }
6446
6447 if (opts.addressprint)
6448 bkpttbl_chain
6449 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6450 nr_printable_breakpoints,
6451 "BreakpointTable");
6452 else
6453 bkpttbl_chain
6454 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6455 nr_printable_breakpoints,
6456 "BreakpointTable");
6457
6458 if (nr_printable_breakpoints > 0)
6459 annotate_breakpoints_headers ();
6460 if (nr_printable_breakpoints > 0)
6461 annotate_field (0);
6462 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6463 if (nr_printable_breakpoints > 0)
6464 annotate_field (1);
6465 ui_out_table_header (uiout, print_type_col_width, ui_left,
6466 "type", "Type"); /* 2 */
6467 if (nr_printable_breakpoints > 0)
6468 annotate_field (2);
6469 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6470 if (nr_printable_breakpoints > 0)
6471 annotate_field (3);
6472 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6473 if (opts.addressprint)
6474 {
6475 if (nr_printable_breakpoints > 0)
6476 annotate_field (4);
6477 if (print_address_bits <= 32)
6478 ui_out_table_header (uiout, 10, ui_left,
6479 "addr", "Address"); /* 5 */
6480 else
6481 ui_out_table_header (uiout, 18, ui_left,
6482 "addr", "Address"); /* 5 */
6483 }
6484 if (nr_printable_breakpoints > 0)
6485 annotate_field (5);
6486 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6487 ui_out_table_body (uiout);
6488 if (nr_printable_breakpoints > 0)
6489 annotate_breakpoints_table ();
6490
6491 ALL_BREAKPOINTS (b)
6492 {
6493 QUIT;
6494 /* If we have a filter, only list the breakpoints it accepts. */
6495 if (filter && !filter (b))
6496 continue;
6497
6498 /* If we have an "args" string, it is a list of breakpoints to
6499 accept. Skip the others. */
6500
6501 if (args != NULL && *args != '\0')
6502 {
6503 if (allflag) /* maintenance info breakpoint */
6504 {
6505 if (parse_and_eval_long (args) != b->number)
6506 continue;
6507 }
6508 else /* all others */
6509 {
6510 if (!number_is_in_list (args, b->number))
6511 continue;
6512 }
6513 }
6514 /* We only print out user settable breakpoints unless the
6515 allflag is set. */
6516 if (allflag || user_breakpoint_p (b))
6517 print_one_breakpoint (b, &last_loc, allflag);
6518 }
6519
6520 do_cleanups (bkpttbl_chain);
6521
6522 if (nr_printable_breakpoints == 0)
6523 {
6524 /* If there's a filter, let the caller decide how to report
6525 empty list. */
6526 if (!filter)
6527 {
6528 if (args == NULL || *args == '\0')
6529 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6530 else
6531 ui_out_message (uiout, 0,
6532 "No breakpoint or watchpoint matching '%s'.\n",
6533 args);
6534 }
6535 }
6536 else
6537 {
6538 if (last_loc && !server_command)
6539 set_next_address (last_loc->gdbarch, last_loc->address);
6540 }
6541
6542 /* FIXME? Should this be moved up so that it is only called when
6543 there have been breakpoints? */
6544 annotate_breakpoints_table_end ();
6545
6546 return nr_printable_breakpoints;
6547}
6548
6549/* Display the value of default-collect in a way that is generally
6550 compatible with the breakpoint list. */
6551
6552static void
6553default_collect_info (void)
6554{
6555 struct ui_out *uiout = current_uiout;
6556
6557 /* If it has no value (which is frequently the case), say nothing; a
6558 message like "No default-collect." gets in user's face when it's
6559 not wanted. */
6560 if (!*default_collect)
6561 return;
6562
6563 /* The following phrase lines up nicely with per-tracepoint collect
6564 actions. */
6565 ui_out_text (uiout, "default collect ");
6566 ui_out_field_string (uiout, "default-collect", default_collect);
6567 ui_out_text (uiout, " \n");
6568}
6569
6570static void
6571breakpoints_info (char *args, int from_tty)
6572{
6573 breakpoint_1 (args, 0, NULL);
6574
6575 default_collect_info ();
6576}
6577
6578static void
6579watchpoints_info (char *args, int from_tty)
6580{
6581 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6582 struct ui_out *uiout = current_uiout;
6583
6584 if (num_printed == 0)
6585 {
6586 if (args == NULL || *args == '\0')
6587 ui_out_message (uiout, 0, "No watchpoints.\n");
6588 else
6589 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6590 }
6591}
6592
6593static void
6594maintenance_info_breakpoints (char *args, int from_tty)
6595{
6596 breakpoint_1 (args, 1, NULL);
6597
6598 default_collect_info ();
6599}
6600
6601static int
6602breakpoint_has_pc (struct breakpoint *b,
6603 struct program_space *pspace,
6604 CORE_ADDR pc, struct obj_section *section)
6605{
6606 struct bp_location *bl = b->loc;
6607
6608 for (; bl; bl = bl->next)
6609 {
6610 if (bl->pspace == pspace
6611 && bl->address == pc
6612 && (!overlay_debugging || bl->section == section))
6613 return 1;
6614 }
6615 return 0;
6616}
6617
6618/* Print a message describing any user-breakpoints set at PC. This
6619 concerns with logical breakpoints, so we match program spaces, not
6620 address spaces. */
6621
6622static void
6623describe_other_breakpoints (struct gdbarch *gdbarch,
6624 struct program_space *pspace, CORE_ADDR pc,
6625 struct obj_section *section, int thread)
6626{
6627 int others = 0;
6628 struct breakpoint *b;
6629
6630 ALL_BREAKPOINTS (b)
6631 others += (user_breakpoint_p (b)
6632 && breakpoint_has_pc (b, pspace, pc, section));
6633 if (others > 0)
6634 {
6635 if (others == 1)
6636 printf_filtered (_("Note: breakpoint "));
6637 else /* if (others == ???) */
6638 printf_filtered (_("Note: breakpoints "));
6639 ALL_BREAKPOINTS (b)
6640 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6641 {
6642 others--;
6643 printf_filtered ("%d", b->number);
6644 if (b->thread == -1 && thread != -1)
6645 printf_filtered (" (all threads)");
6646 else if (b->thread != -1)
6647 printf_filtered (" (thread %d)", b->thread);
6648 printf_filtered ("%s%s ",
6649 ((b->enable_state == bp_disabled
6650 || b->enable_state == bp_call_disabled)
6651 ? " (disabled)"
6652 : b->enable_state == bp_permanent
6653 ? " (permanent)"
6654 : ""),
6655 (others > 1) ? ","
6656 : ((others == 1) ? " and" : ""));
6657 }
6658 printf_filtered (_("also set at pc "));
6659 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6660 printf_filtered (".\n");
6661 }
6662}
6663\f
6664
6665/* Return true iff it is meaningful to use the address member of
6666 BPT. For some breakpoint types, the address member is irrelevant
6667 and it makes no sense to attempt to compare it to other addresses
6668 (or use it for any other purpose either).
6669
6670 More specifically, each of the following breakpoint types will
6671 always have a zero valued address and we don't want to mark
6672 breakpoints of any of these types to be a duplicate of an actual
6673 breakpoint at address zero:
6674
6675 bp_watchpoint
6676 bp_catchpoint
6677
6678*/
6679
6680static int
6681breakpoint_address_is_meaningful (struct breakpoint *bpt)
6682{
6683 enum bptype type = bpt->type;
6684
6685 return (type != bp_watchpoint && type != bp_catchpoint);
6686}
6687
6688/* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6689 true if LOC1 and LOC2 represent the same watchpoint location. */
6690
6691static int
6692watchpoint_locations_match (struct bp_location *loc1,
6693 struct bp_location *loc2)
6694{
6695 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6696 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6697
6698 /* Both of them must exist. */
6699 gdb_assert (w1 != NULL);
6700 gdb_assert (w2 != NULL);
6701
6702 /* If the target can evaluate the condition expression in hardware,
6703 then we we need to insert both watchpoints even if they are at
6704 the same place. Otherwise the watchpoint will only trigger when
6705 the condition of whichever watchpoint was inserted evaluates to
6706 true, not giving a chance for GDB to check the condition of the
6707 other watchpoint. */
6708 if ((w1->cond_exp
6709 && target_can_accel_watchpoint_condition (loc1->address,
6710 loc1->length,
6711 loc1->watchpoint_type,
6712 w1->cond_exp))
6713 || (w2->cond_exp
6714 && target_can_accel_watchpoint_condition (loc2->address,
6715 loc2->length,
6716 loc2->watchpoint_type,
6717 w2->cond_exp)))
6718 return 0;
6719
6720 /* Note that this checks the owner's type, not the location's. In
6721 case the target does not support read watchpoints, but does
6722 support access watchpoints, we'll have bp_read_watchpoint
6723 watchpoints with hw_access locations. Those should be considered
6724 duplicates of hw_read locations. The hw_read locations will
6725 become hw_access locations later. */
6726 return (loc1->owner->type == loc2->owner->type
6727 && loc1->pspace->aspace == loc2->pspace->aspace
6728 && loc1->address == loc2->address
6729 && loc1->length == loc2->length);
6730}
6731
6732/* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6733 same breakpoint location. In most targets, this can only be true
6734 if ASPACE1 matches ASPACE2. On targets that have global
6735 breakpoints, the address space doesn't really matter. */
6736
6737static int
6738breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6739 struct address_space *aspace2, CORE_ADDR addr2)
6740{
6741 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6742 || aspace1 == aspace2)
6743 && addr1 == addr2);
6744}
6745
6746/* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6747 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6748 matches ASPACE2. On targets that have global breakpoints, the address
6749 space doesn't really matter. */
6750
6751static int
6752breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6753 int len1, struct address_space *aspace2,
6754 CORE_ADDR addr2)
6755{
6756 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6757 || aspace1 == aspace2)
6758 && addr2 >= addr1 && addr2 < addr1 + len1);
6759}
6760
6761/* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6762 a ranged breakpoint. In most targets, a match happens only if ASPACE
6763 matches the breakpoint's address space. On targets that have global
6764 breakpoints, the address space doesn't really matter. */
6765
6766static int
6767breakpoint_location_address_match (struct bp_location *bl,
6768 struct address_space *aspace,
6769 CORE_ADDR addr)
6770{
6771 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6772 aspace, addr)
6773 || (bl->length
6774 && breakpoint_address_match_range (bl->pspace->aspace,
6775 bl->address, bl->length,
6776 aspace, addr)));
6777}
6778
6779/* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6780 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6781 true, otherwise returns false. */
6782
6783static int
6784tracepoint_locations_match (struct bp_location *loc1,
6785 struct bp_location *loc2)
6786{
6787 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6788 /* Since tracepoint locations are never duplicated with others', tracepoint
6789 locations at the same address of different tracepoints are regarded as
6790 different locations. */
6791 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6792 else
6793 return 0;
6794}
6795
6796/* Assuming LOC1 and LOC2's types' have meaningful target addresses
6797 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6798 represent the same location. */
6799
6800static int
6801breakpoint_locations_match (struct bp_location *loc1,
6802 struct bp_location *loc2)
6803{
6804 int hw_point1, hw_point2;
6805
6806 /* Both of them must not be in moribund_locations. */
6807 gdb_assert (loc1->owner != NULL);
6808 gdb_assert (loc2->owner != NULL);
6809
6810 hw_point1 = is_hardware_watchpoint (loc1->owner);
6811 hw_point2 = is_hardware_watchpoint (loc2->owner);
6812
6813 if (hw_point1 != hw_point2)
6814 return 0;
6815 else if (hw_point1)
6816 return watchpoint_locations_match (loc1, loc2);
6817 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6818 return tracepoint_locations_match (loc1, loc2);
6819 else
6820 /* We compare bp_location.length in order to cover ranged breakpoints. */
6821 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6822 loc2->pspace->aspace, loc2->address)
6823 && loc1->length == loc2->length);
6824}
6825
6826static void
6827breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6828 int bnum, int have_bnum)
6829{
6830 /* The longest string possibly returned by hex_string_custom
6831 is 50 chars. These must be at least that big for safety. */
6832 char astr1[64];
6833 char astr2[64];
6834
6835 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6836 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6837 if (have_bnum)
6838 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6839 bnum, astr1, astr2);
6840 else
6841 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6842}
6843
6844/* Adjust a breakpoint's address to account for architectural
6845 constraints on breakpoint placement. Return the adjusted address.
6846 Note: Very few targets require this kind of adjustment. For most
6847 targets, this function is simply the identity function. */
6848
6849static CORE_ADDR
6850adjust_breakpoint_address (struct gdbarch *gdbarch,
6851 CORE_ADDR bpaddr, enum bptype bptype)
6852{
6853 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6854 {
6855 /* Very few targets need any kind of breakpoint adjustment. */
6856 return bpaddr;
6857 }
6858 else if (bptype == bp_watchpoint
6859 || bptype == bp_hardware_watchpoint
6860 || bptype == bp_read_watchpoint
6861 || bptype == bp_access_watchpoint
6862 || bptype == bp_catchpoint)
6863 {
6864 /* Watchpoints and the various bp_catch_* eventpoints should not
6865 have their addresses modified. */
6866 return bpaddr;
6867 }
6868 else
6869 {
6870 CORE_ADDR adjusted_bpaddr;
6871
6872 /* Some targets have architectural constraints on the placement
6873 of breakpoint instructions. Obtain the adjusted address. */
6874 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6875
6876 /* An adjusted breakpoint address can significantly alter
6877 a user's expectations. Print a warning if an adjustment
6878 is required. */
6879 if (adjusted_bpaddr != bpaddr)
6880 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6881
6882 return adjusted_bpaddr;
6883 }
6884}
6885
6886void
6887init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6888 struct breakpoint *owner)
6889{
6890 memset (loc, 0, sizeof (*loc));
6891
6892 gdb_assert (ops != NULL);
6893
6894 loc->ops = ops;
6895 loc->owner = owner;
6896 loc->cond = NULL;
6897 loc->cond_bytecode = NULL;
6898 loc->shlib_disabled = 0;
6899 loc->enabled = 1;
6900
6901 switch (owner->type)
6902 {
6903 case bp_breakpoint:
6904 case bp_until:
6905 case bp_finish:
6906 case bp_longjmp:
6907 case bp_longjmp_resume:
6908 case bp_longjmp_call_dummy:
6909 case bp_exception:
6910 case bp_exception_resume:
6911 case bp_step_resume:
6912 case bp_hp_step_resume:
6913 case bp_watchpoint_scope:
6914 case bp_call_dummy:
6915 case bp_std_terminate:
6916 case bp_shlib_event:
6917 case bp_thread_event:
6918 case bp_overlay_event:
6919 case bp_jit_event:
6920 case bp_longjmp_master:
6921 case bp_std_terminate_master:
6922 case bp_exception_master:
6923 case bp_gnu_ifunc_resolver:
6924 case bp_gnu_ifunc_resolver_return:
6925 case bp_dprintf:
6926 loc->loc_type = bp_loc_software_breakpoint;
6927 mark_breakpoint_location_modified (loc);
6928 break;
6929 case bp_hardware_breakpoint:
6930 loc->loc_type = bp_loc_hardware_breakpoint;
6931 mark_breakpoint_location_modified (loc);
6932 break;
6933 case bp_hardware_watchpoint:
6934 case bp_read_watchpoint:
6935 case bp_access_watchpoint:
6936 loc->loc_type = bp_loc_hardware_watchpoint;
6937 break;
6938 case bp_watchpoint:
6939 case bp_catchpoint:
6940 case bp_tracepoint:
6941 case bp_fast_tracepoint:
6942 case bp_static_tracepoint:
6943 loc->loc_type = bp_loc_other;
6944 break;
6945 default:
6946 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6947 }
6948
6949 loc->refc = 1;
6950}
6951
6952/* Allocate a struct bp_location. */
6953
6954static struct bp_location *
6955allocate_bp_location (struct breakpoint *bpt)
6956{
6957 return bpt->ops->allocate_location (bpt);
6958}
6959
6960static void
6961free_bp_location (struct bp_location *loc)
6962{
6963 loc->ops->dtor (loc);
6964 xfree (loc);
6965}
6966
6967/* Increment reference count. */
6968
6969static void
6970incref_bp_location (struct bp_location *bl)
6971{
6972 ++bl->refc;
6973}
6974
6975/* Decrement reference count. If the reference count reaches 0,
6976 destroy the bp_location. Sets *BLP to NULL. */
6977
6978static void
6979decref_bp_location (struct bp_location **blp)
6980{
6981 gdb_assert ((*blp)->refc > 0);
6982
6983 if (--(*blp)->refc == 0)
6984 free_bp_location (*blp);
6985 *blp = NULL;
6986}
6987
6988/* Add breakpoint B at the end of the global breakpoint chain. */
6989
6990static void
6991add_to_breakpoint_chain (struct breakpoint *b)
6992{
6993 struct breakpoint *b1;
6994
6995 /* Add this breakpoint to the end of the chain so that a list of
6996 breakpoints will come out in order of increasing numbers. */
6997
6998 b1 = breakpoint_chain;
6999 if (b1 == 0)
7000 breakpoint_chain = b;
7001 else
7002 {
7003 while (b1->next)
7004 b1 = b1->next;
7005 b1->next = b;
7006 }
7007}
7008
7009/* Initializes breakpoint B with type BPTYPE and no locations yet. */
7010
7011static void
7012init_raw_breakpoint_without_location (struct breakpoint *b,
7013 struct gdbarch *gdbarch,
7014 enum bptype bptype,
7015 const struct breakpoint_ops *ops)
7016{
7017 memset (b, 0, sizeof (*b));
7018
7019 gdb_assert (ops != NULL);
7020
7021 b->ops = ops;
7022 b->type = bptype;
7023 b->gdbarch = gdbarch;
7024 b->language = current_language->la_language;
7025 b->input_radix = input_radix;
7026 b->thread = -1;
7027 b->enable_state = bp_enabled;
7028 b->next = 0;
7029 b->silent = 0;
7030 b->ignore_count = 0;
7031 b->commands = NULL;
7032 b->frame_id = null_frame_id;
7033 b->condition_not_parsed = 0;
7034 b->py_bp_object = NULL;
7035 b->related_breakpoint = b;
7036}
7037
7038/* Helper to set_raw_breakpoint below. Creates a breakpoint
7039 that has type BPTYPE and has no locations as yet. */
7040
7041static struct breakpoint *
7042set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7043 enum bptype bptype,
7044 const struct breakpoint_ops *ops)
7045{
7046 struct breakpoint *b = XNEW (struct breakpoint);
7047
7048 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7049 add_to_breakpoint_chain (b);
7050 return b;
7051}
7052
7053/* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7054 resolutions should be made as the user specified the location explicitly
7055 enough. */
7056
7057static void
7058set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7059{
7060 gdb_assert (loc->owner != NULL);
7061
7062 if (loc->owner->type == bp_breakpoint
7063 || loc->owner->type == bp_hardware_breakpoint
7064 || is_tracepoint (loc->owner))
7065 {
7066 int is_gnu_ifunc;
7067 const char *function_name;
7068 CORE_ADDR func_addr;
7069
7070 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7071 &func_addr, NULL, &is_gnu_ifunc);
7072
7073 if (is_gnu_ifunc && !explicit_loc)
7074 {
7075 struct breakpoint *b = loc->owner;
7076
7077 gdb_assert (loc->pspace == current_program_space);
7078 if (gnu_ifunc_resolve_name (function_name,
7079 &loc->requested_address))
7080 {
7081 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7082 loc->address = adjust_breakpoint_address (loc->gdbarch,
7083 loc->requested_address,
7084 b->type);
7085 }
7086 else if (b->type == bp_breakpoint && b->loc == loc
7087 && loc->next == NULL && b->related_breakpoint == b)
7088 {
7089 /* Create only the whole new breakpoint of this type but do not
7090 mess more complicated breakpoints with multiple locations. */
7091 b->type = bp_gnu_ifunc_resolver;
7092 /* Remember the resolver's address for use by the return
7093 breakpoint. */
7094 loc->related_address = func_addr;
7095 }
7096 }
7097
7098 if (function_name)
7099 loc->function_name = xstrdup (function_name);
7100 }
7101}
7102
7103/* Attempt to determine architecture of location identified by SAL. */
7104struct gdbarch *
7105get_sal_arch (struct symtab_and_line sal)
7106{
7107 if (sal.section)
7108 return get_objfile_arch (sal.section->objfile);
7109 if (sal.symtab)
7110 return get_objfile_arch (sal.symtab->objfile);
7111
7112 return NULL;
7113}
7114
7115/* Low level routine for partially initializing a breakpoint of type
7116 BPTYPE. The newly created breakpoint's address, section, source
7117 file name, and line number are provided by SAL.
7118
7119 It is expected that the caller will complete the initialization of
7120 the newly created breakpoint struct as well as output any status
7121 information regarding the creation of a new breakpoint. */
7122
7123static void
7124init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7125 struct symtab_and_line sal, enum bptype bptype,
7126 const struct breakpoint_ops *ops)
7127{
7128 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7129
7130 add_location_to_breakpoint (b, &sal);
7131
7132 if (bptype != bp_catchpoint)
7133 gdb_assert (sal.pspace != NULL);
7134
7135 /* Store the program space that was used to set the breakpoint,
7136 except for ordinary breakpoints, which are independent of the
7137 program space. */
7138 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7139 b->pspace = sal.pspace;
7140}
7141
7142/* set_raw_breakpoint is a low level routine for allocating and
7143 partially initializing a breakpoint of type BPTYPE. The newly
7144 created breakpoint's address, section, source file name, and line
7145 number are provided by SAL. The newly created and partially
7146 initialized breakpoint is added to the breakpoint chain and
7147 is also returned as the value of this function.
7148
7149 It is expected that the caller will complete the initialization of
7150 the newly created breakpoint struct as well as output any status
7151 information regarding the creation of a new breakpoint. In
7152 particular, set_raw_breakpoint does NOT set the breakpoint
7153 number! Care should be taken to not allow an error to occur
7154 prior to completing the initialization of the breakpoint. If this
7155 should happen, a bogus breakpoint will be left on the chain. */
7156
7157struct breakpoint *
7158set_raw_breakpoint (struct gdbarch *gdbarch,
7159 struct symtab_and_line sal, enum bptype bptype,
7160 const struct breakpoint_ops *ops)
7161{
7162 struct breakpoint *b = XNEW (struct breakpoint);
7163
7164 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7165 add_to_breakpoint_chain (b);
7166 return b;
7167}
7168
7169
7170/* Note that the breakpoint object B describes a permanent breakpoint
7171 instruction, hard-wired into the inferior's code. */
7172void
7173make_breakpoint_permanent (struct breakpoint *b)
7174{
7175 struct bp_location *bl;
7176
7177 b->enable_state = bp_permanent;
7178
7179 /* By definition, permanent breakpoints are already present in the
7180 code. Mark all locations as inserted. For now,
7181 make_breakpoint_permanent is called in just one place, so it's
7182 hard to say if it's reasonable to have permanent breakpoint with
7183 multiple locations or not, but it's easy to implement. */
7184 for (bl = b->loc; bl; bl = bl->next)
7185 bl->inserted = 1;
7186}
7187
7188/* Call this routine when stepping and nexting to enable a breakpoint
7189 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7190 initiated the operation. */
7191
7192void
7193set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7194{
7195 struct breakpoint *b, *b_tmp;
7196 int thread = tp->num;
7197
7198 /* To avoid having to rescan all objfile symbols at every step,
7199 we maintain a list of continually-inserted but always disabled
7200 longjmp "master" breakpoints. Here, we simply create momentary
7201 clones of those and enable them for the requested thread. */
7202 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7203 if (b->pspace == current_program_space
7204 && (b->type == bp_longjmp_master
7205 || b->type == bp_exception_master))
7206 {
7207 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7208 struct breakpoint *clone;
7209
7210 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7211 after their removal. */
7212 clone = momentary_breakpoint_from_master (b, type,
7213 &longjmp_breakpoint_ops);
7214 clone->thread = thread;
7215 }
7216
7217 tp->initiating_frame = frame;
7218}
7219
7220/* Delete all longjmp breakpoints from THREAD. */
7221void
7222delete_longjmp_breakpoint (int thread)
7223{
7224 struct breakpoint *b, *b_tmp;
7225
7226 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7227 if (b->type == bp_longjmp || b->type == bp_exception)
7228 {
7229 if (b->thread == thread)
7230 delete_breakpoint (b);
7231 }
7232}
7233
7234void
7235delete_longjmp_breakpoint_at_next_stop (int thread)
7236{
7237 struct breakpoint *b, *b_tmp;
7238
7239 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7240 if (b->type == bp_longjmp || b->type == bp_exception)
7241 {
7242 if (b->thread == thread)
7243 b->disposition = disp_del_at_next_stop;
7244 }
7245}
7246
7247/* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7248 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7249 pointer to any of them. Return NULL if this system cannot place longjmp
7250 breakpoints. */
7251
7252struct breakpoint *
7253set_longjmp_breakpoint_for_call_dummy (void)
7254{
7255 struct breakpoint *b, *retval = NULL;
7256
7257 ALL_BREAKPOINTS (b)
7258 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7259 {
7260 struct breakpoint *new_b;
7261
7262 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7263 &momentary_breakpoint_ops);
7264 new_b->thread = pid_to_thread_id (inferior_ptid);
7265
7266 /* Link NEW_B into the chain of RETVAL breakpoints. */
7267
7268 gdb_assert (new_b->related_breakpoint == new_b);
7269 if (retval == NULL)
7270 retval = new_b;
7271 new_b->related_breakpoint = retval;
7272 while (retval->related_breakpoint != new_b->related_breakpoint)
7273 retval = retval->related_breakpoint;
7274 retval->related_breakpoint = new_b;
7275 }
7276
7277 return retval;
7278}
7279
7280/* Verify all existing dummy frames and their associated breakpoints for
7281 THREAD. Remove those which can no longer be found in the current frame
7282 stack.
7283
7284 You should call this function only at places where it is safe to currently
7285 unwind the whole stack. Failed stack unwind would discard live dummy
7286 frames. */
7287
7288void
7289check_longjmp_breakpoint_for_call_dummy (int thread)
7290{
7291 struct breakpoint *b, *b_tmp;
7292
7293 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7294 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7295 {
7296 struct breakpoint *dummy_b = b->related_breakpoint;
7297
7298 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7299 dummy_b = dummy_b->related_breakpoint;
7300 if (dummy_b->type != bp_call_dummy
7301 || frame_find_by_id (dummy_b->frame_id) != NULL)
7302 continue;
7303
7304 dummy_frame_discard (dummy_b->frame_id);
7305
7306 while (b->related_breakpoint != b)
7307 {
7308 if (b_tmp == b->related_breakpoint)
7309 b_tmp = b->related_breakpoint->next;
7310 delete_breakpoint (b->related_breakpoint);
7311 }
7312 delete_breakpoint (b);
7313 }
7314}
7315
7316void
7317enable_overlay_breakpoints (void)
7318{
7319 struct breakpoint *b;
7320
7321 ALL_BREAKPOINTS (b)
7322 if (b->type == bp_overlay_event)
7323 {
7324 b->enable_state = bp_enabled;
7325 update_global_location_list (1);
7326 overlay_events_enabled = 1;
7327 }
7328}
7329
7330void
7331disable_overlay_breakpoints (void)
7332{
7333 struct breakpoint *b;
7334
7335 ALL_BREAKPOINTS (b)
7336 if (b->type == bp_overlay_event)
7337 {
7338 b->enable_state = bp_disabled;
7339 update_global_location_list (0);
7340 overlay_events_enabled = 0;
7341 }
7342}
7343
7344/* Set an active std::terminate breakpoint for each std::terminate
7345 master breakpoint. */
7346void
7347set_std_terminate_breakpoint (void)
7348{
7349 struct breakpoint *b, *b_tmp;
7350
7351 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7352 if (b->pspace == current_program_space
7353 && b->type == bp_std_terminate_master)
7354 {
7355 momentary_breakpoint_from_master (b, bp_std_terminate,
7356 &momentary_breakpoint_ops);
7357 }
7358}
7359
7360/* Delete all the std::terminate breakpoints. */
7361void
7362delete_std_terminate_breakpoint (void)
7363{
7364 struct breakpoint *b, *b_tmp;
7365
7366 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7367 if (b->type == bp_std_terminate)
7368 delete_breakpoint (b);
7369}
7370
7371struct breakpoint *
7372create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7373{
7374 struct breakpoint *b;
7375
7376 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7377 &internal_breakpoint_ops);
7378
7379 b->enable_state = bp_enabled;
7380 /* addr_string has to be used or breakpoint_re_set will delete me. */
7381 b->addr_string
7382 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7383
7384 update_global_location_list_nothrow (1);
7385
7386 return b;
7387}
7388
7389void
7390remove_thread_event_breakpoints (void)
7391{
7392 struct breakpoint *b, *b_tmp;
7393
7394 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7395 if (b->type == bp_thread_event
7396 && b->loc->pspace == current_program_space)
7397 delete_breakpoint (b);
7398}
7399
7400struct lang_and_radix
7401 {
7402 enum language lang;
7403 int radix;
7404 };
7405
7406/* Create a breakpoint for JIT code registration and unregistration. */
7407
7408struct breakpoint *
7409create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7410{
7411 struct breakpoint *b;
7412
7413 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7414 &internal_breakpoint_ops);
7415 update_global_location_list_nothrow (1);
7416 return b;
7417}
7418
7419/* Remove JIT code registration and unregistration breakpoint(s). */
7420
7421void
7422remove_jit_event_breakpoints (void)
7423{
7424 struct breakpoint *b, *b_tmp;
7425
7426 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7427 if (b->type == bp_jit_event
7428 && b->loc->pspace == current_program_space)
7429 delete_breakpoint (b);
7430}
7431
7432void
7433remove_solib_event_breakpoints (void)
7434{
7435 struct breakpoint *b, *b_tmp;
7436
7437 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7438 if (b->type == bp_shlib_event
7439 && b->loc->pspace == current_program_space)
7440 delete_breakpoint (b);
7441}
7442
7443struct breakpoint *
7444create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7445{
7446 struct breakpoint *b;
7447
7448 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7449 &internal_breakpoint_ops);
7450 update_global_location_list_nothrow (1);
7451 return b;
7452}
7453
7454/* Disable any breakpoints that are on code in shared libraries. Only
7455 apply to enabled breakpoints, disabled ones can just stay disabled. */
7456
7457void
7458disable_breakpoints_in_shlibs (void)
7459{
7460 struct bp_location *loc, **locp_tmp;
7461
7462 ALL_BP_LOCATIONS (loc, locp_tmp)
7463 {
7464 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7465 struct breakpoint *b = loc->owner;
7466
7467 /* We apply the check to all breakpoints, including disabled for
7468 those with loc->duplicate set. This is so that when breakpoint
7469 becomes enabled, or the duplicate is removed, gdb will try to
7470 insert all breakpoints. If we don't set shlib_disabled here,
7471 we'll try to insert those breakpoints and fail. */
7472 if (((b->type == bp_breakpoint)
7473 || (b->type == bp_jit_event)
7474 || (b->type == bp_hardware_breakpoint)
7475 || (is_tracepoint (b)))
7476 && loc->pspace == current_program_space
7477 && !loc->shlib_disabled
7478 && solib_name_from_address (loc->pspace, loc->address)
7479 )
7480 {
7481 loc->shlib_disabled = 1;
7482 }
7483 }
7484}
7485
7486/* Disable any breakpoints and tracepoints that are in SOLIB upon
7487 notification of unloaded_shlib. Only apply to enabled breakpoints,
7488 disabled ones can just stay disabled. */
7489
7490static void
7491disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7492{
7493 struct bp_location *loc, **locp_tmp;
7494 int disabled_shlib_breaks = 0;
7495
7496 /* SunOS a.out shared libraries are always mapped, so do not
7497 disable breakpoints; they will only be reported as unloaded
7498 through clear_solib when GDB discards its shared library
7499 list. See clear_solib for more information. */
7500 if (exec_bfd != NULL
7501 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7502 return;
7503
7504 ALL_BP_LOCATIONS (loc, locp_tmp)
7505 {
7506 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7507 struct breakpoint *b = loc->owner;
7508
7509 if (solib->pspace == loc->pspace
7510 && !loc->shlib_disabled
7511 && (((b->type == bp_breakpoint
7512 || b->type == bp_jit_event
7513 || b->type == bp_hardware_breakpoint)
7514 && (loc->loc_type == bp_loc_hardware_breakpoint
7515 || loc->loc_type == bp_loc_software_breakpoint))
7516 || is_tracepoint (b))
7517 && solib_contains_address_p (solib, loc->address))
7518 {
7519 loc->shlib_disabled = 1;
7520 /* At this point, we cannot rely on remove_breakpoint
7521 succeeding so we must mark the breakpoint as not inserted
7522 to prevent future errors occurring in remove_breakpoints. */
7523 loc->inserted = 0;
7524
7525 /* This may cause duplicate notifications for the same breakpoint. */
7526 observer_notify_breakpoint_modified (b);
7527
7528 if (!disabled_shlib_breaks)
7529 {
7530 target_terminal_ours_for_output ();
7531 warning (_("Temporarily disabling breakpoints "
7532 "for unloaded shared library \"%s\""),
7533 solib->so_name);
7534 }
7535 disabled_shlib_breaks = 1;
7536 }
7537 }
7538}
7539
7540/* Disable any breakpoints and tracepoints in OBJFILE upon
7541 notification of free_objfile. Only apply to enabled breakpoints,
7542 disabled ones can just stay disabled. */
7543
7544static void
7545disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7546{
7547 struct breakpoint *b;
7548
7549 if (objfile == NULL)
7550 return;
7551
7552 /* If the file is a shared library not loaded by the user then
7553 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7554 was called. In that case there is no need to take action again. */
7555 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7556 return;
7557
7558 ALL_BREAKPOINTS (b)
7559 {
7560 struct bp_location *loc;
7561 int bp_modified = 0;
7562
7563 if (!is_breakpoint (b) && !is_tracepoint (b))
7564 continue;
7565
7566 for (loc = b->loc; loc != NULL; loc = loc->next)
7567 {
7568 CORE_ADDR loc_addr = loc->address;
7569
7570 if (loc->loc_type != bp_loc_hardware_breakpoint
7571 && loc->loc_type != bp_loc_software_breakpoint)
7572 continue;
7573
7574 if (loc->shlib_disabled != 0)
7575 continue;
7576
7577 if (objfile->pspace != loc->pspace)
7578 continue;
7579
7580 if (loc->loc_type != bp_loc_hardware_breakpoint
7581 && loc->loc_type != bp_loc_software_breakpoint)
7582 continue;
7583
7584 if (is_addr_in_objfile (loc_addr, objfile))
7585 {
7586 loc->shlib_disabled = 1;
7587 loc->inserted = 0;
7588
7589 mark_breakpoint_location_modified (loc);
7590
7591 bp_modified = 1;
7592 }
7593 }
7594
7595 if (bp_modified)
7596 observer_notify_breakpoint_modified (b);
7597 }
7598}
7599
7600/* FORK & VFORK catchpoints. */
7601
7602/* An instance of this type is used to represent a fork or vfork
7603 catchpoint. It includes a "struct breakpoint" as a kind of base
7604 class; users downcast to "struct breakpoint *" when needed. A
7605 breakpoint is really of this type iff its ops pointer points to
7606 CATCH_FORK_BREAKPOINT_OPS. */
7607
7608struct fork_catchpoint
7609{
7610 /* The base class. */
7611 struct breakpoint base;
7612
7613 /* Process id of a child process whose forking triggered this
7614 catchpoint. This field is only valid immediately after this
7615 catchpoint has triggered. */
7616 ptid_t forked_inferior_pid;
7617};
7618
7619/* Implement the "insert" breakpoint_ops method for fork
7620 catchpoints. */
7621
7622static int
7623insert_catch_fork (struct bp_location *bl)
7624{
7625 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7626}
7627
7628/* Implement the "remove" breakpoint_ops method for fork
7629 catchpoints. */
7630
7631static int
7632remove_catch_fork (struct bp_location *bl)
7633{
7634 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7635}
7636
7637/* Implement the "breakpoint_hit" breakpoint_ops method for fork
7638 catchpoints. */
7639
7640static int
7641breakpoint_hit_catch_fork (const struct bp_location *bl,
7642 struct address_space *aspace, CORE_ADDR bp_addr,
7643 const struct target_waitstatus *ws)
7644{
7645 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7646
7647 if (ws->kind != TARGET_WAITKIND_FORKED)
7648 return 0;
7649
7650 c->forked_inferior_pid = ws->value.related_pid;
7651 return 1;
7652}
7653
7654/* Implement the "print_it" breakpoint_ops method for fork
7655 catchpoints. */
7656
7657static enum print_stop_action
7658print_it_catch_fork (bpstat bs)
7659{
7660 struct ui_out *uiout = current_uiout;
7661 struct breakpoint *b = bs->breakpoint_at;
7662 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7663
7664 annotate_catchpoint (b->number);
7665 if (b->disposition == disp_del)
7666 ui_out_text (uiout, "\nTemporary catchpoint ");
7667 else
7668 ui_out_text (uiout, "\nCatchpoint ");
7669 if (ui_out_is_mi_like_p (uiout))
7670 {
7671 ui_out_field_string (uiout, "reason",
7672 async_reason_lookup (EXEC_ASYNC_FORK));
7673 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7674 }
7675 ui_out_field_int (uiout, "bkptno", b->number);
7676 ui_out_text (uiout, " (forked process ");
7677 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7678 ui_out_text (uiout, "), ");
7679 return PRINT_SRC_AND_LOC;
7680}
7681
7682/* Implement the "print_one" breakpoint_ops method for fork
7683 catchpoints. */
7684
7685static void
7686print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7687{
7688 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7689 struct value_print_options opts;
7690 struct ui_out *uiout = current_uiout;
7691
7692 get_user_print_options (&opts);
7693
7694 /* Field 4, the address, is omitted (which makes the columns not
7695 line up too nicely with the headers, but the effect is relatively
7696 readable). */
7697 if (opts.addressprint)
7698 ui_out_field_skip (uiout, "addr");
7699 annotate_field (5);
7700 ui_out_text (uiout, "fork");
7701 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7702 {
7703 ui_out_text (uiout, ", process ");
7704 ui_out_field_int (uiout, "what",
7705 ptid_get_pid (c->forked_inferior_pid));
7706 ui_out_spaces (uiout, 1);
7707 }
7708
7709 if (ui_out_is_mi_like_p (uiout))
7710 ui_out_field_string (uiout, "catch-type", "fork");
7711}
7712
7713/* Implement the "print_mention" breakpoint_ops method for fork
7714 catchpoints. */
7715
7716static void
7717print_mention_catch_fork (struct breakpoint *b)
7718{
7719 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7720}
7721
7722/* Implement the "print_recreate" breakpoint_ops method for fork
7723 catchpoints. */
7724
7725static void
7726print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7727{
7728 fprintf_unfiltered (fp, "catch fork");
7729 print_recreate_thread (b, fp);
7730}
7731
7732/* The breakpoint_ops structure to be used in fork catchpoints. */
7733
7734static struct breakpoint_ops catch_fork_breakpoint_ops;
7735
7736/* Implement the "insert" breakpoint_ops method for vfork
7737 catchpoints. */
7738
7739static int
7740insert_catch_vfork (struct bp_location *bl)
7741{
7742 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7743}
7744
7745/* Implement the "remove" breakpoint_ops method for vfork
7746 catchpoints. */
7747
7748static int
7749remove_catch_vfork (struct bp_location *bl)
7750{
7751 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7752}
7753
7754/* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7755 catchpoints. */
7756
7757static int
7758breakpoint_hit_catch_vfork (const struct bp_location *bl,
7759 struct address_space *aspace, CORE_ADDR bp_addr,
7760 const struct target_waitstatus *ws)
7761{
7762 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7763
7764 if (ws->kind != TARGET_WAITKIND_VFORKED)
7765 return 0;
7766
7767 c->forked_inferior_pid = ws->value.related_pid;
7768 return 1;
7769}
7770
7771/* Implement the "print_it" breakpoint_ops method for vfork
7772 catchpoints. */
7773
7774static enum print_stop_action
7775print_it_catch_vfork (bpstat bs)
7776{
7777 struct ui_out *uiout = current_uiout;
7778 struct breakpoint *b = bs->breakpoint_at;
7779 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7780
7781 annotate_catchpoint (b->number);
7782 if (b->disposition == disp_del)
7783 ui_out_text (uiout, "\nTemporary catchpoint ");
7784 else
7785 ui_out_text (uiout, "\nCatchpoint ");
7786 if (ui_out_is_mi_like_p (uiout))
7787 {
7788 ui_out_field_string (uiout, "reason",
7789 async_reason_lookup (EXEC_ASYNC_VFORK));
7790 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7791 }
7792 ui_out_field_int (uiout, "bkptno", b->number);
7793 ui_out_text (uiout, " (vforked process ");
7794 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7795 ui_out_text (uiout, "), ");
7796 return PRINT_SRC_AND_LOC;
7797}
7798
7799/* Implement the "print_one" breakpoint_ops method for vfork
7800 catchpoints. */
7801
7802static void
7803print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7804{
7805 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7806 struct value_print_options opts;
7807 struct ui_out *uiout = current_uiout;
7808
7809 get_user_print_options (&opts);
7810 /* Field 4, the address, is omitted (which makes the columns not
7811 line up too nicely with the headers, but the effect is relatively
7812 readable). */
7813 if (opts.addressprint)
7814 ui_out_field_skip (uiout, "addr");
7815 annotate_field (5);
7816 ui_out_text (uiout, "vfork");
7817 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7818 {
7819 ui_out_text (uiout, ", process ");
7820 ui_out_field_int (uiout, "what",
7821 ptid_get_pid (c->forked_inferior_pid));
7822 ui_out_spaces (uiout, 1);
7823 }
7824
7825 if (ui_out_is_mi_like_p (uiout))
7826 ui_out_field_string (uiout, "catch-type", "vfork");
7827}
7828
7829/* Implement the "print_mention" breakpoint_ops method for vfork
7830 catchpoints. */
7831
7832static void
7833print_mention_catch_vfork (struct breakpoint *b)
7834{
7835 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7836}
7837
7838/* Implement the "print_recreate" breakpoint_ops method for vfork
7839 catchpoints. */
7840
7841static void
7842print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7843{
7844 fprintf_unfiltered (fp, "catch vfork");
7845 print_recreate_thread (b, fp);
7846}
7847
7848/* The breakpoint_ops structure to be used in vfork catchpoints. */
7849
7850static struct breakpoint_ops catch_vfork_breakpoint_ops;
7851
7852/* An instance of this type is used to represent an solib catchpoint.
7853 It includes a "struct breakpoint" as a kind of base class; users
7854 downcast to "struct breakpoint *" when needed. A breakpoint is
7855 really of this type iff its ops pointer points to
7856 CATCH_SOLIB_BREAKPOINT_OPS. */
7857
7858struct solib_catchpoint
7859{
7860 /* The base class. */
7861 struct breakpoint base;
7862
7863 /* True for "catch load", false for "catch unload". */
7864 unsigned char is_load;
7865
7866 /* Regular expression to match, if any. COMPILED is only valid when
7867 REGEX is non-NULL. */
7868 char *regex;
7869 regex_t compiled;
7870};
7871
7872static void
7873dtor_catch_solib (struct breakpoint *b)
7874{
7875 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7876
7877 if (self->regex)
7878 regfree (&self->compiled);
7879 xfree (self->regex);
7880
7881 base_breakpoint_ops.dtor (b);
7882}
7883
7884static int
7885insert_catch_solib (struct bp_location *ignore)
7886{
7887 return 0;
7888}
7889
7890static int
7891remove_catch_solib (struct bp_location *ignore)
7892{
7893 return 0;
7894}
7895
7896static int
7897breakpoint_hit_catch_solib (const struct bp_location *bl,
7898 struct address_space *aspace,
7899 CORE_ADDR bp_addr,
7900 const struct target_waitstatus *ws)
7901{
7902 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7903 struct breakpoint *other;
7904
7905 if (ws->kind == TARGET_WAITKIND_LOADED)
7906 return 1;
7907
7908 ALL_BREAKPOINTS (other)
7909 {
7910 struct bp_location *other_bl;
7911
7912 if (other == bl->owner)
7913 continue;
7914
7915 if (other->type != bp_shlib_event)
7916 continue;
7917
7918 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7919 continue;
7920
7921 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7922 {
7923 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7924 return 1;
7925 }
7926 }
7927
7928 return 0;
7929}
7930
7931static void
7932check_status_catch_solib (struct bpstats *bs)
7933{
7934 struct solib_catchpoint *self
7935 = (struct solib_catchpoint *) bs->breakpoint_at;
7936 int ix;
7937
7938 if (self->is_load)
7939 {
7940 struct so_list *iter;
7941
7942 for (ix = 0;
7943 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7944 ix, iter);
7945 ++ix)
7946 {
7947 if (!self->regex
7948 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7949 return;
7950 }
7951 }
7952 else
7953 {
7954 char *iter;
7955
7956 for (ix = 0;
7957 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7958 ix, iter);
7959 ++ix)
7960 {
7961 if (!self->regex
7962 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7963 return;
7964 }
7965 }
7966
7967 bs->stop = 0;
7968 bs->print_it = print_it_noop;
7969}
7970
7971static enum print_stop_action
7972print_it_catch_solib (bpstat bs)
7973{
7974 struct breakpoint *b = bs->breakpoint_at;
7975 struct ui_out *uiout = current_uiout;
7976
7977 annotate_catchpoint (b->number);
7978 if (b->disposition == disp_del)
7979 ui_out_text (uiout, "\nTemporary catchpoint ");
7980 else
7981 ui_out_text (uiout, "\nCatchpoint ");
7982 ui_out_field_int (uiout, "bkptno", b->number);
7983 ui_out_text (uiout, "\n");
7984 if (ui_out_is_mi_like_p (uiout))
7985 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7986 print_solib_event (1);
7987 return PRINT_SRC_AND_LOC;
7988}
7989
7990static void
7991print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7992{
7993 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7994 struct value_print_options opts;
7995 struct ui_out *uiout = current_uiout;
7996 char *msg;
7997
7998 get_user_print_options (&opts);
7999 /* Field 4, the address, is omitted (which makes the columns not
8000 line up too nicely with the headers, but the effect is relatively
8001 readable). */
8002 if (opts.addressprint)
8003 {
8004 annotate_field (4);
8005 ui_out_field_skip (uiout, "addr");
8006 }
8007
8008 annotate_field (5);
8009 if (self->is_load)
8010 {
8011 if (self->regex)
8012 msg = xstrprintf (_("load of library matching %s"), self->regex);
8013 else
8014 msg = xstrdup (_("load of library"));
8015 }
8016 else
8017 {
8018 if (self->regex)
8019 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8020 else
8021 msg = xstrdup (_("unload of library"));
8022 }
8023 ui_out_field_string (uiout, "what", msg);
8024 xfree (msg);
8025
8026 if (ui_out_is_mi_like_p (uiout))
8027 ui_out_field_string (uiout, "catch-type",
8028 self->is_load ? "load" : "unload");
8029}
8030
8031static void
8032print_mention_catch_solib (struct breakpoint *b)
8033{
8034 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8035
8036 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8037 self->is_load ? "load" : "unload");
8038}
8039
8040static void
8041print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8042{
8043 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8044
8045 fprintf_unfiltered (fp, "%s %s",
8046 b->disposition == disp_del ? "tcatch" : "catch",
8047 self->is_load ? "load" : "unload");
8048 if (self->regex)
8049 fprintf_unfiltered (fp, " %s", self->regex);
8050 fprintf_unfiltered (fp, "\n");
8051}
8052
8053static struct breakpoint_ops catch_solib_breakpoint_ops;
8054
8055/* Shared helper function (MI and CLI) for creating and installing
8056 a shared object event catchpoint. If IS_LOAD is non-zero then
8057 the events to be caught are load events, otherwise they are
8058 unload events. If IS_TEMP is non-zero the catchpoint is a
8059 temporary one. If ENABLED is non-zero the catchpoint is
8060 created in an enabled state. */
8061
8062void
8063add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8064{
8065 struct solib_catchpoint *c;
8066 struct gdbarch *gdbarch = get_current_arch ();
8067 struct cleanup *cleanup;
8068
8069 if (!arg)
8070 arg = "";
8071 arg = skip_spaces (arg);
8072
8073 c = XCNEW (struct solib_catchpoint);
8074 cleanup = make_cleanup (xfree, c);
8075
8076 if (*arg != '\0')
8077 {
8078 int errcode;
8079
8080 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8081 if (errcode != 0)
8082 {
8083 char *err = get_regcomp_error (errcode, &c->compiled);
8084
8085 make_cleanup (xfree, err);
8086 error (_("Invalid regexp (%s): %s"), err, arg);
8087 }
8088 c->regex = xstrdup (arg);
8089 }
8090
8091 c->is_load = is_load;
8092 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8093 &catch_solib_breakpoint_ops);
8094
8095 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8096
8097 discard_cleanups (cleanup);
8098 install_breakpoint (0, &c->base, 1);
8099}
8100
8101/* A helper function that does all the work for "catch load" and
8102 "catch unload". */
8103
8104static void
8105catch_load_or_unload (char *arg, int from_tty, int is_load,
8106 struct cmd_list_element *command)
8107{
8108 int tempflag;
8109 const int enabled = 1;
8110
8111 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8112
8113 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8114}
8115
8116static void
8117catch_load_command_1 (char *arg, int from_tty,
8118 struct cmd_list_element *command)
8119{
8120 catch_load_or_unload (arg, from_tty, 1, command);
8121}
8122
8123static void
8124catch_unload_command_1 (char *arg, int from_tty,
8125 struct cmd_list_element *command)
8126{
8127 catch_load_or_unload (arg, from_tty, 0, command);
8128}
8129
8130/* An instance of this type is used to represent a syscall catchpoint.
8131 It includes a "struct breakpoint" as a kind of base class; users
8132 downcast to "struct breakpoint *" when needed. A breakpoint is
8133 really of this type iff its ops pointer points to
8134 CATCH_SYSCALL_BREAKPOINT_OPS. */
8135
8136struct syscall_catchpoint
8137{
8138 /* The base class. */
8139 struct breakpoint base;
8140
8141 /* Syscall numbers used for the 'catch syscall' feature. If no
8142 syscall has been specified for filtering, its value is NULL.
8143 Otherwise, it holds a list of all syscalls to be caught. The
8144 list elements are allocated with xmalloc. */
8145 VEC(int) *syscalls_to_be_caught;
8146};
8147
8148/* Implement the "dtor" breakpoint_ops method for syscall
8149 catchpoints. */
8150
8151static void
8152dtor_catch_syscall (struct breakpoint *b)
8153{
8154 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8155
8156 VEC_free (int, c->syscalls_to_be_caught);
8157
8158 base_breakpoint_ops.dtor (b);
8159}
8160
8161static const struct inferior_data *catch_syscall_inferior_data = NULL;
8162
8163struct catch_syscall_inferior_data
8164{
8165 /* We keep a count of the number of times the user has requested a
8166 particular syscall to be tracked, and pass this information to the
8167 target. This lets capable targets implement filtering directly. */
8168
8169 /* Number of times that "any" syscall is requested. */
8170 int any_syscall_count;
8171
8172 /* Count of each system call. */
8173 VEC(int) *syscalls_counts;
8174
8175 /* This counts all syscall catch requests, so we can readily determine
8176 if any catching is necessary. */
8177 int total_syscalls_count;
8178};
8179
8180static struct catch_syscall_inferior_data*
8181get_catch_syscall_inferior_data (struct inferior *inf)
8182{
8183 struct catch_syscall_inferior_data *inf_data;
8184
8185 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8186 if (inf_data == NULL)
8187 {
8188 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8189 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8190 }
8191
8192 return inf_data;
8193}
8194
8195static void
8196catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8197{
8198 xfree (arg);
8199}
8200
8201
8202/* Implement the "insert" breakpoint_ops method for syscall
8203 catchpoints. */
8204
8205static int
8206insert_catch_syscall (struct bp_location *bl)
8207{
8208 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8209 struct inferior *inf = current_inferior ();
8210 struct catch_syscall_inferior_data *inf_data
8211 = get_catch_syscall_inferior_data (inf);
8212
8213 ++inf_data->total_syscalls_count;
8214 if (!c->syscalls_to_be_caught)
8215 ++inf_data->any_syscall_count;
8216 else
8217 {
8218 int i, iter;
8219
8220 for (i = 0;
8221 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8222 i++)
8223 {
8224 int elem;
8225
8226 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8227 {
8228 int old_size = VEC_length (int, inf_data->syscalls_counts);
8229 uintptr_t vec_addr_offset
8230 = old_size * ((uintptr_t) sizeof (int));
8231 uintptr_t vec_addr;
8232 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8233 vec_addr = ((uintptr_t) VEC_address (int,
8234 inf_data->syscalls_counts)
8235 + vec_addr_offset);
8236 memset ((void *) vec_addr, 0,
8237 (iter + 1 - old_size) * sizeof (int));
8238 }
8239 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8240 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8241 }
8242 }
8243
8244 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8245 inf_data->total_syscalls_count != 0,
8246 inf_data->any_syscall_count,
8247 VEC_length (int,
8248 inf_data->syscalls_counts),
8249 VEC_address (int,
8250 inf_data->syscalls_counts));
8251}
8252
8253/* Implement the "remove" breakpoint_ops method for syscall
8254 catchpoints. */
8255
8256static int
8257remove_catch_syscall (struct bp_location *bl)
8258{
8259 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8260 struct inferior *inf = current_inferior ();
8261 struct catch_syscall_inferior_data *inf_data
8262 = get_catch_syscall_inferior_data (inf);
8263
8264 --inf_data->total_syscalls_count;
8265 if (!c->syscalls_to_be_caught)
8266 --inf_data->any_syscall_count;
8267 else
8268 {
8269 int i, iter;
8270
8271 for (i = 0;
8272 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8273 i++)
8274 {
8275 int elem;
8276 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8277 /* Shouldn't happen. */
8278 continue;
8279 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8280 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8281 }
8282 }
8283
8284 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8285 inf_data->total_syscalls_count != 0,
8286 inf_data->any_syscall_count,
8287 VEC_length (int,
8288 inf_data->syscalls_counts),
8289 VEC_address (int,
8290 inf_data->syscalls_counts));
8291}
8292
8293/* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8294 catchpoints. */
8295
8296static int
8297breakpoint_hit_catch_syscall (const struct bp_location *bl,
8298 struct address_space *aspace, CORE_ADDR bp_addr,
8299 const struct target_waitstatus *ws)
8300{
8301 /* We must check if we are catching specific syscalls in this
8302 breakpoint. If we are, then we must guarantee that the called
8303 syscall is the same syscall we are catching. */
8304 int syscall_number = 0;
8305 const struct syscall_catchpoint *c
8306 = (const struct syscall_catchpoint *) bl->owner;
8307
8308 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8309 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8310 return 0;
8311
8312 syscall_number = ws->value.syscall_number;
8313
8314 /* Now, checking if the syscall is the same. */
8315 if (c->syscalls_to_be_caught)
8316 {
8317 int i, iter;
8318
8319 for (i = 0;
8320 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8321 i++)
8322 if (syscall_number == iter)
8323 break;
8324 /* Not the same. */
8325 if (!iter)
8326 return 0;
8327 }
8328
8329 return 1;
8330}
8331
8332/* Implement the "print_it" breakpoint_ops method for syscall
8333 catchpoints. */
8334
8335static enum print_stop_action
8336print_it_catch_syscall (bpstat bs)
8337{
8338 struct ui_out *uiout = current_uiout;
8339 struct breakpoint *b = bs->breakpoint_at;
8340 /* These are needed because we want to know in which state a
8341 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8342 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8343 must print "called syscall" or "returned from syscall". */
8344 ptid_t ptid;
8345 struct target_waitstatus last;
8346 struct syscall s;
8347
8348 get_last_target_status (&ptid, &last);
8349
8350 get_syscall_by_number (last.value.syscall_number, &s);
8351
8352 annotate_catchpoint (b->number);
8353
8354 if (b->disposition == disp_del)
8355 ui_out_text (uiout, "\nTemporary catchpoint ");
8356 else
8357 ui_out_text (uiout, "\nCatchpoint ");
8358 if (ui_out_is_mi_like_p (uiout))
8359 {
8360 ui_out_field_string (uiout, "reason",
8361 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8362 ? EXEC_ASYNC_SYSCALL_ENTRY
8363 : EXEC_ASYNC_SYSCALL_RETURN));
8364 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8365 }
8366 ui_out_field_int (uiout, "bkptno", b->number);
8367
8368 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8369 ui_out_text (uiout, " (call to syscall ");
8370 else
8371 ui_out_text (uiout, " (returned from syscall ");
8372
8373 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8374 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8375 if (s.name != NULL)
8376 ui_out_field_string (uiout, "syscall-name", s.name);
8377
8378 ui_out_text (uiout, "), ");
8379
8380 return PRINT_SRC_AND_LOC;
8381}
8382
8383/* Implement the "print_one" breakpoint_ops method for syscall
8384 catchpoints. */
8385
8386static void
8387print_one_catch_syscall (struct breakpoint *b,
8388 struct bp_location **last_loc)
8389{
8390 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8391 struct value_print_options opts;
8392 struct ui_out *uiout = current_uiout;
8393
8394 get_user_print_options (&opts);
8395 /* Field 4, the address, is omitted (which makes the columns not
8396 line up too nicely with the headers, but the effect is relatively
8397 readable). */
8398 if (opts.addressprint)
8399 ui_out_field_skip (uiout, "addr");
8400 annotate_field (5);
8401
8402 if (c->syscalls_to_be_caught
8403 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8404 ui_out_text (uiout, "syscalls \"");
8405 else
8406 ui_out_text (uiout, "syscall \"");
8407
8408 if (c->syscalls_to_be_caught)
8409 {
8410 int i, iter;
8411 char *text = xstrprintf ("%s", "");
8412
8413 for (i = 0;
8414 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8415 i++)
8416 {
8417 char *x = text;
8418 struct syscall s;
8419 get_syscall_by_number (iter, &s);
8420
8421 if (s.name != NULL)
8422 text = xstrprintf ("%s%s, ", text, s.name);
8423 else
8424 text = xstrprintf ("%s%d, ", text, iter);
8425
8426 /* We have to xfree the last 'text' (now stored at 'x')
8427 because xstrprintf dynamically allocates new space for it
8428 on every call. */
8429 xfree (x);
8430 }
8431 /* Remove the last comma. */
8432 text[strlen (text) - 2] = '\0';
8433 ui_out_field_string (uiout, "what", text);
8434 }
8435 else
8436 ui_out_field_string (uiout, "what", "<any syscall>");
8437 ui_out_text (uiout, "\" ");
8438
8439 if (ui_out_is_mi_like_p (uiout))
8440 ui_out_field_string (uiout, "catch-type", "syscall");
8441}
8442
8443/* Implement the "print_mention" breakpoint_ops method for syscall
8444 catchpoints. */
8445
8446static void
8447print_mention_catch_syscall (struct breakpoint *b)
8448{
8449 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8450
8451 if (c->syscalls_to_be_caught)
8452 {
8453 int i, iter;
8454
8455 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8456 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8457 else
8458 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8459
8460 for (i = 0;
8461 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8462 i++)
8463 {
8464 struct syscall s;
8465 get_syscall_by_number (iter, &s);
8466
8467 if (s.name)
8468 printf_filtered (" '%s' [%d]", s.name, s.number);
8469 else
8470 printf_filtered (" %d", s.number);
8471 }
8472 printf_filtered (")");
8473 }
8474 else
8475 printf_filtered (_("Catchpoint %d (any syscall)"),
8476 b->number);
8477}
8478
8479/* Implement the "print_recreate" breakpoint_ops method for syscall
8480 catchpoints. */
8481
8482static void
8483print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8484{
8485 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8486
8487 fprintf_unfiltered (fp, "catch syscall");
8488
8489 if (c->syscalls_to_be_caught)
8490 {
8491 int i, iter;
8492
8493 for (i = 0;
8494 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8495 i++)
8496 {
8497 struct syscall s;
8498
8499 get_syscall_by_number (iter, &s);
8500 if (s.name)
8501 fprintf_unfiltered (fp, " %s", s.name);
8502 else
8503 fprintf_unfiltered (fp, " %d", s.number);
8504 }
8505 }
8506 print_recreate_thread (b, fp);
8507}
8508
8509/* The breakpoint_ops structure to be used in syscall catchpoints. */
8510
8511static struct breakpoint_ops catch_syscall_breakpoint_ops;
8512
8513/* Returns non-zero if 'b' is a syscall catchpoint. */
8514
8515static int
8516syscall_catchpoint_p (struct breakpoint *b)
8517{
8518 return (b->ops == &catch_syscall_breakpoint_ops);
8519}
8520
8521/* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8522 is non-zero, then make the breakpoint temporary. If COND_STRING is
8523 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8524 the breakpoint_ops structure associated to the catchpoint. */
8525
8526void
8527init_catchpoint (struct breakpoint *b,
8528 struct gdbarch *gdbarch, int tempflag,
8529 char *cond_string,
8530 const struct breakpoint_ops *ops)
8531{
8532 struct symtab_and_line sal;
8533
8534 init_sal (&sal);
8535 sal.pspace = current_program_space;
8536
8537 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8538
8539 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8540 b->disposition = tempflag ? disp_del : disp_donttouch;
8541}
8542
8543void
8544install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8545{
8546 add_to_breakpoint_chain (b);
8547 set_breakpoint_number (internal, b);
8548 if (is_tracepoint (b))
8549 set_tracepoint_count (breakpoint_count);
8550 if (!internal)
8551 mention (b);
8552 observer_notify_breakpoint_created (b);
8553
8554 if (update_gll)
8555 update_global_location_list (1);
8556}
8557
8558static void
8559create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8560 int tempflag, char *cond_string,
8561 const struct breakpoint_ops *ops)
8562{
8563 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8564
8565 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8566
8567 c->forked_inferior_pid = null_ptid;
8568
8569 install_breakpoint (0, &c->base, 1);
8570}
8571
8572/* Exec catchpoints. */
8573
8574/* An instance of this type is used to represent an exec catchpoint.
8575 It includes a "struct breakpoint" as a kind of base class; users
8576 downcast to "struct breakpoint *" when needed. A breakpoint is
8577 really of this type iff its ops pointer points to
8578 CATCH_EXEC_BREAKPOINT_OPS. */
8579
8580struct exec_catchpoint
8581{
8582 /* The base class. */
8583 struct breakpoint base;
8584
8585 /* Filename of a program whose exec triggered this catchpoint.
8586 This field is only valid immediately after this catchpoint has
8587 triggered. */
8588 char *exec_pathname;
8589};
8590
8591/* Implement the "dtor" breakpoint_ops method for exec
8592 catchpoints. */
8593
8594static void
8595dtor_catch_exec (struct breakpoint *b)
8596{
8597 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8598
8599 xfree (c->exec_pathname);
8600
8601 base_breakpoint_ops.dtor (b);
8602}
8603
8604static int
8605insert_catch_exec (struct bp_location *bl)
8606{
8607 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8608}
8609
8610static int
8611remove_catch_exec (struct bp_location *bl)
8612{
8613 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8614}
8615
8616static int
8617breakpoint_hit_catch_exec (const struct bp_location *bl,
8618 struct address_space *aspace, CORE_ADDR bp_addr,
8619 const struct target_waitstatus *ws)
8620{
8621 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8622
8623 if (ws->kind != TARGET_WAITKIND_EXECD)
8624 return 0;
8625
8626 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8627 return 1;
8628}
8629
8630static enum print_stop_action
8631print_it_catch_exec (bpstat bs)
8632{
8633 struct ui_out *uiout = current_uiout;
8634 struct breakpoint *b = bs->breakpoint_at;
8635 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8636
8637 annotate_catchpoint (b->number);
8638 if (b->disposition == disp_del)
8639 ui_out_text (uiout, "\nTemporary catchpoint ");
8640 else
8641 ui_out_text (uiout, "\nCatchpoint ");
8642 if (ui_out_is_mi_like_p (uiout))
8643 {
8644 ui_out_field_string (uiout, "reason",
8645 async_reason_lookup (EXEC_ASYNC_EXEC));
8646 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8647 }
8648 ui_out_field_int (uiout, "bkptno", b->number);
8649 ui_out_text (uiout, " (exec'd ");
8650 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8651 ui_out_text (uiout, "), ");
8652
8653 return PRINT_SRC_AND_LOC;
8654}
8655
8656static void
8657print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8658{
8659 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8660 struct value_print_options opts;
8661 struct ui_out *uiout = current_uiout;
8662
8663 get_user_print_options (&opts);
8664
8665 /* Field 4, the address, is omitted (which makes the columns
8666 not line up too nicely with the headers, but the effect
8667 is relatively readable). */
8668 if (opts.addressprint)
8669 ui_out_field_skip (uiout, "addr");
8670 annotate_field (5);
8671 ui_out_text (uiout, "exec");
8672 if (c->exec_pathname != NULL)
8673 {
8674 ui_out_text (uiout, ", program \"");
8675 ui_out_field_string (uiout, "what", c->exec_pathname);
8676 ui_out_text (uiout, "\" ");
8677 }
8678
8679 if (ui_out_is_mi_like_p (uiout))
8680 ui_out_field_string (uiout, "catch-type", "exec");
8681}
8682
8683static void
8684print_mention_catch_exec (struct breakpoint *b)
8685{
8686 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8687}
8688
8689/* Implement the "print_recreate" breakpoint_ops method for exec
8690 catchpoints. */
8691
8692static void
8693print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8694{
8695 fprintf_unfiltered (fp, "catch exec");
8696 print_recreate_thread (b, fp);
8697}
8698
8699static struct breakpoint_ops catch_exec_breakpoint_ops;
8700
8701static void
8702create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8703 const struct breakpoint_ops *ops)
8704{
8705 struct syscall_catchpoint *c;
8706 struct gdbarch *gdbarch = get_current_arch ();
8707
8708 c = XNEW (struct syscall_catchpoint);
8709 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8710 c->syscalls_to_be_caught = filter;
8711
8712 install_breakpoint (0, &c->base, 1);
8713}
8714
8715static int
8716hw_breakpoint_used_count (void)
8717{
8718 int i = 0;
8719 struct breakpoint *b;
8720 struct bp_location *bl;
8721
8722 ALL_BREAKPOINTS (b)
8723 {
8724 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8725 for (bl = b->loc; bl; bl = bl->next)
8726 {
8727 /* Special types of hardware breakpoints may use more than
8728 one register. */
8729 i += b->ops->resources_needed (bl);
8730 }
8731 }
8732
8733 return i;
8734}
8735
8736/* Returns the resources B would use if it were a hardware
8737 watchpoint. */
8738
8739static int
8740hw_watchpoint_use_count (struct breakpoint *b)
8741{
8742 int i = 0;
8743 struct bp_location *bl;
8744
8745 if (!breakpoint_enabled (b))
8746 return 0;
8747
8748 for (bl = b->loc; bl; bl = bl->next)
8749 {
8750 /* Special types of hardware watchpoints may use more than
8751 one register. */
8752 i += b->ops->resources_needed (bl);
8753 }
8754
8755 return i;
8756}
8757
8758/* Returns the sum the used resources of all hardware watchpoints of
8759 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8760 the sum of the used resources of all hardware watchpoints of other
8761 types _not_ TYPE. */
8762
8763static int
8764hw_watchpoint_used_count_others (struct breakpoint *except,
8765 enum bptype type, int *other_type_used)
8766{
8767 int i = 0;
8768 struct breakpoint *b;
8769
8770 *other_type_used = 0;
8771 ALL_BREAKPOINTS (b)
8772 {
8773 if (b == except)
8774 continue;
8775 if (!breakpoint_enabled (b))
8776 continue;
8777
8778 if (b->type == type)
8779 i += hw_watchpoint_use_count (b);
8780 else if (is_hardware_watchpoint (b))
8781 *other_type_used = 1;
8782 }
8783
8784 return i;
8785}
8786
8787void
8788disable_watchpoints_before_interactive_call_start (void)
8789{
8790 struct breakpoint *b;
8791
8792 ALL_BREAKPOINTS (b)
8793 {
8794 if (is_watchpoint (b) && breakpoint_enabled (b))
8795 {
8796 b->enable_state = bp_call_disabled;
8797 update_global_location_list (0);
8798 }
8799 }
8800}
8801
8802void
8803enable_watchpoints_after_interactive_call_stop (void)
8804{
8805 struct breakpoint *b;
8806
8807 ALL_BREAKPOINTS (b)
8808 {
8809 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8810 {
8811 b->enable_state = bp_enabled;
8812 update_global_location_list (1);
8813 }
8814 }
8815}
8816
8817void
8818disable_breakpoints_before_startup (void)
8819{
8820 current_program_space->executing_startup = 1;
8821 update_global_location_list (0);
8822}
8823
8824void
8825enable_breakpoints_after_startup (void)
8826{
8827 current_program_space->executing_startup = 0;
8828 breakpoint_re_set ();
8829}
8830
8831
8832/* Set a breakpoint that will evaporate an end of command
8833 at address specified by SAL.
8834 Restrict it to frame FRAME if FRAME is nonzero. */
8835
8836struct breakpoint *
8837set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8838 struct frame_id frame_id, enum bptype type)
8839{
8840 struct breakpoint *b;
8841
8842 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8843 tail-called one. */
8844 gdb_assert (!frame_id_artificial_p (frame_id));
8845
8846 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8847 b->enable_state = bp_enabled;
8848 b->disposition = disp_donttouch;
8849 b->frame_id = frame_id;
8850
8851 /* If we're debugging a multi-threaded program, then we want
8852 momentary breakpoints to be active in only a single thread of
8853 control. */
8854 if (in_thread_list (inferior_ptid))
8855 b->thread = pid_to_thread_id (inferior_ptid);
8856
8857 update_global_location_list_nothrow (1);
8858
8859 return b;
8860}
8861
8862/* Make a momentary breakpoint based on the master breakpoint ORIG.
8863 The new breakpoint will have type TYPE, and use OPS as it
8864 breakpoint_ops. */
8865
8866static struct breakpoint *
8867momentary_breakpoint_from_master (struct breakpoint *orig,
8868 enum bptype type,
8869 const struct breakpoint_ops *ops)
8870{
8871 struct breakpoint *copy;
8872
8873 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8874 copy->loc = allocate_bp_location (copy);
8875 set_breakpoint_location_function (copy->loc, 1);
8876
8877 copy->loc->gdbarch = orig->loc->gdbarch;
8878 copy->loc->requested_address = orig->loc->requested_address;
8879 copy->loc->address = orig->loc->address;
8880 copy->loc->section = orig->loc->section;
8881 copy->loc->pspace = orig->loc->pspace;
8882 copy->loc->probe = orig->loc->probe;
8883 copy->loc->line_number = orig->loc->line_number;
8884 copy->loc->symtab = orig->loc->symtab;
8885 copy->frame_id = orig->frame_id;
8886 copy->thread = orig->thread;
8887 copy->pspace = orig->pspace;
8888
8889 copy->enable_state = bp_enabled;
8890 copy->disposition = disp_donttouch;
8891 copy->number = internal_breakpoint_number--;
8892
8893 update_global_location_list_nothrow (0);
8894 return copy;
8895}
8896
8897/* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8898 ORIG is NULL. */
8899
8900struct breakpoint *
8901clone_momentary_breakpoint (struct breakpoint *orig)
8902{
8903 /* If there's nothing to clone, then return nothing. */
8904 if (orig == NULL)
8905 return NULL;
8906
8907 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8908}
8909
8910struct breakpoint *
8911set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8912 enum bptype type)
8913{
8914 struct symtab_and_line sal;
8915
8916 sal = find_pc_line (pc, 0);
8917 sal.pc = pc;
8918 sal.section = find_pc_overlay (pc);
8919 sal.explicit_pc = 1;
8920
8921 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8922}
8923\f
8924
8925/* Tell the user we have just set a breakpoint B. */
8926
8927static void
8928mention (struct breakpoint *b)
8929{
8930 b->ops->print_mention (b);
8931 if (ui_out_is_mi_like_p (current_uiout))
8932 return;
8933 printf_filtered ("\n");
8934}
8935\f
8936
8937static struct bp_location *
8938add_location_to_breakpoint (struct breakpoint *b,
8939 const struct symtab_and_line *sal)
8940{
8941 struct bp_location *loc, **tmp;
8942 CORE_ADDR adjusted_address;
8943 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8944
8945 if (loc_gdbarch == NULL)
8946 loc_gdbarch = b->gdbarch;
8947
8948 /* Adjust the breakpoint's address prior to allocating a location.
8949 Once we call allocate_bp_location(), that mostly uninitialized
8950 location will be placed on the location chain. Adjustment of the
8951 breakpoint may cause target_read_memory() to be called and we do
8952 not want its scan of the location chain to find a breakpoint and
8953 location that's only been partially initialized. */
8954 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8955 sal->pc, b->type);
8956
8957 /* Sort the locations by their ADDRESS. */
8958 loc = allocate_bp_location (b);
8959 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8960 tmp = &((*tmp)->next))
8961 ;
8962 loc->next = *tmp;
8963 *tmp = loc;
8964
8965 loc->requested_address = sal->pc;
8966 loc->address = adjusted_address;
8967 loc->pspace = sal->pspace;
8968 loc->probe = sal->probe;
8969 gdb_assert (loc->pspace != NULL);
8970 loc->section = sal->section;
8971 loc->gdbarch = loc_gdbarch;
8972 loc->line_number = sal->line;
8973 loc->symtab = sal->symtab;
8974
8975 set_breakpoint_location_function (loc,
8976 sal->explicit_pc || sal->explicit_line);
8977 return loc;
8978}
8979\f
8980
8981/* Return 1 if LOC is pointing to a permanent breakpoint,
8982 return 0 otherwise. */
8983
8984static int
8985bp_loc_is_permanent (struct bp_location *loc)
8986{
8987 int len;
8988 CORE_ADDR addr;
8989 const gdb_byte *bpoint;
8990 gdb_byte *target_mem;
8991 struct cleanup *cleanup;
8992 int retval = 0;
8993
8994 gdb_assert (loc != NULL);
8995
8996 addr = loc->address;
8997 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8998
8999 /* Software breakpoints unsupported? */
9000 if (bpoint == NULL)
9001 return 0;
9002
9003 target_mem = alloca (len);
9004
9005 /* Enable the automatic memory restoration from breakpoints while
9006 we read the memory. Otherwise we could say about our temporary
9007 breakpoints they are permanent. */
9008 cleanup = save_current_space_and_thread ();
9009
9010 switch_to_program_space_and_thread (loc->pspace);
9011 make_show_memory_breakpoints_cleanup (0);
9012
9013 if (target_read_memory (loc->address, target_mem, len) == 0
9014 && memcmp (target_mem, bpoint, len) == 0)
9015 retval = 1;
9016
9017 do_cleanups (cleanup);
9018
9019 return retval;
9020}
9021
9022/* Build a command list for the dprintf corresponding to the current
9023 settings of the dprintf style options. */
9024
9025static void
9026update_dprintf_command_list (struct breakpoint *b)
9027{
9028 char *dprintf_args = b->extra_string;
9029 char *printf_line = NULL;
9030
9031 if (!dprintf_args)
9032 return;
9033
9034 dprintf_args = skip_spaces (dprintf_args);
9035
9036 /* Allow a comma, as it may have terminated a location, but don't
9037 insist on it. */
9038 if (*dprintf_args == ',')
9039 ++dprintf_args;
9040 dprintf_args = skip_spaces (dprintf_args);
9041
9042 if (*dprintf_args != '"')
9043 error (_("Bad format string, missing '\"'."));
9044
9045 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9046 printf_line = xstrprintf ("printf %s", dprintf_args);
9047 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9048 {
9049 if (!dprintf_function)
9050 error (_("No function supplied for dprintf call"));
9051
9052 if (dprintf_channel && strlen (dprintf_channel) > 0)
9053 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9054 dprintf_function,
9055 dprintf_channel,
9056 dprintf_args);
9057 else
9058 printf_line = xstrprintf ("call (void) %s (%s)",
9059 dprintf_function,
9060 dprintf_args);
9061 }
9062 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9063 {
9064 if (target_can_run_breakpoint_commands ())
9065 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9066 else
9067 {
9068 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9069 printf_line = xstrprintf ("printf %s", dprintf_args);
9070 }
9071 }
9072 else
9073 internal_error (__FILE__, __LINE__,
9074 _("Invalid dprintf style."));
9075
9076 gdb_assert (printf_line != NULL);
9077 /* Manufacture a printf sequence. */
9078 {
9079 struct command_line *printf_cmd_line
9080 = xmalloc (sizeof (struct command_line));
9081
9082 printf_cmd_line = xmalloc (sizeof (struct command_line));
9083 printf_cmd_line->control_type = simple_control;
9084 printf_cmd_line->body_count = 0;
9085 printf_cmd_line->body_list = NULL;
9086 printf_cmd_line->next = NULL;
9087 printf_cmd_line->line = printf_line;
9088
9089 breakpoint_set_commands (b, printf_cmd_line);
9090 }
9091}
9092
9093/* Update all dprintf commands, making their command lists reflect
9094 current style settings. */
9095
9096static void
9097update_dprintf_commands (char *args, int from_tty,
9098 struct cmd_list_element *c)
9099{
9100 struct breakpoint *b;
9101
9102 ALL_BREAKPOINTS (b)
9103 {
9104 if (b->type == bp_dprintf)
9105 update_dprintf_command_list (b);
9106 }
9107}
9108
9109/* Create a breakpoint with SAL as location. Use ADDR_STRING
9110 as textual description of the location, and COND_STRING
9111 as condition expression. */
9112
9113static void
9114init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9115 struct symtabs_and_lines sals, char *addr_string,
9116 char *filter, char *cond_string,
9117 char *extra_string,
9118 enum bptype type, enum bpdisp disposition,
9119 int thread, int task, int ignore_count,
9120 const struct breakpoint_ops *ops, int from_tty,
9121 int enabled, int internal, unsigned flags,
9122 int display_canonical)
9123{
9124 int i;
9125
9126 if (type == bp_hardware_breakpoint)
9127 {
9128 int target_resources_ok;
9129
9130 i = hw_breakpoint_used_count ();
9131 target_resources_ok =
9132 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9133 i + 1, 0);
9134 if (target_resources_ok == 0)
9135 error (_("No hardware breakpoint support in the target."));
9136 else if (target_resources_ok < 0)
9137 error (_("Hardware breakpoints used exceeds limit."));
9138 }
9139
9140 gdb_assert (sals.nelts > 0);
9141
9142 for (i = 0; i < sals.nelts; ++i)
9143 {
9144 struct symtab_and_line sal = sals.sals[i];
9145 struct bp_location *loc;
9146
9147 if (from_tty)
9148 {
9149 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9150 if (!loc_gdbarch)
9151 loc_gdbarch = gdbarch;
9152
9153 describe_other_breakpoints (loc_gdbarch,
9154 sal.pspace, sal.pc, sal.section, thread);
9155 }
9156
9157 if (i == 0)
9158 {
9159 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9160 b->thread = thread;
9161 b->task = task;
9162
9163 b->cond_string = cond_string;
9164 b->extra_string = extra_string;
9165 b->ignore_count = ignore_count;
9166 b->enable_state = enabled ? bp_enabled : bp_disabled;
9167 b->disposition = disposition;
9168
9169 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9170 b->loc->inserted = 1;
9171
9172 if (type == bp_static_tracepoint)
9173 {
9174 struct tracepoint *t = (struct tracepoint *) b;
9175 struct static_tracepoint_marker marker;
9176
9177 if (strace_marker_p (b))
9178 {
9179 /* We already know the marker exists, otherwise, we
9180 wouldn't see a sal for it. */
9181 char *p = &addr_string[3];
9182 char *endp;
9183 char *marker_str;
9184
9185 p = skip_spaces (p);
9186
9187 endp = skip_to_space (p);
9188
9189 marker_str = savestring (p, endp - p);
9190 t->static_trace_marker_id = marker_str;
9191
9192 printf_filtered (_("Probed static tracepoint "
9193 "marker \"%s\"\n"),
9194 t->static_trace_marker_id);
9195 }
9196 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9197 {
9198 t->static_trace_marker_id = xstrdup (marker.str_id);
9199 release_static_tracepoint_marker (&marker);
9200
9201 printf_filtered (_("Probed static tracepoint "
9202 "marker \"%s\"\n"),
9203 t->static_trace_marker_id);
9204 }
9205 else
9206 warning (_("Couldn't determine the static "
9207 "tracepoint marker to probe"));
9208 }
9209
9210 loc = b->loc;
9211 }
9212 else
9213 {
9214 loc = add_location_to_breakpoint (b, &sal);
9215 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9216 loc->inserted = 1;
9217 }
9218
9219 if (bp_loc_is_permanent (loc))
9220 make_breakpoint_permanent (b);
9221
9222 if (b->cond_string)
9223 {
9224 const char *arg = b->cond_string;
9225
9226 loc->cond = parse_exp_1 (&arg, loc->address,
9227 block_for_pc (loc->address), 0);
9228 if (*arg)
9229 error (_("Garbage '%s' follows condition"), arg);
9230 }
9231
9232 /* Dynamic printf requires and uses additional arguments on the
9233 command line, otherwise it's an error. */
9234 if (type == bp_dprintf)
9235 {
9236 if (b->extra_string)
9237 update_dprintf_command_list (b);
9238 else
9239 error (_("Format string required"));
9240 }
9241 else if (b->extra_string)
9242 error (_("Garbage '%s' at end of command"), b->extra_string);
9243 }
9244
9245 b->display_canonical = display_canonical;
9246 if (addr_string)
9247 b->addr_string = addr_string;
9248 else
9249 /* addr_string has to be used or breakpoint_re_set will delete
9250 me. */
9251 b->addr_string
9252 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9253 b->filter = filter;
9254}
9255
9256static void
9257create_breakpoint_sal (struct gdbarch *gdbarch,
9258 struct symtabs_and_lines sals, char *addr_string,
9259 char *filter, char *cond_string,
9260 char *extra_string,
9261 enum bptype type, enum bpdisp disposition,
9262 int thread, int task, int ignore_count,
9263 const struct breakpoint_ops *ops, int from_tty,
9264 int enabled, int internal, unsigned flags,
9265 int display_canonical)
9266{
9267 struct breakpoint *b;
9268 struct cleanup *old_chain;
9269
9270 if (is_tracepoint_type (type))
9271 {
9272 struct tracepoint *t;
9273
9274 t = XCNEW (struct tracepoint);
9275 b = &t->base;
9276 }
9277 else
9278 b = XNEW (struct breakpoint);
9279
9280 old_chain = make_cleanup (xfree, b);
9281
9282 init_breakpoint_sal (b, gdbarch,
9283 sals, addr_string,
9284 filter, cond_string, extra_string,
9285 type, disposition,
9286 thread, task, ignore_count,
9287 ops, from_tty,
9288 enabled, internal, flags,
9289 display_canonical);
9290 discard_cleanups (old_chain);
9291
9292 install_breakpoint (internal, b, 0);
9293}
9294
9295/* Add SALS.nelts breakpoints to the breakpoint table. For each
9296 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9297 value. COND_STRING, if not NULL, specified the condition to be
9298 used for all breakpoints. Essentially the only case where
9299 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9300 function. In that case, it's still not possible to specify
9301 separate conditions for different overloaded functions, so
9302 we take just a single condition string.
9303
9304 NOTE: If the function succeeds, the caller is expected to cleanup
9305 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9306 array contents). If the function fails (error() is called), the
9307 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9308 COND and SALS arrays and each of those arrays contents. */
9309
9310static void
9311create_breakpoints_sal (struct gdbarch *gdbarch,
9312 struct linespec_result *canonical,
9313 char *cond_string, char *extra_string,
9314 enum bptype type, enum bpdisp disposition,
9315 int thread, int task, int ignore_count,
9316 const struct breakpoint_ops *ops, int from_tty,
9317 int enabled, int internal, unsigned flags)
9318{
9319 int i;
9320 struct linespec_sals *lsal;
9321
9322 if (canonical->pre_expanded)
9323 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9324
9325 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9326 {
9327 /* Note that 'addr_string' can be NULL in the case of a plain
9328 'break', without arguments. */
9329 char *addr_string = (canonical->addr_string
9330 ? xstrdup (canonical->addr_string)
9331 : NULL);
9332 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9333 struct cleanup *inner = make_cleanup (xfree, addr_string);
9334
9335 make_cleanup (xfree, filter_string);
9336 create_breakpoint_sal (gdbarch, lsal->sals,
9337 addr_string,
9338 filter_string,
9339 cond_string, extra_string,
9340 type, disposition,
9341 thread, task, ignore_count, ops,
9342 from_tty, enabled, internal, flags,
9343 canonical->special_display);
9344 discard_cleanups (inner);
9345 }
9346}
9347
9348/* Parse ADDRESS which is assumed to be a SAL specification possibly
9349 followed by conditionals. On return, SALS contains an array of SAL
9350 addresses found. ADDR_STRING contains a vector of (canonical)
9351 address strings. ADDRESS points to the end of the SAL.
9352
9353 The array and the line spec strings are allocated on the heap, it is
9354 the caller's responsibility to free them. */
9355
9356static void
9357parse_breakpoint_sals (char **address,
9358 struct linespec_result *canonical)
9359{
9360 /* If no arg given, or if first arg is 'if ', use the default
9361 breakpoint. */
9362 if ((*address) == NULL
9363 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9364 {
9365 /* The last displayed codepoint, if it's valid, is our default breakpoint
9366 address. */
9367 if (last_displayed_sal_is_valid ())
9368 {
9369 struct linespec_sals lsal;
9370 struct symtab_and_line sal;
9371 CORE_ADDR pc;
9372
9373 init_sal (&sal); /* Initialize to zeroes. */
9374 lsal.sals.sals = (struct symtab_and_line *)
9375 xmalloc (sizeof (struct symtab_and_line));
9376
9377 /* Set sal's pspace, pc, symtab, and line to the values
9378 corresponding to the last call to print_frame_info.
9379 Be sure to reinitialize LINE with NOTCURRENT == 0
9380 as the breakpoint line number is inappropriate otherwise.
9381 find_pc_line would adjust PC, re-set it back. */
9382 get_last_displayed_sal (&sal);
9383 pc = sal.pc;
9384 sal = find_pc_line (pc, 0);
9385
9386 /* "break" without arguments is equivalent to "break *PC"
9387 where PC is the last displayed codepoint's address. So
9388 make sure to set sal.explicit_pc to prevent GDB from
9389 trying to expand the list of sals to include all other
9390 instances with the same symtab and line. */
9391 sal.pc = pc;
9392 sal.explicit_pc = 1;
9393
9394 lsal.sals.sals[0] = sal;
9395 lsal.sals.nelts = 1;
9396 lsal.canonical = NULL;
9397
9398 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9399 }
9400 else
9401 error (_("No default breakpoint address now."));
9402 }
9403 else
9404 {
9405 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9406
9407 /* Force almost all breakpoints to be in terms of the
9408 current_source_symtab (which is decode_line_1's default).
9409 This should produce the results we want almost all of the
9410 time while leaving default_breakpoint_* alone.
9411
9412 ObjC: However, don't match an Objective-C method name which
9413 may have a '+' or '-' succeeded by a '['. */
9414 if (last_displayed_sal_is_valid ()
9415 && (!cursal.symtab
9416 || ((strchr ("+-", (*address)[0]) != NULL)
9417 && ((*address)[1] != '['))))
9418 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9419 get_last_displayed_symtab (),
9420 get_last_displayed_line (),
9421 canonical, NULL, NULL);
9422 else
9423 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9424 cursal.symtab, cursal.line, canonical, NULL, NULL);
9425 }
9426}
9427
9428
9429/* Convert each SAL into a real PC. Verify that the PC can be
9430 inserted as a breakpoint. If it can't throw an error. */
9431
9432static void
9433breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9434{
9435 int i;
9436
9437 for (i = 0; i < sals->nelts; i++)
9438 resolve_sal_pc (&sals->sals[i]);
9439}
9440
9441/* Fast tracepoints may have restrictions on valid locations. For
9442 instance, a fast tracepoint using a jump instead of a trap will
9443 likely have to overwrite more bytes than a trap would, and so can
9444 only be placed where the instruction is longer than the jump, or a
9445 multi-instruction sequence does not have a jump into the middle of
9446 it, etc. */
9447
9448static void
9449check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9450 struct symtabs_and_lines *sals)
9451{
9452 int i, rslt;
9453 struct symtab_and_line *sal;
9454 char *msg;
9455 struct cleanup *old_chain;
9456
9457 for (i = 0; i < sals->nelts; i++)
9458 {
9459 struct gdbarch *sarch;
9460
9461 sal = &sals->sals[i];
9462
9463 sarch = get_sal_arch (*sal);
9464 /* We fall back to GDBARCH if there is no architecture
9465 associated with SAL. */
9466 if (sarch == NULL)
9467 sarch = gdbarch;
9468 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9469 NULL, &msg);
9470 old_chain = make_cleanup (xfree, msg);
9471
9472 if (!rslt)
9473 error (_("May not have a fast tracepoint at 0x%s%s"),
9474 paddress (sarch, sal->pc), (msg ? msg : ""));
9475
9476 do_cleanups (old_chain);
9477 }
9478}
9479
9480/* Issue an invalid thread ID error. */
9481
9482static void ATTRIBUTE_NORETURN
9483invalid_thread_id_error (int id)
9484{
9485 error (_("Unknown thread %d."), id);
9486}
9487
9488/* Given TOK, a string specification of condition and thread, as
9489 accepted by the 'break' command, extract the condition
9490 string and thread number and set *COND_STRING and *THREAD.
9491 PC identifies the context at which the condition should be parsed.
9492 If no condition is found, *COND_STRING is set to NULL.
9493 If no thread is found, *THREAD is set to -1. */
9494
9495static void
9496find_condition_and_thread (const char *tok, CORE_ADDR pc,
9497 char **cond_string, int *thread, int *task,
9498 char **rest)
9499{
9500 *cond_string = NULL;
9501 *thread = -1;
9502 *task = 0;
9503 *rest = NULL;
9504
9505 while (tok && *tok)
9506 {
9507 const char *end_tok;
9508 int toklen;
9509 const char *cond_start = NULL;
9510 const char *cond_end = NULL;
9511
9512 tok = skip_spaces_const (tok);
9513
9514 if ((*tok == '"' || *tok == ',') && rest)
9515 {
9516 *rest = savestring (tok, strlen (tok));
9517 return;
9518 }
9519
9520 end_tok = skip_to_space_const (tok);
9521
9522 toklen = end_tok - tok;
9523
9524 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9525 {
9526 struct expression *expr;
9527
9528 tok = cond_start = end_tok + 1;
9529 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9530 xfree (expr);
9531 cond_end = tok;
9532 *cond_string = savestring (cond_start, cond_end - cond_start);
9533 }
9534 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9535 {
9536 char *tmptok;
9537
9538 tok = end_tok + 1;
9539 *thread = strtol (tok, &tmptok, 0);
9540 if (tok == tmptok)
9541 error (_("Junk after thread keyword."));
9542 if (!valid_thread_id (*thread))
9543 invalid_thread_id_error (*thread);
9544 tok = tmptok;
9545 }
9546 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9547 {
9548 char *tmptok;
9549
9550 tok = end_tok + 1;
9551 *task = strtol (tok, &tmptok, 0);
9552 if (tok == tmptok)
9553 error (_("Junk after task keyword."));
9554 if (!valid_task_id (*task))
9555 error (_("Unknown task %d."), *task);
9556 tok = tmptok;
9557 }
9558 else if (rest)
9559 {
9560 *rest = savestring (tok, strlen (tok));
9561 return;
9562 }
9563 else
9564 error (_("Junk at end of arguments."));
9565 }
9566}
9567
9568/* Decode a static tracepoint marker spec. */
9569
9570static struct symtabs_and_lines
9571decode_static_tracepoint_spec (char **arg_p)
9572{
9573 VEC(static_tracepoint_marker_p) *markers = NULL;
9574 struct symtabs_and_lines sals;
9575 struct cleanup *old_chain;
9576 char *p = &(*arg_p)[3];
9577 char *endp;
9578 char *marker_str;
9579 int i;
9580
9581 p = skip_spaces (p);
9582
9583 endp = skip_to_space (p);
9584
9585 marker_str = savestring (p, endp - p);
9586 old_chain = make_cleanup (xfree, marker_str);
9587
9588 markers = target_static_tracepoint_markers_by_strid (marker_str);
9589 if (VEC_empty(static_tracepoint_marker_p, markers))
9590 error (_("No known static tracepoint marker named %s"), marker_str);
9591
9592 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9593 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9594
9595 for (i = 0; i < sals.nelts; i++)
9596 {
9597 struct static_tracepoint_marker *marker;
9598
9599 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9600
9601 init_sal (&sals.sals[i]);
9602
9603 sals.sals[i] = find_pc_line (marker->address, 0);
9604 sals.sals[i].pc = marker->address;
9605
9606 release_static_tracepoint_marker (marker);
9607 }
9608
9609 do_cleanups (old_chain);
9610
9611 *arg_p = endp;
9612 return sals;
9613}
9614
9615/* Set a breakpoint. This function is shared between CLI and MI
9616 functions for setting a breakpoint. This function has two major
9617 modes of operations, selected by the PARSE_ARG parameter. If
9618 non-zero, the function will parse ARG, extracting location,
9619 condition, thread and extra string. Otherwise, ARG is just the
9620 breakpoint's location, with condition, thread, and extra string
9621 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9622 If INTERNAL is non-zero, the breakpoint number will be allocated
9623 from the internal breakpoint count. Returns true if any breakpoint
9624 was created; false otherwise. */
9625
9626int
9627create_breakpoint (struct gdbarch *gdbarch,
9628 char *arg, char *cond_string,
9629 int thread, char *extra_string,
9630 int parse_arg,
9631 int tempflag, enum bptype type_wanted,
9632 int ignore_count,
9633 enum auto_boolean pending_break_support,
9634 const struct breakpoint_ops *ops,
9635 int from_tty, int enabled, int internal,
9636 unsigned flags)
9637{
9638 volatile struct gdb_exception e;
9639 char *copy_arg = NULL;
9640 char *addr_start = arg;
9641 struct linespec_result canonical;
9642 struct cleanup *old_chain;
9643 struct cleanup *bkpt_chain = NULL;
9644 int pending = 0;
9645 int task = 0;
9646 int prev_bkpt_count = breakpoint_count;
9647
9648 gdb_assert (ops != NULL);
9649
9650 init_linespec_result (&canonical);
9651
9652 TRY_CATCH (e, RETURN_MASK_ALL)
9653 {
9654 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9655 addr_start, &copy_arg);
9656 }
9657
9658 /* If caller is interested in rc value from parse, set value. */
9659 switch (e.reason)
9660 {
9661 case GDB_NO_ERROR:
9662 if (VEC_empty (linespec_sals, canonical.sals))
9663 return 0;
9664 break;
9665 case RETURN_ERROR:
9666 switch (e.error)
9667 {
9668 case NOT_FOUND_ERROR:
9669
9670 /* If pending breakpoint support is turned off, throw
9671 error. */
9672
9673 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9674 throw_exception (e);
9675
9676 exception_print (gdb_stderr, e);
9677
9678 /* If pending breakpoint support is auto query and the user
9679 selects no, then simply return the error code. */
9680 if (pending_break_support == AUTO_BOOLEAN_AUTO
9681 && !nquery (_("Make %s pending on future shared library load? "),
9682 bptype_string (type_wanted)))
9683 return 0;
9684
9685 /* At this point, either the user was queried about setting
9686 a pending breakpoint and selected yes, or pending
9687 breakpoint behavior is on and thus a pending breakpoint
9688 is defaulted on behalf of the user. */
9689 {
9690 struct linespec_sals lsal;
9691
9692 copy_arg = xstrdup (addr_start);
9693 lsal.canonical = xstrdup (copy_arg);
9694 lsal.sals.nelts = 1;
9695 lsal.sals.sals = XNEW (struct symtab_and_line);
9696 init_sal (&lsal.sals.sals[0]);
9697 pending = 1;
9698 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9699 }
9700 break;
9701 default:
9702 throw_exception (e);
9703 }
9704 break;
9705 default:
9706 throw_exception (e);
9707 }
9708
9709 /* Create a chain of things that always need to be cleaned up. */
9710 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9711
9712 /* ----------------------------- SNIP -----------------------------
9713 Anything added to the cleanup chain beyond this point is assumed
9714 to be part of a breakpoint. If the breakpoint create succeeds
9715 then the memory is not reclaimed. */
9716 bkpt_chain = make_cleanup (null_cleanup, 0);
9717
9718 /* Resolve all line numbers to PC's and verify that the addresses
9719 are ok for the target. */
9720 if (!pending)
9721 {
9722 int ix;
9723 struct linespec_sals *iter;
9724
9725 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9726 breakpoint_sals_to_pc (&iter->sals);
9727 }
9728
9729 /* Fast tracepoints may have additional restrictions on location. */
9730 if (!pending && type_wanted == bp_fast_tracepoint)
9731 {
9732 int ix;
9733 struct linespec_sals *iter;
9734
9735 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9736 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9737 }
9738
9739 /* Verify that condition can be parsed, before setting any
9740 breakpoints. Allocate a separate condition expression for each
9741 breakpoint. */
9742 if (!pending)
9743 {
9744 if (parse_arg)
9745 {
9746 char *rest;
9747 struct linespec_sals *lsal;
9748
9749 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9750
9751 /* Here we only parse 'arg' to separate condition
9752 from thread number, so parsing in context of first
9753 sal is OK. When setting the breakpoint we'll
9754 re-parse it in context of each sal. */
9755
9756 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9757 &thread, &task, &rest);
9758 if (cond_string)
9759 make_cleanup (xfree, cond_string);
9760 if (rest)
9761 make_cleanup (xfree, rest);
9762 if (rest)
9763 extra_string = rest;
9764 }
9765 else
9766 {
9767 if (*arg != '\0')
9768 error (_("Garbage '%s' at end of location"), arg);
9769
9770 /* Create a private copy of condition string. */
9771 if (cond_string)
9772 {
9773 cond_string = xstrdup (cond_string);
9774 make_cleanup (xfree, cond_string);
9775 }
9776 /* Create a private copy of any extra string. */
9777 if (extra_string)
9778 {
9779 extra_string = xstrdup (extra_string);
9780 make_cleanup (xfree, extra_string);
9781 }
9782 }
9783
9784 ops->create_breakpoints_sal (gdbarch, &canonical,
9785 cond_string, extra_string, type_wanted,
9786 tempflag ? disp_del : disp_donttouch,
9787 thread, task, ignore_count, ops,
9788 from_tty, enabled, internal, flags);
9789 }
9790 else
9791 {
9792 struct breakpoint *b;
9793
9794 make_cleanup (xfree, copy_arg);
9795
9796 if (is_tracepoint_type (type_wanted))
9797 {
9798 struct tracepoint *t;
9799
9800 t = XCNEW (struct tracepoint);
9801 b = &t->base;
9802 }
9803 else
9804 b = XNEW (struct breakpoint);
9805
9806 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9807
9808 b->addr_string = copy_arg;
9809 if (parse_arg)
9810 b->cond_string = NULL;
9811 else
9812 {
9813 /* Create a private copy of condition string. */
9814 if (cond_string)
9815 {
9816 cond_string = xstrdup (cond_string);
9817 make_cleanup (xfree, cond_string);
9818 }
9819 b->cond_string = cond_string;
9820 }
9821 b->extra_string = NULL;
9822 b->ignore_count = ignore_count;
9823 b->disposition = tempflag ? disp_del : disp_donttouch;
9824 b->condition_not_parsed = 1;
9825 b->enable_state = enabled ? bp_enabled : bp_disabled;
9826 if ((type_wanted != bp_breakpoint
9827 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9828 b->pspace = current_program_space;
9829
9830 install_breakpoint (internal, b, 0);
9831 }
9832
9833 if (VEC_length (linespec_sals, canonical.sals) > 1)
9834 {
9835 warning (_("Multiple breakpoints were set.\nUse the "
9836 "\"delete\" command to delete unwanted breakpoints."));
9837 prev_breakpoint_count = prev_bkpt_count;
9838 }
9839
9840 /* That's it. Discard the cleanups for data inserted into the
9841 breakpoint. */
9842 discard_cleanups (bkpt_chain);
9843 /* But cleanup everything else. */
9844 do_cleanups (old_chain);
9845
9846 /* error call may happen here - have BKPT_CHAIN already discarded. */
9847 update_global_location_list (1);
9848
9849 return 1;
9850}
9851
9852/* Set a breakpoint.
9853 ARG is a string describing breakpoint address,
9854 condition, and thread.
9855 FLAG specifies if a breakpoint is hardware on,
9856 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9857 and BP_TEMPFLAG. */
9858
9859static void
9860break_command_1 (char *arg, int flag, int from_tty)
9861{
9862 int tempflag = flag & BP_TEMPFLAG;
9863 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9864 ? bp_hardware_breakpoint
9865 : bp_breakpoint);
9866 struct breakpoint_ops *ops;
9867 const char *arg_cp = arg;
9868
9869 /* Matching breakpoints on probes. */
9870 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9871 ops = &bkpt_probe_breakpoint_ops;
9872 else
9873 ops = &bkpt_breakpoint_ops;
9874
9875 create_breakpoint (get_current_arch (),
9876 arg,
9877 NULL, 0, NULL, 1 /* parse arg */,
9878 tempflag, type_wanted,
9879 0 /* Ignore count */,
9880 pending_break_support,
9881 ops,
9882 from_tty,
9883 1 /* enabled */,
9884 0 /* internal */,
9885 0);
9886}
9887
9888/* Helper function for break_command_1 and disassemble_command. */
9889
9890void
9891resolve_sal_pc (struct symtab_and_line *sal)
9892{
9893 CORE_ADDR pc;
9894
9895 if (sal->pc == 0 && sal->symtab != NULL)
9896 {
9897 if (!find_line_pc (sal->symtab, sal->line, &pc))
9898 error (_("No line %d in file \"%s\"."),
9899 sal->line, symtab_to_filename_for_display (sal->symtab));
9900 sal->pc = pc;
9901
9902 /* If this SAL corresponds to a breakpoint inserted using a line
9903 number, then skip the function prologue if necessary. */
9904 if (sal->explicit_line)
9905 skip_prologue_sal (sal);
9906 }
9907
9908 if (sal->section == 0 && sal->symtab != NULL)
9909 {
9910 struct blockvector *bv;
9911 struct block *b;
9912 struct symbol *sym;
9913
9914 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9915 if (bv != NULL)
9916 {
9917 sym = block_linkage_function (b);
9918 if (sym != NULL)
9919 {
9920 fixup_symbol_section (sym, sal->symtab->objfile);
9921 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9922 }
9923 else
9924 {
9925 /* It really is worthwhile to have the section, so we'll
9926 just have to look harder. This case can be executed
9927 if we have line numbers but no functions (as can
9928 happen in assembly source). */
9929
9930 struct bound_minimal_symbol msym;
9931 struct cleanup *old_chain = save_current_space_and_thread ();
9932
9933 switch_to_program_space_and_thread (sal->pspace);
9934
9935 msym = lookup_minimal_symbol_by_pc (sal->pc);
9936 if (msym.minsym)
9937 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9938
9939 do_cleanups (old_chain);
9940 }
9941 }
9942 }
9943}
9944
9945void
9946break_command (char *arg, int from_tty)
9947{
9948 break_command_1 (arg, 0, from_tty);
9949}
9950
9951void
9952tbreak_command (char *arg, int from_tty)
9953{
9954 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9955}
9956
9957static void
9958hbreak_command (char *arg, int from_tty)
9959{
9960 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9961}
9962
9963static void
9964thbreak_command (char *arg, int from_tty)
9965{
9966 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9967}
9968
9969static void
9970stop_command (char *arg, int from_tty)
9971{
9972 printf_filtered (_("Specify the type of breakpoint to set.\n\
9973Usage: stop in <function | address>\n\
9974 stop at <line>\n"));
9975}
9976
9977static void
9978stopin_command (char *arg, int from_tty)
9979{
9980 int badInput = 0;
9981
9982 if (arg == (char *) NULL)
9983 badInput = 1;
9984 else if (*arg != '*')
9985 {
9986 char *argptr = arg;
9987 int hasColon = 0;
9988
9989 /* Look for a ':'. If this is a line number specification, then
9990 say it is bad, otherwise, it should be an address or
9991 function/method name. */
9992 while (*argptr && !hasColon)
9993 {
9994 hasColon = (*argptr == ':');
9995 argptr++;
9996 }
9997
9998 if (hasColon)
9999 badInput = (*argptr != ':'); /* Not a class::method */
10000 else
10001 badInput = isdigit (*arg); /* a simple line number */
10002 }
10003
10004 if (badInput)
10005 printf_filtered (_("Usage: stop in <function | address>\n"));
10006 else
10007 break_command_1 (arg, 0, from_tty);
10008}
10009
10010static void
10011stopat_command (char *arg, int from_tty)
10012{
10013 int badInput = 0;
10014
10015 if (arg == (char *) NULL || *arg == '*') /* no line number */
10016 badInput = 1;
10017 else
10018 {
10019 char *argptr = arg;
10020 int hasColon = 0;
10021
10022 /* Look for a ':'. If there is a '::' then get out, otherwise
10023 it is probably a line number. */
10024 while (*argptr && !hasColon)
10025 {
10026 hasColon = (*argptr == ':');
10027 argptr++;
10028 }
10029
10030 if (hasColon)
10031 badInput = (*argptr == ':'); /* we have class::method */
10032 else
10033 badInput = !isdigit (*arg); /* not a line number */
10034 }
10035
10036 if (badInput)
10037 printf_filtered (_("Usage: stop at <line>\n"));
10038 else
10039 break_command_1 (arg, 0, from_tty);
10040}
10041
10042/* The dynamic printf command is mostly like a regular breakpoint, but
10043 with a prewired command list consisting of a single output command,
10044 built from extra arguments supplied on the dprintf command
10045 line. */
10046
10047static void
10048dprintf_command (char *arg, int from_tty)
10049{
10050 create_breakpoint (get_current_arch (),
10051 arg,
10052 NULL, 0, NULL, 1 /* parse arg */,
10053 0, bp_dprintf,
10054 0 /* Ignore count */,
10055 pending_break_support,
10056 &dprintf_breakpoint_ops,
10057 from_tty,
10058 1 /* enabled */,
10059 0 /* internal */,
10060 0);
10061}
10062
10063static void
10064agent_printf_command (char *arg, int from_tty)
10065{
10066 error (_("May only run agent-printf on the target"));
10067}
10068
10069/* Implement the "breakpoint_hit" breakpoint_ops method for
10070 ranged breakpoints. */
10071
10072static int
10073breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10074 struct address_space *aspace,
10075 CORE_ADDR bp_addr,
10076 const struct target_waitstatus *ws)
10077{
10078 if (ws->kind != TARGET_WAITKIND_STOPPED
10079 || ws->value.sig != GDB_SIGNAL_TRAP)
10080 return 0;
10081
10082 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10083 bl->length, aspace, bp_addr);
10084}
10085
10086/* Implement the "resources_needed" breakpoint_ops method for
10087 ranged breakpoints. */
10088
10089static int
10090resources_needed_ranged_breakpoint (const struct bp_location *bl)
10091{
10092 return target_ranged_break_num_registers ();
10093}
10094
10095/* Implement the "print_it" breakpoint_ops method for
10096 ranged breakpoints. */
10097
10098static enum print_stop_action
10099print_it_ranged_breakpoint (bpstat bs)
10100{
10101 struct breakpoint *b = bs->breakpoint_at;
10102 struct bp_location *bl = b->loc;
10103 struct ui_out *uiout = current_uiout;
10104
10105 gdb_assert (b->type == bp_hardware_breakpoint);
10106
10107 /* Ranged breakpoints have only one location. */
10108 gdb_assert (bl && bl->next == NULL);
10109
10110 annotate_breakpoint (b->number);
10111 if (b->disposition == disp_del)
10112 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10113 else
10114 ui_out_text (uiout, "\nRanged breakpoint ");
10115 if (ui_out_is_mi_like_p (uiout))
10116 {
10117 ui_out_field_string (uiout, "reason",
10118 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10119 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10120 }
10121 ui_out_field_int (uiout, "bkptno", b->number);
10122 ui_out_text (uiout, ", ");
10123
10124 return PRINT_SRC_AND_LOC;
10125}
10126
10127/* Implement the "print_one" breakpoint_ops method for
10128 ranged breakpoints. */
10129
10130static void
10131print_one_ranged_breakpoint (struct breakpoint *b,
10132 struct bp_location **last_loc)
10133{
10134 struct bp_location *bl = b->loc;
10135 struct value_print_options opts;
10136 struct ui_out *uiout = current_uiout;
10137
10138 /* Ranged breakpoints have only one location. */
10139 gdb_assert (bl && bl->next == NULL);
10140
10141 get_user_print_options (&opts);
10142
10143 if (opts.addressprint)
10144 /* We don't print the address range here, it will be printed later
10145 by print_one_detail_ranged_breakpoint. */
10146 ui_out_field_skip (uiout, "addr");
10147 annotate_field (5);
10148 print_breakpoint_location (b, bl);
10149 *last_loc = bl;
10150}
10151
10152/* Implement the "print_one_detail" breakpoint_ops method for
10153 ranged breakpoints. */
10154
10155static void
10156print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10157 struct ui_out *uiout)
10158{
10159 CORE_ADDR address_start, address_end;
10160 struct bp_location *bl = b->loc;
10161 struct ui_file *stb = mem_fileopen ();
10162 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10163
10164 gdb_assert (bl);
10165
10166 address_start = bl->address;
10167 address_end = address_start + bl->length - 1;
10168
10169 ui_out_text (uiout, "\taddress range: ");
10170 fprintf_unfiltered (stb, "[%s, %s]",
10171 print_core_address (bl->gdbarch, address_start),
10172 print_core_address (bl->gdbarch, address_end));
10173 ui_out_field_stream (uiout, "addr", stb);
10174 ui_out_text (uiout, "\n");
10175
10176 do_cleanups (cleanup);
10177}
10178
10179/* Implement the "print_mention" breakpoint_ops method for
10180 ranged breakpoints. */
10181
10182static void
10183print_mention_ranged_breakpoint (struct breakpoint *b)
10184{
10185 struct bp_location *bl = b->loc;
10186 struct ui_out *uiout = current_uiout;
10187
10188 gdb_assert (bl);
10189 gdb_assert (b->type == bp_hardware_breakpoint);
10190
10191 if (ui_out_is_mi_like_p (uiout))
10192 return;
10193
10194 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10195 b->number, paddress (bl->gdbarch, bl->address),
10196 paddress (bl->gdbarch, bl->address + bl->length - 1));
10197}
10198
10199/* Implement the "print_recreate" breakpoint_ops method for
10200 ranged breakpoints. */
10201
10202static void
10203print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10204{
10205 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10206 b->addr_string_range_end);
10207 print_recreate_thread (b, fp);
10208}
10209
10210/* The breakpoint_ops structure to be used in ranged breakpoints. */
10211
10212static struct breakpoint_ops ranged_breakpoint_ops;
10213
10214/* Find the address where the end of the breakpoint range should be
10215 placed, given the SAL of the end of the range. This is so that if
10216 the user provides a line number, the end of the range is set to the
10217 last instruction of the given line. */
10218
10219static CORE_ADDR
10220find_breakpoint_range_end (struct symtab_and_line sal)
10221{
10222 CORE_ADDR end;
10223
10224 /* If the user provided a PC value, use it. Otherwise,
10225 find the address of the end of the given location. */
10226 if (sal.explicit_pc)
10227 end = sal.pc;
10228 else
10229 {
10230 int ret;
10231 CORE_ADDR start;
10232
10233 ret = find_line_pc_range (sal, &start, &end);
10234 if (!ret)
10235 error (_("Could not find location of the end of the range."));
10236
10237 /* find_line_pc_range returns the start of the next line. */
10238 end--;
10239 }
10240
10241 return end;
10242}
10243
10244/* Implement the "break-range" CLI command. */
10245
10246static void
10247break_range_command (char *arg, int from_tty)
10248{
10249 char *arg_start, *addr_string_start, *addr_string_end;
10250 struct linespec_result canonical_start, canonical_end;
10251 int bp_count, can_use_bp, length;
10252 CORE_ADDR end;
10253 struct breakpoint *b;
10254 struct symtab_and_line sal_start, sal_end;
10255 struct cleanup *cleanup_bkpt;
10256 struct linespec_sals *lsal_start, *lsal_end;
10257
10258 /* We don't support software ranged breakpoints. */
10259 if (target_ranged_break_num_registers () < 0)
10260 error (_("This target does not support hardware ranged breakpoints."));
10261
10262 bp_count = hw_breakpoint_used_count ();
10263 bp_count += target_ranged_break_num_registers ();
10264 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10265 bp_count, 0);
10266 if (can_use_bp < 0)
10267 error (_("Hardware breakpoints used exceeds limit."));
10268
10269 arg = skip_spaces (arg);
10270 if (arg == NULL || arg[0] == '\0')
10271 error(_("No address range specified."));
10272
10273 init_linespec_result (&canonical_start);
10274
10275 arg_start = arg;
10276 parse_breakpoint_sals (&arg, &canonical_start);
10277
10278 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10279
10280 if (arg[0] != ',')
10281 error (_("Too few arguments."));
10282 else if (VEC_empty (linespec_sals, canonical_start.sals))
10283 error (_("Could not find location of the beginning of the range."));
10284
10285 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10286
10287 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10288 || lsal_start->sals.nelts != 1)
10289 error (_("Cannot create a ranged breakpoint with multiple locations."));
10290
10291 sal_start = lsal_start->sals.sals[0];
10292 addr_string_start = savestring (arg_start, arg - arg_start);
10293 make_cleanup (xfree, addr_string_start);
10294
10295 arg++; /* Skip the comma. */
10296 arg = skip_spaces (arg);
10297
10298 /* Parse the end location. */
10299
10300 init_linespec_result (&canonical_end);
10301 arg_start = arg;
10302
10303 /* We call decode_line_full directly here instead of using
10304 parse_breakpoint_sals because we need to specify the start location's
10305 symtab and line as the default symtab and line for the end of the
10306 range. This makes it possible to have ranges like "foo.c:27, +14",
10307 where +14 means 14 lines from the start location. */
10308 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10309 sal_start.symtab, sal_start.line,
10310 &canonical_end, NULL, NULL);
10311
10312 make_cleanup_destroy_linespec_result (&canonical_end);
10313
10314 if (VEC_empty (linespec_sals, canonical_end.sals))
10315 error (_("Could not find location of the end of the range."));
10316
10317 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10318 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10319 || lsal_end->sals.nelts != 1)
10320 error (_("Cannot create a ranged breakpoint with multiple locations."));
10321
10322 sal_end = lsal_end->sals.sals[0];
10323 addr_string_end = savestring (arg_start, arg - arg_start);
10324 make_cleanup (xfree, addr_string_end);
10325
10326 end = find_breakpoint_range_end (sal_end);
10327 if (sal_start.pc > end)
10328 error (_("Invalid address range, end precedes start."));
10329
10330 length = end - sal_start.pc + 1;
10331 if (length < 0)
10332 /* Length overflowed. */
10333 error (_("Address range too large."));
10334 else if (length == 1)
10335 {
10336 /* This range is simple enough to be handled by
10337 the `hbreak' command. */
10338 hbreak_command (addr_string_start, 1);
10339
10340 do_cleanups (cleanup_bkpt);
10341
10342 return;
10343 }
10344
10345 /* Now set up the breakpoint. */
10346 b = set_raw_breakpoint (get_current_arch (), sal_start,
10347 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10348 set_breakpoint_count (breakpoint_count + 1);
10349 b->number = breakpoint_count;
10350 b->disposition = disp_donttouch;
10351 b->addr_string = xstrdup (addr_string_start);
10352 b->addr_string_range_end = xstrdup (addr_string_end);
10353 b->loc->length = length;
10354
10355 do_cleanups (cleanup_bkpt);
10356
10357 mention (b);
10358 observer_notify_breakpoint_created (b);
10359 update_global_location_list (1);
10360}
10361
10362/* Return non-zero if EXP is verified as constant. Returned zero
10363 means EXP is variable. Also the constant detection may fail for
10364 some constant expressions and in such case still falsely return
10365 zero. */
10366
10367static int
10368watchpoint_exp_is_const (const struct expression *exp)
10369{
10370 int i = exp->nelts;
10371
10372 while (i > 0)
10373 {
10374 int oplenp, argsp;
10375
10376 /* We are only interested in the descriptor of each element. */
10377 operator_length (exp, i, &oplenp, &argsp);
10378 i -= oplenp;
10379
10380 switch (exp->elts[i].opcode)
10381 {
10382 case BINOP_ADD:
10383 case BINOP_SUB:
10384 case BINOP_MUL:
10385 case BINOP_DIV:
10386 case BINOP_REM:
10387 case BINOP_MOD:
10388 case BINOP_LSH:
10389 case BINOP_RSH:
10390 case BINOP_LOGICAL_AND:
10391 case BINOP_LOGICAL_OR:
10392 case BINOP_BITWISE_AND:
10393 case BINOP_BITWISE_IOR:
10394 case BINOP_BITWISE_XOR:
10395 case BINOP_EQUAL:
10396 case BINOP_NOTEQUAL:
10397 case BINOP_LESS:
10398 case BINOP_GTR:
10399 case BINOP_LEQ:
10400 case BINOP_GEQ:
10401 case BINOP_REPEAT:
10402 case BINOP_COMMA:
10403 case BINOP_EXP:
10404 case BINOP_MIN:
10405 case BINOP_MAX:
10406 case BINOP_INTDIV:
10407 case BINOP_CONCAT:
10408 case BINOP_IN:
10409 case BINOP_RANGE:
10410 case TERNOP_COND:
10411 case TERNOP_SLICE:
10412
10413 case OP_LONG:
10414 case OP_DOUBLE:
10415 case OP_DECFLOAT:
10416 case OP_LAST:
10417 case OP_COMPLEX:
10418 case OP_STRING:
10419 case OP_ARRAY:
10420 case OP_TYPE:
10421 case OP_TYPEOF:
10422 case OP_DECLTYPE:
10423 case OP_TYPEID:
10424 case OP_NAME:
10425 case OP_OBJC_NSSTRING:
10426
10427 case UNOP_NEG:
10428 case UNOP_LOGICAL_NOT:
10429 case UNOP_COMPLEMENT:
10430 case UNOP_ADDR:
10431 case UNOP_HIGH:
10432 case UNOP_CAST:
10433
10434 case UNOP_CAST_TYPE:
10435 case UNOP_REINTERPRET_CAST:
10436 case UNOP_DYNAMIC_CAST:
10437 /* Unary, binary and ternary operators: We have to check
10438 their operands. If they are constant, then so is the
10439 result of that operation. For instance, if A and B are
10440 determined to be constants, then so is "A + B".
10441
10442 UNOP_IND is one exception to the rule above, because the
10443 value of *ADDR is not necessarily a constant, even when
10444 ADDR is. */
10445 break;
10446
10447 case OP_VAR_VALUE:
10448 /* Check whether the associated symbol is a constant.
10449
10450 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10451 possible that a buggy compiler could mark a variable as
10452 constant even when it is not, and TYPE_CONST would return
10453 true in this case, while SYMBOL_CLASS wouldn't.
10454
10455 We also have to check for function symbols because they
10456 are always constant. */
10457 {
10458 struct symbol *s = exp->elts[i + 2].symbol;
10459
10460 if (SYMBOL_CLASS (s) != LOC_BLOCK
10461 && SYMBOL_CLASS (s) != LOC_CONST
10462 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10463 return 0;
10464 break;
10465 }
10466
10467 /* The default action is to return 0 because we are using
10468 the optimistic approach here: If we don't know something,
10469 then it is not a constant. */
10470 default:
10471 return 0;
10472 }
10473 }
10474
10475 return 1;
10476}
10477
10478/* Implement the "dtor" breakpoint_ops method for watchpoints. */
10479
10480static void
10481dtor_watchpoint (struct breakpoint *self)
10482{
10483 struct watchpoint *w = (struct watchpoint *) self;
10484
10485 xfree (w->cond_exp);
10486 xfree (w->exp);
10487 xfree (w->exp_string);
10488 xfree (w->exp_string_reparse);
10489 value_free (w->val);
10490
10491 base_breakpoint_ops.dtor (self);
10492}
10493
10494/* Implement the "re_set" breakpoint_ops method for watchpoints. */
10495
10496static void
10497re_set_watchpoint (struct breakpoint *b)
10498{
10499 struct watchpoint *w = (struct watchpoint *) b;
10500
10501 /* Watchpoint can be either on expression using entirely global
10502 variables, or it can be on local variables.
10503
10504 Watchpoints of the first kind are never auto-deleted, and even
10505 persist across program restarts. Since they can use variables
10506 from shared libraries, we need to reparse expression as libraries
10507 are loaded and unloaded.
10508
10509 Watchpoints on local variables can also change meaning as result
10510 of solib event. For example, if a watchpoint uses both a local
10511 and a global variables in expression, it's a local watchpoint,
10512 but unloading of a shared library will make the expression
10513 invalid. This is not a very common use case, but we still
10514 re-evaluate expression, to avoid surprises to the user.
10515
10516 Note that for local watchpoints, we re-evaluate it only if
10517 watchpoints frame id is still valid. If it's not, it means the
10518 watchpoint is out of scope and will be deleted soon. In fact,
10519 I'm not sure we'll ever be called in this case.
10520
10521 If a local watchpoint's frame id is still valid, then
10522 w->exp_valid_block is likewise valid, and we can safely use it.
10523
10524 Don't do anything about disabled watchpoints, since they will be
10525 reevaluated again when enabled. */
10526 update_watchpoint (w, 1 /* reparse */);
10527}
10528
10529/* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10530
10531static int
10532insert_watchpoint (struct bp_location *bl)
10533{
10534 struct watchpoint *w = (struct watchpoint *) bl->owner;
10535 int length = w->exact ? 1 : bl->length;
10536
10537 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10538 w->cond_exp);
10539}
10540
10541/* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10542
10543static int
10544remove_watchpoint (struct bp_location *bl)
10545{
10546 struct watchpoint *w = (struct watchpoint *) bl->owner;
10547 int length = w->exact ? 1 : bl->length;
10548
10549 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10550 w->cond_exp);
10551}
10552
10553static int
10554breakpoint_hit_watchpoint (const struct bp_location *bl,
10555 struct address_space *aspace, CORE_ADDR bp_addr,
10556 const struct target_waitstatus *ws)
10557{
10558 struct breakpoint *b = bl->owner;
10559 struct watchpoint *w = (struct watchpoint *) b;
10560
10561 /* Continuable hardware watchpoints are treated as non-existent if the
10562 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10563 some data address). Otherwise gdb won't stop on a break instruction
10564 in the code (not from a breakpoint) when a hardware watchpoint has
10565 been defined. Also skip watchpoints which we know did not trigger
10566 (did not match the data address). */
10567 if (is_hardware_watchpoint (b)
10568 && w->watchpoint_triggered == watch_triggered_no)
10569 return 0;
10570
10571 return 1;
10572}
10573
10574static void
10575check_status_watchpoint (bpstat bs)
10576{
10577 gdb_assert (is_watchpoint (bs->breakpoint_at));
10578
10579 bpstat_check_watchpoint (bs);
10580}
10581
10582/* Implement the "resources_needed" breakpoint_ops method for
10583 hardware watchpoints. */
10584
10585static int
10586resources_needed_watchpoint (const struct bp_location *bl)
10587{
10588 struct watchpoint *w = (struct watchpoint *) bl->owner;
10589 int length = w->exact? 1 : bl->length;
10590
10591 return target_region_ok_for_hw_watchpoint (bl->address, length);
10592}
10593
10594/* Implement the "works_in_software_mode" breakpoint_ops method for
10595 hardware watchpoints. */
10596
10597static int
10598works_in_software_mode_watchpoint (const struct breakpoint *b)
10599{
10600 /* Read and access watchpoints only work with hardware support. */
10601 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10602}
10603
10604static enum print_stop_action
10605print_it_watchpoint (bpstat bs)
10606{
10607 struct cleanup *old_chain;
10608 struct breakpoint *b;
10609 struct ui_file *stb;
10610 enum print_stop_action result;
10611 struct watchpoint *w;
10612 struct ui_out *uiout = current_uiout;
10613
10614 gdb_assert (bs->bp_location_at != NULL);
10615
10616 b = bs->breakpoint_at;
10617 w = (struct watchpoint *) b;
10618
10619 stb = mem_fileopen ();
10620 old_chain = make_cleanup_ui_file_delete (stb);
10621
10622 switch (b->type)
10623 {
10624 case bp_watchpoint:
10625 case bp_hardware_watchpoint:
10626 annotate_watchpoint (b->number);
10627 if (ui_out_is_mi_like_p (uiout))
10628 ui_out_field_string
10629 (uiout, "reason",
10630 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10631 mention (b);
10632 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10633 ui_out_text (uiout, "\nOld value = ");
10634 watchpoint_value_print (bs->old_val, stb);
10635 ui_out_field_stream (uiout, "old", stb);
10636 ui_out_text (uiout, "\nNew value = ");
10637 watchpoint_value_print (w->val, stb);
10638 ui_out_field_stream (uiout, "new", stb);
10639 ui_out_text (uiout, "\n");
10640 /* More than one watchpoint may have been triggered. */
10641 result = PRINT_UNKNOWN;
10642 break;
10643
10644 case bp_read_watchpoint:
10645 if (ui_out_is_mi_like_p (uiout))
10646 ui_out_field_string
10647 (uiout, "reason",
10648 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10649 mention (b);
10650 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10651 ui_out_text (uiout, "\nValue = ");
10652 watchpoint_value_print (w->val, stb);
10653 ui_out_field_stream (uiout, "value", stb);
10654 ui_out_text (uiout, "\n");
10655 result = PRINT_UNKNOWN;
10656 break;
10657
10658 case bp_access_watchpoint:
10659 if (bs->old_val != NULL)
10660 {
10661 annotate_watchpoint (b->number);
10662 if (ui_out_is_mi_like_p (uiout))
10663 ui_out_field_string
10664 (uiout, "reason",
10665 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10666 mention (b);
10667 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10668 ui_out_text (uiout, "\nOld value = ");
10669 watchpoint_value_print (bs->old_val, stb);
10670 ui_out_field_stream (uiout, "old", stb);
10671 ui_out_text (uiout, "\nNew value = ");
10672 }
10673 else
10674 {
10675 mention (b);
10676 if (ui_out_is_mi_like_p (uiout))
10677 ui_out_field_string
10678 (uiout, "reason",
10679 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10680 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10681 ui_out_text (uiout, "\nValue = ");
10682 }
10683 watchpoint_value_print (w->val, stb);
10684 ui_out_field_stream (uiout, "new", stb);
10685 ui_out_text (uiout, "\n");
10686 result = PRINT_UNKNOWN;
10687 break;
10688 default:
10689 result = PRINT_UNKNOWN;
10690 }
10691
10692 do_cleanups (old_chain);
10693 return result;
10694}
10695
10696/* Implement the "print_mention" breakpoint_ops method for hardware
10697 watchpoints. */
10698
10699static void
10700print_mention_watchpoint (struct breakpoint *b)
10701{
10702 struct cleanup *ui_out_chain;
10703 struct watchpoint *w = (struct watchpoint *) b;
10704 struct ui_out *uiout = current_uiout;
10705
10706 switch (b->type)
10707 {
10708 case bp_watchpoint:
10709 ui_out_text (uiout, "Watchpoint ");
10710 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10711 break;
10712 case bp_hardware_watchpoint:
10713 ui_out_text (uiout, "Hardware watchpoint ");
10714 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10715 break;
10716 case bp_read_watchpoint:
10717 ui_out_text (uiout, "Hardware read watchpoint ");
10718 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10719 break;
10720 case bp_access_watchpoint:
10721 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10722 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10723 break;
10724 default:
10725 internal_error (__FILE__, __LINE__,
10726 _("Invalid hardware watchpoint type."));
10727 }
10728
10729 ui_out_field_int (uiout, "number", b->number);
10730 ui_out_text (uiout, ": ");
10731 ui_out_field_string (uiout, "exp", w->exp_string);
10732 do_cleanups (ui_out_chain);
10733}
10734
10735/* Implement the "print_recreate" breakpoint_ops method for
10736 watchpoints. */
10737
10738static void
10739print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10740{
10741 struct watchpoint *w = (struct watchpoint *) b;
10742
10743 switch (b->type)
10744 {
10745 case bp_watchpoint:
10746 case bp_hardware_watchpoint:
10747 fprintf_unfiltered (fp, "watch");
10748 break;
10749 case bp_read_watchpoint:
10750 fprintf_unfiltered (fp, "rwatch");
10751 break;
10752 case bp_access_watchpoint:
10753 fprintf_unfiltered (fp, "awatch");
10754 break;
10755 default:
10756 internal_error (__FILE__, __LINE__,
10757 _("Invalid watchpoint type."));
10758 }
10759
10760 fprintf_unfiltered (fp, " %s", w->exp_string);
10761 print_recreate_thread (b, fp);
10762}
10763
10764/* Implement the "explains_signal" breakpoint_ops method for
10765 watchpoints. */
10766
10767static enum bpstat_signal_value
10768explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10769{
10770 /* A software watchpoint cannot cause a signal other than
10771 GDB_SIGNAL_TRAP. */
10772 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10773 return BPSTAT_SIGNAL_NO;
10774
10775 return BPSTAT_SIGNAL_HIDE;
10776}
10777
10778/* The breakpoint_ops structure to be used in hardware watchpoints. */
10779
10780static struct breakpoint_ops watchpoint_breakpoint_ops;
10781
10782/* Implement the "insert" breakpoint_ops method for
10783 masked hardware watchpoints. */
10784
10785static int
10786insert_masked_watchpoint (struct bp_location *bl)
10787{
10788 struct watchpoint *w = (struct watchpoint *) bl->owner;
10789
10790 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10791 bl->watchpoint_type);
10792}
10793
10794/* Implement the "remove" breakpoint_ops method for
10795 masked hardware watchpoints. */
10796
10797static int
10798remove_masked_watchpoint (struct bp_location *bl)
10799{
10800 struct watchpoint *w = (struct watchpoint *) bl->owner;
10801
10802 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10803 bl->watchpoint_type);
10804}
10805
10806/* Implement the "resources_needed" breakpoint_ops method for
10807 masked hardware watchpoints. */
10808
10809static int
10810resources_needed_masked_watchpoint (const struct bp_location *bl)
10811{
10812 struct watchpoint *w = (struct watchpoint *) bl->owner;
10813
10814 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10815}
10816
10817/* Implement the "works_in_software_mode" breakpoint_ops method for
10818 masked hardware watchpoints. */
10819
10820static int
10821works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10822{
10823 return 0;
10824}
10825
10826/* Implement the "print_it" breakpoint_ops method for
10827 masked hardware watchpoints. */
10828
10829static enum print_stop_action
10830print_it_masked_watchpoint (bpstat bs)
10831{
10832 struct breakpoint *b = bs->breakpoint_at;
10833 struct ui_out *uiout = current_uiout;
10834
10835 /* Masked watchpoints have only one location. */
10836 gdb_assert (b->loc && b->loc->next == NULL);
10837
10838 switch (b->type)
10839 {
10840 case bp_hardware_watchpoint:
10841 annotate_watchpoint (b->number);
10842 if (ui_out_is_mi_like_p (uiout))
10843 ui_out_field_string
10844 (uiout, "reason",
10845 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10846 break;
10847
10848 case bp_read_watchpoint:
10849 if (ui_out_is_mi_like_p (uiout))
10850 ui_out_field_string
10851 (uiout, "reason",
10852 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10853 break;
10854
10855 case bp_access_watchpoint:
10856 if (ui_out_is_mi_like_p (uiout))
10857 ui_out_field_string
10858 (uiout, "reason",
10859 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10860 break;
10861 default:
10862 internal_error (__FILE__, __LINE__,
10863 _("Invalid hardware watchpoint type."));
10864 }
10865
10866 mention (b);
10867 ui_out_text (uiout, _("\n\
10868Check the underlying instruction at PC for the memory\n\
10869address and value which triggered this watchpoint.\n"));
10870 ui_out_text (uiout, "\n");
10871
10872 /* More than one watchpoint may have been triggered. */
10873 return PRINT_UNKNOWN;
10874}
10875
10876/* Implement the "print_one_detail" breakpoint_ops method for
10877 masked hardware watchpoints. */
10878
10879static void
10880print_one_detail_masked_watchpoint (const struct breakpoint *b,
10881 struct ui_out *uiout)
10882{
10883 struct watchpoint *w = (struct watchpoint *) b;
10884
10885 /* Masked watchpoints have only one location. */
10886 gdb_assert (b->loc && b->loc->next == NULL);
10887
10888 ui_out_text (uiout, "\tmask ");
10889 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10890 ui_out_text (uiout, "\n");
10891}
10892
10893/* Implement the "print_mention" breakpoint_ops method for
10894 masked hardware watchpoints. */
10895
10896static void
10897print_mention_masked_watchpoint (struct breakpoint *b)
10898{
10899 struct watchpoint *w = (struct watchpoint *) b;
10900 struct ui_out *uiout = current_uiout;
10901 struct cleanup *ui_out_chain;
10902
10903 switch (b->type)
10904 {
10905 case bp_hardware_watchpoint:
10906 ui_out_text (uiout, "Masked hardware watchpoint ");
10907 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10908 break;
10909 case bp_read_watchpoint:
10910 ui_out_text (uiout, "Masked hardware read watchpoint ");
10911 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10912 break;
10913 case bp_access_watchpoint:
10914 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10915 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10916 break;
10917 default:
10918 internal_error (__FILE__, __LINE__,
10919 _("Invalid hardware watchpoint type."));
10920 }
10921
10922 ui_out_field_int (uiout, "number", b->number);
10923 ui_out_text (uiout, ": ");
10924 ui_out_field_string (uiout, "exp", w->exp_string);
10925 do_cleanups (ui_out_chain);
10926}
10927
10928/* Implement the "print_recreate" breakpoint_ops method for
10929 masked hardware watchpoints. */
10930
10931static void
10932print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10933{
10934 struct watchpoint *w = (struct watchpoint *) b;
10935 char tmp[40];
10936
10937 switch (b->type)
10938 {
10939 case bp_hardware_watchpoint:
10940 fprintf_unfiltered (fp, "watch");
10941 break;
10942 case bp_read_watchpoint:
10943 fprintf_unfiltered (fp, "rwatch");
10944 break;
10945 case bp_access_watchpoint:
10946 fprintf_unfiltered (fp, "awatch");
10947 break;
10948 default:
10949 internal_error (__FILE__, __LINE__,
10950 _("Invalid hardware watchpoint type."));
10951 }
10952
10953 sprintf_vma (tmp, w->hw_wp_mask);
10954 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10955 print_recreate_thread (b, fp);
10956}
10957
10958/* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10959
10960static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10961
10962/* Tell whether the given watchpoint is a masked hardware watchpoint. */
10963
10964static int
10965is_masked_watchpoint (const struct breakpoint *b)
10966{
10967 return b->ops == &masked_watchpoint_breakpoint_ops;
10968}
10969
10970/* accessflag: hw_write: watch write,
10971 hw_read: watch read,
10972 hw_access: watch access (read or write) */
10973static void
10974watch_command_1 (const char *arg, int accessflag, int from_tty,
10975 int just_location, int internal)
10976{
10977 volatile struct gdb_exception e;
10978 struct breakpoint *b, *scope_breakpoint = NULL;
10979 struct expression *exp;
10980 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10981 struct value *val, *mark, *result;
10982 struct frame_info *frame;
10983 const char *exp_start = NULL;
10984 const char *exp_end = NULL;
10985 const char *tok, *end_tok;
10986 int toklen = -1;
10987 const char *cond_start = NULL;
10988 const char *cond_end = NULL;
10989 enum bptype bp_type;
10990 int thread = -1;
10991 int pc = 0;
10992 /* Flag to indicate whether we are going to use masks for
10993 the hardware watchpoint. */
10994 int use_mask = 0;
10995 CORE_ADDR mask = 0;
10996 struct watchpoint *w;
10997 char *expression;
10998 struct cleanup *back_to;
10999
11000 /* Make sure that we actually have parameters to parse. */
11001 if (arg != NULL && arg[0] != '\0')
11002 {
11003 const char *value_start;
11004
11005 exp_end = arg + strlen (arg);
11006
11007 /* Look for "parameter value" pairs at the end
11008 of the arguments string. */
11009 for (tok = exp_end - 1; tok > arg; tok--)
11010 {
11011 /* Skip whitespace at the end of the argument list. */
11012 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11013 tok--;
11014
11015 /* Find the beginning of the last token.
11016 This is the value of the parameter. */
11017 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11018 tok--;
11019 value_start = tok + 1;
11020
11021 /* Skip whitespace. */
11022 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11023 tok--;
11024
11025 end_tok = tok;
11026
11027 /* Find the beginning of the second to last token.
11028 This is the parameter itself. */
11029 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11030 tok--;
11031 tok++;
11032 toklen = end_tok - tok + 1;
11033
11034 if (toklen == 6 && !strncmp (tok, "thread", 6))
11035 {
11036 /* At this point we've found a "thread" token, which means
11037 the user is trying to set a watchpoint that triggers
11038 only in a specific thread. */
11039 char *endp;
11040
11041 if (thread != -1)
11042 error(_("You can specify only one thread."));
11043
11044 /* Extract the thread ID from the next token. */
11045 thread = strtol (value_start, &endp, 0);
11046
11047 /* Check if the user provided a valid numeric value for the
11048 thread ID. */
11049 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11050 error (_("Invalid thread ID specification %s."), value_start);
11051
11052 /* Check if the thread actually exists. */
11053 if (!valid_thread_id (thread))
11054 invalid_thread_id_error (thread);
11055 }
11056 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11057 {
11058 /* We've found a "mask" token, which means the user wants to
11059 create a hardware watchpoint that is going to have the mask
11060 facility. */
11061 struct value *mask_value, *mark;
11062
11063 if (use_mask)
11064 error(_("You can specify only one mask."));
11065
11066 use_mask = just_location = 1;
11067
11068 mark = value_mark ();
11069 mask_value = parse_to_comma_and_eval (&value_start);
11070 mask = value_as_address (mask_value);
11071 value_free_to_mark (mark);
11072 }
11073 else
11074 /* We didn't recognize what we found. We should stop here. */
11075 break;
11076
11077 /* Truncate the string and get rid of the "parameter value" pair before
11078 the arguments string is parsed by the parse_exp_1 function. */
11079 exp_end = tok;
11080 }
11081 }
11082 else
11083 exp_end = arg;
11084
11085 /* Parse the rest of the arguments. From here on out, everything
11086 is in terms of a newly allocated string instead of the original
11087 ARG. */
11088 innermost_block = NULL;
11089 expression = savestring (arg, exp_end - arg);
11090 back_to = make_cleanup (xfree, expression);
11091 exp_start = arg = expression;
11092 exp = parse_exp_1 (&arg, 0, 0, 0);
11093 exp_end = arg;
11094 /* Remove trailing whitespace from the expression before saving it.
11095 This makes the eventual display of the expression string a bit
11096 prettier. */
11097 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11098 --exp_end;
11099
11100 /* Checking if the expression is not constant. */
11101 if (watchpoint_exp_is_const (exp))
11102 {
11103 int len;
11104
11105 len = exp_end - exp_start;
11106 while (len > 0 && isspace (exp_start[len - 1]))
11107 len--;
11108 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11109 }
11110
11111 exp_valid_block = innermost_block;
11112 mark = value_mark ();
11113 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11114
11115 if (just_location)
11116 {
11117 int ret;
11118
11119 exp_valid_block = NULL;
11120 val = value_addr (result);
11121 release_value (val);
11122 value_free_to_mark (mark);
11123
11124 if (use_mask)
11125 {
11126 ret = target_masked_watch_num_registers (value_as_address (val),
11127 mask);
11128 if (ret == -1)
11129 error (_("This target does not support masked watchpoints."));
11130 else if (ret == -2)
11131 error (_("Invalid mask or memory region."));
11132 }
11133 }
11134 else if (val != NULL)
11135 release_value (val);
11136
11137 tok = skip_spaces_const (arg);
11138 end_tok = skip_to_space_const (tok);
11139
11140 toklen = end_tok - tok;
11141 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11142 {
11143 struct expression *cond;
11144
11145 innermost_block = NULL;
11146 tok = cond_start = end_tok + 1;
11147 cond = parse_exp_1 (&tok, 0, 0, 0);
11148
11149 /* The watchpoint expression may not be local, but the condition
11150 may still be. E.g.: `watch global if local > 0'. */
11151 cond_exp_valid_block = innermost_block;
11152
11153 xfree (cond);
11154 cond_end = tok;
11155 }
11156 if (*tok)
11157 error (_("Junk at end of command."));
11158
11159 frame = block_innermost_frame (exp_valid_block);
11160
11161 /* If the expression is "local", then set up a "watchpoint scope"
11162 breakpoint at the point where we've left the scope of the watchpoint
11163 expression. Create the scope breakpoint before the watchpoint, so
11164 that we will encounter it first in bpstat_stop_status. */
11165 if (exp_valid_block && frame)
11166 {
11167 if (frame_id_p (frame_unwind_caller_id (frame)))
11168 {
11169 scope_breakpoint
11170 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11171 frame_unwind_caller_pc (frame),
11172 bp_watchpoint_scope,
11173 &momentary_breakpoint_ops);
11174
11175 scope_breakpoint->enable_state = bp_enabled;
11176
11177 /* Automatically delete the breakpoint when it hits. */
11178 scope_breakpoint->disposition = disp_del;
11179
11180 /* Only break in the proper frame (help with recursion). */
11181 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11182
11183 /* Set the address at which we will stop. */
11184 scope_breakpoint->loc->gdbarch
11185 = frame_unwind_caller_arch (frame);
11186 scope_breakpoint->loc->requested_address
11187 = frame_unwind_caller_pc (frame);
11188 scope_breakpoint->loc->address
11189 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11190 scope_breakpoint->loc->requested_address,
11191 scope_breakpoint->type);
11192 }
11193 }
11194
11195 /* Now set up the breakpoint. We create all watchpoints as hardware
11196 watchpoints here even if hardware watchpoints are turned off, a call
11197 to update_watchpoint later in this function will cause the type to
11198 drop back to bp_watchpoint (software watchpoint) if required. */
11199
11200 if (accessflag == hw_read)
11201 bp_type = bp_read_watchpoint;
11202 else if (accessflag == hw_access)
11203 bp_type = bp_access_watchpoint;
11204 else
11205 bp_type = bp_hardware_watchpoint;
11206
11207 w = XCNEW (struct watchpoint);
11208 b = &w->base;
11209 if (use_mask)
11210 init_raw_breakpoint_without_location (b, NULL, bp_type,
11211 &masked_watchpoint_breakpoint_ops);
11212 else
11213 init_raw_breakpoint_without_location (b, NULL, bp_type,
11214 &watchpoint_breakpoint_ops);
11215 b->thread = thread;
11216 b->disposition = disp_donttouch;
11217 b->pspace = current_program_space;
11218 w->exp = exp;
11219 w->exp_valid_block = exp_valid_block;
11220 w->cond_exp_valid_block = cond_exp_valid_block;
11221 if (just_location)
11222 {
11223 struct type *t = value_type (val);
11224 CORE_ADDR addr = value_as_address (val);
11225 char *name;
11226
11227 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11228 name = type_to_string (t);
11229
11230 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11231 core_addr_to_string (addr));
11232 xfree (name);
11233
11234 w->exp_string = xstrprintf ("-location %.*s",
11235 (int) (exp_end - exp_start), exp_start);
11236
11237 /* The above expression is in C. */
11238 b->language = language_c;
11239 }
11240 else
11241 w->exp_string = savestring (exp_start, exp_end - exp_start);
11242
11243 if (use_mask)
11244 {
11245 w->hw_wp_mask = mask;
11246 }
11247 else
11248 {
11249 w->val = val;
11250 w->val_valid = 1;
11251 }
11252
11253 if (cond_start)
11254 b->cond_string = savestring (cond_start, cond_end - cond_start);
11255 else
11256 b->cond_string = 0;
11257
11258 if (frame)
11259 {
11260 w->watchpoint_frame = get_frame_id (frame);
11261 w->watchpoint_thread = inferior_ptid;
11262 }
11263 else
11264 {
11265 w->watchpoint_frame = null_frame_id;
11266 w->watchpoint_thread = null_ptid;
11267 }
11268
11269 if (scope_breakpoint != NULL)
11270 {
11271 /* The scope breakpoint is related to the watchpoint. We will
11272 need to act on them together. */
11273 b->related_breakpoint = scope_breakpoint;
11274 scope_breakpoint->related_breakpoint = b;
11275 }
11276
11277 if (!just_location)
11278 value_free_to_mark (mark);
11279
11280 TRY_CATCH (e, RETURN_MASK_ALL)
11281 {
11282 /* Finally update the new watchpoint. This creates the locations
11283 that should be inserted. */
11284 update_watchpoint (w, 1);
11285 }
11286 if (e.reason < 0)
11287 {
11288 delete_breakpoint (b);
11289 throw_exception (e);
11290 }
11291
11292 install_breakpoint (internal, b, 1);
11293 do_cleanups (back_to);
11294}
11295
11296/* Return count of debug registers needed to watch the given expression.
11297 If the watchpoint cannot be handled in hardware return zero. */
11298
11299static int
11300can_use_hardware_watchpoint (struct value *v)
11301{
11302 int found_memory_cnt = 0;
11303 struct value *head = v;
11304
11305 /* Did the user specifically forbid us to use hardware watchpoints? */
11306 if (!can_use_hw_watchpoints)
11307 return 0;
11308
11309 /* Make sure that the value of the expression depends only upon
11310 memory contents, and values computed from them within GDB. If we
11311 find any register references or function calls, we can't use a
11312 hardware watchpoint.
11313
11314 The idea here is that evaluating an expression generates a series
11315 of values, one holding the value of every subexpression. (The
11316 expression a*b+c has five subexpressions: a, b, a*b, c, and
11317 a*b+c.) GDB's values hold almost enough information to establish
11318 the criteria given above --- they identify memory lvalues,
11319 register lvalues, computed values, etcetera. So we can evaluate
11320 the expression, and then scan the chain of values that leaves
11321 behind to decide whether we can detect any possible change to the
11322 expression's final value using only hardware watchpoints.
11323
11324 However, I don't think that the values returned by inferior
11325 function calls are special in any way. So this function may not
11326 notice that an expression involving an inferior function call
11327 can't be watched with hardware watchpoints. FIXME. */
11328 for (; v; v = value_next (v))
11329 {
11330 if (VALUE_LVAL (v) == lval_memory)
11331 {
11332 if (v != head && value_lazy (v))
11333 /* A lazy memory lvalue in the chain is one that GDB never
11334 needed to fetch; we either just used its address (e.g.,
11335 `a' in `a.b') or we never needed it at all (e.g., `a'
11336 in `a,b'). This doesn't apply to HEAD; if that is
11337 lazy then it was not readable, but watch it anyway. */
11338 ;
11339 else
11340 {
11341 /* Ahh, memory we actually used! Check if we can cover
11342 it with hardware watchpoints. */
11343 struct type *vtype = check_typedef (value_type (v));
11344
11345 /* We only watch structs and arrays if user asked for it
11346 explicitly, never if they just happen to appear in a
11347 middle of some value chain. */
11348 if (v == head
11349 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11350 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11351 {
11352 CORE_ADDR vaddr = value_address (v);
11353 int len;
11354 int num_regs;
11355
11356 len = (target_exact_watchpoints
11357 && is_scalar_type_recursive (vtype))?
11358 1 : TYPE_LENGTH (value_type (v));
11359
11360 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11361 if (!num_regs)
11362 return 0;
11363 else
11364 found_memory_cnt += num_regs;
11365 }
11366 }
11367 }
11368 else if (VALUE_LVAL (v) != not_lval
11369 && deprecated_value_modifiable (v) == 0)
11370 return 0; /* These are values from the history (e.g., $1). */
11371 else if (VALUE_LVAL (v) == lval_register)
11372 return 0; /* Cannot watch a register with a HW watchpoint. */
11373 }
11374
11375 /* The expression itself looks suitable for using a hardware
11376 watchpoint, but give the target machine a chance to reject it. */
11377 return found_memory_cnt;
11378}
11379
11380void
11381watch_command_wrapper (char *arg, int from_tty, int internal)
11382{
11383 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11384}
11385
11386/* A helper function that looks for the "-location" argument and then
11387 calls watch_command_1. */
11388
11389static void
11390watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11391{
11392 int just_location = 0;
11393
11394 if (arg
11395 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11396 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11397 {
11398 arg = skip_spaces (arg);
11399 just_location = 1;
11400 }
11401
11402 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11403}
11404
11405static void
11406watch_command (char *arg, int from_tty)
11407{
11408 watch_maybe_just_location (arg, hw_write, from_tty);
11409}
11410
11411void
11412rwatch_command_wrapper (char *arg, int from_tty, int internal)
11413{
11414 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11415}
11416
11417static void
11418rwatch_command (char *arg, int from_tty)
11419{
11420 watch_maybe_just_location (arg, hw_read, from_tty);
11421}
11422
11423void
11424awatch_command_wrapper (char *arg, int from_tty, int internal)
11425{
11426 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11427}
11428
11429static void
11430awatch_command (char *arg, int from_tty)
11431{
11432 watch_maybe_just_location (arg, hw_access, from_tty);
11433}
11434\f
11435
11436/* Helper routines for the until_command routine in infcmd.c. Here
11437 because it uses the mechanisms of breakpoints. */
11438
11439struct until_break_command_continuation_args
11440{
11441 struct breakpoint *breakpoint;
11442 struct breakpoint *breakpoint2;
11443 int thread_num;
11444};
11445
11446/* This function is called by fetch_inferior_event via the
11447 cmd_continuation pointer, to complete the until command. It takes
11448 care of cleaning up the temporary breakpoints set up by the until
11449 command. */
11450static void
11451until_break_command_continuation (void *arg, int err)
11452{
11453 struct until_break_command_continuation_args *a = arg;
11454
11455 delete_breakpoint (a->breakpoint);
11456 if (a->breakpoint2)
11457 delete_breakpoint (a->breakpoint2);
11458 delete_longjmp_breakpoint (a->thread_num);
11459}
11460
11461void
11462until_break_command (char *arg, int from_tty, int anywhere)
11463{
11464 struct symtabs_and_lines sals;
11465 struct symtab_and_line sal;
11466 struct frame_info *frame;
11467 struct gdbarch *frame_gdbarch;
11468 struct frame_id stack_frame_id;
11469 struct frame_id caller_frame_id;
11470 struct breakpoint *breakpoint;
11471 struct breakpoint *breakpoint2 = NULL;
11472 struct cleanup *old_chain;
11473 int thread;
11474 struct thread_info *tp;
11475
11476 clear_proceed_status ();
11477
11478 /* Set a breakpoint where the user wants it and at return from
11479 this function. */
11480
11481 if (last_displayed_sal_is_valid ())
11482 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11483 get_last_displayed_symtab (),
11484 get_last_displayed_line ());
11485 else
11486 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11487 (struct symtab *) NULL, 0);
11488
11489 if (sals.nelts != 1)
11490 error (_("Couldn't get information on specified line."));
11491
11492 sal = sals.sals[0];
11493 xfree (sals.sals); /* malloc'd, so freed. */
11494
11495 if (*arg)
11496 error (_("Junk at end of arguments."));
11497
11498 resolve_sal_pc (&sal);
11499
11500 tp = inferior_thread ();
11501 thread = tp->num;
11502
11503 old_chain = make_cleanup (null_cleanup, NULL);
11504
11505 /* Note linespec handling above invalidates the frame chain.
11506 Installing a breakpoint also invalidates the frame chain (as it
11507 may need to switch threads), so do any frame handling before
11508 that. */
11509
11510 frame = get_selected_frame (NULL);
11511 frame_gdbarch = get_frame_arch (frame);
11512 stack_frame_id = get_stack_frame_id (frame);
11513 caller_frame_id = frame_unwind_caller_id (frame);
11514
11515 /* Keep within the current frame, or in frames called by the current
11516 one. */
11517
11518 if (frame_id_p (caller_frame_id))
11519 {
11520 struct symtab_and_line sal2;
11521
11522 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11523 sal2.pc = frame_unwind_caller_pc (frame);
11524 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11525 sal2,
11526 caller_frame_id,
11527 bp_until);
11528 make_cleanup_delete_breakpoint (breakpoint2);
11529
11530 set_longjmp_breakpoint (tp, caller_frame_id);
11531 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11532 }
11533
11534 /* set_momentary_breakpoint could invalidate FRAME. */
11535 frame = NULL;
11536
11537 if (anywhere)
11538 /* If the user told us to continue until a specified location,
11539 we don't specify a frame at which we need to stop. */
11540 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11541 null_frame_id, bp_until);
11542 else
11543 /* Otherwise, specify the selected frame, because we want to stop
11544 only at the very same frame. */
11545 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11546 stack_frame_id, bp_until);
11547 make_cleanup_delete_breakpoint (breakpoint);
11548
11549 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11550
11551 /* If we are running asynchronously, and proceed call above has
11552 actually managed to start the target, arrange for breakpoints to
11553 be deleted when the target stops. Otherwise, we're already
11554 stopped and delete breakpoints via cleanup chain. */
11555
11556 if (target_can_async_p () && is_running (inferior_ptid))
11557 {
11558 struct until_break_command_continuation_args *args;
11559 args = xmalloc (sizeof (*args));
11560
11561 args->breakpoint = breakpoint;
11562 args->breakpoint2 = breakpoint2;
11563 args->thread_num = thread;
11564
11565 discard_cleanups (old_chain);
11566 add_continuation (inferior_thread (),
11567 until_break_command_continuation, args,
11568 xfree);
11569 }
11570 else
11571 do_cleanups (old_chain);
11572}
11573
11574/* This function attempts to parse an optional "if <cond>" clause
11575 from the arg string. If one is not found, it returns NULL.
11576
11577 Else, it returns a pointer to the condition string. (It does not
11578 attempt to evaluate the string against a particular block.) And,
11579 it updates arg to point to the first character following the parsed
11580 if clause in the arg string. */
11581
11582char *
11583ep_parse_optional_if_clause (char **arg)
11584{
11585 char *cond_string;
11586
11587 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11588 return NULL;
11589
11590 /* Skip the "if" keyword. */
11591 (*arg) += 2;
11592
11593 /* Skip any extra leading whitespace, and record the start of the
11594 condition string. */
11595 *arg = skip_spaces (*arg);
11596 cond_string = *arg;
11597
11598 /* Assume that the condition occupies the remainder of the arg
11599 string. */
11600 (*arg) += strlen (cond_string);
11601
11602 return cond_string;
11603}
11604
11605/* Commands to deal with catching events, such as signals, exceptions,
11606 process start/exit, etc. */
11607
11608typedef enum
11609{
11610 catch_fork_temporary, catch_vfork_temporary,
11611 catch_fork_permanent, catch_vfork_permanent
11612}
11613catch_fork_kind;
11614
11615static void
11616catch_fork_command_1 (char *arg, int from_tty,
11617 struct cmd_list_element *command)
11618{
11619 struct gdbarch *gdbarch = get_current_arch ();
11620 char *cond_string = NULL;
11621 catch_fork_kind fork_kind;
11622 int tempflag;
11623
11624 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11625 tempflag = (fork_kind == catch_fork_temporary
11626 || fork_kind == catch_vfork_temporary);
11627
11628 if (!arg)
11629 arg = "";
11630 arg = skip_spaces (arg);
11631
11632 /* The allowed syntax is:
11633 catch [v]fork
11634 catch [v]fork if <cond>
11635
11636 First, check if there's an if clause. */
11637 cond_string = ep_parse_optional_if_clause (&arg);
11638
11639 if ((*arg != '\0') && !isspace (*arg))
11640 error (_("Junk at end of arguments."));
11641
11642 /* If this target supports it, create a fork or vfork catchpoint
11643 and enable reporting of such events. */
11644 switch (fork_kind)
11645 {
11646 case catch_fork_temporary:
11647 case catch_fork_permanent:
11648 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11649 &catch_fork_breakpoint_ops);
11650 break;
11651 case catch_vfork_temporary:
11652 case catch_vfork_permanent:
11653 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11654 &catch_vfork_breakpoint_ops);
11655 break;
11656 default:
11657 error (_("unsupported or unknown fork kind; cannot catch it"));
11658 break;
11659 }
11660}
11661
11662static void
11663catch_exec_command_1 (char *arg, int from_tty,
11664 struct cmd_list_element *command)
11665{
11666 struct exec_catchpoint *c;
11667 struct gdbarch *gdbarch = get_current_arch ();
11668 int tempflag;
11669 char *cond_string = NULL;
11670
11671 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11672
11673 if (!arg)
11674 arg = "";
11675 arg = skip_spaces (arg);
11676
11677 /* The allowed syntax is:
11678 catch exec
11679 catch exec if <cond>
11680
11681 First, check if there's an if clause. */
11682 cond_string = ep_parse_optional_if_clause (&arg);
11683
11684 if ((*arg != '\0') && !isspace (*arg))
11685 error (_("Junk at end of arguments."));
11686
11687 c = XNEW (struct exec_catchpoint);
11688 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11689 &catch_exec_breakpoint_ops);
11690 c->exec_pathname = NULL;
11691
11692 install_breakpoint (0, &c->base, 1);
11693}
11694
11695void
11696init_ada_exception_breakpoint (struct breakpoint *b,
11697 struct gdbarch *gdbarch,
11698 struct symtab_and_line sal,
11699 char *addr_string,
11700 const struct breakpoint_ops *ops,
11701 int tempflag,
11702 int enabled,
11703 int from_tty)
11704{
11705 if (from_tty)
11706 {
11707 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11708 if (!loc_gdbarch)
11709 loc_gdbarch = gdbarch;
11710
11711 describe_other_breakpoints (loc_gdbarch,
11712 sal.pspace, sal.pc, sal.section, -1);
11713 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11714 version for exception catchpoints, because two catchpoints
11715 used for different exception names will use the same address.
11716 In this case, a "breakpoint ... also set at..." warning is
11717 unproductive. Besides, the warning phrasing is also a bit
11718 inappropriate, we should use the word catchpoint, and tell
11719 the user what type of catchpoint it is. The above is good
11720 enough for now, though. */
11721 }
11722
11723 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11724
11725 b->enable_state = enabled ? bp_enabled : bp_disabled;
11726 b->disposition = tempflag ? disp_del : disp_donttouch;
11727 b->addr_string = addr_string;
11728 b->language = language_ada;
11729}
11730
11731/* Splits the argument using space as delimiter. Returns an xmalloc'd
11732 filter list, or NULL if no filtering is required. */
11733static VEC(int) *
11734catch_syscall_split_args (char *arg)
11735{
11736 VEC(int) *result = NULL;
11737 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11738
11739 while (*arg != '\0')
11740 {
11741 int i, syscall_number;
11742 char *endptr;
11743 char cur_name[128];
11744 struct syscall s;
11745
11746 /* Skip whitespace. */
11747 arg = skip_spaces (arg);
11748
11749 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11750 cur_name[i] = arg[i];
11751 cur_name[i] = '\0';
11752 arg += i;
11753
11754 /* Check if the user provided a syscall name or a number. */
11755 syscall_number = (int) strtol (cur_name, &endptr, 0);
11756 if (*endptr == '\0')
11757 get_syscall_by_number (syscall_number, &s);
11758 else
11759 {
11760 /* We have a name. Let's check if it's valid and convert it
11761 to a number. */
11762 get_syscall_by_name (cur_name, &s);
11763
11764 if (s.number == UNKNOWN_SYSCALL)
11765 /* Here we have to issue an error instead of a warning,
11766 because GDB cannot do anything useful if there's no
11767 syscall number to be caught. */
11768 error (_("Unknown syscall name '%s'."), cur_name);
11769 }
11770
11771 /* Ok, it's valid. */
11772 VEC_safe_push (int, result, s.number);
11773 }
11774
11775 discard_cleanups (cleanup);
11776 return result;
11777}
11778
11779/* Implement the "catch syscall" command. */
11780
11781static void
11782catch_syscall_command_1 (char *arg, int from_tty,
11783 struct cmd_list_element *command)
11784{
11785 int tempflag;
11786 VEC(int) *filter;
11787 struct syscall s;
11788 struct gdbarch *gdbarch = get_current_arch ();
11789
11790 /* Checking if the feature if supported. */
11791 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11792 error (_("The feature 'catch syscall' is not supported on \
11793this architecture yet."));
11794
11795 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11796
11797 arg = skip_spaces (arg);
11798
11799 /* We need to do this first "dummy" translation in order
11800 to get the syscall XML file loaded or, most important,
11801 to display a warning to the user if there's no XML file
11802 for his/her architecture. */
11803 get_syscall_by_number (0, &s);
11804
11805 /* The allowed syntax is:
11806 catch syscall
11807 catch syscall <name | number> [<name | number> ... <name | number>]
11808
11809 Let's check if there's a syscall name. */
11810
11811 if (arg != NULL)
11812 filter = catch_syscall_split_args (arg);
11813 else
11814 filter = NULL;
11815
11816 create_syscall_event_catchpoint (tempflag, filter,
11817 &catch_syscall_breakpoint_ops);
11818}
11819
11820static void
11821catch_command (char *arg, int from_tty)
11822{
11823 error (_("Catch requires an event name."));
11824}
11825\f
11826
11827static void
11828tcatch_command (char *arg, int from_tty)
11829{
11830 error (_("Catch requires an event name."));
11831}
11832
11833/* A qsort comparison function that sorts breakpoints in order. */
11834
11835static int
11836compare_breakpoints (const void *a, const void *b)
11837{
11838 const breakpoint_p *ba = a;
11839 uintptr_t ua = (uintptr_t) *ba;
11840 const breakpoint_p *bb = b;
11841 uintptr_t ub = (uintptr_t) *bb;
11842
11843 if ((*ba)->number < (*bb)->number)
11844 return -1;
11845 else if ((*ba)->number > (*bb)->number)
11846 return 1;
11847
11848 /* Now sort by address, in case we see, e..g, two breakpoints with
11849 the number 0. */
11850 if (ua < ub)
11851 return -1;
11852 return ua > ub ? 1 : 0;
11853}
11854
11855/* Delete breakpoints by address or line. */
11856
11857static void
11858clear_command (char *arg, int from_tty)
11859{
11860 struct breakpoint *b, *prev;
11861 VEC(breakpoint_p) *found = 0;
11862 int ix;
11863 int default_match;
11864 struct symtabs_and_lines sals;
11865 struct symtab_and_line sal;
11866 int i;
11867 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11868
11869 if (arg)
11870 {
11871 sals = decode_line_with_current_source (arg,
11872 (DECODE_LINE_FUNFIRSTLINE
11873 | DECODE_LINE_LIST_MODE));
11874 make_cleanup (xfree, sals.sals);
11875 default_match = 0;
11876 }
11877 else
11878 {
11879 sals.sals = (struct symtab_and_line *)
11880 xmalloc (sizeof (struct symtab_and_line));
11881 make_cleanup (xfree, sals.sals);
11882 init_sal (&sal); /* Initialize to zeroes. */
11883
11884 /* Set sal's line, symtab, pc, and pspace to the values
11885 corresponding to the last call to print_frame_info. If the
11886 codepoint is not valid, this will set all the fields to 0. */
11887 get_last_displayed_sal (&sal);
11888 if (sal.symtab == 0)
11889 error (_("No source file specified."));
11890
11891 sals.sals[0] = sal;
11892 sals.nelts = 1;
11893
11894 default_match = 1;
11895 }
11896
11897 /* We don't call resolve_sal_pc here. That's not as bad as it
11898 seems, because all existing breakpoints typically have both
11899 file/line and pc set. So, if clear is given file/line, we can
11900 match this to existing breakpoint without obtaining pc at all.
11901
11902 We only support clearing given the address explicitly
11903 present in breakpoint table. Say, we've set breakpoint
11904 at file:line. There were several PC values for that file:line,
11905 due to optimization, all in one block.
11906
11907 We've picked one PC value. If "clear" is issued with another
11908 PC corresponding to the same file:line, the breakpoint won't
11909 be cleared. We probably can still clear the breakpoint, but
11910 since the other PC value is never presented to user, user
11911 can only find it by guessing, and it does not seem important
11912 to support that. */
11913
11914 /* For each line spec given, delete bps which correspond to it. Do
11915 it in two passes, solely to preserve the current behavior that
11916 from_tty is forced true if we delete more than one
11917 breakpoint. */
11918
11919 found = NULL;
11920 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11921 for (i = 0; i < sals.nelts; i++)
11922 {
11923 const char *sal_fullname;
11924
11925 /* If exact pc given, clear bpts at that pc.
11926 If line given (pc == 0), clear all bpts on specified line.
11927 If defaulting, clear all bpts on default line
11928 or at default pc.
11929
11930 defaulting sal.pc != 0 tests to do
11931
11932 0 1 pc
11933 1 1 pc _and_ line
11934 0 0 line
11935 1 0 <can't happen> */
11936
11937 sal = sals.sals[i];
11938 sal_fullname = (sal.symtab == NULL
11939 ? NULL : symtab_to_fullname (sal.symtab));
11940
11941 /* Find all matching breakpoints and add them to 'found'. */
11942 ALL_BREAKPOINTS (b)
11943 {
11944 int match = 0;
11945 /* Are we going to delete b? */
11946 if (b->type != bp_none && !is_watchpoint (b))
11947 {
11948 struct bp_location *loc = b->loc;
11949 for (; loc; loc = loc->next)
11950 {
11951 /* If the user specified file:line, don't allow a PC
11952 match. This matches historical gdb behavior. */
11953 int pc_match = (!sal.explicit_line
11954 && sal.pc
11955 && (loc->pspace == sal.pspace)
11956 && (loc->address == sal.pc)
11957 && (!section_is_overlay (loc->section)
11958 || loc->section == sal.section));
11959 int line_match = 0;
11960
11961 if ((default_match || sal.explicit_line)
11962 && loc->symtab != NULL
11963 && sal_fullname != NULL
11964 && sal.pspace == loc->pspace
11965 && loc->line_number == sal.line
11966 && filename_cmp (symtab_to_fullname (loc->symtab),
11967 sal_fullname) == 0)
11968 line_match = 1;
11969
11970 if (pc_match || line_match)
11971 {
11972 match = 1;
11973 break;
11974 }
11975 }
11976 }
11977
11978 if (match)
11979 VEC_safe_push(breakpoint_p, found, b);
11980 }
11981 }
11982
11983 /* Now go thru the 'found' chain and delete them. */
11984 if (VEC_empty(breakpoint_p, found))
11985 {
11986 if (arg)
11987 error (_("No breakpoint at %s."), arg);
11988 else
11989 error (_("No breakpoint at this line."));
11990 }
11991
11992 /* Remove duplicates from the vec. */
11993 qsort (VEC_address (breakpoint_p, found),
11994 VEC_length (breakpoint_p, found),
11995 sizeof (breakpoint_p),
11996 compare_breakpoints);
11997 prev = VEC_index (breakpoint_p, found, 0);
11998 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11999 {
12000 if (b == prev)
12001 {
12002 VEC_ordered_remove (breakpoint_p, found, ix);
12003 --ix;
12004 }
12005 }
12006
12007 if (VEC_length(breakpoint_p, found) > 1)
12008 from_tty = 1; /* Always report if deleted more than one. */
12009 if (from_tty)
12010 {
12011 if (VEC_length(breakpoint_p, found) == 1)
12012 printf_unfiltered (_("Deleted breakpoint "));
12013 else
12014 printf_unfiltered (_("Deleted breakpoints "));
12015 }
12016
12017 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12018 {
12019 if (from_tty)
12020 printf_unfiltered ("%d ", b->number);
12021 delete_breakpoint (b);
12022 }
12023 if (from_tty)
12024 putchar_unfiltered ('\n');
12025
12026 do_cleanups (cleanups);
12027}
12028\f
12029/* Delete breakpoint in BS if they are `delete' breakpoints and
12030 all breakpoints that are marked for deletion, whether hit or not.
12031 This is called after any breakpoint is hit, or after errors. */
12032
12033void
12034breakpoint_auto_delete (bpstat bs)
12035{
12036 struct breakpoint *b, *b_tmp;
12037
12038 for (; bs; bs = bs->next)
12039 if (bs->breakpoint_at
12040 && bs->breakpoint_at->disposition == disp_del
12041 && bs->stop)
12042 delete_breakpoint (bs->breakpoint_at);
12043
12044 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12045 {
12046 if (b->disposition == disp_del_at_next_stop)
12047 delete_breakpoint (b);
12048 }
12049}
12050
12051/* A comparison function for bp_location AP and BP being interfaced to
12052 qsort. Sort elements primarily by their ADDRESS (no matter what
12053 does breakpoint_address_is_meaningful say for its OWNER),
12054 secondarily by ordering first bp_permanent OWNERed elements and
12055 terciarily just ensuring the array is sorted stable way despite
12056 qsort being an unstable algorithm. */
12057
12058static int
12059bp_location_compare (const void *ap, const void *bp)
12060{
12061 struct bp_location *a = *(void **) ap;
12062 struct bp_location *b = *(void **) bp;
12063 /* A and B come from existing breakpoints having non-NULL OWNER. */
12064 int a_perm = a->owner->enable_state == bp_permanent;
12065 int b_perm = b->owner->enable_state == bp_permanent;
12066
12067 if (a->address != b->address)
12068 return (a->address > b->address) - (a->address < b->address);
12069
12070 /* Sort locations at the same address by their pspace number, keeping
12071 locations of the same inferior (in a multi-inferior environment)
12072 grouped. */
12073
12074 if (a->pspace->num != b->pspace->num)
12075 return ((a->pspace->num > b->pspace->num)
12076 - (a->pspace->num < b->pspace->num));
12077
12078 /* Sort permanent breakpoints first. */
12079 if (a_perm != b_perm)
12080 return (a_perm < b_perm) - (a_perm > b_perm);
12081
12082 /* Make the internal GDB representation stable across GDB runs
12083 where A and B memory inside GDB can differ. Breakpoint locations of
12084 the same type at the same address can be sorted in arbitrary order. */
12085
12086 if (a->owner->number != b->owner->number)
12087 return ((a->owner->number > b->owner->number)
12088 - (a->owner->number < b->owner->number));
12089
12090 return (a > b) - (a < b);
12091}
12092
12093/* Set bp_location_placed_address_before_address_max and
12094 bp_location_shadow_len_after_address_max according to the current
12095 content of the bp_location array. */
12096
12097static void
12098bp_location_target_extensions_update (void)
12099{
12100 struct bp_location *bl, **blp_tmp;
12101
12102 bp_location_placed_address_before_address_max = 0;
12103 bp_location_shadow_len_after_address_max = 0;
12104
12105 ALL_BP_LOCATIONS (bl, blp_tmp)
12106 {
12107 CORE_ADDR start, end, addr;
12108
12109 if (!bp_location_has_shadow (bl))
12110 continue;
12111
12112 start = bl->target_info.placed_address;
12113 end = start + bl->target_info.shadow_len;
12114
12115 gdb_assert (bl->address >= start);
12116 addr = bl->address - start;
12117 if (addr > bp_location_placed_address_before_address_max)
12118 bp_location_placed_address_before_address_max = addr;
12119
12120 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12121
12122 gdb_assert (bl->address < end);
12123 addr = end - bl->address;
12124 if (addr > bp_location_shadow_len_after_address_max)
12125 bp_location_shadow_len_after_address_max = addr;
12126 }
12127}
12128
12129/* Download tracepoint locations if they haven't been. */
12130
12131static void
12132download_tracepoint_locations (void)
12133{
12134 struct breakpoint *b;
12135 struct cleanup *old_chain;
12136
12137 if (!target_can_download_tracepoint ())
12138 return;
12139
12140 old_chain = save_current_space_and_thread ();
12141
12142 ALL_TRACEPOINTS (b)
12143 {
12144 struct bp_location *bl;
12145 struct tracepoint *t;
12146 int bp_location_downloaded = 0;
12147
12148 if ((b->type == bp_fast_tracepoint
12149 ? !may_insert_fast_tracepoints
12150 : !may_insert_tracepoints))
12151 continue;
12152
12153 for (bl = b->loc; bl; bl = bl->next)
12154 {
12155 /* In tracepoint, locations are _never_ duplicated, so
12156 should_be_inserted is equivalent to
12157 unduplicated_should_be_inserted. */
12158 if (!should_be_inserted (bl) || bl->inserted)
12159 continue;
12160
12161 switch_to_program_space_and_thread (bl->pspace);
12162
12163 target_download_tracepoint (bl);
12164
12165 bl->inserted = 1;
12166 bp_location_downloaded = 1;
12167 }
12168 t = (struct tracepoint *) b;
12169 t->number_on_target = b->number;
12170 if (bp_location_downloaded)
12171 observer_notify_breakpoint_modified (b);
12172 }
12173
12174 do_cleanups (old_chain);
12175}
12176
12177/* Swap the insertion/duplication state between two locations. */
12178
12179static void
12180swap_insertion (struct bp_location *left, struct bp_location *right)
12181{
12182 const int left_inserted = left->inserted;
12183 const int left_duplicate = left->duplicate;
12184 const int left_needs_update = left->needs_update;
12185 const struct bp_target_info left_target_info = left->target_info;
12186
12187 /* Locations of tracepoints can never be duplicated. */
12188 if (is_tracepoint (left->owner))
12189 gdb_assert (!left->duplicate);
12190 if (is_tracepoint (right->owner))
12191 gdb_assert (!right->duplicate);
12192
12193 left->inserted = right->inserted;
12194 left->duplicate = right->duplicate;
12195 left->needs_update = right->needs_update;
12196 left->target_info = right->target_info;
12197 right->inserted = left_inserted;
12198 right->duplicate = left_duplicate;
12199 right->needs_update = left_needs_update;
12200 right->target_info = left_target_info;
12201}
12202
12203/* Force the re-insertion of the locations at ADDRESS. This is called
12204 once a new/deleted/modified duplicate location is found and we are evaluating
12205 conditions on the target's side. Such conditions need to be updated on
12206 the target. */
12207
12208static void
12209force_breakpoint_reinsertion (struct bp_location *bl)
12210{
12211 struct bp_location **locp = NULL, **loc2p;
12212 struct bp_location *loc;
12213 CORE_ADDR address = 0;
12214 int pspace_num;
12215
12216 address = bl->address;
12217 pspace_num = bl->pspace->num;
12218
12219 /* This is only meaningful if the target is
12220 evaluating conditions and if the user has
12221 opted for condition evaluation on the target's
12222 side. */
12223 if (gdb_evaluates_breakpoint_condition_p ()
12224 || !target_supports_evaluation_of_breakpoint_conditions ())
12225 return;
12226
12227 /* Flag all breakpoint locations with this address and
12228 the same program space as the location
12229 as "its condition has changed". We need to
12230 update the conditions on the target's side. */
12231 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12232 {
12233 loc = *loc2p;
12234
12235 if (!is_breakpoint (loc->owner)
12236 || pspace_num != loc->pspace->num)
12237 continue;
12238
12239 /* Flag the location appropriately. We use a different state to
12240 let everyone know that we already updated the set of locations
12241 with addr bl->address and program space bl->pspace. This is so
12242 we don't have to keep calling these functions just to mark locations
12243 that have already been marked. */
12244 loc->condition_changed = condition_updated;
12245
12246 /* Free the agent expression bytecode as well. We will compute
12247 it later on. */
12248 if (loc->cond_bytecode)
12249 {
12250 free_agent_expr (loc->cond_bytecode);
12251 loc->cond_bytecode = NULL;
12252 }
12253 }
12254}
12255
12256/* If SHOULD_INSERT is false, do not insert any breakpoint locations
12257 into the inferior, only remove already-inserted locations that no
12258 longer should be inserted. Functions that delete a breakpoint or
12259 breakpoints should pass false, so that deleting a breakpoint
12260 doesn't have the side effect of inserting the locations of other
12261 breakpoints that are marked not-inserted, but should_be_inserted
12262 returns true on them.
12263
12264 This behaviour is useful is situations close to tear-down -- e.g.,
12265 after an exec, while the target still has execution, but breakpoint
12266 shadows of the previous executable image should *NOT* be restored
12267 to the new image; or before detaching, where the target still has
12268 execution and wants to delete breakpoints from GDB's lists, and all
12269 breakpoints had already been removed from the inferior. */
12270
12271static void
12272update_global_location_list (int should_insert)
12273{
12274 struct breakpoint *b;
12275 struct bp_location **locp, *loc;
12276 struct cleanup *cleanups;
12277 /* Last breakpoint location address that was marked for update. */
12278 CORE_ADDR last_addr = 0;
12279 /* Last breakpoint location program space that was marked for update. */
12280 int last_pspace_num = -1;
12281
12282 /* Used in the duplicates detection below. When iterating over all
12283 bp_locations, points to the first bp_location of a given address.
12284 Breakpoints and watchpoints of different types are never
12285 duplicates of each other. Keep one pointer for each type of
12286 breakpoint/watchpoint, so we only need to loop over all locations
12287 once. */
12288 struct bp_location *bp_loc_first; /* breakpoint */
12289 struct bp_location *wp_loc_first; /* hardware watchpoint */
12290 struct bp_location *awp_loc_first; /* access watchpoint */
12291 struct bp_location *rwp_loc_first; /* read watchpoint */
12292
12293 /* Saved former bp_location array which we compare against the newly
12294 built bp_location from the current state of ALL_BREAKPOINTS. */
12295 struct bp_location **old_location, **old_locp;
12296 unsigned old_location_count;
12297
12298 old_location = bp_location;
12299 old_location_count = bp_location_count;
12300 bp_location = NULL;
12301 bp_location_count = 0;
12302 cleanups = make_cleanup (xfree, old_location);
12303
12304 ALL_BREAKPOINTS (b)
12305 for (loc = b->loc; loc; loc = loc->next)
12306 bp_location_count++;
12307
12308 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12309 locp = bp_location;
12310 ALL_BREAKPOINTS (b)
12311 for (loc = b->loc; loc; loc = loc->next)
12312 *locp++ = loc;
12313 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12314 bp_location_compare);
12315
12316 bp_location_target_extensions_update ();
12317
12318 /* Identify bp_location instances that are no longer present in the
12319 new list, and therefore should be freed. Note that it's not
12320 necessary that those locations should be removed from inferior --
12321 if there's another location at the same address (previously
12322 marked as duplicate), we don't need to remove/insert the
12323 location.
12324
12325 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12326 and former bp_location array state respectively. */
12327
12328 locp = bp_location;
12329 for (old_locp = old_location; old_locp < old_location + old_location_count;
12330 old_locp++)
12331 {
12332 struct bp_location *old_loc = *old_locp;
12333 struct bp_location **loc2p;
12334
12335 /* Tells if 'old_loc' is found among the new locations. If
12336 not, we have to free it. */
12337 int found_object = 0;
12338 /* Tells if the location should remain inserted in the target. */
12339 int keep_in_target = 0;
12340 int removed = 0;
12341
12342 /* Skip LOCP entries which will definitely never be needed.
12343 Stop either at or being the one matching OLD_LOC. */
12344 while (locp < bp_location + bp_location_count
12345 && (*locp)->address < old_loc->address)
12346 locp++;
12347
12348 for (loc2p = locp;
12349 (loc2p < bp_location + bp_location_count
12350 && (*loc2p)->address == old_loc->address);
12351 loc2p++)
12352 {
12353 /* Check if this is a new/duplicated location or a duplicated
12354 location that had its condition modified. If so, we want to send
12355 its condition to the target if evaluation of conditions is taking
12356 place there. */
12357 if ((*loc2p)->condition_changed == condition_modified
12358 && (last_addr != old_loc->address
12359 || last_pspace_num != old_loc->pspace->num))
12360 {
12361 force_breakpoint_reinsertion (*loc2p);
12362 last_pspace_num = old_loc->pspace->num;
12363 }
12364
12365 if (*loc2p == old_loc)
12366 found_object = 1;
12367 }
12368
12369 /* We have already handled this address, update it so that we don't
12370 have to go through updates again. */
12371 last_addr = old_loc->address;
12372
12373 /* Target-side condition evaluation: Handle deleted locations. */
12374 if (!found_object)
12375 force_breakpoint_reinsertion (old_loc);
12376
12377 /* If this location is no longer present, and inserted, look if
12378 there's maybe a new location at the same address. If so,
12379 mark that one inserted, and don't remove this one. This is
12380 needed so that we don't have a time window where a breakpoint
12381 at certain location is not inserted. */
12382
12383 if (old_loc->inserted)
12384 {
12385 /* If the location is inserted now, we might have to remove
12386 it. */
12387
12388 if (found_object && should_be_inserted (old_loc))
12389 {
12390 /* The location is still present in the location list,
12391 and still should be inserted. Don't do anything. */
12392 keep_in_target = 1;
12393 }
12394 else
12395 {
12396 /* This location still exists, but it won't be kept in the
12397 target since it may have been disabled. We proceed to
12398 remove its target-side condition. */
12399
12400 /* The location is either no longer present, or got
12401 disabled. See if there's another location at the
12402 same address, in which case we don't need to remove
12403 this one from the target. */
12404
12405 /* OLD_LOC comes from existing struct breakpoint. */
12406 if (breakpoint_address_is_meaningful (old_loc->owner))
12407 {
12408 for (loc2p = locp;
12409 (loc2p < bp_location + bp_location_count
12410 && (*loc2p)->address == old_loc->address);
12411 loc2p++)
12412 {
12413 struct bp_location *loc2 = *loc2p;
12414
12415 if (breakpoint_locations_match (loc2, old_loc))
12416 {
12417 /* Read watchpoint locations are switched to
12418 access watchpoints, if the former are not
12419 supported, but the latter are. */
12420 if (is_hardware_watchpoint (old_loc->owner))
12421 {
12422 gdb_assert (is_hardware_watchpoint (loc2->owner));
12423 loc2->watchpoint_type = old_loc->watchpoint_type;
12424 }
12425
12426 /* loc2 is a duplicated location. We need to check
12427 if it should be inserted in case it will be
12428 unduplicated. */
12429 if (loc2 != old_loc
12430 && unduplicated_should_be_inserted (loc2))
12431 {
12432 swap_insertion (old_loc, loc2);
12433 keep_in_target = 1;
12434 break;
12435 }
12436 }
12437 }
12438 }
12439 }
12440
12441 if (!keep_in_target)
12442 {
12443 if (remove_breakpoint (old_loc, mark_uninserted))
12444 {
12445 /* This is just about all we can do. We could keep
12446 this location on the global list, and try to
12447 remove it next time, but there's no particular
12448 reason why we will succeed next time.
12449
12450 Note that at this point, old_loc->owner is still
12451 valid, as delete_breakpoint frees the breakpoint
12452 only after calling us. */
12453 printf_filtered (_("warning: Error removing "
12454 "breakpoint %d\n"),
12455 old_loc->owner->number);
12456 }
12457 removed = 1;
12458 }
12459 }
12460
12461 if (!found_object)
12462 {
12463 if (removed && non_stop
12464 && breakpoint_address_is_meaningful (old_loc->owner)
12465 && !is_hardware_watchpoint (old_loc->owner))
12466 {
12467 /* This location was removed from the target. In
12468 non-stop mode, a race condition is possible where
12469 we've removed a breakpoint, but stop events for that
12470 breakpoint are already queued and will arrive later.
12471 We apply an heuristic to be able to distinguish such
12472 SIGTRAPs from other random SIGTRAPs: we keep this
12473 breakpoint location for a bit, and will retire it
12474 after we see some number of events. The theory here
12475 is that reporting of events should, "on the average",
12476 be fair, so after a while we'll see events from all
12477 threads that have anything of interest, and no longer
12478 need to keep this breakpoint location around. We
12479 don't hold locations forever so to reduce chances of
12480 mistaking a non-breakpoint SIGTRAP for a breakpoint
12481 SIGTRAP.
12482
12483 The heuristic failing can be disastrous on
12484 decr_pc_after_break targets.
12485
12486 On decr_pc_after_break targets, like e.g., x86-linux,
12487 if we fail to recognize a late breakpoint SIGTRAP,
12488 because events_till_retirement has reached 0 too
12489 soon, we'll fail to do the PC adjustment, and report
12490 a random SIGTRAP to the user. When the user resumes
12491 the inferior, it will most likely immediately crash
12492 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12493 corrupted, because of being resumed e.g., in the
12494 middle of a multi-byte instruction, or skipped a
12495 one-byte instruction. This was actually seen happen
12496 on native x86-linux, and should be less rare on
12497 targets that do not support new thread events, like
12498 remote, due to the heuristic depending on
12499 thread_count.
12500
12501 Mistaking a random SIGTRAP for a breakpoint trap
12502 causes similar symptoms (PC adjustment applied when
12503 it shouldn't), but then again, playing with SIGTRAPs
12504 behind the debugger's back is asking for trouble.
12505
12506 Since hardware watchpoint traps are always
12507 distinguishable from other traps, so we don't need to
12508 apply keep hardware watchpoint moribund locations
12509 around. We simply always ignore hardware watchpoint
12510 traps we can no longer explain. */
12511
12512 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12513 old_loc->owner = NULL;
12514
12515 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12516 }
12517 else
12518 {
12519 old_loc->owner = NULL;
12520 decref_bp_location (&old_loc);
12521 }
12522 }
12523 }
12524
12525 /* Rescan breakpoints at the same address and section, marking the
12526 first one as "first" and any others as "duplicates". This is so
12527 that the bpt instruction is only inserted once. If we have a
12528 permanent breakpoint at the same place as BPT, make that one the
12529 official one, and the rest as duplicates. Permanent breakpoints
12530 are sorted first for the same address.
12531
12532 Do the same for hardware watchpoints, but also considering the
12533 watchpoint's type (regular/access/read) and length. */
12534
12535 bp_loc_first = NULL;
12536 wp_loc_first = NULL;
12537 awp_loc_first = NULL;
12538 rwp_loc_first = NULL;
12539 ALL_BP_LOCATIONS (loc, locp)
12540 {
12541 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12542 non-NULL. */
12543 struct bp_location **loc_first_p;
12544 b = loc->owner;
12545
12546 if (!unduplicated_should_be_inserted (loc)
12547 || !breakpoint_address_is_meaningful (b)
12548 /* Don't detect duplicate for tracepoint locations because they are
12549 never duplicated. See the comments in field `duplicate' of
12550 `struct bp_location'. */
12551 || is_tracepoint (b))
12552 {
12553 /* Clear the condition modification flag. */
12554 loc->condition_changed = condition_unchanged;
12555 continue;
12556 }
12557
12558 /* Permanent breakpoint should always be inserted. */
12559 if (b->enable_state == bp_permanent && ! loc->inserted)
12560 internal_error (__FILE__, __LINE__,
12561 _("allegedly permanent breakpoint is not "
12562 "actually inserted"));
12563
12564 if (b->type == bp_hardware_watchpoint)
12565 loc_first_p = &wp_loc_first;
12566 else if (b->type == bp_read_watchpoint)
12567 loc_first_p = &rwp_loc_first;
12568 else if (b->type == bp_access_watchpoint)
12569 loc_first_p = &awp_loc_first;
12570 else
12571 loc_first_p = &bp_loc_first;
12572
12573 if (*loc_first_p == NULL
12574 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12575 || !breakpoint_locations_match (loc, *loc_first_p))
12576 {
12577 *loc_first_p = loc;
12578 loc->duplicate = 0;
12579
12580 if (is_breakpoint (loc->owner) && loc->condition_changed)
12581 {
12582 loc->needs_update = 1;
12583 /* Clear the condition modification flag. */
12584 loc->condition_changed = condition_unchanged;
12585 }
12586 continue;
12587 }
12588
12589
12590 /* This and the above ensure the invariant that the first location
12591 is not duplicated, and is the inserted one.
12592 All following are marked as duplicated, and are not inserted. */
12593 if (loc->inserted)
12594 swap_insertion (loc, *loc_first_p);
12595 loc->duplicate = 1;
12596
12597 /* Clear the condition modification flag. */
12598 loc->condition_changed = condition_unchanged;
12599
12600 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12601 && b->enable_state != bp_permanent)
12602 internal_error (__FILE__, __LINE__,
12603 _("another breakpoint was inserted on top of "
12604 "a permanent breakpoint"));
12605 }
12606
12607 if (breakpoints_always_inserted_mode ()
12608 && (have_live_inferiors ()
12609 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12610 {
12611 if (should_insert)
12612 insert_breakpoint_locations ();
12613 else
12614 {
12615 /* Though should_insert is false, we may need to update conditions
12616 on the target's side if it is evaluating such conditions. We
12617 only update conditions for locations that are marked
12618 "needs_update". */
12619 update_inserted_breakpoint_locations ();
12620 }
12621 }
12622
12623 if (should_insert)
12624 download_tracepoint_locations ();
12625
12626 do_cleanups (cleanups);
12627}
12628
12629void
12630breakpoint_retire_moribund (void)
12631{
12632 struct bp_location *loc;
12633 int ix;
12634
12635 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12636 if (--(loc->events_till_retirement) == 0)
12637 {
12638 decref_bp_location (&loc);
12639 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12640 --ix;
12641 }
12642}
12643
12644static void
12645update_global_location_list_nothrow (int inserting)
12646{
12647 volatile struct gdb_exception e;
12648
12649 TRY_CATCH (e, RETURN_MASK_ERROR)
12650 update_global_location_list (inserting);
12651}
12652
12653/* Clear BKP from a BPS. */
12654
12655static void
12656bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12657{
12658 bpstat bs;
12659
12660 for (bs = bps; bs; bs = bs->next)
12661 if (bs->breakpoint_at == bpt)
12662 {
12663 bs->breakpoint_at = NULL;
12664 bs->old_val = NULL;
12665 /* bs->commands will be freed later. */
12666 }
12667}
12668
12669/* Callback for iterate_over_threads. */
12670static int
12671bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12672{
12673 struct breakpoint *bpt = data;
12674
12675 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12676 return 0;
12677}
12678
12679/* Helper for breakpoint and tracepoint breakpoint_ops->mention
12680 callbacks. */
12681
12682static void
12683say_where (struct breakpoint *b)
12684{
12685 struct value_print_options opts;
12686
12687 get_user_print_options (&opts);
12688
12689 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12690 single string. */
12691 if (b->loc == NULL)
12692 {
12693 printf_filtered (_(" (%s) pending."), b->addr_string);
12694 }
12695 else
12696 {
12697 if (opts.addressprint || b->loc->symtab == NULL)
12698 {
12699 printf_filtered (" at ");
12700 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12701 gdb_stdout);
12702 }
12703 if (b->loc->symtab != NULL)
12704 {
12705 /* If there is a single location, we can print the location
12706 more nicely. */
12707 if (b->loc->next == NULL)
12708 printf_filtered (": file %s, line %d.",
12709 symtab_to_filename_for_display (b->loc->symtab),
12710 b->loc->line_number);
12711 else
12712 /* This is not ideal, but each location may have a
12713 different file name, and this at least reflects the
12714 real situation somewhat. */
12715 printf_filtered (": %s.", b->addr_string);
12716 }
12717
12718 if (b->loc->next)
12719 {
12720 struct bp_location *loc = b->loc;
12721 int n = 0;
12722 for (; loc; loc = loc->next)
12723 ++n;
12724 printf_filtered (" (%d locations)", n);
12725 }
12726 }
12727}
12728
12729/* Default bp_location_ops methods. */
12730
12731static void
12732bp_location_dtor (struct bp_location *self)
12733{
12734 xfree (self->cond);
12735 if (self->cond_bytecode)
12736 free_agent_expr (self->cond_bytecode);
12737 xfree (self->function_name);
12738}
12739
12740static const struct bp_location_ops bp_location_ops =
12741{
12742 bp_location_dtor
12743};
12744
12745/* Default breakpoint_ops methods all breakpoint_ops ultimately
12746 inherit from. */
12747
12748static void
12749base_breakpoint_dtor (struct breakpoint *self)
12750{
12751 decref_counted_command_line (&self->commands);
12752 xfree (self->cond_string);
12753 xfree (self->extra_string);
12754 xfree (self->addr_string);
12755 xfree (self->filter);
12756 xfree (self->addr_string_range_end);
12757}
12758
12759static struct bp_location *
12760base_breakpoint_allocate_location (struct breakpoint *self)
12761{
12762 struct bp_location *loc;
12763
12764 loc = XNEW (struct bp_location);
12765 init_bp_location (loc, &bp_location_ops, self);
12766 return loc;
12767}
12768
12769static void
12770base_breakpoint_re_set (struct breakpoint *b)
12771{
12772 /* Nothing to re-set. */
12773}
12774
12775#define internal_error_pure_virtual_called() \
12776 gdb_assert_not_reached ("pure virtual function called")
12777
12778static int
12779base_breakpoint_insert_location (struct bp_location *bl)
12780{
12781 internal_error_pure_virtual_called ();
12782}
12783
12784static int
12785base_breakpoint_remove_location (struct bp_location *bl)
12786{
12787 internal_error_pure_virtual_called ();
12788}
12789
12790static int
12791base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12792 struct address_space *aspace,
12793 CORE_ADDR bp_addr,
12794 const struct target_waitstatus *ws)
12795{
12796 internal_error_pure_virtual_called ();
12797}
12798
12799static void
12800base_breakpoint_check_status (bpstat bs)
12801{
12802 /* Always stop. */
12803}
12804
12805/* A "works_in_software_mode" breakpoint_ops method that just internal
12806 errors. */
12807
12808static int
12809base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12810{
12811 internal_error_pure_virtual_called ();
12812}
12813
12814/* A "resources_needed" breakpoint_ops method that just internal
12815 errors. */
12816
12817static int
12818base_breakpoint_resources_needed (const struct bp_location *bl)
12819{
12820 internal_error_pure_virtual_called ();
12821}
12822
12823static enum print_stop_action
12824base_breakpoint_print_it (bpstat bs)
12825{
12826 internal_error_pure_virtual_called ();
12827}
12828
12829static void
12830base_breakpoint_print_one_detail (const struct breakpoint *self,
12831 struct ui_out *uiout)
12832{
12833 /* nothing */
12834}
12835
12836static void
12837base_breakpoint_print_mention (struct breakpoint *b)
12838{
12839 internal_error_pure_virtual_called ();
12840}
12841
12842static void
12843base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12844{
12845 internal_error_pure_virtual_called ();
12846}
12847
12848static void
12849base_breakpoint_create_sals_from_address (char **arg,
12850 struct linespec_result *canonical,
12851 enum bptype type_wanted,
12852 char *addr_start,
12853 char **copy_arg)
12854{
12855 internal_error_pure_virtual_called ();
12856}
12857
12858static void
12859base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12860 struct linespec_result *c,
12861 char *cond_string,
12862 char *extra_string,
12863 enum bptype type_wanted,
12864 enum bpdisp disposition,
12865 int thread,
12866 int task, int ignore_count,
12867 const struct breakpoint_ops *o,
12868 int from_tty, int enabled,
12869 int internal, unsigned flags)
12870{
12871 internal_error_pure_virtual_called ();
12872}
12873
12874static void
12875base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12876 struct symtabs_and_lines *sals)
12877{
12878 internal_error_pure_virtual_called ();
12879}
12880
12881/* The default 'explains_signal' method. */
12882
12883static enum bpstat_signal_value
12884base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12885{
12886 return BPSTAT_SIGNAL_HIDE;
12887}
12888
12889/* The default "after_condition_true" method. */
12890
12891static void
12892base_breakpoint_after_condition_true (struct bpstats *bs)
12893{
12894 /* Nothing to do. */
12895}
12896
12897struct breakpoint_ops base_breakpoint_ops =
12898{
12899 base_breakpoint_dtor,
12900 base_breakpoint_allocate_location,
12901 base_breakpoint_re_set,
12902 base_breakpoint_insert_location,
12903 base_breakpoint_remove_location,
12904 base_breakpoint_breakpoint_hit,
12905 base_breakpoint_check_status,
12906 base_breakpoint_resources_needed,
12907 base_breakpoint_works_in_software_mode,
12908 base_breakpoint_print_it,
12909 NULL,
12910 base_breakpoint_print_one_detail,
12911 base_breakpoint_print_mention,
12912 base_breakpoint_print_recreate,
12913 base_breakpoint_create_sals_from_address,
12914 base_breakpoint_create_breakpoints_sal,
12915 base_breakpoint_decode_linespec,
12916 base_breakpoint_explains_signal,
12917 base_breakpoint_after_condition_true,
12918};
12919
12920/* Default breakpoint_ops methods. */
12921
12922static void
12923bkpt_re_set (struct breakpoint *b)
12924{
12925 /* FIXME: is this still reachable? */
12926 if (b->addr_string == NULL)
12927 {
12928 /* Anything without a string can't be re-set. */
12929 delete_breakpoint (b);
12930 return;
12931 }
12932
12933 breakpoint_re_set_default (b);
12934}
12935
12936static int
12937bkpt_insert_location (struct bp_location *bl)
12938{
12939 if (bl->loc_type == bp_loc_hardware_breakpoint)
12940 return target_insert_hw_breakpoint (bl->gdbarch,
12941 &bl->target_info);
12942 else
12943 return target_insert_breakpoint (bl->gdbarch,
12944 &bl->target_info);
12945}
12946
12947static int
12948bkpt_remove_location (struct bp_location *bl)
12949{
12950 if (bl->loc_type == bp_loc_hardware_breakpoint)
12951 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12952 else
12953 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12954}
12955
12956static int
12957bkpt_breakpoint_hit (const struct bp_location *bl,
12958 struct address_space *aspace, CORE_ADDR bp_addr,
12959 const struct target_waitstatus *ws)
12960{
12961 if (ws->kind != TARGET_WAITKIND_STOPPED
12962 || ws->value.sig != GDB_SIGNAL_TRAP)
12963 return 0;
12964
12965 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12966 aspace, bp_addr))
12967 return 0;
12968
12969 if (overlay_debugging /* unmapped overlay section */
12970 && section_is_overlay (bl->section)
12971 && !section_is_mapped (bl->section))
12972 return 0;
12973
12974 return 1;
12975}
12976
12977static int
12978bkpt_resources_needed (const struct bp_location *bl)
12979{
12980 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12981
12982 return 1;
12983}
12984
12985static enum print_stop_action
12986bkpt_print_it (bpstat bs)
12987{
12988 struct breakpoint *b;
12989 const struct bp_location *bl;
12990 int bp_temp;
12991 struct ui_out *uiout = current_uiout;
12992
12993 gdb_assert (bs->bp_location_at != NULL);
12994
12995 bl = bs->bp_location_at;
12996 b = bs->breakpoint_at;
12997
12998 bp_temp = b->disposition == disp_del;
12999 if (bl->address != bl->requested_address)
13000 breakpoint_adjustment_warning (bl->requested_address,
13001 bl->address,
13002 b->number, 1);
13003 annotate_breakpoint (b->number);
13004 if (bp_temp)
13005 ui_out_text (uiout, "\nTemporary breakpoint ");
13006 else
13007 ui_out_text (uiout, "\nBreakpoint ");
13008 if (ui_out_is_mi_like_p (uiout))
13009 {
13010 ui_out_field_string (uiout, "reason",
13011 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13012 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13013 }
13014 ui_out_field_int (uiout, "bkptno", b->number);
13015 ui_out_text (uiout, ", ");
13016
13017 return PRINT_SRC_AND_LOC;
13018}
13019
13020static void
13021bkpt_print_mention (struct breakpoint *b)
13022{
13023 if (ui_out_is_mi_like_p (current_uiout))
13024 return;
13025
13026 switch (b->type)
13027 {
13028 case bp_breakpoint:
13029 case bp_gnu_ifunc_resolver:
13030 if (b->disposition == disp_del)
13031 printf_filtered (_("Temporary breakpoint"));
13032 else
13033 printf_filtered (_("Breakpoint"));
13034 printf_filtered (_(" %d"), b->number);
13035 if (b->type == bp_gnu_ifunc_resolver)
13036 printf_filtered (_(" at gnu-indirect-function resolver"));
13037 break;
13038 case bp_hardware_breakpoint:
13039 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13040 break;
13041 case bp_dprintf:
13042 printf_filtered (_("Dprintf %d"), b->number);
13043 break;
13044 }
13045
13046 say_where (b);
13047}
13048
13049static void
13050bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13051{
13052 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13053 fprintf_unfiltered (fp, "tbreak");
13054 else if (tp->type == bp_breakpoint)
13055 fprintf_unfiltered (fp, "break");
13056 else if (tp->type == bp_hardware_breakpoint
13057 && tp->disposition == disp_del)
13058 fprintf_unfiltered (fp, "thbreak");
13059 else if (tp->type == bp_hardware_breakpoint)
13060 fprintf_unfiltered (fp, "hbreak");
13061 else
13062 internal_error (__FILE__, __LINE__,
13063 _("unhandled breakpoint type %d"), (int) tp->type);
13064
13065 fprintf_unfiltered (fp, " %s", tp->addr_string);
13066 print_recreate_thread (tp, fp);
13067}
13068
13069static void
13070bkpt_create_sals_from_address (char **arg,
13071 struct linespec_result *canonical,
13072 enum bptype type_wanted,
13073 char *addr_start, char **copy_arg)
13074{
13075 create_sals_from_address_default (arg, canonical, type_wanted,
13076 addr_start, copy_arg);
13077}
13078
13079static void
13080bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13081 struct linespec_result *canonical,
13082 char *cond_string,
13083 char *extra_string,
13084 enum bptype type_wanted,
13085 enum bpdisp disposition,
13086 int thread,
13087 int task, int ignore_count,
13088 const struct breakpoint_ops *ops,
13089 int from_tty, int enabled,
13090 int internal, unsigned flags)
13091{
13092 create_breakpoints_sal_default (gdbarch, canonical,
13093 cond_string, extra_string,
13094 type_wanted,
13095 disposition, thread, task,
13096 ignore_count, ops, from_tty,
13097 enabled, internal, flags);
13098}
13099
13100static void
13101bkpt_decode_linespec (struct breakpoint *b, char **s,
13102 struct symtabs_and_lines *sals)
13103{
13104 decode_linespec_default (b, s, sals);
13105}
13106
13107/* Virtual table for internal breakpoints. */
13108
13109static void
13110internal_bkpt_re_set (struct breakpoint *b)
13111{
13112 switch (b->type)
13113 {
13114 /* Delete overlay event and longjmp master breakpoints; they
13115 will be reset later by breakpoint_re_set. */
13116 case bp_overlay_event:
13117 case bp_longjmp_master:
13118 case bp_std_terminate_master:
13119 case bp_exception_master:
13120 delete_breakpoint (b);
13121 break;
13122
13123 /* This breakpoint is special, it's set up when the inferior
13124 starts and we really don't want to touch it. */
13125 case bp_shlib_event:
13126
13127 /* Like bp_shlib_event, this breakpoint type is special. Once
13128 it is set up, we do not want to touch it. */
13129 case bp_thread_event:
13130 break;
13131 }
13132}
13133
13134static void
13135internal_bkpt_check_status (bpstat bs)
13136{
13137 if (bs->breakpoint_at->type == bp_shlib_event)
13138 {
13139 /* If requested, stop when the dynamic linker notifies GDB of
13140 events. This allows the user to get control and place
13141 breakpoints in initializer routines for dynamically loaded
13142 objects (among other things). */
13143 bs->stop = stop_on_solib_events;
13144 bs->print = stop_on_solib_events;
13145 }
13146 else
13147 bs->stop = 0;
13148}
13149
13150static enum print_stop_action
13151internal_bkpt_print_it (bpstat bs)
13152{
13153 struct breakpoint *b;
13154
13155 b = bs->breakpoint_at;
13156
13157 switch (b->type)
13158 {
13159 case bp_shlib_event:
13160 /* Did we stop because the user set the stop_on_solib_events
13161 variable? (If so, we report this as a generic, "Stopped due
13162 to shlib event" message.) */
13163 print_solib_event (0);
13164 break;
13165
13166 case bp_thread_event:
13167 /* Not sure how we will get here.
13168 GDB should not stop for these breakpoints. */
13169 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13170 break;
13171
13172 case bp_overlay_event:
13173 /* By analogy with the thread event, GDB should not stop for these. */
13174 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13175 break;
13176
13177 case bp_longjmp_master:
13178 /* These should never be enabled. */
13179 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13180 break;
13181
13182 case bp_std_terminate_master:
13183 /* These should never be enabled. */
13184 printf_filtered (_("std::terminate Master Breakpoint: "
13185 "gdb should not stop!\n"));
13186 break;
13187
13188 case bp_exception_master:
13189 /* These should never be enabled. */
13190 printf_filtered (_("Exception Master Breakpoint: "
13191 "gdb should not stop!\n"));
13192 break;
13193 }
13194
13195 return PRINT_NOTHING;
13196}
13197
13198static void
13199internal_bkpt_print_mention (struct breakpoint *b)
13200{
13201 /* Nothing to mention. These breakpoints are internal. */
13202}
13203
13204/* Virtual table for momentary breakpoints */
13205
13206static void
13207momentary_bkpt_re_set (struct breakpoint *b)
13208{
13209 /* Keep temporary breakpoints, which can be encountered when we step
13210 over a dlopen call and solib_add is resetting the breakpoints.
13211 Otherwise these should have been blown away via the cleanup chain
13212 or by breakpoint_init_inferior when we rerun the executable. */
13213}
13214
13215static void
13216momentary_bkpt_check_status (bpstat bs)
13217{
13218 /* Nothing. The point of these breakpoints is causing a stop. */
13219}
13220
13221static enum print_stop_action
13222momentary_bkpt_print_it (bpstat bs)
13223{
13224 struct ui_out *uiout = current_uiout;
13225
13226 if (ui_out_is_mi_like_p (uiout))
13227 {
13228 struct breakpoint *b = bs->breakpoint_at;
13229
13230 switch (b->type)
13231 {
13232 case bp_finish:
13233 ui_out_field_string
13234 (uiout, "reason",
13235 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13236 break;
13237
13238 case bp_until:
13239 ui_out_field_string
13240 (uiout, "reason",
13241 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13242 break;
13243 }
13244 }
13245
13246 return PRINT_UNKNOWN;
13247}
13248
13249static void
13250momentary_bkpt_print_mention (struct breakpoint *b)
13251{
13252 /* Nothing to mention. These breakpoints are internal. */
13253}
13254
13255/* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13256
13257 It gets cleared already on the removal of the first one of such placed
13258 breakpoints. This is OK as they get all removed altogether. */
13259
13260static void
13261longjmp_bkpt_dtor (struct breakpoint *self)
13262{
13263 struct thread_info *tp = find_thread_id (self->thread);
13264
13265 if (tp)
13266 tp->initiating_frame = null_frame_id;
13267
13268 momentary_breakpoint_ops.dtor (self);
13269}
13270
13271/* Specific methods for probe breakpoints. */
13272
13273static int
13274bkpt_probe_insert_location (struct bp_location *bl)
13275{
13276 int v = bkpt_insert_location (bl);
13277
13278 if (v == 0)
13279 {
13280 /* The insertion was successful, now let's set the probe's semaphore
13281 if needed. */
13282 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13283 }
13284
13285 return v;
13286}
13287
13288static int
13289bkpt_probe_remove_location (struct bp_location *bl)
13290{
13291 /* Let's clear the semaphore before removing the location. */
13292 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13293
13294 return bkpt_remove_location (bl);
13295}
13296
13297static void
13298bkpt_probe_create_sals_from_address (char **arg,
13299 struct linespec_result *canonical,
13300 enum bptype type_wanted,
13301 char *addr_start, char **copy_arg)
13302{
13303 struct linespec_sals lsal;
13304
13305 lsal.sals = parse_probes (arg, canonical);
13306
13307 *copy_arg = xstrdup (canonical->addr_string);
13308 lsal.canonical = xstrdup (*copy_arg);
13309
13310 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13311}
13312
13313static void
13314bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13315 struct symtabs_and_lines *sals)
13316{
13317 *sals = parse_probes (s, NULL);
13318 if (!sals->sals)
13319 error (_("probe not found"));
13320}
13321
13322/* The breakpoint_ops structure to be used in tracepoints. */
13323
13324static void
13325tracepoint_re_set (struct breakpoint *b)
13326{
13327 breakpoint_re_set_default (b);
13328}
13329
13330static int
13331tracepoint_breakpoint_hit (const struct bp_location *bl,
13332 struct address_space *aspace, CORE_ADDR bp_addr,
13333 const struct target_waitstatus *ws)
13334{
13335 /* By definition, the inferior does not report stops at
13336 tracepoints. */
13337 return 0;
13338}
13339
13340static void
13341tracepoint_print_one_detail (const struct breakpoint *self,
13342 struct ui_out *uiout)
13343{
13344 struct tracepoint *tp = (struct tracepoint *) self;
13345 if (tp->static_trace_marker_id)
13346 {
13347 gdb_assert (self->type == bp_static_tracepoint);
13348
13349 ui_out_text (uiout, "\tmarker id is ");
13350 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13351 tp->static_trace_marker_id);
13352 ui_out_text (uiout, "\n");
13353 }
13354}
13355
13356static void
13357tracepoint_print_mention (struct breakpoint *b)
13358{
13359 if (ui_out_is_mi_like_p (current_uiout))
13360 return;
13361
13362 switch (b->type)
13363 {
13364 case bp_tracepoint:
13365 printf_filtered (_("Tracepoint"));
13366 printf_filtered (_(" %d"), b->number);
13367 break;
13368 case bp_fast_tracepoint:
13369 printf_filtered (_("Fast tracepoint"));
13370 printf_filtered (_(" %d"), b->number);
13371 break;
13372 case bp_static_tracepoint:
13373 printf_filtered (_("Static tracepoint"));
13374 printf_filtered (_(" %d"), b->number);
13375 break;
13376 default:
13377 internal_error (__FILE__, __LINE__,
13378 _("unhandled tracepoint type %d"), (int) b->type);
13379 }
13380
13381 say_where (b);
13382}
13383
13384static void
13385tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13386{
13387 struct tracepoint *tp = (struct tracepoint *) self;
13388
13389 if (self->type == bp_fast_tracepoint)
13390 fprintf_unfiltered (fp, "ftrace");
13391 if (self->type == bp_static_tracepoint)
13392 fprintf_unfiltered (fp, "strace");
13393 else if (self->type == bp_tracepoint)
13394 fprintf_unfiltered (fp, "trace");
13395 else
13396 internal_error (__FILE__, __LINE__,
13397 _("unhandled tracepoint type %d"), (int) self->type);
13398
13399 fprintf_unfiltered (fp, " %s", self->addr_string);
13400 print_recreate_thread (self, fp);
13401
13402 if (tp->pass_count)
13403 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13404}
13405
13406static void
13407tracepoint_create_sals_from_address (char **arg,
13408 struct linespec_result *canonical,
13409 enum bptype type_wanted,
13410 char *addr_start, char **copy_arg)
13411{
13412 create_sals_from_address_default (arg, canonical, type_wanted,
13413 addr_start, copy_arg);
13414}
13415
13416static void
13417tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13418 struct linespec_result *canonical,
13419 char *cond_string,
13420 char *extra_string,
13421 enum bptype type_wanted,
13422 enum bpdisp disposition,
13423 int thread,
13424 int task, int ignore_count,
13425 const struct breakpoint_ops *ops,
13426 int from_tty, int enabled,
13427 int internal, unsigned flags)
13428{
13429 create_breakpoints_sal_default (gdbarch, canonical,
13430 cond_string, extra_string,
13431 type_wanted,
13432 disposition, thread, task,
13433 ignore_count, ops, from_tty,
13434 enabled, internal, flags);
13435}
13436
13437static void
13438tracepoint_decode_linespec (struct breakpoint *b, char **s,
13439 struct symtabs_and_lines *sals)
13440{
13441 decode_linespec_default (b, s, sals);
13442}
13443
13444struct breakpoint_ops tracepoint_breakpoint_ops;
13445
13446/* The breakpoint_ops structure to be use on tracepoints placed in a
13447 static probe. */
13448
13449static void
13450tracepoint_probe_create_sals_from_address (char **arg,
13451 struct linespec_result *canonical,
13452 enum bptype type_wanted,
13453 char *addr_start, char **copy_arg)
13454{
13455 /* We use the same method for breakpoint on probes. */
13456 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13457 addr_start, copy_arg);
13458}
13459
13460static void
13461tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13462 struct symtabs_and_lines *sals)
13463{
13464 /* We use the same method for breakpoint on probes. */
13465 bkpt_probe_decode_linespec (b, s, sals);
13466}
13467
13468static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13469
13470/* Dprintf breakpoint_ops methods. */
13471
13472static void
13473dprintf_re_set (struct breakpoint *b)
13474{
13475 breakpoint_re_set_default (b);
13476
13477 /* This breakpoint could have been pending, and be resolved now, and
13478 if so, we should now have the extra string. If we don't, the
13479 dprintf was malformed when created, but we couldn't tell because
13480 we can't extract the extra string until the location is
13481 resolved. */
13482 if (b->loc != NULL && b->extra_string == NULL)
13483 error (_("Format string required"));
13484
13485 /* 1 - connect to target 1, that can run breakpoint commands.
13486 2 - create a dprintf, which resolves fine.
13487 3 - disconnect from target 1
13488 4 - connect to target 2, that can NOT run breakpoint commands.
13489
13490 After steps #3/#4, you'll want the dprintf command list to
13491 be updated, because target 1 and 2 may well return different
13492 answers for target_can_run_breakpoint_commands().
13493 Given absence of finer grained resetting, we get to do
13494 it all the time. */
13495 if (b->extra_string != NULL)
13496 update_dprintf_command_list (b);
13497}
13498
13499/* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13500
13501static void
13502dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13503{
13504 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13505 tp->extra_string);
13506 print_recreate_thread (tp, fp);
13507}
13508
13509/* Implement the "after_condition_true" breakpoint_ops method for
13510 dprintf.
13511
13512 dprintf's are implemented with regular commands in their command
13513 list, but we run the commands here instead of before presenting the
13514 stop to the user, as dprintf's don't actually cause a stop. This
13515 also makes it so that the commands of multiple dprintfs at the same
13516 address are all handled. */
13517
13518static void
13519dprintf_after_condition_true (struct bpstats *bs)
13520{
13521 struct cleanup *old_chain;
13522 struct bpstats tmp_bs = { NULL };
13523 struct bpstats *tmp_bs_p = &tmp_bs;
13524
13525 /* dprintf's never cause a stop. This wasn't set in the
13526 check_status hook instead because that would make the dprintf's
13527 condition not be evaluated. */
13528 bs->stop = 0;
13529
13530 /* Run the command list here. Take ownership of it instead of
13531 copying. We never want these commands to run later in
13532 bpstat_do_actions, if a breakpoint that causes a stop happens to
13533 be set at same address as this dprintf, or even if running the
13534 commands here throws. */
13535 tmp_bs.commands = bs->commands;
13536 bs->commands = NULL;
13537 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13538
13539 bpstat_do_actions_1 (&tmp_bs_p);
13540
13541 /* 'tmp_bs.commands' will usually be NULL by now, but
13542 bpstat_do_actions_1 may return early without processing the whole
13543 list. */
13544 do_cleanups (old_chain);
13545}
13546
13547/* The breakpoint_ops structure to be used on static tracepoints with
13548 markers (`-m'). */
13549
13550static void
13551strace_marker_create_sals_from_address (char **arg,
13552 struct linespec_result *canonical,
13553 enum bptype type_wanted,
13554 char *addr_start, char **copy_arg)
13555{
13556 struct linespec_sals lsal;
13557
13558 lsal.sals = decode_static_tracepoint_spec (arg);
13559
13560 *copy_arg = savestring (addr_start, *arg - addr_start);
13561
13562 canonical->addr_string = xstrdup (*copy_arg);
13563 lsal.canonical = xstrdup (*copy_arg);
13564 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13565}
13566
13567static void
13568strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13569 struct linespec_result *canonical,
13570 char *cond_string,
13571 char *extra_string,
13572 enum bptype type_wanted,
13573 enum bpdisp disposition,
13574 int thread,
13575 int task, int ignore_count,
13576 const struct breakpoint_ops *ops,
13577 int from_tty, int enabled,
13578 int internal, unsigned flags)
13579{
13580 int i;
13581 struct linespec_sals *lsal = VEC_index (linespec_sals,
13582 canonical->sals, 0);
13583
13584 /* If the user is creating a static tracepoint by marker id
13585 (strace -m MARKER_ID), then store the sals index, so that
13586 breakpoint_re_set can try to match up which of the newly
13587 found markers corresponds to this one, and, don't try to
13588 expand multiple locations for each sal, given than SALS
13589 already should contain all sals for MARKER_ID. */
13590
13591 for (i = 0; i < lsal->sals.nelts; ++i)
13592 {
13593 struct symtabs_and_lines expanded;
13594 struct tracepoint *tp;
13595 struct cleanup *old_chain;
13596 char *addr_string;
13597
13598 expanded.nelts = 1;
13599 expanded.sals = &lsal->sals.sals[i];
13600
13601 addr_string = xstrdup (canonical->addr_string);
13602 old_chain = make_cleanup (xfree, addr_string);
13603
13604 tp = XCNEW (struct tracepoint);
13605 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13606 addr_string, NULL,
13607 cond_string, extra_string,
13608 type_wanted, disposition,
13609 thread, task, ignore_count, ops,
13610 from_tty, enabled, internal, flags,
13611 canonical->special_display);
13612 /* Given that its possible to have multiple markers with
13613 the same string id, if the user is creating a static
13614 tracepoint by marker id ("strace -m MARKER_ID"), then
13615 store the sals index, so that breakpoint_re_set can
13616 try to match up which of the newly found markers
13617 corresponds to this one */
13618 tp->static_trace_marker_id_idx = i;
13619
13620 install_breakpoint (internal, &tp->base, 0);
13621
13622 discard_cleanups (old_chain);
13623 }
13624}
13625
13626static void
13627strace_marker_decode_linespec (struct breakpoint *b, char **s,
13628 struct symtabs_and_lines *sals)
13629{
13630 struct tracepoint *tp = (struct tracepoint *) b;
13631
13632 *sals = decode_static_tracepoint_spec (s);
13633 if (sals->nelts > tp->static_trace_marker_id_idx)
13634 {
13635 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13636 sals->nelts = 1;
13637 }
13638 else
13639 error (_("marker %s not found"), tp->static_trace_marker_id);
13640}
13641
13642static struct breakpoint_ops strace_marker_breakpoint_ops;
13643
13644static int
13645strace_marker_p (struct breakpoint *b)
13646{
13647 return b->ops == &strace_marker_breakpoint_ops;
13648}
13649
13650/* Delete a breakpoint and clean up all traces of it in the data
13651 structures. */
13652
13653void
13654delete_breakpoint (struct breakpoint *bpt)
13655{
13656 struct breakpoint *b;
13657
13658 gdb_assert (bpt != NULL);
13659
13660 /* Has this bp already been deleted? This can happen because
13661 multiple lists can hold pointers to bp's. bpstat lists are
13662 especial culprits.
13663
13664 One example of this happening is a watchpoint's scope bp. When
13665 the scope bp triggers, we notice that the watchpoint is out of
13666 scope, and delete it. We also delete its scope bp. But the
13667 scope bp is marked "auto-deleting", and is already on a bpstat.
13668 That bpstat is then checked for auto-deleting bp's, which are
13669 deleted.
13670
13671 A real solution to this problem might involve reference counts in
13672 bp's, and/or giving them pointers back to their referencing
13673 bpstat's, and teaching delete_breakpoint to only free a bp's
13674 storage when no more references were extent. A cheaper bandaid
13675 was chosen. */
13676 if (bpt->type == bp_none)
13677 return;
13678
13679 /* At least avoid this stale reference until the reference counting
13680 of breakpoints gets resolved. */
13681 if (bpt->related_breakpoint != bpt)
13682 {
13683 struct breakpoint *related;
13684 struct watchpoint *w;
13685
13686 if (bpt->type == bp_watchpoint_scope)
13687 w = (struct watchpoint *) bpt->related_breakpoint;
13688 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13689 w = (struct watchpoint *) bpt;
13690 else
13691 w = NULL;
13692 if (w != NULL)
13693 watchpoint_del_at_next_stop (w);
13694
13695 /* Unlink bpt from the bpt->related_breakpoint ring. */
13696 for (related = bpt; related->related_breakpoint != bpt;
13697 related = related->related_breakpoint);
13698 related->related_breakpoint = bpt->related_breakpoint;
13699 bpt->related_breakpoint = bpt;
13700 }
13701
13702 /* watch_command_1 creates a watchpoint but only sets its number if
13703 update_watchpoint succeeds in creating its bp_locations. If there's
13704 a problem in that process, we'll be asked to delete the half-created
13705 watchpoint. In that case, don't announce the deletion. */
13706 if (bpt->number)
13707 observer_notify_breakpoint_deleted (bpt);
13708
13709 if (breakpoint_chain == bpt)
13710 breakpoint_chain = bpt->next;
13711
13712 ALL_BREAKPOINTS (b)
13713 if (b->next == bpt)
13714 {
13715 b->next = bpt->next;
13716 break;
13717 }
13718
13719 /* Be sure no bpstat's are pointing at the breakpoint after it's
13720 been freed. */
13721 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13722 in all threads for now. Note that we cannot just remove bpstats
13723 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13724 commands are associated with the bpstat; if we remove it here,
13725 then the later call to bpstat_do_actions (&stop_bpstat); in
13726 event-top.c won't do anything, and temporary breakpoints with
13727 commands won't work. */
13728
13729 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13730
13731 /* Now that breakpoint is removed from breakpoint list, update the
13732 global location list. This will remove locations that used to
13733 belong to this breakpoint. Do this before freeing the breakpoint
13734 itself, since remove_breakpoint looks at location's owner. It
13735 might be better design to have location completely
13736 self-contained, but it's not the case now. */
13737 update_global_location_list (0);
13738
13739 bpt->ops->dtor (bpt);
13740 /* On the chance that someone will soon try again to delete this
13741 same bp, we mark it as deleted before freeing its storage. */
13742 bpt->type = bp_none;
13743 xfree (bpt);
13744}
13745
13746static void
13747do_delete_breakpoint_cleanup (void *b)
13748{
13749 delete_breakpoint (b);
13750}
13751
13752struct cleanup *
13753make_cleanup_delete_breakpoint (struct breakpoint *b)
13754{
13755 return make_cleanup (do_delete_breakpoint_cleanup, b);
13756}
13757
13758/* Iterator function to call a user-provided callback function once
13759 for each of B and its related breakpoints. */
13760
13761static void
13762iterate_over_related_breakpoints (struct breakpoint *b,
13763 void (*function) (struct breakpoint *,
13764 void *),
13765 void *data)
13766{
13767 struct breakpoint *related;
13768
13769 related = b;
13770 do
13771 {
13772 struct breakpoint *next;
13773
13774 /* FUNCTION may delete RELATED. */
13775 next = related->related_breakpoint;
13776
13777 if (next == related)
13778 {
13779 /* RELATED is the last ring entry. */
13780 function (related, data);
13781
13782 /* FUNCTION may have deleted it, so we'd never reach back to
13783 B. There's nothing left to do anyway, so just break
13784 out. */
13785 break;
13786 }
13787 else
13788 function (related, data);
13789
13790 related = next;
13791 }
13792 while (related != b);
13793}
13794
13795static void
13796do_delete_breakpoint (struct breakpoint *b, void *ignore)
13797{
13798 delete_breakpoint (b);
13799}
13800
13801/* A callback for map_breakpoint_numbers that calls
13802 delete_breakpoint. */
13803
13804static void
13805do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13806{
13807 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13808}
13809
13810void
13811delete_command (char *arg, int from_tty)
13812{
13813 struct breakpoint *b, *b_tmp;
13814
13815 dont_repeat ();
13816
13817 if (arg == 0)
13818 {
13819 int breaks_to_delete = 0;
13820
13821 /* Delete all breakpoints if no argument. Do not delete
13822 internal breakpoints, these have to be deleted with an
13823 explicit breakpoint number argument. */
13824 ALL_BREAKPOINTS (b)
13825 if (user_breakpoint_p (b))
13826 {
13827 breaks_to_delete = 1;
13828 break;
13829 }
13830
13831 /* Ask user only if there are some breakpoints to delete. */
13832 if (!from_tty
13833 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13834 {
13835 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13836 if (user_breakpoint_p (b))
13837 delete_breakpoint (b);
13838 }
13839 }
13840 else
13841 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13842}
13843
13844static int
13845all_locations_are_pending (struct bp_location *loc)
13846{
13847 for (; loc; loc = loc->next)
13848 if (!loc->shlib_disabled
13849 && !loc->pspace->executing_startup)
13850 return 0;
13851 return 1;
13852}
13853
13854/* Subroutine of update_breakpoint_locations to simplify it.
13855 Return non-zero if multiple fns in list LOC have the same name.
13856 Null names are ignored. */
13857
13858static int
13859ambiguous_names_p (struct bp_location *loc)
13860{
13861 struct bp_location *l;
13862 htab_t htab = htab_create_alloc (13, htab_hash_string,
13863 (int (*) (const void *,
13864 const void *)) streq,
13865 NULL, xcalloc, xfree);
13866
13867 for (l = loc; l != NULL; l = l->next)
13868 {
13869 const char **slot;
13870 const char *name = l->function_name;
13871
13872 /* Allow for some names to be NULL, ignore them. */
13873 if (name == NULL)
13874 continue;
13875
13876 slot = (const char **) htab_find_slot (htab, (const void *) name,
13877 INSERT);
13878 /* NOTE: We can assume slot != NULL here because xcalloc never
13879 returns NULL. */
13880 if (*slot != NULL)
13881 {
13882 htab_delete (htab);
13883 return 1;
13884 }
13885 *slot = name;
13886 }
13887
13888 htab_delete (htab);
13889 return 0;
13890}
13891
13892/* When symbols change, it probably means the sources changed as well,
13893 and it might mean the static tracepoint markers are no longer at
13894 the same address or line numbers they used to be at last we
13895 checked. Losing your static tracepoints whenever you rebuild is
13896 undesirable. This function tries to resync/rematch gdb static
13897 tracepoints with the markers on the target, for static tracepoints
13898 that have not been set by marker id. Static tracepoint that have
13899 been set by marker id are reset by marker id in breakpoint_re_set.
13900 The heuristic is:
13901
13902 1) For a tracepoint set at a specific address, look for a marker at
13903 the old PC. If one is found there, assume to be the same marker.
13904 If the name / string id of the marker found is different from the
13905 previous known name, assume that means the user renamed the marker
13906 in the sources, and output a warning.
13907
13908 2) For a tracepoint set at a given line number, look for a marker
13909 at the new address of the old line number. If one is found there,
13910 assume to be the same marker. If the name / string id of the
13911 marker found is different from the previous known name, assume that
13912 means the user renamed the marker in the sources, and output a
13913 warning.
13914
13915 3) If a marker is no longer found at the same address or line, it
13916 may mean the marker no longer exists. But it may also just mean
13917 the code changed a bit. Maybe the user added a few lines of code
13918 that made the marker move up or down (in line number terms). Ask
13919 the target for info about the marker with the string id as we knew
13920 it. If found, update line number and address in the matching
13921 static tracepoint. This will get confused if there's more than one
13922 marker with the same ID (possible in UST, although unadvised
13923 precisely because it confuses tools). */
13924
13925static struct symtab_and_line
13926update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13927{
13928 struct tracepoint *tp = (struct tracepoint *) b;
13929 struct static_tracepoint_marker marker;
13930 CORE_ADDR pc;
13931
13932 pc = sal.pc;
13933 if (sal.line)
13934 find_line_pc (sal.symtab, sal.line, &pc);
13935
13936 if (target_static_tracepoint_marker_at (pc, &marker))
13937 {
13938 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13939 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13940 b->number,
13941 tp->static_trace_marker_id, marker.str_id);
13942
13943 xfree (tp->static_trace_marker_id);
13944 tp->static_trace_marker_id = xstrdup (marker.str_id);
13945 release_static_tracepoint_marker (&marker);
13946
13947 return sal;
13948 }
13949
13950 /* Old marker wasn't found on target at lineno. Try looking it up
13951 by string ID. */
13952 if (!sal.explicit_pc
13953 && sal.line != 0
13954 && sal.symtab != NULL
13955 && tp->static_trace_marker_id != NULL)
13956 {
13957 VEC(static_tracepoint_marker_p) *markers;
13958
13959 markers
13960 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13961
13962 if (!VEC_empty(static_tracepoint_marker_p, markers))
13963 {
13964 struct symtab_and_line sal2;
13965 struct symbol *sym;
13966 struct static_tracepoint_marker *tpmarker;
13967 struct ui_out *uiout = current_uiout;
13968
13969 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13970
13971 xfree (tp->static_trace_marker_id);
13972 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13973
13974 warning (_("marker for static tracepoint %d (%s) not "
13975 "found at previous line number"),
13976 b->number, tp->static_trace_marker_id);
13977
13978 init_sal (&sal2);
13979
13980 sal2.pc = tpmarker->address;
13981
13982 sal2 = find_pc_line (tpmarker->address, 0);
13983 sym = find_pc_sect_function (tpmarker->address, NULL);
13984 ui_out_text (uiout, "Now in ");
13985 if (sym)
13986 {
13987 ui_out_field_string (uiout, "func",
13988 SYMBOL_PRINT_NAME (sym));
13989 ui_out_text (uiout, " at ");
13990 }
13991 ui_out_field_string (uiout, "file",
13992 symtab_to_filename_for_display (sal2.symtab));
13993 ui_out_text (uiout, ":");
13994
13995 if (ui_out_is_mi_like_p (uiout))
13996 {
13997 const char *fullname = symtab_to_fullname (sal2.symtab);
13998
13999 ui_out_field_string (uiout, "fullname", fullname);
14000 }
14001
14002 ui_out_field_int (uiout, "line", sal2.line);
14003 ui_out_text (uiout, "\n");
14004
14005 b->loc->line_number = sal2.line;
14006 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14007
14008 xfree (b->addr_string);
14009 b->addr_string = xstrprintf ("%s:%d",
14010 symtab_to_filename_for_display (sal2.symtab),
14011 b->loc->line_number);
14012
14013 /* Might be nice to check if function changed, and warn if
14014 so. */
14015
14016 release_static_tracepoint_marker (tpmarker);
14017 }
14018 }
14019 return sal;
14020}
14021
14022/* Returns 1 iff locations A and B are sufficiently same that
14023 we don't need to report breakpoint as changed. */
14024
14025static int
14026locations_are_equal (struct bp_location *a, struct bp_location *b)
14027{
14028 while (a && b)
14029 {
14030 if (a->address != b->address)
14031 return 0;
14032
14033 if (a->shlib_disabled != b->shlib_disabled)
14034 return 0;
14035
14036 if (a->enabled != b->enabled)
14037 return 0;
14038
14039 a = a->next;
14040 b = b->next;
14041 }
14042
14043 if ((a == NULL) != (b == NULL))
14044 return 0;
14045
14046 return 1;
14047}
14048
14049/* Create new breakpoint locations for B (a hardware or software breakpoint)
14050 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14051 a ranged breakpoint. */
14052
14053void
14054update_breakpoint_locations (struct breakpoint *b,
14055 struct symtabs_and_lines sals,
14056 struct symtabs_and_lines sals_end)
14057{
14058 int i;
14059 struct bp_location *existing_locations = b->loc;
14060
14061 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14062 {
14063 /* Ranged breakpoints have only one start location and one end
14064 location. */
14065 b->enable_state = bp_disabled;
14066 update_global_location_list (1);
14067 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14068 "multiple locations found\n"),
14069 b->number);
14070 return;
14071 }
14072
14073 /* If there's no new locations, and all existing locations are
14074 pending, don't do anything. This optimizes the common case where
14075 all locations are in the same shared library, that was unloaded.
14076 We'd like to retain the location, so that when the library is
14077 loaded again, we don't loose the enabled/disabled status of the
14078 individual locations. */
14079 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14080 return;
14081
14082 b->loc = NULL;
14083
14084 for (i = 0; i < sals.nelts; ++i)
14085 {
14086 struct bp_location *new_loc;
14087
14088 switch_to_program_space_and_thread (sals.sals[i].pspace);
14089
14090 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14091
14092 /* Reparse conditions, they might contain references to the
14093 old symtab. */
14094 if (b->cond_string != NULL)
14095 {
14096 const char *s;
14097 volatile struct gdb_exception e;
14098
14099 s = b->cond_string;
14100 TRY_CATCH (e, RETURN_MASK_ERROR)
14101 {
14102 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14103 block_for_pc (sals.sals[i].pc),
14104 0);
14105 }
14106 if (e.reason < 0)
14107 {
14108 warning (_("failed to reevaluate condition "
14109 "for breakpoint %d: %s"),
14110 b->number, e.message);
14111 new_loc->enabled = 0;
14112 }
14113 }
14114
14115 if (sals_end.nelts)
14116 {
14117 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14118
14119 new_loc->length = end - sals.sals[0].pc + 1;
14120 }
14121 }
14122
14123 /* Update locations of permanent breakpoints. */
14124 if (b->enable_state == bp_permanent)
14125 make_breakpoint_permanent (b);
14126
14127 /* If possible, carry over 'disable' status from existing
14128 breakpoints. */
14129 {
14130 struct bp_location *e = existing_locations;
14131 /* If there are multiple breakpoints with the same function name,
14132 e.g. for inline functions, comparing function names won't work.
14133 Instead compare pc addresses; this is just a heuristic as things
14134 may have moved, but in practice it gives the correct answer
14135 often enough until a better solution is found. */
14136 int have_ambiguous_names = ambiguous_names_p (b->loc);
14137
14138 for (; e; e = e->next)
14139 {
14140 if (!e->enabled && e->function_name)
14141 {
14142 struct bp_location *l = b->loc;
14143 if (have_ambiguous_names)
14144 {
14145 for (; l; l = l->next)
14146 if (breakpoint_locations_match (e, l))
14147 {
14148 l->enabled = 0;
14149 break;
14150 }
14151 }
14152 else
14153 {
14154 for (; l; l = l->next)
14155 if (l->function_name
14156 && strcmp (e->function_name, l->function_name) == 0)
14157 {
14158 l->enabled = 0;
14159 break;
14160 }
14161 }
14162 }
14163 }
14164 }
14165
14166 if (!locations_are_equal (existing_locations, b->loc))
14167 observer_notify_breakpoint_modified (b);
14168
14169 update_global_location_list (1);
14170}
14171
14172/* Find the SaL locations corresponding to the given ADDR_STRING.
14173 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14174
14175static struct symtabs_and_lines
14176addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14177{
14178 char *s;
14179 struct symtabs_and_lines sals = {0};
14180 volatile struct gdb_exception e;
14181
14182 gdb_assert (b->ops != NULL);
14183 s = addr_string;
14184
14185 TRY_CATCH (e, RETURN_MASK_ERROR)
14186 {
14187 b->ops->decode_linespec (b, &s, &sals);
14188 }
14189 if (e.reason < 0)
14190 {
14191 int not_found_and_ok = 0;
14192 /* For pending breakpoints, it's expected that parsing will
14193 fail until the right shared library is loaded. User has
14194 already told to create pending breakpoints and don't need
14195 extra messages. If breakpoint is in bp_shlib_disabled
14196 state, then user already saw the message about that
14197 breakpoint being disabled, and don't want to see more
14198 errors. */
14199 if (e.error == NOT_FOUND_ERROR
14200 && (b->condition_not_parsed
14201 || (b->loc && b->loc->shlib_disabled)
14202 || (b->loc && b->loc->pspace->executing_startup)
14203 || b->enable_state == bp_disabled))
14204 not_found_and_ok = 1;
14205
14206 if (!not_found_and_ok)
14207 {
14208 /* We surely don't want to warn about the same breakpoint
14209 10 times. One solution, implemented here, is disable
14210 the breakpoint on error. Another solution would be to
14211 have separate 'warning emitted' flag. Since this
14212 happens only when a binary has changed, I don't know
14213 which approach is better. */
14214 b->enable_state = bp_disabled;
14215 throw_exception (e);
14216 }
14217 }
14218
14219 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14220 {
14221 int i;
14222
14223 for (i = 0; i < sals.nelts; ++i)
14224 resolve_sal_pc (&sals.sals[i]);
14225 if (b->condition_not_parsed && s && s[0])
14226 {
14227 char *cond_string, *extra_string;
14228 int thread, task;
14229
14230 find_condition_and_thread (s, sals.sals[0].pc,
14231 &cond_string, &thread, &task,
14232 &extra_string);
14233 if (cond_string)
14234 b->cond_string = cond_string;
14235 b->thread = thread;
14236 b->task = task;
14237 if (extra_string)
14238 b->extra_string = extra_string;
14239 b->condition_not_parsed = 0;
14240 }
14241
14242 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14243 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14244
14245 *found = 1;
14246 }
14247 else
14248 *found = 0;
14249
14250 return sals;
14251}
14252
14253/* The default re_set method, for typical hardware or software
14254 breakpoints. Reevaluate the breakpoint and recreate its
14255 locations. */
14256
14257static void
14258breakpoint_re_set_default (struct breakpoint *b)
14259{
14260 int found;
14261 struct symtabs_and_lines sals, sals_end;
14262 struct symtabs_and_lines expanded = {0};
14263 struct symtabs_and_lines expanded_end = {0};
14264
14265 sals = addr_string_to_sals (b, b->addr_string, &found);
14266 if (found)
14267 {
14268 make_cleanup (xfree, sals.sals);
14269 expanded = sals;
14270 }
14271
14272 if (b->addr_string_range_end)
14273 {
14274 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14275 if (found)
14276 {
14277 make_cleanup (xfree, sals_end.sals);
14278 expanded_end = sals_end;
14279 }
14280 }
14281
14282 update_breakpoint_locations (b, expanded, expanded_end);
14283}
14284
14285/* Default method for creating SALs from an address string. It basically
14286 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14287
14288static void
14289create_sals_from_address_default (char **arg,
14290 struct linespec_result *canonical,
14291 enum bptype type_wanted,
14292 char *addr_start, char **copy_arg)
14293{
14294 parse_breakpoint_sals (arg, canonical);
14295}
14296
14297/* Call create_breakpoints_sal for the given arguments. This is the default
14298 function for the `create_breakpoints_sal' method of
14299 breakpoint_ops. */
14300
14301static void
14302create_breakpoints_sal_default (struct gdbarch *gdbarch,
14303 struct linespec_result *canonical,
14304 char *cond_string,
14305 char *extra_string,
14306 enum bptype type_wanted,
14307 enum bpdisp disposition,
14308 int thread,
14309 int task, int ignore_count,
14310 const struct breakpoint_ops *ops,
14311 int from_tty, int enabled,
14312 int internal, unsigned flags)
14313{
14314 create_breakpoints_sal (gdbarch, canonical, cond_string,
14315 extra_string,
14316 type_wanted, disposition,
14317 thread, task, ignore_count, ops, from_tty,
14318 enabled, internal, flags);
14319}
14320
14321/* Decode the line represented by S by calling decode_line_full. This is the
14322 default function for the `decode_linespec' method of breakpoint_ops. */
14323
14324static void
14325decode_linespec_default (struct breakpoint *b, char **s,
14326 struct symtabs_and_lines *sals)
14327{
14328 struct linespec_result canonical;
14329
14330 init_linespec_result (&canonical);
14331 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14332 (struct symtab *) NULL, 0,
14333 &canonical, multiple_symbols_all,
14334 b->filter);
14335
14336 /* We should get 0 or 1 resulting SALs. */
14337 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14338
14339 if (VEC_length (linespec_sals, canonical.sals) > 0)
14340 {
14341 struct linespec_sals *lsal;
14342
14343 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14344 *sals = lsal->sals;
14345 /* Arrange it so the destructor does not free the
14346 contents. */
14347 lsal->sals.sals = NULL;
14348 }
14349
14350 destroy_linespec_result (&canonical);
14351}
14352
14353/* Prepare the global context for a re-set of breakpoint B. */
14354
14355static struct cleanup *
14356prepare_re_set_context (struct breakpoint *b)
14357{
14358 struct cleanup *cleanups;
14359
14360 input_radix = b->input_radix;
14361 cleanups = save_current_space_and_thread ();
14362 if (b->pspace != NULL)
14363 switch_to_program_space_and_thread (b->pspace);
14364 set_language (b->language);
14365
14366 return cleanups;
14367}
14368
14369/* Reset a breakpoint given it's struct breakpoint * BINT.
14370 The value we return ends up being the return value from catch_errors.
14371 Unused in this case. */
14372
14373static int
14374breakpoint_re_set_one (void *bint)
14375{
14376 /* Get past catch_errs. */
14377 struct breakpoint *b = (struct breakpoint *) bint;
14378 struct cleanup *cleanups;
14379
14380 cleanups = prepare_re_set_context (b);
14381 b->ops->re_set (b);
14382 do_cleanups (cleanups);
14383 return 0;
14384}
14385
14386/* Re-set all breakpoints after symbols have been re-loaded. */
14387void
14388breakpoint_re_set (void)
14389{
14390 struct breakpoint *b, *b_tmp;
14391 enum language save_language;
14392 int save_input_radix;
14393 struct cleanup *old_chain;
14394
14395 save_language = current_language->la_language;
14396 save_input_radix = input_radix;
14397 old_chain = save_current_program_space ();
14398
14399 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14400 {
14401 /* Format possible error msg. */
14402 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14403 b->number);
14404 struct cleanup *cleanups = make_cleanup (xfree, message);
14405 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14406 do_cleanups (cleanups);
14407 }
14408 set_language (save_language);
14409 input_radix = save_input_radix;
14410
14411 jit_breakpoint_re_set ();
14412
14413 do_cleanups (old_chain);
14414
14415 create_overlay_event_breakpoint ();
14416 create_longjmp_master_breakpoint ();
14417 create_std_terminate_master_breakpoint ();
14418 create_exception_master_breakpoint ();
14419}
14420\f
14421/* Reset the thread number of this breakpoint:
14422
14423 - If the breakpoint is for all threads, leave it as-is.
14424 - Else, reset it to the current thread for inferior_ptid. */
14425void
14426breakpoint_re_set_thread (struct breakpoint *b)
14427{
14428 if (b->thread != -1)
14429 {
14430 if (in_thread_list (inferior_ptid))
14431 b->thread = pid_to_thread_id (inferior_ptid);
14432
14433 /* We're being called after following a fork. The new fork is
14434 selected as current, and unless this was a vfork will have a
14435 different program space from the original thread. Reset that
14436 as well. */
14437 b->loc->pspace = current_program_space;
14438 }
14439}
14440
14441/* Set ignore-count of breakpoint number BPTNUM to COUNT.
14442 If from_tty is nonzero, it prints a message to that effect,
14443 which ends with a period (no newline). */
14444
14445void
14446set_ignore_count (int bptnum, int count, int from_tty)
14447{
14448 struct breakpoint *b;
14449
14450 if (count < 0)
14451 count = 0;
14452
14453 ALL_BREAKPOINTS (b)
14454 if (b->number == bptnum)
14455 {
14456 if (is_tracepoint (b))
14457 {
14458 if (from_tty && count != 0)
14459 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14460 bptnum);
14461 return;
14462 }
14463
14464 b->ignore_count = count;
14465 if (from_tty)
14466 {
14467 if (count == 0)
14468 printf_filtered (_("Will stop next time "
14469 "breakpoint %d is reached."),
14470 bptnum);
14471 else if (count == 1)
14472 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14473 bptnum);
14474 else
14475 printf_filtered (_("Will ignore next %d "
14476 "crossings of breakpoint %d."),
14477 count, bptnum);
14478 }
14479 observer_notify_breakpoint_modified (b);
14480 return;
14481 }
14482
14483 error (_("No breakpoint number %d."), bptnum);
14484}
14485
14486/* Command to set ignore-count of breakpoint N to COUNT. */
14487
14488static void
14489ignore_command (char *args, int from_tty)
14490{
14491 char *p = args;
14492 int num;
14493
14494 if (p == 0)
14495 error_no_arg (_("a breakpoint number"));
14496
14497 num = get_number (&p);
14498 if (num == 0)
14499 error (_("bad breakpoint number: '%s'"), args);
14500 if (*p == 0)
14501 error (_("Second argument (specified ignore-count) is missing."));
14502
14503 set_ignore_count (num,
14504 longest_to_int (value_as_long (parse_and_eval (p))),
14505 from_tty);
14506 if (from_tty)
14507 printf_filtered ("\n");
14508}
14509\f
14510/* Call FUNCTION on each of the breakpoints
14511 whose numbers are given in ARGS. */
14512
14513static void
14514map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14515 void *),
14516 void *data)
14517{
14518 int num;
14519 struct breakpoint *b, *tmp;
14520 int match;
14521 struct get_number_or_range_state state;
14522
14523 if (args == 0)
14524 error_no_arg (_("one or more breakpoint numbers"));
14525
14526 init_number_or_range (&state, args);
14527
14528 while (!state.finished)
14529 {
14530 char *p = state.string;
14531
14532 match = 0;
14533
14534 num = get_number_or_range (&state);
14535 if (num == 0)
14536 {
14537 warning (_("bad breakpoint number at or near '%s'"), p);
14538 }
14539 else
14540 {
14541 ALL_BREAKPOINTS_SAFE (b, tmp)
14542 if (b->number == num)
14543 {
14544 match = 1;
14545 function (b, data);
14546 break;
14547 }
14548 if (match == 0)
14549 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14550 }
14551 }
14552}
14553
14554static struct bp_location *
14555find_location_by_number (char *number)
14556{
14557 char *dot = strchr (number, '.');
14558 char *p1;
14559 int bp_num;
14560 int loc_num;
14561 struct breakpoint *b;
14562 struct bp_location *loc;
14563
14564 *dot = '\0';
14565
14566 p1 = number;
14567 bp_num = get_number (&p1);
14568 if (bp_num == 0)
14569 error (_("Bad breakpoint number '%s'"), number);
14570
14571 ALL_BREAKPOINTS (b)
14572 if (b->number == bp_num)
14573 {
14574 break;
14575 }
14576
14577 if (!b || b->number != bp_num)
14578 error (_("Bad breakpoint number '%s'"), number);
14579
14580 p1 = dot+1;
14581 loc_num = get_number (&p1);
14582 if (loc_num == 0)
14583 error (_("Bad breakpoint location number '%s'"), number);
14584
14585 --loc_num;
14586 loc = b->loc;
14587 for (;loc_num && loc; --loc_num, loc = loc->next)
14588 ;
14589 if (!loc)
14590 error (_("Bad breakpoint location number '%s'"), dot+1);
14591
14592 return loc;
14593}
14594
14595
14596/* Set ignore-count of breakpoint number BPTNUM to COUNT.
14597 If from_tty is nonzero, it prints a message to that effect,
14598 which ends with a period (no newline). */
14599
14600void
14601disable_breakpoint (struct breakpoint *bpt)
14602{
14603 /* Never disable a watchpoint scope breakpoint; we want to
14604 hit them when we leave scope so we can delete both the
14605 watchpoint and its scope breakpoint at that time. */
14606 if (bpt->type == bp_watchpoint_scope)
14607 return;
14608
14609 /* You can't disable permanent breakpoints. */
14610 if (bpt->enable_state == bp_permanent)
14611 return;
14612
14613 bpt->enable_state = bp_disabled;
14614
14615 /* Mark breakpoint locations modified. */
14616 mark_breakpoint_modified (bpt);
14617
14618 if (target_supports_enable_disable_tracepoint ()
14619 && current_trace_status ()->running && is_tracepoint (bpt))
14620 {
14621 struct bp_location *location;
14622
14623 for (location = bpt->loc; location; location = location->next)
14624 target_disable_tracepoint (location);
14625 }
14626
14627 update_global_location_list (0);
14628
14629 observer_notify_breakpoint_modified (bpt);
14630}
14631
14632/* A callback for iterate_over_related_breakpoints. */
14633
14634static void
14635do_disable_breakpoint (struct breakpoint *b, void *ignore)
14636{
14637 disable_breakpoint (b);
14638}
14639
14640/* A callback for map_breakpoint_numbers that calls
14641 disable_breakpoint. */
14642
14643static void
14644do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14645{
14646 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14647}
14648
14649static void
14650disable_command (char *args, int from_tty)
14651{
14652 if (args == 0)
14653 {
14654 struct breakpoint *bpt;
14655
14656 ALL_BREAKPOINTS (bpt)
14657 if (user_breakpoint_p (bpt))
14658 disable_breakpoint (bpt);
14659 }
14660 else
14661 {
14662 char *num = extract_arg (&args);
14663
14664 while (num)
14665 {
14666 if (strchr (num, '.'))
14667 {
14668 struct bp_location *loc = find_location_by_number (num);
14669
14670 if (loc)
14671 {
14672 if (loc->enabled)
14673 {
14674 loc->enabled = 0;
14675 mark_breakpoint_location_modified (loc);
14676 }
14677 if (target_supports_enable_disable_tracepoint ()
14678 && current_trace_status ()->running && loc->owner
14679 && is_tracepoint (loc->owner))
14680 target_disable_tracepoint (loc);
14681 }
14682 update_global_location_list (0);
14683 }
14684 else
14685 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14686 num = extract_arg (&args);
14687 }
14688 }
14689}
14690
14691static void
14692enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14693 int count)
14694{
14695 int target_resources_ok;
14696
14697 if (bpt->type == bp_hardware_breakpoint)
14698 {
14699 int i;
14700 i = hw_breakpoint_used_count ();
14701 target_resources_ok =
14702 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14703 i + 1, 0);
14704 if (target_resources_ok == 0)
14705 error (_("No hardware breakpoint support in the target."));
14706 else if (target_resources_ok < 0)
14707 error (_("Hardware breakpoints used exceeds limit."));
14708 }
14709
14710 if (is_watchpoint (bpt))
14711 {
14712 /* Initialize it just to avoid a GCC false warning. */
14713 enum enable_state orig_enable_state = 0;
14714 volatile struct gdb_exception e;
14715
14716 TRY_CATCH (e, RETURN_MASK_ALL)
14717 {
14718 struct watchpoint *w = (struct watchpoint *) bpt;
14719
14720 orig_enable_state = bpt->enable_state;
14721 bpt->enable_state = bp_enabled;
14722 update_watchpoint (w, 1 /* reparse */);
14723 }
14724 if (e.reason < 0)
14725 {
14726 bpt->enable_state = orig_enable_state;
14727 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14728 bpt->number);
14729 return;
14730 }
14731 }
14732
14733 if (bpt->enable_state != bp_permanent)
14734 bpt->enable_state = bp_enabled;
14735
14736 bpt->enable_state = bp_enabled;
14737
14738 /* Mark breakpoint locations modified. */
14739 mark_breakpoint_modified (bpt);
14740
14741 if (target_supports_enable_disable_tracepoint ()
14742 && current_trace_status ()->running && is_tracepoint (bpt))
14743 {
14744 struct bp_location *location;
14745
14746 for (location = bpt->loc; location; location = location->next)
14747 target_enable_tracepoint (location);
14748 }
14749
14750 bpt->disposition = disposition;
14751 bpt->enable_count = count;
14752 update_global_location_list (1);
14753
14754 observer_notify_breakpoint_modified (bpt);
14755}
14756
14757
14758void
14759enable_breakpoint (struct breakpoint *bpt)
14760{
14761 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14762}
14763
14764static void
14765do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14766{
14767 enable_breakpoint (bpt);
14768}
14769
14770/* A callback for map_breakpoint_numbers that calls
14771 enable_breakpoint. */
14772
14773static void
14774do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14775{
14776 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14777}
14778
14779/* The enable command enables the specified breakpoints (or all defined
14780 breakpoints) so they once again become (or continue to be) effective
14781 in stopping the inferior. */
14782
14783static void
14784enable_command (char *args, int from_tty)
14785{
14786 if (args == 0)
14787 {
14788 struct breakpoint *bpt;
14789
14790 ALL_BREAKPOINTS (bpt)
14791 if (user_breakpoint_p (bpt))
14792 enable_breakpoint (bpt);
14793 }
14794 else
14795 {
14796 char *num = extract_arg (&args);
14797
14798 while (num)
14799 {
14800 if (strchr (num, '.'))
14801 {
14802 struct bp_location *loc = find_location_by_number (num);
14803
14804 if (loc)
14805 {
14806 if (!loc->enabled)
14807 {
14808 loc->enabled = 1;
14809 mark_breakpoint_location_modified (loc);
14810 }
14811 if (target_supports_enable_disable_tracepoint ()
14812 && current_trace_status ()->running && loc->owner
14813 && is_tracepoint (loc->owner))
14814 target_enable_tracepoint (loc);
14815 }
14816 update_global_location_list (1);
14817 }
14818 else
14819 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14820 num = extract_arg (&args);
14821 }
14822 }
14823}
14824
14825/* This struct packages up disposition data for application to multiple
14826 breakpoints. */
14827
14828struct disp_data
14829{
14830 enum bpdisp disp;
14831 int count;
14832};
14833
14834static void
14835do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14836{
14837 struct disp_data disp_data = *(struct disp_data *) arg;
14838
14839 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14840}
14841
14842static void
14843do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14844{
14845 struct disp_data disp = { disp_disable, 1 };
14846
14847 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14848}
14849
14850static void
14851enable_once_command (char *args, int from_tty)
14852{
14853 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14854}
14855
14856static void
14857do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14858{
14859 struct disp_data disp = { disp_disable, *(int *) countptr };
14860
14861 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14862}
14863
14864static void
14865enable_count_command (char *args, int from_tty)
14866{
14867 int count = get_number (&args);
14868
14869 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14870}
14871
14872static void
14873do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14874{
14875 struct disp_data disp = { disp_del, 1 };
14876
14877 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14878}
14879
14880static void
14881enable_delete_command (char *args, int from_tty)
14882{
14883 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14884}
14885\f
14886static void
14887set_breakpoint_cmd (char *args, int from_tty)
14888{
14889}
14890
14891static void
14892show_breakpoint_cmd (char *args, int from_tty)
14893{
14894}
14895
14896/* Invalidate last known value of any hardware watchpoint if
14897 the memory which that value represents has been written to by
14898 GDB itself. */
14899
14900static void
14901invalidate_bp_value_on_memory_change (struct inferior *inferior,
14902 CORE_ADDR addr, ssize_t len,
14903 const bfd_byte *data)
14904{
14905 struct breakpoint *bp;
14906
14907 ALL_BREAKPOINTS (bp)
14908 if (bp->enable_state == bp_enabled
14909 && bp->type == bp_hardware_watchpoint)
14910 {
14911 struct watchpoint *wp = (struct watchpoint *) bp;
14912
14913 if (wp->val_valid && wp->val)
14914 {
14915 struct bp_location *loc;
14916
14917 for (loc = bp->loc; loc != NULL; loc = loc->next)
14918 if (loc->loc_type == bp_loc_hardware_watchpoint
14919 && loc->address + loc->length > addr
14920 && addr + len > loc->address)
14921 {
14922 value_free (wp->val);
14923 wp->val = NULL;
14924 wp->val_valid = 0;
14925 }
14926 }
14927 }
14928}
14929
14930/* Create and insert a raw software breakpoint at PC. Return an
14931 identifier, which should be used to remove the breakpoint later.
14932 In general, places which call this should be using something on the
14933 breakpoint chain instead; this function should be eliminated
14934 someday. */
14935
14936void *
14937deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14938 struct address_space *aspace, CORE_ADDR pc)
14939{
14940 struct bp_target_info *bp_tgt;
14941
14942 bp_tgt = XZALLOC (struct bp_target_info);
14943
14944 bp_tgt->placed_address_space = aspace;
14945 bp_tgt->placed_address = pc;
14946
14947 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14948 {
14949 /* Could not insert the breakpoint. */
14950 xfree (bp_tgt);
14951 return NULL;
14952 }
14953
14954 return bp_tgt;
14955}
14956
14957/* Remove a breakpoint BP inserted by
14958 deprecated_insert_raw_breakpoint. */
14959
14960int
14961deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14962{
14963 struct bp_target_info *bp_tgt = bp;
14964 int ret;
14965
14966 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14967 xfree (bp_tgt);
14968
14969 return ret;
14970}
14971
14972/* One (or perhaps two) breakpoints used for software single
14973 stepping. */
14974
14975static void *single_step_breakpoints[2];
14976static struct gdbarch *single_step_gdbarch[2];
14977
14978/* Create and insert a breakpoint for software single step. */
14979
14980void
14981insert_single_step_breakpoint (struct gdbarch *gdbarch,
14982 struct address_space *aspace,
14983 CORE_ADDR next_pc)
14984{
14985 void **bpt_p;
14986
14987 if (single_step_breakpoints[0] == NULL)
14988 {
14989 bpt_p = &single_step_breakpoints[0];
14990 single_step_gdbarch[0] = gdbarch;
14991 }
14992 else
14993 {
14994 gdb_assert (single_step_breakpoints[1] == NULL);
14995 bpt_p = &single_step_breakpoints[1];
14996 single_step_gdbarch[1] = gdbarch;
14997 }
14998
14999 /* NOTE drow/2006-04-11: A future improvement to this function would
15000 be to only create the breakpoints once, and actually put them on
15001 the breakpoint chain. That would let us use set_raw_breakpoint.
15002 We could adjust the addresses each time they were needed. Doing
15003 this requires corresponding changes elsewhere where single step
15004 breakpoints are handled, however. So, for now, we use this. */
15005
15006 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15007 if (*bpt_p == NULL)
15008 error (_("Could not insert single-step breakpoint at %s"),
15009 paddress (gdbarch, next_pc));
15010}
15011
15012/* Check if the breakpoints used for software single stepping
15013 were inserted or not. */
15014
15015int
15016single_step_breakpoints_inserted (void)
15017{
15018 return (single_step_breakpoints[0] != NULL
15019 || single_step_breakpoints[1] != NULL);
15020}
15021
15022/* Remove and delete any breakpoints used for software single step. */
15023
15024void
15025remove_single_step_breakpoints (void)
15026{
15027 gdb_assert (single_step_breakpoints[0] != NULL);
15028
15029 /* See insert_single_step_breakpoint for more about this deprecated
15030 call. */
15031 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15032 single_step_breakpoints[0]);
15033 single_step_gdbarch[0] = NULL;
15034 single_step_breakpoints[0] = NULL;
15035
15036 if (single_step_breakpoints[1] != NULL)
15037 {
15038 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15039 single_step_breakpoints[1]);
15040 single_step_gdbarch[1] = NULL;
15041 single_step_breakpoints[1] = NULL;
15042 }
15043}
15044
15045/* Delete software single step breakpoints without removing them from
15046 the inferior. This is intended to be used if the inferior's address
15047 space where they were inserted is already gone, e.g. after exit or
15048 exec. */
15049
15050void
15051cancel_single_step_breakpoints (void)
15052{
15053 int i;
15054
15055 for (i = 0; i < 2; i++)
15056 if (single_step_breakpoints[i])
15057 {
15058 xfree (single_step_breakpoints[i]);
15059 single_step_breakpoints[i] = NULL;
15060 single_step_gdbarch[i] = NULL;
15061 }
15062}
15063
15064/* Detach software single-step breakpoints from INFERIOR_PTID without
15065 removing them. */
15066
15067static void
15068detach_single_step_breakpoints (void)
15069{
15070 int i;
15071
15072 for (i = 0; i < 2; i++)
15073 if (single_step_breakpoints[i])
15074 target_remove_breakpoint (single_step_gdbarch[i],
15075 single_step_breakpoints[i]);
15076}
15077
15078/* Check whether a software single-step breakpoint is inserted at
15079 PC. */
15080
15081static int
15082single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15083 CORE_ADDR pc)
15084{
15085 int i;
15086
15087 for (i = 0; i < 2; i++)
15088 {
15089 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15090 if (bp_tgt
15091 && breakpoint_address_match (bp_tgt->placed_address_space,
15092 bp_tgt->placed_address,
15093 aspace, pc))
15094 return 1;
15095 }
15096
15097 return 0;
15098}
15099
15100/* Returns 0 if 'bp' is NOT a syscall catchpoint,
15101 non-zero otherwise. */
15102static int
15103is_syscall_catchpoint_enabled (struct breakpoint *bp)
15104{
15105 if (syscall_catchpoint_p (bp)
15106 && bp->enable_state != bp_disabled
15107 && bp->enable_state != bp_call_disabled)
15108 return 1;
15109 else
15110 return 0;
15111}
15112
15113int
15114catch_syscall_enabled (void)
15115{
15116 struct catch_syscall_inferior_data *inf_data
15117 = get_catch_syscall_inferior_data (current_inferior ());
15118
15119 return inf_data->total_syscalls_count != 0;
15120}
15121
15122int
15123catching_syscall_number (int syscall_number)
15124{
15125 struct breakpoint *bp;
15126
15127 ALL_BREAKPOINTS (bp)
15128 if (is_syscall_catchpoint_enabled (bp))
15129 {
15130 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15131
15132 if (c->syscalls_to_be_caught)
15133 {
15134 int i, iter;
15135 for (i = 0;
15136 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15137 i++)
15138 if (syscall_number == iter)
15139 return 1;
15140 }
15141 else
15142 return 1;
15143 }
15144
15145 return 0;
15146}
15147
15148/* Complete syscall names. Used by "catch syscall". */
15149static VEC (char_ptr) *
15150catch_syscall_completer (struct cmd_list_element *cmd,
15151 const char *text, const char *word)
15152{
15153 const char **list = get_syscall_names ();
15154 VEC (char_ptr) *retlist
15155 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15156
15157 xfree (list);
15158 return retlist;
15159}
15160
15161/* Tracepoint-specific operations. */
15162
15163/* Set tracepoint count to NUM. */
15164static void
15165set_tracepoint_count (int num)
15166{
15167 tracepoint_count = num;
15168 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15169}
15170
15171static void
15172trace_command (char *arg, int from_tty)
15173{
15174 struct breakpoint_ops *ops;
15175 const char *arg_cp = arg;
15176
15177 if (arg && probe_linespec_to_ops (&arg_cp))
15178 ops = &tracepoint_probe_breakpoint_ops;
15179 else
15180 ops = &tracepoint_breakpoint_ops;
15181
15182 create_breakpoint (get_current_arch (),
15183 arg,
15184 NULL, 0, NULL, 1 /* parse arg */,
15185 0 /* tempflag */,
15186 bp_tracepoint /* type_wanted */,
15187 0 /* Ignore count */,
15188 pending_break_support,
15189 ops,
15190 from_tty,
15191 1 /* enabled */,
15192 0 /* internal */, 0);
15193}
15194
15195static void
15196ftrace_command (char *arg, int from_tty)
15197{
15198 create_breakpoint (get_current_arch (),
15199 arg,
15200 NULL, 0, NULL, 1 /* parse arg */,
15201 0 /* tempflag */,
15202 bp_fast_tracepoint /* type_wanted */,
15203 0 /* Ignore count */,
15204 pending_break_support,
15205 &tracepoint_breakpoint_ops,
15206 from_tty,
15207 1 /* enabled */,
15208 0 /* internal */, 0);
15209}
15210
15211/* strace command implementation. Creates a static tracepoint. */
15212
15213static void
15214strace_command (char *arg, int from_tty)
15215{
15216 struct breakpoint_ops *ops;
15217
15218 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15219 or with a normal static tracepoint. */
15220 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15221 ops = &strace_marker_breakpoint_ops;
15222 else
15223 ops = &tracepoint_breakpoint_ops;
15224
15225 create_breakpoint (get_current_arch (),
15226 arg,
15227 NULL, 0, NULL, 1 /* parse arg */,
15228 0 /* tempflag */,
15229 bp_static_tracepoint /* type_wanted */,
15230 0 /* Ignore count */,
15231 pending_break_support,
15232 ops,
15233 from_tty,
15234 1 /* enabled */,
15235 0 /* internal */, 0);
15236}
15237
15238/* Set up a fake reader function that gets command lines from a linked
15239 list that was acquired during tracepoint uploading. */
15240
15241static struct uploaded_tp *this_utp;
15242static int next_cmd;
15243
15244static char *
15245read_uploaded_action (void)
15246{
15247 char *rslt;
15248
15249 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15250
15251 next_cmd++;
15252
15253 return rslt;
15254}
15255
15256/* Given information about a tracepoint as recorded on a target (which
15257 can be either a live system or a trace file), attempt to create an
15258 equivalent GDB tracepoint. This is not a reliable process, since
15259 the target does not necessarily have all the information used when
15260 the tracepoint was originally defined. */
15261
15262struct tracepoint *
15263create_tracepoint_from_upload (struct uploaded_tp *utp)
15264{
15265 char *addr_str, small_buf[100];
15266 struct tracepoint *tp;
15267
15268 if (utp->at_string)
15269 addr_str = utp->at_string;
15270 else
15271 {
15272 /* In the absence of a source location, fall back to raw
15273 address. Since there is no way to confirm that the address
15274 means the same thing as when the trace was started, warn the
15275 user. */
15276 warning (_("Uploaded tracepoint %d has no "
15277 "source location, using raw address"),
15278 utp->number);
15279 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15280 addr_str = small_buf;
15281 }
15282
15283 /* There's not much we can do with a sequence of bytecodes. */
15284 if (utp->cond && !utp->cond_string)
15285 warning (_("Uploaded tracepoint %d condition "
15286 "has no source form, ignoring it"),
15287 utp->number);
15288
15289 if (!create_breakpoint (get_current_arch (),
15290 addr_str,
15291 utp->cond_string, -1, NULL,
15292 0 /* parse cond/thread */,
15293 0 /* tempflag */,
15294 utp->type /* type_wanted */,
15295 0 /* Ignore count */,
15296 pending_break_support,
15297 &tracepoint_breakpoint_ops,
15298 0 /* from_tty */,
15299 utp->enabled /* enabled */,
15300 0 /* internal */,
15301 CREATE_BREAKPOINT_FLAGS_INSERTED))
15302 return NULL;
15303
15304 /* Get the tracepoint we just created. */
15305 tp = get_tracepoint (tracepoint_count);
15306 gdb_assert (tp != NULL);
15307
15308 if (utp->pass > 0)
15309 {
15310 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15311 tp->base.number);
15312
15313 trace_pass_command (small_buf, 0);
15314 }
15315
15316 /* If we have uploaded versions of the original commands, set up a
15317 special-purpose "reader" function and call the usual command line
15318 reader, then pass the result to the breakpoint command-setting
15319 function. */
15320 if (!VEC_empty (char_ptr, utp->cmd_strings))
15321 {
15322 struct command_line *cmd_list;
15323
15324 this_utp = utp;
15325 next_cmd = 0;
15326
15327 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15328
15329 breakpoint_set_commands (&tp->base, cmd_list);
15330 }
15331 else if (!VEC_empty (char_ptr, utp->actions)
15332 || !VEC_empty (char_ptr, utp->step_actions))
15333 warning (_("Uploaded tracepoint %d actions "
15334 "have no source form, ignoring them"),
15335 utp->number);
15336
15337 /* Copy any status information that might be available. */
15338 tp->base.hit_count = utp->hit_count;
15339 tp->traceframe_usage = utp->traceframe_usage;
15340
15341 return tp;
15342}
15343
15344/* Print information on tracepoint number TPNUM_EXP, or all if
15345 omitted. */
15346
15347static void
15348tracepoints_info (char *args, int from_tty)
15349{
15350 struct ui_out *uiout = current_uiout;
15351 int num_printed;
15352
15353 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15354
15355 if (num_printed == 0)
15356 {
15357 if (args == NULL || *args == '\0')
15358 ui_out_message (uiout, 0, "No tracepoints.\n");
15359 else
15360 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15361 }
15362
15363 default_collect_info ();
15364}
15365
15366/* The 'enable trace' command enables tracepoints.
15367 Not supported by all targets. */
15368static void
15369enable_trace_command (char *args, int from_tty)
15370{
15371 enable_command (args, from_tty);
15372}
15373
15374/* The 'disable trace' command disables tracepoints.
15375 Not supported by all targets. */
15376static void
15377disable_trace_command (char *args, int from_tty)
15378{
15379 disable_command (args, from_tty);
15380}
15381
15382/* Remove a tracepoint (or all if no argument). */
15383static void
15384delete_trace_command (char *arg, int from_tty)
15385{
15386 struct breakpoint *b, *b_tmp;
15387
15388 dont_repeat ();
15389
15390 if (arg == 0)
15391 {
15392 int breaks_to_delete = 0;
15393
15394 /* Delete all breakpoints if no argument.
15395 Do not delete internal or call-dummy breakpoints, these
15396 have to be deleted with an explicit breakpoint number
15397 argument. */
15398 ALL_TRACEPOINTS (b)
15399 if (is_tracepoint (b) && user_breakpoint_p (b))
15400 {
15401 breaks_to_delete = 1;
15402 break;
15403 }
15404
15405 /* Ask user only if there are some breakpoints to delete. */
15406 if (!from_tty
15407 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15408 {
15409 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15410 if (is_tracepoint (b) && user_breakpoint_p (b))
15411 delete_breakpoint (b);
15412 }
15413 }
15414 else
15415 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15416}
15417
15418/* Helper function for trace_pass_command. */
15419
15420static void
15421trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15422{
15423 tp->pass_count = count;
15424 observer_notify_breakpoint_modified (&tp->base);
15425 if (from_tty)
15426 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15427 tp->base.number, count);
15428}
15429
15430/* Set passcount for tracepoint.
15431
15432 First command argument is passcount, second is tracepoint number.
15433 If tracepoint number omitted, apply to most recently defined.
15434 Also accepts special argument "all". */
15435
15436static void
15437trace_pass_command (char *args, int from_tty)
15438{
15439 struct tracepoint *t1;
15440 unsigned int count;
15441
15442 if (args == 0 || *args == 0)
15443 error (_("passcount command requires an "
15444 "argument (count + optional TP num)"));
15445
15446 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15447
15448 args = skip_spaces (args);
15449 if (*args && strncasecmp (args, "all", 3) == 0)
15450 {
15451 struct breakpoint *b;
15452
15453 args += 3; /* Skip special argument "all". */
15454 if (*args)
15455 error (_("Junk at end of arguments."));
15456
15457 ALL_TRACEPOINTS (b)
15458 {
15459 t1 = (struct tracepoint *) b;
15460 trace_pass_set_count (t1, count, from_tty);
15461 }
15462 }
15463 else if (*args == '\0')
15464 {
15465 t1 = get_tracepoint_by_number (&args, NULL, 1);
15466 if (t1)
15467 trace_pass_set_count (t1, count, from_tty);
15468 }
15469 else
15470 {
15471 struct get_number_or_range_state state;
15472
15473 init_number_or_range (&state, args);
15474 while (!state.finished)
15475 {
15476 t1 = get_tracepoint_by_number (&args, &state, 1);
15477 if (t1)
15478 trace_pass_set_count (t1, count, from_tty);
15479 }
15480 }
15481}
15482
15483struct tracepoint *
15484get_tracepoint (int num)
15485{
15486 struct breakpoint *t;
15487
15488 ALL_TRACEPOINTS (t)
15489 if (t->number == num)
15490 return (struct tracepoint *) t;
15491
15492 return NULL;
15493}
15494
15495/* Find the tracepoint with the given target-side number (which may be
15496 different from the tracepoint number after disconnecting and
15497 reconnecting). */
15498
15499struct tracepoint *
15500get_tracepoint_by_number_on_target (int num)
15501{
15502 struct breakpoint *b;
15503
15504 ALL_TRACEPOINTS (b)
15505 {
15506 struct tracepoint *t = (struct tracepoint *) b;
15507
15508 if (t->number_on_target == num)
15509 return t;
15510 }
15511
15512 return NULL;
15513}
15514
15515/* Utility: parse a tracepoint number and look it up in the list.
15516 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15517 If OPTIONAL_P is true, then if the argument is missing, the most
15518 recent tracepoint (tracepoint_count) is returned. */
15519struct tracepoint *
15520get_tracepoint_by_number (char **arg,
15521 struct get_number_or_range_state *state,
15522 int optional_p)
15523{
15524 struct breakpoint *t;
15525 int tpnum;
15526 char *instring = arg == NULL ? NULL : *arg;
15527
15528 if (state)
15529 {
15530 gdb_assert (!state->finished);
15531 tpnum = get_number_or_range (state);
15532 }
15533 else if (arg == NULL || *arg == NULL || ! **arg)
15534 {
15535 if (optional_p)
15536 tpnum = tracepoint_count;
15537 else
15538 error_no_arg (_("tracepoint number"));
15539 }
15540 else
15541 tpnum = get_number (arg);
15542
15543 if (tpnum <= 0)
15544 {
15545 if (instring && *instring)
15546 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15547 instring);
15548 else
15549 printf_filtered (_("Tracepoint argument missing "
15550 "and no previous tracepoint\n"));
15551 return NULL;
15552 }
15553
15554 ALL_TRACEPOINTS (t)
15555 if (t->number == tpnum)
15556 {
15557 return (struct tracepoint *) t;
15558 }
15559
15560 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15561 return NULL;
15562}
15563
15564void
15565print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15566{
15567 if (b->thread != -1)
15568 fprintf_unfiltered (fp, " thread %d", b->thread);
15569
15570 if (b->task != 0)
15571 fprintf_unfiltered (fp, " task %d", b->task);
15572
15573 fprintf_unfiltered (fp, "\n");
15574}
15575
15576/* Save information on user settable breakpoints (watchpoints, etc) to
15577 a new script file named FILENAME. If FILTER is non-NULL, call it
15578 on each breakpoint and only include the ones for which it returns
15579 non-zero. */
15580
15581static void
15582save_breakpoints (char *filename, int from_tty,
15583 int (*filter) (const struct breakpoint *))
15584{
15585 struct breakpoint *tp;
15586 int any = 0;
15587 struct cleanup *cleanup;
15588 struct ui_file *fp;
15589 int extra_trace_bits = 0;
15590
15591 if (filename == 0 || *filename == 0)
15592 error (_("Argument required (file name in which to save)"));
15593
15594 /* See if we have anything to save. */
15595 ALL_BREAKPOINTS (tp)
15596 {
15597 /* Skip internal and momentary breakpoints. */
15598 if (!user_breakpoint_p (tp))
15599 continue;
15600
15601 /* If we have a filter, only save the breakpoints it accepts. */
15602 if (filter && !filter (tp))
15603 continue;
15604
15605 any = 1;
15606
15607 if (is_tracepoint (tp))
15608 {
15609 extra_trace_bits = 1;
15610
15611 /* We can stop searching. */
15612 break;
15613 }
15614 }
15615
15616 if (!any)
15617 {
15618 warning (_("Nothing to save."));
15619 return;
15620 }
15621
15622 filename = tilde_expand (filename);
15623 cleanup = make_cleanup (xfree, filename);
15624 fp = gdb_fopen (filename, "w");
15625 if (!fp)
15626 error (_("Unable to open file '%s' for saving (%s)"),
15627 filename, safe_strerror (errno));
15628 make_cleanup_ui_file_delete (fp);
15629
15630 if (extra_trace_bits)
15631 save_trace_state_variables (fp);
15632
15633 ALL_BREAKPOINTS (tp)
15634 {
15635 /* Skip internal and momentary breakpoints. */
15636 if (!user_breakpoint_p (tp))
15637 continue;
15638
15639 /* If we have a filter, only save the breakpoints it accepts. */
15640 if (filter && !filter (tp))
15641 continue;
15642
15643 tp->ops->print_recreate (tp, fp);
15644
15645 /* Note, we can't rely on tp->number for anything, as we can't
15646 assume the recreated breakpoint numbers will match. Use $bpnum
15647 instead. */
15648
15649 if (tp->cond_string)
15650 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15651
15652 if (tp->ignore_count)
15653 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15654
15655 if (tp->type != bp_dprintf && tp->commands)
15656 {
15657 volatile struct gdb_exception ex;
15658
15659 fprintf_unfiltered (fp, " commands\n");
15660
15661 ui_out_redirect (current_uiout, fp);
15662 TRY_CATCH (ex, RETURN_MASK_ALL)
15663 {
15664 print_command_lines (current_uiout, tp->commands->commands, 2);
15665 }
15666 ui_out_redirect (current_uiout, NULL);
15667
15668 if (ex.reason < 0)
15669 throw_exception (ex);
15670
15671 fprintf_unfiltered (fp, " end\n");
15672 }
15673
15674 if (tp->enable_state == bp_disabled)
15675 fprintf_unfiltered (fp, "disable\n");
15676
15677 /* If this is a multi-location breakpoint, check if the locations
15678 should be individually disabled. Watchpoint locations are
15679 special, and not user visible. */
15680 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15681 {
15682 struct bp_location *loc;
15683 int n = 1;
15684
15685 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15686 if (!loc->enabled)
15687 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15688 }
15689 }
15690
15691 if (extra_trace_bits && *default_collect)
15692 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15693
15694 if (from_tty)
15695 printf_filtered (_("Saved to file '%s'.\n"), filename);
15696 do_cleanups (cleanup);
15697}
15698
15699/* The `save breakpoints' command. */
15700
15701static void
15702save_breakpoints_command (char *args, int from_tty)
15703{
15704 save_breakpoints (args, from_tty, NULL);
15705}
15706
15707/* The `save tracepoints' command. */
15708
15709static void
15710save_tracepoints_command (char *args, int from_tty)
15711{
15712 save_breakpoints (args, from_tty, is_tracepoint);
15713}
15714
15715/* Create a vector of all tracepoints. */
15716
15717VEC(breakpoint_p) *
15718all_tracepoints (void)
15719{
15720 VEC(breakpoint_p) *tp_vec = 0;
15721 struct breakpoint *tp;
15722
15723 ALL_TRACEPOINTS (tp)
15724 {
15725 VEC_safe_push (breakpoint_p, tp_vec, tp);
15726 }
15727
15728 return tp_vec;
15729}
15730
15731\f
15732/* This help string is used for the break, hbreak, tbreak and thbreak
15733 commands. It is defined as a macro to prevent duplication.
15734 COMMAND should be a string constant containing the name of the
15735 command. */
15736#define BREAK_ARGS_HELP(command) \
15737command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15738PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15739probe point. Accepted values are `-probe' (for a generic, automatically\n\
15740guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15741LOCATION may be a line number, function name, or \"*\" and an address.\n\
15742If a line number is specified, break at start of code for that line.\n\
15743If a function is specified, break at start of code for that function.\n\
15744If an address is specified, break at that exact address.\n\
15745With no LOCATION, uses current execution address of the selected\n\
15746stack frame. This is useful for breaking on return to a stack frame.\n\
15747\n\
15748THREADNUM is the number from \"info threads\".\n\
15749CONDITION is a boolean expression.\n\
15750\n\
15751Multiple breakpoints at one place are permitted, and useful if their\n\
15752conditions are different.\n\
15753\n\
15754Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15755
15756/* List of subcommands for "catch". */
15757static struct cmd_list_element *catch_cmdlist;
15758
15759/* List of subcommands for "tcatch". */
15760static struct cmd_list_element *tcatch_cmdlist;
15761
15762void
15763add_catch_command (char *name, char *docstring,
15764 void (*sfunc) (char *args, int from_tty,
15765 struct cmd_list_element *command),
15766 completer_ftype *completer,
15767 void *user_data_catch,
15768 void *user_data_tcatch)
15769{
15770 struct cmd_list_element *command;
15771
15772 command = add_cmd (name, class_breakpoint, NULL, docstring,
15773 &catch_cmdlist);
15774 set_cmd_sfunc (command, sfunc);
15775 set_cmd_context (command, user_data_catch);
15776 set_cmd_completer (command, completer);
15777
15778 command = add_cmd (name, class_breakpoint, NULL, docstring,
15779 &tcatch_cmdlist);
15780 set_cmd_sfunc (command, sfunc);
15781 set_cmd_context (command, user_data_tcatch);
15782 set_cmd_completer (command, completer);
15783}
15784
15785static void
15786clear_syscall_counts (struct inferior *inf)
15787{
15788 struct catch_syscall_inferior_data *inf_data
15789 = get_catch_syscall_inferior_data (inf);
15790
15791 inf_data->total_syscalls_count = 0;
15792 inf_data->any_syscall_count = 0;
15793 VEC_free (int, inf_data->syscalls_counts);
15794}
15795
15796static void
15797save_command (char *arg, int from_tty)
15798{
15799 printf_unfiltered (_("\"save\" must be followed by "
15800 "the name of a save subcommand.\n"));
15801 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15802}
15803
15804struct breakpoint *
15805iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15806 void *data)
15807{
15808 struct breakpoint *b, *b_tmp;
15809
15810 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15811 {
15812 if ((*callback) (b, data))
15813 return b;
15814 }
15815
15816 return NULL;
15817}
15818
15819/* Zero if any of the breakpoint's locations could be a location where
15820 functions have been inlined, nonzero otherwise. */
15821
15822static int
15823is_non_inline_function (struct breakpoint *b)
15824{
15825 /* The shared library event breakpoint is set on the address of a
15826 non-inline function. */
15827 if (b->type == bp_shlib_event)
15828 return 1;
15829
15830 return 0;
15831}
15832
15833/* Nonzero if the specified PC cannot be a location where functions
15834 have been inlined. */
15835
15836int
15837pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15838 const struct target_waitstatus *ws)
15839{
15840 struct breakpoint *b;
15841 struct bp_location *bl;
15842
15843 ALL_BREAKPOINTS (b)
15844 {
15845 if (!is_non_inline_function (b))
15846 continue;
15847
15848 for (bl = b->loc; bl != NULL; bl = bl->next)
15849 {
15850 if (!bl->shlib_disabled
15851 && bpstat_check_location (bl, aspace, pc, ws))
15852 return 1;
15853 }
15854 }
15855
15856 return 0;
15857}
15858
15859/* Remove any references to OBJFILE which is going to be freed. */
15860
15861void
15862breakpoint_free_objfile (struct objfile *objfile)
15863{
15864 struct bp_location **locp, *loc;
15865
15866 ALL_BP_LOCATIONS (loc, locp)
15867 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15868 loc->symtab = NULL;
15869}
15870
15871void
15872initialize_breakpoint_ops (void)
15873{
15874 static int initialized = 0;
15875
15876 struct breakpoint_ops *ops;
15877
15878 if (initialized)
15879 return;
15880 initialized = 1;
15881
15882 /* The breakpoint_ops structure to be inherit by all kinds of
15883 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15884 internal and momentary breakpoints, etc.). */
15885 ops = &bkpt_base_breakpoint_ops;
15886 *ops = base_breakpoint_ops;
15887 ops->re_set = bkpt_re_set;
15888 ops->insert_location = bkpt_insert_location;
15889 ops->remove_location = bkpt_remove_location;
15890 ops->breakpoint_hit = bkpt_breakpoint_hit;
15891 ops->create_sals_from_address = bkpt_create_sals_from_address;
15892 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15893 ops->decode_linespec = bkpt_decode_linespec;
15894
15895 /* The breakpoint_ops structure to be used in regular breakpoints. */
15896 ops = &bkpt_breakpoint_ops;
15897 *ops = bkpt_base_breakpoint_ops;
15898 ops->re_set = bkpt_re_set;
15899 ops->resources_needed = bkpt_resources_needed;
15900 ops->print_it = bkpt_print_it;
15901 ops->print_mention = bkpt_print_mention;
15902 ops->print_recreate = bkpt_print_recreate;
15903
15904 /* Ranged breakpoints. */
15905 ops = &ranged_breakpoint_ops;
15906 *ops = bkpt_breakpoint_ops;
15907 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15908 ops->resources_needed = resources_needed_ranged_breakpoint;
15909 ops->print_it = print_it_ranged_breakpoint;
15910 ops->print_one = print_one_ranged_breakpoint;
15911 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15912 ops->print_mention = print_mention_ranged_breakpoint;
15913 ops->print_recreate = print_recreate_ranged_breakpoint;
15914
15915 /* Internal breakpoints. */
15916 ops = &internal_breakpoint_ops;
15917 *ops = bkpt_base_breakpoint_ops;
15918 ops->re_set = internal_bkpt_re_set;
15919 ops->check_status = internal_bkpt_check_status;
15920 ops->print_it = internal_bkpt_print_it;
15921 ops->print_mention = internal_bkpt_print_mention;
15922
15923 /* Momentary breakpoints. */
15924 ops = &momentary_breakpoint_ops;
15925 *ops = bkpt_base_breakpoint_ops;
15926 ops->re_set = momentary_bkpt_re_set;
15927 ops->check_status = momentary_bkpt_check_status;
15928 ops->print_it = momentary_bkpt_print_it;
15929 ops->print_mention = momentary_bkpt_print_mention;
15930
15931 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15932 ops = &longjmp_breakpoint_ops;
15933 *ops = momentary_breakpoint_ops;
15934 ops->dtor = longjmp_bkpt_dtor;
15935
15936 /* Probe breakpoints. */
15937 ops = &bkpt_probe_breakpoint_ops;
15938 *ops = bkpt_breakpoint_ops;
15939 ops->insert_location = bkpt_probe_insert_location;
15940 ops->remove_location = bkpt_probe_remove_location;
15941 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15942 ops->decode_linespec = bkpt_probe_decode_linespec;
15943
15944 /* Watchpoints. */
15945 ops = &watchpoint_breakpoint_ops;
15946 *ops = base_breakpoint_ops;
15947 ops->dtor = dtor_watchpoint;
15948 ops->re_set = re_set_watchpoint;
15949 ops->insert_location = insert_watchpoint;
15950 ops->remove_location = remove_watchpoint;
15951 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15952 ops->check_status = check_status_watchpoint;
15953 ops->resources_needed = resources_needed_watchpoint;
15954 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15955 ops->print_it = print_it_watchpoint;
15956 ops->print_mention = print_mention_watchpoint;
15957 ops->print_recreate = print_recreate_watchpoint;
15958 ops->explains_signal = explains_signal_watchpoint;
15959
15960 /* Masked watchpoints. */
15961 ops = &masked_watchpoint_breakpoint_ops;
15962 *ops = watchpoint_breakpoint_ops;
15963 ops->insert_location = insert_masked_watchpoint;
15964 ops->remove_location = remove_masked_watchpoint;
15965 ops->resources_needed = resources_needed_masked_watchpoint;
15966 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15967 ops->print_it = print_it_masked_watchpoint;
15968 ops->print_one_detail = print_one_detail_masked_watchpoint;
15969 ops->print_mention = print_mention_masked_watchpoint;
15970 ops->print_recreate = print_recreate_masked_watchpoint;
15971
15972 /* Tracepoints. */
15973 ops = &tracepoint_breakpoint_ops;
15974 *ops = base_breakpoint_ops;
15975 ops->re_set = tracepoint_re_set;
15976 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15977 ops->print_one_detail = tracepoint_print_one_detail;
15978 ops->print_mention = tracepoint_print_mention;
15979 ops->print_recreate = tracepoint_print_recreate;
15980 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15981 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15982 ops->decode_linespec = tracepoint_decode_linespec;
15983
15984 /* Probe tracepoints. */
15985 ops = &tracepoint_probe_breakpoint_ops;
15986 *ops = tracepoint_breakpoint_ops;
15987 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15988 ops->decode_linespec = tracepoint_probe_decode_linespec;
15989
15990 /* Static tracepoints with marker (`-m'). */
15991 ops = &strace_marker_breakpoint_ops;
15992 *ops = tracepoint_breakpoint_ops;
15993 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15994 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15995 ops->decode_linespec = strace_marker_decode_linespec;
15996
15997 /* Fork catchpoints. */
15998 ops = &catch_fork_breakpoint_ops;
15999 *ops = base_breakpoint_ops;
16000 ops->insert_location = insert_catch_fork;
16001 ops->remove_location = remove_catch_fork;
16002 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16003 ops->print_it = print_it_catch_fork;
16004 ops->print_one = print_one_catch_fork;
16005 ops->print_mention = print_mention_catch_fork;
16006 ops->print_recreate = print_recreate_catch_fork;
16007
16008 /* Vfork catchpoints. */
16009 ops = &catch_vfork_breakpoint_ops;
16010 *ops = base_breakpoint_ops;
16011 ops->insert_location = insert_catch_vfork;
16012 ops->remove_location = remove_catch_vfork;
16013 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16014 ops->print_it = print_it_catch_vfork;
16015 ops->print_one = print_one_catch_vfork;
16016 ops->print_mention = print_mention_catch_vfork;
16017 ops->print_recreate = print_recreate_catch_vfork;
16018
16019 /* Exec catchpoints. */
16020 ops = &catch_exec_breakpoint_ops;
16021 *ops = base_breakpoint_ops;
16022 ops->dtor = dtor_catch_exec;
16023 ops->insert_location = insert_catch_exec;
16024 ops->remove_location = remove_catch_exec;
16025 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16026 ops->print_it = print_it_catch_exec;
16027 ops->print_one = print_one_catch_exec;
16028 ops->print_mention = print_mention_catch_exec;
16029 ops->print_recreate = print_recreate_catch_exec;
16030
16031 /* Syscall catchpoints. */
16032 ops = &catch_syscall_breakpoint_ops;
16033 *ops = base_breakpoint_ops;
16034 ops->dtor = dtor_catch_syscall;
16035 ops->insert_location = insert_catch_syscall;
16036 ops->remove_location = remove_catch_syscall;
16037 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16038 ops->print_it = print_it_catch_syscall;
16039 ops->print_one = print_one_catch_syscall;
16040 ops->print_mention = print_mention_catch_syscall;
16041 ops->print_recreate = print_recreate_catch_syscall;
16042
16043 /* Solib-related catchpoints. */
16044 ops = &catch_solib_breakpoint_ops;
16045 *ops = base_breakpoint_ops;
16046 ops->dtor = dtor_catch_solib;
16047 ops->insert_location = insert_catch_solib;
16048 ops->remove_location = remove_catch_solib;
16049 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16050 ops->check_status = check_status_catch_solib;
16051 ops->print_it = print_it_catch_solib;
16052 ops->print_one = print_one_catch_solib;
16053 ops->print_mention = print_mention_catch_solib;
16054 ops->print_recreate = print_recreate_catch_solib;
16055
16056 ops = &dprintf_breakpoint_ops;
16057 *ops = bkpt_base_breakpoint_ops;
16058 ops->re_set = dprintf_re_set;
16059 ops->resources_needed = bkpt_resources_needed;
16060 ops->print_it = bkpt_print_it;
16061 ops->print_mention = bkpt_print_mention;
16062 ops->print_recreate = dprintf_print_recreate;
16063 ops->after_condition_true = dprintf_after_condition_true;
16064}
16065
16066/* Chain containing all defined "enable breakpoint" subcommands. */
16067
16068static struct cmd_list_element *enablebreaklist = NULL;
16069
16070void
16071_initialize_breakpoint (void)
16072{
16073 struct cmd_list_element *c;
16074
16075 initialize_breakpoint_ops ();
16076
16077 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16078 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16079 observer_attach_inferior_exit (clear_syscall_counts);
16080 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16081
16082 breakpoint_objfile_key
16083 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16084
16085 catch_syscall_inferior_data
16086 = register_inferior_data_with_cleanup (NULL,
16087 catch_syscall_inferior_data_cleanup);
16088
16089 breakpoint_chain = 0;
16090 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16091 before a breakpoint is set. */
16092 breakpoint_count = 0;
16093
16094 tracepoint_count = 0;
16095
16096 add_com ("ignore", class_breakpoint, ignore_command, _("\
16097Set ignore-count of breakpoint number N to COUNT.\n\
16098Usage is `ignore N COUNT'."));
16099 if (xdb_commands)
16100 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16101
16102 add_com ("commands", class_breakpoint, commands_command, _("\
16103Set commands to be executed when a breakpoint is hit.\n\
16104Give breakpoint number as argument after \"commands\".\n\
16105With no argument, the targeted breakpoint is the last one set.\n\
16106The commands themselves follow starting on the next line.\n\
16107Type a line containing \"end\" to indicate the end of them.\n\
16108Give \"silent\" as the first line to make the breakpoint silent;\n\
16109then no output is printed when it is hit, except what the commands print."));
16110
16111 c = add_com ("condition", class_breakpoint, condition_command, _("\
16112Specify breakpoint number N to break only if COND is true.\n\
16113Usage is `condition N COND', where N is an integer and COND is an\n\
16114expression to be evaluated whenever breakpoint N is reached."));
16115 set_cmd_completer (c, condition_completer);
16116
16117 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16118Set a temporary breakpoint.\n\
16119Like \"break\" except the breakpoint is only temporary,\n\
16120so it will be deleted when hit. Equivalent to \"break\" followed\n\
16121by using \"enable delete\" on the breakpoint number.\n\
16122\n"
16123BREAK_ARGS_HELP ("tbreak")));
16124 set_cmd_completer (c, location_completer);
16125
16126 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16127Set a hardware assisted breakpoint.\n\
16128Like \"break\" except the breakpoint requires hardware support,\n\
16129some target hardware may not have this support.\n\
16130\n"
16131BREAK_ARGS_HELP ("hbreak")));
16132 set_cmd_completer (c, location_completer);
16133
16134 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16135Set a temporary hardware assisted breakpoint.\n\
16136Like \"hbreak\" except the breakpoint is only temporary,\n\
16137so it will be deleted when hit.\n\
16138\n"
16139BREAK_ARGS_HELP ("thbreak")));
16140 set_cmd_completer (c, location_completer);
16141
16142 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16143Enable some breakpoints.\n\
16144Give breakpoint numbers (separated by spaces) as arguments.\n\
16145With no subcommand, breakpoints are enabled until you command otherwise.\n\
16146This is used to cancel the effect of the \"disable\" command.\n\
16147With a subcommand you can enable temporarily."),
16148 &enablelist, "enable ", 1, &cmdlist);
16149 if (xdb_commands)
16150 add_com ("ab", class_breakpoint, enable_command, _("\
16151Enable some breakpoints.\n\
16152Give breakpoint numbers (separated by spaces) as arguments.\n\
16153With no subcommand, breakpoints are enabled until you command otherwise.\n\
16154This is used to cancel the effect of the \"disable\" command.\n\
16155With a subcommand you can enable temporarily."));
16156
16157 add_com_alias ("en", "enable", class_breakpoint, 1);
16158
16159 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16160Enable some breakpoints.\n\
16161Give breakpoint numbers (separated by spaces) as arguments.\n\
16162This is used to cancel the effect of the \"disable\" command.\n\
16163May be abbreviated to simply \"enable\".\n"),
16164 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16165
16166 add_cmd ("once", no_class, enable_once_command, _("\
16167Enable breakpoints for one hit. Give breakpoint numbers.\n\
16168If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16169 &enablebreaklist);
16170
16171 add_cmd ("delete", no_class, enable_delete_command, _("\
16172Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16173If a breakpoint is hit while enabled in this fashion, it is deleted."),
16174 &enablebreaklist);
16175
16176 add_cmd ("count", no_class, enable_count_command, _("\
16177Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16178If a breakpoint is hit while enabled in this fashion,\n\
16179the count is decremented; when it reaches zero, the breakpoint is disabled."),
16180 &enablebreaklist);
16181
16182 add_cmd ("delete", no_class, enable_delete_command, _("\
16183Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16184If a breakpoint is hit while enabled in this fashion, it is deleted."),
16185 &enablelist);
16186
16187 add_cmd ("once", no_class, enable_once_command, _("\
16188Enable breakpoints for one hit. Give breakpoint numbers.\n\
16189If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16190 &enablelist);
16191
16192 add_cmd ("count", no_class, enable_count_command, _("\
16193Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16194If a breakpoint is hit while enabled in this fashion,\n\
16195the count is decremented; when it reaches zero, the breakpoint is disabled."),
16196 &enablelist);
16197
16198 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16199Disable some breakpoints.\n\
16200Arguments are breakpoint numbers with spaces in between.\n\
16201To disable all breakpoints, give no argument.\n\
16202A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16203 &disablelist, "disable ", 1, &cmdlist);
16204 add_com_alias ("dis", "disable", class_breakpoint, 1);
16205 add_com_alias ("disa", "disable", class_breakpoint, 1);
16206 if (xdb_commands)
16207 add_com ("sb", class_breakpoint, disable_command, _("\
16208Disable some breakpoints.\n\
16209Arguments are breakpoint numbers with spaces in between.\n\
16210To disable all breakpoints, give no argument.\n\
16211A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16212
16213 add_cmd ("breakpoints", class_alias, disable_command, _("\
16214Disable some breakpoints.\n\
16215Arguments are breakpoint numbers with spaces in between.\n\
16216To disable all breakpoints, give no argument.\n\
16217A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16218This command may be abbreviated \"disable\"."),
16219 &disablelist);
16220
16221 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16222Delete some breakpoints or auto-display expressions.\n\
16223Arguments are breakpoint numbers with spaces in between.\n\
16224To delete all breakpoints, give no argument.\n\
16225\n\
16226Also a prefix command for deletion of other GDB objects.\n\
16227The \"unset\" command is also an alias for \"delete\"."),
16228 &deletelist, "delete ", 1, &cmdlist);
16229 add_com_alias ("d", "delete", class_breakpoint, 1);
16230 add_com_alias ("del", "delete", class_breakpoint, 1);
16231 if (xdb_commands)
16232 add_com ("db", class_breakpoint, delete_command, _("\
16233Delete some breakpoints.\n\
16234Arguments are breakpoint numbers with spaces in between.\n\
16235To delete all breakpoints, give no argument.\n"));
16236
16237 add_cmd ("breakpoints", class_alias, delete_command, _("\
16238Delete some breakpoints or auto-display expressions.\n\
16239Arguments are breakpoint numbers with spaces in between.\n\
16240To delete all breakpoints, give no argument.\n\
16241This command may be abbreviated \"delete\"."),
16242 &deletelist);
16243
16244 add_com ("clear", class_breakpoint, clear_command, _("\
16245Clear breakpoint at specified line or function.\n\
16246Argument may be line number, function name, or \"*\" and an address.\n\
16247If line number is specified, all breakpoints in that line are cleared.\n\
16248If function is specified, breakpoints at beginning of function are cleared.\n\
16249If an address is specified, breakpoints at that address are cleared.\n\
16250\n\
16251With no argument, clears all breakpoints in the line that the selected frame\n\
16252is executing in.\n\
16253\n\
16254See also the \"delete\" command which clears breakpoints by number."));
16255 add_com_alias ("cl", "clear", class_breakpoint, 1);
16256
16257 c = add_com ("break", class_breakpoint, break_command, _("\
16258Set breakpoint at specified line or function.\n"
16259BREAK_ARGS_HELP ("break")));
16260 set_cmd_completer (c, location_completer);
16261
16262 add_com_alias ("b", "break", class_run, 1);
16263 add_com_alias ("br", "break", class_run, 1);
16264 add_com_alias ("bre", "break", class_run, 1);
16265 add_com_alias ("brea", "break", class_run, 1);
16266
16267 if (xdb_commands)
16268 add_com_alias ("ba", "break", class_breakpoint, 1);
16269
16270 if (dbx_commands)
16271 {
16272 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16273Break in function/address or break at a line in the current file."),
16274 &stoplist, "stop ", 1, &cmdlist);
16275 add_cmd ("in", class_breakpoint, stopin_command,
16276 _("Break in function or address."), &stoplist);
16277 add_cmd ("at", class_breakpoint, stopat_command,
16278 _("Break at a line in the current file."), &stoplist);
16279 add_com ("status", class_info, breakpoints_info, _("\
16280Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16281The \"Type\" column indicates one of:\n\
16282\tbreakpoint - normal breakpoint\n\
16283\twatchpoint - watchpoint\n\
16284The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16285the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16286breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16287address and file/line number respectively.\n\
16288\n\
16289Convenience variable \"$_\" and default examine address for \"x\"\n\
16290are set to the address of the last breakpoint listed unless the command\n\
16291is prefixed with \"server \".\n\n\
16292Convenience variable \"$bpnum\" contains the number of the last\n\
16293breakpoint set."));
16294 }
16295
16296 add_info ("breakpoints", breakpoints_info, _("\
16297Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16298The \"Type\" column indicates one of:\n\
16299\tbreakpoint - normal breakpoint\n\
16300\twatchpoint - watchpoint\n\
16301The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16302the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16303breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16304address and file/line number respectively.\n\
16305\n\
16306Convenience variable \"$_\" and default examine address for \"x\"\n\
16307are set to the address of the last breakpoint listed unless the command\n\
16308is prefixed with \"server \".\n\n\
16309Convenience variable \"$bpnum\" contains the number of the last\n\
16310breakpoint set."));
16311
16312 add_info_alias ("b", "breakpoints", 1);
16313
16314 if (xdb_commands)
16315 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16316Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16317The \"Type\" column indicates one of:\n\
16318\tbreakpoint - normal breakpoint\n\
16319\twatchpoint - watchpoint\n\
16320The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16321the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16322breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16323address and file/line number respectively.\n\
16324\n\
16325Convenience variable \"$_\" and default examine address for \"x\"\n\
16326are set to the address of the last breakpoint listed unless the command\n\
16327is prefixed with \"server \".\n\n\
16328Convenience variable \"$bpnum\" contains the number of the last\n\
16329breakpoint set."));
16330
16331 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16332Status of all breakpoints, or breakpoint number NUMBER.\n\
16333The \"Type\" column indicates one of:\n\
16334\tbreakpoint - normal breakpoint\n\
16335\twatchpoint - watchpoint\n\
16336\tlongjmp - internal breakpoint used to step through longjmp()\n\
16337\tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16338\tuntil - internal breakpoint used by the \"until\" command\n\
16339\tfinish - internal breakpoint used by the \"finish\" command\n\
16340The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16341the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16342breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16343address and file/line number respectively.\n\
16344\n\
16345Convenience variable \"$_\" and default examine address for \"x\"\n\
16346are set to the address of the last breakpoint listed unless the command\n\
16347is prefixed with \"server \".\n\n\
16348Convenience variable \"$bpnum\" contains the number of the last\n\
16349breakpoint set."),
16350 &maintenanceinfolist);
16351
16352 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16353Set catchpoints to catch events."),
16354 &catch_cmdlist, "catch ",
16355 0/*allow-unknown*/, &cmdlist);
16356
16357 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16358Set temporary catchpoints to catch events."),
16359 &tcatch_cmdlist, "tcatch ",
16360 0/*allow-unknown*/, &cmdlist);
16361
16362 add_catch_command ("fork", _("Catch calls to fork."),
16363 catch_fork_command_1,
16364 NULL,
16365 (void *) (uintptr_t) catch_fork_permanent,
16366 (void *) (uintptr_t) catch_fork_temporary);
16367 add_catch_command ("vfork", _("Catch calls to vfork."),
16368 catch_fork_command_1,
16369 NULL,
16370 (void *) (uintptr_t) catch_vfork_permanent,
16371 (void *) (uintptr_t) catch_vfork_temporary);
16372 add_catch_command ("exec", _("Catch calls to exec."),
16373 catch_exec_command_1,
16374 NULL,
16375 CATCH_PERMANENT,
16376 CATCH_TEMPORARY);
16377 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16378Usage: catch load [REGEX]\n\
16379If REGEX is given, only stop for libraries matching the regular expression."),
16380 catch_load_command_1,
16381 NULL,
16382 CATCH_PERMANENT,
16383 CATCH_TEMPORARY);
16384 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16385Usage: catch unload [REGEX]\n\
16386If REGEX is given, only stop for libraries matching the regular expression."),
16387 catch_unload_command_1,
16388 NULL,
16389 CATCH_PERMANENT,
16390 CATCH_TEMPORARY);
16391 add_catch_command ("syscall", _("\
16392Catch system calls by their names and/or numbers.\n\
16393Arguments say which system calls to catch. If no arguments\n\
16394are given, every system call will be caught.\n\
16395Arguments, if given, should be one or more system call names\n\
16396(if your system supports that), or system call numbers."),
16397 catch_syscall_command_1,
16398 catch_syscall_completer,
16399 CATCH_PERMANENT,
16400 CATCH_TEMPORARY);
16401
16402 c = add_com ("watch", class_breakpoint, watch_command, _("\
16403Set a watchpoint for an expression.\n\
16404Usage: watch [-l|-location] EXPRESSION\n\
16405A watchpoint stops execution of your program whenever the value of\n\
16406an expression changes.\n\
16407If -l or -location is given, this evaluates EXPRESSION and watches\n\
16408the memory to which it refers."));
16409 set_cmd_completer (c, expression_completer);
16410
16411 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16412Set a read watchpoint for an expression.\n\
16413Usage: rwatch [-l|-location] EXPRESSION\n\
16414A watchpoint stops execution of your program whenever the value of\n\
16415an expression is read.\n\
16416If -l or -location is given, this evaluates EXPRESSION and watches\n\
16417the memory to which it refers."));
16418 set_cmd_completer (c, expression_completer);
16419
16420 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16421Set a watchpoint for an expression.\n\
16422Usage: awatch [-l|-location] EXPRESSION\n\
16423A watchpoint stops execution of your program whenever the value of\n\
16424an expression is either read or written.\n\
16425If -l or -location is given, this evaluates EXPRESSION and watches\n\
16426the memory to which it refers."));
16427 set_cmd_completer (c, expression_completer);
16428
16429 add_info ("watchpoints", watchpoints_info, _("\
16430Status of specified watchpoints (all watchpoints if no argument)."));
16431
16432 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16433 respond to changes - contrary to the description. */
16434 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16435 &can_use_hw_watchpoints, _("\
16436Set debugger's willingness to use watchpoint hardware."), _("\
16437Show debugger's willingness to use watchpoint hardware."), _("\
16438If zero, gdb will not use hardware for new watchpoints, even if\n\
16439such is available. (However, any hardware watchpoints that were\n\
16440created before setting this to nonzero, will continue to use watchpoint\n\
16441hardware.)"),
16442 NULL,
16443 show_can_use_hw_watchpoints,
16444 &setlist, &showlist);
16445
16446 can_use_hw_watchpoints = 1;
16447
16448 /* Tracepoint manipulation commands. */
16449
16450 c = add_com ("trace", class_breakpoint, trace_command, _("\
16451Set a tracepoint at specified line or function.\n\
16452\n"
16453BREAK_ARGS_HELP ("trace") "\n\
16454Do \"help tracepoints\" for info on other tracepoint commands."));
16455 set_cmd_completer (c, location_completer);
16456
16457 add_com_alias ("tp", "trace", class_alias, 0);
16458 add_com_alias ("tr", "trace", class_alias, 1);
16459 add_com_alias ("tra", "trace", class_alias, 1);
16460 add_com_alias ("trac", "trace", class_alias, 1);
16461
16462 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16463Set a fast tracepoint at specified line or function.\n\
16464\n"
16465BREAK_ARGS_HELP ("ftrace") "\n\
16466Do \"help tracepoints\" for info on other tracepoint commands."));
16467 set_cmd_completer (c, location_completer);
16468
16469 c = add_com ("strace", class_breakpoint, strace_command, _("\
16470Set a static tracepoint at specified line, function or marker.\n\
16471\n\
16472strace [LOCATION] [if CONDITION]\n\
16473LOCATION may be a line number, function name, \"*\" and an address,\n\
16474or -m MARKER_ID.\n\
16475If a line number is specified, probe the marker at start of code\n\
16476for that line. If a function is specified, probe the marker at start\n\
16477of code for that function. If an address is specified, probe the marker\n\
16478at that exact address. If a marker id is specified, probe the marker\n\
16479with that name. With no LOCATION, uses current execution address of\n\
16480the selected stack frame.\n\
16481Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16482This collects arbitrary user data passed in the probe point call to the\n\
16483tracing library. You can inspect it when analyzing the trace buffer,\n\
16484by printing the $_sdata variable like any other convenience variable.\n\
16485\n\
16486CONDITION is a boolean expression.\n\
16487\n\
16488Multiple tracepoints at one place are permitted, and useful if their\n\
16489conditions are different.\n\
16490\n\
16491Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16492Do \"help tracepoints\" for info on other tracepoint commands."));
16493 set_cmd_completer (c, location_completer);
16494
16495 add_info ("tracepoints", tracepoints_info, _("\
16496Status of specified tracepoints (all tracepoints if no argument).\n\
16497Convenience variable \"$tpnum\" contains the number of the\n\
16498last tracepoint set."));
16499
16500 add_info_alias ("tp", "tracepoints", 1);
16501
16502 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16503Delete specified tracepoints.\n\
16504Arguments are tracepoint numbers, separated by spaces.\n\
16505No argument means delete all tracepoints."),
16506 &deletelist);
16507 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16508
16509 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16510Disable specified tracepoints.\n\
16511Arguments are tracepoint numbers, separated by spaces.\n\
16512No argument means disable all tracepoints."),
16513 &disablelist);
16514 deprecate_cmd (c, "disable");
16515
16516 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16517Enable specified tracepoints.\n\
16518Arguments are tracepoint numbers, separated by spaces.\n\
16519No argument means enable all tracepoints."),
16520 &enablelist);
16521 deprecate_cmd (c, "enable");
16522
16523 add_com ("passcount", class_trace, trace_pass_command, _("\
16524Set the passcount for a tracepoint.\n\
16525The trace will end when the tracepoint has been passed 'count' times.\n\
16526Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16527if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16528
16529 add_prefix_cmd ("save", class_breakpoint, save_command,
16530 _("Save breakpoint definitions as a script."),
16531 &save_cmdlist, "save ",
16532 0/*allow-unknown*/, &cmdlist);
16533
16534 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16535Save current breakpoint definitions as a script.\n\
16536This includes all types of breakpoints (breakpoints, watchpoints,\n\
16537catchpoints, tracepoints). Use the 'source' command in another debug\n\
16538session to restore them."),
16539 &save_cmdlist);
16540 set_cmd_completer (c, filename_completer);
16541
16542 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16543Save current tracepoint definitions as a script.\n\
16544Use the 'source' command in another debug session to restore them."),
16545 &save_cmdlist);
16546 set_cmd_completer (c, filename_completer);
16547
16548 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16549 deprecate_cmd (c, "save tracepoints");
16550
16551 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16552Breakpoint specific settings\n\
16553Configure various breakpoint-specific variables such as\n\
16554pending breakpoint behavior"),
16555 &breakpoint_set_cmdlist, "set breakpoint ",
16556 0/*allow-unknown*/, &setlist);
16557 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16558Breakpoint specific settings\n\
16559Configure various breakpoint-specific variables such as\n\
16560pending breakpoint behavior"),
16561 &breakpoint_show_cmdlist, "show breakpoint ",
16562 0/*allow-unknown*/, &showlist);
16563
16564 add_setshow_auto_boolean_cmd ("pending", no_class,
16565 &pending_break_support, _("\
16566Set debugger's behavior regarding pending breakpoints."), _("\
16567Show debugger's behavior regarding pending breakpoints."), _("\
16568If on, an unrecognized breakpoint location will cause gdb to create a\n\
16569pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16570an error. If auto, an unrecognized breakpoint location results in a\n\
16571user-query to see if a pending breakpoint should be created."),
16572 NULL,
16573 show_pending_break_support,
16574 &breakpoint_set_cmdlist,
16575 &breakpoint_show_cmdlist);
16576
16577 pending_break_support = AUTO_BOOLEAN_AUTO;
16578
16579 add_setshow_boolean_cmd ("auto-hw", no_class,
16580 &automatic_hardware_breakpoints, _("\
16581Set automatic usage of hardware breakpoints."), _("\
16582Show automatic usage of hardware breakpoints."), _("\
16583If set, the debugger will automatically use hardware breakpoints for\n\
16584breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16585a warning will be emitted for such breakpoints."),
16586 NULL,
16587 show_automatic_hardware_breakpoints,
16588 &breakpoint_set_cmdlist,
16589 &breakpoint_show_cmdlist);
16590
16591 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16592 &always_inserted_mode, _("\
16593Set mode for inserting breakpoints."), _("\
16594Show mode for inserting breakpoints."), _("\
16595When this mode is off, breakpoints are inserted in inferior when it is\n\
16596resumed, and removed when execution stops. When this mode is on,\n\
16597breakpoints are inserted immediately and removed only when the user\n\
16598deletes the breakpoint. When this mode is auto (which is the default),\n\
16599the behaviour depends on the non-stop setting (see help set non-stop).\n\
16600In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16601behaves as if always-inserted mode is on; if gdb is controlling the\n\
16602inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16603 NULL,
16604 &show_always_inserted_mode,
16605 &breakpoint_set_cmdlist,
16606 &breakpoint_show_cmdlist);
16607
16608 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16609 condition_evaluation_enums,
16610 &condition_evaluation_mode_1, _("\
16611Set mode of breakpoint condition evaluation."), _("\
16612Show mode of breakpoint condition evaluation."), _("\
16613When this is set to \"host\", breakpoint conditions will be\n\
16614evaluated on the host's side by GDB. When it is set to \"target\",\n\
16615breakpoint conditions will be downloaded to the target (if the target\n\
16616supports such feature) and conditions will be evaluated on the target's side.\n\
16617If this is set to \"auto\" (default), this will be automatically set to\n\
16618\"target\" if it supports condition evaluation, otherwise it will\n\
16619be set to \"gdb\""),
16620 &set_condition_evaluation_mode,
16621 &show_condition_evaluation_mode,
16622 &breakpoint_set_cmdlist,
16623 &breakpoint_show_cmdlist);
16624
16625 add_com ("break-range", class_breakpoint, break_range_command, _("\
16626Set a breakpoint for an address range.\n\
16627break-range START-LOCATION, END-LOCATION\n\
16628where START-LOCATION and END-LOCATION can be one of the following:\n\
16629 LINENUM, for that line in the current file,\n\
16630 FILE:LINENUM, for that line in that file,\n\
16631 +OFFSET, for that number of lines after the current line\n\
16632 or the start of the range\n\
16633 FUNCTION, for the first line in that function,\n\
16634 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16635 *ADDRESS, for the instruction at that address.\n\
16636\n\
16637The breakpoint will stop execution of the inferior whenever it executes\n\
16638an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16639range (including START-LOCATION and END-LOCATION)."));
16640
16641 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16642Set a dynamic printf at specified line or function.\n\
16643dprintf location,format string,arg1,arg2,...\n\
16644location may be a line number, function name, or \"*\" and an address.\n\
16645If a line number is specified, break at start of code for that line.\n\
16646If a function is specified, break at start of code for that function."));
16647 set_cmd_completer (c, location_completer);
16648
16649 add_setshow_enum_cmd ("dprintf-style", class_support,
16650 dprintf_style_enums, &dprintf_style, _("\
16651Set the style of usage for dynamic printf."), _("\
16652Show the style of usage for dynamic printf."), _("\
16653This setting chooses how GDB will do a dynamic printf.\n\
16654If the value is \"gdb\", then the printing is done by GDB to its own\n\
16655console, as with the \"printf\" command.\n\
16656If the value is \"call\", the print is done by calling a function in your\n\
16657program; by default printf(), but you can choose a different function or\n\
16658output stream by setting dprintf-function and dprintf-channel."),
16659 update_dprintf_commands, NULL,
16660 &setlist, &showlist);
16661
16662 dprintf_function = xstrdup ("printf");
16663 add_setshow_string_cmd ("dprintf-function", class_support,
16664 &dprintf_function, _("\
16665Set the function to use for dynamic printf"), _("\
16666Show the function to use for dynamic printf"), NULL,
16667 update_dprintf_commands, NULL,
16668 &setlist, &showlist);
16669
16670 dprintf_channel = xstrdup ("");
16671 add_setshow_string_cmd ("dprintf-channel", class_support,
16672 &dprintf_channel, _("\
16673Set the channel to use for dynamic printf"), _("\
16674Show the channel to use for dynamic printf"), NULL,
16675 update_dprintf_commands, NULL,
16676 &setlist, &showlist);
16677
16678 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16679 &disconnected_dprintf, _("\
16680Set whether dprintf continues after GDB disconnects."), _("\
16681Show whether dprintf continues after GDB disconnects."), _("\
16682Use this to let dprintf commands continue to hit and produce output\n\
16683even if GDB disconnects or detaches from the target."),
16684 NULL,
16685 NULL,
16686 &setlist, &showlist);
16687
16688 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16689agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16690(target agent only) This is useful for formatted output in user-defined commands."));
16691
16692 automatic_hardware_breakpoints = 1;
16693
16694 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16695 observer_attach_thread_exit (remove_threaded_breakpoints);
16696}
This page took 0.086997 seconds and 4 git commands to generate.