Fix snafu in aarch64 opcodes debugging statement.
[deliverable/binutils-gdb.git] / gdb / corelow.c
... / ...
CommitLineData
1/* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "arch-utils.h"
22#include <signal.h>
23#include <fcntl.h>
24#ifdef HAVE_SYS_FILE_H
25#include <sys/file.h> /* needed for F_OK and friends */
26#endif
27#include "frame.h" /* required by inferior.h */
28#include "inferior.h"
29#include "infrun.h"
30#include "symtab.h"
31#include "command.h"
32#include "bfd.h"
33#include "target.h"
34#include "gdbcore.h"
35#include "gdbthread.h"
36#include "regcache.h"
37#include "regset.h"
38#include "symfile.h"
39#include "exec.h"
40#include "readline/readline.h"
41#include "solib.h"
42#include "filenames.h"
43#include "progspace.h"
44#include "objfiles.h"
45#include "gdb_bfd.h"
46#include "completer.h"
47#include "filestuff.h"
48
49#ifndef O_LARGEFILE
50#define O_LARGEFILE 0
51#endif
52
53/* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57static struct core_fns *core_file_fns = NULL;
58
59/* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62static struct core_fns *core_vec = NULL;
63
64/* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67static struct gdbarch *core_gdbarch = NULL;
68
69/* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75static struct target_section_table *core_data;
76
77static void core_files_info (struct target_ops *);
78
79static struct core_fns *sniff_core_bfd (bfd *);
80
81static int gdb_check_format (bfd *);
82
83static void core_close (struct target_ops *self);
84
85static void core_close_cleanup (void *ignore);
86
87static void add_to_thread_list (bfd *, asection *, void *);
88
89static void init_core_ops (void);
90
91void _initialize_corelow (void);
92
93static struct target_ops core_ops;
94
95/* An arbitrary identifier for the core inferior. */
96#define CORELOW_PID 1
97
98/* Link a new core_fns into the global core_file_fns list. Called on
99 gdb startup by the _initialize routine in each core file register
100 reader, to register information about each format the reader is
101 prepared to handle. */
102
103void
104deprecated_add_core_fns (struct core_fns *cf)
105{
106 cf->next = core_file_fns;
107 core_file_fns = cf;
108}
109
110/* The default function that core file handlers can use to examine a
111 core file BFD and decide whether or not to accept the job of
112 reading the core file. */
113
114int
115default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
116{
117 int result;
118
119 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
120 return (result);
121}
122
123/* Walk through the list of core functions to find a set that can
124 handle the core file open on ABFD. Returns pointer to set that is
125 selected. */
126
127static struct core_fns *
128sniff_core_bfd (bfd *abfd)
129{
130 struct core_fns *cf;
131 struct core_fns *yummy = NULL;
132 int matches = 0;;
133
134 /* Don't sniff if we have support for register sets in
135 CORE_GDBARCH. */
136 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
137 return NULL;
138
139 for (cf = core_file_fns; cf != NULL; cf = cf->next)
140 {
141 if (cf->core_sniffer (cf, abfd))
142 {
143 yummy = cf;
144 matches++;
145 }
146 }
147 if (matches > 1)
148 {
149 warning (_("\"%s\": ambiguous core format, %d handlers match"),
150 bfd_get_filename (abfd), matches);
151 }
152 else if (matches == 0)
153 error (_("\"%s\": no core file handler recognizes format"),
154 bfd_get_filename (abfd));
155
156 return (yummy);
157}
158
159/* The default is to reject every core file format we see. Either
160 BFD has to recognize it, or we have to provide a function in the
161 core file handler that recognizes it. */
162
163int
164default_check_format (bfd *abfd)
165{
166 return (0);
167}
168
169/* Attempt to recognize core file formats that BFD rejects. */
170
171static int
172gdb_check_format (bfd *abfd)
173{
174 struct core_fns *cf;
175
176 for (cf = core_file_fns; cf != NULL; cf = cf->next)
177 {
178 if (cf->check_format (abfd))
179 {
180 return (1);
181 }
182 }
183 return (0);
184}
185
186/* Discard all vestiges of any previous core file and mark data and
187 stack spaces as empty. */
188
189static void
190core_close (struct target_ops *self)
191{
192 if (core_bfd)
193 {
194 int pid = ptid_get_pid (inferior_ptid);
195 inferior_ptid = null_ptid; /* Avoid confusion from thread
196 stuff. */
197 if (pid != 0)
198 exit_inferior_silent (pid);
199
200 /* Clear out solib state while the bfd is still open. See
201 comments in clear_solib in solib.c. */
202 clear_solib ();
203
204 if (core_data)
205 {
206 xfree (core_data->sections);
207 xfree (core_data);
208 core_data = NULL;
209 }
210
211 gdb_bfd_unref (core_bfd);
212 core_bfd = NULL;
213 }
214 core_vec = NULL;
215 core_gdbarch = NULL;
216}
217
218static void
219core_close_cleanup (void *ignore)
220{
221 core_close (NULL);
222}
223
224/* Look for sections whose names start with `.reg/' so that we can
225 extract the list of threads in a core file. */
226
227static void
228add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
229{
230 ptid_t ptid;
231 int core_tid;
232 int pid, lwpid;
233 asection *reg_sect = (asection *) reg_sect_arg;
234 int fake_pid_p = 0;
235 struct inferior *inf;
236
237 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
238 return;
239
240 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
241
242 pid = bfd_core_file_pid (core_bfd);
243 if (pid == 0)
244 {
245 fake_pid_p = 1;
246 pid = CORELOW_PID;
247 }
248
249 lwpid = core_tid;
250
251 inf = current_inferior ();
252 if (inf->pid == 0)
253 {
254 inferior_appeared (inf, pid);
255 inf->fake_pid_p = fake_pid_p;
256 }
257
258 ptid = ptid_build (pid, lwpid, 0);
259
260 add_thread (ptid);
261
262/* Warning, Will Robinson, looking at BFD private data! */
263
264 if (reg_sect != NULL
265 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
266 inferior_ptid = ptid; /* Yes, make it current. */
267}
268
269/* This routine opens and sets up the core file bfd. */
270
271static void
272core_open (const char *arg, int from_tty)
273{
274 const char *p;
275 int siggy;
276 struct cleanup *old_chain;
277 char *temp;
278 int scratch_chan;
279 int flags;
280 char *filename;
281
282 target_preopen (from_tty);
283 if (!arg)
284 {
285 if (core_bfd)
286 error (_("No core file specified. (Use `detach' "
287 "to stop debugging a core file.)"));
288 else
289 error (_("No core file specified."));
290 }
291
292 filename = tilde_expand (arg);
293 if (!IS_ABSOLUTE_PATH (filename))
294 {
295 temp = concat (current_directory, "/",
296 filename, (char *) NULL);
297 xfree (filename);
298 filename = temp;
299 }
300
301 old_chain = make_cleanup (xfree, filename);
302
303 flags = O_BINARY | O_LARGEFILE;
304 if (write_files)
305 flags |= O_RDWR;
306 else
307 flags |= O_RDONLY;
308 scratch_chan = gdb_open_cloexec (filename, flags, 0);
309 if (scratch_chan < 0)
310 perror_with_name (filename);
311
312 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename, gnutarget,
313 write_files ? FOPEN_RUB : FOPEN_RB,
314 scratch_chan));
315 if (temp_bfd == NULL)
316 perror_with_name (filename);
317
318 if (!bfd_check_format (temp_bfd.get (), bfd_core)
319 && !gdb_check_format (temp_bfd.get ()))
320 {
321 /* Do it after the err msg */
322 /* FIXME: should be checking for errors from bfd_close (for one
323 thing, on error it does not free all the storage associated
324 with the bfd). */
325 error (_("\"%s\" is not a core dump: %s"),
326 filename, bfd_errmsg (bfd_get_error ()));
327 }
328
329 /* Looks semi-reasonable. Toss the old core file and work on the
330 new. */
331
332 do_cleanups (old_chain);
333 unpush_target (&core_ops);
334 core_bfd = temp_bfd.release ();
335 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
336
337 core_gdbarch = gdbarch_from_bfd (core_bfd);
338
339 /* Find a suitable core file handler to munch on core_bfd */
340 core_vec = sniff_core_bfd (core_bfd);
341
342 validate_files ();
343
344 core_data = XCNEW (struct target_section_table);
345
346 /* Find the data section */
347 if (build_section_table (core_bfd,
348 &core_data->sections,
349 &core_data->sections_end))
350 error (_("\"%s\": Can't find sections: %s"),
351 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
352
353 /* If we have no exec file, try to set the architecture from the
354 core file. We don't do this unconditionally since an exec file
355 typically contains more information that helps us determine the
356 architecture than a core file. */
357 if (!exec_bfd)
358 set_gdbarch_from_file (core_bfd);
359
360 push_target (&core_ops);
361 discard_cleanups (old_chain);
362
363 /* Do this before acknowledging the inferior, so if
364 post_create_inferior throws (can happen easilly if you're loading
365 a core file with the wrong exec), we aren't left with threads
366 from the previous inferior. */
367 init_thread_list ();
368
369 inferior_ptid = null_ptid;
370
371 /* Need to flush the register cache (and the frame cache) from a
372 previous debug session. If inferior_ptid ends up the same as the
373 last debug session --- e.g., b foo; run; gcore core1; step; gcore
374 core2; core core1; core core2 --- then there's potential for
375 get_current_regcache to return the cached regcache of the
376 previous session, and the frame cache being stale. */
377 registers_changed ();
378
379 /* Build up thread list from BFD sections, and possibly set the
380 current thread to the .reg/NN section matching the .reg
381 section. */
382 bfd_map_over_sections (core_bfd, add_to_thread_list,
383 bfd_get_section_by_name (core_bfd, ".reg"));
384
385 if (ptid_equal (inferior_ptid, null_ptid))
386 {
387 /* Either we found no .reg/NN section, and hence we have a
388 non-threaded core (single-threaded, from gdb's perspective),
389 or for some reason add_to_thread_list couldn't determine
390 which was the "main" thread. The latter case shouldn't
391 usually happen, but we're dealing with input here, which can
392 always be broken in different ways. */
393 struct thread_info *thread = first_thread_of_process (-1);
394
395 if (thread == NULL)
396 {
397 inferior_appeared (current_inferior (), CORELOW_PID);
398 inferior_ptid = pid_to_ptid (CORELOW_PID);
399 add_thread_silent (inferior_ptid);
400 }
401 else
402 switch_to_thread (thread->ptid);
403 }
404
405 post_create_inferior (&core_ops, from_tty);
406
407 /* Now go through the target stack looking for threads since there
408 may be a thread_stratum target loaded on top of target core by
409 now. The layer above should claim threads found in the BFD
410 sections. */
411 TRY
412 {
413 target_update_thread_list ();
414 }
415
416 CATCH (except, RETURN_MASK_ERROR)
417 {
418 exception_print (gdb_stderr, except);
419 }
420 END_CATCH
421
422 p = bfd_core_file_failing_command (core_bfd);
423 if (p)
424 printf_filtered (_("Core was generated by `%s'.\n"), p);
425
426 /* Clearing any previous state of convenience variables. */
427 clear_exit_convenience_vars ();
428
429 siggy = bfd_core_file_failing_signal (core_bfd);
430 if (siggy > 0)
431 {
432 /* If we don't have a CORE_GDBARCH to work with, assume a native
433 core (map gdb_signal from host signals). If we do have
434 CORE_GDBARCH to work with, but no gdb_signal_from_target
435 implementation for that gdbarch, as a fallback measure,
436 assume the host signal mapping. It'll be correct for native
437 cores, but most likely incorrect for cross-cores. */
438 enum gdb_signal sig = (core_gdbarch != NULL
439 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
440 ? gdbarch_gdb_signal_from_target (core_gdbarch,
441 siggy)
442 : gdb_signal_from_host (siggy));
443
444 printf_filtered (_("Program terminated with signal %s, %s.\n"),
445 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
446
447 /* Set the value of the internal variable $_exitsignal,
448 which holds the signal uncaught by the inferior. */
449 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
450 siggy);
451 }
452
453 /* Fetch all registers from core file. */
454 target_fetch_registers (get_current_regcache (), -1);
455
456 /* Now, set up the frame cache, and print the top of stack. */
457 reinit_frame_cache ();
458 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
459
460 /* Current thread should be NUM 1 but the user does not know that.
461 If a program is single threaded gdb in general does not mention
462 anything about threads. That is why the test is >= 2. */
463 if (thread_count () >= 2)
464 {
465 TRY
466 {
467 thread_command (NULL, from_tty);
468 }
469 CATCH (except, RETURN_MASK_ERROR)
470 {
471 exception_print (gdb_stderr, except);
472 }
473 END_CATCH
474 }
475}
476
477static void
478core_detach (struct target_ops *ops, const char *args, int from_tty)
479{
480 if (args)
481 error (_("Too many arguments"));
482 unpush_target (ops);
483 reinit_frame_cache ();
484 if (from_tty)
485 printf_filtered (_("No core file now.\n"));
486}
487
488/* Try to retrieve registers from a section in core_bfd, and supply
489 them to core_vec->core_read_registers, as the register set numbered
490 WHICH.
491
492 If ptid's lwp member is zero, do the single-threaded
493 thing: look for a section named NAME. If ptid's lwp
494 member is non-zero, do the multi-threaded thing: look for a section
495 named "NAME/LWP", where LWP is the shortest ASCII decimal
496 representation of ptid's lwp member.
497
498 HUMAN_NAME is a human-readable name for the kind of registers the
499 NAME section contains, for use in error messages.
500
501 If REQUIRED is non-zero, print an error if the core file doesn't
502 have a section by the appropriate name. Otherwise, just do
503 nothing. */
504
505static void
506get_core_register_section (struct regcache *regcache,
507 const struct regset *regset,
508 const char *name,
509 int min_size,
510 int which,
511 const char *human_name,
512 int required)
513{
514 static char *section_name = NULL;
515 struct bfd_section *section;
516 bfd_size_type size;
517 char *contents;
518 bool variable_size_section = (regset != NULL
519 && regset->flags & REGSET_VARIABLE_SIZE);
520 ptid_t ptid = regcache_get_ptid (regcache);
521
522 xfree (section_name);
523
524 if (ptid_get_lwp (ptid))
525 section_name = xstrprintf ("%s/%ld", name,
526 ptid_get_lwp (ptid));
527 else
528 section_name = xstrdup (name);
529
530 section = bfd_get_section_by_name (core_bfd, section_name);
531 if (! section)
532 {
533 if (required)
534 warning (_("Couldn't find %s registers in core file."),
535 human_name);
536 return;
537 }
538
539 size = bfd_section_size (core_bfd, section);
540 if (size < min_size)
541 {
542 warning (_("Section `%s' in core file too small."), section_name);
543 return;
544 }
545 if (size != min_size && !variable_size_section)
546 {
547 warning (_("Unexpected size of section `%s' in core file."),
548 section_name);
549 }
550
551 contents = (char *) alloca (size);
552 if (! bfd_get_section_contents (core_bfd, section, contents,
553 (file_ptr) 0, size))
554 {
555 warning (_("Couldn't read %s registers from `%s' section in core file."),
556 human_name, name);
557 return;
558 }
559
560 if (regset != NULL)
561 {
562 regset->supply_regset (regset, regcache, -1, contents, size);
563 return;
564 }
565
566 gdb_assert (core_vec);
567 core_vec->core_read_registers (regcache, contents, size, which,
568 ((CORE_ADDR)
569 bfd_section_vma (core_bfd, section)));
570}
571
572/* Callback for get_core_registers that handles a single core file
573 register note section. */
574
575static void
576get_core_registers_cb (const char *sect_name, int size,
577 const struct regset *regset,
578 const char *human_name, void *cb_data)
579{
580 struct regcache *regcache = (struct regcache *) cb_data;
581 int required = 0;
582
583 if (strcmp (sect_name, ".reg") == 0)
584 {
585 required = 1;
586 if (human_name == NULL)
587 human_name = "general-purpose";
588 }
589 else if (strcmp (sect_name, ".reg2") == 0)
590 {
591 if (human_name == NULL)
592 human_name = "floating-point";
593 }
594
595 /* The 'which' parameter is only used when no regset is provided.
596 Thus we just set it to -1. */
597 get_core_register_section (regcache, regset, sect_name,
598 size, -1, human_name, required);
599}
600
601/* Get the registers out of a core file. This is the machine-
602 independent part. Fetch_core_registers is the machine-dependent
603 part, typically implemented in the xm-file for each
604 architecture. */
605
606/* We just get all the registers, so we don't use regno. */
607
608static void
609get_core_registers (struct target_ops *ops,
610 struct regcache *regcache, int regno)
611{
612 int i;
613 struct gdbarch *gdbarch;
614
615 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
616 && (core_vec == NULL || core_vec->core_read_registers == NULL))
617 {
618 fprintf_filtered (gdb_stderr,
619 "Can't fetch registers from this type of core file\n");
620 return;
621 }
622
623 gdbarch = get_regcache_arch (regcache);
624 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
625 gdbarch_iterate_over_regset_sections (gdbarch,
626 get_core_registers_cb,
627 (void *) regcache, NULL);
628 else
629 {
630 get_core_register_section (regcache, NULL,
631 ".reg", 0, 0, "general-purpose", 1);
632 get_core_register_section (regcache, NULL,
633 ".reg2", 0, 2, "floating-point", 0);
634 }
635
636 /* Mark all registers not found in the core as unavailable. */
637 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
638 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
639 regcache_raw_supply (regcache, i, NULL);
640}
641
642static void
643core_files_info (struct target_ops *t)
644{
645 print_section_info (core_data, core_bfd);
646}
647\f
648struct spuid_list
649{
650 gdb_byte *buf;
651 ULONGEST offset;
652 LONGEST len;
653 ULONGEST pos;
654 ULONGEST written;
655};
656
657static void
658add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
659{
660 struct spuid_list *list = (struct spuid_list *) list_p;
661 enum bfd_endian byte_order
662 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
663 int fd, pos = 0;
664
665 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
666 if (pos == 0)
667 return;
668
669 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
670 {
671 store_unsigned_integer (list->buf + list->pos - list->offset,
672 4, byte_order, fd);
673 list->written += 4;
674 }
675 list->pos += 4;
676}
677
678/* Read siginfo data from the core, if possible. Returns -1 on
679 failure. Otherwise, returns the number of bytes read. ABFD is the
680 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
681 the to_xfer_partial interface. */
682
683static LONGEST
684get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
685{
686 asection *section;
687 char *section_name;
688 const char *name = ".note.linuxcore.siginfo";
689
690 if (ptid_get_lwp (inferior_ptid))
691 section_name = xstrprintf ("%s/%ld", name,
692 ptid_get_lwp (inferior_ptid));
693 else
694 section_name = xstrdup (name);
695
696 section = bfd_get_section_by_name (abfd, section_name);
697 xfree (section_name);
698 if (section == NULL)
699 return -1;
700
701 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
702 return -1;
703
704 return len;
705}
706
707static enum target_xfer_status
708core_xfer_partial (struct target_ops *ops, enum target_object object,
709 const char *annex, gdb_byte *readbuf,
710 const gdb_byte *writebuf, ULONGEST offset,
711 ULONGEST len, ULONGEST *xfered_len)
712{
713 switch (object)
714 {
715 case TARGET_OBJECT_MEMORY:
716 return section_table_xfer_memory_partial (readbuf, writebuf,
717 offset, len, xfered_len,
718 core_data->sections,
719 core_data->sections_end,
720 NULL);
721
722 case TARGET_OBJECT_AUXV:
723 if (readbuf)
724 {
725 /* When the aux vector is stored in core file, BFD
726 represents this with a fake section called ".auxv". */
727
728 struct bfd_section *section;
729 bfd_size_type size;
730
731 section = bfd_get_section_by_name (core_bfd, ".auxv");
732 if (section == NULL)
733 return TARGET_XFER_E_IO;
734
735 size = bfd_section_size (core_bfd, section);
736 if (offset >= size)
737 return TARGET_XFER_EOF;
738 size -= offset;
739 if (size > len)
740 size = len;
741
742 if (size == 0)
743 return TARGET_XFER_EOF;
744 if (!bfd_get_section_contents (core_bfd, section, readbuf,
745 (file_ptr) offset, size))
746 {
747 warning (_("Couldn't read NT_AUXV note in core file."));
748 return TARGET_XFER_E_IO;
749 }
750
751 *xfered_len = (ULONGEST) size;
752 return TARGET_XFER_OK;
753 }
754 return TARGET_XFER_E_IO;
755
756 case TARGET_OBJECT_WCOOKIE:
757 if (readbuf)
758 {
759 /* When the StackGhost cookie is stored in core file, BFD
760 represents this with a fake section called
761 ".wcookie". */
762
763 struct bfd_section *section;
764 bfd_size_type size;
765
766 section = bfd_get_section_by_name (core_bfd, ".wcookie");
767 if (section == NULL)
768 return TARGET_XFER_E_IO;
769
770 size = bfd_section_size (core_bfd, section);
771 if (offset >= size)
772 return TARGET_XFER_EOF;
773 size -= offset;
774 if (size > len)
775 size = len;
776
777 if (size == 0)
778 return TARGET_XFER_EOF;
779 if (!bfd_get_section_contents (core_bfd, section, readbuf,
780 (file_ptr) offset, size))
781 {
782 warning (_("Couldn't read StackGhost cookie in core file."));
783 return TARGET_XFER_E_IO;
784 }
785
786 *xfered_len = (ULONGEST) size;
787 return TARGET_XFER_OK;
788
789 }
790 return TARGET_XFER_E_IO;
791
792 case TARGET_OBJECT_LIBRARIES:
793 if (core_gdbarch
794 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
795 {
796 if (writebuf)
797 return TARGET_XFER_E_IO;
798 else
799 {
800 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
801 readbuf,
802 offset, len);
803
804 if (*xfered_len == 0)
805 return TARGET_XFER_EOF;
806 else
807 return TARGET_XFER_OK;
808 }
809 }
810 /* FALL THROUGH */
811
812 case TARGET_OBJECT_LIBRARIES_AIX:
813 if (core_gdbarch
814 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
815 {
816 if (writebuf)
817 return TARGET_XFER_E_IO;
818 else
819 {
820 *xfered_len
821 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
822 readbuf, offset,
823 len);
824
825 if (*xfered_len == 0)
826 return TARGET_XFER_EOF;
827 else
828 return TARGET_XFER_OK;
829 }
830 }
831 /* FALL THROUGH */
832
833 case TARGET_OBJECT_SPU:
834 if (readbuf && annex)
835 {
836 /* When the SPU contexts are stored in a core file, BFD
837 represents this with a fake section called
838 "SPU/<annex>". */
839
840 struct bfd_section *section;
841 bfd_size_type size;
842 char sectionstr[100];
843
844 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
845
846 section = bfd_get_section_by_name (core_bfd, sectionstr);
847 if (section == NULL)
848 return TARGET_XFER_E_IO;
849
850 size = bfd_section_size (core_bfd, section);
851 if (offset >= size)
852 return TARGET_XFER_EOF;
853 size -= offset;
854 if (size > len)
855 size = len;
856
857 if (size == 0)
858 return TARGET_XFER_EOF;
859 if (!bfd_get_section_contents (core_bfd, section, readbuf,
860 (file_ptr) offset, size))
861 {
862 warning (_("Couldn't read SPU section in core file."));
863 return TARGET_XFER_E_IO;
864 }
865
866 *xfered_len = (ULONGEST) size;
867 return TARGET_XFER_OK;
868 }
869 else if (readbuf)
870 {
871 /* NULL annex requests list of all present spuids. */
872 struct spuid_list list;
873
874 list.buf = readbuf;
875 list.offset = offset;
876 list.len = len;
877 list.pos = 0;
878 list.written = 0;
879 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
880
881 if (list.written == 0)
882 return TARGET_XFER_EOF;
883 else
884 {
885 *xfered_len = (ULONGEST) list.written;
886 return TARGET_XFER_OK;
887 }
888 }
889 return TARGET_XFER_E_IO;
890
891 case TARGET_OBJECT_SIGNAL_INFO:
892 if (readbuf)
893 {
894 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
895
896 if (l > 0)
897 {
898 *xfered_len = len;
899 return TARGET_XFER_OK;
900 }
901 }
902 return TARGET_XFER_E_IO;
903
904 default:
905 return ops->beneath->to_xfer_partial (ops->beneath, object,
906 annex, readbuf,
907 writebuf, offset, len,
908 xfered_len);
909 }
910}
911
912\f
913/* If mourn is being called in all the right places, this could be say
914 `gdb internal error' (since generic_mourn calls
915 breakpoint_init_inferior). */
916
917static int
918ignore (struct target_ops *ops, struct gdbarch *gdbarch,
919 struct bp_target_info *bp_tgt)
920{
921 return 0;
922}
923
924/* Implement the to_remove_breakpoint method. */
925
926static int
927core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
928 struct bp_target_info *bp_tgt,
929 enum remove_bp_reason reason)
930{
931 return 0;
932}
933
934
935/* Okay, let's be honest: threads gleaned from a core file aren't
936 exactly lively, are they? On the other hand, if we don't claim
937 that each & every one is alive, then we don't get any of them
938 to appear in an "info thread" command, which is quite a useful
939 behaviour.
940 */
941static int
942core_thread_alive (struct target_ops *ops, ptid_t ptid)
943{
944 return 1;
945}
946
947/* Ask the current architecture what it knows about this core file.
948 That will be used, in turn, to pick a better architecture. This
949 wrapper could be avoided if targets got a chance to specialize
950 core_ops. */
951
952static const struct target_desc *
953core_read_description (struct target_ops *target)
954{
955 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
956 {
957 const struct target_desc *result;
958
959 result = gdbarch_core_read_description (core_gdbarch,
960 target, core_bfd);
961 if (result != NULL)
962 return result;
963 }
964
965 return target->beneath->to_read_description (target->beneath);
966}
967
968static const char *
969core_pid_to_str (struct target_ops *ops, ptid_t ptid)
970{
971 static char buf[64];
972 struct inferior *inf;
973 int pid;
974
975 /* The preferred way is to have a gdbarch/OS specific
976 implementation. */
977 if (core_gdbarch
978 && gdbarch_core_pid_to_str_p (core_gdbarch))
979 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
980
981 /* Otherwise, if we don't have one, we'll just fallback to
982 "process", with normal_pid_to_str. */
983
984 /* Try the LWPID field first. */
985 pid = ptid_get_lwp (ptid);
986 if (pid != 0)
987 return normal_pid_to_str (pid_to_ptid (pid));
988
989 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
990 only if it isn't a fake PID. */
991 inf = find_inferior_ptid (ptid);
992 if (inf != NULL && !inf->fake_pid_p)
993 return normal_pid_to_str (ptid);
994
995 /* No luck. We simply don't have a valid PID to print. */
996 xsnprintf (buf, sizeof buf, "<main task>");
997 return buf;
998}
999
1000static const char *
1001core_thread_name (struct target_ops *self, struct thread_info *thr)
1002{
1003 if (core_gdbarch
1004 && gdbarch_core_thread_name_p (core_gdbarch))
1005 return gdbarch_core_thread_name (core_gdbarch, thr);
1006 return NULL;
1007}
1008
1009static int
1010core_has_memory (struct target_ops *ops)
1011{
1012 return (core_bfd != NULL);
1013}
1014
1015static int
1016core_has_stack (struct target_ops *ops)
1017{
1018 return (core_bfd != NULL);
1019}
1020
1021static int
1022core_has_registers (struct target_ops *ops)
1023{
1024 return (core_bfd != NULL);
1025}
1026
1027/* Implement the to_info_proc method. */
1028
1029static void
1030core_info_proc (struct target_ops *ops, const char *args,
1031 enum info_proc_what request)
1032{
1033 struct gdbarch *gdbarch = get_current_arch ();
1034
1035 /* Since this is the core file target, call the 'core_info_proc'
1036 method on gdbarch, not 'info_proc'. */
1037 if (gdbarch_core_info_proc_p (gdbarch))
1038 gdbarch_core_info_proc (gdbarch, args, request);
1039}
1040
1041/* Fill in core_ops with its defined operations and properties. */
1042
1043static void
1044init_core_ops (void)
1045{
1046 core_ops.to_shortname = "core";
1047 core_ops.to_longname = "Local core dump file";
1048 core_ops.to_doc =
1049 "Use a core file as a target. Specify the filename of the core file.";
1050 core_ops.to_open = core_open;
1051 core_ops.to_close = core_close;
1052 core_ops.to_detach = core_detach;
1053 core_ops.to_fetch_registers = get_core_registers;
1054 core_ops.to_xfer_partial = core_xfer_partial;
1055 core_ops.to_files_info = core_files_info;
1056 core_ops.to_insert_breakpoint = ignore;
1057 core_ops.to_remove_breakpoint = core_remove_breakpoint;
1058 core_ops.to_thread_alive = core_thread_alive;
1059 core_ops.to_read_description = core_read_description;
1060 core_ops.to_pid_to_str = core_pid_to_str;
1061 core_ops.to_thread_name = core_thread_name;
1062 core_ops.to_stratum = process_stratum;
1063 core_ops.to_has_memory = core_has_memory;
1064 core_ops.to_has_stack = core_has_stack;
1065 core_ops.to_has_registers = core_has_registers;
1066 core_ops.to_info_proc = core_info_proc;
1067 core_ops.to_magic = OPS_MAGIC;
1068
1069 if (core_target)
1070 internal_error (__FILE__, __LINE__,
1071 _("init_core_ops: core target already exists (\"%s\")."),
1072 core_target->to_longname);
1073 core_target = &core_ops;
1074}
1075
1076void
1077_initialize_corelow (void)
1078{
1079 init_core_ops ();
1080
1081 add_target_with_completer (&core_ops, filename_completer);
1082}
This page took 0.026203 seconds and 4 git commands to generate.