Spelling correction in comment: dependant->dependent
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for Mitsubishi D10V, for GDB.
2 Copyright (C) 1996, 1997, 2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21/* Contributed by Martin Hunt, hunt@cygnus.com */
22
23#include "defs.h"
24#include "frame.h"
25#include "obstack.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include "gdb_string.h"
31#include "value.h"
32#include "inferior.h"
33#include "dis-asm.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "language.h"
37#include "arch-utils.h"
38
39#include "floatformat.h"
40#include "sim-d10v.h"
41
42#undef XMALLOC
43#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
44
45struct frame_extra_info
46 {
47 CORE_ADDR return_pc;
48 int frameless;
49 int size;
50 };
51
52struct gdbarch_tdep
53 {
54 int a0_regnum;
55 int nr_dmap_regs;
56 unsigned long (*dmap_register) (int nr);
57 unsigned long (*imap_register) (int nr);
58 };
59
60/* These are the addresses the D10V-EVA board maps data and
61 instruction memory to. */
62
63#define DMEM_START 0x2000000
64#define IMEM_START 0x1000000
65#define STACK_START 0x0007ffe
66
67/* d10v register names. */
68
69enum
70 {
71 R0_REGNUM = 0,
72 LR_REGNUM = 13,
73 PSW_REGNUM = 16,
74 NR_IMAP_REGS = 2,
75 NR_A_REGS = 2
76 };
77#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
78#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
79
80/* d10v calling convention. */
81
82#define ARG1_REGNUM R0_REGNUM
83#define ARGN_REGNUM 3
84#define RET1_REGNUM R0_REGNUM
85
86/* Local functions */
87
88extern void _initialize_d10v_tdep (void);
89
90static void d10v_eva_prepare_to_trace (void);
91
92static void d10v_eva_get_trace_data (void);
93
94static int prologue_find_regs (unsigned short op, struct frame_info *fi,
95 CORE_ADDR addr);
96
97extern void d10v_frame_init_saved_regs (struct frame_info *);
98
99static void do_d10v_pop_frame (struct frame_info *fi);
100
101int
102d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
103{
104 return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
105}
106
107static CORE_ADDR
108d10v_stack_align (CORE_ADDR len)
109{
110 return (len + 1) & ~1;
111}
112
113/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
114 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
115 and TYPE is the type (which is known to be struct, union or array).
116
117 The d10v returns anything less than 8 bytes in size in
118 registers. */
119
120int
121d10v_use_struct_convention (int gcc_p, struct type *type)
122{
123 return (TYPE_LENGTH (type) > 8);
124}
125
126
127unsigned char *
128d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
129{
130 static unsigned char breakpoint[] =
131 {0x2f, 0x90, 0x5e, 0x00};
132 *lenptr = sizeof (breakpoint);
133 return breakpoint;
134}
135
136/* Map the REG_NR onto an ascii name. Return NULL or an empty string
137 when the reg_nr isn't valid. */
138
139enum ts2_regnums
140 {
141 TS2_IMAP0_REGNUM = 32,
142 TS2_DMAP_REGNUM = 34,
143 TS2_NR_DMAP_REGS = 1,
144 TS2_A0_REGNUM = 35
145 };
146
147static char *
148d10v_ts2_register_name (int reg_nr)
149{
150 static char *register_names[] =
151 {
152 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
153 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
154 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
155 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
156 "imap0", "imap1", "dmap", "a0", "a1"
157 };
158 if (reg_nr < 0)
159 return NULL;
160 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
161 return NULL;
162 return register_names[reg_nr];
163}
164
165enum ts3_regnums
166 {
167 TS3_IMAP0_REGNUM = 36,
168 TS3_DMAP0_REGNUM = 38,
169 TS3_NR_DMAP_REGS = 4,
170 TS3_A0_REGNUM = 32
171 };
172
173static char *
174d10v_ts3_register_name (int reg_nr)
175{
176 static char *register_names[] =
177 {
178 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
179 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
180 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
181 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
182 "a0", "a1",
183 "spi", "spu",
184 "imap0", "imap1",
185 "dmap0", "dmap1", "dmap2", "dmap3"
186 };
187 if (reg_nr < 0)
188 return NULL;
189 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
190 return NULL;
191 return register_names[reg_nr];
192}
193
194/* Access the DMAP/IMAP registers in a target independent way. */
195
196static unsigned long
197d10v_ts2_dmap_register (int reg_nr)
198{
199 switch (reg_nr)
200 {
201 case 0:
202 case 1:
203 return 0x2000;
204 case 2:
205 return read_register (TS2_DMAP_REGNUM);
206 default:
207 return 0;
208 }
209}
210
211static unsigned long
212d10v_ts3_dmap_register (int reg_nr)
213{
214 return read_register (TS3_DMAP0_REGNUM + reg_nr);
215}
216
217static unsigned long
218d10v_dmap_register (int reg_nr)
219{
220 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
221}
222
223static unsigned long
224d10v_ts2_imap_register (int reg_nr)
225{
226 return read_register (TS2_IMAP0_REGNUM + reg_nr);
227}
228
229static unsigned long
230d10v_ts3_imap_register (int reg_nr)
231{
232 return read_register (TS3_IMAP0_REGNUM + reg_nr);
233}
234
235static unsigned long
236d10v_imap_register (int reg_nr)
237{
238 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
239}
240
241/* MAP GDB's internal register numbering (determined by the layout fo
242 the REGISTER_BYTE array) onto the simulator's register
243 numbering. */
244
245static int
246d10v_ts2_register_sim_regno (int nr)
247{
248 if (nr >= TS2_IMAP0_REGNUM
249 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
250 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
251 if (nr == TS2_DMAP_REGNUM)
252 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
253 if (nr >= TS2_A0_REGNUM
254 && nr < TS2_A0_REGNUM + NR_A_REGS)
255 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
256 return nr;
257}
258
259static int
260d10v_ts3_register_sim_regno (int nr)
261{
262 if (nr >= TS3_IMAP0_REGNUM
263 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
264 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
265 if (nr >= TS3_DMAP0_REGNUM
266 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
267 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
268 if (nr >= TS3_A0_REGNUM
269 && nr < TS3_A0_REGNUM + NR_A_REGS)
270 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
271 return nr;
272}
273
274/* Index within `registers' of the first byte of the space for
275 register REG_NR. */
276
277int
278d10v_register_byte (int reg_nr)
279{
280 if (reg_nr < A0_REGNUM)
281 return (reg_nr * 2);
282 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
283 return (A0_REGNUM * 2
284 + (reg_nr - A0_REGNUM) * 8);
285 else
286 return (A0_REGNUM * 2
287 + NR_A_REGS * 8
288 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
289}
290
291/* Number of bytes of storage in the actual machine representation for
292 register REG_NR. */
293
294int
295d10v_register_raw_size (int reg_nr)
296{
297 if (reg_nr < A0_REGNUM)
298 return 2;
299 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
300 return 8;
301 else
302 return 2;
303}
304
305/* Number of bytes of storage in the program's representation
306 for register N. */
307
308int
309d10v_register_virtual_size (int reg_nr)
310{
311 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
312}
313
314/* Return the GDB type object for the "standard" data type
315 of data in register N. */
316
317struct type *
318d10v_register_virtual_type (int reg_nr)
319{
320 if (reg_nr >= A0_REGNUM
321 && reg_nr < (A0_REGNUM + NR_A_REGS))
322 return builtin_type_int64;
323 else if (reg_nr == PC_REGNUM
324 || reg_nr == SP_REGNUM)
325 return builtin_type_int32;
326 else
327 return builtin_type_int16;
328}
329
330/* convert $pc and $sp to/from virtual addresses */
331int
332d10v_register_convertible (int nr)
333{
334 return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
335}
336
337void
338d10v_register_convert_to_virtual (int regnum, struct type *type, char *from,
339 char *to)
340{
341 ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
342 if (regnum == PC_REGNUM)
343 x = (x << 2) | IMEM_START;
344 else
345 x |= DMEM_START;
346 store_unsigned_integer (to, TYPE_LENGTH (type), x);
347}
348
349void
350d10v_register_convert_to_raw (struct type *type, int regnum, char *from,
351 char *to)
352{
353 ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
354 x &= 0x3ffff;
355 if (regnum == PC_REGNUM)
356 x >>= 2;
357 store_unsigned_integer (to, 2, x);
358}
359
360
361CORE_ADDR
362d10v_make_daddr (CORE_ADDR x)
363{
364 return ((x) | DMEM_START);
365}
366
367CORE_ADDR
368d10v_make_iaddr (CORE_ADDR x)
369{
370 return (((x) << 2) | IMEM_START);
371}
372
373int
374d10v_daddr_p (CORE_ADDR x)
375{
376 return (((x) & 0x3000000) == DMEM_START);
377}
378
379int
380d10v_iaddr_p (CORE_ADDR x)
381{
382 return (((x) & 0x3000000) == IMEM_START);
383}
384
385
386CORE_ADDR
387d10v_convert_iaddr_to_raw (CORE_ADDR x)
388{
389 return (((x) >> 2) & 0xffff);
390}
391
392CORE_ADDR
393d10v_convert_daddr_to_raw (CORE_ADDR x)
394{
395 return ((x) & 0xffff);
396}
397
398/* Store the address of the place in which to copy the structure the
399 subroutine will return. This is called from call_function.
400
401 We store structs through a pointer passed in the first Argument
402 register. */
403
404void
405d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
406{
407 write_register (ARG1_REGNUM, (addr));
408}
409
410/* Write into appropriate registers a function return value
411 of type TYPE, given in virtual format.
412
413 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
414
415void
416d10v_store_return_value (struct type *type, char *valbuf)
417{
418 write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
419 valbuf,
420 TYPE_LENGTH (type));
421}
422
423/* Extract from an array REGBUF containing the (raw) register state
424 the address in which a function should return its structure value,
425 as a CORE_ADDR (or an expression that can be used as one). */
426
427CORE_ADDR
428d10v_extract_struct_value_address (char *regbuf)
429{
430 return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
431 REGISTER_RAW_SIZE (ARG1_REGNUM))
432 | DMEM_START);
433}
434
435CORE_ADDR
436d10v_frame_saved_pc (struct frame_info *frame)
437{
438 return ((frame)->extra_info->return_pc);
439}
440
441CORE_ADDR
442d10v_frame_args_address (struct frame_info *fi)
443{
444 return (fi)->frame;
445}
446
447CORE_ADDR
448d10v_frame_locals_address (struct frame_info *fi)
449{
450 return (fi)->frame;
451}
452
453/* Immediately after a function call, return the saved pc. We can't
454 use frame->return_pc beause that is determined by reading R13 off
455 the stack and that may not be written yet. */
456
457CORE_ADDR
458d10v_saved_pc_after_call (struct frame_info *frame)
459{
460 return ((read_register (LR_REGNUM) << 2)
461 | IMEM_START);
462}
463
464/* Discard from the stack the innermost frame, restoring all saved
465 registers. */
466
467void
468d10v_pop_frame (void)
469{
470 generic_pop_current_frame (do_d10v_pop_frame);
471}
472
473static void
474do_d10v_pop_frame (struct frame_info *fi)
475{
476 CORE_ADDR fp;
477 int regnum;
478 char raw_buffer[8];
479
480 fp = FRAME_FP (fi);
481 /* fill out fsr with the address of where each */
482 /* register was stored in the frame */
483 d10v_frame_init_saved_regs (fi);
484
485 /* now update the current registers with the old values */
486 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
487 {
488 if (fi->saved_regs[regnum])
489 {
490 read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
491 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
492 }
493 }
494 for (regnum = 0; regnum < SP_REGNUM; regnum++)
495 {
496 if (fi->saved_regs[regnum])
497 {
498 write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
499 }
500 }
501 if (fi->saved_regs[PSW_REGNUM])
502 {
503 write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
504 }
505
506 write_register (PC_REGNUM, read_register (LR_REGNUM));
507 write_register (SP_REGNUM, fp + fi->extra_info->size);
508 target_store_registers (-1);
509 flush_cached_frames ();
510}
511
512static int
513check_prologue (unsigned short op)
514{
515 /* st rn, @-sp */
516 if ((op & 0x7E1F) == 0x6C1F)
517 return 1;
518
519 /* st2w rn, @-sp */
520 if ((op & 0x7E3F) == 0x6E1F)
521 return 1;
522
523 /* subi sp, n */
524 if ((op & 0x7FE1) == 0x01E1)
525 return 1;
526
527 /* mv r11, sp */
528 if (op == 0x417E)
529 return 1;
530
531 /* nop */
532 if (op == 0x5E00)
533 return 1;
534
535 /* st rn, @sp */
536 if ((op & 0x7E1F) == 0x681E)
537 return 1;
538
539 /* st2w rn, @sp */
540 if ((op & 0x7E3F) == 0x3A1E)
541 return 1;
542
543 return 0;
544}
545
546CORE_ADDR
547d10v_skip_prologue (CORE_ADDR pc)
548{
549 unsigned long op;
550 unsigned short op1, op2;
551 CORE_ADDR func_addr, func_end;
552 struct symtab_and_line sal;
553
554 /* If we have line debugging information, then the end of the */
555 /* prologue should the first assembly instruction of the first source line */
556 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
557 {
558 sal = find_pc_line (func_addr, 0);
559 if (sal.end && sal.end < func_end)
560 return sal.end;
561 }
562
563 if (target_read_memory (pc, (char *) &op, 4))
564 return pc; /* Can't access it -- assume no prologue. */
565
566 while (1)
567 {
568 op = (unsigned long) read_memory_integer (pc, 4);
569 if ((op & 0xC0000000) == 0xC0000000)
570 {
571 /* long instruction */
572 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
573 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
574 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
575 break;
576 }
577 else
578 {
579 /* short instructions */
580 if ((op & 0xC0000000) == 0x80000000)
581 {
582 op2 = (op & 0x3FFF8000) >> 15;
583 op1 = op & 0x7FFF;
584 }
585 else
586 {
587 op1 = (op & 0x3FFF8000) >> 15;
588 op2 = op & 0x7FFF;
589 }
590 if (check_prologue (op1))
591 {
592 if (!check_prologue (op2))
593 {
594 /* if the previous opcode was really part of the prologue */
595 /* and not just a NOP, then we want to break after both instructions */
596 if (op1 != 0x5E00)
597 pc += 4;
598 break;
599 }
600 }
601 else
602 break;
603 }
604 pc += 4;
605 }
606 return pc;
607}
608
609/* Given a GDB frame, determine the address of the calling function's frame.
610 This will be used to create a new GDB frame struct, and then
611 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
612 */
613
614CORE_ADDR
615d10v_frame_chain (struct frame_info *fi)
616{
617 d10v_frame_init_saved_regs (fi);
618
619 if (fi->extra_info->return_pc == IMEM_START
620 || inside_entry_file (fi->extra_info->return_pc))
621 return (CORE_ADDR) 0;
622
623 if (!fi->saved_regs[FP_REGNUM])
624 {
625 if (!fi->saved_regs[SP_REGNUM]
626 || fi->saved_regs[SP_REGNUM] == STACK_START)
627 return (CORE_ADDR) 0;
628
629 return fi->saved_regs[SP_REGNUM];
630 }
631
632 if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
633 REGISTER_RAW_SIZE (FP_REGNUM)))
634 return (CORE_ADDR) 0;
635
636 return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
637 REGISTER_RAW_SIZE (FP_REGNUM)));
638}
639
640static int next_addr, uses_frame;
641
642static int
643prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
644{
645 int n;
646
647 /* st rn, @-sp */
648 if ((op & 0x7E1F) == 0x6C1F)
649 {
650 n = (op & 0x1E0) >> 5;
651 next_addr -= 2;
652 fi->saved_regs[n] = next_addr;
653 return 1;
654 }
655
656 /* st2w rn, @-sp */
657 else if ((op & 0x7E3F) == 0x6E1F)
658 {
659 n = (op & 0x1E0) >> 5;
660 next_addr -= 4;
661 fi->saved_regs[n] = next_addr;
662 fi->saved_regs[n + 1] = next_addr + 2;
663 return 1;
664 }
665
666 /* subi sp, n */
667 if ((op & 0x7FE1) == 0x01E1)
668 {
669 n = (op & 0x1E) >> 1;
670 if (n == 0)
671 n = 16;
672 next_addr -= n;
673 return 1;
674 }
675
676 /* mv r11, sp */
677 if (op == 0x417E)
678 {
679 uses_frame = 1;
680 return 1;
681 }
682
683 /* nop */
684 if (op == 0x5E00)
685 return 1;
686
687 /* st rn, @sp */
688 if ((op & 0x7E1F) == 0x681E)
689 {
690 n = (op & 0x1E0) >> 5;
691 fi->saved_regs[n] = next_addr;
692 return 1;
693 }
694
695 /* st2w rn, @sp */
696 if ((op & 0x7E3F) == 0x3A1E)
697 {
698 n = (op & 0x1E0) >> 5;
699 fi->saved_regs[n] = next_addr;
700 fi->saved_regs[n + 1] = next_addr + 2;
701 return 1;
702 }
703
704 return 0;
705}
706
707/* Put here the code to store, into fi->saved_regs, the addresses of
708 the saved registers of frame described by FRAME_INFO. This
709 includes special registers such as pc and fp saved in special ways
710 in the stack frame. sp is even more special: the address we return
711 for it IS the sp for the next frame. */
712
713void
714d10v_frame_init_saved_regs (struct frame_info *fi)
715{
716 CORE_ADDR fp, pc;
717 unsigned long op;
718 unsigned short op1, op2;
719 int i;
720
721 fp = fi->frame;
722 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
723 next_addr = 0;
724
725 pc = get_pc_function_start (fi->pc);
726
727 uses_frame = 0;
728 while (1)
729 {
730 op = (unsigned long) read_memory_integer (pc, 4);
731 if ((op & 0xC0000000) == 0xC0000000)
732 {
733 /* long instruction */
734 if ((op & 0x3FFF0000) == 0x01FF0000)
735 {
736 /* add3 sp,sp,n */
737 short n = op & 0xFFFF;
738 next_addr += n;
739 }
740 else if ((op & 0x3F0F0000) == 0x340F0000)
741 {
742 /* st rn, @(offset,sp) */
743 short offset = op & 0xFFFF;
744 short n = (op >> 20) & 0xF;
745 fi->saved_regs[n] = next_addr + offset;
746 }
747 else if ((op & 0x3F1F0000) == 0x350F0000)
748 {
749 /* st2w rn, @(offset,sp) */
750 short offset = op & 0xFFFF;
751 short n = (op >> 20) & 0xF;
752 fi->saved_regs[n] = next_addr + offset;
753 fi->saved_regs[n + 1] = next_addr + offset + 2;
754 }
755 else
756 break;
757 }
758 else
759 {
760 /* short instructions */
761 if ((op & 0xC0000000) == 0x80000000)
762 {
763 op2 = (op & 0x3FFF8000) >> 15;
764 op1 = op & 0x7FFF;
765 }
766 else
767 {
768 op1 = (op & 0x3FFF8000) >> 15;
769 op2 = op & 0x7FFF;
770 }
771 if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
772 break;
773 }
774 pc += 4;
775 }
776
777 fi->extra_info->size = -next_addr;
778
779 if (!(fp & 0xffff))
780 fp = D10V_MAKE_DADDR (read_register (SP_REGNUM));
781
782 for (i = 0; i < NUM_REGS - 1; i++)
783 if (fi->saved_regs[i])
784 {
785 fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
786 }
787
788 if (fi->saved_regs[LR_REGNUM])
789 {
790 CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
791 fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc);
792 }
793 else
794 {
795 fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM));
796 }
797
798 /* th SP is not normally (ever?) saved, but check anyway */
799 if (!fi->saved_regs[SP_REGNUM])
800 {
801 /* if the FP was saved, that means the current FP is valid, */
802 /* otherwise, it isn't being used, so we use the SP instead */
803 if (uses_frame)
804 fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
805 else
806 {
807 fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
808 fi->extra_info->frameless = 1;
809 fi->saved_regs[FP_REGNUM] = 0;
810 }
811 }
812}
813
814void
815d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
816{
817 fi->extra_info = (struct frame_extra_info *)
818 frame_obstack_alloc (sizeof (struct frame_extra_info));
819 frame_saved_regs_zalloc (fi);
820
821 fi->extra_info->frameless = 0;
822 fi->extra_info->size = 0;
823 fi->extra_info->return_pc = 0;
824
825 /* The call dummy doesn't save any registers on the stack, so we can
826 return now. */
827 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
828 {
829 return;
830 }
831 else
832 {
833 d10v_frame_init_saved_regs (fi);
834 }
835}
836
837static void
838show_regs (char *args, int from_tty)
839{
840 int a;
841 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
842 (long) read_register (PC_REGNUM),
843 (long) D10V_MAKE_IADDR (read_register (PC_REGNUM)),
844 (long) read_register (PSW_REGNUM),
845 (long) read_register (24),
846 (long) read_register (25),
847 (long) read_register (23));
848 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
849 (long) read_register (0),
850 (long) read_register (1),
851 (long) read_register (2),
852 (long) read_register (3),
853 (long) read_register (4),
854 (long) read_register (5),
855 (long) read_register (6),
856 (long) read_register (7));
857 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
858 (long) read_register (8),
859 (long) read_register (9),
860 (long) read_register (10),
861 (long) read_register (11),
862 (long) read_register (12),
863 (long) read_register (13),
864 (long) read_register (14),
865 (long) read_register (15));
866 for (a = 0; a < NR_IMAP_REGS; a++)
867 {
868 if (a > 0)
869 printf_filtered (" ");
870 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
871 }
872 if (NR_DMAP_REGS == 1)
873 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
874 else
875 {
876 for (a = 0; a < NR_DMAP_REGS; a++)
877 {
878 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
879 }
880 printf_filtered ("\n");
881 }
882 printf_filtered ("A0-A%d", NR_A_REGS - 1);
883 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
884 {
885 char num[MAX_REGISTER_RAW_SIZE];
886 int i;
887 printf_filtered (" ");
888 read_register_gen (a, (char *) &num);
889 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
890 {
891 printf_filtered ("%02x", (num[i] & 0xff));
892 }
893 }
894 printf_filtered ("\n");
895}
896
897CORE_ADDR
898d10v_read_pc (int pid)
899{
900 int save_pid;
901 CORE_ADDR pc;
902 CORE_ADDR retval;
903
904 save_pid = inferior_pid;
905 inferior_pid = pid;
906 pc = (int) read_register (PC_REGNUM);
907 inferior_pid = save_pid;
908 retval = D10V_MAKE_IADDR (pc);
909 return retval;
910}
911
912void
913d10v_write_pc (CORE_ADDR val, int pid)
914{
915 int save_pid;
916
917 save_pid = inferior_pid;
918 inferior_pid = pid;
919 write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
920 inferior_pid = save_pid;
921}
922
923CORE_ADDR
924d10v_read_sp (void)
925{
926 return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
927}
928
929void
930d10v_write_sp (CORE_ADDR val)
931{
932 write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
933}
934
935void
936d10v_write_fp (CORE_ADDR val)
937{
938 write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
939}
940
941CORE_ADDR
942d10v_read_fp (void)
943{
944 return (D10V_MAKE_DADDR (read_register (FP_REGNUM)));
945}
946
947/* Function: push_return_address (pc)
948 Set up the return address for the inferior function call.
949 Needed for targets where we don't actually execute a JSR/BSR instruction */
950
951CORE_ADDR
952d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
953{
954 write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
955 return sp;
956}
957
958
959/* When arguments must be pushed onto the stack, they go on in reverse
960 order. The below implements a FILO (stack) to do this. */
961
962struct stack_item
963{
964 int len;
965 struct stack_item *prev;
966 void *data;
967};
968
969static struct stack_item *push_stack_item (struct stack_item *prev,
970 void *contents, int len);
971static struct stack_item *
972push_stack_item (struct stack_item *prev, void *contents, int len)
973{
974 struct stack_item *si;
975 si = xmalloc (sizeof (struct stack_item));
976 si->data = xmalloc (len);
977 si->len = len;
978 si->prev = prev;
979 memcpy (si->data, contents, len);
980 return si;
981}
982
983static struct stack_item *pop_stack_item (struct stack_item *si);
984static struct stack_item *
985pop_stack_item (struct stack_item *si)
986{
987 struct stack_item *dead = si;
988 si = si->prev;
989 free (dead->data);
990 free (dead);
991 return si;
992}
993
994
995CORE_ADDR
996d10v_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
997 int struct_return, CORE_ADDR struct_addr)
998{
999 int i;
1000 int regnum = ARG1_REGNUM;
1001 struct stack_item *si = NULL;
1002
1003 /* Fill in registers and arg lists */
1004 for (i = 0; i < nargs; i++)
1005 {
1006 value_ptr arg = args[i];
1007 struct type *type = check_typedef (VALUE_TYPE (arg));
1008 char *contents = VALUE_CONTENTS (arg);
1009 int len = TYPE_LENGTH (type);
1010 /* printf ("push: type=%d len=%d\n", type->code, len); */
1011 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1012 {
1013 /* pointers require special handling - first convert and
1014 then store */
1015 long val = extract_signed_integer (contents, len);
1016 len = 2;
1017 if (TYPE_TARGET_TYPE (type)
1018 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
1019 {
1020 /* function pointer */
1021 val = D10V_CONVERT_IADDR_TO_RAW (val);
1022 }
1023 else if (D10V_IADDR_P (val))
1024 {
1025 /* also function pointer! */
1026 val = D10V_CONVERT_DADDR_TO_RAW (val);
1027 }
1028 else
1029 {
1030 /* data pointer */
1031 val &= 0xFFFF;
1032 }
1033 if (regnum <= ARGN_REGNUM)
1034 write_register (regnum++, val & 0xffff);
1035 else
1036 {
1037 char ptr[2];
1038 /* arg will go onto stack */
1039 store_address (ptr, 2, val & 0xffff);
1040 si = push_stack_item (si, ptr, 2);
1041 }
1042 }
1043 else
1044 {
1045 int aligned_regnum = (regnum + 1) & ~1;
1046 if (len <= 2 && regnum <= ARGN_REGNUM)
1047 /* fits in a single register, do not align */
1048 {
1049 long val = extract_unsigned_integer (contents, len);
1050 write_register (regnum++, val);
1051 }
1052 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1053 /* value fits in remaining registers, store keeping left
1054 aligned */
1055 {
1056 int b;
1057 regnum = aligned_regnum;
1058 for (b = 0; b < (len & ~1); b += 2)
1059 {
1060 long val = extract_unsigned_integer (&contents[b], 2);
1061 write_register (regnum++, val);
1062 }
1063 if (b < len)
1064 {
1065 long val = extract_unsigned_integer (&contents[b], 1);
1066 write_register (regnum++, (val << 8));
1067 }
1068 }
1069 else
1070 {
1071 /* arg will go onto stack */
1072 regnum = ARGN_REGNUM + 1;
1073 si = push_stack_item (si, contents, len);
1074 }
1075 }
1076 }
1077
1078 while (si)
1079 {
1080 sp = (sp - si->len) & ~1;
1081 write_memory (sp, si->data, si->len);
1082 si = pop_stack_item (si);
1083 }
1084
1085 return sp;
1086}
1087
1088
1089/* Given a return value in `regbuf' with a type `valtype',
1090 extract and copy its value into `valbuf'. */
1091
1092void
1093d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
1094 char *valbuf)
1095{
1096 int len;
1097 /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
1098 if (TYPE_CODE (type) == TYPE_CODE_PTR
1099 && TYPE_TARGET_TYPE (type)
1100 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
1101 {
1102 /* pointer to function */
1103 int num;
1104 short snum;
1105 snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1106 store_address (valbuf, 4, D10V_MAKE_IADDR (snum));
1107 }
1108 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
1109 {
1110 /* pointer to data */
1111 int num;
1112 short snum;
1113 snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1114 store_address (valbuf, 4, D10V_MAKE_DADDR (snum));
1115 }
1116 else
1117 {
1118 len = TYPE_LENGTH (type);
1119 if (len == 1)
1120 {
1121 unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1122 store_unsigned_integer (valbuf, 1, c);
1123 }
1124 else if ((len & 1) == 0)
1125 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
1126 else
1127 {
1128 /* For return values of odd size, the first byte is in the
1129 least significant part of the first register. The
1130 remaining bytes in remaining registers. Interestingly,
1131 when such values are passed in, the last byte is in the
1132 most significant byte of that same register - wierd. */
1133 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
1134 }
1135 }
1136}
1137
1138/* Translate a GDB virtual ADDR/LEN into a format the remote target
1139 understands. Returns number of bytes that can be transfered
1140 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1141 (segmentation fault). Since the simulator knows all about how the
1142 VM system works, we just call that to do the translation. */
1143
1144static void
1145remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1146 CORE_ADDR *targ_addr, int *targ_len)
1147{
1148 long out_addr;
1149 long out_len;
1150 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1151 &out_addr,
1152 d10v_dmap_register,
1153 d10v_imap_register);
1154 *targ_addr = out_addr;
1155 *targ_len = out_len;
1156}
1157
1158
1159/* The following code implements access to, and display of, the D10V's
1160 instruction trace buffer. The buffer consists of 64K or more
1161 4-byte words of data, of which each words includes an 8-bit count,
1162 an 8-bit segment number, and a 16-bit instruction address.
1163
1164 In theory, the trace buffer is continuously capturing instruction
1165 data that the CPU presents on its "debug bus", but in practice, the
1166 ROMified GDB stub only enables tracing when it continues or steps
1167 the program, and stops tracing when the program stops; so it
1168 actually works for GDB to read the buffer counter out of memory and
1169 then read each trace word. The counter records where the tracing
1170 stops, but there is no record of where it started, so we remember
1171 the PC when we resumed and then search backwards in the trace
1172 buffer for a word that includes that address. This is not perfect,
1173 because you will miss trace data if the resumption PC is the target
1174 of a branch. (The value of the buffer counter is semi-random, any
1175 trace data from a previous program stop is gone.) */
1176
1177/* The address of the last word recorded in the trace buffer. */
1178
1179#define DBBC_ADDR (0xd80000)
1180
1181/* The base of the trace buffer, at least for the "Board_0". */
1182
1183#define TRACE_BUFFER_BASE (0xf40000)
1184
1185static void trace_command (char *, int);
1186
1187static void untrace_command (char *, int);
1188
1189static void trace_info (char *, int);
1190
1191static void tdisassemble_command (char *, int);
1192
1193static void display_trace (int, int);
1194
1195/* True when instruction traces are being collected. */
1196
1197static int tracing;
1198
1199/* Remembered PC. */
1200
1201static CORE_ADDR last_pc;
1202
1203/* True when trace output should be displayed whenever program stops. */
1204
1205static int trace_display;
1206
1207/* True when trace listing should include source lines. */
1208
1209static int default_trace_show_source = 1;
1210
1211struct trace_buffer
1212 {
1213 int size;
1214 short *counts;
1215 CORE_ADDR *addrs;
1216 }
1217trace_data;
1218
1219static void
1220trace_command (char *args, int from_tty)
1221{
1222 /* Clear the host-side trace buffer, allocating space if needed. */
1223 trace_data.size = 0;
1224 if (trace_data.counts == NULL)
1225 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1226 if (trace_data.addrs == NULL)
1227 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1228
1229 tracing = 1;
1230
1231 printf_filtered ("Tracing is now on.\n");
1232}
1233
1234static void
1235untrace_command (char *args, int from_tty)
1236{
1237 tracing = 0;
1238
1239 printf_filtered ("Tracing is now off.\n");
1240}
1241
1242static void
1243trace_info (char *args, int from_tty)
1244{
1245 int i;
1246
1247 if (trace_data.size)
1248 {
1249 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1250
1251 for (i = 0; i < trace_data.size; ++i)
1252 {
1253 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1254 i,
1255 trace_data.counts[i],
1256 (trace_data.counts[i] == 1 ? "" : "s"),
1257 paddr_nz (trace_data.addrs[i]));
1258 }
1259 }
1260 else
1261 printf_filtered ("No entries in trace buffer.\n");
1262
1263 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1264}
1265
1266/* Print the instruction at address MEMADDR in debugged memory,
1267 on STREAM. Returns length of the instruction, in bytes. */
1268
1269static int
1270print_insn (CORE_ADDR memaddr, struct ui_file *stream)
1271{
1272 /* If there's no disassembler, something is very wrong. */
1273 if (tm_print_insn == NULL)
1274 internal_error ("print_insn: no disassembler");
1275
1276 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1277 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1278 else
1279 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1280 return (*tm_print_insn) (memaddr, &tm_print_insn_info);
1281}
1282
1283static void
1284d10v_eva_prepare_to_trace (void)
1285{
1286 if (!tracing)
1287 return;
1288
1289 last_pc = read_register (PC_REGNUM);
1290}
1291
1292/* Collect trace data from the target board and format it into a form
1293 more useful for display. */
1294
1295static void
1296d10v_eva_get_trace_data (void)
1297{
1298 int count, i, j, oldsize;
1299 int trace_addr, trace_seg, trace_cnt, next_cnt;
1300 unsigned int last_trace, trace_word, next_word;
1301 unsigned int *tmpspace;
1302
1303 if (!tracing)
1304 return;
1305
1306 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1307
1308 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1309
1310 /* Collect buffer contents from the target, stopping when we reach
1311 the word recorded when execution resumed. */
1312
1313 count = 0;
1314 while (last_trace > 0)
1315 {
1316 QUIT;
1317 trace_word =
1318 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1319 trace_addr = trace_word & 0xffff;
1320 last_trace -= 4;
1321 /* Ignore an apparently nonsensical entry. */
1322 if (trace_addr == 0xffd5)
1323 continue;
1324 tmpspace[count++] = trace_word;
1325 if (trace_addr == last_pc)
1326 break;
1327 if (count > 65535)
1328 break;
1329 }
1330
1331 /* Move the data to the host-side trace buffer, adjusting counts to
1332 include the last instruction executed and transforming the address
1333 into something that GDB likes. */
1334
1335 for (i = 0; i < count; ++i)
1336 {
1337 trace_word = tmpspace[i];
1338 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1339 trace_addr = trace_word & 0xffff;
1340 next_cnt = (next_word >> 24) & 0xff;
1341 j = trace_data.size + count - i - 1;
1342 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1343 trace_data.counts[j] = next_cnt + 1;
1344 }
1345
1346 oldsize = trace_data.size;
1347 trace_data.size += count;
1348
1349 free (tmpspace);
1350
1351 if (trace_display)
1352 display_trace (oldsize, trace_data.size);
1353}
1354
1355static void
1356tdisassemble_command (char *arg, int from_tty)
1357{
1358 int i, count;
1359 CORE_ADDR low, high;
1360 char *space_index;
1361
1362 if (!arg)
1363 {
1364 low = 0;
1365 high = trace_data.size;
1366 }
1367 else if (!(space_index = (char *) strchr (arg, ' ')))
1368 {
1369 low = parse_and_eval_address (arg);
1370 high = low + 5;
1371 }
1372 else
1373 {
1374 /* Two arguments. */
1375 *space_index = '\0';
1376 low = parse_and_eval_address (arg);
1377 high = parse_and_eval_address (space_index + 1);
1378 if (high < low)
1379 high = low;
1380 }
1381
1382 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1383
1384 display_trace (low, high);
1385
1386 printf_filtered ("End of trace dump.\n");
1387 gdb_flush (gdb_stdout);
1388}
1389
1390static void
1391display_trace (int low, int high)
1392{
1393 int i, count, trace_show_source, first, suppress;
1394 CORE_ADDR next_address;
1395
1396 trace_show_source = default_trace_show_source;
1397 if (!have_full_symbols () && !have_partial_symbols ())
1398 {
1399 trace_show_source = 0;
1400 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1401 printf_filtered ("Trace will not display any source.\n");
1402 }
1403
1404 first = 1;
1405 suppress = 0;
1406 for (i = low; i < high; ++i)
1407 {
1408 next_address = trace_data.addrs[i];
1409 count = trace_data.counts[i];
1410 while (count-- > 0)
1411 {
1412 QUIT;
1413 if (trace_show_source)
1414 {
1415 struct symtab_and_line sal, sal_prev;
1416
1417 sal_prev = find_pc_line (next_address - 4, 0);
1418 sal = find_pc_line (next_address, 0);
1419
1420 if (sal.symtab)
1421 {
1422 if (first || sal.line != sal_prev.line)
1423 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1424 suppress = 0;
1425 }
1426 else
1427 {
1428 if (!suppress)
1429 /* FIXME-32x64--assumes sal.pc fits in long. */
1430 printf_filtered ("No source file for address %s.\n",
1431 local_hex_string ((unsigned long) sal.pc));
1432 suppress = 1;
1433 }
1434 }
1435 first = 0;
1436 print_address (next_address, gdb_stdout);
1437 printf_filtered (":");
1438 printf_filtered ("\t");
1439 wrap_here (" ");
1440 next_address = next_address + print_insn (next_address, gdb_stdout);
1441 printf_filtered ("\n");
1442 gdb_flush (gdb_stdout);
1443 }
1444 }
1445}
1446
1447
1448static gdbarch_init_ftype d10v_gdbarch_init;
1449
1450static struct gdbarch *
1451d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1452{
1453 static LONGEST d10v_call_dummy_words[] =
1454 {0};
1455 struct gdbarch *gdbarch;
1456 int d10v_num_regs;
1457 struct gdbarch_tdep *tdep;
1458 gdbarch_register_name_ftype *d10v_register_name;
1459 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1460
1461 /* Find a candidate among the list of pre-declared architectures. */
1462 arches = gdbarch_list_lookup_by_info (arches, &info);
1463 if (arches != NULL)
1464 return arches->gdbarch;
1465
1466 /* None found, create a new architecture from the information
1467 provided. */
1468 tdep = XMALLOC (struct gdbarch_tdep);
1469 gdbarch = gdbarch_alloc (&info, tdep);
1470
1471 switch (info.bfd_arch_info->mach)
1472 {
1473 case bfd_mach_d10v_ts2:
1474 d10v_num_regs = 37;
1475 d10v_register_name = d10v_ts2_register_name;
1476 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1477 tdep->a0_regnum = TS2_A0_REGNUM;
1478 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1479 tdep->dmap_register = d10v_ts2_dmap_register;
1480 tdep->imap_register = d10v_ts2_imap_register;
1481 break;
1482 default:
1483 case bfd_mach_d10v_ts3:
1484 d10v_num_regs = 42;
1485 d10v_register_name = d10v_ts3_register_name;
1486 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1487 tdep->a0_regnum = TS3_A0_REGNUM;
1488 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1489 tdep->dmap_register = d10v_ts3_dmap_register;
1490 tdep->imap_register = d10v_ts3_imap_register;
1491 break;
1492 }
1493
1494 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1495 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1496 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1497 set_gdbarch_write_fp (gdbarch, d10v_write_fp);
1498 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1499 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1500
1501 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1502 set_gdbarch_sp_regnum (gdbarch, 15);
1503 set_gdbarch_fp_regnum (gdbarch, 11);
1504 set_gdbarch_pc_regnum (gdbarch, 18);
1505 set_gdbarch_register_name (gdbarch, d10v_register_name);
1506 set_gdbarch_register_size (gdbarch, 2);
1507 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1508 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1509 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1510 set_gdbarch_max_register_raw_size (gdbarch, 8);
1511 set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
1512 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1513 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1514
1515 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1516 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1517 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1518 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1519 set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1520 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1521 double'' is 64 bits. */
1522 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1523 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1524 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1525 switch (info.byte_order)
1526 {
1527 case BIG_ENDIAN:
1528 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1529 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1530 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1531 break;
1532 case LITTLE_ENDIAN:
1533 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1534 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1535 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1536 break;
1537 default:
1538 internal_error ("d10v_gdbarch_init: bad byte order for float format");
1539 }
1540
1541 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1542 set_gdbarch_call_dummy_length (gdbarch, 0);
1543 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1544 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1545 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1546 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1547 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1548 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1549 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1550 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1551 set_gdbarch_call_dummy_p (gdbarch, 1);
1552 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1553 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1554 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1555
1556 set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
1557 set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
1558 set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);
1559
1560 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1561 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1562 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1563 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1564
1565 set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
1566 set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
1567 set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
1568 set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
1569 set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
1570 set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);
1571
1572 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1573 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1574 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1575 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1576
1577 set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
1578 set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
1579
1580 set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
1581
1582 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1583 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1584 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1585 set_gdbarch_function_start_offset (gdbarch, 0);
1586 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1587
1588 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1589
1590 set_gdbarch_frame_args_skip (gdbarch, 0);
1591 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1592 set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
1593 set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
1594 set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
1595 set_gdbarch_frame_args_address (gdbarch, d10v_frame_args_address);
1596 set_gdbarch_frame_locals_address (gdbarch, d10v_frame_locals_address);
1597 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1598 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1599 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1600
1601 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1602 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1603
1604 return gdbarch;
1605}
1606
1607
1608extern void (*target_resume_hook) (void);
1609extern void (*target_wait_loop_hook) (void);
1610
1611void
1612_initialize_d10v_tdep (void)
1613{
1614 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1615
1616 tm_print_insn = print_insn_d10v;
1617
1618 target_resume_hook = d10v_eva_prepare_to_trace;
1619 target_wait_loop_hook = d10v_eva_get_trace_data;
1620
1621 add_com ("regs", class_vars, show_regs, "Print all registers");
1622
1623 add_com ("itrace", class_support, trace_command,
1624 "Enable tracing of instruction execution.");
1625
1626 add_com ("iuntrace", class_support, untrace_command,
1627 "Disable tracing of instruction execution.");
1628
1629 add_com ("itdisassemble", class_vars, tdisassemble_command,
1630 "Disassemble the trace buffer.\n\
1631Two optional arguments specify a range of trace buffer entries\n\
1632as reported by info trace (NOT addresses!).");
1633
1634 add_info ("itrace", trace_info,
1635 "Display info about the trace data buffer.");
1636
1637 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1638 var_integer, (char *) &trace_display,
1639 "Set automatic display of trace.\n", &setlist),
1640 &showlist);
1641 add_show_from_set (add_set_cmd ("itracesource", no_class,
1642 var_integer, (char *) &default_trace_show_source,
1643 "Set display of source code with trace.\n", &setlist),
1644 &showlist);
1645
1646}
This page took 0.029032 seconds and 4 git commands to generate.