Don't include libbfd.h outside of bfd, part 6
[deliverable/binutils-gdb.git] / gdb / doublest.c
... / ...
CommitLineData
1/* Floating point routines for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20/* Support for converting target fp numbers into host DOUBLEST format. */
21
22/* XXX - This code should really be in libiberty/floatformat.c,
23 however configuration issues with libiberty made this very
24 difficult to do in the available time. */
25
26#include "defs.h"
27#include "doublest.h"
28#include "floatformat.h"
29#include "gdbtypes.h"
30#include <math.h> /* ldexp */
31
32/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
33 going to bother with trying to muck around with whether it is defined in
34 a system header, what we do if not, etc. */
35#define FLOATFORMAT_CHAR_BIT 8
36
37/* The number of bytes that the largest floating-point type that we
38 can convert to doublest will need. */
39#define FLOATFORMAT_LARGEST_BYTES 16
40
41/* Extract a field which starts at START and is LEN bytes long. DATA and
42 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
43static unsigned long
44get_field (const bfd_byte *data, enum floatformat_byteorders order,
45 unsigned int total_len, unsigned int start, unsigned int len)
46{
47 unsigned long result;
48 unsigned int cur_byte;
49 int cur_bitshift;
50
51 /* Caller must byte-swap words before calling this routine. */
52 gdb_assert (order == floatformat_little || order == floatformat_big);
53
54 /* Start at the least significant part of the field. */
55 if (order == floatformat_little)
56 {
57 /* We start counting from the other end (i.e, from the high bytes
58 rather than the low bytes). As such, we need to be concerned
59 with what happens if bit 0 doesn't start on a byte boundary.
60 I.e, we need to properly handle the case where total_len is
61 not evenly divisible by 8. So we compute ``excess'' which
62 represents the number of bits from the end of our starting
63 byte needed to get to bit 0. */
64 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
65
66 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
67 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
68 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
69 - FLOATFORMAT_CHAR_BIT;
70 }
71 else
72 {
73 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
74 cur_bitshift =
75 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
76 }
77 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
78 result = *(data + cur_byte) >> (-cur_bitshift);
79 else
80 result = 0;
81 cur_bitshift += FLOATFORMAT_CHAR_BIT;
82 if (order == floatformat_little)
83 ++cur_byte;
84 else
85 --cur_byte;
86
87 /* Move towards the most significant part of the field. */
88 while (cur_bitshift < len)
89 {
90 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
91 cur_bitshift += FLOATFORMAT_CHAR_BIT;
92 switch (order)
93 {
94 case floatformat_little:
95 ++cur_byte;
96 break;
97 case floatformat_big:
98 --cur_byte;
99 break;
100 }
101 }
102 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
103 /* Mask out bits which are not part of the field. */
104 result &= ((1UL << len) - 1);
105 return result;
106}
107
108/* Normalize the byte order of FROM into TO. If no normalization is
109 needed then FMT->byteorder is returned and TO is not changed;
110 otherwise the format of the normalized form in TO is returned. */
111
112static enum floatformat_byteorders
113floatformat_normalize_byteorder (const struct floatformat *fmt,
114 const void *from, void *to)
115{
116 const unsigned char *swapin;
117 unsigned char *swapout;
118 int words;
119
120 if (fmt->byteorder == floatformat_little
121 || fmt->byteorder == floatformat_big)
122 return fmt->byteorder;
123
124 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
125 words >>= 2;
126
127 swapout = (unsigned char *)to;
128 swapin = (const unsigned char *)from;
129
130 if (fmt->byteorder == floatformat_vax)
131 {
132 while (words-- > 0)
133 {
134 *swapout++ = swapin[1];
135 *swapout++ = swapin[0];
136 *swapout++ = swapin[3];
137 *swapout++ = swapin[2];
138 swapin += 4;
139 }
140 /* This may look weird, since VAX is little-endian, but it is
141 easier to translate to big-endian than to little-endian. */
142 return floatformat_big;
143 }
144 else
145 {
146 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
147
148 while (words-- > 0)
149 {
150 *swapout++ = swapin[3];
151 *swapout++ = swapin[2];
152 *swapout++ = swapin[1];
153 *swapout++ = swapin[0];
154 swapin += 4;
155 }
156 return floatformat_big;
157 }
158}
159
160/* Convert from FMT to a DOUBLEST.
161 FROM is the address of the extended float.
162 Store the DOUBLEST in *TO. */
163
164static void
165convert_floatformat_to_doublest (const struct floatformat *fmt,
166 const void *from,
167 DOUBLEST *to)
168{
169 unsigned char *ufrom = (unsigned char *) from;
170 DOUBLEST dto;
171 long exponent;
172 unsigned long mant;
173 unsigned int mant_bits, mant_off;
174 int mant_bits_left;
175 int special_exponent; /* It's a NaN, denorm or zero. */
176 enum floatformat_byteorders order;
177 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
178 enum float_kind kind;
179
180 gdb_assert (fmt->totalsize
181 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
182
183 /* For non-numbers, reuse libiberty's logic to find the correct
184 format. We do not lose any precision in this case by passing
185 through a double. */
186 kind = floatformat_classify (fmt, (const bfd_byte *) from);
187 if (kind == float_infinite || kind == float_nan)
188 {
189 double dto;
190
191 floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
192 from, &dto);
193 *to = (DOUBLEST) dto;
194 return;
195 }
196
197 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
198
199 if (order != fmt->byteorder)
200 ufrom = newfrom;
201
202 if (fmt->split_half)
203 {
204 DOUBLEST dtop, dbot;
205
206 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
207 /* Preserve the sign of 0, which is the sign of the top
208 half. */
209 if (dtop == 0.0)
210 {
211 *to = dtop;
212 return;
213 }
214 floatformat_to_doublest (fmt->split_half,
215 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
216 &dbot);
217 *to = dtop + dbot;
218 return;
219 }
220
221 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
222 fmt->exp_len);
223 /* Note that if exponent indicates a NaN, we can't really do anything useful
224 (not knowing if the host has NaN's, or how to build one). So it will
225 end up as an infinity or something close; that is OK. */
226
227 mant_bits_left = fmt->man_len;
228 mant_off = fmt->man_start;
229 dto = 0.0;
230
231 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
232
233 /* Don't bias NaNs. Use minimum exponent for denorms. For
234 simplicity, we don't check for zero as the exponent doesn't matter.
235 Note the cast to int; exp_bias is unsigned, so it's important to
236 make sure the operation is done in signed arithmetic. */
237 if (!special_exponent)
238 exponent -= fmt->exp_bias;
239 else if (exponent == 0)
240 exponent = 1 - fmt->exp_bias;
241
242 /* Build the result algebraically. Might go infinite, underflow, etc;
243 who cares. */
244
245/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
246 increment the exponent by one to account for the integer bit. */
247
248 if (!special_exponent)
249 {
250 if (fmt->intbit == floatformat_intbit_no)
251 dto = ldexp (1.0, exponent);
252 else
253 exponent++;
254 }
255
256 while (mant_bits_left > 0)
257 {
258 mant_bits = min (mant_bits_left, 32);
259
260 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
261
262 dto += ldexp ((double) mant, exponent - mant_bits);
263 exponent -= mant_bits;
264 mant_off += mant_bits;
265 mant_bits_left -= mant_bits;
266 }
267
268 /* Negate it if negative. */
269 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
270 dto = -dto;
271 *to = dto;
272}
273\f
274/* Set a field which starts at START and is LEN bytes long. DATA and
275 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
276static void
277put_field (unsigned char *data, enum floatformat_byteorders order,
278 unsigned int total_len, unsigned int start, unsigned int len,
279 unsigned long stuff_to_put)
280{
281 unsigned int cur_byte;
282 int cur_bitshift;
283
284 /* Caller must byte-swap words before calling this routine. */
285 gdb_assert (order == floatformat_little || order == floatformat_big);
286
287 /* Start at the least significant part of the field. */
288 if (order == floatformat_little)
289 {
290 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
291
292 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
293 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
294 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
295 - FLOATFORMAT_CHAR_BIT;
296 }
297 else
298 {
299 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
300 cur_bitshift =
301 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
302 }
303 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
304 {
305 *(data + cur_byte) &=
306 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
307 << (-cur_bitshift));
308 *(data + cur_byte) |=
309 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
310 }
311 cur_bitshift += FLOATFORMAT_CHAR_BIT;
312 if (order == floatformat_little)
313 ++cur_byte;
314 else
315 --cur_byte;
316
317 /* Move towards the most significant part of the field. */
318 while (cur_bitshift < len)
319 {
320 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
321 {
322 /* This is the last byte. */
323 *(data + cur_byte) &=
324 ~((1 << (len - cur_bitshift)) - 1);
325 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
326 }
327 else
328 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
329 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
330 cur_bitshift += FLOATFORMAT_CHAR_BIT;
331 if (order == floatformat_little)
332 ++cur_byte;
333 else
334 --cur_byte;
335 }
336}
337
338/* The converse: convert the DOUBLEST *FROM to an extended float and
339 store where TO points. Neither FROM nor TO have any alignment
340 restrictions. */
341
342static void
343convert_doublest_to_floatformat (const struct floatformat *fmt,
344 const DOUBLEST *from, void *to)
345{
346 DOUBLEST dfrom;
347 int exponent;
348 DOUBLEST mant;
349 unsigned int mant_bits, mant_off;
350 int mant_bits_left;
351 unsigned char *uto = (unsigned char *) to;
352 enum floatformat_byteorders order = fmt->byteorder;
353 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
354
355 if (order != floatformat_little)
356 order = floatformat_big;
357
358 if (order != fmt->byteorder)
359 uto = newto;
360
361 memcpy (&dfrom, from, sizeof (dfrom));
362 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
363 / FLOATFORMAT_CHAR_BIT);
364
365 if (fmt->split_half)
366 {
367 /* Use static volatile to ensure that any excess precision is
368 removed via storing in memory, and so the top half really is
369 the result of converting to double. */
370 static volatile double dtop, dbot;
371 DOUBLEST dtopnv, dbotnv;
372
373 dtop = (double) dfrom;
374 /* If the rounded top half is Inf, the bottom must be 0 not NaN
375 or Inf. */
376 if (dtop + dtop == dtop && dtop != 0.0)
377 dbot = 0.0;
378 else
379 dbot = (double) (dfrom - (DOUBLEST) dtop);
380 dtopnv = dtop;
381 dbotnv = dbot;
382 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
383 floatformat_from_doublest (fmt->split_half, &dbotnv,
384 (uto
385 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
386 return;
387 }
388
389 if (dfrom == 0)
390 return; /* Result is zero */
391 if (dfrom != dfrom) /* Result is NaN */
392 {
393 /* From is NaN */
394 put_field (uto, order, fmt->totalsize, fmt->exp_start,
395 fmt->exp_len, fmt->exp_nan);
396 /* Be sure it's not infinity, but NaN value is irrel. */
397 put_field (uto, order, fmt->totalsize, fmt->man_start,
398 fmt->man_len, 1);
399 goto finalize_byteorder;
400 }
401
402 /* If negative, set the sign bit. */
403 if (dfrom < 0)
404 {
405 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
406 dfrom = -dfrom;
407 }
408
409 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
410 {
411 /* Infinity exponent is same as NaN's. */
412 put_field (uto, order, fmt->totalsize, fmt->exp_start,
413 fmt->exp_len, fmt->exp_nan);
414 /* Infinity mantissa is all zeroes. */
415 put_field (uto, order, fmt->totalsize, fmt->man_start,
416 fmt->man_len, 0);
417 goto finalize_byteorder;
418 }
419
420#ifdef HAVE_LONG_DOUBLE
421 mant = frexpl (dfrom, &exponent);
422#else
423 mant = frexp (dfrom, &exponent);
424#endif
425
426 if (exponent + fmt->exp_bias <= 0)
427 {
428 /* The value is too small to be expressed in the destination
429 type (not enough bits in the exponent. Treat as 0. */
430 put_field (uto, order, fmt->totalsize, fmt->exp_start,
431 fmt->exp_len, 0);
432 put_field (uto, order, fmt->totalsize, fmt->man_start,
433 fmt->man_len, 0);
434 goto finalize_byteorder;
435 }
436
437 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
438 {
439 /* The value is too large to fit into the destination.
440 Treat as infinity. */
441 put_field (uto, order, fmt->totalsize, fmt->exp_start,
442 fmt->exp_len, fmt->exp_nan);
443 put_field (uto, order, fmt->totalsize, fmt->man_start,
444 fmt->man_len, 0);
445 goto finalize_byteorder;
446 }
447
448 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
449 exponent + fmt->exp_bias - 1);
450
451 mant_bits_left = fmt->man_len;
452 mant_off = fmt->man_start;
453 while (mant_bits_left > 0)
454 {
455 unsigned long mant_long;
456
457 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
458
459 mant *= 4294967296.0;
460 mant_long = ((unsigned long) mant) & 0xffffffffL;
461 mant -= mant_long;
462
463 /* If the integer bit is implicit, then we need to discard it.
464 If we are discarding a zero, we should be (but are not) creating
465 a denormalized number which means adjusting the exponent
466 (I think). */
467 if (mant_bits_left == fmt->man_len
468 && fmt->intbit == floatformat_intbit_no)
469 {
470 mant_long <<= 1;
471 mant_long &= 0xffffffffL;
472 /* If we are processing the top 32 mantissa bits of a doublest
473 so as to convert to a float value with implied integer bit,
474 we will only be putting 31 of those 32 bits into the
475 final value due to the discarding of the top bit. In the
476 case of a small float value where the number of mantissa
477 bits is less than 32, discarding the top bit does not alter
478 the number of bits we will be adding to the result. */
479 if (mant_bits == 32)
480 mant_bits -= 1;
481 }
482
483 if (mant_bits < 32)
484 {
485 /* The bits we want are in the most significant MANT_BITS bits of
486 mant_long. Move them to the least significant. */
487 mant_long >>= 32 - mant_bits;
488 }
489
490 put_field (uto, order, fmt->totalsize,
491 mant_off, mant_bits, mant_long);
492 mant_off += mant_bits;
493 mant_bits_left -= mant_bits;
494 }
495
496 finalize_byteorder:
497 /* Do we need to byte-swap the words in the result? */
498 if (order != fmt->byteorder)
499 floatformat_normalize_byteorder (fmt, newto, to);
500}
501
502/* Check if VAL (which is assumed to be a floating point number whose
503 format is described by FMT) is negative. */
504
505int
506floatformat_is_negative (const struct floatformat *fmt,
507 const bfd_byte *uval)
508{
509 enum floatformat_byteorders order;
510 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
511
512 gdb_assert (fmt != NULL);
513 gdb_assert (fmt->totalsize
514 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
515
516 /* An IBM long double (a two element array of double) always takes the
517 sign of the first double. */
518 if (fmt->split_half)
519 fmt = fmt->split_half;
520
521 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
522
523 if (order != fmt->byteorder)
524 uval = newfrom;
525
526 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
527}
528
529/* Check if VAL is "not a number" (NaN) for FMT. */
530
531enum float_kind
532floatformat_classify (const struct floatformat *fmt,
533 const bfd_byte *uval)
534{
535 long exponent;
536 unsigned long mant;
537 unsigned int mant_bits, mant_off;
538 int mant_bits_left;
539 enum floatformat_byteorders order;
540 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
541 int mant_zero;
542
543 gdb_assert (fmt != NULL);
544 gdb_assert (fmt->totalsize
545 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
546
547 /* An IBM long double (a two element array of double) can be classified
548 by looking at the first double. inf and nan are specified as
549 ignoring the second double. zero and subnormal will always have
550 the second double 0.0 if the long double is correctly rounded. */
551 if (fmt->split_half)
552 fmt = fmt->split_half;
553
554 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
555
556 if (order != fmt->byteorder)
557 uval = newfrom;
558
559 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
560 fmt->exp_len);
561
562 mant_bits_left = fmt->man_len;
563 mant_off = fmt->man_start;
564
565 mant_zero = 1;
566 while (mant_bits_left > 0)
567 {
568 mant_bits = min (mant_bits_left, 32);
569
570 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
571
572 /* If there is an explicit integer bit, mask it off. */
573 if (mant_off == fmt->man_start
574 && fmt->intbit == floatformat_intbit_yes)
575 mant &= ~(1 << (mant_bits - 1));
576
577 if (mant)
578 {
579 mant_zero = 0;
580 break;
581 }
582
583 mant_off += mant_bits;
584 mant_bits_left -= mant_bits;
585 }
586
587 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
588 supported. */
589 if (! fmt->exp_nan)
590 {
591 if (mant_zero)
592 return float_zero;
593 else
594 return float_normal;
595 }
596
597 if (exponent == 0 && !mant_zero)
598 return float_subnormal;
599
600 if (exponent == fmt->exp_nan)
601 {
602 if (mant_zero)
603 return float_infinite;
604 else
605 return float_nan;
606 }
607
608 if (mant_zero)
609 return float_zero;
610
611 return float_normal;
612}
613
614/* Convert the mantissa of VAL (which is assumed to be a floating
615 point number whose format is described by FMT) into a hexadecimal
616 and store it in a static string. Return a pointer to that string. */
617
618const char *
619floatformat_mantissa (const struct floatformat *fmt,
620 const bfd_byte *val)
621{
622 unsigned char *uval = (unsigned char *) val;
623 unsigned long mant;
624 unsigned int mant_bits, mant_off;
625 int mant_bits_left;
626 static char res[50];
627 char buf[9];
628 int len;
629 enum floatformat_byteorders order;
630 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
631
632 gdb_assert (fmt != NULL);
633 gdb_assert (fmt->totalsize
634 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
635
636 /* For IBM long double (a two element array of double), return the
637 mantissa of the first double. The problem with returning the
638 actual mantissa from both doubles is that there can be an
639 arbitrary number of implied 0's or 1's between the mantissas
640 of the first and second double. In any case, this function
641 is only used for dumping out nans, and a nan is specified to
642 ignore the value in the second double. */
643 if (fmt->split_half)
644 fmt = fmt->split_half;
645
646 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
647
648 if (order != fmt->byteorder)
649 uval = newfrom;
650
651 if (! fmt->exp_nan)
652 return 0;
653
654 /* Make sure we have enough room to store the mantissa. */
655 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
656
657 mant_off = fmt->man_start;
658 mant_bits_left = fmt->man_len;
659 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
660
661 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
662
663 len = xsnprintf (res, sizeof res, "%lx", mant);
664
665 mant_off += mant_bits;
666 mant_bits_left -= mant_bits;
667
668 while (mant_bits_left > 0)
669 {
670 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
671
672 xsnprintf (buf, sizeof buf, "%08lx", mant);
673 gdb_assert (len + strlen (buf) <= sizeof res);
674 strcat (res, buf);
675
676 mant_off += 32;
677 mant_bits_left -= 32;
678 }
679
680 return res;
681}
682
683\f
684/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
685
686 If the host and target formats agree, we just copy the raw data
687 into the appropriate type of variable and return, letting the host
688 increase precision as necessary. Otherwise, we call the conversion
689 routine and let it do the dirty work. Note that even if the target
690 and host floating-point formats match, the length of the types
691 might still be different, so the conversion routines must make sure
692 to not overrun any buffers. For example, on x86, long double is
693 the 80-bit extended precision type on both 32-bit and 64-bit ABIs,
694 but by default it is stored as 12 bytes on 32-bit, and 16 bytes on
695 64-bit, for alignment reasons. See comment in store_typed_floating
696 for a discussion about zeroing out remaining bytes in the target
697 buffer. */
698
699static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
700static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
701static const struct floatformat *host_long_double_format
702 = GDB_HOST_LONG_DOUBLE_FORMAT;
703
704/* See doublest.h. */
705
706size_t
707floatformat_totalsize_bytes (const struct floatformat *fmt)
708{
709 return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
710 / FLOATFORMAT_CHAR_BIT);
711}
712
713void
714floatformat_to_doublest (const struct floatformat *fmt,
715 const void *in, DOUBLEST *out)
716{
717 gdb_assert (fmt != NULL);
718
719 if (fmt == host_float_format)
720 {
721 float val = 0;
722
723 memcpy (&val, in, floatformat_totalsize_bytes (fmt));
724 *out = val;
725 }
726 else if (fmt == host_double_format)
727 {
728 double val = 0;
729
730 memcpy (&val, in, floatformat_totalsize_bytes (fmt));
731 *out = val;
732 }
733 else if (fmt == host_long_double_format)
734 {
735 long double val = 0;
736
737 memcpy (&val, in, floatformat_totalsize_bytes (fmt));
738 *out = val;
739 }
740 else
741 convert_floatformat_to_doublest (fmt, in, out);
742}
743
744void
745floatformat_from_doublest (const struct floatformat *fmt,
746 const DOUBLEST *in, void *out)
747{
748 gdb_assert (fmt != NULL);
749
750 if (fmt == host_float_format)
751 {
752 float val = *in;
753
754 memcpy (out, &val, floatformat_totalsize_bytes (fmt));
755 }
756 else if (fmt == host_double_format)
757 {
758 double val = *in;
759
760 memcpy (out, &val, floatformat_totalsize_bytes (fmt));
761 }
762 else if (fmt == host_long_double_format)
763 {
764 long double val = *in;
765
766 memcpy (out, &val, floatformat_totalsize_bytes (fmt));
767 }
768 else
769 convert_doublest_to_floatformat (fmt, in, out);
770}
771
772\f
773/* Return a floating-point format for a floating-point variable of
774 length LEN. If no suitable floating-point format is found, an
775 error is thrown.
776
777 We need this functionality since information about the
778 floating-point format of a type is not always available to GDB; the
779 debug information typically only tells us the size of a
780 floating-point type.
781
782 FIXME: kettenis/2001-10-28: In many places, particularly in
783 target-dependent code, the format of floating-point types is known,
784 but not passed on by GDB. This should be fixed. */
785
786static const struct floatformat *
787floatformat_from_length (struct gdbarch *gdbarch, int len)
788{
789 const struct floatformat *format;
790
791 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
792 format = gdbarch_half_format (gdbarch)
793 [gdbarch_byte_order (gdbarch)];
794 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
795 format = gdbarch_float_format (gdbarch)
796 [gdbarch_byte_order (gdbarch)];
797 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
798 format = gdbarch_double_format (gdbarch)
799 [gdbarch_byte_order (gdbarch)];
800 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
801 format = gdbarch_long_double_format (gdbarch)
802 [gdbarch_byte_order (gdbarch)];
803 /* On i386 the 'long double' type takes 96 bits,
804 while the real number of used bits is only 80,
805 both in processor and in memory.
806 The code below accepts the real bit size. */
807 else if ((gdbarch_long_double_format (gdbarch) != NULL)
808 && (len * TARGET_CHAR_BIT
809 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
810 format = gdbarch_long_double_format (gdbarch)
811 [gdbarch_byte_order (gdbarch)];
812 else
813 format = NULL;
814 if (format == NULL)
815 error (_("Unrecognized %d-bit floating-point type."),
816 len * TARGET_CHAR_BIT);
817 return format;
818}
819
820const struct floatformat *
821floatformat_from_type (const struct type *type)
822{
823 struct gdbarch *gdbarch = get_type_arch (type);
824 const struct floatformat *fmt;
825
826 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
827 if (TYPE_FLOATFORMAT (type) != NULL)
828 fmt = TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
829 else
830 fmt = floatformat_from_length (gdbarch, TYPE_LENGTH (type));
831
832 gdb_assert (TYPE_LENGTH (type) >= floatformat_totalsize_bytes (fmt));
833 return fmt;
834}
835
836/* Extract a floating-point number of type TYPE from a target-order
837 byte-stream at ADDR. Returns the value as type DOUBLEST. */
838
839DOUBLEST
840extract_typed_floating (const void *addr, const struct type *type)
841{
842 const struct floatformat *fmt = floatformat_from_type (type);
843 DOUBLEST retval;
844
845 floatformat_to_doublest (fmt, addr, &retval);
846 return retval;
847}
848
849/* Store VAL as a floating-point number of type TYPE to a target-order
850 byte-stream at ADDR. */
851
852void
853store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
854{
855 const struct floatformat *fmt = floatformat_from_type (type);
856
857 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
858 zero out any remaining bytes in the target buffer when TYPE is
859 longer than the actual underlying floating-point format. Perhaps
860 we should store a fixed bitpattern in those remaining bytes,
861 instead of zero, or perhaps we shouldn't touch those remaining
862 bytes at all.
863
864 NOTE: cagney/2001-10-28: With the way things currently work, it
865 isn't a good idea to leave the end bits undefined. This is
866 because GDB writes out the entire sizeof(<floating>) bits of the
867 floating-point type even though the value might only be stored
868 in, and the target processor may only refer to, the first N <
869 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
870 initialized, GDB would write undefined data to the target. An
871 errant program, refering to that undefined data, would then
872 become non-deterministic.
873
874 See also the function convert_typed_floating below. */
875 memset (addr, 0, TYPE_LENGTH (type));
876
877 floatformat_from_doublest (fmt, &val, addr);
878}
879
880/* Convert a floating-point number of type FROM_TYPE from a
881 target-order byte-stream at FROM to a floating-point number of type
882 TO_TYPE, and store it to a target-order byte-stream at TO. */
883
884void
885convert_typed_floating (const void *from, const struct type *from_type,
886 void *to, const struct type *to_type)
887{
888 const struct floatformat *from_fmt = floatformat_from_type (from_type);
889 const struct floatformat *to_fmt = floatformat_from_type (to_type);
890
891 if (from_fmt == NULL || to_fmt == NULL)
892 {
893 /* If we don't know the floating-point format of FROM_TYPE or
894 TO_TYPE, there's not much we can do. We might make the
895 assumption that if the length of FROM_TYPE and TO_TYPE match,
896 their floating-point format would match too, but that
897 assumption might be wrong on targets that support
898 floating-point types that only differ in endianness for
899 example. So we warn instead, and zero out the target buffer. */
900 warning (_("Can't convert floating-point number to desired type."));
901 memset (to, 0, TYPE_LENGTH (to_type));
902 }
903 else if (from_fmt == to_fmt)
904 {
905 /* We're in business. The floating-point format of FROM_TYPE
906 and TO_TYPE match. However, even though the floating-point
907 format matches, the length of the type might still be
908 different. Make sure we don't overrun any buffers. See
909 comment in store_typed_floating for a discussion about
910 zeroing out remaining bytes in the target buffer. */
911 memset (to, 0, TYPE_LENGTH (to_type));
912 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
913 }
914 else
915 {
916 /* The floating-point types don't match. The best we can do
917 (apart from simulating the target FPU) is converting to the
918 widest floating-point type supported by the host, and then
919 again to the desired type. */
920 DOUBLEST d;
921
922 floatformat_to_doublest (from_fmt, from, &d);
923 floatformat_from_doublest (to_fmt, &d, to);
924 }
925}
This page took 0.026157 seconds and 4 git commands to generate.